1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 42 #include <cassert> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 52 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 53 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 54 VPSlotTracker SlotTracker( 55 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 56 V.print(OS, SlotTracker); 57 return OS; 58 } 59 #endif 60 61 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 62 const ElementCount &VF) const { 63 switch (LaneKind) { 64 case VPLane::Kind::ScalableLast: 65 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 66 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 67 Builder.getInt32(VF.getKnownMinValue() - Lane)); 68 case VPLane::Kind::First: 69 return Builder.getInt32(Lane); 70 } 71 llvm_unreachable("Unknown lane kind"); 72 } 73 74 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 75 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 76 if (Def) 77 Def->addDefinedValue(this); 78 } 79 80 VPValue::~VPValue() { 81 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 82 if (Def) 83 Def->removeDefinedValue(this); 84 } 85 86 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 87 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 88 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 89 R->print(OS, "", SlotTracker); 90 else 91 printAsOperand(OS, SlotTracker); 92 } 93 94 void VPValue::dump() const { 95 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 96 VPSlotTracker SlotTracker( 97 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 98 print(dbgs(), SlotTracker); 99 dbgs() << "\n"; 100 } 101 102 void VPDef::dump() const { 103 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 104 VPSlotTracker SlotTracker( 105 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 106 print(dbgs(), "", SlotTracker); 107 dbgs() << "\n"; 108 } 109 #endif 110 111 // Get the top-most entry block of \p Start. This is the entry block of the 112 // containing VPlan. This function is templated to support both const and non-const blocks 113 template <typename T> static T *getPlanEntry(T *Start) { 114 T *Next = Start; 115 T *Current = Start; 116 while ((Next = Next->getParent())) 117 Current = Next; 118 119 SmallSetVector<T *, 8> WorkList; 120 WorkList.insert(Current); 121 122 for (unsigned i = 0; i < WorkList.size(); i++) { 123 T *Current = WorkList[i]; 124 if (Current->getNumPredecessors() == 0) 125 return Current; 126 auto &Predecessors = Current->getPredecessors(); 127 WorkList.insert(Predecessors.begin(), Predecessors.end()); 128 } 129 130 llvm_unreachable("VPlan without any entry node without predecessors"); 131 } 132 133 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 134 135 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 136 137 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 138 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 139 const VPBlockBase *Block = this; 140 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 141 Block = Region->getEntry(); 142 return cast<VPBasicBlock>(Block); 143 } 144 145 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 146 VPBlockBase *Block = this; 147 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 148 Block = Region->getEntry(); 149 return cast<VPBasicBlock>(Block); 150 } 151 152 void VPBlockBase::setPlan(VPlan *ParentPlan) { 153 assert(ParentPlan->getEntry() == this && 154 "Can only set plan on its entry block."); 155 Plan = ParentPlan; 156 } 157 158 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 159 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 160 const VPBlockBase *Block = this; 161 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 162 Block = Region->getExiting(); 163 return cast<VPBasicBlock>(Block); 164 } 165 166 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 167 VPBlockBase *Block = this; 168 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 169 Block = Region->getExiting(); 170 return cast<VPBasicBlock>(Block); 171 } 172 173 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 174 if (!Successors.empty() || !Parent) 175 return this; 176 assert(Parent->getExiting() == this && 177 "Block w/o successors not the exiting block of its parent."); 178 return Parent->getEnclosingBlockWithSuccessors(); 179 } 180 181 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 182 if (!Predecessors.empty() || !Parent) 183 return this; 184 assert(Parent->getEntry() == this && 185 "Block w/o predecessors not the entry of its parent."); 186 return Parent->getEnclosingBlockWithPredecessors(); 187 } 188 189 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 190 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 191 192 for (VPBlockBase *Block : Blocks) 193 delete Block; 194 } 195 196 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 197 iterator It = begin(); 198 while (It != end() && It->isPhi()) 199 It++; 200 return It; 201 } 202 203 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 204 if (!Def->getDef()) 205 return Def->getLiveInIRValue(); 206 207 if (hasScalarValue(Def, Instance)) { 208 return Data 209 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 210 } 211 212 assert(hasVectorValue(Def, Instance.Part)); 213 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 214 if (!VecPart->getType()->isVectorTy()) { 215 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 216 return VecPart; 217 } 218 // TODO: Cache created scalar values. 219 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 220 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 221 // set(Def, Extract, Instance); 222 return Extract; 223 } 224 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 225 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 226 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 227 } 228 229 BasicBlock * 230 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 231 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 232 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 233 BasicBlock *PrevBB = CFG.PrevBB; 234 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 235 PrevBB->getParent(), CFG.ExitBB); 236 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 237 238 // Hook up the new basic block to its predecessors. 239 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 240 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 241 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 242 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 243 244 assert(PredBB && "Predecessor basic-block not found building successor."); 245 auto *PredBBTerminator = PredBB->getTerminator(); 246 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 247 248 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 249 if (isa<UnreachableInst>(PredBBTerminator)) { 250 assert(PredVPSuccessors.size() == 1 && 251 "Predecessor ending w/o branch must have single successor."); 252 DebugLoc DL = PredBBTerminator->getDebugLoc(); 253 PredBBTerminator->eraseFromParent(); 254 auto *Br = BranchInst::Create(NewBB, PredBB); 255 Br->setDebugLoc(DL); 256 } else if (TermBr && !TermBr->isConditional()) { 257 TermBr->setSuccessor(0, NewBB); 258 } else { 259 // Set each forward successor here when it is created, excluding 260 // backedges. A backward successor is set when the branch is created. 261 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 262 assert(!TermBr->getSuccessor(idx) && 263 "Trying to reset an existing successor block."); 264 TermBr->setSuccessor(idx, NewBB); 265 } 266 } 267 return NewBB; 268 } 269 270 void VPBasicBlock::execute(VPTransformState *State) { 271 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 272 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 273 VPBlockBase *SingleHPred = nullptr; 274 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 275 276 auto IsLoopRegion = [](VPBlockBase *BB) { 277 auto *R = dyn_cast<VPRegionBlock>(BB); 278 return R && !R->isReplicator(); 279 }; 280 281 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 282 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 283 // ExitBB can be re-used for the exit block of the Plan. 284 NewBB = State->CFG.ExitBB; 285 State->CFG.PrevBB = NewBB; 286 287 // Update the branch instruction in the predecessor to branch to ExitBB. 288 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 289 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 290 assert(PredVPB->getSingleSuccessor() == this && 291 "predecessor must have the current block as only successor"); 292 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 293 // The Exit block of a loop is always set to be successor 0 of the Exiting 294 // block. 295 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 296 } else if (PrevVPBB && /* A */ 297 !((SingleHPred = getSingleHierarchicalPredecessor()) && 298 SingleHPred->getExitingBasicBlock() == PrevVPBB && 299 PrevVPBB->getSingleHierarchicalSuccessor() && 300 (SingleHPred->getParent() == getEnclosingLoopRegion() && 301 !IsLoopRegion(SingleHPred))) && /* B */ 302 !(Replica && getPredecessors().empty())) { /* C */ 303 // The last IR basic block is reused, as an optimization, in three cases: 304 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 305 // B. when the current VPBB has a single (hierarchical) predecessor which 306 // is PrevVPBB and the latter has a single (hierarchical) successor which 307 // both are in the same non-replicator region; and 308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 309 // is the exiting VPBB of this region from a previous instance, or the 310 // predecessor of this region. 311 312 NewBB = createEmptyBasicBlock(State->CFG); 313 State->Builder.SetInsertPoint(NewBB); 314 // Temporarily terminate with unreachable until CFG is rewired. 315 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 316 // Register NewBB in its loop. In innermost loops its the same for all 317 // BB's. 318 if (State->CurrentVectorLoop) 319 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 320 State->Builder.SetInsertPoint(Terminator); 321 State->CFG.PrevBB = NewBB; 322 } 323 324 // 2. Fill the IR basic block with IR instructions. 325 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 326 << " in BB:" << NewBB->getName() << '\n'); 327 328 State->CFG.VPBB2IRBB[this] = NewBB; 329 State->CFG.PrevVPBB = this; 330 331 for (VPRecipeBase &Recipe : Recipes) 332 Recipe.execute(*State); 333 334 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 335 } 336 337 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 338 for (VPRecipeBase &R : Recipes) { 339 for (auto *Def : R.definedValues()) 340 Def->replaceAllUsesWith(NewValue); 341 342 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 343 R.setOperand(I, NewValue); 344 } 345 } 346 347 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 348 assert((SplitAt == end() || SplitAt->getParent() == this) && 349 "can only split at a position in the same block"); 350 351 SmallVector<VPBlockBase *, 2> Succs(successors()); 352 // First, disconnect the current block from its successors. 353 for (VPBlockBase *Succ : Succs) 354 VPBlockUtils::disconnectBlocks(this, Succ); 355 356 // Create new empty block after the block to split. 357 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 358 VPBlockUtils::insertBlockAfter(SplitBlock, this); 359 360 // Add successors for block to split to new block. 361 for (VPBlockBase *Succ : Succs) 362 VPBlockUtils::connectBlocks(SplitBlock, Succ); 363 364 // Finally, move the recipes starting at SplitAt to new block. 365 for (VPRecipeBase &ToMove : 366 make_early_inc_range(make_range(SplitAt, this->end()))) 367 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 368 369 return SplitBlock; 370 } 371 372 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 373 VPRegionBlock *P = getParent(); 374 if (P && P->isReplicator()) { 375 P = P->getParent(); 376 assert(!cast<VPRegionBlock>(P)->isReplicator() && 377 "unexpected nested replicate regions"); 378 } 379 return P; 380 } 381 382 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 383 if (VPBB->empty()) { 384 assert( 385 VPBB->getNumSuccessors() < 2 && 386 "block with multiple successors doesn't have a recipe as terminator"); 387 return false; 388 } 389 390 const VPRecipeBase *R = &VPBB->back(); 391 auto *VPI = dyn_cast<VPInstruction>(R); 392 bool IsCondBranch = 393 isa<VPBranchOnMaskRecipe>(R) || 394 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 395 VPI->getOpcode() == VPInstruction::BranchOnCount)); 396 (void)IsCondBranch; 397 398 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 399 assert(IsCondBranch && "block with multiple successors not terminated by " 400 "conditional branch recipe"); 401 402 return true; 403 } 404 405 assert( 406 !IsCondBranch && 407 "block with 0 or 1 successors terminated by conditional branch recipe"); 408 return false; 409 } 410 411 VPRecipeBase *VPBasicBlock::getTerminator() { 412 if (hasConditionalTerminator(this)) 413 return &back(); 414 return nullptr; 415 } 416 417 const VPRecipeBase *VPBasicBlock::getTerminator() const { 418 if (hasConditionalTerminator(this)) 419 return &back(); 420 return nullptr; 421 } 422 423 bool VPBasicBlock::isExiting() const { 424 return getParent()->getExitingBasicBlock() == this; 425 } 426 427 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 428 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 429 if (getSuccessors().empty()) { 430 O << Indent << "No successors\n"; 431 } else { 432 O << Indent << "Successor(s): "; 433 ListSeparator LS; 434 for (auto *Succ : getSuccessors()) 435 O << LS << Succ->getName(); 436 O << '\n'; 437 } 438 } 439 440 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 441 VPSlotTracker &SlotTracker) const { 442 O << Indent << getName() << ":\n"; 443 444 auto RecipeIndent = Indent + " "; 445 for (const VPRecipeBase &Recipe : *this) { 446 Recipe.print(O, RecipeIndent, SlotTracker); 447 O << '\n'; 448 } 449 450 printSuccessors(O, Indent); 451 } 452 #endif 453 454 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 455 for (VPBlockBase *Block : depth_first(Entry)) 456 // Drop all references in VPBasicBlocks and replace all uses with 457 // DummyValue. 458 Block->dropAllReferences(NewValue); 459 } 460 461 void VPRegionBlock::execute(VPTransformState *State) { 462 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 463 464 if (!isReplicator()) { 465 // Create and register the new vector loop. 466 Loop *PrevLoop = State->CurrentVectorLoop; 467 State->CurrentVectorLoop = State->LI->AllocateLoop(); 468 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 469 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 470 471 // Insert the new loop into the loop nest and register the new basic blocks 472 // before calling any utilities such as SCEV that require valid LoopInfo. 473 if (ParentLoop) 474 ParentLoop->addChildLoop(State->CurrentVectorLoop); 475 else 476 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 477 478 // Visit the VPBlocks connected to "this", starting from it. 479 for (VPBlockBase *Block : RPOT) { 480 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 481 Block->execute(State); 482 } 483 484 State->CurrentVectorLoop = PrevLoop; 485 return; 486 } 487 488 assert(!State->Instance && "Replicating a Region with non-null instance."); 489 490 // Enter replicating mode. 491 State->Instance = VPIteration(0, 0); 492 493 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 494 State->Instance->Part = Part; 495 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 496 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 497 ++Lane) { 498 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 499 // Visit the VPBlocks connected to \p this, starting from it. 500 for (VPBlockBase *Block : RPOT) { 501 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 502 Block->execute(State); 503 } 504 } 505 } 506 507 // Exit replicating mode. 508 State->Instance.reset(); 509 } 510 511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 512 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 513 VPSlotTracker &SlotTracker) const { 514 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 515 auto NewIndent = Indent + " "; 516 for (auto *BlockBase : depth_first(Entry)) { 517 O << '\n'; 518 BlockBase->print(O, NewIndent, SlotTracker); 519 } 520 O << Indent << "}\n"; 521 522 printSuccessors(O, Indent); 523 } 524 #endif 525 526 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 527 Value *CanonicalIVStartValue, 528 VPTransformState &State) { 529 530 VPBasicBlock *ExitingVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 531 auto *Term = dyn_cast<VPInstruction>(&ExitingVPBB->back()); 532 // Try to simplify BranchOnCount to 'BranchOnCond true' if TC <= VF * UF when 533 // preparing to execute the plan for the main vector loop. 534 if (!CanonicalIVStartValue && Term && 535 Term->getOpcode() == VPInstruction::BranchOnCount && 536 isa<ConstantInt>(TripCountV)) { 537 ConstantInt *C = cast<ConstantInt>(TripCountV); 538 uint64_t TCVal = C->getZExtValue(); 539 if (TCVal && TCVal <= State.VF.getKnownMinValue() * State.UF) { 540 auto *BOC = 541 new VPInstruction(VPInstruction::BranchOnCond, 542 {getOrAddExternalDef(State.Builder.getTrue())}); 543 Term->eraseFromParent(); 544 ExitingVPBB->appendRecipe(BOC); 545 // TODO: Further simplifications are possible 546 // 1. Replace inductions with constants. 547 // 2. Replace vector loop region with VPBasicBlock. 548 } 549 } 550 551 // Check if the trip count is needed, and if so build it. 552 if (TripCount && TripCount->getNumUsers()) { 553 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 554 State.set(TripCount, TripCountV, Part); 555 } 556 557 // Check if the backedge taken count is needed, and if so build it. 558 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 559 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 560 auto *TCMO = Builder.CreateSub(TripCountV, 561 ConstantInt::get(TripCountV->getType(), 1), 562 "trip.count.minus.1"); 563 auto VF = State.VF; 564 Value *VTCMO = 565 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 566 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 567 State.set(BackedgeTakenCount, VTCMO, Part); 568 } 569 570 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 571 State.set(&VectorTripCount, VectorTripCountV, Part); 572 573 // When vectorizing the epilogue loop, the canonical induction start value 574 // needs to be changed from zero to the value after the main vector loop. 575 if (CanonicalIVStartValue) { 576 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 577 auto *IV = getCanonicalIV(); 578 assert(all_of(IV->users(), 579 [](const VPUser *U) { 580 if (isa<VPScalarIVStepsRecipe>(U)) 581 return true; 582 auto *VPI = cast<VPInstruction>(U); 583 return VPI->getOpcode() == 584 VPInstruction::CanonicalIVIncrement || 585 VPI->getOpcode() == 586 VPInstruction::CanonicalIVIncrementNUW; 587 }) && 588 "the canonical IV should only be used by its increments or " 589 "ScalarIVSteps when " 590 "resetting the start value"); 591 IV->setOperand(0, VPV); 592 } 593 } 594 595 /// Generate the code inside the preheader and body of the vectorized loop. 596 /// Assumes a single pre-header basic-block was created for this. Introduce 597 /// additional basic-blocks as needed, and fill them all. 598 void VPlan::execute(VPTransformState *State) { 599 // Set the reverse mapping from VPValues to Values for code generation. 600 for (auto &Entry : Value2VPValue) 601 State->VPValue2Value[Entry.second] = Entry.first; 602 603 // Initialize CFG state. 604 State->CFG.PrevVPBB = nullptr; 605 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 606 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 607 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 608 609 // Generate code in the loop pre-header and body. 610 for (VPBlockBase *Block : depth_first(Entry)) 611 Block->execute(State); 612 613 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 614 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 615 616 // Fix the latch value of canonical, reduction and first-order recurrences 617 // phis in the vector loop. 618 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 619 for (VPRecipeBase &R : Header->phis()) { 620 // Skip phi-like recipes that generate their backedege values themselves. 621 if (isa<VPWidenPHIRecipe>(&R)) 622 continue; 623 624 if (isa<VPWidenPointerInductionRecipe>(&R) || 625 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 626 PHINode *Phi = nullptr; 627 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 628 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 629 } else { 630 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 631 // TODO: Split off the case that all users of a pointer phi are scalar 632 // from the VPWidenPointerInductionRecipe. 633 if (WidenPhi->onlyScalarsGenerated(State->VF)) 634 continue; 635 636 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 637 Phi = cast<PHINode>(GEP->getPointerOperand()); 638 } 639 640 Phi->setIncomingBlock(1, VectorLatchBB); 641 642 // Move the last step to the end of the latch block. This ensures 643 // consistent placement of all induction updates. 644 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 645 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 646 continue; 647 } 648 649 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 650 // For canonical IV, first-order recurrences and in-order reduction phis, 651 // only a single part is generated, which provides the last part from the 652 // previous iteration. For non-ordered reductions all UF parts are 653 // generated. 654 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 655 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 656 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 657 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 658 659 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 660 Value *Phi = State->get(PhiR, Part); 661 Value *Val = State->get(PhiR->getBackedgeValue(), 662 SinglePartNeeded ? State->UF - 1 : Part); 663 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 664 } 665 } 666 667 // We do not attempt to preserve DT for outer loop vectorization currently. 668 if (!EnableVPlanNativePath) { 669 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 670 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 671 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 672 State->CFG.ExitBB); 673 } 674 } 675 676 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 677 LLVM_DUMP_METHOD 678 void VPlan::print(raw_ostream &O) const { 679 VPSlotTracker SlotTracker(this); 680 681 O << "VPlan '" << Name << "' {"; 682 683 if (VectorTripCount.getNumUsers() > 0) { 684 O << "\nLive-in "; 685 VectorTripCount.printAsOperand(O, SlotTracker); 686 O << " = vector-trip-count\n"; 687 } 688 689 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 690 O << "\nLive-in "; 691 BackedgeTakenCount->printAsOperand(O, SlotTracker); 692 O << " = backedge-taken count\n"; 693 } 694 695 for (const VPBlockBase *Block : depth_first(getEntry())) { 696 O << '\n'; 697 Block->print(O, "", SlotTracker); 698 } 699 700 if (!LiveOuts.empty()) 701 O << "\n"; 702 for (auto &KV : LiveOuts) { 703 O << "Live-out "; 704 KV.second->getPhi()->printAsOperand(O); 705 O << " = "; 706 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 707 O << "\n"; 708 } 709 710 O << "}\n"; 711 } 712 713 LLVM_DUMP_METHOD 714 void VPlan::printDOT(raw_ostream &O) const { 715 VPlanPrinter Printer(O, *this); 716 Printer.dump(); 717 } 718 719 LLVM_DUMP_METHOD 720 void VPlan::dump() const { print(dbgs()); } 721 #endif 722 723 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 724 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 725 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 726 } 727 728 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 729 BasicBlock *LoopLatchBB, 730 BasicBlock *LoopExitBB) { 731 // The vector body may be more than a single basic-block by this point. 732 // Update the dominator tree information inside the vector body by propagating 733 // it from header to latch, expecting only triangular control-flow, if any. 734 BasicBlock *PostDomSucc = nullptr; 735 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 736 // Get the list of successors of this block. 737 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 738 assert(Succs.size() <= 2 && 739 "Basic block in vector loop has more than 2 successors."); 740 PostDomSucc = Succs[0]; 741 if (Succs.size() == 1) { 742 assert(PostDomSucc->getSinglePredecessor() && 743 "PostDom successor has more than one predecessor."); 744 DT->addNewBlock(PostDomSucc, BB); 745 continue; 746 } 747 BasicBlock *InterimSucc = Succs[1]; 748 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 749 PostDomSucc = Succs[1]; 750 InterimSucc = Succs[0]; 751 } 752 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 753 "One successor of a basic block does not lead to the other."); 754 assert(InterimSucc->getSinglePredecessor() && 755 "Interim successor has more than one predecessor."); 756 assert(PostDomSucc->hasNPredecessors(2) && 757 "PostDom successor has more than two predecessors."); 758 DT->addNewBlock(InterimSucc, BB); 759 DT->addNewBlock(PostDomSucc, BB); 760 } 761 // Latch block is a new dominator for the loop exit. 762 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 763 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 764 } 765 766 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 767 768 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 769 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 770 Twine(getOrCreateBID(Block)); 771 } 772 773 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 774 const std::string &Name = Block->getName(); 775 if (!Name.empty()) 776 return Name; 777 return "VPB" + Twine(getOrCreateBID(Block)); 778 } 779 780 void VPlanPrinter::dump() { 781 Depth = 1; 782 bumpIndent(0); 783 OS << "digraph VPlan {\n"; 784 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 785 if (!Plan.getName().empty()) 786 OS << "\\n" << DOT::EscapeString(Plan.getName()); 787 if (Plan.BackedgeTakenCount) { 788 OS << ", where:\\n"; 789 Plan.BackedgeTakenCount->print(OS, SlotTracker); 790 OS << " := BackedgeTakenCount"; 791 } 792 OS << "\"]\n"; 793 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 794 OS << "edge [fontname=Courier, fontsize=30]\n"; 795 OS << "compound=true\n"; 796 797 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 798 dumpBlock(Block); 799 800 OS << "}\n"; 801 } 802 803 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 804 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 805 dumpBasicBlock(BasicBlock); 806 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 807 dumpRegion(Region); 808 else 809 llvm_unreachable("Unsupported kind of VPBlock."); 810 } 811 812 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 813 bool Hidden, const Twine &Label) { 814 // Due to "dot" we print an edge between two regions as an edge between the 815 // exiting basic block and the entry basic of the respective regions. 816 const VPBlockBase *Tail = From->getExitingBasicBlock(); 817 const VPBlockBase *Head = To->getEntryBasicBlock(); 818 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 819 OS << " [ label=\"" << Label << '\"'; 820 if (Tail != From) 821 OS << " ltail=" << getUID(From); 822 if (Head != To) 823 OS << " lhead=" << getUID(To); 824 if (Hidden) 825 OS << "; splines=none"; 826 OS << "]\n"; 827 } 828 829 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 830 auto &Successors = Block->getSuccessors(); 831 if (Successors.size() == 1) 832 drawEdge(Block, Successors.front(), false, ""); 833 else if (Successors.size() == 2) { 834 drawEdge(Block, Successors.front(), false, "T"); 835 drawEdge(Block, Successors.back(), false, "F"); 836 } else { 837 unsigned SuccessorNumber = 0; 838 for (auto *Successor : Successors) 839 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 840 } 841 } 842 843 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 844 // Implement dot-formatted dump by performing plain-text dump into the 845 // temporary storage followed by some post-processing. 846 OS << Indent << getUID(BasicBlock) << " [label =\n"; 847 bumpIndent(1); 848 std::string Str; 849 raw_string_ostream SS(Str); 850 // Use no indentation as we need to wrap the lines into quotes ourselves. 851 BasicBlock->print(SS, "", SlotTracker); 852 853 // We need to process each line of the output separately, so split 854 // single-string plain-text dump. 855 SmallVector<StringRef, 0> Lines; 856 StringRef(Str).rtrim('\n').split(Lines, "\n"); 857 858 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 859 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 860 }; 861 862 // Don't need the "+" after the last line. 863 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 864 EmitLine(Line, " +\n"); 865 EmitLine(Lines.back(), "\n"); 866 867 bumpIndent(-1); 868 OS << Indent << "]\n"; 869 870 dumpEdges(BasicBlock); 871 } 872 873 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 874 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 875 bumpIndent(1); 876 OS << Indent << "fontname=Courier\n" 877 << Indent << "label=\"" 878 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 879 << DOT::EscapeString(Region->getName()) << "\"\n"; 880 // Dump the blocks of the region. 881 assert(Region->getEntry() && "Region contains no inner blocks."); 882 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 883 dumpBlock(Block); 884 bumpIndent(-1); 885 OS << Indent << "}\n"; 886 dumpEdges(Region); 887 } 888 889 void VPlanIngredient::print(raw_ostream &O) const { 890 if (auto *Inst = dyn_cast<Instruction>(V)) { 891 if (!Inst->getType()->isVoidTy()) { 892 Inst->printAsOperand(O, false); 893 O << " = "; 894 } 895 O << Inst->getOpcodeName() << " "; 896 unsigned E = Inst->getNumOperands(); 897 if (E > 0) { 898 Inst->getOperand(0)->printAsOperand(O, false); 899 for (unsigned I = 1; I < E; ++I) 900 Inst->getOperand(I)->printAsOperand(O << ", ", false); 901 } 902 } else // !Inst 903 V->printAsOperand(O, false); 904 } 905 906 #endif 907 908 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 909 910 void VPValue::replaceAllUsesWith(VPValue *New) { 911 for (unsigned J = 0; J < getNumUsers();) { 912 VPUser *User = Users[J]; 913 unsigned NumUsers = getNumUsers(); 914 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 915 if (User->getOperand(I) == this) 916 User->setOperand(I, New); 917 // If a user got removed after updating the current user, the next user to 918 // update will be moved to the current position, so we only need to 919 // increment the index if the number of users did not change. 920 if (NumUsers == getNumUsers()) 921 J++; 922 } 923 } 924 925 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 926 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 927 if (const Value *UV = getUnderlyingValue()) { 928 OS << "ir<"; 929 UV->printAsOperand(OS, false); 930 OS << ">"; 931 return; 932 } 933 934 unsigned Slot = Tracker.getSlot(this); 935 if (Slot == unsigned(-1)) 936 OS << "<badref>"; 937 else 938 OS << "vp<%" << Tracker.getSlot(this) << ">"; 939 } 940 941 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 942 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 943 Op->printAsOperand(O, SlotTracker); 944 }); 945 } 946 #endif 947 948 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 949 Old2NewTy &Old2New, 950 InterleavedAccessInfo &IAI) { 951 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 952 for (VPBlockBase *Base : RPOT) { 953 visitBlock(Base, Old2New, IAI); 954 } 955 } 956 957 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 958 InterleavedAccessInfo &IAI) { 959 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 960 for (VPRecipeBase &VPI : *VPBB) { 961 if (isa<VPHeaderPHIRecipe>(&VPI)) 962 continue; 963 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 964 auto *VPInst = cast<VPInstruction>(&VPI); 965 966 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 967 if (!Inst) 968 continue; 969 auto *IG = IAI.getInterleaveGroup(Inst); 970 if (!IG) 971 continue; 972 973 auto NewIGIter = Old2New.find(IG); 974 if (NewIGIter == Old2New.end()) 975 Old2New[IG] = new InterleaveGroup<VPInstruction>( 976 IG->getFactor(), IG->isReverse(), IG->getAlign()); 977 978 if (Inst == IG->getInsertPos()) 979 Old2New[IG]->setInsertPos(VPInst); 980 981 InterleaveGroupMap[VPInst] = Old2New[IG]; 982 InterleaveGroupMap[VPInst]->insertMember( 983 VPInst, IG->getIndex(Inst), 984 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 985 : IG->getFactor())); 986 } 987 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 988 visitRegion(Region, Old2New, IAI); 989 else 990 llvm_unreachable("Unsupported kind of VPBlock."); 991 } 992 993 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 994 InterleavedAccessInfo &IAI) { 995 Old2NewTy Old2New; 996 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 997 } 998 999 void VPSlotTracker::assignSlot(const VPValue *V) { 1000 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1001 Slots[V] = NextSlot++; 1002 } 1003 1004 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1005 1006 for (const auto &P : Plan.VPExternalDefs) 1007 assignSlot(P.second); 1008 1009 assignSlot(&Plan.VectorTripCount); 1010 if (Plan.BackedgeTakenCount) 1011 assignSlot(Plan.BackedgeTakenCount); 1012 1013 ReversePostOrderTraversal< 1014 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1015 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1016 Plan.getEntry())); 1017 for (const VPBasicBlock *VPBB : 1018 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1019 for (const VPRecipeBase &Recipe : *VPBB) 1020 for (VPValue *Def : Recipe.definedValues()) 1021 assignSlot(Def); 1022 } 1023 1024 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1025 return all_of(Def->users(), 1026 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1027 } 1028 1029 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1030 ScalarEvolution &SE) { 1031 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1032 return Plan.getOrAddExternalDef(E->getValue()); 1033 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1034 return Plan.getOrAddExternalDef(E->getValue()); 1035 1036 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1037 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1038 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1039 return Step; 1040 } 1041