1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetOperations.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/IVDescriptors.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <set> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 using namespace slpvectorizer; 105 106 #define SV_NAME "slp-vectorizer" 107 #define DEBUG_TYPE "SLP" 108 109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 110 111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<unsigned> 133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 134 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 135 136 static cl::opt<int> 137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 138 cl::desc("Maximum depth of the lookup for consecutive stores.")); 139 140 /// Limits the size of scheduling regions in a block. 141 /// It avoid long compile times for _very_ large blocks where vector 142 /// instructions are spread over a wide range. 143 /// This limit is way higher than needed by real-world functions. 144 static cl::opt<int> 145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 146 cl::desc("Limit the size of the SLP scheduling region per block")); 147 148 static cl::opt<int> MinVectorRegSizeOption( 149 "slp-min-reg-size", cl::init(128), cl::Hidden, 150 cl::desc("Attempt to vectorize for this register size in bits")); 151 152 static cl::opt<unsigned> RecursionMaxDepth( 153 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 154 cl::desc("Limit the recursion depth when building a vectorizable tree")); 155 156 static cl::opt<unsigned> MinTreeSize( 157 "slp-min-tree-size", cl::init(3), cl::Hidden, 158 cl::desc("Only vectorize small trees if they are fully vectorizable")); 159 160 // The maximum depth that the look-ahead score heuristic will explore. 161 // The higher this value, the higher the compilation time overhead. 162 static cl::opt<int> LookAheadMaxDepth( 163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 164 cl::desc("The maximum look-ahead depth for operand reordering scores")); 165 166 // The Look-ahead heuristic goes through the users of the bundle to calculate 167 // the users cost in getExternalUsesCost(). To avoid compilation time increase 168 // we limit the number of users visited to this value. 169 static cl::opt<unsigned> LookAheadUsersBudget( 170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 171 cl::desc("The maximum number of users to visit while visiting the " 172 "predecessors. This prevents compilation time increase.")); 173 174 static cl::opt<bool> 175 ViewSLPTree("view-slp-tree", cl::Hidden, 176 cl::desc("Display the SLP trees with Graphviz")); 177 178 // Limit the number of alias checks. The limit is chosen so that 179 // it has no negative effect on the llvm benchmarks. 180 static const unsigned AliasedCheckLimit = 10; 181 182 // Another limit for the alias checks: The maximum distance between load/store 183 // instructions where alias checks are done. 184 // This limit is useful for very large basic blocks. 185 static const unsigned MaxMemDepDistance = 160; 186 187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 188 /// regions to be handled. 189 static const int MinScheduleRegionSize = 16; 190 191 /// Predicate for the element types that the SLP vectorizer supports. 192 /// 193 /// The most important thing to filter here are types which are invalid in LLVM 194 /// vectors. We also filter target specific types which have absolutely no 195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 196 /// avoids spending time checking the cost model and realizing that they will 197 /// be inevitably scalarized. 198 static bool isValidElementType(Type *Ty) { 199 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 200 !Ty->isPPC_FP128Ty(); 201 } 202 203 /// \returns true if all of the instructions in \p VL are in the same block or 204 /// false otherwise. 205 static bool allSameBlock(ArrayRef<Value *> VL) { 206 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 207 if (!I0) 208 return false; 209 BasicBlock *BB = I0->getParent(); 210 for (int I = 1, E = VL.size(); I < E; I++) { 211 auto *II = dyn_cast<Instruction>(VL[I]); 212 if (!II) 213 return false; 214 215 if (BB != II->getParent()) 216 return false; 217 } 218 return true; 219 } 220 221 /// \returns True if the value is a constant (but not globals/constant 222 /// expressions). 223 static bool isConstant(Value *V) { 224 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 225 } 226 227 /// \returns True if all of the values in \p VL are constants (but not 228 /// globals/constant expressions). 229 static bool allConstant(ArrayRef<Value *> VL) { 230 // Constant expressions and globals can't be vectorized like normal integer/FP 231 // constants. 232 return all_of(VL, isConstant); 233 } 234 235 /// \returns True if all of the values in \p VL are identical. 236 static bool isSplat(ArrayRef<Value *> VL) { 237 for (unsigned i = 1, e = VL.size(); i < e; ++i) 238 if (VL[i] != VL[0]) 239 return false; 240 return true; 241 } 242 243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 244 static bool isCommutative(Instruction *I) { 245 if (auto *Cmp = dyn_cast<CmpInst>(I)) 246 return Cmp->isCommutative(); 247 if (auto *BO = dyn_cast<BinaryOperator>(I)) 248 return BO->isCommutative(); 249 // TODO: This should check for generic Instruction::isCommutative(), but 250 // we need to confirm that the caller code correctly handles Intrinsics 251 // for example (does not have 2 operands). 252 return false; 253 } 254 255 /// Checks if the vector of instructions can be represented as a shuffle, like: 256 /// %x0 = extractelement <4 x i8> %x, i32 0 257 /// %x3 = extractelement <4 x i8> %x, i32 3 258 /// %y1 = extractelement <4 x i8> %y, i32 1 259 /// %y2 = extractelement <4 x i8> %y, i32 2 260 /// %x0x0 = mul i8 %x0, %x0 261 /// %x3x3 = mul i8 %x3, %x3 262 /// %y1y1 = mul i8 %y1, %y1 263 /// %y2y2 = mul i8 %y2, %y2 264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 268 /// ret <4 x i8> %ins4 269 /// can be transformed into: 270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 271 /// i32 6> 272 /// %2 = mul <4 x i8> %1, %1 273 /// ret <4 x i8> %2 274 /// We convert this initially to something like: 275 /// %x0 = extractelement <4 x i8> %x, i32 0 276 /// %x3 = extractelement <4 x i8> %x, i32 3 277 /// %y1 = extractelement <4 x i8> %y, i32 1 278 /// %y2 = extractelement <4 x i8> %y, i32 2 279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 283 /// %5 = mul <4 x i8> %4, %4 284 /// %6 = extractelement <4 x i8> %5, i32 0 285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 286 /// %7 = extractelement <4 x i8> %5, i32 1 287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 288 /// %8 = extractelement <4 x i8> %5, i32 2 289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 290 /// %9 = extractelement <4 x i8> %5, i32 3 291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 292 /// ret <4 x i8> %ins4 293 /// InstCombiner transforms this into a shuffle and vector mul 294 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 295 /// TODO: Can we split off and reuse the shuffle mask detection from 296 /// TargetTransformInfo::getInstructionThroughput? 297 static Optional<TargetTransformInfo::ShuffleKind> 298 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 299 auto *EI0 = cast<ExtractElementInst>(VL[0]); 300 unsigned Size = 301 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 302 Value *Vec1 = nullptr; 303 Value *Vec2 = nullptr; 304 enum ShuffleMode { Unknown, Select, Permute }; 305 ShuffleMode CommonShuffleMode = Unknown; 306 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 307 auto *EI = cast<ExtractElementInst>(VL[I]); 308 auto *Vec = EI->getVectorOperand(); 309 // All vector operands must have the same number of vector elements. 310 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 311 return None; 312 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 313 if (!Idx) 314 return None; 315 // Undefined behavior if Idx is negative or >= Size. 316 if (Idx->getValue().uge(Size)) { 317 Mask.push_back(UndefMaskElem); 318 continue; 319 } 320 unsigned IntIdx = Idx->getValue().getZExtValue(); 321 Mask.push_back(IntIdx); 322 // We can extractelement from undef or poison vector. 323 if (isa<UndefValue>(Vec)) 324 continue; 325 // For correct shuffling we have to have at most 2 different vector operands 326 // in all extractelement instructions. 327 if (!Vec1 || Vec1 == Vec) 328 Vec1 = Vec; 329 else if (!Vec2 || Vec2 == Vec) 330 Vec2 = Vec; 331 else 332 return None; 333 if (CommonShuffleMode == Permute) 334 continue; 335 // If the extract index is not the same as the operation number, it is a 336 // permutation. 337 if (IntIdx != I) { 338 CommonShuffleMode = Permute; 339 continue; 340 } 341 CommonShuffleMode = Select; 342 } 343 // If we're not crossing lanes in different vectors, consider it as blending. 344 if (CommonShuffleMode == Select && Vec2) 345 return TargetTransformInfo::SK_Select; 346 // If Vec2 was never used, we have a permutation of a single vector, otherwise 347 // we have permutation of 2 vectors. 348 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 349 : TargetTransformInfo::SK_PermuteSingleSrc; 350 } 351 352 namespace { 353 354 /// Main data required for vectorization of instructions. 355 struct InstructionsState { 356 /// The very first instruction in the list with the main opcode. 357 Value *OpValue = nullptr; 358 359 /// The main/alternate instruction. 360 Instruction *MainOp = nullptr; 361 Instruction *AltOp = nullptr; 362 363 /// The main/alternate opcodes for the list of instructions. 364 unsigned getOpcode() const { 365 return MainOp ? MainOp->getOpcode() : 0; 366 } 367 368 unsigned getAltOpcode() const { 369 return AltOp ? AltOp->getOpcode() : 0; 370 } 371 372 /// Some of the instructions in the list have alternate opcodes. 373 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 374 375 bool isOpcodeOrAlt(Instruction *I) const { 376 unsigned CheckedOpcode = I->getOpcode(); 377 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 378 } 379 380 InstructionsState() = delete; 381 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 382 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 383 }; 384 385 } // end anonymous namespace 386 387 /// Chooses the correct key for scheduling data. If \p Op has the same (or 388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 389 /// OpValue. 390 static Value *isOneOf(const InstructionsState &S, Value *Op) { 391 auto *I = dyn_cast<Instruction>(Op); 392 if (I && S.isOpcodeOrAlt(I)) 393 return Op; 394 return S.OpValue; 395 } 396 397 /// \returns true if \p Opcode is allowed as part of of the main/alternate 398 /// instruction for SLP vectorization. 399 /// 400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 401 /// "shuffled out" lane would result in division by zero. 402 static bool isValidForAlternation(unsigned Opcode) { 403 if (Instruction::isIntDivRem(Opcode)) 404 return false; 405 406 return true; 407 } 408 409 /// \returns analysis of the Instructions in \p VL described in 410 /// InstructionsState, the Opcode that we suppose the whole list 411 /// could be vectorized even if its structure is diverse. 412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 413 unsigned BaseIndex = 0) { 414 // Make sure these are all Instructions. 415 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 416 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 417 418 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 419 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 420 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 421 unsigned AltOpcode = Opcode; 422 unsigned AltIndex = BaseIndex; 423 424 // Check for one alternate opcode from another BinaryOperator. 425 // TODO - generalize to support all operators (types, calls etc.). 426 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 427 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 428 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 429 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 430 continue; 431 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 432 isValidForAlternation(Opcode)) { 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 438 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 439 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 440 if (Ty0 == Ty1) { 441 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 442 continue; 443 if (Opcode == AltOpcode) { 444 assert(isValidForAlternation(Opcode) && 445 isValidForAlternation(InstOpcode) && 446 "Cast isn't safe for alternation, logic needs to be updated!"); 447 AltOpcode = InstOpcode; 448 AltIndex = Cnt; 449 continue; 450 } 451 } 452 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 453 continue; 454 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 455 } 456 457 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 458 cast<Instruction>(VL[AltIndex])); 459 } 460 461 /// \returns true if all of the values in \p VL have the same type or false 462 /// otherwise. 463 static bool allSameType(ArrayRef<Value *> VL) { 464 Type *Ty = VL[0]->getType(); 465 for (int i = 1, e = VL.size(); i < e; i++) 466 if (VL[i]->getType() != Ty) 467 return false; 468 469 return true; 470 } 471 472 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 473 static Optional<unsigned> getExtractIndex(Instruction *E) { 474 unsigned Opcode = E->getOpcode(); 475 assert((Opcode == Instruction::ExtractElement || 476 Opcode == Instruction::ExtractValue) && 477 "Expected extractelement or extractvalue instruction."); 478 if (Opcode == Instruction::ExtractElement) { 479 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 480 if (!CI) 481 return None; 482 return CI->getZExtValue(); 483 } 484 ExtractValueInst *EI = cast<ExtractValueInst>(E); 485 if (EI->getNumIndices() != 1) 486 return None; 487 return *EI->idx_begin(); 488 } 489 490 /// \returns True if in-tree use also needs extract. This refers to 491 /// possible scalar operand in vectorized instruction. 492 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 493 TargetLibraryInfo *TLI) { 494 unsigned Opcode = UserInst->getOpcode(); 495 switch (Opcode) { 496 case Instruction::Load: { 497 LoadInst *LI = cast<LoadInst>(UserInst); 498 return (LI->getPointerOperand() == Scalar); 499 } 500 case Instruction::Store: { 501 StoreInst *SI = cast<StoreInst>(UserInst); 502 return (SI->getPointerOperand() == Scalar); 503 } 504 case Instruction::Call: { 505 CallInst *CI = cast<CallInst>(UserInst); 506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 507 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 508 if (hasVectorInstrinsicScalarOpd(ID, i)) 509 return (CI->getArgOperand(i) == Scalar); 510 } 511 LLVM_FALLTHROUGH; 512 } 513 default: 514 return false; 515 } 516 } 517 518 /// \returns the AA location that is being access by the instruction. 519 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 520 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 521 return MemoryLocation::get(SI); 522 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 523 return MemoryLocation::get(LI); 524 return MemoryLocation(); 525 } 526 527 /// \returns True if the instruction is not a volatile or atomic load/store. 528 static bool isSimple(Instruction *I) { 529 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 530 return LI->isSimple(); 531 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 532 return SI->isSimple(); 533 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 534 return !MI->isVolatile(); 535 return true; 536 } 537 538 namespace llvm { 539 540 static void inversePermutation(ArrayRef<unsigned> Indices, 541 SmallVectorImpl<int> &Mask) { 542 Mask.clear(); 543 const unsigned E = Indices.size(); 544 Mask.resize(E, E + 1); 545 for (unsigned I = 0; I < E; ++I) 546 Mask[Indices[I]] = I; 547 } 548 549 /// \returns inserting index of InsertElement or InsertValue instruction, 550 /// using Offset as base offset for index. 551 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 552 int Index = Offset; 553 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 554 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 555 auto *VT = cast<FixedVectorType>(IE->getType()); 556 if (CI->getValue().uge(VT->getNumElements())) 557 return UndefMaskElem; 558 Index *= VT->getNumElements(); 559 Index += CI->getZExtValue(); 560 return Index; 561 } 562 if (isa<UndefValue>(IE->getOperand(2))) 563 return UndefMaskElem; 564 return None; 565 } 566 567 auto *IV = cast<InsertValueInst>(InsertInst); 568 Type *CurrentType = IV->getType(); 569 for (unsigned I : IV->indices()) { 570 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 571 Index *= ST->getNumElements(); 572 CurrentType = ST->getElementType(I); 573 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 574 Index *= AT->getNumElements(); 575 CurrentType = AT->getElementType(); 576 } else { 577 return None; 578 } 579 Index += I; 580 } 581 return Index; 582 } 583 584 /// Reorders the list of scalars in accordance with the given \p Order and then 585 /// the \p Mask. \p Order - is the original order of the scalars, need to 586 /// reorder scalars into an unordered state at first according to the given 587 /// order. Then the ordered scalars are shuffled once again in accordance with 588 /// the provided mask. 589 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 590 ArrayRef<unsigned> Order, ArrayRef<int> Mask) { 591 assert(!Mask.empty() && "Expected non-empty mask."); 592 SmallVector<Value *> Prev(Scalars.size(), 593 UndefValue::get(Scalars.front()->getType())); 594 Prev.swap(Scalars); 595 if (Order.empty()) { 596 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 597 if (Mask[I] != UndefMaskElem) 598 Scalars[Mask[I]] = Prev[I]; 599 } else { 600 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 601 if (Mask[Order[I]] != UndefMaskElem) 602 Scalars[Mask[Order[I]]] = Prev[Order[I]]; 603 } 604 } 605 606 namespace slpvectorizer { 607 608 /// Bottom Up SLP Vectorizer. 609 class BoUpSLP { 610 struct TreeEntry; 611 struct ScheduleData; 612 613 public: 614 using ValueList = SmallVector<Value *, 8>; 615 using InstrList = SmallVector<Instruction *, 16>; 616 using ValueSet = SmallPtrSet<Value *, 16>; 617 using StoreList = SmallVector<StoreInst *, 8>; 618 using ExtraValueToDebugLocsMap = 619 MapVector<Value *, SmallVector<Instruction *, 2>>; 620 using OrdersType = SmallVector<unsigned, 4>; 621 622 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 623 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 624 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 625 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 626 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 627 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 628 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 629 // Use the vector register size specified by the target unless overridden 630 // by a command-line option. 631 // TODO: It would be better to limit the vectorization factor based on 632 // data type rather than just register size. For example, x86 AVX has 633 // 256-bit registers, but it does not support integer operations 634 // at that width (that requires AVX2). 635 if (MaxVectorRegSizeOption.getNumOccurrences()) 636 MaxVecRegSize = MaxVectorRegSizeOption; 637 else 638 MaxVecRegSize = 639 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 640 .getFixedSize(); 641 642 if (MinVectorRegSizeOption.getNumOccurrences()) 643 MinVecRegSize = MinVectorRegSizeOption; 644 else 645 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 646 } 647 648 /// Vectorize the tree that starts with the elements in \p VL. 649 /// Returns the vectorized root. 650 Value *vectorizeTree(); 651 652 /// Vectorize the tree but with the list of externally used values \p 653 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 654 /// generated extractvalue instructions. 655 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 656 657 /// \returns the cost incurred by unwanted spills and fills, caused by 658 /// holding live values over call sites. 659 InstructionCost getSpillCost() const; 660 661 /// \returns the vectorization cost of the subtree that starts at \p VL. 662 /// A negative number means that this is profitable. 663 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 664 665 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 666 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 667 void buildTree(ArrayRef<Value *> Roots, 668 ArrayRef<Value *> UserIgnoreLst = None); 669 670 /// Builds external uses of the vectorized scalars, i.e. the list of 671 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 672 /// ExternallyUsedValues contains additional list of external uses to handle 673 /// vectorization of reductions. 674 void 675 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 676 677 /// Clear the internal data structures that are created by 'buildTree'. 678 void deleteTree() { 679 VectorizableTree.clear(); 680 ScalarToTreeEntry.clear(); 681 MustGather.clear(); 682 ExternalUses.clear(); 683 for (auto &Iter : BlocksSchedules) { 684 BlockScheduling *BS = Iter.second.get(); 685 BS->clear(); 686 } 687 MinBWs.clear(); 688 InstrElementSize.clear(); 689 } 690 691 unsigned getTreeSize() const { return VectorizableTree.size(); } 692 693 /// Perform LICM and CSE on the newly generated gather sequences. 694 void optimizeGatherSequence(); 695 696 /// Reorders the current graph to the most profitable order starting from the 697 /// root node to the leaf nodes. The best order is chosen only from the nodes 698 /// of the same size (vectorization factor). Smaller nodes are considered 699 /// parts of subgraph with smaller VF and they are reordered independently. We 700 /// can make it because we still need to extend smaller nodes to the wider VF 701 /// and we can merge reordering shuffles with the widening shuffles. If \p 702 /// FreeReorder is true, the reordering of the root node is considered free 703 /// and we don't need to shuffle it to restore its order. 704 void reorderTopToBottom(bool FreeReorder); 705 706 /// Reorders the current graph to the most profitable order starting from 707 /// leaves to the root. It allows to rotate small subgraphs and reduce the 708 /// number of reshuffles if the leaf nodes use the same order. In this case we 709 /// can merge the orders and just shuffle user node instead of shuffling its 710 /// operands. Plus, even the leaf nodes have different orders, it allows to 711 /// sink reordering in the graph closer to the root node and merge it later 712 /// during analysis. If \p FreeReorder is true, it means that the root node of 713 /// the graph is free to reorder and no need to restore its original order. 714 void reorderBottomToTop(bool FreeReorder); 715 716 /// \return The vector element size in bits to use when vectorizing the 717 /// expression tree ending at \p V. If V is a store, the size is the width of 718 /// the stored value. Otherwise, the size is the width of the largest loaded 719 /// value reaching V. This method is used by the vectorizer to calculate 720 /// vectorization factors. 721 unsigned getVectorElementSize(Value *V); 722 723 /// Compute the minimum type sizes required to represent the entries in a 724 /// vectorizable tree. 725 void computeMinimumValueSizes(); 726 727 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 728 unsigned getMaxVecRegSize() const { 729 return MaxVecRegSize; 730 } 731 732 // \returns minimum vector register size as set by cl::opt. 733 unsigned getMinVecRegSize() const { 734 return MinVecRegSize; 735 } 736 737 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 738 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 739 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 740 return MaxVF ? MaxVF : UINT_MAX; 741 } 742 743 /// Check if homogeneous aggregate is isomorphic to some VectorType. 744 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 745 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 746 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 747 /// 748 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 749 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 750 751 /// \returns True if the VectorizableTree is both tiny and not fully 752 /// vectorizable. We do not vectorize such trees. 753 bool isTreeTinyAndNotFullyVectorizable() const; 754 755 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 756 /// can be load combined in the backend. Load combining may not be allowed in 757 /// the IR optimizer, so we do not want to alter the pattern. For example, 758 /// partially transforming a scalar bswap() pattern into vector code is 759 /// effectively impossible for the backend to undo. 760 /// TODO: If load combining is allowed in the IR optimizer, this analysis 761 /// may not be necessary. 762 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 763 764 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 765 /// can be load combined in the backend. Load combining may not be allowed in 766 /// the IR optimizer, so we do not want to alter the pattern. For example, 767 /// partially transforming a scalar bswap() pattern into vector code is 768 /// effectively impossible for the backend to undo. 769 /// TODO: If load combining is allowed in the IR optimizer, this analysis 770 /// may not be necessary. 771 bool isLoadCombineCandidate() const; 772 773 OptimizationRemarkEmitter *getORE() { return ORE; } 774 775 /// This structure holds any data we need about the edges being traversed 776 /// during buildTree_rec(). We keep track of: 777 /// (i) the user TreeEntry index, and 778 /// (ii) the index of the edge. 779 struct EdgeInfo { 780 EdgeInfo() = default; 781 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 782 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 783 /// The user TreeEntry. 784 TreeEntry *UserTE = nullptr; 785 /// The operand index of the use. 786 unsigned EdgeIdx = UINT_MAX; 787 #ifndef NDEBUG 788 friend inline raw_ostream &operator<<(raw_ostream &OS, 789 const BoUpSLP::EdgeInfo &EI) { 790 EI.dump(OS); 791 return OS; 792 } 793 /// Debug print. 794 void dump(raw_ostream &OS) const { 795 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 796 << " EdgeIdx:" << EdgeIdx << "}"; 797 } 798 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 799 #endif 800 }; 801 802 /// A helper data structure to hold the operands of a vector of instructions. 803 /// This supports a fixed vector length for all operand vectors. 804 class VLOperands { 805 /// For each operand we need (i) the value, and (ii) the opcode that it 806 /// would be attached to if the expression was in a left-linearized form. 807 /// This is required to avoid illegal operand reordering. 808 /// For example: 809 /// \verbatim 810 /// 0 Op1 811 /// |/ 812 /// Op1 Op2 Linearized + Op2 813 /// \ / ----------> |/ 814 /// - - 815 /// 816 /// Op1 - Op2 (0 + Op1) - Op2 817 /// \endverbatim 818 /// 819 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 820 /// 821 /// Another way to think of this is to track all the operations across the 822 /// path from the operand all the way to the root of the tree and to 823 /// calculate the operation that corresponds to this path. For example, the 824 /// path from Op2 to the root crosses the RHS of the '-', therefore the 825 /// corresponding operation is a '-' (which matches the one in the 826 /// linearized tree, as shown above). 827 /// 828 /// For lack of a better term, we refer to this operation as Accumulated 829 /// Path Operation (APO). 830 struct OperandData { 831 OperandData() = default; 832 OperandData(Value *V, bool APO, bool IsUsed) 833 : V(V), APO(APO), IsUsed(IsUsed) {} 834 /// The operand value. 835 Value *V = nullptr; 836 /// TreeEntries only allow a single opcode, or an alternate sequence of 837 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 838 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 839 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 840 /// (e.g., Add/Mul) 841 bool APO = false; 842 /// Helper data for the reordering function. 843 bool IsUsed = false; 844 }; 845 846 /// During operand reordering, we are trying to select the operand at lane 847 /// that matches best with the operand at the neighboring lane. Our 848 /// selection is based on the type of value we are looking for. For example, 849 /// if the neighboring lane has a load, we need to look for a load that is 850 /// accessing a consecutive address. These strategies are summarized in the 851 /// 'ReorderingMode' enumerator. 852 enum class ReorderingMode { 853 Load, ///< Matching loads to consecutive memory addresses 854 Opcode, ///< Matching instructions based on opcode (same or alternate) 855 Constant, ///< Matching constants 856 Splat, ///< Matching the same instruction multiple times (broadcast) 857 Failed, ///< We failed to create a vectorizable group 858 }; 859 860 using OperandDataVec = SmallVector<OperandData, 2>; 861 862 /// A vector of operand vectors. 863 SmallVector<OperandDataVec, 4> OpsVec; 864 865 const DataLayout &DL; 866 ScalarEvolution &SE; 867 const BoUpSLP &R; 868 869 /// \returns the operand data at \p OpIdx and \p Lane. 870 OperandData &getData(unsigned OpIdx, unsigned Lane) { 871 return OpsVec[OpIdx][Lane]; 872 } 873 874 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 875 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 876 return OpsVec[OpIdx][Lane]; 877 } 878 879 /// Clears the used flag for all entries. 880 void clearUsed() { 881 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 882 OpIdx != NumOperands; ++OpIdx) 883 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 884 ++Lane) 885 OpsVec[OpIdx][Lane].IsUsed = false; 886 } 887 888 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 889 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 890 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 891 } 892 893 // The hard-coded scores listed here are not very important. When computing 894 // the scores of matching one sub-tree with another, we are basically 895 // counting the number of values that are matching. So even if all scores 896 // are set to 1, we would still get a decent matching result. 897 // However, sometimes we have to break ties. For example we may have to 898 // choose between matching loads vs matching opcodes. This is what these 899 // scores are helping us with: they provide the order of preference. 900 901 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 902 static const int ScoreConsecutiveLoads = 3; 903 /// ExtractElementInst from same vector and consecutive indexes. 904 static const int ScoreConsecutiveExtracts = 3; 905 /// Constants. 906 static const int ScoreConstants = 2; 907 /// Instructions with the same opcode. 908 static const int ScoreSameOpcode = 2; 909 /// Instructions with alt opcodes (e.g, add + sub). 910 static const int ScoreAltOpcodes = 1; 911 /// Identical instructions (a.k.a. splat or broadcast). 912 static const int ScoreSplat = 1; 913 /// Matching with an undef is preferable to failing. 914 static const int ScoreUndef = 1; 915 /// Score for failing to find a decent match. 916 static const int ScoreFail = 0; 917 /// User exteranl to the vectorized code. 918 static const int ExternalUseCost = 1; 919 /// The user is internal but in a different lane. 920 static const int UserInDiffLaneCost = ExternalUseCost; 921 922 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 923 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 924 ScalarEvolution &SE) { 925 auto *LI1 = dyn_cast<LoadInst>(V1); 926 auto *LI2 = dyn_cast<LoadInst>(V2); 927 if (LI1 && LI2) { 928 if (LI1->getParent() != LI2->getParent()) 929 return VLOperands::ScoreFail; 930 931 Optional<int> Dist = getPointersDiff( 932 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 933 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 934 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 935 : VLOperands::ScoreFail; 936 } 937 938 auto *C1 = dyn_cast<Constant>(V1); 939 auto *C2 = dyn_cast<Constant>(V2); 940 if (C1 && C2) 941 return VLOperands::ScoreConstants; 942 943 // Extracts from consecutive indexes of the same vector better score as 944 // the extracts could be optimized away. 945 Value *EV; 946 ConstantInt *Ex1Idx, *Ex2Idx; 947 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 948 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 949 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 950 return VLOperands::ScoreConsecutiveExtracts; 951 952 auto *I1 = dyn_cast<Instruction>(V1); 953 auto *I2 = dyn_cast<Instruction>(V2); 954 if (I1 && I2) { 955 if (I1 == I2) 956 return VLOperands::ScoreSplat; 957 InstructionsState S = getSameOpcode({I1, I2}); 958 // Note: Only consider instructions with <= 2 operands to avoid 959 // complexity explosion. 960 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 961 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 962 : VLOperands::ScoreSameOpcode; 963 } 964 965 if (isa<UndefValue>(V2)) 966 return VLOperands::ScoreUndef; 967 968 return VLOperands::ScoreFail; 969 } 970 971 /// Holds the values and their lane that are taking part in the look-ahead 972 /// score calculation. This is used in the external uses cost calculation. 973 SmallDenseMap<Value *, int> InLookAheadValues; 974 975 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 976 /// either external to the vectorized code, or require shuffling. 977 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 978 const std::pair<Value *, int> &RHS) { 979 int Cost = 0; 980 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 981 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 982 Value *V = Values[Idx].first; 983 if (isa<Constant>(V)) { 984 // Since this is a function pass, it doesn't make semantic sense to 985 // walk the users of a subclass of Constant. The users could be in 986 // another function, or even another module that happens to be in 987 // the same LLVMContext. 988 continue; 989 } 990 991 // Calculate the absolute lane, using the minimum relative lane of LHS 992 // and RHS as base and Idx as the offset. 993 int Ln = std::min(LHS.second, RHS.second) + Idx; 994 assert(Ln >= 0 && "Bad lane calculation"); 995 unsigned UsersBudget = LookAheadUsersBudget; 996 for (User *U : V->users()) { 997 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 998 // The user is in the VectorizableTree. Check if we need to insert. 999 auto It = llvm::find(UserTE->Scalars, U); 1000 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1001 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1002 assert(UserLn >= 0 && "Bad lane"); 1003 if (UserLn != Ln) 1004 Cost += UserInDiffLaneCost; 1005 } else { 1006 // Check if the user is in the look-ahead code. 1007 auto It2 = InLookAheadValues.find(U); 1008 if (It2 != InLookAheadValues.end()) { 1009 // The user is in the look-ahead code. Check the lane. 1010 if (It2->second != Ln) 1011 Cost += UserInDiffLaneCost; 1012 } else { 1013 // The user is neither in SLP tree nor in the look-ahead code. 1014 Cost += ExternalUseCost; 1015 } 1016 } 1017 // Limit the number of visited uses to cap compilation time. 1018 if (--UsersBudget == 0) 1019 break; 1020 } 1021 } 1022 return Cost; 1023 } 1024 1025 /// Go through the operands of \p LHS and \p RHS recursively until \p 1026 /// MaxLevel, and return the cummulative score. For example: 1027 /// \verbatim 1028 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1029 /// \ / \ / \ / \ / 1030 /// + + + + 1031 /// G1 G2 G3 G4 1032 /// \endverbatim 1033 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1034 /// each level recursively, accumulating the score. It starts from matching 1035 /// the additions at level 0, then moves on to the loads (level 1). The 1036 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1037 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1038 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1039 /// Please note that the order of the operands does not matter, as we 1040 /// evaluate the score of all profitable combinations of operands. In 1041 /// other words the score of G1 and G4 is the same as G1 and G2. This 1042 /// heuristic is based on ideas described in: 1043 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1044 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1045 /// Luís F. W. Góes 1046 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1047 const std::pair<Value *, int> &RHS, int CurrLevel, 1048 int MaxLevel) { 1049 1050 Value *V1 = LHS.first; 1051 Value *V2 = RHS.first; 1052 // Get the shallow score of V1 and V2. 1053 int ShallowScoreAtThisLevel = 1054 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1055 getExternalUsesCost(LHS, RHS)); 1056 int Lane1 = LHS.second; 1057 int Lane2 = RHS.second; 1058 1059 // If reached MaxLevel, 1060 // or if V1 and V2 are not instructions, 1061 // or if they are SPLAT, 1062 // or if they are not consecutive, early return the current cost. 1063 auto *I1 = dyn_cast<Instruction>(V1); 1064 auto *I2 = dyn_cast<Instruction>(V2); 1065 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1066 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1067 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1068 return ShallowScoreAtThisLevel; 1069 assert(I1 && I2 && "Should have early exited."); 1070 1071 // Keep track of in-tree values for determining the external-use cost. 1072 InLookAheadValues[V1] = Lane1; 1073 InLookAheadValues[V2] = Lane2; 1074 1075 // Contains the I2 operand indexes that got matched with I1 operands. 1076 SmallSet<unsigned, 4> Op2Used; 1077 1078 // Recursion towards the operands of I1 and I2. We are trying all possbile 1079 // operand pairs, and keeping track of the best score. 1080 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1081 OpIdx1 != NumOperands1; ++OpIdx1) { 1082 // Try to pair op1I with the best operand of I2. 1083 int MaxTmpScore = 0; 1084 unsigned MaxOpIdx2 = 0; 1085 bool FoundBest = false; 1086 // If I2 is commutative try all combinations. 1087 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1088 unsigned ToIdx = isCommutative(I2) 1089 ? I2->getNumOperands() 1090 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1091 assert(FromIdx <= ToIdx && "Bad index"); 1092 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1093 // Skip operands already paired with OpIdx1. 1094 if (Op2Used.count(OpIdx2)) 1095 continue; 1096 // Recursively calculate the cost at each level 1097 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1098 {I2->getOperand(OpIdx2), Lane2}, 1099 CurrLevel + 1, MaxLevel); 1100 // Look for the best score. 1101 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1102 MaxTmpScore = TmpScore; 1103 MaxOpIdx2 = OpIdx2; 1104 FoundBest = true; 1105 } 1106 } 1107 if (FoundBest) { 1108 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1109 Op2Used.insert(MaxOpIdx2); 1110 ShallowScoreAtThisLevel += MaxTmpScore; 1111 } 1112 } 1113 return ShallowScoreAtThisLevel; 1114 } 1115 1116 /// \Returns the look-ahead score, which tells us how much the sub-trees 1117 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1118 /// score. This helps break ties in an informed way when we cannot decide on 1119 /// the order of the operands by just considering the immediate 1120 /// predecessors. 1121 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1122 const std::pair<Value *, int> &RHS) { 1123 InLookAheadValues.clear(); 1124 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1125 } 1126 1127 // Search all operands in Ops[*][Lane] for the one that matches best 1128 // Ops[OpIdx][LastLane] and return its opreand index. 1129 // If no good match can be found, return None. 1130 Optional<unsigned> 1131 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1132 ArrayRef<ReorderingMode> ReorderingModes) { 1133 unsigned NumOperands = getNumOperands(); 1134 1135 // The operand of the previous lane at OpIdx. 1136 Value *OpLastLane = getData(OpIdx, LastLane).V; 1137 1138 // Our strategy mode for OpIdx. 1139 ReorderingMode RMode = ReorderingModes[OpIdx]; 1140 1141 // The linearized opcode of the operand at OpIdx, Lane. 1142 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1143 1144 // The best operand index and its score. 1145 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1146 // are using the score to differentiate between the two. 1147 struct BestOpData { 1148 Optional<unsigned> Idx = None; 1149 unsigned Score = 0; 1150 } BestOp; 1151 1152 // Iterate through all unused operands and look for the best. 1153 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1154 // Get the operand at Idx and Lane. 1155 OperandData &OpData = getData(Idx, Lane); 1156 Value *Op = OpData.V; 1157 bool OpAPO = OpData.APO; 1158 1159 // Skip already selected operands. 1160 if (OpData.IsUsed) 1161 continue; 1162 1163 // Skip if we are trying to move the operand to a position with a 1164 // different opcode in the linearized tree form. This would break the 1165 // semantics. 1166 if (OpAPO != OpIdxAPO) 1167 continue; 1168 1169 // Look for an operand that matches the current mode. 1170 switch (RMode) { 1171 case ReorderingMode::Load: 1172 case ReorderingMode::Constant: 1173 case ReorderingMode::Opcode: { 1174 bool LeftToRight = Lane > LastLane; 1175 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1176 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1177 unsigned Score = 1178 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1179 if (Score > BestOp.Score) { 1180 BestOp.Idx = Idx; 1181 BestOp.Score = Score; 1182 } 1183 break; 1184 } 1185 case ReorderingMode::Splat: 1186 if (Op == OpLastLane) 1187 BestOp.Idx = Idx; 1188 break; 1189 case ReorderingMode::Failed: 1190 return None; 1191 } 1192 } 1193 1194 if (BestOp.Idx) { 1195 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1196 return BestOp.Idx; 1197 } 1198 // If we could not find a good match return None. 1199 return None; 1200 } 1201 1202 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1203 /// reordering from. This is the one which has the least number of operands 1204 /// that can freely move about. 1205 unsigned getBestLaneToStartReordering() const { 1206 unsigned BestLane = 0; 1207 unsigned Min = UINT_MAX; 1208 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1209 ++Lane) { 1210 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1211 if (NumFreeOps < Min) { 1212 Min = NumFreeOps; 1213 BestLane = Lane; 1214 } 1215 } 1216 return BestLane; 1217 } 1218 1219 /// \Returns the maximum number of operands that are allowed to be reordered 1220 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1221 /// start operand reordering. 1222 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1223 unsigned CntTrue = 0; 1224 unsigned NumOperands = getNumOperands(); 1225 // Operands with the same APO can be reordered. We therefore need to count 1226 // how many of them we have for each APO, like this: Cnt[APO] = x. 1227 // Since we only have two APOs, namely true and false, we can avoid using 1228 // a map. Instead we can simply count the number of operands that 1229 // correspond to one of them (in this case the 'true' APO), and calculate 1230 // the other by subtracting it from the total number of operands. 1231 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1232 if (getData(OpIdx, Lane).APO) 1233 ++CntTrue; 1234 unsigned CntFalse = NumOperands - CntTrue; 1235 return std::max(CntTrue, CntFalse); 1236 } 1237 1238 /// Go through the instructions in VL and append their operands. 1239 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1240 assert(!VL.empty() && "Bad VL"); 1241 assert((empty() || VL.size() == getNumLanes()) && 1242 "Expected same number of lanes"); 1243 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1244 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1245 OpsVec.resize(NumOperands); 1246 unsigned NumLanes = VL.size(); 1247 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1248 OpsVec[OpIdx].resize(NumLanes); 1249 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1250 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1251 // Our tree has just 3 nodes: the root and two operands. 1252 // It is therefore trivial to get the APO. We only need to check the 1253 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1254 // RHS operand. The LHS operand of both add and sub is never attached 1255 // to an inversese operation in the linearized form, therefore its APO 1256 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1257 1258 // Since operand reordering is performed on groups of commutative 1259 // operations or alternating sequences (e.g., +, -), we can safely 1260 // tell the inverse operations by checking commutativity. 1261 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1262 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1263 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1264 APO, false}; 1265 } 1266 } 1267 } 1268 1269 /// \returns the number of operands. 1270 unsigned getNumOperands() const { return OpsVec.size(); } 1271 1272 /// \returns the number of lanes. 1273 unsigned getNumLanes() const { return OpsVec[0].size(); } 1274 1275 /// \returns the operand value at \p OpIdx and \p Lane. 1276 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1277 return getData(OpIdx, Lane).V; 1278 } 1279 1280 /// \returns true if the data structure is empty. 1281 bool empty() const { return OpsVec.empty(); } 1282 1283 /// Clears the data. 1284 void clear() { OpsVec.clear(); } 1285 1286 /// \Returns true if there are enough operands identical to \p Op to fill 1287 /// the whole vector. 1288 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1289 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1290 bool OpAPO = getData(OpIdx, Lane).APO; 1291 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1292 if (Ln == Lane) 1293 continue; 1294 // This is set to true if we found a candidate for broadcast at Lane. 1295 bool FoundCandidate = false; 1296 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1297 OperandData &Data = getData(OpI, Ln); 1298 if (Data.APO != OpAPO || Data.IsUsed) 1299 continue; 1300 if (Data.V == Op) { 1301 FoundCandidate = true; 1302 Data.IsUsed = true; 1303 break; 1304 } 1305 } 1306 if (!FoundCandidate) 1307 return false; 1308 } 1309 return true; 1310 } 1311 1312 public: 1313 /// Initialize with all the operands of the instruction vector \p RootVL. 1314 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1315 ScalarEvolution &SE, const BoUpSLP &R) 1316 : DL(DL), SE(SE), R(R) { 1317 // Append all the operands of RootVL. 1318 appendOperandsOfVL(RootVL); 1319 } 1320 1321 /// \Returns a value vector with the operands across all lanes for the 1322 /// opearnd at \p OpIdx. 1323 ValueList getVL(unsigned OpIdx) const { 1324 ValueList OpVL(OpsVec[OpIdx].size()); 1325 assert(OpsVec[OpIdx].size() == getNumLanes() && 1326 "Expected same num of lanes across all operands"); 1327 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1328 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1329 return OpVL; 1330 } 1331 1332 // Performs operand reordering for 2 or more operands. 1333 // The original operands are in OrigOps[OpIdx][Lane]. 1334 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1335 void reorder() { 1336 unsigned NumOperands = getNumOperands(); 1337 unsigned NumLanes = getNumLanes(); 1338 // Each operand has its own mode. We are using this mode to help us select 1339 // the instructions for each lane, so that they match best with the ones 1340 // we have selected so far. 1341 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1342 1343 // This is a greedy single-pass algorithm. We are going over each lane 1344 // once and deciding on the best order right away with no back-tracking. 1345 // However, in order to increase its effectiveness, we start with the lane 1346 // that has operands that can move the least. For example, given the 1347 // following lanes: 1348 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1349 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1350 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1351 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1352 // we will start at Lane 1, since the operands of the subtraction cannot 1353 // be reordered. Then we will visit the rest of the lanes in a circular 1354 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1355 1356 // Find the first lane that we will start our search from. 1357 unsigned FirstLane = getBestLaneToStartReordering(); 1358 1359 // Initialize the modes. 1360 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1361 Value *OpLane0 = getValue(OpIdx, FirstLane); 1362 // Keep track if we have instructions with all the same opcode on one 1363 // side. 1364 if (isa<LoadInst>(OpLane0)) 1365 ReorderingModes[OpIdx] = ReorderingMode::Load; 1366 else if (isa<Instruction>(OpLane0)) { 1367 // Check if OpLane0 should be broadcast. 1368 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1369 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1370 else 1371 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1372 } 1373 else if (isa<Constant>(OpLane0)) 1374 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1375 else if (isa<Argument>(OpLane0)) 1376 // Our best hope is a Splat. It may save some cost in some cases. 1377 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1378 else 1379 // NOTE: This should be unreachable. 1380 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1381 } 1382 1383 // If the initial strategy fails for any of the operand indexes, then we 1384 // perform reordering again in a second pass. This helps avoid assigning 1385 // high priority to the failed strategy, and should improve reordering for 1386 // the non-failed operand indexes. 1387 for (int Pass = 0; Pass != 2; ++Pass) { 1388 // Skip the second pass if the first pass did not fail. 1389 bool StrategyFailed = false; 1390 // Mark all operand data as free to use. 1391 clearUsed(); 1392 // We keep the original operand order for the FirstLane, so reorder the 1393 // rest of the lanes. We are visiting the nodes in a circular fashion, 1394 // using FirstLane as the center point and increasing the radius 1395 // distance. 1396 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1397 // Visit the lane on the right and then the lane on the left. 1398 for (int Direction : {+1, -1}) { 1399 int Lane = FirstLane + Direction * Distance; 1400 if (Lane < 0 || Lane >= (int)NumLanes) 1401 continue; 1402 int LastLane = Lane - Direction; 1403 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1404 "Out of bounds"); 1405 // Look for a good match for each operand. 1406 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1407 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1408 Optional<unsigned> BestIdx = 1409 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1410 // By not selecting a value, we allow the operands that follow to 1411 // select a better matching value. We will get a non-null value in 1412 // the next run of getBestOperand(). 1413 if (BestIdx) { 1414 // Swap the current operand with the one returned by 1415 // getBestOperand(). 1416 swap(OpIdx, BestIdx.getValue(), Lane); 1417 } else { 1418 // We failed to find a best operand, set mode to 'Failed'. 1419 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1420 // Enable the second pass. 1421 StrategyFailed = true; 1422 } 1423 } 1424 } 1425 } 1426 // Skip second pass if the strategy did not fail. 1427 if (!StrategyFailed) 1428 break; 1429 } 1430 } 1431 1432 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1433 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1434 switch (RMode) { 1435 case ReorderingMode::Load: 1436 return "Load"; 1437 case ReorderingMode::Opcode: 1438 return "Opcode"; 1439 case ReorderingMode::Constant: 1440 return "Constant"; 1441 case ReorderingMode::Splat: 1442 return "Splat"; 1443 case ReorderingMode::Failed: 1444 return "Failed"; 1445 } 1446 llvm_unreachable("Unimplemented Reordering Type"); 1447 } 1448 1449 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1450 raw_ostream &OS) { 1451 return OS << getModeStr(RMode); 1452 } 1453 1454 /// Debug print. 1455 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1456 printMode(RMode, dbgs()); 1457 } 1458 1459 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1460 return printMode(RMode, OS); 1461 } 1462 1463 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1464 const unsigned Indent = 2; 1465 unsigned Cnt = 0; 1466 for (const OperandDataVec &OpDataVec : OpsVec) { 1467 OS << "Operand " << Cnt++ << "\n"; 1468 for (const OperandData &OpData : OpDataVec) { 1469 OS.indent(Indent) << "{"; 1470 if (Value *V = OpData.V) 1471 OS << *V; 1472 else 1473 OS << "null"; 1474 OS << ", APO:" << OpData.APO << "}\n"; 1475 } 1476 OS << "\n"; 1477 } 1478 return OS; 1479 } 1480 1481 /// Debug print. 1482 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1483 #endif 1484 }; 1485 1486 /// Checks if the instruction is marked for deletion. 1487 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1488 1489 /// Marks values operands for later deletion by replacing them with Undefs. 1490 void eraseInstructions(ArrayRef<Value *> AV); 1491 1492 ~BoUpSLP(); 1493 1494 private: 1495 /// Checks if all users of \p I are the part of the vectorization tree. 1496 bool areAllUsersVectorized(Instruction *I, 1497 ArrayRef<Value *> VectorizedVals) const; 1498 1499 /// \returns the cost of the vectorizable entry. 1500 InstructionCost getEntryCost(const TreeEntry *E, 1501 ArrayRef<Value *> VectorizedVals); 1502 1503 /// This is the recursive part of buildTree. 1504 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1505 const EdgeInfo &EI); 1506 1507 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1508 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1509 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1510 /// returns false, setting \p CurrentOrder to either an empty vector or a 1511 /// non-identity permutation that allows to reuse extract instructions. 1512 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1513 SmallVectorImpl<unsigned> &CurrentOrder) const; 1514 1515 /// Vectorize a single entry in the tree. 1516 Value *vectorizeTree(TreeEntry *E); 1517 1518 /// Vectorize a single entry in the tree, starting in \p VL. 1519 Value *vectorizeTree(ArrayRef<Value *> VL); 1520 1521 /// \returns the scalarization cost for this type. Scalarization in this 1522 /// context means the creation of vectors from a group of scalars. 1523 InstructionCost 1524 getGatherCost(FixedVectorType *Ty, 1525 const DenseSet<unsigned> &ShuffledIndices) const; 1526 1527 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1528 /// tree entries. 1529 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1530 /// previous tree entries. \p Mask is filled with the shuffle mask. 1531 Optional<TargetTransformInfo::ShuffleKind> 1532 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1533 SmallVectorImpl<const TreeEntry *> &Entries); 1534 1535 /// \returns the scalarization cost for this list of values. Assuming that 1536 /// this subtree gets vectorized, we may need to extract the values from the 1537 /// roots. This method calculates the cost of extracting the values. 1538 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1539 1540 /// Set the Builder insert point to one after the last instruction in 1541 /// the bundle 1542 void setInsertPointAfterBundle(const TreeEntry *E); 1543 1544 /// \returns a vector from a collection of scalars in \p VL. 1545 Value *gather(ArrayRef<Value *> VL); 1546 1547 /// \returns whether the VectorizableTree is fully vectorizable and will 1548 /// be beneficial even the tree height is tiny. 1549 bool isFullyVectorizableTinyTree() const; 1550 1551 /// Reorder commutative or alt operands to get better probability of 1552 /// generating vectorized code. 1553 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1554 SmallVectorImpl<Value *> &Left, 1555 SmallVectorImpl<Value *> &Right, 1556 const DataLayout &DL, 1557 ScalarEvolution &SE, 1558 const BoUpSLP &R); 1559 struct TreeEntry { 1560 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1561 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1562 1563 /// \returns true if the scalars in VL are equal to this entry. 1564 bool isSame(ArrayRef<Value *> VL) const { 1565 if (VL.size() == Scalars.size()) 1566 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1567 return VL.size() == ReuseShuffleIndices.size() && 1568 std::equal( 1569 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1570 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1571 } 1572 1573 /// A vector of scalars. 1574 ValueList Scalars; 1575 1576 /// The Scalars are vectorized into this value. It is initialized to Null. 1577 Value *VectorizedValue = nullptr; 1578 1579 /// Do we need to gather this sequence or vectorize it 1580 /// (either with vector instruction or with scatter/gather 1581 /// intrinsics for store/load)? 1582 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1583 EntryState State; 1584 1585 /// Does this sequence require some shuffling? 1586 SmallVector<int, 4> ReuseShuffleIndices; 1587 1588 /// Does this entry require reordering? 1589 SmallVector<unsigned, 4> ReorderIndices; 1590 1591 /// Points back to the VectorizableTree. 1592 /// 1593 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1594 /// to be a pointer and needs to be able to initialize the child iterator. 1595 /// Thus we need a reference back to the container to translate the indices 1596 /// to entries. 1597 VecTreeTy &Container; 1598 1599 /// The TreeEntry index containing the user of this entry. We can actually 1600 /// have multiple users so the data structure is not truly a tree. 1601 SmallVector<EdgeInfo, 1> UserTreeIndices; 1602 1603 /// The index of this treeEntry in VectorizableTree. 1604 int Idx = -1; 1605 1606 private: 1607 /// The operands of each instruction in each lane Operands[op_index][lane]. 1608 /// Note: This helps avoid the replication of the code that performs the 1609 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1610 SmallVector<ValueList, 2> Operands; 1611 1612 /// The main/alternate instruction. 1613 Instruction *MainOp = nullptr; 1614 Instruction *AltOp = nullptr; 1615 1616 public: 1617 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1618 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1619 if (Operands.size() < OpIdx + 1) 1620 Operands.resize(OpIdx + 1); 1621 assert(Operands[OpIdx].empty() && "Already resized?"); 1622 Operands[OpIdx].resize(Scalars.size()); 1623 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1624 Operands[OpIdx][Lane] = OpVL[Lane]; 1625 } 1626 1627 /// Set the operands of this bundle in their original order. 1628 void setOperandsInOrder() { 1629 assert(Operands.empty() && "Already initialized?"); 1630 auto *I0 = cast<Instruction>(Scalars[0]); 1631 Operands.resize(I0->getNumOperands()); 1632 unsigned NumLanes = Scalars.size(); 1633 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1634 OpIdx != NumOperands; ++OpIdx) { 1635 Operands[OpIdx].resize(NumLanes); 1636 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1637 auto *I = cast<Instruction>(Scalars[Lane]); 1638 assert(I->getNumOperands() == NumOperands && 1639 "Expected same number of operands"); 1640 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1641 } 1642 } 1643 } 1644 1645 /// Reorders operands of the node to the given mask \p Mask. 1646 void reorderOperands(ArrayRef<int> Mask) { 1647 for (ValueList &Operand : Operands) 1648 reorderScalars(Operand, ReorderIndices, Mask); 1649 } 1650 1651 /// \returns the \p OpIdx operand of this TreeEntry. 1652 ValueList &getOperand(unsigned OpIdx) { 1653 assert(OpIdx < Operands.size() && "Off bounds"); 1654 return Operands[OpIdx]; 1655 } 1656 1657 /// \returns the number of operands. 1658 unsigned getNumOperands() const { return Operands.size(); } 1659 1660 /// \return the single \p OpIdx operand. 1661 Value *getSingleOperand(unsigned OpIdx) const { 1662 assert(OpIdx < Operands.size() && "Off bounds"); 1663 assert(!Operands[OpIdx].empty() && "No operand available"); 1664 return Operands[OpIdx][0]; 1665 } 1666 1667 /// Some of the instructions in the list have alternate opcodes. 1668 bool isAltShuffle() const { 1669 return getOpcode() != getAltOpcode(); 1670 } 1671 1672 bool isOpcodeOrAlt(Instruction *I) const { 1673 unsigned CheckedOpcode = I->getOpcode(); 1674 return (getOpcode() == CheckedOpcode || 1675 getAltOpcode() == CheckedOpcode); 1676 } 1677 1678 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1679 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1680 /// \p OpValue. 1681 Value *isOneOf(Value *Op) const { 1682 auto *I = dyn_cast<Instruction>(Op); 1683 if (I && isOpcodeOrAlt(I)) 1684 return Op; 1685 return MainOp; 1686 } 1687 1688 void setOperations(const InstructionsState &S) { 1689 MainOp = S.MainOp; 1690 AltOp = S.AltOp; 1691 } 1692 1693 Instruction *getMainOp() const { 1694 return MainOp; 1695 } 1696 1697 Instruction *getAltOp() const { 1698 return AltOp; 1699 } 1700 1701 /// The main/alternate opcodes for the list of instructions. 1702 unsigned getOpcode() const { 1703 return MainOp ? MainOp->getOpcode() : 0; 1704 } 1705 1706 unsigned getAltOpcode() const { 1707 return AltOp ? AltOp->getOpcode() : 0; 1708 } 1709 1710 /// Update operations state of this entry if reorder occurred. 1711 bool updateStateIfReorder() { 1712 if (ReorderIndices.empty()) 1713 return false; 1714 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1715 setOperations(S); 1716 return true; 1717 } 1718 /// When ReuseShuffleIndices is empty it just returns position of \p V 1719 /// within vector of Scalars. Otherwise, try to remap on its reuse index. 1720 int findLaneForValue(Value *V) const { 1721 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1722 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1723 if (!ReuseShuffleIndices.empty()) { 1724 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1725 find(ReuseShuffleIndices, FoundLane)); 1726 } 1727 return FoundLane; 1728 } 1729 1730 #ifndef NDEBUG 1731 /// Debug printer. 1732 LLVM_DUMP_METHOD void dump() const { 1733 dbgs() << Idx << ".\n"; 1734 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1735 dbgs() << "Operand " << OpI << ":\n"; 1736 for (const Value *V : Operands[OpI]) 1737 dbgs().indent(2) << *V << "\n"; 1738 } 1739 dbgs() << "Scalars: \n"; 1740 for (Value *V : Scalars) 1741 dbgs().indent(2) << *V << "\n"; 1742 dbgs() << "State: "; 1743 switch (State) { 1744 case Vectorize: 1745 dbgs() << "Vectorize\n"; 1746 break; 1747 case ScatterVectorize: 1748 dbgs() << "ScatterVectorize\n"; 1749 break; 1750 case NeedToGather: 1751 dbgs() << "NeedToGather\n"; 1752 break; 1753 } 1754 dbgs() << "MainOp: "; 1755 if (MainOp) 1756 dbgs() << *MainOp << "\n"; 1757 else 1758 dbgs() << "NULL\n"; 1759 dbgs() << "AltOp: "; 1760 if (AltOp) 1761 dbgs() << *AltOp << "\n"; 1762 else 1763 dbgs() << "NULL\n"; 1764 dbgs() << "VectorizedValue: "; 1765 if (VectorizedValue) 1766 dbgs() << *VectorizedValue << "\n"; 1767 else 1768 dbgs() << "NULL\n"; 1769 dbgs() << "ReuseShuffleIndices: "; 1770 if (ReuseShuffleIndices.empty()) 1771 dbgs() << "Empty"; 1772 else 1773 for (unsigned ReuseIdx : ReuseShuffleIndices) 1774 dbgs() << ReuseIdx << ", "; 1775 dbgs() << "\n"; 1776 dbgs() << "ReorderIndices: "; 1777 for (unsigned ReorderIdx : ReorderIndices) 1778 dbgs() << ReorderIdx << ", "; 1779 dbgs() << "\n"; 1780 dbgs() << "UserTreeIndices: "; 1781 for (const auto &EInfo : UserTreeIndices) 1782 dbgs() << EInfo << ", "; 1783 dbgs() << "\n"; 1784 } 1785 #endif 1786 }; 1787 1788 #ifndef NDEBUG 1789 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1790 InstructionCost VecCost, 1791 InstructionCost ScalarCost) const { 1792 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1793 dbgs() << "SLP: Costs:\n"; 1794 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1795 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1796 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1797 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1798 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1799 } 1800 #endif 1801 1802 /// Create a new VectorizableTree entry. 1803 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1804 const InstructionsState &S, 1805 const EdgeInfo &UserTreeIdx, 1806 ArrayRef<unsigned> ReuseShuffleIndices = None, 1807 ArrayRef<unsigned> ReorderIndices = None) { 1808 TreeEntry::EntryState EntryState = 1809 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1810 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1811 ReuseShuffleIndices, ReorderIndices); 1812 } 1813 1814 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1815 TreeEntry::EntryState EntryState, 1816 Optional<ScheduleData *> Bundle, 1817 const InstructionsState &S, 1818 const EdgeInfo &UserTreeIdx, 1819 ArrayRef<unsigned> ReuseShuffleIndices = None, 1820 ArrayRef<unsigned> ReorderIndices = None) { 1821 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1822 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1823 "Need to vectorize gather entry?"); 1824 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1825 TreeEntry *Last = VectorizableTree.back().get(); 1826 Last->Idx = VectorizableTree.size() - 1; 1827 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1828 Last->State = EntryState; 1829 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1830 ReuseShuffleIndices.end()); 1831 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1832 Last->setOperations(S); 1833 if (Last->State != TreeEntry::NeedToGather) { 1834 for (Value *V : VL) { 1835 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1836 ScalarToTreeEntry[V] = Last; 1837 } 1838 // Update the scheduler bundle to point to this TreeEntry. 1839 unsigned Lane = 0; 1840 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1841 BundleMember = BundleMember->NextInBundle) { 1842 BundleMember->TE = Last; 1843 BundleMember->Lane = Lane; 1844 ++Lane; 1845 } 1846 assert((!Bundle.getValue() || Lane == VL.size()) && 1847 "Bundle and VL out of sync"); 1848 } else { 1849 MustGather.insert(VL.begin(), VL.end()); 1850 } 1851 1852 if (UserTreeIdx.UserTE) 1853 Last->UserTreeIndices.push_back(UserTreeIdx); 1854 1855 return Last; 1856 } 1857 1858 /// -- Vectorization State -- 1859 /// Holds all of the tree entries. 1860 TreeEntry::VecTreeTy VectorizableTree; 1861 1862 #ifndef NDEBUG 1863 /// Debug printer. 1864 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1865 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1866 VectorizableTree[Id]->dump(); 1867 dbgs() << "\n"; 1868 } 1869 } 1870 #endif 1871 1872 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1873 1874 const TreeEntry *getTreeEntry(Value *V) const { 1875 return ScalarToTreeEntry.lookup(V); 1876 } 1877 1878 /// Maps a specific scalar to its tree entry. 1879 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1880 1881 /// Maps a value to the proposed vectorizable size. 1882 SmallDenseMap<Value *, unsigned> InstrElementSize; 1883 1884 /// A list of scalars that we found that we need to keep as scalars. 1885 ValueSet MustGather; 1886 1887 /// This POD struct describes one external user in the vectorized tree. 1888 struct ExternalUser { 1889 ExternalUser(Value *S, llvm::User *U, int L) 1890 : Scalar(S), User(U), Lane(L) {} 1891 1892 // Which scalar in our function. 1893 Value *Scalar; 1894 1895 // Which user that uses the scalar. 1896 llvm::User *User; 1897 1898 // Which lane does the scalar belong to. 1899 int Lane; 1900 }; 1901 using UserList = SmallVector<ExternalUser, 16>; 1902 1903 /// Checks if two instructions may access the same memory. 1904 /// 1905 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1906 /// is invariant in the calling loop. 1907 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1908 Instruction *Inst2) { 1909 // First check if the result is already in the cache. 1910 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1911 Optional<bool> &result = AliasCache[key]; 1912 if (result.hasValue()) { 1913 return result.getValue(); 1914 } 1915 MemoryLocation Loc2 = getLocation(Inst2, AA); 1916 bool aliased = true; 1917 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1918 // Do the alias check. 1919 aliased = !AA->isNoAlias(Loc1, Loc2); 1920 } 1921 // Store the result in the cache. 1922 result = aliased; 1923 return aliased; 1924 } 1925 1926 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1927 1928 /// Cache for alias results. 1929 /// TODO: consider moving this to the AliasAnalysis itself. 1930 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1931 1932 /// Removes an instruction from its block and eventually deletes it. 1933 /// It's like Instruction::eraseFromParent() except that the actual deletion 1934 /// is delayed until BoUpSLP is destructed. 1935 /// This is required to ensure that there are no incorrect collisions in the 1936 /// AliasCache, which can happen if a new instruction is allocated at the 1937 /// same address as a previously deleted instruction. 1938 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1939 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1940 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1941 } 1942 1943 /// Temporary store for deleted instructions. Instructions will be deleted 1944 /// eventually when the BoUpSLP is destructed. 1945 DenseMap<Instruction *, bool> DeletedInstructions; 1946 1947 /// A list of values that need to extracted out of the tree. 1948 /// This list holds pairs of (Internal Scalar : External User). External User 1949 /// can be nullptr, it means that this Internal Scalar will be used later, 1950 /// after vectorization. 1951 UserList ExternalUses; 1952 1953 /// Values used only by @llvm.assume calls. 1954 SmallPtrSet<const Value *, 32> EphValues; 1955 1956 /// Holds all of the instructions that we gathered. 1957 SetVector<Instruction *> GatherSeq; 1958 1959 /// A list of blocks that we are going to CSE. 1960 SetVector<BasicBlock *> CSEBlocks; 1961 1962 /// Contains all scheduling relevant data for an instruction. 1963 /// A ScheduleData either represents a single instruction or a member of an 1964 /// instruction bundle (= a group of instructions which is combined into a 1965 /// vector instruction). 1966 struct ScheduleData { 1967 // The initial value for the dependency counters. It means that the 1968 // dependencies are not calculated yet. 1969 enum { InvalidDeps = -1 }; 1970 1971 ScheduleData() = default; 1972 1973 void init(int BlockSchedulingRegionID, Value *OpVal) { 1974 FirstInBundle = this; 1975 NextInBundle = nullptr; 1976 NextLoadStore = nullptr; 1977 IsScheduled = false; 1978 SchedulingRegionID = BlockSchedulingRegionID; 1979 UnscheduledDepsInBundle = UnscheduledDeps; 1980 clearDependencies(); 1981 OpValue = OpVal; 1982 TE = nullptr; 1983 Lane = -1; 1984 } 1985 1986 /// Returns true if the dependency information has been calculated. 1987 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1988 1989 /// Returns true for single instructions and for bundle representatives 1990 /// (= the head of a bundle). 1991 bool isSchedulingEntity() const { return FirstInBundle == this; } 1992 1993 /// Returns true if it represents an instruction bundle and not only a 1994 /// single instruction. 1995 bool isPartOfBundle() const { 1996 return NextInBundle != nullptr || FirstInBundle != this; 1997 } 1998 1999 /// Returns true if it is ready for scheduling, i.e. it has no more 2000 /// unscheduled depending instructions/bundles. 2001 bool isReady() const { 2002 assert(isSchedulingEntity() && 2003 "can't consider non-scheduling entity for ready list"); 2004 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2005 } 2006 2007 /// Modifies the number of unscheduled dependencies, also updating it for 2008 /// the whole bundle. 2009 int incrementUnscheduledDeps(int Incr) { 2010 UnscheduledDeps += Incr; 2011 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2012 } 2013 2014 /// Sets the number of unscheduled dependencies to the number of 2015 /// dependencies. 2016 void resetUnscheduledDeps() { 2017 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2018 } 2019 2020 /// Clears all dependency information. 2021 void clearDependencies() { 2022 Dependencies = InvalidDeps; 2023 resetUnscheduledDeps(); 2024 MemoryDependencies.clear(); 2025 } 2026 2027 void dump(raw_ostream &os) const { 2028 if (!isSchedulingEntity()) { 2029 os << "/ " << *Inst; 2030 } else if (NextInBundle) { 2031 os << '[' << *Inst; 2032 ScheduleData *SD = NextInBundle; 2033 while (SD) { 2034 os << ';' << *SD->Inst; 2035 SD = SD->NextInBundle; 2036 } 2037 os << ']'; 2038 } else { 2039 os << *Inst; 2040 } 2041 } 2042 2043 Instruction *Inst = nullptr; 2044 2045 /// Points to the head in an instruction bundle (and always to this for 2046 /// single instructions). 2047 ScheduleData *FirstInBundle = nullptr; 2048 2049 /// Single linked list of all instructions in a bundle. Null if it is a 2050 /// single instruction. 2051 ScheduleData *NextInBundle = nullptr; 2052 2053 /// Single linked list of all memory instructions (e.g. load, store, call) 2054 /// in the block - until the end of the scheduling region. 2055 ScheduleData *NextLoadStore = nullptr; 2056 2057 /// The dependent memory instructions. 2058 /// This list is derived on demand in calculateDependencies(). 2059 SmallVector<ScheduleData *, 4> MemoryDependencies; 2060 2061 /// This ScheduleData is in the current scheduling region if this matches 2062 /// the current SchedulingRegionID of BlockScheduling. 2063 int SchedulingRegionID = 0; 2064 2065 /// Used for getting a "good" final ordering of instructions. 2066 int SchedulingPriority = 0; 2067 2068 /// The number of dependencies. Constitutes of the number of users of the 2069 /// instruction plus the number of dependent memory instructions (if any). 2070 /// This value is calculated on demand. 2071 /// If InvalidDeps, the number of dependencies is not calculated yet. 2072 int Dependencies = InvalidDeps; 2073 2074 /// The number of dependencies minus the number of dependencies of scheduled 2075 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2076 /// for scheduling. 2077 /// Note that this is negative as long as Dependencies is not calculated. 2078 int UnscheduledDeps = InvalidDeps; 2079 2080 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2081 /// single instructions. 2082 int UnscheduledDepsInBundle = InvalidDeps; 2083 2084 /// True if this instruction is scheduled (or considered as scheduled in the 2085 /// dry-run). 2086 bool IsScheduled = false; 2087 2088 /// Opcode of the current instruction in the schedule data. 2089 Value *OpValue = nullptr; 2090 2091 /// The TreeEntry that this instruction corresponds to. 2092 TreeEntry *TE = nullptr; 2093 2094 /// The lane of this node in the TreeEntry. 2095 int Lane = -1; 2096 }; 2097 2098 #ifndef NDEBUG 2099 friend inline raw_ostream &operator<<(raw_ostream &os, 2100 const BoUpSLP::ScheduleData &SD) { 2101 SD.dump(os); 2102 return os; 2103 } 2104 #endif 2105 2106 friend struct GraphTraits<BoUpSLP *>; 2107 friend struct DOTGraphTraits<BoUpSLP *>; 2108 2109 /// Contains all scheduling data for a basic block. 2110 struct BlockScheduling { 2111 BlockScheduling(BasicBlock *BB) 2112 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2113 2114 void clear() { 2115 ReadyInsts.clear(); 2116 ScheduleStart = nullptr; 2117 ScheduleEnd = nullptr; 2118 FirstLoadStoreInRegion = nullptr; 2119 LastLoadStoreInRegion = nullptr; 2120 2121 // Reduce the maximum schedule region size by the size of the 2122 // previous scheduling run. 2123 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2124 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2125 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2126 ScheduleRegionSize = 0; 2127 2128 // Make a new scheduling region, i.e. all existing ScheduleData is not 2129 // in the new region yet. 2130 ++SchedulingRegionID; 2131 } 2132 2133 ScheduleData *getScheduleData(Value *V) { 2134 ScheduleData *SD = ScheduleDataMap[V]; 2135 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2136 return SD; 2137 return nullptr; 2138 } 2139 2140 ScheduleData *getScheduleData(Value *V, Value *Key) { 2141 if (V == Key) 2142 return getScheduleData(V); 2143 auto I = ExtraScheduleDataMap.find(V); 2144 if (I != ExtraScheduleDataMap.end()) { 2145 ScheduleData *SD = I->second[Key]; 2146 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2147 return SD; 2148 } 2149 return nullptr; 2150 } 2151 2152 bool isInSchedulingRegion(ScheduleData *SD) const { 2153 return SD->SchedulingRegionID == SchedulingRegionID; 2154 } 2155 2156 /// Marks an instruction as scheduled and puts all dependent ready 2157 /// instructions into the ready-list. 2158 template <typename ReadyListType> 2159 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2160 SD->IsScheduled = true; 2161 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2162 2163 ScheduleData *BundleMember = SD; 2164 while (BundleMember) { 2165 if (BundleMember->Inst != BundleMember->OpValue) { 2166 BundleMember = BundleMember->NextInBundle; 2167 continue; 2168 } 2169 // Handle the def-use chain dependencies. 2170 2171 // Decrement the unscheduled counter and insert to ready list if ready. 2172 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2173 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2174 if (OpDef && OpDef->hasValidDependencies() && 2175 OpDef->incrementUnscheduledDeps(-1) == 0) { 2176 // There are no more unscheduled dependencies after 2177 // decrementing, so we can put the dependent instruction 2178 // into the ready list. 2179 ScheduleData *DepBundle = OpDef->FirstInBundle; 2180 assert(!DepBundle->IsScheduled && 2181 "already scheduled bundle gets ready"); 2182 ReadyList.insert(DepBundle); 2183 LLVM_DEBUG(dbgs() 2184 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2185 } 2186 }); 2187 }; 2188 2189 // If BundleMember is a vector bundle, its operands may have been 2190 // reordered duiring buildTree(). We therefore need to get its operands 2191 // through the TreeEntry. 2192 if (TreeEntry *TE = BundleMember->TE) { 2193 int Lane = BundleMember->Lane; 2194 assert(Lane >= 0 && "Lane not set"); 2195 2196 // Since vectorization tree is being built recursively this assertion 2197 // ensures that the tree entry has all operands set before reaching 2198 // this code. Couple of exceptions known at the moment are extracts 2199 // where their second (immediate) operand is not added. Since 2200 // immediates do not affect scheduler behavior this is considered 2201 // okay. 2202 auto *In = TE->getMainOp(); 2203 assert(In && 2204 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2205 In->getNumOperands() == TE->getNumOperands()) && 2206 "Missed TreeEntry operands?"); 2207 (void)In; // fake use to avoid build failure when assertions disabled 2208 2209 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2210 OpIdx != NumOperands; ++OpIdx) 2211 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2212 DecrUnsched(I); 2213 } else { 2214 // If BundleMember is a stand-alone instruction, no operand reordering 2215 // has taken place, so we directly access its operands. 2216 for (Use &U : BundleMember->Inst->operands()) 2217 if (auto *I = dyn_cast<Instruction>(U.get())) 2218 DecrUnsched(I); 2219 } 2220 // Handle the memory dependencies. 2221 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2222 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2223 // There are no more unscheduled dependencies after decrementing, 2224 // so we can put the dependent instruction into the ready list. 2225 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2226 assert(!DepBundle->IsScheduled && 2227 "already scheduled bundle gets ready"); 2228 ReadyList.insert(DepBundle); 2229 LLVM_DEBUG(dbgs() 2230 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2231 } 2232 } 2233 BundleMember = BundleMember->NextInBundle; 2234 } 2235 } 2236 2237 void doForAllOpcodes(Value *V, 2238 function_ref<void(ScheduleData *SD)> Action) { 2239 if (ScheduleData *SD = getScheduleData(V)) 2240 Action(SD); 2241 auto I = ExtraScheduleDataMap.find(V); 2242 if (I != ExtraScheduleDataMap.end()) 2243 for (auto &P : I->second) 2244 if (P.second->SchedulingRegionID == SchedulingRegionID) 2245 Action(P.second); 2246 } 2247 2248 /// Put all instructions into the ReadyList which are ready for scheduling. 2249 template <typename ReadyListType> 2250 void initialFillReadyList(ReadyListType &ReadyList) { 2251 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2252 doForAllOpcodes(I, [&](ScheduleData *SD) { 2253 if (SD->isSchedulingEntity() && SD->isReady()) { 2254 ReadyList.insert(SD); 2255 LLVM_DEBUG(dbgs() 2256 << "SLP: initially in ready list: " << *I << "\n"); 2257 } 2258 }); 2259 } 2260 } 2261 2262 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2263 /// cyclic dependencies. This is only a dry-run, no instructions are 2264 /// actually moved at this stage. 2265 /// \returns the scheduling bundle. The returned Optional value is non-None 2266 /// if \p VL is allowed to be scheduled. 2267 Optional<ScheduleData *> 2268 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2269 const InstructionsState &S); 2270 2271 /// Un-bundles a group of instructions. 2272 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2273 2274 /// Allocates schedule data chunk. 2275 ScheduleData *allocateScheduleDataChunks(); 2276 2277 /// Extends the scheduling region so that V is inside the region. 2278 /// \returns true if the region size is within the limit. 2279 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2280 2281 /// Initialize the ScheduleData structures for new instructions in the 2282 /// scheduling region. 2283 void initScheduleData(Instruction *FromI, Instruction *ToI, 2284 ScheduleData *PrevLoadStore, 2285 ScheduleData *NextLoadStore); 2286 2287 /// Updates the dependency information of a bundle and of all instructions/ 2288 /// bundles which depend on the original bundle. 2289 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2290 BoUpSLP *SLP); 2291 2292 /// Sets all instruction in the scheduling region to un-scheduled. 2293 void resetSchedule(); 2294 2295 BasicBlock *BB; 2296 2297 /// Simple memory allocation for ScheduleData. 2298 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2299 2300 /// The size of a ScheduleData array in ScheduleDataChunks. 2301 int ChunkSize; 2302 2303 /// The allocator position in the current chunk, which is the last entry 2304 /// of ScheduleDataChunks. 2305 int ChunkPos; 2306 2307 /// Attaches ScheduleData to Instruction. 2308 /// Note that the mapping survives during all vectorization iterations, i.e. 2309 /// ScheduleData structures are recycled. 2310 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2311 2312 /// Attaches ScheduleData to Instruction with the leading key. 2313 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2314 ExtraScheduleDataMap; 2315 2316 struct ReadyList : SmallVector<ScheduleData *, 8> { 2317 void insert(ScheduleData *SD) { push_back(SD); } 2318 }; 2319 2320 /// The ready-list for scheduling (only used for the dry-run). 2321 ReadyList ReadyInsts; 2322 2323 /// The first instruction of the scheduling region. 2324 Instruction *ScheduleStart = nullptr; 2325 2326 /// The first instruction _after_ the scheduling region. 2327 Instruction *ScheduleEnd = nullptr; 2328 2329 /// The first memory accessing instruction in the scheduling region 2330 /// (can be null). 2331 ScheduleData *FirstLoadStoreInRegion = nullptr; 2332 2333 /// The last memory accessing instruction in the scheduling region 2334 /// (can be null). 2335 ScheduleData *LastLoadStoreInRegion = nullptr; 2336 2337 /// The current size of the scheduling region. 2338 int ScheduleRegionSize = 0; 2339 2340 /// The maximum size allowed for the scheduling region. 2341 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2342 2343 /// The ID of the scheduling region. For a new vectorization iteration this 2344 /// is incremented which "removes" all ScheduleData from the region. 2345 // Make sure that the initial SchedulingRegionID is greater than the 2346 // initial SchedulingRegionID in ScheduleData (which is 0). 2347 int SchedulingRegionID = 1; 2348 }; 2349 2350 /// Attaches the BlockScheduling structures to basic blocks. 2351 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2352 2353 /// Performs the "real" scheduling. Done before vectorization is actually 2354 /// performed in a basic block. 2355 void scheduleBlock(BlockScheduling *BS); 2356 2357 /// List of users to ignore during scheduling and that don't need extracting. 2358 ArrayRef<Value *> UserIgnoreList; 2359 2360 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2361 /// sorted SmallVectors of unsigned. 2362 struct OrdersTypeDenseMapInfo { 2363 static OrdersType getEmptyKey() { 2364 OrdersType V; 2365 V.push_back(~1U); 2366 return V; 2367 } 2368 2369 static OrdersType getTombstoneKey() { 2370 OrdersType V; 2371 V.push_back(~2U); 2372 return V; 2373 } 2374 2375 static unsigned getHashValue(const OrdersType &V) { 2376 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2377 } 2378 2379 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2380 return LHS == RHS; 2381 } 2382 }; 2383 2384 // Analysis and block reference. 2385 Function *F; 2386 ScalarEvolution *SE; 2387 TargetTransformInfo *TTI; 2388 TargetLibraryInfo *TLI; 2389 AAResults *AA; 2390 LoopInfo *LI; 2391 DominatorTree *DT; 2392 AssumptionCache *AC; 2393 DemandedBits *DB; 2394 const DataLayout *DL; 2395 OptimizationRemarkEmitter *ORE; 2396 2397 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2398 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2399 2400 /// Instruction builder to construct the vectorized tree. 2401 IRBuilder<> Builder; 2402 2403 /// A map of scalar integer values to the smallest bit width with which they 2404 /// can legally be represented. The values map to (width, signed) pairs, 2405 /// where "width" indicates the minimum bit width and "signed" is True if the 2406 /// value must be signed-extended, rather than zero-extended, back to its 2407 /// original width. 2408 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2409 }; 2410 2411 } // end namespace slpvectorizer 2412 2413 template <> struct GraphTraits<BoUpSLP *> { 2414 using TreeEntry = BoUpSLP::TreeEntry; 2415 2416 /// NodeRef has to be a pointer per the GraphWriter. 2417 using NodeRef = TreeEntry *; 2418 2419 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2420 2421 /// Add the VectorizableTree to the index iterator to be able to return 2422 /// TreeEntry pointers. 2423 struct ChildIteratorType 2424 : public iterator_adaptor_base< 2425 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2426 ContainerTy &VectorizableTree; 2427 2428 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2429 ContainerTy &VT) 2430 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2431 2432 NodeRef operator*() { return I->UserTE; } 2433 }; 2434 2435 static NodeRef getEntryNode(BoUpSLP &R) { 2436 return R.VectorizableTree[0].get(); 2437 } 2438 2439 static ChildIteratorType child_begin(NodeRef N) { 2440 return {N->UserTreeIndices.begin(), N->Container}; 2441 } 2442 2443 static ChildIteratorType child_end(NodeRef N) { 2444 return {N->UserTreeIndices.end(), N->Container}; 2445 } 2446 2447 /// For the node iterator we just need to turn the TreeEntry iterator into a 2448 /// TreeEntry* iterator so that it dereferences to NodeRef. 2449 class nodes_iterator { 2450 using ItTy = ContainerTy::iterator; 2451 ItTy It; 2452 2453 public: 2454 nodes_iterator(const ItTy &It2) : It(It2) {} 2455 NodeRef operator*() { return It->get(); } 2456 nodes_iterator operator++() { 2457 ++It; 2458 return *this; 2459 } 2460 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2461 }; 2462 2463 static nodes_iterator nodes_begin(BoUpSLP *R) { 2464 return nodes_iterator(R->VectorizableTree.begin()); 2465 } 2466 2467 static nodes_iterator nodes_end(BoUpSLP *R) { 2468 return nodes_iterator(R->VectorizableTree.end()); 2469 } 2470 2471 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2472 }; 2473 2474 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2475 using TreeEntry = BoUpSLP::TreeEntry; 2476 2477 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2478 2479 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2480 std::string Str; 2481 raw_string_ostream OS(Str); 2482 if (isSplat(Entry->Scalars)) { 2483 OS << "<splat> " << *Entry->Scalars[0]; 2484 return Str; 2485 } 2486 for (auto V : Entry->Scalars) { 2487 OS << *V; 2488 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2489 return EU.Scalar == V; 2490 })) 2491 OS << " <extract>"; 2492 OS << "\n"; 2493 } 2494 return Str; 2495 } 2496 2497 static std::string getNodeAttributes(const TreeEntry *Entry, 2498 const BoUpSLP *) { 2499 if (Entry->State == TreeEntry::NeedToGather) 2500 return "color=red"; 2501 return ""; 2502 } 2503 }; 2504 2505 } // end namespace llvm 2506 2507 BoUpSLP::~BoUpSLP() { 2508 for (const auto &Pair : DeletedInstructions) { 2509 // Replace operands of ignored instructions with Undefs in case if they were 2510 // marked for deletion. 2511 if (Pair.getSecond()) { 2512 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2513 Pair.getFirst()->replaceAllUsesWith(Undef); 2514 } 2515 Pair.getFirst()->dropAllReferences(); 2516 } 2517 for (const auto &Pair : DeletedInstructions) { 2518 assert(Pair.getFirst()->use_empty() && 2519 "trying to erase instruction with users."); 2520 Pair.getFirst()->eraseFromParent(); 2521 } 2522 #ifdef EXPENSIVE_CHECKS 2523 // If we could guarantee that this call is not extremely slow, we could 2524 // remove the ifdef limitation (see PR47712). 2525 assert(!verifyFunction(*F, &dbgs())); 2526 #endif 2527 } 2528 2529 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2530 for (auto *V : AV) { 2531 if (auto *I = dyn_cast<Instruction>(V)) 2532 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2533 }; 2534 } 2535 2536 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2537 /// the original order of the scalars. Procedure transforms the provided order 2538 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2539 /// identity order, \p Order is cleared. 2540 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2541 assert(!Mask.empty() && "Expected non-empty mask."); 2542 if (Order.empty()) { 2543 Order.resize(Mask.size()); 2544 std::iota(Order.begin(), Order.end(), 0); 2545 } 2546 SmallVector<unsigned> Prev(Order.size(), Order.size()); 2547 Prev.swap(Order); 2548 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2549 if (Mask[Prev[I]] != UndefMaskElem) 2550 Order[Mask[Prev[I]]] = I; 2551 auto &&IsIdentity = [](ArrayRef<unsigned> Order) { 2552 for (unsigned I = 0, E = Order.size(); I < E; ++I) { 2553 if (Order[I] != I) 2554 return false; 2555 } 2556 return true; 2557 }; 2558 if (IsIdentity(Order)) 2559 Order.clear(); 2560 } 2561 2562 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2563 /// contains original mask for the scalars reused in the node. Procedure 2564 /// transform this mask in accordance with the given \p Mask. 2565 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2566 assert(!Reuses.empty() && !Mask.empty() && 2567 "Expected non-empty mask and reuses mask."); 2568 SmallVector<int> Prev(Reuses.size(), UndefMaskElem); 2569 Prev.swap(Reuses); 2570 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2571 if (Mask[I] != UndefMaskElem) 2572 Reuses[Mask[I]] = Prev[I]; 2573 } 2574 2575 void BoUpSLP::reorderTopToBottom(bool FreeReorder) { 2576 // Maps VF to the graph nodes. 2577 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2578 // ExtractElement gather nodes which can be vectorized and need to handle 2579 // their ordering. 2580 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2581 // Find all reorderable nodes with the given VF. 2582 // Currently the are vectorized loads,extracts + some gathering of extracts. 2583 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2584 const std::unique_ptr<TreeEntry> &TE) { 2585 if (TE->State == TreeEntry::Vectorize && 2586 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp())) { 2587 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2588 } else if (TE->State == TreeEntry::NeedToGather && 2589 TE->getOpcode() == Instruction::ExtractElement && 2590 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2591 ->getVectorOperandType()) && 2592 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2593 // Check that gather of extractelements can be represented as 2594 // just a shuffle of a single vector. 2595 OrdersType CurrentOrder; 2596 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2597 if (Reuse || !CurrentOrder.empty()) { 2598 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2599 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2600 } 2601 } 2602 }); 2603 2604 // Reorder the graph nodes according to their vectorization factor. 2605 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2606 VF /= 2) { 2607 auto It = VFToOrderedEntries.find(VF); 2608 if (It == VFToOrderedEntries.end()) 2609 continue; 2610 // Try to find the most profitable order. We just are looking for the most 2611 // used order and reorder scalar elements in the nodes according to this 2612 // mostly used order. 2613 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2614 // All operands are reordered and used only in this node - propagate the 2615 // most used order to the user node. 2616 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2617 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2618 for (const TreeEntry *OpTE : OrderedEntries) { 2619 // No need to reorder this nodes, still need to extend and to use shuffle, 2620 // just need to merge reordering shuffle and the reuse shuffle. 2621 if (!OpTE->ReuseShuffleIndices.empty()) 2622 continue; 2623 // Count number of orders uses. 2624 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2625 if (OpTE->State == TreeEntry::NeedToGather) 2626 return GathersToOrders.find(OpTE)->second; 2627 return OpTE->ReorderIndices; 2628 }(); 2629 ++OrdersUses.try_emplace(Order).first->getSecond(); 2630 } 2631 // Set order of the user node. 2632 if (OrdersUses.empty()) 2633 continue; 2634 // If need to reorder the root node, it means it also requires to keep its 2635 // original order. 2636 if (VF == VectorizableTree.front()->Scalars.size() && !FreeReorder) 2637 ++OrdersUses[VectorizableTree.front()->ReorderIndices]; 2638 // Choose the most used order. 2639 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2640 unsigned Cnt = OrdersUses.begin()->second; 2641 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2642 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2643 BestOrder = Pair.first; 2644 Cnt = Pair.second; 2645 } 2646 } 2647 // Set order of the user node. 2648 if (BestOrder.empty()) 2649 continue; 2650 SmallVector<int> Mask; 2651 inversePermutation(BestOrder, Mask); 2652 SmallPtrSet<TreeEntry *, 4> SmallOperandsToReorder; 2653 // Do an actual reordering, if profitable. 2654 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2655 // Just do the reordering for the nodes with the given VF. 2656 if (TE->Scalars.size() != VF) { 2657 if (TE->ReuseShuffleIndices.size() == VF) { 2658 // Need to reorder the reuses masks of the operands with smaller VF to 2659 // be able to find the math between the graph nodes and scalar 2660 // operands of the given node during vectorization/cost estimation. 2661 // Build a list of such operands for future reordering. 2662 assert(all_of(TE->UserTreeIndices, 2663 [VF](const EdgeInfo &EI) { 2664 return EI.UserTE->Scalars.size() == VF; 2665 }) && 2666 "All users must be of VF size."); 2667 SmallOperandsToReorder.insert(TE.get()); 2668 } 2669 continue; 2670 } 2671 // Reorder the node and its operands. 2672 TE->updateStateIfReorder(); 2673 TE->reorderOperands(Mask); 2674 if (TE->ReuseShuffleIndices.empty()) { 2675 reorderScalars(TE->Scalars, TE->ReorderIndices, Mask); 2676 if (TE->State == TreeEntry::Vectorize && 2677 (TE.get() != VectorizableTree.front().get() || !FreeReorder) && 2678 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst>( 2679 TE->getMainOp())) { 2680 // Build correct orders for extract{element,value}, loads and stores. 2681 reorderOrder(TE->ReorderIndices, Mask); 2682 // For stores the order is actually a mask. 2683 if (isa<StoreInst>(TE->getMainOp()) && !TE->ReorderIndices.empty()) { 2684 SmallVector<int> StoreOrder; 2685 inversePermutation(TE->ReorderIndices, StoreOrder); 2686 copy(StoreOrder, TE->ReorderIndices.begin()); 2687 } 2688 } else { 2689 TE->ReorderIndices.clear(); 2690 } 2691 } else { 2692 // Build correct order for nodes with reused shuffles. 2693 reorderOrder(TE->ReorderIndices, Mask); 2694 } 2695 } 2696 // Update ordering of the operands with the smaller VF than the given one. 2697 for (TreeEntry *TE : SmallOperandsToReorder) 2698 reorderReuses(TE->ReuseShuffleIndices, Mask); 2699 } 2700 } 2701 2702 void BoUpSLP::reorderBottomToTop(bool FreeReorder) { 2703 SetVector<TreeEntry *> OrderedEntries; 2704 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2705 // Find all reorderable nodes with the given VF. 2706 // Currently the are vectorized loads,extracts without alternate operands + 2707 // some gathering of extracts. 2708 SmallVector<TreeEntry *> NonVectorized; 2709 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2710 &NonVectorized]( 2711 const std::unique_ptr<TreeEntry> &TE) { 2712 if (TE->State == TreeEntry::Vectorize && 2713 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp())) { 2714 OrderedEntries.insert(TE.get()); 2715 } else if (TE->State == TreeEntry::NeedToGather && 2716 TE->getOpcode() == Instruction::ExtractElement && 2717 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2718 ->getVectorOperandType()) && 2719 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2720 // Check that gather of extractelements can be represented as 2721 // just a shuffle of a single vector with a single user only. 2722 OrdersType CurrentOrder; 2723 bool Reuse = canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2724 if ((Reuse || !CurrentOrder.empty()) && 2725 !any_of( 2726 VectorizableTree, [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2727 return Entry->State == TreeEntry::NeedToGather && 2728 Entry.get() != TE.get() && Entry->isSame(TE->Scalars); 2729 })) { 2730 OrderedEntries.insert(TE.get()); 2731 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2732 } 2733 } 2734 if (TE->State != TreeEntry::Vectorize) 2735 NonVectorized.push_back(TE.get()); 2736 }); 2737 2738 // Checks if the operands of the users are reordarable and have only single 2739 // use. 2740 auto &&CheckOperands = 2741 [this, &NonVectorized](const auto &Data, 2742 SmallVectorImpl<TreeEntry *> &GatherOps) { 2743 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 2744 if (any_of(Data.second, 2745 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 2746 return OpData.first == I; 2747 })) 2748 continue; 2749 ArrayRef<Value *> VL = Data.first->getOperand(I); 2750 const TreeEntry *TE = nullptr; 2751 const auto *It = find_if(VL, [this, &TE](Value *V) { 2752 TE = getTreeEntry(V); 2753 return TE; 2754 }); 2755 if (It != VL.end() && TE->isSame(VL)) 2756 return false; 2757 TreeEntry *Gather = nullptr; 2758 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 2759 assert(TE->State != TreeEntry::Vectorize && 2760 "Only non-vectorized nodes are expected."); 2761 if (TE->isSame(VL)) { 2762 Gather = TE; 2763 return true; 2764 } 2765 return false; 2766 }) != 1) 2767 return false; 2768 GatherOps.push_back(Gather); 2769 } 2770 return true; 2771 }; 2772 // 1. Propagate order to the graph nodes, which use only reordered nodes. 2773 // I.e., if the node has operands, that are reordered, try to make at least 2774 // one operand order in the natural order and reorder others + reorder the 2775 // user node itself. 2776 SmallPtrSet<const TreeEntry *, 4> Visited; 2777 while (!OrderedEntries.empty()) { 2778 // 1. Filter out only reordered nodes. 2779 // 2. If the entry has multiple uses - skip it and jump to the next node. 2780 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 2781 SmallVector<TreeEntry *> Filtered; 2782 for (TreeEntry *TE : OrderedEntries) { 2783 if (!(TE->State == TreeEntry::Vectorize || 2784 (TE->State == TreeEntry::NeedToGather && 2785 TE->getOpcode() == Instruction::ExtractElement)) || 2786 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 2787 !all_of(drop_begin(TE->UserTreeIndices), 2788 [TE](const EdgeInfo &EI) { 2789 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 2790 }) || 2791 !Visited.insert(TE).second) { 2792 Filtered.push_back(TE); 2793 continue; 2794 } 2795 // Build a map between user nodes and their operands order to speedup 2796 // search. The graph currently does not provide this dependency directly. 2797 for (EdgeInfo &EI : TE->UserTreeIndices) { 2798 TreeEntry *UserTE = EI.UserTE; 2799 auto It = Users.find(UserTE); 2800 if (It == Users.end()) 2801 It = Users.insert({UserTE, {}}).first; 2802 It->second.emplace_back(EI.EdgeIdx, TE); 2803 } 2804 } 2805 // Erase filtered entries. 2806 for_each(Filtered, 2807 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 2808 for (const auto &Data : Users) { 2809 // Check that operands are used only in the User node. 2810 SmallVector<TreeEntry *> GatherOps; 2811 if (!CheckOperands(Data, GatherOps)) { 2812 for_each(Data.second, 2813 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2814 OrderedEntries.remove(Op.second); 2815 }); 2816 continue; 2817 } 2818 // All operands are reordered and used only in this node - propagate the 2819 // most used order to the user node. 2820 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> OrdersUses; 2821 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2822 for (const auto &Op : Data.second) { 2823 TreeEntry *OpTE = Op.second; 2824 if (!OpTE->ReuseShuffleIndices.empty()) 2825 continue; 2826 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2827 if (OpTE->State == TreeEntry::NeedToGather) 2828 return GathersToOrders.find(OpTE)->second; 2829 return OpTE->ReorderIndices; 2830 }(); 2831 ++OrdersUses.try_emplace(Order).first->getSecond(); 2832 if (VisitedOps.insert(OpTE).second) 2833 OrdersUses.try_emplace({}, 0).first->getSecond() += 2834 OpTE->UserTreeIndices.size(); 2835 --OrdersUses[{}]; 2836 } 2837 // If no orders - skip current nodes and jump to the next one, if any. 2838 if (OrdersUses.empty()) { 2839 for_each(Data.second, 2840 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2841 OrderedEntries.remove(Op.second); 2842 }); 2843 continue; 2844 } 2845 // Choose the best order. 2846 ArrayRef<unsigned> BestOrder = OrdersUses.begin()->first; 2847 unsigned Cnt = OrdersUses.begin()->second; 2848 for (const auto &Pair : llvm::drop_begin(OrdersUses)) { 2849 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2850 BestOrder = Pair.first; 2851 Cnt = Pair.second; 2852 } 2853 } 2854 // Set order of the user node (reordering of operands and user nodes). 2855 if (BestOrder.empty()) { 2856 for_each(Data.second, 2857 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 2858 OrderedEntries.remove(Op.second); 2859 }); 2860 continue; 2861 } 2862 // Erase operands from OrderedEntries list and adjust their orders. 2863 VisitedOps.clear(); 2864 SmallVector<int> Mask; 2865 inversePermutation(BestOrder, Mask); 2866 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 2867 TreeEntry *TE = Op.second; 2868 OrderedEntries.remove(TE); 2869 if (!VisitedOps.insert(TE).second) 2870 continue; 2871 if (!TE->ReuseShuffleIndices.empty()) { 2872 // Just reorder reuses indices. 2873 reorderReuses(TE->ReuseShuffleIndices, Mask); 2874 continue; 2875 } 2876 // Gathers are processed separately. 2877 if (TE->State != TreeEntry::Vectorize) 2878 continue; 2879 assert((BestOrder.size() == TE->ReorderIndices.size() || 2880 TE->ReorderIndices.empty()) && 2881 "Non-matching sizes of user/operand entries."); 2882 TE->updateStateIfReorder(); 2883 reorderScalars(TE->Scalars, TE->ReorderIndices, Mask); 2884 reorderOrder(TE->ReorderIndices, Mask); 2885 } 2886 // For gathers just need to reorder its scalars. 2887 for (TreeEntry *Gather : GatherOps) { 2888 if (!Gather->ReuseShuffleIndices.empty()) 2889 continue; 2890 reorderScalars(Gather->Scalars, None, Mask); 2891 OrderedEntries.remove(Gather); 2892 } 2893 // Reorder operands of the user node and set the ordering for the user 2894 // node itself. 2895 Data.first->updateStateIfReorder(); 2896 Data.first->reorderOperands(Mask); 2897 if (!FreeReorder || Data.first != VectorizableTree.front().get()) { 2898 reorderOrder(Data.first->ReorderIndices, Mask); 2899 // For stores the order is actually a mask. 2900 if (isa<StoreInst>(Data.first->getMainOp()) && 2901 !Data.first->ReorderIndices.empty()) { 2902 SmallVector<int> StoreOrder; 2903 inversePermutation(Data.first->ReorderIndices, StoreOrder); 2904 copy(StoreOrder, Data.first->ReorderIndices.begin()); 2905 } 2906 // Insert user node to the list to try to sink reordering deeper in the 2907 // graph. 2908 OrderedEntries.insert(Data.first); 2909 } else { 2910 reorderScalars(Data.first->Scalars, Data.first->ReorderIndices, Mask); 2911 } 2912 } 2913 } 2914 } 2915 2916 void BoUpSLP::buildExternalUses( 2917 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 2918 // Collect the values that we need to extract from the tree. 2919 for (auto &TEPtr : VectorizableTree) { 2920 TreeEntry *Entry = TEPtr.get(); 2921 2922 // No need to handle users of gathered values. 2923 if (Entry->State == TreeEntry::NeedToGather) 2924 continue; 2925 2926 // For each lane: 2927 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2928 Value *Scalar = Entry->Scalars[Lane]; 2929 int FoundLane = Entry->findLaneForValue(Scalar); 2930 2931 // Check if the scalar is externally used as an extra arg. 2932 auto ExtI = ExternallyUsedValues.find(Scalar); 2933 if (ExtI != ExternallyUsedValues.end()) { 2934 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2935 << Lane << " from " << *Scalar << ".\n"); 2936 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2937 } 2938 for (User *U : Scalar->users()) { 2939 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2940 2941 Instruction *UserInst = dyn_cast<Instruction>(U); 2942 if (!UserInst) 2943 continue; 2944 2945 // Skip in-tree scalars that become vectors 2946 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2947 Value *UseScalar = UseEntry->Scalars[0]; 2948 // Some in-tree scalars will remain as scalar in vectorized 2949 // instructions. If that is the case, the one in Lane 0 will 2950 // be used. 2951 if (UseScalar != U || 2952 UseEntry->State == TreeEntry::ScatterVectorize || 2953 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2954 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2955 << ".\n"); 2956 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2957 continue; 2958 } 2959 } 2960 2961 // Ignore users in the user ignore list. 2962 if (is_contained(UserIgnoreList, UserInst)) 2963 continue; 2964 2965 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2966 << Lane << " from " << *Scalar << ".\n"); 2967 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2968 } 2969 } 2970 } 2971 } 2972 2973 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2974 ArrayRef<Value *> UserIgnoreLst) { 2975 deleteTree(); 2976 UserIgnoreList = UserIgnoreLst; 2977 if (!allSameType(Roots)) 2978 return; 2979 buildTree_rec(Roots, 0, EdgeInfo()); 2980 } 2981 2982 namespace { 2983 /// Tracks the state we can represent the loads in the given sequence. 2984 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 2985 } // anonymous namespace 2986 2987 /// Checks if the given array of loads can be represented as a vectorized, 2988 /// scatter or just simple gather. 2989 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 2990 const TargetTransformInfo &TTI, 2991 const DataLayout &DL, ScalarEvolution &SE, 2992 SmallVectorImpl<unsigned> &Order, 2993 SmallVectorImpl<Value *> &PointerOps) { 2994 // Check that a vectorized load would load the same memory as a scalar 2995 // load. For example, we don't want to vectorize loads that are smaller 2996 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2997 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2998 // from such a struct, we read/write packed bits disagreeing with the 2999 // unvectorized version. 3000 Type *ScalarTy = VL0->getType(); 3001 3002 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3003 return LoadsState::Gather; 3004 3005 // Make sure all loads in the bundle are simple - we can't vectorize 3006 // atomic or volatile loads. 3007 PointerOps.clear(); 3008 PointerOps.resize(VL.size()); 3009 auto *POIter = PointerOps.begin(); 3010 for (Value *V : VL) { 3011 auto *L = cast<LoadInst>(V); 3012 if (!L->isSimple()) 3013 return LoadsState::Gather; 3014 *POIter = L->getPointerOperand(); 3015 ++POIter; 3016 } 3017 3018 Order.clear(); 3019 // Check the order of pointer operands. 3020 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3021 Value *Ptr0; 3022 Value *PtrN; 3023 if (Order.empty()) { 3024 Ptr0 = PointerOps.front(); 3025 PtrN = PointerOps.back(); 3026 } else { 3027 Ptr0 = PointerOps[Order.front()]; 3028 PtrN = PointerOps[Order.back()]; 3029 } 3030 Optional<int> Diff = 3031 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3032 // Check that the sorted loads are consecutive. 3033 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3034 return LoadsState::Vectorize; 3035 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3036 for (Value *V : VL) 3037 CommonAlignment = 3038 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3039 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3040 CommonAlignment)) 3041 return LoadsState::ScatterVectorize; 3042 } 3043 3044 return LoadsState::Gather; 3045 } 3046 3047 /// Order may have elements assigned special value (size) which is out of 3048 /// bounds. Such indices only appear on places which correspond to undef values 3049 /// (see canReuseExtract for details) and used in order to avoid undef values 3050 /// have effect on operands ordering. 3051 /// The first loop below simply finds all unused indices and then the next loop 3052 /// nest assigns these indices for undef values positions. 3053 /// As an example below Order has two undef positions and they have assigned 3054 /// values 3 and 7 respectively: 3055 /// before: 6 9 5 4 9 2 1 0 3056 /// after: 6 3 5 4 7 2 1 0 3057 /// \returns Fixed ordering. 3058 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 3059 const unsigned Sz = Order.size(); 3060 SmallBitVector UsedIndices(Sz); 3061 SmallVector<int> MaskedIndices; 3062 for (unsigned I = 0; I < Sz; ++I) { 3063 if (Order[I] < Sz) 3064 UsedIndices.set(Order[I]); 3065 else 3066 MaskedIndices.push_back(I); 3067 } 3068 if (MaskedIndices.empty()) 3069 return; 3070 SmallVector<int> AvailableIndices(MaskedIndices.size()); 3071 unsigned Cnt = 0; 3072 int Idx = UsedIndices.find_first(); 3073 do { 3074 AvailableIndices[Cnt] = Idx; 3075 Idx = UsedIndices.find_next(Idx); 3076 ++Cnt; 3077 } while (Idx > 0); 3078 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 3079 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 3080 Order[MaskedIndices[I]] = AvailableIndices[I]; 3081 } 3082 3083 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3084 const EdgeInfo &UserTreeIdx) { 3085 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3086 3087 InstructionsState S = getSameOpcode(VL); 3088 if (Depth == RecursionMaxDepth) { 3089 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3090 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3091 return; 3092 } 3093 3094 // Don't handle scalable vectors 3095 if (S.getOpcode() == Instruction::ExtractElement && 3096 isa<ScalableVectorType>( 3097 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3098 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3099 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3100 return; 3101 } 3102 3103 // Don't handle vectors. 3104 if (S.OpValue->getType()->isVectorTy() && 3105 !isa<InsertElementInst>(S.OpValue)) { 3106 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3107 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3108 return; 3109 } 3110 3111 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3112 if (SI->getValueOperand()->getType()->isVectorTy()) { 3113 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3114 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3115 return; 3116 } 3117 3118 // If all of the operands are identical or constant we have a simple solution. 3119 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 3120 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3121 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3122 return; 3123 } 3124 3125 // We now know that this is a vector of instructions of the same type from 3126 // the same block. 3127 3128 // Don't vectorize ephemeral values. 3129 for (Value *V : VL) { 3130 if (EphValues.count(V)) { 3131 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3132 << ") is ephemeral.\n"); 3133 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3134 return; 3135 } 3136 } 3137 3138 // Check if this is a duplicate of another entry. 3139 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3140 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3141 if (!E->isSame(VL)) { 3142 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3143 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3144 return; 3145 } 3146 // Record the reuse of the tree node. FIXME, currently this is only used to 3147 // properly draw the graph rather than for the actual vectorization. 3148 E->UserTreeIndices.push_back(UserTreeIdx); 3149 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3150 << ".\n"); 3151 return; 3152 } 3153 3154 // Check that none of the instructions in the bundle are already in the tree. 3155 for (Value *V : VL) { 3156 auto *I = dyn_cast<Instruction>(V); 3157 if (!I) 3158 continue; 3159 if (getTreeEntry(I)) { 3160 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3161 << ") is already in tree.\n"); 3162 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3163 return; 3164 } 3165 } 3166 3167 // If any of the scalars is marked as a value that needs to stay scalar, then 3168 // we need to gather the scalars. 3169 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3170 for (Value *V : VL) { 3171 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3172 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3173 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3174 return; 3175 } 3176 } 3177 3178 // Check that all of the users of the scalars that we want to vectorize are 3179 // schedulable. 3180 auto *VL0 = cast<Instruction>(S.OpValue); 3181 BasicBlock *BB = VL0->getParent(); 3182 3183 if (!DT->isReachableFromEntry(BB)) { 3184 // Don't go into unreachable blocks. They may contain instructions with 3185 // dependency cycles which confuse the final scheduling. 3186 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3187 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3188 return; 3189 } 3190 3191 // Check that every instruction appears once in this bundle. 3192 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3193 SmallVector<Value *, 4> UniqueValues; 3194 DenseMap<Value *, unsigned> UniquePositions; 3195 for (Value *V : VL) { 3196 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3197 ReuseShuffleIndicies.emplace_back(Res.first->second); 3198 if (Res.second) 3199 UniqueValues.emplace_back(V); 3200 } 3201 size_t NumUniqueScalarValues = UniqueValues.size(); 3202 if (NumUniqueScalarValues == VL.size()) { 3203 ReuseShuffleIndicies.clear(); 3204 } else { 3205 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3206 if (NumUniqueScalarValues <= 1 || 3207 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3208 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3209 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3210 return; 3211 } 3212 VL = UniqueValues; 3213 } 3214 3215 auto &BSRef = BlocksSchedules[BB]; 3216 if (!BSRef) 3217 BSRef = std::make_unique<BlockScheduling>(BB); 3218 3219 BlockScheduling &BS = *BSRef.get(); 3220 3221 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3222 if (!Bundle) { 3223 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3224 assert((!BS.getScheduleData(VL0) || 3225 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3226 "tryScheduleBundle should cancelScheduling on failure"); 3227 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3228 ReuseShuffleIndicies); 3229 return; 3230 } 3231 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3232 3233 unsigned ShuffleOrOp = S.isAltShuffle() ? 3234 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3235 switch (ShuffleOrOp) { 3236 case Instruction::PHI: { 3237 auto *PH = cast<PHINode>(VL0); 3238 3239 // Check for terminator values (e.g. invoke). 3240 for (Value *V : VL) 3241 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3242 Instruction *Term = dyn_cast<Instruction>( 3243 cast<PHINode>(V)->getIncomingValueForBlock( 3244 PH->getIncomingBlock(I))); 3245 if (Term && Term->isTerminator()) { 3246 LLVM_DEBUG(dbgs() 3247 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3248 BS.cancelScheduling(VL, VL0); 3249 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3250 ReuseShuffleIndicies); 3251 return; 3252 } 3253 } 3254 3255 TreeEntry *TE = 3256 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3257 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3258 3259 // Keeps the reordered operands to avoid code duplication. 3260 SmallVector<ValueList, 2> OperandsVec; 3261 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3262 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3263 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3264 TE->setOperand(I, Operands); 3265 OperandsVec.push_back(Operands); 3266 continue; 3267 } 3268 ValueList Operands; 3269 // Prepare the operand vector. 3270 for (Value *V : VL) 3271 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3272 PH->getIncomingBlock(I))); 3273 TE->setOperand(I, Operands); 3274 OperandsVec.push_back(Operands); 3275 } 3276 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3277 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3278 return; 3279 } 3280 case Instruction::ExtractValue: 3281 case Instruction::ExtractElement: { 3282 OrdersType CurrentOrder; 3283 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3284 if (Reuse) { 3285 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3286 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3287 ReuseShuffleIndicies); 3288 // This is a special case, as it does not gather, but at the same time 3289 // we are not extending buildTree_rec() towards the operands. 3290 ValueList Op0; 3291 Op0.assign(VL.size(), VL0->getOperand(0)); 3292 VectorizableTree.back()->setOperand(0, Op0); 3293 return; 3294 } 3295 if (!CurrentOrder.empty()) { 3296 LLVM_DEBUG({ 3297 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3298 "with order"; 3299 for (unsigned Idx : CurrentOrder) 3300 dbgs() << " " << Idx; 3301 dbgs() << "\n"; 3302 }); 3303 fixupOrderingIndices(CurrentOrder); 3304 // Insert new order with initial value 0, if it does not exist, 3305 // otherwise return the iterator to the existing one. 3306 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3307 ReuseShuffleIndicies, CurrentOrder); 3308 // This is a special case, as it does not gather, but at the same time 3309 // we are not extending buildTree_rec() towards the operands. 3310 ValueList Op0; 3311 Op0.assign(VL.size(), VL0->getOperand(0)); 3312 VectorizableTree.back()->setOperand(0, Op0); 3313 return; 3314 } 3315 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3316 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3317 ReuseShuffleIndicies); 3318 BS.cancelScheduling(VL, VL0); 3319 return; 3320 } 3321 case Instruction::InsertElement: { 3322 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3323 3324 // Check that we have a buildvector and not a shuffle of 2 or more 3325 // different vectors. 3326 ValueSet SourceVectors; 3327 for (Value *V : VL) 3328 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3329 3330 if (count_if(VL, [&SourceVectors](Value *V) { 3331 return !SourceVectors.contains(V); 3332 }) >= 2) { 3333 // Found 2nd source vector - cancel. 3334 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3335 "different source vectors.\n"); 3336 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3337 ReuseShuffleIndicies); 3338 BS.cancelScheduling(VL, VL0); 3339 return; 3340 } 3341 3342 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx); 3343 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3344 3345 constexpr int NumOps = 2; 3346 ValueList VectorOperands[NumOps]; 3347 for (int I = 0; I < NumOps; ++I) { 3348 for (Value *V : VL) 3349 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3350 3351 TE->setOperand(I, VectorOperands[I]); 3352 } 3353 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0}); 3354 return; 3355 } 3356 case Instruction::Load: { 3357 // Check that a vectorized load would load the same memory as a scalar 3358 // load. For example, we don't want to vectorize loads that are smaller 3359 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3360 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3361 // from such a struct, we read/write packed bits disagreeing with the 3362 // unvectorized version. 3363 SmallVector<Value *> PointerOps; 3364 OrdersType CurrentOrder; 3365 TreeEntry *TE = nullptr; 3366 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3367 PointerOps)) { 3368 case LoadsState::Vectorize: 3369 if (CurrentOrder.empty()) { 3370 // Original loads are consecutive and does not require reordering. 3371 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3372 ReuseShuffleIndicies); 3373 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3374 } else { 3375 fixupOrderingIndices(CurrentOrder); 3376 // Need to reorder. 3377 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3378 ReuseShuffleIndicies, CurrentOrder); 3379 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3380 } 3381 TE->setOperandsInOrder(); 3382 break; 3383 case LoadsState::ScatterVectorize: 3384 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3385 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3386 UserTreeIdx, ReuseShuffleIndicies); 3387 TE->setOperandsInOrder(); 3388 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3389 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3390 break; 3391 case LoadsState::Gather: 3392 BS.cancelScheduling(VL, VL0); 3393 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3394 ReuseShuffleIndicies); 3395 #ifndef NDEBUG 3396 Type *ScalarTy = VL0->getType(); 3397 if (DL->getTypeSizeInBits(ScalarTy) != 3398 DL->getTypeAllocSizeInBits(ScalarTy)) 3399 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3400 else if (any_of(VL, [](Value *V) { 3401 return !cast<LoadInst>(V)->isSimple(); 3402 })) 3403 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3404 else 3405 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3406 #endif // NDEBUG 3407 break; 3408 } 3409 return; 3410 } 3411 case Instruction::ZExt: 3412 case Instruction::SExt: 3413 case Instruction::FPToUI: 3414 case Instruction::FPToSI: 3415 case Instruction::FPExt: 3416 case Instruction::PtrToInt: 3417 case Instruction::IntToPtr: 3418 case Instruction::SIToFP: 3419 case Instruction::UIToFP: 3420 case Instruction::Trunc: 3421 case Instruction::FPTrunc: 3422 case Instruction::BitCast: { 3423 Type *SrcTy = VL0->getOperand(0)->getType(); 3424 for (Value *V : VL) { 3425 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3426 if (Ty != SrcTy || !isValidElementType(Ty)) { 3427 BS.cancelScheduling(VL, VL0); 3428 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3429 ReuseShuffleIndicies); 3430 LLVM_DEBUG(dbgs() 3431 << "SLP: Gathering casts with different src types.\n"); 3432 return; 3433 } 3434 } 3435 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3436 ReuseShuffleIndicies); 3437 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3438 3439 TE->setOperandsInOrder(); 3440 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3441 ValueList Operands; 3442 // Prepare the operand vector. 3443 for (Value *V : VL) 3444 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3445 3446 buildTree_rec(Operands, Depth + 1, {TE, i}); 3447 } 3448 return; 3449 } 3450 case Instruction::ICmp: 3451 case Instruction::FCmp: { 3452 // Check that all of the compares have the same predicate. 3453 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3454 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3455 Type *ComparedTy = VL0->getOperand(0)->getType(); 3456 for (Value *V : VL) { 3457 CmpInst *Cmp = cast<CmpInst>(V); 3458 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3459 Cmp->getOperand(0)->getType() != ComparedTy) { 3460 BS.cancelScheduling(VL, VL0); 3461 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3462 ReuseShuffleIndicies); 3463 LLVM_DEBUG(dbgs() 3464 << "SLP: Gathering cmp with different predicate.\n"); 3465 return; 3466 } 3467 } 3468 3469 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3470 ReuseShuffleIndicies); 3471 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3472 3473 ValueList Left, Right; 3474 if (cast<CmpInst>(VL0)->isCommutative()) { 3475 // Commutative predicate - collect + sort operands of the instructions 3476 // so that each side is more likely to have the same opcode. 3477 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3478 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3479 } else { 3480 // Collect operands - commute if it uses the swapped predicate. 3481 for (Value *V : VL) { 3482 auto *Cmp = cast<CmpInst>(V); 3483 Value *LHS = Cmp->getOperand(0); 3484 Value *RHS = Cmp->getOperand(1); 3485 if (Cmp->getPredicate() != P0) 3486 std::swap(LHS, RHS); 3487 Left.push_back(LHS); 3488 Right.push_back(RHS); 3489 } 3490 } 3491 TE->setOperand(0, Left); 3492 TE->setOperand(1, Right); 3493 buildTree_rec(Left, Depth + 1, {TE, 0}); 3494 buildTree_rec(Right, Depth + 1, {TE, 1}); 3495 return; 3496 } 3497 case Instruction::Select: 3498 case Instruction::FNeg: 3499 case Instruction::Add: 3500 case Instruction::FAdd: 3501 case Instruction::Sub: 3502 case Instruction::FSub: 3503 case Instruction::Mul: 3504 case Instruction::FMul: 3505 case Instruction::UDiv: 3506 case Instruction::SDiv: 3507 case Instruction::FDiv: 3508 case Instruction::URem: 3509 case Instruction::SRem: 3510 case Instruction::FRem: 3511 case Instruction::Shl: 3512 case Instruction::LShr: 3513 case Instruction::AShr: 3514 case Instruction::And: 3515 case Instruction::Or: 3516 case Instruction::Xor: { 3517 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3518 ReuseShuffleIndicies); 3519 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3520 3521 // Sort operands of the instructions so that each side is more likely to 3522 // have the same opcode. 3523 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3524 ValueList Left, Right; 3525 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3526 TE->setOperand(0, Left); 3527 TE->setOperand(1, Right); 3528 buildTree_rec(Left, Depth + 1, {TE, 0}); 3529 buildTree_rec(Right, Depth + 1, {TE, 1}); 3530 return; 3531 } 3532 3533 TE->setOperandsInOrder(); 3534 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3535 ValueList Operands; 3536 // Prepare the operand vector. 3537 for (Value *V : VL) 3538 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3539 3540 buildTree_rec(Operands, Depth + 1, {TE, i}); 3541 } 3542 return; 3543 } 3544 case Instruction::GetElementPtr: { 3545 // We don't combine GEPs with complicated (nested) indexing. 3546 for (Value *V : VL) { 3547 if (cast<Instruction>(V)->getNumOperands() != 2) { 3548 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3549 BS.cancelScheduling(VL, VL0); 3550 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3551 ReuseShuffleIndicies); 3552 return; 3553 } 3554 } 3555 3556 // We can't combine several GEPs into one vector if they operate on 3557 // different types. 3558 Type *Ty0 = VL0->getOperand(0)->getType(); 3559 for (Value *V : VL) { 3560 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3561 if (Ty0 != CurTy) { 3562 LLVM_DEBUG(dbgs() 3563 << "SLP: not-vectorizable GEP (different types).\n"); 3564 BS.cancelScheduling(VL, VL0); 3565 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3566 ReuseShuffleIndicies); 3567 return; 3568 } 3569 } 3570 3571 // We don't combine GEPs with non-constant indexes. 3572 Type *Ty1 = VL0->getOperand(1)->getType(); 3573 for (Value *V : VL) { 3574 auto Op = cast<Instruction>(V)->getOperand(1); 3575 if (!isa<ConstantInt>(Op) || 3576 (Op->getType() != Ty1 && 3577 Op->getType()->getScalarSizeInBits() > 3578 DL->getIndexSizeInBits( 3579 V->getType()->getPointerAddressSpace()))) { 3580 LLVM_DEBUG(dbgs() 3581 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3582 BS.cancelScheduling(VL, VL0); 3583 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3584 ReuseShuffleIndicies); 3585 return; 3586 } 3587 } 3588 3589 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3590 ReuseShuffleIndicies); 3591 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3592 TE->setOperandsInOrder(); 3593 for (unsigned i = 0, e = 2; i < e; ++i) { 3594 ValueList Operands; 3595 // Prepare the operand vector. 3596 for (Value *V : VL) 3597 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3598 3599 buildTree_rec(Operands, Depth + 1, {TE, i}); 3600 } 3601 return; 3602 } 3603 case Instruction::Store: { 3604 // Check if the stores are consecutive or if we need to swizzle them. 3605 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3606 // Avoid types that are padded when being allocated as scalars, while 3607 // being packed together in a vector (such as i1). 3608 if (DL->getTypeSizeInBits(ScalarTy) != 3609 DL->getTypeAllocSizeInBits(ScalarTy)) { 3610 BS.cancelScheduling(VL, VL0); 3611 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3612 ReuseShuffleIndicies); 3613 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3614 return; 3615 } 3616 // Make sure all stores in the bundle are simple - we can't vectorize 3617 // atomic or volatile stores. 3618 SmallVector<Value *, 4> PointerOps(VL.size()); 3619 ValueList Operands(VL.size()); 3620 auto POIter = PointerOps.begin(); 3621 auto OIter = Operands.begin(); 3622 for (Value *V : VL) { 3623 auto *SI = cast<StoreInst>(V); 3624 if (!SI->isSimple()) { 3625 BS.cancelScheduling(VL, VL0); 3626 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3627 ReuseShuffleIndicies); 3628 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3629 return; 3630 } 3631 *POIter = SI->getPointerOperand(); 3632 *OIter = SI->getValueOperand(); 3633 ++POIter; 3634 ++OIter; 3635 } 3636 3637 OrdersType CurrentOrder; 3638 // Check the order of pointer operands. 3639 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3640 Value *Ptr0; 3641 Value *PtrN; 3642 if (CurrentOrder.empty()) { 3643 Ptr0 = PointerOps.front(); 3644 PtrN = PointerOps.back(); 3645 } else { 3646 Ptr0 = PointerOps[CurrentOrder.front()]; 3647 PtrN = PointerOps[CurrentOrder.back()]; 3648 } 3649 Optional<int> Dist = 3650 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3651 // Check that the sorted pointer operands are consecutive. 3652 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3653 if (CurrentOrder.empty()) { 3654 // Original stores are consecutive and does not require reordering. 3655 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3656 UserTreeIdx, ReuseShuffleIndicies); 3657 TE->setOperandsInOrder(); 3658 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3659 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3660 } else { 3661 fixupOrderingIndices(CurrentOrder); 3662 TreeEntry *TE = 3663 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3664 ReuseShuffleIndicies, CurrentOrder); 3665 TE->setOperandsInOrder(); 3666 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3667 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3668 } 3669 return; 3670 } 3671 } 3672 3673 BS.cancelScheduling(VL, VL0); 3674 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3675 ReuseShuffleIndicies); 3676 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3677 return; 3678 } 3679 case Instruction::Call: { 3680 // Check if the calls are all to the same vectorizable intrinsic or 3681 // library function. 3682 CallInst *CI = cast<CallInst>(VL0); 3683 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3684 3685 VFShape Shape = VFShape::get( 3686 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3687 false /*HasGlobalPred*/); 3688 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3689 3690 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3691 BS.cancelScheduling(VL, VL0); 3692 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3693 ReuseShuffleIndicies); 3694 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3695 return; 3696 } 3697 Function *F = CI->getCalledFunction(); 3698 unsigned NumArgs = CI->getNumArgOperands(); 3699 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3700 for (unsigned j = 0; j != NumArgs; ++j) 3701 if (hasVectorInstrinsicScalarOpd(ID, j)) 3702 ScalarArgs[j] = CI->getArgOperand(j); 3703 for (Value *V : VL) { 3704 CallInst *CI2 = dyn_cast<CallInst>(V); 3705 if (!CI2 || CI2->getCalledFunction() != F || 3706 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3707 (VecFunc && 3708 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3709 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3710 BS.cancelScheduling(VL, VL0); 3711 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3712 ReuseShuffleIndicies); 3713 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3714 << "\n"); 3715 return; 3716 } 3717 // Some intrinsics have scalar arguments and should be same in order for 3718 // them to be vectorized. 3719 for (unsigned j = 0; j != NumArgs; ++j) { 3720 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3721 Value *A1J = CI2->getArgOperand(j); 3722 if (ScalarArgs[j] != A1J) { 3723 BS.cancelScheduling(VL, VL0); 3724 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3725 ReuseShuffleIndicies); 3726 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3727 << " argument " << ScalarArgs[j] << "!=" << A1J 3728 << "\n"); 3729 return; 3730 } 3731 } 3732 } 3733 // Verify that the bundle operands are identical between the two calls. 3734 if (CI->hasOperandBundles() && 3735 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3736 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3737 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3738 BS.cancelScheduling(VL, VL0); 3739 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3740 ReuseShuffleIndicies); 3741 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3742 << *CI << "!=" << *V << '\n'); 3743 return; 3744 } 3745 } 3746 3747 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3748 ReuseShuffleIndicies); 3749 TE->setOperandsInOrder(); 3750 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3751 ValueList Operands; 3752 // Prepare the operand vector. 3753 for (Value *V : VL) { 3754 auto *CI2 = cast<CallInst>(V); 3755 Operands.push_back(CI2->getArgOperand(i)); 3756 } 3757 buildTree_rec(Operands, Depth + 1, {TE, i}); 3758 } 3759 return; 3760 } 3761 case Instruction::ShuffleVector: { 3762 // If this is not an alternate sequence of opcode like add-sub 3763 // then do not vectorize this instruction. 3764 if (!S.isAltShuffle()) { 3765 BS.cancelScheduling(VL, VL0); 3766 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3767 ReuseShuffleIndicies); 3768 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3769 return; 3770 } 3771 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3772 ReuseShuffleIndicies); 3773 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3774 3775 // Reorder operands if reordering would enable vectorization. 3776 if (isa<BinaryOperator>(VL0)) { 3777 ValueList Left, Right; 3778 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3779 TE->setOperand(0, Left); 3780 TE->setOperand(1, Right); 3781 buildTree_rec(Left, Depth + 1, {TE, 0}); 3782 buildTree_rec(Right, Depth + 1, {TE, 1}); 3783 return; 3784 } 3785 3786 TE->setOperandsInOrder(); 3787 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3788 ValueList Operands; 3789 // Prepare the operand vector. 3790 for (Value *V : VL) 3791 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3792 3793 buildTree_rec(Operands, Depth + 1, {TE, i}); 3794 } 3795 return; 3796 } 3797 default: 3798 BS.cancelScheduling(VL, VL0); 3799 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3800 ReuseShuffleIndicies); 3801 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3802 return; 3803 } 3804 } 3805 3806 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3807 unsigned N = 1; 3808 Type *EltTy = T; 3809 3810 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3811 isa<VectorType>(EltTy)) { 3812 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3813 // Check that struct is homogeneous. 3814 for (const auto *Ty : ST->elements()) 3815 if (Ty != *ST->element_begin()) 3816 return 0; 3817 N *= ST->getNumElements(); 3818 EltTy = *ST->element_begin(); 3819 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3820 N *= AT->getNumElements(); 3821 EltTy = AT->getElementType(); 3822 } else { 3823 auto *VT = cast<FixedVectorType>(EltTy); 3824 N *= VT->getNumElements(); 3825 EltTy = VT->getElementType(); 3826 } 3827 } 3828 3829 if (!isValidElementType(EltTy)) 3830 return 0; 3831 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3832 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3833 return 0; 3834 return N; 3835 } 3836 3837 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3838 SmallVectorImpl<unsigned> &CurrentOrder) const { 3839 Instruction *E0 = cast<Instruction>(OpValue); 3840 assert(E0->getOpcode() == Instruction::ExtractElement || 3841 E0->getOpcode() == Instruction::ExtractValue); 3842 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3843 // Check if all of the extracts come from the same vector and from the 3844 // correct offset. 3845 Value *Vec = E0->getOperand(0); 3846 3847 CurrentOrder.clear(); 3848 3849 // We have to extract from a vector/aggregate with the same number of elements. 3850 unsigned NElts; 3851 if (E0->getOpcode() == Instruction::ExtractValue) { 3852 const DataLayout &DL = E0->getModule()->getDataLayout(); 3853 NElts = canMapToVector(Vec->getType(), DL); 3854 if (!NElts) 3855 return false; 3856 // Check if load can be rewritten as load of vector. 3857 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3858 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3859 return false; 3860 } else { 3861 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3862 } 3863 3864 if (NElts != VL.size()) 3865 return false; 3866 3867 // Check that all of the indices extract from the correct offset. 3868 bool ShouldKeepOrder = true; 3869 unsigned E = VL.size(); 3870 // Assign to all items the initial value E + 1 so we can check if the extract 3871 // instruction index was used already. 3872 // Also, later we can check that all the indices are used and we have a 3873 // consecutive access in the extract instructions, by checking that no 3874 // element of CurrentOrder still has value E + 1. 3875 CurrentOrder.assign(E, E + 1); 3876 unsigned I = 0; 3877 for (; I < E; ++I) { 3878 auto *Inst = cast<Instruction>(VL[I]); 3879 if (Inst->getOperand(0) != Vec) 3880 break; 3881 Optional<unsigned> Idx = getExtractIndex(Inst); 3882 if (!Idx) 3883 break; 3884 const unsigned ExtIdx = *Idx; 3885 if (ExtIdx != I) { 3886 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3887 break; 3888 ShouldKeepOrder = false; 3889 CurrentOrder[ExtIdx] = I; 3890 } else { 3891 if (CurrentOrder[I] != E + 1) 3892 break; 3893 CurrentOrder[I] = I; 3894 } 3895 } 3896 if (I < E) { 3897 CurrentOrder.clear(); 3898 return false; 3899 } 3900 3901 return ShouldKeepOrder; 3902 } 3903 3904 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 3905 ArrayRef<Value *> VectorizedVals) const { 3906 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 3907 llvm::all_of(I->users(), [this](User *U) { 3908 return ScalarToTreeEntry.count(U) > 0; 3909 }); 3910 } 3911 3912 static std::pair<InstructionCost, InstructionCost> 3913 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3914 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3915 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3916 3917 // Calculate the cost of the scalar and vector calls. 3918 SmallVector<Type *, 4> VecTys; 3919 for (Use &Arg : CI->args()) 3920 VecTys.push_back( 3921 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3922 FastMathFlags FMF; 3923 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3924 FMF = FPCI->getFastMathFlags(); 3925 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3926 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3927 dyn_cast<IntrinsicInst>(CI)); 3928 auto IntrinsicCost = 3929 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3930 3931 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3932 VecTy->getNumElements())), 3933 false /*HasGlobalPred*/); 3934 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3935 auto LibCost = IntrinsicCost; 3936 if (!CI->isNoBuiltin() && VecFunc) { 3937 // Calculate the cost of the vector library call. 3938 // If the corresponding vector call is cheaper, return its cost. 3939 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3940 TTI::TCK_RecipThroughput); 3941 } 3942 return {IntrinsicCost, LibCost}; 3943 } 3944 3945 /// Compute the cost of creating a vector of type \p VecTy containing the 3946 /// extracted values from \p VL. 3947 static InstructionCost 3948 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3949 TargetTransformInfo::ShuffleKind ShuffleKind, 3950 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3951 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3952 3953 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3954 VecTy->getNumElements() < NumOfParts) 3955 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3956 3957 bool AllConsecutive = true; 3958 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3959 unsigned Idx = -1; 3960 InstructionCost Cost = 0; 3961 3962 // Process extracts in blocks of EltsPerVector to check if the source vector 3963 // operand can be re-used directly. If not, add the cost of creating a shuffle 3964 // to extract the values into a vector register. 3965 for (auto *V : VL) { 3966 ++Idx; 3967 3968 // Reached the start of a new vector registers. 3969 if (Idx % EltsPerVector == 0) { 3970 AllConsecutive = true; 3971 continue; 3972 } 3973 3974 // Check all extracts for a vector register on the target directly 3975 // extract values in order. 3976 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3977 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3978 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3979 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3980 3981 if (AllConsecutive) 3982 continue; 3983 3984 // Skip all indices, except for the last index per vector block. 3985 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3986 continue; 3987 3988 // If we have a series of extracts which are not consecutive and hence 3989 // cannot re-use the source vector register directly, compute the shuffle 3990 // cost to extract the a vector with EltsPerVector elements. 3991 Cost += TTI.getShuffleCost( 3992 TargetTransformInfo::SK_PermuteSingleSrc, 3993 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 3994 } 3995 return Cost; 3996 } 3997 3998 /// Shuffles \p Mask in accordance with the given \p SubMask. 3999 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 4000 if (SubMask.empty()) 4001 return; 4002 if (Mask.empty()) { 4003 Mask.append(SubMask.begin(), SubMask.end()); 4004 return; 4005 } 4006 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4007 int TermValue = std::min(Mask.size(), SubMask.size()); 4008 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4009 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 4010 Mask[SubMask[I]] >= TermValue) { 4011 NewMask[I] = UndefMaskElem; 4012 continue; 4013 } 4014 NewMask[I] = Mask[SubMask[I]]; 4015 } 4016 Mask.swap(NewMask); 4017 } 4018 4019 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4020 ArrayRef<Value *> VectorizedVals) { 4021 ArrayRef<Value*> VL = E->Scalars; 4022 4023 Type *ScalarTy = VL[0]->getType(); 4024 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4025 ScalarTy = SI->getValueOperand()->getType(); 4026 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4027 ScalarTy = CI->getOperand(0)->getType(); 4028 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4029 ScalarTy = IE->getOperand(1)->getType(); 4030 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4031 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4032 4033 // If we have computed a smaller type for the expression, update VecTy so 4034 // that the costs will be accurate. 4035 if (MinBWs.count(VL[0])) 4036 VecTy = FixedVectorType::get( 4037 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4038 auto *FinalVecTy = VecTy; 4039 4040 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 4041 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4042 if (NeedToShuffleReuses) 4043 FinalVecTy = 4044 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers); 4045 // FIXME: it tries to fix a problem with MSVC buildbots. 4046 TargetTransformInfo &TTIRef = *TTI; 4047 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4048 VectorizedVals](InstructionCost &Cost, 4049 bool IsGather) { 4050 DenseMap<Value *, int> ExtractVectorsTys; 4051 for (auto *V : VL) { 4052 // If all users of instruction are going to be vectorized and this 4053 // instruction itself is not going to be vectorized, consider this 4054 // instruction as dead and remove its cost from the final cost of the 4055 // vectorized tree. 4056 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4057 (IsGather && ScalarToTreeEntry.count(V))) 4058 continue; 4059 auto *EE = cast<ExtractElementInst>(V); 4060 unsigned Idx = *getExtractIndex(EE); 4061 if (TTIRef.getNumberOfParts(VecTy) != 4062 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4063 auto It = 4064 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4065 It->getSecond() = std::min<int>(It->second, Idx); 4066 } 4067 // Take credit for instruction that will become dead. 4068 if (EE->hasOneUse()) { 4069 Instruction *Ext = EE->user_back(); 4070 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4071 all_of(Ext->users(), 4072 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4073 // Use getExtractWithExtendCost() to calculate the cost of 4074 // extractelement/ext pair. 4075 Cost -= 4076 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4077 EE->getVectorOperandType(), Idx); 4078 // Add back the cost of s|zext which is subtracted separately. 4079 Cost += TTIRef.getCastInstrCost( 4080 Ext->getOpcode(), Ext->getType(), EE->getType(), 4081 TTI::getCastContextHint(Ext), CostKind, Ext); 4082 continue; 4083 } 4084 } 4085 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4086 EE->getVectorOperandType(), Idx); 4087 } 4088 // Add a cost for subvector extracts/inserts if required. 4089 for (const auto &Data : ExtractVectorsTys) { 4090 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4091 unsigned NumElts = VecTy->getNumElements(); 4092 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4093 unsigned Idx = (Data.second / NumElts) * NumElts; 4094 unsigned EENumElts = EEVTy->getNumElements(); 4095 if (Idx + NumElts <= EENumElts) { 4096 Cost += 4097 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4098 EEVTy, None, Idx, VecTy); 4099 } else { 4100 // Need to round up the subvector type vectorization factor to avoid a 4101 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4102 // <= EENumElts. 4103 auto *SubVT = 4104 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4105 Cost += 4106 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4107 EEVTy, None, Idx, SubVT); 4108 } 4109 } else { 4110 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4111 VecTy, None, 0, EEVTy); 4112 } 4113 } 4114 }; 4115 if (E->State == TreeEntry::NeedToGather) { 4116 if (allConstant(VL)) 4117 return 0; 4118 if (isa<InsertElementInst>(VL[0])) 4119 return InstructionCost::getInvalid(); 4120 SmallVector<int> Mask; 4121 SmallVector<const TreeEntry *> Entries; 4122 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4123 isGatherShuffledEntry(E, Mask, Entries); 4124 if (Shuffle.hasValue()) { 4125 InstructionCost GatherCost = 0; 4126 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4127 // Perfect match in the graph, will reuse the previously vectorized 4128 // node. Cost is 0. 4129 LLVM_DEBUG( 4130 dbgs() 4131 << "SLP: perfect diamond match for gather bundle that starts with " 4132 << *VL.front() << ".\n"); 4133 if (NeedToShuffleReuses) 4134 GatherCost = 4135 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4136 FinalVecTy, E->ReuseShuffleIndices); 4137 } else { 4138 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4139 << " entries for bundle that starts with " 4140 << *VL.front() << ".\n"); 4141 // Detected that instead of gather we can emit a shuffle of single/two 4142 // previously vectorized nodes. Add the cost of the permutation rather 4143 // than gather. 4144 ::addMask(Mask, E->ReuseShuffleIndices); 4145 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4146 } 4147 return GatherCost; 4148 } 4149 if (isSplat(VL)) { 4150 // Found the broadcasting of the single scalar, calculate the cost as the 4151 // broadcast. 4152 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4153 } 4154 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4155 allSameBlock(VL) && 4156 !isa<ScalableVectorType>( 4157 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4158 // Check that gather of extractelements can be represented as just a 4159 // shuffle of a single/two vectors the scalars are extracted from. 4160 SmallVector<int> Mask; 4161 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4162 isShuffle(VL, Mask); 4163 if (ShuffleKind.hasValue()) { 4164 // Found the bunch of extractelement instructions that must be gathered 4165 // into a vector and can be represented as a permutation elements in a 4166 // single input vector or of 2 input vectors. 4167 InstructionCost Cost = 4168 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4169 AdjustExtractsCost(Cost, /*IsGather=*/true); 4170 if (NeedToShuffleReuses) 4171 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4172 FinalVecTy, E->ReuseShuffleIndices); 4173 return Cost; 4174 } 4175 } 4176 InstructionCost ReuseShuffleCost = 0; 4177 if (NeedToShuffleReuses) 4178 ReuseShuffleCost = TTI->getShuffleCost( 4179 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4180 // Improve gather cost for gather of loads, if we can group some of the 4181 // loads into vector loads. 4182 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4183 !E->isAltShuffle()) { 4184 BoUpSLP::ValueSet VectorizedLoads; 4185 unsigned StartIdx = 0; 4186 unsigned VF = VL.size() / 2; 4187 unsigned VectorizedCnt = 0; 4188 unsigned ScatterVectorizeCnt = 0; 4189 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4190 for (unsigned MinVF = getMinVecRegSize() / (2 * Sz); VF >= MinVF; 4191 VF /= 2) { 4192 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4193 Cnt += VF) { 4194 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4195 if (!VectorizedLoads.count(Slice.front()) && 4196 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4197 SmallVector<Value *> PointerOps; 4198 OrdersType CurrentOrder; 4199 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4200 *SE, CurrentOrder, PointerOps); 4201 switch (LS) { 4202 case LoadsState::Vectorize: 4203 case LoadsState::ScatterVectorize: 4204 // Mark the vectorized loads so that we don't vectorize them 4205 // again. 4206 if (LS == LoadsState::Vectorize) 4207 ++VectorizedCnt; 4208 else 4209 ++ScatterVectorizeCnt; 4210 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4211 // If we vectorized initial block, no need to try to vectorize it 4212 // again. 4213 if (Cnt == StartIdx) 4214 StartIdx += VF; 4215 break; 4216 case LoadsState::Gather: 4217 break; 4218 } 4219 } 4220 } 4221 // Check if the whole array was vectorized already - exit. 4222 if (StartIdx >= VL.size()) 4223 break; 4224 // Found vectorizable parts - exit. 4225 if (!VectorizedLoads.empty()) 4226 break; 4227 } 4228 if (!VectorizedLoads.empty()) { 4229 InstructionCost GatherCost = 0; 4230 // Get the cost for gathered loads. 4231 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4232 if (VectorizedLoads.contains(VL[I])) 4233 continue; 4234 GatherCost += getGatherCost(VL.slice(I, VF)); 4235 } 4236 // The cost for vectorized loads. 4237 InstructionCost ScalarsCost = 0; 4238 for (Value *V : VectorizedLoads) { 4239 auto *LI = cast<LoadInst>(V); 4240 ScalarsCost += TTI->getMemoryOpCost( 4241 Instruction::Load, LI->getType(), LI->getAlign(), 4242 LI->getPointerAddressSpace(), CostKind, LI); 4243 } 4244 auto *LI = cast<LoadInst>(E->getMainOp()); 4245 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4246 Align Alignment = LI->getAlign(); 4247 GatherCost += 4248 VectorizedCnt * 4249 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4250 LI->getPointerAddressSpace(), CostKind, LI); 4251 GatherCost += ScatterVectorizeCnt * 4252 TTI->getGatherScatterOpCost( 4253 Instruction::Load, LoadTy, LI->getPointerOperand(), 4254 /*VariableMask=*/false, Alignment, CostKind, LI); 4255 // Add the cost for the subvectors shuffling. 4256 GatherCost += ((VL.size() - VF) / VF) * 4257 TTI->getShuffleCost(TTI::SK_Select, VecTy); 4258 return ReuseShuffleCost + GatherCost - ScalarsCost; 4259 } 4260 } 4261 return ReuseShuffleCost + getGatherCost(VL); 4262 } 4263 InstructionCost CommonCost = 0; 4264 SmallVector<int> Mask; 4265 if (!E->ReorderIndices.empty()) { 4266 SmallVector<int> NewMask; 4267 if (E->getOpcode() == Instruction::Store) { 4268 // For stores the order is actually a mask. 4269 NewMask.resize(E->ReorderIndices.size()); 4270 copy(E->ReorderIndices, NewMask.begin()); 4271 } else { 4272 inversePermutation(E->ReorderIndices, NewMask); 4273 } 4274 ::addMask(Mask, NewMask); 4275 } 4276 if (NeedToShuffleReuses) 4277 ::addMask(Mask, E->ReuseShuffleIndices); 4278 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4279 CommonCost = 4280 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4281 assert((E->State == TreeEntry::Vectorize || 4282 E->State == TreeEntry::ScatterVectorize) && 4283 "Unhandled state"); 4284 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4285 Instruction *VL0 = E->getMainOp(); 4286 unsigned ShuffleOrOp = 4287 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4288 switch (ShuffleOrOp) { 4289 case Instruction::PHI: 4290 return 0; 4291 4292 case Instruction::ExtractValue: 4293 case Instruction::ExtractElement: { 4294 // The common cost of removal ExtractElement/ExtractValue instructions + 4295 // the cost of shuffles, if required to resuffle the original vector. 4296 if (NeedToShuffleReuses) { 4297 unsigned Idx = 0; 4298 for (unsigned I : E->ReuseShuffleIndices) { 4299 if (ShuffleOrOp == Instruction::ExtractElement) { 4300 auto *EE = cast<ExtractElementInst>(VL[I]); 4301 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4302 EE->getVectorOperandType(), 4303 *getExtractIndex(EE)); 4304 } else { 4305 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4306 VecTy, Idx); 4307 ++Idx; 4308 } 4309 } 4310 Idx = ReuseShuffleNumbers; 4311 for (Value *V : VL) { 4312 if (ShuffleOrOp == Instruction::ExtractElement) { 4313 auto *EE = cast<ExtractElementInst>(V); 4314 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4315 EE->getVectorOperandType(), 4316 *getExtractIndex(EE)); 4317 } else { 4318 --Idx; 4319 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4320 VecTy, Idx); 4321 } 4322 } 4323 } 4324 if (ShuffleOrOp == Instruction::ExtractValue) { 4325 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4326 auto *EI = cast<Instruction>(VL[I]); 4327 // Take credit for instruction that will become dead. 4328 if (EI->hasOneUse()) { 4329 Instruction *Ext = EI->user_back(); 4330 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4331 all_of(Ext->users(), 4332 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4333 // Use getExtractWithExtendCost() to calculate the cost of 4334 // extractelement/ext pair. 4335 CommonCost -= TTI->getExtractWithExtendCost( 4336 Ext->getOpcode(), Ext->getType(), VecTy, I); 4337 // Add back the cost of s|zext which is subtracted separately. 4338 CommonCost += TTI->getCastInstrCost( 4339 Ext->getOpcode(), Ext->getType(), EI->getType(), 4340 TTI::getCastContextHint(Ext), CostKind, Ext); 4341 continue; 4342 } 4343 } 4344 CommonCost -= 4345 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4346 } 4347 } else { 4348 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4349 } 4350 return CommonCost; 4351 } 4352 case Instruction::InsertElement: { 4353 assert(E->ReuseShuffleIndices.empty() && 4354 "Unique insertelements only are expected."); 4355 assert(E->ReorderIndices.empty() && 4356 "No reordering expected for insertelements."); 4357 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4358 4359 unsigned const NumElts = SrcVecTy->getNumElements(); 4360 unsigned const NumScalars = VL.size(); 4361 APInt DemandedElts = APInt::getNullValue(NumElts); 4362 // TODO: Add support for Instruction::InsertValue. 4363 unsigned Offset = UINT_MAX; 4364 bool IsIdentity = true; 4365 SmallVector<int> ShuffleMask(NumElts, UndefMaskElem); 4366 for (unsigned I = 0; I < NumScalars; ++I) { 4367 Optional<int> InsertIdx = getInsertIndex(VL[I], 0); 4368 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4369 continue; 4370 unsigned Idx = *InsertIdx; 4371 DemandedElts.setBit(Idx); 4372 if (Idx < Offset) { 4373 Offset = Idx; 4374 IsIdentity &= I == 0; 4375 } else { 4376 assert(Idx >= Offset && "Failed to find vector index offset"); 4377 IsIdentity &= Idx - Offset == I; 4378 } 4379 ShuffleMask[Idx] = I; 4380 } 4381 assert(Offset < NumElts && "Failed to find vector index offset"); 4382 4383 InstructionCost Cost = 0; 4384 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4385 /*Insert*/ true, /*Extract*/ false); 4386 4387 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4388 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4389 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4390 Cost += TTI->getShuffleCost( 4391 TargetTransformInfo::SK_PermuteSingleSrc, 4392 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4393 } else if (!IsIdentity) { 4394 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, 4395 ShuffleMask); 4396 } 4397 4398 return Cost; 4399 } 4400 case Instruction::ZExt: 4401 case Instruction::SExt: 4402 case Instruction::FPToUI: 4403 case Instruction::FPToSI: 4404 case Instruction::FPExt: 4405 case Instruction::PtrToInt: 4406 case Instruction::IntToPtr: 4407 case Instruction::SIToFP: 4408 case Instruction::UIToFP: 4409 case Instruction::Trunc: 4410 case Instruction::FPTrunc: 4411 case Instruction::BitCast: { 4412 Type *SrcTy = VL0->getOperand(0)->getType(); 4413 InstructionCost ScalarEltCost = 4414 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4415 TTI::getCastContextHint(VL0), CostKind, VL0); 4416 if (NeedToShuffleReuses) { 4417 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4418 } 4419 4420 // Calculate the cost of this instruction. 4421 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4422 4423 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4424 InstructionCost VecCost = 0; 4425 // Check if the values are candidates to demote. 4426 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4427 VecCost = CommonCost + TTI->getCastInstrCost( 4428 E->getOpcode(), VecTy, SrcVecTy, 4429 TTI::getCastContextHint(VL0), CostKind, VL0); 4430 } 4431 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4432 return VecCost - ScalarCost; 4433 } 4434 case Instruction::FCmp: 4435 case Instruction::ICmp: 4436 case Instruction::Select: { 4437 // Calculate the cost of this instruction. 4438 InstructionCost ScalarEltCost = 4439 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4440 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4441 if (NeedToShuffleReuses) { 4442 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4443 } 4444 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4445 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4446 4447 // Check if all entries in VL are either compares or selects with compares 4448 // as condition that have the same predicates. 4449 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4450 bool First = true; 4451 for (auto *V : VL) { 4452 CmpInst::Predicate CurrentPred; 4453 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4454 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4455 !match(V, MatchCmp)) || 4456 (!First && VecPred != CurrentPred)) { 4457 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4458 break; 4459 } 4460 First = false; 4461 VecPred = CurrentPred; 4462 } 4463 4464 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4465 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4466 // Check if it is possible and profitable to use min/max for selects in 4467 // VL. 4468 // 4469 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4470 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4471 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4472 {VecTy, VecTy}); 4473 InstructionCost IntrinsicCost = 4474 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4475 // If the selects are the only uses of the compares, they will be dead 4476 // and we can adjust the cost by removing their cost. 4477 if (IntrinsicAndUse.second) 4478 IntrinsicCost -= 4479 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4480 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4481 VecCost = std::min(VecCost, IntrinsicCost); 4482 } 4483 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4484 return CommonCost + VecCost - ScalarCost; 4485 } 4486 case Instruction::FNeg: 4487 case Instruction::Add: 4488 case Instruction::FAdd: 4489 case Instruction::Sub: 4490 case Instruction::FSub: 4491 case Instruction::Mul: 4492 case Instruction::FMul: 4493 case Instruction::UDiv: 4494 case Instruction::SDiv: 4495 case Instruction::FDiv: 4496 case Instruction::URem: 4497 case Instruction::SRem: 4498 case Instruction::FRem: 4499 case Instruction::Shl: 4500 case Instruction::LShr: 4501 case Instruction::AShr: 4502 case Instruction::And: 4503 case Instruction::Or: 4504 case Instruction::Xor: { 4505 // Certain instructions can be cheaper to vectorize if they have a 4506 // constant second vector operand. 4507 TargetTransformInfo::OperandValueKind Op1VK = 4508 TargetTransformInfo::OK_AnyValue; 4509 TargetTransformInfo::OperandValueKind Op2VK = 4510 TargetTransformInfo::OK_UniformConstantValue; 4511 TargetTransformInfo::OperandValueProperties Op1VP = 4512 TargetTransformInfo::OP_None; 4513 TargetTransformInfo::OperandValueProperties Op2VP = 4514 TargetTransformInfo::OP_PowerOf2; 4515 4516 // If all operands are exactly the same ConstantInt then set the 4517 // operand kind to OK_UniformConstantValue. 4518 // If instead not all operands are constants, then set the operand kind 4519 // to OK_AnyValue. If all operands are constants but not the same, 4520 // then set the operand kind to OK_NonUniformConstantValue. 4521 ConstantInt *CInt0 = nullptr; 4522 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4523 const Instruction *I = cast<Instruction>(VL[i]); 4524 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4525 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4526 if (!CInt) { 4527 Op2VK = TargetTransformInfo::OK_AnyValue; 4528 Op2VP = TargetTransformInfo::OP_None; 4529 break; 4530 } 4531 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4532 !CInt->getValue().isPowerOf2()) 4533 Op2VP = TargetTransformInfo::OP_None; 4534 if (i == 0) { 4535 CInt0 = CInt; 4536 continue; 4537 } 4538 if (CInt0 != CInt) 4539 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4540 } 4541 4542 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4543 InstructionCost ScalarEltCost = 4544 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4545 Op2VK, Op1VP, Op2VP, Operands, VL0); 4546 if (NeedToShuffleReuses) { 4547 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4548 } 4549 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4550 InstructionCost VecCost = 4551 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4552 Op2VK, Op1VP, Op2VP, Operands, VL0); 4553 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4554 return CommonCost + VecCost - ScalarCost; 4555 } 4556 case Instruction::GetElementPtr: { 4557 TargetTransformInfo::OperandValueKind Op1VK = 4558 TargetTransformInfo::OK_AnyValue; 4559 TargetTransformInfo::OperandValueKind Op2VK = 4560 TargetTransformInfo::OK_UniformConstantValue; 4561 4562 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4563 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4564 if (NeedToShuffleReuses) { 4565 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4566 } 4567 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4568 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4569 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4570 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4571 return CommonCost + VecCost - ScalarCost; 4572 } 4573 case Instruction::Load: { 4574 // Cost of wide load - cost of scalar loads. 4575 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4576 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4577 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4578 if (NeedToShuffleReuses) { 4579 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4580 } 4581 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4582 InstructionCost VecLdCost; 4583 if (E->State == TreeEntry::Vectorize) { 4584 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4585 CostKind, VL0); 4586 } else { 4587 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4588 Align CommonAlignment = Alignment; 4589 for (Value *V : VL) 4590 CommonAlignment = 4591 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4592 VecLdCost = TTI->getGatherScatterOpCost( 4593 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4594 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4595 } 4596 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4597 return CommonCost + VecLdCost - ScalarLdCost; 4598 } 4599 case Instruction::Store: { 4600 // We know that we can merge the stores. Calculate the cost. 4601 bool IsReorder = !E->ReorderIndices.empty(); 4602 auto *SI = 4603 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4604 Align Alignment = SI->getAlign(); 4605 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4606 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4607 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4608 InstructionCost VecStCost = TTI->getMemoryOpCost( 4609 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4610 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4611 return CommonCost + VecStCost - ScalarStCost; 4612 } 4613 case Instruction::Call: { 4614 CallInst *CI = cast<CallInst>(VL0); 4615 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4616 4617 // Calculate the cost of the scalar and vector calls. 4618 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4619 InstructionCost ScalarEltCost = 4620 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4621 if (NeedToShuffleReuses) { 4622 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4623 } 4624 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4625 4626 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4627 InstructionCost VecCallCost = 4628 std::min(VecCallCosts.first, VecCallCosts.second); 4629 4630 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4631 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4632 << " for " << *CI << "\n"); 4633 4634 return CommonCost + VecCallCost - ScalarCallCost; 4635 } 4636 case Instruction::ShuffleVector: { 4637 assert(E->isAltShuffle() && 4638 ((Instruction::isBinaryOp(E->getOpcode()) && 4639 Instruction::isBinaryOp(E->getAltOpcode())) || 4640 (Instruction::isCast(E->getOpcode()) && 4641 Instruction::isCast(E->getAltOpcode()))) && 4642 "Invalid Shuffle Vector Operand"); 4643 InstructionCost ScalarCost = 0; 4644 if (NeedToShuffleReuses) { 4645 for (unsigned Idx : E->ReuseShuffleIndices) { 4646 Instruction *I = cast<Instruction>(VL[Idx]); 4647 CommonCost -= TTI->getInstructionCost(I, CostKind); 4648 } 4649 for (Value *V : VL) { 4650 Instruction *I = cast<Instruction>(V); 4651 CommonCost += TTI->getInstructionCost(I, CostKind); 4652 } 4653 } 4654 for (Value *V : VL) { 4655 Instruction *I = cast<Instruction>(V); 4656 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4657 ScalarCost += TTI->getInstructionCost(I, CostKind); 4658 } 4659 // VecCost is equal to sum of the cost of creating 2 vectors 4660 // and the cost of creating shuffle. 4661 InstructionCost VecCost = 0; 4662 if (Instruction::isBinaryOp(E->getOpcode())) { 4663 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4664 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4665 CostKind); 4666 } else { 4667 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4668 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4669 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4670 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4671 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4672 TTI::CastContextHint::None, CostKind); 4673 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4674 TTI::CastContextHint::None, CostKind); 4675 } 4676 4677 SmallVector<int> Mask(E->Scalars.size()); 4678 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 4679 auto *OpInst = cast<Instruction>(E->Scalars[I]); 4680 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4681 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 4682 } 4683 if (!E->ReorderIndices.empty()) { 4684 SmallVector<int> NewMask; 4685 inversePermutation(E->ReorderIndices, NewMask); 4686 ::addMask(Mask, NewMask); 4687 } 4688 if (NeedToShuffleReuses) 4689 ::addMask(Mask, E->ReuseShuffleIndices); 4690 CommonCost = 4691 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 4692 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4693 return CommonCost + VecCost - ScalarCost; 4694 } 4695 default: 4696 llvm_unreachable("Unknown instruction"); 4697 } 4698 } 4699 4700 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4701 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4702 << VectorizableTree.size() << " is fully vectorizable .\n"); 4703 4704 // We only handle trees of heights 1 and 2. 4705 if (VectorizableTree.size() == 1 && 4706 VectorizableTree[0]->State == TreeEntry::Vectorize) 4707 return true; 4708 4709 if (VectorizableTree.size() != 2) 4710 return false; 4711 4712 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4713 // with the second gather nodes if they have less scalar operands rather than 4714 // the initial tree element (may be profitable to shuffle the second gather) 4715 // or they are extractelements, which form shuffle. 4716 SmallVector<int> Mask; 4717 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4718 (allConstant(VectorizableTree[1]->Scalars) || 4719 isSplat(VectorizableTree[1]->Scalars) || 4720 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4721 VectorizableTree[1]->Scalars.size() < 4722 VectorizableTree[0]->Scalars.size()) || 4723 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4724 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement && 4725 isShuffle(VectorizableTree[1]->Scalars, Mask)))) 4726 return true; 4727 4728 // Gathering cost would be too much for tiny trees. 4729 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4730 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4731 return false; 4732 4733 return true; 4734 } 4735 4736 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4737 TargetTransformInfo *TTI, 4738 bool MustMatchOrInst) { 4739 // Look past the root to find a source value. Arbitrarily follow the 4740 // path through operand 0 of any 'or'. Also, peek through optional 4741 // shift-left-by-multiple-of-8-bits. 4742 Value *ZextLoad = Root; 4743 const APInt *ShAmtC; 4744 bool FoundOr = false; 4745 while (!isa<ConstantExpr>(ZextLoad) && 4746 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4747 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4748 ShAmtC->urem(8) == 0))) { 4749 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4750 ZextLoad = BinOp->getOperand(0); 4751 if (BinOp->getOpcode() == Instruction::Or) 4752 FoundOr = true; 4753 } 4754 // Check if the input is an extended load of the required or/shift expression. 4755 Value *LoadPtr; 4756 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4757 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4758 return false; 4759 4760 // Require that the total load bit width is a legal integer type. 4761 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4762 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4763 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4764 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4765 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4766 return false; 4767 4768 // Everything matched - assume that we can fold the whole sequence using 4769 // load combining. 4770 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4771 << *(cast<Instruction>(Root)) << "\n"); 4772 4773 return true; 4774 } 4775 4776 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4777 if (RdxKind != RecurKind::Or) 4778 return false; 4779 4780 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4781 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4782 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4783 /* MatchOr */ false); 4784 } 4785 4786 bool BoUpSLP::isLoadCombineCandidate() const { 4787 // Peek through a final sequence of stores and check if all operations are 4788 // likely to be load-combined. 4789 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4790 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4791 Value *X; 4792 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4793 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 4794 return false; 4795 } 4796 return true; 4797 } 4798 4799 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4800 // No need to vectorize inserts of gathered values. 4801 if (VectorizableTree.size() == 2 && 4802 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 4803 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4804 return true; 4805 4806 // We can vectorize the tree if its size is greater than or equal to the 4807 // minimum size specified by the MinTreeSize command line option. 4808 if (VectorizableTree.size() >= MinTreeSize) 4809 return false; 4810 4811 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4812 // can vectorize it if we can prove it fully vectorizable. 4813 if (isFullyVectorizableTinyTree()) 4814 return false; 4815 4816 assert(VectorizableTree.empty() 4817 ? ExternalUses.empty() 4818 : true && "We shouldn't have any external users"); 4819 4820 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4821 // vectorizable. 4822 return true; 4823 } 4824 4825 InstructionCost BoUpSLP::getSpillCost() const { 4826 // Walk from the bottom of the tree to the top, tracking which values are 4827 // live. When we see a call instruction that is not part of our tree, 4828 // query TTI to see if there is a cost to keeping values live over it 4829 // (for example, if spills and fills are required). 4830 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4831 InstructionCost Cost = 0; 4832 4833 SmallPtrSet<Instruction*, 4> LiveValues; 4834 Instruction *PrevInst = nullptr; 4835 4836 // The entries in VectorizableTree are not necessarily ordered by their 4837 // position in basic blocks. Collect them and order them by dominance so later 4838 // instructions are guaranteed to be visited first. For instructions in 4839 // different basic blocks, we only scan to the beginning of the block, so 4840 // their order does not matter, as long as all instructions in a basic block 4841 // are grouped together. Using dominance ensures a deterministic order. 4842 SmallVector<Instruction *, 16> OrderedScalars; 4843 for (const auto &TEPtr : VectorizableTree) { 4844 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4845 if (!Inst) 4846 continue; 4847 OrderedScalars.push_back(Inst); 4848 } 4849 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 4850 auto *NodeA = DT->getNode(A->getParent()); 4851 auto *NodeB = DT->getNode(B->getParent()); 4852 assert(NodeA && "Should only process reachable instructions"); 4853 assert(NodeB && "Should only process reachable instructions"); 4854 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 4855 "Different nodes should have different DFS numbers"); 4856 if (NodeA != NodeB) 4857 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 4858 return B->comesBefore(A); 4859 }); 4860 4861 for (Instruction *Inst : OrderedScalars) { 4862 if (!PrevInst) { 4863 PrevInst = Inst; 4864 continue; 4865 } 4866 4867 // Update LiveValues. 4868 LiveValues.erase(PrevInst); 4869 for (auto &J : PrevInst->operands()) { 4870 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4871 LiveValues.insert(cast<Instruction>(&*J)); 4872 } 4873 4874 LLVM_DEBUG({ 4875 dbgs() << "SLP: #LV: " << LiveValues.size(); 4876 for (auto *X : LiveValues) 4877 dbgs() << " " << X->getName(); 4878 dbgs() << ", Looking at "; 4879 Inst->dump(); 4880 }); 4881 4882 // Now find the sequence of instructions between PrevInst and Inst. 4883 unsigned NumCalls = 0; 4884 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4885 PrevInstIt = 4886 PrevInst->getIterator().getReverse(); 4887 while (InstIt != PrevInstIt) { 4888 if (PrevInstIt == PrevInst->getParent()->rend()) { 4889 PrevInstIt = Inst->getParent()->rbegin(); 4890 continue; 4891 } 4892 4893 // Debug information does not impact spill cost. 4894 if ((isa<CallInst>(&*PrevInstIt) && 4895 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4896 &*PrevInstIt != PrevInst) 4897 NumCalls++; 4898 4899 ++PrevInstIt; 4900 } 4901 4902 if (NumCalls) { 4903 SmallVector<Type*, 4> V; 4904 for (auto *II : LiveValues) { 4905 auto *ScalarTy = II->getType(); 4906 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 4907 ScalarTy = VectorTy->getElementType(); 4908 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 4909 } 4910 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4911 } 4912 4913 PrevInst = Inst; 4914 } 4915 4916 return Cost; 4917 } 4918 4919 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 4920 InstructionCost Cost = 0; 4921 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4922 << VectorizableTree.size() << ".\n"); 4923 4924 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4925 4926 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4927 TreeEntry &TE = *VectorizableTree[I].get(); 4928 4929 InstructionCost C = getEntryCost(&TE, VectorizedVals); 4930 Cost += C; 4931 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4932 << " for bundle that starts with " << *TE.Scalars[0] 4933 << ".\n" 4934 << "SLP: Current total cost = " << Cost << "\n"); 4935 } 4936 4937 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4938 InstructionCost ExtractCost = 0; 4939 SmallVector<unsigned> VF; 4940 SmallVector<SmallVector<int>> ShuffleMask; 4941 SmallVector<Value *> FirstUsers; 4942 SmallVector<APInt> DemandedElts; 4943 for (ExternalUser &EU : ExternalUses) { 4944 // We only add extract cost once for the same scalar. 4945 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4946 continue; 4947 4948 // Uses by ephemeral values are free (because the ephemeral value will be 4949 // removed prior to code generation, and so the extraction will be 4950 // removed as well). 4951 if (EphValues.count(EU.User)) 4952 continue; 4953 4954 // No extract cost for vector "scalar" 4955 if (isa<FixedVectorType>(EU.Scalar->getType())) 4956 continue; 4957 4958 // Already counted the cost for external uses when tried to adjust the cost 4959 // for extractelements, no need to add it again. 4960 if (isa<ExtractElementInst>(EU.Scalar)) 4961 continue; 4962 4963 // If found user is an insertelement, do not calculate extract cost but try 4964 // to detect it as a final shuffled/identity match. 4965 if (EU.User && isa<InsertElementInst>(EU.User)) { 4966 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 4967 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 4968 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4969 continue; 4970 Value *VU = EU.User; 4971 auto *It = find_if(FirstUsers, [VU](Value *V) { 4972 // Checks if 2 insertelements are from the same buildvector. 4973 if (VU->getType() != V->getType()) 4974 return false; 4975 auto *IE1 = cast<InsertElementInst>(VU); 4976 auto *IE2 = cast<InsertElementInst>(V); 4977 // Go though of insertelement instructions trying to find either VU as 4978 // the original vector for IE2 or V as the original vector for IE1. 4979 do { 4980 if (IE1 == VU || IE2 == V) 4981 return true; 4982 if (IE1) 4983 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 4984 if (IE2) 4985 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 4986 } while (IE1 || IE2); 4987 return false; 4988 }); 4989 int VecId = -1; 4990 if (It == FirstUsers.end()) { 4991 VF.push_back(FTy->getNumElements()); 4992 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 4993 FirstUsers.push_back(EU.User); 4994 DemandedElts.push_back(APInt::getNullValue(VF.back())); 4995 VecId = FirstUsers.size() - 1; 4996 } else { 4997 VecId = std::distance(FirstUsers.begin(), It); 4998 } 4999 int Idx = *InsertIdx; 5000 ShuffleMask[VecId][Idx] = EU.Lane; 5001 DemandedElts[VecId].setBit(Idx); 5002 } 5003 } 5004 5005 // If we plan to rewrite the tree in a smaller type, we will need to sign 5006 // extend the extracted value back to the original type. Here, we account 5007 // for the extract and the added cost of the sign extend if needed. 5008 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5009 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5010 if (MinBWs.count(ScalarRoot)) { 5011 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5012 auto Extend = 5013 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5014 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5015 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5016 VecTy, EU.Lane); 5017 } else { 5018 ExtractCost += 5019 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5020 } 5021 } 5022 5023 InstructionCost SpillCost = getSpillCost(); 5024 Cost += SpillCost + ExtractCost; 5025 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5026 // For the very first element - simple shuffle of the source vector. 5027 int Limit = ShuffleMask[I].size() * 2; 5028 if (I == 0 && 5029 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5030 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5031 InstructionCost C = TTI->getShuffleCost( 5032 TTI::SK_PermuteSingleSrc, 5033 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5034 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5035 << " for final shuffle of insertelement external users " 5036 << *VectorizableTree.front()->Scalars.front() << ".\n" 5037 << "SLP: Current total cost = " << Cost << "\n"); 5038 Cost += C; 5039 continue; 5040 } 5041 // Other elements - permutation of 2 vectors (the initial one and the next 5042 // Ith incoming vector). 5043 unsigned VF = ShuffleMask[I].size(); 5044 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5045 int &Mask = ShuffleMask[I][Idx]; 5046 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5047 } 5048 InstructionCost C = TTI->getShuffleCost( 5049 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5050 ShuffleMask[I]); 5051 LLVM_DEBUG( 5052 dbgs() 5053 << "SLP: Adding cost " << C 5054 << " for final shuffle of vector node and external insertelement users " 5055 << *VectorizableTree.front()->Scalars.front() << ".\n" 5056 << "SLP: Current total cost = " << Cost << "\n"); 5057 Cost += C; 5058 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5059 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5060 /*Insert*/ true, 5061 /*Extract*/ false); 5062 Cost -= InsertCost; 5063 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5064 << " for insertelements gather.\n" 5065 << "SLP: Current total cost = " << Cost << "\n"); 5066 } 5067 5068 #ifndef NDEBUG 5069 SmallString<256> Str; 5070 { 5071 raw_svector_ostream OS(Str); 5072 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5073 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5074 << "SLP: Total Cost = " << Cost << ".\n"; 5075 } 5076 LLVM_DEBUG(dbgs() << Str); 5077 if (ViewSLPTree) 5078 ViewGraph(this, "SLP" + F->getName(), false, Str); 5079 #endif 5080 5081 return Cost; 5082 } 5083 5084 Optional<TargetTransformInfo::ShuffleKind> 5085 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5086 SmallVectorImpl<const TreeEntry *> &Entries) { 5087 // TODO: currently checking only for Scalars in the tree entry, need to count 5088 // reused elements too for better cost estimation. 5089 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5090 Entries.clear(); 5091 // Build a lists of values to tree entries. 5092 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5093 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5094 if (EntryPtr.get() == TE) 5095 break; 5096 if (EntryPtr->State != TreeEntry::NeedToGather) 5097 continue; 5098 for (Value *V : EntryPtr->Scalars) 5099 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5100 } 5101 // Find all tree entries used by the gathered values. If no common entries 5102 // found - not a shuffle. 5103 // Here we build a set of tree nodes for each gathered value and trying to 5104 // find the intersection between these sets. If we have at least one common 5105 // tree node for each gathered value - we have just a permutation of the 5106 // single vector. If we have 2 different sets, we're in situation where we 5107 // have a permutation of 2 input vectors. 5108 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5109 DenseMap<Value *, int> UsedValuesEntry; 5110 for (Value *V : TE->Scalars) { 5111 if (isa<UndefValue>(V)) 5112 continue; 5113 // Build a list of tree entries where V is used. 5114 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5115 auto It = ValueToTEs.find(V); 5116 if (It != ValueToTEs.end()) 5117 VToTEs = It->second; 5118 if (const TreeEntry *VTE = getTreeEntry(V)) 5119 VToTEs.insert(VTE); 5120 if (VToTEs.empty()) 5121 return None; 5122 if (UsedTEs.empty()) { 5123 // The first iteration, just insert the list of nodes to vector. 5124 UsedTEs.push_back(VToTEs); 5125 } else { 5126 // Need to check if there are any previously used tree nodes which use V. 5127 // If there are no such nodes, consider that we have another one input 5128 // vector. 5129 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5130 unsigned Idx = 0; 5131 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5132 // Do we have a non-empty intersection of previously listed tree entries 5133 // and tree entries using current V? 5134 set_intersect(VToTEs, Set); 5135 if (!VToTEs.empty()) { 5136 // Yes, write the new subset and continue analysis for the next 5137 // scalar. 5138 Set.swap(VToTEs); 5139 break; 5140 } 5141 VToTEs = SavedVToTEs; 5142 ++Idx; 5143 } 5144 // No non-empty intersection found - need to add a second set of possible 5145 // source vectors. 5146 if (Idx == UsedTEs.size()) { 5147 // If the number of input vectors is greater than 2 - not a permutation, 5148 // fallback to the regular gather. 5149 if (UsedTEs.size() == 2) 5150 return None; 5151 UsedTEs.push_back(SavedVToTEs); 5152 Idx = UsedTEs.size() - 1; 5153 } 5154 UsedValuesEntry.try_emplace(V, Idx); 5155 } 5156 } 5157 5158 unsigned VF = 0; 5159 if (UsedTEs.size() == 1) { 5160 // Try to find the perfect match in another gather node at first. 5161 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5162 return EntryPtr->isSame(TE->Scalars); 5163 }); 5164 if (It != UsedTEs.front().end()) { 5165 Entries.push_back(*It); 5166 std::iota(Mask.begin(), Mask.end(), 0); 5167 return TargetTransformInfo::SK_PermuteSingleSrc; 5168 } 5169 // No perfect match, just shuffle, so choose the first tree node. 5170 Entries.push_back(*UsedTEs.front().begin()); 5171 } else { 5172 // Try to find nodes with the same vector factor. 5173 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5174 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 5175 // landed. 5176 auto &&GetVF = [](const TreeEntry *TE) { 5177 if (!TE->ReuseShuffleIndices.empty()) 5178 return TE->ReuseShuffleIndices.size(); 5179 return TE->Scalars.size(); 5180 }; 5181 DenseMap<int, const TreeEntry *> VFToTE; 5182 for (const TreeEntry *TE : UsedTEs.front()) 5183 VFToTE.try_emplace(GetVF(TE), TE); 5184 for (const TreeEntry *TE : UsedTEs.back()) { 5185 auto It = VFToTE.find(GetVF(TE)); 5186 if (It != VFToTE.end()) { 5187 VF = It->first; 5188 Entries.push_back(It->second); 5189 Entries.push_back(TE); 5190 break; 5191 } 5192 } 5193 // No 2 source vectors with the same vector factor - give up and do regular 5194 // gather. 5195 if (Entries.empty()) 5196 return None; 5197 } 5198 5199 // Build a shuffle mask for better cost estimation and vector emission. 5200 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5201 Value *V = TE->Scalars[I]; 5202 if (isa<UndefValue>(V)) 5203 continue; 5204 unsigned Idx = UsedValuesEntry.lookup(V); 5205 const TreeEntry *VTE = Entries[Idx]; 5206 int FoundLane = VTE->findLaneForValue(V); 5207 Mask[I] = Idx * VF + FoundLane; 5208 // Extra check required by isSingleSourceMaskImpl function (called by 5209 // ShuffleVectorInst::isSingleSourceMask). 5210 if (Mask[I] >= 2 * E) 5211 return None; 5212 } 5213 switch (Entries.size()) { 5214 case 1: 5215 return TargetTransformInfo::SK_PermuteSingleSrc; 5216 case 2: 5217 return TargetTransformInfo::SK_PermuteTwoSrc; 5218 default: 5219 break; 5220 } 5221 return None; 5222 } 5223 5224 InstructionCost 5225 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5226 const DenseSet<unsigned> &ShuffledIndices) const { 5227 unsigned NumElts = Ty->getNumElements(); 5228 APInt DemandedElts = APInt::getNullValue(NumElts); 5229 for (unsigned I = 0; I < NumElts; ++I) 5230 if (!ShuffledIndices.count(I)) 5231 DemandedElts.setBit(I); 5232 InstructionCost Cost = 5233 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5234 /*Extract*/ false); 5235 if (!ShuffledIndices.empty()) 5236 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5237 return Cost; 5238 } 5239 5240 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5241 // Find the type of the operands in VL. 5242 Type *ScalarTy = VL[0]->getType(); 5243 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5244 ScalarTy = SI->getValueOperand()->getType(); 5245 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5246 // Find the cost of inserting/extracting values from the vector. 5247 // Check if the same elements are inserted several times and count them as 5248 // shuffle candidates. 5249 DenseSet<unsigned> ShuffledElements; 5250 DenseSet<Value *> UniqueElements; 5251 // Iterate in reverse order to consider insert elements with the high cost. 5252 for (unsigned I = VL.size(); I > 0; --I) { 5253 unsigned Idx = I - 1; 5254 if (isConstant(VL[Idx])) 5255 continue; 5256 if (!UniqueElements.insert(VL[Idx]).second) 5257 ShuffledElements.insert(Idx); 5258 } 5259 return getGatherCost(VecTy, ShuffledElements); 5260 } 5261 5262 // Perform operand reordering on the instructions in VL and return the reordered 5263 // operands in Left and Right. 5264 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5265 SmallVectorImpl<Value *> &Left, 5266 SmallVectorImpl<Value *> &Right, 5267 const DataLayout &DL, 5268 ScalarEvolution &SE, 5269 const BoUpSLP &R) { 5270 if (VL.empty()) 5271 return; 5272 VLOperands Ops(VL, DL, SE, R); 5273 // Reorder the operands in place. 5274 Ops.reorder(); 5275 Left = Ops.getVL(0); 5276 Right = Ops.getVL(1); 5277 } 5278 5279 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5280 // Get the basic block this bundle is in. All instructions in the bundle 5281 // should be in this block. 5282 auto *Front = E->getMainOp(); 5283 auto *BB = Front->getParent(); 5284 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5285 auto *I = cast<Instruction>(V); 5286 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5287 })); 5288 5289 // The last instruction in the bundle in program order. 5290 Instruction *LastInst = nullptr; 5291 5292 // Find the last instruction. The common case should be that BB has been 5293 // scheduled, and the last instruction is VL.back(). So we start with 5294 // VL.back() and iterate over schedule data until we reach the end of the 5295 // bundle. The end of the bundle is marked by null ScheduleData. 5296 if (BlocksSchedules.count(BB)) { 5297 auto *Bundle = 5298 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5299 if (Bundle && Bundle->isPartOfBundle()) 5300 for (; Bundle; Bundle = Bundle->NextInBundle) 5301 if (Bundle->OpValue == Bundle->Inst) 5302 LastInst = Bundle->Inst; 5303 } 5304 5305 // LastInst can still be null at this point if there's either not an entry 5306 // for BB in BlocksSchedules or there's no ScheduleData available for 5307 // VL.back(). This can be the case if buildTree_rec aborts for various 5308 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5309 // size is reached, etc.). ScheduleData is initialized in the scheduling 5310 // "dry-run". 5311 // 5312 // If this happens, we can still find the last instruction by brute force. We 5313 // iterate forwards from Front (inclusive) until we either see all 5314 // instructions in the bundle or reach the end of the block. If Front is the 5315 // last instruction in program order, LastInst will be set to Front, and we 5316 // will visit all the remaining instructions in the block. 5317 // 5318 // One of the reasons we exit early from buildTree_rec is to place an upper 5319 // bound on compile-time. Thus, taking an additional compile-time hit here is 5320 // not ideal. However, this should be exceedingly rare since it requires that 5321 // we both exit early from buildTree_rec and that the bundle be out-of-order 5322 // (causing us to iterate all the way to the end of the block). 5323 if (!LastInst) { 5324 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5325 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5326 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5327 LastInst = &I; 5328 if (Bundle.empty()) 5329 break; 5330 } 5331 } 5332 assert(LastInst && "Failed to find last instruction in bundle"); 5333 5334 // Set the insertion point after the last instruction in the bundle. Set the 5335 // debug location to Front. 5336 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5337 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5338 } 5339 5340 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5341 // List of instructions/lanes from current block and/or the blocks which are 5342 // part of the current loop. These instructions will be inserted at the end to 5343 // make it possible to optimize loops and hoist invariant instructions out of 5344 // the loops body with better chances for success. 5345 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5346 SmallSet<int, 4> PostponedIndices; 5347 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5348 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5349 SmallPtrSet<BasicBlock *, 4> Visited; 5350 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5351 InsertBB = InsertBB->getSinglePredecessor(); 5352 return InsertBB && InsertBB == InstBB; 5353 }; 5354 for (int I = 0, E = VL.size(); I < E; ++I) { 5355 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5356 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5357 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5358 PostponedIndices.insert(I).second) 5359 PostponedInsts.emplace_back(Inst, I); 5360 } 5361 5362 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5363 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5364 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5365 if (!InsElt) 5366 return Vec; 5367 GatherSeq.insert(InsElt); 5368 CSEBlocks.insert(InsElt->getParent()); 5369 // Add to our 'need-to-extract' list. 5370 if (TreeEntry *Entry = getTreeEntry(V)) { 5371 // Find which lane we need to extract. 5372 unsigned FoundLane = Entry->findLaneForValue(V); 5373 ExternalUses.emplace_back(V, InsElt, FoundLane); 5374 } 5375 return Vec; 5376 }; 5377 Value *Val0 = 5378 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5379 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5380 Value *Vec = PoisonValue::get(VecTy); 5381 SmallVector<int> NonConsts; 5382 // Insert constant values at first. 5383 for (int I = 0, E = VL.size(); I < E; ++I) { 5384 if (PostponedIndices.contains(I)) 5385 continue; 5386 if (!isConstant(VL[I])) { 5387 NonConsts.push_back(I); 5388 continue; 5389 } 5390 Vec = CreateInsertElement(Vec, VL[I], I); 5391 } 5392 // Insert non-constant values. 5393 for (int I : NonConsts) 5394 Vec = CreateInsertElement(Vec, VL[I], I); 5395 // Append instructions, which are/may be part of the loop, in the end to make 5396 // it possible to hoist non-loop-based instructions. 5397 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5398 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5399 5400 return Vec; 5401 } 5402 5403 namespace { 5404 /// Merges shuffle masks and emits final shuffle instruction, if required. 5405 class ShuffleInstructionBuilder { 5406 IRBuilderBase &Builder; 5407 const unsigned VF = 0; 5408 bool IsFinalized = false; 5409 SmallVector<int, 4> Mask; 5410 5411 public: 5412 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5413 : Builder(Builder), VF(VF) {} 5414 5415 /// Adds a mask, inverting it before applying. 5416 void addInversedMask(ArrayRef<unsigned> SubMask) { 5417 if (SubMask.empty()) 5418 return; 5419 SmallVector<int, 4> NewMask; 5420 inversePermutation(SubMask, NewMask); 5421 addMask(NewMask); 5422 } 5423 5424 /// Functions adds masks, merging them into single one. 5425 void addMask(ArrayRef<unsigned> SubMask) { 5426 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5427 addMask(NewMask); 5428 } 5429 5430 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5431 5432 Value *finalize(Value *V) { 5433 IsFinalized = true; 5434 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5435 if (VF == ValueVF && Mask.empty()) 5436 return V; 5437 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5438 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5439 addMask(NormalizedMask); 5440 5441 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5442 return V; 5443 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5444 } 5445 5446 ~ShuffleInstructionBuilder() { 5447 assert((IsFinalized || Mask.empty()) && 5448 "Shuffle construction must be finalized."); 5449 } 5450 }; 5451 } // namespace 5452 5453 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5454 unsigned VF = VL.size(); 5455 InstructionsState S = getSameOpcode(VL); 5456 if (S.getOpcode()) { 5457 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5458 if (E->isSame(VL)) { 5459 Value *V = vectorizeTree(E); 5460 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5461 if (!E->ReuseShuffleIndices.empty()) { 5462 // Reshuffle to get only unique values. 5463 // If some of the scalars are duplicated in the vectorization tree 5464 // entry, we do not vectorize them but instead generate a mask for 5465 // the reuses. But if there are several users of the same entry, 5466 // they may have different vectorization factors. This is especially 5467 // important for PHI nodes. In this case, we need to adapt the 5468 // resulting instruction for the user vectorization factor and have 5469 // to reshuffle it again to take only unique elements of the vector. 5470 // Without this code the function incorrectly returns reduced vector 5471 // instruction with the same elements, not with the unique ones. 5472 5473 // block: 5474 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5475 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 5476 // ... (use %2) 5477 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 5478 // br %block 5479 SmallVector<int> UniqueIdxs; 5480 SmallSet<int, 4> UsedIdxs; 5481 int Pos = 0; 5482 int Sz = VL.size(); 5483 for (int Idx : E->ReuseShuffleIndices) { 5484 if (Idx != Sz && UsedIdxs.insert(Idx).second) 5485 UniqueIdxs.emplace_back(Pos); 5486 ++Pos; 5487 } 5488 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5489 "less than original vector size."); 5490 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5491 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5492 } else { 5493 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5494 "Expected vectorization factor less " 5495 "than original vector size."); 5496 SmallVector<int> UniformMask(VF, 0); 5497 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5498 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5499 } 5500 } 5501 return V; 5502 } 5503 } 5504 5505 // Check that every instruction appears once in this bundle. 5506 SmallVector<int> ReuseShuffleIndicies; 5507 SmallVector<Value *> UniqueValues; 5508 if (VL.size() > 2) { 5509 DenseMap<Value *, unsigned> UniquePositions; 5510 unsigned NumValues = 5511 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5512 return !isa<UndefValue>(V); 5513 }).base()); 5514 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5515 int UniqueVals = 0; 5516 bool HasUndefs = false; 5517 for (Value *V : VL.drop_back(VL.size() - VF)) { 5518 if (isa<UndefValue>(V)) { 5519 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5520 HasUndefs = true; 5521 continue; 5522 } 5523 if (isConstant(V)) { 5524 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5525 UniqueValues.emplace_back(V); 5526 continue; 5527 } 5528 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5529 ReuseShuffleIndicies.emplace_back(Res.first->second); 5530 if (Res.second) { 5531 UniqueValues.emplace_back(V); 5532 ++UniqueVals; 5533 } 5534 } 5535 if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) { 5536 // Emit pure splat vector. 5537 // FIXME: why it is not identified as an identity. 5538 unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem); 5539 if (NumUndefs == ReuseShuffleIndicies.size() - 1) 5540 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5541 UndefMaskElem); 5542 else 5543 ReuseShuffleIndicies.assign(VF, 0); 5544 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5545 ReuseShuffleIndicies.clear(); 5546 UniqueValues.clear(); 5547 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5548 } 5549 UniqueValues.append(VF - UniqueValues.size(), 5550 PoisonValue::get(VL[0]->getType())); 5551 VL = UniqueValues; 5552 } 5553 5554 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5555 Value *Vec = gather(VL); 5556 if (!ReuseShuffleIndicies.empty()) { 5557 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5558 Vec = ShuffleBuilder.finalize(Vec); 5559 if (auto *I = dyn_cast<Instruction>(Vec)) { 5560 GatherSeq.insert(I); 5561 CSEBlocks.insert(I->getParent()); 5562 } 5563 } 5564 return Vec; 5565 } 5566 5567 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5568 IRBuilder<>::InsertPointGuard Guard(Builder); 5569 5570 if (E->VectorizedValue) { 5571 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5572 return E->VectorizedValue; 5573 } 5574 5575 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5576 unsigned VF = E->Scalars.size(); 5577 if (NeedToShuffleReuses) 5578 VF = E->ReuseShuffleIndices.size(); 5579 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5580 if (E->State == TreeEntry::NeedToGather) { 5581 setInsertPointAfterBundle(E); 5582 Value *Vec; 5583 SmallVector<int> Mask; 5584 SmallVector<const TreeEntry *> Entries; 5585 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5586 isGatherShuffledEntry(E, Mask, Entries); 5587 if (Shuffle.hasValue()) { 5588 assert((Entries.size() == 1 || Entries.size() == 2) && 5589 "Expected shuffle of 1 or 2 entries."); 5590 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5591 Entries.back()->VectorizedValue, Mask); 5592 } else { 5593 Vec = gather(E->Scalars); 5594 } 5595 if (NeedToShuffleReuses) { 5596 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5597 Vec = ShuffleBuilder.finalize(Vec); 5598 if (auto *I = dyn_cast<Instruction>(Vec)) { 5599 GatherSeq.insert(I); 5600 CSEBlocks.insert(I->getParent()); 5601 } 5602 } 5603 E->VectorizedValue = Vec; 5604 return Vec; 5605 } 5606 5607 assert((E->State == TreeEntry::Vectorize || 5608 E->State == TreeEntry::ScatterVectorize) && 5609 "Unhandled state"); 5610 unsigned ShuffleOrOp = 5611 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5612 Instruction *VL0 = E->getMainOp(); 5613 Type *ScalarTy = VL0->getType(); 5614 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5615 ScalarTy = Store->getValueOperand()->getType(); 5616 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5617 ScalarTy = IE->getOperand(1)->getType(); 5618 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5619 switch (ShuffleOrOp) { 5620 case Instruction::PHI: { 5621 assert( 5622 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 5623 "PHI reordering is free."); 5624 auto *PH = cast<PHINode>(VL0); 5625 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5626 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5627 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5628 Value *V = NewPhi; 5629 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5630 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5631 V = ShuffleBuilder.finalize(V); 5632 5633 E->VectorizedValue = V; 5634 5635 // PHINodes may have multiple entries from the same block. We want to 5636 // visit every block once. 5637 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5638 5639 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5640 ValueList Operands; 5641 BasicBlock *IBB = PH->getIncomingBlock(i); 5642 5643 if (!VisitedBBs.insert(IBB).second) { 5644 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5645 continue; 5646 } 5647 5648 Builder.SetInsertPoint(IBB->getTerminator()); 5649 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5650 Value *Vec = vectorizeTree(E->getOperand(i)); 5651 NewPhi->addIncoming(Vec, IBB); 5652 } 5653 5654 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5655 "Invalid number of incoming values"); 5656 return V; 5657 } 5658 5659 case Instruction::ExtractElement: { 5660 Value *V = E->getSingleOperand(0); 5661 Builder.SetInsertPoint(VL0); 5662 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5663 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5664 V = ShuffleBuilder.finalize(V); 5665 E->VectorizedValue = V; 5666 return V; 5667 } 5668 case Instruction::ExtractValue: { 5669 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5670 Builder.SetInsertPoint(LI); 5671 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5672 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5673 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5674 Value *NewV = propagateMetadata(V, E->Scalars); 5675 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5676 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5677 NewV = ShuffleBuilder.finalize(NewV); 5678 E->VectorizedValue = NewV; 5679 return NewV; 5680 } 5681 case Instruction::InsertElement: { 5682 assert(E->ReorderIndices.empty() && "InsertElements reordering is free."); 5683 Builder.SetInsertPoint(VL0); 5684 Value *V = vectorizeTree(E->getOperand(1)); 5685 5686 const unsigned NumElts = 5687 cast<FixedVectorType>(VL0->getType())->getNumElements(); 5688 const unsigned NumScalars = E->Scalars.size(); 5689 5690 // Create InsertVector shuffle if necessary 5691 Instruction *FirstInsert = nullptr; 5692 bool IsIdentity = true; 5693 unsigned Offset = UINT_MAX; 5694 for (unsigned I = 0; I < NumScalars; ++I) { 5695 Value *Scalar = E->Scalars[I]; 5696 if (!FirstInsert && 5697 !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0))) 5698 FirstInsert = cast<Instruction>(Scalar); 5699 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5700 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5701 continue; 5702 unsigned Idx = *InsertIdx; 5703 if (Idx < Offset) { 5704 Offset = Idx; 5705 IsIdentity &= I == 0; 5706 } else { 5707 assert(Idx >= Offset && "Failed to find vector index offset"); 5708 IsIdentity &= Idx - Offset == I; 5709 } 5710 } 5711 assert(Offset < NumElts && "Failed to find vector index offset"); 5712 5713 // Create shuffle to resize vector 5714 SmallVector<int> Mask(NumElts, UndefMaskElem); 5715 if (!IsIdentity) { 5716 for (unsigned I = 0; I < NumScalars; ++I) { 5717 Value *Scalar = E->Scalars[I]; 5718 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5719 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5720 continue; 5721 Mask[*InsertIdx - Offset] = I; 5722 } 5723 } else { 5724 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5725 } 5726 if (!IsIdentity || NumElts != NumScalars) 5727 V = Builder.CreateShuffleVector(V, Mask); 5728 5729 if (NumElts != NumScalars) { 5730 SmallVector<int> InsertMask(NumElts); 5731 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5732 for (unsigned I = 0; I < NumElts; I++) { 5733 if (Mask[I] != UndefMaskElem) 5734 InsertMask[Offset + I] = NumElts + I; 5735 } 5736 5737 V = Builder.CreateShuffleVector( 5738 FirstInsert->getOperand(0), V, InsertMask, 5739 cast<Instruction>(E->Scalars.back())->getName()); 5740 } 5741 5742 ++NumVectorInstructions; 5743 E->VectorizedValue = V; 5744 return V; 5745 } 5746 case Instruction::ZExt: 5747 case Instruction::SExt: 5748 case Instruction::FPToUI: 5749 case Instruction::FPToSI: 5750 case Instruction::FPExt: 5751 case Instruction::PtrToInt: 5752 case Instruction::IntToPtr: 5753 case Instruction::SIToFP: 5754 case Instruction::UIToFP: 5755 case Instruction::Trunc: 5756 case Instruction::FPTrunc: 5757 case Instruction::BitCast: { 5758 setInsertPointAfterBundle(E); 5759 5760 Value *InVec = vectorizeTree(E->getOperand(0)); 5761 5762 if (E->VectorizedValue) { 5763 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5764 return E->VectorizedValue; 5765 } 5766 5767 auto *CI = cast<CastInst>(VL0); 5768 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5769 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5770 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5771 V = ShuffleBuilder.finalize(V); 5772 5773 E->VectorizedValue = V; 5774 ++NumVectorInstructions; 5775 return V; 5776 } 5777 case Instruction::FCmp: 5778 case Instruction::ICmp: { 5779 setInsertPointAfterBundle(E); 5780 5781 Value *L = vectorizeTree(E->getOperand(0)); 5782 Value *R = vectorizeTree(E->getOperand(1)); 5783 5784 if (E->VectorizedValue) { 5785 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5786 return E->VectorizedValue; 5787 } 5788 5789 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5790 Value *V = Builder.CreateCmp(P0, L, R); 5791 propagateIRFlags(V, E->Scalars, VL0); 5792 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5793 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5794 V = ShuffleBuilder.finalize(V); 5795 5796 E->VectorizedValue = V; 5797 ++NumVectorInstructions; 5798 return V; 5799 } 5800 case Instruction::Select: { 5801 setInsertPointAfterBundle(E); 5802 5803 Value *Cond = vectorizeTree(E->getOperand(0)); 5804 Value *True = vectorizeTree(E->getOperand(1)); 5805 Value *False = vectorizeTree(E->getOperand(2)); 5806 5807 if (E->VectorizedValue) { 5808 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5809 return E->VectorizedValue; 5810 } 5811 5812 Value *V = Builder.CreateSelect(Cond, True, False); 5813 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5814 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5815 V = ShuffleBuilder.finalize(V); 5816 5817 E->VectorizedValue = V; 5818 ++NumVectorInstructions; 5819 return V; 5820 } 5821 case Instruction::FNeg: { 5822 setInsertPointAfterBundle(E); 5823 5824 Value *Op = vectorizeTree(E->getOperand(0)); 5825 5826 if (E->VectorizedValue) { 5827 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5828 return E->VectorizedValue; 5829 } 5830 5831 Value *V = Builder.CreateUnOp( 5832 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 5833 propagateIRFlags(V, E->Scalars, VL0); 5834 if (auto *I = dyn_cast<Instruction>(V)) 5835 V = propagateMetadata(I, E->Scalars); 5836 5837 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5838 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5839 V = ShuffleBuilder.finalize(V); 5840 5841 E->VectorizedValue = V; 5842 ++NumVectorInstructions; 5843 5844 return V; 5845 } 5846 case Instruction::Add: 5847 case Instruction::FAdd: 5848 case Instruction::Sub: 5849 case Instruction::FSub: 5850 case Instruction::Mul: 5851 case Instruction::FMul: 5852 case Instruction::UDiv: 5853 case Instruction::SDiv: 5854 case Instruction::FDiv: 5855 case Instruction::URem: 5856 case Instruction::SRem: 5857 case Instruction::FRem: 5858 case Instruction::Shl: 5859 case Instruction::LShr: 5860 case Instruction::AShr: 5861 case Instruction::And: 5862 case Instruction::Or: 5863 case Instruction::Xor: { 5864 setInsertPointAfterBundle(E); 5865 5866 Value *LHS = vectorizeTree(E->getOperand(0)); 5867 Value *RHS = vectorizeTree(E->getOperand(1)); 5868 5869 if (E->VectorizedValue) { 5870 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5871 return E->VectorizedValue; 5872 } 5873 5874 Value *V = Builder.CreateBinOp( 5875 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 5876 RHS); 5877 propagateIRFlags(V, E->Scalars, VL0); 5878 if (auto *I = dyn_cast<Instruction>(V)) 5879 V = propagateMetadata(I, E->Scalars); 5880 5881 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5882 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5883 V = ShuffleBuilder.finalize(V); 5884 5885 E->VectorizedValue = V; 5886 ++NumVectorInstructions; 5887 5888 return V; 5889 } 5890 case Instruction::Load: { 5891 // Loads are inserted at the head of the tree because we don't want to 5892 // sink them all the way down past store instructions. 5893 bool IsReorder = E->updateStateIfReorder(); 5894 if (IsReorder) 5895 VL0 = E->getMainOp(); 5896 setInsertPointAfterBundle(E); 5897 5898 LoadInst *LI = cast<LoadInst>(VL0); 5899 Instruction *NewLI; 5900 unsigned AS = LI->getPointerAddressSpace(); 5901 Value *PO = LI->getPointerOperand(); 5902 if (E->State == TreeEntry::Vectorize) { 5903 5904 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 5905 5906 // The pointer operand uses an in-tree scalar so we add the new BitCast 5907 // to ExternalUses list to make sure that an extract will be generated 5908 // in the future. 5909 if (getTreeEntry(PO)) 5910 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 5911 5912 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 5913 } else { 5914 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 5915 Value *VecPtr = vectorizeTree(E->getOperand(0)); 5916 // Use the minimum alignment of the gathered loads. 5917 Align CommonAlignment = LI->getAlign(); 5918 for (Value *V : E->Scalars) 5919 CommonAlignment = 5920 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5921 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 5922 } 5923 Value *V = propagateMetadata(NewLI, E->Scalars); 5924 5925 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5926 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5927 V = ShuffleBuilder.finalize(V); 5928 E->VectorizedValue = V; 5929 ++NumVectorInstructions; 5930 return V; 5931 } 5932 case Instruction::Store: { 5933 bool IsReorder = !E->ReorderIndices.empty(); 5934 auto *SI = cast<StoreInst>( 5935 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 5936 unsigned AS = SI->getPointerAddressSpace(); 5937 5938 setInsertPointAfterBundle(E); 5939 5940 Value *VecValue = vectorizeTree(E->getOperand(0)); 5941 ShuffleBuilder.addMask(E->ReorderIndices); 5942 VecValue = ShuffleBuilder.finalize(VecValue); 5943 5944 Value *ScalarPtr = SI->getPointerOperand(); 5945 Value *VecPtr = Builder.CreateBitCast( 5946 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 5947 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 5948 SI->getAlign()); 5949 5950 // The pointer operand uses an in-tree scalar, so add the new BitCast to 5951 // ExternalUses to make sure that an extract will be generated in the 5952 // future. 5953 if (getTreeEntry(ScalarPtr)) 5954 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 5955 5956 Value *V = propagateMetadata(ST, E->Scalars); 5957 5958 E->VectorizedValue = V; 5959 ++NumVectorInstructions; 5960 return V; 5961 } 5962 case Instruction::GetElementPtr: { 5963 setInsertPointAfterBundle(E); 5964 5965 Value *Op0 = vectorizeTree(E->getOperand(0)); 5966 5967 std::vector<Value *> OpVecs; 5968 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 5969 ++j) { 5970 ValueList &VL = E->getOperand(j); 5971 // Need to cast all elements to the same type before vectorization to 5972 // avoid crash. 5973 Type *VL0Ty = VL0->getOperand(j)->getType(); 5974 Type *Ty = llvm::all_of( 5975 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 5976 ? VL0Ty 5977 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5978 ->getPointerOperandType() 5979 ->getScalarType()); 5980 for (Value *&V : VL) { 5981 auto *CI = cast<ConstantInt>(V); 5982 V = ConstantExpr::getIntegerCast(CI, Ty, 5983 CI->getValue().isSignBitSet()); 5984 } 5985 Value *OpVec = vectorizeTree(VL); 5986 OpVecs.push_back(OpVec); 5987 } 5988 5989 Value *V = Builder.CreateGEP( 5990 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 5991 if (Instruction *I = dyn_cast<Instruction>(V)) 5992 V = propagateMetadata(I, E->Scalars); 5993 5994 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5995 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5996 V = ShuffleBuilder.finalize(V); 5997 5998 E->VectorizedValue = V; 5999 ++NumVectorInstructions; 6000 6001 return V; 6002 } 6003 case Instruction::Call: { 6004 CallInst *CI = cast<CallInst>(VL0); 6005 setInsertPointAfterBundle(E); 6006 6007 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6008 if (Function *FI = CI->getCalledFunction()) 6009 IID = FI->getIntrinsicID(); 6010 6011 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6012 6013 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6014 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6015 VecCallCosts.first <= VecCallCosts.second; 6016 6017 Value *ScalarArg = nullptr; 6018 std::vector<Value *> OpVecs; 6019 SmallVector<Type *, 2> TysForDecl = 6020 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6021 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 6022 ValueList OpVL; 6023 // Some intrinsics have scalar arguments. This argument should not be 6024 // vectorized. 6025 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6026 CallInst *CEI = cast<CallInst>(VL0); 6027 ScalarArg = CEI->getArgOperand(j); 6028 OpVecs.push_back(CEI->getArgOperand(j)); 6029 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6030 TysForDecl.push_back(ScalarArg->getType()); 6031 continue; 6032 } 6033 6034 Value *OpVec = vectorizeTree(E->getOperand(j)); 6035 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6036 OpVecs.push_back(OpVec); 6037 } 6038 6039 Function *CF; 6040 if (!UseIntrinsic) { 6041 VFShape Shape = 6042 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6043 VecTy->getNumElements())), 6044 false /*HasGlobalPred*/); 6045 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6046 } else { 6047 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6048 } 6049 6050 SmallVector<OperandBundleDef, 1> OpBundles; 6051 CI->getOperandBundlesAsDefs(OpBundles); 6052 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6053 6054 // The scalar argument uses an in-tree scalar so we add the new vectorized 6055 // call to ExternalUses list to make sure that an extract will be 6056 // generated in the future. 6057 if (ScalarArg && getTreeEntry(ScalarArg)) 6058 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 6059 6060 propagateIRFlags(V, E->Scalars, VL0); 6061 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6062 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6063 V = ShuffleBuilder.finalize(V); 6064 6065 E->VectorizedValue = V; 6066 ++NumVectorInstructions; 6067 return V; 6068 } 6069 case Instruction::ShuffleVector: { 6070 assert(E->isAltShuffle() && 6071 ((Instruction::isBinaryOp(E->getOpcode()) && 6072 Instruction::isBinaryOp(E->getAltOpcode())) || 6073 (Instruction::isCast(E->getOpcode()) && 6074 Instruction::isCast(E->getAltOpcode()))) && 6075 "Invalid Shuffle Vector Operand"); 6076 6077 Value *LHS = nullptr, *RHS = nullptr; 6078 if (Instruction::isBinaryOp(E->getOpcode())) { 6079 setInsertPointAfterBundle(E); 6080 LHS = vectorizeTree(E->getOperand(0)); 6081 RHS = vectorizeTree(E->getOperand(1)); 6082 } else { 6083 setInsertPointAfterBundle(E); 6084 LHS = vectorizeTree(E->getOperand(0)); 6085 } 6086 6087 if (E->VectorizedValue) { 6088 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6089 return E->VectorizedValue; 6090 } 6091 6092 Value *V0, *V1; 6093 if (Instruction::isBinaryOp(E->getOpcode())) { 6094 V0 = Builder.CreateBinOp( 6095 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6096 V1 = Builder.CreateBinOp( 6097 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6098 } else { 6099 V0 = Builder.CreateCast( 6100 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6101 V1 = Builder.CreateCast( 6102 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6103 } 6104 6105 // Create shuffle to take alternate operations from the vector. 6106 // Also, gather up main and alt scalar ops to propagate IR flags to 6107 // each vector operation. 6108 ValueList OpScalars, AltScalars; 6109 unsigned Sz = E->Scalars.size(); 6110 SmallVector<int> Mask(Sz); 6111 for (unsigned I = 0; I < Sz; ++I) { 6112 unsigned Idx = I; 6113 if (!E->ReorderIndices.empty()) 6114 Idx = E->ReorderIndices[I]; 6115 auto *OpInst = cast<Instruction>(E->Scalars[Idx]); 6116 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 6117 if (OpInst->getOpcode() == E->getAltOpcode()) { 6118 Mask[Idx] = Sz + I; 6119 AltScalars.push_back(OpInst); 6120 } else { 6121 Mask[Idx] = I; 6122 OpScalars.push_back(OpInst); 6123 } 6124 } 6125 if (!E->ReuseShuffleIndices.empty()) { 6126 SmallVector<int> NewMask(E->ReuseShuffleIndices.size()); 6127 transform(E->ReuseShuffleIndices, NewMask.begin(), 6128 [&Mask](int Idx) { return Mask[Idx]; }); 6129 Mask.swap(NewMask); 6130 } 6131 6132 propagateIRFlags(V0, OpScalars); 6133 propagateIRFlags(V1, AltScalars); 6134 6135 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6136 if (Instruction *I = dyn_cast<Instruction>(V)) 6137 V = propagateMetadata(I, E->Scalars); 6138 V = ShuffleBuilder.finalize(V); 6139 6140 E->VectorizedValue = V; 6141 ++NumVectorInstructions; 6142 6143 return V; 6144 } 6145 default: 6146 llvm_unreachable("unknown inst"); 6147 } 6148 return nullptr; 6149 } 6150 6151 Value *BoUpSLP::vectorizeTree() { 6152 ExtraValueToDebugLocsMap ExternallyUsedValues; 6153 return vectorizeTree(ExternallyUsedValues); 6154 } 6155 6156 Value * 6157 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6158 // All blocks must be scheduled before any instructions are inserted. 6159 for (auto &BSIter : BlocksSchedules) { 6160 scheduleBlock(BSIter.second.get()); 6161 } 6162 6163 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6164 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6165 6166 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6167 // vectorized root. InstCombine will then rewrite the entire expression. We 6168 // sign extend the extracted values below. 6169 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6170 if (MinBWs.count(ScalarRoot)) { 6171 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6172 // If current instr is a phi and not the last phi, insert it after the 6173 // last phi node. 6174 if (isa<PHINode>(I)) 6175 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6176 else 6177 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6178 } 6179 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6180 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6181 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6182 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6183 VectorizableTree[0]->VectorizedValue = Trunc; 6184 } 6185 6186 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6187 << " values .\n"); 6188 6189 // Extract all of the elements with the external uses. 6190 for (const auto &ExternalUse : ExternalUses) { 6191 Value *Scalar = ExternalUse.Scalar; 6192 llvm::User *User = ExternalUse.User; 6193 6194 // Skip users that we already RAUW. This happens when one instruction 6195 // has multiple uses of the same value. 6196 if (User && !is_contained(Scalar->users(), User)) 6197 continue; 6198 TreeEntry *E = getTreeEntry(Scalar); 6199 assert(E && "Invalid scalar"); 6200 assert(E->State != TreeEntry::NeedToGather && 6201 "Extracting from a gather list"); 6202 6203 Value *Vec = E->VectorizedValue; 6204 assert(Vec && "Can't find vectorizable value"); 6205 6206 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6207 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6208 if (Scalar->getType() != Vec->getType()) { 6209 Value *Ex; 6210 // "Reuse" the existing extract to improve final codegen. 6211 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6212 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6213 ES->getOperand(1)); 6214 } else { 6215 Ex = Builder.CreateExtractElement(Vec, Lane); 6216 } 6217 // If necessary, sign-extend or zero-extend ScalarRoot 6218 // to the larger type. 6219 if (!MinBWs.count(ScalarRoot)) 6220 return Ex; 6221 if (MinBWs[ScalarRoot].second) 6222 return Builder.CreateSExt(Ex, Scalar->getType()); 6223 return Builder.CreateZExt(Ex, Scalar->getType()); 6224 } 6225 assert(isa<FixedVectorType>(Scalar->getType()) && 6226 isa<InsertElementInst>(Scalar) && 6227 "In-tree scalar of vector type is not insertelement?"); 6228 return Vec; 6229 }; 6230 // If User == nullptr, the Scalar is used as extra arg. Generate 6231 // ExtractElement instruction and update the record for this scalar in 6232 // ExternallyUsedValues. 6233 if (!User) { 6234 assert(ExternallyUsedValues.count(Scalar) && 6235 "Scalar with nullptr as an external user must be registered in " 6236 "ExternallyUsedValues map"); 6237 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6238 Builder.SetInsertPoint(VecI->getParent(), 6239 std::next(VecI->getIterator())); 6240 } else { 6241 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6242 } 6243 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6244 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6245 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6246 auto It = ExternallyUsedValues.find(Scalar); 6247 assert(It != ExternallyUsedValues.end() && 6248 "Externally used scalar is not found in ExternallyUsedValues"); 6249 NewInstLocs.append(It->second); 6250 ExternallyUsedValues.erase(Scalar); 6251 // Required to update internally referenced instructions. 6252 Scalar->replaceAllUsesWith(NewInst); 6253 continue; 6254 } 6255 6256 // Generate extracts for out-of-tree users. 6257 // Find the insertion point for the extractelement lane. 6258 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6259 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6260 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6261 if (PH->getIncomingValue(i) == Scalar) { 6262 Instruction *IncomingTerminator = 6263 PH->getIncomingBlock(i)->getTerminator(); 6264 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6265 Builder.SetInsertPoint(VecI->getParent(), 6266 std::next(VecI->getIterator())); 6267 } else { 6268 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6269 } 6270 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6271 CSEBlocks.insert(PH->getIncomingBlock(i)); 6272 PH->setOperand(i, NewInst); 6273 } 6274 } 6275 } else { 6276 Builder.SetInsertPoint(cast<Instruction>(User)); 6277 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6278 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6279 User->replaceUsesOfWith(Scalar, NewInst); 6280 } 6281 } else { 6282 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6283 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6284 CSEBlocks.insert(&F->getEntryBlock()); 6285 User->replaceUsesOfWith(Scalar, NewInst); 6286 } 6287 6288 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6289 } 6290 6291 // For each vectorized value: 6292 for (auto &TEPtr : VectorizableTree) { 6293 TreeEntry *Entry = TEPtr.get(); 6294 6295 // No need to handle users of gathered values. 6296 if (Entry->State == TreeEntry::NeedToGather) 6297 continue; 6298 6299 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6300 6301 // For each lane: 6302 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6303 Value *Scalar = Entry->Scalars[Lane]; 6304 6305 #ifndef NDEBUG 6306 Type *Ty = Scalar->getType(); 6307 if (!Ty->isVoidTy()) { 6308 for (User *U : Scalar->users()) { 6309 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6310 6311 // It is legal to delete users in the ignorelist. 6312 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 6313 "Deleting out-of-tree value"); 6314 } 6315 } 6316 #endif 6317 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6318 eraseInstruction(cast<Instruction>(Scalar)); 6319 } 6320 } 6321 6322 Builder.ClearInsertionPoint(); 6323 InstrElementSize.clear(); 6324 6325 return VectorizableTree[0]->VectorizedValue; 6326 } 6327 6328 void BoUpSLP::optimizeGatherSequence() { 6329 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 6330 << " gather sequences instructions.\n"); 6331 // LICM InsertElementInst sequences. 6332 for (Instruction *I : GatherSeq) { 6333 if (isDeleted(I)) 6334 continue; 6335 6336 // Check if this block is inside a loop. 6337 Loop *L = LI->getLoopFor(I->getParent()); 6338 if (!L) 6339 continue; 6340 6341 // Check if it has a preheader. 6342 BasicBlock *PreHeader = L->getLoopPreheader(); 6343 if (!PreHeader) 6344 continue; 6345 6346 // If the vector or the element that we insert into it are 6347 // instructions that are defined in this basic block then we can't 6348 // hoist this instruction. 6349 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6350 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6351 if (Op0 && L->contains(Op0)) 6352 continue; 6353 if (Op1 && L->contains(Op1)) 6354 continue; 6355 6356 // We can hoist this instruction. Move it to the pre-header. 6357 I->moveBefore(PreHeader->getTerminator()); 6358 } 6359 6360 // Make a list of all reachable blocks in our CSE queue. 6361 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6362 CSEWorkList.reserve(CSEBlocks.size()); 6363 for (BasicBlock *BB : CSEBlocks) 6364 if (DomTreeNode *N = DT->getNode(BB)) { 6365 assert(DT->isReachableFromEntry(N)); 6366 CSEWorkList.push_back(N); 6367 } 6368 6369 // Sort blocks by domination. This ensures we visit a block after all blocks 6370 // dominating it are visited. 6371 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6372 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6373 "Different nodes should have different DFS numbers"); 6374 return A->getDFSNumIn() < B->getDFSNumIn(); 6375 }); 6376 6377 // Perform O(N^2) search over the gather sequences and merge identical 6378 // instructions. TODO: We can further optimize this scan if we split the 6379 // instructions into different buckets based on the insert lane. 6380 SmallVector<Instruction *, 16> Visited; 6381 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6382 assert(*I && 6383 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6384 "Worklist not sorted properly!"); 6385 BasicBlock *BB = (*I)->getBlock(); 6386 // For all instructions in blocks containing gather sequences: 6387 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 6388 Instruction *In = &*it++; 6389 if (isDeleted(In)) 6390 continue; 6391 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 6392 continue; 6393 6394 // Check if we can replace this instruction with any of the 6395 // visited instructions. 6396 for (Instruction *v : Visited) { 6397 if (In->isIdenticalTo(v) && 6398 DT->dominates(v->getParent(), In->getParent())) { 6399 In->replaceAllUsesWith(v); 6400 eraseInstruction(In); 6401 In = nullptr; 6402 break; 6403 } 6404 } 6405 if (In) { 6406 assert(!is_contained(Visited, In)); 6407 Visited.push_back(In); 6408 } 6409 } 6410 } 6411 CSEBlocks.clear(); 6412 GatherSeq.clear(); 6413 } 6414 6415 // Groups the instructions to a bundle (which is then a single scheduling entity) 6416 // and schedules instructions until the bundle gets ready. 6417 Optional<BoUpSLP::ScheduleData *> 6418 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6419 const InstructionsState &S) { 6420 if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue)) 6421 return nullptr; 6422 6423 // Initialize the instruction bundle. 6424 Instruction *OldScheduleEnd = ScheduleEnd; 6425 ScheduleData *PrevInBundle = nullptr; 6426 ScheduleData *Bundle = nullptr; 6427 bool ReSchedule = false; 6428 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6429 6430 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6431 ScheduleData *Bundle) { 6432 // The scheduling region got new instructions at the lower end (or it is a 6433 // new region for the first bundle). This makes it necessary to 6434 // recalculate all dependencies. 6435 // It is seldom that this needs to be done a second time after adding the 6436 // initial bundle to the region. 6437 if (ScheduleEnd != OldScheduleEnd) { 6438 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6439 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6440 ReSchedule = true; 6441 } 6442 if (ReSchedule) { 6443 resetSchedule(); 6444 initialFillReadyList(ReadyInsts); 6445 } 6446 if (Bundle) { 6447 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6448 << " in block " << BB->getName() << "\n"); 6449 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6450 } 6451 6452 // Now try to schedule the new bundle or (if no bundle) just calculate 6453 // dependencies. As soon as the bundle is "ready" it means that there are no 6454 // cyclic dependencies and we can schedule it. Note that's important that we 6455 // don't "schedule" the bundle yet (see cancelScheduling). 6456 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6457 !ReadyInsts.empty()) { 6458 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6459 if (Picked->isSchedulingEntity() && Picked->isReady()) 6460 schedule(Picked, ReadyInsts); 6461 } 6462 }; 6463 6464 // Make sure that the scheduling region contains all 6465 // instructions of the bundle. 6466 for (Value *V : VL) { 6467 if (!extendSchedulingRegion(V, S)) { 6468 // If the scheduling region got new instructions at the lower end (or it 6469 // is a new region for the first bundle). This makes it necessary to 6470 // recalculate all dependencies. 6471 // Otherwise the compiler may crash trying to incorrectly calculate 6472 // dependencies and emit instruction in the wrong order at the actual 6473 // scheduling. 6474 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6475 return None; 6476 } 6477 } 6478 6479 for (Value *V : VL) { 6480 ScheduleData *BundleMember = getScheduleData(V); 6481 assert(BundleMember && 6482 "no ScheduleData for bundle member (maybe not in same basic block)"); 6483 if (BundleMember->IsScheduled) { 6484 // A bundle member was scheduled as single instruction before and now 6485 // needs to be scheduled as part of the bundle. We just get rid of the 6486 // existing schedule. 6487 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6488 << " was already scheduled\n"); 6489 ReSchedule = true; 6490 } 6491 assert(BundleMember->isSchedulingEntity() && 6492 "bundle member already part of other bundle"); 6493 if (PrevInBundle) { 6494 PrevInBundle->NextInBundle = BundleMember; 6495 } else { 6496 Bundle = BundleMember; 6497 } 6498 BundleMember->UnscheduledDepsInBundle = 0; 6499 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6500 6501 // Group the instructions to a bundle. 6502 BundleMember->FirstInBundle = Bundle; 6503 PrevInBundle = BundleMember; 6504 } 6505 assert(Bundle && "Failed to find schedule bundle"); 6506 TryScheduleBundle(ReSchedule, Bundle); 6507 if (!Bundle->isReady()) { 6508 cancelScheduling(VL, S.OpValue); 6509 return None; 6510 } 6511 return Bundle; 6512 } 6513 6514 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6515 Value *OpValue) { 6516 if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue)) 6517 return; 6518 6519 ScheduleData *Bundle = getScheduleData(OpValue); 6520 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6521 assert(!Bundle->IsScheduled && 6522 "Can't cancel bundle which is already scheduled"); 6523 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6524 "tried to unbundle something which is not a bundle"); 6525 6526 // Un-bundle: make single instructions out of the bundle. 6527 ScheduleData *BundleMember = Bundle; 6528 while (BundleMember) { 6529 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6530 BundleMember->FirstInBundle = BundleMember; 6531 ScheduleData *Next = BundleMember->NextInBundle; 6532 BundleMember->NextInBundle = nullptr; 6533 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6534 if (BundleMember->UnscheduledDepsInBundle == 0) { 6535 ReadyInsts.insert(BundleMember); 6536 } 6537 BundleMember = Next; 6538 } 6539 } 6540 6541 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6542 // Allocate a new ScheduleData for the instruction. 6543 if (ChunkPos >= ChunkSize) { 6544 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6545 ChunkPos = 0; 6546 } 6547 return &(ScheduleDataChunks.back()[ChunkPos++]); 6548 } 6549 6550 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6551 const InstructionsState &S) { 6552 if (getScheduleData(V, isOneOf(S, V))) 6553 return true; 6554 Instruction *I = dyn_cast<Instruction>(V); 6555 assert(I && "bundle member must be an instruction"); 6556 assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) && 6557 "phi nodes/insertelements don't need to be scheduled"); 6558 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6559 ScheduleData *ISD = getScheduleData(I); 6560 if (!ISD) 6561 return false; 6562 assert(isInSchedulingRegion(ISD) && 6563 "ScheduleData not in scheduling region"); 6564 ScheduleData *SD = allocateScheduleDataChunks(); 6565 SD->Inst = I; 6566 SD->init(SchedulingRegionID, S.OpValue); 6567 ExtraScheduleDataMap[I][S.OpValue] = SD; 6568 return true; 6569 }; 6570 if (CheckSheduleForI(I)) 6571 return true; 6572 if (!ScheduleStart) { 6573 // It's the first instruction in the new region. 6574 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6575 ScheduleStart = I; 6576 ScheduleEnd = I->getNextNode(); 6577 if (isOneOf(S, I) != I) 6578 CheckSheduleForI(I); 6579 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6580 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6581 return true; 6582 } 6583 // Search up and down at the same time, because we don't know if the new 6584 // instruction is above or below the existing scheduling region. 6585 BasicBlock::reverse_iterator UpIter = 6586 ++ScheduleStart->getIterator().getReverse(); 6587 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6588 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6589 BasicBlock::iterator LowerEnd = BB->end(); 6590 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6591 &*DownIter != I) { 6592 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6593 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6594 return false; 6595 } 6596 6597 ++UpIter; 6598 ++DownIter; 6599 } 6600 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6601 assert(I->getParent() == ScheduleStart->getParent() && 6602 "Instruction is in wrong basic block."); 6603 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6604 ScheduleStart = I; 6605 if (isOneOf(S, I) != I) 6606 CheckSheduleForI(I); 6607 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6608 << "\n"); 6609 return true; 6610 } 6611 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6612 "Expected to reach top of the basic block or instruction down the " 6613 "lower end."); 6614 assert(I->getParent() == ScheduleEnd->getParent() && 6615 "Instruction is in wrong basic block."); 6616 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6617 nullptr); 6618 ScheduleEnd = I->getNextNode(); 6619 if (isOneOf(S, I) != I) 6620 CheckSheduleForI(I); 6621 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6622 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6623 return true; 6624 } 6625 6626 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6627 Instruction *ToI, 6628 ScheduleData *PrevLoadStore, 6629 ScheduleData *NextLoadStore) { 6630 ScheduleData *CurrentLoadStore = PrevLoadStore; 6631 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6632 ScheduleData *SD = ScheduleDataMap[I]; 6633 if (!SD) { 6634 SD = allocateScheduleDataChunks(); 6635 ScheduleDataMap[I] = SD; 6636 SD->Inst = I; 6637 } 6638 assert(!isInSchedulingRegion(SD) && 6639 "new ScheduleData already in scheduling region"); 6640 SD->init(SchedulingRegionID, I); 6641 6642 if (I->mayReadOrWriteMemory() && 6643 (!isa<IntrinsicInst>(I) || 6644 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6645 cast<IntrinsicInst>(I)->getIntrinsicID() != 6646 Intrinsic::pseudoprobe))) { 6647 // Update the linked list of memory accessing instructions. 6648 if (CurrentLoadStore) { 6649 CurrentLoadStore->NextLoadStore = SD; 6650 } else { 6651 FirstLoadStoreInRegion = SD; 6652 } 6653 CurrentLoadStore = SD; 6654 } 6655 } 6656 if (NextLoadStore) { 6657 if (CurrentLoadStore) 6658 CurrentLoadStore->NextLoadStore = NextLoadStore; 6659 } else { 6660 LastLoadStoreInRegion = CurrentLoadStore; 6661 } 6662 } 6663 6664 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6665 bool InsertInReadyList, 6666 BoUpSLP *SLP) { 6667 assert(SD->isSchedulingEntity()); 6668 6669 SmallVector<ScheduleData *, 10> WorkList; 6670 WorkList.push_back(SD); 6671 6672 while (!WorkList.empty()) { 6673 ScheduleData *SD = WorkList.pop_back_val(); 6674 6675 ScheduleData *BundleMember = SD; 6676 while (BundleMember) { 6677 assert(isInSchedulingRegion(BundleMember)); 6678 if (!BundleMember->hasValidDependencies()) { 6679 6680 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6681 << "\n"); 6682 BundleMember->Dependencies = 0; 6683 BundleMember->resetUnscheduledDeps(); 6684 6685 // Handle def-use chain dependencies. 6686 if (BundleMember->OpValue != BundleMember->Inst) { 6687 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6688 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6689 BundleMember->Dependencies++; 6690 ScheduleData *DestBundle = UseSD->FirstInBundle; 6691 if (!DestBundle->IsScheduled) 6692 BundleMember->incrementUnscheduledDeps(1); 6693 if (!DestBundle->hasValidDependencies()) 6694 WorkList.push_back(DestBundle); 6695 } 6696 } else { 6697 for (User *U : BundleMember->Inst->users()) { 6698 if (isa<Instruction>(U)) { 6699 ScheduleData *UseSD = getScheduleData(U); 6700 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6701 BundleMember->Dependencies++; 6702 ScheduleData *DestBundle = UseSD->FirstInBundle; 6703 if (!DestBundle->IsScheduled) 6704 BundleMember->incrementUnscheduledDeps(1); 6705 if (!DestBundle->hasValidDependencies()) 6706 WorkList.push_back(DestBundle); 6707 } 6708 } else { 6709 // I'm not sure if this can ever happen. But we need to be safe. 6710 // This lets the instruction/bundle never be scheduled and 6711 // eventually disable vectorization. 6712 BundleMember->Dependencies++; 6713 BundleMember->incrementUnscheduledDeps(1); 6714 } 6715 } 6716 } 6717 6718 // Handle the memory dependencies. 6719 ScheduleData *DepDest = BundleMember->NextLoadStore; 6720 if (DepDest) { 6721 Instruction *SrcInst = BundleMember->Inst; 6722 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6723 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6724 unsigned numAliased = 0; 6725 unsigned DistToSrc = 1; 6726 6727 while (DepDest) { 6728 assert(isInSchedulingRegion(DepDest)); 6729 6730 // We have two limits to reduce the complexity: 6731 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6732 // SLP->isAliased (which is the expensive part in this loop). 6733 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6734 // the whole loop (even if the loop is fast, it's quadratic). 6735 // It's important for the loop break condition (see below) to 6736 // check this limit even between two read-only instructions. 6737 if (DistToSrc >= MaxMemDepDistance || 6738 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6739 (numAliased >= AliasedCheckLimit || 6740 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6741 6742 // We increment the counter only if the locations are aliased 6743 // (instead of counting all alias checks). This gives a better 6744 // balance between reduced runtime and accurate dependencies. 6745 numAliased++; 6746 6747 DepDest->MemoryDependencies.push_back(BundleMember); 6748 BundleMember->Dependencies++; 6749 ScheduleData *DestBundle = DepDest->FirstInBundle; 6750 if (!DestBundle->IsScheduled) { 6751 BundleMember->incrementUnscheduledDeps(1); 6752 } 6753 if (!DestBundle->hasValidDependencies()) { 6754 WorkList.push_back(DestBundle); 6755 } 6756 } 6757 DepDest = DepDest->NextLoadStore; 6758 6759 // Example, explaining the loop break condition: Let's assume our 6760 // starting instruction is i0 and MaxMemDepDistance = 3. 6761 // 6762 // +--------v--v--v 6763 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6764 // +--------^--^--^ 6765 // 6766 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6767 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6768 // Previously we already added dependencies from i3 to i6,i7,i8 6769 // (because of MaxMemDepDistance). As we added a dependency from 6770 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6771 // and we can abort this loop at i6. 6772 if (DistToSrc >= 2 * MaxMemDepDistance) 6773 break; 6774 DistToSrc++; 6775 } 6776 } 6777 } 6778 BundleMember = BundleMember->NextInBundle; 6779 } 6780 if (InsertInReadyList && SD->isReady()) { 6781 ReadyInsts.push_back(SD); 6782 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6783 << "\n"); 6784 } 6785 } 6786 } 6787 6788 void BoUpSLP::BlockScheduling::resetSchedule() { 6789 assert(ScheduleStart && 6790 "tried to reset schedule on block which has not been scheduled"); 6791 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6792 doForAllOpcodes(I, [&](ScheduleData *SD) { 6793 assert(isInSchedulingRegion(SD) && 6794 "ScheduleData not in scheduling region"); 6795 SD->IsScheduled = false; 6796 SD->resetUnscheduledDeps(); 6797 }); 6798 } 6799 ReadyInsts.clear(); 6800 } 6801 6802 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 6803 if (!BS->ScheduleStart) 6804 return; 6805 6806 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 6807 6808 BS->resetSchedule(); 6809 6810 // For the real scheduling we use a more sophisticated ready-list: it is 6811 // sorted by the original instruction location. This lets the final schedule 6812 // be as close as possible to the original instruction order. 6813 struct ScheduleDataCompare { 6814 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 6815 return SD2->SchedulingPriority < SD1->SchedulingPriority; 6816 } 6817 }; 6818 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 6819 6820 // Ensure that all dependency data is updated and fill the ready-list with 6821 // initial instructions. 6822 int Idx = 0; 6823 int NumToSchedule = 0; 6824 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 6825 I = I->getNextNode()) { 6826 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 6827 assert((isa<InsertElementInst>(SD->Inst) || 6828 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 6829 "scheduler and vectorizer bundle mismatch"); 6830 SD->FirstInBundle->SchedulingPriority = Idx++; 6831 if (SD->isSchedulingEntity()) { 6832 BS->calculateDependencies(SD, false, this); 6833 NumToSchedule++; 6834 } 6835 }); 6836 } 6837 BS->initialFillReadyList(ReadyInsts); 6838 6839 Instruction *LastScheduledInst = BS->ScheduleEnd; 6840 6841 // Do the "real" scheduling. 6842 while (!ReadyInsts.empty()) { 6843 ScheduleData *picked = *ReadyInsts.begin(); 6844 ReadyInsts.erase(ReadyInsts.begin()); 6845 6846 // Move the scheduled instruction(s) to their dedicated places, if not 6847 // there yet. 6848 ScheduleData *BundleMember = picked; 6849 while (BundleMember) { 6850 Instruction *pickedInst = BundleMember->Inst; 6851 if (pickedInst->getNextNode() != LastScheduledInst) { 6852 BS->BB->getInstList().remove(pickedInst); 6853 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 6854 pickedInst); 6855 } 6856 LastScheduledInst = pickedInst; 6857 BundleMember = BundleMember->NextInBundle; 6858 } 6859 6860 BS->schedule(picked, ReadyInsts); 6861 NumToSchedule--; 6862 } 6863 assert(NumToSchedule == 0 && "could not schedule all instructions"); 6864 6865 // Avoid duplicate scheduling of the block. 6866 BS->ScheduleStart = nullptr; 6867 } 6868 6869 unsigned BoUpSLP::getVectorElementSize(Value *V) { 6870 // If V is a store, just return the width of the stored value (or value 6871 // truncated just before storing) without traversing the expression tree. 6872 // This is the common case. 6873 if (auto *Store = dyn_cast<StoreInst>(V)) { 6874 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 6875 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 6876 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 6877 } 6878 6879 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 6880 return getVectorElementSize(IEI->getOperand(1)); 6881 6882 auto E = InstrElementSize.find(V); 6883 if (E != InstrElementSize.end()) 6884 return E->second; 6885 6886 // If V is not a store, we can traverse the expression tree to find loads 6887 // that feed it. The type of the loaded value may indicate a more suitable 6888 // width than V's type. We want to base the vector element size on the width 6889 // of memory operations where possible. 6890 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 6891 SmallPtrSet<Instruction *, 16> Visited; 6892 if (auto *I = dyn_cast<Instruction>(V)) { 6893 Worklist.emplace_back(I, I->getParent()); 6894 Visited.insert(I); 6895 } 6896 6897 // Traverse the expression tree in bottom-up order looking for loads. If we 6898 // encounter an instruction we don't yet handle, we give up. 6899 auto Width = 0u; 6900 while (!Worklist.empty()) { 6901 Instruction *I; 6902 BasicBlock *Parent; 6903 std::tie(I, Parent) = Worklist.pop_back_val(); 6904 6905 // We should only be looking at scalar instructions here. If the current 6906 // instruction has a vector type, skip. 6907 auto *Ty = I->getType(); 6908 if (isa<VectorType>(Ty)) 6909 continue; 6910 6911 // If the current instruction is a load, update MaxWidth to reflect the 6912 // width of the loaded value. 6913 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 6914 isa<ExtractValueInst>(I)) 6915 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 6916 6917 // Otherwise, we need to visit the operands of the instruction. We only 6918 // handle the interesting cases from buildTree here. If an operand is an 6919 // instruction we haven't yet visited and from the same basic block as the 6920 // user or the use is a PHI node, we add it to the worklist. 6921 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6922 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 6923 isa<UnaryOperator>(I)) { 6924 for (Use &U : I->operands()) 6925 if (auto *J = dyn_cast<Instruction>(U.get())) 6926 if (Visited.insert(J).second && 6927 (isa<PHINode>(I) || J->getParent() == Parent)) 6928 Worklist.emplace_back(J, J->getParent()); 6929 } else { 6930 break; 6931 } 6932 } 6933 6934 // If we didn't encounter a memory access in the expression tree, or if we 6935 // gave up for some reason, just return the width of V. Otherwise, return the 6936 // maximum width we found. 6937 if (!Width) { 6938 if (auto *CI = dyn_cast<CmpInst>(V)) 6939 V = CI->getOperand(0); 6940 Width = DL->getTypeSizeInBits(V->getType()); 6941 } 6942 6943 for (Instruction *I : Visited) 6944 InstrElementSize[I] = Width; 6945 6946 return Width; 6947 } 6948 6949 // Determine if a value V in a vectorizable expression Expr can be demoted to a 6950 // smaller type with a truncation. We collect the values that will be demoted 6951 // in ToDemote and additional roots that require investigating in Roots. 6952 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 6953 SmallVectorImpl<Value *> &ToDemote, 6954 SmallVectorImpl<Value *> &Roots) { 6955 // We can always demote constants. 6956 if (isa<Constant>(V)) { 6957 ToDemote.push_back(V); 6958 return true; 6959 } 6960 6961 // If the value is not an instruction in the expression with only one use, it 6962 // cannot be demoted. 6963 auto *I = dyn_cast<Instruction>(V); 6964 if (!I || !I->hasOneUse() || !Expr.count(I)) 6965 return false; 6966 6967 switch (I->getOpcode()) { 6968 6969 // We can always demote truncations and extensions. Since truncations can 6970 // seed additional demotion, we save the truncated value. 6971 case Instruction::Trunc: 6972 Roots.push_back(I->getOperand(0)); 6973 break; 6974 case Instruction::ZExt: 6975 case Instruction::SExt: 6976 if (isa<ExtractElementInst>(I->getOperand(0)) || 6977 isa<InsertElementInst>(I->getOperand(0))) 6978 return false; 6979 break; 6980 6981 // We can demote certain binary operations if we can demote both of their 6982 // operands. 6983 case Instruction::Add: 6984 case Instruction::Sub: 6985 case Instruction::Mul: 6986 case Instruction::And: 6987 case Instruction::Or: 6988 case Instruction::Xor: 6989 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 6990 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 6991 return false; 6992 break; 6993 6994 // We can demote selects if we can demote their true and false values. 6995 case Instruction::Select: { 6996 SelectInst *SI = cast<SelectInst>(I); 6997 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 6998 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 6999 return false; 7000 break; 7001 } 7002 7003 // We can demote phis if we can demote all their incoming operands. Note that 7004 // we don't need to worry about cycles since we ensure single use above. 7005 case Instruction::PHI: { 7006 PHINode *PN = cast<PHINode>(I); 7007 for (Value *IncValue : PN->incoming_values()) 7008 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7009 return false; 7010 break; 7011 } 7012 7013 // Otherwise, conservatively give up. 7014 default: 7015 return false; 7016 } 7017 7018 // Record the value that we can demote. 7019 ToDemote.push_back(V); 7020 return true; 7021 } 7022 7023 void BoUpSLP::computeMinimumValueSizes() { 7024 // If there are no external uses, the expression tree must be rooted by a 7025 // store. We can't demote in-memory values, so there is nothing to do here. 7026 if (ExternalUses.empty()) 7027 return; 7028 7029 // We only attempt to truncate integer expressions. 7030 auto &TreeRoot = VectorizableTree[0]->Scalars; 7031 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7032 if (!TreeRootIT) 7033 return; 7034 7035 // If the expression is not rooted by a store, these roots should have 7036 // external uses. We will rely on InstCombine to rewrite the expression in 7037 // the narrower type. However, InstCombine only rewrites single-use values. 7038 // This means that if a tree entry other than a root is used externally, it 7039 // must have multiple uses and InstCombine will not rewrite it. The code 7040 // below ensures that only the roots are used externally. 7041 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7042 for (auto &EU : ExternalUses) 7043 if (!Expr.erase(EU.Scalar)) 7044 return; 7045 if (!Expr.empty()) 7046 return; 7047 7048 // Collect the scalar values of the vectorizable expression. We will use this 7049 // context to determine which values can be demoted. If we see a truncation, 7050 // we mark it as seeding another demotion. 7051 for (auto &EntryPtr : VectorizableTree) 7052 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7053 7054 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7055 // have a single external user that is not in the vectorizable tree. 7056 for (auto *Root : TreeRoot) 7057 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7058 return; 7059 7060 // Conservatively determine if we can actually truncate the roots of the 7061 // expression. Collect the values that can be demoted in ToDemote and 7062 // additional roots that require investigating in Roots. 7063 SmallVector<Value *, 32> ToDemote; 7064 SmallVector<Value *, 4> Roots; 7065 for (auto *Root : TreeRoot) 7066 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7067 return; 7068 7069 // The maximum bit width required to represent all the values that can be 7070 // demoted without loss of precision. It would be safe to truncate the roots 7071 // of the expression to this width. 7072 auto MaxBitWidth = 8u; 7073 7074 // We first check if all the bits of the roots are demanded. If they're not, 7075 // we can truncate the roots to this narrower type. 7076 for (auto *Root : TreeRoot) { 7077 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7078 MaxBitWidth = std::max<unsigned>( 7079 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7080 } 7081 7082 // True if the roots can be zero-extended back to their original type, rather 7083 // than sign-extended. We know that if the leading bits are not demanded, we 7084 // can safely zero-extend. So we initialize IsKnownPositive to True. 7085 bool IsKnownPositive = true; 7086 7087 // If all the bits of the roots are demanded, we can try a little harder to 7088 // compute a narrower type. This can happen, for example, if the roots are 7089 // getelementptr indices. InstCombine promotes these indices to the pointer 7090 // width. Thus, all their bits are technically demanded even though the 7091 // address computation might be vectorized in a smaller type. 7092 // 7093 // We start by looking at each entry that can be demoted. We compute the 7094 // maximum bit width required to store the scalar by using ValueTracking to 7095 // compute the number of high-order bits we can truncate. 7096 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7097 llvm::all_of(TreeRoot, [](Value *R) { 7098 assert(R->hasOneUse() && "Root should have only one use!"); 7099 return isa<GetElementPtrInst>(R->user_back()); 7100 })) { 7101 MaxBitWidth = 8u; 7102 7103 // Determine if the sign bit of all the roots is known to be zero. If not, 7104 // IsKnownPositive is set to False. 7105 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7106 KnownBits Known = computeKnownBits(R, *DL); 7107 return Known.isNonNegative(); 7108 }); 7109 7110 // Determine the maximum number of bits required to store the scalar 7111 // values. 7112 for (auto *Scalar : ToDemote) { 7113 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7114 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7115 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7116 } 7117 7118 // If we can't prove that the sign bit is zero, we must add one to the 7119 // maximum bit width to account for the unknown sign bit. This preserves 7120 // the existing sign bit so we can safely sign-extend the root back to the 7121 // original type. Otherwise, if we know the sign bit is zero, we will 7122 // zero-extend the root instead. 7123 // 7124 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7125 // one to the maximum bit width will yield a larger-than-necessary 7126 // type. In general, we need to add an extra bit only if we can't 7127 // prove that the upper bit of the original type is equal to the 7128 // upper bit of the proposed smaller type. If these two bits are the 7129 // same (either zero or one) we know that sign-extending from the 7130 // smaller type will result in the same value. Here, since we can't 7131 // yet prove this, we are just making the proposed smaller type 7132 // larger to ensure correctness. 7133 if (!IsKnownPositive) 7134 ++MaxBitWidth; 7135 } 7136 7137 // Round MaxBitWidth up to the next power-of-two. 7138 if (!isPowerOf2_64(MaxBitWidth)) 7139 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7140 7141 // If the maximum bit width we compute is less than the with of the roots' 7142 // type, we can proceed with the narrowing. Otherwise, do nothing. 7143 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7144 return; 7145 7146 // If we can truncate the root, we must collect additional values that might 7147 // be demoted as a result. That is, those seeded by truncations we will 7148 // modify. 7149 while (!Roots.empty()) 7150 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7151 7152 // Finally, map the values we can demote to the maximum bit with we computed. 7153 for (auto *Scalar : ToDemote) 7154 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7155 } 7156 7157 namespace { 7158 7159 /// The SLPVectorizer Pass. 7160 struct SLPVectorizer : public FunctionPass { 7161 SLPVectorizerPass Impl; 7162 7163 /// Pass identification, replacement for typeid 7164 static char ID; 7165 7166 explicit SLPVectorizer() : FunctionPass(ID) { 7167 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7168 } 7169 7170 bool doInitialization(Module &M) override { 7171 return false; 7172 } 7173 7174 bool runOnFunction(Function &F) override { 7175 if (skipFunction(F)) 7176 return false; 7177 7178 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7179 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7180 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7181 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7182 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7183 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7184 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7185 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7186 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7187 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7188 7189 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7190 } 7191 7192 void getAnalysisUsage(AnalysisUsage &AU) const override { 7193 FunctionPass::getAnalysisUsage(AU); 7194 AU.addRequired<AssumptionCacheTracker>(); 7195 AU.addRequired<ScalarEvolutionWrapperPass>(); 7196 AU.addRequired<AAResultsWrapperPass>(); 7197 AU.addRequired<TargetTransformInfoWrapperPass>(); 7198 AU.addRequired<LoopInfoWrapperPass>(); 7199 AU.addRequired<DominatorTreeWrapperPass>(); 7200 AU.addRequired<DemandedBitsWrapperPass>(); 7201 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7202 AU.addRequired<InjectTLIMappingsLegacy>(); 7203 AU.addPreserved<LoopInfoWrapperPass>(); 7204 AU.addPreserved<DominatorTreeWrapperPass>(); 7205 AU.addPreserved<AAResultsWrapperPass>(); 7206 AU.addPreserved<GlobalsAAWrapperPass>(); 7207 AU.setPreservesCFG(); 7208 } 7209 }; 7210 7211 } // end anonymous namespace 7212 7213 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7214 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7215 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7216 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7217 auto *AA = &AM.getResult<AAManager>(F); 7218 auto *LI = &AM.getResult<LoopAnalysis>(F); 7219 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7220 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7221 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7222 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7223 7224 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7225 if (!Changed) 7226 return PreservedAnalyses::all(); 7227 7228 PreservedAnalyses PA; 7229 PA.preserveSet<CFGAnalyses>(); 7230 return PA; 7231 } 7232 7233 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7234 TargetTransformInfo *TTI_, 7235 TargetLibraryInfo *TLI_, AAResults *AA_, 7236 LoopInfo *LI_, DominatorTree *DT_, 7237 AssumptionCache *AC_, DemandedBits *DB_, 7238 OptimizationRemarkEmitter *ORE_) { 7239 if (!RunSLPVectorization) 7240 return false; 7241 SE = SE_; 7242 TTI = TTI_; 7243 TLI = TLI_; 7244 AA = AA_; 7245 LI = LI_; 7246 DT = DT_; 7247 AC = AC_; 7248 DB = DB_; 7249 DL = &F.getParent()->getDataLayout(); 7250 7251 Stores.clear(); 7252 GEPs.clear(); 7253 bool Changed = false; 7254 7255 // If the target claims to have no vector registers don't attempt 7256 // vectorization. 7257 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7258 return false; 7259 7260 // Don't vectorize when the attribute NoImplicitFloat is used. 7261 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7262 return false; 7263 7264 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7265 7266 // Use the bottom up slp vectorizer to construct chains that start with 7267 // store instructions. 7268 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7269 7270 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7271 // delete instructions. 7272 7273 // Update DFS numbers now so that we can use them for ordering. 7274 DT->updateDFSNumbers(); 7275 7276 // Scan the blocks in the function in post order. 7277 for (auto BB : post_order(&F.getEntryBlock())) { 7278 collectSeedInstructions(BB); 7279 7280 // Vectorize trees that end at stores. 7281 if (!Stores.empty()) { 7282 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7283 << " underlying objects.\n"); 7284 Changed |= vectorizeStoreChains(R); 7285 } 7286 7287 // Vectorize trees that end at reductions. 7288 Changed |= vectorizeChainsInBlock(BB, R); 7289 7290 // Vectorize the index computations of getelementptr instructions. This 7291 // is primarily intended to catch gather-like idioms ending at 7292 // non-consecutive loads. 7293 if (!GEPs.empty()) { 7294 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7295 << " underlying objects.\n"); 7296 Changed |= vectorizeGEPIndices(BB, R); 7297 } 7298 } 7299 7300 if (Changed) { 7301 R.optimizeGatherSequence(); 7302 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7303 } 7304 return Changed; 7305 } 7306 7307 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7308 unsigned Idx) { 7309 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7310 << "\n"); 7311 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7312 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7313 unsigned VF = Chain.size(); 7314 7315 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7316 return false; 7317 7318 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7319 << "\n"); 7320 7321 R.buildTree(Chain); 7322 if (R.isTreeTinyAndNotFullyVectorizable()) 7323 return false; 7324 if (R.isLoadCombineCandidate()) 7325 return false; 7326 R.reorderTopToBottom(/*FreeReorder=*/false); 7327 R.reorderBottomToTop(/*FreeReorder=*/false); 7328 R.buildExternalUses(); 7329 7330 R.computeMinimumValueSizes(); 7331 7332 InstructionCost Cost = R.getTreeCost(); 7333 7334 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7335 if (Cost < -SLPCostThreshold) { 7336 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7337 7338 using namespace ore; 7339 7340 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7341 cast<StoreInst>(Chain[0])) 7342 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7343 << " and with tree size " 7344 << NV("TreeSize", R.getTreeSize())); 7345 7346 R.vectorizeTree(); 7347 return true; 7348 } 7349 7350 return false; 7351 } 7352 7353 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7354 BoUpSLP &R) { 7355 // We may run into multiple chains that merge into a single chain. We mark the 7356 // stores that we vectorized so that we don't visit the same store twice. 7357 BoUpSLP::ValueSet VectorizedStores; 7358 bool Changed = false; 7359 7360 int E = Stores.size(); 7361 SmallBitVector Tails(E, false); 7362 int MaxIter = MaxStoreLookup.getValue(); 7363 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7364 E, std::make_pair(E, INT_MAX)); 7365 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7366 int IterCnt; 7367 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7368 &CheckedPairs, 7369 &ConsecutiveChain](int K, int Idx) { 7370 if (IterCnt >= MaxIter) 7371 return true; 7372 if (CheckedPairs[Idx].test(K)) 7373 return ConsecutiveChain[K].second == 1 && 7374 ConsecutiveChain[K].first == Idx; 7375 ++IterCnt; 7376 CheckedPairs[Idx].set(K); 7377 CheckedPairs[K].set(Idx); 7378 Optional<int> Diff = getPointersDiff( 7379 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7380 Stores[Idx]->getValueOperand()->getType(), 7381 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7382 if (!Diff || *Diff == 0) 7383 return false; 7384 int Val = *Diff; 7385 if (Val < 0) { 7386 if (ConsecutiveChain[Idx].second > -Val) { 7387 Tails.set(K); 7388 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7389 } 7390 return false; 7391 } 7392 if (ConsecutiveChain[K].second <= Val) 7393 return false; 7394 7395 Tails.set(Idx); 7396 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7397 return Val == 1; 7398 }; 7399 // Do a quadratic search on all of the given stores in reverse order and find 7400 // all of the pairs of stores that follow each other. 7401 for (int Idx = E - 1; Idx >= 0; --Idx) { 7402 // If a store has multiple consecutive store candidates, search according 7403 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7404 // This is because usually pairing with immediate succeeding or preceding 7405 // candidate create the best chance to find slp vectorization opportunity. 7406 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7407 IterCnt = 0; 7408 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7409 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7410 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7411 break; 7412 } 7413 7414 // Tracks if we tried to vectorize stores starting from the given tail 7415 // already. 7416 SmallBitVector TriedTails(E, false); 7417 // For stores that start but don't end a link in the chain: 7418 for (int Cnt = E; Cnt > 0; --Cnt) { 7419 int I = Cnt - 1; 7420 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7421 continue; 7422 // We found a store instr that starts a chain. Now follow the chain and try 7423 // to vectorize it. 7424 BoUpSLP::ValueList Operands; 7425 // Collect the chain into a list. 7426 while (I != E && !VectorizedStores.count(Stores[I])) { 7427 Operands.push_back(Stores[I]); 7428 Tails.set(I); 7429 if (ConsecutiveChain[I].second != 1) { 7430 // Mark the new end in the chain and go back, if required. It might be 7431 // required if the original stores come in reversed order, for example. 7432 if (ConsecutiveChain[I].first != E && 7433 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7434 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7435 TriedTails.set(I); 7436 Tails.reset(ConsecutiveChain[I].first); 7437 if (Cnt < ConsecutiveChain[I].first + 2) 7438 Cnt = ConsecutiveChain[I].first + 2; 7439 } 7440 break; 7441 } 7442 // Move to the next value in the chain. 7443 I = ConsecutiveChain[I].first; 7444 } 7445 assert(!Operands.empty() && "Expected non-empty list of stores."); 7446 7447 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7448 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7449 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7450 7451 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 7452 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7453 MaxElts); 7454 7455 // FIXME: Is division-by-2 the correct step? Should we assert that the 7456 // register size is a power-of-2? 7457 unsigned StartIdx = 0; 7458 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7459 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7460 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7461 if (!VectorizedStores.count(Slice.front()) && 7462 !VectorizedStores.count(Slice.back()) && 7463 vectorizeStoreChain(Slice, R, Cnt)) { 7464 // Mark the vectorized stores so that we don't vectorize them again. 7465 VectorizedStores.insert(Slice.begin(), Slice.end()); 7466 Changed = true; 7467 // If we vectorized initial block, no need to try to vectorize it 7468 // again. 7469 if (Cnt == StartIdx) 7470 StartIdx += Size; 7471 Cnt += Size; 7472 continue; 7473 } 7474 ++Cnt; 7475 } 7476 // Check if the whole array was vectorized already - exit. 7477 if (StartIdx >= Operands.size()) 7478 break; 7479 } 7480 } 7481 7482 return Changed; 7483 } 7484 7485 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7486 // Initialize the collections. We will make a single pass over the block. 7487 Stores.clear(); 7488 GEPs.clear(); 7489 7490 // Visit the store and getelementptr instructions in BB and organize them in 7491 // Stores and GEPs according to the underlying objects of their pointer 7492 // operands. 7493 for (Instruction &I : *BB) { 7494 // Ignore store instructions that are volatile or have a pointer operand 7495 // that doesn't point to a scalar type. 7496 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7497 if (!SI->isSimple()) 7498 continue; 7499 if (!isValidElementType(SI->getValueOperand()->getType())) 7500 continue; 7501 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7502 } 7503 7504 // Ignore getelementptr instructions that have more than one index, a 7505 // constant index, or a pointer operand that doesn't point to a scalar 7506 // type. 7507 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7508 auto Idx = GEP->idx_begin()->get(); 7509 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7510 continue; 7511 if (!isValidElementType(Idx->getType())) 7512 continue; 7513 if (GEP->getType()->isVectorTy()) 7514 continue; 7515 GEPs[GEP->getPointerOperand()].push_back(GEP); 7516 } 7517 } 7518 } 7519 7520 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7521 if (!A || !B) 7522 return false; 7523 Value *VL[] = {A, B}; 7524 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 7525 } 7526 7527 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7528 bool AllowReorder) { 7529 if (VL.size() < 2) 7530 return false; 7531 7532 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7533 << VL.size() << ".\n"); 7534 7535 // Check that all of the parts are instructions of the same type, 7536 // we permit an alternate opcode via InstructionsState. 7537 InstructionsState S = getSameOpcode(VL); 7538 if (!S.getOpcode()) 7539 return false; 7540 7541 Instruction *I0 = cast<Instruction>(S.OpValue); 7542 // Make sure invalid types (including vector type) are rejected before 7543 // determining vectorization factor for scalar instructions. 7544 for (Value *V : VL) { 7545 Type *Ty = V->getType(); 7546 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7547 // NOTE: the following will give user internal llvm type name, which may 7548 // not be useful. 7549 R.getORE()->emit([&]() { 7550 std::string type_str; 7551 llvm::raw_string_ostream rso(type_str); 7552 Ty->print(rso); 7553 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7554 << "Cannot SLP vectorize list: type " 7555 << rso.str() + " is unsupported by vectorizer"; 7556 }); 7557 return false; 7558 } 7559 } 7560 7561 unsigned Sz = R.getVectorElementSize(I0); 7562 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 7563 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7564 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7565 if (MaxVF < 2) { 7566 R.getORE()->emit([&]() { 7567 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7568 << "Cannot SLP vectorize list: vectorization factor " 7569 << "less than 2 is not supported"; 7570 }); 7571 return false; 7572 } 7573 7574 bool Changed = false; 7575 bool CandidateFound = false; 7576 InstructionCost MinCost = SLPCostThreshold.getValue(); 7577 Type *ScalarTy = VL[0]->getType(); 7578 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7579 ScalarTy = IE->getOperand(1)->getType(); 7580 7581 unsigned NextInst = 0, MaxInst = VL.size(); 7582 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7583 // No actual vectorization should happen, if number of parts is the same as 7584 // provided vectorization factor (i.e. the scalar type is used for vector 7585 // code during codegen). 7586 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7587 if (TTI->getNumberOfParts(VecTy) == VF) 7588 continue; 7589 for (unsigned I = NextInst; I < MaxInst; ++I) { 7590 unsigned OpsWidth = 0; 7591 7592 if (I + VF > MaxInst) 7593 OpsWidth = MaxInst - I; 7594 else 7595 OpsWidth = VF; 7596 7597 if (!isPowerOf2_32(OpsWidth)) 7598 continue; 7599 7600 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7601 break; 7602 7603 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7604 // Check that a previous iteration of this loop did not delete the Value. 7605 if (llvm::any_of(Ops, [&R](Value *V) { 7606 auto *I = dyn_cast<Instruction>(V); 7607 return I && R.isDeleted(I); 7608 })) 7609 continue; 7610 7611 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7612 << "\n"); 7613 7614 R.buildTree(Ops); 7615 if (R.isTreeTinyAndNotFullyVectorizable()) 7616 continue; 7617 R.reorderTopToBottom(AllowReorder); 7618 R.reorderBottomToTop(AllowReorder); 7619 R.buildExternalUses(); 7620 7621 R.computeMinimumValueSizes(); 7622 InstructionCost Cost = R.getTreeCost(); 7623 CandidateFound = true; 7624 MinCost = std::min(MinCost, Cost); 7625 7626 if (Cost < -SLPCostThreshold) { 7627 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7628 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7629 cast<Instruction>(Ops[0])) 7630 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7631 << " and with tree size " 7632 << ore::NV("TreeSize", R.getTreeSize())); 7633 7634 R.vectorizeTree(); 7635 // Move to the next bundle. 7636 I += VF - 1; 7637 NextInst = I + 1; 7638 Changed = true; 7639 } 7640 } 7641 } 7642 7643 if (!Changed && CandidateFound) { 7644 R.getORE()->emit([&]() { 7645 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7646 << "List vectorization was possible but not beneficial with cost " 7647 << ore::NV("Cost", MinCost) << " >= " 7648 << ore::NV("Treshold", -SLPCostThreshold); 7649 }); 7650 } else if (!Changed) { 7651 R.getORE()->emit([&]() { 7652 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7653 << "Cannot SLP vectorize list: vectorization was impossible" 7654 << " with available vectorization factors"; 7655 }); 7656 } 7657 return Changed; 7658 } 7659 7660 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7661 if (!I) 7662 return false; 7663 7664 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7665 return false; 7666 7667 Value *P = I->getParent(); 7668 7669 // Vectorize in current basic block only. 7670 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7671 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7672 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7673 return false; 7674 7675 // Try to vectorize V. 7676 if (tryToVectorizePair(Op0, Op1, R)) 7677 return true; 7678 7679 auto *A = dyn_cast<BinaryOperator>(Op0); 7680 auto *B = dyn_cast<BinaryOperator>(Op1); 7681 // Try to skip B. 7682 if (B && B->hasOneUse()) { 7683 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7684 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7685 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7686 return true; 7687 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7688 return true; 7689 } 7690 7691 // Try to skip A. 7692 if (A && A->hasOneUse()) { 7693 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7694 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7695 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7696 return true; 7697 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7698 return true; 7699 } 7700 return false; 7701 } 7702 7703 namespace { 7704 7705 /// Model horizontal reductions. 7706 /// 7707 /// A horizontal reduction is a tree of reduction instructions that has values 7708 /// that can be put into a vector as its leaves. For example: 7709 /// 7710 /// mul mul mul mul 7711 /// \ / \ / 7712 /// + + 7713 /// \ / 7714 /// + 7715 /// This tree has "mul" as its leaf values and "+" as its reduction 7716 /// instructions. A reduction can feed into a store or a binary operation 7717 /// feeding a phi. 7718 /// ... 7719 /// \ / 7720 /// + 7721 /// | 7722 /// phi += 7723 /// 7724 /// Or: 7725 /// ... 7726 /// \ / 7727 /// + 7728 /// | 7729 /// *p = 7730 /// 7731 class HorizontalReduction { 7732 using ReductionOpsType = SmallVector<Value *, 16>; 7733 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7734 ReductionOpsListType ReductionOps; 7735 SmallVector<Value *, 32> ReducedVals; 7736 // Use map vector to make stable output. 7737 MapVector<Instruction *, Value *> ExtraArgs; 7738 WeakTrackingVH ReductionRoot; 7739 /// The type of reduction operation. 7740 RecurKind RdxKind; 7741 7742 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 7743 7744 static bool isCmpSelMinMax(Instruction *I) { 7745 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 7746 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 7747 } 7748 7749 // And/or are potentially poison-safe logical patterns like: 7750 // select x, y, false 7751 // select x, true, y 7752 static bool isBoolLogicOp(Instruction *I) { 7753 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 7754 match(I, m_LogicalOr(m_Value(), m_Value())); 7755 } 7756 7757 /// Checks if instruction is associative and can be vectorized. 7758 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7759 if (Kind == RecurKind::None) 7760 return false; 7761 7762 // Integer ops that map to select instructions or intrinsics are fine. 7763 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 7764 isBoolLogicOp(I)) 7765 return true; 7766 7767 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7768 // FP min/max are associative except for NaN and -0.0. We do not 7769 // have to rule out -0.0 here because the intrinsic semantics do not 7770 // specify a fixed result for it. 7771 return I->getFastMathFlags().noNaNs(); 7772 } 7773 7774 return I->isAssociative(); 7775 } 7776 7777 static Value *getRdxOperand(Instruction *I, unsigned Index) { 7778 // Poison-safe 'or' takes the form: select X, true, Y 7779 // To make that work with the normal operand processing, we skip the 7780 // true value operand. 7781 // TODO: Change the code and data structures to handle this without a hack. 7782 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 7783 return I->getOperand(2); 7784 return I->getOperand(Index); 7785 } 7786 7787 /// Checks if the ParentStackElem.first should be marked as a reduction 7788 /// operation with an extra argument or as extra argument itself. 7789 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7790 Value *ExtraArg) { 7791 if (ExtraArgs.count(ParentStackElem.first)) { 7792 ExtraArgs[ParentStackElem.first] = nullptr; 7793 // We ran into something like: 7794 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7795 // The whole ParentStackElem.first should be considered as an extra value 7796 // in this case. 7797 // Do not perform analysis of remaining operands of ParentStackElem.first 7798 // instruction, this whole instruction is an extra argument. 7799 ParentStackElem.second = INVALID_OPERAND_INDEX; 7800 } else { 7801 // We ran into something like: 7802 // ParentStackElem.first += ... + ExtraArg + ... 7803 ExtraArgs[ParentStackElem.first] = ExtraArg; 7804 } 7805 } 7806 7807 /// Creates reduction operation with the current opcode. 7808 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 7809 Value *RHS, const Twine &Name, bool UseSelect) { 7810 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7811 switch (Kind) { 7812 case RecurKind::Add: 7813 case RecurKind::Mul: 7814 case RecurKind::Or: 7815 case RecurKind::And: 7816 case RecurKind::Xor: 7817 case RecurKind::FAdd: 7818 case RecurKind::FMul: 7819 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 7820 Name); 7821 case RecurKind::FMax: 7822 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 7823 case RecurKind::FMin: 7824 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 7825 case RecurKind::SMax: 7826 if (UseSelect) { 7827 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 7828 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7829 } 7830 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 7831 case RecurKind::SMin: 7832 if (UseSelect) { 7833 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 7834 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7835 } 7836 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 7837 case RecurKind::UMax: 7838 if (UseSelect) { 7839 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 7840 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7841 } 7842 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 7843 case RecurKind::UMin: 7844 if (UseSelect) { 7845 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 7846 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7847 } 7848 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 7849 default: 7850 llvm_unreachable("Unknown reduction operation."); 7851 } 7852 } 7853 7854 /// Creates reduction operation with the current opcode with the IR flags 7855 /// from \p ReductionOps. 7856 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7857 Value *RHS, const Twine &Name, 7858 const ReductionOpsListType &ReductionOps) { 7859 bool UseSelect = ReductionOps.size() == 2; 7860 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 7861 "Expected cmp + select pairs for reduction"); 7862 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 7863 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7864 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 7865 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 7866 propagateIRFlags(Op, ReductionOps[1]); 7867 return Op; 7868 } 7869 } 7870 propagateIRFlags(Op, ReductionOps[0]); 7871 return Op; 7872 } 7873 7874 /// Creates reduction operation with the current opcode with the IR flags 7875 /// from \p I. 7876 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7877 Value *RHS, const Twine &Name, Instruction *I) { 7878 auto *SelI = dyn_cast<SelectInst>(I); 7879 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 7880 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7881 if (auto *Sel = dyn_cast<SelectInst>(Op)) 7882 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 7883 } 7884 propagateIRFlags(Op, I); 7885 return Op; 7886 } 7887 7888 static RecurKind getRdxKind(Instruction *I) { 7889 assert(I && "Expected instruction for reduction matching"); 7890 TargetTransformInfo::ReductionFlags RdxFlags; 7891 if (match(I, m_Add(m_Value(), m_Value()))) 7892 return RecurKind::Add; 7893 if (match(I, m_Mul(m_Value(), m_Value()))) 7894 return RecurKind::Mul; 7895 if (match(I, m_And(m_Value(), m_Value())) || 7896 match(I, m_LogicalAnd(m_Value(), m_Value()))) 7897 return RecurKind::And; 7898 if (match(I, m_Or(m_Value(), m_Value())) || 7899 match(I, m_LogicalOr(m_Value(), m_Value()))) 7900 return RecurKind::Or; 7901 if (match(I, m_Xor(m_Value(), m_Value()))) 7902 return RecurKind::Xor; 7903 if (match(I, m_FAdd(m_Value(), m_Value()))) 7904 return RecurKind::FAdd; 7905 if (match(I, m_FMul(m_Value(), m_Value()))) 7906 return RecurKind::FMul; 7907 7908 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 7909 return RecurKind::FMax; 7910 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 7911 return RecurKind::FMin; 7912 7913 // This matches either cmp+select or intrinsics. SLP is expected to handle 7914 // either form. 7915 // TODO: If we are canonicalizing to intrinsics, we can remove several 7916 // special-case paths that deal with selects. 7917 if (match(I, m_SMax(m_Value(), m_Value()))) 7918 return RecurKind::SMax; 7919 if (match(I, m_SMin(m_Value(), m_Value()))) 7920 return RecurKind::SMin; 7921 if (match(I, m_UMax(m_Value(), m_Value()))) 7922 return RecurKind::UMax; 7923 if (match(I, m_UMin(m_Value(), m_Value()))) 7924 return RecurKind::UMin; 7925 7926 if (auto *Select = dyn_cast<SelectInst>(I)) { 7927 // Try harder: look for min/max pattern based on instructions producing 7928 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 7929 // During the intermediate stages of SLP, it's very common to have 7930 // pattern like this (since optimizeGatherSequence is run only once 7931 // at the end): 7932 // %1 = extractelement <2 x i32> %a, i32 0 7933 // %2 = extractelement <2 x i32> %a, i32 1 7934 // %cond = icmp sgt i32 %1, %2 7935 // %3 = extractelement <2 x i32> %a, i32 0 7936 // %4 = extractelement <2 x i32> %a, i32 1 7937 // %select = select i1 %cond, i32 %3, i32 %4 7938 CmpInst::Predicate Pred; 7939 Instruction *L1; 7940 Instruction *L2; 7941 7942 Value *LHS = Select->getTrueValue(); 7943 Value *RHS = Select->getFalseValue(); 7944 Value *Cond = Select->getCondition(); 7945 7946 // TODO: Support inverse predicates. 7947 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 7948 if (!isa<ExtractElementInst>(RHS) || 7949 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7950 return RecurKind::None; 7951 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 7952 if (!isa<ExtractElementInst>(LHS) || 7953 !L1->isIdenticalTo(cast<Instruction>(LHS))) 7954 return RecurKind::None; 7955 } else { 7956 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 7957 return RecurKind::None; 7958 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 7959 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 7960 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7961 return RecurKind::None; 7962 } 7963 7964 TargetTransformInfo::ReductionFlags RdxFlags; 7965 switch (Pred) { 7966 default: 7967 return RecurKind::None; 7968 case CmpInst::ICMP_SGT: 7969 case CmpInst::ICMP_SGE: 7970 return RecurKind::SMax; 7971 case CmpInst::ICMP_SLT: 7972 case CmpInst::ICMP_SLE: 7973 return RecurKind::SMin; 7974 case CmpInst::ICMP_UGT: 7975 case CmpInst::ICMP_UGE: 7976 return RecurKind::UMax; 7977 case CmpInst::ICMP_ULT: 7978 case CmpInst::ICMP_ULE: 7979 return RecurKind::UMin; 7980 } 7981 } 7982 return RecurKind::None; 7983 } 7984 7985 /// Get the index of the first operand. 7986 static unsigned getFirstOperandIndex(Instruction *I) { 7987 return isCmpSelMinMax(I) ? 1 : 0; 7988 } 7989 7990 /// Total number of operands in the reduction operation. 7991 static unsigned getNumberOfOperands(Instruction *I) { 7992 return isCmpSelMinMax(I) ? 3 : 2; 7993 } 7994 7995 /// Checks if the instruction is in basic block \p BB. 7996 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 7997 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 7998 if (isCmpSelMinMax(I)) { 7999 auto *Sel = cast<SelectInst>(I); 8000 auto *Cmp = cast<Instruction>(Sel->getCondition()); 8001 return Sel->getParent() == BB && Cmp->getParent() == BB; 8002 } 8003 return I->getParent() == BB; 8004 } 8005 8006 /// Expected number of uses for reduction operations/reduced values. 8007 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8008 if (IsCmpSelMinMax) { 8009 // SelectInst must be used twice while the condition op must have single 8010 // use only. 8011 if (auto *Sel = dyn_cast<SelectInst>(I)) 8012 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8013 return I->hasNUses(2); 8014 } 8015 8016 // Arithmetic reduction operation must be used once only. 8017 return I->hasOneUse(); 8018 } 8019 8020 /// Initializes the list of reduction operations. 8021 void initReductionOps(Instruction *I) { 8022 if (isCmpSelMinMax(I)) 8023 ReductionOps.assign(2, ReductionOpsType()); 8024 else 8025 ReductionOps.assign(1, ReductionOpsType()); 8026 } 8027 8028 /// Add all reduction operations for the reduction instruction \p I. 8029 void addReductionOps(Instruction *I) { 8030 if (isCmpSelMinMax(I)) { 8031 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8032 ReductionOps[1].emplace_back(I); 8033 } else { 8034 ReductionOps[0].emplace_back(I); 8035 } 8036 } 8037 8038 static Value *getLHS(RecurKind Kind, Instruction *I) { 8039 if (Kind == RecurKind::None) 8040 return nullptr; 8041 return I->getOperand(getFirstOperandIndex(I)); 8042 } 8043 static Value *getRHS(RecurKind Kind, Instruction *I) { 8044 if (Kind == RecurKind::None) 8045 return nullptr; 8046 return I->getOperand(getFirstOperandIndex(I) + 1); 8047 } 8048 8049 public: 8050 HorizontalReduction() = default; 8051 8052 /// Try to find a reduction tree. 8053 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8054 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8055 "Phi needs to use the binary operator"); 8056 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8057 isa<IntrinsicInst>(Inst)) && 8058 "Expected binop, select, or intrinsic for reduction matching"); 8059 RdxKind = getRdxKind(Inst); 8060 8061 // We could have a initial reductions that is not an add. 8062 // r *= v1 + v2 + v3 + v4 8063 // In such a case start looking for a tree rooted in the first '+'. 8064 if (Phi) { 8065 if (getLHS(RdxKind, Inst) == Phi) { 8066 Phi = nullptr; 8067 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8068 if (!Inst) 8069 return false; 8070 RdxKind = getRdxKind(Inst); 8071 } else if (getRHS(RdxKind, Inst) == Phi) { 8072 Phi = nullptr; 8073 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8074 if (!Inst) 8075 return false; 8076 RdxKind = getRdxKind(Inst); 8077 } 8078 } 8079 8080 if (!isVectorizable(RdxKind, Inst)) 8081 return false; 8082 8083 // Analyze "regular" integer/FP types for reductions - no target-specific 8084 // types or pointers. 8085 Type *Ty = Inst->getType(); 8086 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8087 return false; 8088 8089 // Though the ultimate reduction may have multiple uses, its condition must 8090 // have only single use. 8091 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8092 if (!Sel->getCondition()->hasOneUse()) 8093 return false; 8094 8095 ReductionRoot = Inst; 8096 8097 // The opcode for leaf values that we perform a reduction on. 8098 // For example: load(x) + load(y) + load(z) + fptoui(w) 8099 // The leaf opcode for 'w' does not match, so we don't include it as a 8100 // potential candidate for the reduction. 8101 unsigned LeafOpcode = 0; 8102 8103 // Post-order traverse the reduction tree starting at Inst. We only handle 8104 // true trees containing binary operators or selects. 8105 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8106 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8107 initReductionOps(Inst); 8108 while (!Stack.empty()) { 8109 Instruction *TreeN = Stack.back().first; 8110 unsigned EdgeToVisit = Stack.back().second++; 8111 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8112 bool IsReducedValue = TreeRdxKind != RdxKind; 8113 8114 // Postorder visit. 8115 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8116 if (IsReducedValue) 8117 ReducedVals.push_back(TreeN); 8118 else { 8119 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8120 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8121 // Check if TreeN is an extra argument of its parent operation. 8122 if (Stack.size() <= 1) { 8123 // TreeN can't be an extra argument as it is a root reduction 8124 // operation. 8125 return false; 8126 } 8127 // Yes, TreeN is an extra argument, do not add it to a list of 8128 // reduction operations. 8129 // Stack[Stack.size() - 2] always points to the parent operation. 8130 markExtraArg(Stack[Stack.size() - 2], TreeN); 8131 ExtraArgs.erase(TreeN); 8132 } else 8133 addReductionOps(TreeN); 8134 } 8135 // Retract. 8136 Stack.pop_back(); 8137 continue; 8138 } 8139 8140 // Visit operands. 8141 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8142 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8143 if (!EdgeInst) { 8144 // Edge value is not a reduction instruction or a leaf instruction. 8145 // (It may be a constant, function argument, or something else.) 8146 markExtraArg(Stack.back(), EdgeVal); 8147 continue; 8148 } 8149 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8150 // Continue analysis if the next operand is a reduction operation or 8151 // (possibly) a leaf value. If the leaf value opcode is not set, 8152 // the first met operation != reduction operation is considered as the 8153 // leaf opcode. 8154 // Only handle trees in the current basic block. 8155 // Each tree node needs to have minimal number of users except for the 8156 // ultimate reduction. 8157 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8158 if (EdgeInst != Phi && EdgeInst != Inst && 8159 hasSameParent(EdgeInst, Inst->getParent()) && 8160 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8161 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8162 if (IsRdxInst) { 8163 // We need to be able to reassociate the reduction operations. 8164 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8165 // I is an extra argument for TreeN (its parent operation). 8166 markExtraArg(Stack.back(), EdgeInst); 8167 continue; 8168 } 8169 } else if (!LeafOpcode) { 8170 LeafOpcode = EdgeInst->getOpcode(); 8171 } 8172 Stack.push_back( 8173 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8174 continue; 8175 } 8176 // I is an extra argument for TreeN (its parent operation). 8177 markExtraArg(Stack.back(), EdgeInst); 8178 } 8179 return true; 8180 } 8181 8182 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8183 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8184 // If there are a sufficient number of reduction values, reduce 8185 // to a nearby power-of-2. We can safely generate oversized 8186 // vectors and rely on the backend to split them to legal sizes. 8187 unsigned NumReducedVals = ReducedVals.size(); 8188 if (NumReducedVals < 4) 8189 return false; 8190 8191 // Intersect the fast-math-flags from all reduction operations. 8192 FastMathFlags RdxFMF; 8193 RdxFMF.set(); 8194 for (ReductionOpsType &RdxOp : ReductionOps) { 8195 for (Value *RdxVal : RdxOp) { 8196 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8197 RdxFMF &= FPMO->getFastMathFlags(); 8198 } 8199 } 8200 8201 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8202 Builder.setFastMathFlags(RdxFMF); 8203 8204 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8205 // The same extra argument may be used several times, so log each attempt 8206 // to use it. 8207 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8208 assert(Pair.first && "DebugLoc must be set."); 8209 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8210 } 8211 8212 // The compare instruction of a min/max is the insertion point for new 8213 // instructions and may be replaced with a new compare instruction. 8214 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8215 assert(isa<SelectInst>(RdxRootInst) && 8216 "Expected min/max reduction to have select root instruction"); 8217 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8218 assert(isa<Instruction>(ScalarCond) && 8219 "Expected min/max reduction to have compare condition"); 8220 return cast<Instruction>(ScalarCond); 8221 }; 8222 8223 // The reduction root is used as the insertion point for new instructions, 8224 // so set it as externally used to prevent it from being deleted. 8225 ExternallyUsedValues[ReductionRoot]; 8226 SmallVector<Value *, 16> IgnoreList; 8227 for (ReductionOpsType &RdxOp : ReductionOps) 8228 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8229 8230 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8231 if (NumReducedVals > ReduxWidth) { 8232 // In the loop below, we are building a tree based on a window of 8233 // 'ReduxWidth' values. 8234 // If the operands of those values have common traits (compare predicate, 8235 // constant operand, etc), then we want to group those together to 8236 // minimize the cost of the reduction. 8237 8238 // TODO: This should be extended to count common operands for 8239 // compares and binops. 8240 8241 // Step 1: Count the number of times each compare predicate occurs. 8242 SmallDenseMap<unsigned, unsigned> PredCountMap; 8243 for (Value *RdxVal : ReducedVals) { 8244 CmpInst::Predicate Pred; 8245 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8246 ++PredCountMap[Pred]; 8247 } 8248 // Step 2: Sort the values so the most common predicates come first. 8249 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8250 CmpInst::Predicate PredA, PredB; 8251 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8252 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8253 return PredCountMap[PredA] > PredCountMap[PredB]; 8254 } 8255 return false; 8256 }); 8257 } 8258 8259 Value *VectorizedTree = nullptr; 8260 unsigned i = 0; 8261 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8262 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8263 V.buildTree(VL, IgnoreList); 8264 if (V.isTreeTinyAndNotFullyVectorizable()) 8265 break; 8266 if (V.isLoadCombineReductionCandidate(RdxKind)) 8267 break; 8268 V.reorderTopToBottom(/*FreeReorder=*/true); 8269 V.reorderBottomToTop(/*FreeReorder=*/true); 8270 V.buildExternalUses(ExternallyUsedValues); 8271 8272 // For a poison-safe boolean logic reduction, do not replace select 8273 // instructions with logic ops. All reduced values will be frozen (see 8274 // below) to prevent leaking poison. 8275 if (isa<SelectInst>(ReductionRoot) && 8276 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8277 NumReducedVals != ReduxWidth) 8278 break; 8279 8280 V.computeMinimumValueSizes(); 8281 8282 // Estimate cost. 8283 InstructionCost TreeCost = 8284 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8285 InstructionCost ReductionCost = 8286 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8287 InstructionCost Cost = TreeCost + ReductionCost; 8288 if (!Cost.isValid()) { 8289 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8290 return false; 8291 } 8292 if (Cost >= -SLPCostThreshold) { 8293 V.getORE()->emit([&]() { 8294 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8295 cast<Instruction>(VL[0])) 8296 << "Vectorizing horizontal reduction is possible" 8297 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8298 << " and threshold " 8299 << ore::NV("Threshold", -SLPCostThreshold); 8300 }); 8301 break; 8302 } 8303 8304 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8305 << Cost << ". (HorRdx)\n"); 8306 V.getORE()->emit([&]() { 8307 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8308 cast<Instruction>(VL[0])) 8309 << "Vectorized horizontal reduction with cost " 8310 << ore::NV("Cost", Cost) << " and with tree size " 8311 << ore::NV("TreeSize", V.getTreeSize()); 8312 }); 8313 8314 // Vectorize a tree. 8315 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8316 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8317 8318 // Emit a reduction. If the root is a select (min/max idiom), the insert 8319 // point is the compare condition of that select. 8320 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8321 if (isCmpSelMinMax(RdxRootInst)) 8322 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8323 else 8324 Builder.SetInsertPoint(RdxRootInst); 8325 8326 // To prevent poison from leaking across what used to be sequential, safe, 8327 // scalar boolean logic operations, the reduction operand must be frozen. 8328 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8329 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8330 8331 Value *ReducedSubTree = 8332 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8333 8334 if (!VectorizedTree) { 8335 // Initialize the final value in the reduction. 8336 VectorizedTree = ReducedSubTree; 8337 } else { 8338 // Update the final value in the reduction. 8339 Builder.SetCurrentDebugLocation(Loc); 8340 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8341 ReducedSubTree, "op.rdx", ReductionOps); 8342 } 8343 i += ReduxWidth; 8344 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8345 } 8346 8347 if (VectorizedTree) { 8348 // Finish the reduction. 8349 for (; i < NumReducedVals; ++i) { 8350 auto *I = cast<Instruction>(ReducedVals[i]); 8351 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8352 VectorizedTree = 8353 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8354 } 8355 for (auto &Pair : ExternallyUsedValues) { 8356 // Add each externally used value to the final reduction. 8357 for (auto *I : Pair.second) { 8358 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8359 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8360 Pair.first, "op.extra", I); 8361 } 8362 } 8363 8364 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8365 8366 // Mark all scalar reduction ops for deletion, they are replaced by the 8367 // vector reductions. 8368 V.eraseInstructions(IgnoreList); 8369 } 8370 return VectorizedTree != nullptr; 8371 } 8372 8373 unsigned numReductionValues() const { return ReducedVals.size(); } 8374 8375 private: 8376 /// Calculate the cost of a reduction. 8377 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8378 Value *FirstReducedVal, unsigned ReduxWidth, 8379 FastMathFlags FMF) { 8380 Type *ScalarTy = FirstReducedVal->getType(); 8381 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8382 InstructionCost VectorCost, ScalarCost; 8383 switch (RdxKind) { 8384 case RecurKind::Add: 8385 case RecurKind::Mul: 8386 case RecurKind::Or: 8387 case RecurKind::And: 8388 case RecurKind::Xor: 8389 case RecurKind::FAdd: 8390 case RecurKind::FMul: { 8391 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8392 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF); 8393 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 8394 break; 8395 } 8396 case RecurKind::FMax: 8397 case RecurKind::FMin: { 8398 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8399 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8400 /*unsigned=*/false); 8401 ScalarCost = 8402 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 8403 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8404 CmpInst::makeCmpResultType(ScalarTy)); 8405 break; 8406 } 8407 case RecurKind::SMax: 8408 case RecurKind::SMin: 8409 case RecurKind::UMax: 8410 case RecurKind::UMin: { 8411 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8412 bool IsUnsigned = 8413 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8414 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned); 8415 ScalarCost = 8416 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 8417 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8418 CmpInst::makeCmpResultType(ScalarTy)); 8419 break; 8420 } 8421 default: 8422 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8423 } 8424 8425 // Scalar cost is repeated for N-1 elements. 8426 ScalarCost *= (ReduxWidth - 1); 8427 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8428 << " for reduction that starts with " << *FirstReducedVal 8429 << " (It is a splitting reduction)\n"); 8430 return VectorCost - ScalarCost; 8431 } 8432 8433 /// Emit a horizontal reduction of the vectorized value. 8434 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8435 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8436 assert(VectorizedValue && "Need to have a vectorized tree node"); 8437 assert(isPowerOf2_32(ReduxWidth) && 8438 "We only handle power-of-two reductions for now"); 8439 8440 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8441 ReductionOps.back()); 8442 } 8443 }; 8444 8445 } // end anonymous namespace 8446 8447 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8448 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8449 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8450 8451 unsigned AggregateSize = 1; 8452 auto *IV = cast<InsertValueInst>(InsertInst); 8453 Type *CurrentType = IV->getType(); 8454 do { 8455 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8456 for (auto *Elt : ST->elements()) 8457 if (Elt != ST->getElementType(0)) // check homogeneity 8458 return None; 8459 AggregateSize *= ST->getNumElements(); 8460 CurrentType = ST->getElementType(0); 8461 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8462 AggregateSize *= AT->getNumElements(); 8463 CurrentType = AT->getElementType(); 8464 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8465 AggregateSize *= VT->getNumElements(); 8466 return AggregateSize; 8467 } else if (CurrentType->isSingleValueType()) { 8468 return AggregateSize; 8469 } else { 8470 return None; 8471 } 8472 } while (true); 8473 } 8474 8475 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8476 TargetTransformInfo *TTI, 8477 SmallVectorImpl<Value *> &BuildVectorOpds, 8478 SmallVectorImpl<Value *> &InsertElts, 8479 unsigned OperandOffset) { 8480 do { 8481 Value *InsertedOperand = LastInsertInst->getOperand(1); 8482 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8483 if (!OperandIndex) 8484 return false; 8485 if (isa<InsertElementInst>(InsertedOperand) || 8486 isa<InsertValueInst>(InsertedOperand)) { 8487 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8488 BuildVectorOpds, InsertElts, *OperandIndex)) 8489 return false; 8490 } else { 8491 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8492 InsertElts[*OperandIndex] = LastInsertInst; 8493 } 8494 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8495 } while (LastInsertInst != nullptr && 8496 (isa<InsertValueInst>(LastInsertInst) || 8497 isa<InsertElementInst>(LastInsertInst)) && 8498 LastInsertInst->hasOneUse()); 8499 return true; 8500 } 8501 8502 /// Recognize construction of vectors like 8503 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8504 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8505 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8506 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8507 /// starting from the last insertelement or insertvalue instruction. 8508 /// 8509 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8510 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8511 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8512 /// 8513 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8514 /// 8515 /// \return true if it matches. 8516 static bool findBuildAggregate(Instruction *LastInsertInst, 8517 TargetTransformInfo *TTI, 8518 SmallVectorImpl<Value *> &BuildVectorOpds, 8519 SmallVectorImpl<Value *> &InsertElts) { 8520 8521 assert((isa<InsertElementInst>(LastInsertInst) || 8522 isa<InsertValueInst>(LastInsertInst)) && 8523 "Expected insertelement or insertvalue instruction!"); 8524 8525 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8526 "Expected empty result vectors!"); 8527 8528 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8529 if (!AggregateSize) 8530 return false; 8531 BuildVectorOpds.resize(*AggregateSize); 8532 InsertElts.resize(*AggregateSize); 8533 8534 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8535 0)) { 8536 llvm::erase_value(BuildVectorOpds, nullptr); 8537 llvm::erase_value(InsertElts, nullptr); 8538 if (BuildVectorOpds.size() >= 2) 8539 return true; 8540 } 8541 8542 return false; 8543 } 8544 8545 /// Try and get a reduction value from a phi node. 8546 /// 8547 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8548 /// if they come from either \p ParentBB or a containing loop latch. 8549 /// 8550 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8551 /// if not possible. 8552 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8553 BasicBlock *ParentBB, LoopInfo *LI) { 8554 // There are situations where the reduction value is not dominated by the 8555 // reduction phi. Vectorizing such cases has been reported to cause 8556 // miscompiles. See PR25787. 8557 auto DominatedReduxValue = [&](Value *R) { 8558 return isa<Instruction>(R) && 8559 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8560 }; 8561 8562 Value *Rdx = nullptr; 8563 8564 // Return the incoming value if it comes from the same BB as the phi node. 8565 if (P->getIncomingBlock(0) == ParentBB) { 8566 Rdx = P->getIncomingValue(0); 8567 } else if (P->getIncomingBlock(1) == ParentBB) { 8568 Rdx = P->getIncomingValue(1); 8569 } 8570 8571 if (Rdx && DominatedReduxValue(Rdx)) 8572 return Rdx; 8573 8574 // Otherwise, check whether we have a loop latch to look at. 8575 Loop *BBL = LI->getLoopFor(ParentBB); 8576 if (!BBL) 8577 return nullptr; 8578 BasicBlock *BBLatch = BBL->getLoopLatch(); 8579 if (!BBLatch) 8580 return nullptr; 8581 8582 // There is a loop latch, return the incoming value if it comes from 8583 // that. This reduction pattern occasionally turns up. 8584 if (P->getIncomingBlock(0) == BBLatch) { 8585 Rdx = P->getIncomingValue(0); 8586 } else if (P->getIncomingBlock(1) == BBLatch) { 8587 Rdx = P->getIncomingValue(1); 8588 } 8589 8590 if (Rdx && DominatedReduxValue(Rdx)) 8591 return Rdx; 8592 8593 return nullptr; 8594 } 8595 8596 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8597 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8598 return true; 8599 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8600 return true; 8601 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8602 return true; 8603 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8604 return true; 8605 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8606 return true; 8607 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8608 return true; 8609 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8610 return true; 8611 return false; 8612 } 8613 8614 /// Attempt to reduce a horizontal reduction. 8615 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8616 /// with reduction operators \a Root (or one of its operands) in a basic block 8617 /// \a BB, then check if it can be done. If horizontal reduction is not found 8618 /// and root instruction is a binary operation, vectorization of the operands is 8619 /// attempted. 8620 /// \returns true if a horizontal reduction was matched and reduced or operands 8621 /// of one of the binary instruction were vectorized. 8622 /// \returns false if a horizontal reduction was not matched (or not possible) 8623 /// or no vectorization of any binary operation feeding \a Root instruction was 8624 /// performed. 8625 static bool tryToVectorizeHorReductionOrInstOperands( 8626 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8627 TargetTransformInfo *TTI, 8628 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8629 if (!ShouldVectorizeHor) 8630 return false; 8631 8632 if (!Root) 8633 return false; 8634 8635 if (Root->getParent() != BB || isa<PHINode>(Root)) 8636 return false; 8637 // Start analysis starting from Root instruction. If horizontal reduction is 8638 // found, try to vectorize it. If it is not a horizontal reduction or 8639 // vectorization is not possible or not effective, and currently analyzed 8640 // instruction is a binary operation, try to vectorize the operands, using 8641 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8642 // the same procedure considering each operand as a possible root of the 8643 // horizontal reduction. 8644 // Interrupt the process if the Root instruction itself was vectorized or all 8645 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8646 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8647 // CmpInsts so we can skip extra attempts in 8648 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8649 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 8650 SmallPtrSet<Value *, 8> VisitedInstrs; 8651 bool Res = false; 8652 while (!Stack.empty()) { 8653 Instruction *Inst; 8654 unsigned Level; 8655 std::tie(Inst, Level) = Stack.pop_back_val(); 8656 // Do not try to analyze instruction that has already been vectorized. 8657 // This may happen when we vectorize instruction operands on a previous 8658 // iteration while stack was populated before that happened. 8659 if (R.isDeleted(Inst)) 8660 continue; 8661 Value *B0, *B1; 8662 bool IsBinop = matchRdxBop(Inst, B0, B1); 8663 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8664 if (IsBinop || IsSelect) { 8665 HorizontalReduction HorRdx; 8666 if (HorRdx.matchAssociativeReduction(P, Inst)) { 8667 if (HorRdx.tryToReduce(R, TTI)) { 8668 Res = true; 8669 // Set P to nullptr to avoid re-analysis of phi node in 8670 // matchAssociativeReduction function unless this is the root node. 8671 P = nullptr; 8672 continue; 8673 } 8674 } 8675 if (P && IsBinop) { 8676 Inst = dyn_cast<Instruction>(B0); 8677 if (Inst == P) 8678 Inst = dyn_cast<Instruction>(B1); 8679 if (!Inst) { 8680 // Set P to nullptr to avoid re-analysis of phi node in 8681 // matchAssociativeReduction function unless this is the root node. 8682 P = nullptr; 8683 continue; 8684 } 8685 } 8686 } 8687 // Set P to nullptr to avoid re-analysis of phi node in 8688 // matchAssociativeReduction function unless this is the root node. 8689 P = nullptr; 8690 // Do not try to vectorize CmpInst operands, this is done separately. 8691 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 8692 Res = true; 8693 continue; 8694 } 8695 8696 // Try to vectorize operands. 8697 // Continue analysis for the instruction from the same basic block only to 8698 // save compile time. 8699 if (++Level < RecursionMaxDepth) 8700 for (auto *Op : Inst->operand_values()) 8701 if (VisitedInstrs.insert(Op).second) 8702 if (auto *I = dyn_cast<Instruction>(Op)) 8703 // Do not try to vectorize CmpInst operands, this is done 8704 // separately. 8705 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8706 I->getParent() == BB) 8707 Stack.emplace_back(I, Level); 8708 } 8709 return Res; 8710 } 8711 8712 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8713 BasicBlock *BB, BoUpSLP &R, 8714 TargetTransformInfo *TTI) { 8715 auto *I = dyn_cast_or_null<Instruction>(V); 8716 if (!I) 8717 return false; 8718 8719 if (!isa<BinaryOperator>(I)) 8720 P = nullptr; 8721 // Try to match and vectorize a horizontal reduction. 8722 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8723 return tryToVectorize(I, R); 8724 }; 8725 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8726 ExtraVectorization); 8727 } 8728 8729 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8730 BasicBlock *BB, BoUpSLP &R) { 8731 const DataLayout &DL = BB->getModule()->getDataLayout(); 8732 if (!R.canMapToVector(IVI->getType(), DL)) 8733 return false; 8734 8735 SmallVector<Value *, 16> BuildVectorOpds; 8736 SmallVector<Value *, 16> BuildVectorInsts; 8737 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8738 return false; 8739 8740 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8741 // Aggregate value is unlikely to be processed in vector register, we need to 8742 // extract scalars into scalar registers, so NeedExtraction is set true. 8743 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/true); 8744 } 8745 8746 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8747 BasicBlock *BB, BoUpSLP &R) { 8748 SmallVector<Value *, 16> BuildVectorInsts; 8749 SmallVector<Value *, 16> BuildVectorOpds; 8750 SmallVector<int> Mask; 8751 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8752 (llvm::all_of(BuildVectorOpds, 8753 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8754 isShuffle(BuildVectorOpds, Mask))) 8755 return false; 8756 8757 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8758 return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true); 8759 } 8760 8761 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8762 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8763 bool AtTerminator) { 8764 bool OpsChanged = false; 8765 SmallVector<Instruction *, 4> PostponedCmps; 8766 for (auto *I : reverse(Instructions)) { 8767 if (R.isDeleted(I)) 8768 continue; 8769 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8770 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 8771 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 8772 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 8773 else if (isa<CmpInst>(I)) 8774 PostponedCmps.push_back(I); 8775 } 8776 if (AtTerminator) { 8777 // Try to find reductions first. 8778 for (Instruction *I : PostponedCmps) { 8779 if (R.isDeleted(I)) 8780 continue; 8781 for (Value *Op : I->operands()) 8782 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 8783 } 8784 // Try to vectorize operands as vector bundles. 8785 for (Instruction *I : PostponedCmps) { 8786 if (R.isDeleted(I)) 8787 continue; 8788 OpsChanged |= tryToVectorize(I, R); 8789 } 8790 Instructions.clear(); 8791 } else { 8792 // Insert in reverse order since the PostponedCmps vector was filled in 8793 // reverse order. 8794 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 8795 } 8796 return OpsChanged; 8797 } 8798 8799 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 8800 bool Changed = false; 8801 SmallVector<Value *, 4> Incoming; 8802 SmallPtrSet<Value *, 16> VisitedInstrs; 8803 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 8804 // node. Allows better to identify the chains that can be vectorized in the 8805 // better way. 8806 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 8807 8808 bool HaveVectorizedPhiNodes = true; 8809 while (HaveVectorizedPhiNodes) { 8810 HaveVectorizedPhiNodes = false; 8811 8812 // Collect the incoming values from the PHIs. 8813 Incoming.clear(); 8814 for (Instruction &I : *BB) { 8815 PHINode *P = dyn_cast<PHINode>(&I); 8816 if (!P) 8817 break; 8818 8819 // No need to analyze deleted, vectorized and non-vectorizable 8820 // instructions. 8821 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 8822 isValidElementType(P->getType())) 8823 Incoming.push_back(P); 8824 } 8825 8826 // Find the corresponding non-phi nodes for better matching when trying to 8827 // build the tree. 8828 for (Value *V : Incoming) { 8829 SmallVectorImpl<Value *> &Opcodes = 8830 PHIToOpcodes.try_emplace(V).first->getSecond(); 8831 if (!Opcodes.empty()) 8832 continue; 8833 SmallVector<Value *, 4> Nodes(1, V); 8834 SmallPtrSet<Value *, 4> Visited; 8835 while (!Nodes.empty()) { 8836 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 8837 if (!Visited.insert(PHI).second) 8838 continue; 8839 for (Value *V : PHI->incoming_values()) { 8840 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 8841 Nodes.push_back(PHI1); 8842 continue; 8843 } 8844 Opcodes.emplace_back(V); 8845 } 8846 } 8847 } 8848 8849 // Sort by type, parent, operands. 8850 stable_sort(Incoming, [this, &PHIToOpcodes](Value *V1, Value *V2) { 8851 assert(isValidElementType(V1->getType()) && 8852 isValidElementType(V2->getType()) && 8853 "Expected vectorizable types only."); 8854 // It is fine to compare type IDs here, since we expect only vectorizable 8855 // types, like ints, floats and pointers, we don't care about other type. 8856 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 8857 return true; 8858 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 8859 return false; 8860 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 8861 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 8862 if (Opcodes1.size() < Opcodes2.size()) 8863 return true; 8864 if (Opcodes1.size() > Opcodes2.size()) 8865 return false; 8866 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 8867 // Undefs are compatible with any other value. 8868 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 8869 continue; 8870 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 8871 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 8872 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 8873 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 8874 if (!NodeI1) 8875 return NodeI2 != nullptr; 8876 if (!NodeI2) 8877 return false; 8878 assert((NodeI1 == NodeI2) == 8879 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 8880 "Different nodes should have different DFS numbers"); 8881 if (NodeI1 != NodeI2) 8882 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 8883 InstructionsState S = getSameOpcode({I1, I2}); 8884 if (S.getOpcode()) 8885 continue; 8886 return I1->getOpcode() < I2->getOpcode(); 8887 } 8888 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 8889 continue; 8890 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 8891 return true; 8892 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 8893 return false; 8894 } 8895 return false; 8896 }); 8897 8898 auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 8899 if (V1 == V2) 8900 return true; 8901 if (V1->getType() != V2->getType()) 8902 return false; 8903 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 8904 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 8905 if (Opcodes1.size() != Opcodes2.size()) 8906 return false; 8907 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 8908 // Undefs are compatible with any other value. 8909 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 8910 continue; 8911 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 8912 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 8913 if (I1->getParent() != I2->getParent()) 8914 return false; 8915 InstructionsState S = getSameOpcode({I1, I2}); 8916 if (S.getOpcode()) 8917 continue; 8918 return false; 8919 } 8920 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 8921 continue; 8922 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 8923 return false; 8924 } 8925 return true; 8926 }; 8927 8928 // Try to vectorize elements base on their type. 8929 SmallVector<Value *, 4> Candidates; 8930 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 8931 E = Incoming.end(); 8932 IncIt != E;) { 8933 8934 // Look for the next elements with the same type, parent and operand 8935 // kinds. 8936 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 8937 while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) { 8938 VisitedInstrs.insert(*SameTypeIt); 8939 ++SameTypeIt; 8940 } 8941 8942 // Try to vectorize them. 8943 unsigned NumElts = (SameTypeIt - IncIt); 8944 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 8945 << NumElts << ")\n"); 8946 // The order in which the phi nodes appear in the program does not matter. 8947 // So allow tryToVectorizeList to reorder them if it is beneficial. This 8948 // is done when there are exactly two elements since tryToVectorizeList 8949 // asserts that there are only two values when AllowReorder is true. 8950 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 8951 /*AllowReorder=*/true)) { 8952 // Success start over because instructions might have been changed. 8953 HaveVectorizedPhiNodes = true; 8954 Changed = true; 8955 } else if (NumElts < 4 && 8956 (Candidates.empty() || 8957 Candidates.front()->getType() == (*IncIt)->getType())) { 8958 Candidates.append(IncIt, std::next(IncIt, NumElts)); 8959 } 8960 // Final attempt to vectorize phis with the same types. 8961 if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) { 8962 if (Candidates.size() > 1 && 8963 tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) { 8964 // Success start over because instructions might have been changed. 8965 HaveVectorizedPhiNodes = true; 8966 Changed = true; 8967 } 8968 Candidates.clear(); 8969 } 8970 8971 // Start over at the next instruction of a different type (or the end). 8972 IncIt = SameTypeIt; 8973 } 8974 } 8975 8976 VisitedInstrs.clear(); 8977 8978 SmallVector<Instruction *, 8> PostProcessInstructions; 8979 SmallDenseSet<Instruction *, 4> KeyNodes; 8980 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 8981 // Skip instructions with scalable type. The num of elements is unknown at 8982 // compile-time for scalable type. 8983 if (isa<ScalableVectorType>(it->getType())) 8984 continue; 8985 8986 // Skip instructions marked for the deletion. 8987 if (R.isDeleted(&*it)) 8988 continue; 8989 // We may go through BB multiple times so skip the one we have checked. 8990 if (!VisitedInstrs.insert(&*it).second) { 8991 if (it->use_empty() && KeyNodes.contains(&*it) && 8992 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8993 it->isTerminator())) { 8994 // We would like to start over since some instructions are deleted 8995 // and the iterator may become invalid value. 8996 Changed = true; 8997 it = BB->begin(); 8998 e = BB->end(); 8999 } 9000 continue; 9001 } 9002 9003 if (isa<DbgInfoIntrinsic>(it)) 9004 continue; 9005 9006 // Try to vectorize reductions that use PHINodes. 9007 if (PHINode *P = dyn_cast<PHINode>(it)) { 9008 // Check that the PHI is a reduction PHI. 9009 if (P->getNumIncomingValues() == 2) { 9010 // Try to match and vectorize a horizontal reduction. 9011 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9012 TTI)) { 9013 Changed = true; 9014 it = BB->begin(); 9015 e = BB->end(); 9016 continue; 9017 } 9018 } 9019 // Try to vectorize the incoming values of the PHI, to catch reductions 9020 // that feed into PHIs. 9021 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9022 // Skip if the incoming block is the current BB for now. Also, bypass 9023 // unreachable IR for efficiency and to avoid crashing. 9024 // TODO: Collect the skipped incoming values and try to vectorize them 9025 // after processing BB. 9026 if (BB == P->getIncomingBlock(I) || 9027 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9028 continue; 9029 9030 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9031 P->getIncomingBlock(I), R, TTI); 9032 } 9033 continue; 9034 } 9035 9036 // Ran into an instruction without users, like terminator, or function call 9037 // with ignored return value, store. Ignore unused instructions (basing on 9038 // instruction type, except for CallInst and InvokeInst). 9039 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9040 isa<InvokeInst>(it))) { 9041 KeyNodes.insert(&*it); 9042 bool OpsChanged = false; 9043 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9044 for (auto *V : it->operand_values()) { 9045 // Try to match and vectorize a horizontal reduction. 9046 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9047 } 9048 } 9049 // Start vectorization of post-process list of instructions from the 9050 // top-tree instructions to try to vectorize as many instructions as 9051 // possible. 9052 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9053 it->isTerminator()); 9054 if (OpsChanged) { 9055 // We would like to start over since some instructions are deleted 9056 // and the iterator may become invalid value. 9057 Changed = true; 9058 it = BB->begin(); 9059 e = BB->end(); 9060 continue; 9061 } 9062 } 9063 9064 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9065 isa<InsertValueInst>(it)) 9066 PostProcessInstructions.push_back(&*it); 9067 } 9068 9069 return Changed; 9070 } 9071 9072 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9073 auto Changed = false; 9074 for (auto &Entry : GEPs) { 9075 // If the getelementptr list has fewer than two elements, there's nothing 9076 // to do. 9077 if (Entry.second.size() < 2) 9078 continue; 9079 9080 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9081 << Entry.second.size() << ".\n"); 9082 9083 // Process the GEP list in chunks suitable for the target's supported 9084 // vector size. If a vector register can't hold 1 element, we are done. We 9085 // are trying to vectorize the index computations, so the maximum number of 9086 // elements is based on the size of the index expression, rather than the 9087 // size of the GEP itself (the target's pointer size). 9088 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9089 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9090 if (MaxVecRegSize < EltSize) 9091 continue; 9092 9093 unsigned MaxElts = MaxVecRegSize / EltSize; 9094 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9095 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9096 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9097 9098 // Initialize a set a candidate getelementptrs. Note that we use a 9099 // SetVector here to preserve program order. If the index computations 9100 // are vectorizable and begin with loads, we want to minimize the chance 9101 // of having to reorder them later. 9102 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9103 9104 // Some of the candidates may have already been vectorized after we 9105 // initially collected them. If so, they are marked as deleted, so remove 9106 // them from the set of candidates. 9107 Candidates.remove_if( 9108 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9109 9110 // Remove from the set of candidates all pairs of getelementptrs with 9111 // constant differences. Such getelementptrs are likely not good 9112 // candidates for vectorization in a bottom-up phase since one can be 9113 // computed from the other. We also ensure all candidate getelementptr 9114 // indices are unique. 9115 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9116 auto *GEPI = GEPList[I]; 9117 if (!Candidates.count(GEPI)) 9118 continue; 9119 auto *SCEVI = SE->getSCEV(GEPList[I]); 9120 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9121 auto *GEPJ = GEPList[J]; 9122 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9123 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9124 Candidates.remove(GEPI); 9125 Candidates.remove(GEPJ); 9126 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9127 Candidates.remove(GEPJ); 9128 } 9129 } 9130 } 9131 9132 // We break out of the above computation as soon as we know there are 9133 // fewer than two candidates remaining. 9134 if (Candidates.size() < 2) 9135 continue; 9136 9137 // Add the single, non-constant index of each candidate to the bundle. We 9138 // ensured the indices met these constraints when we originally collected 9139 // the getelementptrs. 9140 SmallVector<Value *, 16> Bundle(Candidates.size()); 9141 auto BundleIndex = 0u; 9142 for (auto *V : Candidates) { 9143 auto *GEP = cast<GetElementPtrInst>(V); 9144 auto *GEPIdx = GEP->idx_begin()->get(); 9145 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9146 Bundle[BundleIndex++] = GEPIdx; 9147 } 9148 9149 // Try and vectorize the indices. We are currently only interested in 9150 // gather-like cases of the form: 9151 // 9152 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9153 // 9154 // where the loads of "a", the loads of "b", and the subtractions can be 9155 // performed in parallel. It's likely that detecting this pattern in a 9156 // bottom-up phase will be simpler and less costly than building a 9157 // full-blown top-down phase beginning at the consecutive loads. 9158 Changed |= tryToVectorizeList(Bundle, R); 9159 } 9160 } 9161 return Changed; 9162 } 9163 9164 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9165 bool Changed = false; 9166 // Sort by type, base pointers and values operand. Value operands must be 9167 // compatible (have the same opcode, same parent), otherwise it is 9168 // definitely not profitable to try to vectorize them. 9169 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9170 if (V->getPointerOperandType()->getTypeID() < 9171 V2->getPointerOperandType()->getTypeID()) 9172 return true; 9173 if (V->getPointerOperandType()->getTypeID() > 9174 V2->getPointerOperandType()->getTypeID()) 9175 return false; 9176 // UndefValues are compatible with all other values. 9177 if (isa<UndefValue>(V->getValueOperand()) || 9178 isa<UndefValue>(V2->getValueOperand())) 9179 return false; 9180 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9181 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9182 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9183 DT->getNode(I1->getParent()); 9184 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9185 DT->getNode(I2->getParent()); 9186 assert(NodeI1 && "Should only process reachable instructions"); 9187 assert(NodeI1 && "Should only process reachable instructions"); 9188 assert((NodeI1 == NodeI2) == 9189 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9190 "Different nodes should have different DFS numbers"); 9191 if (NodeI1 != NodeI2) 9192 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9193 InstructionsState S = getSameOpcode({I1, I2}); 9194 if (S.getOpcode()) 9195 return false; 9196 return I1->getOpcode() < I2->getOpcode(); 9197 } 9198 if (isa<Constant>(V->getValueOperand()) && 9199 isa<Constant>(V2->getValueOperand())) 9200 return false; 9201 return V->getValueOperand()->getValueID() < 9202 V2->getValueOperand()->getValueID(); 9203 }; 9204 9205 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9206 if (V1 == V2) 9207 return true; 9208 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9209 return false; 9210 // Undefs are compatible with any other value. 9211 if (isa<UndefValue>(V1->getValueOperand()) || 9212 isa<UndefValue>(V2->getValueOperand())) 9213 return true; 9214 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9215 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9216 if (I1->getParent() != I2->getParent()) 9217 return false; 9218 InstructionsState S = getSameOpcode({I1, I2}); 9219 return S.getOpcode() > 0; 9220 } 9221 if (isa<Constant>(V1->getValueOperand()) && 9222 isa<Constant>(V2->getValueOperand())) 9223 return true; 9224 return V1->getValueOperand()->getValueID() == 9225 V2->getValueOperand()->getValueID(); 9226 }; 9227 9228 // Attempt to sort and vectorize each of the store-groups. 9229 for (auto &Pair : Stores) { 9230 if (Pair.second.size() < 2) 9231 continue; 9232 9233 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9234 << Pair.second.size() << ".\n"); 9235 9236 stable_sort(Pair.second, StoreSorter); 9237 9238 // Try to vectorize elements based on their compatibility. 9239 for (ArrayRef<StoreInst *>::iterator IncIt = Pair.second.begin(), 9240 E = Pair.second.end(); 9241 IncIt != E;) { 9242 9243 // Look for the next elements with the same type. 9244 ArrayRef<StoreInst *>::iterator SameTypeIt = IncIt; 9245 Type *EltTy = (*IncIt)->getPointerOperand()->getType(); 9246 9247 while (SameTypeIt != E && AreCompatibleStores(*SameTypeIt, *IncIt)) 9248 ++SameTypeIt; 9249 9250 // Try to vectorize them. 9251 unsigned NumElts = (SameTypeIt - IncIt); 9252 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at stores (" 9253 << NumElts << ")\n"); 9254 if (NumElts > 1 && !EltTy->getPointerElementType()->isVectorTy() && 9255 vectorizeStores(makeArrayRef(IncIt, NumElts), R)) { 9256 // Success start over because instructions might have been changed. 9257 Changed = true; 9258 } 9259 9260 // Start over at the next instruction of a different type (or the end). 9261 IncIt = SameTypeIt; 9262 } 9263 } 9264 return Changed; 9265 } 9266 9267 char SLPVectorizer::ID = 0; 9268 9269 static const char lv_name[] = "SLP Vectorizer"; 9270 9271 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9272 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9273 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9274 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9275 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9276 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9277 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9278 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9279 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9280 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9281 9282 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9283