1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst, ExtractValueInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical. 258 static bool isSplat(ArrayRef<Value *> VL) { 259 for (unsigned i = 1, e = VL.size(); i < e; ++i) 260 if (VL[i] != VL[0]) 261 return false; 262 return true; 263 } 264 265 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 266 static bool isCommutative(Instruction *I) { 267 if (auto *Cmp = dyn_cast<CmpInst>(I)) 268 return Cmp->isCommutative(); 269 if (auto *BO = dyn_cast<BinaryOperator>(I)) 270 return BO->isCommutative(); 271 // TODO: This should check for generic Instruction::isCommutative(), but 272 // we need to confirm that the caller code correctly handles Intrinsics 273 // for example (does not have 2 operands). 274 return false; 275 } 276 277 /// Checks if the vector of instructions can be represented as a shuffle, like: 278 /// %x0 = extractelement <4 x i8> %x, i32 0 279 /// %x3 = extractelement <4 x i8> %x, i32 3 280 /// %y1 = extractelement <4 x i8> %y, i32 1 281 /// %y2 = extractelement <4 x i8> %y, i32 2 282 /// %x0x0 = mul i8 %x0, %x0 283 /// %x3x3 = mul i8 %x3, %x3 284 /// %y1y1 = mul i8 %y1, %y1 285 /// %y2y2 = mul i8 %y2, %y2 286 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 288 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 289 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 290 /// ret <4 x i8> %ins4 291 /// can be transformed into: 292 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 293 /// i32 6> 294 /// %2 = mul <4 x i8> %1, %1 295 /// ret <4 x i8> %2 296 /// We convert this initially to something like: 297 /// %x0 = extractelement <4 x i8> %x, i32 0 298 /// %x3 = extractelement <4 x i8> %x, i32 3 299 /// %y1 = extractelement <4 x i8> %y, i32 1 300 /// %y2 = extractelement <4 x i8> %y, i32 2 301 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 302 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 303 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 304 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 305 /// %5 = mul <4 x i8> %4, %4 306 /// %6 = extractelement <4 x i8> %5, i32 0 307 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 308 /// %7 = extractelement <4 x i8> %5, i32 1 309 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 310 /// %8 = extractelement <4 x i8> %5, i32 2 311 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 312 /// %9 = extractelement <4 x i8> %5, i32 3 313 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 314 /// ret <4 x i8> %ins4 315 /// InstCombiner transforms this into a shuffle and vector mul 316 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 317 /// TODO: Can we split off and reuse the shuffle mask detection from 318 /// TargetTransformInfo::getInstructionThroughput? 319 static Optional<TargetTransformInfo::ShuffleKind> 320 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 321 auto *EI0 = cast<ExtractElementInst>(VL[0]); 322 unsigned Size = 323 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 324 Value *Vec1 = nullptr; 325 Value *Vec2 = nullptr; 326 enum ShuffleMode { Unknown, Select, Permute }; 327 ShuffleMode CommonShuffleMode = Unknown; 328 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 329 auto *EI = cast<ExtractElementInst>(VL[I]); 330 auto *Vec = EI->getVectorOperand(); 331 // All vector operands must have the same number of vector elements. 332 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 333 return None; 334 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 335 if (!Idx) 336 return None; 337 // Undefined behavior if Idx is negative or >= Size. 338 if (Idx->getValue().uge(Size)) { 339 Mask.push_back(UndefMaskElem); 340 continue; 341 } 342 unsigned IntIdx = Idx->getValue().getZExtValue(); 343 Mask.push_back(IntIdx); 344 // We can extractelement from undef or poison vector. 345 if (isa<UndefValue>(Vec)) 346 continue; 347 // For correct shuffling we have to have at most 2 different vector operands 348 // in all extractelement instructions. 349 if (!Vec1 || Vec1 == Vec) 350 Vec1 = Vec; 351 else if (!Vec2 || Vec2 == Vec) 352 Vec2 = Vec; 353 else 354 return None; 355 if (CommonShuffleMode == Permute) 356 continue; 357 // If the extract index is not the same as the operation number, it is a 358 // permutation. 359 if (IntIdx != I) { 360 CommonShuffleMode = Permute; 361 continue; 362 } 363 CommonShuffleMode = Select; 364 } 365 // If we're not crossing lanes in different vectors, consider it as blending. 366 if (CommonShuffleMode == Select && Vec2) 367 return TargetTransformInfo::SK_Select; 368 // If Vec2 was never used, we have a permutation of a single vector, otherwise 369 // we have permutation of 2 vectors. 370 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 371 : TargetTransformInfo::SK_PermuteSingleSrc; 372 } 373 374 namespace { 375 376 /// Main data required for vectorization of instructions. 377 struct InstructionsState { 378 /// The very first instruction in the list with the main opcode. 379 Value *OpValue = nullptr; 380 381 /// The main/alternate instruction. 382 Instruction *MainOp = nullptr; 383 Instruction *AltOp = nullptr; 384 385 /// The main/alternate opcodes for the list of instructions. 386 unsigned getOpcode() const { 387 return MainOp ? MainOp->getOpcode() : 0; 388 } 389 390 unsigned getAltOpcode() const { 391 return AltOp ? AltOp->getOpcode() : 0; 392 } 393 394 /// Some of the instructions in the list have alternate opcodes. 395 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 396 397 bool isOpcodeOrAlt(Instruction *I) const { 398 unsigned CheckedOpcode = I->getOpcode(); 399 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 400 } 401 402 InstructionsState() = delete; 403 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 404 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 405 }; 406 407 } // end anonymous namespace 408 409 /// Chooses the correct key for scheduling data. If \p Op has the same (or 410 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 411 /// OpValue. 412 static Value *isOneOf(const InstructionsState &S, Value *Op) { 413 auto *I = dyn_cast<Instruction>(Op); 414 if (I && S.isOpcodeOrAlt(I)) 415 return Op; 416 return S.OpValue; 417 } 418 419 /// \returns true if \p Opcode is allowed as part of of the main/alternate 420 /// instruction for SLP vectorization. 421 /// 422 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 423 /// "shuffled out" lane would result in division by zero. 424 static bool isValidForAlternation(unsigned Opcode) { 425 if (Instruction::isIntDivRem(Opcode)) 426 return false; 427 428 return true; 429 } 430 431 /// \returns analysis of the Instructions in \p VL described in 432 /// InstructionsState, the Opcode that we suppose the whole list 433 /// could be vectorized even if its structure is diverse. 434 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 435 unsigned BaseIndex = 0) { 436 // Make sure these are all Instructions. 437 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 438 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 439 440 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 441 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 442 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 443 unsigned AltOpcode = Opcode; 444 unsigned AltIndex = BaseIndex; 445 446 // Check for one alternate opcode from another BinaryOperator. 447 // TODO - generalize to support all operators (types, calls etc.). 448 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 449 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 450 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 451 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 452 continue; 453 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 454 isValidForAlternation(Opcode)) { 455 AltOpcode = InstOpcode; 456 AltIndex = Cnt; 457 continue; 458 } 459 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 460 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 461 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 462 if (Ty0 == Ty1) { 463 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 464 continue; 465 if (Opcode == AltOpcode) { 466 assert(isValidForAlternation(Opcode) && 467 isValidForAlternation(InstOpcode) && 468 "Cast isn't safe for alternation, logic needs to be updated!"); 469 AltOpcode = InstOpcode; 470 AltIndex = Cnt; 471 continue; 472 } 473 } 474 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 475 continue; 476 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 477 } 478 479 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 480 cast<Instruction>(VL[AltIndex])); 481 } 482 483 /// \returns true if all of the values in \p VL have the same type or false 484 /// otherwise. 485 static bool allSameType(ArrayRef<Value *> VL) { 486 Type *Ty = VL[0]->getType(); 487 for (int i = 1, e = VL.size(); i < e; i++) 488 if (VL[i]->getType() != Ty) 489 return false; 490 491 return true; 492 } 493 494 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 495 static Optional<unsigned> getExtractIndex(Instruction *E) { 496 unsigned Opcode = E->getOpcode(); 497 assert((Opcode == Instruction::ExtractElement || 498 Opcode == Instruction::ExtractValue) && 499 "Expected extractelement or extractvalue instruction."); 500 if (Opcode == Instruction::ExtractElement) { 501 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 502 if (!CI) 503 return None; 504 return CI->getZExtValue(); 505 } 506 ExtractValueInst *EI = cast<ExtractValueInst>(E); 507 if (EI->getNumIndices() != 1) 508 return None; 509 return *EI->idx_begin(); 510 } 511 512 /// \returns True if in-tree use also needs extract. This refers to 513 /// possible scalar operand in vectorized instruction. 514 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 515 TargetLibraryInfo *TLI) { 516 unsigned Opcode = UserInst->getOpcode(); 517 switch (Opcode) { 518 case Instruction::Load: { 519 LoadInst *LI = cast<LoadInst>(UserInst); 520 return (LI->getPointerOperand() == Scalar); 521 } 522 case Instruction::Store: { 523 StoreInst *SI = cast<StoreInst>(UserInst); 524 return (SI->getPointerOperand() == Scalar); 525 } 526 case Instruction::Call: { 527 CallInst *CI = cast<CallInst>(UserInst); 528 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 529 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 530 if (hasVectorInstrinsicScalarOpd(ID, i)) 531 return (CI->getArgOperand(i) == Scalar); 532 } 533 LLVM_FALLTHROUGH; 534 } 535 default: 536 return false; 537 } 538 } 539 540 /// \returns the AA location that is being access by the instruction. 541 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 542 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 543 return MemoryLocation::get(SI); 544 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 545 return MemoryLocation::get(LI); 546 return MemoryLocation(); 547 } 548 549 /// \returns True if the instruction is not a volatile or atomic load/store. 550 static bool isSimple(Instruction *I) { 551 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 552 return LI->isSimple(); 553 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 554 return SI->isSimple(); 555 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 556 return !MI->isVolatile(); 557 return true; 558 } 559 560 /// Shuffles \p Mask in accordance with the given \p SubMask. 561 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 562 if (SubMask.empty()) 563 return; 564 if (Mask.empty()) { 565 Mask.append(SubMask.begin(), SubMask.end()); 566 return; 567 } 568 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 569 int TermValue = std::min(Mask.size(), SubMask.size()); 570 for (int I = 0, E = SubMask.size(); I < E; ++I) { 571 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 572 Mask[SubMask[I]] >= TermValue) 573 continue; 574 NewMask[I] = Mask[SubMask[I]]; 575 } 576 Mask.swap(NewMask); 577 } 578 579 /// Order may have elements assigned special value (size) which is out of 580 /// bounds. Such indices only appear on places which correspond to undef values 581 /// (see canReuseExtract for details) and used in order to avoid undef values 582 /// have effect on operands ordering. 583 /// The first loop below simply finds all unused indices and then the next loop 584 /// nest assigns these indices for undef values positions. 585 /// As an example below Order has two undef positions and they have assigned 586 /// values 3 and 7 respectively: 587 /// before: 6 9 5 4 9 2 1 0 588 /// after: 6 3 5 4 7 2 1 0 589 /// \returns Fixed ordering. 590 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 591 const unsigned Sz = Order.size(); 592 SmallBitVector UsedIndices(Sz); 593 SmallVector<int> MaskedIndices; 594 for (unsigned I = 0; I < Sz; ++I) { 595 if (Order[I] < Sz) 596 UsedIndices.set(Order[I]); 597 else 598 MaskedIndices.push_back(I); 599 } 600 if (MaskedIndices.empty()) 601 return; 602 SmallVector<int> AvailableIndices(MaskedIndices.size()); 603 unsigned Cnt = 0; 604 int Idx = UsedIndices.find_first(); 605 do { 606 AvailableIndices[Cnt] = Idx; 607 Idx = UsedIndices.find_next(Idx); 608 ++Cnt; 609 } while (Idx > 0); 610 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 611 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 612 Order[MaskedIndices[I]] = AvailableIndices[I]; 613 } 614 615 namespace llvm { 616 617 static void inversePermutation(ArrayRef<unsigned> Indices, 618 SmallVectorImpl<int> &Mask) { 619 Mask.clear(); 620 const unsigned E = Indices.size(); 621 Mask.resize(E, UndefMaskElem); 622 for (unsigned I = 0; I < E; ++I) 623 Mask[Indices[I]] = I; 624 } 625 626 /// \returns inserting index of InsertElement or InsertValue instruction, 627 /// using Offset as base offset for index. 628 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 629 int Index = Offset; 630 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 631 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 632 auto *VT = cast<FixedVectorType>(IE->getType()); 633 if (CI->getValue().uge(VT->getNumElements())) 634 return UndefMaskElem; 635 Index *= VT->getNumElements(); 636 Index += CI->getZExtValue(); 637 return Index; 638 } 639 if (isa<UndefValue>(IE->getOperand(2))) 640 return UndefMaskElem; 641 return None; 642 } 643 644 auto *IV = cast<InsertValueInst>(InsertInst); 645 Type *CurrentType = IV->getType(); 646 for (unsigned I : IV->indices()) { 647 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 648 Index *= ST->getNumElements(); 649 CurrentType = ST->getElementType(I); 650 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 651 Index *= AT->getNumElements(); 652 CurrentType = AT->getElementType(); 653 } else { 654 return None; 655 } 656 Index += I; 657 } 658 return Index; 659 } 660 661 /// Reorders the list of scalars in accordance with the given \p Order and then 662 /// the \p Mask. \p Order - is the original order of the scalars, need to 663 /// reorder scalars into an unordered state at first according to the given 664 /// order. Then the ordered scalars are shuffled once again in accordance with 665 /// the provided mask. 666 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 667 ArrayRef<int> Mask) { 668 assert(!Mask.empty() && "Expected non-empty mask."); 669 SmallVector<Value *> Prev(Scalars.size(), 670 UndefValue::get(Scalars.front()->getType())); 671 Prev.swap(Scalars); 672 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 673 if (Mask[I] != UndefMaskElem) 674 Scalars[Mask[I]] = Prev[I]; 675 } 676 677 namespace slpvectorizer { 678 679 /// Bottom Up SLP Vectorizer. 680 class BoUpSLP { 681 struct TreeEntry; 682 struct ScheduleData; 683 684 public: 685 using ValueList = SmallVector<Value *, 8>; 686 using InstrList = SmallVector<Instruction *, 16>; 687 using ValueSet = SmallPtrSet<Value *, 16>; 688 using StoreList = SmallVector<StoreInst *, 8>; 689 using ExtraValueToDebugLocsMap = 690 MapVector<Value *, SmallVector<Instruction *, 2>>; 691 using OrdersType = SmallVector<unsigned, 4>; 692 693 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 694 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 695 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 696 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 697 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 698 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 699 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 700 // Use the vector register size specified by the target unless overridden 701 // by a command-line option. 702 // TODO: It would be better to limit the vectorization factor based on 703 // data type rather than just register size. For example, x86 AVX has 704 // 256-bit registers, but it does not support integer operations 705 // at that width (that requires AVX2). 706 if (MaxVectorRegSizeOption.getNumOccurrences()) 707 MaxVecRegSize = MaxVectorRegSizeOption; 708 else 709 MaxVecRegSize = 710 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 711 .getFixedSize(); 712 713 if (MinVectorRegSizeOption.getNumOccurrences()) 714 MinVecRegSize = MinVectorRegSizeOption; 715 else 716 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 717 } 718 719 /// Vectorize the tree that starts with the elements in \p VL. 720 /// Returns the vectorized root. 721 Value *vectorizeTree(); 722 723 /// Vectorize the tree but with the list of externally used values \p 724 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 725 /// generated extractvalue instructions. 726 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 727 728 /// \returns the cost incurred by unwanted spills and fills, caused by 729 /// holding live values over call sites. 730 InstructionCost getSpillCost() const; 731 732 /// \returns the vectorization cost of the subtree that starts at \p VL. 733 /// A negative number means that this is profitable. 734 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 735 736 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 737 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 738 void buildTree(ArrayRef<Value *> Roots, 739 ArrayRef<Value *> UserIgnoreLst = None); 740 741 /// Builds external uses of the vectorized scalars, i.e. the list of 742 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 743 /// ExternallyUsedValues contains additional list of external uses to handle 744 /// vectorization of reductions. 745 void 746 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 747 748 /// Clear the internal data structures that are created by 'buildTree'. 749 void deleteTree() { 750 VectorizableTree.clear(); 751 ScalarToTreeEntry.clear(); 752 MustGather.clear(); 753 ExternalUses.clear(); 754 for (auto &Iter : BlocksSchedules) { 755 BlockScheduling *BS = Iter.second.get(); 756 BS->clear(); 757 } 758 MinBWs.clear(); 759 InstrElementSize.clear(); 760 } 761 762 unsigned getTreeSize() const { return VectorizableTree.size(); } 763 764 /// Perform LICM and CSE on the newly generated gather sequences. 765 void optimizeGatherSequence(); 766 767 /// Reorders the current graph to the most profitable order starting from the 768 /// root node to the leaf nodes. The best order is chosen only from the nodes 769 /// of the same size (vectorization factor). Smaller nodes are considered 770 /// parts of subgraph with smaller VF and they are reordered independently. We 771 /// can make it because we still need to extend smaller nodes to the wider VF 772 /// and we can merge reordering shuffles with the widening shuffles. 773 void reorderTopToBottom(); 774 775 /// Reorders the current graph to the most profitable order starting from 776 /// leaves to the root. It allows to rotate small subgraphs and reduce the 777 /// number of reshuffles if the leaf nodes use the same order. In this case we 778 /// can merge the orders and just shuffle user node instead of shuffling its 779 /// operands. Plus, even the leaf nodes have different orders, it allows to 780 /// sink reordering in the graph closer to the root node and merge it later 781 /// during analysis. 782 void reorderBottomToTop(); 783 784 /// \return The vector element size in bits to use when vectorizing the 785 /// expression tree ending at \p V. If V is a store, the size is the width of 786 /// the stored value. Otherwise, the size is the width of the largest loaded 787 /// value reaching V. This method is used by the vectorizer to calculate 788 /// vectorization factors. 789 unsigned getVectorElementSize(Value *V); 790 791 /// Compute the minimum type sizes required to represent the entries in a 792 /// vectorizable tree. 793 void computeMinimumValueSizes(); 794 795 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 796 unsigned getMaxVecRegSize() const { 797 return MaxVecRegSize; 798 } 799 800 // \returns minimum vector register size as set by cl::opt. 801 unsigned getMinVecRegSize() const { 802 return MinVecRegSize; 803 } 804 805 unsigned getMinVF(unsigned Sz) const { 806 return std::max(2U, getMinVecRegSize() / Sz); 807 } 808 809 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 810 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 811 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 812 return MaxVF ? MaxVF : UINT_MAX; 813 } 814 815 /// Check if homogeneous aggregate is isomorphic to some VectorType. 816 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 817 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 818 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 819 /// 820 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 821 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 822 823 /// \returns True if the VectorizableTree is both tiny and not fully 824 /// vectorizable. We do not vectorize such trees. 825 bool isTreeTinyAndNotFullyVectorizable() const; 826 827 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 828 /// can be load combined in the backend. Load combining may not be allowed in 829 /// the IR optimizer, so we do not want to alter the pattern. For example, 830 /// partially transforming a scalar bswap() pattern into vector code is 831 /// effectively impossible for the backend to undo. 832 /// TODO: If load combining is allowed in the IR optimizer, this analysis 833 /// may not be necessary. 834 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 835 836 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 837 /// can be load combined in the backend. Load combining may not be allowed in 838 /// the IR optimizer, so we do not want to alter the pattern. For example, 839 /// partially transforming a scalar bswap() pattern into vector code is 840 /// effectively impossible for the backend to undo. 841 /// TODO: If load combining is allowed in the IR optimizer, this analysis 842 /// may not be necessary. 843 bool isLoadCombineCandidate() const; 844 845 OptimizationRemarkEmitter *getORE() { return ORE; } 846 847 /// This structure holds any data we need about the edges being traversed 848 /// during buildTree_rec(). We keep track of: 849 /// (i) the user TreeEntry index, and 850 /// (ii) the index of the edge. 851 struct EdgeInfo { 852 EdgeInfo() = default; 853 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 854 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 855 /// The user TreeEntry. 856 TreeEntry *UserTE = nullptr; 857 /// The operand index of the use. 858 unsigned EdgeIdx = UINT_MAX; 859 #ifndef NDEBUG 860 friend inline raw_ostream &operator<<(raw_ostream &OS, 861 const BoUpSLP::EdgeInfo &EI) { 862 EI.dump(OS); 863 return OS; 864 } 865 /// Debug print. 866 void dump(raw_ostream &OS) const { 867 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 868 << " EdgeIdx:" << EdgeIdx << "}"; 869 } 870 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 871 #endif 872 }; 873 874 /// A helper data structure to hold the operands of a vector of instructions. 875 /// This supports a fixed vector length for all operand vectors. 876 class VLOperands { 877 /// For each operand we need (i) the value, and (ii) the opcode that it 878 /// would be attached to if the expression was in a left-linearized form. 879 /// This is required to avoid illegal operand reordering. 880 /// For example: 881 /// \verbatim 882 /// 0 Op1 883 /// |/ 884 /// Op1 Op2 Linearized + Op2 885 /// \ / ----------> |/ 886 /// - - 887 /// 888 /// Op1 - Op2 (0 + Op1) - Op2 889 /// \endverbatim 890 /// 891 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 892 /// 893 /// Another way to think of this is to track all the operations across the 894 /// path from the operand all the way to the root of the tree and to 895 /// calculate the operation that corresponds to this path. For example, the 896 /// path from Op2 to the root crosses the RHS of the '-', therefore the 897 /// corresponding operation is a '-' (which matches the one in the 898 /// linearized tree, as shown above). 899 /// 900 /// For lack of a better term, we refer to this operation as Accumulated 901 /// Path Operation (APO). 902 struct OperandData { 903 OperandData() = default; 904 OperandData(Value *V, bool APO, bool IsUsed) 905 : V(V), APO(APO), IsUsed(IsUsed) {} 906 /// The operand value. 907 Value *V = nullptr; 908 /// TreeEntries only allow a single opcode, or an alternate sequence of 909 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 910 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 911 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 912 /// (e.g., Add/Mul) 913 bool APO = false; 914 /// Helper data for the reordering function. 915 bool IsUsed = false; 916 }; 917 918 /// During operand reordering, we are trying to select the operand at lane 919 /// that matches best with the operand at the neighboring lane. Our 920 /// selection is based on the type of value we are looking for. For example, 921 /// if the neighboring lane has a load, we need to look for a load that is 922 /// accessing a consecutive address. These strategies are summarized in the 923 /// 'ReorderingMode' enumerator. 924 enum class ReorderingMode { 925 Load, ///< Matching loads to consecutive memory addresses 926 Opcode, ///< Matching instructions based on opcode (same or alternate) 927 Constant, ///< Matching constants 928 Splat, ///< Matching the same instruction multiple times (broadcast) 929 Failed, ///< We failed to create a vectorizable group 930 }; 931 932 using OperandDataVec = SmallVector<OperandData, 2>; 933 934 /// A vector of operand vectors. 935 SmallVector<OperandDataVec, 4> OpsVec; 936 937 const DataLayout &DL; 938 ScalarEvolution &SE; 939 const BoUpSLP &R; 940 941 /// \returns the operand data at \p OpIdx and \p Lane. 942 OperandData &getData(unsigned OpIdx, unsigned Lane) { 943 return OpsVec[OpIdx][Lane]; 944 } 945 946 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 947 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 948 return OpsVec[OpIdx][Lane]; 949 } 950 951 /// Clears the used flag for all entries. 952 void clearUsed() { 953 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 954 OpIdx != NumOperands; ++OpIdx) 955 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 956 ++Lane) 957 OpsVec[OpIdx][Lane].IsUsed = false; 958 } 959 960 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 961 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 962 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 963 } 964 965 // The hard-coded scores listed here are not very important. When computing 966 // the scores of matching one sub-tree with another, we are basically 967 // counting the number of values that are matching. So even if all scores 968 // are set to 1, we would still get a decent matching result. 969 // However, sometimes we have to break ties. For example we may have to 970 // choose between matching loads vs matching opcodes. This is what these 971 // scores are helping us with: they provide the order of preference. 972 973 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 974 static const int ScoreConsecutiveLoads = 3; 975 /// ExtractElementInst from same vector and consecutive indexes. 976 static const int ScoreConsecutiveExtracts = 3; 977 /// Constants. 978 static const int ScoreConstants = 2; 979 /// Instructions with the same opcode. 980 static const int ScoreSameOpcode = 2; 981 /// Instructions with alt opcodes (e.g, add + sub). 982 static const int ScoreAltOpcodes = 1; 983 /// Identical instructions (a.k.a. splat or broadcast). 984 static const int ScoreSplat = 1; 985 /// Matching with an undef is preferable to failing. 986 static const int ScoreUndef = 1; 987 /// Score for failing to find a decent match. 988 static const int ScoreFail = 0; 989 /// User exteranl to the vectorized code. 990 static const int ExternalUseCost = 1; 991 /// The user is internal but in a different lane. 992 static const int UserInDiffLaneCost = ExternalUseCost; 993 994 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 995 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 996 ScalarEvolution &SE) { 997 auto *LI1 = dyn_cast<LoadInst>(V1); 998 auto *LI2 = dyn_cast<LoadInst>(V2); 999 if (LI1 && LI2) { 1000 if (LI1->getParent() != LI2->getParent()) 1001 return VLOperands::ScoreFail; 1002 1003 Optional<int> Dist = getPointersDiff( 1004 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1005 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1006 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1007 : VLOperands::ScoreFail; 1008 } 1009 1010 auto *C1 = dyn_cast<Constant>(V1); 1011 auto *C2 = dyn_cast<Constant>(V2); 1012 if (C1 && C2) 1013 return VLOperands::ScoreConstants; 1014 1015 // Extracts from consecutive indexes of the same vector better score as 1016 // the extracts could be optimized away. 1017 Value *EV; 1018 ConstantInt *Ex1Idx, *Ex2Idx; 1019 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1020 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1021 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1022 return VLOperands::ScoreConsecutiveExtracts; 1023 1024 auto *I1 = dyn_cast<Instruction>(V1); 1025 auto *I2 = dyn_cast<Instruction>(V2); 1026 if (I1 && I2) { 1027 if (I1 == I2) 1028 return VLOperands::ScoreSplat; 1029 InstructionsState S = getSameOpcode({I1, I2}); 1030 // Note: Only consider instructions with <= 2 operands to avoid 1031 // complexity explosion. 1032 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1033 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1034 : VLOperands::ScoreSameOpcode; 1035 } 1036 1037 if (isa<UndefValue>(V2)) 1038 return VLOperands::ScoreUndef; 1039 1040 return VLOperands::ScoreFail; 1041 } 1042 1043 /// Holds the values and their lane that are taking part in the look-ahead 1044 /// score calculation. This is used in the external uses cost calculation. 1045 SmallDenseMap<Value *, int> InLookAheadValues; 1046 1047 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1048 /// either external to the vectorized code, or require shuffling. 1049 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1050 const std::pair<Value *, int> &RHS) { 1051 int Cost = 0; 1052 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1053 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1054 Value *V = Values[Idx].first; 1055 if (isa<Constant>(V)) { 1056 // Since this is a function pass, it doesn't make semantic sense to 1057 // walk the users of a subclass of Constant. The users could be in 1058 // another function, or even another module that happens to be in 1059 // the same LLVMContext. 1060 continue; 1061 } 1062 1063 // Calculate the absolute lane, using the minimum relative lane of LHS 1064 // and RHS as base and Idx as the offset. 1065 int Ln = std::min(LHS.second, RHS.second) + Idx; 1066 assert(Ln >= 0 && "Bad lane calculation"); 1067 unsigned UsersBudget = LookAheadUsersBudget; 1068 for (User *U : V->users()) { 1069 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1070 // The user is in the VectorizableTree. Check if we need to insert. 1071 auto It = llvm::find(UserTE->Scalars, U); 1072 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1073 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1074 assert(UserLn >= 0 && "Bad lane"); 1075 if (UserLn != Ln) 1076 Cost += UserInDiffLaneCost; 1077 } else { 1078 // Check if the user is in the look-ahead code. 1079 auto It2 = InLookAheadValues.find(U); 1080 if (It2 != InLookAheadValues.end()) { 1081 // The user is in the look-ahead code. Check the lane. 1082 if (It2->second != Ln) 1083 Cost += UserInDiffLaneCost; 1084 } else { 1085 // The user is neither in SLP tree nor in the look-ahead code. 1086 Cost += ExternalUseCost; 1087 } 1088 } 1089 // Limit the number of visited uses to cap compilation time. 1090 if (--UsersBudget == 0) 1091 break; 1092 } 1093 } 1094 return Cost; 1095 } 1096 1097 /// Go through the operands of \p LHS and \p RHS recursively until \p 1098 /// MaxLevel, and return the cummulative score. For example: 1099 /// \verbatim 1100 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1101 /// \ / \ / \ / \ / 1102 /// + + + + 1103 /// G1 G2 G3 G4 1104 /// \endverbatim 1105 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1106 /// each level recursively, accumulating the score. It starts from matching 1107 /// the additions at level 0, then moves on to the loads (level 1). The 1108 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1109 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1110 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1111 /// Please note that the order of the operands does not matter, as we 1112 /// evaluate the score of all profitable combinations of operands. In 1113 /// other words the score of G1 and G4 is the same as G1 and G2. This 1114 /// heuristic is based on ideas described in: 1115 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1116 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1117 /// Luís F. W. Góes 1118 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1119 const std::pair<Value *, int> &RHS, int CurrLevel, 1120 int MaxLevel) { 1121 1122 Value *V1 = LHS.first; 1123 Value *V2 = RHS.first; 1124 // Get the shallow score of V1 and V2. 1125 int ShallowScoreAtThisLevel = 1126 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1127 getExternalUsesCost(LHS, RHS)); 1128 int Lane1 = LHS.second; 1129 int Lane2 = RHS.second; 1130 1131 // If reached MaxLevel, 1132 // or if V1 and V2 are not instructions, 1133 // or if they are SPLAT, 1134 // or if they are not consecutive, early return the current cost. 1135 auto *I1 = dyn_cast<Instruction>(V1); 1136 auto *I2 = dyn_cast<Instruction>(V2); 1137 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1138 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1139 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1140 return ShallowScoreAtThisLevel; 1141 assert(I1 && I2 && "Should have early exited."); 1142 1143 // Keep track of in-tree values for determining the external-use cost. 1144 InLookAheadValues[V1] = Lane1; 1145 InLookAheadValues[V2] = Lane2; 1146 1147 // Contains the I2 operand indexes that got matched with I1 operands. 1148 SmallSet<unsigned, 4> Op2Used; 1149 1150 // Recursion towards the operands of I1 and I2. We are trying all possbile 1151 // operand pairs, and keeping track of the best score. 1152 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1153 OpIdx1 != NumOperands1; ++OpIdx1) { 1154 // Try to pair op1I with the best operand of I2. 1155 int MaxTmpScore = 0; 1156 unsigned MaxOpIdx2 = 0; 1157 bool FoundBest = false; 1158 // If I2 is commutative try all combinations. 1159 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1160 unsigned ToIdx = isCommutative(I2) 1161 ? I2->getNumOperands() 1162 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1163 assert(FromIdx <= ToIdx && "Bad index"); 1164 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1165 // Skip operands already paired with OpIdx1. 1166 if (Op2Used.count(OpIdx2)) 1167 continue; 1168 // Recursively calculate the cost at each level 1169 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1170 {I2->getOperand(OpIdx2), Lane2}, 1171 CurrLevel + 1, MaxLevel); 1172 // Look for the best score. 1173 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1174 MaxTmpScore = TmpScore; 1175 MaxOpIdx2 = OpIdx2; 1176 FoundBest = true; 1177 } 1178 } 1179 if (FoundBest) { 1180 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1181 Op2Used.insert(MaxOpIdx2); 1182 ShallowScoreAtThisLevel += MaxTmpScore; 1183 } 1184 } 1185 return ShallowScoreAtThisLevel; 1186 } 1187 1188 /// \Returns the look-ahead score, which tells us how much the sub-trees 1189 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1190 /// score. This helps break ties in an informed way when we cannot decide on 1191 /// the order of the operands by just considering the immediate 1192 /// predecessors. 1193 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1194 const std::pair<Value *, int> &RHS) { 1195 InLookAheadValues.clear(); 1196 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1197 } 1198 1199 // Search all operands in Ops[*][Lane] for the one that matches best 1200 // Ops[OpIdx][LastLane] and return its opreand index. 1201 // If no good match can be found, return None. 1202 Optional<unsigned> 1203 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1204 ArrayRef<ReorderingMode> ReorderingModes) { 1205 unsigned NumOperands = getNumOperands(); 1206 1207 // The operand of the previous lane at OpIdx. 1208 Value *OpLastLane = getData(OpIdx, LastLane).V; 1209 1210 // Our strategy mode for OpIdx. 1211 ReorderingMode RMode = ReorderingModes[OpIdx]; 1212 1213 // The linearized opcode of the operand at OpIdx, Lane. 1214 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1215 1216 // The best operand index and its score. 1217 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1218 // are using the score to differentiate between the two. 1219 struct BestOpData { 1220 Optional<unsigned> Idx = None; 1221 unsigned Score = 0; 1222 } BestOp; 1223 1224 // Iterate through all unused operands and look for the best. 1225 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1226 // Get the operand at Idx and Lane. 1227 OperandData &OpData = getData(Idx, Lane); 1228 Value *Op = OpData.V; 1229 bool OpAPO = OpData.APO; 1230 1231 // Skip already selected operands. 1232 if (OpData.IsUsed) 1233 continue; 1234 1235 // Skip if we are trying to move the operand to a position with a 1236 // different opcode in the linearized tree form. This would break the 1237 // semantics. 1238 if (OpAPO != OpIdxAPO) 1239 continue; 1240 1241 // Look for an operand that matches the current mode. 1242 switch (RMode) { 1243 case ReorderingMode::Load: 1244 case ReorderingMode::Constant: 1245 case ReorderingMode::Opcode: { 1246 bool LeftToRight = Lane > LastLane; 1247 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1248 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1249 unsigned Score = 1250 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1251 if (Score > BestOp.Score) { 1252 BestOp.Idx = Idx; 1253 BestOp.Score = Score; 1254 } 1255 break; 1256 } 1257 case ReorderingMode::Splat: 1258 if (Op == OpLastLane) 1259 BestOp.Idx = Idx; 1260 break; 1261 case ReorderingMode::Failed: 1262 return None; 1263 } 1264 } 1265 1266 if (BestOp.Idx) { 1267 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1268 return BestOp.Idx; 1269 } 1270 // If we could not find a good match return None. 1271 return None; 1272 } 1273 1274 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1275 /// reordering from. This is the one which has the least number of operands 1276 /// that can freely move about. 1277 unsigned getBestLaneToStartReordering() const { 1278 unsigned BestLane = 0; 1279 unsigned Min = UINT_MAX; 1280 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1281 ++Lane) { 1282 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1283 if (NumFreeOps < Min) { 1284 Min = NumFreeOps; 1285 BestLane = Lane; 1286 } 1287 } 1288 return BestLane; 1289 } 1290 1291 /// \Returns the maximum number of operands that are allowed to be reordered 1292 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1293 /// start operand reordering. 1294 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1295 unsigned CntTrue = 0; 1296 unsigned NumOperands = getNumOperands(); 1297 // Operands with the same APO can be reordered. We therefore need to count 1298 // how many of them we have for each APO, like this: Cnt[APO] = x. 1299 // Since we only have two APOs, namely true and false, we can avoid using 1300 // a map. Instead we can simply count the number of operands that 1301 // correspond to one of them (in this case the 'true' APO), and calculate 1302 // the other by subtracting it from the total number of operands. 1303 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1304 if (getData(OpIdx, Lane).APO) 1305 ++CntTrue; 1306 unsigned CntFalse = NumOperands - CntTrue; 1307 return std::max(CntTrue, CntFalse); 1308 } 1309 1310 /// Go through the instructions in VL and append their operands. 1311 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1312 assert(!VL.empty() && "Bad VL"); 1313 assert((empty() || VL.size() == getNumLanes()) && 1314 "Expected same number of lanes"); 1315 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1316 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1317 OpsVec.resize(NumOperands); 1318 unsigned NumLanes = VL.size(); 1319 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1320 OpsVec[OpIdx].resize(NumLanes); 1321 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1322 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1323 // Our tree has just 3 nodes: the root and two operands. 1324 // It is therefore trivial to get the APO. We only need to check the 1325 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1326 // RHS operand. The LHS operand of both add and sub is never attached 1327 // to an inversese operation in the linearized form, therefore its APO 1328 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1329 1330 // Since operand reordering is performed on groups of commutative 1331 // operations or alternating sequences (e.g., +, -), we can safely 1332 // tell the inverse operations by checking commutativity. 1333 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1334 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1335 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1336 APO, false}; 1337 } 1338 } 1339 } 1340 1341 /// \returns the number of operands. 1342 unsigned getNumOperands() const { return OpsVec.size(); } 1343 1344 /// \returns the number of lanes. 1345 unsigned getNumLanes() const { return OpsVec[0].size(); } 1346 1347 /// \returns the operand value at \p OpIdx and \p Lane. 1348 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1349 return getData(OpIdx, Lane).V; 1350 } 1351 1352 /// \returns true if the data structure is empty. 1353 bool empty() const { return OpsVec.empty(); } 1354 1355 /// Clears the data. 1356 void clear() { OpsVec.clear(); } 1357 1358 /// \Returns true if there are enough operands identical to \p Op to fill 1359 /// the whole vector. 1360 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1361 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1362 bool OpAPO = getData(OpIdx, Lane).APO; 1363 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1364 if (Ln == Lane) 1365 continue; 1366 // This is set to true if we found a candidate for broadcast at Lane. 1367 bool FoundCandidate = false; 1368 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1369 OperandData &Data = getData(OpI, Ln); 1370 if (Data.APO != OpAPO || Data.IsUsed) 1371 continue; 1372 if (Data.V == Op) { 1373 FoundCandidate = true; 1374 Data.IsUsed = true; 1375 break; 1376 } 1377 } 1378 if (!FoundCandidate) 1379 return false; 1380 } 1381 return true; 1382 } 1383 1384 public: 1385 /// Initialize with all the operands of the instruction vector \p RootVL. 1386 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1387 ScalarEvolution &SE, const BoUpSLP &R) 1388 : DL(DL), SE(SE), R(R) { 1389 // Append all the operands of RootVL. 1390 appendOperandsOfVL(RootVL); 1391 } 1392 1393 /// \Returns a value vector with the operands across all lanes for the 1394 /// opearnd at \p OpIdx. 1395 ValueList getVL(unsigned OpIdx) const { 1396 ValueList OpVL(OpsVec[OpIdx].size()); 1397 assert(OpsVec[OpIdx].size() == getNumLanes() && 1398 "Expected same num of lanes across all operands"); 1399 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1400 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1401 return OpVL; 1402 } 1403 1404 // Performs operand reordering for 2 or more operands. 1405 // The original operands are in OrigOps[OpIdx][Lane]. 1406 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1407 void reorder() { 1408 unsigned NumOperands = getNumOperands(); 1409 unsigned NumLanes = getNumLanes(); 1410 // Each operand has its own mode. We are using this mode to help us select 1411 // the instructions for each lane, so that they match best with the ones 1412 // we have selected so far. 1413 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1414 1415 // This is a greedy single-pass algorithm. We are going over each lane 1416 // once and deciding on the best order right away with no back-tracking. 1417 // However, in order to increase its effectiveness, we start with the lane 1418 // that has operands that can move the least. For example, given the 1419 // following lanes: 1420 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1421 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1422 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1423 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1424 // we will start at Lane 1, since the operands of the subtraction cannot 1425 // be reordered. Then we will visit the rest of the lanes in a circular 1426 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1427 1428 // Find the first lane that we will start our search from. 1429 unsigned FirstLane = getBestLaneToStartReordering(); 1430 1431 // Initialize the modes. 1432 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1433 Value *OpLane0 = getValue(OpIdx, FirstLane); 1434 // Keep track if we have instructions with all the same opcode on one 1435 // side. 1436 if (isa<LoadInst>(OpLane0)) 1437 ReorderingModes[OpIdx] = ReorderingMode::Load; 1438 else if (isa<Instruction>(OpLane0)) { 1439 // Check if OpLane0 should be broadcast. 1440 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1441 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1442 else 1443 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1444 } 1445 else if (isa<Constant>(OpLane0)) 1446 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1447 else if (isa<Argument>(OpLane0)) 1448 // Our best hope is a Splat. It may save some cost in some cases. 1449 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1450 else 1451 // NOTE: This should be unreachable. 1452 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1453 } 1454 1455 // If the initial strategy fails for any of the operand indexes, then we 1456 // perform reordering again in a second pass. This helps avoid assigning 1457 // high priority to the failed strategy, and should improve reordering for 1458 // the non-failed operand indexes. 1459 for (int Pass = 0; Pass != 2; ++Pass) { 1460 // Skip the second pass if the first pass did not fail. 1461 bool StrategyFailed = false; 1462 // Mark all operand data as free to use. 1463 clearUsed(); 1464 // We keep the original operand order for the FirstLane, so reorder the 1465 // rest of the lanes. We are visiting the nodes in a circular fashion, 1466 // using FirstLane as the center point and increasing the radius 1467 // distance. 1468 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1469 // Visit the lane on the right and then the lane on the left. 1470 for (int Direction : {+1, -1}) { 1471 int Lane = FirstLane + Direction * Distance; 1472 if (Lane < 0 || Lane >= (int)NumLanes) 1473 continue; 1474 int LastLane = Lane - Direction; 1475 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1476 "Out of bounds"); 1477 // Look for a good match for each operand. 1478 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1479 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1480 Optional<unsigned> BestIdx = 1481 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1482 // By not selecting a value, we allow the operands that follow to 1483 // select a better matching value. We will get a non-null value in 1484 // the next run of getBestOperand(). 1485 if (BestIdx) { 1486 // Swap the current operand with the one returned by 1487 // getBestOperand(). 1488 swap(OpIdx, BestIdx.getValue(), Lane); 1489 } else { 1490 // We failed to find a best operand, set mode to 'Failed'. 1491 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1492 // Enable the second pass. 1493 StrategyFailed = true; 1494 } 1495 } 1496 } 1497 } 1498 // Skip second pass if the strategy did not fail. 1499 if (!StrategyFailed) 1500 break; 1501 } 1502 } 1503 1504 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1505 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1506 switch (RMode) { 1507 case ReorderingMode::Load: 1508 return "Load"; 1509 case ReorderingMode::Opcode: 1510 return "Opcode"; 1511 case ReorderingMode::Constant: 1512 return "Constant"; 1513 case ReorderingMode::Splat: 1514 return "Splat"; 1515 case ReorderingMode::Failed: 1516 return "Failed"; 1517 } 1518 llvm_unreachable("Unimplemented Reordering Type"); 1519 } 1520 1521 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1522 raw_ostream &OS) { 1523 return OS << getModeStr(RMode); 1524 } 1525 1526 /// Debug print. 1527 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1528 printMode(RMode, dbgs()); 1529 } 1530 1531 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1532 return printMode(RMode, OS); 1533 } 1534 1535 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1536 const unsigned Indent = 2; 1537 unsigned Cnt = 0; 1538 for (const OperandDataVec &OpDataVec : OpsVec) { 1539 OS << "Operand " << Cnt++ << "\n"; 1540 for (const OperandData &OpData : OpDataVec) { 1541 OS.indent(Indent) << "{"; 1542 if (Value *V = OpData.V) 1543 OS << *V; 1544 else 1545 OS << "null"; 1546 OS << ", APO:" << OpData.APO << "}\n"; 1547 } 1548 OS << "\n"; 1549 } 1550 return OS; 1551 } 1552 1553 /// Debug print. 1554 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1555 #endif 1556 }; 1557 1558 /// Checks if the instruction is marked for deletion. 1559 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1560 1561 /// Marks values operands for later deletion by replacing them with Undefs. 1562 void eraseInstructions(ArrayRef<Value *> AV); 1563 1564 ~BoUpSLP(); 1565 1566 private: 1567 /// Checks if all users of \p I are the part of the vectorization tree. 1568 bool areAllUsersVectorized(Instruction *I, 1569 ArrayRef<Value *> VectorizedVals) const; 1570 1571 /// \returns the cost of the vectorizable entry. 1572 InstructionCost getEntryCost(const TreeEntry *E, 1573 ArrayRef<Value *> VectorizedVals); 1574 1575 /// This is the recursive part of buildTree. 1576 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1577 const EdgeInfo &EI); 1578 1579 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1580 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1581 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1582 /// returns false, setting \p CurrentOrder to either an empty vector or a 1583 /// non-identity permutation that allows to reuse extract instructions. 1584 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1585 SmallVectorImpl<unsigned> &CurrentOrder) const; 1586 1587 /// Vectorize a single entry in the tree. 1588 Value *vectorizeTree(TreeEntry *E); 1589 1590 /// Vectorize a single entry in the tree, starting in \p VL. 1591 Value *vectorizeTree(ArrayRef<Value *> VL); 1592 1593 /// \returns the scalarization cost for this type. Scalarization in this 1594 /// context means the creation of vectors from a group of scalars. 1595 InstructionCost 1596 getGatherCost(FixedVectorType *Ty, 1597 const DenseSet<unsigned> &ShuffledIndices) const; 1598 1599 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1600 /// tree entries. 1601 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1602 /// previous tree entries. \p Mask is filled with the shuffle mask. 1603 Optional<TargetTransformInfo::ShuffleKind> 1604 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1605 SmallVectorImpl<const TreeEntry *> &Entries); 1606 1607 /// \returns the scalarization cost for this list of values. Assuming that 1608 /// this subtree gets vectorized, we may need to extract the values from the 1609 /// roots. This method calculates the cost of extracting the values. 1610 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1611 1612 /// Set the Builder insert point to one after the last instruction in 1613 /// the bundle 1614 void setInsertPointAfterBundle(const TreeEntry *E); 1615 1616 /// \returns a vector from a collection of scalars in \p VL. 1617 Value *gather(ArrayRef<Value *> VL); 1618 1619 /// \returns whether the VectorizableTree is fully vectorizable and will 1620 /// be beneficial even the tree height is tiny. 1621 bool isFullyVectorizableTinyTree() const; 1622 1623 /// Reorder commutative or alt operands to get better probability of 1624 /// generating vectorized code. 1625 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1626 SmallVectorImpl<Value *> &Left, 1627 SmallVectorImpl<Value *> &Right, 1628 const DataLayout &DL, 1629 ScalarEvolution &SE, 1630 const BoUpSLP &R); 1631 struct TreeEntry { 1632 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1633 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1634 1635 /// \returns true if the scalars in VL are equal to this entry. 1636 bool isSame(ArrayRef<Value *> VL) const { 1637 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1638 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1639 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1640 return VL.size() == Mask.size() && std::equal( 1641 VL.begin(), VL.end(), Mask.begin(), 1642 [Scalars](Value *V, int Idx) { return V == Scalars[Idx]; }); 1643 }; 1644 if (!ReorderIndices.empty()) { 1645 // TODO: implement matching if the nodes are just reordered, still can 1646 // treat the vector as the same if the list of scalars matches VL 1647 // directly, without reordering. 1648 SmallVector<int> Mask; 1649 inversePermutation(ReorderIndices, Mask); 1650 if (VL.size() == Scalars.size()) 1651 return IsSame(Scalars, Mask); 1652 if (VL.size() == ReuseShuffleIndices.size()) { 1653 ::addMask(Mask, ReuseShuffleIndices); 1654 return IsSame(Scalars, Mask); 1655 } 1656 return false; 1657 } 1658 return IsSame(Scalars, ReuseShuffleIndices); 1659 } 1660 1661 /// A vector of scalars. 1662 ValueList Scalars; 1663 1664 /// The Scalars are vectorized into this value. It is initialized to Null. 1665 Value *VectorizedValue = nullptr; 1666 1667 /// Do we need to gather this sequence or vectorize it 1668 /// (either with vector instruction or with scatter/gather 1669 /// intrinsics for store/load)? 1670 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1671 EntryState State; 1672 1673 /// Does this sequence require some shuffling? 1674 SmallVector<int, 4> ReuseShuffleIndices; 1675 1676 /// Does this entry require reordering? 1677 SmallVector<unsigned, 4> ReorderIndices; 1678 1679 /// Points back to the VectorizableTree. 1680 /// 1681 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1682 /// to be a pointer and needs to be able to initialize the child iterator. 1683 /// Thus we need a reference back to the container to translate the indices 1684 /// to entries. 1685 VecTreeTy &Container; 1686 1687 /// The TreeEntry index containing the user of this entry. We can actually 1688 /// have multiple users so the data structure is not truly a tree. 1689 SmallVector<EdgeInfo, 1> UserTreeIndices; 1690 1691 /// The index of this treeEntry in VectorizableTree. 1692 int Idx = -1; 1693 1694 private: 1695 /// The operands of each instruction in each lane Operands[op_index][lane]. 1696 /// Note: This helps avoid the replication of the code that performs the 1697 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1698 SmallVector<ValueList, 2> Operands; 1699 1700 /// The main/alternate instruction. 1701 Instruction *MainOp = nullptr; 1702 Instruction *AltOp = nullptr; 1703 1704 public: 1705 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1706 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1707 if (Operands.size() < OpIdx + 1) 1708 Operands.resize(OpIdx + 1); 1709 assert(Operands[OpIdx].empty() && "Already resized?"); 1710 Operands[OpIdx].resize(Scalars.size()); 1711 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1712 Operands[OpIdx][Lane] = OpVL[Lane]; 1713 } 1714 1715 /// Set the operands of this bundle in their original order. 1716 void setOperandsInOrder() { 1717 assert(Operands.empty() && "Already initialized?"); 1718 auto *I0 = cast<Instruction>(Scalars[0]); 1719 Operands.resize(I0->getNumOperands()); 1720 unsigned NumLanes = Scalars.size(); 1721 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1722 OpIdx != NumOperands; ++OpIdx) { 1723 Operands[OpIdx].resize(NumLanes); 1724 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1725 auto *I = cast<Instruction>(Scalars[Lane]); 1726 assert(I->getNumOperands() == NumOperands && 1727 "Expected same number of operands"); 1728 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1729 } 1730 } 1731 } 1732 1733 /// Reorders operands of the node to the given mask \p Mask. 1734 void reorderOperands(ArrayRef<int> Mask) { 1735 for (ValueList &Operand : Operands) 1736 reorderScalars(Operand, Mask); 1737 } 1738 1739 /// \returns the \p OpIdx operand of this TreeEntry. 1740 ValueList &getOperand(unsigned OpIdx) { 1741 assert(OpIdx < Operands.size() && "Off bounds"); 1742 return Operands[OpIdx]; 1743 } 1744 1745 /// \returns the number of operands. 1746 unsigned getNumOperands() const { return Operands.size(); } 1747 1748 /// \return the single \p OpIdx operand. 1749 Value *getSingleOperand(unsigned OpIdx) const { 1750 assert(OpIdx < Operands.size() && "Off bounds"); 1751 assert(!Operands[OpIdx].empty() && "No operand available"); 1752 return Operands[OpIdx][0]; 1753 } 1754 1755 /// Some of the instructions in the list have alternate opcodes. 1756 bool isAltShuffle() const { 1757 return getOpcode() != getAltOpcode(); 1758 } 1759 1760 bool isOpcodeOrAlt(Instruction *I) const { 1761 unsigned CheckedOpcode = I->getOpcode(); 1762 return (getOpcode() == CheckedOpcode || 1763 getAltOpcode() == CheckedOpcode); 1764 } 1765 1766 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1767 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1768 /// \p OpValue. 1769 Value *isOneOf(Value *Op) const { 1770 auto *I = dyn_cast<Instruction>(Op); 1771 if (I && isOpcodeOrAlt(I)) 1772 return Op; 1773 return MainOp; 1774 } 1775 1776 void setOperations(const InstructionsState &S) { 1777 MainOp = S.MainOp; 1778 AltOp = S.AltOp; 1779 } 1780 1781 Instruction *getMainOp() const { 1782 return MainOp; 1783 } 1784 1785 Instruction *getAltOp() const { 1786 return AltOp; 1787 } 1788 1789 /// The main/alternate opcodes for the list of instructions. 1790 unsigned getOpcode() const { 1791 return MainOp ? MainOp->getOpcode() : 0; 1792 } 1793 1794 unsigned getAltOpcode() const { 1795 return AltOp ? AltOp->getOpcode() : 0; 1796 } 1797 1798 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1799 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1800 int findLaneForValue(Value *V) const { 1801 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1802 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1803 if (!ReorderIndices.empty()) 1804 FoundLane = ReorderIndices[FoundLane]; 1805 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1806 if (!ReuseShuffleIndices.empty()) { 1807 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1808 find(ReuseShuffleIndices, FoundLane)); 1809 } 1810 return FoundLane; 1811 } 1812 1813 #ifndef NDEBUG 1814 /// Debug printer. 1815 LLVM_DUMP_METHOD void dump() const { 1816 dbgs() << Idx << ".\n"; 1817 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1818 dbgs() << "Operand " << OpI << ":\n"; 1819 for (const Value *V : Operands[OpI]) 1820 dbgs().indent(2) << *V << "\n"; 1821 } 1822 dbgs() << "Scalars: \n"; 1823 for (Value *V : Scalars) 1824 dbgs().indent(2) << *V << "\n"; 1825 dbgs() << "State: "; 1826 switch (State) { 1827 case Vectorize: 1828 dbgs() << "Vectorize\n"; 1829 break; 1830 case ScatterVectorize: 1831 dbgs() << "ScatterVectorize\n"; 1832 break; 1833 case NeedToGather: 1834 dbgs() << "NeedToGather\n"; 1835 break; 1836 } 1837 dbgs() << "MainOp: "; 1838 if (MainOp) 1839 dbgs() << *MainOp << "\n"; 1840 else 1841 dbgs() << "NULL\n"; 1842 dbgs() << "AltOp: "; 1843 if (AltOp) 1844 dbgs() << *AltOp << "\n"; 1845 else 1846 dbgs() << "NULL\n"; 1847 dbgs() << "VectorizedValue: "; 1848 if (VectorizedValue) 1849 dbgs() << *VectorizedValue << "\n"; 1850 else 1851 dbgs() << "NULL\n"; 1852 dbgs() << "ReuseShuffleIndices: "; 1853 if (ReuseShuffleIndices.empty()) 1854 dbgs() << "Empty"; 1855 else 1856 for (unsigned ReuseIdx : ReuseShuffleIndices) 1857 dbgs() << ReuseIdx << ", "; 1858 dbgs() << "\n"; 1859 dbgs() << "ReorderIndices: "; 1860 for (unsigned ReorderIdx : ReorderIndices) 1861 dbgs() << ReorderIdx << ", "; 1862 dbgs() << "\n"; 1863 dbgs() << "UserTreeIndices: "; 1864 for (const auto &EInfo : UserTreeIndices) 1865 dbgs() << EInfo << ", "; 1866 dbgs() << "\n"; 1867 } 1868 #endif 1869 }; 1870 1871 #ifndef NDEBUG 1872 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1873 InstructionCost VecCost, 1874 InstructionCost ScalarCost) const { 1875 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1876 dbgs() << "SLP: Costs:\n"; 1877 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1878 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1879 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1880 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1881 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1882 } 1883 #endif 1884 1885 /// Create a new VectorizableTree entry. 1886 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1887 const InstructionsState &S, 1888 const EdgeInfo &UserTreeIdx, 1889 ArrayRef<int> ReuseShuffleIndices = None, 1890 ArrayRef<unsigned> ReorderIndices = None) { 1891 TreeEntry::EntryState EntryState = 1892 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1893 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1894 ReuseShuffleIndices, ReorderIndices); 1895 } 1896 1897 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1898 TreeEntry::EntryState EntryState, 1899 Optional<ScheduleData *> Bundle, 1900 const InstructionsState &S, 1901 const EdgeInfo &UserTreeIdx, 1902 ArrayRef<int> ReuseShuffleIndices = None, 1903 ArrayRef<unsigned> ReorderIndices = None) { 1904 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1905 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1906 "Need to vectorize gather entry?"); 1907 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1908 TreeEntry *Last = VectorizableTree.back().get(); 1909 Last->Idx = VectorizableTree.size() - 1; 1910 Last->State = EntryState; 1911 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1912 ReuseShuffleIndices.end()); 1913 if (ReorderIndices.empty()) { 1914 Last->Scalars.assign(VL.begin(), VL.end()); 1915 Last->setOperations(S); 1916 } else { 1917 // Reorder scalars and build final mask. 1918 Last->Scalars.assign(VL.size(), nullptr); 1919 transform(ReorderIndices, Last->Scalars.begin(), 1920 [VL](unsigned Idx) -> Value * { 1921 if (Idx >= VL.size()) 1922 return UndefValue::get(VL.front()->getType()); 1923 return VL[Idx]; 1924 }); 1925 InstructionsState S = getSameOpcode(Last->Scalars); 1926 Last->setOperations(S); 1927 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1928 } 1929 if (Last->State != TreeEntry::NeedToGather) { 1930 for (Value *V : VL) { 1931 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1932 ScalarToTreeEntry[V] = Last; 1933 } 1934 // Update the scheduler bundle to point to this TreeEntry. 1935 unsigned Lane = 0; 1936 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1937 BundleMember = BundleMember->NextInBundle) { 1938 BundleMember->TE = Last; 1939 BundleMember->Lane = Lane; 1940 ++Lane; 1941 } 1942 assert((!Bundle.getValue() || Lane == VL.size()) && 1943 "Bundle and VL out of sync"); 1944 } else { 1945 MustGather.insert(VL.begin(), VL.end()); 1946 } 1947 1948 if (UserTreeIdx.UserTE) 1949 Last->UserTreeIndices.push_back(UserTreeIdx); 1950 1951 return Last; 1952 } 1953 1954 /// -- Vectorization State -- 1955 /// Holds all of the tree entries. 1956 TreeEntry::VecTreeTy VectorizableTree; 1957 1958 #ifndef NDEBUG 1959 /// Debug printer. 1960 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1961 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1962 VectorizableTree[Id]->dump(); 1963 dbgs() << "\n"; 1964 } 1965 } 1966 #endif 1967 1968 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1969 1970 const TreeEntry *getTreeEntry(Value *V) const { 1971 return ScalarToTreeEntry.lookup(V); 1972 } 1973 1974 /// Maps a specific scalar to its tree entry. 1975 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1976 1977 /// Maps a value to the proposed vectorizable size. 1978 SmallDenseMap<Value *, unsigned> InstrElementSize; 1979 1980 /// A list of scalars that we found that we need to keep as scalars. 1981 ValueSet MustGather; 1982 1983 /// This POD struct describes one external user in the vectorized tree. 1984 struct ExternalUser { 1985 ExternalUser(Value *S, llvm::User *U, int L) 1986 : Scalar(S), User(U), Lane(L) {} 1987 1988 // Which scalar in our function. 1989 Value *Scalar; 1990 1991 // Which user that uses the scalar. 1992 llvm::User *User; 1993 1994 // Which lane does the scalar belong to. 1995 int Lane; 1996 }; 1997 using UserList = SmallVector<ExternalUser, 16>; 1998 1999 /// Checks if two instructions may access the same memory. 2000 /// 2001 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2002 /// is invariant in the calling loop. 2003 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2004 Instruction *Inst2) { 2005 // First check if the result is already in the cache. 2006 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2007 Optional<bool> &result = AliasCache[key]; 2008 if (result.hasValue()) { 2009 return result.getValue(); 2010 } 2011 MemoryLocation Loc2 = getLocation(Inst2, AA); 2012 bool aliased = true; 2013 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 2014 // Do the alias check. 2015 aliased = !AA->isNoAlias(Loc1, Loc2); 2016 } 2017 // Store the result in the cache. 2018 result = aliased; 2019 return aliased; 2020 } 2021 2022 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2023 2024 /// Cache for alias results. 2025 /// TODO: consider moving this to the AliasAnalysis itself. 2026 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2027 2028 /// Removes an instruction from its block and eventually deletes it. 2029 /// It's like Instruction::eraseFromParent() except that the actual deletion 2030 /// is delayed until BoUpSLP is destructed. 2031 /// This is required to ensure that there are no incorrect collisions in the 2032 /// AliasCache, which can happen if a new instruction is allocated at the 2033 /// same address as a previously deleted instruction. 2034 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2035 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2036 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2037 } 2038 2039 /// Temporary store for deleted instructions. Instructions will be deleted 2040 /// eventually when the BoUpSLP is destructed. 2041 DenseMap<Instruction *, bool> DeletedInstructions; 2042 2043 /// A list of values that need to extracted out of the tree. 2044 /// This list holds pairs of (Internal Scalar : External User). External User 2045 /// can be nullptr, it means that this Internal Scalar will be used later, 2046 /// after vectorization. 2047 UserList ExternalUses; 2048 2049 /// Values used only by @llvm.assume calls. 2050 SmallPtrSet<const Value *, 32> EphValues; 2051 2052 /// Holds all of the instructions that we gathered. 2053 SetVector<Instruction *> GatherSeq; 2054 2055 /// A list of blocks that we are going to CSE. 2056 SetVector<BasicBlock *> CSEBlocks; 2057 2058 /// Contains all scheduling relevant data for an instruction. 2059 /// A ScheduleData either represents a single instruction or a member of an 2060 /// instruction bundle (= a group of instructions which is combined into a 2061 /// vector instruction). 2062 struct ScheduleData { 2063 // The initial value for the dependency counters. It means that the 2064 // dependencies are not calculated yet. 2065 enum { InvalidDeps = -1 }; 2066 2067 ScheduleData() = default; 2068 2069 void init(int BlockSchedulingRegionID, Value *OpVal) { 2070 FirstInBundle = this; 2071 NextInBundle = nullptr; 2072 NextLoadStore = nullptr; 2073 IsScheduled = false; 2074 SchedulingRegionID = BlockSchedulingRegionID; 2075 UnscheduledDepsInBundle = UnscheduledDeps; 2076 clearDependencies(); 2077 OpValue = OpVal; 2078 TE = nullptr; 2079 Lane = -1; 2080 } 2081 2082 /// Returns true if the dependency information has been calculated. 2083 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2084 2085 /// Returns true for single instructions and for bundle representatives 2086 /// (= the head of a bundle). 2087 bool isSchedulingEntity() const { return FirstInBundle == this; } 2088 2089 /// Returns true if it represents an instruction bundle and not only a 2090 /// single instruction. 2091 bool isPartOfBundle() const { 2092 return NextInBundle != nullptr || FirstInBundle != this; 2093 } 2094 2095 /// Returns true if it is ready for scheduling, i.e. it has no more 2096 /// unscheduled depending instructions/bundles. 2097 bool isReady() const { 2098 assert(isSchedulingEntity() && 2099 "can't consider non-scheduling entity for ready list"); 2100 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2101 } 2102 2103 /// Modifies the number of unscheduled dependencies, also updating it for 2104 /// the whole bundle. 2105 int incrementUnscheduledDeps(int Incr) { 2106 UnscheduledDeps += Incr; 2107 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2108 } 2109 2110 /// Sets the number of unscheduled dependencies to the number of 2111 /// dependencies. 2112 void resetUnscheduledDeps() { 2113 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2114 } 2115 2116 /// Clears all dependency information. 2117 void clearDependencies() { 2118 Dependencies = InvalidDeps; 2119 resetUnscheduledDeps(); 2120 MemoryDependencies.clear(); 2121 } 2122 2123 void dump(raw_ostream &os) const { 2124 if (!isSchedulingEntity()) { 2125 os << "/ " << *Inst; 2126 } else if (NextInBundle) { 2127 os << '[' << *Inst; 2128 ScheduleData *SD = NextInBundle; 2129 while (SD) { 2130 os << ';' << *SD->Inst; 2131 SD = SD->NextInBundle; 2132 } 2133 os << ']'; 2134 } else { 2135 os << *Inst; 2136 } 2137 } 2138 2139 Instruction *Inst = nullptr; 2140 2141 /// Points to the head in an instruction bundle (and always to this for 2142 /// single instructions). 2143 ScheduleData *FirstInBundle = nullptr; 2144 2145 /// Single linked list of all instructions in a bundle. Null if it is a 2146 /// single instruction. 2147 ScheduleData *NextInBundle = nullptr; 2148 2149 /// Single linked list of all memory instructions (e.g. load, store, call) 2150 /// in the block - until the end of the scheduling region. 2151 ScheduleData *NextLoadStore = nullptr; 2152 2153 /// The dependent memory instructions. 2154 /// This list is derived on demand in calculateDependencies(). 2155 SmallVector<ScheduleData *, 4> MemoryDependencies; 2156 2157 /// This ScheduleData is in the current scheduling region if this matches 2158 /// the current SchedulingRegionID of BlockScheduling. 2159 int SchedulingRegionID = 0; 2160 2161 /// Used for getting a "good" final ordering of instructions. 2162 int SchedulingPriority = 0; 2163 2164 /// The number of dependencies. Constitutes of the number of users of the 2165 /// instruction plus the number of dependent memory instructions (if any). 2166 /// This value is calculated on demand. 2167 /// If InvalidDeps, the number of dependencies is not calculated yet. 2168 int Dependencies = InvalidDeps; 2169 2170 /// The number of dependencies minus the number of dependencies of scheduled 2171 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2172 /// for scheduling. 2173 /// Note that this is negative as long as Dependencies is not calculated. 2174 int UnscheduledDeps = InvalidDeps; 2175 2176 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2177 /// single instructions. 2178 int UnscheduledDepsInBundle = InvalidDeps; 2179 2180 /// True if this instruction is scheduled (or considered as scheduled in the 2181 /// dry-run). 2182 bool IsScheduled = false; 2183 2184 /// Opcode of the current instruction in the schedule data. 2185 Value *OpValue = nullptr; 2186 2187 /// The TreeEntry that this instruction corresponds to. 2188 TreeEntry *TE = nullptr; 2189 2190 /// The lane of this node in the TreeEntry. 2191 int Lane = -1; 2192 }; 2193 2194 #ifndef NDEBUG 2195 friend inline raw_ostream &operator<<(raw_ostream &os, 2196 const BoUpSLP::ScheduleData &SD) { 2197 SD.dump(os); 2198 return os; 2199 } 2200 #endif 2201 2202 friend struct GraphTraits<BoUpSLP *>; 2203 friend struct DOTGraphTraits<BoUpSLP *>; 2204 2205 /// Contains all scheduling data for a basic block. 2206 struct BlockScheduling { 2207 BlockScheduling(BasicBlock *BB) 2208 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2209 2210 void clear() { 2211 ReadyInsts.clear(); 2212 ScheduleStart = nullptr; 2213 ScheduleEnd = nullptr; 2214 FirstLoadStoreInRegion = nullptr; 2215 LastLoadStoreInRegion = nullptr; 2216 2217 // Reduce the maximum schedule region size by the size of the 2218 // previous scheduling run. 2219 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2220 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2221 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2222 ScheduleRegionSize = 0; 2223 2224 // Make a new scheduling region, i.e. all existing ScheduleData is not 2225 // in the new region yet. 2226 ++SchedulingRegionID; 2227 } 2228 2229 ScheduleData *getScheduleData(Value *V) { 2230 ScheduleData *SD = ScheduleDataMap[V]; 2231 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2232 return SD; 2233 return nullptr; 2234 } 2235 2236 ScheduleData *getScheduleData(Value *V, Value *Key) { 2237 if (V == Key) 2238 return getScheduleData(V); 2239 auto I = ExtraScheduleDataMap.find(V); 2240 if (I != ExtraScheduleDataMap.end()) { 2241 ScheduleData *SD = I->second[Key]; 2242 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2243 return SD; 2244 } 2245 return nullptr; 2246 } 2247 2248 bool isInSchedulingRegion(ScheduleData *SD) const { 2249 return SD->SchedulingRegionID == SchedulingRegionID; 2250 } 2251 2252 /// Marks an instruction as scheduled and puts all dependent ready 2253 /// instructions into the ready-list. 2254 template <typename ReadyListType> 2255 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2256 SD->IsScheduled = true; 2257 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2258 2259 ScheduleData *BundleMember = SD; 2260 while (BundleMember) { 2261 if (BundleMember->Inst != BundleMember->OpValue) { 2262 BundleMember = BundleMember->NextInBundle; 2263 continue; 2264 } 2265 // Handle the def-use chain dependencies. 2266 2267 // Decrement the unscheduled counter and insert to ready list if ready. 2268 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2269 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2270 if (OpDef && OpDef->hasValidDependencies() && 2271 OpDef->incrementUnscheduledDeps(-1) == 0) { 2272 // There are no more unscheduled dependencies after 2273 // decrementing, so we can put the dependent instruction 2274 // into the ready list. 2275 ScheduleData *DepBundle = OpDef->FirstInBundle; 2276 assert(!DepBundle->IsScheduled && 2277 "already scheduled bundle gets ready"); 2278 ReadyList.insert(DepBundle); 2279 LLVM_DEBUG(dbgs() 2280 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2281 } 2282 }); 2283 }; 2284 2285 // If BundleMember is a vector bundle, its operands may have been 2286 // reordered duiring buildTree(). We therefore need to get its operands 2287 // through the TreeEntry. 2288 if (TreeEntry *TE = BundleMember->TE) { 2289 int Lane = BundleMember->Lane; 2290 assert(Lane >= 0 && "Lane not set"); 2291 2292 // Since vectorization tree is being built recursively this assertion 2293 // ensures that the tree entry has all operands set before reaching 2294 // this code. Couple of exceptions known at the moment are extracts 2295 // where their second (immediate) operand is not added. Since 2296 // immediates do not affect scheduler behavior this is considered 2297 // okay. 2298 auto *In = TE->getMainOp(); 2299 assert(In && 2300 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2301 In->getNumOperands() == TE->getNumOperands()) && 2302 "Missed TreeEntry operands?"); 2303 (void)In; // fake use to avoid build failure when assertions disabled 2304 2305 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2306 OpIdx != NumOperands; ++OpIdx) 2307 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2308 DecrUnsched(I); 2309 } else { 2310 // If BundleMember is a stand-alone instruction, no operand reordering 2311 // has taken place, so we directly access its operands. 2312 for (Use &U : BundleMember->Inst->operands()) 2313 if (auto *I = dyn_cast<Instruction>(U.get())) 2314 DecrUnsched(I); 2315 } 2316 // Handle the memory dependencies. 2317 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2318 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2319 // There are no more unscheduled dependencies after decrementing, 2320 // so we can put the dependent instruction into the ready list. 2321 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2322 assert(!DepBundle->IsScheduled && 2323 "already scheduled bundle gets ready"); 2324 ReadyList.insert(DepBundle); 2325 LLVM_DEBUG(dbgs() 2326 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2327 } 2328 } 2329 BundleMember = BundleMember->NextInBundle; 2330 } 2331 } 2332 2333 void doForAllOpcodes(Value *V, 2334 function_ref<void(ScheduleData *SD)> Action) { 2335 if (ScheduleData *SD = getScheduleData(V)) 2336 Action(SD); 2337 auto I = ExtraScheduleDataMap.find(V); 2338 if (I != ExtraScheduleDataMap.end()) 2339 for (auto &P : I->second) 2340 if (P.second->SchedulingRegionID == SchedulingRegionID) 2341 Action(P.second); 2342 } 2343 2344 /// Put all instructions into the ReadyList which are ready for scheduling. 2345 template <typename ReadyListType> 2346 void initialFillReadyList(ReadyListType &ReadyList) { 2347 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2348 doForAllOpcodes(I, [&](ScheduleData *SD) { 2349 if (SD->isSchedulingEntity() && SD->isReady()) { 2350 ReadyList.insert(SD); 2351 LLVM_DEBUG(dbgs() 2352 << "SLP: initially in ready list: " << *I << "\n"); 2353 } 2354 }); 2355 } 2356 } 2357 2358 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2359 /// cyclic dependencies. This is only a dry-run, no instructions are 2360 /// actually moved at this stage. 2361 /// \returns the scheduling bundle. The returned Optional value is non-None 2362 /// if \p VL is allowed to be scheduled. 2363 Optional<ScheduleData *> 2364 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2365 const InstructionsState &S); 2366 2367 /// Un-bundles a group of instructions. 2368 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2369 2370 /// Allocates schedule data chunk. 2371 ScheduleData *allocateScheduleDataChunks(); 2372 2373 /// Extends the scheduling region so that V is inside the region. 2374 /// \returns true if the region size is within the limit. 2375 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2376 2377 /// Initialize the ScheduleData structures for new instructions in the 2378 /// scheduling region. 2379 void initScheduleData(Instruction *FromI, Instruction *ToI, 2380 ScheduleData *PrevLoadStore, 2381 ScheduleData *NextLoadStore); 2382 2383 /// Updates the dependency information of a bundle and of all instructions/ 2384 /// bundles which depend on the original bundle. 2385 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2386 BoUpSLP *SLP); 2387 2388 /// Sets all instruction in the scheduling region to un-scheduled. 2389 void resetSchedule(); 2390 2391 BasicBlock *BB; 2392 2393 /// Simple memory allocation for ScheduleData. 2394 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2395 2396 /// The size of a ScheduleData array in ScheduleDataChunks. 2397 int ChunkSize; 2398 2399 /// The allocator position in the current chunk, which is the last entry 2400 /// of ScheduleDataChunks. 2401 int ChunkPos; 2402 2403 /// Attaches ScheduleData to Instruction. 2404 /// Note that the mapping survives during all vectorization iterations, i.e. 2405 /// ScheduleData structures are recycled. 2406 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2407 2408 /// Attaches ScheduleData to Instruction with the leading key. 2409 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2410 ExtraScheduleDataMap; 2411 2412 struct ReadyList : SmallVector<ScheduleData *, 8> { 2413 void insert(ScheduleData *SD) { push_back(SD); } 2414 }; 2415 2416 /// The ready-list for scheduling (only used for the dry-run). 2417 ReadyList ReadyInsts; 2418 2419 /// The first instruction of the scheduling region. 2420 Instruction *ScheduleStart = nullptr; 2421 2422 /// The first instruction _after_ the scheduling region. 2423 Instruction *ScheduleEnd = nullptr; 2424 2425 /// The first memory accessing instruction in the scheduling region 2426 /// (can be null). 2427 ScheduleData *FirstLoadStoreInRegion = nullptr; 2428 2429 /// The last memory accessing instruction in the scheduling region 2430 /// (can be null). 2431 ScheduleData *LastLoadStoreInRegion = nullptr; 2432 2433 /// The current size of the scheduling region. 2434 int ScheduleRegionSize = 0; 2435 2436 /// The maximum size allowed for the scheduling region. 2437 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2438 2439 /// The ID of the scheduling region. For a new vectorization iteration this 2440 /// is incremented which "removes" all ScheduleData from the region. 2441 // Make sure that the initial SchedulingRegionID is greater than the 2442 // initial SchedulingRegionID in ScheduleData (which is 0). 2443 int SchedulingRegionID = 1; 2444 }; 2445 2446 /// Attaches the BlockScheduling structures to basic blocks. 2447 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2448 2449 /// Performs the "real" scheduling. Done before vectorization is actually 2450 /// performed in a basic block. 2451 void scheduleBlock(BlockScheduling *BS); 2452 2453 /// List of users to ignore during scheduling and that don't need extracting. 2454 ArrayRef<Value *> UserIgnoreList; 2455 2456 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2457 /// sorted SmallVectors of unsigned. 2458 struct OrdersTypeDenseMapInfo { 2459 static OrdersType getEmptyKey() { 2460 OrdersType V; 2461 V.push_back(~1U); 2462 return V; 2463 } 2464 2465 static OrdersType getTombstoneKey() { 2466 OrdersType V; 2467 V.push_back(~2U); 2468 return V; 2469 } 2470 2471 static unsigned getHashValue(const OrdersType &V) { 2472 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2473 } 2474 2475 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2476 return LHS == RHS; 2477 } 2478 }; 2479 2480 // Analysis and block reference. 2481 Function *F; 2482 ScalarEvolution *SE; 2483 TargetTransformInfo *TTI; 2484 TargetLibraryInfo *TLI; 2485 AAResults *AA; 2486 LoopInfo *LI; 2487 DominatorTree *DT; 2488 AssumptionCache *AC; 2489 DemandedBits *DB; 2490 const DataLayout *DL; 2491 OptimizationRemarkEmitter *ORE; 2492 2493 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2494 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2495 2496 /// Instruction builder to construct the vectorized tree. 2497 IRBuilder<> Builder; 2498 2499 /// A map of scalar integer values to the smallest bit width with which they 2500 /// can legally be represented. The values map to (width, signed) pairs, 2501 /// where "width" indicates the minimum bit width and "signed" is True if the 2502 /// value must be signed-extended, rather than zero-extended, back to its 2503 /// original width. 2504 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2505 }; 2506 2507 } // end namespace slpvectorizer 2508 2509 template <> struct GraphTraits<BoUpSLP *> { 2510 using TreeEntry = BoUpSLP::TreeEntry; 2511 2512 /// NodeRef has to be a pointer per the GraphWriter. 2513 using NodeRef = TreeEntry *; 2514 2515 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2516 2517 /// Add the VectorizableTree to the index iterator to be able to return 2518 /// TreeEntry pointers. 2519 struct ChildIteratorType 2520 : public iterator_adaptor_base< 2521 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2522 ContainerTy &VectorizableTree; 2523 2524 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2525 ContainerTy &VT) 2526 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2527 2528 NodeRef operator*() { return I->UserTE; } 2529 }; 2530 2531 static NodeRef getEntryNode(BoUpSLP &R) { 2532 return R.VectorizableTree[0].get(); 2533 } 2534 2535 static ChildIteratorType child_begin(NodeRef N) { 2536 return {N->UserTreeIndices.begin(), N->Container}; 2537 } 2538 2539 static ChildIteratorType child_end(NodeRef N) { 2540 return {N->UserTreeIndices.end(), N->Container}; 2541 } 2542 2543 /// For the node iterator we just need to turn the TreeEntry iterator into a 2544 /// TreeEntry* iterator so that it dereferences to NodeRef. 2545 class nodes_iterator { 2546 using ItTy = ContainerTy::iterator; 2547 ItTy It; 2548 2549 public: 2550 nodes_iterator(const ItTy &It2) : It(It2) {} 2551 NodeRef operator*() { return It->get(); } 2552 nodes_iterator operator++() { 2553 ++It; 2554 return *this; 2555 } 2556 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2557 }; 2558 2559 static nodes_iterator nodes_begin(BoUpSLP *R) { 2560 return nodes_iterator(R->VectorizableTree.begin()); 2561 } 2562 2563 static nodes_iterator nodes_end(BoUpSLP *R) { 2564 return nodes_iterator(R->VectorizableTree.end()); 2565 } 2566 2567 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2568 }; 2569 2570 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2571 using TreeEntry = BoUpSLP::TreeEntry; 2572 2573 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2574 2575 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2576 std::string Str; 2577 raw_string_ostream OS(Str); 2578 if (isSplat(Entry->Scalars)) { 2579 OS << "<splat> " << *Entry->Scalars[0]; 2580 return Str; 2581 } 2582 for (auto V : Entry->Scalars) { 2583 OS << *V; 2584 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2585 return EU.Scalar == V; 2586 })) 2587 OS << " <extract>"; 2588 OS << "\n"; 2589 } 2590 return Str; 2591 } 2592 2593 static std::string getNodeAttributes(const TreeEntry *Entry, 2594 const BoUpSLP *) { 2595 if (Entry->State == TreeEntry::NeedToGather) 2596 return "color=red"; 2597 return ""; 2598 } 2599 }; 2600 2601 } // end namespace llvm 2602 2603 BoUpSLP::~BoUpSLP() { 2604 for (const auto &Pair : DeletedInstructions) { 2605 // Replace operands of ignored instructions with Undefs in case if they were 2606 // marked for deletion. 2607 if (Pair.getSecond()) { 2608 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2609 Pair.getFirst()->replaceAllUsesWith(Undef); 2610 } 2611 Pair.getFirst()->dropAllReferences(); 2612 } 2613 for (const auto &Pair : DeletedInstructions) { 2614 assert(Pair.getFirst()->use_empty() && 2615 "trying to erase instruction with users."); 2616 Pair.getFirst()->eraseFromParent(); 2617 } 2618 #ifdef EXPENSIVE_CHECKS 2619 // If we could guarantee that this call is not extremely slow, we could 2620 // remove the ifdef limitation (see PR47712). 2621 assert(!verifyFunction(*F, &dbgs())); 2622 #endif 2623 } 2624 2625 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2626 for (auto *V : AV) { 2627 if (auto *I = dyn_cast<Instruction>(V)) 2628 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2629 }; 2630 } 2631 2632 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2633 /// contains original mask for the scalars reused in the node. Procedure 2634 /// transform this mask in accordance with the given \p Mask. 2635 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2636 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2637 "Expected non-empty mask."); 2638 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2639 Prev.swap(Reuses); 2640 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2641 if (Mask[I] != UndefMaskElem) 2642 Reuses[Mask[I]] = Prev[I]; 2643 } 2644 2645 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2646 /// the original order of the scalars. Procedure transforms the provided order 2647 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2648 /// identity order, \p Order is cleared. 2649 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2650 assert(!Mask.empty() && "Expected non-empty mask."); 2651 SmallVector<int> MaskOrder; 2652 if (Order.empty()) { 2653 MaskOrder.resize(Mask.size()); 2654 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2655 } else { 2656 inversePermutation(Order, MaskOrder); 2657 } 2658 reorderReuses(MaskOrder, Mask); 2659 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2660 Order.clear(); 2661 return; 2662 } 2663 Order.assign(Mask.size(), Mask.size()); 2664 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2665 if (MaskOrder[I] != UndefMaskElem) 2666 Order[MaskOrder[I]] = I; 2667 fixupOrderingIndices(Order); 2668 } 2669 2670 void BoUpSLP::reorderTopToBottom() { 2671 // Maps VF to the graph nodes. 2672 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2673 // ExtractElement gather nodes which can be vectorized and need to handle 2674 // their ordering. 2675 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2676 // Find all reorderable nodes with the given VF. 2677 // Currently the are vectorized loads,extracts + some gathering of extracts. 2678 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2679 const std::unique_ptr<TreeEntry> &TE) { 2680 // No need to reorder if need to shuffle reuses, still need to shuffle the 2681 // node. 2682 if (!TE->ReuseShuffleIndices.empty()) 2683 return; 2684 if (TE->State == TreeEntry::Vectorize && 2685 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2686 InsertElementInst>(TE->getMainOp()) && 2687 !TE->isAltShuffle()) { 2688 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2689 } else if (TE->State == TreeEntry::NeedToGather && 2690 TE->getOpcode() == Instruction::ExtractElement && 2691 !TE->isAltShuffle() && 2692 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2693 ->getVectorOperandType()) && 2694 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2695 // Check that gather of extractelements can be represented as 2696 // just a shuffle of a single vector. 2697 OrdersType CurrentOrder; 2698 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2699 if (Reuse || !CurrentOrder.empty()) { 2700 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2701 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2702 } 2703 } 2704 }); 2705 2706 // Reorder the graph nodes according to their vectorization factor. 2707 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2708 VF /= 2) { 2709 auto It = VFToOrderedEntries.find(VF); 2710 if (It == VFToOrderedEntries.end()) 2711 continue; 2712 // Try to find the most profitable order. We just are looking for the most 2713 // used order and reorder scalar elements in the nodes according to this 2714 // mostly used order. 2715 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2716 // All operands are reordered and used only in this node - propagate the 2717 // most used order to the user node. 2718 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2719 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2720 for (const TreeEntry *OpTE : OrderedEntries) { 2721 // No need to reorder this nodes, still need to extend and to use shuffle, 2722 // just need to merge reordering shuffle and the reuse shuffle. 2723 if (!OpTE->ReuseShuffleIndices.empty()) 2724 continue; 2725 // Count number of orders uses. 2726 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2727 if (OpTE->State == TreeEntry::NeedToGather) 2728 return GathersToOrders.find(OpTE)->second; 2729 return OpTE->ReorderIndices; 2730 }(); 2731 // Stores actually store the mask, not the order, need to invert. 2732 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2733 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2734 SmallVector<int> Mask; 2735 inversePermutation(Order, Mask); 2736 unsigned E = Order.size(); 2737 OrdersType CurrentOrder(E, E); 2738 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2739 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2740 }); 2741 fixupOrderingIndices(CurrentOrder); 2742 ++OrdersUses.try_emplace(CurrentOrder).first->getSecond(); 2743 } else { 2744 ++OrdersUses.try_emplace(Order).first->getSecond(); 2745 } 2746 } 2747 // Set order of the user node. 2748 if (OrdersUses.empty()) 2749 continue; 2750 // Choose the most used order. 2751 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2752 unsigned Cnt = OrdersUses.begin()->second; 2753 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2754 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2755 BestOrder = Pair.first; 2756 Cnt = Pair.second; 2757 } 2758 } 2759 // Set order of the user node. 2760 if (BestOrder.empty()) 2761 continue; 2762 SmallVector<int> Mask; 2763 inversePermutation(BestOrder, Mask); 2764 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2765 unsigned E = BestOrder.size(); 2766 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2767 return I < E ? static_cast<int>(I) : UndefMaskElem; 2768 }); 2769 // Do an actual reordering, if profitable. 2770 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2771 // Just do the reordering for the nodes with the given VF. 2772 if (TE->Scalars.size() != VF) { 2773 if (TE->ReuseShuffleIndices.size() == VF) { 2774 // Need to reorder the reuses masks of the operands with smaller VF to 2775 // be able to find the match between the graph nodes and scalar 2776 // operands of the given node during vectorization/cost estimation. 2777 assert(all_of(TE->UserTreeIndices, 2778 [VF, &TE](const EdgeInfo &EI) { 2779 return EI.UserTE->Scalars.size() == VF || 2780 EI.UserTE->Scalars.size() == 2781 TE->Scalars.size(); 2782 }) && 2783 "All users must be of VF size."); 2784 // Update ordering of the operands with the smaller VF than the given 2785 // one. 2786 reorderReuses(TE->ReuseShuffleIndices, Mask); 2787 } 2788 continue; 2789 } 2790 if (TE->State == TreeEntry::Vectorize && 2791 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2792 InsertElementInst>(TE->getMainOp()) && 2793 !TE->isAltShuffle()) { 2794 // Build correct orders for extract{element,value}, loads and 2795 // stores. 2796 reorderOrder(TE->ReorderIndices, Mask); 2797 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2798 TE->reorderOperands(Mask); 2799 } else { 2800 // Reorder the node and its operands. 2801 TE->reorderOperands(Mask); 2802 assert(TE->ReorderIndices.empty() && 2803 "Expected empty reorder sequence."); 2804 reorderScalars(TE->Scalars, Mask); 2805 } 2806 if (!TE->ReuseShuffleIndices.empty()) { 2807 // Apply reversed order to keep the original ordering of the reused 2808 // elements to avoid extra reorder indices shuffling. 2809 OrdersType CurrentOrder; 2810 reorderOrder(CurrentOrder, MaskOrder); 2811 SmallVector<int> NewReuses; 2812 inversePermutation(CurrentOrder, NewReuses); 2813 addMask(NewReuses, TE->ReuseShuffleIndices); 2814 TE->ReuseShuffleIndices.swap(NewReuses); 2815 } 2816 } 2817 } 2818 } 2819 2820 void BoUpSLP::reorderBottomToTop() { 2821 SetVector<TreeEntry *> OrderedEntries; 2822 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2823 // Find all reorderable leaf nodes with the given VF. 2824 // Currently the are vectorized loads,extracts without alternate operands + 2825 // some gathering of extracts. 2826 SmallVector<TreeEntry *> NonVectorized; 2827 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2828 &NonVectorized]( 2829 const std::unique_ptr<TreeEntry> &TE) { 2830 // No need to reorder if need to shuffle reuses, still need to shuffle the 2831 // node. 2832 if (!TE->ReuseShuffleIndices.empty()) 2833 return; 2834 if (TE->State == TreeEntry::Vectorize && 2835 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 2836 !TE->isAltShuffle()) { 2837 OrderedEntries.insert(TE.get()); 2838 } else if (TE->State == TreeEntry::NeedToGather && 2839 TE->getOpcode() == Instruction::ExtractElement && 2840 !TE->isAltShuffle() && 2841 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2842 ->getVectorOperandType()) && 2843 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2844 // Check that gather of extractelements can be represented as 2845 // just a shuffle of a single vector with a single user only. 2846 OrdersType CurrentOrder; 2847 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2848 if ((Reuse || !CurrentOrder.empty()) && 2849 !any_of( 2850 VectorizableTree, [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2851 return Entry->State == TreeEntry::NeedToGather && 2852 Entry.get() != TE.get() && Entry->isSame(TE->Scalars); 2853 })) { 2854 OrderedEntries.insert(TE.get()); 2855 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2856 } 2857 } 2858 if (TE->State != TreeEntry::Vectorize) 2859 NonVectorized.push_back(TE.get()); 2860 }); 2861 2862 // Checks if the operands of the users are reordarable and have only single 2863 // use. 2864 auto &&CheckOperands = 2865 [this, &NonVectorized](const auto &Data, 2866 SmallVectorImpl<TreeEntry *> &GatherOps) { 2867 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 2868 if (any_of(Data.second, 2869 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 2870 return OpData.first == I && 2871 OpData.second->State == TreeEntry::Vectorize; 2872 })) 2873 continue; 2874 ArrayRef<Value *> VL = Data.first->getOperand(I); 2875 const TreeEntry *TE = nullptr; 2876 const auto *It = find_if(VL, [this, &TE](Value *V) { 2877 TE = getTreeEntry(V); 2878 return TE; 2879 }); 2880 if (It != VL.end() && TE->isSame(VL)) 2881 return false; 2882 TreeEntry *Gather = nullptr; 2883 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 2884 assert(TE->State != TreeEntry::Vectorize && 2885 "Only non-vectorized nodes are expected."); 2886 if (TE->isSame(VL)) { 2887 Gather = TE; 2888 return true; 2889 } 2890 return false; 2891 }) > 1) 2892 return false; 2893 if (Gather) 2894 GatherOps.push_back(Gather); 2895 } 2896 return true; 2897 }; 2898 // 1. Propagate order to the graph nodes, which use only reordered nodes. 2899 // I.e., if the node has operands, that are reordered, try to make at least 2900 // one operand order in the natural order and reorder others + reorder the 2901 // user node itself. 2902 SmallPtrSet<const TreeEntry *, 4> Visited; 2903 while (!OrderedEntries.empty()) { 2904 // 1. Filter out only reordered nodes. 2905 // 2. If the entry has multiple uses - skip it and jump to the next node. 2906 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 2907 SmallVector<TreeEntry *> Filtered; 2908 for (TreeEntry *TE : OrderedEntries) { 2909 if (!(TE->State == TreeEntry::Vectorize || 2910 (TE->State == TreeEntry::NeedToGather && 2911 TE->getOpcode() == Instruction::ExtractElement)) || 2912 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 2913 !all_of(drop_begin(TE->UserTreeIndices), 2914 [TE](const EdgeInfo &EI) { 2915 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 2916 }) || 2917 !Visited.insert(TE).second) { 2918 Filtered.push_back(TE); 2919 continue; 2920 } 2921 // Build a map between user nodes and their operands order to speedup 2922 // search. The graph currently does not provide this dependency directly. 2923 for (EdgeInfo &EI : TE->UserTreeIndices) { 2924 TreeEntry *UserTE = EI.UserTE; 2925 auto It = Users.find(UserTE); 2926 if (It == Users.end()) 2927 It = Users.insert({UserTE, {}}).first; 2928 It->second.emplace_back(EI.EdgeIdx, TE); 2929 } 2930 } 2931 // Erase filtered entries. 2932 for_each(Filtered, 2933 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 2934 for (const auto &Data : Users) { 2935 // Check that operands are used only in the User node. 2936 SmallVector<TreeEntry *> GatherOps; 2937 if (!CheckOperands(Data, GatherOps)) { 2938 for_each(Data.second, 2939 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2940 OrderedEntries.remove(Op.second); 2941 }); 2942 continue; 2943 } 2944 // All operands are reordered and used only in this node - propagate the 2945 // most used order to the user node. 2946 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2947 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2948 for (const auto &Op : Data.second) { 2949 TreeEntry *OpTE = Op.second; 2950 if (!OpTE->ReuseShuffleIndices.empty()) 2951 continue; 2952 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2953 if (OpTE->State == TreeEntry::NeedToGather) 2954 return GathersToOrders.find(OpTE)->second; 2955 return OpTE->ReorderIndices; 2956 }(); 2957 // Stores actually store the mask, not the order, need to invert. 2958 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2959 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2960 SmallVector<int> Mask; 2961 inversePermutation(Order, Mask); 2962 unsigned E = Order.size(); 2963 OrdersType CurrentOrder(E, E); 2964 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2965 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2966 }); 2967 fixupOrderingIndices(CurrentOrder); 2968 ++OrdersUses.try_emplace(CurrentOrder).first->getSecond(); 2969 } else { 2970 ++OrdersUses.try_emplace(Order).first->getSecond(); 2971 } 2972 if (VisitedOps.insert(OpTE).second) 2973 OrdersUses.try_emplace({}, 0).first->getSecond() += 2974 OpTE->UserTreeIndices.size(); 2975 --OrdersUses[{}]; 2976 } 2977 // If no orders - skip current nodes and jump to the next one, if any. 2978 if (OrdersUses.empty()) { 2979 for_each(Data.second, 2980 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2981 OrderedEntries.remove(Op.second); 2982 }); 2983 continue; 2984 } 2985 // Choose the best order. 2986 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2987 unsigned Cnt = OrdersUses.begin()->second; 2988 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2989 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2990 BestOrder = Pair.first; 2991 Cnt = Pair.second; 2992 } 2993 } 2994 // Set order of the user node (reordering of operands and user nodes). 2995 if (BestOrder.empty()) { 2996 for_each(Data.second, 2997 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2998 OrderedEntries.remove(Op.second); 2999 }); 3000 continue; 3001 } 3002 // Erase operands from OrderedEntries list and adjust their orders. 3003 VisitedOps.clear(); 3004 SmallVector<int> Mask; 3005 inversePermutation(BestOrder, Mask); 3006 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3007 unsigned E = BestOrder.size(); 3008 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3009 return I < E ? static_cast<int>(I) : UndefMaskElem; 3010 }); 3011 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3012 TreeEntry *TE = Op.second; 3013 OrderedEntries.remove(TE); 3014 if (!VisitedOps.insert(TE).second) 3015 continue; 3016 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3017 // Just reorder reuses indices. 3018 reorderReuses(TE->ReuseShuffleIndices, Mask); 3019 continue; 3020 } 3021 // Gathers are processed separately. 3022 if (TE->State != TreeEntry::Vectorize) 3023 continue; 3024 assert((BestOrder.size() == TE->ReorderIndices.size() || 3025 TE->ReorderIndices.empty()) && 3026 "Non-matching sizes of user/operand entries."); 3027 reorderOrder(TE->ReorderIndices, Mask); 3028 } 3029 // For gathers just need to reorder its scalars. 3030 for (TreeEntry *Gather : GatherOps) { 3031 if (!Gather->ReuseShuffleIndices.empty()) 3032 continue; 3033 assert(Gather->ReorderIndices.empty() && 3034 "Unexpected reordering of gathers."); 3035 reorderScalars(Gather->Scalars, Mask); 3036 OrderedEntries.remove(Gather); 3037 } 3038 // Reorder operands of the user node and set the ordering for the user 3039 // node itself. 3040 if (Data.first->State != TreeEntry::Vectorize || 3041 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3042 Data.first->getMainOp()) || 3043 Data.first->isAltShuffle()) 3044 Data.first->reorderOperands(Mask); 3045 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3046 Data.first->isAltShuffle()) { 3047 reorderScalars(Data.first->Scalars, Mask); 3048 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3049 if (Data.first->ReuseShuffleIndices.empty() && 3050 !Data.first->ReorderIndices.empty()) { 3051 // Insert user node to the list to try to sink reordering deeper in 3052 // the graph. 3053 OrderedEntries.insert(Data.first); 3054 } 3055 } else { 3056 reorderOrder(Data.first->ReorderIndices, Mask); 3057 } 3058 } 3059 } 3060 } 3061 3062 void BoUpSLP::buildExternalUses( 3063 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3064 // Collect the values that we need to extract from the tree. 3065 for (auto &TEPtr : VectorizableTree) { 3066 TreeEntry *Entry = TEPtr.get(); 3067 3068 // No need to handle users of gathered values. 3069 if (Entry->State == TreeEntry::NeedToGather) 3070 continue; 3071 3072 // For each lane: 3073 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3074 Value *Scalar = Entry->Scalars[Lane]; 3075 int FoundLane = Entry->findLaneForValue(Scalar); 3076 3077 // Check if the scalar is externally used as an extra arg. 3078 auto ExtI = ExternallyUsedValues.find(Scalar); 3079 if (ExtI != ExternallyUsedValues.end()) { 3080 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3081 << Lane << " from " << *Scalar << ".\n"); 3082 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3083 } 3084 for (User *U : Scalar->users()) { 3085 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3086 3087 Instruction *UserInst = dyn_cast<Instruction>(U); 3088 if (!UserInst) 3089 continue; 3090 3091 if (isDeleted(UserInst)) 3092 continue; 3093 3094 // Skip in-tree scalars that become vectors 3095 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3096 Value *UseScalar = UseEntry->Scalars[0]; 3097 // Some in-tree scalars will remain as scalar in vectorized 3098 // instructions. If that is the case, the one in Lane 0 will 3099 // be used. 3100 if (UseScalar != U || 3101 UseEntry->State == TreeEntry::ScatterVectorize || 3102 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3103 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3104 << ".\n"); 3105 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3106 continue; 3107 } 3108 } 3109 3110 // Ignore users in the user ignore list. 3111 if (is_contained(UserIgnoreList, UserInst)) 3112 continue; 3113 3114 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3115 << Lane << " from " << *Scalar << ".\n"); 3116 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3117 } 3118 } 3119 } 3120 } 3121 3122 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3123 ArrayRef<Value *> UserIgnoreLst) { 3124 deleteTree(); 3125 UserIgnoreList = UserIgnoreLst; 3126 if (!allSameType(Roots)) 3127 return; 3128 buildTree_rec(Roots, 0, EdgeInfo()); 3129 } 3130 3131 namespace { 3132 /// Tracks the state we can represent the loads in the given sequence. 3133 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3134 } // anonymous namespace 3135 3136 /// Checks if the given array of loads can be represented as a vectorized, 3137 /// scatter or just simple gather. 3138 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3139 const TargetTransformInfo &TTI, 3140 const DataLayout &DL, ScalarEvolution &SE, 3141 SmallVectorImpl<unsigned> &Order, 3142 SmallVectorImpl<Value *> &PointerOps) { 3143 // Check that a vectorized load would load the same memory as a scalar 3144 // load. For example, we don't want to vectorize loads that are smaller 3145 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3146 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3147 // from such a struct, we read/write packed bits disagreeing with the 3148 // unvectorized version. 3149 Type *ScalarTy = VL0->getType(); 3150 3151 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3152 return LoadsState::Gather; 3153 3154 // Make sure all loads in the bundle are simple - we can't vectorize 3155 // atomic or volatile loads. 3156 PointerOps.clear(); 3157 PointerOps.resize(VL.size()); 3158 auto *POIter = PointerOps.begin(); 3159 for (Value *V : VL) { 3160 auto *L = cast<LoadInst>(V); 3161 if (!L->isSimple()) 3162 return LoadsState::Gather; 3163 *POIter = L->getPointerOperand(); 3164 ++POIter; 3165 } 3166 3167 Order.clear(); 3168 // Check the order of pointer operands. 3169 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3170 Value *Ptr0; 3171 Value *PtrN; 3172 if (Order.empty()) { 3173 Ptr0 = PointerOps.front(); 3174 PtrN = PointerOps.back(); 3175 } else { 3176 Ptr0 = PointerOps[Order.front()]; 3177 PtrN = PointerOps[Order.back()]; 3178 } 3179 Optional<int> Diff = 3180 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3181 // Check that the sorted loads are consecutive. 3182 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3183 return LoadsState::Vectorize; 3184 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3185 for (Value *V : VL) 3186 CommonAlignment = 3187 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3188 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3189 CommonAlignment)) 3190 return LoadsState::ScatterVectorize; 3191 } 3192 3193 return LoadsState::Gather; 3194 } 3195 3196 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3197 const EdgeInfo &UserTreeIdx) { 3198 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3199 3200 InstructionsState S = getSameOpcode(VL); 3201 if (Depth == RecursionMaxDepth) { 3202 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3203 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3204 return; 3205 } 3206 3207 // Don't handle scalable vectors 3208 if (S.getOpcode() == Instruction::ExtractElement && 3209 isa<ScalableVectorType>( 3210 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3211 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3212 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3213 return; 3214 } 3215 3216 // Don't handle vectors. 3217 if (S.OpValue->getType()->isVectorTy() && 3218 !isa<InsertElementInst>(S.OpValue)) { 3219 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3220 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3221 return; 3222 } 3223 3224 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3225 if (SI->getValueOperand()->getType()->isVectorTy()) { 3226 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3227 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3228 return; 3229 } 3230 3231 // If all of the operands are identical or constant we have a simple solution. 3232 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 3233 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3234 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3235 return; 3236 } 3237 3238 // We now know that this is a vector of instructions of the same type from 3239 // the same block. 3240 3241 // Don't vectorize ephemeral values. 3242 for (Value *V : VL) { 3243 if (EphValues.count(V)) { 3244 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3245 << ") is ephemeral.\n"); 3246 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3247 return; 3248 } 3249 } 3250 3251 // Check if this is a duplicate of another entry. 3252 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3253 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3254 if (!E->isSame(VL)) { 3255 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3256 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3257 return; 3258 } 3259 // Record the reuse of the tree node. FIXME, currently this is only used to 3260 // properly draw the graph rather than for the actual vectorization. 3261 E->UserTreeIndices.push_back(UserTreeIdx); 3262 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3263 << ".\n"); 3264 return; 3265 } 3266 3267 // Check that none of the instructions in the bundle are already in the tree. 3268 for (Value *V : VL) { 3269 auto *I = dyn_cast<Instruction>(V); 3270 if (!I) 3271 continue; 3272 if (getTreeEntry(I)) { 3273 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3274 << ") is already in tree.\n"); 3275 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3276 return; 3277 } 3278 } 3279 3280 // If any of the scalars is marked as a value that needs to stay scalar, then 3281 // we need to gather the scalars. 3282 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3283 for (Value *V : VL) { 3284 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3285 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3286 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3287 return; 3288 } 3289 } 3290 3291 // Check that all of the users of the scalars that we want to vectorize are 3292 // schedulable. 3293 auto *VL0 = cast<Instruction>(S.OpValue); 3294 BasicBlock *BB = VL0->getParent(); 3295 3296 if (!DT->isReachableFromEntry(BB)) { 3297 // Don't go into unreachable blocks. They may contain instructions with 3298 // dependency cycles which confuse the final scheduling. 3299 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3300 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3301 return; 3302 } 3303 3304 // Check that every instruction appears once in this bundle. 3305 SmallVector<int> ReuseShuffleIndicies; 3306 SmallVector<Value *, 4> UniqueValues; 3307 DenseMap<Value *, unsigned> UniquePositions; 3308 for (Value *V : VL) { 3309 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3310 ReuseShuffleIndicies.emplace_back(Res.first->second); 3311 if (Res.second) 3312 UniqueValues.emplace_back(V); 3313 } 3314 size_t NumUniqueScalarValues = UniqueValues.size(); 3315 if (NumUniqueScalarValues == VL.size()) { 3316 ReuseShuffleIndicies.clear(); 3317 } else { 3318 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3319 if (NumUniqueScalarValues <= 1 || 3320 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3321 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3322 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3323 return; 3324 } 3325 VL = UniqueValues; 3326 } 3327 3328 auto &BSRef = BlocksSchedules[BB]; 3329 if (!BSRef) 3330 BSRef = std::make_unique<BlockScheduling>(BB); 3331 3332 BlockScheduling &BS = *BSRef.get(); 3333 3334 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3335 if (!Bundle) { 3336 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3337 assert((!BS.getScheduleData(VL0) || 3338 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3339 "tryScheduleBundle should cancelScheduling on failure"); 3340 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3341 ReuseShuffleIndicies); 3342 return; 3343 } 3344 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3345 3346 unsigned ShuffleOrOp = S.isAltShuffle() ? 3347 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3348 switch (ShuffleOrOp) { 3349 case Instruction::PHI: { 3350 auto *PH = cast<PHINode>(VL0); 3351 3352 // Check for terminator values (e.g. invoke). 3353 for (Value *V : VL) 3354 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3355 Instruction *Term = dyn_cast<Instruction>( 3356 cast<PHINode>(V)->getIncomingValueForBlock( 3357 PH->getIncomingBlock(I))); 3358 if (Term && Term->isTerminator()) { 3359 LLVM_DEBUG(dbgs() 3360 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3361 BS.cancelScheduling(VL, VL0); 3362 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3363 ReuseShuffleIndicies); 3364 return; 3365 } 3366 } 3367 3368 TreeEntry *TE = 3369 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3370 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3371 3372 // Keeps the reordered operands to avoid code duplication. 3373 SmallVector<ValueList, 2> OperandsVec; 3374 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3375 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3376 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3377 TE->setOperand(I, Operands); 3378 OperandsVec.push_back(Operands); 3379 continue; 3380 } 3381 ValueList Operands; 3382 // Prepare the operand vector. 3383 for (Value *V : VL) 3384 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3385 PH->getIncomingBlock(I))); 3386 TE->setOperand(I, Operands); 3387 OperandsVec.push_back(Operands); 3388 } 3389 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3390 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3391 return; 3392 } 3393 case Instruction::ExtractValue: 3394 case Instruction::ExtractElement: { 3395 OrdersType CurrentOrder; 3396 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3397 if (Reuse) { 3398 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3399 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3400 ReuseShuffleIndicies); 3401 // This is a special case, as it does not gather, but at the same time 3402 // we are not extending buildTree_rec() towards the operands. 3403 ValueList Op0; 3404 Op0.assign(VL.size(), VL0->getOperand(0)); 3405 VectorizableTree.back()->setOperand(0, Op0); 3406 return; 3407 } 3408 if (!CurrentOrder.empty()) { 3409 LLVM_DEBUG({ 3410 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3411 "with order"; 3412 for (unsigned Idx : CurrentOrder) 3413 dbgs() << " " << Idx; 3414 dbgs() << "\n"; 3415 }); 3416 fixupOrderingIndices(CurrentOrder); 3417 // Insert new order with initial value 0, if it does not exist, 3418 // otherwise return the iterator to the existing one. 3419 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3420 ReuseShuffleIndicies, CurrentOrder); 3421 // This is a special case, as it does not gather, but at the same time 3422 // we are not extending buildTree_rec() towards the operands. 3423 ValueList Op0; 3424 Op0.assign(VL.size(), VL0->getOperand(0)); 3425 VectorizableTree.back()->setOperand(0, Op0); 3426 return; 3427 } 3428 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3429 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3430 ReuseShuffleIndicies); 3431 BS.cancelScheduling(VL, VL0); 3432 return; 3433 } 3434 case Instruction::InsertElement: { 3435 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3436 3437 // Check that we have a buildvector and not a shuffle of 2 or more 3438 // different vectors. 3439 ValueSet SourceVectors; 3440 int MinIdx = std::numeric_limits<int>::max(); 3441 for (Value *V : VL) { 3442 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3443 Optional<int> Idx = *getInsertIndex(V, 0); 3444 if (!Idx || *Idx == UndefMaskElem) 3445 continue; 3446 MinIdx = std::min(MinIdx, *Idx); 3447 } 3448 3449 if (count_if(VL, [&SourceVectors](Value *V) { 3450 return !SourceVectors.contains(V); 3451 }) >= 2) { 3452 // Found 2nd source vector - cancel. 3453 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3454 "different source vectors.\n"); 3455 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3456 BS.cancelScheduling(VL, VL0); 3457 return; 3458 } 3459 3460 auto OrdCompare = [](const std::pair<int, int> &P1, 3461 const std::pair<int, int> &P2) { 3462 return P1.first > P2.first; 3463 }; 3464 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3465 decltype(OrdCompare)> 3466 Indices(OrdCompare); 3467 for (int I = 0, E = VL.size(); I < E; ++I) { 3468 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3469 if (!Idx || *Idx == UndefMaskElem) 3470 continue; 3471 Indices.emplace(*Idx, I); 3472 } 3473 OrdersType CurrentOrder(VL.size(), VL.size()); 3474 bool IsIdentity = true; 3475 for (int I = 0, E = VL.size(); I < E; ++I) { 3476 CurrentOrder[Indices.top().second] = I; 3477 IsIdentity &= Indices.top().second == I; 3478 Indices.pop(); 3479 } 3480 if (IsIdentity) 3481 CurrentOrder.clear(); 3482 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3483 None, CurrentOrder); 3484 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3485 3486 constexpr int NumOps = 2; 3487 ValueList VectorOperands[NumOps]; 3488 for (int I = 0; I < NumOps; ++I) { 3489 for (Value *V : VL) 3490 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3491 3492 TE->setOperand(I, VectorOperands[I]); 3493 } 3494 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3495 return; 3496 } 3497 case Instruction::Load: { 3498 // Check that a vectorized load would load the same memory as a scalar 3499 // load. For example, we don't want to vectorize loads that are smaller 3500 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3501 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3502 // from such a struct, we read/write packed bits disagreeing with the 3503 // unvectorized version. 3504 SmallVector<Value *> PointerOps; 3505 OrdersType CurrentOrder; 3506 TreeEntry *TE = nullptr; 3507 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3508 PointerOps)) { 3509 case LoadsState::Vectorize: 3510 if (CurrentOrder.empty()) { 3511 // Original loads are consecutive and does not require reordering. 3512 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3513 ReuseShuffleIndicies); 3514 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3515 } else { 3516 fixupOrderingIndices(CurrentOrder); 3517 // Need to reorder. 3518 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3519 ReuseShuffleIndicies, CurrentOrder); 3520 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3521 } 3522 TE->setOperandsInOrder(); 3523 break; 3524 case LoadsState::ScatterVectorize: 3525 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3526 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3527 UserTreeIdx, ReuseShuffleIndicies); 3528 TE->setOperandsInOrder(); 3529 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3530 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3531 break; 3532 case LoadsState::Gather: 3533 BS.cancelScheduling(VL, VL0); 3534 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3535 ReuseShuffleIndicies); 3536 #ifndef NDEBUG 3537 Type *ScalarTy = VL0->getType(); 3538 if (DL->getTypeSizeInBits(ScalarTy) != 3539 DL->getTypeAllocSizeInBits(ScalarTy)) 3540 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3541 else if (any_of(VL, [](Value *V) { 3542 return !cast<LoadInst>(V)->isSimple(); 3543 })) 3544 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3545 else 3546 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3547 #endif // NDEBUG 3548 break; 3549 } 3550 return; 3551 } 3552 case Instruction::ZExt: 3553 case Instruction::SExt: 3554 case Instruction::FPToUI: 3555 case Instruction::FPToSI: 3556 case Instruction::FPExt: 3557 case Instruction::PtrToInt: 3558 case Instruction::IntToPtr: 3559 case Instruction::SIToFP: 3560 case Instruction::UIToFP: 3561 case Instruction::Trunc: 3562 case Instruction::FPTrunc: 3563 case Instruction::BitCast: { 3564 Type *SrcTy = VL0->getOperand(0)->getType(); 3565 for (Value *V : VL) { 3566 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3567 if (Ty != SrcTy || !isValidElementType(Ty)) { 3568 BS.cancelScheduling(VL, VL0); 3569 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3570 ReuseShuffleIndicies); 3571 LLVM_DEBUG(dbgs() 3572 << "SLP: Gathering casts with different src types.\n"); 3573 return; 3574 } 3575 } 3576 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3577 ReuseShuffleIndicies); 3578 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3579 3580 TE->setOperandsInOrder(); 3581 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3582 ValueList Operands; 3583 // Prepare the operand vector. 3584 for (Value *V : VL) 3585 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3586 3587 buildTree_rec(Operands, Depth + 1, {TE, i}); 3588 } 3589 return; 3590 } 3591 case Instruction::ICmp: 3592 case Instruction::FCmp: { 3593 // Check that all of the compares have the same predicate. 3594 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3595 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3596 Type *ComparedTy = VL0->getOperand(0)->getType(); 3597 for (Value *V : VL) { 3598 CmpInst *Cmp = cast<CmpInst>(V); 3599 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3600 Cmp->getOperand(0)->getType() != ComparedTy) { 3601 BS.cancelScheduling(VL, VL0); 3602 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3603 ReuseShuffleIndicies); 3604 LLVM_DEBUG(dbgs() 3605 << "SLP: Gathering cmp with different predicate.\n"); 3606 return; 3607 } 3608 } 3609 3610 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3611 ReuseShuffleIndicies); 3612 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3613 3614 ValueList Left, Right; 3615 if (cast<CmpInst>(VL0)->isCommutative()) { 3616 // Commutative predicate - collect + sort operands of the instructions 3617 // so that each side is more likely to have the same opcode. 3618 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3619 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3620 } else { 3621 // Collect operands - commute if it uses the swapped predicate. 3622 for (Value *V : VL) { 3623 auto *Cmp = cast<CmpInst>(V); 3624 Value *LHS = Cmp->getOperand(0); 3625 Value *RHS = Cmp->getOperand(1); 3626 if (Cmp->getPredicate() != P0) 3627 std::swap(LHS, RHS); 3628 Left.push_back(LHS); 3629 Right.push_back(RHS); 3630 } 3631 } 3632 TE->setOperand(0, Left); 3633 TE->setOperand(1, Right); 3634 buildTree_rec(Left, Depth + 1, {TE, 0}); 3635 buildTree_rec(Right, Depth + 1, {TE, 1}); 3636 return; 3637 } 3638 case Instruction::Select: 3639 case Instruction::FNeg: 3640 case Instruction::Add: 3641 case Instruction::FAdd: 3642 case Instruction::Sub: 3643 case Instruction::FSub: 3644 case Instruction::Mul: 3645 case Instruction::FMul: 3646 case Instruction::UDiv: 3647 case Instruction::SDiv: 3648 case Instruction::FDiv: 3649 case Instruction::URem: 3650 case Instruction::SRem: 3651 case Instruction::FRem: 3652 case Instruction::Shl: 3653 case Instruction::LShr: 3654 case Instruction::AShr: 3655 case Instruction::And: 3656 case Instruction::Or: 3657 case Instruction::Xor: { 3658 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3659 ReuseShuffleIndicies); 3660 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3661 3662 // Sort operands of the instructions so that each side is more likely to 3663 // have the same opcode. 3664 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3665 ValueList Left, Right; 3666 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3667 TE->setOperand(0, Left); 3668 TE->setOperand(1, Right); 3669 buildTree_rec(Left, Depth + 1, {TE, 0}); 3670 buildTree_rec(Right, Depth + 1, {TE, 1}); 3671 return; 3672 } 3673 3674 TE->setOperandsInOrder(); 3675 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3676 ValueList Operands; 3677 // Prepare the operand vector. 3678 for (Value *V : VL) 3679 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3680 3681 buildTree_rec(Operands, Depth + 1, {TE, i}); 3682 } 3683 return; 3684 } 3685 case Instruction::GetElementPtr: { 3686 // We don't combine GEPs with complicated (nested) indexing. 3687 for (Value *V : VL) { 3688 if (cast<Instruction>(V)->getNumOperands() != 2) { 3689 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3690 BS.cancelScheduling(VL, VL0); 3691 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3692 ReuseShuffleIndicies); 3693 return; 3694 } 3695 } 3696 3697 // We can't combine several GEPs into one vector if they operate on 3698 // different types. 3699 Type *Ty0 = VL0->getOperand(0)->getType(); 3700 for (Value *V : VL) { 3701 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3702 if (Ty0 != CurTy) { 3703 LLVM_DEBUG(dbgs() 3704 << "SLP: not-vectorizable GEP (different types).\n"); 3705 BS.cancelScheduling(VL, VL0); 3706 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3707 ReuseShuffleIndicies); 3708 return; 3709 } 3710 } 3711 3712 // We don't combine GEPs with non-constant indexes. 3713 Type *Ty1 = VL0->getOperand(1)->getType(); 3714 for (Value *V : VL) { 3715 auto Op = cast<Instruction>(V)->getOperand(1); 3716 if (!isa<ConstantInt>(Op) || 3717 (Op->getType() != Ty1 && 3718 Op->getType()->getScalarSizeInBits() > 3719 DL->getIndexSizeInBits( 3720 V->getType()->getPointerAddressSpace()))) { 3721 LLVM_DEBUG(dbgs() 3722 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3723 BS.cancelScheduling(VL, VL0); 3724 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3725 ReuseShuffleIndicies); 3726 return; 3727 } 3728 } 3729 3730 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3731 ReuseShuffleIndicies); 3732 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3733 TE->setOperandsInOrder(); 3734 for (unsigned i = 0, e = 2; i < e; ++i) { 3735 ValueList Operands; 3736 // Prepare the operand vector. 3737 for (Value *V : VL) 3738 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3739 3740 buildTree_rec(Operands, Depth + 1, {TE, i}); 3741 } 3742 return; 3743 } 3744 case Instruction::Store: { 3745 // Check if the stores are consecutive or if we need to swizzle them. 3746 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3747 // Avoid types that are padded when being allocated as scalars, while 3748 // being packed together in a vector (such as i1). 3749 if (DL->getTypeSizeInBits(ScalarTy) != 3750 DL->getTypeAllocSizeInBits(ScalarTy)) { 3751 BS.cancelScheduling(VL, VL0); 3752 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3753 ReuseShuffleIndicies); 3754 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3755 return; 3756 } 3757 // Make sure all stores in the bundle are simple - we can't vectorize 3758 // atomic or volatile stores. 3759 SmallVector<Value *, 4> PointerOps(VL.size()); 3760 ValueList Operands(VL.size()); 3761 auto POIter = PointerOps.begin(); 3762 auto OIter = Operands.begin(); 3763 for (Value *V : VL) { 3764 auto *SI = cast<StoreInst>(V); 3765 if (!SI->isSimple()) { 3766 BS.cancelScheduling(VL, VL0); 3767 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3768 ReuseShuffleIndicies); 3769 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3770 return; 3771 } 3772 *POIter = SI->getPointerOperand(); 3773 *OIter = SI->getValueOperand(); 3774 ++POIter; 3775 ++OIter; 3776 } 3777 3778 OrdersType CurrentOrder; 3779 // Check the order of pointer operands. 3780 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3781 Value *Ptr0; 3782 Value *PtrN; 3783 if (CurrentOrder.empty()) { 3784 Ptr0 = PointerOps.front(); 3785 PtrN = PointerOps.back(); 3786 } else { 3787 Ptr0 = PointerOps[CurrentOrder.front()]; 3788 PtrN = PointerOps[CurrentOrder.back()]; 3789 } 3790 Optional<int> Dist = 3791 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3792 // Check that the sorted pointer operands are consecutive. 3793 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3794 if (CurrentOrder.empty()) { 3795 // Original stores are consecutive and does not require reordering. 3796 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3797 UserTreeIdx, ReuseShuffleIndicies); 3798 TE->setOperandsInOrder(); 3799 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3800 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3801 } else { 3802 fixupOrderingIndices(CurrentOrder); 3803 TreeEntry *TE = 3804 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3805 ReuseShuffleIndicies, CurrentOrder); 3806 TE->setOperandsInOrder(); 3807 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3808 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3809 } 3810 return; 3811 } 3812 } 3813 3814 BS.cancelScheduling(VL, VL0); 3815 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3816 ReuseShuffleIndicies); 3817 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3818 return; 3819 } 3820 case Instruction::Call: { 3821 // Check if the calls are all to the same vectorizable intrinsic or 3822 // library function. 3823 CallInst *CI = cast<CallInst>(VL0); 3824 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3825 3826 VFShape Shape = VFShape::get( 3827 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3828 false /*HasGlobalPred*/); 3829 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3830 3831 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3832 BS.cancelScheduling(VL, VL0); 3833 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3834 ReuseShuffleIndicies); 3835 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3836 return; 3837 } 3838 Function *F = CI->getCalledFunction(); 3839 unsigned NumArgs = CI->getNumArgOperands(); 3840 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3841 for (unsigned j = 0; j != NumArgs; ++j) 3842 if (hasVectorInstrinsicScalarOpd(ID, j)) 3843 ScalarArgs[j] = CI->getArgOperand(j); 3844 for (Value *V : VL) { 3845 CallInst *CI2 = dyn_cast<CallInst>(V); 3846 if (!CI2 || CI2->getCalledFunction() != F || 3847 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3848 (VecFunc && 3849 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3850 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3851 BS.cancelScheduling(VL, VL0); 3852 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3853 ReuseShuffleIndicies); 3854 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3855 << "\n"); 3856 return; 3857 } 3858 // Some intrinsics have scalar arguments and should be same in order for 3859 // them to be vectorized. 3860 for (unsigned j = 0; j != NumArgs; ++j) { 3861 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3862 Value *A1J = CI2->getArgOperand(j); 3863 if (ScalarArgs[j] != A1J) { 3864 BS.cancelScheduling(VL, VL0); 3865 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3866 ReuseShuffleIndicies); 3867 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3868 << " argument " << ScalarArgs[j] << "!=" << A1J 3869 << "\n"); 3870 return; 3871 } 3872 } 3873 } 3874 // Verify that the bundle operands are identical between the two calls. 3875 if (CI->hasOperandBundles() && 3876 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3877 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3878 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3879 BS.cancelScheduling(VL, VL0); 3880 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3881 ReuseShuffleIndicies); 3882 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3883 << *CI << "!=" << *V << '\n'); 3884 return; 3885 } 3886 } 3887 3888 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3889 ReuseShuffleIndicies); 3890 TE->setOperandsInOrder(); 3891 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3892 ValueList Operands; 3893 // Prepare the operand vector. 3894 for (Value *V : VL) { 3895 auto *CI2 = cast<CallInst>(V); 3896 Operands.push_back(CI2->getArgOperand(i)); 3897 } 3898 buildTree_rec(Operands, Depth + 1, {TE, i}); 3899 } 3900 return; 3901 } 3902 case Instruction::ShuffleVector: { 3903 // If this is not an alternate sequence of opcode like add-sub 3904 // then do not vectorize this instruction. 3905 if (!S.isAltShuffle()) { 3906 BS.cancelScheduling(VL, VL0); 3907 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3908 ReuseShuffleIndicies); 3909 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3910 return; 3911 } 3912 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3913 ReuseShuffleIndicies); 3914 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3915 3916 // Reorder operands if reordering would enable vectorization. 3917 if (isa<BinaryOperator>(VL0)) { 3918 ValueList Left, Right; 3919 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3920 TE->setOperand(0, Left); 3921 TE->setOperand(1, Right); 3922 buildTree_rec(Left, Depth + 1, {TE, 0}); 3923 buildTree_rec(Right, Depth + 1, {TE, 1}); 3924 return; 3925 } 3926 3927 TE->setOperandsInOrder(); 3928 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3929 ValueList Operands; 3930 // Prepare the operand vector. 3931 for (Value *V : VL) 3932 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3933 3934 buildTree_rec(Operands, Depth + 1, {TE, i}); 3935 } 3936 return; 3937 } 3938 default: 3939 BS.cancelScheduling(VL, VL0); 3940 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3941 ReuseShuffleIndicies); 3942 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3943 return; 3944 } 3945 } 3946 3947 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3948 unsigned N = 1; 3949 Type *EltTy = T; 3950 3951 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3952 isa<VectorType>(EltTy)) { 3953 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3954 // Check that struct is homogeneous. 3955 for (const auto *Ty : ST->elements()) 3956 if (Ty != *ST->element_begin()) 3957 return 0; 3958 N *= ST->getNumElements(); 3959 EltTy = *ST->element_begin(); 3960 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3961 N *= AT->getNumElements(); 3962 EltTy = AT->getElementType(); 3963 } else { 3964 auto *VT = cast<FixedVectorType>(EltTy); 3965 N *= VT->getNumElements(); 3966 EltTy = VT->getElementType(); 3967 } 3968 } 3969 3970 if (!isValidElementType(EltTy)) 3971 return 0; 3972 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3973 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3974 return 0; 3975 return N; 3976 } 3977 3978 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3979 SmallVectorImpl<unsigned> &CurrentOrder) const { 3980 Instruction *E0 = cast<Instruction>(OpValue); 3981 assert(E0->getOpcode() == Instruction::ExtractElement || 3982 E0->getOpcode() == Instruction::ExtractValue); 3983 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3984 // Check if all of the extracts come from the same vector and from the 3985 // correct offset. 3986 Value *Vec = E0->getOperand(0); 3987 3988 CurrentOrder.clear(); 3989 3990 // We have to extract from a vector/aggregate with the same number of elements. 3991 unsigned NElts; 3992 if (E0->getOpcode() == Instruction::ExtractValue) { 3993 const DataLayout &DL = E0->getModule()->getDataLayout(); 3994 NElts = canMapToVector(Vec->getType(), DL); 3995 if (!NElts) 3996 return false; 3997 // Check if load can be rewritten as load of vector. 3998 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3999 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4000 return false; 4001 } else { 4002 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4003 } 4004 4005 if (NElts != VL.size()) 4006 return false; 4007 4008 // Check that all of the indices extract from the correct offset. 4009 bool ShouldKeepOrder = true; 4010 unsigned E = VL.size(); 4011 // Assign to all items the initial value E + 1 so we can check if the extract 4012 // instruction index was used already. 4013 // Also, later we can check that all the indices are used and we have a 4014 // consecutive access in the extract instructions, by checking that no 4015 // element of CurrentOrder still has value E + 1. 4016 CurrentOrder.assign(E, E + 1); 4017 unsigned I = 0; 4018 for (; I < E; ++I) { 4019 auto *Inst = cast<Instruction>(VL[I]); 4020 if (Inst->getOperand(0) != Vec) 4021 break; 4022 Optional<unsigned> Idx = getExtractIndex(Inst); 4023 if (!Idx) 4024 break; 4025 const unsigned ExtIdx = *Idx; 4026 if (ExtIdx != I) { 4027 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4028 break; 4029 ShouldKeepOrder = false; 4030 CurrentOrder[ExtIdx] = I; 4031 } else { 4032 if (CurrentOrder[I] != E + 1) 4033 break; 4034 CurrentOrder[I] = I; 4035 } 4036 } 4037 if (I < E) { 4038 CurrentOrder.clear(); 4039 return false; 4040 } 4041 4042 return ShouldKeepOrder; 4043 } 4044 4045 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4046 ArrayRef<Value *> VectorizedVals) const { 4047 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4048 llvm::all_of(I->users(), [this](User *U) { 4049 return ScalarToTreeEntry.count(U) > 0; 4050 }); 4051 } 4052 4053 static std::pair<InstructionCost, InstructionCost> 4054 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4055 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4056 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4057 4058 // Calculate the cost of the scalar and vector calls. 4059 SmallVector<Type *, 4> VecTys; 4060 for (Use &Arg : CI->args()) 4061 VecTys.push_back( 4062 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4063 FastMathFlags FMF; 4064 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4065 FMF = FPCI->getFastMathFlags(); 4066 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 4067 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4068 dyn_cast<IntrinsicInst>(CI)); 4069 auto IntrinsicCost = 4070 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4071 4072 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4073 VecTy->getNumElements())), 4074 false /*HasGlobalPred*/); 4075 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4076 auto LibCost = IntrinsicCost; 4077 if (!CI->isNoBuiltin() && VecFunc) { 4078 // Calculate the cost of the vector library call. 4079 // If the corresponding vector call is cheaper, return its cost. 4080 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4081 TTI::TCK_RecipThroughput); 4082 } 4083 return {IntrinsicCost, LibCost}; 4084 } 4085 4086 /// Compute the cost of creating a vector of type \p VecTy containing the 4087 /// extracted values from \p VL. 4088 static InstructionCost 4089 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4090 TargetTransformInfo::ShuffleKind ShuffleKind, 4091 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4092 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4093 4094 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4095 VecTy->getNumElements() < NumOfParts) 4096 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4097 4098 bool AllConsecutive = true; 4099 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4100 unsigned Idx = -1; 4101 InstructionCost Cost = 0; 4102 4103 // Process extracts in blocks of EltsPerVector to check if the source vector 4104 // operand can be re-used directly. If not, add the cost of creating a shuffle 4105 // to extract the values into a vector register. 4106 for (auto *V : VL) { 4107 ++Idx; 4108 4109 // Reached the start of a new vector registers. 4110 if (Idx % EltsPerVector == 0) { 4111 AllConsecutive = true; 4112 continue; 4113 } 4114 4115 // Check all extracts for a vector register on the target directly 4116 // extract values in order. 4117 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4118 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4119 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4120 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4121 4122 if (AllConsecutive) 4123 continue; 4124 4125 // Skip all indices, except for the last index per vector block. 4126 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4127 continue; 4128 4129 // If we have a series of extracts which are not consecutive and hence 4130 // cannot re-use the source vector register directly, compute the shuffle 4131 // cost to extract the a vector with EltsPerVector elements. 4132 Cost += TTI.getShuffleCost( 4133 TargetTransformInfo::SK_PermuteSingleSrc, 4134 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4135 } 4136 return Cost; 4137 } 4138 4139 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4140 /// operations operands. 4141 static void 4142 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4143 ArrayRef<int> ReusesIndices, 4144 const function_ref<bool(Instruction *)> IsAltOp, 4145 SmallVectorImpl<int> &Mask, 4146 SmallVectorImpl<Value *> *OpScalars = nullptr, 4147 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4148 unsigned Sz = VL.size(); 4149 Mask.assign(Sz, UndefMaskElem); 4150 SmallVector<int> OrderMask; 4151 if (!ReorderIndices.empty()) 4152 inversePermutation(ReorderIndices, OrderMask); 4153 for (unsigned I = 0; I < Sz; ++I) { 4154 unsigned Idx = I; 4155 if (!ReorderIndices.empty()) 4156 Idx = OrderMask[I]; 4157 auto *OpInst = cast<Instruction>(VL[I]); 4158 if (IsAltOp(OpInst)) { 4159 Mask[Idx] = Sz + I; 4160 if (AltScalars) 4161 AltScalars->push_back(OpInst); 4162 } else { 4163 Mask[Idx] = I; 4164 if (OpScalars) 4165 OpScalars->push_back(OpInst); 4166 } 4167 } 4168 if (!ReusesIndices.empty()) { 4169 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4170 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4171 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4172 }); 4173 Mask.swap(NewMask); 4174 } 4175 } 4176 4177 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4178 ArrayRef<Value *> VectorizedVals) { 4179 ArrayRef<Value*> VL = E->Scalars; 4180 4181 Type *ScalarTy = VL[0]->getType(); 4182 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4183 ScalarTy = SI->getValueOperand()->getType(); 4184 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4185 ScalarTy = CI->getOperand(0)->getType(); 4186 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4187 ScalarTy = IE->getOperand(1)->getType(); 4188 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4189 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4190 4191 // If we have computed a smaller type for the expression, update VecTy so 4192 // that the costs will be accurate. 4193 if (MinBWs.count(VL[0])) 4194 VecTy = FixedVectorType::get( 4195 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4196 auto *FinalVecTy = VecTy; 4197 4198 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 4199 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4200 if (NeedToShuffleReuses) 4201 FinalVecTy = 4202 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers); 4203 // FIXME: it tries to fix a problem with MSVC buildbots. 4204 TargetTransformInfo &TTIRef = *TTI; 4205 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4206 VectorizedVals](InstructionCost &Cost, 4207 bool IsGather) { 4208 DenseMap<Value *, int> ExtractVectorsTys; 4209 for (auto *V : VL) { 4210 // If all users of instruction are going to be vectorized and this 4211 // instruction itself is not going to be vectorized, consider this 4212 // instruction as dead and remove its cost from the final cost of the 4213 // vectorized tree. 4214 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4215 (IsGather && ScalarToTreeEntry.count(V))) 4216 continue; 4217 auto *EE = cast<ExtractElementInst>(V); 4218 unsigned Idx = *getExtractIndex(EE); 4219 if (TTIRef.getNumberOfParts(VecTy) != 4220 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4221 auto It = 4222 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4223 It->getSecond() = std::min<int>(It->second, Idx); 4224 } 4225 // Take credit for instruction that will become dead. 4226 if (EE->hasOneUse()) { 4227 Instruction *Ext = EE->user_back(); 4228 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4229 all_of(Ext->users(), 4230 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4231 // Use getExtractWithExtendCost() to calculate the cost of 4232 // extractelement/ext pair. 4233 Cost -= 4234 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4235 EE->getVectorOperandType(), Idx); 4236 // Add back the cost of s|zext which is subtracted separately. 4237 Cost += TTIRef.getCastInstrCost( 4238 Ext->getOpcode(), Ext->getType(), EE->getType(), 4239 TTI::getCastContextHint(Ext), CostKind, Ext); 4240 continue; 4241 } 4242 } 4243 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4244 EE->getVectorOperandType(), Idx); 4245 } 4246 // Add a cost for subvector extracts/inserts if required. 4247 for (const auto &Data : ExtractVectorsTys) { 4248 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4249 unsigned NumElts = VecTy->getNumElements(); 4250 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4251 unsigned Idx = (Data.second / NumElts) * NumElts; 4252 unsigned EENumElts = EEVTy->getNumElements(); 4253 if (Idx + NumElts <= EENumElts) { 4254 Cost += 4255 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4256 EEVTy, None, Idx, VecTy); 4257 } else { 4258 // Need to round up the subvector type vectorization factor to avoid a 4259 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4260 // <= EENumElts. 4261 auto *SubVT = 4262 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4263 Cost += 4264 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4265 EEVTy, None, Idx, SubVT); 4266 } 4267 } else { 4268 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4269 VecTy, None, 0, EEVTy); 4270 } 4271 } 4272 }; 4273 if (E->State == TreeEntry::NeedToGather) { 4274 if (allConstant(VL)) 4275 return 0; 4276 if (isa<InsertElementInst>(VL[0])) 4277 return InstructionCost::getInvalid(); 4278 SmallVector<int> Mask; 4279 SmallVector<const TreeEntry *> Entries; 4280 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4281 isGatherShuffledEntry(E, Mask, Entries); 4282 if (Shuffle.hasValue()) { 4283 InstructionCost GatherCost = 0; 4284 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4285 // Perfect match in the graph, will reuse the previously vectorized 4286 // node. Cost is 0. 4287 LLVM_DEBUG( 4288 dbgs() 4289 << "SLP: perfect diamond match for gather bundle that starts with " 4290 << *VL.front() << ".\n"); 4291 if (NeedToShuffleReuses) 4292 GatherCost = 4293 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4294 FinalVecTy, E->ReuseShuffleIndices); 4295 } else { 4296 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4297 << " entries for bundle that starts with " 4298 << *VL.front() << ".\n"); 4299 // Detected that instead of gather we can emit a shuffle of single/two 4300 // previously vectorized nodes. Add the cost of the permutation rather 4301 // than gather. 4302 ::addMask(Mask, E->ReuseShuffleIndices); 4303 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4304 } 4305 return GatherCost; 4306 } 4307 if (isSplat(VL)) { 4308 // Found the broadcasting of the single scalar, calculate the cost as the 4309 // broadcast. 4310 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4311 } 4312 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4313 allSameBlock(VL) && 4314 !isa<ScalableVectorType>( 4315 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4316 // Check that gather of extractelements can be represented as just a 4317 // shuffle of a single/two vectors the scalars are extracted from. 4318 SmallVector<int> Mask; 4319 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4320 isShuffle(VL, Mask); 4321 if (ShuffleKind.hasValue()) { 4322 // Found the bunch of extractelement instructions that must be gathered 4323 // into a vector and can be represented as a permutation elements in a 4324 // single input vector or of 2 input vectors. 4325 InstructionCost Cost = 4326 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4327 AdjustExtractsCost(Cost, /*IsGather=*/true); 4328 if (NeedToShuffleReuses) 4329 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4330 FinalVecTy, E->ReuseShuffleIndices); 4331 return Cost; 4332 } 4333 } 4334 InstructionCost ReuseShuffleCost = 0; 4335 if (NeedToShuffleReuses) 4336 ReuseShuffleCost = TTI->getShuffleCost( 4337 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4338 // Improve gather cost for gather of loads, if we can group some of the 4339 // loads into vector loads. 4340 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4341 !E->isAltShuffle()) { 4342 BoUpSLP::ValueSet VectorizedLoads; 4343 unsigned StartIdx = 0; 4344 unsigned VF = VL.size() / 2; 4345 unsigned VectorizedCnt = 0; 4346 unsigned ScatterVectorizeCnt = 0; 4347 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4348 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4349 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4350 Cnt += VF) { 4351 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4352 if (!VectorizedLoads.count(Slice.front()) && 4353 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4354 SmallVector<Value *> PointerOps; 4355 OrdersType CurrentOrder; 4356 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4357 *SE, CurrentOrder, PointerOps); 4358 switch (LS) { 4359 case LoadsState::Vectorize: 4360 case LoadsState::ScatterVectorize: 4361 // Mark the vectorized loads so that we don't vectorize them 4362 // again. 4363 if (LS == LoadsState::Vectorize) 4364 ++VectorizedCnt; 4365 else 4366 ++ScatterVectorizeCnt; 4367 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4368 // If we vectorized initial block, no need to try to vectorize it 4369 // again. 4370 if (Cnt == StartIdx) 4371 StartIdx += VF; 4372 break; 4373 case LoadsState::Gather: 4374 break; 4375 } 4376 } 4377 } 4378 // Check if the whole array was vectorized already - exit. 4379 if (StartIdx >= VL.size()) 4380 break; 4381 // Found vectorizable parts - exit. 4382 if (!VectorizedLoads.empty()) 4383 break; 4384 } 4385 if (!VectorizedLoads.empty()) { 4386 InstructionCost GatherCost = 0; 4387 // Get the cost for gathered loads. 4388 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4389 if (VectorizedLoads.contains(VL[I])) 4390 continue; 4391 GatherCost += getGatherCost(VL.slice(I, VF)); 4392 } 4393 // The cost for vectorized loads. 4394 InstructionCost ScalarsCost = 0; 4395 for (Value *V : VectorizedLoads) { 4396 auto *LI = cast<LoadInst>(V); 4397 ScalarsCost += TTI->getMemoryOpCost( 4398 Instruction::Load, LI->getType(), LI->getAlign(), 4399 LI->getPointerAddressSpace(), CostKind, LI); 4400 } 4401 auto *LI = cast<LoadInst>(E->getMainOp()); 4402 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4403 Align Alignment = LI->getAlign(); 4404 GatherCost += 4405 VectorizedCnt * 4406 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4407 LI->getPointerAddressSpace(), CostKind, LI); 4408 GatherCost += ScatterVectorizeCnt * 4409 TTI->getGatherScatterOpCost( 4410 Instruction::Load, LoadTy, LI->getPointerOperand(), 4411 /*VariableMask=*/false, Alignment, CostKind, LI); 4412 // Add the cost for the subvectors shuffling. 4413 GatherCost += ((VL.size() - VF) / VF) * 4414 TTI->getShuffleCost(TTI::SK_Select, VecTy); 4415 return ReuseShuffleCost + GatherCost - ScalarsCost; 4416 } 4417 } 4418 return ReuseShuffleCost + getGatherCost(VL); 4419 } 4420 InstructionCost CommonCost = 0; 4421 SmallVector<int> Mask; 4422 if (!E->ReorderIndices.empty()) { 4423 SmallVector<int> NewMask; 4424 if (E->getOpcode() == Instruction::Store) { 4425 // For stores the order is actually a mask. 4426 NewMask.resize(E->ReorderIndices.size()); 4427 copy(E->ReorderIndices, NewMask.begin()); 4428 } else { 4429 inversePermutation(E->ReorderIndices, NewMask); 4430 } 4431 ::addMask(Mask, NewMask); 4432 } 4433 if (NeedToShuffleReuses) 4434 ::addMask(Mask, E->ReuseShuffleIndices); 4435 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4436 CommonCost = 4437 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4438 assert((E->State == TreeEntry::Vectorize || 4439 E->State == TreeEntry::ScatterVectorize) && 4440 "Unhandled state"); 4441 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4442 Instruction *VL0 = E->getMainOp(); 4443 unsigned ShuffleOrOp = 4444 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4445 switch (ShuffleOrOp) { 4446 case Instruction::PHI: 4447 return 0; 4448 4449 case Instruction::ExtractValue: 4450 case Instruction::ExtractElement: { 4451 // The common cost of removal ExtractElement/ExtractValue instructions + 4452 // the cost of shuffles, if required to resuffle the original vector. 4453 if (NeedToShuffleReuses) { 4454 unsigned Idx = 0; 4455 for (unsigned I : E->ReuseShuffleIndices) { 4456 if (ShuffleOrOp == Instruction::ExtractElement) { 4457 auto *EE = cast<ExtractElementInst>(VL[I]); 4458 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4459 EE->getVectorOperandType(), 4460 *getExtractIndex(EE)); 4461 } else { 4462 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4463 VecTy, Idx); 4464 ++Idx; 4465 } 4466 } 4467 Idx = ReuseShuffleNumbers; 4468 for (Value *V : VL) { 4469 if (ShuffleOrOp == Instruction::ExtractElement) { 4470 auto *EE = cast<ExtractElementInst>(V); 4471 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4472 EE->getVectorOperandType(), 4473 *getExtractIndex(EE)); 4474 } else { 4475 --Idx; 4476 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4477 VecTy, Idx); 4478 } 4479 } 4480 } 4481 if (ShuffleOrOp == Instruction::ExtractValue) { 4482 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4483 auto *EI = cast<Instruction>(VL[I]); 4484 // Take credit for instruction that will become dead. 4485 if (EI->hasOneUse()) { 4486 Instruction *Ext = EI->user_back(); 4487 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4488 all_of(Ext->users(), 4489 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4490 // Use getExtractWithExtendCost() to calculate the cost of 4491 // extractelement/ext pair. 4492 CommonCost -= TTI->getExtractWithExtendCost( 4493 Ext->getOpcode(), Ext->getType(), VecTy, I); 4494 // Add back the cost of s|zext which is subtracted separately. 4495 CommonCost += TTI->getCastInstrCost( 4496 Ext->getOpcode(), Ext->getType(), EI->getType(), 4497 TTI::getCastContextHint(Ext), CostKind, Ext); 4498 continue; 4499 } 4500 } 4501 CommonCost -= 4502 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4503 } 4504 } else { 4505 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4506 } 4507 return CommonCost; 4508 } 4509 case Instruction::InsertElement: { 4510 assert(E->ReuseShuffleIndices.empty() && 4511 "Unique insertelements only are expected."); 4512 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4513 4514 unsigned const NumElts = SrcVecTy->getNumElements(); 4515 unsigned const NumScalars = VL.size(); 4516 APInt DemandedElts = APInt::getNullValue(NumElts); 4517 // TODO: Add support for Instruction::InsertValue. 4518 SmallVector<int> Mask; 4519 if (!E->ReorderIndices.empty()) { 4520 inversePermutation(E->ReorderIndices, Mask); 4521 Mask.append(NumElts - NumScalars, UndefMaskElem); 4522 } else { 4523 Mask.assign(NumElts, UndefMaskElem); 4524 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4525 } 4526 unsigned Offset = *getInsertIndex(VL0, 0); 4527 bool IsIdentity = true; 4528 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4529 Mask.swap(PrevMask); 4530 for (unsigned I = 0; I < NumScalars; ++I) { 4531 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4532 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4533 continue; 4534 DemandedElts.setBit(*InsertIdx); 4535 IsIdentity &= *InsertIdx - Offset == I; 4536 Mask[*InsertIdx - Offset] = I; 4537 } 4538 assert(Offset < NumElts && "Failed to find vector index offset"); 4539 4540 InstructionCost Cost = 0; 4541 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4542 /*Insert*/ true, /*Extract*/ false); 4543 4544 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4545 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4546 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4547 Cost += TTI->getShuffleCost( 4548 TargetTransformInfo::SK_PermuteSingleSrc, 4549 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4550 } else if (!IsIdentity) { 4551 auto *FirstInsert = 4552 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4553 return !is_contained(E->Scalars, 4554 cast<Instruction>(V)->getOperand(0)); 4555 })); 4556 if (isa<UndefValue>(FirstInsert->getOperand(0))) { 4557 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4558 } else { 4559 SmallVector<int> InsertMask(NumElts); 4560 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4561 for (unsigned I = 0; I < NumElts; I++) { 4562 if (Mask[I] != UndefMaskElem) 4563 InsertMask[Offset + I] = NumElts + I; 4564 } 4565 Cost += 4566 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4567 } 4568 } 4569 4570 return Cost; 4571 } 4572 case Instruction::ZExt: 4573 case Instruction::SExt: 4574 case Instruction::FPToUI: 4575 case Instruction::FPToSI: 4576 case Instruction::FPExt: 4577 case Instruction::PtrToInt: 4578 case Instruction::IntToPtr: 4579 case Instruction::SIToFP: 4580 case Instruction::UIToFP: 4581 case Instruction::Trunc: 4582 case Instruction::FPTrunc: 4583 case Instruction::BitCast: { 4584 Type *SrcTy = VL0->getOperand(0)->getType(); 4585 InstructionCost ScalarEltCost = 4586 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4587 TTI::getCastContextHint(VL0), CostKind, VL0); 4588 if (NeedToShuffleReuses) { 4589 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4590 } 4591 4592 // Calculate the cost of this instruction. 4593 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4594 4595 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4596 InstructionCost VecCost = 0; 4597 // Check if the values are candidates to demote. 4598 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4599 VecCost = CommonCost + TTI->getCastInstrCost( 4600 E->getOpcode(), VecTy, SrcVecTy, 4601 TTI::getCastContextHint(VL0), CostKind, VL0); 4602 } 4603 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4604 return VecCost - ScalarCost; 4605 } 4606 case Instruction::FCmp: 4607 case Instruction::ICmp: 4608 case Instruction::Select: { 4609 // Calculate the cost of this instruction. 4610 InstructionCost ScalarEltCost = 4611 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4612 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4613 if (NeedToShuffleReuses) { 4614 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4615 } 4616 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4617 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4618 4619 // Check if all entries in VL are either compares or selects with compares 4620 // as condition that have the same predicates. 4621 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4622 bool First = true; 4623 for (auto *V : VL) { 4624 CmpInst::Predicate CurrentPred; 4625 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4626 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4627 !match(V, MatchCmp)) || 4628 (!First && VecPred != CurrentPred)) { 4629 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4630 break; 4631 } 4632 First = false; 4633 VecPred = CurrentPred; 4634 } 4635 4636 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4637 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4638 // Check if it is possible and profitable to use min/max for selects in 4639 // VL. 4640 // 4641 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4642 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4643 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4644 {VecTy, VecTy}); 4645 InstructionCost IntrinsicCost = 4646 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4647 // If the selects are the only uses of the compares, they will be dead 4648 // and we can adjust the cost by removing their cost. 4649 if (IntrinsicAndUse.second) 4650 IntrinsicCost -= 4651 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4652 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4653 VecCost = std::min(VecCost, IntrinsicCost); 4654 } 4655 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4656 return CommonCost + VecCost - ScalarCost; 4657 } 4658 case Instruction::FNeg: 4659 case Instruction::Add: 4660 case Instruction::FAdd: 4661 case Instruction::Sub: 4662 case Instruction::FSub: 4663 case Instruction::Mul: 4664 case Instruction::FMul: 4665 case Instruction::UDiv: 4666 case Instruction::SDiv: 4667 case Instruction::FDiv: 4668 case Instruction::URem: 4669 case Instruction::SRem: 4670 case Instruction::FRem: 4671 case Instruction::Shl: 4672 case Instruction::LShr: 4673 case Instruction::AShr: 4674 case Instruction::And: 4675 case Instruction::Or: 4676 case Instruction::Xor: { 4677 // Certain instructions can be cheaper to vectorize if they have a 4678 // constant second vector operand. 4679 TargetTransformInfo::OperandValueKind Op1VK = 4680 TargetTransformInfo::OK_AnyValue; 4681 TargetTransformInfo::OperandValueKind Op2VK = 4682 TargetTransformInfo::OK_UniformConstantValue; 4683 TargetTransformInfo::OperandValueProperties Op1VP = 4684 TargetTransformInfo::OP_None; 4685 TargetTransformInfo::OperandValueProperties Op2VP = 4686 TargetTransformInfo::OP_PowerOf2; 4687 4688 // If all operands are exactly the same ConstantInt then set the 4689 // operand kind to OK_UniformConstantValue. 4690 // If instead not all operands are constants, then set the operand kind 4691 // to OK_AnyValue. If all operands are constants but not the same, 4692 // then set the operand kind to OK_NonUniformConstantValue. 4693 ConstantInt *CInt0 = nullptr; 4694 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4695 const Instruction *I = cast<Instruction>(VL[i]); 4696 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4697 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4698 if (!CInt) { 4699 Op2VK = TargetTransformInfo::OK_AnyValue; 4700 Op2VP = TargetTransformInfo::OP_None; 4701 break; 4702 } 4703 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4704 !CInt->getValue().isPowerOf2()) 4705 Op2VP = TargetTransformInfo::OP_None; 4706 if (i == 0) { 4707 CInt0 = CInt; 4708 continue; 4709 } 4710 if (CInt0 != CInt) 4711 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4712 } 4713 4714 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4715 InstructionCost ScalarEltCost = 4716 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4717 Op2VK, Op1VP, Op2VP, Operands, VL0); 4718 if (NeedToShuffleReuses) { 4719 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4720 } 4721 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4722 InstructionCost VecCost = 4723 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4724 Op2VK, Op1VP, Op2VP, Operands, VL0); 4725 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4726 return CommonCost + VecCost - ScalarCost; 4727 } 4728 case Instruction::GetElementPtr: { 4729 TargetTransformInfo::OperandValueKind Op1VK = 4730 TargetTransformInfo::OK_AnyValue; 4731 TargetTransformInfo::OperandValueKind Op2VK = 4732 TargetTransformInfo::OK_UniformConstantValue; 4733 4734 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4735 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4736 if (NeedToShuffleReuses) { 4737 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4738 } 4739 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4740 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4741 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4742 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4743 return CommonCost + VecCost - ScalarCost; 4744 } 4745 case Instruction::Load: { 4746 // Cost of wide load - cost of scalar loads. 4747 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4748 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4749 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4750 if (NeedToShuffleReuses) { 4751 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4752 } 4753 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4754 InstructionCost VecLdCost; 4755 if (E->State == TreeEntry::Vectorize) { 4756 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4757 CostKind, VL0); 4758 } else { 4759 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4760 Align CommonAlignment = Alignment; 4761 for (Value *V : VL) 4762 CommonAlignment = 4763 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4764 VecLdCost = TTI->getGatherScatterOpCost( 4765 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4766 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4767 } 4768 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4769 return CommonCost + VecLdCost - ScalarLdCost; 4770 } 4771 case Instruction::Store: { 4772 // We know that we can merge the stores. Calculate the cost. 4773 bool IsReorder = !E->ReorderIndices.empty(); 4774 auto *SI = 4775 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4776 Align Alignment = SI->getAlign(); 4777 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4778 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4779 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4780 InstructionCost VecStCost = TTI->getMemoryOpCost( 4781 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4782 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4783 return CommonCost + VecStCost - ScalarStCost; 4784 } 4785 case Instruction::Call: { 4786 CallInst *CI = cast<CallInst>(VL0); 4787 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4788 4789 // Calculate the cost of the scalar and vector calls. 4790 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4791 InstructionCost ScalarEltCost = 4792 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4793 if (NeedToShuffleReuses) { 4794 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4795 } 4796 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4797 4798 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4799 InstructionCost VecCallCost = 4800 std::min(VecCallCosts.first, VecCallCosts.second); 4801 4802 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4803 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4804 << " for " << *CI << "\n"); 4805 4806 return CommonCost + VecCallCost - ScalarCallCost; 4807 } 4808 case Instruction::ShuffleVector: { 4809 assert(E->isAltShuffle() && 4810 ((Instruction::isBinaryOp(E->getOpcode()) && 4811 Instruction::isBinaryOp(E->getAltOpcode())) || 4812 (Instruction::isCast(E->getOpcode()) && 4813 Instruction::isCast(E->getAltOpcode()))) && 4814 "Invalid Shuffle Vector Operand"); 4815 InstructionCost ScalarCost = 0; 4816 if (NeedToShuffleReuses) { 4817 for (unsigned Idx : E->ReuseShuffleIndices) { 4818 Instruction *I = cast<Instruction>(VL[Idx]); 4819 CommonCost -= TTI->getInstructionCost(I, CostKind); 4820 } 4821 for (Value *V : VL) { 4822 Instruction *I = cast<Instruction>(V); 4823 CommonCost += TTI->getInstructionCost(I, CostKind); 4824 } 4825 } 4826 for (Value *V : VL) { 4827 Instruction *I = cast<Instruction>(V); 4828 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4829 ScalarCost += TTI->getInstructionCost(I, CostKind); 4830 } 4831 // VecCost is equal to sum of the cost of creating 2 vectors 4832 // and the cost of creating shuffle. 4833 InstructionCost VecCost = 0; 4834 if (Instruction::isBinaryOp(E->getOpcode())) { 4835 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4836 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4837 CostKind); 4838 } else { 4839 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4840 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4841 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4842 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4843 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4844 TTI::CastContextHint::None, CostKind); 4845 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4846 TTI::CastContextHint::None, CostKind); 4847 } 4848 4849 SmallVector<int> Mask; 4850 buildSuffleEntryMask( 4851 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 4852 [E](Instruction *I) { 4853 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4854 return I->getOpcode() == E->getAltOpcode(); 4855 }, 4856 Mask); 4857 CommonCost = 4858 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 4859 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4860 return CommonCost + VecCost - ScalarCost; 4861 } 4862 default: 4863 llvm_unreachable("Unknown instruction"); 4864 } 4865 } 4866 4867 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4868 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4869 << VectorizableTree.size() << " is fully vectorizable .\n"); 4870 4871 // We only handle trees of heights 1 and 2. 4872 if (VectorizableTree.size() == 1 && 4873 VectorizableTree[0]->State == TreeEntry::Vectorize) 4874 return true; 4875 4876 if (VectorizableTree.size() != 2) 4877 return false; 4878 4879 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4880 // with the second gather nodes if they have less scalar operands rather than 4881 // the initial tree element (may be profitable to shuffle the second gather) 4882 // or they are extractelements, which form shuffle. 4883 SmallVector<int> Mask; 4884 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4885 (allConstant(VectorizableTree[1]->Scalars) || 4886 isSplat(VectorizableTree[1]->Scalars) || 4887 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4888 VectorizableTree[1]->Scalars.size() < 4889 VectorizableTree[0]->Scalars.size()) || 4890 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4891 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement && 4892 isShuffle(VectorizableTree[1]->Scalars, Mask)))) 4893 return true; 4894 4895 // Gathering cost would be too much for tiny trees. 4896 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4897 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4898 return false; 4899 4900 return true; 4901 } 4902 4903 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4904 TargetTransformInfo *TTI, 4905 bool MustMatchOrInst) { 4906 // Look past the root to find a source value. Arbitrarily follow the 4907 // path through operand 0 of any 'or'. Also, peek through optional 4908 // shift-left-by-multiple-of-8-bits. 4909 Value *ZextLoad = Root; 4910 const APInt *ShAmtC; 4911 bool FoundOr = false; 4912 while (!isa<ConstantExpr>(ZextLoad) && 4913 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4914 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4915 ShAmtC->urem(8) == 0))) { 4916 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4917 ZextLoad = BinOp->getOperand(0); 4918 if (BinOp->getOpcode() == Instruction::Or) 4919 FoundOr = true; 4920 } 4921 // Check if the input is an extended load of the required or/shift expression. 4922 Value *LoadPtr; 4923 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4924 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4925 return false; 4926 4927 // Require that the total load bit width is a legal integer type. 4928 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4929 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4930 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4931 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4932 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4933 return false; 4934 4935 // Everything matched - assume that we can fold the whole sequence using 4936 // load combining. 4937 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4938 << *(cast<Instruction>(Root)) << "\n"); 4939 4940 return true; 4941 } 4942 4943 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4944 if (RdxKind != RecurKind::Or) 4945 return false; 4946 4947 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4948 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4949 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4950 /* MatchOr */ false); 4951 } 4952 4953 bool BoUpSLP::isLoadCombineCandidate() const { 4954 // Peek through a final sequence of stores and check if all operations are 4955 // likely to be load-combined. 4956 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4957 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4958 Value *X; 4959 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4960 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 4961 return false; 4962 } 4963 return true; 4964 } 4965 4966 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4967 // No need to vectorize inserts of gathered values. 4968 if (VectorizableTree.size() == 2 && 4969 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 4970 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4971 return true; 4972 4973 // We can vectorize the tree if its size is greater than or equal to the 4974 // minimum size specified by the MinTreeSize command line option. 4975 if (VectorizableTree.size() >= MinTreeSize) 4976 return false; 4977 4978 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4979 // can vectorize it if we can prove it fully vectorizable. 4980 if (isFullyVectorizableTinyTree()) 4981 return false; 4982 4983 assert(VectorizableTree.empty() 4984 ? ExternalUses.empty() 4985 : true && "We shouldn't have any external users"); 4986 4987 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4988 // vectorizable. 4989 return true; 4990 } 4991 4992 InstructionCost BoUpSLP::getSpillCost() const { 4993 // Walk from the bottom of the tree to the top, tracking which values are 4994 // live. When we see a call instruction that is not part of our tree, 4995 // query TTI to see if there is a cost to keeping values live over it 4996 // (for example, if spills and fills are required). 4997 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4998 InstructionCost Cost = 0; 4999 5000 SmallPtrSet<Instruction*, 4> LiveValues; 5001 Instruction *PrevInst = nullptr; 5002 5003 // The entries in VectorizableTree are not necessarily ordered by their 5004 // position in basic blocks. Collect them and order them by dominance so later 5005 // instructions are guaranteed to be visited first. For instructions in 5006 // different basic blocks, we only scan to the beginning of the block, so 5007 // their order does not matter, as long as all instructions in a basic block 5008 // are grouped together. Using dominance ensures a deterministic order. 5009 SmallVector<Instruction *, 16> OrderedScalars; 5010 for (const auto &TEPtr : VectorizableTree) { 5011 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5012 if (!Inst) 5013 continue; 5014 OrderedScalars.push_back(Inst); 5015 } 5016 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5017 auto *NodeA = DT->getNode(A->getParent()); 5018 auto *NodeB = DT->getNode(B->getParent()); 5019 assert(NodeA && "Should only process reachable instructions"); 5020 assert(NodeB && "Should only process reachable instructions"); 5021 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5022 "Different nodes should have different DFS numbers"); 5023 if (NodeA != NodeB) 5024 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5025 return B->comesBefore(A); 5026 }); 5027 5028 for (Instruction *Inst : OrderedScalars) { 5029 if (!PrevInst) { 5030 PrevInst = Inst; 5031 continue; 5032 } 5033 5034 // Update LiveValues. 5035 LiveValues.erase(PrevInst); 5036 for (auto &J : PrevInst->operands()) { 5037 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5038 LiveValues.insert(cast<Instruction>(&*J)); 5039 } 5040 5041 LLVM_DEBUG({ 5042 dbgs() << "SLP: #LV: " << LiveValues.size(); 5043 for (auto *X : LiveValues) 5044 dbgs() << " " << X->getName(); 5045 dbgs() << ", Looking at "; 5046 Inst->dump(); 5047 }); 5048 5049 // Now find the sequence of instructions between PrevInst and Inst. 5050 unsigned NumCalls = 0; 5051 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5052 PrevInstIt = 5053 PrevInst->getIterator().getReverse(); 5054 while (InstIt != PrevInstIt) { 5055 if (PrevInstIt == PrevInst->getParent()->rend()) { 5056 PrevInstIt = Inst->getParent()->rbegin(); 5057 continue; 5058 } 5059 5060 // Debug information does not impact spill cost. 5061 if ((isa<CallInst>(&*PrevInstIt) && 5062 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5063 &*PrevInstIt != PrevInst) 5064 NumCalls++; 5065 5066 ++PrevInstIt; 5067 } 5068 5069 if (NumCalls) { 5070 SmallVector<Type*, 4> V; 5071 for (auto *II : LiveValues) { 5072 auto *ScalarTy = II->getType(); 5073 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5074 ScalarTy = VectorTy->getElementType(); 5075 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5076 } 5077 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5078 } 5079 5080 PrevInst = Inst; 5081 } 5082 5083 return Cost; 5084 } 5085 5086 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5087 InstructionCost Cost = 0; 5088 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5089 << VectorizableTree.size() << ".\n"); 5090 5091 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5092 5093 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5094 TreeEntry &TE = *VectorizableTree[I].get(); 5095 5096 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5097 Cost += C; 5098 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5099 << " for bundle that starts with " << *TE.Scalars[0] 5100 << ".\n" 5101 << "SLP: Current total cost = " << Cost << "\n"); 5102 } 5103 5104 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5105 InstructionCost ExtractCost = 0; 5106 SmallVector<unsigned> VF; 5107 SmallVector<SmallVector<int>> ShuffleMask; 5108 SmallVector<Value *> FirstUsers; 5109 SmallVector<APInt> DemandedElts; 5110 for (ExternalUser &EU : ExternalUses) { 5111 // We only add extract cost once for the same scalar. 5112 if (!ExtractCostCalculated.insert(EU.Scalar).second) 5113 continue; 5114 5115 // Uses by ephemeral values are free (because the ephemeral value will be 5116 // removed prior to code generation, and so the extraction will be 5117 // removed as well). 5118 if (EphValues.count(EU.User)) 5119 continue; 5120 5121 // No extract cost for vector "scalar" 5122 if (isa<FixedVectorType>(EU.Scalar->getType())) 5123 continue; 5124 5125 // Already counted the cost for external uses when tried to adjust the cost 5126 // for extractelements, no need to add it again. 5127 if (isa<ExtractElementInst>(EU.Scalar)) 5128 continue; 5129 5130 // If found user is an insertelement, do not calculate extract cost but try 5131 // to detect it as a final shuffled/identity match. 5132 if (EU.User && isa<InsertElementInst>(EU.User)) { 5133 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5134 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5135 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5136 continue; 5137 Value *VU = EU.User; 5138 auto *It = find_if(FirstUsers, [VU](Value *V) { 5139 // Checks if 2 insertelements are from the same buildvector. 5140 if (VU->getType() != V->getType()) 5141 return false; 5142 auto *IE1 = cast<InsertElementInst>(VU); 5143 auto *IE2 = cast<InsertElementInst>(V); 5144 // Go though of insertelement instructions trying to find either VU as 5145 // the original vector for IE2 or V as the original vector for IE1. 5146 do { 5147 if (IE1 == VU || IE2 == V) 5148 return true; 5149 if (IE1) 5150 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5151 if (IE2) 5152 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5153 } while (IE1 || IE2); 5154 return false; 5155 }); 5156 int VecId = -1; 5157 if (It == FirstUsers.end()) { 5158 VF.push_back(FTy->getNumElements()); 5159 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5160 FirstUsers.push_back(EU.User); 5161 DemandedElts.push_back(APInt::getNullValue(VF.back())); 5162 VecId = FirstUsers.size() - 1; 5163 } else { 5164 VecId = std::distance(FirstUsers.begin(), It); 5165 } 5166 int Idx = *InsertIdx; 5167 ShuffleMask[VecId][Idx] = EU.Lane; 5168 DemandedElts[VecId].setBit(Idx); 5169 } 5170 } 5171 5172 // If we plan to rewrite the tree in a smaller type, we will need to sign 5173 // extend the extracted value back to the original type. Here, we account 5174 // for the extract and the added cost of the sign extend if needed. 5175 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5176 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5177 if (MinBWs.count(ScalarRoot)) { 5178 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5179 auto Extend = 5180 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5181 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5182 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5183 VecTy, EU.Lane); 5184 } else { 5185 ExtractCost += 5186 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5187 } 5188 } 5189 5190 InstructionCost SpillCost = getSpillCost(); 5191 Cost += SpillCost + ExtractCost; 5192 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5193 // For the very first element - simple shuffle of the source vector. 5194 int Limit = ShuffleMask[I].size() * 2; 5195 if (I == 0 && 5196 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5197 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5198 InstructionCost C = TTI->getShuffleCost( 5199 TTI::SK_PermuteSingleSrc, 5200 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5201 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5202 << " for final shuffle of insertelement external users " 5203 << *VectorizableTree.front()->Scalars.front() << ".\n" 5204 << "SLP: Current total cost = " << Cost << "\n"); 5205 Cost += C; 5206 continue; 5207 } 5208 // Other elements - permutation of 2 vectors (the initial one and the next 5209 // Ith incoming vector). 5210 unsigned VF = ShuffleMask[I].size(); 5211 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5212 int &Mask = ShuffleMask[I][Idx]; 5213 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5214 } 5215 InstructionCost C = TTI->getShuffleCost( 5216 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5217 ShuffleMask[I]); 5218 LLVM_DEBUG( 5219 dbgs() 5220 << "SLP: Adding cost " << C 5221 << " for final shuffle of vector node and external insertelement users " 5222 << *VectorizableTree.front()->Scalars.front() << ".\n" 5223 << "SLP: Current total cost = " << Cost << "\n"); 5224 Cost += C; 5225 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5226 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5227 /*Insert*/ true, 5228 /*Extract*/ false); 5229 Cost -= InsertCost; 5230 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5231 << " for insertelements gather.\n" 5232 << "SLP: Current total cost = " << Cost << "\n"); 5233 } 5234 5235 #ifndef NDEBUG 5236 SmallString<256> Str; 5237 { 5238 raw_svector_ostream OS(Str); 5239 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5240 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5241 << "SLP: Total Cost = " << Cost << ".\n"; 5242 } 5243 LLVM_DEBUG(dbgs() << Str); 5244 if (ViewSLPTree) 5245 ViewGraph(this, "SLP" + F->getName(), false, Str); 5246 #endif 5247 5248 return Cost; 5249 } 5250 5251 Optional<TargetTransformInfo::ShuffleKind> 5252 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5253 SmallVectorImpl<const TreeEntry *> &Entries) { 5254 // TODO: currently checking only for Scalars in the tree entry, need to count 5255 // reused elements too for better cost estimation. 5256 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5257 Entries.clear(); 5258 // Build a lists of values to tree entries. 5259 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5260 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5261 if (EntryPtr.get() == TE) 5262 break; 5263 if (EntryPtr->State != TreeEntry::NeedToGather) 5264 continue; 5265 for (Value *V : EntryPtr->Scalars) 5266 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5267 } 5268 // Find all tree entries used by the gathered values. If no common entries 5269 // found - not a shuffle. 5270 // Here we build a set of tree nodes for each gathered value and trying to 5271 // find the intersection between these sets. If we have at least one common 5272 // tree node for each gathered value - we have just a permutation of the 5273 // single vector. If we have 2 different sets, we're in situation where we 5274 // have a permutation of 2 input vectors. 5275 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5276 DenseMap<Value *, int> UsedValuesEntry; 5277 for (Value *V : TE->Scalars) { 5278 if (isa<UndefValue>(V)) 5279 continue; 5280 // Build a list of tree entries where V is used. 5281 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5282 auto It = ValueToTEs.find(V); 5283 if (It != ValueToTEs.end()) 5284 VToTEs = It->second; 5285 if (const TreeEntry *VTE = getTreeEntry(V)) 5286 VToTEs.insert(VTE); 5287 if (VToTEs.empty()) 5288 return None; 5289 if (UsedTEs.empty()) { 5290 // The first iteration, just insert the list of nodes to vector. 5291 UsedTEs.push_back(VToTEs); 5292 } else { 5293 // Need to check if there are any previously used tree nodes which use V. 5294 // If there are no such nodes, consider that we have another one input 5295 // vector. 5296 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5297 unsigned Idx = 0; 5298 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5299 // Do we have a non-empty intersection of previously listed tree entries 5300 // and tree entries using current V? 5301 set_intersect(VToTEs, Set); 5302 if (!VToTEs.empty()) { 5303 // Yes, write the new subset and continue analysis for the next 5304 // scalar. 5305 Set.swap(VToTEs); 5306 break; 5307 } 5308 VToTEs = SavedVToTEs; 5309 ++Idx; 5310 } 5311 // No non-empty intersection found - need to add a second set of possible 5312 // source vectors. 5313 if (Idx == UsedTEs.size()) { 5314 // If the number of input vectors is greater than 2 - not a permutation, 5315 // fallback to the regular gather. 5316 if (UsedTEs.size() == 2) 5317 return None; 5318 UsedTEs.push_back(SavedVToTEs); 5319 Idx = UsedTEs.size() - 1; 5320 } 5321 UsedValuesEntry.try_emplace(V, Idx); 5322 } 5323 } 5324 5325 unsigned VF = 0; 5326 if (UsedTEs.size() == 1) { 5327 // Try to find the perfect match in another gather node at first. 5328 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5329 return EntryPtr->isSame(TE->Scalars); 5330 }); 5331 if (It != UsedTEs.front().end()) { 5332 Entries.push_back(*It); 5333 std::iota(Mask.begin(), Mask.end(), 0); 5334 return TargetTransformInfo::SK_PermuteSingleSrc; 5335 } 5336 // No perfect match, just shuffle, so choose the first tree node. 5337 Entries.push_back(*UsedTEs.front().begin()); 5338 } else { 5339 // Try to find nodes with the same vector factor. 5340 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5341 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 5342 // landed. 5343 auto &&GetVF = [](const TreeEntry *TE) { 5344 if (!TE->ReuseShuffleIndices.empty()) 5345 return TE->ReuseShuffleIndices.size(); 5346 return TE->Scalars.size(); 5347 }; 5348 DenseMap<int, const TreeEntry *> VFToTE; 5349 for (const TreeEntry *TE : UsedTEs.front()) 5350 VFToTE.try_emplace(GetVF(TE), TE); 5351 for (const TreeEntry *TE : UsedTEs.back()) { 5352 auto It = VFToTE.find(GetVF(TE)); 5353 if (It != VFToTE.end()) { 5354 VF = It->first; 5355 Entries.push_back(It->second); 5356 Entries.push_back(TE); 5357 break; 5358 } 5359 } 5360 // No 2 source vectors with the same vector factor - give up and do regular 5361 // gather. 5362 if (Entries.empty()) 5363 return None; 5364 } 5365 5366 // Build a shuffle mask for better cost estimation and vector emission. 5367 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5368 Value *V = TE->Scalars[I]; 5369 if (isa<UndefValue>(V)) 5370 continue; 5371 unsigned Idx = UsedValuesEntry.lookup(V); 5372 const TreeEntry *VTE = Entries[Idx]; 5373 int FoundLane = VTE->findLaneForValue(V); 5374 Mask[I] = Idx * VF + FoundLane; 5375 // Extra check required by isSingleSourceMaskImpl function (called by 5376 // ShuffleVectorInst::isSingleSourceMask). 5377 if (Mask[I] >= 2 * E) 5378 return None; 5379 } 5380 switch (Entries.size()) { 5381 case 1: 5382 return TargetTransformInfo::SK_PermuteSingleSrc; 5383 case 2: 5384 return TargetTransformInfo::SK_PermuteTwoSrc; 5385 default: 5386 break; 5387 } 5388 return None; 5389 } 5390 5391 InstructionCost 5392 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5393 const DenseSet<unsigned> &ShuffledIndices) const { 5394 unsigned NumElts = Ty->getNumElements(); 5395 APInt DemandedElts = APInt::getNullValue(NumElts); 5396 for (unsigned I = 0; I < NumElts; ++I) 5397 if (!ShuffledIndices.count(I)) 5398 DemandedElts.setBit(I); 5399 InstructionCost Cost = 5400 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5401 /*Extract*/ false); 5402 if (!ShuffledIndices.empty()) 5403 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5404 return Cost; 5405 } 5406 5407 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5408 // Find the type of the operands in VL. 5409 Type *ScalarTy = VL[0]->getType(); 5410 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5411 ScalarTy = SI->getValueOperand()->getType(); 5412 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5413 // Find the cost of inserting/extracting values from the vector. 5414 // Check if the same elements are inserted several times and count them as 5415 // shuffle candidates. 5416 DenseSet<unsigned> ShuffledElements; 5417 DenseSet<Value *> UniqueElements; 5418 // Iterate in reverse order to consider insert elements with the high cost. 5419 for (unsigned I = VL.size(); I > 0; --I) { 5420 unsigned Idx = I - 1; 5421 if (isConstant(VL[Idx])) 5422 continue; 5423 if (!UniqueElements.insert(VL[Idx]).second) 5424 ShuffledElements.insert(Idx); 5425 } 5426 return getGatherCost(VecTy, ShuffledElements); 5427 } 5428 5429 // Perform operand reordering on the instructions in VL and return the reordered 5430 // operands in Left and Right. 5431 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5432 SmallVectorImpl<Value *> &Left, 5433 SmallVectorImpl<Value *> &Right, 5434 const DataLayout &DL, 5435 ScalarEvolution &SE, 5436 const BoUpSLP &R) { 5437 if (VL.empty()) 5438 return; 5439 VLOperands Ops(VL, DL, SE, R); 5440 // Reorder the operands in place. 5441 Ops.reorder(); 5442 Left = Ops.getVL(0); 5443 Right = Ops.getVL(1); 5444 } 5445 5446 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5447 // Get the basic block this bundle is in. All instructions in the bundle 5448 // should be in this block. 5449 auto *Front = E->getMainOp(); 5450 auto *BB = Front->getParent(); 5451 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5452 auto *I = cast<Instruction>(V); 5453 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5454 })); 5455 5456 // The last instruction in the bundle in program order. 5457 Instruction *LastInst = nullptr; 5458 5459 // Find the last instruction. The common case should be that BB has been 5460 // scheduled, and the last instruction is VL.back(). So we start with 5461 // VL.back() and iterate over schedule data until we reach the end of the 5462 // bundle. The end of the bundle is marked by null ScheduleData. 5463 if (BlocksSchedules.count(BB)) { 5464 auto *Bundle = 5465 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5466 if (Bundle && Bundle->isPartOfBundle()) 5467 for (; Bundle; Bundle = Bundle->NextInBundle) 5468 if (Bundle->OpValue == Bundle->Inst) 5469 LastInst = Bundle->Inst; 5470 } 5471 5472 // LastInst can still be null at this point if there's either not an entry 5473 // for BB in BlocksSchedules or there's no ScheduleData available for 5474 // VL.back(). This can be the case if buildTree_rec aborts for various 5475 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5476 // size is reached, etc.). ScheduleData is initialized in the scheduling 5477 // "dry-run". 5478 // 5479 // If this happens, we can still find the last instruction by brute force. We 5480 // iterate forwards from Front (inclusive) until we either see all 5481 // instructions in the bundle or reach the end of the block. If Front is the 5482 // last instruction in program order, LastInst will be set to Front, and we 5483 // will visit all the remaining instructions in the block. 5484 // 5485 // One of the reasons we exit early from buildTree_rec is to place an upper 5486 // bound on compile-time. Thus, taking an additional compile-time hit here is 5487 // not ideal. However, this should be exceedingly rare since it requires that 5488 // we both exit early from buildTree_rec and that the bundle be out-of-order 5489 // (causing us to iterate all the way to the end of the block). 5490 if (!LastInst) { 5491 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5492 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5493 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5494 LastInst = &I; 5495 if (Bundle.empty()) 5496 break; 5497 } 5498 } 5499 assert(LastInst && "Failed to find last instruction in bundle"); 5500 5501 // Set the insertion point after the last instruction in the bundle. Set the 5502 // debug location to Front. 5503 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5504 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5505 } 5506 5507 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5508 // List of instructions/lanes from current block and/or the blocks which are 5509 // part of the current loop. These instructions will be inserted at the end to 5510 // make it possible to optimize loops and hoist invariant instructions out of 5511 // the loops body with better chances for success. 5512 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5513 SmallSet<int, 4> PostponedIndices; 5514 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5515 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5516 SmallPtrSet<BasicBlock *, 4> Visited; 5517 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5518 InsertBB = InsertBB->getSinglePredecessor(); 5519 return InsertBB && InsertBB == InstBB; 5520 }; 5521 for (int I = 0, E = VL.size(); I < E; ++I) { 5522 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5523 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5524 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5525 PostponedIndices.insert(I).second) 5526 PostponedInsts.emplace_back(Inst, I); 5527 } 5528 5529 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5530 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5531 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5532 if (!InsElt) 5533 return Vec; 5534 GatherSeq.insert(InsElt); 5535 CSEBlocks.insert(InsElt->getParent()); 5536 // Add to our 'need-to-extract' list. 5537 if (TreeEntry *Entry = getTreeEntry(V)) { 5538 // Find which lane we need to extract. 5539 unsigned FoundLane = Entry->findLaneForValue(V); 5540 ExternalUses.emplace_back(V, InsElt, FoundLane); 5541 } 5542 return Vec; 5543 }; 5544 Value *Val0 = 5545 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5546 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5547 Value *Vec = PoisonValue::get(VecTy); 5548 SmallVector<int> NonConsts; 5549 // Insert constant values at first. 5550 for (int I = 0, E = VL.size(); I < E; ++I) { 5551 if (PostponedIndices.contains(I)) 5552 continue; 5553 if (!isConstant(VL[I])) { 5554 NonConsts.push_back(I); 5555 continue; 5556 } 5557 Vec = CreateInsertElement(Vec, VL[I], I); 5558 } 5559 // Insert non-constant values. 5560 for (int I : NonConsts) 5561 Vec = CreateInsertElement(Vec, VL[I], I); 5562 // Append instructions, which are/may be part of the loop, in the end to make 5563 // it possible to hoist non-loop-based instructions. 5564 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5565 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5566 5567 return Vec; 5568 } 5569 5570 namespace { 5571 /// Merges shuffle masks and emits final shuffle instruction, if required. 5572 class ShuffleInstructionBuilder { 5573 IRBuilderBase &Builder; 5574 const unsigned VF = 0; 5575 bool IsFinalized = false; 5576 SmallVector<int, 4> Mask; 5577 5578 public: 5579 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5580 : Builder(Builder), VF(VF) {} 5581 5582 /// Adds a mask, inverting it before applying. 5583 void addInversedMask(ArrayRef<unsigned> SubMask) { 5584 if (SubMask.empty()) 5585 return; 5586 SmallVector<int, 4> NewMask; 5587 inversePermutation(SubMask, NewMask); 5588 addMask(NewMask); 5589 } 5590 5591 /// Functions adds masks, merging them into single one. 5592 void addMask(ArrayRef<unsigned> SubMask) { 5593 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5594 addMask(NewMask); 5595 } 5596 5597 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5598 5599 Value *finalize(Value *V) { 5600 IsFinalized = true; 5601 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5602 if (VF == ValueVF && Mask.empty()) 5603 return V; 5604 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5605 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5606 addMask(NormalizedMask); 5607 5608 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5609 return V; 5610 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5611 } 5612 5613 ~ShuffleInstructionBuilder() { 5614 assert((IsFinalized || Mask.empty()) && 5615 "Shuffle construction must be finalized."); 5616 } 5617 }; 5618 } // namespace 5619 5620 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5621 unsigned VF = VL.size(); 5622 InstructionsState S = getSameOpcode(VL); 5623 if (S.getOpcode()) { 5624 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5625 if (E->isSame(VL)) { 5626 Value *V = vectorizeTree(E); 5627 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5628 if (!E->ReuseShuffleIndices.empty()) { 5629 // Reshuffle to get only unique values. 5630 // If some of the scalars are duplicated in the vectorization tree 5631 // entry, we do not vectorize them but instead generate a mask for 5632 // the reuses. But if there are several users of the same entry, 5633 // they may have different vectorization factors. This is especially 5634 // important for PHI nodes. In this case, we need to adapt the 5635 // resulting instruction for the user vectorization factor and have 5636 // to reshuffle it again to take only unique elements of the vector. 5637 // Without this code the function incorrectly returns reduced vector 5638 // instruction with the same elements, not with the unique ones. 5639 5640 // block: 5641 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5642 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 5643 // ... (use %2) 5644 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 5645 // br %block 5646 SmallVector<int> UniqueIdxs; 5647 SmallSet<int, 4> UsedIdxs; 5648 int Pos = 0; 5649 int Sz = VL.size(); 5650 for (int Idx : E->ReuseShuffleIndices) { 5651 if (Idx != Sz && UsedIdxs.insert(Idx).second) 5652 UniqueIdxs.emplace_back(Pos); 5653 ++Pos; 5654 } 5655 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5656 "less than original vector size."); 5657 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5658 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5659 } else { 5660 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5661 "Expected vectorization factor less " 5662 "than original vector size."); 5663 SmallVector<int> UniformMask(VF, 0); 5664 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5665 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5666 } 5667 } 5668 return V; 5669 } 5670 } 5671 5672 // Check that every instruction appears once in this bundle. 5673 SmallVector<int> ReuseShuffleIndicies; 5674 SmallVector<Value *> UniqueValues; 5675 if (VL.size() > 2) { 5676 DenseMap<Value *, unsigned> UniquePositions; 5677 unsigned NumValues = 5678 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5679 return !isa<UndefValue>(V); 5680 }).base()); 5681 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5682 int UniqueVals = 0; 5683 for (Value *V : VL.drop_back(VL.size() - VF)) { 5684 if (isa<UndefValue>(V)) { 5685 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5686 continue; 5687 } 5688 if (isConstant(V)) { 5689 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5690 UniqueValues.emplace_back(V); 5691 continue; 5692 } 5693 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5694 ReuseShuffleIndicies.emplace_back(Res.first->second); 5695 if (Res.second) { 5696 UniqueValues.emplace_back(V); 5697 ++UniqueVals; 5698 } 5699 } 5700 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5701 // Emit pure splat vector. 5702 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5703 UndefMaskElem); 5704 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5705 ReuseShuffleIndicies.clear(); 5706 UniqueValues.clear(); 5707 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5708 } 5709 UniqueValues.append(VF - UniqueValues.size(), 5710 PoisonValue::get(VL[0]->getType())); 5711 VL = UniqueValues; 5712 } 5713 5714 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5715 Value *Vec = gather(VL); 5716 if (!ReuseShuffleIndicies.empty()) { 5717 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5718 Vec = ShuffleBuilder.finalize(Vec); 5719 if (auto *I = dyn_cast<Instruction>(Vec)) { 5720 GatherSeq.insert(I); 5721 CSEBlocks.insert(I->getParent()); 5722 } 5723 } 5724 return Vec; 5725 } 5726 5727 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5728 IRBuilder<>::InsertPointGuard Guard(Builder); 5729 5730 if (E->VectorizedValue) { 5731 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5732 return E->VectorizedValue; 5733 } 5734 5735 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5736 unsigned VF = E->Scalars.size(); 5737 if (NeedToShuffleReuses) 5738 VF = E->ReuseShuffleIndices.size(); 5739 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5740 if (E->State == TreeEntry::NeedToGather) { 5741 setInsertPointAfterBundle(E); 5742 Value *Vec; 5743 SmallVector<int> Mask; 5744 SmallVector<const TreeEntry *> Entries; 5745 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5746 isGatherShuffledEntry(E, Mask, Entries); 5747 if (Shuffle.hasValue()) { 5748 assert((Entries.size() == 1 || Entries.size() == 2) && 5749 "Expected shuffle of 1 or 2 entries."); 5750 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5751 Entries.back()->VectorizedValue, Mask); 5752 } else { 5753 Vec = gather(E->Scalars); 5754 } 5755 if (NeedToShuffleReuses) { 5756 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5757 Vec = ShuffleBuilder.finalize(Vec); 5758 if (auto *I = dyn_cast<Instruction>(Vec)) { 5759 GatherSeq.insert(I); 5760 CSEBlocks.insert(I->getParent()); 5761 } 5762 } 5763 E->VectorizedValue = Vec; 5764 return Vec; 5765 } 5766 5767 assert((E->State == TreeEntry::Vectorize || 5768 E->State == TreeEntry::ScatterVectorize) && 5769 "Unhandled state"); 5770 unsigned ShuffleOrOp = 5771 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5772 Instruction *VL0 = E->getMainOp(); 5773 Type *ScalarTy = VL0->getType(); 5774 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5775 ScalarTy = Store->getValueOperand()->getType(); 5776 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5777 ScalarTy = IE->getOperand(1)->getType(); 5778 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5779 switch (ShuffleOrOp) { 5780 case Instruction::PHI: { 5781 assert( 5782 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 5783 "PHI reordering is free."); 5784 auto *PH = cast<PHINode>(VL0); 5785 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5786 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5787 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5788 Value *V = NewPhi; 5789 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5790 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5791 V = ShuffleBuilder.finalize(V); 5792 5793 E->VectorizedValue = V; 5794 5795 // PHINodes may have multiple entries from the same block. We want to 5796 // visit every block once. 5797 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5798 5799 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5800 ValueList Operands; 5801 BasicBlock *IBB = PH->getIncomingBlock(i); 5802 5803 if (!VisitedBBs.insert(IBB).second) { 5804 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5805 continue; 5806 } 5807 5808 Builder.SetInsertPoint(IBB->getTerminator()); 5809 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5810 Value *Vec = vectorizeTree(E->getOperand(i)); 5811 NewPhi->addIncoming(Vec, IBB); 5812 } 5813 5814 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5815 "Invalid number of incoming values"); 5816 return V; 5817 } 5818 5819 case Instruction::ExtractElement: { 5820 Value *V = E->getSingleOperand(0); 5821 Builder.SetInsertPoint(VL0); 5822 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5823 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5824 V = ShuffleBuilder.finalize(V); 5825 E->VectorizedValue = V; 5826 return V; 5827 } 5828 case Instruction::ExtractValue: { 5829 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5830 Builder.SetInsertPoint(LI); 5831 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5832 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5833 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5834 Value *NewV = propagateMetadata(V, E->Scalars); 5835 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5836 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5837 NewV = ShuffleBuilder.finalize(NewV); 5838 E->VectorizedValue = NewV; 5839 return NewV; 5840 } 5841 case Instruction::InsertElement: { 5842 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 5843 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 5844 Value *V = vectorizeTree(E->getOperand(1)); 5845 5846 // Create InsertVector shuffle if necessary 5847 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5848 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 5849 })); 5850 const unsigned NumElts = 5851 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 5852 const unsigned NumScalars = E->Scalars.size(); 5853 5854 unsigned Offset = *getInsertIndex(VL0, 0); 5855 assert(Offset < NumElts && "Failed to find vector index offset"); 5856 5857 // Create shuffle to resize vector 5858 SmallVector<int> Mask; 5859 if (!E->ReorderIndices.empty()) { 5860 inversePermutation(E->ReorderIndices, Mask); 5861 Mask.append(NumElts - NumScalars, UndefMaskElem); 5862 } else { 5863 Mask.assign(NumElts, UndefMaskElem); 5864 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5865 } 5866 // Create InsertVector shuffle if necessary 5867 bool IsIdentity = true; 5868 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5869 Mask.swap(PrevMask); 5870 for (unsigned I = 0; I < NumScalars; ++I) { 5871 Value *Scalar = E->Scalars[PrevMask[I]]; 5872 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5873 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5874 continue; 5875 IsIdentity &= *InsertIdx - Offset == I; 5876 Mask[*InsertIdx - Offset] = I; 5877 } 5878 if (!IsIdentity || NumElts != NumScalars) 5879 V = Builder.CreateShuffleVector(V, Mask); 5880 5881 if ((!IsIdentity || Offset != 0 || 5882 !isa<UndefValue>(FirstInsert->getOperand(0))) && 5883 NumElts != NumScalars) { 5884 SmallVector<int> InsertMask(NumElts); 5885 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5886 for (unsigned I = 0; I < NumElts; I++) { 5887 if (Mask[I] != UndefMaskElem) 5888 InsertMask[Offset + I] = NumElts + I; 5889 } 5890 5891 V = Builder.CreateShuffleVector( 5892 FirstInsert->getOperand(0), V, InsertMask, 5893 cast<Instruction>(E->Scalars.back())->getName()); 5894 } 5895 5896 ++NumVectorInstructions; 5897 E->VectorizedValue = V; 5898 return V; 5899 } 5900 case Instruction::ZExt: 5901 case Instruction::SExt: 5902 case Instruction::FPToUI: 5903 case Instruction::FPToSI: 5904 case Instruction::FPExt: 5905 case Instruction::PtrToInt: 5906 case Instruction::IntToPtr: 5907 case Instruction::SIToFP: 5908 case Instruction::UIToFP: 5909 case Instruction::Trunc: 5910 case Instruction::FPTrunc: 5911 case Instruction::BitCast: { 5912 setInsertPointAfterBundle(E); 5913 5914 Value *InVec = vectorizeTree(E->getOperand(0)); 5915 5916 if (E->VectorizedValue) { 5917 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5918 return E->VectorizedValue; 5919 } 5920 5921 auto *CI = cast<CastInst>(VL0); 5922 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5923 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5924 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5925 V = ShuffleBuilder.finalize(V); 5926 5927 E->VectorizedValue = V; 5928 ++NumVectorInstructions; 5929 return V; 5930 } 5931 case Instruction::FCmp: 5932 case Instruction::ICmp: { 5933 setInsertPointAfterBundle(E); 5934 5935 Value *L = vectorizeTree(E->getOperand(0)); 5936 Value *R = vectorizeTree(E->getOperand(1)); 5937 5938 if (E->VectorizedValue) { 5939 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5940 return E->VectorizedValue; 5941 } 5942 5943 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5944 Value *V = Builder.CreateCmp(P0, L, R); 5945 propagateIRFlags(V, E->Scalars, VL0); 5946 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5947 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5948 V = ShuffleBuilder.finalize(V); 5949 5950 E->VectorizedValue = V; 5951 ++NumVectorInstructions; 5952 return V; 5953 } 5954 case Instruction::Select: { 5955 setInsertPointAfterBundle(E); 5956 5957 Value *Cond = vectorizeTree(E->getOperand(0)); 5958 Value *True = vectorizeTree(E->getOperand(1)); 5959 Value *False = vectorizeTree(E->getOperand(2)); 5960 5961 if (E->VectorizedValue) { 5962 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5963 return E->VectorizedValue; 5964 } 5965 5966 Value *V = Builder.CreateSelect(Cond, True, False); 5967 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5968 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5969 V = ShuffleBuilder.finalize(V); 5970 5971 E->VectorizedValue = V; 5972 ++NumVectorInstructions; 5973 return V; 5974 } 5975 case Instruction::FNeg: { 5976 setInsertPointAfterBundle(E); 5977 5978 Value *Op = vectorizeTree(E->getOperand(0)); 5979 5980 if (E->VectorizedValue) { 5981 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5982 return E->VectorizedValue; 5983 } 5984 5985 Value *V = Builder.CreateUnOp( 5986 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 5987 propagateIRFlags(V, E->Scalars, VL0); 5988 if (auto *I = dyn_cast<Instruction>(V)) 5989 V = propagateMetadata(I, E->Scalars); 5990 5991 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5992 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5993 V = ShuffleBuilder.finalize(V); 5994 5995 E->VectorizedValue = V; 5996 ++NumVectorInstructions; 5997 5998 return V; 5999 } 6000 case Instruction::Add: 6001 case Instruction::FAdd: 6002 case Instruction::Sub: 6003 case Instruction::FSub: 6004 case Instruction::Mul: 6005 case Instruction::FMul: 6006 case Instruction::UDiv: 6007 case Instruction::SDiv: 6008 case Instruction::FDiv: 6009 case Instruction::URem: 6010 case Instruction::SRem: 6011 case Instruction::FRem: 6012 case Instruction::Shl: 6013 case Instruction::LShr: 6014 case Instruction::AShr: 6015 case Instruction::And: 6016 case Instruction::Or: 6017 case Instruction::Xor: { 6018 setInsertPointAfterBundle(E); 6019 6020 Value *LHS = vectorizeTree(E->getOperand(0)); 6021 Value *RHS = vectorizeTree(E->getOperand(1)); 6022 6023 if (E->VectorizedValue) { 6024 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6025 return E->VectorizedValue; 6026 } 6027 6028 Value *V = Builder.CreateBinOp( 6029 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6030 RHS); 6031 propagateIRFlags(V, E->Scalars, VL0); 6032 if (auto *I = dyn_cast<Instruction>(V)) 6033 V = propagateMetadata(I, E->Scalars); 6034 6035 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6036 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6037 V = ShuffleBuilder.finalize(V); 6038 6039 E->VectorizedValue = V; 6040 ++NumVectorInstructions; 6041 6042 return V; 6043 } 6044 case Instruction::Load: { 6045 // Loads are inserted at the head of the tree because we don't want to 6046 // sink them all the way down past store instructions. 6047 setInsertPointAfterBundle(E); 6048 6049 LoadInst *LI = cast<LoadInst>(VL0); 6050 Instruction *NewLI; 6051 unsigned AS = LI->getPointerAddressSpace(); 6052 Value *PO = LI->getPointerOperand(); 6053 if (E->State == TreeEntry::Vectorize) { 6054 6055 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6056 6057 // The pointer operand uses an in-tree scalar so we add the new BitCast 6058 // to ExternalUses list to make sure that an extract will be generated 6059 // in the future. 6060 if (getTreeEntry(PO)) 6061 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 6062 6063 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6064 } else { 6065 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6066 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6067 // Use the minimum alignment of the gathered loads. 6068 Align CommonAlignment = LI->getAlign(); 6069 for (Value *V : E->Scalars) 6070 CommonAlignment = 6071 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6072 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6073 } 6074 Value *V = propagateMetadata(NewLI, E->Scalars); 6075 6076 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6077 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6078 V = ShuffleBuilder.finalize(V); 6079 E->VectorizedValue = V; 6080 ++NumVectorInstructions; 6081 return V; 6082 } 6083 case Instruction::Store: { 6084 auto *SI = cast<StoreInst>(VL0); 6085 unsigned AS = SI->getPointerAddressSpace(); 6086 6087 setInsertPointAfterBundle(E); 6088 6089 Value *VecValue = vectorizeTree(E->getOperand(0)); 6090 ShuffleBuilder.addMask(E->ReorderIndices); 6091 VecValue = ShuffleBuilder.finalize(VecValue); 6092 6093 Value *ScalarPtr = SI->getPointerOperand(); 6094 Value *VecPtr = Builder.CreateBitCast( 6095 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6096 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6097 SI->getAlign()); 6098 6099 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6100 // ExternalUses to make sure that an extract will be generated in the 6101 // future. 6102 if (getTreeEntry(ScalarPtr)) 6103 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 6104 6105 Value *V = propagateMetadata(ST, E->Scalars); 6106 6107 E->VectorizedValue = V; 6108 ++NumVectorInstructions; 6109 return V; 6110 } 6111 case Instruction::GetElementPtr: { 6112 setInsertPointAfterBundle(E); 6113 6114 Value *Op0 = vectorizeTree(E->getOperand(0)); 6115 6116 std::vector<Value *> OpVecs; 6117 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 6118 ++j) { 6119 ValueList &VL = E->getOperand(j); 6120 // Need to cast all elements to the same type before vectorization to 6121 // avoid crash. 6122 Type *VL0Ty = VL0->getOperand(j)->getType(); 6123 Type *Ty = llvm::all_of( 6124 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 6125 ? VL0Ty 6126 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 6127 ->getPointerOperandType() 6128 ->getScalarType()); 6129 for (Value *&V : VL) { 6130 auto *CI = cast<ConstantInt>(V); 6131 V = ConstantExpr::getIntegerCast(CI, Ty, 6132 CI->getValue().isSignBitSet()); 6133 } 6134 Value *OpVec = vectorizeTree(VL); 6135 OpVecs.push_back(OpVec); 6136 } 6137 6138 Value *V = Builder.CreateGEP( 6139 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 6140 if (Instruction *I = dyn_cast<Instruction>(V)) 6141 V = propagateMetadata(I, E->Scalars); 6142 6143 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6144 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6145 V = ShuffleBuilder.finalize(V); 6146 6147 E->VectorizedValue = V; 6148 ++NumVectorInstructions; 6149 6150 return V; 6151 } 6152 case Instruction::Call: { 6153 CallInst *CI = cast<CallInst>(VL0); 6154 setInsertPointAfterBundle(E); 6155 6156 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6157 if (Function *FI = CI->getCalledFunction()) 6158 IID = FI->getIntrinsicID(); 6159 6160 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6161 6162 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6163 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6164 VecCallCosts.first <= VecCallCosts.second; 6165 6166 Value *ScalarArg = nullptr; 6167 std::vector<Value *> OpVecs; 6168 SmallVector<Type *, 2> TysForDecl = 6169 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6170 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 6171 ValueList OpVL; 6172 // Some intrinsics have scalar arguments. This argument should not be 6173 // vectorized. 6174 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6175 CallInst *CEI = cast<CallInst>(VL0); 6176 ScalarArg = CEI->getArgOperand(j); 6177 OpVecs.push_back(CEI->getArgOperand(j)); 6178 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6179 TysForDecl.push_back(ScalarArg->getType()); 6180 continue; 6181 } 6182 6183 Value *OpVec = vectorizeTree(E->getOperand(j)); 6184 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6185 OpVecs.push_back(OpVec); 6186 } 6187 6188 Function *CF; 6189 if (!UseIntrinsic) { 6190 VFShape Shape = 6191 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6192 VecTy->getNumElements())), 6193 false /*HasGlobalPred*/); 6194 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6195 } else { 6196 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6197 } 6198 6199 SmallVector<OperandBundleDef, 1> OpBundles; 6200 CI->getOperandBundlesAsDefs(OpBundles); 6201 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6202 6203 // The scalar argument uses an in-tree scalar so we add the new vectorized 6204 // call to ExternalUses list to make sure that an extract will be 6205 // generated in the future. 6206 if (ScalarArg && getTreeEntry(ScalarArg)) 6207 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 6208 6209 propagateIRFlags(V, E->Scalars, VL0); 6210 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6211 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6212 V = ShuffleBuilder.finalize(V); 6213 6214 E->VectorizedValue = V; 6215 ++NumVectorInstructions; 6216 return V; 6217 } 6218 case Instruction::ShuffleVector: { 6219 assert(E->isAltShuffle() && 6220 ((Instruction::isBinaryOp(E->getOpcode()) && 6221 Instruction::isBinaryOp(E->getAltOpcode())) || 6222 (Instruction::isCast(E->getOpcode()) && 6223 Instruction::isCast(E->getAltOpcode()))) && 6224 "Invalid Shuffle Vector Operand"); 6225 6226 Value *LHS = nullptr, *RHS = nullptr; 6227 if (Instruction::isBinaryOp(E->getOpcode())) { 6228 setInsertPointAfterBundle(E); 6229 LHS = vectorizeTree(E->getOperand(0)); 6230 RHS = vectorizeTree(E->getOperand(1)); 6231 } else { 6232 setInsertPointAfterBundle(E); 6233 LHS = vectorizeTree(E->getOperand(0)); 6234 } 6235 6236 if (E->VectorizedValue) { 6237 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6238 return E->VectorizedValue; 6239 } 6240 6241 Value *V0, *V1; 6242 if (Instruction::isBinaryOp(E->getOpcode())) { 6243 V0 = Builder.CreateBinOp( 6244 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6245 V1 = Builder.CreateBinOp( 6246 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6247 } else { 6248 V0 = Builder.CreateCast( 6249 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6250 V1 = Builder.CreateCast( 6251 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6252 } 6253 6254 // Create shuffle to take alternate operations from the vector. 6255 // Also, gather up main and alt scalar ops to propagate IR flags to 6256 // each vector operation. 6257 ValueList OpScalars, AltScalars; 6258 SmallVector<int> Mask; 6259 buildSuffleEntryMask( 6260 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6261 [E](Instruction *I) { 6262 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6263 return I->getOpcode() == E->getAltOpcode(); 6264 }, 6265 Mask, &OpScalars, &AltScalars); 6266 6267 propagateIRFlags(V0, OpScalars); 6268 propagateIRFlags(V1, AltScalars); 6269 6270 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6271 if (Instruction *I = dyn_cast<Instruction>(V)) 6272 V = propagateMetadata(I, E->Scalars); 6273 V = ShuffleBuilder.finalize(V); 6274 6275 E->VectorizedValue = V; 6276 ++NumVectorInstructions; 6277 6278 return V; 6279 } 6280 default: 6281 llvm_unreachable("unknown inst"); 6282 } 6283 return nullptr; 6284 } 6285 6286 Value *BoUpSLP::vectorizeTree() { 6287 ExtraValueToDebugLocsMap ExternallyUsedValues; 6288 return vectorizeTree(ExternallyUsedValues); 6289 } 6290 6291 Value * 6292 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6293 // All blocks must be scheduled before any instructions are inserted. 6294 for (auto &BSIter : BlocksSchedules) { 6295 scheduleBlock(BSIter.second.get()); 6296 } 6297 6298 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6299 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6300 6301 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6302 // vectorized root. InstCombine will then rewrite the entire expression. We 6303 // sign extend the extracted values below. 6304 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6305 if (MinBWs.count(ScalarRoot)) { 6306 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6307 // If current instr is a phi and not the last phi, insert it after the 6308 // last phi node. 6309 if (isa<PHINode>(I)) 6310 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6311 else 6312 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6313 } 6314 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6315 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6316 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6317 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6318 VectorizableTree[0]->VectorizedValue = Trunc; 6319 } 6320 6321 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6322 << " values .\n"); 6323 6324 // Extract all of the elements with the external uses. 6325 for (const auto &ExternalUse : ExternalUses) { 6326 Value *Scalar = ExternalUse.Scalar; 6327 llvm::User *User = ExternalUse.User; 6328 6329 // Skip users that we already RAUW. This happens when one instruction 6330 // has multiple uses of the same value. 6331 if (User && !is_contained(Scalar->users(), User)) 6332 continue; 6333 TreeEntry *E = getTreeEntry(Scalar); 6334 assert(E && "Invalid scalar"); 6335 assert(E->State != TreeEntry::NeedToGather && 6336 "Extracting from a gather list"); 6337 6338 Value *Vec = E->VectorizedValue; 6339 assert(Vec && "Can't find vectorizable value"); 6340 6341 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6342 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6343 if (Scalar->getType() != Vec->getType()) { 6344 Value *Ex; 6345 // "Reuse" the existing extract to improve final codegen. 6346 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6347 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6348 ES->getOperand(1)); 6349 } else { 6350 Ex = Builder.CreateExtractElement(Vec, Lane); 6351 } 6352 // If necessary, sign-extend or zero-extend ScalarRoot 6353 // to the larger type. 6354 if (!MinBWs.count(ScalarRoot)) 6355 return Ex; 6356 if (MinBWs[ScalarRoot].second) 6357 return Builder.CreateSExt(Ex, Scalar->getType()); 6358 return Builder.CreateZExt(Ex, Scalar->getType()); 6359 } 6360 assert(isa<FixedVectorType>(Scalar->getType()) && 6361 isa<InsertElementInst>(Scalar) && 6362 "In-tree scalar of vector type is not insertelement?"); 6363 return Vec; 6364 }; 6365 // If User == nullptr, the Scalar is used as extra arg. Generate 6366 // ExtractElement instruction and update the record for this scalar in 6367 // ExternallyUsedValues. 6368 if (!User) { 6369 assert(ExternallyUsedValues.count(Scalar) && 6370 "Scalar with nullptr as an external user must be registered in " 6371 "ExternallyUsedValues map"); 6372 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6373 Builder.SetInsertPoint(VecI->getParent(), 6374 std::next(VecI->getIterator())); 6375 } else { 6376 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6377 } 6378 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6379 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6380 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6381 auto It = ExternallyUsedValues.find(Scalar); 6382 assert(It != ExternallyUsedValues.end() && 6383 "Externally used scalar is not found in ExternallyUsedValues"); 6384 NewInstLocs.append(It->second); 6385 ExternallyUsedValues.erase(Scalar); 6386 // Required to update internally referenced instructions. 6387 Scalar->replaceAllUsesWith(NewInst); 6388 continue; 6389 } 6390 6391 // Generate extracts for out-of-tree users. 6392 // Find the insertion point for the extractelement lane. 6393 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6394 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6395 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6396 if (PH->getIncomingValue(i) == Scalar) { 6397 Instruction *IncomingTerminator = 6398 PH->getIncomingBlock(i)->getTerminator(); 6399 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6400 Builder.SetInsertPoint(VecI->getParent(), 6401 std::next(VecI->getIterator())); 6402 } else { 6403 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6404 } 6405 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6406 CSEBlocks.insert(PH->getIncomingBlock(i)); 6407 PH->setOperand(i, NewInst); 6408 } 6409 } 6410 } else { 6411 Builder.SetInsertPoint(cast<Instruction>(User)); 6412 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6413 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6414 User->replaceUsesOfWith(Scalar, NewInst); 6415 } 6416 } else { 6417 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6418 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6419 CSEBlocks.insert(&F->getEntryBlock()); 6420 User->replaceUsesOfWith(Scalar, NewInst); 6421 } 6422 6423 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6424 } 6425 6426 // For each vectorized value: 6427 for (auto &TEPtr : VectorizableTree) { 6428 TreeEntry *Entry = TEPtr.get(); 6429 6430 // No need to handle users of gathered values. 6431 if (Entry->State == TreeEntry::NeedToGather) 6432 continue; 6433 6434 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6435 6436 // For each lane: 6437 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6438 Value *Scalar = Entry->Scalars[Lane]; 6439 6440 #ifndef NDEBUG 6441 Type *Ty = Scalar->getType(); 6442 if (!Ty->isVoidTy()) { 6443 for (User *U : Scalar->users()) { 6444 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6445 6446 // It is legal to delete users in the ignorelist. 6447 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6448 (isa_and_nonnull<Instruction>(U) && 6449 isDeleted(cast<Instruction>(U)))) && 6450 "Deleting out-of-tree value"); 6451 } 6452 } 6453 #endif 6454 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6455 eraseInstruction(cast<Instruction>(Scalar)); 6456 } 6457 } 6458 6459 Builder.ClearInsertionPoint(); 6460 InstrElementSize.clear(); 6461 6462 return VectorizableTree[0]->VectorizedValue; 6463 } 6464 6465 void BoUpSLP::optimizeGatherSequence() { 6466 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 6467 << " gather sequences instructions.\n"); 6468 // LICM InsertElementInst sequences. 6469 for (Instruction *I : GatherSeq) { 6470 if (isDeleted(I)) 6471 continue; 6472 6473 // Check if this block is inside a loop. 6474 Loop *L = LI->getLoopFor(I->getParent()); 6475 if (!L) 6476 continue; 6477 6478 // Check if it has a preheader. 6479 BasicBlock *PreHeader = L->getLoopPreheader(); 6480 if (!PreHeader) 6481 continue; 6482 6483 // If the vector or the element that we insert into it are 6484 // instructions that are defined in this basic block then we can't 6485 // hoist this instruction. 6486 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6487 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6488 if (Op0 && L->contains(Op0)) 6489 continue; 6490 if (Op1 && L->contains(Op1)) 6491 continue; 6492 6493 // We can hoist this instruction. Move it to the pre-header. 6494 I->moveBefore(PreHeader->getTerminator()); 6495 } 6496 6497 // Make a list of all reachable blocks in our CSE queue. 6498 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6499 CSEWorkList.reserve(CSEBlocks.size()); 6500 for (BasicBlock *BB : CSEBlocks) 6501 if (DomTreeNode *N = DT->getNode(BB)) { 6502 assert(DT->isReachableFromEntry(N)); 6503 CSEWorkList.push_back(N); 6504 } 6505 6506 // Sort blocks by domination. This ensures we visit a block after all blocks 6507 // dominating it are visited. 6508 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6509 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6510 "Different nodes should have different DFS numbers"); 6511 return A->getDFSNumIn() < B->getDFSNumIn(); 6512 }); 6513 6514 // Perform O(N^2) search over the gather sequences and merge identical 6515 // instructions. TODO: We can further optimize this scan if we split the 6516 // instructions into different buckets based on the insert lane. 6517 SmallVector<Instruction *, 16> Visited; 6518 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6519 assert(*I && 6520 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6521 "Worklist not sorted properly!"); 6522 BasicBlock *BB = (*I)->getBlock(); 6523 // For all instructions in blocks containing gather sequences: 6524 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 6525 Instruction *In = &*it++; 6526 if (isDeleted(In)) 6527 continue; 6528 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In) && 6529 !isa<ShuffleVectorInst>(In)) 6530 continue; 6531 6532 // Check if we can replace this instruction with any of the 6533 // visited instructions. 6534 for (Instruction *v : Visited) { 6535 if (In->isIdenticalTo(v) && 6536 DT->dominates(v->getParent(), In->getParent())) { 6537 In->replaceAllUsesWith(v); 6538 eraseInstruction(In); 6539 In = nullptr; 6540 break; 6541 } 6542 } 6543 if (In) { 6544 assert(!is_contained(Visited, In)); 6545 Visited.push_back(In); 6546 } 6547 } 6548 } 6549 CSEBlocks.clear(); 6550 GatherSeq.clear(); 6551 } 6552 6553 // Groups the instructions to a bundle (which is then a single scheduling entity) 6554 // and schedules instructions until the bundle gets ready. 6555 Optional<BoUpSLP::ScheduleData *> 6556 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6557 const InstructionsState &S) { 6558 // No need to schedule PHIs, insertelement, extractelement and extractvalue 6559 // instructions. 6560 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 6561 return nullptr; 6562 6563 // Initialize the instruction bundle. 6564 Instruction *OldScheduleEnd = ScheduleEnd; 6565 ScheduleData *PrevInBundle = nullptr; 6566 ScheduleData *Bundle = nullptr; 6567 bool ReSchedule = false; 6568 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6569 6570 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6571 ScheduleData *Bundle) { 6572 // The scheduling region got new instructions at the lower end (or it is a 6573 // new region for the first bundle). This makes it necessary to 6574 // recalculate all dependencies. 6575 // It is seldom that this needs to be done a second time after adding the 6576 // initial bundle to the region. 6577 if (ScheduleEnd != OldScheduleEnd) { 6578 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6579 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6580 ReSchedule = true; 6581 } 6582 if (ReSchedule) { 6583 resetSchedule(); 6584 initialFillReadyList(ReadyInsts); 6585 } 6586 if (Bundle) { 6587 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6588 << " in block " << BB->getName() << "\n"); 6589 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6590 } 6591 6592 // Now try to schedule the new bundle or (if no bundle) just calculate 6593 // dependencies. As soon as the bundle is "ready" it means that there are no 6594 // cyclic dependencies and we can schedule it. Note that's important that we 6595 // don't "schedule" the bundle yet (see cancelScheduling). 6596 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6597 !ReadyInsts.empty()) { 6598 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6599 if (Picked->isSchedulingEntity() && Picked->isReady()) 6600 schedule(Picked, ReadyInsts); 6601 } 6602 }; 6603 6604 // Make sure that the scheduling region contains all 6605 // instructions of the bundle. 6606 for (Value *V : VL) { 6607 if (!extendSchedulingRegion(V, S)) { 6608 // If the scheduling region got new instructions at the lower end (or it 6609 // is a new region for the first bundle). This makes it necessary to 6610 // recalculate all dependencies. 6611 // Otherwise the compiler may crash trying to incorrectly calculate 6612 // dependencies and emit instruction in the wrong order at the actual 6613 // scheduling. 6614 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6615 return None; 6616 } 6617 } 6618 6619 for (Value *V : VL) { 6620 ScheduleData *BundleMember = getScheduleData(V); 6621 assert(BundleMember && 6622 "no ScheduleData for bundle member (maybe not in same basic block)"); 6623 if (BundleMember->IsScheduled) { 6624 // A bundle member was scheduled as single instruction before and now 6625 // needs to be scheduled as part of the bundle. We just get rid of the 6626 // existing schedule. 6627 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6628 << " was already scheduled\n"); 6629 ReSchedule = true; 6630 } 6631 assert(BundleMember->isSchedulingEntity() && 6632 "bundle member already part of other bundle"); 6633 if (PrevInBundle) { 6634 PrevInBundle->NextInBundle = BundleMember; 6635 } else { 6636 Bundle = BundleMember; 6637 } 6638 BundleMember->UnscheduledDepsInBundle = 0; 6639 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6640 6641 // Group the instructions to a bundle. 6642 BundleMember->FirstInBundle = Bundle; 6643 PrevInBundle = BundleMember; 6644 } 6645 assert(Bundle && "Failed to find schedule bundle"); 6646 TryScheduleBundle(ReSchedule, Bundle); 6647 if (!Bundle->isReady()) { 6648 cancelScheduling(VL, S.OpValue); 6649 return None; 6650 } 6651 return Bundle; 6652 } 6653 6654 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6655 Value *OpValue) { 6656 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 6657 return; 6658 6659 ScheduleData *Bundle = getScheduleData(OpValue); 6660 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6661 assert(!Bundle->IsScheduled && 6662 "Can't cancel bundle which is already scheduled"); 6663 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6664 "tried to unbundle something which is not a bundle"); 6665 6666 // Un-bundle: make single instructions out of the bundle. 6667 ScheduleData *BundleMember = Bundle; 6668 while (BundleMember) { 6669 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6670 BundleMember->FirstInBundle = BundleMember; 6671 ScheduleData *Next = BundleMember->NextInBundle; 6672 BundleMember->NextInBundle = nullptr; 6673 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6674 if (BundleMember->UnscheduledDepsInBundle == 0) { 6675 ReadyInsts.insert(BundleMember); 6676 } 6677 BundleMember = Next; 6678 } 6679 } 6680 6681 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6682 // Allocate a new ScheduleData for the instruction. 6683 if (ChunkPos >= ChunkSize) { 6684 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6685 ChunkPos = 0; 6686 } 6687 return &(ScheduleDataChunks.back()[ChunkPos++]); 6688 } 6689 6690 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6691 const InstructionsState &S) { 6692 if (getScheduleData(V, isOneOf(S, V))) 6693 return true; 6694 Instruction *I = dyn_cast<Instruction>(V); 6695 assert(I && "bundle member must be an instruction"); 6696 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 6697 "phi nodes/insertelements/extractelements/extractvalues don't need to " 6698 "be scheduled"); 6699 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6700 ScheduleData *ISD = getScheduleData(I); 6701 if (!ISD) 6702 return false; 6703 assert(isInSchedulingRegion(ISD) && 6704 "ScheduleData not in scheduling region"); 6705 ScheduleData *SD = allocateScheduleDataChunks(); 6706 SD->Inst = I; 6707 SD->init(SchedulingRegionID, S.OpValue); 6708 ExtraScheduleDataMap[I][S.OpValue] = SD; 6709 return true; 6710 }; 6711 if (CheckSheduleForI(I)) 6712 return true; 6713 if (!ScheduleStart) { 6714 // It's the first instruction in the new region. 6715 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6716 ScheduleStart = I; 6717 ScheduleEnd = I->getNextNode(); 6718 if (isOneOf(S, I) != I) 6719 CheckSheduleForI(I); 6720 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6721 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6722 return true; 6723 } 6724 // Search up and down at the same time, because we don't know if the new 6725 // instruction is above or below the existing scheduling region. 6726 BasicBlock::reverse_iterator UpIter = 6727 ++ScheduleStart->getIterator().getReverse(); 6728 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6729 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6730 BasicBlock::iterator LowerEnd = BB->end(); 6731 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6732 &*DownIter != I) { 6733 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6734 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6735 return false; 6736 } 6737 6738 ++UpIter; 6739 ++DownIter; 6740 } 6741 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6742 assert(I->getParent() == ScheduleStart->getParent() && 6743 "Instruction is in wrong basic block."); 6744 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6745 ScheduleStart = I; 6746 if (isOneOf(S, I) != I) 6747 CheckSheduleForI(I); 6748 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6749 << "\n"); 6750 return true; 6751 } 6752 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6753 "Expected to reach top of the basic block or instruction down the " 6754 "lower end."); 6755 assert(I->getParent() == ScheduleEnd->getParent() && 6756 "Instruction is in wrong basic block."); 6757 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6758 nullptr); 6759 ScheduleEnd = I->getNextNode(); 6760 if (isOneOf(S, I) != I) 6761 CheckSheduleForI(I); 6762 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6763 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6764 return true; 6765 } 6766 6767 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6768 Instruction *ToI, 6769 ScheduleData *PrevLoadStore, 6770 ScheduleData *NextLoadStore) { 6771 ScheduleData *CurrentLoadStore = PrevLoadStore; 6772 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6773 ScheduleData *SD = ScheduleDataMap[I]; 6774 if (!SD) { 6775 SD = allocateScheduleDataChunks(); 6776 ScheduleDataMap[I] = SD; 6777 SD->Inst = I; 6778 } 6779 assert(!isInSchedulingRegion(SD) && 6780 "new ScheduleData already in scheduling region"); 6781 SD->init(SchedulingRegionID, I); 6782 6783 if (I->mayReadOrWriteMemory() && 6784 (!isa<IntrinsicInst>(I) || 6785 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6786 cast<IntrinsicInst>(I)->getIntrinsicID() != 6787 Intrinsic::pseudoprobe))) { 6788 // Update the linked list of memory accessing instructions. 6789 if (CurrentLoadStore) { 6790 CurrentLoadStore->NextLoadStore = SD; 6791 } else { 6792 FirstLoadStoreInRegion = SD; 6793 } 6794 CurrentLoadStore = SD; 6795 } 6796 } 6797 if (NextLoadStore) { 6798 if (CurrentLoadStore) 6799 CurrentLoadStore->NextLoadStore = NextLoadStore; 6800 } else { 6801 LastLoadStoreInRegion = CurrentLoadStore; 6802 } 6803 } 6804 6805 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6806 bool InsertInReadyList, 6807 BoUpSLP *SLP) { 6808 assert(SD->isSchedulingEntity()); 6809 6810 SmallVector<ScheduleData *, 10> WorkList; 6811 WorkList.push_back(SD); 6812 6813 while (!WorkList.empty()) { 6814 ScheduleData *SD = WorkList.pop_back_val(); 6815 6816 ScheduleData *BundleMember = SD; 6817 while (BundleMember) { 6818 assert(isInSchedulingRegion(BundleMember)); 6819 if (!BundleMember->hasValidDependencies()) { 6820 6821 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6822 << "\n"); 6823 BundleMember->Dependencies = 0; 6824 BundleMember->resetUnscheduledDeps(); 6825 6826 // Handle def-use chain dependencies. 6827 if (BundleMember->OpValue != BundleMember->Inst) { 6828 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6829 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6830 BundleMember->Dependencies++; 6831 ScheduleData *DestBundle = UseSD->FirstInBundle; 6832 if (!DestBundle->IsScheduled) 6833 BundleMember->incrementUnscheduledDeps(1); 6834 if (!DestBundle->hasValidDependencies()) 6835 WorkList.push_back(DestBundle); 6836 } 6837 } else { 6838 for (User *U : BundleMember->Inst->users()) { 6839 if (isa<Instruction>(U)) { 6840 ScheduleData *UseSD = getScheduleData(U); 6841 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6842 BundleMember->Dependencies++; 6843 ScheduleData *DestBundle = UseSD->FirstInBundle; 6844 if (!DestBundle->IsScheduled) 6845 BundleMember->incrementUnscheduledDeps(1); 6846 if (!DestBundle->hasValidDependencies()) 6847 WorkList.push_back(DestBundle); 6848 } 6849 } else { 6850 // I'm not sure if this can ever happen. But we need to be safe. 6851 // This lets the instruction/bundle never be scheduled and 6852 // eventually disable vectorization. 6853 BundleMember->Dependencies++; 6854 BundleMember->incrementUnscheduledDeps(1); 6855 } 6856 } 6857 } 6858 6859 // Handle the memory dependencies. 6860 ScheduleData *DepDest = BundleMember->NextLoadStore; 6861 if (DepDest) { 6862 Instruction *SrcInst = BundleMember->Inst; 6863 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6864 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6865 unsigned numAliased = 0; 6866 unsigned DistToSrc = 1; 6867 6868 while (DepDest) { 6869 assert(isInSchedulingRegion(DepDest)); 6870 6871 // We have two limits to reduce the complexity: 6872 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6873 // SLP->isAliased (which is the expensive part in this loop). 6874 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6875 // the whole loop (even if the loop is fast, it's quadratic). 6876 // It's important for the loop break condition (see below) to 6877 // check this limit even between two read-only instructions. 6878 if (DistToSrc >= MaxMemDepDistance || 6879 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6880 (numAliased >= AliasedCheckLimit || 6881 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6882 6883 // We increment the counter only if the locations are aliased 6884 // (instead of counting all alias checks). This gives a better 6885 // balance between reduced runtime and accurate dependencies. 6886 numAliased++; 6887 6888 DepDest->MemoryDependencies.push_back(BundleMember); 6889 BundleMember->Dependencies++; 6890 ScheduleData *DestBundle = DepDest->FirstInBundle; 6891 if (!DestBundle->IsScheduled) { 6892 BundleMember->incrementUnscheduledDeps(1); 6893 } 6894 if (!DestBundle->hasValidDependencies()) { 6895 WorkList.push_back(DestBundle); 6896 } 6897 } 6898 DepDest = DepDest->NextLoadStore; 6899 6900 // Example, explaining the loop break condition: Let's assume our 6901 // starting instruction is i0 and MaxMemDepDistance = 3. 6902 // 6903 // +--------v--v--v 6904 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6905 // +--------^--^--^ 6906 // 6907 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6908 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6909 // Previously we already added dependencies from i3 to i6,i7,i8 6910 // (because of MaxMemDepDistance). As we added a dependency from 6911 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6912 // and we can abort this loop at i6. 6913 if (DistToSrc >= 2 * MaxMemDepDistance) 6914 break; 6915 DistToSrc++; 6916 } 6917 } 6918 } 6919 BundleMember = BundleMember->NextInBundle; 6920 } 6921 if (InsertInReadyList && SD->isReady()) { 6922 ReadyInsts.push_back(SD); 6923 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6924 << "\n"); 6925 } 6926 } 6927 } 6928 6929 void BoUpSLP::BlockScheduling::resetSchedule() { 6930 assert(ScheduleStart && 6931 "tried to reset schedule on block which has not been scheduled"); 6932 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6933 doForAllOpcodes(I, [&](ScheduleData *SD) { 6934 assert(isInSchedulingRegion(SD) && 6935 "ScheduleData not in scheduling region"); 6936 SD->IsScheduled = false; 6937 SD->resetUnscheduledDeps(); 6938 }); 6939 } 6940 ReadyInsts.clear(); 6941 } 6942 6943 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 6944 if (!BS->ScheduleStart) 6945 return; 6946 6947 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 6948 6949 BS->resetSchedule(); 6950 6951 // For the real scheduling we use a more sophisticated ready-list: it is 6952 // sorted by the original instruction location. This lets the final schedule 6953 // be as close as possible to the original instruction order. 6954 struct ScheduleDataCompare { 6955 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 6956 return SD2->SchedulingPriority < SD1->SchedulingPriority; 6957 } 6958 }; 6959 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 6960 6961 // Ensure that all dependency data is updated and fill the ready-list with 6962 // initial instructions. 6963 int Idx = 0; 6964 int NumToSchedule = 0; 6965 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 6966 I = I->getNextNode()) { 6967 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 6968 assert((isVectorLikeInstWithConstOps(SD->Inst) || 6969 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 6970 "scheduler and vectorizer bundle mismatch"); 6971 SD->FirstInBundle->SchedulingPriority = Idx++; 6972 if (SD->isSchedulingEntity()) { 6973 BS->calculateDependencies(SD, false, this); 6974 NumToSchedule++; 6975 } 6976 }); 6977 } 6978 BS->initialFillReadyList(ReadyInsts); 6979 6980 Instruction *LastScheduledInst = BS->ScheduleEnd; 6981 6982 // Do the "real" scheduling. 6983 while (!ReadyInsts.empty()) { 6984 ScheduleData *picked = *ReadyInsts.begin(); 6985 ReadyInsts.erase(ReadyInsts.begin()); 6986 6987 // Move the scheduled instruction(s) to their dedicated places, if not 6988 // there yet. 6989 ScheduleData *BundleMember = picked; 6990 while (BundleMember) { 6991 Instruction *pickedInst = BundleMember->Inst; 6992 if (pickedInst->getNextNode() != LastScheduledInst) { 6993 BS->BB->getInstList().remove(pickedInst); 6994 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 6995 pickedInst); 6996 } 6997 LastScheduledInst = pickedInst; 6998 BundleMember = BundleMember->NextInBundle; 6999 } 7000 7001 BS->schedule(picked, ReadyInsts); 7002 NumToSchedule--; 7003 } 7004 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7005 7006 // Avoid duplicate scheduling of the block. 7007 BS->ScheduleStart = nullptr; 7008 } 7009 7010 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7011 // If V is a store, just return the width of the stored value (or value 7012 // truncated just before storing) without traversing the expression tree. 7013 // This is the common case. 7014 if (auto *Store = dyn_cast<StoreInst>(V)) { 7015 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7016 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7017 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7018 } 7019 7020 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7021 return getVectorElementSize(IEI->getOperand(1)); 7022 7023 auto E = InstrElementSize.find(V); 7024 if (E != InstrElementSize.end()) 7025 return E->second; 7026 7027 // If V is not a store, we can traverse the expression tree to find loads 7028 // that feed it. The type of the loaded value may indicate a more suitable 7029 // width than V's type. We want to base the vector element size on the width 7030 // of memory operations where possible. 7031 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7032 SmallPtrSet<Instruction *, 16> Visited; 7033 if (auto *I = dyn_cast<Instruction>(V)) { 7034 Worklist.emplace_back(I, I->getParent()); 7035 Visited.insert(I); 7036 } 7037 7038 // Traverse the expression tree in bottom-up order looking for loads. If we 7039 // encounter an instruction we don't yet handle, we give up. 7040 auto Width = 0u; 7041 while (!Worklist.empty()) { 7042 Instruction *I; 7043 BasicBlock *Parent; 7044 std::tie(I, Parent) = Worklist.pop_back_val(); 7045 7046 // We should only be looking at scalar instructions here. If the current 7047 // instruction has a vector type, skip. 7048 auto *Ty = I->getType(); 7049 if (isa<VectorType>(Ty)) 7050 continue; 7051 7052 // If the current instruction is a load, update MaxWidth to reflect the 7053 // width of the loaded value. 7054 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7055 isa<ExtractValueInst>(I)) 7056 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7057 7058 // Otherwise, we need to visit the operands of the instruction. We only 7059 // handle the interesting cases from buildTree here. If an operand is an 7060 // instruction we haven't yet visited and from the same basic block as the 7061 // user or the use is a PHI node, we add it to the worklist. 7062 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7063 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7064 isa<UnaryOperator>(I)) { 7065 for (Use &U : I->operands()) 7066 if (auto *J = dyn_cast<Instruction>(U.get())) 7067 if (Visited.insert(J).second && 7068 (isa<PHINode>(I) || J->getParent() == Parent)) 7069 Worklist.emplace_back(J, J->getParent()); 7070 } else { 7071 break; 7072 } 7073 } 7074 7075 // If we didn't encounter a memory access in the expression tree, or if we 7076 // gave up for some reason, just return the width of V. Otherwise, return the 7077 // maximum width we found. 7078 if (!Width) { 7079 if (auto *CI = dyn_cast<CmpInst>(V)) 7080 V = CI->getOperand(0); 7081 Width = DL->getTypeSizeInBits(V->getType()); 7082 } 7083 7084 for (Instruction *I : Visited) 7085 InstrElementSize[I] = Width; 7086 7087 return Width; 7088 } 7089 7090 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7091 // smaller type with a truncation. We collect the values that will be demoted 7092 // in ToDemote and additional roots that require investigating in Roots. 7093 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7094 SmallVectorImpl<Value *> &ToDemote, 7095 SmallVectorImpl<Value *> &Roots) { 7096 // We can always demote constants. 7097 if (isa<Constant>(V)) { 7098 ToDemote.push_back(V); 7099 return true; 7100 } 7101 7102 // If the value is not an instruction in the expression with only one use, it 7103 // cannot be demoted. 7104 auto *I = dyn_cast<Instruction>(V); 7105 if (!I || !I->hasOneUse() || !Expr.count(I)) 7106 return false; 7107 7108 switch (I->getOpcode()) { 7109 7110 // We can always demote truncations and extensions. Since truncations can 7111 // seed additional demotion, we save the truncated value. 7112 case Instruction::Trunc: 7113 Roots.push_back(I->getOperand(0)); 7114 break; 7115 case Instruction::ZExt: 7116 case Instruction::SExt: 7117 if (isa<ExtractElementInst>(I->getOperand(0)) || 7118 isa<InsertElementInst>(I->getOperand(0))) 7119 return false; 7120 break; 7121 7122 // We can demote certain binary operations if we can demote both of their 7123 // operands. 7124 case Instruction::Add: 7125 case Instruction::Sub: 7126 case Instruction::Mul: 7127 case Instruction::And: 7128 case Instruction::Or: 7129 case Instruction::Xor: 7130 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7131 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7132 return false; 7133 break; 7134 7135 // We can demote selects if we can demote their true and false values. 7136 case Instruction::Select: { 7137 SelectInst *SI = cast<SelectInst>(I); 7138 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7139 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7140 return false; 7141 break; 7142 } 7143 7144 // We can demote phis if we can demote all their incoming operands. Note that 7145 // we don't need to worry about cycles since we ensure single use above. 7146 case Instruction::PHI: { 7147 PHINode *PN = cast<PHINode>(I); 7148 for (Value *IncValue : PN->incoming_values()) 7149 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7150 return false; 7151 break; 7152 } 7153 7154 // Otherwise, conservatively give up. 7155 default: 7156 return false; 7157 } 7158 7159 // Record the value that we can demote. 7160 ToDemote.push_back(V); 7161 return true; 7162 } 7163 7164 void BoUpSLP::computeMinimumValueSizes() { 7165 // If there are no external uses, the expression tree must be rooted by a 7166 // store. We can't demote in-memory values, so there is nothing to do here. 7167 if (ExternalUses.empty()) 7168 return; 7169 7170 // We only attempt to truncate integer expressions. 7171 auto &TreeRoot = VectorizableTree[0]->Scalars; 7172 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7173 if (!TreeRootIT) 7174 return; 7175 7176 // If the expression is not rooted by a store, these roots should have 7177 // external uses. We will rely on InstCombine to rewrite the expression in 7178 // the narrower type. However, InstCombine only rewrites single-use values. 7179 // This means that if a tree entry other than a root is used externally, it 7180 // must have multiple uses and InstCombine will not rewrite it. The code 7181 // below ensures that only the roots are used externally. 7182 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7183 for (auto &EU : ExternalUses) 7184 if (!Expr.erase(EU.Scalar)) 7185 return; 7186 if (!Expr.empty()) 7187 return; 7188 7189 // Collect the scalar values of the vectorizable expression. We will use this 7190 // context to determine which values can be demoted. If we see a truncation, 7191 // we mark it as seeding another demotion. 7192 for (auto &EntryPtr : VectorizableTree) 7193 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7194 7195 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7196 // have a single external user that is not in the vectorizable tree. 7197 for (auto *Root : TreeRoot) 7198 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7199 return; 7200 7201 // Conservatively determine if we can actually truncate the roots of the 7202 // expression. Collect the values that can be demoted in ToDemote and 7203 // additional roots that require investigating in Roots. 7204 SmallVector<Value *, 32> ToDemote; 7205 SmallVector<Value *, 4> Roots; 7206 for (auto *Root : TreeRoot) 7207 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7208 return; 7209 7210 // The maximum bit width required to represent all the values that can be 7211 // demoted without loss of precision. It would be safe to truncate the roots 7212 // of the expression to this width. 7213 auto MaxBitWidth = 8u; 7214 7215 // We first check if all the bits of the roots are demanded. If they're not, 7216 // we can truncate the roots to this narrower type. 7217 for (auto *Root : TreeRoot) { 7218 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7219 MaxBitWidth = std::max<unsigned>( 7220 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7221 } 7222 7223 // True if the roots can be zero-extended back to their original type, rather 7224 // than sign-extended. We know that if the leading bits are not demanded, we 7225 // can safely zero-extend. So we initialize IsKnownPositive to True. 7226 bool IsKnownPositive = true; 7227 7228 // If all the bits of the roots are demanded, we can try a little harder to 7229 // compute a narrower type. This can happen, for example, if the roots are 7230 // getelementptr indices. InstCombine promotes these indices to the pointer 7231 // width. Thus, all their bits are technically demanded even though the 7232 // address computation might be vectorized in a smaller type. 7233 // 7234 // We start by looking at each entry that can be demoted. We compute the 7235 // maximum bit width required to store the scalar by using ValueTracking to 7236 // compute the number of high-order bits we can truncate. 7237 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7238 llvm::all_of(TreeRoot, [](Value *R) { 7239 assert(R->hasOneUse() && "Root should have only one use!"); 7240 return isa<GetElementPtrInst>(R->user_back()); 7241 })) { 7242 MaxBitWidth = 8u; 7243 7244 // Determine if the sign bit of all the roots is known to be zero. If not, 7245 // IsKnownPositive is set to False. 7246 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7247 KnownBits Known = computeKnownBits(R, *DL); 7248 return Known.isNonNegative(); 7249 }); 7250 7251 // Determine the maximum number of bits required to store the scalar 7252 // values. 7253 for (auto *Scalar : ToDemote) { 7254 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7255 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7256 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7257 } 7258 7259 // If we can't prove that the sign bit is zero, we must add one to the 7260 // maximum bit width to account for the unknown sign bit. This preserves 7261 // the existing sign bit so we can safely sign-extend the root back to the 7262 // original type. Otherwise, if we know the sign bit is zero, we will 7263 // zero-extend the root instead. 7264 // 7265 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7266 // one to the maximum bit width will yield a larger-than-necessary 7267 // type. In general, we need to add an extra bit only if we can't 7268 // prove that the upper bit of the original type is equal to the 7269 // upper bit of the proposed smaller type. If these two bits are the 7270 // same (either zero or one) we know that sign-extending from the 7271 // smaller type will result in the same value. Here, since we can't 7272 // yet prove this, we are just making the proposed smaller type 7273 // larger to ensure correctness. 7274 if (!IsKnownPositive) 7275 ++MaxBitWidth; 7276 } 7277 7278 // Round MaxBitWidth up to the next power-of-two. 7279 if (!isPowerOf2_64(MaxBitWidth)) 7280 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7281 7282 // If the maximum bit width we compute is less than the with of the roots' 7283 // type, we can proceed with the narrowing. Otherwise, do nothing. 7284 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7285 return; 7286 7287 // If we can truncate the root, we must collect additional values that might 7288 // be demoted as a result. That is, those seeded by truncations we will 7289 // modify. 7290 while (!Roots.empty()) 7291 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7292 7293 // Finally, map the values we can demote to the maximum bit with we computed. 7294 for (auto *Scalar : ToDemote) 7295 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7296 } 7297 7298 namespace { 7299 7300 /// The SLPVectorizer Pass. 7301 struct SLPVectorizer : public FunctionPass { 7302 SLPVectorizerPass Impl; 7303 7304 /// Pass identification, replacement for typeid 7305 static char ID; 7306 7307 explicit SLPVectorizer() : FunctionPass(ID) { 7308 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7309 } 7310 7311 bool doInitialization(Module &M) override { 7312 return false; 7313 } 7314 7315 bool runOnFunction(Function &F) override { 7316 if (skipFunction(F)) 7317 return false; 7318 7319 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7320 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7321 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7322 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7323 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7324 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7325 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7326 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7327 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7328 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7329 7330 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7331 } 7332 7333 void getAnalysisUsage(AnalysisUsage &AU) const override { 7334 FunctionPass::getAnalysisUsage(AU); 7335 AU.addRequired<AssumptionCacheTracker>(); 7336 AU.addRequired<ScalarEvolutionWrapperPass>(); 7337 AU.addRequired<AAResultsWrapperPass>(); 7338 AU.addRequired<TargetTransformInfoWrapperPass>(); 7339 AU.addRequired<LoopInfoWrapperPass>(); 7340 AU.addRequired<DominatorTreeWrapperPass>(); 7341 AU.addRequired<DemandedBitsWrapperPass>(); 7342 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7343 AU.addRequired<InjectTLIMappingsLegacy>(); 7344 AU.addPreserved<LoopInfoWrapperPass>(); 7345 AU.addPreserved<DominatorTreeWrapperPass>(); 7346 AU.addPreserved<AAResultsWrapperPass>(); 7347 AU.addPreserved<GlobalsAAWrapperPass>(); 7348 AU.setPreservesCFG(); 7349 } 7350 }; 7351 7352 } // end anonymous namespace 7353 7354 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7355 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7356 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7357 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7358 auto *AA = &AM.getResult<AAManager>(F); 7359 auto *LI = &AM.getResult<LoopAnalysis>(F); 7360 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7361 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7362 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7363 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7364 7365 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7366 if (!Changed) 7367 return PreservedAnalyses::all(); 7368 7369 PreservedAnalyses PA; 7370 PA.preserveSet<CFGAnalyses>(); 7371 return PA; 7372 } 7373 7374 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7375 TargetTransformInfo *TTI_, 7376 TargetLibraryInfo *TLI_, AAResults *AA_, 7377 LoopInfo *LI_, DominatorTree *DT_, 7378 AssumptionCache *AC_, DemandedBits *DB_, 7379 OptimizationRemarkEmitter *ORE_) { 7380 if (!RunSLPVectorization) 7381 return false; 7382 SE = SE_; 7383 TTI = TTI_; 7384 TLI = TLI_; 7385 AA = AA_; 7386 LI = LI_; 7387 DT = DT_; 7388 AC = AC_; 7389 DB = DB_; 7390 DL = &F.getParent()->getDataLayout(); 7391 7392 Stores.clear(); 7393 GEPs.clear(); 7394 bool Changed = false; 7395 7396 // If the target claims to have no vector registers don't attempt 7397 // vectorization. 7398 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7399 return false; 7400 7401 // Don't vectorize when the attribute NoImplicitFloat is used. 7402 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7403 return false; 7404 7405 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7406 7407 // Use the bottom up slp vectorizer to construct chains that start with 7408 // store instructions. 7409 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7410 7411 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7412 // delete instructions. 7413 7414 // Update DFS numbers now so that we can use them for ordering. 7415 DT->updateDFSNumbers(); 7416 7417 // Scan the blocks in the function in post order. 7418 for (auto BB : post_order(&F.getEntryBlock())) { 7419 collectSeedInstructions(BB); 7420 7421 // Vectorize trees that end at stores. 7422 if (!Stores.empty()) { 7423 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7424 << " underlying objects.\n"); 7425 Changed |= vectorizeStoreChains(R); 7426 } 7427 7428 // Vectorize trees that end at reductions. 7429 Changed |= vectorizeChainsInBlock(BB, R); 7430 7431 // Vectorize the index computations of getelementptr instructions. This 7432 // is primarily intended to catch gather-like idioms ending at 7433 // non-consecutive loads. 7434 if (!GEPs.empty()) { 7435 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7436 << " underlying objects.\n"); 7437 Changed |= vectorizeGEPIndices(BB, R); 7438 } 7439 } 7440 7441 if (Changed) { 7442 R.optimizeGatherSequence(); 7443 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7444 } 7445 return Changed; 7446 } 7447 7448 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7449 unsigned Idx) { 7450 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7451 << "\n"); 7452 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7453 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7454 unsigned VF = Chain.size(); 7455 7456 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7457 return false; 7458 7459 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7460 << "\n"); 7461 7462 R.buildTree(Chain); 7463 if (R.isTreeTinyAndNotFullyVectorizable()) 7464 return false; 7465 if (R.isLoadCombineCandidate()) 7466 return false; 7467 R.reorderTopToBottom(); 7468 R.reorderBottomToTop(); 7469 R.buildExternalUses(); 7470 7471 R.computeMinimumValueSizes(); 7472 7473 InstructionCost Cost = R.getTreeCost(); 7474 7475 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7476 if (Cost < -SLPCostThreshold) { 7477 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7478 7479 using namespace ore; 7480 7481 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7482 cast<StoreInst>(Chain[0])) 7483 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7484 << " and with tree size " 7485 << NV("TreeSize", R.getTreeSize())); 7486 7487 R.vectorizeTree(); 7488 return true; 7489 } 7490 7491 return false; 7492 } 7493 7494 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7495 BoUpSLP &R) { 7496 // We may run into multiple chains that merge into a single chain. We mark the 7497 // stores that we vectorized so that we don't visit the same store twice. 7498 BoUpSLP::ValueSet VectorizedStores; 7499 bool Changed = false; 7500 7501 int E = Stores.size(); 7502 SmallBitVector Tails(E, false); 7503 int MaxIter = MaxStoreLookup.getValue(); 7504 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7505 E, std::make_pair(E, INT_MAX)); 7506 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7507 int IterCnt; 7508 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7509 &CheckedPairs, 7510 &ConsecutiveChain](int K, int Idx) { 7511 if (IterCnt >= MaxIter) 7512 return true; 7513 if (CheckedPairs[Idx].test(K)) 7514 return ConsecutiveChain[K].second == 1 && 7515 ConsecutiveChain[K].first == Idx; 7516 ++IterCnt; 7517 CheckedPairs[Idx].set(K); 7518 CheckedPairs[K].set(Idx); 7519 Optional<int> Diff = getPointersDiff( 7520 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7521 Stores[Idx]->getValueOperand()->getType(), 7522 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7523 if (!Diff || *Diff == 0) 7524 return false; 7525 int Val = *Diff; 7526 if (Val < 0) { 7527 if (ConsecutiveChain[Idx].second > -Val) { 7528 Tails.set(K); 7529 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7530 } 7531 return false; 7532 } 7533 if (ConsecutiveChain[K].second <= Val) 7534 return false; 7535 7536 Tails.set(Idx); 7537 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7538 return Val == 1; 7539 }; 7540 // Do a quadratic search on all of the given stores in reverse order and find 7541 // all of the pairs of stores that follow each other. 7542 for (int Idx = E - 1; Idx >= 0; --Idx) { 7543 // If a store has multiple consecutive store candidates, search according 7544 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7545 // This is because usually pairing with immediate succeeding or preceding 7546 // candidate create the best chance to find slp vectorization opportunity. 7547 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7548 IterCnt = 0; 7549 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7550 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7551 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7552 break; 7553 } 7554 7555 // Tracks if we tried to vectorize stores starting from the given tail 7556 // already. 7557 SmallBitVector TriedTails(E, false); 7558 // For stores that start but don't end a link in the chain: 7559 for (int Cnt = E; Cnt > 0; --Cnt) { 7560 int I = Cnt - 1; 7561 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7562 continue; 7563 // We found a store instr that starts a chain. Now follow the chain and try 7564 // to vectorize it. 7565 BoUpSLP::ValueList Operands; 7566 // Collect the chain into a list. 7567 while (I != E && !VectorizedStores.count(Stores[I])) { 7568 Operands.push_back(Stores[I]); 7569 Tails.set(I); 7570 if (ConsecutiveChain[I].second != 1) { 7571 // Mark the new end in the chain and go back, if required. It might be 7572 // required if the original stores come in reversed order, for example. 7573 if (ConsecutiveChain[I].first != E && 7574 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7575 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7576 TriedTails.set(I); 7577 Tails.reset(ConsecutiveChain[I].first); 7578 if (Cnt < ConsecutiveChain[I].first + 2) 7579 Cnt = ConsecutiveChain[I].first + 2; 7580 } 7581 break; 7582 } 7583 // Move to the next value in the chain. 7584 I = ConsecutiveChain[I].first; 7585 } 7586 assert(!Operands.empty() && "Expected non-empty list of stores."); 7587 7588 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7589 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7590 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7591 7592 unsigned MinVF = R.getMinVF(EltSize); 7593 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7594 MaxElts); 7595 7596 // FIXME: Is division-by-2 the correct step? Should we assert that the 7597 // register size is a power-of-2? 7598 unsigned StartIdx = 0; 7599 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7600 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7601 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7602 if (!VectorizedStores.count(Slice.front()) && 7603 !VectorizedStores.count(Slice.back()) && 7604 vectorizeStoreChain(Slice, R, Cnt)) { 7605 // Mark the vectorized stores so that we don't vectorize them again. 7606 VectorizedStores.insert(Slice.begin(), Slice.end()); 7607 Changed = true; 7608 // If we vectorized initial block, no need to try to vectorize it 7609 // again. 7610 if (Cnt == StartIdx) 7611 StartIdx += Size; 7612 Cnt += Size; 7613 continue; 7614 } 7615 ++Cnt; 7616 } 7617 // Check if the whole array was vectorized already - exit. 7618 if (StartIdx >= Operands.size()) 7619 break; 7620 } 7621 } 7622 7623 return Changed; 7624 } 7625 7626 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7627 // Initialize the collections. We will make a single pass over the block. 7628 Stores.clear(); 7629 GEPs.clear(); 7630 7631 // Visit the store and getelementptr instructions in BB and organize them in 7632 // Stores and GEPs according to the underlying objects of their pointer 7633 // operands. 7634 for (Instruction &I : *BB) { 7635 // Ignore store instructions that are volatile or have a pointer operand 7636 // that doesn't point to a scalar type. 7637 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7638 if (!SI->isSimple()) 7639 continue; 7640 if (!isValidElementType(SI->getValueOperand()->getType())) 7641 continue; 7642 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7643 } 7644 7645 // Ignore getelementptr instructions that have more than one index, a 7646 // constant index, or a pointer operand that doesn't point to a scalar 7647 // type. 7648 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7649 auto Idx = GEP->idx_begin()->get(); 7650 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7651 continue; 7652 if (!isValidElementType(Idx->getType())) 7653 continue; 7654 if (GEP->getType()->isVectorTy()) 7655 continue; 7656 GEPs[GEP->getPointerOperand()].push_back(GEP); 7657 } 7658 } 7659 } 7660 7661 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7662 if (!A || !B) 7663 return false; 7664 Value *VL[] = {A, B}; 7665 return tryToVectorizeList(VL, R); 7666 } 7667 7668 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) { 7669 if (VL.size() < 2) 7670 return false; 7671 7672 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7673 << VL.size() << ".\n"); 7674 7675 // Check that all of the parts are instructions of the same type, 7676 // we permit an alternate opcode via InstructionsState. 7677 InstructionsState S = getSameOpcode(VL); 7678 if (!S.getOpcode()) 7679 return false; 7680 7681 Instruction *I0 = cast<Instruction>(S.OpValue); 7682 // Make sure invalid types (including vector type) are rejected before 7683 // determining vectorization factor for scalar instructions. 7684 for (Value *V : VL) { 7685 Type *Ty = V->getType(); 7686 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7687 // NOTE: the following will give user internal llvm type name, which may 7688 // not be useful. 7689 R.getORE()->emit([&]() { 7690 std::string type_str; 7691 llvm::raw_string_ostream rso(type_str); 7692 Ty->print(rso); 7693 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7694 << "Cannot SLP vectorize list: type " 7695 << rso.str() + " is unsupported by vectorizer"; 7696 }); 7697 return false; 7698 } 7699 } 7700 7701 unsigned Sz = R.getVectorElementSize(I0); 7702 unsigned MinVF = R.getMinVF(Sz); 7703 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7704 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7705 if (MaxVF < 2) { 7706 R.getORE()->emit([&]() { 7707 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7708 << "Cannot SLP vectorize list: vectorization factor " 7709 << "less than 2 is not supported"; 7710 }); 7711 return false; 7712 } 7713 7714 bool Changed = false; 7715 bool CandidateFound = false; 7716 InstructionCost MinCost = SLPCostThreshold.getValue(); 7717 Type *ScalarTy = VL[0]->getType(); 7718 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7719 ScalarTy = IE->getOperand(1)->getType(); 7720 7721 unsigned NextInst = 0, MaxInst = VL.size(); 7722 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7723 // No actual vectorization should happen, if number of parts is the same as 7724 // provided vectorization factor (i.e. the scalar type is used for vector 7725 // code during codegen). 7726 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7727 if (TTI->getNumberOfParts(VecTy) == VF) 7728 continue; 7729 for (unsigned I = NextInst; I < MaxInst; ++I) { 7730 unsigned OpsWidth = 0; 7731 7732 if (I + VF > MaxInst) 7733 OpsWidth = MaxInst - I; 7734 else 7735 OpsWidth = VF; 7736 7737 if (!isPowerOf2_32(OpsWidth)) 7738 continue; 7739 7740 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7741 break; 7742 7743 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7744 // Check that a previous iteration of this loop did not delete the Value. 7745 if (llvm::any_of(Ops, [&R](Value *V) { 7746 auto *I = dyn_cast<Instruction>(V); 7747 return I && R.isDeleted(I); 7748 })) 7749 continue; 7750 7751 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7752 << "\n"); 7753 7754 R.buildTree(Ops); 7755 if (R.isTreeTinyAndNotFullyVectorizable()) 7756 continue; 7757 R.reorderTopToBottom(); 7758 R.reorderBottomToTop(); 7759 R.buildExternalUses(); 7760 7761 R.computeMinimumValueSizes(); 7762 InstructionCost Cost = R.getTreeCost(); 7763 CandidateFound = true; 7764 MinCost = std::min(MinCost, Cost); 7765 7766 if (Cost < -SLPCostThreshold) { 7767 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7768 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7769 cast<Instruction>(Ops[0])) 7770 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7771 << " and with tree size " 7772 << ore::NV("TreeSize", R.getTreeSize())); 7773 7774 R.vectorizeTree(); 7775 // Move to the next bundle. 7776 I += VF - 1; 7777 NextInst = I + 1; 7778 Changed = true; 7779 } 7780 } 7781 } 7782 7783 if (!Changed && CandidateFound) { 7784 R.getORE()->emit([&]() { 7785 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7786 << "List vectorization was possible but not beneficial with cost " 7787 << ore::NV("Cost", MinCost) << " >= " 7788 << ore::NV("Treshold", -SLPCostThreshold); 7789 }); 7790 } else if (!Changed) { 7791 R.getORE()->emit([&]() { 7792 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7793 << "Cannot SLP vectorize list: vectorization was impossible" 7794 << " with available vectorization factors"; 7795 }); 7796 } 7797 return Changed; 7798 } 7799 7800 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7801 if (!I) 7802 return false; 7803 7804 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7805 return false; 7806 7807 Value *P = I->getParent(); 7808 7809 // Vectorize in current basic block only. 7810 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7811 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7812 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7813 return false; 7814 7815 // Try to vectorize V. 7816 if (tryToVectorizePair(Op0, Op1, R)) 7817 return true; 7818 7819 auto *A = dyn_cast<BinaryOperator>(Op0); 7820 auto *B = dyn_cast<BinaryOperator>(Op1); 7821 // Try to skip B. 7822 if (B && B->hasOneUse()) { 7823 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7824 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7825 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7826 return true; 7827 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7828 return true; 7829 } 7830 7831 // Try to skip A. 7832 if (A && A->hasOneUse()) { 7833 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7834 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7835 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7836 return true; 7837 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7838 return true; 7839 } 7840 return false; 7841 } 7842 7843 namespace { 7844 7845 /// Model horizontal reductions. 7846 /// 7847 /// A horizontal reduction is a tree of reduction instructions that has values 7848 /// that can be put into a vector as its leaves. For example: 7849 /// 7850 /// mul mul mul mul 7851 /// \ / \ / 7852 /// + + 7853 /// \ / 7854 /// + 7855 /// This tree has "mul" as its leaf values and "+" as its reduction 7856 /// instructions. A reduction can feed into a store or a binary operation 7857 /// feeding a phi. 7858 /// ... 7859 /// \ / 7860 /// + 7861 /// | 7862 /// phi += 7863 /// 7864 /// Or: 7865 /// ... 7866 /// \ / 7867 /// + 7868 /// | 7869 /// *p = 7870 /// 7871 class HorizontalReduction { 7872 using ReductionOpsType = SmallVector<Value *, 16>; 7873 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7874 ReductionOpsListType ReductionOps; 7875 SmallVector<Value *, 32> ReducedVals; 7876 // Use map vector to make stable output. 7877 MapVector<Instruction *, Value *> ExtraArgs; 7878 WeakTrackingVH ReductionRoot; 7879 /// The type of reduction operation. 7880 RecurKind RdxKind; 7881 7882 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 7883 7884 static bool isCmpSelMinMax(Instruction *I) { 7885 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 7886 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 7887 } 7888 7889 // And/or are potentially poison-safe logical patterns like: 7890 // select x, y, false 7891 // select x, true, y 7892 static bool isBoolLogicOp(Instruction *I) { 7893 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 7894 match(I, m_LogicalOr(m_Value(), m_Value())); 7895 } 7896 7897 /// Checks if instruction is associative and can be vectorized. 7898 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7899 if (Kind == RecurKind::None) 7900 return false; 7901 7902 // Integer ops that map to select instructions or intrinsics are fine. 7903 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 7904 isBoolLogicOp(I)) 7905 return true; 7906 7907 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7908 // FP min/max are associative except for NaN and -0.0. We do not 7909 // have to rule out -0.0 here because the intrinsic semantics do not 7910 // specify a fixed result for it. 7911 return I->getFastMathFlags().noNaNs(); 7912 } 7913 7914 return I->isAssociative(); 7915 } 7916 7917 static Value *getRdxOperand(Instruction *I, unsigned Index) { 7918 // Poison-safe 'or' takes the form: select X, true, Y 7919 // To make that work with the normal operand processing, we skip the 7920 // true value operand. 7921 // TODO: Change the code and data structures to handle this without a hack. 7922 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 7923 return I->getOperand(2); 7924 return I->getOperand(Index); 7925 } 7926 7927 /// Checks if the ParentStackElem.first should be marked as a reduction 7928 /// operation with an extra argument or as extra argument itself. 7929 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7930 Value *ExtraArg) { 7931 if (ExtraArgs.count(ParentStackElem.first)) { 7932 ExtraArgs[ParentStackElem.first] = nullptr; 7933 // We ran into something like: 7934 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7935 // The whole ParentStackElem.first should be considered as an extra value 7936 // in this case. 7937 // Do not perform analysis of remaining operands of ParentStackElem.first 7938 // instruction, this whole instruction is an extra argument. 7939 ParentStackElem.second = INVALID_OPERAND_INDEX; 7940 } else { 7941 // We ran into something like: 7942 // ParentStackElem.first += ... + ExtraArg + ... 7943 ExtraArgs[ParentStackElem.first] = ExtraArg; 7944 } 7945 } 7946 7947 /// Creates reduction operation with the current opcode. 7948 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 7949 Value *RHS, const Twine &Name, bool UseSelect) { 7950 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7951 switch (Kind) { 7952 case RecurKind::Add: 7953 case RecurKind::Mul: 7954 case RecurKind::Or: 7955 case RecurKind::And: 7956 case RecurKind::Xor: 7957 case RecurKind::FAdd: 7958 case RecurKind::FMul: 7959 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 7960 Name); 7961 case RecurKind::FMax: 7962 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 7963 case RecurKind::FMin: 7964 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 7965 case RecurKind::SMax: 7966 if (UseSelect) { 7967 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 7968 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7969 } 7970 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 7971 case RecurKind::SMin: 7972 if (UseSelect) { 7973 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 7974 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7975 } 7976 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 7977 case RecurKind::UMax: 7978 if (UseSelect) { 7979 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 7980 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7981 } 7982 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 7983 case RecurKind::UMin: 7984 if (UseSelect) { 7985 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 7986 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7987 } 7988 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 7989 default: 7990 llvm_unreachable("Unknown reduction operation."); 7991 } 7992 } 7993 7994 /// Creates reduction operation with the current opcode with the IR flags 7995 /// from \p ReductionOps. 7996 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7997 Value *RHS, const Twine &Name, 7998 const ReductionOpsListType &ReductionOps) { 7999 bool UseSelect = ReductionOps.size() == 2; 8000 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 8001 "Expected cmp + select pairs for reduction"); 8002 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8003 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8004 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8005 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8006 propagateIRFlags(Op, ReductionOps[1]); 8007 return Op; 8008 } 8009 } 8010 propagateIRFlags(Op, ReductionOps[0]); 8011 return Op; 8012 } 8013 8014 /// Creates reduction operation with the current opcode with the IR flags 8015 /// from \p I. 8016 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8017 Value *RHS, const Twine &Name, Instruction *I) { 8018 auto *SelI = dyn_cast<SelectInst>(I); 8019 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8020 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8021 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8022 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8023 } 8024 propagateIRFlags(Op, I); 8025 return Op; 8026 } 8027 8028 static RecurKind getRdxKind(Instruction *I) { 8029 assert(I && "Expected instruction for reduction matching"); 8030 TargetTransformInfo::ReductionFlags RdxFlags; 8031 if (match(I, m_Add(m_Value(), m_Value()))) 8032 return RecurKind::Add; 8033 if (match(I, m_Mul(m_Value(), m_Value()))) 8034 return RecurKind::Mul; 8035 if (match(I, m_And(m_Value(), m_Value())) || 8036 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8037 return RecurKind::And; 8038 if (match(I, m_Or(m_Value(), m_Value())) || 8039 match(I, m_LogicalOr(m_Value(), m_Value()))) 8040 return RecurKind::Or; 8041 if (match(I, m_Xor(m_Value(), m_Value()))) 8042 return RecurKind::Xor; 8043 if (match(I, m_FAdd(m_Value(), m_Value()))) 8044 return RecurKind::FAdd; 8045 if (match(I, m_FMul(m_Value(), m_Value()))) 8046 return RecurKind::FMul; 8047 8048 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8049 return RecurKind::FMax; 8050 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8051 return RecurKind::FMin; 8052 8053 // This matches either cmp+select or intrinsics. SLP is expected to handle 8054 // either form. 8055 // TODO: If we are canonicalizing to intrinsics, we can remove several 8056 // special-case paths that deal with selects. 8057 if (match(I, m_SMax(m_Value(), m_Value()))) 8058 return RecurKind::SMax; 8059 if (match(I, m_SMin(m_Value(), m_Value()))) 8060 return RecurKind::SMin; 8061 if (match(I, m_UMax(m_Value(), m_Value()))) 8062 return RecurKind::UMax; 8063 if (match(I, m_UMin(m_Value(), m_Value()))) 8064 return RecurKind::UMin; 8065 8066 if (auto *Select = dyn_cast<SelectInst>(I)) { 8067 // Try harder: look for min/max pattern based on instructions producing 8068 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8069 // During the intermediate stages of SLP, it's very common to have 8070 // pattern like this (since optimizeGatherSequence is run only once 8071 // at the end): 8072 // %1 = extractelement <2 x i32> %a, i32 0 8073 // %2 = extractelement <2 x i32> %a, i32 1 8074 // %cond = icmp sgt i32 %1, %2 8075 // %3 = extractelement <2 x i32> %a, i32 0 8076 // %4 = extractelement <2 x i32> %a, i32 1 8077 // %select = select i1 %cond, i32 %3, i32 %4 8078 CmpInst::Predicate Pred; 8079 Instruction *L1; 8080 Instruction *L2; 8081 8082 Value *LHS = Select->getTrueValue(); 8083 Value *RHS = Select->getFalseValue(); 8084 Value *Cond = Select->getCondition(); 8085 8086 // TODO: Support inverse predicates. 8087 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8088 if (!isa<ExtractElementInst>(RHS) || 8089 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8090 return RecurKind::None; 8091 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8092 if (!isa<ExtractElementInst>(LHS) || 8093 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8094 return RecurKind::None; 8095 } else { 8096 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8097 return RecurKind::None; 8098 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8099 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8100 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8101 return RecurKind::None; 8102 } 8103 8104 TargetTransformInfo::ReductionFlags RdxFlags; 8105 switch (Pred) { 8106 default: 8107 return RecurKind::None; 8108 case CmpInst::ICMP_SGT: 8109 case CmpInst::ICMP_SGE: 8110 return RecurKind::SMax; 8111 case CmpInst::ICMP_SLT: 8112 case CmpInst::ICMP_SLE: 8113 return RecurKind::SMin; 8114 case CmpInst::ICMP_UGT: 8115 case CmpInst::ICMP_UGE: 8116 return RecurKind::UMax; 8117 case CmpInst::ICMP_ULT: 8118 case CmpInst::ICMP_ULE: 8119 return RecurKind::UMin; 8120 } 8121 } 8122 return RecurKind::None; 8123 } 8124 8125 /// Get the index of the first operand. 8126 static unsigned getFirstOperandIndex(Instruction *I) { 8127 return isCmpSelMinMax(I) ? 1 : 0; 8128 } 8129 8130 /// Total number of operands in the reduction operation. 8131 static unsigned getNumberOfOperands(Instruction *I) { 8132 return isCmpSelMinMax(I) ? 3 : 2; 8133 } 8134 8135 /// Checks if the instruction is in basic block \p BB. 8136 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8137 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8138 if (isCmpSelMinMax(I)) { 8139 auto *Sel = cast<SelectInst>(I); 8140 auto *Cmp = cast<Instruction>(Sel->getCondition()); 8141 return Sel->getParent() == BB && Cmp->getParent() == BB; 8142 } 8143 return I->getParent() == BB; 8144 } 8145 8146 /// Expected number of uses for reduction operations/reduced values. 8147 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8148 if (IsCmpSelMinMax) { 8149 // SelectInst must be used twice while the condition op must have single 8150 // use only. 8151 if (auto *Sel = dyn_cast<SelectInst>(I)) 8152 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8153 return I->hasNUses(2); 8154 } 8155 8156 // Arithmetic reduction operation must be used once only. 8157 return I->hasOneUse(); 8158 } 8159 8160 /// Initializes the list of reduction operations. 8161 void initReductionOps(Instruction *I) { 8162 if (isCmpSelMinMax(I)) 8163 ReductionOps.assign(2, ReductionOpsType()); 8164 else 8165 ReductionOps.assign(1, ReductionOpsType()); 8166 } 8167 8168 /// Add all reduction operations for the reduction instruction \p I. 8169 void addReductionOps(Instruction *I) { 8170 if (isCmpSelMinMax(I)) { 8171 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8172 ReductionOps[1].emplace_back(I); 8173 } else { 8174 ReductionOps[0].emplace_back(I); 8175 } 8176 } 8177 8178 static Value *getLHS(RecurKind Kind, Instruction *I) { 8179 if (Kind == RecurKind::None) 8180 return nullptr; 8181 return I->getOperand(getFirstOperandIndex(I)); 8182 } 8183 static Value *getRHS(RecurKind Kind, Instruction *I) { 8184 if (Kind == RecurKind::None) 8185 return nullptr; 8186 return I->getOperand(getFirstOperandIndex(I) + 1); 8187 } 8188 8189 public: 8190 HorizontalReduction() = default; 8191 8192 /// Try to find a reduction tree. 8193 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8194 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8195 "Phi needs to use the binary operator"); 8196 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8197 isa<IntrinsicInst>(Inst)) && 8198 "Expected binop, select, or intrinsic for reduction matching"); 8199 RdxKind = getRdxKind(Inst); 8200 8201 // We could have a initial reductions that is not an add. 8202 // r *= v1 + v2 + v3 + v4 8203 // In such a case start looking for a tree rooted in the first '+'. 8204 if (Phi) { 8205 if (getLHS(RdxKind, Inst) == Phi) { 8206 Phi = nullptr; 8207 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8208 if (!Inst) 8209 return false; 8210 RdxKind = getRdxKind(Inst); 8211 } else if (getRHS(RdxKind, Inst) == Phi) { 8212 Phi = nullptr; 8213 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8214 if (!Inst) 8215 return false; 8216 RdxKind = getRdxKind(Inst); 8217 } 8218 } 8219 8220 if (!isVectorizable(RdxKind, Inst)) 8221 return false; 8222 8223 // Analyze "regular" integer/FP types for reductions - no target-specific 8224 // types or pointers. 8225 Type *Ty = Inst->getType(); 8226 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8227 return false; 8228 8229 // Though the ultimate reduction may have multiple uses, its condition must 8230 // have only single use. 8231 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8232 if (!Sel->getCondition()->hasOneUse()) 8233 return false; 8234 8235 ReductionRoot = Inst; 8236 8237 // The opcode for leaf values that we perform a reduction on. 8238 // For example: load(x) + load(y) + load(z) + fptoui(w) 8239 // The leaf opcode for 'w' does not match, so we don't include it as a 8240 // potential candidate for the reduction. 8241 unsigned LeafOpcode = 0; 8242 8243 // Post-order traverse the reduction tree starting at Inst. We only handle 8244 // true trees containing binary operators or selects. 8245 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8246 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8247 initReductionOps(Inst); 8248 while (!Stack.empty()) { 8249 Instruction *TreeN = Stack.back().first; 8250 unsigned EdgeToVisit = Stack.back().second++; 8251 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8252 bool IsReducedValue = TreeRdxKind != RdxKind; 8253 8254 // Postorder visit. 8255 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8256 if (IsReducedValue) 8257 ReducedVals.push_back(TreeN); 8258 else { 8259 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8260 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8261 // Check if TreeN is an extra argument of its parent operation. 8262 if (Stack.size() <= 1) { 8263 // TreeN can't be an extra argument as it is a root reduction 8264 // operation. 8265 return false; 8266 } 8267 // Yes, TreeN is an extra argument, do not add it to a list of 8268 // reduction operations. 8269 // Stack[Stack.size() - 2] always points to the parent operation. 8270 markExtraArg(Stack[Stack.size() - 2], TreeN); 8271 ExtraArgs.erase(TreeN); 8272 } else 8273 addReductionOps(TreeN); 8274 } 8275 // Retract. 8276 Stack.pop_back(); 8277 continue; 8278 } 8279 8280 // Visit operands. 8281 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8282 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8283 if (!EdgeInst) { 8284 // Edge value is not a reduction instruction or a leaf instruction. 8285 // (It may be a constant, function argument, or something else.) 8286 markExtraArg(Stack.back(), EdgeVal); 8287 continue; 8288 } 8289 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8290 // Continue analysis if the next operand is a reduction operation or 8291 // (possibly) a leaf value. If the leaf value opcode is not set, 8292 // the first met operation != reduction operation is considered as the 8293 // leaf opcode. 8294 // Only handle trees in the current basic block. 8295 // Each tree node needs to have minimal number of users except for the 8296 // ultimate reduction. 8297 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8298 if (EdgeInst != Phi && EdgeInst != Inst && 8299 hasSameParent(EdgeInst, Inst->getParent()) && 8300 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8301 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8302 if (IsRdxInst) { 8303 // We need to be able to reassociate the reduction operations. 8304 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8305 // I is an extra argument for TreeN (its parent operation). 8306 markExtraArg(Stack.back(), EdgeInst); 8307 continue; 8308 } 8309 } else if (!LeafOpcode) { 8310 LeafOpcode = EdgeInst->getOpcode(); 8311 } 8312 Stack.push_back( 8313 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8314 continue; 8315 } 8316 // I is an extra argument for TreeN (its parent operation). 8317 markExtraArg(Stack.back(), EdgeInst); 8318 } 8319 return true; 8320 } 8321 8322 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8323 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8324 // If there are a sufficient number of reduction values, reduce 8325 // to a nearby power-of-2. We can safely generate oversized 8326 // vectors and rely on the backend to split them to legal sizes. 8327 unsigned NumReducedVals = ReducedVals.size(); 8328 if (NumReducedVals < 4) 8329 return false; 8330 8331 // Intersect the fast-math-flags from all reduction operations. 8332 FastMathFlags RdxFMF; 8333 RdxFMF.set(); 8334 for (ReductionOpsType &RdxOp : ReductionOps) { 8335 for (Value *RdxVal : RdxOp) { 8336 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8337 RdxFMF &= FPMO->getFastMathFlags(); 8338 } 8339 } 8340 8341 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8342 Builder.setFastMathFlags(RdxFMF); 8343 8344 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8345 // The same extra argument may be used several times, so log each attempt 8346 // to use it. 8347 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8348 assert(Pair.first && "DebugLoc must be set."); 8349 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8350 } 8351 8352 // The compare instruction of a min/max is the insertion point for new 8353 // instructions and may be replaced with a new compare instruction. 8354 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8355 assert(isa<SelectInst>(RdxRootInst) && 8356 "Expected min/max reduction to have select root instruction"); 8357 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8358 assert(isa<Instruction>(ScalarCond) && 8359 "Expected min/max reduction to have compare condition"); 8360 return cast<Instruction>(ScalarCond); 8361 }; 8362 8363 // The reduction root is used as the insertion point for new instructions, 8364 // so set it as externally used to prevent it from being deleted. 8365 ExternallyUsedValues[ReductionRoot]; 8366 SmallVector<Value *, 16> IgnoreList; 8367 for (ReductionOpsType &RdxOp : ReductionOps) 8368 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8369 8370 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8371 if (NumReducedVals > ReduxWidth) { 8372 // In the loop below, we are building a tree based on a window of 8373 // 'ReduxWidth' values. 8374 // If the operands of those values have common traits (compare predicate, 8375 // constant operand, etc), then we want to group those together to 8376 // minimize the cost of the reduction. 8377 8378 // TODO: This should be extended to count common operands for 8379 // compares and binops. 8380 8381 // Step 1: Count the number of times each compare predicate occurs. 8382 SmallDenseMap<unsigned, unsigned> PredCountMap; 8383 for (Value *RdxVal : ReducedVals) { 8384 CmpInst::Predicate Pred; 8385 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8386 ++PredCountMap[Pred]; 8387 } 8388 // Step 2: Sort the values so the most common predicates come first. 8389 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8390 CmpInst::Predicate PredA, PredB; 8391 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8392 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8393 return PredCountMap[PredA] > PredCountMap[PredB]; 8394 } 8395 return false; 8396 }); 8397 } 8398 8399 Value *VectorizedTree = nullptr; 8400 unsigned i = 0; 8401 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8402 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8403 V.buildTree(VL, IgnoreList); 8404 if (V.isTreeTinyAndNotFullyVectorizable()) 8405 break; 8406 if (V.isLoadCombineReductionCandidate(RdxKind)) 8407 break; 8408 V.reorderTopToBottom(); 8409 V.reorderBottomToTop(); 8410 V.buildExternalUses(ExternallyUsedValues); 8411 8412 // For a poison-safe boolean logic reduction, do not replace select 8413 // instructions with logic ops. All reduced values will be frozen (see 8414 // below) to prevent leaking poison. 8415 if (isa<SelectInst>(ReductionRoot) && 8416 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8417 NumReducedVals != ReduxWidth) 8418 break; 8419 8420 V.computeMinimumValueSizes(); 8421 8422 // Estimate cost. 8423 InstructionCost TreeCost = 8424 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8425 InstructionCost ReductionCost = 8426 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8427 InstructionCost Cost = TreeCost + ReductionCost; 8428 if (!Cost.isValid()) { 8429 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8430 return false; 8431 } 8432 if (Cost >= -SLPCostThreshold) { 8433 V.getORE()->emit([&]() { 8434 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8435 cast<Instruction>(VL[0])) 8436 << "Vectorizing horizontal reduction is possible" 8437 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8438 << " and threshold " 8439 << ore::NV("Threshold", -SLPCostThreshold); 8440 }); 8441 break; 8442 } 8443 8444 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8445 << Cost << ". (HorRdx)\n"); 8446 V.getORE()->emit([&]() { 8447 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8448 cast<Instruction>(VL[0])) 8449 << "Vectorized horizontal reduction with cost " 8450 << ore::NV("Cost", Cost) << " and with tree size " 8451 << ore::NV("TreeSize", V.getTreeSize()); 8452 }); 8453 8454 // Vectorize a tree. 8455 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8456 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8457 8458 // Emit a reduction. If the root is a select (min/max idiom), the insert 8459 // point is the compare condition of that select. 8460 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8461 if (isCmpSelMinMax(RdxRootInst)) 8462 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8463 else 8464 Builder.SetInsertPoint(RdxRootInst); 8465 8466 // To prevent poison from leaking across what used to be sequential, safe, 8467 // scalar boolean logic operations, the reduction operand must be frozen. 8468 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8469 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8470 8471 Value *ReducedSubTree = 8472 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8473 8474 if (!VectorizedTree) { 8475 // Initialize the final value in the reduction. 8476 VectorizedTree = ReducedSubTree; 8477 } else { 8478 // Update the final value in the reduction. 8479 Builder.SetCurrentDebugLocation(Loc); 8480 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8481 ReducedSubTree, "op.rdx", ReductionOps); 8482 } 8483 i += ReduxWidth; 8484 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8485 } 8486 8487 if (VectorizedTree) { 8488 // Finish the reduction. 8489 for (; i < NumReducedVals; ++i) { 8490 auto *I = cast<Instruction>(ReducedVals[i]); 8491 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8492 VectorizedTree = 8493 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8494 } 8495 for (auto &Pair : ExternallyUsedValues) { 8496 // Add each externally used value to the final reduction. 8497 for (auto *I : Pair.second) { 8498 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8499 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8500 Pair.first, "op.extra", I); 8501 } 8502 } 8503 8504 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8505 8506 // Mark all scalar reduction ops for deletion, they are replaced by the 8507 // vector reductions. 8508 V.eraseInstructions(IgnoreList); 8509 } 8510 return VectorizedTree != nullptr; 8511 } 8512 8513 unsigned numReductionValues() const { return ReducedVals.size(); } 8514 8515 private: 8516 /// Calculate the cost of a reduction. 8517 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8518 Value *FirstReducedVal, unsigned ReduxWidth, 8519 FastMathFlags FMF) { 8520 Type *ScalarTy = FirstReducedVal->getType(); 8521 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8522 InstructionCost VectorCost, ScalarCost; 8523 switch (RdxKind) { 8524 case RecurKind::Add: 8525 case RecurKind::Mul: 8526 case RecurKind::Or: 8527 case RecurKind::And: 8528 case RecurKind::Xor: 8529 case RecurKind::FAdd: 8530 case RecurKind::FMul: { 8531 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8532 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF); 8533 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 8534 break; 8535 } 8536 case RecurKind::FMax: 8537 case RecurKind::FMin: { 8538 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8539 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8540 /*unsigned=*/false); 8541 ScalarCost = 8542 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 8543 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8544 CmpInst::makeCmpResultType(ScalarTy)); 8545 break; 8546 } 8547 case RecurKind::SMax: 8548 case RecurKind::SMin: 8549 case RecurKind::UMax: 8550 case RecurKind::UMin: { 8551 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8552 bool IsUnsigned = 8553 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8554 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned); 8555 ScalarCost = 8556 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 8557 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8558 CmpInst::makeCmpResultType(ScalarTy)); 8559 break; 8560 } 8561 default: 8562 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8563 } 8564 8565 // Scalar cost is repeated for N-1 elements. 8566 ScalarCost *= (ReduxWidth - 1); 8567 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8568 << " for reduction that starts with " << *FirstReducedVal 8569 << " (It is a splitting reduction)\n"); 8570 return VectorCost - ScalarCost; 8571 } 8572 8573 /// Emit a horizontal reduction of the vectorized value. 8574 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8575 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8576 assert(VectorizedValue && "Need to have a vectorized tree node"); 8577 assert(isPowerOf2_32(ReduxWidth) && 8578 "We only handle power-of-two reductions for now"); 8579 8580 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8581 ReductionOps.back()); 8582 } 8583 }; 8584 8585 } // end anonymous namespace 8586 8587 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8588 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8589 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8590 8591 unsigned AggregateSize = 1; 8592 auto *IV = cast<InsertValueInst>(InsertInst); 8593 Type *CurrentType = IV->getType(); 8594 do { 8595 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8596 for (auto *Elt : ST->elements()) 8597 if (Elt != ST->getElementType(0)) // check homogeneity 8598 return None; 8599 AggregateSize *= ST->getNumElements(); 8600 CurrentType = ST->getElementType(0); 8601 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8602 AggregateSize *= AT->getNumElements(); 8603 CurrentType = AT->getElementType(); 8604 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8605 AggregateSize *= VT->getNumElements(); 8606 return AggregateSize; 8607 } else if (CurrentType->isSingleValueType()) { 8608 return AggregateSize; 8609 } else { 8610 return None; 8611 } 8612 } while (true); 8613 } 8614 8615 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8616 TargetTransformInfo *TTI, 8617 SmallVectorImpl<Value *> &BuildVectorOpds, 8618 SmallVectorImpl<Value *> &InsertElts, 8619 unsigned OperandOffset) { 8620 do { 8621 Value *InsertedOperand = LastInsertInst->getOperand(1); 8622 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8623 if (!OperandIndex) 8624 return false; 8625 if (isa<InsertElementInst>(InsertedOperand) || 8626 isa<InsertValueInst>(InsertedOperand)) { 8627 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8628 BuildVectorOpds, InsertElts, *OperandIndex)) 8629 return false; 8630 } else { 8631 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8632 InsertElts[*OperandIndex] = LastInsertInst; 8633 } 8634 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8635 } while (LastInsertInst != nullptr && 8636 (isa<InsertValueInst>(LastInsertInst) || 8637 isa<InsertElementInst>(LastInsertInst)) && 8638 LastInsertInst->hasOneUse()); 8639 return true; 8640 } 8641 8642 /// Recognize construction of vectors like 8643 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8644 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8645 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8646 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8647 /// starting from the last insertelement or insertvalue instruction. 8648 /// 8649 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8650 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8651 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8652 /// 8653 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8654 /// 8655 /// \return true if it matches. 8656 static bool findBuildAggregate(Instruction *LastInsertInst, 8657 TargetTransformInfo *TTI, 8658 SmallVectorImpl<Value *> &BuildVectorOpds, 8659 SmallVectorImpl<Value *> &InsertElts) { 8660 8661 assert((isa<InsertElementInst>(LastInsertInst) || 8662 isa<InsertValueInst>(LastInsertInst)) && 8663 "Expected insertelement or insertvalue instruction!"); 8664 8665 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8666 "Expected empty result vectors!"); 8667 8668 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8669 if (!AggregateSize) 8670 return false; 8671 BuildVectorOpds.resize(*AggregateSize); 8672 InsertElts.resize(*AggregateSize); 8673 8674 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8675 0)) { 8676 llvm::erase_value(BuildVectorOpds, nullptr); 8677 llvm::erase_value(InsertElts, nullptr); 8678 if (BuildVectorOpds.size() >= 2) 8679 return true; 8680 } 8681 8682 return false; 8683 } 8684 8685 /// Try and get a reduction value from a phi node. 8686 /// 8687 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8688 /// if they come from either \p ParentBB or a containing loop latch. 8689 /// 8690 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8691 /// if not possible. 8692 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8693 BasicBlock *ParentBB, LoopInfo *LI) { 8694 // There are situations where the reduction value is not dominated by the 8695 // reduction phi. Vectorizing such cases has been reported to cause 8696 // miscompiles. See PR25787. 8697 auto DominatedReduxValue = [&](Value *R) { 8698 return isa<Instruction>(R) && 8699 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8700 }; 8701 8702 Value *Rdx = nullptr; 8703 8704 // Return the incoming value if it comes from the same BB as the phi node. 8705 if (P->getIncomingBlock(0) == ParentBB) { 8706 Rdx = P->getIncomingValue(0); 8707 } else if (P->getIncomingBlock(1) == ParentBB) { 8708 Rdx = P->getIncomingValue(1); 8709 } 8710 8711 if (Rdx && DominatedReduxValue(Rdx)) 8712 return Rdx; 8713 8714 // Otherwise, check whether we have a loop latch to look at. 8715 Loop *BBL = LI->getLoopFor(ParentBB); 8716 if (!BBL) 8717 return nullptr; 8718 BasicBlock *BBLatch = BBL->getLoopLatch(); 8719 if (!BBLatch) 8720 return nullptr; 8721 8722 // There is a loop latch, return the incoming value if it comes from 8723 // that. This reduction pattern occasionally turns up. 8724 if (P->getIncomingBlock(0) == BBLatch) { 8725 Rdx = P->getIncomingValue(0); 8726 } else if (P->getIncomingBlock(1) == BBLatch) { 8727 Rdx = P->getIncomingValue(1); 8728 } 8729 8730 if (Rdx && DominatedReduxValue(Rdx)) 8731 return Rdx; 8732 8733 return nullptr; 8734 } 8735 8736 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8737 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8738 return true; 8739 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8740 return true; 8741 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8742 return true; 8743 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8744 return true; 8745 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8746 return true; 8747 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8748 return true; 8749 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8750 return true; 8751 return false; 8752 } 8753 8754 /// Attempt to reduce a horizontal reduction. 8755 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8756 /// with reduction operators \a Root (or one of its operands) in a basic block 8757 /// \a BB, then check if it can be done. If horizontal reduction is not found 8758 /// and root instruction is a binary operation, vectorization of the operands is 8759 /// attempted. 8760 /// \returns true if a horizontal reduction was matched and reduced or operands 8761 /// of one of the binary instruction were vectorized. 8762 /// \returns false if a horizontal reduction was not matched (or not possible) 8763 /// or no vectorization of any binary operation feeding \a Root instruction was 8764 /// performed. 8765 static bool tryToVectorizeHorReductionOrInstOperands( 8766 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8767 TargetTransformInfo *TTI, 8768 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8769 if (!ShouldVectorizeHor) 8770 return false; 8771 8772 if (!Root) 8773 return false; 8774 8775 if (Root->getParent() != BB || isa<PHINode>(Root)) 8776 return false; 8777 // Start analysis starting from Root instruction. If horizontal reduction is 8778 // found, try to vectorize it. If it is not a horizontal reduction or 8779 // vectorization is not possible or not effective, and currently analyzed 8780 // instruction is a binary operation, try to vectorize the operands, using 8781 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8782 // the same procedure considering each operand as a possible root of the 8783 // horizontal reduction. 8784 // Interrupt the process if the Root instruction itself was vectorized or all 8785 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8786 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8787 // CmpInsts so we can skip extra attempts in 8788 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8789 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 8790 SmallPtrSet<Value *, 8> VisitedInstrs; 8791 bool Res = false; 8792 while (!Stack.empty()) { 8793 Instruction *Inst; 8794 unsigned Level; 8795 std::tie(Inst, Level) = Stack.pop_back_val(); 8796 // Do not try to analyze instruction that has already been vectorized. 8797 // This may happen when we vectorize instruction operands on a previous 8798 // iteration while stack was populated before that happened. 8799 if (R.isDeleted(Inst)) 8800 continue; 8801 Value *B0, *B1; 8802 bool IsBinop = matchRdxBop(Inst, B0, B1); 8803 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8804 if (IsBinop || IsSelect) { 8805 HorizontalReduction HorRdx; 8806 if (HorRdx.matchAssociativeReduction(P, Inst)) { 8807 if (HorRdx.tryToReduce(R, TTI)) { 8808 Res = true; 8809 // Set P to nullptr to avoid re-analysis of phi node in 8810 // matchAssociativeReduction function unless this is the root node. 8811 P = nullptr; 8812 continue; 8813 } 8814 } 8815 if (P && IsBinop) { 8816 Inst = dyn_cast<Instruction>(B0); 8817 if (Inst == P) 8818 Inst = dyn_cast<Instruction>(B1); 8819 if (!Inst) { 8820 // Set P to nullptr to avoid re-analysis of phi node in 8821 // matchAssociativeReduction function unless this is the root node. 8822 P = nullptr; 8823 continue; 8824 } 8825 } 8826 } 8827 // Set P to nullptr to avoid re-analysis of phi node in 8828 // matchAssociativeReduction function unless this is the root node. 8829 P = nullptr; 8830 // Do not try to vectorize CmpInst operands, this is done separately. 8831 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 8832 Res = true; 8833 continue; 8834 } 8835 8836 // Try to vectorize operands. 8837 // Continue analysis for the instruction from the same basic block only to 8838 // save compile time. 8839 if (++Level < RecursionMaxDepth) 8840 for (auto *Op : Inst->operand_values()) 8841 if (VisitedInstrs.insert(Op).second) 8842 if (auto *I = dyn_cast<Instruction>(Op)) 8843 // Do not try to vectorize CmpInst operands, this is done 8844 // separately. 8845 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8846 I->getParent() == BB) 8847 Stack.emplace_back(I, Level); 8848 } 8849 return Res; 8850 } 8851 8852 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8853 BasicBlock *BB, BoUpSLP &R, 8854 TargetTransformInfo *TTI) { 8855 auto *I = dyn_cast_or_null<Instruction>(V); 8856 if (!I) 8857 return false; 8858 8859 if (!isa<BinaryOperator>(I)) 8860 P = nullptr; 8861 // Try to match and vectorize a horizontal reduction. 8862 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8863 return tryToVectorize(I, R); 8864 }; 8865 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8866 ExtraVectorization); 8867 } 8868 8869 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8870 BasicBlock *BB, BoUpSLP &R) { 8871 const DataLayout &DL = BB->getModule()->getDataLayout(); 8872 if (!R.canMapToVector(IVI->getType(), DL)) 8873 return false; 8874 8875 SmallVector<Value *, 16> BuildVectorOpds; 8876 SmallVector<Value *, 16> BuildVectorInsts; 8877 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8878 return false; 8879 8880 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8881 // Aggregate value is unlikely to be processed in vector register, we need to 8882 // extract scalars into scalar registers, so NeedExtraction is set true. 8883 return tryToVectorizeList(BuildVectorOpds, R); 8884 } 8885 8886 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8887 BasicBlock *BB, BoUpSLP &R) { 8888 SmallVector<Value *, 16> BuildVectorInsts; 8889 SmallVector<Value *, 16> BuildVectorOpds; 8890 SmallVector<int> Mask; 8891 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8892 (llvm::all_of(BuildVectorOpds, 8893 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8894 isShuffle(BuildVectorOpds, Mask))) 8895 return false; 8896 8897 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8898 return tryToVectorizeList(BuildVectorInsts, R); 8899 } 8900 8901 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8902 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8903 bool AtTerminator) { 8904 bool OpsChanged = false; 8905 SmallVector<Instruction *, 4> PostponedCmps; 8906 for (auto *I : reverse(Instructions)) { 8907 if (R.isDeleted(I)) 8908 continue; 8909 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8910 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 8911 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 8912 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 8913 else if (isa<CmpInst>(I)) 8914 PostponedCmps.push_back(I); 8915 } 8916 if (AtTerminator) { 8917 // Try to find reductions first. 8918 for (Instruction *I : PostponedCmps) { 8919 if (R.isDeleted(I)) 8920 continue; 8921 for (Value *Op : I->operands()) 8922 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 8923 } 8924 // Try to vectorize operands as vector bundles. 8925 for (Instruction *I : PostponedCmps) { 8926 if (R.isDeleted(I)) 8927 continue; 8928 OpsChanged |= tryToVectorize(I, R); 8929 } 8930 Instructions.clear(); 8931 } else { 8932 // Insert in reverse order since the PostponedCmps vector was filled in 8933 // reverse order. 8934 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 8935 } 8936 return OpsChanged; 8937 } 8938 8939 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 8940 bool Changed = false; 8941 SmallVector<Value *, 4> Incoming; 8942 SmallPtrSet<Value *, 16> VisitedInstrs; 8943 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 8944 // node. Allows better to identify the chains that can be vectorized in the 8945 // better way. 8946 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 8947 8948 bool HaveVectorizedPhiNodes = true; 8949 while (HaveVectorizedPhiNodes) { 8950 HaveVectorizedPhiNodes = false; 8951 8952 // Collect the incoming values from the PHIs. 8953 Incoming.clear(); 8954 for (Instruction &I : *BB) { 8955 PHINode *P = dyn_cast<PHINode>(&I); 8956 if (!P) 8957 break; 8958 8959 // No need to analyze deleted, vectorized and non-vectorizable 8960 // instructions. 8961 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 8962 isValidElementType(P->getType())) 8963 Incoming.push_back(P); 8964 } 8965 8966 // Find the corresponding non-phi nodes for better matching when trying to 8967 // build the tree. 8968 for (Value *V : Incoming) { 8969 SmallVectorImpl<Value *> &Opcodes = 8970 PHIToOpcodes.try_emplace(V).first->getSecond(); 8971 if (!Opcodes.empty()) 8972 continue; 8973 SmallVector<Value *, 4> Nodes(1, V); 8974 SmallPtrSet<Value *, 4> Visited; 8975 while (!Nodes.empty()) { 8976 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 8977 if (!Visited.insert(PHI).second) 8978 continue; 8979 for (Value *V : PHI->incoming_values()) { 8980 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 8981 Nodes.push_back(PHI1); 8982 continue; 8983 } 8984 Opcodes.emplace_back(V); 8985 } 8986 } 8987 } 8988 8989 // Sort by type, parent, operands. 8990 stable_sort(Incoming, [this, &PHIToOpcodes](Value *V1, Value *V2) { 8991 assert(isValidElementType(V1->getType()) && 8992 isValidElementType(V2->getType()) && 8993 "Expected vectorizable types only."); 8994 // It is fine to compare type IDs here, since we expect only vectorizable 8995 // types, like ints, floats and pointers, we don't care about other type. 8996 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 8997 return true; 8998 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 8999 return false; 9000 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9001 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9002 if (Opcodes1.size() < Opcodes2.size()) 9003 return true; 9004 if (Opcodes1.size() > Opcodes2.size()) 9005 return false; 9006 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9007 // Undefs are compatible with any other value. 9008 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9009 continue; 9010 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9011 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9012 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9013 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9014 if (!NodeI1) 9015 return NodeI2 != nullptr; 9016 if (!NodeI2) 9017 return false; 9018 assert((NodeI1 == NodeI2) == 9019 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9020 "Different nodes should have different DFS numbers"); 9021 if (NodeI1 != NodeI2) 9022 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9023 InstructionsState S = getSameOpcode({I1, I2}); 9024 if (S.getOpcode()) 9025 continue; 9026 return I1->getOpcode() < I2->getOpcode(); 9027 } 9028 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9029 continue; 9030 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9031 return true; 9032 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9033 return false; 9034 } 9035 return false; 9036 }); 9037 9038 auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9039 if (V1 == V2) 9040 return true; 9041 if (V1->getType() != V2->getType()) 9042 return false; 9043 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9044 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9045 if (Opcodes1.size() != Opcodes2.size()) 9046 return false; 9047 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9048 // Undefs are compatible with any other value. 9049 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9050 continue; 9051 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9052 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9053 if (I1->getParent() != I2->getParent()) 9054 return false; 9055 InstructionsState S = getSameOpcode({I1, I2}); 9056 if (S.getOpcode()) 9057 continue; 9058 return false; 9059 } 9060 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9061 continue; 9062 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9063 return false; 9064 } 9065 return true; 9066 }; 9067 9068 // Try to vectorize elements base on their type. 9069 SmallVector<Value *, 4> Candidates; 9070 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 9071 E = Incoming.end(); 9072 IncIt != E;) { 9073 9074 // Look for the next elements with the same type, parent and operand 9075 // kinds. 9076 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 9077 while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) { 9078 VisitedInstrs.insert(*SameTypeIt); 9079 ++SameTypeIt; 9080 } 9081 9082 // Try to vectorize them. 9083 unsigned NumElts = (SameTypeIt - IncIt); 9084 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 9085 << NumElts << ")\n"); 9086 // The order in which the phi nodes appear in the program does not matter. 9087 // So allow tryToVectorizeList to reorder them if it is beneficial. This 9088 // is done when there are exactly two elements since tryToVectorizeList 9089 // asserts that there are only two values when AllowReorder is true. 9090 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 9091 // Success start over because instructions might have been changed. 9092 HaveVectorizedPhiNodes = true; 9093 Changed = true; 9094 } else if (NumElts < 4 && 9095 (Candidates.empty() || 9096 Candidates.front()->getType() == (*IncIt)->getType())) { 9097 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9098 } 9099 // Final attempt to vectorize phis with the same types. 9100 if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) { 9101 if (Candidates.size() > 1 && tryToVectorizeList(Candidates, R)) { 9102 // Success start over because instructions might have been changed. 9103 HaveVectorizedPhiNodes = true; 9104 Changed = true; 9105 } 9106 Candidates.clear(); 9107 } 9108 9109 // Start over at the next instruction of a different type (or the end). 9110 IncIt = SameTypeIt; 9111 } 9112 } 9113 9114 VisitedInstrs.clear(); 9115 9116 SmallVector<Instruction *, 8> PostProcessInstructions; 9117 SmallDenseSet<Instruction *, 4> KeyNodes; 9118 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9119 // Skip instructions with scalable type. The num of elements is unknown at 9120 // compile-time for scalable type. 9121 if (isa<ScalableVectorType>(it->getType())) 9122 continue; 9123 9124 // Skip instructions marked for the deletion. 9125 if (R.isDeleted(&*it)) 9126 continue; 9127 // We may go through BB multiple times so skip the one we have checked. 9128 if (!VisitedInstrs.insert(&*it).second) { 9129 if (it->use_empty() && KeyNodes.contains(&*it) && 9130 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9131 it->isTerminator())) { 9132 // We would like to start over since some instructions are deleted 9133 // and the iterator may become invalid value. 9134 Changed = true; 9135 it = BB->begin(); 9136 e = BB->end(); 9137 } 9138 continue; 9139 } 9140 9141 if (isa<DbgInfoIntrinsic>(it)) 9142 continue; 9143 9144 // Try to vectorize reductions that use PHINodes. 9145 if (PHINode *P = dyn_cast<PHINode>(it)) { 9146 // Check that the PHI is a reduction PHI. 9147 if (P->getNumIncomingValues() == 2) { 9148 // Try to match and vectorize a horizontal reduction. 9149 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9150 TTI)) { 9151 Changed = true; 9152 it = BB->begin(); 9153 e = BB->end(); 9154 continue; 9155 } 9156 } 9157 // Try to vectorize the incoming values of the PHI, to catch reductions 9158 // that feed into PHIs. 9159 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9160 // Skip if the incoming block is the current BB for now. Also, bypass 9161 // unreachable IR for efficiency and to avoid crashing. 9162 // TODO: Collect the skipped incoming values and try to vectorize them 9163 // after processing BB. 9164 if (BB == P->getIncomingBlock(I) || 9165 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9166 continue; 9167 9168 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9169 P->getIncomingBlock(I), R, TTI); 9170 } 9171 continue; 9172 } 9173 9174 // Ran into an instruction without users, like terminator, or function call 9175 // with ignored return value, store. Ignore unused instructions (basing on 9176 // instruction type, except for CallInst and InvokeInst). 9177 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9178 isa<InvokeInst>(it))) { 9179 KeyNodes.insert(&*it); 9180 bool OpsChanged = false; 9181 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9182 for (auto *V : it->operand_values()) { 9183 // Try to match and vectorize a horizontal reduction. 9184 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9185 } 9186 } 9187 // Start vectorization of post-process list of instructions from the 9188 // top-tree instructions to try to vectorize as many instructions as 9189 // possible. 9190 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9191 it->isTerminator()); 9192 if (OpsChanged) { 9193 // We would like to start over since some instructions are deleted 9194 // and the iterator may become invalid value. 9195 Changed = true; 9196 it = BB->begin(); 9197 e = BB->end(); 9198 continue; 9199 } 9200 } 9201 9202 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9203 isa<InsertValueInst>(it)) 9204 PostProcessInstructions.push_back(&*it); 9205 } 9206 9207 return Changed; 9208 } 9209 9210 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9211 auto Changed = false; 9212 for (auto &Entry : GEPs) { 9213 // If the getelementptr list has fewer than two elements, there's nothing 9214 // to do. 9215 if (Entry.second.size() < 2) 9216 continue; 9217 9218 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9219 << Entry.second.size() << ".\n"); 9220 9221 // Process the GEP list in chunks suitable for the target's supported 9222 // vector size. If a vector register can't hold 1 element, we are done. We 9223 // are trying to vectorize the index computations, so the maximum number of 9224 // elements is based on the size of the index expression, rather than the 9225 // size of the GEP itself (the target's pointer size). 9226 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9227 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9228 if (MaxVecRegSize < EltSize) 9229 continue; 9230 9231 unsigned MaxElts = MaxVecRegSize / EltSize; 9232 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9233 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9234 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9235 9236 // Initialize a set a candidate getelementptrs. Note that we use a 9237 // SetVector here to preserve program order. If the index computations 9238 // are vectorizable and begin with loads, we want to minimize the chance 9239 // of having to reorder them later. 9240 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9241 9242 // Some of the candidates may have already been vectorized after we 9243 // initially collected them. If so, they are marked as deleted, so remove 9244 // them from the set of candidates. 9245 Candidates.remove_if( 9246 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9247 9248 // Remove from the set of candidates all pairs of getelementptrs with 9249 // constant differences. Such getelementptrs are likely not good 9250 // candidates for vectorization in a bottom-up phase since one can be 9251 // computed from the other. We also ensure all candidate getelementptr 9252 // indices are unique. 9253 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9254 auto *GEPI = GEPList[I]; 9255 if (!Candidates.count(GEPI)) 9256 continue; 9257 auto *SCEVI = SE->getSCEV(GEPList[I]); 9258 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9259 auto *GEPJ = GEPList[J]; 9260 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9261 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9262 Candidates.remove(GEPI); 9263 Candidates.remove(GEPJ); 9264 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9265 Candidates.remove(GEPJ); 9266 } 9267 } 9268 } 9269 9270 // We break out of the above computation as soon as we know there are 9271 // fewer than two candidates remaining. 9272 if (Candidates.size() < 2) 9273 continue; 9274 9275 // Add the single, non-constant index of each candidate to the bundle. We 9276 // ensured the indices met these constraints when we originally collected 9277 // the getelementptrs. 9278 SmallVector<Value *, 16> Bundle(Candidates.size()); 9279 auto BundleIndex = 0u; 9280 for (auto *V : Candidates) { 9281 auto *GEP = cast<GetElementPtrInst>(V); 9282 auto *GEPIdx = GEP->idx_begin()->get(); 9283 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9284 Bundle[BundleIndex++] = GEPIdx; 9285 } 9286 9287 // Try and vectorize the indices. We are currently only interested in 9288 // gather-like cases of the form: 9289 // 9290 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9291 // 9292 // where the loads of "a", the loads of "b", and the subtractions can be 9293 // performed in parallel. It's likely that detecting this pattern in a 9294 // bottom-up phase will be simpler and less costly than building a 9295 // full-blown top-down phase beginning at the consecutive loads. 9296 Changed |= tryToVectorizeList(Bundle, R); 9297 } 9298 } 9299 return Changed; 9300 } 9301 9302 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9303 bool Changed = false; 9304 // Sort by type, base pointers and values operand. Value operands must be 9305 // compatible (have the same opcode, same parent), otherwise it is 9306 // definitely not profitable to try to vectorize them. 9307 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9308 if (V->getPointerOperandType()->getTypeID() < 9309 V2->getPointerOperandType()->getTypeID()) 9310 return true; 9311 if (V->getPointerOperandType()->getTypeID() > 9312 V2->getPointerOperandType()->getTypeID()) 9313 return false; 9314 // UndefValues are compatible with all other values. 9315 if (isa<UndefValue>(V->getValueOperand()) || 9316 isa<UndefValue>(V2->getValueOperand())) 9317 return false; 9318 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9319 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9320 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9321 DT->getNode(I1->getParent()); 9322 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9323 DT->getNode(I2->getParent()); 9324 assert(NodeI1 && "Should only process reachable instructions"); 9325 assert(NodeI1 && "Should only process reachable instructions"); 9326 assert((NodeI1 == NodeI2) == 9327 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9328 "Different nodes should have different DFS numbers"); 9329 if (NodeI1 != NodeI2) 9330 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9331 InstructionsState S = getSameOpcode({I1, I2}); 9332 if (S.getOpcode()) 9333 return false; 9334 return I1->getOpcode() < I2->getOpcode(); 9335 } 9336 if (isa<Constant>(V->getValueOperand()) && 9337 isa<Constant>(V2->getValueOperand())) 9338 return false; 9339 return V->getValueOperand()->getValueID() < 9340 V2->getValueOperand()->getValueID(); 9341 }; 9342 9343 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9344 if (V1 == V2) 9345 return true; 9346 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9347 return false; 9348 // Undefs are compatible with any other value. 9349 if (isa<UndefValue>(V1->getValueOperand()) || 9350 isa<UndefValue>(V2->getValueOperand())) 9351 return true; 9352 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9353 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9354 if (I1->getParent() != I2->getParent()) 9355 return false; 9356 InstructionsState S = getSameOpcode({I1, I2}); 9357 return S.getOpcode() > 0; 9358 } 9359 if (isa<Constant>(V1->getValueOperand()) && 9360 isa<Constant>(V2->getValueOperand())) 9361 return true; 9362 return V1->getValueOperand()->getValueID() == 9363 V2->getValueOperand()->getValueID(); 9364 }; 9365 9366 // Attempt to sort and vectorize each of the store-groups. 9367 for (auto &Pair : Stores) { 9368 if (Pair.second.size() < 2) 9369 continue; 9370 9371 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9372 << Pair.second.size() << ".\n"); 9373 9374 stable_sort(Pair.second, StoreSorter); 9375 9376 // Try to vectorize elements based on their compatibility. 9377 for (ArrayRef<StoreInst *>::iterator IncIt = Pair.second.begin(), 9378 E = Pair.second.end(); 9379 IncIt != E;) { 9380 9381 // Look for the next elements with the same type. 9382 ArrayRef<StoreInst *>::iterator SameTypeIt = IncIt; 9383 Type *EltTy = (*IncIt)->getPointerOperand()->getType(); 9384 9385 while (SameTypeIt != E && AreCompatibleStores(*SameTypeIt, *IncIt)) 9386 ++SameTypeIt; 9387 9388 // Try to vectorize them. 9389 unsigned NumElts = (SameTypeIt - IncIt); 9390 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores (" 9391 << NumElts << ")\n"); 9392 if (NumElts > 1 && !EltTy->getPointerElementType()->isVectorTy() && 9393 vectorizeStores(makeArrayRef(IncIt, NumElts), R)) { 9394 // Success start over because instructions might have been changed. 9395 Changed = true; 9396 } 9397 9398 // Start over at the next instruction of a different type (or the end). 9399 IncIt = SameTypeIt; 9400 } 9401 } 9402 return Changed; 9403 } 9404 9405 char SLPVectorizer::ID = 0; 9406 9407 static const char lv_name[] = "SLP Vectorizer"; 9408 9409 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9410 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9411 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9412 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9413 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9414 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9415 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9416 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9417 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9418 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9419 9420 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9421