1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExit(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExit(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExit() == this && 179 "Block w/o successors not the exit of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 VPValue *VPBlockBase::getCondBit() { 192 return CondBitUser.getSingleOperandOrNull(); 193 } 194 195 const VPValue *VPBlockBase::getCondBit() const { 196 return CondBitUser.getSingleOperandOrNull(); 197 } 198 199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); } 200 201 VPValue *VPBlockBase::getPredicate() { 202 return PredicateUser.getSingleOperandOrNull(); 203 } 204 205 const VPValue *VPBlockBase::getPredicate() const { 206 return PredicateUser.getSingleOperandOrNull(); 207 } 208 209 void VPBlockBase::setPredicate(VPValue *CV) { 210 PredicateUser.resetSingleOpUser(CV); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 215 216 for (VPBlockBase *Block : Blocks) 217 delete Block; 218 } 219 220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 221 iterator It = begin(); 222 while (It != end() && It->isPhi()) 223 It++; 224 return It; 225 } 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (!Def->getDef()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 236 assert(hasVectorValue(Def, Instance.Part)); 237 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 238 if (!VecPart->getType()->isVectorTy()) { 239 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 240 return VecPart; 241 } 242 // TODO: Cache created scalar values. 243 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 244 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 245 // set(Def, Extract, Instance); 246 return Extract; 247 } 248 249 BasicBlock * 250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 251 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 252 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 253 BasicBlock *PrevBB = CFG.PrevBB; 254 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 255 PrevBB->getParent(), CFG.LastBB); 256 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 257 258 // Hook up the new basic block to its predecessors. 259 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 260 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 261 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 262 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 263 264 // In outer loop vectorization scenario, the predecessor BBlock may not yet 265 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 266 // vectorization. We do not encounter this case in inner loop vectorization 267 // as we start out by building a loop skeleton with the vector loop header 268 // and latch blocks. As a result, we never enter this function for the 269 // header block in the non VPlan-native path. 270 if (!PredBB) { 271 assert(EnableVPlanNativePath && 272 "Unexpected null predecessor in non VPlan-native path"); 273 CFG.VPBBsToFix.push_back(PredVPBB); 274 continue; 275 } 276 277 assert(PredBB && "Predecessor basic-block not found building successor."); 278 auto *PredBBTerminator = PredBB->getTerminator(); 279 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 280 if (isa<UnreachableInst>(PredBBTerminator)) { 281 assert(PredVPSuccessors.size() == 1 && 282 "Predecessor ending w/o branch must have single successor."); 283 PredBBTerminator->eraseFromParent(); 284 BranchInst::Create(NewBB, PredBB); 285 } else { 286 assert(PredVPSuccessors.size() == 2 && 287 "Predecessor ending with branch must have two successors."); 288 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 289 assert(!PredBBTerminator->getSuccessor(idx) && 290 "Trying to reset an existing successor block."); 291 PredBBTerminator->setSuccessor(idx, NewBB); 292 } 293 } 294 return NewBB; 295 } 296 297 void VPBasicBlock::execute(VPTransformState *State) { 298 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 299 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 300 VPBlockBase *SingleHPred = nullptr; 301 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 302 303 // 1. Create an IR basic block, or reuse the last one if possible. 304 // The last IR basic block is reused, as an optimization, in three cases: 305 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 306 // B. when the current VPBB has a single (hierarchical) predecessor which 307 // is PrevVPBB and the latter has a single (hierarchical) successor; and 308 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 309 // is the exit of this region from a previous instance, or the predecessor 310 // of this region. 311 if (PrevVPBB && /* A */ 312 !((SingleHPred = getSingleHierarchicalPredecessor()) && 313 SingleHPred->getExitBasicBlock() == PrevVPBB && 314 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 315 !(Replica && getPredecessors().empty())) { /* C */ 316 NewBB = createEmptyBasicBlock(State->CFG); 317 State->Builder.SetInsertPoint(NewBB); 318 // Temporarily terminate with unreachable until CFG is rewired. 319 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 320 State->Builder.SetInsertPoint(Terminator); 321 // Register NewBB in its loop. In innermost loops its the same for all BB's. 322 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 323 L->addBasicBlockToLoop(NewBB, *State->LI); 324 State->CFG.PrevBB = NewBB; 325 } 326 327 // 2. Fill the IR basic block with IR instructions. 328 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 329 << " in BB:" << NewBB->getName() << '\n'); 330 331 State->CFG.VPBB2IRBB[this] = NewBB; 332 State->CFG.PrevVPBB = this; 333 334 for (VPRecipeBase &Recipe : Recipes) 335 Recipe.execute(*State); 336 337 VPValue *CBV; 338 if (EnableVPlanNativePath && (CBV = getCondBit())) { 339 assert(CBV->getUnderlyingValue() && 340 "Unexpected null underlying value for condition bit"); 341 342 // Condition bit value in a VPBasicBlock is used as the branch selector. In 343 // the VPlan-native path case, since all branches are uniform we generate a 344 // branch instruction using the condition value from vector lane 0 and dummy 345 // successors. The successors are fixed later when the successor blocks are 346 // visited. 347 Value *NewCond = State->get(CBV, {0, 0}); 348 349 // Replace the temporary unreachable terminator with the new conditional 350 // branch. 351 auto *CurrentTerminator = NewBB->getTerminator(); 352 assert(isa<UnreachableInst>(CurrentTerminator) && 353 "Expected to replace unreachable terminator with conditional " 354 "branch."); 355 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 356 CondBr->setSuccessor(0, nullptr); 357 ReplaceInstWithInst(CurrentTerminator, CondBr); 358 } 359 360 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 361 } 362 363 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 364 for (VPRecipeBase &R : Recipes) { 365 for (auto *Def : R.definedValues()) 366 Def->replaceAllUsesWith(NewValue); 367 368 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 369 R.setOperand(I, NewValue); 370 } 371 } 372 373 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 374 assert((SplitAt == end() || SplitAt->getParent() == this) && 375 "can only split at a position in the same block"); 376 377 SmallVector<VPBlockBase *, 2> Succs(successors()); 378 // First, disconnect the current block from its successors. 379 for (VPBlockBase *Succ : Succs) 380 VPBlockUtils::disconnectBlocks(this, Succ); 381 382 // Create new empty block after the block to split. 383 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 384 VPBlockUtils::insertBlockAfter(SplitBlock, this); 385 386 // Add successors for block to split to new block. 387 for (VPBlockBase *Succ : Succs) 388 VPBlockUtils::connectBlocks(SplitBlock, Succ); 389 390 // Finally, move the recipes starting at SplitAt to new block. 391 for (VPRecipeBase &ToMove : 392 make_early_inc_range(make_range(SplitAt, this->end()))) 393 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 394 395 return SplitBlock; 396 } 397 398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 399 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 400 if (getSuccessors().empty()) { 401 O << Indent << "No successors\n"; 402 } else { 403 O << Indent << "Successor(s): "; 404 ListSeparator LS; 405 for (auto *Succ : getSuccessors()) 406 O << LS << Succ->getName(); 407 O << '\n'; 408 } 409 } 410 411 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 412 VPSlotTracker &SlotTracker) const { 413 O << Indent << getName() << ":\n"; 414 if (const VPValue *Pred = getPredicate()) { 415 O << Indent << "BlockPredicate:"; 416 Pred->printAsOperand(O, SlotTracker); 417 if (const auto *PredInst = dyn_cast<VPInstruction>(Pred)) 418 O << " (" << PredInst->getParent()->getName() << ")"; 419 O << '\n'; 420 } 421 422 auto RecipeIndent = Indent + " "; 423 for (const VPRecipeBase &Recipe : *this) { 424 Recipe.print(O, RecipeIndent, SlotTracker); 425 O << '\n'; 426 } 427 428 printSuccessors(O, Indent); 429 430 if (const VPValue *CBV = getCondBit()) { 431 O << Indent << "CondBit: "; 432 CBV->printAsOperand(O, SlotTracker); 433 if (const auto *CBI = dyn_cast<VPInstruction>(CBV)) 434 O << " (" << CBI->getParent()->getName() << ")"; 435 O << '\n'; 436 } 437 } 438 #endif 439 440 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 441 for (VPBlockBase *Block : depth_first(Entry)) 442 // Drop all references in VPBasicBlocks and replace all uses with 443 // DummyValue. 444 Block->dropAllReferences(NewValue); 445 } 446 447 void VPRegionBlock::execute(VPTransformState *State) { 448 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 449 450 if (!isReplicator()) { 451 // Visit the VPBlocks connected to "this", starting from it. 452 for (VPBlockBase *Block : RPOT) { 453 if (EnableVPlanNativePath) { 454 // The inner loop vectorization path does not represent loop preheader 455 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 456 // vectorizing loop preheader block. In future, we may replace this 457 // check with the check for loop preheader. 458 if (Block->getNumPredecessors() == 0) 459 continue; 460 461 // Skip vectorizing loop exit block. In future, we may replace this 462 // check with the check for loop exit. 463 if (Block->getNumSuccessors() == 0) 464 continue; 465 } 466 467 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 468 Block->execute(State); 469 } 470 return; 471 } 472 473 assert(!State->Instance && "Replicating a Region with non-null instance."); 474 475 // Enter replicating mode. 476 State->Instance = VPIteration(0, 0); 477 478 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 479 State->Instance->Part = Part; 480 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 481 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 482 ++Lane) { 483 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 484 // Visit the VPBlocks connected to \p this, starting from it. 485 for (VPBlockBase *Block : RPOT) { 486 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 487 Block->execute(State); 488 } 489 } 490 } 491 492 // Exit replicating mode. 493 State->Instance.reset(); 494 } 495 496 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 497 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 498 VPSlotTracker &SlotTracker) const { 499 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 500 auto NewIndent = Indent + " "; 501 for (auto *BlockBase : depth_first(Entry)) { 502 O << '\n'; 503 BlockBase->print(O, NewIndent, SlotTracker); 504 } 505 O << Indent << "}\n"; 506 507 printSuccessors(O, Indent); 508 } 509 #endif 510 511 bool VPRecipeBase::mayWriteToMemory() const { 512 switch (getVPDefID()) { 513 case VPWidenMemoryInstructionSC: { 514 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 515 } 516 case VPReplicateSC: 517 case VPWidenCallSC: 518 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 519 ->mayWriteToMemory(); 520 case VPBranchOnMaskSC: 521 return false; 522 case VPWidenIntOrFpInductionSC: 523 case VPWidenCanonicalIVSC: 524 case VPWidenPHISC: 525 case VPBlendSC: 526 case VPWidenSC: 527 case VPWidenGEPSC: 528 case VPReductionSC: 529 case VPWidenSelectSC: { 530 const Instruction *I = 531 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 532 (void)I; 533 assert((!I || !I->mayWriteToMemory()) && 534 "underlying instruction may write to memory"); 535 return false; 536 } 537 default: 538 return true; 539 } 540 } 541 542 bool VPRecipeBase::mayReadFromMemory() const { 543 switch (getVPDefID()) { 544 case VPWidenMemoryInstructionSC: { 545 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 546 } 547 case VPReplicateSC: 548 case VPWidenCallSC: 549 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 550 ->mayReadFromMemory(); 551 case VPBranchOnMaskSC: 552 return false; 553 case VPWidenIntOrFpInductionSC: 554 case VPWidenCanonicalIVSC: 555 case VPWidenPHISC: 556 case VPBlendSC: 557 case VPWidenSC: 558 case VPWidenGEPSC: 559 case VPReductionSC: 560 case VPWidenSelectSC: { 561 const Instruction *I = 562 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 563 (void)I; 564 assert((!I || !I->mayReadFromMemory()) && 565 "underlying instruction may read from memory"); 566 return false; 567 } 568 default: 569 return true; 570 } 571 } 572 573 bool VPRecipeBase::mayHaveSideEffects() const { 574 switch (getVPDefID()) { 575 case VPBranchOnMaskSC: 576 return false; 577 case VPWidenIntOrFpInductionSC: 578 case VPWidenPointerInductionSC: 579 case VPWidenCanonicalIVSC: 580 case VPWidenPHISC: 581 case VPBlendSC: 582 case VPWidenSC: 583 case VPWidenGEPSC: 584 case VPReductionSC: 585 case VPWidenSelectSC: 586 case VPScalarIVStepsSC: { 587 const Instruction *I = 588 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 589 (void)I; 590 assert((!I || !I->mayHaveSideEffects()) && 591 "underlying instruction has side-effects"); 592 return false; 593 } 594 case VPReplicateSC: { 595 auto *R = cast<VPReplicateRecipe>(this); 596 return R->getUnderlyingInstr()->mayHaveSideEffects(); 597 } 598 default: 599 return true; 600 } 601 } 602 603 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 604 assert(!Parent && "Recipe already in some VPBasicBlock"); 605 assert(InsertPos->getParent() && 606 "Insertion position not in any VPBasicBlock"); 607 Parent = InsertPos->getParent(); 608 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 609 } 610 611 void VPRecipeBase::insertBefore(VPBasicBlock &BB, 612 iplist<VPRecipeBase>::iterator I) { 613 assert(!Parent && "Recipe already in some VPBasicBlock"); 614 assert(I == BB.end() || I->getParent() == &BB); 615 Parent = &BB; 616 BB.getRecipeList().insert(I, this); 617 } 618 619 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 620 assert(!Parent && "Recipe already in some VPBasicBlock"); 621 assert(InsertPos->getParent() && 622 "Insertion position not in any VPBasicBlock"); 623 Parent = InsertPos->getParent(); 624 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 625 } 626 627 void VPRecipeBase::removeFromParent() { 628 assert(getParent() && "Recipe not in any VPBasicBlock"); 629 getParent()->getRecipeList().remove(getIterator()); 630 Parent = nullptr; 631 } 632 633 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 634 assert(getParent() && "Recipe not in any VPBasicBlock"); 635 return getParent()->getRecipeList().erase(getIterator()); 636 } 637 638 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 639 removeFromParent(); 640 insertAfter(InsertPos); 641 } 642 643 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 644 iplist<VPRecipeBase>::iterator I) { 645 removeFromParent(); 646 insertBefore(BB, I); 647 } 648 649 void VPInstruction::generateInstruction(VPTransformState &State, 650 unsigned Part) { 651 IRBuilderBase &Builder = State.Builder; 652 Builder.SetCurrentDebugLocation(DL); 653 654 if (Instruction::isBinaryOp(getOpcode())) { 655 Value *A = State.get(getOperand(0), Part); 656 Value *B = State.get(getOperand(1), Part); 657 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 658 State.set(this, V, Part); 659 return; 660 } 661 662 switch (getOpcode()) { 663 case VPInstruction::Not: { 664 Value *A = State.get(getOperand(0), Part); 665 Value *V = Builder.CreateNot(A); 666 State.set(this, V, Part); 667 break; 668 } 669 case VPInstruction::ICmpULE: { 670 Value *IV = State.get(getOperand(0), Part); 671 Value *TC = State.get(getOperand(1), Part); 672 Value *V = Builder.CreateICmpULE(IV, TC); 673 State.set(this, V, Part); 674 break; 675 } 676 case Instruction::Select: { 677 Value *Cond = State.get(getOperand(0), Part); 678 Value *Op1 = State.get(getOperand(1), Part); 679 Value *Op2 = State.get(getOperand(2), Part); 680 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 681 State.set(this, V, Part); 682 break; 683 } 684 case VPInstruction::ActiveLaneMask: { 685 // Get first lane of vector induction variable. 686 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 687 // Get the original loop tripcount. 688 Value *ScalarTC = State.get(getOperand(1), Part); 689 690 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 691 auto *PredTy = VectorType::get(Int1Ty, State.VF); 692 Instruction *Call = Builder.CreateIntrinsic( 693 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 694 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 695 State.set(this, Call, Part); 696 break; 697 } 698 case VPInstruction::FirstOrderRecurrenceSplice: { 699 // Generate code to combine the previous and current values in vector v3. 700 // 701 // vector.ph: 702 // v_init = vector(..., ..., ..., a[-1]) 703 // br vector.body 704 // 705 // vector.body 706 // i = phi [0, vector.ph], [i+4, vector.body] 707 // v1 = phi [v_init, vector.ph], [v2, vector.body] 708 // v2 = a[i, i+1, i+2, i+3]; 709 // v3 = vector(v1(3), v2(0, 1, 2)) 710 711 // For the first part, use the recurrence phi (v1), otherwise v2. 712 auto *V1 = State.get(getOperand(0), 0); 713 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 714 if (!PartMinus1->getType()->isVectorTy()) { 715 State.set(this, PartMinus1, Part); 716 } else { 717 Value *V2 = State.get(getOperand(1), Part); 718 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 719 } 720 break; 721 } 722 723 case VPInstruction::CanonicalIVIncrement: 724 case VPInstruction::CanonicalIVIncrementNUW: { 725 Value *Next = nullptr; 726 if (Part == 0) { 727 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 728 auto *Phi = State.get(getOperand(0), 0); 729 // The loop step is equal to the vectorization factor (num of SIMD 730 // elements) times the unroll factor (num of SIMD instructions). 731 Value *Step = 732 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 733 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 734 } else { 735 Next = State.get(this, 0); 736 } 737 738 State.set(this, Next, Part); 739 break; 740 } 741 case VPInstruction::BranchOnCount: { 742 if (Part != 0) 743 break; 744 // First create the compare. 745 Value *IV = State.get(getOperand(0), Part); 746 Value *TC = State.get(getOperand(1), Part); 747 Value *Cond = Builder.CreateICmpEQ(IV, TC); 748 749 // Now create the branch. 750 auto *Plan = getParent()->getPlan(); 751 VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); 752 VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); 753 if (Header->empty()) { 754 assert(EnableVPlanNativePath && 755 "empty entry block only expected in VPlanNativePath"); 756 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 757 } 758 // TODO: Once the exit block is modeled in VPlan, use it instead of going 759 // through State.CFG.LastBB. 760 BasicBlock *Exit = 761 cast<BranchInst>(State.CFG.LastBB->getTerminator())->getSuccessor(0); 762 763 Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]); 764 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 765 break; 766 } 767 default: 768 llvm_unreachable("Unsupported opcode for instruction"); 769 } 770 } 771 772 void VPInstruction::execute(VPTransformState &State) { 773 assert(!State.Instance && "VPInstruction executing an Instance"); 774 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 775 State.Builder.setFastMathFlags(FMF); 776 for (unsigned Part = 0; Part < State.UF; ++Part) 777 generateInstruction(State, Part); 778 } 779 780 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 781 void VPInstruction::dump() const { 782 VPSlotTracker SlotTracker(getParent()->getPlan()); 783 print(dbgs(), "", SlotTracker); 784 } 785 786 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 787 VPSlotTracker &SlotTracker) const { 788 O << Indent << "EMIT "; 789 790 if (hasResult()) { 791 printAsOperand(O, SlotTracker); 792 O << " = "; 793 } 794 795 switch (getOpcode()) { 796 case VPInstruction::Not: 797 O << "not"; 798 break; 799 case VPInstruction::ICmpULE: 800 O << "icmp ule"; 801 break; 802 case VPInstruction::SLPLoad: 803 O << "combined load"; 804 break; 805 case VPInstruction::SLPStore: 806 O << "combined store"; 807 break; 808 case VPInstruction::ActiveLaneMask: 809 O << "active lane mask"; 810 break; 811 case VPInstruction::FirstOrderRecurrenceSplice: 812 O << "first-order splice"; 813 break; 814 case VPInstruction::CanonicalIVIncrement: 815 O << "VF * UF + "; 816 break; 817 case VPInstruction::CanonicalIVIncrementNUW: 818 O << "VF * UF +(nuw) "; 819 break; 820 case VPInstruction::BranchOnCount: 821 O << "branch-on-count "; 822 break; 823 default: 824 O << Instruction::getOpcodeName(getOpcode()); 825 } 826 827 O << FMF; 828 829 for (const VPValue *Operand : operands()) { 830 O << " "; 831 Operand->printAsOperand(O, SlotTracker); 832 } 833 834 if (DL) { 835 O << ", !dbg "; 836 DL.print(O); 837 } 838 } 839 #endif 840 841 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 842 // Make sure the VPInstruction is a floating-point operation. 843 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 844 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 845 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 846 Opcode == Instruction::FCmp) && 847 "this op can't take fast-math flags"); 848 FMF = FMFNew; 849 } 850 851 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 852 Value *CanonicalIVStartValue, 853 VPTransformState &State) { 854 // Check if the trip count is needed, and if so build it. 855 if (TripCount && TripCount->getNumUsers()) { 856 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 857 State.set(TripCount, TripCountV, Part); 858 } 859 860 // Check if the backedge taken count is needed, and if so build it. 861 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 862 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 863 auto *TCMO = Builder.CreateSub(TripCountV, 864 ConstantInt::get(TripCountV->getType(), 1), 865 "trip.count.minus.1"); 866 auto VF = State.VF; 867 Value *VTCMO = 868 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 869 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 870 State.set(BackedgeTakenCount, VTCMO, Part); 871 } 872 873 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 874 State.set(&VectorTripCount, VectorTripCountV, Part); 875 876 // When vectorizing the epilogue loop, the canonical induction start value 877 // needs to be changed from zero to the value after the main vector loop. 878 if (CanonicalIVStartValue) { 879 VPValue *VPV = new VPValue(CanonicalIVStartValue); 880 addExternalDef(VPV); 881 auto *IV = getCanonicalIV(); 882 assert(all_of(IV->users(), 883 [](const VPUser *U) { 884 if (isa<VPScalarIVStepsRecipe>(U)) 885 return true; 886 auto *VPI = cast<VPInstruction>(U); 887 return VPI->getOpcode() == 888 VPInstruction::CanonicalIVIncrement || 889 VPI->getOpcode() == 890 VPInstruction::CanonicalIVIncrementNUW; 891 }) && 892 "the canonical IV should only be used by its increments or " 893 "ScalarIVSteps when " 894 "resetting the start value"); 895 IV->setOperand(0, VPV); 896 } 897 } 898 899 /// Generate the code inside the body of the vectorized loop. Assumes a single 900 /// LoopVectorBody basic-block was created for this. Introduce additional 901 /// basic-blocks as needed, and fill them all. 902 void VPlan::execute(VPTransformState *State) { 903 // 0. Set the reverse mapping from VPValues to Values for code generation. 904 for (auto &Entry : Value2VPValue) 905 State->VPValue2Value[Entry.second] = Entry.first; 906 907 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 908 State->CFG.VectorPreHeader = VectorPreHeaderBB; 909 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 910 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 911 912 // 1. Make room to generate basic-blocks inside loop body if needed. 913 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 914 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 915 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 916 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 917 // Remove the edge between Header and Latch to allow other connections. 918 // Temporarily terminate with unreachable until CFG is rewired. 919 // Note: this asserts the generated code's assumption that 920 // getFirstInsertionPt() can be dereferenced into an Instruction. 921 VectorHeaderBB->getTerminator()->eraseFromParent(); 922 State->Builder.SetInsertPoint(VectorHeaderBB); 923 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 924 State->Builder.SetInsertPoint(Terminator); 925 926 // 2. Generate code in loop body. 927 State->CFG.PrevVPBB = nullptr; 928 State->CFG.PrevBB = VectorHeaderBB; 929 State->CFG.LastBB = VectorLatchBB; 930 931 for (VPBlockBase *Block : depth_first(Entry)) 932 Block->execute(State); 933 934 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 935 // VPBB's successors. 936 for (auto VPBB : State->CFG.VPBBsToFix) { 937 assert(EnableVPlanNativePath && 938 "Unexpected VPBBsToFix in non VPlan-native path"); 939 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 940 assert(BB && "Unexpected null basic block for VPBB"); 941 942 unsigned Idx = 0; 943 auto *BBTerminator = BB->getTerminator(); 944 945 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 946 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 947 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 948 ++Idx; 949 } 950 } 951 952 // 3. Merge the temporary latch created with the last basic-block filled. 953 BasicBlock *LastBB = State->CFG.PrevBB; 954 assert(isa<BranchInst>(LastBB->getTerminator()) && 955 "Expected VPlan CFG to terminate with branch"); 956 957 // Move both the branch and check from LastBB to VectorLatchBB. 958 auto *LastBranch = cast<BranchInst>(LastBB->getTerminator()); 959 LastBranch->moveBefore(VectorLatchBB->getTerminator()); 960 VectorLatchBB->getTerminator()->eraseFromParent(); 961 // Move condition so it is guaranteed to be next to branch. This is only done 962 // to avoid excessive test updates. 963 // TODO: Remove special handling once the increments for all inductions are 964 // modeled explicitly in VPlan. 965 cast<Instruction>(LastBranch->getCondition())->moveBefore(LastBranch); 966 // Connect LastBB to VectorLatchBB to facilitate their merge. 967 BranchInst::Create(VectorLatchBB, LastBB); 968 969 // Merge LastBB with Latch. 970 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 971 (void)Merged; 972 assert(Merged && "Could not merge last basic block with latch."); 973 VectorLatchBB = LastBB; 974 975 // Fix the latch value of canonical, reduction and first-order recurrences 976 // phis in the vector loop. 977 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 978 if (Header->empty()) { 979 assert(EnableVPlanNativePath); 980 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 981 } 982 for (VPRecipeBase &R : Header->phis()) { 983 // Skip phi-like recipes that generate their backedege values themselves. 984 if (isa<VPWidenPHIRecipe>(&R)) 985 continue; 986 987 if (isa<VPWidenPointerInductionRecipe>(&R) || 988 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 989 PHINode *Phi = nullptr; 990 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 991 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 992 } else { 993 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 994 // TODO: Split off the case that all users of a pointer phi are scalar 995 // from the VPWidenPointerInductionRecipe. 996 if (all_of(WidenPhi->users(), [WidenPhi](const VPUser *U) { 997 return cast<VPRecipeBase>(U)->usesScalars(WidenPhi); 998 })) 999 continue; 1000 1001 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1002 Phi = cast<PHINode>(GEP->getPointerOperand()); 1003 } 1004 1005 Phi->setIncomingBlock(1, VectorLatchBB); 1006 1007 // Move the last step to the end of the latch block. This ensures 1008 // consistent placement of all induction updates. 1009 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1010 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1011 continue; 1012 } 1013 1014 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1015 // For canonical IV, first-order recurrences and in-order reduction phis, 1016 // only a single part is generated, which provides the last part from the 1017 // previous iteration. For non-ordered reductions all UF parts are 1018 // generated. 1019 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 1020 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 1021 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 1022 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1023 1024 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1025 Value *Phi = State->get(PhiR, Part); 1026 Value *Val = State->get(PhiR->getBackedgeValue(), 1027 SinglePartNeeded ? State->UF - 1 : Part); 1028 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1029 } 1030 } 1031 1032 // We do not attempt to preserve DT for outer loop vectorization currently. 1033 if (!EnableVPlanNativePath) 1034 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 1035 L->getExitBlock()); 1036 } 1037 1038 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1039 LLVM_DUMP_METHOD 1040 void VPlan::print(raw_ostream &O) const { 1041 VPSlotTracker SlotTracker(this); 1042 1043 O << "VPlan '" << Name << "' {"; 1044 1045 if (VectorTripCount.getNumUsers() > 0) { 1046 O << "\nLive-in "; 1047 VectorTripCount.printAsOperand(O, SlotTracker); 1048 O << " = vector-trip-count\n"; 1049 } 1050 1051 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1052 O << "\nLive-in "; 1053 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1054 O << " = backedge-taken count\n"; 1055 } 1056 1057 for (const VPBlockBase *Block : depth_first(getEntry())) { 1058 O << '\n'; 1059 Block->print(O, "", SlotTracker); 1060 } 1061 O << "}\n"; 1062 } 1063 1064 LLVM_DUMP_METHOD 1065 void VPlan::printDOT(raw_ostream &O) const { 1066 VPlanPrinter Printer(O, *this); 1067 Printer.dump(); 1068 } 1069 1070 LLVM_DUMP_METHOD 1071 void VPlan::dump() const { print(dbgs()); } 1072 #endif 1073 1074 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 1075 BasicBlock *LoopLatchBB, 1076 BasicBlock *LoopExitBB) { 1077 // The vector body may be more than a single basic-block by this point. 1078 // Update the dominator tree information inside the vector body by propagating 1079 // it from header to latch, expecting only triangular control-flow, if any. 1080 BasicBlock *PostDomSucc = nullptr; 1081 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1082 // Get the list of successors of this block. 1083 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1084 assert(Succs.size() <= 2 && 1085 "Basic block in vector loop has more than 2 successors."); 1086 PostDomSucc = Succs[0]; 1087 if (Succs.size() == 1) { 1088 assert(PostDomSucc->getSinglePredecessor() && 1089 "PostDom successor has more than one predecessor."); 1090 DT->addNewBlock(PostDomSucc, BB); 1091 continue; 1092 } 1093 BasicBlock *InterimSucc = Succs[1]; 1094 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1095 PostDomSucc = Succs[1]; 1096 InterimSucc = Succs[0]; 1097 } 1098 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1099 "One successor of a basic block does not lead to the other."); 1100 assert(InterimSucc->getSinglePredecessor() && 1101 "Interim successor has more than one predecessor."); 1102 assert(PostDomSucc->hasNPredecessors(2) && 1103 "PostDom successor has more than two predecessors."); 1104 DT->addNewBlock(InterimSucc, BB); 1105 DT->addNewBlock(PostDomSucc, BB); 1106 } 1107 // Latch block is a new dominator for the loop exit. 1108 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1109 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1110 } 1111 1112 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1113 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1114 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1115 Twine(getOrCreateBID(Block)); 1116 } 1117 1118 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1119 const std::string &Name = Block->getName(); 1120 if (!Name.empty()) 1121 return Name; 1122 return "VPB" + Twine(getOrCreateBID(Block)); 1123 } 1124 1125 void VPlanPrinter::dump() { 1126 Depth = 1; 1127 bumpIndent(0); 1128 OS << "digraph VPlan {\n"; 1129 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1130 if (!Plan.getName().empty()) 1131 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1132 if (Plan.BackedgeTakenCount) { 1133 OS << ", where:\\n"; 1134 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1135 OS << " := BackedgeTakenCount"; 1136 } 1137 OS << "\"]\n"; 1138 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1139 OS << "edge [fontname=Courier, fontsize=30]\n"; 1140 OS << "compound=true\n"; 1141 1142 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1143 dumpBlock(Block); 1144 1145 OS << "}\n"; 1146 } 1147 1148 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1149 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1150 dumpBasicBlock(BasicBlock); 1151 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1152 dumpRegion(Region); 1153 else 1154 llvm_unreachable("Unsupported kind of VPBlock."); 1155 } 1156 1157 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1158 bool Hidden, const Twine &Label) { 1159 // Due to "dot" we print an edge between two regions as an edge between the 1160 // exit basic block and the entry basic of the respective regions. 1161 const VPBlockBase *Tail = From->getExitBasicBlock(); 1162 const VPBlockBase *Head = To->getEntryBasicBlock(); 1163 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1164 OS << " [ label=\"" << Label << '\"'; 1165 if (Tail != From) 1166 OS << " ltail=" << getUID(From); 1167 if (Head != To) 1168 OS << " lhead=" << getUID(To); 1169 if (Hidden) 1170 OS << "; splines=none"; 1171 OS << "]\n"; 1172 } 1173 1174 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1175 auto &Successors = Block->getSuccessors(); 1176 if (Successors.size() == 1) 1177 drawEdge(Block, Successors.front(), false, ""); 1178 else if (Successors.size() == 2) { 1179 drawEdge(Block, Successors.front(), false, "T"); 1180 drawEdge(Block, Successors.back(), false, "F"); 1181 } else { 1182 unsigned SuccessorNumber = 0; 1183 for (auto *Successor : Successors) 1184 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1185 } 1186 } 1187 1188 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1189 // Implement dot-formatted dump by performing plain-text dump into the 1190 // temporary storage followed by some post-processing. 1191 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1192 bumpIndent(1); 1193 std::string Str; 1194 raw_string_ostream SS(Str); 1195 // Use no indentation as we need to wrap the lines into quotes ourselves. 1196 BasicBlock->print(SS, "", SlotTracker); 1197 1198 // We need to process each line of the output separately, so split 1199 // single-string plain-text dump. 1200 SmallVector<StringRef, 0> Lines; 1201 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1202 1203 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1204 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1205 }; 1206 1207 // Don't need the "+" after the last line. 1208 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1209 EmitLine(Line, " +\n"); 1210 EmitLine(Lines.back(), "\n"); 1211 1212 bumpIndent(-1); 1213 OS << Indent << "]\n"; 1214 1215 dumpEdges(BasicBlock); 1216 } 1217 1218 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1219 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1220 bumpIndent(1); 1221 OS << Indent << "fontname=Courier\n" 1222 << Indent << "label=\"" 1223 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1224 << DOT::EscapeString(Region->getName()) << "\"\n"; 1225 // Dump the blocks of the region. 1226 assert(Region->getEntry() && "Region contains no inner blocks."); 1227 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1228 dumpBlock(Block); 1229 bumpIndent(-1); 1230 OS << Indent << "}\n"; 1231 dumpEdges(Region); 1232 } 1233 1234 void VPlanIngredient::print(raw_ostream &O) const { 1235 if (auto *Inst = dyn_cast<Instruction>(V)) { 1236 if (!Inst->getType()->isVoidTy()) { 1237 Inst->printAsOperand(O, false); 1238 O << " = "; 1239 } 1240 O << Inst->getOpcodeName() << " "; 1241 unsigned E = Inst->getNumOperands(); 1242 if (E > 0) { 1243 Inst->getOperand(0)->printAsOperand(O, false); 1244 for (unsigned I = 1; I < E; ++I) 1245 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1246 } 1247 } else // !Inst 1248 V->printAsOperand(O, false); 1249 } 1250 1251 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1252 VPSlotTracker &SlotTracker) const { 1253 O << Indent << "WIDEN-CALL "; 1254 1255 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1256 if (CI->getType()->isVoidTy()) 1257 O << "void "; 1258 else { 1259 printAsOperand(O, SlotTracker); 1260 O << " = "; 1261 } 1262 1263 O << "call @" << CI->getCalledFunction()->getName() << "("; 1264 printOperands(O, SlotTracker); 1265 O << ")"; 1266 } 1267 1268 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1269 VPSlotTracker &SlotTracker) const { 1270 O << Indent << "WIDEN-SELECT "; 1271 printAsOperand(O, SlotTracker); 1272 O << " = select "; 1273 getOperand(0)->printAsOperand(O, SlotTracker); 1274 O << ", "; 1275 getOperand(1)->printAsOperand(O, SlotTracker); 1276 O << ", "; 1277 getOperand(2)->printAsOperand(O, SlotTracker); 1278 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1279 } 1280 1281 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1282 VPSlotTracker &SlotTracker) const { 1283 O << Indent << "WIDEN "; 1284 printAsOperand(O, SlotTracker); 1285 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1286 printOperands(O, SlotTracker); 1287 } 1288 1289 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1290 VPSlotTracker &SlotTracker) const { 1291 O << Indent << "WIDEN-INDUCTION"; 1292 if (getTruncInst()) { 1293 O << "\\l\""; 1294 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1295 O << " +\n" << Indent << "\" "; 1296 getVPValue(0)->printAsOperand(O, SlotTracker); 1297 } else 1298 O << " " << VPlanIngredient(IV); 1299 } 1300 1301 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1302 VPSlotTracker &SlotTracker) const { 1303 O << Indent << "EMIT "; 1304 printAsOperand(O, SlotTracker); 1305 O << " = WIDEN-POINTER-INDUCTION "; 1306 getStartValue()->printAsOperand(O, SlotTracker); 1307 O << ", " << *IndDesc.getStep(); 1308 } 1309 1310 #endif 1311 1312 bool VPWidenIntOrFpInductionRecipe::isCanonical() const { 1313 auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue()); 1314 auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep()); 1315 return StartC && StartC->isZero() && StepC && StepC->isOne(); 1316 } 1317 1318 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const { 1319 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)); 1320 } 1321 1322 bool VPScalarIVStepsRecipe::isCanonical() const { 1323 auto *CanIV = getCanonicalIV(); 1324 // The start value of the steps-recipe must match the start value of the 1325 // canonical induction and it must step by 1. 1326 if (CanIV->getStartValue() != getStartValue()) 1327 return false; 1328 auto *StepVPV = getStepValue(); 1329 if (StepVPV->getDef()) 1330 return false; 1331 auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue()); 1332 return StepC && StepC->isOne(); 1333 } 1334 1335 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1336 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent, 1337 VPSlotTracker &SlotTracker) const { 1338 O << Indent; 1339 printAsOperand(O, SlotTracker); 1340 O << Indent << "= SCALAR-STEPS "; 1341 printOperands(O, SlotTracker); 1342 } 1343 1344 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1345 VPSlotTracker &SlotTracker) const { 1346 O << Indent << "WIDEN-GEP "; 1347 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1348 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1349 for (size_t I = 0; I < IndicesNumber; ++I) 1350 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1351 1352 O << " "; 1353 printAsOperand(O, SlotTracker); 1354 O << " = getelementptr "; 1355 printOperands(O, SlotTracker); 1356 } 1357 1358 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1359 VPSlotTracker &SlotTracker) const { 1360 O << Indent << "WIDEN-PHI "; 1361 1362 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1363 // Unless all incoming values are modeled in VPlan print the original PHI 1364 // directly. 1365 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1366 // values as VPValues. 1367 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1368 O << VPlanIngredient(OriginalPhi); 1369 return; 1370 } 1371 1372 printAsOperand(O, SlotTracker); 1373 O << " = phi "; 1374 printOperands(O, SlotTracker); 1375 } 1376 1377 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1378 VPSlotTracker &SlotTracker) const { 1379 O << Indent << "BLEND "; 1380 Phi->printAsOperand(O, false); 1381 O << " ="; 1382 if (getNumIncomingValues() == 1) { 1383 // Not a User of any mask: not really blending, this is a 1384 // single-predecessor phi. 1385 O << " "; 1386 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1387 } else { 1388 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1389 O << " "; 1390 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1391 O << "/"; 1392 getMask(I)->printAsOperand(O, SlotTracker); 1393 } 1394 } 1395 } 1396 1397 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1398 VPSlotTracker &SlotTracker) const { 1399 O << Indent << "REDUCE "; 1400 printAsOperand(O, SlotTracker); 1401 O << " = "; 1402 getChainOp()->printAsOperand(O, SlotTracker); 1403 O << " +"; 1404 if (isa<FPMathOperator>(getUnderlyingInstr())) 1405 O << getUnderlyingInstr()->getFastMathFlags(); 1406 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1407 getVecOp()->printAsOperand(O, SlotTracker); 1408 if (getCondOp()) { 1409 O << ", "; 1410 getCondOp()->printAsOperand(O, SlotTracker); 1411 } 1412 O << ")"; 1413 } 1414 1415 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1416 VPSlotTracker &SlotTracker) const { 1417 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1418 1419 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1420 printAsOperand(O, SlotTracker); 1421 O << " = "; 1422 } 1423 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1424 printOperands(O, SlotTracker); 1425 1426 if (AlsoPack) 1427 O << " (S->V)"; 1428 } 1429 1430 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1431 VPSlotTracker &SlotTracker) const { 1432 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1433 printAsOperand(O, SlotTracker); 1434 O << " = "; 1435 printOperands(O, SlotTracker); 1436 } 1437 1438 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1439 VPSlotTracker &SlotTracker) const { 1440 O << Indent << "WIDEN "; 1441 1442 if (!isStore()) { 1443 printAsOperand(O, SlotTracker); 1444 O << " = "; 1445 } 1446 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1447 1448 printOperands(O, SlotTracker); 1449 } 1450 #endif 1451 1452 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1453 Value *Start = getStartValue()->getLiveInIRValue(); 1454 PHINode *EntryPart = PHINode::Create( 1455 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1456 EntryPart->addIncoming(Start, State.CFG.VectorPreHeader); 1457 EntryPart->setDebugLoc(DL); 1458 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1459 State.set(this, EntryPart, Part); 1460 } 1461 1462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1463 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1464 VPSlotTracker &SlotTracker) const { 1465 O << Indent << "EMIT "; 1466 printAsOperand(O, SlotTracker); 1467 O << " = CANONICAL-INDUCTION"; 1468 } 1469 #endif 1470 1471 void VPExpandSCEVRecipe::execute(VPTransformState &State) { 1472 assert(!State.Instance && "cannot be used in per-lane"); 1473 const DataLayout &DL = 1474 State.CFG.VectorPreHeader->getModule()->getDataLayout(); 1475 SCEVExpander Exp(SE, DL, "induction"); 1476 Value *Res = Exp.expandCodeFor(Expr, Expr->getType(), 1477 State.CFG.VectorPreHeader->getTerminator()); 1478 1479 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1480 State.set(this, Res, Part); 1481 } 1482 1483 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1484 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent, 1485 VPSlotTracker &SlotTracker) const { 1486 O << Indent << "EMIT "; 1487 getVPSingleValue()->printAsOperand(O, SlotTracker); 1488 O << " = EXPAND SCEV " << *Expr; 1489 } 1490 #endif 1491 1492 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1493 Value *CanonicalIV = State.get(getOperand(0), 0); 1494 Type *STy = CanonicalIV->getType(); 1495 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1496 ElementCount VF = State.VF; 1497 Value *VStart = VF.isScalar() 1498 ? CanonicalIV 1499 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 1500 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1501 Value *VStep = createStepForVF(Builder, STy, VF, Part); 1502 if (VF.isVector()) { 1503 VStep = Builder.CreateVectorSplat(VF, VStep); 1504 VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); 1505 } 1506 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1507 State.set(this, CanonicalVectorIV, Part); 1508 } 1509 } 1510 1511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1512 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1513 VPSlotTracker &SlotTracker) const { 1514 O << Indent << "EMIT "; 1515 printAsOperand(O, SlotTracker); 1516 O << " = WIDEN-CANONICAL-INDUCTION "; 1517 printOperands(O, SlotTracker); 1518 } 1519 #endif 1520 1521 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1522 auto &Builder = State.Builder; 1523 // Create a vector from the initial value. 1524 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1525 1526 Type *VecTy = State.VF.isScalar() 1527 ? VectorInit->getType() 1528 : VectorType::get(VectorInit->getType(), State.VF); 1529 1530 if (State.VF.isVector()) { 1531 auto *IdxTy = Builder.getInt32Ty(); 1532 auto *One = ConstantInt::get(IdxTy, 1); 1533 IRBuilder<>::InsertPointGuard Guard(Builder); 1534 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1535 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1536 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1537 VectorInit = Builder.CreateInsertElement( 1538 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1539 } 1540 1541 // Create a phi node for the new recurrence. 1542 PHINode *EntryPart = PHINode::Create( 1543 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1544 EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader); 1545 State.set(this, EntryPart, 0); 1546 } 1547 1548 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1549 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1550 VPSlotTracker &SlotTracker) const { 1551 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1552 printAsOperand(O, SlotTracker); 1553 O << " = phi "; 1554 printOperands(O, SlotTracker); 1555 } 1556 #endif 1557 1558 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1559 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1560 auto &Builder = State.Builder; 1561 1562 // In order to support recurrences we need to be able to vectorize Phi nodes. 1563 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1564 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1565 // this value when we vectorize all of the instructions that use the PHI. 1566 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1567 Type *VecTy = 1568 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1569 1570 BasicBlock *HeaderBB = State.CFG.PrevBB; 1571 assert(State.LI->getLoopFor(HeaderBB)->getHeader() == HeaderBB && 1572 "recipe must be in the vector loop header"); 1573 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1574 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1575 Value *EntryPart = 1576 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1577 State.set(this, EntryPart, Part); 1578 } 1579 1580 // Reductions do not have to start at zero. They can start with 1581 // any loop invariant values. 1582 VPValue *StartVPV = getStartValue(); 1583 Value *StartV = StartVPV->getLiveInIRValue(); 1584 1585 Value *Iden = nullptr; 1586 RecurKind RK = RdxDesc.getRecurrenceKind(); 1587 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1588 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1589 // MinMax reduction have the start value as their identify. 1590 if (ScalarPHI) { 1591 Iden = StartV; 1592 } else { 1593 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1594 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1595 StartV = Iden = 1596 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1597 } 1598 } else { 1599 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1600 RdxDesc.getFastMathFlags()); 1601 1602 if (!ScalarPHI) { 1603 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1604 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1605 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 1606 Constant *Zero = Builder.getInt32(0); 1607 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1608 } 1609 } 1610 1611 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1612 Value *EntryPart = State.get(this, Part); 1613 // Make sure to add the reduction start value only to the 1614 // first unroll part. 1615 Value *StartVal = (Part == 0) ? StartV : Iden; 1616 cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader); 1617 } 1618 } 1619 1620 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1621 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1622 VPSlotTracker &SlotTracker) const { 1623 O << Indent << "WIDEN-REDUCTION-PHI "; 1624 1625 printAsOperand(O, SlotTracker); 1626 O << " = phi "; 1627 printOperands(O, SlotTracker); 1628 } 1629 #endif 1630 1631 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1632 1633 void VPValue::replaceAllUsesWith(VPValue *New) { 1634 for (unsigned J = 0; J < getNumUsers();) { 1635 VPUser *User = Users[J]; 1636 unsigned NumUsers = getNumUsers(); 1637 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1638 if (User->getOperand(I) == this) 1639 User->setOperand(I, New); 1640 // If a user got removed after updating the current user, the next user to 1641 // update will be moved to the current position, so we only need to 1642 // increment the index if the number of users did not change. 1643 if (NumUsers == getNumUsers()) 1644 J++; 1645 } 1646 } 1647 1648 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1649 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1650 if (const Value *UV = getUnderlyingValue()) { 1651 OS << "ir<"; 1652 UV->printAsOperand(OS, false); 1653 OS << ">"; 1654 return; 1655 } 1656 1657 unsigned Slot = Tracker.getSlot(this); 1658 if (Slot == unsigned(-1)) 1659 OS << "<badref>"; 1660 else 1661 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1662 } 1663 1664 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1665 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1666 Op->printAsOperand(O, SlotTracker); 1667 }); 1668 } 1669 #endif 1670 1671 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1672 Old2NewTy &Old2New, 1673 InterleavedAccessInfo &IAI) { 1674 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1675 for (VPBlockBase *Base : RPOT) { 1676 visitBlock(Base, Old2New, IAI); 1677 } 1678 } 1679 1680 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1681 InterleavedAccessInfo &IAI) { 1682 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1683 for (VPRecipeBase &VPI : *VPBB) { 1684 if (isa<VPHeaderPHIRecipe>(&VPI)) 1685 continue; 1686 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1687 auto *VPInst = cast<VPInstruction>(&VPI); 1688 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1689 auto *IG = IAI.getInterleaveGroup(Inst); 1690 if (!IG) 1691 continue; 1692 1693 auto NewIGIter = Old2New.find(IG); 1694 if (NewIGIter == Old2New.end()) 1695 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1696 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1697 1698 if (Inst == IG->getInsertPos()) 1699 Old2New[IG]->setInsertPos(VPInst); 1700 1701 InterleaveGroupMap[VPInst] = Old2New[IG]; 1702 InterleaveGroupMap[VPInst]->insertMember( 1703 VPInst, IG->getIndex(Inst), 1704 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1705 : IG->getFactor())); 1706 } 1707 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1708 visitRegion(Region, Old2New, IAI); 1709 else 1710 llvm_unreachable("Unsupported kind of VPBlock."); 1711 } 1712 1713 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1714 InterleavedAccessInfo &IAI) { 1715 Old2NewTy Old2New; 1716 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1717 } 1718 1719 void VPSlotTracker::assignSlot(const VPValue *V) { 1720 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1721 Slots[V] = NextSlot++; 1722 } 1723 1724 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1725 1726 for (const VPValue *V : Plan.VPExternalDefs) 1727 assignSlot(V); 1728 1729 assignSlot(&Plan.VectorTripCount); 1730 if (Plan.BackedgeTakenCount) 1731 assignSlot(Plan.BackedgeTakenCount); 1732 1733 ReversePostOrderTraversal< 1734 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1735 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1736 Plan.getEntry())); 1737 for (const VPBasicBlock *VPBB : 1738 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1739 for (const VPRecipeBase &Recipe : *VPBB) 1740 for (VPValue *Def : Recipe.definedValues()) 1741 assignSlot(Def); 1742 } 1743 1744 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1745 return all_of(Def->users(), [Def](VPUser *U) { 1746 return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def); 1747 }); 1748 } 1749