1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 /// Checks if the provided value does not require scheduling. It does not 776 /// require scheduling if this is not an instruction or it is an instruction 777 /// that does not read/write memory and all operands are either not instructions 778 /// or phi nodes or instructions from different blocks. 779 static bool areAllOperandsNonInsts(Value *V) { 780 auto *I = dyn_cast<Instruction>(V); 781 if (!I) 782 return true; 783 return !mayHaveNonDefUseDependency(*I) && 784 all_of(I->operands(), [I](Value *V) { 785 auto *IO = dyn_cast<Instruction>(V); 786 if (!IO) 787 return true; 788 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 789 }); 790 } 791 792 /// Checks if the provided value does not require scheduling. It does not 793 /// require scheduling if this is not an instruction or it is an instruction 794 /// that does not read/write memory and all users are phi nodes or instructions 795 /// from the different blocks. 796 static bool isUsedOutsideBlock(Value *V) { 797 auto *I = dyn_cast<Instruction>(V); 798 if (!I) 799 return true; 800 // Limits the number of uses to save compile time. 801 constexpr int UsesLimit = 8; 802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 803 all_of(I->users(), [I](User *U) { 804 auto *IU = dyn_cast<Instruction>(U); 805 if (!IU) 806 return true; 807 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 808 }); 809 } 810 811 /// Checks if the specified value does not require scheduling. It does not 812 /// require scheduling if all operands and all users do not need to be scheduled 813 /// in the current basic block. 814 static bool doesNotNeedToBeScheduled(Value *V) { 815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 816 } 817 818 /// Checks if the specified array of instructions does not require scheduling. 819 /// It is so if all either instructions have operands that do not require 820 /// scheduling or their users do not require scheduling since they are phis or 821 /// in other basic blocks. 822 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 823 return !VL.empty() && 824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 825 } 826 827 namespace slpvectorizer { 828 829 /// Bottom Up SLP Vectorizer. 830 class BoUpSLP { 831 struct TreeEntry; 832 struct ScheduleData; 833 834 public: 835 using ValueList = SmallVector<Value *, 8>; 836 using InstrList = SmallVector<Instruction *, 16>; 837 using ValueSet = SmallPtrSet<Value *, 16>; 838 using StoreList = SmallVector<StoreInst *, 8>; 839 using ExtraValueToDebugLocsMap = 840 MapVector<Value *, SmallVector<Instruction *, 2>>; 841 using OrdersType = SmallVector<unsigned, 4>; 842 843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 846 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 849 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 850 // Use the vector register size specified by the target unless overridden 851 // by a command-line option. 852 // TODO: It would be better to limit the vectorization factor based on 853 // data type rather than just register size. For example, x86 AVX has 854 // 256-bit registers, but it does not support integer operations 855 // at that width (that requires AVX2). 856 if (MaxVectorRegSizeOption.getNumOccurrences()) 857 MaxVecRegSize = MaxVectorRegSizeOption; 858 else 859 MaxVecRegSize = 860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 861 .getFixedSize(); 862 863 if (MinVectorRegSizeOption.getNumOccurrences()) 864 MinVecRegSize = MinVectorRegSizeOption; 865 else 866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 867 } 868 869 /// Vectorize the tree that starts with the elements in \p VL. 870 /// Returns the vectorized root. 871 Value *vectorizeTree(); 872 873 /// Vectorize the tree but with the list of externally used values \p 874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 875 /// generated extractvalue instructions. 876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 877 878 /// \returns the cost incurred by unwanted spills and fills, caused by 879 /// holding live values over call sites. 880 InstructionCost getSpillCost() const; 881 882 /// \returns the vectorization cost of the subtree that starts at \p VL. 883 /// A negative number means that this is profitable. 884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 885 886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 888 void buildTree(ArrayRef<Value *> Roots, 889 ArrayRef<Value *> UserIgnoreLst = None); 890 891 /// Builds external uses of the vectorized scalars, i.e. the list of 892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 893 /// ExternallyUsedValues contains additional list of external uses to handle 894 /// vectorization of reductions. 895 void 896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 897 898 /// Clear the internal data structures that are created by 'buildTree'. 899 void deleteTree() { 900 VectorizableTree.clear(); 901 ScalarToTreeEntry.clear(); 902 MustGather.clear(); 903 ExternalUses.clear(); 904 for (auto &Iter : BlocksSchedules) { 905 BlockScheduling *BS = Iter.second.get(); 906 BS->clear(); 907 } 908 MinBWs.clear(); 909 InstrElementSize.clear(); 910 } 911 912 unsigned getTreeSize() const { return VectorizableTree.size(); } 913 914 /// Perform LICM and CSE on the newly generated gather sequences. 915 void optimizeGatherSequence(); 916 917 /// Checks if the specified gather tree entry \p TE can be represented as a 918 /// shuffled vector entry + (possibly) permutation with other gathers. It 919 /// implements the checks only for possibly ordered scalars (Loads, 920 /// ExtractElement, ExtractValue), which can be part of the graph. 921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 922 923 /// Gets reordering data for the given tree entry. If the entry is vectorized 924 /// - just return ReorderIndices, otherwise check if the scalars can be 925 /// reordered and return the most optimal order. 926 /// \param TopToBottom If true, include the order of vectorized stores and 927 /// insertelement nodes, otherwise skip them. 928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 929 930 /// Reorders the current graph to the most profitable order starting from the 931 /// root node to the leaf nodes. The best order is chosen only from the nodes 932 /// of the same size (vectorization factor). Smaller nodes are considered 933 /// parts of subgraph with smaller VF and they are reordered independently. We 934 /// can make it because we still need to extend smaller nodes to the wider VF 935 /// and we can merge reordering shuffles with the widening shuffles. 936 void reorderTopToBottom(); 937 938 /// Reorders the current graph to the most profitable order starting from 939 /// leaves to the root. It allows to rotate small subgraphs and reduce the 940 /// number of reshuffles if the leaf nodes use the same order. In this case we 941 /// can merge the orders and just shuffle user node instead of shuffling its 942 /// operands. Plus, even the leaf nodes have different orders, it allows to 943 /// sink reordering in the graph closer to the root node and merge it later 944 /// during analysis. 945 void reorderBottomToTop(bool IgnoreReorder = false); 946 947 /// \return The vector element size in bits to use when vectorizing the 948 /// expression tree ending at \p V. If V is a store, the size is the width of 949 /// the stored value. Otherwise, the size is the width of the largest loaded 950 /// value reaching V. This method is used by the vectorizer to calculate 951 /// vectorization factors. 952 unsigned getVectorElementSize(Value *V); 953 954 /// Compute the minimum type sizes required to represent the entries in a 955 /// vectorizable tree. 956 void computeMinimumValueSizes(); 957 958 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 959 unsigned getMaxVecRegSize() const { 960 return MaxVecRegSize; 961 } 962 963 // \returns minimum vector register size as set by cl::opt. 964 unsigned getMinVecRegSize() const { 965 return MinVecRegSize; 966 } 967 968 unsigned getMinVF(unsigned Sz) const { 969 return std::max(2U, getMinVecRegSize() / Sz); 970 } 971 972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 975 return MaxVF ? MaxVF : UINT_MAX; 976 } 977 978 /// Check if homogeneous aggregate is isomorphic to some VectorType. 979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 982 /// 983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 984 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 985 986 /// \returns True if the VectorizableTree is both tiny and not fully 987 /// vectorizable. We do not vectorize such trees. 988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 989 990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 991 /// can be load combined in the backend. Load combining may not be allowed in 992 /// the IR optimizer, so we do not want to alter the pattern. For example, 993 /// partially transforming a scalar bswap() pattern into vector code is 994 /// effectively impossible for the backend to undo. 995 /// TODO: If load combining is allowed in the IR optimizer, this analysis 996 /// may not be necessary. 997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 998 999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineCandidate() const; 1007 1008 OptimizationRemarkEmitter *getORE() { return ORE; } 1009 1010 /// This structure holds any data we need about the edges being traversed 1011 /// during buildTree_rec(). We keep track of: 1012 /// (i) the user TreeEntry index, and 1013 /// (ii) the index of the edge. 1014 struct EdgeInfo { 1015 EdgeInfo() = default; 1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1018 /// The user TreeEntry. 1019 TreeEntry *UserTE = nullptr; 1020 /// The operand index of the use. 1021 unsigned EdgeIdx = UINT_MAX; 1022 #ifndef NDEBUG 1023 friend inline raw_ostream &operator<<(raw_ostream &OS, 1024 const BoUpSLP::EdgeInfo &EI) { 1025 EI.dump(OS); 1026 return OS; 1027 } 1028 /// Debug print. 1029 void dump(raw_ostream &OS) const { 1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1031 << " EdgeIdx:" << EdgeIdx << "}"; 1032 } 1033 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1034 #endif 1035 }; 1036 1037 /// A helper data structure to hold the operands of a vector of instructions. 1038 /// This supports a fixed vector length for all operand vectors. 1039 class VLOperands { 1040 /// For each operand we need (i) the value, and (ii) the opcode that it 1041 /// would be attached to if the expression was in a left-linearized form. 1042 /// This is required to avoid illegal operand reordering. 1043 /// For example: 1044 /// \verbatim 1045 /// 0 Op1 1046 /// |/ 1047 /// Op1 Op2 Linearized + Op2 1048 /// \ / ----------> |/ 1049 /// - - 1050 /// 1051 /// Op1 - Op2 (0 + Op1) - Op2 1052 /// \endverbatim 1053 /// 1054 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1055 /// 1056 /// Another way to think of this is to track all the operations across the 1057 /// path from the operand all the way to the root of the tree and to 1058 /// calculate the operation that corresponds to this path. For example, the 1059 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1060 /// corresponding operation is a '-' (which matches the one in the 1061 /// linearized tree, as shown above). 1062 /// 1063 /// For lack of a better term, we refer to this operation as Accumulated 1064 /// Path Operation (APO). 1065 struct OperandData { 1066 OperandData() = default; 1067 OperandData(Value *V, bool APO, bool IsUsed) 1068 : V(V), APO(APO), IsUsed(IsUsed) {} 1069 /// The operand value. 1070 Value *V = nullptr; 1071 /// TreeEntries only allow a single opcode, or an alternate sequence of 1072 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1073 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1074 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1075 /// (e.g., Add/Mul) 1076 bool APO = false; 1077 /// Helper data for the reordering function. 1078 bool IsUsed = false; 1079 }; 1080 1081 /// During operand reordering, we are trying to select the operand at lane 1082 /// that matches best with the operand at the neighboring lane. Our 1083 /// selection is based on the type of value we are looking for. For example, 1084 /// if the neighboring lane has a load, we need to look for a load that is 1085 /// accessing a consecutive address. These strategies are summarized in the 1086 /// 'ReorderingMode' enumerator. 1087 enum class ReorderingMode { 1088 Load, ///< Matching loads to consecutive memory addresses 1089 Opcode, ///< Matching instructions based on opcode (same or alternate) 1090 Constant, ///< Matching constants 1091 Splat, ///< Matching the same instruction multiple times (broadcast) 1092 Failed, ///< We failed to create a vectorizable group 1093 }; 1094 1095 using OperandDataVec = SmallVector<OperandData, 2>; 1096 1097 /// A vector of operand vectors. 1098 SmallVector<OperandDataVec, 4> OpsVec; 1099 1100 const DataLayout &DL; 1101 ScalarEvolution &SE; 1102 const BoUpSLP &R; 1103 1104 /// \returns the operand data at \p OpIdx and \p Lane. 1105 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1106 return OpsVec[OpIdx][Lane]; 1107 } 1108 1109 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1110 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1111 return OpsVec[OpIdx][Lane]; 1112 } 1113 1114 /// Clears the used flag for all entries. 1115 void clearUsed() { 1116 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1117 OpIdx != NumOperands; ++OpIdx) 1118 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1119 ++Lane) 1120 OpsVec[OpIdx][Lane].IsUsed = false; 1121 } 1122 1123 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1124 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1125 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1126 } 1127 1128 // The hard-coded scores listed here are not very important, though it shall 1129 // be higher for better matches to improve the resulting cost. When 1130 // computing the scores of matching one sub-tree with another, we are 1131 // basically counting the number of values that are matching. So even if all 1132 // scores are set to 1, we would still get a decent matching result. 1133 // However, sometimes we have to break ties. For example we may have to 1134 // choose between matching loads vs matching opcodes. This is what these 1135 // scores are helping us with: they provide the order of preference. Also, 1136 // this is important if the scalar is externally used or used in another 1137 // tree entry node in the different lane. 1138 1139 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1140 static const int ScoreConsecutiveLoads = 4; 1141 /// The same load multiple times. This should have a better score than 1142 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1143 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1144 /// a vector load and 1.0 for a broadcast. 1145 static const int ScoreSplatLoads = 3; 1146 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1147 static const int ScoreReversedLoads = 3; 1148 /// ExtractElementInst from same vector and consecutive indexes. 1149 static const int ScoreConsecutiveExtracts = 4; 1150 /// ExtractElementInst from same vector and reversed indices. 1151 static const int ScoreReversedExtracts = 3; 1152 /// Constants. 1153 static const int ScoreConstants = 2; 1154 /// Instructions with the same opcode. 1155 static const int ScoreSameOpcode = 2; 1156 /// Instructions with alt opcodes (e.g, add + sub). 1157 static const int ScoreAltOpcodes = 1; 1158 /// Identical instructions (a.k.a. splat or broadcast). 1159 static const int ScoreSplat = 1; 1160 /// Matching with an undef is preferable to failing. 1161 static const int ScoreUndef = 1; 1162 /// Score for failing to find a decent match. 1163 static const int ScoreFail = 0; 1164 /// Score if all users are vectorized. 1165 static const int ScoreAllUserVectorized = 1; 1166 1167 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1168 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1169 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1170 /// MainAltOps. 1171 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1172 const DataLayout &DL, ScalarEvolution &SE, int NumLanes, 1173 ArrayRef<Value *> MainAltOps) { 1174 if (V1 == V2) { 1175 if (isa<LoadInst>(V1)) { 1176 // Retruns true if the users of V1 and V2 won't need to be extracted. 1177 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1178 // Bail out if we have too many uses to save compilation time. 1179 static constexpr unsigned Limit = 8; 1180 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1181 return false; 1182 1183 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1184 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1185 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1186 }); 1187 }; 1188 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1189 }; 1190 // A broadcast of a load can be cheaper on some targets. 1191 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1192 ElementCount::getFixed(NumLanes)) && 1193 ((int)V1->getNumUses() == NumLanes || 1194 AllUsersAreInternal(V1, V2))) 1195 return VLOperands::ScoreSplatLoads; 1196 } 1197 return VLOperands::ScoreSplat; 1198 } 1199 1200 auto *LI1 = dyn_cast<LoadInst>(V1); 1201 auto *LI2 = dyn_cast<LoadInst>(V2); 1202 if (LI1 && LI2) { 1203 if (LI1->getParent() != LI2->getParent()) 1204 return VLOperands::ScoreFail; 1205 1206 Optional<int> Dist = getPointersDiff( 1207 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1208 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1209 if (!Dist || *Dist == 0) 1210 return VLOperands::ScoreFail; 1211 // The distance is too large - still may be profitable to use masked 1212 // loads/gathers. 1213 if (std::abs(*Dist) > NumLanes / 2) 1214 return VLOperands::ScoreAltOpcodes; 1215 // This still will detect consecutive loads, but we might have "holes" 1216 // in some cases. It is ok for non-power-2 vectorization and may produce 1217 // better results. It should not affect current vectorization. 1218 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1219 : VLOperands::ScoreReversedLoads; 1220 } 1221 1222 auto *C1 = dyn_cast<Constant>(V1); 1223 auto *C2 = dyn_cast<Constant>(V2); 1224 if (C1 && C2) 1225 return VLOperands::ScoreConstants; 1226 1227 // Extracts from consecutive indexes of the same vector better score as 1228 // the extracts could be optimized away. 1229 Value *EV1; 1230 ConstantInt *Ex1Idx; 1231 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1232 // Undefs are always profitable for extractelements. 1233 if (isa<UndefValue>(V2)) 1234 return VLOperands::ScoreConsecutiveExtracts; 1235 Value *EV2 = nullptr; 1236 ConstantInt *Ex2Idx = nullptr; 1237 if (match(V2, 1238 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1239 m_Undef())))) { 1240 // Undefs are always profitable for extractelements. 1241 if (!Ex2Idx) 1242 return VLOperands::ScoreConsecutiveExtracts; 1243 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1244 return VLOperands::ScoreConsecutiveExtracts; 1245 if (EV2 == EV1) { 1246 int Idx1 = Ex1Idx->getZExtValue(); 1247 int Idx2 = Ex2Idx->getZExtValue(); 1248 int Dist = Idx2 - Idx1; 1249 // The distance is too large - still may be profitable to use 1250 // shuffles. 1251 if (std::abs(Dist) == 0) 1252 return VLOperands::ScoreSplat; 1253 if (std::abs(Dist) > NumLanes / 2) 1254 return VLOperands::ScoreSameOpcode; 1255 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1256 : VLOperands::ScoreReversedExtracts; 1257 } 1258 return VLOperands::ScoreAltOpcodes; 1259 } 1260 return VLOperands::ScoreFail; 1261 } 1262 1263 auto *I1 = dyn_cast<Instruction>(V1); 1264 auto *I2 = dyn_cast<Instruction>(V2); 1265 if (I1 && I2) { 1266 if (I1->getParent() != I2->getParent()) 1267 return VLOperands::ScoreFail; 1268 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1269 Ops.push_back(I1); 1270 Ops.push_back(I2); 1271 InstructionsState S = getSameOpcode(Ops); 1272 // Note: Only consider instructions with <= 2 operands to avoid 1273 // complexity explosion. 1274 if (S.getOpcode() && 1275 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1276 !S.isAltShuffle()) && 1277 all_of(Ops, [&S](Value *V) { 1278 return cast<Instruction>(V)->getNumOperands() == 1279 S.MainOp->getNumOperands(); 1280 })) 1281 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1282 : VLOperands::ScoreSameOpcode; 1283 } 1284 1285 if (isa<UndefValue>(V2)) 1286 return VLOperands::ScoreUndef; 1287 1288 return VLOperands::ScoreFail; 1289 } 1290 1291 /// \param Lane lane of the operands under analysis. 1292 /// \param OpIdx operand index in \p Lane lane we're looking the best 1293 /// candidate for. 1294 /// \param Idx operand index of the current candidate value. 1295 /// \returns The additional score due to possible broadcasting of the 1296 /// elements in the lane. It is more profitable to have power-of-2 unique 1297 /// elements in the lane, it will be vectorized with higher probability 1298 /// after removing duplicates. Currently the SLP vectorizer supports only 1299 /// vectorization of the power-of-2 number of unique scalars. 1300 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1301 Value *IdxLaneV = getData(Idx, Lane).V; 1302 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1303 return 0; 1304 SmallPtrSet<Value *, 4> Uniques; 1305 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1306 if (Ln == Lane) 1307 continue; 1308 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1309 if (!isa<Instruction>(OpIdxLnV)) 1310 return 0; 1311 Uniques.insert(OpIdxLnV); 1312 } 1313 int UniquesCount = Uniques.size(); 1314 int UniquesCntWithIdxLaneV = 1315 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1316 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1317 int UniquesCntWithOpIdxLaneV = 1318 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1319 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1320 return 0; 1321 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1322 UniquesCntWithOpIdxLaneV) - 1323 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1324 } 1325 1326 /// \param Lane lane of the operands under analysis. 1327 /// \param OpIdx operand index in \p Lane lane we're looking the best 1328 /// candidate for. 1329 /// \param Idx operand index of the current candidate value. 1330 /// \returns The additional score for the scalar which users are all 1331 /// vectorized. 1332 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1333 Value *IdxLaneV = getData(Idx, Lane).V; 1334 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1335 // Do not care about number of uses for vector-like instructions 1336 // (extractelement/extractvalue with constant indices), they are extracts 1337 // themselves and already externally used. Vectorization of such 1338 // instructions does not add extra extractelement instruction, just may 1339 // remove it. 1340 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1341 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1342 return VLOperands::ScoreAllUserVectorized; 1343 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1344 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1345 return 0; 1346 return R.areAllUsersVectorized(IdxLaneI, None) 1347 ? VLOperands::ScoreAllUserVectorized 1348 : 0; 1349 } 1350 1351 /// Go through the operands of \p LHS and \p RHS recursively until \p 1352 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1353 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1354 /// of \p U1 and \p U2), except at the beginning of the recursion where 1355 /// these are set to nullptr. 1356 /// 1357 /// For example: 1358 /// \verbatim 1359 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1360 /// \ / \ / \ / \ / 1361 /// + + + + 1362 /// G1 G2 G3 G4 1363 /// \endverbatim 1364 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1365 /// each level recursively, accumulating the score. It starts from matching 1366 /// the additions at level 0, then moves on to the loads (level 1). The 1367 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1368 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1369 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1370 /// Please note that the order of the operands does not matter, as we 1371 /// evaluate the score of all profitable combinations of operands. In 1372 /// other words the score of G1 and G4 is the same as G1 and G2. This 1373 /// heuristic is based on ideas described in: 1374 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1375 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1376 /// Luís F. W. Góes 1377 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1378 Instruction *U2, int CurrLevel, int MaxLevel, 1379 ArrayRef<Value *> MainAltOps) { 1380 1381 // Get the shallow score of V1 and V2. 1382 int ShallowScoreAtThisLevel = 1383 getShallowScore(LHS, RHS, U1, U2, DL, SE, getNumLanes(), MainAltOps); 1384 1385 // If reached MaxLevel, 1386 // or if V1 and V2 are not instructions, 1387 // or if they are SPLAT, 1388 // or if they are not consecutive, 1389 // or if profitable to vectorize loads or extractelements, early return 1390 // the current cost. 1391 auto *I1 = dyn_cast<Instruction>(LHS); 1392 auto *I2 = dyn_cast<Instruction>(RHS); 1393 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1394 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1395 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1396 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1397 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1398 ShallowScoreAtThisLevel)) 1399 return ShallowScoreAtThisLevel; 1400 assert(I1 && I2 && "Should have early exited."); 1401 1402 // Contains the I2 operand indexes that got matched with I1 operands. 1403 SmallSet<unsigned, 4> Op2Used; 1404 1405 // Recursion towards the operands of I1 and I2. We are trying all possible 1406 // operand pairs, and keeping track of the best score. 1407 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1408 OpIdx1 != NumOperands1; ++OpIdx1) { 1409 // Try to pair op1I with the best operand of I2. 1410 int MaxTmpScore = 0; 1411 unsigned MaxOpIdx2 = 0; 1412 bool FoundBest = false; 1413 // If I2 is commutative try all combinations. 1414 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1415 unsigned ToIdx = isCommutative(I2) 1416 ? I2->getNumOperands() 1417 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1418 assert(FromIdx <= ToIdx && "Bad index"); 1419 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1420 // Skip operands already paired with OpIdx1. 1421 if (Op2Used.count(OpIdx2)) 1422 continue; 1423 // Recursively calculate the cost at each level 1424 int TmpScore = 1425 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1426 I1, I2, CurrLevel + 1, MaxLevel, None); 1427 // Look for the best score. 1428 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1429 MaxTmpScore = TmpScore; 1430 MaxOpIdx2 = OpIdx2; 1431 FoundBest = true; 1432 } 1433 } 1434 if (FoundBest) { 1435 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1436 Op2Used.insert(MaxOpIdx2); 1437 ShallowScoreAtThisLevel += MaxTmpScore; 1438 } 1439 } 1440 return ShallowScoreAtThisLevel; 1441 } 1442 1443 /// Score scaling factor for fully compatible instructions but with 1444 /// different number of external uses. Allows better selection of the 1445 /// instructions with less external uses. 1446 static const int ScoreScaleFactor = 10; 1447 1448 /// \Returns the look-ahead score, which tells us how much the sub-trees 1449 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1450 /// score. This helps break ties in an informed way when we cannot decide on 1451 /// the order of the operands by just considering the immediate 1452 /// predecessors. 1453 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1454 int Lane, unsigned OpIdx, unsigned Idx, 1455 bool &IsUsed) { 1456 // Keep track of the instruction stack as we recurse into the operands 1457 // during the look-ahead score exploration. 1458 int Score = getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1459 1, LookAheadMaxDepth, MainAltOps); 1460 if (Score) { 1461 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1462 if (Score <= -SplatScore) { 1463 // Set the minimum score for splat-like sequence to avoid setting 1464 // failed state. 1465 Score = 1; 1466 } else { 1467 Score += SplatScore; 1468 // Scale score to see the difference between different operands 1469 // and similar operands but all vectorized/not all vectorized 1470 // uses. It does not affect actual selection of the best 1471 // compatible operand in general, just allows to select the 1472 // operand with all vectorized uses. 1473 Score *= ScoreScaleFactor; 1474 Score += getExternalUseScore(Lane, OpIdx, Idx); 1475 IsUsed = true; 1476 } 1477 } 1478 return Score; 1479 } 1480 1481 /// Best defined scores per lanes between the passes. Used to choose the 1482 /// best operand (with the highest score) between the passes. 1483 /// The key - {Operand Index, Lane}. 1484 /// The value - the best score between the passes for the lane and the 1485 /// operand. 1486 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1487 BestScoresPerLanes; 1488 1489 // Search all operands in Ops[*][Lane] for the one that matches best 1490 // Ops[OpIdx][LastLane] and return its opreand index. 1491 // If no good match can be found, return None. 1492 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1493 ArrayRef<ReorderingMode> ReorderingModes, 1494 ArrayRef<Value *> MainAltOps) { 1495 unsigned NumOperands = getNumOperands(); 1496 1497 // The operand of the previous lane at OpIdx. 1498 Value *OpLastLane = getData(OpIdx, LastLane).V; 1499 1500 // Our strategy mode for OpIdx. 1501 ReorderingMode RMode = ReorderingModes[OpIdx]; 1502 if (RMode == ReorderingMode::Failed) 1503 return None; 1504 1505 // The linearized opcode of the operand at OpIdx, Lane. 1506 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1507 1508 // The best operand index and its score. 1509 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1510 // are using the score to differentiate between the two. 1511 struct BestOpData { 1512 Optional<unsigned> Idx = None; 1513 unsigned Score = 0; 1514 } BestOp; 1515 BestOp.Score = 1516 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1517 .first->second; 1518 1519 // Track if the operand must be marked as used. If the operand is set to 1520 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1521 // want to reestimate the operands again on the following iterations). 1522 bool IsUsed = 1523 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1524 // Iterate through all unused operands and look for the best. 1525 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1526 // Get the operand at Idx and Lane. 1527 OperandData &OpData = getData(Idx, Lane); 1528 Value *Op = OpData.V; 1529 bool OpAPO = OpData.APO; 1530 1531 // Skip already selected operands. 1532 if (OpData.IsUsed) 1533 continue; 1534 1535 // Skip if we are trying to move the operand to a position with a 1536 // different opcode in the linearized tree form. This would break the 1537 // semantics. 1538 if (OpAPO != OpIdxAPO) 1539 continue; 1540 1541 // Look for an operand that matches the current mode. 1542 switch (RMode) { 1543 case ReorderingMode::Load: 1544 case ReorderingMode::Constant: 1545 case ReorderingMode::Opcode: { 1546 bool LeftToRight = Lane > LastLane; 1547 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1548 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1549 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1550 OpIdx, Idx, IsUsed); 1551 if (Score > static_cast<int>(BestOp.Score)) { 1552 BestOp.Idx = Idx; 1553 BestOp.Score = Score; 1554 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1555 } 1556 break; 1557 } 1558 case ReorderingMode::Splat: 1559 if (Op == OpLastLane) 1560 BestOp.Idx = Idx; 1561 break; 1562 case ReorderingMode::Failed: 1563 llvm_unreachable("Not expected Failed reordering mode."); 1564 } 1565 } 1566 1567 if (BestOp.Idx) { 1568 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1569 return BestOp.Idx; 1570 } 1571 // If we could not find a good match return None. 1572 return None; 1573 } 1574 1575 /// Helper for reorderOperandVecs. 1576 /// \returns the lane that we should start reordering from. This is the one 1577 /// which has the least number of operands that can freely move about or 1578 /// less profitable because it already has the most optimal set of operands. 1579 unsigned getBestLaneToStartReordering() const { 1580 unsigned Min = UINT_MAX; 1581 unsigned SameOpNumber = 0; 1582 // std::pair<unsigned, unsigned> is used to implement a simple voting 1583 // algorithm and choose the lane with the least number of operands that 1584 // can freely move about or less profitable because it already has the 1585 // most optimal set of operands. The first unsigned is a counter for 1586 // voting, the second unsigned is the counter of lanes with instructions 1587 // with same/alternate opcodes and same parent basic block. 1588 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1589 // Try to be closer to the original results, if we have multiple lanes 1590 // with same cost. If 2 lanes have the same cost, use the one with the 1591 // lowest index. 1592 for (int I = getNumLanes(); I > 0; --I) { 1593 unsigned Lane = I - 1; 1594 OperandsOrderData NumFreeOpsHash = 1595 getMaxNumOperandsThatCanBeReordered(Lane); 1596 // Compare the number of operands that can move and choose the one with 1597 // the least number. 1598 if (NumFreeOpsHash.NumOfAPOs < Min) { 1599 Min = NumFreeOpsHash.NumOfAPOs; 1600 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1601 HashMap.clear(); 1602 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1603 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1604 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1605 // Select the most optimal lane in terms of number of operands that 1606 // should be moved around. 1607 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1608 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1609 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1610 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1611 auto It = HashMap.find(NumFreeOpsHash.Hash); 1612 if (It == HashMap.end()) 1613 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1614 else 1615 ++It->second.first; 1616 } 1617 } 1618 // Select the lane with the minimum counter. 1619 unsigned BestLane = 0; 1620 unsigned CntMin = UINT_MAX; 1621 for (const auto &Data : reverse(HashMap)) { 1622 if (Data.second.first < CntMin) { 1623 CntMin = Data.second.first; 1624 BestLane = Data.second.second; 1625 } 1626 } 1627 return BestLane; 1628 } 1629 1630 /// Data structure that helps to reorder operands. 1631 struct OperandsOrderData { 1632 /// The best number of operands with the same APOs, which can be 1633 /// reordered. 1634 unsigned NumOfAPOs = UINT_MAX; 1635 /// Number of operands with the same/alternate instruction opcode and 1636 /// parent. 1637 unsigned NumOpsWithSameOpcodeParent = 0; 1638 /// Hash for the actual operands ordering. 1639 /// Used to count operands, actually their position id and opcode 1640 /// value. It is used in the voting mechanism to find the lane with the 1641 /// least number of operands that can freely move about or less profitable 1642 /// because it already has the most optimal set of operands. Can be 1643 /// replaced with SmallVector<unsigned> instead but hash code is faster 1644 /// and requires less memory. 1645 unsigned Hash = 0; 1646 }; 1647 /// \returns the maximum number of operands that are allowed to be reordered 1648 /// for \p Lane and the number of compatible instructions(with the same 1649 /// parent/opcode). This is used as a heuristic for selecting the first lane 1650 /// to start operand reordering. 1651 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1652 unsigned CntTrue = 0; 1653 unsigned NumOperands = getNumOperands(); 1654 // Operands with the same APO can be reordered. We therefore need to count 1655 // how many of them we have for each APO, like this: Cnt[APO] = x. 1656 // Since we only have two APOs, namely true and false, we can avoid using 1657 // a map. Instead we can simply count the number of operands that 1658 // correspond to one of them (in this case the 'true' APO), and calculate 1659 // the other by subtracting it from the total number of operands. 1660 // Operands with the same instruction opcode and parent are more 1661 // profitable since we don't need to move them in many cases, with a high 1662 // probability such lane already can be vectorized effectively. 1663 bool AllUndefs = true; 1664 unsigned NumOpsWithSameOpcodeParent = 0; 1665 Instruction *OpcodeI = nullptr; 1666 BasicBlock *Parent = nullptr; 1667 unsigned Hash = 0; 1668 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1669 const OperandData &OpData = getData(OpIdx, Lane); 1670 if (OpData.APO) 1671 ++CntTrue; 1672 // Use Boyer-Moore majority voting for finding the majority opcode and 1673 // the number of times it occurs. 1674 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1675 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1676 I->getParent() != Parent) { 1677 if (NumOpsWithSameOpcodeParent == 0) { 1678 NumOpsWithSameOpcodeParent = 1; 1679 OpcodeI = I; 1680 Parent = I->getParent(); 1681 } else { 1682 --NumOpsWithSameOpcodeParent; 1683 } 1684 } else { 1685 ++NumOpsWithSameOpcodeParent; 1686 } 1687 } 1688 Hash = hash_combine( 1689 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1690 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1691 } 1692 if (AllUndefs) 1693 return {}; 1694 OperandsOrderData Data; 1695 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1696 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1697 Data.Hash = Hash; 1698 return Data; 1699 } 1700 1701 /// Go through the instructions in VL and append their operands. 1702 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1703 assert(!VL.empty() && "Bad VL"); 1704 assert((empty() || VL.size() == getNumLanes()) && 1705 "Expected same number of lanes"); 1706 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1707 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1708 OpsVec.resize(NumOperands); 1709 unsigned NumLanes = VL.size(); 1710 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1711 OpsVec[OpIdx].resize(NumLanes); 1712 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1713 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1714 // Our tree has just 3 nodes: the root and two operands. 1715 // It is therefore trivial to get the APO. We only need to check the 1716 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1717 // RHS operand. The LHS operand of both add and sub is never attached 1718 // to an inversese operation in the linearized form, therefore its APO 1719 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1720 1721 // Since operand reordering is performed on groups of commutative 1722 // operations or alternating sequences (e.g., +, -), we can safely 1723 // tell the inverse operations by checking commutativity. 1724 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1725 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1726 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1727 APO, false}; 1728 } 1729 } 1730 } 1731 1732 /// \returns the number of operands. 1733 unsigned getNumOperands() const { return OpsVec.size(); } 1734 1735 /// \returns the number of lanes. 1736 unsigned getNumLanes() const { return OpsVec[0].size(); } 1737 1738 /// \returns the operand value at \p OpIdx and \p Lane. 1739 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1740 return getData(OpIdx, Lane).V; 1741 } 1742 1743 /// \returns true if the data structure is empty. 1744 bool empty() const { return OpsVec.empty(); } 1745 1746 /// Clears the data. 1747 void clear() { OpsVec.clear(); } 1748 1749 /// \Returns true if there are enough operands identical to \p Op to fill 1750 /// the whole vector. 1751 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1752 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1753 bool OpAPO = getData(OpIdx, Lane).APO; 1754 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1755 if (Ln == Lane) 1756 continue; 1757 // This is set to true if we found a candidate for broadcast at Lane. 1758 bool FoundCandidate = false; 1759 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1760 OperandData &Data = getData(OpI, Ln); 1761 if (Data.APO != OpAPO || Data.IsUsed) 1762 continue; 1763 if (Data.V == Op) { 1764 FoundCandidate = true; 1765 Data.IsUsed = true; 1766 break; 1767 } 1768 } 1769 if (!FoundCandidate) 1770 return false; 1771 } 1772 return true; 1773 } 1774 1775 public: 1776 /// Initialize with all the operands of the instruction vector \p RootVL. 1777 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1778 ScalarEvolution &SE, const BoUpSLP &R) 1779 : DL(DL), SE(SE), R(R) { 1780 // Append all the operands of RootVL. 1781 appendOperandsOfVL(RootVL); 1782 } 1783 1784 /// \Returns a value vector with the operands across all lanes for the 1785 /// opearnd at \p OpIdx. 1786 ValueList getVL(unsigned OpIdx) const { 1787 ValueList OpVL(OpsVec[OpIdx].size()); 1788 assert(OpsVec[OpIdx].size() == getNumLanes() && 1789 "Expected same num of lanes across all operands"); 1790 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1791 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1792 return OpVL; 1793 } 1794 1795 // Performs operand reordering for 2 or more operands. 1796 // The original operands are in OrigOps[OpIdx][Lane]. 1797 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1798 void reorder() { 1799 unsigned NumOperands = getNumOperands(); 1800 unsigned NumLanes = getNumLanes(); 1801 // Each operand has its own mode. We are using this mode to help us select 1802 // the instructions for each lane, so that they match best with the ones 1803 // we have selected so far. 1804 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1805 1806 // This is a greedy single-pass algorithm. We are going over each lane 1807 // once and deciding on the best order right away with no back-tracking. 1808 // However, in order to increase its effectiveness, we start with the lane 1809 // that has operands that can move the least. For example, given the 1810 // following lanes: 1811 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1812 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1813 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1814 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1815 // we will start at Lane 1, since the operands of the subtraction cannot 1816 // be reordered. Then we will visit the rest of the lanes in a circular 1817 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1818 1819 // Find the first lane that we will start our search from. 1820 unsigned FirstLane = getBestLaneToStartReordering(); 1821 1822 // Initialize the modes. 1823 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1824 Value *OpLane0 = getValue(OpIdx, FirstLane); 1825 // Keep track if we have instructions with all the same opcode on one 1826 // side. 1827 if (isa<LoadInst>(OpLane0)) 1828 ReorderingModes[OpIdx] = ReorderingMode::Load; 1829 else if (isa<Instruction>(OpLane0)) { 1830 // Check if OpLane0 should be broadcast. 1831 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1832 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1833 else 1834 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1835 } 1836 else if (isa<Constant>(OpLane0)) 1837 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1838 else if (isa<Argument>(OpLane0)) 1839 // Our best hope is a Splat. It may save some cost in some cases. 1840 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1841 else 1842 // NOTE: This should be unreachable. 1843 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1844 } 1845 1846 // Check that we don't have same operands. No need to reorder if operands 1847 // are just perfect diamond or shuffled diamond match. Do not do it only 1848 // for possible broadcasts or non-power of 2 number of scalars (just for 1849 // now). 1850 auto &&SkipReordering = [this]() { 1851 SmallPtrSet<Value *, 4> UniqueValues; 1852 ArrayRef<OperandData> Op0 = OpsVec.front(); 1853 for (const OperandData &Data : Op0) 1854 UniqueValues.insert(Data.V); 1855 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1856 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1857 return !UniqueValues.contains(Data.V); 1858 })) 1859 return false; 1860 } 1861 // TODO: Check if we can remove a check for non-power-2 number of 1862 // scalars after full support of non-power-2 vectorization. 1863 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1864 }; 1865 1866 // If the initial strategy fails for any of the operand indexes, then we 1867 // perform reordering again in a second pass. This helps avoid assigning 1868 // high priority to the failed strategy, and should improve reordering for 1869 // the non-failed operand indexes. 1870 for (int Pass = 0; Pass != 2; ++Pass) { 1871 // Check if no need to reorder operands since they're are perfect or 1872 // shuffled diamond match. 1873 // Need to to do it to avoid extra external use cost counting for 1874 // shuffled matches, which may cause regressions. 1875 if (SkipReordering()) 1876 break; 1877 // Skip the second pass if the first pass did not fail. 1878 bool StrategyFailed = false; 1879 // Mark all operand data as free to use. 1880 clearUsed(); 1881 // We keep the original operand order for the FirstLane, so reorder the 1882 // rest of the lanes. We are visiting the nodes in a circular fashion, 1883 // using FirstLane as the center point and increasing the radius 1884 // distance. 1885 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1886 for (unsigned I = 0; I < NumOperands; ++I) 1887 MainAltOps[I].push_back(getData(I, FirstLane).V); 1888 1889 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1890 // Visit the lane on the right and then the lane on the left. 1891 for (int Direction : {+1, -1}) { 1892 int Lane = FirstLane + Direction * Distance; 1893 if (Lane < 0 || Lane >= (int)NumLanes) 1894 continue; 1895 int LastLane = Lane - Direction; 1896 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1897 "Out of bounds"); 1898 // Look for a good match for each operand. 1899 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1900 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1901 Optional<unsigned> BestIdx = getBestOperand( 1902 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1903 // By not selecting a value, we allow the operands that follow to 1904 // select a better matching value. We will get a non-null value in 1905 // the next run of getBestOperand(). 1906 if (BestIdx) { 1907 // Swap the current operand with the one returned by 1908 // getBestOperand(). 1909 swap(OpIdx, BestIdx.getValue(), Lane); 1910 } else { 1911 // We failed to find a best operand, set mode to 'Failed'. 1912 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1913 // Enable the second pass. 1914 StrategyFailed = true; 1915 } 1916 // Try to get the alternate opcode and follow it during analysis. 1917 if (MainAltOps[OpIdx].size() != 2) { 1918 OperandData &AltOp = getData(OpIdx, Lane); 1919 InstructionsState OpS = 1920 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1921 if (OpS.getOpcode() && OpS.isAltShuffle()) 1922 MainAltOps[OpIdx].push_back(AltOp.V); 1923 } 1924 } 1925 } 1926 } 1927 // Skip second pass if the strategy did not fail. 1928 if (!StrategyFailed) 1929 break; 1930 } 1931 } 1932 1933 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1934 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1935 switch (RMode) { 1936 case ReorderingMode::Load: 1937 return "Load"; 1938 case ReorderingMode::Opcode: 1939 return "Opcode"; 1940 case ReorderingMode::Constant: 1941 return "Constant"; 1942 case ReorderingMode::Splat: 1943 return "Splat"; 1944 case ReorderingMode::Failed: 1945 return "Failed"; 1946 } 1947 llvm_unreachable("Unimplemented Reordering Type"); 1948 } 1949 1950 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1951 raw_ostream &OS) { 1952 return OS << getModeStr(RMode); 1953 } 1954 1955 /// Debug print. 1956 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1957 printMode(RMode, dbgs()); 1958 } 1959 1960 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1961 return printMode(RMode, OS); 1962 } 1963 1964 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1965 const unsigned Indent = 2; 1966 unsigned Cnt = 0; 1967 for (const OperandDataVec &OpDataVec : OpsVec) { 1968 OS << "Operand " << Cnt++ << "\n"; 1969 for (const OperandData &OpData : OpDataVec) { 1970 OS.indent(Indent) << "{"; 1971 if (Value *V = OpData.V) 1972 OS << *V; 1973 else 1974 OS << "null"; 1975 OS << ", APO:" << OpData.APO << "}\n"; 1976 } 1977 OS << "\n"; 1978 } 1979 return OS; 1980 } 1981 1982 /// Debug print. 1983 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1984 #endif 1985 }; 1986 1987 /// Checks if the instruction is marked for deletion. 1988 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1989 1990 /// Removes an instruction from its block and eventually deletes it. 1991 /// It's like Instruction::eraseFromParent() except that the actual deletion 1992 /// is delayed until BoUpSLP is destructed. 1993 void eraseInstruction(Instruction *I) { 1994 DeletedInstructions.insert(I); 1995 } 1996 1997 ~BoUpSLP(); 1998 1999 private: 2000 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2001 /// reordering (i.e. the operands can be reordered because they have only one 2002 /// user and reordarable). 2003 /// \param ReorderableGathers List of all gather nodes that require reordering 2004 /// (e.g., gather of extractlements or partially vectorizable loads). 2005 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2006 /// reordering, subset of \p NonVectorized. 2007 bool 2008 canReorderOperands(TreeEntry *UserTE, 2009 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2010 ArrayRef<TreeEntry *> ReorderableGathers, 2011 SmallVectorImpl<TreeEntry *> &GatherOps); 2012 2013 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2014 /// if any. If it is not vectorized (gather node), returns nullptr. 2015 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2016 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2017 TreeEntry *TE = nullptr; 2018 const auto *It = find_if(VL, [this, &TE](Value *V) { 2019 TE = getTreeEntry(V); 2020 return TE; 2021 }); 2022 if (It != VL.end() && TE->isSame(VL)) 2023 return TE; 2024 return nullptr; 2025 } 2026 2027 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2028 /// if any. If it is not vectorized (gather node), returns nullptr. 2029 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2030 unsigned OpIdx) const { 2031 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2032 const_cast<TreeEntry *>(UserTE), OpIdx); 2033 } 2034 2035 /// Checks if all users of \p I are the part of the vectorization tree. 2036 bool areAllUsersVectorized(Instruction *I, 2037 ArrayRef<Value *> VectorizedVals) const; 2038 2039 /// \returns the cost of the vectorizable entry. 2040 InstructionCost getEntryCost(const TreeEntry *E, 2041 ArrayRef<Value *> VectorizedVals); 2042 2043 /// This is the recursive part of buildTree. 2044 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2045 const EdgeInfo &EI); 2046 2047 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2048 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2049 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2050 /// returns false, setting \p CurrentOrder to either an empty vector or a 2051 /// non-identity permutation that allows to reuse extract instructions. 2052 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2053 SmallVectorImpl<unsigned> &CurrentOrder) const; 2054 2055 /// Vectorize a single entry in the tree. 2056 Value *vectorizeTree(TreeEntry *E); 2057 2058 /// Vectorize a single entry in the tree, starting in \p VL. 2059 Value *vectorizeTree(ArrayRef<Value *> VL); 2060 2061 /// Create a new vector from a list of scalar values. Produces a sequence 2062 /// which exploits values reused across lanes, and arranges the inserts 2063 /// for ease of later optimization. 2064 Value *createBuildVector(ArrayRef<Value *> VL); 2065 2066 /// \returns the scalarization cost for this type. Scalarization in this 2067 /// context means the creation of vectors from a group of scalars. If \p 2068 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2069 /// vector elements. 2070 InstructionCost getGatherCost(FixedVectorType *Ty, 2071 const APInt &ShuffledIndices, 2072 bool NeedToShuffle) const; 2073 2074 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2075 /// tree entries. 2076 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2077 /// previous tree entries. \p Mask is filled with the shuffle mask. 2078 Optional<TargetTransformInfo::ShuffleKind> 2079 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2080 SmallVectorImpl<const TreeEntry *> &Entries); 2081 2082 /// \returns the scalarization cost for this list of values. Assuming that 2083 /// this subtree gets vectorized, we may need to extract the values from the 2084 /// roots. This method calculates the cost of extracting the values. 2085 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2086 2087 /// Set the Builder insert point to one after the last instruction in 2088 /// the bundle 2089 void setInsertPointAfterBundle(const TreeEntry *E); 2090 2091 /// \returns a vector from a collection of scalars in \p VL. 2092 Value *gather(ArrayRef<Value *> VL); 2093 2094 /// \returns whether the VectorizableTree is fully vectorizable and will 2095 /// be beneficial even the tree height is tiny. 2096 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2097 2098 /// Reorder commutative or alt operands to get better probability of 2099 /// generating vectorized code. 2100 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2101 SmallVectorImpl<Value *> &Left, 2102 SmallVectorImpl<Value *> &Right, 2103 const DataLayout &DL, 2104 ScalarEvolution &SE, 2105 const BoUpSLP &R); 2106 struct TreeEntry { 2107 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2108 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2109 2110 /// \returns true if the scalars in VL are equal to this entry. 2111 bool isSame(ArrayRef<Value *> VL) const { 2112 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2113 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2114 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2115 return VL.size() == Mask.size() && 2116 std::equal(VL.begin(), VL.end(), Mask.begin(), 2117 [Scalars](Value *V, int Idx) { 2118 return (isa<UndefValue>(V) && 2119 Idx == UndefMaskElem) || 2120 (Idx != UndefMaskElem && V == Scalars[Idx]); 2121 }); 2122 }; 2123 if (!ReorderIndices.empty()) { 2124 // TODO: implement matching if the nodes are just reordered, still can 2125 // treat the vector as the same if the list of scalars matches VL 2126 // directly, without reordering. 2127 SmallVector<int> Mask; 2128 inversePermutation(ReorderIndices, Mask); 2129 if (VL.size() == Scalars.size()) 2130 return IsSame(Scalars, Mask); 2131 if (VL.size() == ReuseShuffleIndices.size()) { 2132 ::addMask(Mask, ReuseShuffleIndices); 2133 return IsSame(Scalars, Mask); 2134 } 2135 return false; 2136 } 2137 return IsSame(Scalars, ReuseShuffleIndices); 2138 } 2139 2140 /// \returns true if current entry has same operands as \p TE. 2141 bool hasEqualOperands(const TreeEntry &TE) const { 2142 if (TE.getNumOperands() != getNumOperands()) 2143 return false; 2144 SmallBitVector Used(getNumOperands()); 2145 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2146 unsigned PrevCount = Used.count(); 2147 for (unsigned K = 0; K < E; ++K) { 2148 if (Used.test(K)) 2149 continue; 2150 if (getOperand(K) == TE.getOperand(I)) { 2151 Used.set(K); 2152 break; 2153 } 2154 } 2155 // Check if we actually found the matching operand. 2156 if (PrevCount == Used.count()) 2157 return false; 2158 } 2159 return true; 2160 } 2161 2162 /// \return Final vectorization factor for the node. Defined by the total 2163 /// number of vectorized scalars, including those, used several times in the 2164 /// entry and counted in the \a ReuseShuffleIndices, if any. 2165 unsigned getVectorFactor() const { 2166 if (!ReuseShuffleIndices.empty()) 2167 return ReuseShuffleIndices.size(); 2168 return Scalars.size(); 2169 }; 2170 2171 /// A vector of scalars. 2172 ValueList Scalars; 2173 2174 /// The Scalars are vectorized into this value. It is initialized to Null. 2175 Value *VectorizedValue = nullptr; 2176 2177 /// Do we need to gather this sequence or vectorize it 2178 /// (either with vector instruction or with scatter/gather 2179 /// intrinsics for store/load)? 2180 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2181 EntryState State; 2182 2183 /// Does this sequence require some shuffling? 2184 SmallVector<int, 4> ReuseShuffleIndices; 2185 2186 /// Does this entry require reordering? 2187 SmallVector<unsigned, 4> ReorderIndices; 2188 2189 /// Points back to the VectorizableTree. 2190 /// 2191 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2192 /// to be a pointer and needs to be able to initialize the child iterator. 2193 /// Thus we need a reference back to the container to translate the indices 2194 /// to entries. 2195 VecTreeTy &Container; 2196 2197 /// The TreeEntry index containing the user of this entry. We can actually 2198 /// have multiple users so the data structure is not truly a tree. 2199 SmallVector<EdgeInfo, 1> UserTreeIndices; 2200 2201 /// The index of this treeEntry in VectorizableTree. 2202 int Idx = -1; 2203 2204 private: 2205 /// The operands of each instruction in each lane Operands[op_index][lane]. 2206 /// Note: This helps avoid the replication of the code that performs the 2207 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2208 SmallVector<ValueList, 2> Operands; 2209 2210 /// The main/alternate instruction. 2211 Instruction *MainOp = nullptr; 2212 Instruction *AltOp = nullptr; 2213 2214 public: 2215 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2216 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2217 if (Operands.size() < OpIdx + 1) 2218 Operands.resize(OpIdx + 1); 2219 assert(Operands[OpIdx].empty() && "Already resized?"); 2220 assert(OpVL.size() <= Scalars.size() && 2221 "Number of operands is greater than the number of scalars."); 2222 Operands[OpIdx].resize(OpVL.size()); 2223 copy(OpVL, Operands[OpIdx].begin()); 2224 } 2225 2226 /// Set the operands of this bundle in their original order. 2227 void setOperandsInOrder() { 2228 assert(Operands.empty() && "Already initialized?"); 2229 auto *I0 = cast<Instruction>(Scalars[0]); 2230 Operands.resize(I0->getNumOperands()); 2231 unsigned NumLanes = Scalars.size(); 2232 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2233 OpIdx != NumOperands; ++OpIdx) { 2234 Operands[OpIdx].resize(NumLanes); 2235 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2236 auto *I = cast<Instruction>(Scalars[Lane]); 2237 assert(I->getNumOperands() == NumOperands && 2238 "Expected same number of operands"); 2239 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2240 } 2241 } 2242 } 2243 2244 /// Reorders operands of the node to the given mask \p Mask. 2245 void reorderOperands(ArrayRef<int> Mask) { 2246 for (ValueList &Operand : Operands) 2247 reorderScalars(Operand, Mask); 2248 } 2249 2250 /// \returns the \p OpIdx operand of this TreeEntry. 2251 ValueList &getOperand(unsigned OpIdx) { 2252 assert(OpIdx < Operands.size() && "Off bounds"); 2253 return Operands[OpIdx]; 2254 } 2255 2256 /// \returns the \p OpIdx operand of this TreeEntry. 2257 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2258 assert(OpIdx < Operands.size() && "Off bounds"); 2259 return Operands[OpIdx]; 2260 } 2261 2262 /// \returns the number of operands. 2263 unsigned getNumOperands() const { return Operands.size(); } 2264 2265 /// \return the single \p OpIdx operand. 2266 Value *getSingleOperand(unsigned OpIdx) const { 2267 assert(OpIdx < Operands.size() && "Off bounds"); 2268 assert(!Operands[OpIdx].empty() && "No operand available"); 2269 return Operands[OpIdx][0]; 2270 } 2271 2272 /// Some of the instructions in the list have alternate opcodes. 2273 bool isAltShuffle() const { return MainOp != AltOp; } 2274 2275 bool isOpcodeOrAlt(Instruction *I) const { 2276 unsigned CheckedOpcode = I->getOpcode(); 2277 return (getOpcode() == CheckedOpcode || 2278 getAltOpcode() == CheckedOpcode); 2279 } 2280 2281 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2282 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2283 /// \p OpValue. 2284 Value *isOneOf(Value *Op) const { 2285 auto *I = dyn_cast<Instruction>(Op); 2286 if (I && isOpcodeOrAlt(I)) 2287 return Op; 2288 return MainOp; 2289 } 2290 2291 void setOperations(const InstructionsState &S) { 2292 MainOp = S.MainOp; 2293 AltOp = S.AltOp; 2294 } 2295 2296 Instruction *getMainOp() const { 2297 return MainOp; 2298 } 2299 2300 Instruction *getAltOp() const { 2301 return AltOp; 2302 } 2303 2304 /// The main/alternate opcodes for the list of instructions. 2305 unsigned getOpcode() const { 2306 return MainOp ? MainOp->getOpcode() : 0; 2307 } 2308 2309 unsigned getAltOpcode() const { 2310 return AltOp ? AltOp->getOpcode() : 0; 2311 } 2312 2313 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2314 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2315 int findLaneForValue(Value *V) const { 2316 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2317 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2318 if (!ReorderIndices.empty()) 2319 FoundLane = ReorderIndices[FoundLane]; 2320 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2321 if (!ReuseShuffleIndices.empty()) { 2322 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2323 find(ReuseShuffleIndices, FoundLane)); 2324 } 2325 return FoundLane; 2326 } 2327 2328 #ifndef NDEBUG 2329 /// Debug printer. 2330 LLVM_DUMP_METHOD void dump() const { 2331 dbgs() << Idx << ".\n"; 2332 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2333 dbgs() << "Operand " << OpI << ":\n"; 2334 for (const Value *V : Operands[OpI]) 2335 dbgs().indent(2) << *V << "\n"; 2336 } 2337 dbgs() << "Scalars: \n"; 2338 for (Value *V : Scalars) 2339 dbgs().indent(2) << *V << "\n"; 2340 dbgs() << "State: "; 2341 switch (State) { 2342 case Vectorize: 2343 dbgs() << "Vectorize\n"; 2344 break; 2345 case ScatterVectorize: 2346 dbgs() << "ScatterVectorize\n"; 2347 break; 2348 case NeedToGather: 2349 dbgs() << "NeedToGather\n"; 2350 break; 2351 } 2352 dbgs() << "MainOp: "; 2353 if (MainOp) 2354 dbgs() << *MainOp << "\n"; 2355 else 2356 dbgs() << "NULL\n"; 2357 dbgs() << "AltOp: "; 2358 if (AltOp) 2359 dbgs() << *AltOp << "\n"; 2360 else 2361 dbgs() << "NULL\n"; 2362 dbgs() << "VectorizedValue: "; 2363 if (VectorizedValue) 2364 dbgs() << *VectorizedValue << "\n"; 2365 else 2366 dbgs() << "NULL\n"; 2367 dbgs() << "ReuseShuffleIndices: "; 2368 if (ReuseShuffleIndices.empty()) 2369 dbgs() << "Empty"; 2370 else 2371 for (int ReuseIdx : ReuseShuffleIndices) 2372 dbgs() << ReuseIdx << ", "; 2373 dbgs() << "\n"; 2374 dbgs() << "ReorderIndices: "; 2375 for (unsigned ReorderIdx : ReorderIndices) 2376 dbgs() << ReorderIdx << ", "; 2377 dbgs() << "\n"; 2378 dbgs() << "UserTreeIndices: "; 2379 for (const auto &EInfo : UserTreeIndices) 2380 dbgs() << EInfo << ", "; 2381 dbgs() << "\n"; 2382 } 2383 #endif 2384 }; 2385 2386 #ifndef NDEBUG 2387 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2388 InstructionCost VecCost, 2389 InstructionCost ScalarCost) const { 2390 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2391 dbgs() << "SLP: Costs:\n"; 2392 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2393 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2394 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2395 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2396 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2397 } 2398 #endif 2399 2400 /// Create a new VectorizableTree entry. 2401 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2402 const InstructionsState &S, 2403 const EdgeInfo &UserTreeIdx, 2404 ArrayRef<int> ReuseShuffleIndices = None, 2405 ArrayRef<unsigned> ReorderIndices = None) { 2406 TreeEntry::EntryState EntryState = 2407 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2408 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2409 ReuseShuffleIndices, ReorderIndices); 2410 } 2411 2412 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2413 TreeEntry::EntryState EntryState, 2414 Optional<ScheduleData *> Bundle, 2415 const InstructionsState &S, 2416 const EdgeInfo &UserTreeIdx, 2417 ArrayRef<int> ReuseShuffleIndices = None, 2418 ArrayRef<unsigned> ReorderIndices = None) { 2419 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2420 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2421 "Need to vectorize gather entry?"); 2422 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2423 TreeEntry *Last = VectorizableTree.back().get(); 2424 Last->Idx = VectorizableTree.size() - 1; 2425 Last->State = EntryState; 2426 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2427 ReuseShuffleIndices.end()); 2428 if (ReorderIndices.empty()) { 2429 Last->Scalars.assign(VL.begin(), VL.end()); 2430 Last->setOperations(S); 2431 } else { 2432 // Reorder scalars and build final mask. 2433 Last->Scalars.assign(VL.size(), nullptr); 2434 transform(ReorderIndices, Last->Scalars.begin(), 2435 [VL](unsigned Idx) -> Value * { 2436 if (Idx >= VL.size()) 2437 return UndefValue::get(VL.front()->getType()); 2438 return VL[Idx]; 2439 }); 2440 InstructionsState S = getSameOpcode(Last->Scalars); 2441 Last->setOperations(S); 2442 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2443 } 2444 if (Last->State != TreeEntry::NeedToGather) { 2445 for (Value *V : VL) { 2446 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2447 ScalarToTreeEntry[V] = Last; 2448 } 2449 // Update the scheduler bundle to point to this TreeEntry. 2450 ScheduleData *BundleMember = Bundle.getValue(); 2451 assert((BundleMember || isa<PHINode>(S.MainOp) || 2452 isVectorLikeInstWithConstOps(S.MainOp) || 2453 doesNotNeedToSchedule(VL)) && 2454 "Bundle and VL out of sync"); 2455 if (BundleMember) { 2456 for (Value *V : VL) { 2457 if (doesNotNeedToBeScheduled(V)) 2458 continue; 2459 assert(BundleMember && "Unexpected end of bundle."); 2460 BundleMember->TE = Last; 2461 BundleMember = BundleMember->NextInBundle; 2462 } 2463 } 2464 assert(!BundleMember && "Bundle and VL out of sync"); 2465 } else { 2466 MustGather.insert(VL.begin(), VL.end()); 2467 } 2468 2469 if (UserTreeIdx.UserTE) 2470 Last->UserTreeIndices.push_back(UserTreeIdx); 2471 2472 return Last; 2473 } 2474 2475 /// -- Vectorization State -- 2476 /// Holds all of the tree entries. 2477 TreeEntry::VecTreeTy VectorizableTree; 2478 2479 #ifndef NDEBUG 2480 /// Debug printer. 2481 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2482 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2483 VectorizableTree[Id]->dump(); 2484 dbgs() << "\n"; 2485 } 2486 } 2487 #endif 2488 2489 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2490 2491 const TreeEntry *getTreeEntry(Value *V) const { 2492 return ScalarToTreeEntry.lookup(V); 2493 } 2494 2495 /// Maps a specific scalar to its tree entry. 2496 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2497 2498 /// Maps a value to the proposed vectorizable size. 2499 SmallDenseMap<Value *, unsigned> InstrElementSize; 2500 2501 /// A list of scalars that we found that we need to keep as scalars. 2502 ValueSet MustGather; 2503 2504 /// This POD struct describes one external user in the vectorized tree. 2505 struct ExternalUser { 2506 ExternalUser(Value *S, llvm::User *U, int L) 2507 : Scalar(S), User(U), Lane(L) {} 2508 2509 // Which scalar in our function. 2510 Value *Scalar; 2511 2512 // Which user that uses the scalar. 2513 llvm::User *User; 2514 2515 // Which lane does the scalar belong to. 2516 int Lane; 2517 }; 2518 using UserList = SmallVector<ExternalUser, 16>; 2519 2520 /// Checks if two instructions may access the same memory. 2521 /// 2522 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2523 /// is invariant in the calling loop. 2524 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2525 Instruction *Inst2) { 2526 // First check if the result is already in the cache. 2527 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2528 Optional<bool> &result = AliasCache[key]; 2529 if (result.hasValue()) { 2530 return result.getValue(); 2531 } 2532 bool aliased = true; 2533 if (Loc1.Ptr && isSimple(Inst1)) 2534 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2535 // Store the result in the cache. 2536 result = aliased; 2537 return aliased; 2538 } 2539 2540 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2541 2542 /// Cache for alias results. 2543 /// TODO: consider moving this to the AliasAnalysis itself. 2544 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2545 2546 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2547 // globally through SLP because we don't perform any action which 2548 // invalidates capture results. 2549 BatchAAResults BatchAA; 2550 2551 /// Temporary store for deleted instructions. Instructions will be deleted 2552 /// eventually when the BoUpSLP is destructed. The deferral is required to 2553 /// ensure that there are no incorrect collisions in the AliasCache, which 2554 /// can happen if a new instruction is allocated at the same address as a 2555 /// previously deleted instruction. 2556 DenseSet<Instruction *> DeletedInstructions; 2557 2558 /// A list of values that need to extracted out of the tree. 2559 /// This list holds pairs of (Internal Scalar : External User). External User 2560 /// can be nullptr, it means that this Internal Scalar will be used later, 2561 /// after vectorization. 2562 UserList ExternalUses; 2563 2564 /// Values used only by @llvm.assume calls. 2565 SmallPtrSet<const Value *, 32> EphValues; 2566 2567 /// Holds all of the instructions that we gathered. 2568 SetVector<Instruction *> GatherShuffleSeq; 2569 2570 /// A list of blocks that we are going to CSE. 2571 SetVector<BasicBlock *> CSEBlocks; 2572 2573 /// Contains all scheduling relevant data for an instruction. 2574 /// A ScheduleData either represents a single instruction or a member of an 2575 /// instruction bundle (= a group of instructions which is combined into a 2576 /// vector instruction). 2577 struct ScheduleData { 2578 // The initial value for the dependency counters. It means that the 2579 // dependencies are not calculated yet. 2580 enum { InvalidDeps = -1 }; 2581 2582 ScheduleData() = default; 2583 2584 void init(int BlockSchedulingRegionID, Value *OpVal) { 2585 FirstInBundle = this; 2586 NextInBundle = nullptr; 2587 NextLoadStore = nullptr; 2588 IsScheduled = false; 2589 SchedulingRegionID = BlockSchedulingRegionID; 2590 clearDependencies(); 2591 OpValue = OpVal; 2592 TE = nullptr; 2593 } 2594 2595 /// Verify basic self consistency properties 2596 void verify() { 2597 if (hasValidDependencies()) { 2598 assert(UnscheduledDeps <= Dependencies && "invariant"); 2599 } else { 2600 assert(UnscheduledDeps == Dependencies && "invariant"); 2601 } 2602 2603 if (IsScheduled) { 2604 assert(isSchedulingEntity() && 2605 "unexpected scheduled state"); 2606 for (const ScheduleData *BundleMember = this; BundleMember; 2607 BundleMember = BundleMember->NextInBundle) { 2608 assert(BundleMember->hasValidDependencies() && 2609 BundleMember->UnscheduledDeps == 0 && 2610 "unexpected scheduled state"); 2611 assert((BundleMember == this || !BundleMember->IsScheduled) && 2612 "only bundle is marked scheduled"); 2613 } 2614 } 2615 2616 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2617 "all bundle members must be in same basic block"); 2618 } 2619 2620 /// Returns true if the dependency information has been calculated. 2621 /// Note that depenendency validity can vary between instructions within 2622 /// a single bundle. 2623 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2624 2625 /// Returns true for single instructions and for bundle representatives 2626 /// (= the head of a bundle). 2627 bool isSchedulingEntity() const { return FirstInBundle == this; } 2628 2629 /// Returns true if it represents an instruction bundle and not only a 2630 /// single instruction. 2631 bool isPartOfBundle() const { 2632 return NextInBundle != nullptr || FirstInBundle != this || TE; 2633 } 2634 2635 /// Returns true if it is ready for scheduling, i.e. it has no more 2636 /// unscheduled depending instructions/bundles. 2637 bool isReady() const { 2638 assert(isSchedulingEntity() && 2639 "can't consider non-scheduling entity for ready list"); 2640 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2641 } 2642 2643 /// Modifies the number of unscheduled dependencies for this instruction, 2644 /// and returns the number of remaining dependencies for the containing 2645 /// bundle. 2646 int incrementUnscheduledDeps(int Incr) { 2647 assert(hasValidDependencies() && 2648 "increment of unscheduled deps would be meaningless"); 2649 UnscheduledDeps += Incr; 2650 return FirstInBundle->unscheduledDepsInBundle(); 2651 } 2652 2653 /// Sets the number of unscheduled dependencies to the number of 2654 /// dependencies. 2655 void resetUnscheduledDeps() { 2656 UnscheduledDeps = Dependencies; 2657 } 2658 2659 /// Clears all dependency information. 2660 void clearDependencies() { 2661 Dependencies = InvalidDeps; 2662 resetUnscheduledDeps(); 2663 MemoryDependencies.clear(); 2664 ControlDependencies.clear(); 2665 } 2666 2667 int unscheduledDepsInBundle() const { 2668 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2669 int Sum = 0; 2670 for (const ScheduleData *BundleMember = this; BundleMember; 2671 BundleMember = BundleMember->NextInBundle) { 2672 if (BundleMember->UnscheduledDeps == InvalidDeps) 2673 return InvalidDeps; 2674 Sum += BundleMember->UnscheduledDeps; 2675 } 2676 return Sum; 2677 } 2678 2679 void dump(raw_ostream &os) const { 2680 if (!isSchedulingEntity()) { 2681 os << "/ " << *Inst; 2682 } else if (NextInBundle) { 2683 os << '[' << *Inst; 2684 ScheduleData *SD = NextInBundle; 2685 while (SD) { 2686 os << ';' << *SD->Inst; 2687 SD = SD->NextInBundle; 2688 } 2689 os << ']'; 2690 } else { 2691 os << *Inst; 2692 } 2693 } 2694 2695 Instruction *Inst = nullptr; 2696 2697 /// Opcode of the current instruction in the schedule data. 2698 Value *OpValue = nullptr; 2699 2700 /// The TreeEntry that this instruction corresponds to. 2701 TreeEntry *TE = nullptr; 2702 2703 /// Points to the head in an instruction bundle (and always to this for 2704 /// single instructions). 2705 ScheduleData *FirstInBundle = nullptr; 2706 2707 /// Single linked list of all instructions in a bundle. Null if it is a 2708 /// single instruction. 2709 ScheduleData *NextInBundle = nullptr; 2710 2711 /// Single linked list of all memory instructions (e.g. load, store, call) 2712 /// in the block - until the end of the scheduling region. 2713 ScheduleData *NextLoadStore = nullptr; 2714 2715 /// The dependent memory instructions. 2716 /// This list is derived on demand in calculateDependencies(). 2717 SmallVector<ScheduleData *, 4> MemoryDependencies; 2718 2719 /// List of instructions which this instruction could be control dependent 2720 /// on. Allowing such nodes to be scheduled below this one could introduce 2721 /// a runtime fault which didn't exist in the original program. 2722 /// ex: this is a load or udiv following a readonly call which inf loops 2723 SmallVector<ScheduleData *, 4> ControlDependencies; 2724 2725 /// This ScheduleData is in the current scheduling region if this matches 2726 /// the current SchedulingRegionID of BlockScheduling. 2727 int SchedulingRegionID = 0; 2728 2729 /// Used for getting a "good" final ordering of instructions. 2730 int SchedulingPriority = 0; 2731 2732 /// The number of dependencies. Constitutes of the number of users of the 2733 /// instruction plus the number of dependent memory instructions (if any). 2734 /// This value is calculated on demand. 2735 /// If InvalidDeps, the number of dependencies is not calculated yet. 2736 int Dependencies = InvalidDeps; 2737 2738 /// The number of dependencies minus the number of dependencies of scheduled 2739 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2740 /// for scheduling. 2741 /// Note that this is negative as long as Dependencies is not calculated. 2742 int UnscheduledDeps = InvalidDeps; 2743 2744 /// True if this instruction is scheduled (or considered as scheduled in the 2745 /// dry-run). 2746 bool IsScheduled = false; 2747 }; 2748 2749 #ifndef NDEBUG 2750 friend inline raw_ostream &operator<<(raw_ostream &os, 2751 const BoUpSLP::ScheduleData &SD) { 2752 SD.dump(os); 2753 return os; 2754 } 2755 #endif 2756 2757 friend struct GraphTraits<BoUpSLP *>; 2758 friend struct DOTGraphTraits<BoUpSLP *>; 2759 2760 /// Contains all scheduling data for a basic block. 2761 /// It does not schedules instructions, which are not memory read/write 2762 /// instructions and their operands are either constants, or arguments, or 2763 /// phis, or instructions from others blocks, or their users are phis or from 2764 /// the other blocks. The resulting vector instructions can be placed at the 2765 /// beginning of the basic block without scheduling (if operands does not need 2766 /// to be scheduled) or at the end of the block (if users are outside of the 2767 /// block). It allows to save some compile time and memory used by the 2768 /// compiler. 2769 /// ScheduleData is assigned for each instruction in between the boundaries of 2770 /// the tree entry, even for those, which are not part of the graph. It is 2771 /// required to correctly follow the dependencies between the instructions and 2772 /// their correct scheduling. The ScheduleData is not allocated for the 2773 /// instructions, which do not require scheduling, like phis, nodes with 2774 /// extractelements/insertelements only or nodes with instructions, with 2775 /// uses/operands outside of the block. 2776 struct BlockScheduling { 2777 BlockScheduling(BasicBlock *BB) 2778 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2779 2780 void clear() { 2781 ReadyInsts.clear(); 2782 ScheduleStart = nullptr; 2783 ScheduleEnd = nullptr; 2784 FirstLoadStoreInRegion = nullptr; 2785 LastLoadStoreInRegion = nullptr; 2786 RegionHasStackSave = false; 2787 2788 // Reduce the maximum schedule region size by the size of the 2789 // previous scheduling run. 2790 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2791 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2792 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2793 ScheduleRegionSize = 0; 2794 2795 // Make a new scheduling region, i.e. all existing ScheduleData is not 2796 // in the new region yet. 2797 ++SchedulingRegionID; 2798 } 2799 2800 ScheduleData *getScheduleData(Instruction *I) { 2801 if (BB != I->getParent()) 2802 // Avoid lookup if can't possibly be in map. 2803 return nullptr; 2804 ScheduleData *SD = ScheduleDataMap.lookup(I); 2805 if (SD && isInSchedulingRegion(SD)) 2806 return SD; 2807 return nullptr; 2808 } 2809 2810 ScheduleData *getScheduleData(Value *V) { 2811 if (auto *I = dyn_cast<Instruction>(V)) 2812 return getScheduleData(I); 2813 return nullptr; 2814 } 2815 2816 ScheduleData *getScheduleData(Value *V, Value *Key) { 2817 if (V == Key) 2818 return getScheduleData(V); 2819 auto I = ExtraScheduleDataMap.find(V); 2820 if (I != ExtraScheduleDataMap.end()) { 2821 ScheduleData *SD = I->second.lookup(Key); 2822 if (SD && isInSchedulingRegion(SD)) 2823 return SD; 2824 } 2825 return nullptr; 2826 } 2827 2828 bool isInSchedulingRegion(ScheduleData *SD) const { 2829 return SD->SchedulingRegionID == SchedulingRegionID; 2830 } 2831 2832 /// Marks an instruction as scheduled and puts all dependent ready 2833 /// instructions into the ready-list. 2834 template <typename ReadyListType> 2835 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2836 SD->IsScheduled = true; 2837 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2838 2839 for (ScheduleData *BundleMember = SD; BundleMember; 2840 BundleMember = BundleMember->NextInBundle) { 2841 if (BundleMember->Inst != BundleMember->OpValue) 2842 continue; 2843 2844 // Handle the def-use chain dependencies. 2845 2846 // Decrement the unscheduled counter and insert to ready list if ready. 2847 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2848 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2849 if (OpDef && OpDef->hasValidDependencies() && 2850 OpDef->incrementUnscheduledDeps(-1) == 0) { 2851 // There are no more unscheduled dependencies after 2852 // decrementing, so we can put the dependent instruction 2853 // into the ready list. 2854 ScheduleData *DepBundle = OpDef->FirstInBundle; 2855 assert(!DepBundle->IsScheduled && 2856 "already scheduled bundle gets ready"); 2857 ReadyList.insert(DepBundle); 2858 LLVM_DEBUG(dbgs() 2859 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2860 } 2861 }); 2862 }; 2863 2864 // If BundleMember is a vector bundle, its operands may have been 2865 // reordered during buildTree(). We therefore need to get its operands 2866 // through the TreeEntry. 2867 if (TreeEntry *TE = BundleMember->TE) { 2868 // Need to search for the lane since the tree entry can be reordered. 2869 int Lane = std::distance(TE->Scalars.begin(), 2870 find(TE->Scalars, BundleMember->Inst)); 2871 assert(Lane >= 0 && "Lane not set"); 2872 2873 // Since vectorization tree is being built recursively this assertion 2874 // ensures that the tree entry has all operands set before reaching 2875 // this code. Couple of exceptions known at the moment are extracts 2876 // where their second (immediate) operand is not added. Since 2877 // immediates do not affect scheduler behavior this is considered 2878 // okay. 2879 auto *In = BundleMember->Inst; 2880 assert(In && 2881 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2882 In->getNumOperands() == TE->getNumOperands()) && 2883 "Missed TreeEntry operands?"); 2884 (void)In; // fake use to avoid build failure when assertions disabled 2885 2886 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2887 OpIdx != NumOperands; ++OpIdx) 2888 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2889 DecrUnsched(I); 2890 } else { 2891 // If BundleMember is a stand-alone instruction, no operand reordering 2892 // has taken place, so we directly access its operands. 2893 for (Use &U : BundleMember->Inst->operands()) 2894 if (auto *I = dyn_cast<Instruction>(U.get())) 2895 DecrUnsched(I); 2896 } 2897 // Handle the memory dependencies. 2898 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2899 if (MemoryDepSD->hasValidDependencies() && 2900 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2901 // There are no more unscheduled dependencies after decrementing, 2902 // so we can put the dependent instruction into the ready list. 2903 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2904 assert(!DepBundle->IsScheduled && 2905 "already scheduled bundle gets ready"); 2906 ReadyList.insert(DepBundle); 2907 LLVM_DEBUG(dbgs() 2908 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2909 } 2910 } 2911 // Handle the control dependencies. 2912 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2913 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2914 // There are no more unscheduled dependencies after decrementing, 2915 // so we can put the dependent instruction into the ready list. 2916 ScheduleData *DepBundle = DepSD->FirstInBundle; 2917 assert(!DepBundle->IsScheduled && 2918 "already scheduled bundle gets ready"); 2919 ReadyList.insert(DepBundle); 2920 LLVM_DEBUG(dbgs() 2921 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2922 } 2923 } 2924 2925 } 2926 } 2927 2928 /// Verify basic self consistency properties of the data structure. 2929 void verify() { 2930 if (!ScheduleStart) 2931 return; 2932 2933 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2934 ScheduleStart->comesBefore(ScheduleEnd) && 2935 "Not a valid scheduling region?"); 2936 2937 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2938 auto *SD = getScheduleData(I); 2939 if (!SD) 2940 continue; 2941 assert(isInSchedulingRegion(SD) && 2942 "primary schedule data not in window?"); 2943 assert(isInSchedulingRegion(SD->FirstInBundle) && 2944 "entire bundle in window!"); 2945 (void)SD; 2946 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2947 } 2948 2949 for (auto *SD : ReadyInsts) { 2950 assert(SD->isSchedulingEntity() && SD->isReady() && 2951 "item in ready list not ready?"); 2952 (void)SD; 2953 } 2954 } 2955 2956 void doForAllOpcodes(Value *V, 2957 function_ref<void(ScheduleData *SD)> Action) { 2958 if (ScheduleData *SD = getScheduleData(V)) 2959 Action(SD); 2960 auto I = ExtraScheduleDataMap.find(V); 2961 if (I != ExtraScheduleDataMap.end()) 2962 for (auto &P : I->second) 2963 if (isInSchedulingRegion(P.second)) 2964 Action(P.second); 2965 } 2966 2967 /// Put all instructions into the ReadyList which are ready for scheduling. 2968 template <typename ReadyListType> 2969 void initialFillReadyList(ReadyListType &ReadyList) { 2970 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2971 doForAllOpcodes(I, [&](ScheduleData *SD) { 2972 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2973 SD->isReady()) { 2974 ReadyList.insert(SD); 2975 LLVM_DEBUG(dbgs() 2976 << "SLP: initially in ready list: " << *SD << "\n"); 2977 } 2978 }); 2979 } 2980 } 2981 2982 /// Build a bundle from the ScheduleData nodes corresponding to the 2983 /// scalar instruction for each lane. 2984 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2985 2986 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2987 /// cyclic dependencies. This is only a dry-run, no instructions are 2988 /// actually moved at this stage. 2989 /// \returns the scheduling bundle. The returned Optional value is non-None 2990 /// if \p VL is allowed to be scheduled. 2991 Optional<ScheduleData *> 2992 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2993 const InstructionsState &S); 2994 2995 /// Un-bundles a group of instructions. 2996 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2997 2998 /// Allocates schedule data chunk. 2999 ScheduleData *allocateScheduleDataChunks(); 3000 3001 /// Extends the scheduling region so that V is inside the region. 3002 /// \returns true if the region size is within the limit. 3003 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3004 3005 /// Initialize the ScheduleData structures for new instructions in the 3006 /// scheduling region. 3007 void initScheduleData(Instruction *FromI, Instruction *ToI, 3008 ScheduleData *PrevLoadStore, 3009 ScheduleData *NextLoadStore); 3010 3011 /// Updates the dependency information of a bundle and of all instructions/ 3012 /// bundles which depend on the original bundle. 3013 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3014 BoUpSLP *SLP); 3015 3016 /// Sets all instruction in the scheduling region to un-scheduled. 3017 void resetSchedule(); 3018 3019 BasicBlock *BB; 3020 3021 /// Simple memory allocation for ScheduleData. 3022 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3023 3024 /// The size of a ScheduleData array in ScheduleDataChunks. 3025 int ChunkSize; 3026 3027 /// The allocator position in the current chunk, which is the last entry 3028 /// of ScheduleDataChunks. 3029 int ChunkPos; 3030 3031 /// Attaches ScheduleData to Instruction. 3032 /// Note that the mapping survives during all vectorization iterations, i.e. 3033 /// ScheduleData structures are recycled. 3034 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3035 3036 /// Attaches ScheduleData to Instruction with the leading key. 3037 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3038 ExtraScheduleDataMap; 3039 3040 /// The ready-list for scheduling (only used for the dry-run). 3041 SetVector<ScheduleData *> ReadyInsts; 3042 3043 /// The first instruction of the scheduling region. 3044 Instruction *ScheduleStart = nullptr; 3045 3046 /// The first instruction _after_ the scheduling region. 3047 Instruction *ScheduleEnd = nullptr; 3048 3049 /// The first memory accessing instruction in the scheduling region 3050 /// (can be null). 3051 ScheduleData *FirstLoadStoreInRegion = nullptr; 3052 3053 /// The last memory accessing instruction in the scheduling region 3054 /// (can be null). 3055 ScheduleData *LastLoadStoreInRegion = nullptr; 3056 3057 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3058 /// region? Used to optimize the dependence calculation for the 3059 /// common case where there isn't. 3060 bool RegionHasStackSave = false; 3061 3062 /// The current size of the scheduling region. 3063 int ScheduleRegionSize = 0; 3064 3065 /// The maximum size allowed for the scheduling region. 3066 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3067 3068 /// The ID of the scheduling region. For a new vectorization iteration this 3069 /// is incremented which "removes" all ScheduleData from the region. 3070 /// Make sure that the initial SchedulingRegionID is greater than the 3071 /// initial SchedulingRegionID in ScheduleData (which is 0). 3072 int SchedulingRegionID = 1; 3073 }; 3074 3075 /// Attaches the BlockScheduling structures to basic blocks. 3076 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3077 3078 /// Performs the "real" scheduling. Done before vectorization is actually 3079 /// performed in a basic block. 3080 void scheduleBlock(BlockScheduling *BS); 3081 3082 /// List of users to ignore during scheduling and that don't need extracting. 3083 ArrayRef<Value *> UserIgnoreList; 3084 3085 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3086 /// sorted SmallVectors of unsigned. 3087 struct OrdersTypeDenseMapInfo { 3088 static OrdersType getEmptyKey() { 3089 OrdersType V; 3090 V.push_back(~1U); 3091 return V; 3092 } 3093 3094 static OrdersType getTombstoneKey() { 3095 OrdersType V; 3096 V.push_back(~2U); 3097 return V; 3098 } 3099 3100 static unsigned getHashValue(const OrdersType &V) { 3101 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3102 } 3103 3104 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3105 return LHS == RHS; 3106 } 3107 }; 3108 3109 // Analysis and block reference. 3110 Function *F; 3111 ScalarEvolution *SE; 3112 TargetTransformInfo *TTI; 3113 TargetLibraryInfo *TLI; 3114 LoopInfo *LI; 3115 DominatorTree *DT; 3116 AssumptionCache *AC; 3117 DemandedBits *DB; 3118 const DataLayout *DL; 3119 OptimizationRemarkEmitter *ORE; 3120 3121 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3122 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3123 3124 /// Instruction builder to construct the vectorized tree. 3125 IRBuilder<> Builder; 3126 3127 /// A map of scalar integer values to the smallest bit width with which they 3128 /// can legally be represented. The values map to (width, signed) pairs, 3129 /// where "width" indicates the minimum bit width and "signed" is True if the 3130 /// value must be signed-extended, rather than zero-extended, back to its 3131 /// original width. 3132 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3133 }; 3134 3135 } // end namespace slpvectorizer 3136 3137 template <> struct GraphTraits<BoUpSLP *> { 3138 using TreeEntry = BoUpSLP::TreeEntry; 3139 3140 /// NodeRef has to be a pointer per the GraphWriter. 3141 using NodeRef = TreeEntry *; 3142 3143 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3144 3145 /// Add the VectorizableTree to the index iterator to be able to return 3146 /// TreeEntry pointers. 3147 struct ChildIteratorType 3148 : public iterator_adaptor_base< 3149 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3150 ContainerTy &VectorizableTree; 3151 3152 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3153 ContainerTy &VT) 3154 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3155 3156 NodeRef operator*() { return I->UserTE; } 3157 }; 3158 3159 static NodeRef getEntryNode(BoUpSLP &R) { 3160 return R.VectorizableTree[0].get(); 3161 } 3162 3163 static ChildIteratorType child_begin(NodeRef N) { 3164 return {N->UserTreeIndices.begin(), N->Container}; 3165 } 3166 3167 static ChildIteratorType child_end(NodeRef N) { 3168 return {N->UserTreeIndices.end(), N->Container}; 3169 } 3170 3171 /// For the node iterator we just need to turn the TreeEntry iterator into a 3172 /// TreeEntry* iterator so that it dereferences to NodeRef. 3173 class nodes_iterator { 3174 using ItTy = ContainerTy::iterator; 3175 ItTy It; 3176 3177 public: 3178 nodes_iterator(const ItTy &It2) : It(It2) {} 3179 NodeRef operator*() { return It->get(); } 3180 nodes_iterator operator++() { 3181 ++It; 3182 return *this; 3183 } 3184 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3185 }; 3186 3187 static nodes_iterator nodes_begin(BoUpSLP *R) { 3188 return nodes_iterator(R->VectorizableTree.begin()); 3189 } 3190 3191 static nodes_iterator nodes_end(BoUpSLP *R) { 3192 return nodes_iterator(R->VectorizableTree.end()); 3193 } 3194 3195 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3196 }; 3197 3198 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3199 using TreeEntry = BoUpSLP::TreeEntry; 3200 3201 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3202 3203 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3204 std::string Str; 3205 raw_string_ostream OS(Str); 3206 if (isSplat(Entry->Scalars)) 3207 OS << "<splat> "; 3208 for (auto V : Entry->Scalars) { 3209 OS << *V; 3210 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3211 return EU.Scalar == V; 3212 })) 3213 OS << " <extract>"; 3214 OS << "\n"; 3215 } 3216 return Str; 3217 } 3218 3219 static std::string getNodeAttributes(const TreeEntry *Entry, 3220 const BoUpSLP *) { 3221 if (Entry->State == TreeEntry::NeedToGather) 3222 return "color=red"; 3223 return ""; 3224 } 3225 }; 3226 3227 } // end namespace llvm 3228 3229 BoUpSLP::~BoUpSLP() { 3230 SmallVector<WeakTrackingVH> DeadInsts; 3231 for (auto *I : DeletedInstructions) { 3232 for (Use &U : I->operands()) { 3233 auto *Op = dyn_cast<Instruction>(U.get()); 3234 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3235 wouldInstructionBeTriviallyDead(Op, TLI)) 3236 DeadInsts.emplace_back(Op); 3237 } 3238 I->dropAllReferences(); 3239 } 3240 for (auto *I : DeletedInstructions) { 3241 assert(I->use_empty() && 3242 "trying to erase instruction with users."); 3243 I->eraseFromParent(); 3244 } 3245 3246 // Cleanup any dead scalar code feeding the vectorized instructions 3247 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3248 3249 #ifdef EXPENSIVE_CHECKS 3250 // If we could guarantee that this call is not extremely slow, we could 3251 // remove the ifdef limitation (see PR47712). 3252 assert(!verifyFunction(*F, &dbgs())); 3253 #endif 3254 } 3255 3256 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3257 /// contains original mask for the scalars reused in the node. Procedure 3258 /// transform this mask in accordance with the given \p Mask. 3259 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3260 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3261 "Expected non-empty mask."); 3262 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3263 Prev.swap(Reuses); 3264 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3265 if (Mask[I] != UndefMaskElem) 3266 Reuses[Mask[I]] = Prev[I]; 3267 } 3268 3269 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3270 /// the original order of the scalars. Procedure transforms the provided order 3271 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3272 /// identity order, \p Order is cleared. 3273 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3274 assert(!Mask.empty() && "Expected non-empty mask."); 3275 SmallVector<int> MaskOrder; 3276 if (Order.empty()) { 3277 MaskOrder.resize(Mask.size()); 3278 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3279 } else { 3280 inversePermutation(Order, MaskOrder); 3281 } 3282 reorderReuses(MaskOrder, Mask); 3283 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3284 Order.clear(); 3285 return; 3286 } 3287 Order.assign(Mask.size(), Mask.size()); 3288 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3289 if (MaskOrder[I] != UndefMaskElem) 3290 Order[MaskOrder[I]] = I; 3291 fixupOrderingIndices(Order); 3292 } 3293 3294 Optional<BoUpSLP::OrdersType> 3295 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3296 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3297 unsigned NumScalars = TE.Scalars.size(); 3298 OrdersType CurrentOrder(NumScalars, NumScalars); 3299 SmallVector<int> Positions; 3300 SmallBitVector UsedPositions(NumScalars); 3301 const TreeEntry *STE = nullptr; 3302 // Try to find all gathered scalars that are gets vectorized in other 3303 // vectorize node. Here we can have only one single tree vector node to 3304 // correctly identify order of the gathered scalars. 3305 for (unsigned I = 0; I < NumScalars; ++I) { 3306 Value *V = TE.Scalars[I]; 3307 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3308 continue; 3309 if (const auto *LocalSTE = getTreeEntry(V)) { 3310 if (!STE) 3311 STE = LocalSTE; 3312 else if (STE != LocalSTE) 3313 // Take the order only from the single vector node. 3314 return None; 3315 unsigned Lane = 3316 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3317 if (Lane >= NumScalars) 3318 return None; 3319 if (CurrentOrder[Lane] != NumScalars) { 3320 if (Lane != I) 3321 continue; 3322 UsedPositions.reset(CurrentOrder[Lane]); 3323 } 3324 // The partial identity (where only some elements of the gather node are 3325 // in the identity order) is good. 3326 CurrentOrder[Lane] = I; 3327 UsedPositions.set(I); 3328 } 3329 } 3330 // Need to keep the order if we have a vector entry and at least 2 scalars or 3331 // the vectorized entry has just 2 scalars. 3332 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3333 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3334 for (unsigned I = 0; I < NumScalars; ++I) 3335 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3336 return false; 3337 return true; 3338 }; 3339 if (IsIdentityOrder(CurrentOrder)) { 3340 CurrentOrder.clear(); 3341 return CurrentOrder; 3342 } 3343 auto *It = CurrentOrder.begin(); 3344 for (unsigned I = 0; I < NumScalars;) { 3345 if (UsedPositions.test(I)) { 3346 ++I; 3347 continue; 3348 } 3349 if (*It == NumScalars) { 3350 *It = I; 3351 ++I; 3352 } 3353 ++It; 3354 } 3355 return CurrentOrder; 3356 } 3357 return None; 3358 } 3359 3360 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3361 bool TopToBottom) { 3362 // No need to reorder if need to shuffle reuses, still need to shuffle the 3363 // node. 3364 if (!TE.ReuseShuffleIndices.empty()) 3365 return None; 3366 if (TE.State == TreeEntry::Vectorize && 3367 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3368 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3369 !TE.isAltShuffle()) 3370 return TE.ReorderIndices; 3371 if (TE.State == TreeEntry::NeedToGather) { 3372 // TODO: add analysis of other gather nodes with extractelement 3373 // instructions and other values/instructions, not only undefs. 3374 if (((TE.getOpcode() == Instruction::ExtractElement && 3375 !TE.isAltShuffle()) || 3376 (all_of(TE.Scalars, 3377 [](Value *V) { 3378 return isa<UndefValue, ExtractElementInst>(V); 3379 }) && 3380 any_of(TE.Scalars, 3381 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3382 all_of(TE.Scalars, 3383 [](Value *V) { 3384 auto *EE = dyn_cast<ExtractElementInst>(V); 3385 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3386 }) && 3387 allSameType(TE.Scalars)) { 3388 // Check that gather of extractelements can be represented as 3389 // just a shuffle of a single vector. 3390 OrdersType CurrentOrder; 3391 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3392 if (Reuse || !CurrentOrder.empty()) { 3393 if (!CurrentOrder.empty()) 3394 fixupOrderingIndices(CurrentOrder); 3395 return CurrentOrder; 3396 } 3397 } 3398 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3399 return CurrentOrder; 3400 } 3401 return None; 3402 } 3403 3404 void BoUpSLP::reorderTopToBottom() { 3405 // Maps VF to the graph nodes. 3406 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3407 // ExtractElement gather nodes which can be vectorized and need to handle 3408 // their ordering. 3409 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3410 // Find all reorderable nodes with the given VF. 3411 // Currently the are vectorized stores,loads,extracts + some gathering of 3412 // extracts. 3413 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3414 const std::unique_ptr<TreeEntry> &TE) { 3415 if (Optional<OrdersType> CurrentOrder = 3416 getReorderingData(*TE, /*TopToBottom=*/true)) { 3417 // Do not include ordering for nodes used in the alt opcode vectorization, 3418 // better to reorder them during bottom-to-top stage. If follow the order 3419 // here, it causes reordering of the whole graph though actually it is 3420 // profitable just to reorder the subgraph that starts from the alternate 3421 // opcode vectorization node. Such nodes already end-up with the shuffle 3422 // instruction and it is just enough to change this shuffle rather than 3423 // rotate the scalars for the whole graph. 3424 unsigned Cnt = 0; 3425 const TreeEntry *UserTE = TE.get(); 3426 while (UserTE && Cnt < RecursionMaxDepth) { 3427 if (UserTE->UserTreeIndices.size() != 1) 3428 break; 3429 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3430 return EI.UserTE->State == TreeEntry::Vectorize && 3431 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3432 })) 3433 return; 3434 if (UserTE->UserTreeIndices.empty()) 3435 UserTE = nullptr; 3436 else 3437 UserTE = UserTE->UserTreeIndices.back().UserTE; 3438 ++Cnt; 3439 } 3440 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3441 if (TE->State != TreeEntry::Vectorize) 3442 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3443 } 3444 }); 3445 3446 // Reorder the graph nodes according to their vectorization factor. 3447 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3448 VF /= 2) { 3449 auto It = VFToOrderedEntries.find(VF); 3450 if (It == VFToOrderedEntries.end()) 3451 continue; 3452 // Try to find the most profitable order. We just are looking for the most 3453 // used order and reorder scalar elements in the nodes according to this 3454 // mostly used order. 3455 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3456 // All operands are reordered and used only in this node - propagate the 3457 // most used order to the user node. 3458 MapVector<OrdersType, unsigned, 3459 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3460 OrdersUses; 3461 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3462 for (const TreeEntry *OpTE : OrderedEntries) { 3463 // No need to reorder this nodes, still need to extend and to use shuffle, 3464 // just need to merge reordering shuffle and the reuse shuffle. 3465 if (!OpTE->ReuseShuffleIndices.empty()) 3466 continue; 3467 // Count number of orders uses. 3468 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3469 if (OpTE->State == TreeEntry::NeedToGather) 3470 return GathersToOrders.find(OpTE)->second; 3471 return OpTE->ReorderIndices; 3472 }(); 3473 // Stores actually store the mask, not the order, need to invert. 3474 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3475 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3476 SmallVector<int> Mask; 3477 inversePermutation(Order, Mask); 3478 unsigned E = Order.size(); 3479 OrdersType CurrentOrder(E, E); 3480 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3481 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3482 }); 3483 fixupOrderingIndices(CurrentOrder); 3484 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3485 } else { 3486 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3487 } 3488 } 3489 // Set order of the user node. 3490 if (OrdersUses.empty()) 3491 continue; 3492 // Choose the most used order. 3493 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3494 unsigned Cnt = OrdersUses.front().second; 3495 for (const auto &Pair : drop_begin(OrdersUses)) { 3496 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3497 BestOrder = Pair.first; 3498 Cnt = Pair.second; 3499 } 3500 } 3501 // Set order of the user node. 3502 if (BestOrder.empty()) 3503 continue; 3504 SmallVector<int> Mask; 3505 inversePermutation(BestOrder, Mask); 3506 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3507 unsigned E = BestOrder.size(); 3508 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3509 return I < E ? static_cast<int>(I) : UndefMaskElem; 3510 }); 3511 // Do an actual reordering, if profitable. 3512 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3513 // Just do the reordering for the nodes with the given VF. 3514 if (TE->Scalars.size() != VF) { 3515 if (TE->ReuseShuffleIndices.size() == VF) { 3516 // Need to reorder the reuses masks of the operands with smaller VF to 3517 // be able to find the match between the graph nodes and scalar 3518 // operands of the given node during vectorization/cost estimation. 3519 assert(all_of(TE->UserTreeIndices, 3520 [VF, &TE](const EdgeInfo &EI) { 3521 return EI.UserTE->Scalars.size() == VF || 3522 EI.UserTE->Scalars.size() == 3523 TE->Scalars.size(); 3524 }) && 3525 "All users must be of VF size."); 3526 // Update ordering of the operands with the smaller VF than the given 3527 // one. 3528 reorderReuses(TE->ReuseShuffleIndices, Mask); 3529 } 3530 continue; 3531 } 3532 if (TE->State == TreeEntry::Vectorize && 3533 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3534 InsertElementInst>(TE->getMainOp()) && 3535 !TE->isAltShuffle()) { 3536 // Build correct orders for extract{element,value}, loads and 3537 // stores. 3538 reorderOrder(TE->ReorderIndices, Mask); 3539 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3540 TE->reorderOperands(Mask); 3541 } else { 3542 // Reorder the node and its operands. 3543 TE->reorderOperands(Mask); 3544 assert(TE->ReorderIndices.empty() && 3545 "Expected empty reorder sequence."); 3546 reorderScalars(TE->Scalars, Mask); 3547 } 3548 if (!TE->ReuseShuffleIndices.empty()) { 3549 // Apply reversed order to keep the original ordering of the reused 3550 // elements to avoid extra reorder indices shuffling. 3551 OrdersType CurrentOrder; 3552 reorderOrder(CurrentOrder, MaskOrder); 3553 SmallVector<int> NewReuses; 3554 inversePermutation(CurrentOrder, NewReuses); 3555 addMask(NewReuses, TE->ReuseShuffleIndices); 3556 TE->ReuseShuffleIndices.swap(NewReuses); 3557 } 3558 } 3559 } 3560 } 3561 3562 bool BoUpSLP::canReorderOperands( 3563 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3564 ArrayRef<TreeEntry *> ReorderableGathers, 3565 SmallVectorImpl<TreeEntry *> &GatherOps) { 3566 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3567 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3568 return OpData.first == I && 3569 OpData.second->State == TreeEntry::Vectorize; 3570 })) 3571 continue; 3572 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3573 // Do not reorder if operand node is used by many user nodes. 3574 if (any_of(TE->UserTreeIndices, 3575 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3576 return false; 3577 // Add the node to the list of the ordered nodes with the identity 3578 // order. 3579 Edges.emplace_back(I, TE); 3580 continue; 3581 } 3582 ArrayRef<Value *> VL = UserTE->getOperand(I); 3583 TreeEntry *Gather = nullptr; 3584 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3585 assert(TE->State != TreeEntry::Vectorize && 3586 "Only non-vectorized nodes are expected."); 3587 if (TE->isSame(VL)) { 3588 Gather = TE; 3589 return true; 3590 } 3591 return false; 3592 }) > 1) 3593 return false; 3594 if (Gather) 3595 GatherOps.push_back(Gather); 3596 } 3597 return true; 3598 } 3599 3600 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3601 SetVector<TreeEntry *> OrderedEntries; 3602 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3603 // Find all reorderable leaf nodes with the given VF. 3604 // Currently the are vectorized loads,extracts without alternate operands + 3605 // some gathering of extracts. 3606 SmallVector<TreeEntry *> NonVectorized; 3607 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3608 &NonVectorized]( 3609 const std::unique_ptr<TreeEntry> &TE) { 3610 if (TE->State != TreeEntry::Vectorize) 3611 NonVectorized.push_back(TE.get()); 3612 if (Optional<OrdersType> CurrentOrder = 3613 getReorderingData(*TE, /*TopToBottom=*/false)) { 3614 OrderedEntries.insert(TE.get()); 3615 if (TE->State != TreeEntry::Vectorize) 3616 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3617 } 3618 }); 3619 3620 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3621 // I.e., if the node has operands, that are reordered, try to make at least 3622 // one operand order in the natural order and reorder others + reorder the 3623 // user node itself. 3624 SmallPtrSet<const TreeEntry *, 4> Visited; 3625 while (!OrderedEntries.empty()) { 3626 // 1. Filter out only reordered nodes. 3627 // 2. If the entry has multiple uses - skip it and jump to the next node. 3628 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3629 SmallVector<TreeEntry *> Filtered; 3630 for (TreeEntry *TE : OrderedEntries) { 3631 if (!(TE->State == TreeEntry::Vectorize || 3632 (TE->State == TreeEntry::NeedToGather && 3633 GathersToOrders.count(TE))) || 3634 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3635 !all_of(drop_begin(TE->UserTreeIndices), 3636 [TE](const EdgeInfo &EI) { 3637 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3638 }) || 3639 !Visited.insert(TE).second) { 3640 Filtered.push_back(TE); 3641 continue; 3642 } 3643 // Build a map between user nodes and their operands order to speedup 3644 // search. The graph currently does not provide this dependency directly. 3645 for (EdgeInfo &EI : TE->UserTreeIndices) { 3646 TreeEntry *UserTE = EI.UserTE; 3647 auto It = Users.find(UserTE); 3648 if (It == Users.end()) 3649 It = Users.insert({UserTE, {}}).first; 3650 It->second.emplace_back(EI.EdgeIdx, TE); 3651 } 3652 } 3653 // Erase filtered entries. 3654 for_each(Filtered, 3655 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3656 for (auto &Data : Users) { 3657 // Check that operands are used only in the User node. 3658 SmallVector<TreeEntry *> GatherOps; 3659 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3660 GatherOps)) { 3661 for_each(Data.second, 3662 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3663 OrderedEntries.remove(Op.second); 3664 }); 3665 continue; 3666 } 3667 // All operands are reordered and used only in this node - propagate the 3668 // most used order to the user node. 3669 MapVector<OrdersType, unsigned, 3670 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3671 OrdersUses; 3672 // Do the analysis for each tree entry only once, otherwise the order of 3673 // the same node my be considered several times, though might be not 3674 // profitable. 3675 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3676 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3677 for (const auto &Op : Data.second) { 3678 TreeEntry *OpTE = Op.second; 3679 if (!VisitedOps.insert(OpTE).second) 3680 continue; 3681 if (!OpTE->ReuseShuffleIndices.empty() || 3682 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3683 continue; 3684 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3685 if (OpTE->State == TreeEntry::NeedToGather) 3686 return GathersToOrders.find(OpTE)->second; 3687 return OpTE->ReorderIndices; 3688 }(); 3689 unsigned NumOps = count_if( 3690 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3691 return P.second == OpTE; 3692 }); 3693 // Stores actually store the mask, not the order, need to invert. 3694 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3695 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3696 SmallVector<int> Mask; 3697 inversePermutation(Order, Mask); 3698 unsigned E = Order.size(); 3699 OrdersType CurrentOrder(E, E); 3700 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3701 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3702 }); 3703 fixupOrderingIndices(CurrentOrder); 3704 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3705 NumOps; 3706 } else { 3707 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3708 } 3709 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3710 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3711 const TreeEntry *TE) { 3712 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3713 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3714 (IgnoreReorder && TE->Idx == 0)) 3715 return true; 3716 if (TE->State == TreeEntry::NeedToGather) { 3717 auto It = GathersToOrders.find(TE); 3718 if (It != GathersToOrders.end()) 3719 return !It->second.empty(); 3720 return true; 3721 } 3722 return false; 3723 }; 3724 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3725 TreeEntry *UserTE = EI.UserTE; 3726 if (!VisitedUsers.insert(UserTE).second) 3727 continue; 3728 // May reorder user node if it requires reordering, has reused 3729 // scalars, is an alternate op vectorize node or its op nodes require 3730 // reordering. 3731 if (AllowsReordering(UserTE)) 3732 continue; 3733 // Check if users allow reordering. 3734 // Currently look up just 1 level of operands to avoid increase of 3735 // the compile time. 3736 // Profitable to reorder if definitely more operands allow 3737 // reordering rather than those with natural order. 3738 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3739 if (static_cast<unsigned>(count_if( 3740 Ops, [UserTE, &AllowsReordering]( 3741 const std::pair<unsigned, TreeEntry *> &Op) { 3742 return AllowsReordering(Op.second) && 3743 all_of(Op.second->UserTreeIndices, 3744 [UserTE](const EdgeInfo &EI) { 3745 return EI.UserTE == UserTE; 3746 }); 3747 })) <= Ops.size() / 2) 3748 ++Res.first->second; 3749 } 3750 } 3751 // If no orders - skip current nodes and jump to the next one, if any. 3752 if (OrdersUses.empty()) { 3753 for_each(Data.second, 3754 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3755 OrderedEntries.remove(Op.second); 3756 }); 3757 continue; 3758 } 3759 // Choose the best order. 3760 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3761 unsigned Cnt = OrdersUses.front().second; 3762 for (const auto &Pair : drop_begin(OrdersUses)) { 3763 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3764 BestOrder = Pair.first; 3765 Cnt = Pair.second; 3766 } 3767 } 3768 // Set order of the user node (reordering of operands and user nodes). 3769 if (BestOrder.empty()) { 3770 for_each(Data.second, 3771 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3772 OrderedEntries.remove(Op.second); 3773 }); 3774 continue; 3775 } 3776 // Erase operands from OrderedEntries list and adjust their orders. 3777 VisitedOps.clear(); 3778 SmallVector<int> Mask; 3779 inversePermutation(BestOrder, Mask); 3780 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3781 unsigned E = BestOrder.size(); 3782 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3783 return I < E ? static_cast<int>(I) : UndefMaskElem; 3784 }); 3785 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3786 TreeEntry *TE = Op.second; 3787 OrderedEntries.remove(TE); 3788 if (!VisitedOps.insert(TE).second) 3789 continue; 3790 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3791 // Just reorder reuses indices. 3792 reorderReuses(TE->ReuseShuffleIndices, Mask); 3793 continue; 3794 } 3795 // Gathers are processed separately. 3796 if (TE->State != TreeEntry::Vectorize) 3797 continue; 3798 assert((BestOrder.size() == TE->ReorderIndices.size() || 3799 TE->ReorderIndices.empty()) && 3800 "Non-matching sizes of user/operand entries."); 3801 reorderOrder(TE->ReorderIndices, Mask); 3802 } 3803 // For gathers just need to reorder its scalars. 3804 for (TreeEntry *Gather : GatherOps) { 3805 assert(Gather->ReorderIndices.empty() && 3806 "Unexpected reordering of gathers."); 3807 if (!Gather->ReuseShuffleIndices.empty()) { 3808 // Just reorder reuses indices. 3809 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3810 continue; 3811 } 3812 reorderScalars(Gather->Scalars, Mask); 3813 OrderedEntries.remove(Gather); 3814 } 3815 // Reorder operands of the user node and set the ordering for the user 3816 // node itself. 3817 if (Data.first->State != TreeEntry::Vectorize || 3818 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3819 Data.first->getMainOp()) || 3820 Data.first->isAltShuffle()) 3821 Data.first->reorderOperands(Mask); 3822 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3823 Data.first->isAltShuffle()) { 3824 reorderScalars(Data.first->Scalars, Mask); 3825 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3826 if (Data.first->ReuseShuffleIndices.empty() && 3827 !Data.first->ReorderIndices.empty() && 3828 !Data.first->isAltShuffle()) { 3829 // Insert user node to the list to try to sink reordering deeper in 3830 // the graph. 3831 OrderedEntries.insert(Data.first); 3832 } 3833 } else { 3834 reorderOrder(Data.first->ReorderIndices, Mask); 3835 } 3836 } 3837 } 3838 // If the reordering is unnecessary, just remove the reorder. 3839 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3840 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3841 VectorizableTree.front()->ReorderIndices.clear(); 3842 } 3843 3844 void BoUpSLP::buildExternalUses( 3845 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3846 // Collect the values that we need to extract from the tree. 3847 for (auto &TEPtr : VectorizableTree) { 3848 TreeEntry *Entry = TEPtr.get(); 3849 3850 // No need to handle users of gathered values. 3851 if (Entry->State == TreeEntry::NeedToGather) 3852 continue; 3853 3854 // For each lane: 3855 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3856 Value *Scalar = Entry->Scalars[Lane]; 3857 int FoundLane = Entry->findLaneForValue(Scalar); 3858 3859 // Check if the scalar is externally used as an extra arg. 3860 auto ExtI = ExternallyUsedValues.find(Scalar); 3861 if (ExtI != ExternallyUsedValues.end()) { 3862 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3863 << Lane << " from " << *Scalar << ".\n"); 3864 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3865 } 3866 for (User *U : Scalar->users()) { 3867 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3868 3869 Instruction *UserInst = dyn_cast<Instruction>(U); 3870 if (!UserInst) 3871 continue; 3872 3873 if (isDeleted(UserInst)) 3874 continue; 3875 3876 // Skip in-tree scalars that become vectors 3877 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3878 Value *UseScalar = UseEntry->Scalars[0]; 3879 // Some in-tree scalars will remain as scalar in vectorized 3880 // instructions. If that is the case, the one in Lane 0 will 3881 // be used. 3882 if (UseScalar != U || 3883 UseEntry->State == TreeEntry::ScatterVectorize || 3884 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3885 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3886 << ".\n"); 3887 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3888 continue; 3889 } 3890 } 3891 3892 // Ignore users in the user ignore list. 3893 if (is_contained(UserIgnoreList, UserInst)) 3894 continue; 3895 3896 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3897 << Lane << " from " << *Scalar << ".\n"); 3898 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3899 } 3900 } 3901 } 3902 } 3903 3904 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3905 ArrayRef<Value *> UserIgnoreLst) { 3906 deleteTree(); 3907 UserIgnoreList = UserIgnoreLst; 3908 if (!allSameType(Roots)) 3909 return; 3910 buildTree_rec(Roots, 0, EdgeInfo()); 3911 } 3912 3913 namespace { 3914 /// Tracks the state we can represent the loads in the given sequence. 3915 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3916 } // anonymous namespace 3917 3918 /// Checks if the given array of loads can be represented as a vectorized, 3919 /// scatter or just simple gather. 3920 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3921 const TargetTransformInfo &TTI, 3922 const DataLayout &DL, ScalarEvolution &SE, 3923 SmallVectorImpl<unsigned> &Order, 3924 SmallVectorImpl<Value *> &PointerOps) { 3925 // Check that a vectorized load would load the same memory as a scalar 3926 // load. For example, we don't want to vectorize loads that are smaller 3927 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3928 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3929 // from such a struct, we read/write packed bits disagreeing with the 3930 // unvectorized version. 3931 Type *ScalarTy = VL0->getType(); 3932 3933 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3934 return LoadsState::Gather; 3935 3936 // Make sure all loads in the bundle are simple - we can't vectorize 3937 // atomic or volatile loads. 3938 PointerOps.clear(); 3939 PointerOps.resize(VL.size()); 3940 auto *POIter = PointerOps.begin(); 3941 for (Value *V : VL) { 3942 auto *L = cast<LoadInst>(V); 3943 if (!L->isSimple()) 3944 return LoadsState::Gather; 3945 *POIter = L->getPointerOperand(); 3946 ++POIter; 3947 } 3948 3949 Order.clear(); 3950 // Check the order of pointer operands. 3951 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3952 Value *Ptr0; 3953 Value *PtrN; 3954 if (Order.empty()) { 3955 Ptr0 = PointerOps.front(); 3956 PtrN = PointerOps.back(); 3957 } else { 3958 Ptr0 = PointerOps[Order.front()]; 3959 PtrN = PointerOps[Order.back()]; 3960 } 3961 Optional<int> Diff = 3962 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3963 // Check that the sorted loads are consecutive. 3964 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3965 return LoadsState::Vectorize; 3966 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3967 for (Value *V : VL) 3968 CommonAlignment = 3969 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3970 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3971 CommonAlignment)) 3972 return LoadsState::ScatterVectorize; 3973 } 3974 3975 return LoadsState::Gather; 3976 } 3977 3978 /// \return true if the specified list of values has only one instruction that 3979 /// requires scheduling, false otherwise. 3980 #ifndef NDEBUG 3981 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3982 Value *NeedsScheduling = nullptr; 3983 for (Value *V : VL) { 3984 if (doesNotNeedToBeScheduled(V)) 3985 continue; 3986 if (!NeedsScheduling) { 3987 NeedsScheduling = V; 3988 continue; 3989 } 3990 return false; 3991 } 3992 return NeedsScheduling; 3993 } 3994 #endif 3995 3996 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3997 const EdgeInfo &UserTreeIdx) { 3998 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3999 4000 SmallVector<int> ReuseShuffleIndicies; 4001 SmallVector<Value *> UniqueValues; 4002 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4003 &UserTreeIdx, 4004 this](const InstructionsState &S) { 4005 // Check that every instruction appears once in this bundle. 4006 DenseMap<Value *, unsigned> UniquePositions; 4007 for (Value *V : VL) { 4008 if (isConstant(V)) { 4009 ReuseShuffleIndicies.emplace_back( 4010 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4011 UniqueValues.emplace_back(V); 4012 continue; 4013 } 4014 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4015 ReuseShuffleIndicies.emplace_back(Res.first->second); 4016 if (Res.second) 4017 UniqueValues.emplace_back(V); 4018 } 4019 size_t NumUniqueScalarValues = UniqueValues.size(); 4020 if (NumUniqueScalarValues == VL.size()) { 4021 ReuseShuffleIndicies.clear(); 4022 } else { 4023 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4024 if (NumUniqueScalarValues <= 1 || 4025 (UniquePositions.size() == 1 && all_of(UniqueValues, 4026 [](Value *V) { 4027 return isa<UndefValue>(V) || 4028 !isConstant(V); 4029 })) || 4030 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4031 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4032 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4033 return false; 4034 } 4035 VL = UniqueValues; 4036 } 4037 return true; 4038 }; 4039 4040 InstructionsState S = getSameOpcode(VL); 4041 if (Depth == RecursionMaxDepth) { 4042 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4043 if (TryToFindDuplicates(S)) 4044 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4045 ReuseShuffleIndicies); 4046 return; 4047 } 4048 4049 // Don't handle scalable vectors 4050 if (S.getOpcode() == Instruction::ExtractElement && 4051 isa<ScalableVectorType>( 4052 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4053 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4054 if (TryToFindDuplicates(S)) 4055 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4056 ReuseShuffleIndicies); 4057 return; 4058 } 4059 4060 // Don't handle vectors. 4061 if (S.OpValue->getType()->isVectorTy() && 4062 !isa<InsertElementInst>(S.OpValue)) { 4063 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4064 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4065 return; 4066 } 4067 4068 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4069 if (SI->getValueOperand()->getType()->isVectorTy()) { 4070 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4072 return; 4073 } 4074 4075 // If all of the operands are identical or constant we have a simple solution. 4076 // If we deal with insert/extract instructions, they all must have constant 4077 // indices, otherwise we should gather them, not try to vectorize. 4078 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4079 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4080 !all_of(VL, isVectorLikeInstWithConstOps))) { 4081 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4082 if (TryToFindDuplicates(S)) 4083 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4084 ReuseShuffleIndicies); 4085 return; 4086 } 4087 4088 // We now know that this is a vector of instructions of the same type from 4089 // the same block. 4090 4091 // Don't vectorize ephemeral values. 4092 for (Value *V : VL) { 4093 if (EphValues.count(V)) { 4094 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4095 << ") is ephemeral.\n"); 4096 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4097 return; 4098 } 4099 } 4100 4101 // Check if this is a duplicate of another entry. 4102 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4103 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4104 if (!E->isSame(VL)) { 4105 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4106 if (TryToFindDuplicates(S)) 4107 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4108 ReuseShuffleIndicies); 4109 return; 4110 } 4111 // Record the reuse of the tree node. FIXME, currently this is only used to 4112 // properly draw the graph rather than for the actual vectorization. 4113 E->UserTreeIndices.push_back(UserTreeIdx); 4114 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4115 << ".\n"); 4116 return; 4117 } 4118 4119 // Check that none of the instructions in the bundle are already in the tree. 4120 for (Value *V : VL) { 4121 auto *I = dyn_cast<Instruction>(V); 4122 if (!I) 4123 continue; 4124 if (getTreeEntry(I)) { 4125 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4126 << ") is already in tree.\n"); 4127 if (TryToFindDuplicates(S)) 4128 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4129 ReuseShuffleIndicies); 4130 return; 4131 } 4132 } 4133 4134 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4135 for (Value *V : VL) { 4136 if (is_contained(UserIgnoreList, V)) { 4137 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4138 if (TryToFindDuplicates(S)) 4139 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4140 ReuseShuffleIndicies); 4141 return; 4142 } 4143 } 4144 4145 // Check that all of the users of the scalars that we want to vectorize are 4146 // schedulable. 4147 auto *VL0 = cast<Instruction>(S.OpValue); 4148 BasicBlock *BB = VL0->getParent(); 4149 4150 if (!DT->isReachableFromEntry(BB)) { 4151 // Don't go into unreachable blocks. They may contain instructions with 4152 // dependency cycles which confuse the final scheduling. 4153 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4154 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4155 return; 4156 } 4157 4158 // Check that every instruction appears once in this bundle. 4159 if (!TryToFindDuplicates(S)) 4160 return; 4161 4162 auto &BSRef = BlocksSchedules[BB]; 4163 if (!BSRef) 4164 BSRef = std::make_unique<BlockScheduling>(BB); 4165 4166 BlockScheduling &BS = *BSRef; 4167 4168 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4169 #ifdef EXPENSIVE_CHECKS 4170 // Make sure we didn't break any internal invariants 4171 BS.verify(); 4172 #endif 4173 if (!Bundle) { 4174 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4175 assert((!BS.getScheduleData(VL0) || 4176 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4177 "tryScheduleBundle should cancelScheduling on failure"); 4178 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4179 ReuseShuffleIndicies); 4180 return; 4181 } 4182 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4183 4184 unsigned ShuffleOrOp = S.isAltShuffle() ? 4185 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4186 switch (ShuffleOrOp) { 4187 case Instruction::PHI: { 4188 auto *PH = cast<PHINode>(VL0); 4189 4190 // Check for terminator values (e.g. invoke). 4191 for (Value *V : VL) 4192 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4193 Instruction *Term = dyn_cast<Instruction>(Incoming); 4194 if (Term && Term->isTerminator()) { 4195 LLVM_DEBUG(dbgs() 4196 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4197 BS.cancelScheduling(VL, VL0); 4198 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4199 ReuseShuffleIndicies); 4200 return; 4201 } 4202 } 4203 4204 TreeEntry *TE = 4205 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4206 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4207 4208 // Keeps the reordered operands to avoid code duplication. 4209 SmallVector<ValueList, 2> OperandsVec; 4210 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4211 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4212 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4213 TE->setOperand(I, Operands); 4214 OperandsVec.push_back(Operands); 4215 continue; 4216 } 4217 ValueList Operands; 4218 // Prepare the operand vector. 4219 for (Value *V : VL) 4220 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4221 PH->getIncomingBlock(I))); 4222 TE->setOperand(I, Operands); 4223 OperandsVec.push_back(Operands); 4224 } 4225 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4226 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4227 return; 4228 } 4229 case Instruction::ExtractValue: 4230 case Instruction::ExtractElement: { 4231 OrdersType CurrentOrder; 4232 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4233 if (Reuse) { 4234 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4235 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4236 ReuseShuffleIndicies); 4237 // This is a special case, as it does not gather, but at the same time 4238 // we are not extending buildTree_rec() towards the operands. 4239 ValueList Op0; 4240 Op0.assign(VL.size(), VL0->getOperand(0)); 4241 VectorizableTree.back()->setOperand(0, Op0); 4242 return; 4243 } 4244 if (!CurrentOrder.empty()) { 4245 LLVM_DEBUG({ 4246 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4247 "with order"; 4248 for (unsigned Idx : CurrentOrder) 4249 dbgs() << " " << Idx; 4250 dbgs() << "\n"; 4251 }); 4252 fixupOrderingIndices(CurrentOrder); 4253 // Insert new order with initial value 0, if it does not exist, 4254 // otherwise return the iterator to the existing one. 4255 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4256 ReuseShuffleIndicies, CurrentOrder); 4257 // This is a special case, as it does not gather, but at the same time 4258 // we are not extending buildTree_rec() towards the operands. 4259 ValueList Op0; 4260 Op0.assign(VL.size(), VL0->getOperand(0)); 4261 VectorizableTree.back()->setOperand(0, Op0); 4262 return; 4263 } 4264 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4265 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4266 ReuseShuffleIndicies); 4267 BS.cancelScheduling(VL, VL0); 4268 return; 4269 } 4270 case Instruction::InsertElement: { 4271 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4272 4273 // Check that we have a buildvector and not a shuffle of 2 or more 4274 // different vectors. 4275 ValueSet SourceVectors; 4276 for (Value *V : VL) { 4277 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4278 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4279 } 4280 4281 if (count_if(VL, [&SourceVectors](Value *V) { 4282 return !SourceVectors.contains(V); 4283 }) >= 2) { 4284 // Found 2nd source vector - cancel. 4285 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4286 "different source vectors.\n"); 4287 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4288 BS.cancelScheduling(VL, VL0); 4289 return; 4290 } 4291 4292 auto OrdCompare = [](const std::pair<int, int> &P1, 4293 const std::pair<int, int> &P2) { 4294 return P1.first > P2.first; 4295 }; 4296 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4297 decltype(OrdCompare)> 4298 Indices(OrdCompare); 4299 for (int I = 0, E = VL.size(); I < E; ++I) { 4300 unsigned Idx = *getInsertIndex(VL[I]); 4301 Indices.emplace(Idx, I); 4302 } 4303 OrdersType CurrentOrder(VL.size(), VL.size()); 4304 bool IsIdentity = true; 4305 for (int I = 0, E = VL.size(); I < E; ++I) { 4306 CurrentOrder[Indices.top().second] = I; 4307 IsIdentity &= Indices.top().second == I; 4308 Indices.pop(); 4309 } 4310 if (IsIdentity) 4311 CurrentOrder.clear(); 4312 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4313 None, CurrentOrder); 4314 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4315 4316 constexpr int NumOps = 2; 4317 ValueList VectorOperands[NumOps]; 4318 for (int I = 0; I < NumOps; ++I) { 4319 for (Value *V : VL) 4320 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4321 4322 TE->setOperand(I, VectorOperands[I]); 4323 } 4324 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4325 return; 4326 } 4327 case Instruction::Load: { 4328 // Check that a vectorized load would load the same memory as a scalar 4329 // load. For example, we don't want to vectorize loads that are smaller 4330 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4331 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4332 // from such a struct, we read/write packed bits disagreeing with the 4333 // unvectorized version. 4334 SmallVector<Value *> PointerOps; 4335 OrdersType CurrentOrder; 4336 TreeEntry *TE = nullptr; 4337 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4338 PointerOps)) { 4339 case LoadsState::Vectorize: 4340 if (CurrentOrder.empty()) { 4341 // Original loads are consecutive and does not require reordering. 4342 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4343 ReuseShuffleIndicies); 4344 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4345 } else { 4346 fixupOrderingIndices(CurrentOrder); 4347 // Need to reorder. 4348 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4349 ReuseShuffleIndicies, CurrentOrder); 4350 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4351 } 4352 TE->setOperandsInOrder(); 4353 break; 4354 case LoadsState::ScatterVectorize: 4355 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4356 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4357 UserTreeIdx, ReuseShuffleIndicies); 4358 TE->setOperandsInOrder(); 4359 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4360 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4361 break; 4362 case LoadsState::Gather: 4363 BS.cancelScheduling(VL, VL0); 4364 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4365 ReuseShuffleIndicies); 4366 #ifndef NDEBUG 4367 Type *ScalarTy = VL0->getType(); 4368 if (DL->getTypeSizeInBits(ScalarTy) != 4369 DL->getTypeAllocSizeInBits(ScalarTy)) 4370 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4371 else if (any_of(VL, [](Value *V) { 4372 return !cast<LoadInst>(V)->isSimple(); 4373 })) 4374 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4375 else 4376 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4377 #endif // NDEBUG 4378 break; 4379 } 4380 return; 4381 } 4382 case Instruction::ZExt: 4383 case Instruction::SExt: 4384 case Instruction::FPToUI: 4385 case Instruction::FPToSI: 4386 case Instruction::FPExt: 4387 case Instruction::PtrToInt: 4388 case Instruction::IntToPtr: 4389 case Instruction::SIToFP: 4390 case Instruction::UIToFP: 4391 case Instruction::Trunc: 4392 case Instruction::FPTrunc: 4393 case Instruction::BitCast: { 4394 Type *SrcTy = VL0->getOperand(0)->getType(); 4395 for (Value *V : VL) { 4396 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4397 if (Ty != SrcTy || !isValidElementType(Ty)) { 4398 BS.cancelScheduling(VL, VL0); 4399 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4400 ReuseShuffleIndicies); 4401 LLVM_DEBUG(dbgs() 4402 << "SLP: Gathering casts with different src types.\n"); 4403 return; 4404 } 4405 } 4406 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4407 ReuseShuffleIndicies); 4408 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4409 4410 TE->setOperandsInOrder(); 4411 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4412 ValueList Operands; 4413 // Prepare the operand vector. 4414 for (Value *V : VL) 4415 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4416 4417 buildTree_rec(Operands, Depth + 1, {TE, i}); 4418 } 4419 return; 4420 } 4421 case Instruction::ICmp: 4422 case Instruction::FCmp: { 4423 // Check that all of the compares have the same predicate. 4424 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4425 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4426 Type *ComparedTy = VL0->getOperand(0)->getType(); 4427 for (Value *V : VL) { 4428 CmpInst *Cmp = cast<CmpInst>(V); 4429 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4430 Cmp->getOperand(0)->getType() != ComparedTy) { 4431 BS.cancelScheduling(VL, VL0); 4432 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4433 ReuseShuffleIndicies); 4434 LLVM_DEBUG(dbgs() 4435 << "SLP: Gathering cmp with different predicate.\n"); 4436 return; 4437 } 4438 } 4439 4440 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4441 ReuseShuffleIndicies); 4442 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4443 4444 ValueList Left, Right; 4445 if (cast<CmpInst>(VL0)->isCommutative()) { 4446 // Commutative predicate - collect + sort operands of the instructions 4447 // so that each side is more likely to have the same opcode. 4448 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4449 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4450 } else { 4451 // Collect operands - commute if it uses the swapped predicate. 4452 for (Value *V : VL) { 4453 auto *Cmp = cast<CmpInst>(V); 4454 Value *LHS = Cmp->getOperand(0); 4455 Value *RHS = Cmp->getOperand(1); 4456 if (Cmp->getPredicate() != P0) 4457 std::swap(LHS, RHS); 4458 Left.push_back(LHS); 4459 Right.push_back(RHS); 4460 } 4461 } 4462 TE->setOperand(0, Left); 4463 TE->setOperand(1, Right); 4464 buildTree_rec(Left, Depth + 1, {TE, 0}); 4465 buildTree_rec(Right, Depth + 1, {TE, 1}); 4466 return; 4467 } 4468 case Instruction::Select: 4469 case Instruction::FNeg: 4470 case Instruction::Add: 4471 case Instruction::FAdd: 4472 case Instruction::Sub: 4473 case Instruction::FSub: 4474 case Instruction::Mul: 4475 case Instruction::FMul: 4476 case Instruction::UDiv: 4477 case Instruction::SDiv: 4478 case Instruction::FDiv: 4479 case Instruction::URem: 4480 case Instruction::SRem: 4481 case Instruction::FRem: 4482 case Instruction::Shl: 4483 case Instruction::LShr: 4484 case Instruction::AShr: 4485 case Instruction::And: 4486 case Instruction::Or: 4487 case Instruction::Xor: { 4488 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4489 ReuseShuffleIndicies); 4490 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4491 4492 // Sort operands of the instructions so that each side is more likely to 4493 // have the same opcode. 4494 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4495 ValueList Left, Right; 4496 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4497 TE->setOperand(0, Left); 4498 TE->setOperand(1, Right); 4499 buildTree_rec(Left, Depth + 1, {TE, 0}); 4500 buildTree_rec(Right, Depth + 1, {TE, 1}); 4501 return; 4502 } 4503 4504 TE->setOperandsInOrder(); 4505 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4506 ValueList Operands; 4507 // Prepare the operand vector. 4508 for (Value *V : VL) 4509 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4510 4511 buildTree_rec(Operands, Depth + 1, {TE, i}); 4512 } 4513 return; 4514 } 4515 case Instruction::GetElementPtr: { 4516 // We don't combine GEPs with complicated (nested) indexing. 4517 for (Value *V : VL) { 4518 if (cast<Instruction>(V)->getNumOperands() != 2) { 4519 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4520 BS.cancelScheduling(VL, VL0); 4521 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4522 ReuseShuffleIndicies); 4523 return; 4524 } 4525 } 4526 4527 // We can't combine several GEPs into one vector if they operate on 4528 // different types. 4529 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4530 for (Value *V : VL) { 4531 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4532 if (Ty0 != CurTy) { 4533 LLVM_DEBUG(dbgs() 4534 << "SLP: not-vectorizable GEP (different types).\n"); 4535 BS.cancelScheduling(VL, VL0); 4536 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4537 ReuseShuffleIndicies); 4538 return; 4539 } 4540 } 4541 4542 // We don't combine GEPs with non-constant indexes. 4543 Type *Ty1 = VL0->getOperand(1)->getType(); 4544 for (Value *V : VL) { 4545 auto Op = cast<Instruction>(V)->getOperand(1); 4546 if (!isa<ConstantInt>(Op) || 4547 (Op->getType() != Ty1 && 4548 Op->getType()->getScalarSizeInBits() > 4549 DL->getIndexSizeInBits( 4550 V->getType()->getPointerAddressSpace()))) { 4551 LLVM_DEBUG(dbgs() 4552 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4553 BS.cancelScheduling(VL, VL0); 4554 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4555 ReuseShuffleIndicies); 4556 return; 4557 } 4558 } 4559 4560 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4561 ReuseShuffleIndicies); 4562 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4563 SmallVector<ValueList, 2> Operands(2); 4564 // Prepare the operand vector for pointer operands. 4565 for (Value *V : VL) 4566 Operands.front().push_back( 4567 cast<GetElementPtrInst>(V)->getPointerOperand()); 4568 TE->setOperand(0, Operands.front()); 4569 // Need to cast all indices to the same type before vectorization to 4570 // avoid crash. 4571 // Required to be able to find correct matches between different gather 4572 // nodes and reuse the vectorized values rather than trying to gather them 4573 // again. 4574 int IndexIdx = 1; 4575 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4576 Type *Ty = all_of(VL, 4577 [VL0Ty, IndexIdx](Value *V) { 4578 return VL0Ty == cast<GetElementPtrInst>(V) 4579 ->getOperand(IndexIdx) 4580 ->getType(); 4581 }) 4582 ? VL0Ty 4583 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4584 ->getPointerOperandType() 4585 ->getScalarType()); 4586 // Prepare the operand vector. 4587 for (Value *V : VL) { 4588 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4589 auto *CI = cast<ConstantInt>(Op); 4590 Operands.back().push_back(ConstantExpr::getIntegerCast( 4591 CI, Ty, CI->getValue().isSignBitSet())); 4592 } 4593 TE->setOperand(IndexIdx, Operands.back()); 4594 4595 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4596 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4597 return; 4598 } 4599 case Instruction::Store: { 4600 // Check if the stores are consecutive or if we need to swizzle them. 4601 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4602 // Avoid types that are padded when being allocated as scalars, while 4603 // being packed together in a vector (such as i1). 4604 if (DL->getTypeSizeInBits(ScalarTy) != 4605 DL->getTypeAllocSizeInBits(ScalarTy)) { 4606 BS.cancelScheduling(VL, VL0); 4607 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4608 ReuseShuffleIndicies); 4609 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4610 return; 4611 } 4612 // Make sure all stores in the bundle are simple - we can't vectorize 4613 // atomic or volatile stores. 4614 SmallVector<Value *, 4> PointerOps(VL.size()); 4615 ValueList Operands(VL.size()); 4616 auto POIter = PointerOps.begin(); 4617 auto OIter = Operands.begin(); 4618 for (Value *V : VL) { 4619 auto *SI = cast<StoreInst>(V); 4620 if (!SI->isSimple()) { 4621 BS.cancelScheduling(VL, VL0); 4622 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4623 ReuseShuffleIndicies); 4624 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4625 return; 4626 } 4627 *POIter = SI->getPointerOperand(); 4628 *OIter = SI->getValueOperand(); 4629 ++POIter; 4630 ++OIter; 4631 } 4632 4633 OrdersType CurrentOrder; 4634 // Check the order of pointer operands. 4635 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4636 Value *Ptr0; 4637 Value *PtrN; 4638 if (CurrentOrder.empty()) { 4639 Ptr0 = PointerOps.front(); 4640 PtrN = PointerOps.back(); 4641 } else { 4642 Ptr0 = PointerOps[CurrentOrder.front()]; 4643 PtrN = PointerOps[CurrentOrder.back()]; 4644 } 4645 Optional<int> Dist = 4646 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4647 // Check that the sorted pointer operands are consecutive. 4648 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4649 if (CurrentOrder.empty()) { 4650 // Original stores are consecutive and does not require reordering. 4651 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4652 UserTreeIdx, ReuseShuffleIndicies); 4653 TE->setOperandsInOrder(); 4654 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4655 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4656 } else { 4657 fixupOrderingIndices(CurrentOrder); 4658 TreeEntry *TE = 4659 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4660 ReuseShuffleIndicies, CurrentOrder); 4661 TE->setOperandsInOrder(); 4662 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4663 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4664 } 4665 return; 4666 } 4667 } 4668 4669 BS.cancelScheduling(VL, VL0); 4670 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4671 ReuseShuffleIndicies); 4672 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4673 return; 4674 } 4675 case Instruction::Call: { 4676 // Check if the calls are all to the same vectorizable intrinsic or 4677 // library function. 4678 CallInst *CI = cast<CallInst>(VL0); 4679 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4680 4681 VFShape Shape = VFShape::get( 4682 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4683 false /*HasGlobalPred*/); 4684 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4685 4686 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4687 BS.cancelScheduling(VL, VL0); 4688 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4689 ReuseShuffleIndicies); 4690 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4691 return; 4692 } 4693 Function *F = CI->getCalledFunction(); 4694 unsigned NumArgs = CI->arg_size(); 4695 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4696 for (unsigned j = 0; j != NumArgs; ++j) 4697 if (hasVectorInstrinsicScalarOpd(ID, j)) 4698 ScalarArgs[j] = CI->getArgOperand(j); 4699 for (Value *V : VL) { 4700 CallInst *CI2 = dyn_cast<CallInst>(V); 4701 if (!CI2 || CI2->getCalledFunction() != F || 4702 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4703 (VecFunc && 4704 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4705 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4706 BS.cancelScheduling(VL, VL0); 4707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4708 ReuseShuffleIndicies); 4709 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4710 << "\n"); 4711 return; 4712 } 4713 // Some intrinsics have scalar arguments and should be same in order for 4714 // them to be vectorized. 4715 for (unsigned j = 0; j != NumArgs; ++j) { 4716 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4717 Value *A1J = CI2->getArgOperand(j); 4718 if (ScalarArgs[j] != A1J) { 4719 BS.cancelScheduling(VL, VL0); 4720 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4721 ReuseShuffleIndicies); 4722 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4723 << " argument " << ScalarArgs[j] << "!=" << A1J 4724 << "\n"); 4725 return; 4726 } 4727 } 4728 } 4729 // Verify that the bundle operands are identical between the two calls. 4730 if (CI->hasOperandBundles() && 4731 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4732 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4733 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4734 BS.cancelScheduling(VL, VL0); 4735 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4736 ReuseShuffleIndicies); 4737 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4738 << *CI << "!=" << *V << '\n'); 4739 return; 4740 } 4741 } 4742 4743 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4744 ReuseShuffleIndicies); 4745 TE->setOperandsInOrder(); 4746 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4747 // For scalar operands no need to to create an entry since no need to 4748 // vectorize it. 4749 if (hasVectorInstrinsicScalarOpd(ID, i)) 4750 continue; 4751 ValueList Operands; 4752 // Prepare the operand vector. 4753 for (Value *V : VL) { 4754 auto *CI2 = cast<CallInst>(V); 4755 Operands.push_back(CI2->getArgOperand(i)); 4756 } 4757 buildTree_rec(Operands, Depth + 1, {TE, i}); 4758 } 4759 return; 4760 } 4761 case Instruction::ShuffleVector: { 4762 // If this is not an alternate sequence of opcode like add-sub 4763 // then do not vectorize this instruction. 4764 if (!S.isAltShuffle()) { 4765 BS.cancelScheduling(VL, VL0); 4766 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4767 ReuseShuffleIndicies); 4768 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4769 return; 4770 } 4771 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4772 ReuseShuffleIndicies); 4773 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4774 4775 // Reorder operands if reordering would enable vectorization. 4776 auto *CI = dyn_cast<CmpInst>(VL0); 4777 if (isa<BinaryOperator>(VL0) || CI) { 4778 ValueList Left, Right; 4779 if (!CI || all_of(VL, [](Value *V) { 4780 return cast<CmpInst>(V)->isCommutative(); 4781 })) { 4782 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4783 } else { 4784 CmpInst::Predicate P0 = CI->getPredicate(); 4785 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4786 assert(P0 != AltP0 && 4787 "Expected different main/alternate predicates."); 4788 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4789 Value *BaseOp0 = VL0->getOperand(0); 4790 Value *BaseOp1 = VL0->getOperand(1); 4791 // Collect operands - commute if it uses the swapped predicate or 4792 // alternate operation. 4793 for (Value *V : VL) { 4794 auto *Cmp = cast<CmpInst>(V); 4795 Value *LHS = Cmp->getOperand(0); 4796 Value *RHS = Cmp->getOperand(1); 4797 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4798 if (P0 == AltP0Swapped) { 4799 if (CI != Cmp && S.AltOp != Cmp && 4800 ((P0 == CurrentPred && 4801 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4802 (AltP0 == CurrentPred && 4803 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4804 std::swap(LHS, RHS); 4805 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4806 std::swap(LHS, RHS); 4807 } 4808 Left.push_back(LHS); 4809 Right.push_back(RHS); 4810 } 4811 } 4812 TE->setOperand(0, Left); 4813 TE->setOperand(1, Right); 4814 buildTree_rec(Left, Depth + 1, {TE, 0}); 4815 buildTree_rec(Right, Depth + 1, {TE, 1}); 4816 return; 4817 } 4818 4819 TE->setOperandsInOrder(); 4820 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4821 ValueList Operands; 4822 // Prepare the operand vector. 4823 for (Value *V : VL) 4824 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4825 4826 buildTree_rec(Operands, Depth + 1, {TE, i}); 4827 } 4828 return; 4829 } 4830 default: 4831 BS.cancelScheduling(VL, VL0); 4832 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4833 ReuseShuffleIndicies); 4834 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4835 return; 4836 } 4837 } 4838 4839 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4840 unsigned N = 1; 4841 Type *EltTy = T; 4842 4843 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4844 isa<VectorType>(EltTy)) { 4845 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4846 // Check that struct is homogeneous. 4847 for (const auto *Ty : ST->elements()) 4848 if (Ty != *ST->element_begin()) 4849 return 0; 4850 N *= ST->getNumElements(); 4851 EltTy = *ST->element_begin(); 4852 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4853 N *= AT->getNumElements(); 4854 EltTy = AT->getElementType(); 4855 } else { 4856 auto *VT = cast<FixedVectorType>(EltTy); 4857 N *= VT->getNumElements(); 4858 EltTy = VT->getElementType(); 4859 } 4860 } 4861 4862 if (!isValidElementType(EltTy)) 4863 return 0; 4864 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4865 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4866 return 0; 4867 return N; 4868 } 4869 4870 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4871 SmallVectorImpl<unsigned> &CurrentOrder) const { 4872 const auto *It = find_if(VL, [](Value *V) { 4873 return isa<ExtractElementInst, ExtractValueInst>(V); 4874 }); 4875 assert(It != VL.end() && "Expected at least one extract instruction."); 4876 auto *E0 = cast<Instruction>(*It); 4877 assert(all_of(VL, 4878 [](Value *V) { 4879 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4880 V); 4881 }) && 4882 "Invalid opcode"); 4883 // Check if all of the extracts come from the same vector and from the 4884 // correct offset. 4885 Value *Vec = E0->getOperand(0); 4886 4887 CurrentOrder.clear(); 4888 4889 // We have to extract from a vector/aggregate with the same number of elements. 4890 unsigned NElts; 4891 if (E0->getOpcode() == Instruction::ExtractValue) { 4892 const DataLayout &DL = E0->getModule()->getDataLayout(); 4893 NElts = canMapToVector(Vec->getType(), DL); 4894 if (!NElts) 4895 return false; 4896 // Check if load can be rewritten as load of vector. 4897 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4898 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4899 return false; 4900 } else { 4901 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4902 } 4903 4904 if (NElts != VL.size()) 4905 return false; 4906 4907 // Check that all of the indices extract from the correct offset. 4908 bool ShouldKeepOrder = true; 4909 unsigned E = VL.size(); 4910 // Assign to all items the initial value E + 1 so we can check if the extract 4911 // instruction index was used already. 4912 // Also, later we can check that all the indices are used and we have a 4913 // consecutive access in the extract instructions, by checking that no 4914 // element of CurrentOrder still has value E + 1. 4915 CurrentOrder.assign(E, E); 4916 unsigned I = 0; 4917 for (; I < E; ++I) { 4918 auto *Inst = dyn_cast<Instruction>(VL[I]); 4919 if (!Inst) 4920 continue; 4921 if (Inst->getOperand(0) != Vec) 4922 break; 4923 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4924 if (isa<UndefValue>(EE->getIndexOperand())) 4925 continue; 4926 Optional<unsigned> Idx = getExtractIndex(Inst); 4927 if (!Idx) 4928 break; 4929 const unsigned ExtIdx = *Idx; 4930 if (ExtIdx != I) { 4931 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4932 break; 4933 ShouldKeepOrder = false; 4934 CurrentOrder[ExtIdx] = I; 4935 } else { 4936 if (CurrentOrder[I] != E) 4937 break; 4938 CurrentOrder[I] = I; 4939 } 4940 } 4941 if (I < E) { 4942 CurrentOrder.clear(); 4943 return false; 4944 } 4945 if (ShouldKeepOrder) 4946 CurrentOrder.clear(); 4947 4948 return ShouldKeepOrder; 4949 } 4950 4951 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4952 ArrayRef<Value *> VectorizedVals) const { 4953 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4954 all_of(I->users(), [this](User *U) { 4955 return ScalarToTreeEntry.count(U) > 0 || 4956 isVectorLikeInstWithConstOps(U) || 4957 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4958 }); 4959 } 4960 4961 static std::pair<InstructionCost, InstructionCost> 4962 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4963 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4964 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4965 4966 // Calculate the cost of the scalar and vector calls. 4967 SmallVector<Type *, 4> VecTys; 4968 for (Use &Arg : CI->args()) 4969 VecTys.push_back( 4970 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4971 FastMathFlags FMF; 4972 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4973 FMF = FPCI->getFastMathFlags(); 4974 SmallVector<const Value *> Arguments(CI->args()); 4975 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4976 dyn_cast<IntrinsicInst>(CI)); 4977 auto IntrinsicCost = 4978 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4979 4980 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4981 VecTy->getNumElements())), 4982 false /*HasGlobalPred*/); 4983 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4984 auto LibCost = IntrinsicCost; 4985 if (!CI->isNoBuiltin() && VecFunc) { 4986 // Calculate the cost of the vector library call. 4987 // If the corresponding vector call is cheaper, return its cost. 4988 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4989 TTI::TCK_RecipThroughput); 4990 } 4991 return {IntrinsicCost, LibCost}; 4992 } 4993 4994 /// Compute the cost of creating a vector of type \p VecTy containing the 4995 /// extracted values from \p VL. 4996 static InstructionCost 4997 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4998 TargetTransformInfo::ShuffleKind ShuffleKind, 4999 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5000 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5001 5002 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5003 VecTy->getNumElements() < NumOfParts) 5004 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5005 5006 bool AllConsecutive = true; 5007 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5008 unsigned Idx = -1; 5009 InstructionCost Cost = 0; 5010 5011 // Process extracts in blocks of EltsPerVector to check if the source vector 5012 // operand can be re-used directly. If not, add the cost of creating a shuffle 5013 // to extract the values into a vector register. 5014 for (auto *V : VL) { 5015 ++Idx; 5016 5017 // Need to exclude undefs from analysis. 5018 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5019 continue; 5020 5021 // Reached the start of a new vector registers. 5022 if (Idx % EltsPerVector == 0) { 5023 AllConsecutive = true; 5024 continue; 5025 } 5026 5027 // Check all extracts for a vector register on the target directly 5028 // extract values in order. 5029 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5030 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5031 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5032 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5033 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5034 } 5035 5036 if (AllConsecutive) 5037 continue; 5038 5039 // Skip all indices, except for the last index per vector block. 5040 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5041 continue; 5042 5043 // If we have a series of extracts which are not consecutive and hence 5044 // cannot re-use the source vector register directly, compute the shuffle 5045 // cost to extract the a vector with EltsPerVector elements. 5046 Cost += TTI.getShuffleCost( 5047 TargetTransformInfo::SK_PermuteSingleSrc, 5048 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5049 } 5050 return Cost; 5051 } 5052 5053 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5054 /// operations operands. 5055 static void 5056 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5057 ArrayRef<int> ReusesIndices, 5058 const function_ref<bool(Instruction *)> IsAltOp, 5059 SmallVectorImpl<int> &Mask, 5060 SmallVectorImpl<Value *> *OpScalars = nullptr, 5061 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5062 unsigned Sz = VL.size(); 5063 Mask.assign(Sz, UndefMaskElem); 5064 SmallVector<int> OrderMask; 5065 if (!ReorderIndices.empty()) 5066 inversePermutation(ReorderIndices, OrderMask); 5067 for (unsigned I = 0; I < Sz; ++I) { 5068 unsigned Idx = I; 5069 if (!ReorderIndices.empty()) 5070 Idx = OrderMask[I]; 5071 auto *OpInst = cast<Instruction>(VL[Idx]); 5072 if (IsAltOp(OpInst)) { 5073 Mask[I] = Sz + Idx; 5074 if (AltScalars) 5075 AltScalars->push_back(OpInst); 5076 } else { 5077 Mask[I] = Idx; 5078 if (OpScalars) 5079 OpScalars->push_back(OpInst); 5080 } 5081 } 5082 if (!ReusesIndices.empty()) { 5083 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5084 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5085 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5086 }); 5087 Mask.swap(NewMask); 5088 } 5089 } 5090 5091 /// Checks if the specified instruction \p I is an alternate operation for the 5092 /// given \p MainOp and \p AltOp instructions. 5093 static bool isAlternateInstruction(const Instruction *I, 5094 const Instruction *MainOp, 5095 const Instruction *AltOp) { 5096 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5097 auto *AltCI0 = cast<CmpInst>(AltOp); 5098 auto *CI = cast<CmpInst>(I); 5099 CmpInst::Predicate P0 = CI0->getPredicate(); 5100 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5101 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5102 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5103 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5104 if (P0 == AltP0Swapped) 5105 return I == AltCI0 || 5106 (I != MainOp && 5107 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5108 CI->getOperand(0), CI->getOperand(1))); 5109 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5110 } 5111 return I->getOpcode() == AltOp->getOpcode(); 5112 } 5113 5114 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5115 ArrayRef<Value *> VectorizedVals) { 5116 ArrayRef<Value*> VL = E->Scalars; 5117 5118 Type *ScalarTy = VL[0]->getType(); 5119 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5120 ScalarTy = SI->getValueOperand()->getType(); 5121 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5122 ScalarTy = CI->getOperand(0)->getType(); 5123 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5124 ScalarTy = IE->getOperand(1)->getType(); 5125 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5126 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5127 5128 // If we have computed a smaller type for the expression, update VecTy so 5129 // that the costs will be accurate. 5130 if (MinBWs.count(VL[0])) 5131 VecTy = FixedVectorType::get( 5132 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5133 unsigned EntryVF = E->getVectorFactor(); 5134 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5135 5136 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5137 // FIXME: it tries to fix a problem with MSVC buildbots. 5138 TargetTransformInfo &TTIRef = *TTI; 5139 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5140 VectorizedVals, E](InstructionCost &Cost) { 5141 DenseMap<Value *, int> ExtractVectorsTys; 5142 SmallPtrSet<Value *, 4> CheckedExtracts; 5143 for (auto *V : VL) { 5144 if (isa<UndefValue>(V)) 5145 continue; 5146 // If all users of instruction are going to be vectorized and this 5147 // instruction itself is not going to be vectorized, consider this 5148 // instruction as dead and remove its cost from the final cost of the 5149 // vectorized tree. 5150 // Also, avoid adjusting the cost for extractelements with multiple uses 5151 // in different graph entries. 5152 const TreeEntry *VE = getTreeEntry(V); 5153 if (!CheckedExtracts.insert(V).second || 5154 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5155 (VE && VE != E)) 5156 continue; 5157 auto *EE = cast<ExtractElementInst>(V); 5158 Optional<unsigned> EEIdx = getExtractIndex(EE); 5159 if (!EEIdx) 5160 continue; 5161 unsigned Idx = *EEIdx; 5162 if (TTIRef.getNumberOfParts(VecTy) != 5163 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5164 auto It = 5165 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5166 It->getSecond() = std::min<int>(It->second, Idx); 5167 } 5168 // Take credit for instruction that will become dead. 5169 if (EE->hasOneUse()) { 5170 Instruction *Ext = EE->user_back(); 5171 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5172 all_of(Ext->users(), 5173 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5174 // Use getExtractWithExtendCost() to calculate the cost of 5175 // extractelement/ext pair. 5176 Cost -= 5177 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5178 EE->getVectorOperandType(), Idx); 5179 // Add back the cost of s|zext which is subtracted separately. 5180 Cost += TTIRef.getCastInstrCost( 5181 Ext->getOpcode(), Ext->getType(), EE->getType(), 5182 TTI::getCastContextHint(Ext), CostKind, Ext); 5183 continue; 5184 } 5185 } 5186 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5187 EE->getVectorOperandType(), Idx); 5188 } 5189 // Add a cost for subvector extracts/inserts if required. 5190 for (const auto &Data : ExtractVectorsTys) { 5191 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5192 unsigned NumElts = VecTy->getNumElements(); 5193 if (Data.second % NumElts == 0) 5194 continue; 5195 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5196 unsigned Idx = (Data.second / NumElts) * NumElts; 5197 unsigned EENumElts = EEVTy->getNumElements(); 5198 if (Idx + NumElts <= EENumElts) { 5199 Cost += 5200 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5201 EEVTy, None, Idx, VecTy); 5202 } else { 5203 // Need to round up the subvector type vectorization factor to avoid a 5204 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5205 // <= EENumElts. 5206 auto *SubVT = 5207 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5208 Cost += 5209 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5210 EEVTy, None, Idx, SubVT); 5211 } 5212 } else { 5213 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5214 VecTy, None, 0, EEVTy); 5215 } 5216 } 5217 }; 5218 if (E->State == TreeEntry::NeedToGather) { 5219 if (allConstant(VL)) 5220 return 0; 5221 if (isa<InsertElementInst>(VL[0])) 5222 return InstructionCost::getInvalid(); 5223 SmallVector<int> Mask; 5224 SmallVector<const TreeEntry *> Entries; 5225 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5226 isGatherShuffledEntry(E, Mask, Entries); 5227 if (Shuffle.hasValue()) { 5228 InstructionCost GatherCost = 0; 5229 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5230 // Perfect match in the graph, will reuse the previously vectorized 5231 // node. Cost is 0. 5232 LLVM_DEBUG( 5233 dbgs() 5234 << "SLP: perfect diamond match for gather bundle that starts with " 5235 << *VL.front() << ".\n"); 5236 if (NeedToShuffleReuses) 5237 GatherCost = 5238 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5239 FinalVecTy, E->ReuseShuffleIndices); 5240 } else { 5241 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5242 << " entries for bundle that starts with " 5243 << *VL.front() << ".\n"); 5244 // Detected that instead of gather we can emit a shuffle of single/two 5245 // previously vectorized nodes. Add the cost of the permutation rather 5246 // than gather. 5247 ::addMask(Mask, E->ReuseShuffleIndices); 5248 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5249 } 5250 return GatherCost; 5251 } 5252 if ((E->getOpcode() == Instruction::ExtractElement || 5253 all_of(E->Scalars, 5254 [](Value *V) { 5255 return isa<ExtractElementInst, UndefValue>(V); 5256 })) && 5257 allSameType(VL)) { 5258 // Check that gather of extractelements can be represented as just a 5259 // shuffle of a single/two vectors the scalars are extracted from. 5260 SmallVector<int> Mask; 5261 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5262 isFixedVectorShuffle(VL, Mask); 5263 if (ShuffleKind.hasValue()) { 5264 // Found the bunch of extractelement instructions that must be gathered 5265 // into a vector and can be represented as a permutation elements in a 5266 // single input vector or of 2 input vectors. 5267 InstructionCost Cost = 5268 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5269 AdjustExtractsCost(Cost); 5270 if (NeedToShuffleReuses) 5271 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5272 FinalVecTy, E->ReuseShuffleIndices); 5273 return Cost; 5274 } 5275 } 5276 if (isSplat(VL)) { 5277 // Found the broadcasting of the single scalar, calculate the cost as the 5278 // broadcast. 5279 assert(VecTy == FinalVecTy && 5280 "No reused scalars expected for broadcast."); 5281 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5282 /*Mask=*/None, /*Index=*/0, 5283 /*SubTp=*/nullptr, /*Args=*/VL); 5284 } 5285 InstructionCost ReuseShuffleCost = 0; 5286 if (NeedToShuffleReuses) 5287 ReuseShuffleCost = TTI->getShuffleCost( 5288 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5289 // Improve gather cost for gather of loads, if we can group some of the 5290 // loads into vector loads. 5291 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5292 !E->isAltShuffle()) { 5293 BoUpSLP::ValueSet VectorizedLoads; 5294 unsigned StartIdx = 0; 5295 unsigned VF = VL.size() / 2; 5296 unsigned VectorizedCnt = 0; 5297 unsigned ScatterVectorizeCnt = 0; 5298 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5299 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5300 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5301 Cnt += VF) { 5302 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5303 if (!VectorizedLoads.count(Slice.front()) && 5304 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5305 SmallVector<Value *> PointerOps; 5306 OrdersType CurrentOrder; 5307 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5308 *SE, CurrentOrder, PointerOps); 5309 switch (LS) { 5310 case LoadsState::Vectorize: 5311 case LoadsState::ScatterVectorize: 5312 // Mark the vectorized loads so that we don't vectorize them 5313 // again. 5314 if (LS == LoadsState::Vectorize) 5315 ++VectorizedCnt; 5316 else 5317 ++ScatterVectorizeCnt; 5318 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5319 // If we vectorized initial block, no need to try to vectorize it 5320 // again. 5321 if (Cnt == StartIdx) 5322 StartIdx += VF; 5323 break; 5324 case LoadsState::Gather: 5325 break; 5326 } 5327 } 5328 } 5329 // Check if the whole array was vectorized already - exit. 5330 if (StartIdx >= VL.size()) 5331 break; 5332 // Found vectorizable parts - exit. 5333 if (!VectorizedLoads.empty()) 5334 break; 5335 } 5336 if (!VectorizedLoads.empty()) { 5337 InstructionCost GatherCost = 0; 5338 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5339 bool NeedInsertSubvectorAnalysis = 5340 !NumParts || (VL.size() / VF) > NumParts; 5341 // Get the cost for gathered loads. 5342 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5343 if (VectorizedLoads.contains(VL[I])) 5344 continue; 5345 GatherCost += getGatherCost(VL.slice(I, VF)); 5346 } 5347 // The cost for vectorized loads. 5348 InstructionCost ScalarsCost = 0; 5349 for (Value *V : VectorizedLoads) { 5350 auto *LI = cast<LoadInst>(V); 5351 ScalarsCost += TTI->getMemoryOpCost( 5352 Instruction::Load, LI->getType(), LI->getAlign(), 5353 LI->getPointerAddressSpace(), CostKind, LI); 5354 } 5355 auto *LI = cast<LoadInst>(E->getMainOp()); 5356 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5357 Align Alignment = LI->getAlign(); 5358 GatherCost += 5359 VectorizedCnt * 5360 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5361 LI->getPointerAddressSpace(), CostKind, LI); 5362 GatherCost += ScatterVectorizeCnt * 5363 TTI->getGatherScatterOpCost( 5364 Instruction::Load, LoadTy, LI->getPointerOperand(), 5365 /*VariableMask=*/false, Alignment, CostKind, LI); 5366 if (NeedInsertSubvectorAnalysis) { 5367 // Add the cost for the subvectors insert. 5368 for (int I = VF, E = VL.size(); I < E; I += VF) 5369 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5370 None, I, LoadTy); 5371 } 5372 return ReuseShuffleCost + GatherCost - ScalarsCost; 5373 } 5374 } 5375 return ReuseShuffleCost + getGatherCost(VL); 5376 } 5377 InstructionCost CommonCost = 0; 5378 SmallVector<int> Mask; 5379 if (!E->ReorderIndices.empty()) { 5380 SmallVector<int> NewMask; 5381 if (E->getOpcode() == Instruction::Store) { 5382 // For stores the order is actually a mask. 5383 NewMask.resize(E->ReorderIndices.size()); 5384 copy(E->ReorderIndices, NewMask.begin()); 5385 } else { 5386 inversePermutation(E->ReorderIndices, NewMask); 5387 } 5388 ::addMask(Mask, NewMask); 5389 } 5390 if (NeedToShuffleReuses) 5391 ::addMask(Mask, E->ReuseShuffleIndices); 5392 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5393 CommonCost = 5394 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5395 assert((E->State == TreeEntry::Vectorize || 5396 E->State == TreeEntry::ScatterVectorize) && 5397 "Unhandled state"); 5398 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5399 Instruction *VL0 = E->getMainOp(); 5400 unsigned ShuffleOrOp = 5401 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5402 switch (ShuffleOrOp) { 5403 case Instruction::PHI: 5404 return 0; 5405 5406 case Instruction::ExtractValue: 5407 case Instruction::ExtractElement: { 5408 // The common cost of removal ExtractElement/ExtractValue instructions + 5409 // the cost of shuffles, if required to resuffle the original vector. 5410 if (NeedToShuffleReuses) { 5411 unsigned Idx = 0; 5412 for (unsigned I : E->ReuseShuffleIndices) { 5413 if (ShuffleOrOp == Instruction::ExtractElement) { 5414 auto *EE = cast<ExtractElementInst>(VL[I]); 5415 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5416 EE->getVectorOperandType(), 5417 *getExtractIndex(EE)); 5418 } else { 5419 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5420 VecTy, Idx); 5421 ++Idx; 5422 } 5423 } 5424 Idx = EntryVF; 5425 for (Value *V : VL) { 5426 if (ShuffleOrOp == Instruction::ExtractElement) { 5427 auto *EE = cast<ExtractElementInst>(V); 5428 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5429 EE->getVectorOperandType(), 5430 *getExtractIndex(EE)); 5431 } else { 5432 --Idx; 5433 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5434 VecTy, Idx); 5435 } 5436 } 5437 } 5438 if (ShuffleOrOp == Instruction::ExtractValue) { 5439 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5440 auto *EI = cast<Instruction>(VL[I]); 5441 // Take credit for instruction that will become dead. 5442 if (EI->hasOneUse()) { 5443 Instruction *Ext = EI->user_back(); 5444 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5445 all_of(Ext->users(), 5446 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5447 // Use getExtractWithExtendCost() to calculate the cost of 5448 // extractelement/ext pair. 5449 CommonCost -= TTI->getExtractWithExtendCost( 5450 Ext->getOpcode(), Ext->getType(), VecTy, I); 5451 // Add back the cost of s|zext which is subtracted separately. 5452 CommonCost += TTI->getCastInstrCost( 5453 Ext->getOpcode(), Ext->getType(), EI->getType(), 5454 TTI::getCastContextHint(Ext), CostKind, Ext); 5455 continue; 5456 } 5457 } 5458 CommonCost -= 5459 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5460 } 5461 } else { 5462 AdjustExtractsCost(CommonCost); 5463 } 5464 return CommonCost; 5465 } 5466 case Instruction::InsertElement: { 5467 assert(E->ReuseShuffleIndices.empty() && 5468 "Unique insertelements only are expected."); 5469 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5470 5471 unsigned const NumElts = SrcVecTy->getNumElements(); 5472 unsigned const NumScalars = VL.size(); 5473 APInt DemandedElts = APInt::getZero(NumElts); 5474 // TODO: Add support for Instruction::InsertValue. 5475 SmallVector<int> Mask; 5476 if (!E->ReorderIndices.empty()) { 5477 inversePermutation(E->ReorderIndices, Mask); 5478 Mask.append(NumElts - NumScalars, UndefMaskElem); 5479 } else { 5480 Mask.assign(NumElts, UndefMaskElem); 5481 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5482 } 5483 unsigned Offset = *getInsertIndex(VL0); 5484 bool IsIdentity = true; 5485 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5486 Mask.swap(PrevMask); 5487 for (unsigned I = 0; I < NumScalars; ++I) { 5488 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5489 DemandedElts.setBit(InsertIdx); 5490 IsIdentity &= InsertIdx - Offset == I; 5491 Mask[InsertIdx - Offset] = I; 5492 } 5493 assert(Offset < NumElts && "Failed to find vector index offset"); 5494 5495 InstructionCost Cost = 0; 5496 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5497 /*Insert*/ true, /*Extract*/ false); 5498 5499 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5500 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5501 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5502 Cost += TTI->getShuffleCost( 5503 TargetTransformInfo::SK_PermuteSingleSrc, 5504 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5505 } else if (!IsIdentity) { 5506 auto *FirstInsert = 5507 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5508 return !is_contained(E->Scalars, 5509 cast<Instruction>(V)->getOperand(0)); 5510 })); 5511 if (isUndefVector(FirstInsert->getOperand(0))) { 5512 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5513 } else { 5514 SmallVector<int> InsertMask(NumElts); 5515 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5516 for (unsigned I = 0; I < NumElts; I++) { 5517 if (Mask[I] != UndefMaskElem) 5518 InsertMask[Offset + I] = NumElts + I; 5519 } 5520 Cost += 5521 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5522 } 5523 } 5524 5525 return Cost; 5526 } 5527 case Instruction::ZExt: 5528 case Instruction::SExt: 5529 case Instruction::FPToUI: 5530 case Instruction::FPToSI: 5531 case Instruction::FPExt: 5532 case Instruction::PtrToInt: 5533 case Instruction::IntToPtr: 5534 case Instruction::SIToFP: 5535 case Instruction::UIToFP: 5536 case Instruction::Trunc: 5537 case Instruction::FPTrunc: 5538 case Instruction::BitCast: { 5539 Type *SrcTy = VL0->getOperand(0)->getType(); 5540 InstructionCost ScalarEltCost = 5541 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5542 TTI::getCastContextHint(VL0), CostKind, VL0); 5543 if (NeedToShuffleReuses) { 5544 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5545 } 5546 5547 // Calculate the cost of this instruction. 5548 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5549 5550 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5551 InstructionCost VecCost = 0; 5552 // Check if the values are candidates to demote. 5553 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5554 VecCost = CommonCost + TTI->getCastInstrCost( 5555 E->getOpcode(), VecTy, SrcVecTy, 5556 TTI::getCastContextHint(VL0), CostKind, VL0); 5557 } 5558 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5559 return VecCost - ScalarCost; 5560 } 5561 case Instruction::FCmp: 5562 case Instruction::ICmp: 5563 case Instruction::Select: { 5564 // Calculate the cost of this instruction. 5565 InstructionCost ScalarEltCost = 5566 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5567 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5568 if (NeedToShuffleReuses) { 5569 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5570 } 5571 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5572 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5573 5574 // Check if all entries in VL are either compares or selects with compares 5575 // as condition that have the same predicates. 5576 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5577 bool First = true; 5578 for (auto *V : VL) { 5579 CmpInst::Predicate CurrentPred; 5580 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5581 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5582 !match(V, MatchCmp)) || 5583 (!First && VecPred != CurrentPred)) { 5584 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5585 break; 5586 } 5587 First = false; 5588 VecPred = CurrentPred; 5589 } 5590 5591 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5592 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5593 // Check if it is possible and profitable to use min/max for selects in 5594 // VL. 5595 // 5596 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5597 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5598 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5599 {VecTy, VecTy}); 5600 InstructionCost IntrinsicCost = 5601 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5602 // If the selects are the only uses of the compares, they will be dead 5603 // and we can adjust the cost by removing their cost. 5604 if (IntrinsicAndUse.second) 5605 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5606 MaskTy, VecPred, CostKind); 5607 VecCost = std::min(VecCost, IntrinsicCost); 5608 } 5609 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5610 return CommonCost + VecCost - ScalarCost; 5611 } 5612 case Instruction::FNeg: 5613 case Instruction::Add: 5614 case Instruction::FAdd: 5615 case Instruction::Sub: 5616 case Instruction::FSub: 5617 case Instruction::Mul: 5618 case Instruction::FMul: 5619 case Instruction::UDiv: 5620 case Instruction::SDiv: 5621 case Instruction::FDiv: 5622 case Instruction::URem: 5623 case Instruction::SRem: 5624 case Instruction::FRem: 5625 case Instruction::Shl: 5626 case Instruction::LShr: 5627 case Instruction::AShr: 5628 case Instruction::And: 5629 case Instruction::Or: 5630 case Instruction::Xor: { 5631 // Certain instructions can be cheaper to vectorize if they have a 5632 // constant second vector operand. 5633 TargetTransformInfo::OperandValueKind Op1VK = 5634 TargetTransformInfo::OK_AnyValue; 5635 TargetTransformInfo::OperandValueKind Op2VK = 5636 TargetTransformInfo::OK_UniformConstantValue; 5637 TargetTransformInfo::OperandValueProperties Op1VP = 5638 TargetTransformInfo::OP_None; 5639 TargetTransformInfo::OperandValueProperties Op2VP = 5640 TargetTransformInfo::OP_PowerOf2; 5641 5642 // If all operands are exactly the same ConstantInt then set the 5643 // operand kind to OK_UniformConstantValue. 5644 // If instead not all operands are constants, then set the operand kind 5645 // to OK_AnyValue. If all operands are constants but not the same, 5646 // then set the operand kind to OK_NonUniformConstantValue. 5647 ConstantInt *CInt0 = nullptr; 5648 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5649 const Instruction *I = cast<Instruction>(VL[i]); 5650 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5651 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5652 if (!CInt) { 5653 Op2VK = TargetTransformInfo::OK_AnyValue; 5654 Op2VP = TargetTransformInfo::OP_None; 5655 break; 5656 } 5657 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5658 !CInt->getValue().isPowerOf2()) 5659 Op2VP = TargetTransformInfo::OP_None; 5660 if (i == 0) { 5661 CInt0 = CInt; 5662 continue; 5663 } 5664 if (CInt0 != CInt) 5665 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5666 } 5667 5668 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5669 InstructionCost ScalarEltCost = 5670 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5671 Op2VK, Op1VP, Op2VP, Operands, VL0); 5672 if (NeedToShuffleReuses) { 5673 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5674 } 5675 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5676 InstructionCost VecCost = 5677 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5678 Op2VK, Op1VP, Op2VP, Operands, VL0); 5679 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5680 return CommonCost + VecCost - ScalarCost; 5681 } 5682 case Instruction::GetElementPtr: { 5683 TargetTransformInfo::OperandValueKind Op1VK = 5684 TargetTransformInfo::OK_AnyValue; 5685 TargetTransformInfo::OperandValueKind Op2VK = 5686 TargetTransformInfo::OK_UniformConstantValue; 5687 5688 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5689 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5690 if (NeedToShuffleReuses) { 5691 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5692 } 5693 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5694 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5695 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5696 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5697 return CommonCost + VecCost - ScalarCost; 5698 } 5699 case Instruction::Load: { 5700 // Cost of wide load - cost of scalar loads. 5701 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5702 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5703 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5704 if (NeedToShuffleReuses) { 5705 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5706 } 5707 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5708 InstructionCost VecLdCost; 5709 if (E->State == TreeEntry::Vectorize) { 5710 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5711 CostKind, VL0); 5712 } else { 5713 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5714 Align CommonAlignment = Alignment; 5715 for (Value *V : VL) 5716 CommonAlignment = 5717 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5718 VecLdCost = TTI->getGatherScatterOpCost( 5719 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5720 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5721 } 5722 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5723 return CommonCost + VecLdCost - ScalarLdCost; 5724 } 5725 case Instruction::Store: { 5726 // We know that we can merge the stores. Calculate the cost. 5727 bool IsReorder = !E->ReorderIndices.empty(); 5728 auto *SI = 5729 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5730 Align Alignment = SI->getAlign(); 5731 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5732 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5733 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5734 InstructionCost VecStCost = TTI->getMemoryOpCost( 5735 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5736 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5737 return CommonCost + VecStCost - ScalarStCost; 5738 } 5739 case Instruction::Call: { 5740 CallInst *CI = cast<CallInst>(VL0); 5741 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5742 5743 // Calculate the cost of the scalar and vector calls. 5744 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5745 InstructionCost ScalarEltCost = 5746 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5747 if (NeedToShuffleReuses) { 5748 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5749 } 5750 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5751 5752 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5753 InstructionCost VecCallCost = 5754 std::min(VecCallCosts.first, VecCallCosts.second); 5755 5756 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5757 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5758 << " for " << *CI << "\n"); 5759 5760 return CommonCost + VecCallCost - ScalarCallCost; 5761 } 5762 case Instruction::ShuffleVector: { 5763 assert(E->isAltShuffle() && 5764 ((Instruction::isBinaryOp(E->getOpcode()) && 5765 Instruction::isBinaryOp(E->getAltOpcode())) || 5766 (Instruction::isCast(E->getOpcode()) && 5767 Instruction::isCast(E->getAltOpcode())) || 5768 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5769 "Invalid Shuffle Vector Operand"); 5770 InstructionCost ScalarCost = 0; 5771 if (NeedToShuffleReuses) { 5772 for (unsigned Idx : E->ReuseShuffleIndices) { 5773 Instruction *I = cast<Instruction>(VL[Idx]); 5774 CommonCost -= TTI->getInstructionCost(I, CostKind); 5775 } 5776 for (Value *V : VL) { 5777 Instruction *I = cast<Instruction>(V); 5778 CommonCost += TTI->getInstructionCost(I, CostKind); 5779 } 5780 } 5781 for (Value *V : VL) { 5782 Instruction *I = cast<Instruction>(V); 5783 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5784 ScalarCost += TTI->getInstructionCost(I, CostKind); 5785 } 5786 // VecCost is equal to sum of the cost of creating 2 vectors 5787 // and the cost of creating shuffle. 5788 InstructionCost VecCost = 0; 5789 // Try to find the previous shuffle node with the same operands and same 5790 // main/alternate ops. 5791 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5792 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5793 if (TE.get() == E) 5794 break; 5795 if (TE->isAltShuffle() && 5796 ((TE->getOpcode() == E->getOpcode() && 5797 TE->getAltOpcode() == E->getAltOpcode()) || 5798 (TE->getOpcode() == E->getAltOpcode() && 5799 TE->getAltOpcode() == E->getOpcode())) && 5800 TE->hasEqualOperands(*E)) 5801 return true; 5802 } 5803 return false; 5804 }; 5805 if (TryFindNodeWithEqualOperands()) { 5806 LLVM_DEBUG({ 5807 dbgs() << "SLP: diamond match for alternate node found.\n"; 5808 E->dump(); 5809 }); 5810 // No need to add new vector costs here since we're going to reuse 5811 // same main/alternate vector ops, just do different shuffling. 5812 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5813 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5814 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5815 CostKind); 5816 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5817 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5818 Builder.getInt1Ty(), 5819 CI0->getPredicate(), CostKind, VL0); 5820 VecCost += TTI->getCmpSelInstrCost( 5821 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5822 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5823 E->getAltOp()); 5824 } else { 5825 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5826 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5827 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5828 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5829 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5830 TTI::CastContextHint::None, CostKind); 5831 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5832 TTI::CastContextHint::None, CostKind); 5833 } 5834 5835 SmallVector<int> Mask; 5836 buildShuffleEntryMask( 5837 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5838 [E](Instruction *I) { 5839 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5840 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5841 }, 5842 Mask); 5843 CommonCost = 5844 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5845 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5846 return CommonCost + VecCost - ScalarCost; 5847 } 5848 default: 5849 llvm_unreachable("Unknown instruction"); 5850 } 5851 } 5852 5853 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5854 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5855 << VectorizableTree.size() << " is fully vectorizable .\n"); 5856 5857 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5858 SmallVector<int> Mask; 5859 return TE->State == TreeEntry::NeedToGather && 5860 !any_of(TE->Scalars, 5861 [this](Value *V) { return EphValues.contains(V); }) && 5862 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5863 TE->Scalars.size() < Limit || 5864 ((TE->getOpcode() == Instruction::ExtractElement || 5865 all_of(TE->Scalars, 5866 [](Value *V) { 5867 return isa<ExtractElementInst, UndefValue>(V); 5868 })) && 5869 isFixedVectorShuffle(TE->Scalars, Mask)) || 5870 (TE->State == TreeEntry::NeedToGather && 5871 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5872 }; 5873 5874 // We only handle trees of heights 1 and 2. 5875 if (VectorizableTree.size() == 1 && 5876 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5877 (ForReduction && 5878 AreVectorizableGathers(VectorizableTree[0].get(), 5879 VectorizableTree[0]->Scalars.size()) && 5880 VectorizableTree[0]->getVectorFactor() > 2))) 5881 return true; 5882 5883 if (VectorizableTree.size() != 2) 5884 return false; 5885 5886 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5887 // with the second gather nodes if they have less scalar operands rather than 5888 // the initial tree element (may be profitable to shuffle the second gather) 5889 // or they are extractelements, which form shuffle. 5890 SmallVector<int> Mask; 5891 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5892 AreVectorizableGathers(VectorizableTree[1].get(), 5893 VectorizableTree[0]->Scalars.size())) 5894 return true; 5895 5896 // Gathering cost would be too much for tiny trees. 5897 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5898 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5899 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5900 return false; 5901 5902 return true; 5903 } 5904 5905 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5906 TargetTransformInfo *TTI, 5907 bool MustMatchOrInst) { 5908 // Look past the root to find a source value. Arbitrarily follow the 5909 // path through operand 0 of any 'or'. Also, peek through optional 5910 // shift-left-by-multiple-of-8-bits. 5911 Value *ZextLoad = Root; 5912 const APInt *ShAmtC; 5913 bool FoundOr = false; 5914 while (!isa<ConstantExpr>(ZextLoad) && 5915 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5916 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5917 ShAmtC->urem(8) == 0))) { 5918 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5919 ZextLoad = BinOp->getOperand(0); 5920 if (BinOp->getOpcode() == Instruction::Or) 5921 FoundOr = true; 5922 } 5923 // Check if the input is an extended load of the required or/shift expression. 5924 Value *Load; 5925 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5926 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5927 return false; 5928 5929 // Require that the total load bit width is a legal integer type. 5930 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5931 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5932 Type *SrcTy = Load->getType(); 5933 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5934 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5935 return false; 5936 5937 // Everything matched - assume that we can fold the whole sequence using 5938 // load combining. 5939 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5940 << *(cast<Instruction>(Root)) << "\n"); 5941 5942 return true; 5943 } 5944 5945 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5946 if (RdxKind != RecurKind::Or) 5947 return false; 5948 5949 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5950 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5951 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5952 /* MatchOr */ false); 5953 } 5954 5955 bool BoUpSLP::isLoadCombineCandidate() const { 5956 // Peek through a final sequence of stores and check if all operations are 5957 // likely to be load-combined. 5958 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5959 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5960 Value *X; 5961 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5962 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5963 return false; 5964 } 5965 return true; 5966 } 5967 5968 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5969 // No need to vectorize inserts of gathered values. 5970 if (VectorizableTree.size() == 2 && 5971 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5972 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5973 return true; 5974 5975 // We can vectorize the tree if its size is greater than or equal to the 5976 // minimum size specified by the MinTreeSize command line option. 5977 if (VectorizableTree.size() >= MinTreeSize) 5978 return false; 5979 5980 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5981 // can vectorize it if we can prove it fully vectorizable. 5982 if (isFullyVectorizableTinyTree(ForReduction)) 5983 return false; 5984 5985 assert(VectorizableTree.empty() 5986 ? ExternalUses.empty() 5987 : true && "We shouldn't have any external users"); 5988 5989 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5990 // vectorizable. 5991 return true; 5992 } 5993 5994 InstructionCost BoUpSLP::getSpillCost() const { 5995 // Walk from the bottom of the tree to the top, tracking which values are 5996 // live. When we see a call instruction that is not part of our tree, 5997 // query TTI to see if there is a cost to keeping values live over it 5998 // (for example, if spills and fills are required). 5999 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6000 InstructionCost Cost = 0; 6001 6002 SmallPtrSet<Instruction*, 4> LiveValues; 6003 Instruction *PrevInst = nullptr; 6004 6005 // The entries in VectorizableTree are not necessarily ordered by their 6006 // position in basic blocks. Collect them and order them by dominance so later 6007 // instructions are guaranteed to be visited first. For instructions in 6008 // different basic blocks, we only scan to the beginning of the block, so 6009 // their order does not matter, as long as all instructions in a basic block 6010 // are grouped together. Using dominance ensures a deterministic order. 6011 SmallVector<Instruction *, 16> OrderedScalars; 6012 for (const auto &TEPtr : VectorizableTree) { 6013 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6014 if (!Inst) 6015 continue; 6016 OrderedScalars.push_back(Inst); 6017 } 6018 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6019 auto *NodeA = DT->getNode(A->getParent()); 6020 auto *NodeB = DT->getNode(B->getParent()); 6021 assert(NodeA && "Should only process reachable instructions"); 6022 assert(NodeB && "Should only process reachable instructions"); 6023 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6024 "Different nodes should have different DFS numbers"); 6025 if (NodeA != NodeB) 6026 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6027 return B->comesBefore(A); 6028 }); 6029 6030 for (Instruction *Inst : OrderedScalars) { 6031 if (!PrevInst) { 6032 PrevInst = Inst; 6033 continue; 6034 } 6035 6036 // Update LiveValues. 6037 LiveValues.erase(PrevInst); 6038 for (auto &J : PrevInst->operands()) { 6039 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6040 LiveValues.insert(cast<Instruction>(&*J)); 6041 } 6042 6043 LLVM_DEBUG({ 6044 dbgs() << "SLP: #LV: " << LiveValues.size(); 6045 for (auto *X : LiveValues) 6046 dbgs() << " " << X->getName(); 6047 dbgs() << ", Looking at "; 6048 Inst->dump(); 6049 }); 6050 6051 // Now find the sequence of instructions between PrevInst and Inst. 6052 unsigned NumCalls = 0; 6053 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6054 PrevInstIt = 6055 PrevInst->getIterator().getReverse(); 6056 while (InstIt != PrevInstIt) { 6057 if (PrevInstIt == PrevInst->getParent()->rend()) { 6058 PrevInstIt = Inst->getParent()->rbegin(); 6059 continue; 6060 } 6061 6062 // Debug information does not impact spill cost. 6063 if ((isa<CallInst>(&*PrevInstIt) && 6064 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6065 &*PrevInstIt != PrevInst) 6066 NumCalls++; 6067 6068 ++PrevInstIt; 6069 } 6070 6071 if (NumCalls) { 6072 SmallVector<Type*, 4> V; 6073 for (auto *II : LiveValues) { 6074 auto *ScalarTy = II->getType(); 6075 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6076 ScalarTy = VectorTy->getElementType(); 6077 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6078 } 6079 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6080 } 6081 6082 PrevInst = Inst; 6083 } 6084 6085 return Cost; 6086 } 6087 6088 /// Check if two insertelement instructions are from the same buildvector. 6089 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6090 InsertElementInst *V) { 6091 // Instructions must be from the same basic blocks. 6092 if (VU->getParent() != V->getParent()) 6093 return false; 6094 // Checks if 2 insertelements are from the same buildvector. 6095 if (VU->getType() != V->getType()) 6096 return false; 6097 // Multiple used inserts are separate nodes. 6098 if (!VU->hasOneUse() && !V->hasOneUse()) 6099 return false; 6100 auto *IE1 = VU; 6101 auto *IE2 = V; 6102 // Go through the vector operand of insertelement instructions trying to find 6103 // either VU as the original vector for IE2 or V as the original vector for 6104 // IE1. 6105 do { 6106 if (IE2 == VU || IE1 == V) 6107 return true; 6108 if (IE1) { 6109 if (IE1 != VU && !IE1->hasOneUse()) 6110 IE1 = nullptr; 6111 else 6112 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6113 } 6114 if (IE2) { 6115 if (IE2 != V && !IE2->hasOneUse()) 6116 IE2 = nullptr; 6117 else 6118 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6119 } 6120 } while (IE1 || IE2); 6121 return false; 6122 } 6123 6124 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6125 InstructionCost Cost = 0; 6126 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6127 << VectorizableTree.size() << ".\n"); 6128 6129 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6130 6131 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6132 TreeEntry &TE = *VectorizableTree[I]; 6133 6134 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6135 Cost += C; 6136 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6137 << " for bundle that starts with " << *TE.Scalars[0] 6138 << ".\n" 6139 << "SLP: Current total cost = " << Cost << "\n"); 6140 } 6141 6142 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6143 InstructionCost ExtractCost = 0; 6144 SmallVector<unsigned> VF; 6145 SmallVector<SmallVector<int>> ShuffleMask; 6146 SmallVector<Value *> FirstUsers; 6147 SmallVector<APInt> DemandedElts; 6148 for (ExternalUser &EU : ExternalUses) { 6149 // We only add extract cost once for the same scalar. 6150 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6151 !ExtractCostCalculated.insert(EU.Scalar).second) 6152 continue; 6153 6154 // Uses by ephemeral values are free (because the ephemeral value will be 6155 // removed prior to code generation, and so the extraction will be 6156 // removed as well). 6157 if (EphValues.count(EU.User)) 6158 continue; 6159 6160 // No extract cost for vector "scalar" 6161 if (isa<FixedVectorType>(EU.Scalar->getType())) 6162 continue; 6163 6164 // Already counted the cost for external uses when tried to adjust the cost 6165 // for extractelements, no need to add it again. 6166 if (isa<ExtractElementInst>(EU.Scalar)) 6167 continue; 6168 6169 // If found user is an insertelement, do not calculate extract cost but try 6170 // to detect it as a final shuffled/identity match. 6171 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6172 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6173 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6174 if (InsertIdx) { 6175 auto *It = find_if(FirstUsers, [VU](Value *V) { 6176 return areTwoInsertFromSameBuildVector(VU, 6177 cast<InsertElementInst>(V)); 6178 }); 6179 int VecId = -1; 6180 if (It == FirstUsers.end()) { 6181 VF.push_back(FTy->getNumElements()); 6182 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6183 // Find the insertvector, vectorized in tree, if any. 6184 Value *Base = VU; 6185 while (isa<InsertElementInst>(Base)) { 6186 // Build the mask for the vectorized insertelement instructions. 6187 if (const TreeEntry *E = getTreeEntry(Base)) { 6188 VU = cast<InsertElementInst>(Base); 6189 do { 6190 int Idx = E->findLaneForValue(Base); 6191 ShuffleMask.back()[Idx] = Idx; 6192 Base = cast<InsertElementInst>(Base)->getOperand(0); 6193 } while (E == getTreeEntry(Base)); 6194 break; 6195 } 6196 Base = cast<InsertElementInst>(Base)->getOperand(0); 6197 } 6198 FirstUsers.push_back(VU); 6199 DemandedElts.push_back(APInt::getZero(VF.back())); 6200 VecId = FirstUsers.size() - 1; 6201 } else { 6202 VecId = std::distance(FirstUsers.begin(), It); 6203 } 6204 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6205 DemandedElts[VecId].setBit(*InsertIdx); 6206 continue; 6207 } 6208 } 6209 } 6210 6211 // If we plan to rewrite the tree in a smaller type, we will need to sign 6212 // extend the extracted value back to the original type. Here, we account 6213 // for the extract and the added cost of the sign extend if needed. 6214 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6215 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6216 if (MinBWs.count(ScalarRoot)) { 6217 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6218 auto Extend = 6219 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6220 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6221 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6222 VecTy, EU.Lane); 6223 } else { 6224 ExtractCost += 6225 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6226 } 6227 } 6228 6229 InstructionCost SpillCost = getSpillCost(); 6230 Cost += SpillCost + ExtractCost; 6231 if (FirstUsers.size() == 1) { 6232 int Limit = ShuffleMask.front().size() * 2; 6233 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6234 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6235 InstructionCost C = TTI->getShuffleCost( 6236 TTI::SK_PermuteSingleSrc, 6237 cast<FixedVectorType>(FirstUsers.front()->getType()), 6238 ShuffleMask.front()); 6239 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6240 << " for final shuffle of insertelement external users " 6241 << *VectorizableTree.front()->Scalars.front() << ".\n" 6242 << "SLP: Current total cost = " << Cost << "\n"); 6243 Cost += C; 6244 } 6245 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6246 cast<FixedVectorType>(FirstUsers.front()->getType()), 6247 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6248 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6249 << " for insertelements gather.\n" 6250 << "SLP: Current total cost = " << Cost << "\n"); 6251 Cost -= InsertCost; 6252 } else if (FirstUsers.size() >= 2) { 6253 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6254 // Combined masks of the first 2 vectors. 6255 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6256 copy(ShuffleMask.front(), CombinedMask.begin()); 6257 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6258 auto *VecTy = FixedVectorType::get( 6259 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6260 MaxVF); 6261 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6262 if (ShuffleMask[1][I] != UndefMaskElem) { 6263 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6264 CombinedDemandedElts.setBit(I); 6265 } 6266 } 6267 InstructionCost C = 6268 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6269 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6270 << " for final shuffle of vector node and external " 6271 "insertelement users " 6272 << *VectorizableTree.front()->Scalars.front() << ".\n" 6273 << "SLP: Current total cost = " << Cost << "\n"); 6274 Cost += C; 6275 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6276 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6277 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6278 << " for insertelements gather.\n" 6279 << "SLP: Current total cost = " << Cost << "\n"); 6280 Cost -= InsertCost; 6281 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6282 // Other elements - permutation of 2 vectors (the initial one and the 6283 // next Ith incoming vector). 6284 unsigned VF = ShuffleMask[I].size(); 6285 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6286 int Mask = ShuffleMask[I][Idx]; 6287 if (Mask != UndefMaskElem) 6288 CombinedMask[Idx] = MaxVF + Mask; 6289 else if (CombinedMask[Idx] != UndefMaskElem) 6290 CombinedMask[Idx] = Idx; 6291 } 6292 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6293 if (CombinedMask[Idx] != UndefMaskElem) 6294 CombinedMask[Idx] = Idx; 6295 InstructionCost C = 6296 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6297 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6298 << " for final shuffle of vector node and external " 6299 "insertelement users " 6300 << *VectorizableTree.front()->Scalars.front() << ".\n" 6301 << "SLP: Current total cost = " << Cost << "\n"); 6302 Cost += C; 6303 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6304 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6305 /*Insert*/ true, /*Extract*/ false); 6306 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6307 << " for insertelements gather.\n" 6308 << "SLP: Current total cost = " << Cost << "\n"); 6309 Cost -= InsertCost; 6310 } 6311 } 6312 6313 #ifndef NDEBUG 6314 SmallString<256> Str; 6315 { 6316 raw_svector_ostream OS(Str); 6317 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6318 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6319 << "SLP: Total Cost = " << Cost << ".\n"; 6320 } 6321 LLVM_DEBUG(dbgs() << Str); 6322 if (ViewSLPTree) 6323 ViewGraph(this, "SLP" + F->getName(), false, Str); 6324 #endif 6325 6326 return Cost; 6327 } 6328 6329 Optional<TargetTransformInfo::ShuffleKind> 6330 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6331 SmallVectorImpl<const TreeEntry *> &Entries) { 6332 // TODO: currently checking only for Scalars in the tree entry, need to count 6333 // reused elements too for better cost estimation. 6334 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6335 Entries.clear(); 6336 // Build a lists of values to tree entries. 6337 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6338 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6339 if (EntryPtr.get() == TE) 6340 break; 6341 if (EntryPtr->State != TreeEntry::NeedToGather) 6342 continue; 6343 for (Value *V : EntryPtr->Scalars) 6344 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6345 } 6346 // Find all tree entries used by the gathered values. If no common entries 6347 // found - not a shuffle. 6348 // Here we build a set of tree nodes for each gathered value and trying to 6349 // find the intersection between these sets. If we have at least one common 6350 // tree node for each gathered value - we have just a permutation of the 6351 // single vector. If we have 2 different sets, we're in situation where we 6352 // have a permutation of 2 input vectors. 6353 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6354 DenseMap<Value *, int> UsedValuesEntry; 6355 for (Value *V : TE->Scalars) { 6356 if (isa<UndefValue>(V)) 6357 continue; 6358 // Build a list of tree entries where V is used. 6359 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6360 auto It = ValueToTEs.find(V); 6361 if (It != ValueToTEs.end()) 6362 VToTEs = It->second; 6363 if (const TreeEntry *VTE = getTreeEntry(V)) 6364 VToTEs.insert(VTE); 6365 if (VToTEs.empty()) 6366 return None; 6367 if (UsedTEs.empty()) { 6368 // The first iteration, just insert the list of nodes to vector. 6369 UsedTEs.push_back(VToTEs); 6370 } else { 6371 // Need to check if there are any previously used tree nodes which use V. 6372 // If there are no such nodes, consider that we have another one input 6373 // vector. 6374 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6375 unsigned Idx = 0; 6376 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6377 // Do we have a non-empty intersection of previously listed tree entries 6378 // and tree entries using current V? 6379 set_intersect(VToTEs, Set); 6380 if (!VToTEs.empty()) { 6381 // Yes, write the new subset and continue analysis for the next 6382 // scalar. 6383 Set.swap(VToTEs); 6384 break; 6385 } 6386 VToTEs = SavedVToTEs; 6387 ++Idx; 6388 } 6389 // No non-empty intersection found - need to add a second set of possible 6390 // source vectors. 6391 if (Idx == UsedTEs.size()) { 6392 // If the number of input vectors is greater than 2 - not a permutation, 6393 // fallback to the regular gather. 6394 if (UsedTEs.size() == 2) 6395 return None; 6396 UsedTEs.push_back(SavedVToTEs); 6397 Idx = UsedTEs.size() - 1; 6398 } 6399 UsedValuesEntry.try_emplace(V, Idx); 6400 } 6401 } 6402 6403 unsigned VF = 0; 6404 if (UsedTEs.size() == 1) { 6405 // Try to find the perfect match in another gather node at first. 6406 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6407 return EntryPtr->isSame(TE->Scalars); 6408 }); 6409 if (It != UsedTEs.front().end()) { 6410 Entries.push_back(*It); 6411 std::iota(Mask.begin(), Mask.end(), 0); 6412 return TargetTransformInfo::SK_PermuteSingleSrc; 6413 } 6414 // No perfect match, just shuffle, so choose the first tree node. 6415 Entries.push_back(*UsedTEs.front().begin()); 6416 } else { 6417 // Try to find nodes with the same vector factor. 6418 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6419 DenseMap<int, const TreeEntry *> VFToTE; 6420 for (const TreeEntry *TE : UsedTEs.front()) 6421 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6422 for (const TreeEntry *TE : UsedTEs.back()) { 6423 auto It = VFToTE.find(TE->getVectorFactor()); 6424 if (It != VFToTE.end()) { 6425 VF = It->first; 6426 Entries.push_back(It->second); 6427 Entries.push_back(TE); 6428 break; 6429 } 6430 } 6431 // No 2 source vectors with the same vector factor - give up and do regular 6432 // gather. 6433 if (Entries.empty()) 6434 return None; 6435 } 6436 6437 // Build a shuffle mask for better cost estimation and vector emission. 6438 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6439 Value *V = TE->Scalars[I]; 6440 if (isa<UndefValue>(V)) 6441 continue; 6442 unsigned Idx = UsedValuesEntry.lookup(V); 6443 const TreeEntry *VTE = Entries[Idx]; 6444 int FoundLane = VTE->findLaneForValue(V); 6445 Mask[I] = Idx * VF + FoundLane; 6446 // Extra check required by isSingleSourceMaskImpl function (called by 6447 // ShuffleVectorInst::isSingleSourceMask). 6448 if (Mask[I] >= 2 * E) 6449 return None; 6450 } 6451 switch (Entries.size()) { 6452 case 1: 6453 return TargetTransformInfo::SK_PermuteSingleSrc; 6454 case 2: 6455 return TargetTransformInfo::SK_PermuteTwoSrc; 6456 default: 6457 break; 6458 } 6459 return None; 6460 } 6461 6462 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6463 const APInt &ShuffledIndices, 6464 bool NeedToShuffle) const { 6465 InstructionCost Cost = 6466 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6467 /*Extract*/ false); 6468 if (NeedToShuffle) 6469 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6470 return Cost; 6471 } 6472 6473 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6474 // Find the type of the operands in VL. 6475 Type *ScalarTy = VL[0]->getType(); 6476 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6477 ScalarTy = SI->getValueOperand()->getType(); 6478 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6479 bool DuplicateNonConst = false; 6480 // Find the cost of inserting/extracting values from the vector. 6481 // Check if the same elements are inserted several times and count them as 6482 // shuffle candidates. 6483 APInt ShuffledElements = APInt::getZero(VL.size()); 6484 DenseSet<Value *> UniqueElements; 6485 // Iterate in reverse order to consider insert elements with the high cost. 6486 for (unsigned I = VL.size(); I > 0; --I) { 6487 unsigned Idx = I - 1; 6488 // No need to shuffle duplicates for constants. 6489 if (isConstant(VL[Idx])) { 6490 ShuffledElements.setBit(Idx); 6491 continue; 6492 } 6493 if (!UniqueElements.insert(VL[Idx]).second) { 6494 DuplicateNonConst = true; 6495 ShuffledElements.setBit(Idx); 6496 } 6497 } 6498 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6499 } 6500 6501 // Perform operand reordering on the instructions in VL and return the reordered 6502 // operands in Left and Right. 6503 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6504 SmallVectorImpl<Value *> &Left, 6505 SmallVectorImpl<Value *> &Right, 6506 const DataLayout &DL, 6507 ScalarEvolution &SE, 6508 const BoUpSLP &R) { 6509 if (VL.empty()) 6510 return; 6511 VLOperands Ops(VL, DL, SE, R); 6512 // Reorder the operands in place. 6513 Ops.reorder(); 6514 Left = Ops.getVL(0); 6515 Right = Ops.getVL(1); 6516 } 6517 6518 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6519 // Get the basic block this bundle is in. All instructions in the bundle 6520 // should be in this block. 6521 auto *Front = E->getMainOp(); 6522 auto *BB = Front->getParent(); 6523 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6524 auto *I = cast<Instruction>(V); 6525 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6526 })); 6527 6528 auto &&FindLastInst = [E, Front]() { 6529 Instruction *LastInst = Front; 6530 for (Value *V : E->Scalars) { 6531 auto *I = dyn_cast<Instruction>(V); 6532 if (!I) 6533 continue; 6534 if (LastInst->comesBefore(I)) 6535 LastInst = I; 6536 } 6537 return LastInst; 6538 }; 6539 6540 auto &&FindFirstInst = [E, Front]() { 6541 Instruction *FirstInst = Front; 6542 for (Value *V : E->Scalars) { 6543 auto *I = dyn_cast<Instruction>(V); 6544 if (!I) 6545 continue; 6546 if (I->comesBefore(FirstInst)) 6547 FirstInst = I; 6548 } 6549 return FirstInst; 6550 }; 6551 6552 // Set the insert point to the beginning of the basic block if the entry 6553 // should not be scheduled. 6554 if (E->State != TreeEntry::NeedToGather && 6555 doesNotNeedToSchedule(E->Scalars)) { 6556 BasicBlock::iterator InsertPt; 6557 if (all_of(E->Scalars, isUsedOutsideBlock)) 6558 InsertPt = FindLastInst()->getIterator(); 6559 else 6560 InsertPt = FindFirstInst()->getIterator(); 6561 Builder.SetInsertPoint(BB, InsertPt); 6562 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6563 return; 6564 } 6565 6566 // The last instruction in the bundle in program order. 6567 Instruction *LastInst = nullptr; 6568 6569 // Find the last instruction. The common case should be that BB has been 6570 // scheduled, and the last instruction is VL.back(). So we start with 6571 // VL.back() and iterate over schedule data until we reach the end of the 6572 // bundle. The end of the bundle is marked by null ScheduleData. 6573 if (BlocksSchedules.count(BB)) { 6574 Value *V = E->isOneOf(E->Scalars.back()); 6575 if (doesNotNeedToBeScheduled(V)) 6576 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6577 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6578 if (Bundle && Bundle->isPartOfBundle()) 6579 for (; Bundle; Bundle = Bundle->NextInBundle) 6580 if (Bundle->OpValue == Bundle->Inst) 6581 LastInst = Bundle->Inst; 6582 } 6583 6584 // LastInst can still be null at this point if there's either not an entry 6585 // for BB in BlocksSchedules or there's no ScheduleData available for 6586 // VL.back(). This can be the case if buildTree_rec aborts for various 6587 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6588 // size is reached, etc.). ScheduleData is initialized in the scheduling 6589 // "dry-run". 6590 // 6591 // If this happens, we can still find the last instruction by brute force. We 6592 // iterate forwards from Front (inclusive) until we either see all 6593 // instructions in the bundle or reach the end of the block. If Front is the 6594 // last instruction in program order, LastInst will be set to Front, and we 6595 // will visit all the remaining instructions in the block. 6596 // 6597 // One of the reasons we exit early from buildTree_rec is to place an upper 6598 // bound on compile-time. Thus, taking an additional compile-time hit here is 6599 // not ideal. However, this should be exceedingly rare since it requires that 6600 // we both exit early from buildTree_rec and that the bundle be out-of-order 6601 // (causing us to iterate all the way to the end of the block). 6602 if (!LastInst) 6603 LastInst = FindLastInst(); 6604 assert(LastInst && "Failed to find last instruction in bundle"); 6605 6606 // Set the insertion point after the last instruction in the bundle. Set the 6607 // debug location to Front. 6608 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6609 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6610 } 6611 6612 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6613 // List of instructions/lanes from current block and/or the blocks which are 6614 // part of the current loop. These instructions will be inserted at the end to 6615 // make it possible to optimize loops and hoist invariant instructions out of 6616 // the loops body with better chances for success. 6617 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6618 SmallSet<int, 4> PostponedIndices; 6619 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6620 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6621 SmallPtrSet<BasicBlock *, 4> Visited; 6622 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6623 InsertBB = InsertBB->getSinglePredecessor(); 6624 return InsertBB && InsertBB == InstBB; 6625 }; 6626 for (int I = 0, E = VL.size(); I < E; ++I) { 6627 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6628 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6629 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6630 PostponedIndices.insert(I).second) 6631 PostponedInsts.emplace_back(Inst, I); 6632 } 6633 6634 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6635 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6636 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6637 if (!InsElt) 6638 return Vec; 6639 GatherShuffleSeq.insert(InsElt); 6640 CSEBlocks.insert(InsElt->getParent()); 6641 // Add to our 'need-to-extract' list. 6642 if (TreeEntry *Entry = getTreeEntry(V)) { 6643 // Find which lane we need to extract. 6644 unsigned FoundLane = Entry->findLaneForValue(V); 6645 ExternalUses.emplace_back(V, InsElt, FoundLane); 6646 } 6647 return Vec; 6648 }; 6649 Value *Val0 = 6650 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6651 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6652 Value *Vec = PoisonValue::get(VecTy); 6653 SmallVector<int> NonConsts; 6654 // Insert constant values at first. 6655 for (int I = 0, E = VL.size(); I < E; ++I) { 6656 if (PostponedIndices.contains(I)) 6657 continue; 6658 if (!isConstant(VL[I])) { 6659 NonConsts.push_back(I); 6660 continue; 6661 } 6662 Vec = CreateInsertElement(Vec, VL[I], I); 6663 } 6664 // Insert non-constant values. 6665 for (int I : NonConsts) 6666 Vec = CreateInsertElement(Vec, VL[I], I); 6667 // Append instructions, which are/may be part of the loop, in the end to make 6668 // it possible to hoist non-loop-based instructions. 6669 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6670 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6671 6672 return Vec; 6673 } 6674 6675 namespace { 6676 /// Merges shuffle masks and emits final shuffle instruction, if required. 6677 class ShuffleInstructionBuilder { 6678 IRBuilderBase &Builder; 6679 const unsigned VF = 0; 6680 bool IsFinalized = false; 6681 SmallVector<int, 4> Mask; 6682 /// Holds all of the instructions that we gathered. 6683 SetVector<Instruction *> &GatherShuffleSeq; 6684 /// A list of blocks that we are going to CSE. 6685 SetVector<BasicBlock *> &CSEBlocks; 6686 6687 public: 6688 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6689 SetVector<Instruction *> &GatherShuffleSeq, 6690 SetVector<BasicBlock *> &CSEBlocks) 6691 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6692 CSEBlocks(CSEBlocks) {} 6693 6694 /// Adds a mask, inverting it before applying. 6695 void addInversedMask(ArrayRef<unsigned> SubMask) { 6696 if (SubMask.empty()) 6697 return; 6698 SmallVector<int, 4> NewMask; 6699 inversePermutation(SubMask, NewMask); 6700 addMask(NewMask); 6701 } 6702 6703 /// Functions adds masks, merging them into single one. 6704 void addMask(ArrayRef<unsigned> SubMask) { 6705 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6706 addMask(NewMask); 6707 } 6708 6709 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6710 6711 Value *finalize(Value *V) { 6712 IsFinalized = true; 6713 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6714 if (VF == ValueVF && Mask.empty()) 6715 return V; 6716 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6717 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6718 addMask(NormalizedMask); 6719 6720 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6721 return V; 6722 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6723 if (auto *I = dyn_cast<Instruction>(Vec)) { 6724 GatherShuffleSeq.insert(I); 6725 CSEBlocks.insert(I->getParent()); 6726 } 6727 return Vec; 6728 } 6729 6730 ~ShuffleInstructionBuilder() { 6731 assert((IsFinalized || Mask.empty()) && 6732 "Shuffle construction must be finalized."); 6733 } 6734 }; 6735 } // namespace 6736 6737 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6738 const unsigned VF = VL.size(); 6739 InstructionsState S = getSameOpcode(VL); 6740 if (S.getOpcode()) { 6741 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6742 if (E->isSame(VL)) { 6743 Value *V = vectorizeTree(E); 6744 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6745 if (!E->ReuseShuffleIndices.empty()) { 6746 // Reshuffle to get only unique values. 6747 // If some of the scalars are duplicated in the vectorization tree 6748 // entry, we do not vectorize them but instead generate a mask for 6749 // the reuses. But if there are several users of the same entry, 6750 // they may have different vectorization factors. This is especially 6751 // important for PHI nodes. In this case, we need to adapt the 6752 // resulting instruction for the user vectorization factor and have 6753 // to reshuffle it again to take only unique elements of the vector. 6754 // Without this code the function incorrectly returns reduced vector 6755 // instruction with the same elements, not with the unique ones. 6756 6757 // block: 6758 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6759 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6760 // ... (use %2) 6761 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6762 // br %block 6763 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6764 SmallSet<int, 4> UsedIdxs; 6765 int Pos = 0; 6766 int Sz = VL.size(); 6767 for (int Idx : E->ReuseShuffleIndices) { 6768 if (Idx != Sz && Idx != UndefMaskElem && 6769 UsedIdxs.insert(Idx).second) 6770 UniqueIdxs[Idx] = Pos; 6771 ++Pos; 6772 } 6773 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6774 "less than original vector size."); 6775 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6776 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6777 } else { 6778 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6779 "Expected vectorization factor less " 6780 "than original vector size."); 6781 SmallVector<int> UniformMask(VF, 0); 6782 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6783 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6784 } 6785 if (auto *I = dyn_cast<Instruction>(V)) { 6786 GatherShuffleSeq.insert(I); 6787 CSEBlocks.insert(I->getParent()); 6788 } 6789 } 6790 return V; 6791 } 6792 } 6793 6794 // Can't vectorize this, so simply build a new vector with each lane 6795 // corresponding to the requested value. 6796 return createBuildVector(VL); 6797 } 6798 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6799 unsigned VF = VL.size(); 6800 // Exploit possible reuse of values across lanes. 6801 SmallVector<int> ReuseShuffleIndicies; 6802 SmallVector<Value *> UniqueValues; 6803 if (VL.size() > 2) { 6804 DenseMap<Value *, unsigned> UniquePositions; 6805 unsigned NumValues = 6806 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6807 return !isa<UndefValue>(V); 6808 }).base()); 6809 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6810 int UniqueVals = 0; 6811 for (Value *V : VL.drop_back(VL.size() - VF)) { 6812 if (isa<UndefValue>(V)) { 6813 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6814 continue; 6815 } 6816 if (isConstant(V)) { 6817 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6818 UniqueValues.emplace_back(V); 6819 continue; 6820 } 6821 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6822 ReuseShuffleIndicies.emplace_back(Res.first->second); 6823 if (Res.second) { 6824 UniqueValues.emplace_back(V); 6825 ++UniqueVals; 6826 } 6827 } 6828 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6829 // Emit pure splat vector. 6830 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6831 UndefMaskElem); 6832 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6833 ReuseShuffleIndicies.clear(); 6834 UniqueValues.clear(); 6835 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6836 } 6837 UniqueValues.append(VF - UniqueValues.size(), 6838 PoisonValue::get(VL[0]->getType())); 6839 VL = UniqueValues; 6840 } 6841 6842 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6843 CSEBlocks); 6844 Value *Vec = gather(VL); 6845 if (!ReuseShuffleIndicies.empty()) { 6846 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6847 Vec = ShuffleBuilder.finalize(Vec); 6848 } 6849 return Vec; 6850 } 6851 6852 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6853 IRBuilder<>::InsertPointGuard Guard(Builder); 6854 6855 if (E->VectorizedValue) { 6856 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6857 return E->VectorizedValue; 6858 } 6859 6860 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6861 unsigned VF = E->getVectorFactor(); 6862 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6863 CSEBlocks); 6864 if (E->State == TreeEntry::NeedToGather) { 6865 if (E->getMainOp()) 6866 setInsertPointAfterBundle(E); 6867 Value *Vec; 6868 SmallVector<int> Mask; 6869 SmallVector<const TreeEntry *> Entries; 6870 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6871 isGatherShuffledEntry(E, Mask, Entries); 6872 if (Shuffle.hasValue()) { 6873 assert((Entries.size() == 1 || Entries.size() == 2) && 6874 "Expected shuffle of 1 or 2 entries."); 6875 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6876 Entries.back()->VectorizedValue, Mask); 6877 if (auto *I = dyn_cast<Instruction>(Vec)) { 6878 GatherShuffleSeq.insert(I); 6879 CSEBlocks.insert(I->getParent()); 6880 } 6881 } else { 6882 Vec = gather(E->Scalars); 6883 } 6884 if (NeedToShuffleReuses) { 6885 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6886 Vec = ShuffleBuilder.finalize(Vec); 6887 } 6888 E->VectorizedValue = Vec; 6889 return Vec; 6890 } 6891 6892 assert((E->State == TreeEntry::Vectorize || 6893 E->State == TreeEntry::ScatterVectorize) && 6894 "Unhandled state"); 6895 unsigned ShuffleOrOp = 6896 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6897 Instruction *VL0 = E->getMainOp(); 6898 Type *ScalarTy = VL0->getType(); 6899 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6900 ScalarTy = Store->getValueOperand()->getType(); 6901 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6902 ScalarTy = IE->getOperand(1)->getType(); 6903 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6904 switch (ShuffleOrOp) { 6905 case Instruction::PHI: { 6906 assert( 6907 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6908 "PHI reordering is free."); 6909 auto *PH = cast<PHINode>(VL0); 6910 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6911 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6912 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6913 Value *V = NewPhi; 6914 6915 // Adjust insertion point once all PHI's have been generated. 6916 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6917 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6918 6919 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6920 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6921 V = ShuffleBuilder.finalize(V); 6922 6923 E->VectorizedValue = V; 6924 6925 // PHINodes may have multiple entries from the same block. We want to 6926 // visit every block once. 6927 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6928 6929 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6930 ValueList Operands; 6931 BasicBlock *IBB = PH->getIncomingBlock(i); 6932 6933 if (!VisitedBBs.insert(IBB).second) { 6934 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6935 continue; 6936 } 6937 6938 Builder.SetInsertPoint(IBB->getTerminator()); 6939 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6940 Value *Vec = vectorizeTree(E->getOperand(i)); 6941 NewPhi->addIncoming(Vec, IBB); 6942 } 6943 6944 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6945 "Invalid number of incoming values"); 6946 return V; 6947 } 6948 6949 case Instruction::ExtractElement: { 6950 Value *V = E->getSingleOperand(0); 6951 Builder.SetInsertPoint(VL0); 6952 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6953 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6954 V = ShuffleBuilder.finalize(V); 6955 E->VectorizedValue = V; 6956 return V; 6957 } 6958 case Instruction::ExtractValue: { 6959 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6960 Builder.SetInsertPoint(LI); 6961 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6962 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6963 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6964 Value *NewV = propagateMetadata(V, E->Scalars); 6965 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6966 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6967 NewV = ShuffleBuilder.finalize(NewV); 6968 E->VectorizedValue = NewV; 6969 return NewV; 6970 } 6971 case Instruction::InsertElement: { 6972 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6973 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6974 Value *V = vectorizeTree(E->getOperand(1)); 6975 6976 // Create InsertVector shuffle if necessary 6977 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6978 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6979 })); 6980 const unsigned NumElts = 6981 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6982 const unsigned NumScalars = E->Scalars.size(); 6983 6984 unsigned Offset = *getInsertIndex(VL0); 6985 assert(Offset < NumElts && "Failed to find vector index offset"); 6986 6987 // Create shuffle to resize vector 6988 SmallVector<int> Mask; 6989 if (!E->ReorderIndices.empty()) { 6990 inversePermutation(E->ReorderIndices, Mask); 6991 Mask.append(NumElts - NumScalars, UndefMaskElem); 6992 } else { 6993 Mask.assign(NumElts, UndefMaskElem); 6994 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6995 } 6996 // Create InsertVector shuffle if necessary 6997 bool IsIdentity = true; 6998 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6999 Mask.swap(PrevMask); 7000 for (unsigned I = 0; I < NumScalars; ++I) { 7001 Value *Scalar = E->Scalars[PrevMask[I]]; 7002 unsigned InsertIdx = *getInsertIndex(Scalar); 7003 IsIdentity &= InsertIdx - Offset == I; 7004 Mask[InsertIdx - Offset] = I; 7005 } 7006 if (!IsIdentity || NumElts != NumScalars) { 7007 V = Builder.CreateShuffleVector(V, Mask); 7008 if (auto *I = dyn_cast<Instruction>(V)) { 7009 GatherShuffleSeq.insert(I); 7010 CSEBlocks.insert(I->getParent()); 7011 } 7012 } 7013 7014 if ((!IsIdentity || Offset != 0 || 7015 !isUndefVector(FirstInsert->getOperand(0))) && 7016 NumElts != NumScalars) { 7017 SmallVector<int> InsertMask(NumElts); 7018 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7019 for (unsigned I = 0; I < NumElts; I++) { 7020 if (Mask[I] != UndefMaskElem) 7021 InsertMask[Offset + I] = NumElts + I; 7022 } 7023 7024 V = Builder.CreateShuffleVector( 7025 FirstInsert->getOperand(0), V, InsertMask, 7026 cast<Instruction>(E->Scalars.back())->getName()); 7027 if (auto *I = dyn_cast<Instruction>(V)) { 7028 GatherShuffleSeq.insert(I); 7029 CSEBlocks.insert(I->getParent()); 7030 } 7031 } 7032 7033 ++NumVectorInstructions; 7034 E->VectorizedValue = V; 7035 return V; 7036 } 7037 case Instruction::ZExt: 7038 case Instruction::SExt: 7039 case Instruction::FPToUI: 7040 case Instruction::FPToSI: 7041 case Instruction::FPExt: 7042 case Instruction::PtrToInt: 7043 case Instruction::IntToPtr: 7044 case Instruction::SIToFP: 7045 case Instruction::UIToFP: 7046 case Instruction::Trunc: 7047 case Instruction::FPTrunc: 7048 case Instruction::BitCast: { 7049 setInsertPointAfterBundle(E); 7050 7051 Value *InVec = vectorizeTree(E->getOperand(0)); 7052 7053 if (E->VectorizedValue) { 7054 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7055 return E->VectorizedValue; 7056 } 7057 7058 auto *CI = cast<CastInst>(VL0); 7059 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7060 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7061 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7062 V = ShuffleBuilder.finalize(V); 7063 7064 E->VectorizedValue = V; 7065 ++NumVectorInstructions; 7066 return V; 7067 } 7068 case Instruction::FCmp: 7069 case Instruction::ICmp: { 7070 setInsertPointAfterBundle(E); 7071 7072 Value *L = vectorizeTree(E->getOperand(0)); 7073 Value *R = vectorizeTree(E->getOperand(1)); 7074 7075 if (E->VectorizedValue) { 7076 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7077 return E->VectorizedValue; 7078 } 7079 7080 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7081 Value *V = Builder.CreateCmp(P0, L, R); 7082 propagateIRFlags(V, E->Scalars, VL0); 7083 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7084 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7085 V = ShuffleBuilder.finalize(V); 7086 7087 E->VectorizedValue = V; 7088 ++NumVectorInstructions; 7089 return V; 7090 } 7091 case Instruction::Select: { 7092 setInsertPointAfterBundle(E); 7093 7094 Value *Cond = vectorizeTree(E->getOperand(0)); 7095 Value *True = vectorizeTree(E->getOperand(1)); 7096 Value *False = vectorizeTree(E->getOperand(2)); 7097 7098 if (E->VectorizedValue) { 7099 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7100 return E->VectorizedValue; 7101 } 7102 7103 Value *V = Builder.CreateSelect(Cond, True, False); 7104 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7105 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7106 V = ShuffleBuilder.finalize(V); 7107 7108 E->VectorizedValue = V; 7109 ++NumVectorInstructions; 7110 return V; 7111 } 7112 case Instruction::FNeg: { 7113 setInsertPointAfterBundle(E); 7114 7115 Value *Op = vectorizeTree(E->getOperand(0)); 7116 7117 if (E->VectorizedValue) { 7118 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7119 return E->VectorizedValue; 7120 } 7121 7122 Value *V = Builder.CreateUnOp( 7123 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7124 propagateIRFlags(V, E->Scalars, VL0); 7125 if (auto *I = dyn_cast<Instruction>(V)) 7126 V = propagateMetadata(I, E->Scalars); 7127 7128 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7129 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7130 V = ShuffleBuilder.finalize(V); 7131 7132 E->VectorizedValue = V; 7133 ++NumVectorInstructions; 7134 7135 return V; 7136 } 7137 case Instruction::Add: 7138 case Instruction::FAdd: 7139 case Instruction::Sub: 7140 case Instruction::FSub: 7141 case Instruction::Mul: 7142 case Instruction::FMul: 7143 case Instruction::UDiv: 7144 case Instruction::SDiv: 7145 case Instruction::FDiv: 7146 case Instruction::URem: 7147 case Instruction::SRem: 7148 case Instruction::FRem: 7149 case Instruction::Shl: 7150 case Instruction::LShr: 7151 case Instruction::AShr: 7152 case Instruction::And: 7153 case Instruction::Or: 7154 case Instruction::Xor: { 7155 setInsertPointAfterBundle(E); 7156 7157 Value *LHS = vectorizeTree(E->getOperand(0)); 7158 Value *RHS = vectorizeTree(E->getOperand(1)); 7159 7160 if (E->VectorizedValue) { 7161 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7162 return E->VectorizedValue; 7163 } 7164 7165 Value *V = Builder.CreateBinOp( 7166 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7167 RHS); 7168 propagateIRFlags(V, E->Scalars, VL0); 7169 if (auto *I = dyn_cast<Instruction>(V)) 7170 V = propagateMetadata(I, E->Scalars); 7171 7172 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7173 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7174 V = ShuffleBuilder.finalize(V); 7175 7176 E->VectorizedValue = V; 7177 ++NumVectorInstructions; 7178 7179 return V; 7180 } 7181 case Instruction::Load: { 7182 // Loads are inserted at the head of the tree because we don't want to 7183 // sink them all the way down past store instructions. 7184 setInsertPointAfterBundle(E); 7185 7186 LoadInst *LI = cast<LoadInst>(VL0); 7187 Instruction *NewLI; 7188 unsigned AS = LI->getPointerAddressSpace(); 7189 Value *PO = LI->getPointerOperand(); 7190 if (E->State == TreeEntry::Vectorize) { 7191 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7192 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7193 7194 // The pointer operand uses an in-tree scalar so we add the new BitCast 7195 // or LoadInst to ExternalUses list to make sure that an extract will 7196 // be generated in the future. 7197 if (TreeEntry *Entry = getTreeEntry(PO)) { 7198 // Find which lane we need to extract. 7199 unsigned FoundLane = Entry->findLaneForValue(PO); 7200 ExternalUses.emplace_back( 7201 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7202 } 7203 } else { 7204 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7205 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7206 // Use the minimum alignment of the gathered loads. 7207 Align CommonAlignment = LI->getAlign(); 7208 for (Value *V : E->Scalars) 7209 CommonAlignment = 7210 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7211 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7212 } 7213 Value *V = propagateMetadata(NewLI, E->Scalars); 7214 7215 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7216 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7217 V = ShuffleBuilder.finalize(V); 7218 E->VectorizedValue = V; 7219 ++NumVectorInstructions; 7220 return V; 7221 } 7222 case Instruction::Store: { 7223 auto *SI = cast<StoreInst>(VL0); 7224 unsigned AS = SI->getPointerAddressSpace(); 7225 7226 setInsertPointAfterBundle(E); 7227 7228 Value *VecValue = vectorizeTree(E->getOperand(0)); 7229 ShuffleBuilder.addMask(E->ReorderIndices); 7230 VecValue = ShuffleBuilder.finalize(VecValue); 7231 7232 Value *ScalarPtr = SI->getPointerOperand(); 7233 Value *VecPtr = Builder.CreateBitCast( 7234 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7235 StoreInst *ST = 7236 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7237 7238 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7239 // StoreInst to ExternalUses to make sure that an extract will be 7240 // generated in the future. 7241 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7242 // Find which lane we need to extract. 7243 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7244 ExternalUses.push_back(ExternalUser( 7245 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7246 FoundLane)); 7247 } 7248 7249 Value *V = propagateMetadata(ST, E->Scalars); 7250 7251 E->VectorizedValue = V; 7252 ++NumVectorInstructions; 7253 return V; 7254 } 7255 case Instruction::GetElementPtr: { 7256 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7257 setInsertPointAfterBundle(E); 7258 7259 Value *Op0 = vectorizeTree(E->getOperand(0)); 7260 7261 SmallVector<Value *> OpVecs; 7262 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7263 Value *OpVec = vectorizeTree(E->getOperand(J)); 7264 OpVecs.push_back(OpVec); 7265 } 7266 7267 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7268 if (Instruction *I = dyn_cast<Instruction>(V)) 7269 V = propagateMetadata(I, E->Scalars); 7270 7271 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7272 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7273 V = ShuffleBuilder.finalize(V); 7274 7275 E->VectorizedValue = V; 7276 ++NumVectorInstructions; 7277 7278 return V; 7279 } 7280 case Instruction::Call: { 7281 CallInst *CI = cast<CallInst>(VL0); 7282 setInsertPointAfterBundle(E); 7283 7284 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7285 if (Function *FI = CI->getCalledFunction()) 7286 IID = FI->getIntrinsicID(); 7287 7288 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7289 7290 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7291 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7292 VecCallCosts.first <= VecCallCosts.second; 7293 7294 Value *ScalarArg = nullptr; 7295 std::vector<Value *> OpVecs; 7296 SmallVector<Type *, 2> TysForDecl = 7297 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7298 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7299 ValueList OpVL; 7300 // Some intrinsics have scalar arguments. This argument should not be 7301 // vectorized. 7302 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7303 CallInst *CEI = cast<CallInst>(VL0); 7304 ScalarArg = CEI->getArgOperand(j); 7305 OpVecs.push_back(CEI->getArgOperand(j)); 7306 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7307 TysForDecl.push_back(ScalarArg->getType()); 7308 continue; 7309 } 7310 7311 Value *OpVec = vectorizeTree(E->getOperand(j)); 7312 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7313 OpVecs.push_back(OpVec); 7314 } 7315 7316 Function *CF; 7317 if (!UseIntrinsic) { 7318 VFShape Shape = 7319 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7320 VecTy->getNumElements())), 7321 false /*HasGlobalPred*/); 7322 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7323 } else { 7324 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7325 } 7326 7327 SmallVector<OperandBundleDef, 1> OpBundles; 7328 CI->getOperandBundlesAsDefs(OpBundles); 7329 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7330 7331 // The scalar argument uses an in-tree scalar so we add the new vectorized 7332 // call to ExternalUses list to make sure that an extract will be 7333 // generated in the future. 7334 if (ScalarArg) { 7335 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7336 // Find which lane we need to extract. 7337 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7338 ExternalUses.push_back( 7339 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7340 } 7341 } 7342 7343 propagateIRFlags(V, E->Scalars, VL0); 7344 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7345 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7346 V = ShuffleBuilder.finalize(V); 7347 7348 E->VectorizedValue = V; 7349 ++NumVectorInstructions; 7350 return V; 7351 } 7352 case Instruction::ShuffleVector: { 7353 assert(E->isAltShuffle() && 7354 ((Instruction::isBinaryOp(E->getOpcode()) && 7355 Instruction::isBinaryOp(E->getAltOpcode())) || 7356 (Instruction::isCast(E->getOpcode()) && 7357 Instruction::isCast(E->getAltOpcode())) || 7358 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7359 "Invalid Shuffle Vector Operand"); 7360 7361 Value *LHS = nullptr, *RHS = nullptr; 7362 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7363 setInsertPointAfterBundle(E); 7364 LHS = vectorizeTree(E->getOperand(0)); 7365 RHS = vectorizeTree(E->getOperand(1)); 7366 } else { 7367 setInsertPointAfterBundle(E); 7368 LHS = vectorizeTree(E->getOperand(0)); 7369 } 7370 7371 if (E->VectorizedValue) { 7372 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7373 return E->VectorizedValue; 7374 } 7375 7376 Value *V0, *V1; 7377 if (Instruction::isBinaryOp(E->getOpcode())) { 7378 V0 = Builder.CreateBinOp( 7379 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7380 V1 = Builder.CreateBinOp( 7381 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7382 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7383 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7384 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7385 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7386 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7387 } else { 7388 V0 = Builder.CreateCast( 7389 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7390 V1 = Builder.CreateCast( 7391 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7392 } 7393 // Add V0 and V1 to later analysis to try to find and remove matching 7394 // instruction, if any. 7395 for (Value *V : {V0, V1}) { 7396 if (auto *I = dyn_cast<Instruction>(V)) { 7397 GatherShuffleSeq.insert(I); 7398 CSEBlocks.insert(I->getParent()); 7399 } 7400 } 7401 7402 // Create shuffle to take alternate operations from the vector. 7403 // Also, gather up main and alt scalar ops to propagate IR flags to 7404 // each vector operation. 7405 ValueList OpScalars, AltScalars; 7406 SmallVector<int> Mask; 7407 buildShuffleEntryMask( 7408 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7409 [E](Instruction *I) { 7410 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7411 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7412 }, 7413 Mask, &OpScalars, &AltScalars); 7414 7415 propagateIRFlags(V0, OpScalars); 7416 propagateIRFlags(V1, AltScalars); 7417 7418 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7419 if (auto *I = dyn_cast<Instruction>(V)) { 7420 V = propagateMetadata(I, E->Scalars); 7421 GatherShuffleSeq.insert(I); 7422 CSEBlocks.insert(I->getParent()); 7423 } 7424 V = ShuffleBuilder.finalize(V); 7425 7426 E->VectorizedValue = V; 7427 ++NumVectorInstructions; 7428 7429 return V; 7430 } 7431 default: 7432 llvm_unreachable("unknown inst"); 7433 } 7434 return nullptr; 7435 } 7436 7437 Value *BoUpSLP::vectorizeTree() { 7438 ExtraValueToDebugLocsMap ExternallyUsedValues; 7439 return vectorizeTree(ExternallyUsedValues); 7440 } 7441 7442 Value * 7443 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7444 // All blocks must be scheduled before any instructions are inserted. 7445 for (auto &BSIter : BlocksSchedules) { 7446 scheduleBlock(BSIter.second.get()); 7447 } 7448 7449 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7450 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7451 7452 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7453 // vectorized root. InstCombine will then rewrite the entire expression. We 7454 // sign extend the extracted values below. 7455 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7456 if (MinBWs.count(ScalarRoot)) { 7457 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7458 // If current instr is a phi and not the last phi, insert it after the 7459 // last phi node. 7460 if (isa<PHINode>(I)) 7461 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7462 else 7463 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7464 } 7465 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7466 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7467 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7468 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7469 VectorizableTree[0]->VectorizedValue = Trunc; 7470 } 7471 7472 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7473 << " values .\n"); 7474 7475 // Extract all of the elements with the external uses. 7476 for (const auto &ExternalUse : ExternalUses) { 7477 Value *Scalar = ExternalUse.Scalar; 7478 llvm::User *User = ExternalUse.User; 7479 7480 // Skip users that we already RAUW. This happens when one instruction 7481 // has multiple uses of the same value. 7482 if (User && !is_contained(Scalar->users(), User)) 7483 continue; 7484 TreeEntry *E = getTreeEntry(Scalar); 7485 assert(E && "Invalid scalar"); 7486 assert(E->State != TreeEntry::NeedToGather && 7487 "Extracting from a gather list"); 7488 7489 Value *Vec = E->VectorizedValue; 7490 assert(Vec && "Can't find vectorizable value"); 7491 7492 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7493 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7494 if (Scalar->getType() != Vec->getType()) { 7495 Value *Ex; 7496 // "Reuse" the existing extract to improve final codegen. 7497 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7498 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7499 ES->getOperand(1)); 7500 } else { 7501 Ex = Builder.CreateExtractElement(Vec, Lane); 7502 } 7503 // If necessary, sign-extend or zero-extend ScalarRoot 7504 // to the larger type. 7505 if (!MinBWs.count(ScalarRoot)) 7506 return Ex; 7507 if (MinBWs[ScalarRoot].second) 7508 return Builder.CreateSExt(Ex, Scalar->getType()); 7509 return Builder.CreateZExt(Ex, Scalar->getType()); 7510 } 7511 assert(isa<FixedVectorType>(Scalar->getType()) && 7512 isa<InsertElementInst>(Scalar) && 7513 "In-tree scalar of vector type is not insertelement?"); 7514 return Vec; 7515 }; 7516 // If User == nullptr, the Scalar is used as extra arg. Generate 7517 // ExtractElement instruction and update the record for this scalar in 7518 // ExternallyUsedValues. 7519 if (!User) { 7520 assert(ExternallyUsedValues.count(Scalar) && 7521 "Scalar with nullptr as an external user must be registered in " 7522 "ExternallyUsedValues map"); 7523 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7524 Builder.SetInsertPoint(VecI->getParent(), 7525 std::next(VecI->getIterator())); 7526 } else { 7527 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7528 } 7529 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7530 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7531 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7532 auto It = ExternallyUsedValues.find(Scalar); 7533 assert(It != ExternallyUsedValues.end() && 7534 "Externally used scalar is not found in ExternallyUsedValues"); 7535 NewInstLocs.append(It->second); 7536 ExternallyUsedValues.erase(Scalar); 7537 // Required to update internally referenced instructions. 7538 Scalar->replaceAllUsesWith(NewInst); 7539 continue; 7540 } 7541 7542 // Generate extracts for out-of-tree users. 7543 // Find the insertion point for the extractelement lane. 7544 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7545 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7546 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7547 if (PH->getIncomingValue(i) == Scalar) { 7548 Instruction *IncomingTerminator = 7549 PH->getIncomingBlock(i)->getTerminator(); 7550 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7551 Builder.SetInsertPoint(VecI->getParent(), 7552 std::next(VecI->getIterator())); 7553 } else { 7554 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7555 } 7556 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7557 CSEBlocks.insert(PH->getIncomingBlock(i)); 7558 PH->setOperand(i, NewInst); 7559 } 7560 } 7561 } else { 7562 Builder.SetInsertPoint(cast<Instruction>(User)); 7563 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7564 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7565 User->replaceUsesOfWith(Scalar, NewInst); 7566 } 7567 } else { 7568 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7569 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7570 CSEBlocks.insert(&F->getEntryBlock()); 7571 User->replaceUsesOfWith(Scalar, NewInst); 7572 } 7573 7574 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7575 } 7576 7577 // For each vectorized value: 7578 for (auto &TEPtr : VectorizableTree) { 7579 TreeEntry *Entry = TEPtr.get(); 7580 7581 // No need to handle users of gathered values. 7582 if (Entry->State == TreeEntry::NeedToGather) 7583 continue; 7584 7585 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7586 7587 // For each lane: 7588 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7589 Value *Scalar = Entry->Scalars[Lane]; 7590 7591 #ifndef NDEBUG 7592 Type *Ty = Scalar->getType(); 7593 if (!Ty->isVoidTy()) { 7594 for (User *U : Scalar->users()) { 7595 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7596 7597 // It is legal to delete users in the ignorelist. 7598 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7599 (isa_and_nonnull<Instruction>(U) && 7600 isDeleted(cast<Instruction>(U)))) && 7601 "Deleting out-of-tree value"); 7602 } 7603 } 7604 #endif 7605 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7606 eraseInstruction(cast<Instruction>(Scalar)); 7607 } 7608 } 7609 7610 Builder.ClearInsertionPoint(); 7611 InstrElementSize.clear(); 7612 7613 return VectorizableTree[0]->VectorizedValue; 7614 } 7615 7616 void BoUpSLP::optimizeGatherSequence() { 7617 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7618 << " gather sequences instructions.\n"); 7619 // LICM InsertElementInst sequences. 7620 for (Instruction *I : GatherShuffleSeq) { 7621 if (isDeleted(I)) 7622 continue; 7623 7624 // Check if this block is inside a loop. 7625 Loop *L = LI->getLoopFor(I->getParent()); 7626 if (!L) 7627 continue; 7628 7629 // Check if it has a preheader. 7630 BasicBlock *PreHeader = L->getLoopPreheader(); 7631 if (!PreHeader) 7632 continue; 7633 7634 // If the vector or the element that we insert into it are 7635 // instructions that are defined in this basic block then we can't 7636 // hoist this instruction. 7637 if (any_of(I->operands(), [L](Value *V) { 7638 auto *OpI = dyn_cast<Instruction>(V); 7639 return OpI && L->contains(OpI); 7640 })) 7641 continue; 7642 7643 // We can hoist this instruction. Move it to the pre-header. 7644 I->moveBefore(PreHeader->getTerminator()); 7645 } 7646 7647 // Make a list of all reachable blocks in our CSE queue. 7648 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7649 CSEWorkList.reserve(CSEBlocks.size()); 7650 for (BasicBlock *BB : CSEBlocks) 7651 if (DomTreeNode *N = DT->getNode(BB)) { 7652 assert(DT->isReachableFromEntry(N)); 7653 CSEWorkList.push_back(N); 7654 } 7655 7656 // Sort blocks by domination. This ensures we visit a block after all blocks 7657 // dominating it are visited. 7658 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7659 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7660 "Different nodes should have different DFS numbers"); 7661 return A->getDFSNumIn() < B->getDFSNumIn(); 7662 }); 7663 7664 // Less defined shuffles can be replaced by the more defined copies. 7665 // Between two shuffles one is less defined if it has the same vector operands 7666 // and its mask indeces are the same as in the first one or undefs. E.g. 7667 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7668 // poison, <0, 0, 0, 0>. 7669 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7670 SmallVectorImpl<int> &NewMask) { 7671 if (I1->getType() != I2->getType()) 7672 return false; 7673 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7674 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7675 if (!SI1 || !SI2) 7676 return I1->isIdenticalTo(I2); 7677 if (SI1->isIdenticalTo(SI2)) 7678 return true; 7679 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7680 if (SI1->getOperand(I) != SI2->getOperand(I)) 7681 return false; 7682 // Check if the second instruction is more defined than the first one. 7683 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7684 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7685 // Count trailing undefs in the mask to check the final number of used 7686 // registers. 7687 unsigned LastUndefsCnt = 0; 7688 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7689 if (SM1[I] == UndefMaskElem) 7690 ++LastUndefsCnt; 7691 else 7692 LastUndefsCnt = 0; 7693 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7694 NewMask[I] != SM1[I]) 7695 return false; 7696 if (NewMask[I] == UndefMaskElem) 7697 NewMask[I] = SM1[I]; 7698 } 7699 // Check if the last undefs actually change the final number of used vector 7700 // registers. 7701 return SM1.size() - LastUndefsCnt > 1 && 7702 TTI->getNumberOfParts(SI1->getType()) == 7703 TTI->getNumberOfParts( 7704 FixedVectorType::get(SI1->getType()->getElementType(), 7705 SM1.size() - LastUndefsCnt)); 7706 }; 7707 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7708 // instructions. TODO: We can further optimize this scan if we split the 7709 // instructions into different buckets based on the insert lane. 7710 SmallVector<Instruction *, 16> Visited; 7711 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7712 assert(*I && 7713 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7714 "Worklist not sorted properly!"); 7715 BasicBlock *BB = (*I)->getBlock(); 7716 // For all instructions in blocks containing gather sequences: 7717 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7718 if (isDeleted(&In)) 7719 continue; 7720 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7721 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7722 continue; 7723 7724 // Check if we can replace this instruction with any of the 7725 // visited instructions. 7726 bool Replaced = false; 7727 for (Instruction *&V : Visited) { 7728 SmallVector<int> NewMask; 7729 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7730 DT->dominates(V->getParent(), In.getParent())) { 7731 In.replaceAllUsesWith(V); 7732 eraseInstruction(&In); 7733 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7734 if (!NewMask.empty()) 7735 SI->setShuffleMask(NewMask); 7736 Replaced = true; 7737 break; 7738 } 7739 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7740 GatherShuffleSeq.contains(V) && 7741 IsIdenticalOrLessDefined(V, &In, NewMask) && 7742 DT->dominates(In.getParent(), V->getParent())) { 7743 In.moveAfter(V); 7744 V->replaceAllUsesWith(&In); 7745 eraseInstruction(V); 7746 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7747 if (!NewMask.empty()) 7748 SI->setShuffleMask(NewMask); 7749 V = &In; 7750 Replaced = true; 7751 break; 7752 } 7753 } 7754 if (!Replaced) { 7755 assert(!is_contained(Visited, &In)); 7756 Visited.push_back(&In); 7757 } 7758 } 7759 } 7760 CSEBlocks.clear(); 7761 GatherShuffleSeq.clear(); 7762 } 7763 7764 BoUpSLP::ScheduleData * 7765 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7766 ScheduleData *Bundle = nullptr; 7767 ScheduleData *PrevInBundle = nullptr; 7768 for (Value *V : VL) { 7769 if (doesNotNeedToBeScheduled(V)) 7770 continue; 7771 ScheduleData *BundleMember = getScheduleData(V); 7772 assert(BundleMember && 7773 "no ScheduleData for bundle member " 7774 "(maybe not in same basic block)"); 7775 assert(BundleMember->isSchedulingEntity() && 7776 "bundle member already part of other bundle"); 7777 if (PrevInBundle) { 7778 PrevInBundle->NextInBundle = BundleMember; 7779 } else { 7780 Bundle = BundleMember; 7781 } 7782 7783 // Group the instructions to a bundle. 7784 BundleMember->FirstInBundle = Bundle; 7785 PrevInBundle = BundleMember; 7786 } 7787 assert(Bundle && "Failed to find schedule bundle"); 7788 return Bundle; 7789 } 7790 7791 // Groups the instructions to a bundle (which is then a single scheduling entity) 7792 // and schedules instructions until the bundle gets ready. 7793 Optional<BoUpSLP::ScheduleData *> 7794 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7795 const InstructionsState &S) { 7796 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7797 // instructions. 7798 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7799 doesNotNeedToSchedule(VL)) 7800 return nullptr; 7801 7802 // Initialize the instruction bundle. 7803 Instruction *OldScheduleEnd = ScheduleEnd; 7804 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7805 7806 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7807 ScheduleData *Bundle) { 7808 // The scheduling region got new instructions at the lower end (or it is a 7809 // new region for the first bundle). This makes it necessary to 7810 // recalculate all dependencies. 7811 // It is seldom that this needs to be done a second time after adding the 7812 // initial bundle to the region. 7813 if (ScheduleEnd != OldScheduleEnd) { 7814 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7815 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7816 ReSchedule = true; 7817 } 7818 if (Bundle) { 7819 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7820 << " in block " << BB->getName() << "\n"); 7821 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7822 } 7823 7824 if (ReSchedule) { 7825 resetSchedule(); 7826 initialFillReadyList(ReadyInsts); 7827 } 7828 7829 // Now try to schedule the new bundle or (if no bundle) just calculate 7830 // dependencies. As soon as the bundle is "ready" it means that there are no 7831 // cyclic dependencies and we can schedule it. Note that's important that we 7832 // don't "schedule" the bundle yet (see cancelScheduling). 7833 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7834 !ReadyInsts.empty()) { 7835 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7836 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7837 "must be ready to schedule"); 7838 schedule(Picked, ReadyInsts); 7839 } 7840 }; 7841 7842 // Make sure that the scheduling region contains all 7843 // instructions of the bundle. 7844 for (Value *V : VL) { 7845 if (doesNotNeedToBeScheduled(V)) 7846 continue; 7847 if (!extendSchedulingRegion(V, S)) { 7848 // If the scheduling region got new instructions at the lower end (or it 7849 // is a new region for the first bundle). This makes it necessary to 7850 // recalculate all dependencies. 7851 // Otherwise the compiler may crash trying to incorrectly calculate 7852 // dependencies and emit instruction in the wrong order at the actual 7853 // scheduling. 7854 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7855 return None; 7856 } 7857 } 7858 7859 bool ReSchedule = false; 7860 for (Value *V : VL) { 7861 if (doesNotNeedToBeScheduled(V)) 7862 continue; 7863 ScheduleData *BundleMember = getScheduleData(V); 7864 assert(BundleMember && 7865 "no ScheduleData for bundle member (maybe not in same basic block)"); 7866 7867 // Make sure we don't leave the pieces of the bundle in the ready list when 7868 // whole bundle might not be ready. 7869 ReadyInsts.remove(BundleMember); 7870 7871 if (!BundleMember->IsScheduled) 7872 continue; 7873 // A bundle member was scheduled as single instruction before and now 7874 // needs to be scheduled as part of the bundle. We just get rid of the 7875 // existing schedule. 7876 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7877 << " was already scheduled\n"); 7878 ReSchedule = true; 7879 } 7880 7881 auto *Bundle = buildBundle(VL); 7882 TryScheduleBundleImpl(ReSchedule, Bundle); 7883 if (!Bundle->isReady()) { 7884 cancelScheduling(VL, S.OpValue); 7885 return None; 7886 } 7887 return Bundle; 7888 } 7889 7890 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7891 Value *OpValue) { 7892 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7893 doesNotNeedToSchedule(VL)) 7894 return; 7895 7896 if (doesNotNeedToBeScheduled(OpValue)) 7897 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7898 ScheduleData *Bundle = getScheduleData(OpValue); 7899 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7900 assert(!Bundle->IsScheduled && 7901 "Can't cancel bundle which is already scheduled"); 7902 assert(Bundle->isSchedulingEntity() && 7903 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7904 "tried to unbundle something which is not a bundle"); 7905 7906 // Remove the bundle from the ready list. 7907 if (Bundle->isReady()) 7908 ReadyInsts.remove(Bundle); 7909 7910 // Un-bundle: make single instructions out of the bundle. 7911 ScheduleData *BundleMember = Bundle; 7912 while (BundleMember) { 7913 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7914 BundleMember->FirstInBundle = BundleMember; 7915 ScheduleData *Next = BundleMember->NextInBundle; 7916 BundleMember->NextInBundle = nullptr; 7917 BundleMember->TE = nullptr; 7918 if (BundleMember->unscheduledDepsInBundle() == 0) { 7919 ReadyInsts.insert(BundleMember); 7920 } 7921 BundleMember = Next; 7922 } 7923 } 7924 7925 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7926 // Allocate a new ScheduleData for the instruction. 7927 if (ChunkPos >= ChunkSize) { 7928 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7929 ChunkPos = 0; 7930 } 7931 return &(ScheduleDataChunks.back()[ChunkPos++]); 7932 } 7933 7934 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7935 const InstructionsState &S) { 7936 if (getScheduleData(V, isOneOf(S, V))) 7937 return true; 7938 Instruction *I = dyn_cast<Instruction>(V); 7939 assert(I && "bundle member must be an instruction"); 7940 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7941 !doesNotNeedToBeScheduled(I) && 7942 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7943 "be scheduled"); 7944 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7945 ScheduleData *ISD = getScheduleData(I); 7946 if (!ISD) 7947 return false; 7948 assert(isInSchedulingRegion(ISD) && 7949 "ScheduleData not in scheduling region"); 7950 ScheduleData *SD = allocateScheduleDataChunks(); 7951 SD->Inst = I; 7952 SD->init(SchedulingRegionID, S.OpValue); 7953 ExtraScheduleDataMap[I][S.OpValue] = SD; 7954 return true; 7955 }; 7956 if (CheckScheduleForI(I)) 7957 return true; 7958 if (!ScheduleStart) { 7959 // It's the first instruction in the new region. 7960 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7961 ScheduleStart = I; 7962 ScheduleEnd = I->getNextNode(); 7963 if (isOneOf(S, I) != I) 7964 CheckScheduleForI(I); 7965 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7966 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7967 return true; 7968 } 7969 // Search up and down at the same time, because we don't know if the new 7970 // instruction is above or below the existing scheduling region. 7971 BasicBlock::reverse_iterator UpIter = 7972 ++ScheduleStart->getIterator().getReverse(); 7973 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7974 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7975 BasicBlock::iterator LowerEnd = BB->end(); 7976 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7977 &*DownIter != I) { 7978 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7979 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7980 return false; 7981 } 7982 7983 ++UpIter; 7984 ++DownIter; 7985 } 7986 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7987 assert(I->getParent() == ScheduleStart->getParent() && 7988 "Instruction is in wrong basic block."); 7989 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7990 ScheduleStart = I; 7991 if (isOneOf(S, I) != I) 7992 CheckScheduleForI(I); 7993 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7994 << "\n"); 7995 return true; 7996 } 7997 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7998 "Expected to reach top of the basic block or instruction down the " 7999 "lower end."); 8000 assert(I->getParent() == ScheduleEnd->getParent() && 8001 "Instruction is in wrong basic block."); 8002 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8003 nullptr); 8004 ScheduleEnd = I->getNextNode(); 8005 if (isOneOf(S, I) != I) 8006 CheckScheduleForI(I); 8007 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8008 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8009 return true; 8010 } 8011 8012 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8013 Instruction *ToI, 8014 ScheduleData *PrevLoadStore, 8015 ScheduleData *NextLoadStore) { 8016 ScheduleData *CurrentLoadStore = PrevLoadStore; 8017 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8018 // No need to allocate data for non-schedulable instructions. 8019 if (doesNotNeedToBeScheduled(I)) 8020 continue; 8021 ScheduleData *SD = ScheduleDataMap.lookup(I); 8022 if (!SD) { 8023 SD = allocateScheduleDataChunks(); 8024 ScheduleDataMap[I] = SD; 8025 SD->Inst = I; 8026 } 8027 assert(!isInSchedulingRegion(SD) && 8028 "new ScheduleData already in scheduling region"); 8029 SD->init(SchedulingRegionID, I); 8030 8031 if (I->mayReadOrWriteMemory() && 8032 (!isa<IntrinsicInst>(I) || 8033 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8034 cast<IntrinsicInst>(I)->getIntrinsicID() != 8035 Intrinsic::pseudoprobe))) { 8036 // Update the linked list of memory accessing instructions. 8037 if (CurrentLoadStore) { 8038 CurrentLoadStore->NextLoadStore = SD; 8039 } else { 8040 FirstLoadStoreInRegion = SD; 8041 } 8042 CurrentLoadStore = SD; 8043 } 8044 8045 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8046 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8047 RegionHasStackSave = true; 8048 } 8049 if (NextLoadStore) { 8050 if (CurrentLoadStore) 8051 CurrentLoadStore->NextLoadStore = NextLoadStore; 8052 } else { 8053 LastLoadStoreInRegion = CurrentLoadStore; 8054 } 8055 } 8056 8057 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8058 bool InsertInReadyList, 8059 BoUpSLP *SLP) { 8060 assert(SD->isSchedulingEntity()); 8061 8062 SmallVector<ScheduleData *, 10> WorkList; 8063 WorkList.push_back(SD); 8064 8065 while (!WorkList.empty()) { 8066 ScheduleData *SD = WorkList.pop_back_val(); 8067 for (ScheduleData *BundleMember = SD; BundleMember; 8068 BundleMember = BundleMember->NextInBundle) { 8069 assert(isInSchedulingRegion(BundleMember)); 8070 if (BundleMember->hasValidDependencies()) 8071 continue; 8072 8073 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8074 << "\n"); 8075 BundleMember->Dependencies = 0; 8076 BundleMember->resetUnscheduledDeps(); 8077 8078 // Handle def-use chain dependencies. 8079 if (BundleMember->OpValue != BundleMember->Inst) { 8080 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8081 BundleMember->Dependencies++; 8082 ScheduleData *DestBundle = UseSD->FirstInBundle; 8083 if (!DestBundle->IsScheduled) 8084 BundleMember->incrementUnscheduledDeps(1); 8085 if (!DestBundle->hasValidDependencies()) 8086 WorkList.push_back(DestBundle); 8087 } 8088 } else { 8089 for (User *U : BundleMember->Inst->users()) { 8090 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8091 BundleMember->Dependencies++; 8092 ScheduleData *DestBundle = UseSD->FirstInBundle; 8093 if (!DestBundle->IsScheduled) 8094 BundleMember->incrementUnscheduledDeps(1); 8095 if (!DestBundle->hasValidDependencies()) 8096 WorkList.push_back(DestBundle); 8097 } 8098 } 8099 } 8100 8101 auto makeControlDependent = [&](Instruction *I) { 8102 auto *DepDest = getScheduleData(I); 8103 assert(DepDest && "must be in schedule window"); 8104 DepDest->ControlDependencies.push_back(BundleMember); 8105 BundleMember->Dependencies++; 8106 ScheduleData *DestBundle = DepDest->FirstInBundle; 8107 if (!DestBundle->IsScheduled) 8108 BundleMember->incrementUnscheduledDeps(1); 8109 if (!DestBundle->hasValidDependencies()) 8110 WorkList.push_back(DestBundle); 8111 }; 8112 8113 // Any instruction which isn't safe to speculate at the begining of the 8114 // block is control dependend on any early exit or non-willreturn call 8115 // which proceeds it. 8116 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8117 for (Instruction *I = BundleMember->Inst->getNextNode(); 8118 I != ScheduleEnd; I = I->getNextNode()) { 8119 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8120 continue; 8121 8122 // Add the dependency 8123 makeControlDependent(I); 8124 8125 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8126 // Everything past here must be control dependent on I. 8127 break; 8128 } 8129 } 8130 8131 if (RegionHasStackSave) { 8132 // If we have an inalloc alloca instruction, it needs to be scheduled 8133 // after any preceeding stacksave. We also need to prevent any alloca 8134 // from reordering above a preceeding stackrestore. 8135 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8136 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8137 for (Instruction *I = BundleMember->Inst->getNextNode(); 8138 I != ScheduleEnd; I = I->getNextNode()) { 8139 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8140 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8141 // Any allocas past here must be control dependent on I, and I 8142 // must be memory dependend on BundleMember->Inst. 8143 break; 8144 8145 if (!isa<AllocaInst>(I)) 8146 continue; 8147 8148 // Add the dependency 8149 makeControlDependent(I); 8150 } 8151 } 8152 8153 // In addition to the cases handle just above, we need to prevent 8154 // allocas from moving below a stacksave. The stackrestore case 8155 // is currently thought to be conservatism. 8156 if (isa<AllocaInst>(BundleMember->Inst)) { 8157 for (Instruction *I = BundleMember->Inst->getNextNode(); 8158 I != ScheduleEnd; I = I->getNextNode()) { 8159 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8160 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8161 continue; 8162 8163 // Add the dependency 8164 makeControlDependent(I); 8165 break; 8166 } 8167 } 8168 } 8169 8170 // Handle the memory dependencies (if any). 8171 ScheduleData *DepDest = BundleMember->NextLoadStore; 8172 if (!DepDest) 8173 continue; 8174 Instruction *SrcInst = BundleMember->Inst; 8175 assert(SrcInst->mayReadOrWriteMemory() && 8176 "NextLoadStore list for non memory effecting bundle?"); 8177 MemoryLocation SrcLoc = getLocation(SrcInst); 8178 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8179 unsigned numAliased = 0; 8180 unsigned DistToSrc = 1; 8181 8182 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8183 assert(isInSchedulingRegion(DepDest)); 8184 8185 // We have two limits to reduce the complexity: 8186 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8187 // SLP->isAliased (which is the expensive part in this loop). 8188 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8189 // the whole loop (even if the loop is fast, it's quadratic). 8190 // It's important for the loop break condition (see below) to 8191 // check this limit even between two read-only instructions. 8192 if (DistToSrc >= MaxMemDepDistance || 8193 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8194 (numAliased >= AliasedCheckLimit || 8195 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8196 8197 // We increment the counter only if the locations are aliased 8198 // (instead of counting all alias checks). This gives a better 8199 // balance between reduced runtime and accurate dependencies. 8200 numAliased++; 8201 8202 DepDest->MemoryDependencies.push_back(BundleMember); 8203 BundleMember->Dependencies++; 8204 ScheduleData *DestBundle = DepDest->FirstInBundle; 8205 if (!DestBundle->IsScheduled) { 8206 BundleMember->incrementUnscheduledDeps(1); 8207 } 8208 if (!DestBundle->hasValidDependencies()) { 8209 WorkList.push_back(DestBundle); 8210 } 8211 } 8212 8213 // Example, explaining the loop break condition: Let's assume our 8214 // starting instruction is i0 and MaxMemDepDistance = 3. 8215 // 8216 // +--------v--v--v 8217 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8218 // +--------^--^--^ 8219 // 8220 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8221 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8222 // Previously we already added dependencies from i3 to i6,i7,i8 8223 // (because of MaxMemDepDistance). As we added a dependency from 8224 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8225 // and we can abort this loop at i6. 8226 if (DistToSrc >= 2 * MaxMemDepDistance) 8227 break; 8228 DistToSrc++; 8229 } 8230 } 8231 if (InsertInReadyList && SD->isReady()) { 8232 ReadyInsts.insert(SD); 8233 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8234 << "\n"); 8235 } 8236 } 8237 } 8238 8239 void BoUpSLP::BlockScheduling::resetSchedule() { 8240 assert(ScheduleStart && 8241 "tried to reset schedule on block which has not been scheduled"); 8242 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8243 doForAllOpcodes(I, [&](ScheduleData *SD) { 8244 assert(isInSchedulingRegion(SD) && 8245 "ScheduleData not in scheduling region"); 8246 SD->IsScheduled = false; 8247 SD->resetUnscheduledDeps(); 8248 }); 8249 } 8250 ReadyInsts.clear(); 8251 } 8252 8253 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8254 if (!BS->ScheduleStart) 8255 return; 8256 8257 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8258 8259 // A key point - if we got here, pre-scheduling was able to find a valid 8260 // scheduling of the sub-graph of the scheduling window which consists 8261 // of all vector bundles and their transitive users. As such, we do not 8262 // need to reschedule anything *outside of* that subgraph. 8263 8264 BS->resetSchedule(); 8265 8266 // For the real scheduling we use a more sophisticated ready-list: it is 8267 // sorted by the original instruction location. This lets the final schedule 8268 // be as close as possible to the original instruction order. 8269 // WARNING: If changing this order causes a correctness issue, that means 8270 // there is some missing dependence edge in the schedule data graph. 8271 struct ScheduleDataCompare { 8272 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8273 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8274 } 8275 }; 8276 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8277 8278 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8279 // and fill the ready-list with initial instructions. 8280 int Idx = 0; 8281 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8282 I = I->getNextNode()) { 8283 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8284 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8285 (void)SDTE; 8286 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8287 SD->isPartOfBundle() == 8288 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8289 "scheduler and vectorizer bundle mismatch"); 8290 SD->FirstInBundle->SchedulingPriority = Idx++; 8291 8292 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8293 BS->calculateDependencies(SD, false, this); 8294 }); 8295 } 8296 BS->initialFillReadyList(ReadyInsts); 8297 8298 Instruction *LastScheduledInst = BS->ScheduleEnd; 8299 8300 // Do the "real" scheduling. 8301 while (!ReadyInsts.empty()) { 8302 ScheduleData *picked = *ReadyInsts.begin(); 8303 ReadyInsts.erase(ReadyInsts.begin()); 8304 8305 // Move the scheduled instruction(s) to their dedicated places, if not 8306 // there yet. 8307 for (ScheduleData *BundleMember = picked; BundleMember; 8308 BundleMember = BundleMember->NextInBundle) { 8309 Instruction *pickedInst = BundleMember->Inst; 8310 if (pickedInst->getNextNode() != LastScheduledInst) 8311 pickedInst->moveBefore(LastScheduledInst); 8312 LastScheduledInst = pickedInst; 8313 } 8314 8315 BS->schedule(picked, ReadyInsts); 8316 } 8317 8318 // Check that we didn't break any of our invariants. 8319 #ifdef EXPENSIVE_CHECKS 8320 BS->verify(); 8321 #endif 8322 8323 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8324 // Check that all schedulable entities got scheduled 8325 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8326 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8327 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8328 assert(SD->IsScheduled && "must be scheduled at this point"); 8329 } 8330 }); 8331 } 8332 #endif 8333 8334 // Avoid duplicate scheduling of the block. 8335 BS->ScheduleStart = nullptr; 8336 } 8337 8338 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8339 // If V is a store, just return the width of the stored value (or value 8340 // truncated just before storing) without traversing the expression tree. 8341 // This is the common case. 8342 if (auto *Store = dyn_cast<StoreInst>(V)) { 8343 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8344 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8345 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8346 } 8347 8348 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8349 return getVectorElementSize(IEI->getOperand(1)); 8350 8351 auto E = InstrElementSize.find(V); 8352 if (E != InstrElementSize.end()) 8353 return E->second; 8354 8355 // If V is not a store, we can traverse the expression tree to find loads 8356 // that feed it. The type of the loaded value may indicate a more suitable 8357 // width than V's type. We want to base the vector element size on the width 8358 // of memory operations where possible. 8359 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8360 SmallPtrSet<Instruction *, 16> Visited; 8361 if (auto *I = dyn_cast<Instruction>(V)) { 8362 Worklist.emplace_back(I, I->getParent()); 8363 Visited.insert(I); 8364 } 8365 8366 // Traverse the expression tree in bottom-up order looking for loads. If we 8367 // encounter an instruction we don't yet handle, we give up. 8368 auto Width = 0u; 8369 while (!Worklist.empty()) { 8370 Instruction *I; 8371 BasicBlock *Parent; 8372 std::tie(I, Parent) = Worklist.pop_back_val(); 8373 8374 // We should only be looking at scalar instructions here. If the current 8375 // instruction has a vector type, skip. 8376 auto *Ty = I->getType(); 8377 if (isa<VectorType>(Ty)) 8378 continue; 8379 8380 // If the current instruction is a load, update MaxWidth to reflect the 8381 // width of the loaded value. 8382 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8383 isa<ExtractValueInst>(I)) 8384 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8385 8386 // Otherwise, we need to visit the operands of the instruction. We only 8387 // handle the interesting cases from buildTree here. If an operand is an 8388 // instruction we haven't yet visited and from the same basic block as the 8389 // user or the use is a PHI node, we add it to the worklist. 8390 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8391 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8392 isa<UnaryOperator>(I)) { 8393 for (Use &U : I->operands()) 8394 if (auto *J = dyn_cast<Instruction>(U.get())) 8395 if (Visited.insert(J).second && 8396 (isa<PHINode>(I) || J->getParent() == Parent)) 8397 Worklist.emplace_back(J, J->getParent()); 8398 } else { 8399 break; 8400 } 8401 } 8402 8403 // If we didn't encounter a memory access in the expression tree, or if we 8404 // gave up for some reason, just return the width of V. Otherwise, return the 8405 // maximum width we found. 8406 if (!Width) { 8407 if (auto *CI = dyn_cast<CmpInst>(V)) 8408 V = CI->getOperand(0); 8409 Width = DL->getTypeSizeInBits(V->getType()); 8410 } 8411 8412 for (Instruction *I : Visited) 8413 InstrElementSize[I] = Width; 8414 8415 return Width; 8416 } 8417 8418 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8419 // smaller type with a truncation. We collect the values that will be demoted 8420 // in ToDemote and additional roots that require investigating in Roots. 8421 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8422 SmallVectorImpl<Value *> &ToDemote, 8423 SmallVectorImpl<Value *> &Roots) { 8424 // We can always demote constants. 8425 if (isa<Constant>(V)) { 8426 ToDemote.push_back(V); 8427 return true; 8428 } 8429 8430 // If the value is not an instruction in the expression with only one use, it 8431 // cannot be demoted. 8432 auto *I = dyn_cast<Instruction>(V); 8433 if (!I || !I->hasOneUse() || !Expr.count(I)) 8434 return false; 8435 8436 switch (I->getOpcode()) { 8437 8438 // We can always demote truncations and extensions. Since truncations can 8439 // seed additional demotion, we save the truncated value. 8440 case Instruction::Trunc: 8441 Roots.push_back(I->getOperand(0)); 8442 break; 8443 case Instruction::ZExt: 8444 case Instruction::SExt: 8445 if (isa<ExtractElementInst>(I->getOperand(0)) || 8446 isa<InsertElementInst>(I->getOperand(0))) 8447 return false; 8448 break; 8449 8450 // We can demote certain binary operations if we can demote both of their 8451 // operands. 8452 case Instruction::Add: 8453 case Instruction::Sub: 8454 case Instruction::Mul: 8455 case Instruction::And: 8456 case Instruction::Or: 8457 case Instruction::Xor: 8458 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8459 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8460 return false; 8461 break; 8462 8463 // We can demote selects if we can demote their true and false values. 8464 case Instruction::Select: { 8465 SelectInst *SI = cast<SelectInst>(I); 8466 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8467 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8468 return false; 8469 break; 8470 } 8471 8472 // We can demote phis if we can demote all their incoming operands. Note that 8473 // we don't need to worry about cycles since we ensure single use above. 8474 case Instruction::PHI: { 8475 PHINode *PN = cast<PHINode>(I); 8476 for (Value *IncValue : PN->incoming_values()) 8477 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8478 return false; 8479 break; 8480 } 8481 8482 // Otherwise, conservatively give up. 8483 default: 8484 return false; 8485 } 8486 8487 // Record the value that we can demote. 8488 ToDemote.push_back(V); 8489 return true; 8490 } 8491 8492 void BoUpSLP::computeMinimumValueSizes() { 8493 // If there are no external uses, the expression tree must be rooted by a 8494 // store. We can't demote in-memory values, so there is nothing to do here. 8495 if (ExternalUses.empty()) 8496 return; 8497 8498 // We only attempt to truncate integer expressions. 8499 auto &TreeRoot = VectorizableTree[0]->Scalars; 8500 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8501 if (!TreeRootIT) 8502 return; 8503 8504 // If the expression is not rooted by a store, these roots should have 8505 // external uses. We will rely on InstCombine to rewrite the expression in 8506 // the narrower type. However, InstCombine only rewrites single-use values. 8507 // This means that if a tree entry other than a root is used externally, it 8508 // must have multiple uses and InstCombine will not rewrite it. The code 8509 // below ensures that only the roots are used externally. 8510 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8511 for (auto &EU : ExternalUses) 8512 if (!Expr.erase(EU.Scalar)) 8513 return; 8514 if (!Expr.empty()) 8515 return; 8516 8517 // Collect the scalar values of the vectorizable expression. We will use this 8518 // context to determine which values can be demoted. If we see a truncation, 8519 // we mark it as seeding another demotion. 8520 for (auto &EntryPtr : VectorizableTree) 8521 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8522 8523 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8524 // have a single external user that is not in the vectorizable tree. 8525 for (auto *Root : TreeRoot) 8526 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8527 return; 8528 8529 // Conservatively determine if we can actually truncate the roots of the 8530 // expression. Collect the values that can be demoted in ToDemote and 8531 // additional roots that require investigating in Roots. 8532 SmallVector<Value *, 32> ToDemote; 8533 SmallVector<Value *, 4> Roots; 8534 for (auto *Root : TreeRoot) 8535 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8536 return; 8537 8538 // The maximum bit width required to represent all the values that can be 8539 // demoted without loss of precision. It would be safe to truncate the roots 8540 // of the expression to this width. 8541 auto MaxBitWidth = 8u; 8542 8543 // We first check if all the bits of the roots are demanded. If they're not, 8544 // we can truncate the roots to this narrower type. 8545 for (auto *Root : TreeRoot) { 8546 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8547 MaxBitWidth = std::max<unsigned>( 8548 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8549 } 8550 8551 // True if the roots can be zero-extended back to their original type, rather 8552 // than sign-extended. We know that if the leading bits are not demanded, we 8553 // can safely zero-extend. So we initialize IsKnownPositive to True. 8554 bool IsKnownPositive = true; 8555 8556 // If all the bits of the roots are demanded, we can try a little harder to 8557 // compute a narrower type. This can happen, for example, if the roots are 8558 // getelementptr indices. InstCombine promotes these indices to the pointer 8559 // width. Thus, all their bits are technically demanded even though the 8560 // address computation might be vectorized in a smaller type. 8561 // 8562 // We start by looking at each entry that can be demoted. We compute the 8563 // maximum bit width required to store the scalar by using ValueTracking to 8564 // compute the number of high-order bits we can truncate. 8565 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8566 llvm::all_of(TreeRoot, [](Value *R) { 8567 assert(R->hasOneUse() && "Root should have only one use!"); 8568 return isa<GetElementPtrInst>(R->user_back()); 8569 })) { 8570 MaxBitWidth = 8u; 8571 8572 // Determine if the sign bit of all the roots is known to be zero. If not, 8573 // IsKnownPositive is set to False. 8574 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8575 KnownBits Known = computeKnownBits(R, *DL); 8576 return Known.isNonNegative(); 8577 }); 8578 8579 // Determine the maximum number of bits required to store the scalar 8580 // values. 8581 for (auto *Scalar : ToDemote) { 8582 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8583 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8584 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8585 } 8586 8587 // If we can't prove that the sign bit is zero, we must add one to the 8588 // maximum bit width to account for the unknown sign bit. This preserves 8589 // the existing sign bit so we can safely sign-extend the root back to the 8590 // original type. Otherwise, if we know the sign bit is zero, we will 8591 // zero-extend the root instead. 8592 // 8593 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8594 // one to the maximum bit width will yield a larger-than-necessary 8595 // type. In general, we need to add an extra bit only if we can't 8596 // prove that the upper bit of the original type is equal to the 8597 // upper bit of the proposed smaller type. If these two bits are the 8598 // same (either zero or one) we know that sign-extending from the 8599 // smaller type will result in the same value. Here, since we can't 8600 // yet prove this, we are just making the proposed smaller type 8601 // larger to ensure correctness. 8602 if (!IsKnownPositive) 8603 ++MaxBitWidth; 8604 } 8605 8606 // Round MaxBitWidth up to the next power-of-two. 8607 if (!isPowerOf2_64(MaxBitWidth)) 8608 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8609 8610 // If the maximum bit width we compute is less than the with of the roots' 8611 // type, we can proceed with the narrowing. Otherwise, do nothing. 8612 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8613 return; 8614 8615 // If we can truncate the root, we must collect additional values that might 8616 // be demoted as a result. That is, those seeded by truncations we will 8617 // modify. 8618 while (!Roots.empty()) 8619 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8620 8621 // Finally, map the values we can demote to the maximum bit with we computed. 8622 for (auto *Scalar : ToDemote) 8623 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8624 } 8625 8626 namespace { 8627 8628 /// The SLPVectorizer Pass. 8629 struct SLPVectorizer : public FunctionPass { 8630 SLPVectorizerPass Impl; 8631 8632 /// Pass identification, replacement for typeid 8633 static char ID; 8634 8635 explicit SLPVectorizer() : FunctionPass(ID) { 8636 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8637 } 8638 8639 bool doInitialization(Module &M) override { return false; } 8640 8641 bool runOnFunction(Function &F) override { 8642 if (skipFunction(F)) 8643 return false; 8644 8645 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8646 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8647 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8648 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8649 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8650 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8651 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8652 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8653 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8654 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8655 8656 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8657 } 8658 8659 void getAnalysisUsage(AnalysisUsage &AU) const override { 8660 FunctionPass::getAnalysisUsage(AU); 8661 AU.addRequired<AssumptionCacheTracker>(); 8662 AU.addRequired<ScalarEvolutionWrapperPass>(); 8663 AU.addRequired<AAResultsWrapperPass>(); 8664 AU.addRequired<TargetTransformInfoWrapperPass>(); 8665 AU.addRequired<LoopInfoWrapperPass>(); 8666 AU.addRequired<DominatorTreeWrapperPass>(); 8667 AU.addRequired<DemandedBitsWrapperPass>(); 8668 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8669 AU.addRequired<InjectTLIMappingsLegacy>(); 8670 AU.addPreserved<LoopInfoWrapperPass>(); 8671 AU.addPreserved<DominatorTreeWrapperPass>(); 8672 AU.addPreserved<AAResultsWrapperPass>(); 8673 AU.addPreserved<GlobalsAAWrapperPass>(); 8674 AU.setPreservesCFG(); 8675 } 8676 }; 8677 8678 } // end anonymous namespace 8679 8680 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8681 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8682 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8683 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8684 auto *AA = &AM.getResult<AAManager>(F); 8685 auto *LI = &AM.getResult<LoopAnalysis>(F); 8686 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8687 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8688 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8689 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8690 8691 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8692 if (!Changed) 8693 return PreservedAnalyses::all(); 8694 8695 PreservedAnalyses PA; 8696 PA.preserveSet<CFGAnalyses>(); 8697 return PA; 8698 } 8699 8700 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8701 TargetTransformInfo *TTI_, 8702 TargetLibraryInfo *TLI_, AAResults *AA_, 8703 LoopInfo *LI_, DominatorTree *DT_, 8704 AssumptionCache *AC_, DemandedBits *DB_, 8705 OptimizationRemarkEmitter *ORE_) { 8706 if (!RunSLPVectorization) 8707 return false; 8708 SE = SE_; 8709 TTI = TTI_; 8710 TLI = TLI_; 8711 AA = AA_; 8712 LI = LI_; 8713 DT = DT_; 8714 AC = AC_; 8715 DB = DB_; 8716 DL = &F.getParent()->getDataLayout(); 8717 8718 Stores.clear(); 8719 GEPs.clear(); 8720 bool Changed = false; 8721 8722 // If the target claims to have no vector registers don't attempt 8723 // vectorization. 8724 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8725 LLVM_DEBUG( 8726 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8727 return false; 8728 } 8729 8730 // Don't vectorize when the attribute NoImplicitFloat is used. 8731 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8732 return false; 8733 8734 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8735 8736 // Use the bottom up slp vectorizer to construct chains that start with 8737 // store instructions. 8738 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8739 8740 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8741 // delete instructions. 8742 8743 // Update DFS numbers now so that we can use them for ordering. 8744 DT->updateDFSNumbers(); 8745 8746 // Scan the blocks in the function in post order. 8747 for (auto BB : post_order(&F.getEntryBlock())) { 8748 collectSeedInstructions(BB); 8749 8750 // Vectorize trees that end at stores. 8751 if (!Stores.empty()) { 8752 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8753 << " underlying objects.\n"); 8754 Changed |= vectorizeStoreChains(R); 8755 } 8756 8757 // Vectorize trees that end at reductions. 8758 Changed |= vectorizeChainsInBlock(BB, R); 8759 8760 // Vectorize the index computations of getelementptr instructions. This 8761 // is primarily intended to catch gather-like idioms ending at 8762 // non-consecutive loads. 8763 if (!GEPs.empty()) { 8764 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8765 << " underlying objects.\n"); 8766 Changed |= vectorizeGEPIndices(BB, R); 8767 } 8768 } 8769 8770 if (Changed) { 8771 R.optimizeGatherSequence(); 8772 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8773 } 8774 return Changed; 8775 } 8776 8777 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8778 unsigned Idx) { 8779 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8780 << "\n"); 8781 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8782 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8783 unsigned VF = Chain.size(); 8784 8785 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8786 return false; 8787 8788 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8789 << "\n"); 8790 8791 R.buildTree(Chain); 8792 if (R.isTreeTinyAndNotFullyVectorizable()) 8793 return false; 8794 if (R.isLoadCombineCandidate()) 8795 return false; 8796 R.reorderTopToBottom(); 8797 R.reorderBottomToTop(); 8798 R.buildExternalUses(); 8799 8800 R.computeMinimumValueSizes(); 8801 8802 InstructionCost Cost = R.getTreeCost(); 8803 8804 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8805 if (Cost < -SLPCostThreshold) { 8806 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8807 8808 using namespace ore; 8809 8810 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8811 cast<StoreInst>(Chain[0])) 8812 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8813 << " and with tree size " 8814 << NV("TreeSize", R.getTreeSize())); 8815 8816 R.vectorizeTree(); 8817 return true; 8818 } 8819 8820 return false; 8821 } 8822 8823 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8824 BoUpSLP &R) { 8825 // We may run into multiple chains that merge into a single chain. We mark the 8826 // stores that we vectorized so that we don't visit the same store twice. 8827 BoUpSLP::ValueSet VectorizedStores; 8828 bool Changed = false; 8829 8830 int E = Stores.size(); 8831 SmallBitVector Tails(E, false); 8832 int MaxIter = MaxStoreLookup.getValue(); 8833 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8834 E, std::make_pair(E, INT_MAX)); 8835 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8836 int IterCnt; 8837 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8838 &CheckedPairs, 8839 &ConsecutiveChain](int K, int Idx) { 8840 if (IterCnt >= MaxIter) 8841 return true; 8842 if (CheckedPairs[Idx].test(K)) 8843 return ConsecutiveChain[K].second == 1 && 8844 ConsecutiveChain[K].first == Idx; 8845 ++IterCnt; 8846 CheckedPairs[Idx].set(K); 8847 CheckedPairs[K].set(Idx); 8848 Optional<int> Diff = getPointersDiff( 8849 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8850 Stores[Idx]->getValueOperand()->getType(), 8851 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8852 if (!Diff || *Diff == 0) 8853 return false; 8854 int Val = *Diff; 8855 if (Val < 0) { 8856 if (ConsecutiveChain[Idx].second > -Val) { 8857 Tails.set(K); 8858 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8859 } 8860 return false; 8861 } 8862 if (ConsecutiveChain[K].second <= Val) 8863 return false; 8864 8865 Tails.set(Idx); 8866 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8867 return Val == 1; 8868 }; 8869 // Do a quadratic search on all of the given stores in reverse order and find 8870 // all of the pairs of stores that follow each other. 8871 for (int Idx = E - 1; Idx >= 0; --Idx) { 8872 // If a store has multiple consecutive store candidates, search according 8873 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8874 // This is because usually pairing with immediate succeeding or preceding 8875 // candidate create the best chance to find slp vectorization opportunity. 8876 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8877 IterCnt = 0; 8878 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8879 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8880 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8881 break; 8882 } 8883 8884 // Tracks if we tried to vectorize stores starting from the given tail 8885 // already. 8886 SmallBitVector TriedTails(E, false); 8887 // For stores that start but don't end a link in the chain: 8888 for (int Cnt = E; Cnt > 0; --Cnt) { 8889 int I = Cnt - 1; 8890 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8891 continue; 8892 // We found a store instr that starts a chain. Now follow the chain and try 8893 // to vectorize it. 8894 BoUpSLP::ValueList Operands; 8895 // Collect the chain into a list. 8896 while (I != E && !VectorizedStores.count(Stores[I])) { 8897 Operands.push_back(Stores[I]); 8898 Tails.set(I); 8899 if (ConsecutiveChain[I].second != 1) { 8900 // Mark the new end in the chain and go back, if required. It might be 8901 // required if the original stores come in reversed order, for example. 8902 if (ConsecutiveChain[I].first != E && 8903 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8904 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8905 TriedTails.set(I); 8906 Tails.reset(ConsecutiveChain[I].first); 8907 if (Cnt < ConsecutiveChain[I].first + 2) 8908 Cnt = ConsecutiveChain[I].first + 2; 8909 } 8910 break; 8911 } 8912 // Move to the next value in the chain. 8913 I = ConsecutiveChain[I].first; 8914 } 8915 assert(!Operands.empty() && "Expected non-empty list of stores."); 8916 8917 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8918 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8919 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8920 8921 unsigned MinVF = R.getMinVF(EltSize); 8922 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8923 MaxElts); 8924 8925 // FIXME: Is division-by-2 the correct step? Should we assert that the 8926 // register size is a power-of-2? 8927 unsigned StartIdx = 0; 8928 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8929 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8930 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8931 if (!VectorizedStores.count(Slice.front()) && 8932 !VectorizedStores.count(Slice.back()) && 8933 vectorizeStoreChain(Slice, R, Cnt)) { 8934 // Mark the vectorized stores so that we don't vectorize them again. 8935 VectorizedStores.insert(Slice.begin(), Slice.end()); 8936 Changed = true; 8937 // If we vectorized initial block, no need to try to vectorize it 8938 // again. 8939 if (Cnt == StartIdx) 8940 StartIdx += Size; 8941 Cnt += Size; 8942 continue; 8943 } 8944 ++Cnt; 8945 } 8946 // Check if the whole array was vectorized already - exit. 8947 if (StartIdx >= Operands.size()) 8948 break; 8949 } 8950 } 8951 8952 return Changed; 8953 } 8954 8955 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8956 // Initialize the collections. We will make a single pass over the block. 8957 Stores.clear(); 8958 GEPs.clear(); 8959 8960 // Visit the store and getelementptr instructions in BB and organize them in 8961 // Stores and GEPs according to the underlying objects of their pointer 8962 // operands. 8963 for (Instruction &I : *BB) { 8964 // Ignore store instructions that are volatile or have a pointer operand 8965 // that doesn't point to a scalar type. 8966 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8967 if (!SI->isSimple()) 8968 continue; 8969 if (!isValidElementType(SI->getValueOperand()->getType())) 8970 continue; 8971 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8972 } 8973 8974 // Ignore getelementptr instructions that have more than one index, a 8975 // constant index, or a pointer operand that doesn't point to a scalar 8976 // type. 8977 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8978 auto Idx = GEP->idx_begin()->get(); 8979 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8980 continue; 8981 if (!isValidElementType(Idx->getType())) 8982 continue; 8983 if (GEP->getType()->isVectorTy()) 8984 continue; 8985 GEPs[GEP->getPointerOperand()].push_back(GEP); 8986 } 8987 } 8988 } 8989 8990 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8991 if (!A || !B) 8992 return false; 8993 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8994 return false; 8995 Value *VL[] = {A, B}; 8996 return tryToVectorizeList(VL, R); 8997 } 8998 8999 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9000 bool LimitForRegisterSize) { 9001 if (VL.size() < 2) 9002 return false; 9003 9004 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9005 << VL.size() << ".\n"); 9006 9007 // Check that all of the parts are instructions of the same type, 9008 // we permit an alternate opcode via InstructionsState. 9009 InstructionsState S = getSameOpcode(VL); 9010 if (!S.getOpcode()) 9011 return false; 9012 9013 Instruction *I0 = cast<Instruction>(S.OpValue); 9014 // Make sure invalid types (including vector type) are rejected before 9015 // determining vectorization factor for scalar instructions. 9016 for (Value *V : VL) { 9017 Type *Ty = V->getType(); 9018 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9019 // NOTE: the following will give user internal llvm type name, which may 9020 // not be useful. 9021 R.getORE()->emit([&]() { 9022 std::string type_str; 9023 llvm::raw_string_ostream rso(type_str); 9024 Ty->print(rso); 9025 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9026 << "Cannot SLP vectorize list: type " 9027 << rso.str() + " is unsupported by vectorizer"; 9028 }); 9029 return false; 9030 } 9031 } 9032 9033 unsigned Sz = R.getVectorElementSize(I0); 9034 unsigned MinVF = R.getMinVF(Sz); 9035 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9036 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9037 if (MaxVF < 2) { 9038 R.getORE()->emit([&]() { 9039 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9040 << "Cannot SLP vectorize list: vectorization factor " 9041 << "less than 2 is not supported"; 9042 }); 9043 return false; 9044 } 9045 9046 bool Changed = false; 9047 bool CandidateFound = false; 9048 InstructionCost MinCost = SLPCostThreshold.getValue(); 9049 Type *ScalarTy = VL[0]->getType(); 9050 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9051 ScalarTy = IE->getOperand(1)->getType(); 9052 9053 unsigned NextInst = 0, MaxInst = VL.size(); 9054 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9055 // No actual vectorization should happen, if number of parts is the same as 9056 // provided vectorization factor (i.e. the scalar type is used for vector 9057 // code during codegen). 9058 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9059 if (TTI->getNumberOfParts(VecTy) == VF) 9060 continue; 9061 for (unsigned I = NextInst; I < MaxInst; ++I) { 9062 unsigned OpsWidth = 0; 9063 9064 if (I + VF > MaxInst) 9065 OpsWidth = MaxInst - I; 9066 else 9067 OpsWidth = VF; 9068 9069 if (!isPowerOf2_32(OpsWidth)) 9070 continue; 9071 9072 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9073 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9074 break; 9075 9076 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9077 // Check that a previous iteration of this loop did not delete the Value. 9078 if (llvm::any_of(Ops, [&R](Value *V) { 9079 auto *I = dyn_cast<Instruction>(V); 9080 return I && R.isDeleted(I); 9081 })) 9082 continue; 9083 9084 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9085 << "\n"); 9086 9087 R.buildTree(Ops); 9088 if (R.isTreeTinyAndNotFullyVectorizable()) 9089 continue; 9090 R.reorderTopToBottom(); 9091 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9092 R.buildExternalUses(); 9093 9094 R.computeMinimumValueSizes(); 9095 InstructionCost Cost = R.getTreeCost(); 9096 CandidateFound = true; 9097 MinCost = std::min(MinCost, Cost); 9098 9099 if (Cost < -SLPCostThreshold) { 9100 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9101 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9102 cast<Instruction>(Ops[0])) 9103 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9104 << " and with tree size " 9105 << ore::NV("TreeSize", R.getTreeSize())); 9106 9107 R.vectorizeTree(); 9108 // Move to the next bundle. 9109 I += VF - 1; 9110 NextInst = I + 1; 9111 Changed = true; 9112 } 9113 } 9114 } 9115 9116 if (!Changed && CandidateFound) { 9117 R.getORE()->emit([&]() { 9118 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9119 << "List vectorization was possible but not beneficial with cost " 9120 << ore::NV("Cost", MinCost) << " >= " 9121 << ore::NV("Treshold", -SLPCostThreshold); 9122 }); 9123 } else if (!Changed) { 9124 R.getORE()->emit([&]() { 9125 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9126 << "Cannot SLP vectorize list: vectorization was impossible" 9127 << " with available vectorization factors"; 9128 }); 9129 } 9130 return Changed; 9131 } 9132 9133 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9134 if (!I) 9135 return false; 9136 9137 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9138 return false; 9139 9140 Value *P = I->getParent(); 9141 9142 // Vectorize in current basic block only. 9143 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9144 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9145 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9146 return false; 9147 9148 // Try to vectorize V. 9149 if (tryToVectorizePair(Op0, Op1, R)) 9150 return true; 9151 9152 auto *A = dyn_cast<BinaryOperator>(Op0); 9153 auto *B = dyn_cast<BinaryOperator>(Op1); 9154 // Try to skip B. 9155 if (B && B->hasOneUse()) { 9156 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9157 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9158 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9159 return true; 9160 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9161 return true; 9162 } 9163 9164 // Try to skip A. 9165 if (A && A->hasOneUse()) { 9166 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9167 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9168 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9169 return true; 9170 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9171 return true; 9172 } 9173 return false; 9174 } 9175 9176 namespace { 9177 9178 /// Model horizontal reductions. 9179 /// 9180 /// A horizontal reduction is a tree of reduction instructions that has values 9181 /// that can be put into a vector as its leaves. For example: 9182 /// 9183 /// mul mul mul mul 9184 /// \ / \ / 9185 /// + + 9186 /// \ / 9187 /// + 9188 /// This tree has "mul" as its leaf values and "+" as its reduction 9189 /// instructions. A reduction can feed into a store or a binary operation 9190 /// feeding a phi. 9191 /// ... 9192 /// \ / 9193 /// + 9194 /// | 9195 /// phi += 9196 /// 9197 /// Or: 9198 /// ... 9199 /// \ / 9200 /// + 9201 /// | 9202 /// *p = 9203 /// 9204 class HorizontalReduction { 9205 using ReductionOpsType = SmallVector<Value *, 16>; 9206 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9207 ReductionOpsListType ReductionOps; 9208 SmallVector<Value *, 32> ReducedVals; 9209 // Use map vector to make stable output. 9210 MapVector<Instruction *, Value *> ExtraArgs; 9211 WeakTrackingVH ReductionRoot; 9212 /// The type of reduction operation. 9213 RecurKind RdxKind; 9214 9215 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9216 9217 static bool isCmpSelMinMax(Instruction *I) { 9218 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9219 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9220 } 9221 9222 // And/or are potentially poison-safe logical patterns like: 9223 // select x, y, false 9224 // select x, true, y 9225 static bool isBoolLogicOp(Instruction *I) { 9226 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9227 match(I, m_LogicalOr(m_Value(), m_Value())); 9228 } 9229 9230 /// Checks if instruction is associative and can be vectorized. 9231 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9232 if (Kind == RecurKind::None) 9233 return false; 9234 9235 // Integer ops that map to select instructions or intrinsics are fine. 9236 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9237 isBoolLogicOp(I)) 9238 return true; 9239 9240 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9241 // FP min/max are associative except for NaN and -0.0. We do not 9242 // have to rule out -0.0 here because the intrinsic semantics do not 9243 // specify a fixed result for it. 9244 return I->getFastMathFlags().noNaNs(); 9245 } 9246 9247 return I->isAssociative(); 9248 } 9249 9250 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9251 // Poison-safe 'or' takes the form: select X, true, Y 9252 // To make that work with the normal operand processing, we skip the 9253 // true value operand. 9254 // TODO: Change the code and data structures to handle this without a hack. 9255 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9256 return I->getOperand(2); 9257 return I->getOperand(Index); 9258 } 9259 9260 /// Checks if the ParentStackElem.first should be marked as a reduction 9261 /// operation with an extra argument or as extra argument itself. 9262 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9263 Value *ExtraArg) { 9264 if (ExtraArgs.count(ParentStackElem.first)) { 9265 ExtraArgs[ParentStackElem.first] = nullptr; 9266 // We ran into something like: 9267 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9268 // The whole ParentStackElem.first should be considered as an extra value 9269 // in this case. 9270 // Do not perform analysis of remaining operands of ParentStackElem.first 9271 // instruction, this whole instruction is an extra argument. 9272 ParentStackElem.second = INVALID_OPERAND_INDEX; 9273 } else { 9274 // We ran into something like: 9275 // ParentStackElem.first += ... + ExtraArg + ... 9276 ExtraArgs[ParentStackElem.first] = ExtraArg; 9277 } 9278 } 9279 9280 /// Creates reduction operation with the current opcode. 9281 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9282 Value *RHS, const Twine &Name, bool UseSelect) { 9283 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9284 switch (Kind) { 9285 case RecurKind::Or: 9286 if (UseSelect && 9287 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9288 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9289 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9290 Name); 9291 case RecurKind::And: 9292 if (UseSelect && 9293 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9294 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9295 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9296 Name); 9297 case RecurKind::Add: 9298 case RecurKind::Mul: 9299 case RecurKind::Xor: 9300 case RecurKind::FAdd: 9301 case RecurKind::FMul: 9302 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9303 Name); 9304 case RecurKind::FMax: 9305 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9306 case RecurKind::FMin: 9307 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9308 case RecurKind::SMax: 9309 if (UseSelect) { 9310 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9311 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9312 } 9313 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9314 case RecurKind::SMin: 9315 if (UseSelect) { 9316 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9317 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9318 } 9319 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9320 case RecurKind::UMax: 9321 if (UseSelect) { 9322 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9323 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9324 } 9325 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9326 case RecurKind::UMin: 9327 if (UseSelect) { 9328 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9329 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9330 } 9331 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9332 default: 9333 llvm_unreachable("Unknown reduction operation."); 9334 } 9335 } 9336 9337 /// Creates reduction operation with the current opcode with the IR flags 9338 /// from \p ReductionOps. 9339 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9340 Value *RHS, const Twine &Name, 9341 const ReductionOpsListType &ReductionOps) { 9342 bool UseSelect = ReductionOps.size() == 2 || 9343 // Logical or/and. 9344 (ReductionOps.size() == 1 && 9345 isa<SelectInst>(ReductionOps.front().front())); 9346 assert((!UseSelect || ReductionOps.size() != 2 || 9347 isa<SelectInst>(ReductionOps[1][0])) && 9348 "Expected cmp + select pairs for reduction"); 9349 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9350 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9351 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9352 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9353 propagateIRFlags(Op, ReductionOps[1]); 9354 return Op; 9355 } 9356 } 9357 propagateIRFlags(Op, ReductionOps[0]); 9358 return Op; 9359 } 9360 9361 /// Creates reduction operation with the current opcode with the IR flags 9362 /// from \p I. 9363 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9364 Value *RHS, const Twine &Name, Instruction *I) { 9365 auto *SelI = dyn_cast<SelectInst>(I); 9366 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9367 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9368 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9369 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9370 } 9371 propagateIRFlags(Op, I); 9372 return Op; 9373 } 9374 9375 static RecurKind getRdxKind(Instruction *I) { 9376 assert(I && "Expected instruction for reduction matching"); 9377 if (match(I, m_Add(m_Value(), m_Value()))) 9378 return RecurKind::Add; 9379 if (match(I, m_Mul(m_Value(), m_Value()))) 9380 return RecurKind::Mul; 9381 if (match(I, m_And(m_Value(), m_Value())) || 9382 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9383 return RecurKind::And; 9384 if (match(I, m_Or(m_Value(), m_Value())) || 9385 match(I, m_LogicalOr(m_Value(), m_Value()))) 9386 return RecurKind::Or; 9387 if (match(I, m_Xor(m_Value(), m_Value()))) 9388 return RecurKind::Xor; 9389 if (match(I, m_FAdd(m_Value(), m_Value()))) 9390 return RecurKind::FAdd; 9391 if (match(I, m_FMul(m_Value(), m_Value()))) 9392 return RecurKind::FMul; 9393 9394 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9395 return RecurKind::FMax; 9396 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9397 return RecurKind::FMin; 9398 9399 // This matches either cmp+select or intrinsics. SLP is expected to handle 9400 // either form. 9401 // TODO: If we are canonicalizing to intrinsics, we can remove several 9402 // special-case paths that deal with selects. 9403 if (match(I, m_SMax(m_Value(), m_Value()))) 9404 return RecurKind::SMax; 9405 if (match(I, m_SMin(m_Value(), m_Value()))) 9406 return RecurKind::SMin; 9407 if (match(I, m_UMax(m_Value(), m_Value()))) 9408 return RecurKind::UMax; 9409 if (match(I, m_UMin(m_Value(), m_Value()))) 9410 return RecurKind::UMin; 9411 9412 if (auto *Select = dyn_cast<SelectInst>(I)) { 9413 // Try harder: look for min/max pattern based on instructions producing 9414 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9415 // During the intermediate stages of SLP, it's very common to have 9416 // pattern like this (since optimizeGatherSequence is run only once 9417 // at the end): 9418 // %1 = extractelement <2 x i32> %a, i32 0 9419 // %2 = extractelement <2 x i32> %a, i32 1 9420 // %cond = icmp sgt i32 %1, %2 9421 // %3 = extractelement <2 x i32> %a, i32 0 9422 // %4 = extractelement <2 x i32> %a, i32 1 9423 // %select = select i1 %cond, i32 %3, i32 %4 9424 CmpInst::Predicate Pred; 9425 Instruction *L1; 9426 Instruction *L2; 9427 9428 Value *LHS = Select->getTrueValue(); 9429 Value *RHS = Select->getFalseValue(); 9430 Value *Cond = Select->getCondition(); 9431 9432 // TODO: Support inverse predicates. 9433 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9434 if (!isa<ExtractElementInst>(RHS) || 9435 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9436 return RecurKind::None; 9437 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9438 if (!isa<ExtractElementInst>(LHS) || 9439 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9440 return RecurKind::None; 9441 } else { 9442 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9443 return RecurKind::None; 9444 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9445 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9446 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9447 return RecurKind::None; 9448 } 9449 9450 switch (Pred) { 9451 default: 9452 return RecurKind::None; 9453 case CmpInst::ICMP_SGT: 9454 case CmpInst::ICMP_SGE: 9455 return RecurKind::SMax; 9456 case CmpInst::ICMP_SLT: 9457 case CmpInst::ICMP_SLE: 9458 return RecurKind::SMin; 9459 case CmpInst::ICMP_UGT: 9460 case CmpInst::ICMP_UGE: 9461 return RecurKind::UMax; 9462 case CmpInst::ICMP_ULT: 9463 case CmpInst::ICMP_ULE: 9464 return RecurKind::UMin; 9465 } 9466 } 9467 return RecurKind::None; 9468 } 9469 9470 /// Get the index of the first operand. 9471 static unsigned getFirstOperandIndex(Instruction *I) { 9472 return isCmpSelMinMax(I) ? 1 : 0; 9473 } 9474 9475 /// Total number of operands in the reduction operation. 9476 static unsigned getNumberOfOperands(Instruction *I) { 9477 return isCmpSelMinMax(I) ? 3 : 2; 9478 } 9479 9480 /// Checks if the instruction is in basic block \p BB. 9481 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9482 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9483 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9484 auto *Sel = cast<SelectInst>(I); 9485 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9486 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9487 } 9488 return I->getParent() == BB; 9489 } 9490 9491 /// Expected number of uses for reduction operations/reduced values. 9492 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9493 if (IsCmpSelMinMax) { 9494 // SelectInst must be used twice while the condition op must have single 9495 // use only. 9496 if (auto *Sel = dyn_cast<SelectInst>(I)) 9497 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9498 return I->hasNUses(2); 9499 } 9500 9501 // Arithmetic reduction operation must be used once only. 9502 return I->hasOneUse(); 9503 } 9504 9505 /// Initializes the list of reduction operations. 9506 void initReductionOps(Instruction *I) { 9507 if (isCmpSelMinMax(I)) 9508 ReductionOps.assign(2, ReductionOpsType()); 9509 else 9510 ReductionOps.assign(1, ReductionOpsType()); 9511 } 9512 9513 /// Add all reduction operations for the reduction instruction \p I. 9514 void addReductionOps(Instruction *I) { 9515 if (isCmpSelMinMax(I)) { 9516 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9517 ReductionOps[1].emplace_back(I); 9518 } else { 9519 ReductionOps[0].emplace_back(I); 9520 } 9521 } 9522 9523 static Value *getLHS(RecurKind Kind, Instruction *I) { 9524 if (Kind == RecurKind::None) 9525 return nullptr; 9526 return I->getOperand(getFirstOperandIndex(I)); 9527 } 9528 static Value *getRHS(RecurKind Kind, Instruction *I) { 9529 if (Kind == RecurKind::None) 9530 return nullptr; 9531 return I->getOperand(getFirstOperandIndex(I) + 1); 9532 } 9533 9534 public: 9535 HorizontalReduction() = default; 9536 9537 /// Try to find a reduction tree. 9538 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9539 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9540 "Phi needs to use the binary operator"); 9541 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9542 isa<IntrinsicInst>(Inst)) && 9543 "Expected binop, select, or intrinsic for reduction matching"); 9544 RdxKind = getRdxKind(Inst); 9545 9546 // We could have a initial reductions that is not an add. 9547 // r *= v1 + v2 + v3 + v4 9548 // In such a case start looking for a tree rooted in the first '+'. 9549 if (Phi) { 9550 if (getLHS(RdxKind, Inst) == Phi) { 9551 Phi = nullptr; 9552 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9553 if (!Inst) 9554 return false; 9555 RdxKind = getRdxKind(Inst); 9556 } else if (getRHS(RdxKind, Inst) == Phi) { 9557 Phi = nullptr; 9558 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9559 if (!Inst) 9560 return false; 9561 RdxKind = getRdxKind(Inst); 9562 } 9563 } 9564 9565 if (!isVectorizable(RdxKind, Inst)) 9566 return false; 9567 9568 // Analyze "regular" integer/FP types for reductions - no target-specific 9569 // types or pointers. 9570 Type *Ty = Inst->getType(); 9571 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9572 return false; 9573 9574 // Though the ultimate reduction may have multiple uses, its condition must 9575 // have only single use. 9576 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9577 if (!Sel->getCondition()->hasOneUse()) 9578 return false; 9579 9580 ReductionRoot = Inst; 9581 9582 // The opcode for leaf values that we perform a reduction on. 9583 // For example: load(x) + load(y) + load(z) + fptoui(w) 9584 // The leaf opcode for 'w' does not match, so we don't include it as a 9585 // potential candidate for the reduction. 9586 unsigned LeafOpcode = 0; 9587 9588 // Post-order traverse the reduction tree starting at Inst. We only handle 9589 // true trees containing binary operators or selects. 9590 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9591 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9592 initReductionOps(Inst); 9593 while (!Stack.empty()) { 9594 Instruction *TreeN = Stack.back().first; 9595 unsigned EdgeToVisit = Stack.back().second++; 9596 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9597 bool IsReducedValue = TreeRdxKind != RdxKind; 9598 9599 // Postorder visit. 9600 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9601 if (IsReducedValue) 9602 ReducedVals.push_back(TreeN); 9603 else { 9604 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9605 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9606 // Check if TreeN is an extra argument of its parent operation. 9607 if (Stack.size() <= 1) { 9608 // TreeN can't be an extra argument as it is a root reduction 9609 // operation. 9610 return false; 9611 } 9612 // Yes, TreeN is an extra argument, do not add it to a list of 9613 // reduction operations. 9614 // Stack[Stack.size() - 2] always points to the parent operation. 9615 markExtraArg(Stack[Stack.size() - 2], TreeN); 9616 ExtraArgs.erase(TreeN); 9617 } else 9618 addReductionOps(TreeN); 9619 } 9620 // Retract. 9621 Stack.pop_back(); 9622 continue; 9623 } 9624 9625 // Visit operands. 9626 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9627 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9628 if (!EdgeInst) { 9629 // Edge value is not a reduction instruction or a leaf instruction. 9630 // (It may be a constant, function argument, or something else.) 9631 markExtraArg(Stack.back(), EdgeVal); 9632 continue; 9633 } 9634 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9635 // Continue analysis if the next operand is a reduction operation or 9636 // (possibly) a leaf value. If the leaf value opcode is not set, 9637 // the first met operation != reduction operation is considered as the 9638 // leaf opcode. 9639 // Only handle trees in the current basic block. 9640 // Each tree node needs to have minimal number of users except for the 9641 // ultimate reduction. 9642 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9643 if (EdgeInst != Phi && EdgeInst != Inst && 9644 hasSameParent(EdgeInst, Inst->getParent()) && 9645 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9646 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9647 if (IsRdxInst) { 9648 // We need to be able to reassociate the reduction operations. 9649 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9650 // I is an extra argument for TreeN (its parent operation). 9651 markExtraArg(Stack.back(), EdgeInst); 9652 continue; 9653 } 9654 } else if (!LeafOpcode) { 9655 LeafOpcode = EdgeInst->getOpcode(); 9656 } 9657 Stack.push_back( 9658 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9659 continue; 9660 } 9661 // I is an extra argument for TreeN (its parent operation). 9662 markExtraArg(Stack.back(), EdgeInst); 9663 } 9664 return true; 9665 } 9666 9667 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9668 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9669 // If there are a sufficient number of reduction values, reduce 9670 // to a nearby power-of-2. We can safely generate oversized 9671 // vectors and rely on the backend to split them to legal sizes. 9672 unsigned NumReducedVals = ReducedVals.size(); 9673 if (NumReducedVals < 4) 9674 return nullptr; 9675 9676 // Intersect the fast-math-flags from all reduction operations. 9677 FastMathFlags RdxFMF; 9678 RdxFMF.set(); 9679 for (ReductionOpsType &RdxOp : ReductionOps) { 9680 for (Value *RdxVal : RdxOp) { 9681 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9682 RdxFMF &= FPMO->getFastMathFlags(); 9683 } 9684 } 9685 9686 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9687 Builder.setFastMathFlags(RdxFMF); 9688 9689 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9690 // The same extra argument may be used several times, so log each attempt 9691 // to use it. 9692 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9693 assert(Pair.first && "DebugLoc must be set."); 9694 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9695 } 9696 9697 // The compare instruction of a min/max is the insertion point for new 9698 // instructions and may be replaced with a new compare instruction. 9699 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9700 assert(isa<SelectInst>(RdxRootInst) && 9701 "Expected min/max reduction to have select root instruction"); 9702 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9703 assert(isa<Instruction>(ScalarCond) && 9704 "Expected min/max reduction to have compare condition"); 9705 return cast<Instruction>(ScalarCond); 9706 }; 9707 9708 // The reduction root is used as the insertion point for new instructions, 9709 // so set it as externally used to prevent it from being deleted. 9710 ExternallyUsedValues[ReductionRoot]; 9711 SmallVector<Value *, 16> IgnoreList; 9712 for (ReductionOpsType &RdxOp : ReductionOps) 9713 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9714 9715 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9716 if (NumReducedVals > ReduxWidth) { 9717 // In the loop below, we are building a tree based on a window of 9718 // 'ReduxWidth' values. 9719 // If the operands of those values have common traits (compare predicate, 9720 // constant operand, etc), then we want to group those together to 9721 // minimize the cost of the reduction. 9722 9723 // TODO: This should be extended to count common operands for 9724 // compares and binops. 9725 9726 // Step 1: Count the number of times each compare predicate occurs. 9727 SmallDenseMap<unsigned, unsigned> PredCountMap; 9728 for (Value *RdxVal : ReducedVals) { 9729 CmpInst::Predicate Pred; 9730 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9731 ++PredCountMap[Pred]; 9732 } 9733 // Step 2: Sort the values so the most common predicates come first. 9734 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9735 CmpInst::Predicate PredA, PredB; 9736 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9737 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9738 return PredCountMap[PredA] > PredCountMap[PredB]; 9739 } 9740 return false; 9741 }); 9742 } 9743 9744 Value *VectorizedTree = nullptr; 9745 unsigned i = 0; 9746 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9747 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9748 V.buildTree(VL, IgnoreList); 9749 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9750 break; 9751 if (V.isLoadCombineReductionCandidate(RdxKind)) 9752 break; 9753 V.reorderTopToBottom(); 9754 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9755 V.buildExternalUses(ExternallyUsedValues); 9756 9757 // For a poison-safe boolean logic reduction, do not replace select 9758 // instructions with logic ops. All reduced values will be frozen (see 9759 // below) to prevent leaking poison. 9760 if (isa<SelectInst>(ReductionRoot) && 9761 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9762 NumReducedVals != ReduxWidth) 9763 break; 9764 9765 V.computeMinimumValueSizes(); 9766 9767 // Estimate cost. 9768 InstructionCost TreeCost = 9769 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9770 InstructionCost ReductionCost = 9771 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9772 InstructionCost Cost = TreeCost + ReductionCost; 9773 if (!Cost.isValid()) { 9774 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9775 return nullptr; 9776 } 9777 if (Cost >= -SLPCostThreshold) { 9778 V.getORE()->emit([&]() { 9779 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9780 cast<Instruction>(VL[0])) 9781 << "Vectorizing horizontal reduction is possible" 9782 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9783 << " and threshold " 9784 << ore::NV("Threshold", -SLPCostThreshold); 9785 }); 9786 break; 9787 } 9788 9789 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9790 << Cost << ". (HorRdx)\n"); 9791 V.getORE()->emit([&]() { 9792 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9793 cast<Instruction>(VL[0])) 9794 << "Vectorized horizontal reduction with cost " 9795 << ore::NV("Cost", Cost) << " and with tree size " 9796 << ore::NV("TreeSize", V.getTreeSize()); 9797 }); 9798 9799 // Vectorize a tree. 9800 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9801 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9802 9803 // Emit a reduction. If the root is a select (min/max idiom), the insert 9804 // point is the compare condition of that select. 9805 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9806 if (isCmpSelMinMax(RdxRootInst)) 9807 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9808 else 9809 Builder.SetInsertPoint(RdxRootInst); 9810 9811 // To prevent poison from leaking across what used to be sequential, safe, 9812 // scalar boolean logic operations, the reduction operand must be frozen. 9813 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9814 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9815 9816 Value *ReducedSubTree = 9817 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9818 9819 if (!VectorizedTree) { 9820 // Initialize the final value in the reduction. 9821 VectorizedTree = ReducedSubTree; 9822 } else { 9823 // Update the final value in the reduction. 9824 Builder.SetCurrentDebugLocation(Loc); 9825 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9826 ReducedSubTree, "op.rdx", ReductionOps); 9827 } 9828 i += ReduxWidth; 9829 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9830 } 9831 9832 if (VectorizedTree) { 9833 // Finish the reduction. 9834 for (; i < NumReducedVals; ++i) { 9835 auto *I = cast<Instruction>(ReducedVals[i]); 9836 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9837 VectorizedTree = 9838 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9839 } 9840 for (auto &Pair : ExternallyUsedValues) { 9841 // Add each externally used value to the final reduction. 9842 for (auto *I : Pair.second) { 9843 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9844 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9845 Pair.first, "op.extra", I); 9846 } 9847 } 9848 9849 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9850 9851 // The original scalar reduction is expected to have no remaining 9852 // uses outside the reduction tree itself. Assert that we got this 9853 // correct, replace internal uses with undef, and mark for eventual 9854 // deletion. 9855 #ifndef NDEBUG 9856 SmallSet<Value *, 4> IgnoreSet; 9857 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end()); 9858 #endif 9859 for (auto *Ignore : IgnoreList) { 9860 #ifndef NDEBUG 9861 for (auto *U : Ignore->users()) { 9862 assert(IgnoreSet.count(U)); 9863 } 9864 #endif 9865 if (!Ignore->use_empty()) { 9866 Value *Undef = UndefValue::get(Ignore->getType()); 9867 Ignore->replaceAllUsesWith(Undef); 9868 } 9869 V.eraseInstruction(cast<Instruction>(Ignore)); 9870 } 9871 } 9872 return VectorizedTree; 9873 } 9874 9875 unsigned numReductionValues() const { return ReducedVals.size(); } 9876 9877 private: 9878 /// Calculate the cost of a reduction. 9879 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9880 Value *FirstReducedVal, unsigned ReduxWidth, 9881 FastMathFlags FMF) { 9882 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9883 Type *ScalarTy = FirstReducedVal->getType(); 9884 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9885 InstructionCost VectorCost, ScalarCost; 9886 switch (RdxKind) { 9887 case RecurKind::Add: 9888 case RecurKind::Mul: 9889 case RecurKind::Or: 9890 case RecurKind::And: 9891 case RecurKind::Xor: 9892 case RecurKind::FAdd: 9893 case RecurKind::FMul: { 9894 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9895 VectorCost = 9896 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9897 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9898 break; 9899 } 9900 case RecurKind::FMax: 9901 case RecurKind::FMin: { 9902 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9903 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9904 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9905 /*IsUnsigned=*/false, CostKind); 9906 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9907 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9908 SclCondTy, RdxPred, CostKind) + 9909 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9910 SclCondTy, RdxPred, CostKind); 9911 break; 9912 } 9913 case RecurKind::SMax: 9914 case RecurKind::SMin: 9915 case RecurKind::UMax: 9916 case RecurKind::UMin: { 9917 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9918 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9919 bool IsUnsigned = 9920 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9921 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9922 CostKind); 9923 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9924 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9925 SclCondTy, RdxPred, CostKind) + 9926 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9927 SclCondTy, RdxPred, CostKind); 9928 break; 9929 } 9930 default: 9931 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9932 } 9933 9934 // Scalar cost is repeated for N-1 elements. 9935 ScalarCost *= (ReduxWidth - 1); 9936 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9937 << " for reduction that starts with " << *FirstReducedVal 9938 << " (It is a splitting reduction)\n"); 9939 return VectorCost - ScalarCost; 9940 } 9941 9942 /// Emit a horizontal reduction of the vectorized value. 9943 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9944 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9945 assert(VectorizedValue && "Need to have a vectorized tree node"); 9946 assert(isPowerOf2_32(ReduxWidth) && 9947 "We only handle power-of-two reductions for now"); 9948 assert(RdxKind != RecurKind::FMulAdd && 9949 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9950 9951 ++NumVectorInstructions; 9952 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9953 } 9954 }; 9955 9956 } // end anonymous namespace 9957 9958 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9959 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9960 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9961 9962 unsigned AggregateSize = 1; 9963 auto *IV = cast<InsertValueInst>(InsertInst); 9964 Type *CurrentType = IV->getType(); 9965 do { 9966 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9967 for (auto *Elt : ST->elements()) 9968 if (Elt != ST->getElementType(0)) // check homogeneity 9969 return None; 9970 AggregateSize *= ST->getNumElements(); 9971 CurrentType = ST->getElementType(0); 9972 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9973 AggregateSize *= AT->getNumElements(); 9974 CurrentType = AT->getElementType(); 9975 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9976 AggregateSize *= VT->getNumElements(); 9977 return AggregateSize; 9978 } else if (CurrentType->isSingleValueType()) { 9979 return AggregateSize; 9980 } else { 9981 return None; 9982 } 9983 } while (true); 9984 } 9985 9986 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9987 TargetTransformInfo *TTI, 9988 SmallVectorImpl<Value *> &BuildVectorOpds, 9989 SmallVectorImpl<Value *> &InsertElts, 9990 unsigned OperandOffset) { 9991 do { 9992 Value *InsertedOperand = LastInsertInst->getOperand(1); 9993 Optional<unsigned> OperandIndex = 9994 getInsertIndex(LastInsertInst, OperandOffset); 9995 if (!OperandIndex) 9996 return; 9997 if (isa<InsertElementInst>(InsertedOperand) || 9998 isa<InsertValueInst>(InsertedOperand)) { 9999 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10000 BuildVectorOpds, InsertElts, *OperandIndex); 10001 10002 } else { 10003 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10004 InsertElts[*OperandIndex] = LastInsertInst; 10005 } 10006 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10007 } while (LastInsertInst != nullptr && 10008 (isa<InsertValueInst>(LastInsertInst) || 10009 isa<InsertElementInst>(LastInsertInst)) && 10010 LastInsertInst->hasOneUse()); 10011 } 10012 10013 /// Recognize construction of vectors like 10014 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10015 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10016 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10017 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10018 /// starting from the last insertelement or insertvalue instruction. 10019 /// 10020 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10021 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10022 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10023 /// 10024 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10025 /// 10026 /// \return true if it matches. 10027 static bool findBuildAggregate(Instruction *LastInsertInst, 10028 TargetTransformInfo *TTI, 10029 SmallVectorImpl<Value *> &BuildVectorOpds, 10030 SmallVectorImpl<Value *> &InsertElts) { 10031 10032 assert((isa<InsertElementInst>(LastInsertInst) || 10033 isa<InsertValueInst>(LastInsertInst)) && 10034 "Expected insertelement or insertvalue instruction!"); 10035 10036 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10037 "Expected empty result vectors!"); 10038 10039 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10040 if (!AggregateSize) 10041 return false; 10042 BuildVectorOpds.resize(*AggregateSize); 10043 InsertElts.resize(*AggregateSize); 10044 10045 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10046 llvm::erase_value(BuildVectorOpds, nullptr); 10047 llvm::erase_value(InsertElts, nullptr); 10048 if (BuildVectorOpds.size() >= 2) 10049 return true; 10050 10051 return false; 10052 } 10053 10054 /// Try and get a reduction value from a phi node. 10055 /// 10056 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10057 /// if they come from either \p ParentBB or a containing loop latch. 10058 /// 10059 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10060 /// if not possible. 10061 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10062 BasicBlock *ParentBB, LoopInfo *LI) { 10063 // There are situations where the reduction value is not dominated by the 10064 // reduction phi. Vectorizing such cases has been reported to cause 10065 // miscompiles. See PR25787. 10066 auto DominatedReduxValue = [&](Value *R) { 10067 return isa<Instruction>(R) && 10068 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10069 }; 10070 10071 Value *Rdx = nullptr; 10072 10073 // Return the incoming value if it comes from the same BB as the phi node. 10074 if (P->getIncomingBlock(0) == ParentBB) { 10075 Rdx = P->getIncomingValue(0); 10076 } else if (P->getIncomingBlock(1) == ParentBB) { 10077 Rdx = P->getIncomingValue(1); 10078 } 10079 10080 if (Rdx && DominatedReduxValue(Rdx)) 10081 return Rdx; 10082 10083 // Otherwise, check whether we have a loop latch to look at. 10084 Loop *BBL = LI->getLoopFor(ParentBB); 10085 if (!BBL) 10086 return nullptr; 10087 BasicBlock *BBLatch = BBL->getLoopLatch(); 10088 if (!BBLatch) 10089 return nullptr; 10090 10091 // There is a loop latch, return the incoming value if it comes from 10092 // that. This reduction pattern occasionally turns up. 10093 if (P->getIncomingBlock(0) == BBLatch) { 10094 Rdx = P->getIncomingValue(0); 10095 } else if (P->getIncomingBlock(1) == BBLatch) { 10096 Rdx = P->getIncomingValue(1); 10097 } 10098 10099 if (Rdx && DominatedReduxValue(Rdx)) 10100 return Rdx; 10101 10102 return nullptr; 10103 } 10104 10105 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10106 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10107 return true; 10108 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10109 return true; 10110 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10111 return true; 10112 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10113 return true; 10114 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10115 return true; 10116 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10117 return true; 10118 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10119 return true; 10120 return false; 10121 } 10122 10123 /// Attempt to reduce a horizontal reduction. 10124 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10125 /// with reduction operators \a Root (or one of its operands) in a basic block 10126 /// \a BB, then check if it can be done. If horizontal reduction is not found 10127 /// and root instruction is a binary operation, vectorization of the operands is 10128 /// attempted. 10129 /// \returns true if a horizontal reduction was matched and reduced or operands 10130 /// of one of the binary instruction were vectorized. 10131 /// \returns false if a horizontal reduction was not matched (or not possible) 10132 /// or no vectorization of any binary operation feeding \a Root instruction was 10133 /// performed. 10134 static bool tryToVectorizeHorReductionOrInstOperands( 10135 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10136 TargetTransformInfo *TTI, 10137 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10138 if (!ShouldVectorizeHor) 10139 return false; 10140 10141 if (!Root) 10142 return false; 10143 10144 if (Root->getParent() != BB || isa<PHINode>(Root)) 10145 return false; 10146 // Start analysis starting from Root instruction. If horizontal reduction is 10147 // found, try to vectorize it. If it is not a horizontal reduction or 10148 // vectorization is not possible or not effective, and currently analyzed 10149 // instruction is a binary operation, try to vectorize the operands, using 10150 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10151 // the same procedure considering each operand as a possible root of the 10152 // horizontal reduction. 10153 // Interrupt the process if the Root instruction itself was vectorized or all 10154 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10155 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10156 // CmpInsts so we can skip extra attempts in 10157 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10158 std::queue<std::pair<Instruction *, unsigned>> Stack; 10159 Stack.emplace(Root, 0); 10160 SmallPtrSet<Value *, 8> VisitedInstrs; 10161 SmallVector<WeakTrackingVH> PostponedInsts; 10162 bool Res = false; 10163 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10164 Value *&B1) -> Value * { 10165 bool IsBinop = matchRdxBop(Inst, B0, B1); 10166 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10167 if (IsBinop || IsSelect) { 10168 HorizontalReduction HorRdx; 10169 if (HorRdx.matchAssociativeReduction(P, Inst)) 10170 return HorRdx.tryToReduce(R, TTI); 10171 } 10172 return nullptr; 10173 }; 10174 while (!Stack.empty()) { 10175 Instruction *Inst; 10176 unsigned Level; 10177 std::tie(Inst, Level) = Stack.front(); 10178 Stack.pop(); 10179 // Do not try to analyze instruction that has already been vectorized. 10180 // This may happen when we vectorize instruction operands on a previous 10181 // iteration while stack was populated before that happened. 10182 if (R.isDeleted(Inst)) 10183 continue; 10184 Value *B0 = nullptr, *B1 = nullptr; 10185 if (Value *V = TryToReduce(Inst, B0, B1)) { 10186 Res = true; 10187 // Set P to nullptr to avoid re-analysis of phi node in 10188 // matchAssociativeReduction function unless this is the root node. 10189 P = nullptr; 10190 if (auto *I = dyn_cast<Instruction>(V)) { 10191 // Try to find another reduction. 10192 Stack.emplace(I, Level); 10193 continue; 10194 } 10195 } else { 10196 bool IsBinop = B0 && B1; 10197 if (P && IsBinop) { 10198 Inst = dyn_cast<Instruction>(B0); 10199 if (Inst == P) 10200 Inst = dyn_cast<Instruction>(B1); 10201 if (!Inst) { 10202 // Set P to nullptr to avoid re-analysis of phi node in 10203 // matchAssociativeReduction function unless this is the root node. 10204 P = nullptr; 10205 continue; 10206 } 10207 } 10208 // Set P to nullptr to avoid re-analysis of phi node in 10209 // matchAssociativeReduction function unless this is the root node. 10210 P = nullptr; 10211 // Do not try to vectorize CmpInst operands, this is done separately. 10212 // Final attempt for binop args vectorization should happen after the loop 10213 // to try to find reductions. 10214 if (!isa<CmpInst>(Inst)) 10215 PostponedInsts.push_back(Inst); 10216 } 10217 10218 // Try to vectorize operands. 10219 // Continue analysis for the instruction from the same basic block only to 10220 // save compile time. 10221 if (++Level < RecursionMaxDepth) 10222 for (auto *Op : Inst->operand_values()) 10223 if (VisitedInstrs.insert(Op).second) 10224 if (auto *I = dyn_cast<Instruction>(Op)) 10225 // Do not try to vectorize CmpInst operands, this is done 10226 // separately. 10227 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10228 I->getParent() == BB) 10229 Stack.emplace(I, Level); 10230 } 10231 // Try to vectorized binops where reductions were not found. 10232 for (Value *V : PostponedInsts) 10233 if (auto *Inst = dyn_cast<Instruction>(V)) 10234 if (!R.isDeleted(Inst)) 10235 Res |= Vectorize(Inst, R); 10236 return Res; 10237 } 10238 10239 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10240 BasicBlock *BB, BoUpSLP &R, 10241 TargetTransformInfo *TTI) { 10242 auto *I = dyn_cast_or_null<Instruction>(V); 10243 if (!I) 10244 return false; 10245 10246 if (!isa<BinaryOperator>(I)) 10247 P = nullptr; 10248 // Try to match and vectorize a horizontal reduction. 10249 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10250 return tryToVectorize(I, R); 10251 }; 10252 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10253 ExtraVectorization); 10254 } 10255 10256 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10257 BasicBlock *BB, BoUpSLP &R) { 10258 const DataLayout &DL = BB->getModule()->getDataLayout(); 10259 if (!R.canMapToVector(IVI->getType(), DL)) 10260 return false; 10261 10262 SmallVector<Value *, 16> BuildVectorOpds; 10263 SmallVector<Value *, 16> BuildVectorInsts; 10264 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10265 return false; 10266 10267 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10268 // Aggregate value is unlikely to be processed in vector register. 10269 return tryToVectorizeList(BuildVectorOpds, R); 10270 } 10271 10272 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10273 BasicBlock *BB, BoUpSLP &R) { 10274 SmallVector<Value *, 16> BuildVectorInsts; 10275 SmallVector<Value *, 16> BuildVectorOpds; 10276 SmallVector<int> Mask; 10277 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10278 (llvm::all_of( 10279 BuildVectorOpds, 10280 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10281 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10282 return false; 10283 10284 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10285 return tryToVectorizeList(BuildVectorInsts, R); 10286 } 10287 10288 template <typename T> 10289 static bool 10290 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10291 function_ref<unsigned(T *)> Limit, 10292 function_ref<bool(T *, T *)> Comparator, 10293 function_ref<bool(T *, T *)> AreCompatible, 10294 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10295 bool LimitForRegisterSize) { 10296 bool Changed = false; 10297 // Sort by type, parent, operands. 10298 stable_sort(Incoming, Comparator); 10299 10300 // Try to vectorize elements base on their type. 10301 SmallVector<T *> Candidates; 10302 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10303 // Look for the next elements with the same type, parent and operand 10304 // kinds. 10305 auto *SameTypeIt = IncIt; 10306 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10307 ++SameTypeIt; 10308 10309 // Try to vectorize them. 10310 unsigned NumElts = (SameTypeIt - IncIt); 10311 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10312 << NumElts << ")\n"); 10313 // The vectorization is a 3-state attempt: 10314 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10315 // size of maximal register at first. 10316 // 2. Try to vectorize remaining instructions with the same type, if 10317 // possible. This may result in the better vectorization results rather than 10318 // if we try just to vectorize instructions with the same/alternate opcodes. 10319 // 3. Final attempt to try to vectorize all instructions with the 10320 // same/alternate ops only, this may result in some extra final 10321 // vectorization. 10322 if (NumElts > 1 && 10323 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10324 // Success start over because instructions might have been changed. 10325 Changed = true; 10326 } else if (NumElts < Limit(*IncIt) && 10327 (Candidates.empty() || 10328 Candidates.front()->getType() == (*IncIt)->getType())) { 10329 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10330 } 10331 // Final attempt to vectorize instructions with the same types. 10332 if (Candidates.size() > 1 && 10333 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10334 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10335 // Success start over because instructions might have been changed. 10336 Changed = true; 10337 } else if (LimitForRegisterSize) { 10338 // Try to vectorize using small vectors. 10339 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10340 It != End;) { 10341 auto *SameTypeIt = It; 10342 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10343 ++SameTypeIt; 10344 unsigned NumElts = (SameTypeIt - It); 10345 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10346 /*LimitForRegisterSize=*/false)) 10347 Changed = true; 10348 It = SameTypeIt; 10349 } 10350 } 10351 Candidates.clear(); 10352 } 10353 10354 // Start over at the next instruction of a different type (or the end). 10355 IncIt = SameTypeIt; 10356 } 10357 return Changed; 10358 } 10359 10360 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10361 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10362 /// operands. If IsCompatibility is false, function implements strict weak 10363 /// ordering relation between two cmp instructions, returning true if the first 10364 /// instruction is "less" than the second, i.e. its predicate is less than the 10365 /// predicate of the second or the operands IDs are less than the operands IDs 10366 /// of the second cmp instruction. 10367 template <bool IsCompatibility> 10368 static bool compareCmp(Value *V, Value *V2, 10369 function_ref<bool(Instruction *)> IsDeleted) { 10370 auto *CI1 = cast<CmpInst>(V); 10371 auto *CI2 = cast<CmpInst>(V2); 10372 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10373 return false; 10374 if (CI1->getOperand(0)->getType()->getTypeID() < 10375 CI2->getOperand(0)->getType()->getTypeID()) 10376 return !IsCompatibility; 10377 if (CI1->getOperand(0)->getType()->getTypeID() > 10378 CI2->getOperand(0)->getType()->getTypeID()) 10379 return false; 10380 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10381 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10382 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10383 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10384 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10385 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10386 if (BasePred1 < BasePred2) 10387 return !IsCompatibility; 10388 if (BasePred1 > BasePred2) 10389 return false; 10390 // Compare operands. 10391 bool LEPreds = Pred1 <= Pred2; 10392 bool GEPreds = Pred1 >= Pred2; 10393 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10394 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10395 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10396 if (Op1->getValueID() < Op2->getValueID()) 10397 return !IsCompatibility; 10398 if (Op1->getValueID() > Op2->getValueID()) 10399 return false; 10400 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10401 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10402 if (I1->getParent() != I2->getParent()) 10403 return false; 10404 InstructionsState S = getSameOpcode({I1, I2}); 10405 if (S.getOpcode()) 10406 continue; 10407 return false; 10408 } 10409 } 10410 return IsCompatibility; 10411 } 10412 10413 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10414 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10415 bool AtTerminator) { 10416 bool OpsChanged = false; 10417 SmallVector<Instruction *, 4> PostponedCmps; 10418 for (auto *I : reverse(Instructions)) { 10419 if (R.isDeleted(I)) 10420 continue; 10421 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10422 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10423 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10424 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10425 else if (isa<CmpInst>(I)) 10426 PostponedCmps.push_back(I); 10427 } 10428 if (AtTerminator) { 10429 // Try to find reductions first. 10430 for (Instruction *I : PostponedCmps) { 10431 if (R.isDeleted(I)) 10432 continue; 10433 for (Value *Op : I->operands()) 10434 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10435 } 10436 // Try to vectorize operands as vector bundles. 10437 for (Instruction *I : PostponedCmps) { 10438 if (R.isDeleted(I)) 10439 continue; 10440 OpsChanged |= tryToVectorize(I, R); 10441 } 10442 // Try to vectorize list of compares. 10443 // Sort by type, compare predicate, etc. 10444 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10445 return compareCmp<false>(V, V2, 10446 [&R](Instruction *I) { return R.isDeleted(I); }); 10447 }; 10448 10449 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10450 if (V1 == V2) 10451 return true; 10452 return compareCmp<true>(V1, V2, 10453 [&R](Instruction *I) { return R.isDeleted(I); }); 10454 }; 10455 auto Limit = [&R](Value *V) { 10456 unsigned EltSize = R.getVectorElementSize(V); 10457 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10458 }; 10459 10460 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10461 OpsChanged |= tryToVectorizeSequence<Value>( 10462 Vals, Limit, CompareSorter, AreCompatibleCompares, 10463 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10464 // Exclude possible reductions from other blocks. 10465 bool ArePossiblyReducedInOtherBlock = 10466 any_of(Candidates, [](Value *V) { 10467 return any_of(V->users(), [V](User *U) { 10468 return isa<SelectInst>(U) && 10469 cast<SelectInst>(U)->getParent() != 10470 cast<Instruction>(V)->getParent(); 10471 }); 10472 }); 10473 if (ArePossiblyReducedInOtherBlock) 10474 return false; 10475 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10476 }, 10477 /*LimitForRegisterSize=*/true); 10478 Instructions.clear(); 10479 } else { 10480 // Insert in reverse order since the PostponedCmps vector was filled in 10481 // reverse order. 10482 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10483 } 10484 return OpsChanged; 10485 } 10486 10487 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10488 bool Changed = false; 10489 SmallVector<Value *, 4> Incoming; 10490 SmallPtrSet<Value *, 16> VisitedInstrs; 10491 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10492 // node. Allows better to identify the chains that can be vectorized in the 10493 // better way. 10494 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10495 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10496 assert(isValidElementType(V1->getType()) && 10497 isValidElementType(V2->getType()) && 10498 "Expected vectorizable types only."); 10499 // It is fine to compare type IDs here, since we expect only vectorizable 10500 // types, like ints, floats and pointers, we don't care about other type. 10501 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10502 return true; 10503 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10504 return false; 10505 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10506 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10507 if (Opcodes1.size() < Opcodes2.size()) 10508 return true; 10509 if (Opcodes1.size() > Opcodes2.size()) 10510 return false; 10511 Optional<bool> ConstOrder; 10512 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10513 // Undefs are compatible with any other value. 10514 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10515 if (!ConstOrder) 10516 ConstOrder = 10517 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10518 continue; 10519 } 10520 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10521 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10522 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10523 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10524 if (!NodeI1) 10525 return NodeI2 != nullptr; 10526 if (!NodeI2) 10527 return false; 10528 assert((NodeI1 == NodeI2) == 10529 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10530 "Different nodes should have different DFS numbers"); 10531 if (NodeI1 != NodeI2) 10532 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10533 InstructionsState S = getSameOpcode({I1, I2}); 10534 if (S.getOpcode()) 10535 continue; 10536 return I1->getOpcode() < I2->getOpcode(); 10537 } 10538 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10539 if (!ConstOrder) 10540 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10541 continue; 10542 } 10543 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10544 return true; 10545 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10546 return false; 10547 } 10548 return ConstOrder && *ConstOrder; 10549 }; 10550 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10551 if (V1 == V2) 10552 return true; 10553 if (V1->getType() != V2->getType()) 10554 return false; 10555 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10556 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10557 if (Opcodes1.size() != Opcodes2.size()) 10558 return false; 10559 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10560 // Undefs are compatible with any other value. 10561 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10562 continue; 10563 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10564 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10565 if (I1->getParent() != I2->getParent()) 10566 return false; 10567 InstructionsState S = getSameOpcode({I1, I2}); 10568 if (S.getOpcode()) 10569 continue; 10570 return false; 10571 } 10572 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10573 continue; 10574 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10575 return false; 10576 } 10577 return true; 10578 }; 10579 auto Limit = [&R](Value *V) { 10580 unsigned EltSize = R.getVectorElementSize(V); 10581 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10582 }; 10583 10584 bool HaveVectorizedPhiNodes = false; 10585 do { 10586 // Collect the incoming values from the PHIs. 10587 Incoming.clear(); 10588 for (Instruction &I : *BB) { 10589 PHINode *P = dyn_cast<PHINode>(&I); 10590 if (!P) 10591 break; 10592 10593 // No need to analyze deleted, vectorized and non-vectorizable 10594 // instructions. 10595 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10596 isValidElementType(P->getType())) 10597 Incoming.push_back(P); 10598 } 10599 10600 // Find the corresponding non-phi nodes for better matching when trying to 10601 // build the tree. 10602 for (Value *V : Incoming) { 10603 SmallVectorImpl<Value *> &Opcodes = 10604 PHIToOpcodes.try_emplace(V).first->getSecond(); 10605 if (!Opcodes.empty()) 10606 continue; 10607 SmallVector<Value *, 4> Nodes(1, V); 10608 SmallPtrSet<Value *, 4> Visited; 10609 while (!Nodes.empty()) { 10610 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10611 if (!Visited.insert(PHI).second) 10612 continue; 10613 for (Value *V : PHI->incoming_values()) { 10614 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10615 Nodes.push_back(PHI1); 10616 continue; 10617 } 10618 Opcodes.emplace_back(V); 10619 } 10620 } 10621 } 10622 10623 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10624 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10625 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10626 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10627 }, 10628 /*LimitForRegisterSize=*/true); 10629 Changed |= HaveVectorizedPhiNodes; 10630 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10631 } while (HaveVectorizedPhiNodes); 10632 10633 VisitedInstrs.clear(); 10634 10635 SmallVector<Instruction *, 8> PostProcessInstructions; 10636 SmallDenseSet<Instruction *, 4> KeyNodes; 10637 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10638 // Skip instructions with scalable type. The num of elements is unknown at 10639 // compile-time for scalable type. 10640 if (isa<ScalableVectorType>(it->getType())) 10641 continue; 10642 10643 // Skip instructions marked for the deletion. 10644 if (R.isDeleted(&*it)) 10645 continue; 10646 // We may go through BB multiple times so skip the one we have checked. 10647 if (!VisitedInstrs.insert(&*it).second) { 10648 if (it->use_empty() && KeyNodes.contains(&*it) && 10649 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10650 it->isTerminator())) { 10651 // We would like to start over since some instructions are deleted 10652 // and the iterator may become invalid value. 10653 Changed = true; 10654 it = BB->begin(); 10655 e = BB->end(); 10656 } 10657 continue; 10658 } 10659 10660 if (isa<DbgInfoIntrinsic>(it)) 10661 continue; 10662 10663 // Try to vectorize reductions that use PHINodes. 10664 if (PHINode *P = dyn_cast<PHINode>(it)) { 10665 // Check that the PHI is a reduction PHI. 10666 if (P->getNumIncomingValues() == 2) { 10667 // Try to match and vectorize a horizontal reduction. 10668 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10669 TTI)) { 10670 Changed = true; 10671 it = BB->begin(); 10672 e = BB->end(); 10673 continue; 10674 } 10675 } 10676 // Try to vectorize the incoming values of the PHI, to catch reductions 10677 // that feed into PHIs. 10678 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10679 // Skip if the incoming block is the current BB for now. Also, bypass 10680 // unreachable IR for efficiency and to avoid crashing. 10681 // TODO: Collect the skipped incoming values and try to vectorize them 10682 // after processing BB. 10683 if (BB == P->getIncomingBlock(I) || 10684 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10685 continue; 10686 10687 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10688 P->getIncomingBlock(I), R, TTI); 10689 } 10690 continue; 10691 } 10692 10693 // Ran into an instruction without users, like terminator, or function call 10694 // with ignored return value, store. Ignore unused instructions (basing on 10695 // instruction type, except for CallInst and InvokeInst). 10696 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10697 isa<InvokeInst>(it))) { 10698 KeyNodes.insert(&*it); 10699 bool OpsChanged = false; 10700 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10701 for (auto *V : it->operand_values()) { 10702 // Try to match and vectorize a horizontal reduction. 10703 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10704 } 10705 } 10706 // Start vectorization of post-process list of instructions from the 10707 // top-tree instructions to try to vectorize as many instructions as 10708 // possible. 10709 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10710 it->isTerminator()); 10711 if (OpsChanged) { 10712 // We would like to start over since some instructions are deleted 10713 // and the iterator may become invalid value. 10714 Changed = true; 10715 it = BB->begin(); 10716 e = BB->end(); 10717 continue; 10718 } 10719 } 10720 10721 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10722 isa<InsertValueInst>(it)) 10723 PostProcessInstructions.push_back(&*it); 10724 } 10725 10726 return Changed; 10727 } 10728 10729 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10730 auto Changed = false; 10731 for (auto &Entry : GEPs) { 10732 // If the getelementptr list has fewer than two elements, there's nothing 10733 // to do. 10734 if (Entry.second.size() < 2) 10735 continue; 10736 10737 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10738 << Entry.second.size() << ".\n"); 10739 10740 // Process the GEP list in chunks suitable for the target's supported 10741 // vector size. If a vector register can't hold 1 element, we are done. We 10742 // are trying to vectorize the index computations, so the maximum number of 10743 // elements is based on the size of the index expression, rather than the 10744 // size of the GEP itself (the target's pointer size). 10745 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10746 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10747 if (MaxVecRegSize < EltSize) 10748 continue; 10749 10750 unsigned MaxElts = MaxVecRegSize / EltSize; 10751 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10752 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10753 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10754 10755 // Initialize a set a candidate getelementptrs. Note that we use a 10756 // SetVector here to preserve program order. If the index computations 10757 // are vectorizable and begin with loads, we want to minimize the chance 10758 // of having to reorder them later. 10759 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10760 10761 // Some of the candidates may have already been vectorized after we 10762 // initially collected them. If so, they are marked as deleted, so remove 10763 // them from the set of candidates. 10764 Candidates.remove_if( 10765 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10766 10767 // Remove from the set of candidates all pairs of getelementptrs with 10768 // constant differences. Such getelementptrs are likely not good 10769 // candidates for vectorization in a bottom-up phase since one can be 10770 // computed from the other. We also ensure all candidate getelementptr 10771 // indices are unique. 10772 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10773 auto *GEPI = GEPList[I]; 10774 if (!Candidates.count(GEPI)) 10775 continue; 10776 auto *SCEVI = SE->getSCEV(GEPList[I]); 10777 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10778 auto *GEPJ = GEPList[J]; 10779 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10780 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10781 Candidates.remove(GEPI); 10782 Candidates.remove(GEPJ); 10783 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10784 Candidates.remove(GEPJ); 10785 } 10786 } 10787 } 10788 10789 // We break out of the above computation as soon as we know there are 10790 // fewer than two candidates remaining. 10791 if (Candidates.size() < 2) 10792 continue; 10793 10794 // Add the single, non-constant index of each candidate to the bundle. We 10795 // ensured the indices met these constraints when we originally collected 10796 // the getelementptrs. 10797 SmallVector<Value *, 16> Bundle(Candidates.size()); 10798 auto BundleIndex = 0u; 10799 for (auto *V : Candidates) { 10800 auto *GEP = cast<GetElementPtrInst>(V); 10801 auto *GEPIdx = GEP->idx_begin()->get(); 10802 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10803 Bundle[BundleIndex++] = GEPIdx; 10804 } 10805 10806 // Try and vectorize the indices. We are currently only interested in 10807 // gather-like cases of the form: 10808 // 10809 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10810 // 10811 // where the loads of "a", the loads of "b", and the subtractions can be 10812 // performed in parallel. It's likely that detecting this pattern in a 10813 // bottom-up phase will be simpler and less costly than building a 10814 // full-blown top-down phase beginning at the consecutive loads. 10815 Changed |= tryToVectorizeList(Bundle, R); 10816 } 10817 } 10818 return Changed; 10819 } 10820 10821 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10822 bool Changed = false; 10823 // Sort by type, base pointers and values operand. Value operands must be 10824 // compatible (have the same opcode, same parent), otherwise it is 10825 // definitely not profitable to try to vectorize them. 10826 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10827 if (V->getPointerOperandType()->getTypeID() < 10828 V2->getPointerOperandType()->getTypeID()) 10829 return true; 10830 if (V->getPointerOperandType()->getTypeID() > 10831 V2->getPointerOperandType()->getTypeID()) 10832 return false; 10833 // UndefValues are compatible with all other values. 10834 if (isa<UndefValue>(V->getValueOperand()) || 10835 isa<UndefValue>(V2->getValueOperand())) 10836 return false; 10837 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10838 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10839 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10840 DT->getNode(I1->getParent()); 10841 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10842 DT->getNode(I2->getParent()); 10843 assert(NodeI1 && "Should only process reachable instructions"); 10844 assert(NodeI1 && "Should only process reachable instructions"); 10845 assert((NodeI1 == NodeI2) == 10846 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10847 "Different nodes should have different DFS numbers"); 10848 if (NodeI1 != NodeI2) 10849 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10850 InstructionsState S = getSameOpcode({I1, I2}); 10851 if (S.getOpcode()) 10852 return false; 10853 return I1->getOpcode() < I2->getOpcode(); 10854 } 10855 if (isa<Constant>(V->getValueOperand()) && 10856 isa<Constant>(V2->getValueOperand())) 10857 return false; 10858 return V->getValueOperand()->getValueID() < 10859 V2->getValueOperand()->getValueID(); 10860 }; 10861 10862 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10863 if (V1 == V2) 10864 return true; 10865 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10866 return false; 10867 // Undefs are compatible with any other value. 10868 if (isa<UndefValue>(V1->getValueOperand()) || 10869 isa<UndefValue>(V2->getValueOperand())) 10870 return true; 10871 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10872 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10873 if (I1->getParent() != I2->getParent()) 10874 return false; 10875 InstructionsState S = getSameOpcode({I1, I2}); 10876 return S.getOpcode() > 0; 10877 } 10878 if (isa<Constant>(V1->getValueOperand()) && 10879 isa<Constant>(V2->getValueOperand())) 10880 return true; 10881 return V1->getValueOperand()->getValueID() == 10882 V2->getValueOperand()->getValueID(); 10883 }; 10884 auto Limit = [&R, this](StoreInst *SI) { 10885 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10886 return R.getMinVF(EltSize); 10887 }; 10888 10889 // Attempt to sort and vectorize each of the store-groups. 10890 for (auto &Pair : Stores) { 10891 if (Pair.second.size() < 2) 10892 continue; 10893 10894 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10895 << Pair.second.size() << ".\n"); 10896 10897 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10898 continue; 10899 10900 Changed |= tryToVectorizeSequence<StoreInst>( 10901 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10902 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10903 return vectorizeStores(Candidates, R); 10904 }, 10905 /*LimitForRegisterSize=*/false); 10906 } 10907 return Changed; 10908 } 10909 10910 char SLPVectorizer::ID = 0; 10911 10912 static const char lv_name[] = "SLP Vectorizer"; 10913 10914 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10915 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10916 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10917 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10918 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10919 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10920 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10921 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10922 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10923 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10924 10925 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10926