1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/LoopVersioning.h" 42 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 43 #include <cassert> 44 #include <string> 45 #include <vector> 46 47 using namespace llvm; 48 extern cl::opt<bool> EnableVPlanNativePath; 49 50 #define DEBUG_TYPE "vplan" 51 52 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 #endif 61 62 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 63 const ElementCount &VF) const { 64 switch (LaneKind) { 65 case VPLane::Kind::ScalableLast: 66 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 67 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 68 Builder.getInt32(VF.getKnownMinValue() - Lane)); 69 case VPLane::Kind::First: 70 return Builder.getInt32(Lane); 71 } 72 llvm_unreachable("Unknown lane kind"); 73 } 74 75 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 76 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 77 if (Def) 78 Def->addDefinedValue(this); 79 } 80 81 VPValue::~VPValue() { 82 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 83 if (Def) 84 Def->removeDefinedValue(this); 85 } 86 87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 88 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 89 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 90 R->print(OS, "", SlotTracker); 91 else 92 printAsOperand(OS, SlotTracker); 93 } 94 95 void VPValue::dump() const { 96 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 97 VPSlotTracker SlotTracker( 98 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 99 print(dbgs(), SlotTracker); 100 dbgs() << "\n"; 101 } 102 103 void VPDef::dump() const { 104 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 105 VPSlotTracker SlotTracker( 106 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 107 print(dbgs(), "", SlotTracker); 108 dbgs() << "\n"; 109 } 110 #endif 111 112 // Get the top-most entry block of \p Start. This is the entry block of the 113 // containing VPlan. This function is templated to support both const and non-const blocks 114 template <typename T> static T *getPlanEntry(T *Start) { 115 T *Next = Start; 116 T *Current = Start; 117 while ((Next = Next->getParent())) 118 Current = Next; 119 120 SmallSetVector<T *, 8> WorkList; 121 WorkList.insert(Current); 122 123 for (unsigned i = 0; i < WorkList.size(); i++) { 124 T *Current = WorkList[i]; 125 if (Current->getNumPredecessors() == 0) 126 return Current; 127 auto &Predecessors = Current->getPredecessors(); 128 WorkList.insert(Predecessors.begin(), Predecessors.end()); 129 } 130 131 llvm_unreachable("VPlan without any entry node without predecessors"); 132 } 133 134 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 135 136 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 137 138 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 139 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 140 const VPBlockBase *Block = this; 141 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 142 Block = Region->getEntry(); 143 return cast<VPBasicBlock>(Block); 144 } 145 146 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 147 VPBlockBase *Block = this; 148 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 149 Block = Region->getEntry(); 150 return cast<VPBasicBlock>(Block); 151 } 152 153 void VPBlockBase::setPlan(VPlan *ParentPlan) { 154 assert(ParentPlan->getEntry() == this && 155 "Can only set plan on its entry block."); 156 Plan = ParentPlan; 157 } 158 159 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 160 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 161 const VPBlockBase *Block = this; 162 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 163 Block = Region->getExiting(); 164 return cast<VPBasicBlock>(Block); 165 } 166 167 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 168 VPBlockBase *Block = this; 169 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 170 Block = Region->getExiting(); 171 return cast<VPBasicBlock>(Block); 172 } 173 174 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 175 if (!Successors.empty() || !Parent) 176 return this; 177 assert(Parent->getExiting() == this && 178 "Block w/o successors not the exiting block of its parent."); 179 return Parent->getEnclosingBlockWithSuccessors(); 180 } 181 182 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 183 if (!Predecessors.empty() || !Parent) 184 return this; 185 assert(Parent->getEntry() == this && 186 "Block w/o predecessors not the entry of its parent."); 187 return Parent->getEnclosingBlockWithPredecessors(); 188 } 189 190 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 191 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 192 193 for (VPBlockBase *Block : Blocks) 194 delete Block; 195 } 196 197 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 198 iterator It = begin(); 199 while (It != end() && It->isPhi()) 200 It++; 201 return It; 202 } 203 204 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 205 if (!Def->getDef()) 206 return Def->getLiveInIRValue(); 207 208 if (hasScalarValue(Def, Instance)) { 209 return Data 210 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 211 } 212 213 assert(hasVectorValue(Def, Instance.Part)); 214 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 215 if (!VecPart->getType()->isVectorTy()) { 216 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 217 return VecPart; 218 } 219 // TODO: Cache created scalar values. 220 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 221 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 222 // set(Def, Extract, Instance); 223 return Extract; 224 } 225 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 226 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 227 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 228 } 229 230 void VPTransformState::addNewMetadata(Instruction *To, 231 const Instruction *Orig) { 232 // If the loop was versioned with memchecks, add the corresponding no-alias 233 // metadata. 234 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 235 LVer->annotateInstWithNoAlias(To, Orig); 236 } 237 238 void VPTransformState::addMetadata(Instruction *To, Instruction *From) { 239 propagateMetadata(To, From); 240 addNewMetadata(To, From); 241 } 242 243 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { 244 for (Value *V : To) { 245 if (Instruction *I = dyn_cast<Instruction>(V)) 246 addMetadata(I, From); 247 } 248 } 249 250 void VPTransformState::setDebugLocFromInst(const Value *V) { 251 const Instruction *Inst = dyn_cast<Instruction>(V); 252 if (!Inst) { 253 Builder.SetCurrentDebugLocation(DebugLoc()); 254 return; 255 } 256 257 const DILocation *DIL = Inst->getDebugLoc(); 258 // When a FSDiscriminator is enabled, we don't need to add the multiply 259 // factors to the discriminators. 260 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 261 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 262 // FIXME: For scalable vectors, assume vscale=1. 263 auto NewDIL = 264 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 265 if (NewDIL) 266 Builder.SetCurrentDebugLocation(*NewDIL); 267 else 268 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 269 << DIL->getFilename() << " Line: " << DIL->getLine()); 270 } else 271 Builder.SetCurrentDebugLocation(DIL); 272 } 273 274 BasicBlock * 275 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 276 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 277 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 278 BasicBlock *PrevBB = CFG.PrevBB; 279 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 280 PrevBB->getParent(), CFG.ExitBB); 281 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 282 283 // Hook up the new basic block to its predecessors. 284 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 285 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 286 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 287 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 288 289 assert(PredBB && "Predecessor basic-block not found building successor."); 290 auto *PredBBTerminator = PredBB->getTerminator(); 291 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 292 293 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 294 if (isa<UnreachableInst>(PredBBTerminator)) { 295 assert(PredVPSuccessors.size() == 1 && 296 "Predecessor ending w/o branch must have single successor."); 297 DebugLoc DL = PredBBTerminator->getDebugLoc(); 298 PredBBTerminator->eraseFromParent(); 299 auto *Br = BranchInst::Create(NewBB, PredBB); 300 Br->setDebugLoc(DL); 301 } else if (TermBr && !TermBr->isConditional()) { 302 TermBr->setSuccessor(0, NewBB); 303 } else { 304 // Set each forward successor here when it is created, excluding 305 // backedges. A backward successor is set when the branch is created. 306 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 307 assert(!TermBr->getSuccessor(idx) && 308 "Trying to reset an existing successor block."); 309 TermBr->setSuccessor(idx, NewBB); 310 } 311 } 312 return NewBB; 313 } 314 315 void VPBasicBlock::execute(VPTransformState *State) { 316 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 317 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 318 VPBlockBase *SingleHPred = nullptr; 319 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 320 321 auto IsLoopRegion = [](VPBlockBase *BB) { 322 auto *R = dyn_cast<VPRegionBlock>(BB); 323 return R && !R->isReplicator(); 324 }; 325 326 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 327 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 328 // ExitBB can be re-used for the exit block of the Plan. 329 NewBB = State->CFG.ExitBB; 330 State->CFG.PrevBB = NewBB; 331 332 // Update the branch instruction in the predecessor to branch to ExitBB. 333 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 334 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 335 assert(PredVPB->getSingleSuccessor() == this && 336 "predecessor must have the current block as only successor"); 337 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 338 // The Exit block of a loop is always set to be successor 0 of the Exiting 339 // block. 340 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 341 } else if (PrevVPBB && /* A */ 342 !((SingleHPred = getSingleHierarchicalPredecessor()) && 343 SingleHPred->getExitingBasicBlock() == PrevVPBB && 344 PrevVPBB->getSingleHierarchicalSuccessor() && 345 (SingleHPred->getParent() == getEnclosingLoopRegion() && 346 !IsLoopRegion(SingleHPred))) && /* B */ 347 !(Replica && getPredecessors().empty())) { /* C */ 348 // The last IR basic block is reused, as an optimization, in three cases: 349 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 350 // B. when the current VPBB has a single (hierarchical) predecessor which 351 // is PrevVPBB and the latter has a single (hierarchical) successor which 352 // both are in the same non-replicator region; and 353 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 354 // is the exiting VPBB of this region from a previous instance, or the 355 // predecessor of this region. 356 357 NewBB = createEmptyBasicBlock(State->CFG); 358 State->Builder.SetInsertPoint(NewBB); 359 // Temporarily terminate with unreachable until CFG is rewired. 360 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 361 // Register NewBB in its loop. In innermost loops its the same for all 362 // BB's. 363 if (State->CurrentVectorLoop) 364 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 365 State->Builder.SetInsertPoint(Terminator); 366 State->CFG.PrevBB = NewBB; 367 } 368 369 // 2. Fill the IR basic block with IR instructions. 370 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 371 << " in BB:" << NewBB->getName() << '\n'); 372 373 State->CFG.VPBB2IRBB[this] = NewBB; 374 State->CFG.PrevVPBB = this; 375 376 for (VPRecipeBase &Recipe : Recipes) 377 Recipe.execute(*State); 378 379 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 380 } 381 382 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 383 for (VPRecipeBase &R : Recipes) { 384 for (auto *Def : R.definedValues()) 385 Def->replaceAllUsesWith(NewValue); 386 387 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 388 R.setOperand(I, NewValue); 389 } 390 } 391 392 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 393 assert((SplitAt == end() || SplitAt->getParent() == this) && 394 "can only split at a position in the same block"); 395 396 SmallVector<VPBlockBase *, 2> Succs(successors()); 397 // First, disconnect the current block from its successors. 398 for (VPBlockBase *Succ : Succs) 399 VPBlockUtils::disconnectBlocks(this, Succ); 400 401 // Create new empty block after the block to split. 402 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 403 VPBlockUtils::insertBlockAfter(SplitBlock, this); 404 405 // Add successors for block to split to new block. 406 for (VPBlockBase *Succ : Succs) 407 VPBlockUtils::connectBlocks(SplitBlock, Succ); 408 409 // Finally, move the recipes starting at SplitAt to new block. 410 for (VPRecipeBase &ToMove : 411 make_early_inc_range(make_range(SplitAt, this->end()))) 412 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 413 414 return SplitBlock; 415 } 416 417 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 418 VPRegionBlock *P = getParent(); 419 if (P && P->isReplicator()) { 420 P = P->getParent(); 421 assert(!cast<VPRegionBlock>(P)->isReplicator() && 422 "unexpected nested replicate regions"); 423 } 424 return P; 425 } 426 427 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 428 if (VPBB->empty()) { 429 assert( 430 VPBB->getNumSuccessors() < 2 && 431 "block with multiple successors doesn't have a recipe as terminator"); 432 return false; 433 } 434 435 const VPRecipeBase *R = &VPBB->back(); 436 auto *VPI = dyn_cast<VPInstruction>(R); 437 bool IsCondBranch = 438 isa<VPBranchOnMaskRecipe>(R) || 439 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 440 VPI->getOpcode() == VPInstruction::BranchOnCount)); 441 (void)IsCondBranch; 442 443 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 444 assert(IsCondBranch && "block with multiple successors not terminated by " 445 "conditional branch recipe"); 446 447 return true; 448 } 449 450 assert( 451 !IsCondBranch && 452 "block with 0 or 1 successors terminated by conditional branch recipe"); 453 return false; 454 } 455 456 VPRecipeBase *VPBasicBlock::getTerminator() { 457 if (hasConditionalTerminator(this)) 458 return &back(); 459 return nullptr; 460 } 461 462 const VPRecipeBase *VPBasicBlock::getTerminator() const { 463 if (hasConditionalTerminator(this)) 464 return &back(); 465 return nullptr; 466 } 467 468 bool VPBasicBlock::isExiting() const { 469 return getParent()->getExitingBasicBlock() == this; 470 } 471 472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 473 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 474 if (getSuccessors().empty()) { 475 O << Indent << "No successors\n"; 476 } else { 477 O << Indent << "Successor(s): "; 478 ListSeparator LS; 479 for (auto *Succ : getSuccessors()) 480 O << LS << Succ->getName(); 481 O << '\n'; 482 } 483 } 484 485 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 486 VPSlotTracker &SlotTracker) const { 487 O << Indent << getName() << ":\n"; 488 489 auto RecipeIndent = Indent + " "; 490 for (const VPRecipeBase &Recipe : *this) { 491 Recipe.print(O, RecipeIndent, SlotTracker); 492 O << '\n'; 493 } 494 495 printSuccessors(O, Indent); 496 } 497 #endif 498 499 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 500 for (VPBlockBase *Block : depth_first(Entry)) 501 // Drop all references in VPBasicBlocks and replace all uses with 502 // DummyValue. 503 Block->dropAllReferences(NewValue); 504 } 505 506 void VPRegionBlock::execute(VPTransformState *State) { 507 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 508 509 if (!isReplicator()) { 510 // Create and register the new vector loop. 511 Loop *PrevLoop = State->CurrentVectorLoop; 512 State->CurrentVectorLoop = State->LI->AllocateLoop(); 513 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 514 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 515 516 // Insert the new loop into the loop nest and register the new basic blocks 517 // before calling any utilities such as SCEV that require valid LoopInfo. 518 if (ParentLoop) 519 ParentLoop->addChildLoop(State->CurrentVectorLoop); 520 else 521 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 522 523 // Visit the VPBlocks connected to "this", starting from it. 524 for (VPBlockBase *Block : RPOT) { 525 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 526 Block->execute(State); 527 } 528 529 State->CurrentVectorLoop = PrevLoop; 530 return; 531 } 532 533 assert(!State->Instance && "Replicating a Region with non-null instance."); 534 535 // Enter replicating mode. 536 State->Instance = VPIteration(0, 0); 537 538 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 539 State->Instance->Part = Part; 540 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 541 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 542 ++Lane) { 543 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 544 // Visit the VPBlocks connected to \p this, starting from it. 545 for (VPBlockBase *Block : RPOT) { 546 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 547 Block->execute(State); 548 } 549 } 550 } 551 552 // Exit replicating mode. 553 State->Instance.reset(); 554 } 555 556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 557 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 558 VPSlotTracker &SlotTracker) const { 559 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 560 auto NewIndent = Indent + " "; 561 for (auto *BlockBase : depth_first(Entry)) { 562 O << '\n'; 563 BlockBase->print(O, NewIndent, SlotTracker); 564 } 565 O << Indent << "}\n"; 566 567 printSuccessors(O, Indent); 568 } 569 #endif 570 571 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 572 Value *CanonicalIVStartValue, 573 VPTransformState &State, 574 bool IsEpilogueVectorization) { 575 576 VPBasicBlock *ExitingVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 577 auto *Term = dyn_cast<VPInstruction>(&ExitingVPBB->back()); 578 // Try to simplify BranchOnCount to 'BranchOnCond true' if TC <= VF * UF when 579 // preparing to execute the plan for the main vector loop. 580 if (!IsEpilogueVectorization && Term && 581 Term->getOpcode() == VPInstruction::BranchOnCount && 582 isa<ConstantInt>(TripCountV)) { 583 ConstantInt *C = cast<ConstantInt>(TripCountV); 584 uint64_t TCVal = C->getZExtValue(); 585 if (TCVal && TCVal <= State.VF.getKnownMinValue() * State.UF) { 586 auto *BOC = 587 new VPInstruction(VPInstruction::BranchOnCond, 588 {getOrAddExternalDef(State.Builder.getTrue())}); 589 Term->eraseFromParent(); 590 ExitingVPBB->appendRecipe(BOC); 591 // TODO: Further simplifications are possible 592 // 1. Replace inductions with constants. 593 // 2. Replace vector loop region with VPBasicBlock. 594 } 595 } 596 597 // Check if the trip count is needed, and if so build it. 598 if (TripCount && TripCount->getNumUsers()) { 599 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 600 State.set(TripCount, TripCountV, Part); 601 } 602 603 // Check if the backedge taken count is needed, and if so build it. 604 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 605 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 606 auto *TCMO = Builder.CreateSub(TripCountV, 607 ConstantInt::get(TripCountV->getType(), 1), 608 "trip.count.minus.1"); 609 auto VF = State.VF; 610 Value *VTCMO = 611 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 612 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 613 State.set(BackedgeTakenCount, VTCMO, Part); 614 } 615 616 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 617 State.set(&VectorTripCount, VectorTripCountV, Part); 618 619 // When vectorizing the epilogue loop, the canonical induction start value 620 // needs to be changed from zero to the value after the main vector loop. 621 if (CanonicalIVStartValue) { 622 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 623 auto *IV = getCanonicalIV(); 624 assert(all_of(IV->users(), 625 [](const VPUser *U) { 626 if (isa<VPScalarIVStepsRecipe>(U)) 627 return true; 628 auto *VPI = cast<VPInstruction>(U); 629 return VPI->getOpcode() == 630 VPInstruction::CanonicalIVIncrement || 631 VPI->getOpcode() == 632 VPInstruction::CanonicalIVIncrementNUW; 633 }) && 634 "the canonical IV should only be used by its increments or " 635 "ScalarIVSteps when " 636 "resetting the start value"); 637 IV->setOperand(0, VPV); 638 } 639 } 640 641 /// Generate the code inside the preheader and body of the vectorized loop. 642 /// Assumes a single pre-header basic-block was created for this. Introduce 643 /// additional basic-blocks as needed, and fill them all. 644 void VPlan::execute(VPTransformState *State) { 645 // Set the reverse mapping from VPValues to Values for code generation. 646 for (auto &Entry : Value2VPValue) 647 State->VPValue2Value[Entry.second] = Entry.first; 648 649 // Initialize CFG state. 650 State->CFG.PrevVPBB = nullptr; 651 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 652 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 653 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 654 655 // Generate code in the loop pre-header and body. 656 for (VPBlockBase *Block : depth_first(Entry)) 657 Block->execute(State); 658 659 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 660 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 661 662 // Fix the latch value of canonical, reduction and first-order recurrences 663 // phis in the vector loop. 664 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 665 for (VPRecipeBase &R : Header->phis()) { 666 // Skip phi-like recipes that generate their backedege values themselves. 667 if (isa<VPWidenPHIRecipe>(&R)) 668 continue; 669 670 if (isa<VPWidenPointerInductionRecipe>(&R) || 671 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 672 PHINode *Phi = nullptr; 673 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 674 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 675 } else { 676 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 677 // TODO: Split off the case that all users of a pointer phi are scalar 678 // from the VPWidenPointerInductionRecipe. 679 if (WidenPhi->onlyScalarsGenerated(State->VF)) 680 continue; 681 682 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 683 Phi = cast<PHINode>(GEP->getPointerOperand()); 684 } 685 686 Phi->setIncomingBlock(1, VectorLatchBB); 687 688 // Move the last step to the end of the latch block. This ensures 689 // consistent placement of all induction updates. 690 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 691 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 692 continue; 693 } 694 695 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 696 // For canonical IV, first-order recurrences and in-order reduction phis, 697 // only a single part is generated, which provides the last part from the 698 // previous iteration. For non-ordered reductions all UF parts are 699 // generated. 700 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 701 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 702 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 703 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 704 705 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 706 Value *Phi = State->get(PhiR, Part); 707 Value *Val = State->get(PhiR->getBackedgeValue(), 708 SinglePartNeeded ? State->UF - 1 : Part); 709 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 710 } 711 } 712 713 // We do not attempt to preserve DT for outer loop vectorization currently. 714 if (!EnableVPlanNativePath) { 715 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 716 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 717 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 718 State->CFG.ExitBB); 719 } 720 } 721 722 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 723 LLVM_DUMP_METHOD 724 void VPlan::print(raw_ostream &O) const { 725 VPSlotTracker SlotTracker(this); 726 727 O << "VPlan '" << Name << "' {"; 728 729 if (VectorTripCount.getNumUsers() > 0) { 730 O << "\nLive-in "; 731 VectorTripCount.printAsOperand(O, SlotTracker); 732 O << " = vector-trip-count\n"; 733 } 734 735 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 736 O << "\nLive-in "; 737 BackedgeTakenCount->printAsOperand(O, SlotTracker); 738 O << " = backedge-taken count\n"; 739 } 740 741 for (const VPBlockBase *Block : depth_first(getEntry())) { 742 O << '\n'; 743 Block->print(O, "", SlotTracker); 744 } 745 746 if (!LiveOuts.empty()) 747 O << "\n"; 748 for (auto &KV : LiveOuts) { 749 O << "Live-out "; 750 KV.second->getPhi()->printAsOperand(O); 751 O << " = "; 752 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 753 O << "\n"; 754 } 755 756 O << "}\n"; 757 } 758 759 LLVM_DUMP_METHOD 760 void VPlan::printDOT(raw_ostream &O) const { 761 VPlanPrinter Printer(O, *this); 762 Printer.dump(); 763 } 764 765 LLVM_DUMP_METHOD 766 void VPlan::dump() const { print(dbgs()); } 767 #endif 768 769 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 770 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 771 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 772 } 773 774 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 775 BasicBlock *LoopLatchBB, 776 BasicBlock *LoopExitBB) { 777 // The vector body may be more than a single basic-block by this point. 778 // Update the dominator tree information inside the vector body by propagating 779 // it from header to latch, expecting only triangular control-flow, if any. 780 BasicBlock *PostDomSucc = nullptr; 781 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 782 // Get the list of successors of this block. 783 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 784 assert(Succs.size() <= 2 && 785 "Basic block in vector loop has more than 2 successors."); 786 PostDomSucc = Succs[0]; 787 if (Succs.size() == 1) { 788 assert(PostDomSucc->getSinglePredecessor() && 789 "PostDom successor has more than one predecessor."); 790 DT->addNewBlock(PostDomSucc, BB); 791 continue; 792 } 793 BasicBlock *InterimSucc = Succs[1]; 794 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 795 PostDomSucc = Succs[1]; 796 InterimSucc = Succs[0]; 797 } 798 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 799 "One successor of a basic block does not lead to the other."); 800 assert(InterimSucc->getSinglePredecessor() && 801 "Interim successor has more than one predecessor."); 802 assert(PostDomSucc->hasNPredecessors(2) && 803 "PostDom successor has more than two predecessors."); 804 DT->addNewBlock(InterimSucc, BB); 805 DT->addNewBlock(PostDomSucc, BB); 806 } 807 // Latch block is a new dominator for the loop exit. 808 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 809 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 810 } 811 812 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 813 814 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 815 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 816 Twine(getOrCreateBID(Block)); 817 } 818 819 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 820 const std::string &Name = Block->getName(); 821 if (!Name.empty()) 822 return Name; 823 return "VPB" + Twine(getOrCreateBID(Block)); 824 } 825 826 void VPlanPrinter::dump() { 827 Depth = 1; 828 bumpIndent(0); 829 OS << "digraph VPlan {\n"; 830 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 831 if (!Plan.getName().empty()) 832 OS << "\\n" << DOT::EscapeString(Plan.getName()); 833 if (Plan.BackedgeTakenCount) { 834 OS << ", where:\\n"; 835 Plan.BackedgeTakenCount->print(OS, SlotTracker); 836 OS << " := BackedgeTakenCount"; 837 } 838 OS << "\"]\n"; 839 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 840 OS << "edge [fontname=Courier, fontsize=30]\n"; 841 OS << "compound=true\n"; 842 843 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 844 dumpBlock(Block); 845 846 OS << "}\n"; 847 } 848 849 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 850 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 851 dumpBasicBlock(BasicBlock); 852 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 853 dumpRegion(Region); 854 else 855 llvm_unreachable("Unsupported kind of VPBlock."); 856 } 857 858 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 859 bool Hidden, const Twine &Label) { 860 // Due to "dot" we print an edge between two regions as an edge between the 861 // exiting basic block and the entry basic of the respective regions. 862 const VPBlockBase *Tail = From->getExitingBasicBlock(); 863 const VPBlockBase *Head = To->getEntryBasicBlock(); 864 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 865 OS << " [ label=\"" << Label << '\"'; 866 if (Tail != From) 867 OS << " ltail=" << getUID(From); 868 if (Head != To) 869 OS << " lhead=" << getUID(To); 870 if (Hidden) 871 OS << "; splines=none"; 872 OS << "]\n"; 873 } 874 875 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 876 auto &Successors = Block->getSuccessors(); 877 if (Successors.size() == 1) 878 drawEdge(Block, Successors.front(), false, ""); 879 else if (Successors.size() == 2) { 880 drawEdge(Block, Successors.front(), false, "T"); 881 drawEdge(Block, Successors.back(), false, "F"); 882 } else { 883 unsigned SuccessorNumber = 0; 884 for (auto *Successor : Successors) 885 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 886 } 887 } 888 889 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 890 // Implement dot-formatted dump by performing plain-text dump into the 891 // temporary storage followed by some post-processing. 892 OS << Indent << getUID(BasicBlock) << " [label =\n"; 893 bumpIndent(1); 894 std::string Str; 895 raw_string_ostream SS(Str); 896 // Use no indentation as we need to wrap the lines into quotes ourselves. 897 BasicBlock->print(SS, "", SlotTracker); 898 899 // We need to process each line of the output separately, so split 900 // single-string plain-text dump. 901 SmallVector<StringRef, 0> Lines; 902 StringRef(Str).rtrim('\n').split(Lines, "\n"); 903 904 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 905 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 906 }; 907 908 // Don't need the "+" after the last line. 909 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 910 EmitLine(Line, " +\n"); 911 EmitLine(Lines.back(), "\n"); 912 913 bumpIndent(-1); 914 OS << Indent << "]\n"; 915 916 dumpEdges(BasicBlock); 917 } 918 919 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 920 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 921 bumpIndent(1); 922 OS << Indent << "fontname=Courier\n" 923 << Indent << "label=\"" 924 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 925 << DOT::EscapeString(Region->getName()) << "\"\n"; 926 // Dump the blocks of the region. 927 assert(Region->getEntry() && "Region contains no inner blocks."); 928 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 929 dumpBlock(Block); 930 bumpIndent(-1); 931 OS << Indent << "}\n"; 932 dumpEdges(Region); 933 } 934 935 void VPlanIngredient::print(raw_ostream &O) const { 936 if (auto *Inst = dyn_cast<Instruction>(V)) { 937 if (!Inst->getType()->isVoidTy()) { 938 Inst->printAsOperand(O, false); 939 O << " = "; 940 } 941 O << Inst->getOpcodeName() << " "; 942 unsigned E = Inst->getNumOperands(); 943 if (E > 0) { 944 Inst->getOperand(0)->printAsOperand(O, false); 945 for (unsigned I = 1; I < E; ++I) 946 Inst->getOperand(I)->printAsOperand(O << ", ", false); 947 } 948 } else // !Inst 949 V->printAsOperand(O, false); 950 } 951 952 #endif 953 954 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 955 956 void VPValue::replaceAllUsesWith(VPValue *New) { 957 for (unsigned J = 0; J < getNumUsers();) { 958 VPUser *User = Users[J]; 959 unsigned NumUsers = getNumUsers(); 960 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 961 if (User->getOperand(I) == this) 962 User->setOperand(I, New); 963 // If a user got removed after updating the current user, the next user to 964 // update will be moved to the current position, so we only need to 965 // increment the index if the number of users did not change. 966 if (NumUsers == getNumUsers()) 967 J++; 968 } 969 } 970 971 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 972 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 973 if (const Value *UV = getUnderlyingValue()) { 974 OS << "ir<"; 975 UV->printAsOperand(OS, false); 976 OS << ">"; 977 return; 978 } 979 980 unsigned Slot = Tracker.getSlot(this); 981 if (Slot == unsigned(-1)) 982 OS << "<badref>"; 983 else 984 OS << "vp<%" << Tracker.getSlot(this) << ">"; 985 } 986 987 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 988 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 989 Op->printAsOperand(O, SlotTracker); 990 }); 991 } 992 #endif 993 994 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 995 Old2NewTy &Old2New, 996 InterleavedAccessInfo &IAI) { 997 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 998 for (VPBlockBase *Base : RPOT) { 999 visitBlock(Base, Old2New, IAI); 1000 } 1001 } 1002 1003 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1004 InterleavedAccessInfo &IAI) { 1005 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1006 for (VPRecipeBase &VPI : *VPBB) { 1007 if (isa<VPHeaderPHIRecipe>(&VPI)) 1008 continue; 1009 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1010 auto *VPInst = cast<VPInstruction>(&VPI); 1011 1012 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1013 if (!Inst) 1014 continue; 1015 auto *IG = IAI.getInterleaveGroup(Inst); 1016 if (!IG) 1017 continue; 1018 1019 auto NewIGIter = Old2New.find(IG); 1020 if (NewIGIter == Old2New.end()) 1021 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1022 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1023 1024 if (Inst == IG->getInsertPos()) 1025 Old2New[IG]->setInsertPos(VPInst); 1026 1027 InterleaveGroupMap[VPInst] = Old2New[IG]; 1028 InterleaveGroupMap[VPInst]->insertMember( 1029 VPInst, IG->getIndex(Inst), 1030 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1031 : IG->getFactor())); 1032 } 1033 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1034 visitRegion(Region, Old2New, IAI); 1035 else 1036 llvm_unreachable("Unsupported kind of VPBlock."); 1037 } 1038 1039 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1040 InterleavedAccessInfo &IAI) { 1041 Old2NewTy Old2New; 1042 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1043 } 1044 1045 void VPSlotTracker::assignSlot(const VPValue *V) { 1046 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1047 Slots[V] = NextSlot++; 1048 } 1049 1050 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1051 1052 for (const auto &P : Plan.VPExternalDefs) 1053 assignSlot(P.second); 1054 1055 assignSlot(&Plan.VectorTripCount); 1056 if (Plan.BackedgeTakenCount) 1057 assignSlot(Plan.BackedgeTakenCount); 1058 1059 ReversePostOrderTraversal< 1060 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1061 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1062 Plan.getEntry())); 1063 for (const VPBasicBlock *VPBB : 1064 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1065 for (const VPRecipeBase &Recipe : *VPBB) 1066 for (VPValue *Def : Recipe.definedValues()) 1067 assignSlot(Def); 1068 } 1069 1070 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1071 return all_of(Def->users(), 1072 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1073 } 1074 1075 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1076 ScalarEvolution &SE) { 1077 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1078 return Plan.getOrAddExternalDef(E->getValue()); 1079 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1080 return Plan.getOrAddExternalDef(E->getValue()); 1081 1082 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1083 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1084 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1085 return Step; 1086 } 1087