1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetOperations.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/IVDescriptors.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <set> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 using namespace slpvectorizer; 105 106 #define SV_NAME "slp-vectorizer" 107 #define DEBUG_TYPE "SLP" 108 109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 110 111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<unsigned> 133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 134 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 135 136 static cl::opt<int> 137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 138 cl::desc("Maximum depth of the lookup for consecutive stores.")); 139 140 /// Limits the size of scheduling regions in a block. 141 /// It avoid long compile times for _very_ large blocks where vector 142 /// instructions are spread over a wide range. 143 /// This limit is way higher than needed by real-world functions. 144 static cl::opt<int> 145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 146 cl::desc("Limit the size of the SLP scheduling region per block")); 147 148 static cl::opt<int> MinVectorRegSizeOption( 149 "slp-min-reg-size", cl::init(128), cl::Hidden, 150 cl::desc("Attempt to vectorize for this register size in bits")); 151 152 static cl::opt<unsigned> RecursionMaxDepth( 153 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 154 cl::desc("Limit the recursion depth when building a vectorizable tree")); 155 156 static cl::opt<unsigned> MinTreeSize( 157 "slp-min-tree-size", cl::init(3), cl::Hidden, 158 cl::desc("Only vectorize small trees if they are fully vectorizable")); 159 160 // The maximum depth that the look-ahead score heuristic will explore. 161 // The higher this value, the higher the compilation time overhead. 162 static cl::opt<int> LookAheadMaxDepth( 163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 164 cl::desc("The maximum look-ahead depth for operand reordering scores")); 165 166 // The Look-ahead heuristic goes through the users of the bundle to calculate 167 // the users cost in getExternalUsesCost(). To avoid compilation time increase 168 // we limit the number of users visited to this value. 169 static cl::opt<unsigned> LookAheadUsersBudget( 170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 171 cl::desc("The maximum number of users to visit while visiting the " 172 "predecessors. This prevents compilation time increase.")); 173 174 static cl::opt<bool> 175 ViewSLPTree("view-slp-tree", cl::Hidden, 176 cl::desc("Display the SLP trees with Graphviz")); 177 178 // Limit the number of alias checks. The limit is chosen so that 179 // it has no negative effect on the llvm benchmarks. 180 static const unsigned AliasedCheckLimit = 10; 181 182 // Another limit for the alias checks: The maximum distance between load/store 183 // instructions where alias checks are done. 184 // This limit is useful for very large basic blocks. 185 static const unsigned MaxMemDepDistance = 160; 186 187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 188 /// regions to be handled. 189 static const int MinScheduleRegionSize = 16; 190 191 /// Predicate for the element types that the SLP vectorizer supports. 192 /// 193 /// The most important thing to filter here are types which are invalid in LLVM 194 /// vectors. We also filter target specific types which have absolutely no 195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 196 /// avoids spending time checking the cost model and realizing that they will 197 /// be inevitably scalarized. 198 static bool isValidElementType(Type *Ty) { 199 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 200 !Ty->isPPC_FP128Ty(); 201 } 202 203 /// \returns true if all of the instructions in \p VL are in the same block or 204 /// false otherwise. 205 static bool allSameBlock(ArrayRef<Value *> VL) { 206 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 207 if (!I0) 208 return false; 209 BasicBlock *BB = I0->getParent(); 210 for (int I = 1, E = VL.size(); I < E; I++) { 211 auto *II = dyn_cast<Instruction>(VL[I]); 212 if (!II) 213 return false; 214 215 if (BB != II->getParent()) 216 return false; 217 } 218 return true; 219 } 220 221 /// \returns True if all of the values in \p VL are constants (but not 222 /// globals/constant expressions). 223 static bool allConstant(ArrayRef<Value *> VL) { 224 // Constant expressions and globals can't be vectorized like normal integer/FP 225 // constants. 226 for (Value *i : VL) 227 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 228 return false; 229 return true; 230 } 231 232 /// \returns True if all of the values in \p VL are identical. 233 static bool isSplat(ArrayRef<Value *> VL) { 234 for (unsigned i = 1, e = VL.size(); i < e; ++i) 235 if (VL[i] != VL[0]) 236 return false; 237 return true; 238 } 239 240 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 241 static bool isCommutative(Instruction *I) { 242 if (auto *Cmp = dyn_cast<CmpInst>(I)) 243 return Cmp->isCommutative(); 244 if (auto *BO = dyn_cast<BinaryOperator>(I)) 245 return BO->isCommutative(); 246 // TODO: This should check for generic Instruction::isCommutative(), but 247 // we need to confirm that the caller code correctly handles Intrinsics 248 // for example (does not have 2 operands). 249 return false; 250 } 251 252 /// Checks if the vector of instructions can be represented as a shuffle, like: 253 /// %x0 = extractelement <4 x i8> %x, i32 0 254 /// %x3 = extractelement <4 x i8> %x, i32 3 255 /// %y1 = extractelement <4 x i8> %y, i32 1 256 /// %y2 = extractelement <4 x i8> %y, i32 2 257 /// %x0x0 = mul i8 %x0, %x0 258 /// %x3x3 = mul i8 %x3, %x3 259 /// %y1y1 = mul i8 %y1, %y1 260 /// %y2y2 = mul i8 %y2, %y2 261 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 262 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 263 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 264 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 265 /// ret <4 x i8> %ins4 266 /// can be transformed into: 267 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 268 /// i32 6> 269 /// %2 = mul <4 x i8> %1, %1 270 /// ret <4 x i8> %2 271 /// We convert this initially to something like: 272 /// %x0 = extractelement <4 x i8> %x, i32 0 273 /// %x3 = extractelement <4 x i8> %x, i32 3 274 /// %y1 = extractelement <4 x i8> %y, i32 1 275 /// %y2 = extractelement <4 x i8> %y, i32 2 276 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 277 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 278 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 279 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 280 /// %5 = mul <4 x i8> %4, %4 281 /// %6 = extractelement <4 x i8> %5, i32 0 282 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 283 /// %7 = extractelement <4 x i8> %5, i32 1 284 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 285 /// %8 = extractelement <4 x i8> %5, i32 2 286 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 287 /// %9 = extractelement <4 x i8> %5, i32 3 288 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 289 /// ret <4 x i8> %ins4 290 /// InstCombiner transforms this into a shuffle and vector mul 291 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 292 /// TODO: Can we split off and reuse the shuffle mask detection from 293 /// TargetTransformInfo::getInstructionThroughput? 294 static Optional<TargetTransformInfo::ShuffleKind> 295 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 296 auto *EI0 = cast<ExtractElementInst>(VL[0]); 297 unsigned Size = 298 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 299 Value *Vec1 = nullptr; 300 Value *Vec2 = nullptr; 301 enum ShuffleMode { Unknown, Select, Permute }; 302 ShuffleMode CommonShuffleMode = Unknown; 303 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 304 auto *EI = cast<ExtractElementInst>(VL[I]); 305 auto *Vec = EI->getVectorOperand(); 306 // All vector operands must have the same number of vector elements. 307 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 308 return None; 309 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 310 if (!Idx) 311 return None; 312 // Undefined behavior if Idx is negative or >= Size. 313 if (Idx->getValue().uge(Size)) { 314 Mask.push_back(UndefMaskElem); 315 continue; 316 } 317 unsigned IntIdx = Idx->getValue().getZExtValue(); 318 Mask.push_back(IntIdx); 319 // We can extractelement from undef or poison vector. 320 if (isa<UndefValue>(Vec)) 321 continue; 322 // For correct shuffling we have to have at most 2 different vector operands 323 // in all extractelement instructions. 324 if (!Vec1 || Vec1 == Vec) 325 Vec1 = Vec; 326 else if (!Vec2 || Vec2 == Vec) 327 Vec2 = Vec; 328 else 329 return None; 330 if (CommonShuffleMode == Permute) 331 continue; 332 // If the extract index is not the same as the operation number, it is a 333 // permutation. 334 if (IntIdx != I) { 335 CommonShuffleMode = Permute; 336 continue; 337 } 338 CommonShuffleMode = Select; 339 } 340 // If we're not crossing lanes in different vectors, consider it as blending. 341 if (CommonShuffleMode == Select && Vec2) 342 return TargetTransformInfo::SK_Select; 343 // If Vec2 was never used, we have a permutation of a single vector, otherwise 344 // we have permutation of 2 vectors. 345 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 346 : TargetTransformInfo::SK_PermuteSingleSrc; 347 } 348 349 namespace { 350 351 /// Main data required for vectorization of instructions. 352 struct InstructionsState { 353 /// The very first instruction in the list with the main opcode. 354 Value *OpValue = nullptr; 355 356 /// The main/alternate instruction. 357 Instruction *MainOp = nullptr; 358 Instruction *AltOp = nullptr; 359 360 /// The main/alternate opcodes for the list of instructions. 361 unsigned getOpcode() const { 362 return MainOp ? MainOp->getOpcode() : 0; 363 } 364 365 unsigned getAltOpcode() const { 366 return AltOp ? AltOp->getOpcode() : 0; 367 } 368 369 /// Some of the instructions in the list have alternate opcodes. 370 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 371 372 bool isOpcodeOrAlt(Instruction *I) const { 373 unsigned CheckedOpcode = I->getOpcode(); 374 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 375 } 376 377 InstructionsState() = delete; 378 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 379 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 380 }; 381 382 } // end anonymous namespace 383 384 /// Chooses the correct key for scheduling data. If \p Op has the same (or 385 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 386 /// OpValue. 387 static Value *isOneOf(const InstructionsState &S, Value *Op) { 388 auto *I = dyn_cast<Instruction>(Op); 389 if (I && S.isOpcodeOrAlt(I)) 390 return Op; 391 return S.OpValue; 392 } 393 394 /// \returns true if \p Opcode is allowed as part of of the main/alternate 395 /// instruction for SLP vectorization. 396 /// 397 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 398 /// "shuffled out" lane would result in division by zero. 399 static bool isValidForAlternation(unsigned Opcode) { 400 if (Instruction::isIntDivRem(Opcode)) 401 return false; 402 403 return true; 404 } 405 406 /// \returns analysis of the Instructions in \p VL described in 407 /// InstructionsState, the Opcode that we suppose the whole list 408 /// could be vectorized even if its structure is diverse. 409 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 410 unsigned BaseIndex = 0) { 411 // Make sure these are all Instructions. 412 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 413 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 414 415 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 416 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 417 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 418 unsigned AltOpcode = Opcode; 419 unsigned AltIndex = BaseIndex; 420 421 // Check for one alternate opcode from another BinaryOperator. 422 // TODO - generalize to support all operators (types, calls etc.). 423 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 424 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 425 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 426 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 427 continue; 428 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 429 isValidForAlternation(Opcode)) { 430 AltOpcode = InstOpcode; 431 AltIndex = Cnt; 432 continue; 433 } 434 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 435 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 436 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 437 if (Ty0 == Ty1) { 438 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 if (Opcode == AltOpcode) { 441 assert(isValidForAlternation(Opcode) && 442 isValidForAlternation(InstOpcode) && 443 "Cast isn't safe for alternation, logic needs to be updated!"); 444 AltOpcode = InstOpcode; 445 AltIndex = Cnt; 446 continue; 447 } 448 } 449 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 450 continue; 451 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 452 } 453 454 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 455 cast<Instruction>(VL[AltIndex])); 456 } 457 458 /// \returns true if all of the values in \p VL have the same type or false 459 /// otherwise. 460 static bool allSameType(ArrayRef<Value *> VL) { 461 Type *Ty = VL[0]->getType(); 462 for (int i = 1, e = VL.size(); i < e; i++) 463 if (VL[i]->getType() != Ty) 464 return false; 465 466 return true; 467 } 468 469 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 470 static Optional<unsigned> getExtractIndex(Instruction *E) { 471 unsigned Opcode = E->getOpcode(); 472 assert((Opcode == Instruction::ExtractElement || 473 Opcode == Instruction::ExtractValue) && 474 "Expected extractelement or extractvalue instruction."); 475 if (Opcode == Instruction::ExtractElement) { 476 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 477 if (!CI) 478 return None; 479 return CI->getZExtValue(); 480 } 481 ExtractValueInst *EI = cast<ExtractValueInst>(E); 482 if (EI->getNumIndices() != 1) 483 return None; 484 return *EI->idx_begin(); 485 } 486 487 /// \returns True if in-tree use also needs extract. This refers to 488 /// possible scalar operand in vectorized instruction. 489 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 490 TargetLibraryInfo *TLI) { 491 unsigned Opcode = UserInst->getOpcode(); 492 switch (Opcode) { 493 case Instruction::Load: { 494 LoadInst *LI = cast<LoadInst>(UserInst); 495 return (LI->getPointerOperand() == Scalar); 496 } 497 case Instruction::Store: { 498 StoreInst *SI = cast<StoreInst>(UserInst); 499 return (SI->getPointerOperand() == Scalar); 500 } 501 case Instruction::Call: { 502 CallInst *CI = cast<CallInst>(UserInst); 503 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 504 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 505 if (hasVectorInstrinsicScalarOpd(ID, i)) 506 return (CI->getArgOperand(i) == Scalar); 507 } 508 LLVM_FALLTHROUGH; 509 } 510 default: 511 return false; 512 } 513 } 514 515 /// \returns the AA location that is being access by the instruction. 516 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return MemoryLocation::get(SI); 519 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 520 return MemoryLocation::get(LI); 521 return MemoryLocation(); 522 } 523 524 /// \returns True if the instruction is not a volatile or atomic load/store. 525 static bool isSimple(Instruction *I) { 526 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 527 return LI->isSimple(); 528 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 529 return SI->isSimple(); 530 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 531 return !MI->isVolatile(); 532 return true; 533 } 534 535 namespace llvm { 536 537 static void inversePermutation(ArrayRef<unsigned> Indices, 538 SmallVectorImpl<int> &Mask) { 539 Mask.clear(); 540 const unsigned E = Indices.size(); 541 Mask.resize(E, E + 1); 542 for (unsigned I = 0; I < E; ++I) 543 Mask[Indices[I]] = I; 544 } 545 546 /// \returns inserting index of InsertElement or InsertValue instruction, 547 /// using Offset as base offset for index. 548 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 549 int Index = Offset; 550 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 551 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 552 auto *VT = cast<FixedVectorType>(IE->getType()); 553 if (CI->getValue().uge(VT->getNumElements())) 554 return UndefMaskElem; 555 Index *= VT->getNumElements(); 556 Index += CI->getZExtValue(); 557 return Index; 558 } 559 if (isa<UndefValue>(IE->getOperand(2))) 560 return UndefMaskElem; 561 return None; 562 } 563 564 auto *IV = cast<InsertValueInst>(InsertInst); 565 Type *CurrentType = IV->getType(); 566 for (unsigned I : IV->indices()) { 567 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 568 Index *= ST->getNumElements(); 569 CurrentType = ST->getElementType(I); 570 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 571 Index *= AT->getNumElements(); 572 CurrentType = AT->getElementType(); 573 } else { 574 return None; 575 } 576 Index += I; 577 } 578 return Index; 579 } 580 581 namespace slpvectorizer { 582 583 /// Bottom Up SLP Vectorizer. 584 class BoUpSLP { 585 struct TreeEntry; 586 struct ScheduleData; 587 588 public: 589 using ValueList = SmallVector<Value *, 8>; 590 using InstrList = SmallVector<Instruction *, 16>; 591 using ValueSet = SmallPtrSet<Value *, 16>; 592 using StoreList = SmallVector<StoreInst *, 8>; 593 using ExtraValueToDebugLocsMap = 594 MapVector<Value *, SmallVector<Instruction *, 2>>; 595 using OrdersType = SmallVector<unsigned, 4>; 596 597 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 598 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 599 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 600 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 601 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 602 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 603 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 604 // Use the vector register size specified by the target unless overridden 605 // by a command-line option. 606 // TODO: It would be better to limit the vectorization factor based on 607 // data type rather than just register size. For example, x86 AVX has 608 // 256-bit registers, but it does not support integer operations 609 // at that width (that requires AVX2). 610 if (MaxVectorRegSizeOption.getNumOccurrences()) 611 MaxVecRegSize = MaxVectorRegSizeOption; 612 else 613 MaxVecRegSize = 614 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 615 .getFixedSize(); 616 617 if (MinVectorRegSizeOption.getNumOccurrences()) 618 MinVecRegSize = MinVectorRegSizeOption; 619 else 620 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 621 } 622 623 /// Vectorize the tree that starts with the elements in \p VL. 624 /// Returns the vectorized root. 625 Value *vectorizeTree(); 626 627 /// Vectorize the tree but with the list of externally used values \p 628 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 629 /// generated extractvalue instructions. 630 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 631 632 /// \returns the cost incurred by unwanted spills and fills, caused by 633 /// holding live values over call sites. 634 InstructionCost getSpillCost() const; 635 636 /// \returns the vectorization cost of the subtree that starts at \p VL. 637 /// A negative number means that this is profitable. 638 InstructionCost getTreeCost(); 639 640 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 641 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 642 void buildTree(ArrayRef<Value *> Roots, 643 ArrayRef<Value *> UserIgnoreLst = None); 644 645 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 646 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 647 /// into account (and updating it, if required) list of externally used 648 /// values stored in \p ExternallyUsedValues. 649 void buildTree(ArrayRef<Value *> Roots, 650 ExtraValueToDebugLocsMap &ExternallyUsedValues, 651 ArrayRef<Value *> UserIgnoreLst = None); 652 653 /// Clear the internal data structures that are created by 'buildTree'. 654 void deleteTree() { 655 VectorizableTree.clear(); 656 ScalarToTreeEntry.clear(); 657 MustGather.clear(); 658 ExternalUses.clear(); 659 NumOpsWantToKeepOrder.clear(); 660 NumOpsWantToKeepOriginalOrder = 0; 661 for (auto &Iter : BlocksSchedules) { 662 BlockScheduling *BS = Iter.second.get(); 663 BS->clear(); 664 } 665 MinBWs.clear(); 666 InstrElementSize.clear(); 667 } 668 669 unsigned getTreeSize() const { return VectorizableTree.size(); } 670 671 /// Perform LICM and CSE on the newly generated gather sequences. 672 void optimizeGatherSequence(); 673 674 /// \returns The best order of instructions for vectorization. 675 Optional<ArrayRef<unsigned>> bestOrder() const { 676 assert(llvm::all_of( 677 NumOpsWantToKeepOrder, 678 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 679 return D.getFirst().size() == 680 VectorizableTree[0]->Scalars.size(); 681 }) && 682 "All orders must have the same size as number of instructions in " 683 "tree node."); 684 auto I = std::max_element( 685 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 686 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 687 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 688 return D1.second < D2.second; 689 }); 690 if (I == NumOpsWantToKeepOrder.end() || 691 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 692 return None; 693 694 return makeArrayRef(I->getFirst()); 695 } 696 697 /// Builds the correct order for root instructions. 698 /// If some leaves have the same instructions to be vectorized, we may 699 /// incorrectly evaluate the best order for the root node (it is built for the 700 /// vector of instructions without repeated instructions and, thus, has less 701 /// elements than the root node). This function builds the correct order for 702 /// the root node. 703 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 704 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 705 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 706 /// be reordered, the best order will be \<1, 0\>. We need to extend this 707 /// order for the root node. For the root node this order should look like 708 /// \<3, 0, 1, 2\>. This function extends the order for the reused 709 /// instructions. 710 void findRootOrder(OrdersType &Order) { 711 // If the leaf has the same number of instructions to vectorize as the root 712 // - order must be set already. 713 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 714 if (Order.size() == RootSize) 715 return; 716 SmallVector<unsigned, 4> RealOrder(Order.size()); 717 std::swap(Order, RealOrder); 718 SmallVector<int, 4> Mask; 719 inversePermutation(RealOrder, Mask); 720 Order.assign(Mask.begin(), Mask.end()); 721 // The leaf has less number of instructions - need to find the true order of 722 // the root. 723 // Scan the nodes starting from the leaf back to the root. 724 const TreeEntry *PNode = VectorizableTree.back().get(); 725 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 726 SmallPtrSet<const TreeEntry *, 4> Visited; 727 while (!Nodes.empty() && Order.size() != RootSize) { 728 const TreeEntry *PNode = Nodes.pop_back_val(); 729 if (!Visited.insert(PNode).second) 730 continue; 731 const TreeEntry &Node = *PNode; 732 for (const EdgeInfo &EI : Node.UserTreeIndices) 733 if (EI.UserTE) 734 Nodes.push_back(EI.UserTE); 735 if (Node.ReuseShuffleIndices.empty()) 736 continue; 737 // Build the order for the parent node. 738 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 739 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 740 // The algorithm of the order extension is: 741 // 1. Calculate the number of the same instructions for the order. 742 // 2. Calculate the index of the new order: total number of instructions 743 // with order less than the order of the current instruction + reuse 744 // number of the current instruction. 745 // 3. The new order is just the index of the instruction in the original 746 // vector of the instructions. 747 for (unsigned I : Node.ReuseShuffleIndices) 748 ++OrderCounter[Order[I]]; 749 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 750 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 751 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 752 unsigned OrderIdx = Order[ReusedIdx]; 753 unsigned NewIdx = 0; 754 for (unsigned J = 0; J < OrderIdx; ++J) 755 NewIdx += OrderCounter[J]; 756 NewIdx += CurrentCounter[OrderIdx]; 757 ++CurrentCounter[OrderIdx]; 758 assert(NewOrder[NewIdx] == RootSize && 759 "The order index should not be written already."); 760 NewOrder[NewIdx] = I; 761 } 762 std::swap(Order, NewOrder); 763 } 764 assert(Order.size() == RootSize && 765 "Root node is expected or the size of the order must be the same as " 766 "the number of elements in the root node."); 767 assert(llvm::all_of(Order, 768 [RootSize](unsigned Val) { return Val != RootSize; }) && 769 "All indices must be initialized"); 770 } 771 772 /// \return The vector element size in bits to use when vectorizing the 773 /// expression tree ending at \p V. If V is a store, the size is the width of 774 /// the stored value. Otherwise, the size is the width of the largest loaded 775 /// value reaching V. This method is used by the vectorizer to calculate 776 /// vectorization factors. 777 unsigned getVectorElementSize(Value *V); 778 779 /// Compute the minimum type sizes required to represent the entries in a 780 /// vectorizable tree. 781 void computeMinimumValueSizes(); 782 783 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 784 unsigned getMaxVecRegSize() const { 785 return MaxVecRegSize; 786 } 787 788 // \returns minimum vector register size as set by cl::opt. 789 unsigned getMinVecRegSize() const { 790 return MinVecRegSize; 791 } 792 793 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 794 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 795 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 796 return MaxVF ? MaxVF : UINT_MAX; 797 } 798 799 /// Check if homogeneous aggregate is isomorphic to some VectorType. 800 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 801 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 802 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 803 /// 804 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 805 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 806 807 /// \returns True if the VectorizableTree is both tiny and not fully 808 /// vectorizable. We do not vectorize such trees. 809 bool isTreeTinyAndNotFullyVectorizable() const; 810 811 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 812 /// can be load combined in the backend. Load combining may not be allowed in 813 /// the IR optimizer, so we do not want to alter the pattern. For example, 814 /// partially transforming a scalar bswap() pattern into vector code is 815 /// effectively impossible for the backend to undo. 816 /// TODO: If load combining is allowed in the IR optimizer, this analysis 817 /// may not be necessary. 818 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 819 820 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 821 /// can be load combined in the backend. Load combining may not be allowed in 822 /// the IR optimizer, so we do not want to alter the pattern. For example, 823 /// partially transforming a scalar bswap() pattern into vector code is 824 /// effectively impossible for the backend to undo. 825 /// TODO: If load combining is allowed in the IR optimizer, this analysis 826 /// may not be necessary. 827 bool isLoadCombineCandidate() const; 828 829 OptimizationRemarkEmitter *getORE() { return ORE; } 830 831 /// This structure holds any data we need about the edges being traversed 832 /// during buildTree_rec(). We keep track of: 833 /// (i) the user TreeEntry index, and 834 /// (ii) the index of the edge. 835 struct EdgeInfo { 836 EdgeInfo() = default; 837 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 838 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 839 /// The user TreeEntry. 840 TreeEntry *UserTE = nullptr; 841 /// The operand index of the use. 842 unsigned EdgeIdx = UINT_MAX; 843 #ifndef NDEBUG 844 friend inline raw_ostream &operator<<(raw_ostream &OS, 845 const BoUpSLP::EdgeInfo &EI) { 846 EI.dump(OS); 847 return OS; 848 } 849 /// Debug print. 850 void dump(raw_ostream &OS) const { 851 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 852 << " EdgeIdx:" << EdgeIdx << "}"; 853 } 854 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 855 #endif 856 }; 857 858 /// A helper data structure to hold the operands of a vector of instructions. 859 /// This supports a fixed vector length for all operand vectors. 860 class VLOperands { 861 /// For each operand we need (i) the value, and (ii) the opcode that it 862 /// would be attached to if the expression was in a left-linearized form. 863 /// This is required to avoid illegal operand reordering. 864 /// For example: 865 /// \verbatim 866 /// 0 Op1 867 /// |/ 868 /// Op1 Op2 Linearized + Op2 869 /// \ / ----------> |/ 870 /// - - 871 /// 872 /// Op1 - Op2 (0 + Op1) - Op2 873 /// \endverbatim 874 /// 875 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 876 /// 877 /// Another way to think of this is to track all the operations across the 878 /// path from the operand all the way to the root of the tree and to 879 /// calculate the operation that corresponds to this path. For example, the 880 /// path from Op2 to the root crosses the RHS of the '-', therefore the 881 /// corresponding operation is a '-' (which matches the one in the 882 /// linearized tree, as shown above). 883 /// 884 /// For lack of a better term, we refer to this operation as Accumulated 885 /// Path Operation (APO). 886 struct OperandData { 887 OperandData() = default; 888 OperandData(Value *V, bool APO, bool IsUsed) 889 : V(V), APO(APO), IsUsed(IsUsed) {} 890 /// The operand value. 891 Value *V = nullptr; 892 /// TreeEntries only allow a single opcode, or an alternate sequence of 893 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 894 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 895 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 896 /// (e.g., Add/Mul) 897 bool APO = false; 898 /// Helper data for the reordering function. 899 bool IsUsed = false; 900 }; 901 902 /// During operand reordering, we are trying to select the operand at lane 903 /// that matches best with the operand at the neighboring lane. Our 904 /// selection is based on the type of value we are looking for. For example, 905 /// if the neighboring lane has a load, we need to look for a load that is 906 /// accessing a consecutive address. These strategies are summarized in the 907 /// 'ReorderingMode' enumerator. 908 enum class ReorderingMode { 909 Load, ///< Matching loads to consecutive memory addresses 910 Opcode, ///< Matching instructions based on opcode (same or alternate) 911 Constant, ///< Matching constants 912 Splat, ///< Matching the same instruction multiple times (broadcast) 913 Failed, ///< We failed to create a vectorizable group 914 }; 915 916 using OperandDataVec = SmallVector<OperandData, 2>; 917 918 /// A vector of operand vectors. 919 SmallVector<OperandDataVec, 4> OpsVec; 920 921 const DataLayout &DL; 922 ScalarEvolution &SE; 923 const BoUpSLP &R; 924 925 /// \returns the operand data at \p OpIdx and \p Lane. 926 OperandData &getData(unsigned OpIdx, unsigned Lane) { 927 return OpsVec[OpIdx][Lane]; 928 } 929 930 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 931 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 932 return OpsVec[OpIdx][Lane]; 933 } 934 935 /// Clears the used flag for all entries. 936 void clearUsed() { 937 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 938 OpIdx != NumOperands; ++OpIdx) 939 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 940 ++Lane) 941 OpsVec[OpIdx][Lane].IsUsed = false; 942 } 943 944 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 945 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 946 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 947 } 948 949 // The hard-coded scores listed here are not very important. When computing 950 // the scores of matching one sub-tree with another, we are basically 951 // counting the number of values that are matching. So even if all scores 952 // are set to 1, we would still get a decent matching result. 953 // However, sometimes we have to break ties. For example we may have to 954 // choose between matching loads vs matching opcodes. This is what these 955 // scores are helping us with: they provide the order of preference. 956 957 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 958 static const int ScoreConsecutiveLoads = 3; 959 /// ExtractElementInst from same vector and consecutive indexes. 960 static const int ScoreConsecutiveExtracts = 3; 961 /// Constants. 962 static const int ScoreConstants = 2; 963 /// Instructions with the same opcode. 964 static const int ScoreSameOpcode = 2; 965 /// Instructions with alt opcodes (e.g, add + sub). 966 static const int ScoreAltOpcodes = 1; 967 /// Identical instructions (a.k.a. splat or broadcast). 968 static const int ScoreSplat = 1; 969 /// Matching with an undef is preferable to failing. 970 static const int ScoreUndef = 1; 971 /// Score for failing to find a decent match. 972 static const int ScoreFail = 0; 973 /// User exteranl to the vectorized code. 974 static const int ExternalUseCost = 1; 975 /// The user is internal but in a different lane. 976 static const int UserInDiffLaneCost = ExternalUseCost; 977 978 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 979 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 980 ScalarEvolution &SE) { 981 auto *LI1 = dyn_cast<LoadInst>(V1); 982 auto *LI2 = dyn_cast<LoadInst>(V2); 983 if (LI1 && LI2) { 984 if (LI1->getParent() != LI2->getParent()) 985 return VLOperands::ScoreFail; 986 987 Optional<int> Dist = 988 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(), 989 DL, SE, /*StrictCheck=*/true); 990 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 991 : VLOperands::ScoreFail; 992 } 993 994 auto *C1 = dyn_cast<Constant>(V1); 995 auto *C2 = dyn_cast<Constant>(V2); 996 if (C1 && C2) 997 return VLOperands::ScoreConstants; 998 999 // Extracts from consecutive indexes of the same vector better score as 1000 // the extracts could be optimized away. 1001 Value *EV; 1002 ConstantInt *Ex1Idx, *Ex2Idx; 1003 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1004 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1005 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1006 return VLOperands::ScoreConsecutiveExtracts; 1007 1008 auto *I1 = dyn_cast<Instruction>(V1); 1009 auto *I2 = dyn_cast<Instruction>(V2); 1010 if (I1 && I2) { 1011 if (I1 == I2) 1012 return VLOperands::ScoreSplat; 1013 InstructionsState S = getSameOpcode({I1, I2}); 1014 // Note: Only consider instructions with <= 2 operands to avoid 1015 // complexity explosion. 1016 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1017 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1018 : VLOperands::ScoreSameOpcode; 1019 } 1020 1021 if (isa<UndefValue>(V2)) 1022 return VLOperands::ScoreUndef; 1023 1024 return VLOperands::ScoreFail; 1025 } 1026 1027 /// Holds the values and their lane that are taking part in the look-ahead 1028 /// score calculation. This is used in the external uses cost calculation. 1029 SmallDenseMap<Value *, int> InLookAheadValues; 1030 1031 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1032 /// either external to the vectorized code, or require shuffling. 1033 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1034 const std::pair<Value *, int> &RHS) { 1035 int Cost = 0; 1036 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1037 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1038 Value *V = Values[Idx].first; 1039 if (isa<Constant>(V)) { 1040 // Since this is a function pass, it doesn't make semantic sense to 1041 // walk the users of a subclass of Constant. The users could be in 1042 // another function, or even another module that happens to be in 1043 // the same LLVMContext. 1044 continue; 1045 } 1046 1047 // Calculate the absolute lane, using the minimum relative lane of LHS 1048 // and RHS as base and Idx as the offset. 1049 int Ln = std::min(LHS.second, RHS.second) + Idx; 1050 assert(Ln >= 0 && "Bad lane calculation"); 1051 unsigned UsersBudget = LookAheadUsersBudget; 1052 for (User *U : V->users()) { 1053 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1054 // The user is in the VectorizableTree. Check if we need to insert. 1055 auto It = llvm::find(UserTE->Scalars, U); 1056 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1057 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1058 assert(UserLn >= 0 && "Bad lane"); 1059 if (UserLn != Ln) 1060 Cost += UserInDiffLaneCost; 1061 } else { 1062 // Check if the user is in the look-ahead code. 1063 auto It2 = InLookAheadValues.find(U); 1064 if (It2 != InLookAheadValues.end()) { 1065 // The user is in the look-ahead code. Check the lane. 1066 if (It2->second != Ln) 1067 Cost += UserInDiffLaneCost; 1068 } else { 1069 // The user is neither in SLP tree nor in the look-ahead code. 1070 Cost += ExternalUseCost; 1071 } 1072 } 1073 // Limit the number of visited uses to cap compilation time. 1074 if (--UsersBudget == 0) 1075 break; 1076 } 1077 } 1078 return Cost; 1079 } 1080 1081 /// Go through the operands of \p LHS and \p RHS recursively until \p 1082 /// MaxLevel, and return the cummulative score. For example: 1083 /// \verbatim 1084 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1085 /// \ / \ / \ / \ / 1086 /// + + + + 1087 /// G1 G2 G3 G4 1088 /// \endverbatim 1089 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1090 /// each level recursively, accumulating the score. It starts from matching 1091 /// the additions at level 0, then moves on to the loads (level 1). The 1092 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1093 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1094 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1095 /// Please note that the order of the operands does not matter, as we 1096 /// evaluate the score of all profitable combinations of operands. In 1097 /// other words the score of G1 and G4 is the same as G1 and G2. This 1098 /// heuristic is based on ideas described in: 1099 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1100 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1101 /// Luís F. W. Góes 1102 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1103 const std::pair<Value *, int> &RHS, int CurrLevel, 1104 int MaxLevel) { 1105 1106 Value *V1 = LHS.first; 1107 Value *V2 = RHS.first; 1108 // Get the shallow score of V1 and V2. 1109 int ShallowScoreAtThisLevel = 1110 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1111 getExternalUsesCost(LHS, RHS)); 1112 int Lane1 = LHS.second; 1113 int Lane2 = RHS.second; 1114 1115 // If reached MaxLevel, 1116 // or if V1 and V2 are not instructions, 1117 // or if they are SPLAT, 1118 // or if they are not consecutive, early return the current cost. 1119 auto *I1 = dyn_cast<Instruction>(V1); 1120 auto *I2 = dyn_cast<Instruction>(V2); 1121 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1122 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1123 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1124 return ShallowScoreAtThisLevel; 1125 assert(I1 && I2 && "Should have early exited."); 1126 1127 // Keep track of in-tree values for determining the external-use cost. 1128 InLookAheadValues[V1] = Lane1; 1129 InLookAheadValues[V2] = Lane2; 1130 1131 // Contains the I2 operand indexes that got matched with I1 operands. 1132 SmallSet<unsigned, 4> Op2Used; 1133 1134 // Recursion towards the operands of I1 and I2. We are trying all possbile 1135 // operand pairs, and keeping track of the best score. 1136 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1137 OpIdx1 != NumOperands1; ++OpIdx1) { 1138 // Try to pair op1I with the best operand of I2. 1139 int MaxTmpScore = 0; 1140 unsigned MaxOpIdx2 = 0; 1141 bool FoundBest = false; 1142 // If I2 is commutative try all combinations. 1143 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1144 unsigned ToIdx = isCommutative(I2) 1145 ? I2->getNumOperands() 1146 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1147 assert(FromIdx <= ToIdx && "Bad index"); 1148 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1149 // Skip operands already paired with OpIdx1. 1150 if (Op2Used.count(OpIdx2)) 1151 continue; 1152 // Recursively calculate the cost at each level 1153 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1154 {I2->getOperand(OpIdx2), Lane2}, 1155 CurrLevel + 1, MaxLevel); 1156 // Look for the best score. 1157 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1158 MaxTmpScore = TmpScore; 1159 MaxOpIdx2 = OpIdx2; 1160 FoundBest = true; 1161 } 1162 } 1163 if (FoundBest) { 1164 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1165 Op2Used.insert(MaxOpIdx2); 1166 ShallowScoreAtThisLevel += MaxTmpScore; 1167 } 1168 } 1169 return ShallowScoreAtThisLevel; 1170 } 1171 1172 /// \Returns the look-ahead score, which tells us how much the sub-trees 1173 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1174 /// score. This helps break ties in an informed way when we cannot decide on 1175 /// the order of the operands by just considering the immediate 1176 /// predecessors. 1177 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1178 const std::pair<Value *, int> &RHS) { 1179 InLookAheadValues.clear(); 1180 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1181 } 1182 1183 // Search all operands in Ops[*][Lane] for the one that matches best 1184 // Ops[OpIdx][LastLane] and return its opreand index. 1185 // If no good match can be found, return None. 1186 Optional<unsigned> 1187 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1188 ArrayRef<ReorderingMode> ReorderingModes) { 1189 unsigned NumOperands = getNumOperands(); 1190 1191 // The operand of the previous lane at OpIdx. 1192 Value *OpLastLane = getData(OpIdx, LastLane).V; 1193 1194 // Our strategy mode for OpIdx. 1195 ReorderingMode RMode = ReorderingModes[OpIdx]; 1196 1197 // The linearized opcode of the operand at OpIdx, Lane. 1198 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1199 1200 // The best operand index and its score. 1201 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1202 // are using the score to differentiate between the two. 1203 struct BestOpData { 1204 Optional<unsigned> Idx = None; 1205 unsigned Score = 0; 1206 } BestOp; 1207 1208 // Iterate through all unused operands and look for the best. 1209 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1210 // Get the operand at Idx and Lane. 1211 OperandData &OpData = getData(Idx, Lane); 1212 Value *Op = OpData.V; 1213 bool OpAPO = OpData.APO; 1214 1215 // Skip already selected operands. 1216 if (OpData.IsUsed) 1217 continue; 1218 1219 // Skip if we are trying to move the operand to a position with a 1220 // different opcode in the linearized tree form. This would break the 1221 // semantics. 1222 if (OpAPO != OpIdxAPO) 1223 continue; 1224 1225 // Look for an operand that matches the current mode. 1226 switch (RMode) { 1227 case ReorderingMode::Load: 1228 case ReorderingMode::Constant: 1229 case ReorderingMode::Opcode: { 1230 bool LeftToRight = Lane > LastLane; 1231 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1232 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1233 unsigned Score = 1234 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1235 if (Score > BestOp.Score) { 1236 BestOp.Idx = Idx; 1237 BestOp.Score = Score; 1238 } 1239 break; 1240 } 1241 case ReorderingMode::Splat: 1242 if (Op == OpLastLane) 1243 BestOp.Idx = Idx; 1244 break; 1245 case ReorderingMode::Failed: 1246 return None; 1247 } 1248 } 1249 1250 if (BestOp.Idx) { 1251 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1252 return BestOp.Idx; 1253 } 1254 // If we could not find a good match return None. 1255 return None; 1256 } 1257 1258 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1259 /// reordering from. This is the one which has the least number of operands 1260 /// that can freely move about. 1261 unsigned getBestLaneToStartReordering() const { 1262 unsigned BestLane = 0; 1263 unsigned Min = UINT_MAX; 1264 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1265 ++Lane) { 1266 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1267 if (NumFreeOps < Min) { 1268 Min = NumFreeOps; 1269 BestLane = Lane; 1270 } 1271 } 1272 return BestLane; 1273 } 1274 1275 /// \Returns the maximum number of operands that are allowed to be reordered 1276 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1277 /// start operand reordering. 1278 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1279 unsigned CntTrue = 0; 1280 unsigned NumOperands = getNumOperands(); 1281 // Operands with the same APO can be reordered. We therefore need to count 1282 // how many of them we have for each APO, like this: Cnt[APO] = x. 1283 // Since we only have two APOs, namely true and false, we can avoid using 1284 // a map. Instead we can simply count the number of operands that 1285 // correspond to one of them (in this case the 'true' APO), and calculate 1286 // the other by subtracting it from the total number of operands. 1287 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1288 if (getData(OpIdx, Lane).APO) 1289 ++CntTrue; 1290 unsigned CntFalse = NumOperands - CntTrue; 1291 return std::max(CntTrue, CntFalse); 1292 } 1293 1294 /// Go through the instructions in VL and append their operands. 1295 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1296 assert(!VL.empty() && "Bad VL"); 1297 assert((empty() || VL.size() == getNumLanes()) && 1298 "Expected same number of lanes"); 1299 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1300 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1301 OpsVec.resize(NumOperands); 1302 unsigned NumLanes = VL.size(); 1303 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1304 OpsVec[OpIdx].resize(NumLanes); 1305 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1306 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1307 // Our tree has just 3 nodes: the root and two operands. 1308 // It is therefore trivial to get the APO. We only need to check the 1309 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1310 // RHS operand. The LHS operand of both add and sub is never attached 1311 // to an inversese operation in the linearized form, therefore its APO 1312 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1313 1314 // Since operand reordering is performed on groups of commutative 1315 // operations or alternating sequences (e.g., +, -), we can safely 1316 // tell the inverse operations by checking commutativity. 1317 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1318 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1319 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1320 APO, false}; 1321 } 1322 } 1323 } 1324 1325 /// \returns the number of operands. 1326 unsigned getNumOperands() const { return OpsVec.size(); } 1327 1328 /// \returns the number of lanes. 1329 unsigned getNumLanes() const { return OpsVec[0].size(); } 1330 1331 /// \returns the operand value at \p OpIdx and \p Lane. 1332 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1333 return getData(OpIdx, Lane).V; 1334 } 1335 1336 /// \returns true if the data structure is empty. 1337 bool empty() const { return OpsVec.empty(); } 1338 1339 /// Clears the data. 1340 void clear() { OpsVec.clear(); } 1341 1342 /// \Returns true if there are enough operands identical to \p Op to fill 1343 /// the whole vector. 1344 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1345 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1346 bool OpAPO = getData(OpIdx, Lane).APO; 1347 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1348 if (Ln == Lane) 1349 continue; 1350 // This is set to true if we found a candidate for broadcast at Lane. 1351 bool FoundCandidate = false; 1352 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1353 OperandData &Data = getData(OpI, Ln); 1354 if (Data.APO != OpAPO || Data.IsUsed) 1355 continue; 1356 if (Data.V == Op) { 1357 FoundCandidate = true; 1358 Data.IsUsed = true; 1359 break; 1360 } 1361 } 1362 if (!FoundCandidate) 1363 return false; 1364 } 1365 return true; 1366 } 1367 1368 public: 1369 /// Initialize with all the operands of the instruction vector \p RootVL. 1370 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1371 ScalarEvolution &SE, const BoUpSLP &R) 1372 : DL(DL), SE(SE), R(R) { 1373 // Append all the operands of RootVL. 1374 appendOperandsOfVL(RootVL); 1375 } 1376 1377 /// \Returns a value vector with the operands across all lanes for the 1378 /// opearnd at \p OpIdx. 1379 ValueList getVL(unsigned OpIdx) const { 1380 ValueList OpVL(OpsVec[OpIdx].size()); 1381 assert(OpsVec[OpIdx].size() == getNumLanes() && 1382 "Expected same num of lanes across all operands"); 1383 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1384 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1385 return OpVL; 1386 } 1387 1388 // Performs operand reordering for 2 or more operands. 1389 // The original operands are in OrigOps[OpIdx][Lane]. 1390 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1391 void reorder() { 1392 unsigned NumOperands = getNumOperands(); 1393 unsigned NumLanes = getNumLanes(); 1394 // Each operand has its own mode. We are using this mode to help us select 1395 // the instructions for each lane, so that they match best with the ones 1396 // we have selected so far. 1397 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1398 1399 // This is a greedy single-pass algorithm. We are going over each lane 1400 // once and deciding on the best order right away with no back-tracking. 1401 // However, in order to increase its effectiveness, we start with the lane 1402 // that has operands that can move the least. For example, given the 1403 // following lanes: 1404 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1405 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1406 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1407 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1408 // we will start at Lane 1, since the operands of the subtraction cannot 1409 // be reordered. Then we will visit the rest of the lanes in a circular 1410 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1411 1412 // Find the first lane that we will start our search from. 1413 unsigned FirstLane = getBestLaneToStartReordering(); 1414 1415 // Initialize the modes. 1416 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1417 Value *OpLane0 = getValue(OpIdx, FirstLane); 1418 // Keep track if we have instructions with all the same opcode on one 1419 // side. 1420 if (isa<LoadInst>(OpLane0)) 1421 ReorderingModes[OpIdx] = ReorderingMode::Load; 1422 else if (isa<Instruction>(OpLane0)) { 1423 // Check if OpLane0 should be broadcast. 1424 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1425 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1426 else 1427 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1428 } 1429 else if (isa<Constant>(OpLane0)) 1430 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1431 else if (isa<Argument>(OpLane0)) 1432 // Our best hope is a Splat. It may save some cost in some cases. 1433 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1434 else 1435 // NOTE: This should be unreachable. 1436 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1437 } 1438 1439 // If the initial strategy fails for any of the operand indexes, then we 1440 // perform reordering again in a second pass. This helps avoid assigning 1441 // high priority to the failed strategy, and should improve reordering for 1442 // the non-failed operand indexes. 1443 for (int Pass = 0; Pass != 2; ++Pass) { 1444 // Skip the second pass if the first pass did not fail. 1445 bool StrategyFailed = false; 1446 // Mark all operand data as free to use. 1447 clearUsed(); 1448 // We keep the original operand order for the FirstLane, so reorder the 1449 // rest of the lanes. We are visiting the nodes in a circular fashion, 1450 // using FirstLane as the center point and increasing the radius 1451 // distance. 1452 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1453 // Visit the lane on the right and then the lane on the left. 1454 for (int Direction : {+1, -1}) { 1455 int Lane = FirstLane + Direction * Distance; 1456 if (Lane < 0 || Lane >= (int)NumLanes) 1457 continue; 1458 int LastLane = Lane - Direction; 1459 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1460 "Out of bounds"); 1461 // Look for a good match for each operand. 1462 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1463 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1464 Optional<unsigned> BestIdx = 1465 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1466 // By not selecting a value, we allow the operands that follow to 1467 // select a better matching value. We will get a non-null value in 1468 // the next run of getBestOperand(). 1469 if (BestIdx) { 1470 // Swap the current operand with the one returned by 1471 // getBestOperand(). 1472 swap(OpIdx, BestIdx.getValue(), Lane); 1473 } else { 1474 // We failed to find a best operand, set mode to 'Failed'. 1475 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1476 // Enable the second pass. 1477 StrategyFailed = true; 1478 } 1479 } 1480 } 1481 } 1482 // Skip second pass if the strategy did not fail. 1483 if (!StrategyFailed) 1484 break; 1485 } 1486 } 1487 1488 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1489 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1490 switch (RMode) { 1491 case ReorderingMode::Load: 1492 return "Load"; 1493 case ReorderingMode::Opcode: 1494 return "Opcode"; 1495 case ReorderingMode::Constant: 1496 return "Constant"; 1497 case ReorderingMode::Splat: 1498 return "Splat"; 1499 case ReorderingMode::Failed: 1500 return "Failed"; 1501 } 1502 llvm_unreachable("Unimplemented Reordering Type"); 1503 } 1504 1505 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1506 raw_ostream &OS) { 1507 return OS << getModeStr(RMode); 1508 } 1509 1510 /// Debug print. 1511 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1512 printMode(RMode, dbgs()); 1513 } 1514 1515 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1516 return printMode(RMode, OS); 1517 } 1518 1519 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1520 const unsigned Indent = 2; 1521 unsigned Cnt = 0; 1522 for (const OperandDataVec &OpDataVec : OpsVec) { 1523 OS << "Operand " << Cnt++ << "\n"; 1524 for (const OperandData &OpData : OpDataVec) { 1525 OS.indent(Indent) << "{"; 1526 if (Value *V = OpData.V) 1527 OS << *V; 1528 else 1529 OS << "null"; 1530 OS << ", APO:" << OpData.APO << "}\n"; 1531 } 1532 OS << "\n"; 1533 } 1534 return OS; 1535 } 1536 1537 /// Debug print. 1538 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1539 #endif 1540 }; 1541 1542 /// Checks if the instruction is marked for deletion. 1543 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1544 1545 /// Marks values operands for later deletion by replacing them with Undefs. 1546 void eraseInstructions(ArrayRef<Value *> AV); 1547 1548 ~BoUpSLP(); 1549 1550 private: 1551 /// Checks if all users of \p I are the part of the vectorization tree. 1552 bool areAllUsersVectorized(Instruction *I) const; 1553 1554 /// \returns the cost of the vectorizable entry. 1555 InstructionCost getEntryCost(const TreeEntry *E); 1556 1557 /// This is the recursive part of buildTree. 1558 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1559 const EdgeInfo &EI); 1560 1561 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1562 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1563 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1564 /// returns false, setting \p CurrentOrder to either an empty vector or a 1565 /// non-identity permutation that allows to reuse extract instructions. 1566 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1567 SmallVectorImpl<unsigned> &CurrentOrder) const; 1568 1569 /// Vectorize a single entry in the tree. 1570 Value *vectorizeTree(TreeEntry *E); 1571 1572 /// Vectorize a single entry in the tree, starting in \p VL. 1573 Value *vectorizeTree(ArrayRef<Value *> VL); 1574 1575 /// \returns the scalarization cost for this type. Scalarization in this 1576 /// context means the creation of vectors from a group of scalars. 1577 InstructionCost 1578 getGatherCost(FixedVectorType *Ty, 1579 const DenseSet<unsigned> &ShuffledIndices) const; 1580 1581 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1582 /// tree entries. 1583 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1584 /// previous tree entries. \p Mask is filled with the shuffle mask. 1585 Optional<TargetTransformInfo::ShuffleKind> 1586 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1587 SmallVectorImpl<const TreeEntry *> &Entries); 1588 1589 /// \returns the scalarization cost for this list of values. Assuming that 1590 /// this subtree gets vectorized, we may need to extract the values from the 1591 /// roots. This method calculates the cost of extracting the values. 1592 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1593 1594 /// Set the Builder insert point to one after the last instruction in 1595 /// the bundle 1596 void setInsertPointAfterBundle(const TreeEntry *E); 1597 1598 /// \returns a vector from a collection of scalars in \p VL. 1599 Value *gather(ArrayRef<Value *> VL); 1600 1601 /// \returns whether the VectorizableTree is fully vectorizable and will 1602 /// be beneficial even the tree height is tiny. 1603 bool isFullyVectorizableTinyTree() const; 1604 1605 /// Reorder commutative or alt operands to get better probability of 1606 /// generating vectorized code. 1607 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1608 SmallVectorImpl<Value *> &Left, 1609 SmallVectorImpl<Value *> &Right, 1610 const DataLayout &DL, 1611 ScalarEvolution &SE, 1612 const BoUpSLP &R); 1613 struct TreeEntry { 1614 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1615 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1616 1617 /// \returns true if the scalars in VL are equal to this entry. 1618 bool isSame(ArrayRef<Value *> VL) const { 1619 if (VL.size() == Scalars.size()) 1620 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1621 return VL.size() == ReuseShuffleIndices.size() && 1622 std::equal( 1623 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1624 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1625 } 1626 1627 /// A vector of scalars. 1628 ValueList Scalars; 1629 1630 /// The Scalars are vectorized into this value. It is initialized to Null. 1631 Value *VectorizedValue = nullptr; 1632 1633 /// Do we need to gather this sequence or vectorize it 1634 /// (either with vector instruction or with scatter/gather 1635 /// intrinsics for store/load)? 1636 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1637 EntryState State; 1638 1639 /// Does this sequence require some shuffling? 1640 SmallVector<int, 4> ReuseShuffleIndices; 1641 1642 /// Does this entry require reordering? 1643 SmallVector<unsigned, 4> ReorderIndices; 1644 1645 /// Points back to the VectorizableTree. 1646 /// 1647 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1648 /// to be a pointer and needs to be able to initialize the child iterator. 1649 /// Thus we need a reference back to the container to translate the indices 1650 /// to entries. 1651 VecTreeTy &Container; 1652 1653 /// The TreeEntry index containing the user of this entry. We can actually 1654 /// have multiple users so the data structure is not truly a tree. 1655 SmallVector<EdgeInfo, 1> UserTreeIndices; 1656 1657 /// The index of this treeEntry in VectorizableTree. 1658 int Idx = -1; 1659 1660 private: 1661 /// The operands of each instruction in each lane Operands[op_index][lane]. 1662 /// Note: This helps avoid the replication of the code that performs the 1663 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1664 SmallVector<ValueList, 2> Operands; 1665 1666 /// The main/alternate instruction. 1667 Instruction *MainOp = nullptr; 1668 Instruction *AltOp = nullptr; 1669 1670 public: 1671 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1672 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1673 if (Operands.size() < OpIdx + 1) 1674 Operands.resize(OpIdx + 1); 1675 assert(Operands[OpIdx].empty() && "Already resized?"); 1676 Operands[OpIdx].resize(Scalars.size()); 1677 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1678 Operands[OpIdx][Lane] = OpVL[Lane]; 1679 } 1680 1681 /// Set the operands of this bundle in their original order. 1682 void setOperandsInOrder() { 1683 assert(Operands.empty() && "Already initialized?"); 1684 auto *I0 = cast<Instruction>(Scalars[0]); 1685 Operands.resize(I0->getNumOperands()); 1686 unsigned NumLanes = Scalars.size(); 1687 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1688 OpIdx != NumOperands; ++OpIdx) { 1689 Operands[OpIdx].resize(NumLanes); 1690 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1691 auto *I = cast<Instruction>(Scalars[Lane]); 1692 assert(I->getNumOperands() == NumOperands && 1693 "Expected same number of operands"); 1694 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1695 } 1696 } 1697 } 1698 1699 /// \returns the \p OpIdx operand of this TreeEntry. 1700 ValueList &getOperand(unsigned OpIdx) { 1701 assert(OpIdx < Operands.size() && "Off bounds"); 1702 return Operands[OpIdx]; 1703 } 1704 1705 /// \returns the number of operands. 1706 unsigned getNumOperands() const { return Operands.size(); } 1707 1708 /// \return the single \p OpIdx operand. 1709 Value *getSingleOperand(unsigned OpIdx) const { 1710 assert(OpIdx < Operands.size() && "Off bounds"); 1711 assert(!Operands[OpIdx].empty() && "No operand available"); 1712 return Operands[OpIdx][0]; 1713 } 1714 1715 /// Some of the instructions in the list have alternate opcodes. 1716 bool isAltShuffle() const { 1717 return getOpcode() != getAltOpcode(); 1718 } 1719 1720 bool isOpcodeOrAlt(Instruction *I) const { 1721 unsigned CheckedOpcode = I->getOpcode(); 1722 return (getOpcode() == CheckedOpcode || 1723 getAltOpcode() == CheckedOpcode); 1724 } 1725 1726 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1727 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1728 /// \p OpValue. 1729 Value *isOneOf(Value *Op) const { 1730 auto *I = dyn_cast<Instruction>(Op); 1731 if (I && isOpcodeOrAlt(I)) 1732 return Op; 1733 return MainOp; 1734 } 1735 1736 void setOperations(const InstructionsState &S) { 1737 MainOp = S.MainOp; 1738 AltOp = S.AltOp; 1739 } 1740 1741 Instruction *getMainOp() const { 1742 return MainOp; 1743 } 1744 1745 Instruction *getAltOp() const { 1746 return AltOp; 1747 } 1748 1749 /// The main/alternate opcodes for the list of instructions. 1750 unsigned getOpcode() const { 1751 return MainOp ? MainOp->getOpcode() : 0; 1752 } 1753 1754 unsigned getAltOpcode() const { 1755 return AltOp ? AltOp->getOpcode() : 0; 1756 } 1757 1758 /// Update operations state of this entry if reorder occurred. 1759 bool updateStateIfReorder() { 1760 if (ReorderIndices.empty()) 1761 return false; 1762 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1763 setOperations(S); 1764 return true; 1765 } 1766 1767 #ifndef NDEBUG 1768 /// Debug printer. 1769 LLVM_DUMP_METHOD void dump() const { 1770 dbgs() << Idx << ".\n"; 1771 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1772 dbgs() << "Operand " << OpI << ":\n"; 1773 for (const Value *V : Operands[OpI]) 1774 dbgs().indent(2) << *V << "\n"; 1775 } 1776 dbgs() << "Scalars: \n"; 1777 for (Value *V : Scalars) 1778 dbgs().indent(2) << *V << "\n"; 1779 dbgs() << "State: "; 1780 switch (State) { 1781 case Vectorize: 1782 dbgs() << "Vectorize\n"; 1783 break; 1784 case ScatterVectorize: 1785 dbgs() << "ScatterVectorize\n"; 1786 break; 1787 case NeedToGather: 1788 dbgs() << "NeedToGather\n"; 1789 break; 1790 } 1791 dbgs() << "MainOp: "; 1792 if (MainOp) 1793 dbgs() << *MainOp << "\n"; 1794 else 1795 dbgs() << "NULL\n"; 1796 dbgs() << "AltOp: "; 1797 if (AltOp) 1798 dbgs() << *AltOp << "\n"; 1799 else 1800 dbgs() << "NULL\n"; 1801 dbgs() << "VectorizedValue: "; 1802 if (VectorizedValue) 1803 dbgs() << *VectorizedValue << "\n"; 1804 else 1805 dbgs() << "NULL\n"; 1806 dbgs() << "ReuseShuffleIndices: "; 1807 if (ReuseShuffleIndices.empty()) 1808 dbgs() << "Empty"; 1809 else 1810 for (unsigned ReuseIdx : ReuseShuffleIndices) 1811 dbgs() << ReuseIdx << ", "; 1812 dbgs() << "\n"; 1813 dbgs() << "ReorderIndices: "; 1814 for (unsigned ReorderIdx : ReorderIndices) 1815 dbgs() << ReorderIdx << ", "; 1816 dbgs() << "\n"; 1817 dbgs() << "UserTreeIndices: "; 1818 for (const auto &EInfo : UserTreeIndices) 1819 dbgs() << EInfo << ", "; 1820 dbgs() << "\n"; 1821 } 1822 #endif 1823 }; 1824 1825 #ifndef NDEBUG 1826 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1827 InstructionCost VecCost, 1828 InstructionCost ScalarCost) const { 1829 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1830 dbgs() << "SLP: Costs:\n"; 1831 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1832 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1833 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1834 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1835 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1836 } 1837 #endif 1838 1839 /// Create a new VectorizableTree entry. 1840 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1841 const InstructionsState &S, 1842 const EdgeInfo &UserTreeIdx, 1843 ArrayRef<unsigned> ReuseShuffleIndices = None, 1844 ArrayRef<unsigned> ReorderIndices = None) { 1845 TreeEntry::EntryState EntryState = 1846 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1847 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1848 ReuseShuffleIndices, ReorderIndices); 1849 } 1850 1851 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1852 TreeEntry::EntryState EntryState, 1853 Optional<ScheduleData *> Bundle, 1854 const InstructionsState &S, 1855 const EdgeInfo &UserTreeIdx, 1856 ArrayRef<unsigned> ReuseShuffleIndices = None, 1857 ArrayRef<unsigned> ReorderIndices = None) { 1858 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1859 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1860 "Need to vectorize gather entry?"); 1861 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1862 TreeEntry *Last = VectorizableTree.back().get(); 1863 Last->Idx = VectorizableTree.size() - 1; 1864 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1865 Last->State = EntryState; 1866 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1867 ReuseShuffleIndices.end()); 1868 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1869 Last->setOperations(S); 1870 if (Last->State != TreeEntry::NeedToGather) { 1871 for (Value *V : VL) { 1872 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1873 ScalarToTreeEntry[V] = Last; 1874 } 1875 // Update the scheduler bundle to point to this TreeEntry. 1876 unsigned Lane = 0; 1877 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1878 BundleMember = BundleMember->NextInBundle) { 1879 BundleMember->TE = Last; 1880 BundleMember->Lane = Lane; 1881 ++Lane; 1882 } 1883 assert((!Bundle.getValue() || Lane == VL.size()) && 1884 "Bundle and VL out of sync"); 1885 } else { 1886 MustGather.insert(VL.begin(), VL.end()); 1887 } 1888 1889 if (UserTreeIdx.UserTE) 1890 Last->UserTreeIndices.push_back(UserTreeIdx); 1891 1892 return Last; 1893 } 1894 1895 /// -- Vectorization State -- 1896 /// Holds all of the tree entries. 1897 TreeEntry::VecTreeTy VectorizableTree; 1898 1899 #ifndef NDEBUG 1900 /// Debug printer. 1901 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1902 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1903 VectorizableTree[Id]->dump(); 1904 dbgs() << "\n"; 1905 } 1906 } 1907 #endif 1908 1909 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1910 1911 const TreeEntry *getTreeEntry(Value *V) const { 1912 return ScalarToTreeEntry.lookup(V); 1913 } 1914 1915 /// Maps a specific scalar to its tree entry. 1916 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1917 1918 /// Maps a value to the proposed vectorizable size. 1919 SmallDenseMap<Value *, unsigned> InstrElementSize; 1920 1921 /// A list of scalars that we found that we need to keep as scalars. 1922 ValueSet MustGather; 1923 1924 /// This POD struct describes one external user in the vectorized tree. 1925 struct ExternalUser { 1926 ExternalUser(Value *S, llvm::User *U, int L) 1927 : Scalar(S), User(U), Lane(L) {} 1928 1929 // Which scalar in our function. 1930 Value *Scalar; 1931 1932 // Which user that uses the scalar. 1933 llvm::User *User; 1934 1935 // Which lane does the scalar belong to. 1936 int Lane; 1937 }; 1938 using UserList = SmallVector<ExternalUser, 16>; 1939 1940 /// Checks if two instructions may access the same memory. 1941 /// 1942 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1943 /// is invariant in the calling loop. 1944 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1945 Instruction *Inst2) { 1946 // First check if the result is already in the cache. 1947 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1948 Optional<bool> &result = AliasCache[key]; 1949 if (result.hasValue()) { 1950 return result.getValue(); 1951 } 1952 MemoryLocation Loc2 = getLocation(Inst2, AA); 1953 bool aliased = true; 1954 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1955 // Do the alias check. 1956 aliased = !AA->isNoAlias(Loc1, Loc2); 1957 } 1958 // Store the result in the cache. 1959 result = aliased; 1960 return aliased; 1961 } 1962 1963 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1964 1965 /// Cache for alias results. 1966 /// TODO: consider moving this to the AliasAnalysis itself. 1967 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1968 1969 /// Removes an instruction from its block and eventually deletes it. 1970 /// It's like Instruction::eraseFromParent() except that the actual deletion 1971 /// is delayed until BoUpSLP is destructed. 1972 /// This is required to ensure that there are no incorrect collisions in the 1973 /// AliasCache, which can happen if a new instruction is allocated at the 1974 /// same address as a previously deleted instruction. 1975 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1976 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1977 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1978 } 1979 1980 /// Temporary store for deleted instructions. Instructions will be deleted 1981 /// eventually when the BoUpSLP is destructed. 1982 DenseMap<Instruction *, bool> DeletedInstructions; 1983 1984 /// A list of values that need to extracted out of the tree. 1985 /// This list holds pairs of (Internal Scalar : External User). External User 1986 /// can be nullptr, it means that this Internal Scalar will be used later, 1987 /// after vectorization. 1988 UserList ExternalUses; 1989 1990 /// Values used only by @llvm.assume calls. 1991 SmallPtrSet<const Value *, 32> EphValues; 1992 1993 /// Holds all of the instructions that we gathered. 1994 SetVector<Instruction *> GatherSeq; 1995 1996 /// A list of blocks that we are going to CSE. 1997 SetVector<BasicBlock *> CSEBlocks; 1998 1999 /// Contains all scheduling relevant data for an instruction. 2000 /// A ScheduleData either represents a single instruction or a member of an 2001 /// instruction bundle (= a group of instructions which is combined into a 2002 /// vector instruction). 2003 struct ScheduleData { 2004 // The initial value for the dependency counters. It means that the 2005 // dependencies are not calculated yet. 2006 enum { InvalidDeps = -1 }; 2007 2008 ScheduleData() = default; 2009 2010 void init(int BlockSchedulingRegionID, Value *OpVal) { 2011 FirstInBundle = this; 2012 NextInBundle = nullptr; 2013 NextLoadStore = nullptr; 2014 IsScheduled = false; 2015 SchedulingRegionID = BlockSchedulingRegionID; 2016 UnscheduledDepsInBundle = UnscheduledDeps; 2017 clearDependencies(); 2018 OpValue = OpVal; 2019 TE = nullptr; 2020 Lane = -1; 2021 } 2022 2023 /// Returns true if the dependency information has been calculated. 2024 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2025 2026 /// Returns true for single instructions and for bundle representatives 2027 /// (= the head of a bundle). 2028 bool isSchedulingEntity() const { return FirstInBundle == this; } 2029 2030 /// Returns true if it represents an instruction bundle and not only a 2031 /// single instruction. 2032 bool isPartOfBundle() const { 2033 return NextInBundle != nullptr || FirstInBundle != this; 2034 } 2035 2036 /// Returns true if it is ready for scheduling, i.e. it has no more 2037 /// unscheduled depending instructions/bundles. 2038 bool isReady() const { 2039 assert(isSchedulingEntity() && 2040 "can't consider non-scheduling entity for ready list"); 2041 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2042 } 2043 2044 /// Modifies the number of unscheduled dependencies, also updating it for 2045 /// the whole bundle. 2046 int incrementUnscheduledDeps(int Incr) { 2047 UnscheduledDeps += Incr; 2048 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2049 } 2050 2051 /// Sets the number of unscheduled dependencies to the number of 2052 /// dependencies. 2053 void resetUnscheduledDeps() { 2054 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2055 } 2056 2057 /// Clears all dependency information. 2058 void clearDependencies() { 2059 Dependencies = InvalidDeps; 2060 resetUnscheduledDeps(); 2061 MemoryDependencies.clear(); 2062 } 2063 2064 void dump(raw_ostream &os) const { 2065 if (!isSchedulingEntity()) { 2066 os << "/ " << *Inst; 2067 } else if (NextInBundle) { 2068 os << '[' << *Inst; 2069 ScheduleData *SD = NextInBundle; 2070 while (SD) { 2071 os << ';' << *SD->Inst; 2072 SD = SD->NextInBundle; 2073 } 2074 os << ']'; 2075 } else { 2076 os << *Inst; 2077 } 2078 } 2079 2080 Instruction *Inst = nullptr; 2081 2082 /// Points to the head in an instruction bundle (and always to this for 2083 /// single instructions). 2084 ScheduleData *FirstInBundle = nullptr; 2085 2086 /// Single linked list of all instructions in a bundle. Null if it is a 2087 /// single instruction. 2088 ScheduleData *NextInBundle = nullptr; 2089 2090 /// Single linked list of all memory instructions (e.g. load, store, call) 2091 /// in the block - until the end of the scheduling region. 2092 ScheduleData *NextLoadStore = nullptr; 2093 2094 /// The dependent memory instructions. 2095 /// This list is derived on demand in calculateDependencies(). 2096 SmallVector<ScheduleData *, 4> MemoryDependencies; 2097 2098 /// This ScheduleData is in the current scheduling region if this matches 2099 /// the current SchedulingRegionID of BlockScheduling. 2100 int SchedulingRegionID = 0; 2101 2102 /// Used for getting a "good" final ordering of instructions. 2103 int SchedulingPriority = 0; 2104 2105 /// The number of dependencies. Constitutes of the number of users of the 2106 /// instruction plus the number of dependent memory instructions (if any). 2107 /// This value is calculated on demand. 2108 /// If InvalidDeps, the number of dependencies is not calculated yet. 2109 int Dependencies = InvalidDeps; 2110 2111 /// The number of dependencies minus the number of dependencies of scheduled 2112 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2113 /// for scheduling. 2114 /// Note that this is negative as long as Dependencies is not calculated. 2115 int UnscheduledDeps = InvalidDeps; 2116 2117 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2118 /// single instructions. 2119 int UnscheduledDepsInBundle = InvalidDeps; 2120 2121 /// True if this instruction is scheduled (or considered as scheduled in the 2122 /// dry-run). 2123 bool IsScheduled = false; 2124 2125 /// Opcode of the current instruction in the schedule data. 2126 Value *OpValue = nullptr; 2127 2128 /// The TreeEntry that this instruction corresponds to. 2129 TreeEntry *TE = nullptr; 2130 2131 /// The lane of this node in the TreeEntry. 2132 int Lane = -1; 2133 }; 2134 2135 #ifndef NDEBUG 2136 friend inline raw_ostream &operator<<(raw_ostream &os, 2137 const BoUpSLP::ScheduleData &SD) { 2138 SD.dump(os); 2139 return os; 2140 } 2141 #endif 2142 2143 friend struct GraphTraits<BoUpSLP *>; 2144 friend struct DOTGraphTraits<BoUpSLP *>; 2145 2146 /// Contains all scheduling data for a basic block. 2147 struct BlockScheduling { 2148 BlockScheduling(BasicBlock *BB) 2149 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2150 2151 void clear() { 2152 ReadyInsts.clear(); 2153 ScheduleStart = nullptr; 2154 ScheduleEnd = nullptr; 2155 FirstLoadStoreInRegion = nullptr; 2156 LastLoadStoreInRegion = nullptr; 2157 2158 // Reduce the maximum schedule region size by the size of the 2159 // previous scheduling run. 2160 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2161 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2162 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2163 ScheduleRegionSize = 0; 2164 2165 // Make a new scheduling region, i.e. all existing ScheduleData is not 2166 // in the new region yet. 2167 ++SchedulingRegionID; 2168 } 2169 2170 ScheduleData *getScheduleData(Value *V) { 2171 ScheduleData *SD = ScheduleDataMap[V]; 2172 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2173 return SD; 2174 return nullptr; 2175 } 2176 2177 ScheduleData *getScheduleData(Value *V, Value *Key) { 2178 if (V == Key) 2179 return getScheduleData(V); 2180 auto I = ExtraScheduleDataMap.find(V); 2181 if (I != ExtraScheduleDataMap.end()) { 2182 ScheduleData *SD = I->second[Key]; 2183 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2184 return SD; 2185 } 2186 return nullptr; 2187 } 2188 2189 bool isInSchedulingRegion(ScheduleData *SD) const { 2190 return SD->SchedulingRegionID == SchedulingRegionID; 2191 } 2192 2193 /// Marks an instruction as scheduled and puts all dependent ready 2194 /// instructions into the ready-list. 2195 template <typename ReadyListType> 2196 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2197 SD->IsScheduled = true; 2198 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2199 2200 ScheduleData *BundleMember = SD; 2201 while (BundleMember) { 2202 if (BundleMember->Inst != BundleMember->OpValue) { 2203 BundleMember = BundleMember->NextInBundle; 2204 continue; 2205 } 2206 // Handle the def-use chain dependencies. 2207 2208 // Decrement the unscheduled counter and insert to ready list if ready. 2209 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2210 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2211 if (OpDef && OpDef->hasValidDependencies() && 2212 OpDef->incrementUnscheduledDeps(-1) == 0) { 2213 // There are no more unscheduled dependencies after 2214 // decrementing, so we can put the dependent instruction 2215 // into the ready list. 2216 ScheduleData *DepBundle = OpDef->FirstInBundle; 2217 assert(!DepBundle->IsScheduled && 2218 "already scheduled bundle gets ready"); 2219 ReadyList.insert(DepBundle); 2220 LLVM_DEBUG(dbgs() 2221 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2222 } 2223 }); 2224 }; 2225 2226 // If BundleMember is a vector bundle, its operands may have been 2227 // reordered duiring buildTree(). We therefore need to get its operands 2228 // through the TreeEntry. 2229 if (TreeEntry *TE = BundleMember->TE) { 2230 int Lane = BundleMember->Lane; 2231 assert(Lane >= 0 && "Lane not set"); 2232 2233 // Since vectorization tree is being built recursively this assertion 2234 // ensures that the tree entry has all operands set before reaching 2235 // this code. Couple of exceptions known at the moment are extracts 2236 // where their second (immediate) operand is not added. Since 2237 // immediates do not affect scheduler behavior this is considered 2238 // okay. 2239 auto *In = TE->getMainOp(); 2240 assert(In && 2241 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2242 isa<InsertElementInst>(In) || 2243 In->getNumOperands() == TE->getNumOperands()) && 2244 "Missed TreeEntry operands?"); 2245 (void)In; // fake use to avoid build failure when assertions disabled 2246 2247 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2248 OpIdx != NumOperands; ++OpIdx) 2249 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2250 DecrUnsched(I); 2251 } else { 2252 // If BundleMember is a stand-alone instruction, no operand reordering 2253 // has taken place, so we directly access its operands. 2254 for (Use &U : BundleMember->Inst->operands()) 2255 if (auto *I = dyn_cast<Instruction>(U.get())) 2256 DecrUnsched(I); 2257 } 2258 // Handle the memory dependencies. 2259 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2260 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2261 // There are no more unscheduled dependencies after decrementing, 2262 // so we can put the dependent instruction into the ready list. 2263 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2264 assert(!DepBundle->IsScheduled && 2265 "already scheduled bundle gets ready"); 2266 ReadyList.insert(DepBundle); 2267 LLVM_DEBUG(dbgs() 2268 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2269 } 2270 } 2271 BundleMember = BundleMember->NextInBundle; 2272 } 2273 } 2274 2275 void doForAllOpcodes(Value *V, 2276 function_ref<void(ScheduleData *SD)> Action) { 2277 if (ScheduleData *SD = getScheduleData(V)) 2278 Action(SD); 2279 auto I = ExtraScheduleDataMap.find(V); 2280 if (I != ExtraScheduleDataMap.end()) 2281 for (auto &P : I->second) 2282 if (P.second->SchedulingRegionID == SchedulingRegionID) 2283 Action(P.second); 2284 } 2285 2286 /// Put all instructions into the ReadyList which are ready for scheduling. 2287 template <typename ReadyListType> 2288 void initialFillReadyList(ReadyListType &ReadyList) { 2289 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2290 doForAllOpcodes(I, [&](ScheduleData *SD) { 2291 if (SD->isSchedulingEntity() && SD->isReady()) { 2292 ReadyList.insert(SD); 2293 LLVM_DEBUG(dbgs() 2294 << "SLP: initially in ready list: " << *I << "\n"); 2295 } 2296 }); 2297 } 2298 } 2299 2300 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2301 /// cyclic dependencies. This is only a dry-run, no instructions are 2302 /// actually moved at this stage. 2303 /// \returns the scheduling bundle. The returned Optional value is non-None 2304 /// if \p VL is allowed to be scheduled. 2305 Optional<ScheduleData *> 2306 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2307 const InstructionsState &S); 2308 2309 /// Un-bundles a group of instructions. 2310 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2311 2312 /// Allocates schedule data chunk. 2313 ScheduleData *allocateScheduleDataChunks(); 2314 2315 /// Extends the scheduling region so that V is inside the region. 2316 /// \returns true if the region size is within the limit. 2317 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2318 2319 /// Initialize the ScheduleData structures for new instructions in the 2320 /// scheduling region. 2321 void initScheduleData(Instruction *FromI, Instruction *ToI, 2322 ScheduleData *PrevLoadStore, 2323 ScheduleData *NextLoadStore); 2324 2325 /// Updates the dependency information of a bundle and of all instructions/ 2326 /// bundles which depend on the original bundle. 2327 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2328 BoUpSLP *SLP); 2329 2330 /// Sets all instruction in the scheduling region to un-scheduled. 2331 void resetSchedule(); 2332 2333 BasicBlock *BB; 2334 2335 /// Simple memory allocation for ScheduleData. 2336 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2337 2338 /// The size of a ScheduleData array in ScheduleDataChunks. 2339 int ChunkSize; 2340 2341 /// The allocator position in the current chunk, which is the last entry 2342 /// of ScheduleDataChunks. 2343 int ChunkPos; 2344 2345 /// Attaches ScheduleData to Instruction. 2346 /// Note that the mapping survives during all vectorization iterations, i.e. 2347 /// ScheduleData structures are recycled. 2348 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2349 2350 /// Attaches ScheduleData to Instruction with the leading key. 2351 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2352 ExtraScheduleDataMap; 2353 2354 struct ReadyList : SmallVector<ScheduleData *, 8> { 2355 void insert(ScheduleData *SD) { push_back(SD); } 2356 }; 2357 2358 /// The ready-list for scheduling (only used for the dry-run). 2359 ReadyList ReadyInsts; 2360 2361 /// The first instruction of the scheduling region. 2362 Instruction *ScheduleStart = nullptr; 2363 2364 /// The first instruction _after_ the scheduling region. 2365 Instruction *ScheduleEnd = nullptr; 2366 2367 /// The first memory accessing instruction in the scheduling region 2368 /// (can be null). 2369 ScheduleData *FirstLoadStoreInRegion = nullptr; 2370 2371 /// The last memory accessing instruction in the scheduling region 2372 /// (can be null). 2373 ScheduleData *LastLoadStoreInRegion = nullptr; 2374 2375 /// The current size of the scheduling region. 2376 int ScheduleRegionSize = 0; 2377 2378 /// The maximum size allowed for the scheduling region. 2379 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2380 2381 /// The ID of the scheduling region. For a new vectorization iteration this 2382 /// is incremented which "removes" all ScheduleData from the region. 2383 // Make sure that the initial SchedulingRegionID is greater than the 2384 // initial SchedulingRegionID in ScheduleData (which is 0). 2385 int SchedulingRegionID = 1; 2386 }; 2387 2388 /// Attaches the BlockScheduling structures to basic blocks. 2389 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2390 2391 /// Performs the "real" scheduling. Done before vectorization is actually 2392 /// performed in a basic block. 2393 void scheduleBlock(BlockScheduling *BS); 2394 2395 /// List of users to ignore during scheduling and that don't need extracting. 2396 ArrayRef<Value *> UserIgnoreList; 2397 2398 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2399 /// sorted SmallVectors of unsigned. 2400 struct OrdersTypeDenseMapInfo { 2401 static OrdersType getEmptyKey() { 2402 OrdersType V; 2403 V.push_back(~1U); 2404 return V; 2405 } 2406 2407 static OrdersType getTombstoneKey() { 2408 OrdersType V; 2409 V.push_back(~2U); 2410 return V; 2411 } 2412 2413 static unsigned getHashValue(const OrdersType &V) { 2414 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2415 } 2416 2417 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2418 return LHS == RHS; 2419 } 2420 }; 2421 2422 /// Contains orders of operations along with the number of bundles that have 2423 /// operations in this order. It stores only those orders that require 2424 /// reordering, if reordering is not required it is counted using \a 2425 /// NumOpsWantToKeepOriginalOrder. 2426 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2427 /// Number of bundles that do not require reordering. 2428 unsigned NumOpsWantToKeepOriginalOrder = 0; 2429 2430 // Analysis and block reference. 2431 Function *F; 2432 ScalarEvolution *SE; 2433 TargetTransformInfo *TTI; 2434 TargetLibraryInfo *TLI; 2435 AAResults *AA; 2436 LoopInfo *LI; 2437 DominatorTree *DT; 2438 AssumptionCache *AC; 2439 DemandedBits *DB; 2440 const DataLayout *DL; 2441 OptimizationRemarkEmitter *ORE; 2442 2443 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2444 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2445 2446 /// Instruction builder to construct the vectorized tree. 2447 IRBuilder<> Builder; 2448 2449 /// A map of scalar integer values to the smallest bit width with which they 2450 /// can legally be represented. The values map to (width, signed) pairs, 2451 /// where "width" indicates the minimum bit width and "signed" is True if the 2452 /// value must be signed-extended, rather than zero-extended, back to its 2453 /// original width. 2454 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2455 }; 2456 2457 } // end namespace slpvectorizer 2458 2459 template <> struct GraphTraits<BoUpSLP *> { 2460 using TreeEntry = BoUpSLP::TreeEntry; 2461 2462 /// NodeRef has to be a pointer per the GraphWriter. 2463 using NodeRef = TreeEntry *; 2464 2465 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2466 2467 /// Add the VectorizableTree to the index iterator to be able to return 2468 /// TreeEntry pointers. 2469 struct ChildIteratorType 2470 : public iterator_adaptor_base< 2471 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2472 ContainerTy &VectorizableTree; 2473 2474 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2475 ContainerTy &VT) 2476 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2477 2478 NodeRef operator*() { return I->UserTE; } 2479 }; 2480 2481 static NodeRef getEntryNode(BoUpSLP &R) { 2482 return R.VectorizableTree[0].get(); 2483 } 2484 2485 static ChildIteratorType child_begin(NodeRef N) { 2486 return {N->UserTreeIndices.begin(), N->Container}; 2487 } 2488 2489 static ChildIteratorType child_end(NodeRef N) { 2490 return {N->UserTreeIndices.end(), N->Container}; 2491 } 2492 2493 /// For the node iterator we just need to turn the TreeEntry iterator into a 2494 /// TreeEntry* iterator so that it dereferences to NodeRef. 2495 class nodes_iterator { 2496 using ItTy = ContainerTy::iterator; 2497 ItTy It; 2498 2499 public: 2500 nodes_iterator(const ItTy &It2) : It(It2) {} 2501 NodeRef operator*() { return It->get(); } 2502 nodes_iterator operator++() { 2503 ++It; 2504 return *this; 2505 } 2506 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2507 }; 2508 2509 static nodes_iterator nodes_begin(BoUpSLP *R) { 2510 return nodes_iterator(R->VectorizableTree.begin()); 2511 } 2512 2513 static nodes_iterator nodes_end(BoUpSLP *R) { 2514 return nodes_iterator(R->VectorizableTree.end()); 2515 } 2516 2517 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2518 }; 2519 2520 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2521 using TreeEntry = BoUpSLP::TreeEntry; 2522 2523 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2524 2525 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2526 std::string Str; 2527 raw_string_ostream OS(Str); 2528 if (isSplat(Entry->Scalars)) { 2529 OS << "<splat> " << *Entry->Scalars[0]; 2530 return Str; 2531 } 2532 for (auto V : Entry->Scalars) { 2533 OS << *V; 2534 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2535 return EU.Scalar == V; 2536 })) 2537 OS << " <extract>"; 2538 OS << "\n"; 2539 } 2540 return Str; 2541 } 2542 2543 static std::string getNodeAttributes(const TreeEntry *Entry, 2544 const BoUpSLP *) { 2545 if (Entry->State == TreeEntry::NeedToGather) 2546 return "color=red"; 2547 return ""; 2548 } 2549 }; 2550 2551 } // end namespace llvm 2552 2553 BoUpSLP::~BoUpSLP() { 2554 for (const auto &Pair : DeletedInstructions) { 2555 // Replace operands of ignored instructions with Undefs in case if they were 2556 // marked for deletion. 2557 if (Pair.getSecond()) { 2558 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2559 Pair.getFirst()->replaceAllUsesWith(Undef); 2560 } 2561 Pair.getFirst()->dropAllReferences(); 2562 } 2563 for (const auto &Pair : DeletedInstructions) { 2564 assert(Pair.getFirst()->use_empty() && 2565 "trying to erase instruction with users."); 2566 Pair.getFirst()->eraseFromParent(); 2567 } 2568 #ifdef EXPENSIVE_CHECKS 2569 // If we could guarantee that this call is not extremely slow, we could 2570 // remove the ifdef limitation (see PR47712). 2571 assert(!verifyFunction(*F, &dbgs())); 2572 #endif 2573 } 2574 2575 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2576 for (auto *V : AV) { 2577 if (auto *I = dyn_cast<Instruction>(V)) 2578 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2579 }; 2580 } 2581 2582 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2583 ArrayRef<Value *> UserIgnoreLst) { 2584 ExtraValueToDebugLocsMap ExternallyUsedValues; 2585 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2586 } 2587 2588 static int findLaneForValue(ArrayRef<Value *> Scalars, 2589 ArrayRef<int> ReuseShuffleIndices, Value *V) { 2590 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2591 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2592 if (!ReuseShuffleIndices.empty()) { 2593 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2594 find(ReuseShuffleIndices, FoundLane)); 2595 } 2596 return FoundLane; 2597 } 2598 2599 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2600 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2601 ArrayRef<Value *> UserIgnoreLst) { 2602 deleteTree(); 2603 UserIgnoreList = UserIgnoreLst; 2604 if (!allSameType(Roots)) 2605 return; 2606 buildTree_rec(Roots, 0, EdgeInfo()); 2607 2608 // Collect the values that we need to extract from the tree. 2609 for (auto &TEPtr : VectorizableTree) { 2610 TreeEntry *Entry = TEPtr.get(); 2611 2612 // No need to handle users of gathered values. 2613 if (Entry->State == TreeEntry::NeedToGather) 2614 continue; 2615 2616 // For each lane: 2617 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2618 Value *Scalar = Entry->Scalars[Lane]; 2619 int FoundLane = 2620 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar); 2621 2622 // Check if the scalar is externally used as an extra arg. 2623 auto ExtI = ExternallyUsedValues.find(Scalar); 2624 if (ExtI != ExternallyUsedValues.end()) { 2625 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2626 << Lane << " from " << *Scalar << ".\n"); 2627 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2628 } 2629 for (User *U : Scalar->users()) { 2630 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2631 2632 Instruction *UserInst = dyn_cast<Instruction>(U); 2633 if (!UserInst) 2634 continue; 2635 2636 // Skip in-tree scalars that become vectors 2637 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2638 Value *UseScalar = UseEntry->Scalars[0]; 2639 // Some in-tree scalars will remain as scalar in vectorized 2640 // instructions. If that is the case, the one in Lane 0 will 2641 // be used. 2642 if (UseScalar != U || 2643 UseEntry->State == TreeEntry::ScatterVectorize || 2644 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2645 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2646 << ".\n"); 2647 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2648 continue; 2649 } 2650 } 2651 2652 // Ignore users in the user ignore list. 2653 if (is_contained(UserIgnoreList, UserInst)) 2654 continue; 2655 2656 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2657 << Lane << " from " << *Scalar << ".\n"); 2658 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2659 } 2660 } 2661 } 2662 } 2663 2664 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2665 const EdgeInfo &UserTreeIdx) { 2666 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2667 2668 InstructionsState S = getSameOpcode(VL); 2669 if (Depth == RecursionMaxDepth) { 2670 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2671 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2672 return; 2673 } 2674 2675 // Don't handle vectors. 2676 if (S.OpValue->getType()->isVectorTy() && 2677 !isa<InsertElementInst>(S.OpValue)) { 2678 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2679 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2680 return; 2681 } 2682 2683 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2684 if (SI->getValueOperand()->getType()->isVectorTy()) { 2685 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2686 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2687 return; 2688 } 2689 2690 // If all of the operands are identical or constant we have a simple solution. 2691 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2692 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2693 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2694 return; 2695 } 2696 2697 // We now know that this is a vector of instructions of the same type from 2698 // the same block. 2699 2700 // Don't vectorize ephemeral values. 2701 for (Value *V : VL) { 2702 if (EphValues.count(V)) { 2703 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2704 << ") is ephemeral.\n"); 2705 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2706 return; 2707 } 2708 } 2709 2710 // Check if this is a duplicate of another entry. 2711 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2712 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2713 if (!E->isSame(VL)) { 2714 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2715 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2716 return; 2717 } 2718 // Record the reuse of the tree node. FIXME, currently this is only used to 2719 // properly draw the graph rather than for the actual vectorization. 2720 E->UserTreeIndices.push_back(UserTreeIdx); 2721 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2722 << ".\n"); 2723 return; 2724 } 2725 2726 // Check that none of the instructions in the bundle are already in the tree. 2727 for (Value *V : VL) { 2728 auto *I = dyn_cast<Instruction>(V); 2729 if (!I) 2730 continue; 2731 if (getTreeEntry(I)) { 2732 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2733 << ") is already in tree.\n"); 2734 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2735 return; 2736 } 2737 } 2738 2739 // If any of the scalars is marked as a value that needs to stay scalar, then 2740 // we need to gather the scalars. 2741 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2742 for (Value *V : VL) { 2743 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2744 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2745 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2746 return; 2747 } 2748 } 2749 2750 // Check that all of the users of the scalars that we want to vectorize are 2751 // schedulable. 2752 auto *VL0 = cast<Instruction>(S.OpValue); 2753 BasicBlock *BB = VL0->getParent(); 2754 2755 if (!DT->isReachableFromEntry(BB)) { 2756 // Don't go into unreachable blocks. They may contain instructions with 2757 // dependency cycles which confuse the final scheduling. 2758 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2759 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2760 return; 2761 } 2762 2763 // Check that every instruction appears once in this bundle. 2764 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2765 SmallVector<Value *, 4> UniqueValues; 2766 DenseMap<Value *, unsigned> UniquePositions; 2767 for (Value *V : VL) { 2768 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2769 ReuseShuffleIndicies.emplace_back(Res.first->second); 2770 if (Res.second) 2771 UniqueValues.emplace_back(V); 2772 } 2773 size_t NumUniqueScalarValues = UniqueValues.size(); 2774 if (NumUniqueScalarValues == VL.size()) { 2775 ReuseShuffleIndicies.clear(); 2776 } else { 2777 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2778 if (NumUniqueScalarValues <= 1 || 2779 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2780 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2781 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2782 return; 2783 } 2784 VL = UniqueValues; 2785 } 2786 2787 auto &BSRef = BlocksSchedules[BB]; 2788 if (!BSRef) 2789 BSRef = std::make_unique<BlockScheduling>(BB); 2790 2791 BlockScheduling &BS = *BSRef.get(); 2792 2793 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2794 if (!Bundle) { 2795 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2796 assert((!BS.getScheduleData(VL0) || 2797 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2798 "tryScheduleBundle should cancelScheduling on failure"); 2799 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2800 ReuseShuffleIndicies); 2801 return; 2802 } 2803 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2804 2805 unsigned ShuffleOrOp = S.isAltShuffle() ? 2806 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2807 switch (ShuffleOrOp) { 2808 case Instruction::PHI: { 2809 auto *PH = cast<PHINode>(VL0); 2810 2811 // Check for terminator values (e.g. invoke). 2812 for (Value *V : VL) 2813 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2814 Instruction *Term = dyn_cast<Instruction>( 2815 cast<PHINode>(V)->getIncomingValueForBlock( 2816 PH->getIncomingBlock(I))); 2817 if (Term && Term->isTerminator()) { 2818 LLVM_DEBUG(dbgs() 2819 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2820 BS.cancelScheduling(VL, VL0); 2821 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2822 ReuseShuffleIndicies); 2823 return; 2824 } 2825 } 2826 2827 TreeEntry *TE = 2828 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2829 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2830 2831 // Keeps the reordered operands to avoid code duplication. 2832 SmallVector<ValueList, 2> OperandsVec; 2833 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2834 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 2835 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 2836 TE->setOperand(I, Operands); 2837 OperandsVec.push_back(Operands); 2838 continue; 2839 } 2840 ValueList Operands; 2841 // Prepare the operand vector. 2842 for (Value *V : VL) 2843 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2844 PH->getIncomingBlock(I))); 2845 TE->setOperand(I, Operands); 2846 OperandsVec.push_back(Operands); 2847 } 2848 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2849 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2850 return; 2851 } 2852 case Instruction::ExtractValue: 2853 case Instruction::ExtractElement: { 2854 OrdersType CurrentOrder; 2855 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2856 if (Reuse) { 2857 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2858 ++NumOpsWantToKeepOriginalOrder; 2859 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2860 ReuseShuffleIndicies); 2861 // This is a special case, as it does not gather, but at the same time 2862 // we are not extending buildTree_rec() towards the operands. 2863 ValueList Op0; 2864 Op0.assign(VL.size(), VL0->getOperand(0)); 2865 VectorizableTree.back()->setOperand(0, Op0); 2866 return; 2867 } 2868 if (!CurrentOrder.empty()) { 2869 LLVM_DEBUG({ 2870 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2871 "with order"; 2872 for (unsigned Idx : CurrentOrder) 2873 dbgs() << " " << Idx; 2874 dbgs() << "\n"; 2875 }); 2876 // Insert new order with initial value 0, if it does not exist, 2877 // otherwise return the iterator to the existing one. 2878 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2879 ReuseShuffleIndicies, CurrentOrder); 2880 findRootOrder(CurrentOrder); 2881 ++NumOpsWantToKeepOrder[CurrentOrder]; 2882 // This is a special case, as it does not gather, but at the same time 2883 // we are not extending buildTree_rec() towards the operands. 2884 ValueList Op0; 2885 Op0.assign(VL.size(), VL0->getOperand(0)); 2886 VectorizableTree.back()->setOperand(0, Op0); 2887 return; 2888 } 2889 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2890 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2891 ReuseShuffleIndicies); 2892 BS.cancelScheduling(VL, VL0); 2893 return; 2894 } 2895 case Instruction::InsertElement: { 2896 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 2897 2898 // Check that we have a buildvector and not a shuffle of 2 or more 2899 // different vectors. 2900 ValueSet SourceVectors; 2901 for (Value *V : VL) 2902 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 2903 2904 if (count_if(VL, [&SourceVectors](Value *V) { 2905 return !SourceVectors.contains(V); 2906 }) >= 2) { 2907 // Found 2nd source vector - cancel. 2908 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 2909 "different source vectors.\n"); 2910 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2911 ReuseShuffleIndicies); 2912 BS.cancelScheduling(VL, VL0); 2913 return; 2914 } 2915 2916 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx); 2917 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 2918 2919 constexpr int NumOps = 2; 2920 ValueList VectorOperands[NumOps]; 2921 for (int I = 0; I < NumOps; ++I) { 2922 for (Value *V : VL) 2923 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 2924 2925 TE->setOperand(I, VectorOperands[I]); 2926 } 2927 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0}); 2928 return; 2929 } 2930 case Instruction::Load: { 2931 // Check that a vectorized load would load the same memory as a scalar 2932 // load. For example, we don't want to vectorize loads that are smaller 2933 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2934 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2935 // from such a struct, we read/write packed bits disagreeing with the 2936 // unvectorized version. 2937 Type *ScalarTy = VL0->getType(); 2938 2939 if (DL->getTypeSizeInBits(ScalarTy) != 2940 DL->getTypeAllocSizeInBits(ScalarTy)) { 2941 BS.cancelScheduling(VL, VL0); 2942 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2943 ReuseShuffleIndicies); 2944 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2945 return; 2946 } 2947 2948 // Make sure all loads in the bundle are simple - we can't vectorize 2949 // atomic or volatile loads. 2950 SmallVector<Value *, 4> PointerOps(VL.size()); 2951 auto POIter = PointerOps.begin(); 2952 for (Value *V : VL) { 2953 auto *L = cast<LoadInst>(V); 2954 if (!L->isSimple()) { 2955 BS.cancelScheduling(VL, VL0); 2956 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2957 ReuseShuffleIndicies); 2958 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2959 return; 2960 } 2961 *POIter = L->getPointerOperand(); 2962 ++POIter; 2963 } 2964 2965 OrdersType CurrentOrder; 2966 // Check the order of pointer operands. 2967 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2968 Value *Ptr0; 2969 Value *PtrN; 2970 if (CurrentOrder.empty()) { 2971 Ptr0 = PointerOps.front(); 2972 PtrN = PointerOps.back(); 2973 } else { 2974 Ptr0 = PointerOps[CurrentOrder.front()]; 2975 PtrN = PointerOps[CurrentOrder.back()]; 2976 } 2977 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE); 2978 // Check that the sorted loads are consecutive. 2979 if (static_cast<unsigned>(*Diff) == VL.size() - 1) { 2980 if (CurrentOrder.empty()) { 2981 // Original loads are consecutive and does not require reordering. 2982 ++NumOpsWantToKeepOriginalOrder; 2983 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2984 UserTreeIdx, ReuseShuffleIndicies); 2985 TE->setOperandsInOrder(); 2986 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2987 } else { 2988 // Need to reorder. 2989 TreeEntry *TE = 2990 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2991 ReuseShuffleIndicies, CurrentOrder); 2992 TE->setOperandsInOrder(); 2993 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2994 findRootOrder(CurrentOrder); 2995 ++NumOpsWantToKeepOrder[CurrentOrder]; 2996 } 2997 return; 2998 } 2999 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3000 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3001 UserTreeIdx, ReuseShuffleIndicies); 3002 TE->setOperandsInOrder(); 3003 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3004 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3005 return; 3006 } 3007 3008 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3009 BS.cancelScheduling(VL, VL0); 3010 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3011 ReuseShuffleIndicies); 3012 return; 3013 } 3014 case Instruction::ZExt: 3015 case Instruction::SExt: 3016 case Instruction::FPToUI: 3017 case Instruction::FPToSI: 3018 case Instruction::FPExt: 3019 case Instruction::PtrToInt: 3020 case Instruction::IntToPtr: 3021 case Instruction::SIToFP: 3022 case Instruction::UIToFP: 3023 case Instruction::Trunc: 3024 case Instruction::FPTrunc: 3025 case Instruction::BitCast: { 3026 Type *SrcTy = VL0->getOperand(0)->getType(); 3027 for (Value *V : VL) { 3028 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3029 if (Ty != SrcTy || !isValidElementType(Ty)) { 3030 BS.cancelScheduling(VL, VL0); 3031 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3032 ReuseShuffleIndicies); 3033 LLVM_DEBUG(dbgs() 3034 << "SLP: Gathering casts with different src types.\n"); 3035 return; 3036 } 3037 } 3038 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3039 ReuseShuffleIndicies); 3040 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3041 3042 TE->setOperandsInOrder(); 3043 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3044 ValueList Operands; 3045 // Prepare the operand vector. 3046 for (Value *V : VL) 3047 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3048 3049 buildTree_rec(Operands, Depth + 1, {TE, i}); 3050 } 3051 return; 3052 } 3053 case Instruction::ICmp: 3054 case Instruction::FCmp: { 3055 // Check that all of the compares have the same predicate. 3056 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3057 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3058 Type *ComparedTy = VL0->getOperand(0)->getType(); 3059 for (Value *V : VL) { 3060 CmpInst *Cmp = cast<CmpInst>(V); 3061 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3062 Cmp->getOperand(0)->getType() != ComparedTy) { 3063 BS.cancelScheduling(VL, VL0); 3064 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3065 ReuseShuffleIndicies); 3066 LLVM_DEBUG(dbgs() 3067 << "SLP: Gathering cmp with different predicate.\n"); 3068 return; 3069 } 3070 } 3071 3072 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3073 ReuseShuffleIndicies); 3074 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3075 3076 ValueList Left, Right; 3077 if (cast<CmpInst>(VL0)->isCommutative()) { 3078 // Commutative predicate - collect + sort operands of the instructions 3079 // so that each side is more likely to have the same opcode. 3080 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3081 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3082 } else { 3083 // Collect operands - commute if it uses the swapped predicate. 3084 for (Value *V : VL) { 3085 auto *Cmp = cast<CmpInst>(V); 3086 Value *LHS = Cmp->getOperand(0); 3087 Value *RHS = Cmp->getOperand(1); 3088 if (Cmp->getPredicate() != P0) 3089 std::swap(LHS, RHS); 3090 Left.push_back(LHS); 3091 Right.push_back(RHS); 3092 } 3093 } 3094 TE->setOperand(0, Left); 3095 TE->setOperand(1, Right); 3096 buildTree_rec(Left, Depth + 1, {TE, 0}); 3097 buildTree_rec(Right, Depth + 1, {TE, 1}); 3098 return; 3099 } 3100 case Instruction::Select: 3101 case Instruction::FNeg: 3102 case Instruction::Add: 3103 case Instruction::FAdd: 3104 case Instruction::Sub: 3105 case Instruction::FSub: 3106 case Instruction::Mul: 3107 case Instruction::FMul: 3108 case Instruction::UDiv: 3109 case Instruction::SDiv: 3110 case Instruction::FDiv: 3111 case Instruction::URem: 3112 case Instruction::SRem: 3113 case Instruction::FRem: 3114 case Instruction::Shl: 3115 case Instruction::LShr: 3116 case Instruction::AShr: 3117 case Instruction::And: 3118 case Instruction::Or: 3119 case Instruction::Xor: { 3120 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3121 ReuseShuffleIndicies); 3122 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3123 3124 // Sort operands of the instructions so that each side is more likely to 3125 // have the same opcode. 3126 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3127 ValueList Left, Right; 3128 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3129 TE->setOperand(0, Left); 3130 TE->setOperand(1, Right); 3131 buildTree_rec(Left, Depth + 1, {TE, 0}); 3132 buildTree_rec(Right, Depth + 1, {TE, 1}); 3133 return; 3134 } 3135 3136 TE->setOperandsInOrder(); 3137 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3138 ValueList Operands; 3139 // Prepare the operand vector. 3140 for (Value *V : VL) 3141 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3142 3143 buildTree_rec(Operands, Depth + 1, {TE, i}); 3144 } 3145 return; 3146 } 3147 case Instruction::GetElementPtr: { 3148 // We don't combine GEPs with complicated (nested) indexing. 3149 for (Value *V : VL) { 3150 if (cast<Instruction>(V)->getNumOperands() != 2) { 3151 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3152 BS.cancelScheduling(VL, VL0); 3153 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3154 ReuseShuffleIndicies); 3155 return; 3156 } 3157 } 3158 3159 // We can't combine several GEPs into one vector if they operate on 3160 // different types. 3161 Type *Ty0 = VL0->getOperand(0)->getType(); 3162 for (Value *V : VL) { 3163 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3164 if (Ty0 != CurTy) { 3165 LLVM_DEBUG(dbgs() 3166 << "SLP: not-vectorizable GEP (different types).\n"); 3167 BS.cancelScheduling(VL, VL0); 3168 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3169 ReuseShuffleIndicies); 3170 return; 3171 } 3172 } 3173 3174 // We don't combine GEPs with non-constant indexes. 3175 Type *Ty1 = VL0->getOperand(1)->getType(); 3176 for (Value *V : VL) { 3177 auto Op = cast<Instruction>(V)->getOperand(1); 3178 if (!isa<ConstantInt>(Op) || 3179 (Op->getType() != Ty1 && 3180 Op->getType()->getScalarSizeInBits() > 3181 DL->getIndexSizeInBits( 3182 V->getType()->getPointerAddressSpace()))) { 3183 LLVM_DEBUG(dbgs() 3184 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3185 BS.cancelScheduling(VL, VL0); 3186 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3187 ReuseShuffleIndicies); 3188 return; 3189 } 3190 } 3191 3192 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3193 ReuseShuffleIndicies); 3194 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3195 TE->setOperandsInOrder(); 3196 for (unsigned i = 0, e = 2; i < e; ++i) { 3197 ValueList Operands; 3198 // Prepare the operand vector. 3199 for (Value *V : VL) 3200 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3201 3202 buildTree_rec(Operands, Depth + 1, {TE, i}); 3203 } 3204 return; 3205 } 3206 case Instruction::Store: { 3207 // Check if the stores are consecutive or if we need to swizzle them. 3208 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3209 // Avoid types that are padded when being allocated as scalars, while 3210 // being packed together in a vector (such as i1). 3211 if (DL->getTypeSizeInBits(ScalarTy) != 3212 DL->getTypeAllocSizeInBits(ScalarTy)) { 3213 BS.cancelScheduling(VL, VL0); 3214 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3215 ReuseShuffleIndicies); 3216 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3217 return; 3218 } 3219 // Make sure all stores in the bundle are simple - we can't vectorize 3220 // atomic or volatile stores. 3221 SmallVector<Value *, 4> PointerOps(VL.size()); 3222 ValueList Operands(VL.size()); 3223 auto POIter = PointerOps.begin(); 3224 auto OIter = Operands.begin(); 3225 for (Value *V : VL) { 3226 auto *SI = cast<StoreInst>(V); 3227 if (!SI->isSimple()) { 3228 BS.cancelScheduling(VL, VL0); 3229 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3230 ReuseShuffleIndicies); 3231 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3232 return; 3233 } 3234 *POIter = SI->getPointerOperand(); 3235 *OIter = SI->getValueOperand(); 3236 ++POIter; 3237 ++OIter; 3238 } 3239 3240 OrdersType CurrentOrder; 3241 // Check the order of pointer operands. 3242 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3243 Value *Ptr0; 3244 Value *PtrN; 3245 if (CurrentOrder.empty()) { 3246 Ptr0 = PointerOps.front(); 3247 PtrN = PointerOps.back(); 3248 } else { 3249 Ptr0 = PointerOps[CurrentOrder.front()]; 3250 PtrN = PointerOps[CurrentOrder.back()]; 3251 } 3252 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE); 3253 // Check that the sorted pointer operands are consecutive. 3254 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3255 if (CurrentOrder.empty()) { 3256 // Original stores are consecutive and does not require reordering. 3257 ++NumOpsWantToKeepOriginalOrder; 3258 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3259 UserTreeIdx, ReuseShuffleIndicies); 3260 TE->setOperandsInOrder(); 3261 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3262 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3263 } else { 3264 TreeEntry *TE = 3265 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3266 ReuseShuffleIndicies, CurrentOrder); 3267 TE->setOperandsInOrder(); 3268 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3269 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3270 findRootOrder(CurrentOrder); 3271 ++NumOpsWantToKeepOrder[CurrentOrder]; 3272 } 3273 return; 3274 } 3275 } 3276 3277 BS.cancelScheduling(VL, VL0); 3278 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3279 ReuseShuffleIndicies); 3280 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3281 return; 3282 } 3283 case Instruction::Call: { 3284 // Check if the calls are all to the same vectorizable intrinsic or 3285 // library function. 3286 CallInst *CI = cast<CallInst>(VL0); 3287 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3288 3289 VFShape Shape = VFShape::get( 3290 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3291 false /*HasGlobalPred*/); 3292 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3293 3294 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3295 BS.cancelScheduling(VL, VL0); 3296 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3297 ReuseShuffleIndicies); 3298 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3299 return; 3300 } 3301 Function *F = CI->getCalledFunction(); 3302 unsigned NumArgs = CI->getNumArgOperands(); 3303 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3304 for (unsigned j = 0; j != NumArgs; ++j) 3305 if (hasVectorInstrinsicScalarOpd(ID, j)) 3306 ScalarArgs[j] = CI->getArgOperand(j); 3307 for (Value *V : VL) { 3308 CallInst *CI2 = dyn_cast<CallInst>(V); 3309 if (!CI2 || CI2->getCalledFunction() != F || 3310 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3311 (VecFunc && 3312 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3313 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3314 BS.cancelScheduling(VL, VL0); 3315 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3316 ReuseShuffleIndicies); 3317 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3318 << "\n"); 3319 return; 3320 } 3321 // Some intrinsics have scalar arguments and should be same in order for 3322 // them to be vectorized. 3323 for (unsigned j = 0; j != NumArgs; ++j) { 3324 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3325 Value *A1J = CI2->getArgOperand(j); 3326 if (ScalarArgs[j] != A1J) { 3327 BS.cancelScheduling(VL, VL0); 3328 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3329 ReuseShuffleIndicies); 3330 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3331 << " argument " << ScalarArgs[j] << "!=" << A1J 3332 << "\n"); 3333 return; 3334 } 3335 } 3336 } 3337 // Verify that the bundle operands are identical between the two calls. 3338 if (CI->hasOperandBundles() && 3339 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3340 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3341 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3342 BS.cancelScheduling(VL, VL0); 3343 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3344 ReuseShuffleIndicies); 3345 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3346 << *CI << "!=" << *V << '\n'); 3347 return; 3348 } 3349 } 3350 3351 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3352 ReuseShuffleIndicies); 3353 TE->setOperandsInOrder(); 3354 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3355 ValueList Operands; 3356 // Prepare the operand vector. 3357 for (Value *V : VL) { 3358 auto *CI2 = cast<CallInst>(V); 3359 Operands.push_back(CI2->getArgOperand(i)); 3360 } 3361 buildTree_rec(Operands, Depth + 1, {TE, i}); 3362 } 3363 return; 3364 } 3365 case Instruction::ShuffleVector: { 3366 // If this is not an alternate sequence of opcode like add-sub 3367 // then do not vectorize this instruction. 3368 if (!S.isAltShuffle()) { 3369 BS.cancelScheduling(VL, VL0); 3370 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3371 ReuseShuffleIndicies); 3372 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3373 return; 3374 } 3375 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3376 ReuseShuffleIndicies); 3377 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3378 3379 // Reorder operands if reordering would enable vectorization. 3380 if (isa<BinaryOperator>(VL0)) { 3381 ValueList Left, Right; 3382 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3383 TE->setOperand(0, Left); 3384 TE->setOperand(1, Right); 3385 buildTree_rec(Left, Depth + 1, {TE, 0}); 3386 buildTree_rec(Right, Depth + 1, {TE, 1}); 3387 return; 3388 } 3389 3390 TE->setOperandsInOrder(); 3391 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3392 ValueList Operands; 3393 // Prepare the operand vector. 3394 for (Value *V : VL) 3395 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3396 3397 buildTree_rec(Operands, Depth + 1, {TE, i}); 3398 } 3399 return; 3400 } 3401 default: 3402 BS.cancelScheduling(VL, VL0); 3403 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3404 ReuseShuffleIndicies); 3405 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3406 return; 3407 } 3408 } 3409 3410 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3411 unsigned N = 1; 3412 Type *EltTy = T; 3413 3414 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3415 isa<VectorType>(EltTy)) { 3416 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3417 // Check that struct is homogeneous. 3418 for (const auto *Ty : ST->elements()) 3419 if (Ty != *ST->element_begin()) 3420 return 0; 3421 N *= ST->getNumElements(); 3422 EltTy = *ST->element_begin(); 3423 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3424 N *= AT->getNumElements(); 3425 EltTy = AT->getElementType(); 3426 } else { 3427 auto *VT = cast<FixedVectorType>(EltTy); 3428 N *= VT->getNumElements(); 3429 EltTy = VT->getElementType(); 3430 } 3431 } 3432 3433 if (!isValidElementType(EltTy)) 3434 return 0; 3435 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3436 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3437 return 0; 3438 return N; 3439 } 3440 3441 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3442 SmallVectorImpl<unsigned> &CurrentOrder) const { 3443 Instruction *E0 = cast<Instruction>(OpValue); 3444 assert(E0->getOpcode() == Instruction::ExtractElement || 3445 E0->getOpcode() == Instruction::ExtractValue); 3446 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3447 // Check if all of the extracts come from the same vector and from the 3448 // correct offset. 3449 Value *Vec = E0->getOperand(0); 3450 3451 CurrentOrder.clear(); 3452 3453 // We have to extract from a vector/aggregate with the same number of elements. 3454 unsigned NElts; 3455 if (E0->getOpcode() == Instruction::ExtractValue) { 3456 const DataLayout &DL = E0->getModule()->getDataLayout(); 3457 NElts = canMapToVector(Vec->getType(), DL); 3458 if (!NElts) 3459 return false; 3460 // Check if load can be rewritten as load of vector. 3461 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3462 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3463 return false; 3464 } else { 3465 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3466 } 3467 3468 if (NElts != VL.size()) 3469 return false; 3470 3471 // Check that all of the indices extract from the correct offset. 3472 bool ShouldKeepOrder = true; 3473 unsigned E = VL.size(); 3474 // Assign to all items the initial value E + 1 so we can check if the extract 3475 // instruction index was used already. 3476 // Also, later we can check that all the indices are used and we have a 3477 // consecutive access in the extract instructions, by checking that no 3478 // element of CurrentOrder still has value E + 1. 3479 CurrentOrder.assign(E, E + 1); 3480 unsigned I = 0; 3481 for (; I < E; ++I) { 3482 auto *Inst = cast<Instruction>(VL[I]); 3483 if (Inst->getOperand(0) != Vec) 3484 break; 3485 Optional<unsigned> Idx = getExtractIndex(Inst); 3486 if (!Idx) 3487 break; 3488 const unsigned ExtIdx = *Idx; 3489 if (ExtIdx != I) { 3490 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3491 break; 3492 ShouldKeepOrder = false; 3493 CurrentOrder[ExtIdx] = I; 3494 } else { 3495 if (CurrentOrder[I] != E + 1) 3496 break; 3497 CurrentOrder[I] = I; 3498 } 3499 } 3500 if (I < E) { 3501 CurrentOrder.clear(); 3502 return false; 3503 } 3504 3505 return ShouldKeepOrder; 3506 } 3507 3508 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3509 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3510 return ScalarToTreeEntry.count(U) > 0; 3511 }); 3512 } 3513 3514 static std::pair<InstructionCost, InstructionCost> 3515 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3516 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3517 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3518 3519 // Calculate the cost of the scalar and vector calls. 3520 SmallVector<Type *, 4> VecTys; 3521 for (Use &Arg : CI->args()) 3522 VecTys.push_back( 3523 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3524 FastMathFlags FMF; 3525 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3526 FMF = FPCI->getFastMathFlags(); 3527 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3528 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3529 dyn_cast<IntrinsicInst>(CI)); 3530 auto IntrinsicCost = 3531 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3532 3533 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3534 VecTy->getNumElements())), 3535 false /*HasGlobalPred*/); 3536 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3537 auto LibCost = IntrinsicCost; 3538 if (!CI->isNoBuiltin() && VecFunc) { 3539 // Calculate the cost of the vector library call. 3540 // If the corresponding vector call is cheaper, return its cost. 3541 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3542 TTI::TCK_RecipThroughput); 3543 } 3544 return {IntrinsicCost, LibCost}; 3545 } 3546 3547 /// Compute the cost of creating a vector of type \p VecTy containing the 3548 /// extracted values from \p VL. 3549 static InstructionCost 3550 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3551 TargetTransformInfo::ShuffleKind ShuffleKind, 3552 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3553 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3554 3555 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3556 VecTy->getNumElements() < NumOfParts) 3557 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3558 3559 bool AllConsecutive = true; 3560 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3561 unsigned Idx = -1; 3562 InstructionCost Cost = 0; 3563 3564 // Process extracts in blocks of EltsPerVector to check if the source vector 3565 // operand can be re-used directly. If not, add the cost of creating a shuffle 3566 // to extract the values into a vector register. 3567 for (auto *V : VL) { 3568 ++Idx; 3569 3570 // Reached the start of a new vector registers. 3571 if (Idx % EltsPerVector == 0) { 3572 AllConsecutive = true; 3573 continue; 3574 } 3575 3576 // Check all extracts for a vector register on the target directly 3577 // extract values in order. 3578 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3579 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3580 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3581 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3582 3583 if (AllConsecutive) 3584 continue; 3585 3586 // Skip all indices, except for the last index per vector block. 3587 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3588 continue; 3589 3590 // If we have a series of extracts which are not consecutive and hence 3591 // cannot re-use the source vector register directly, compute the shuffle 3592 // cost to extract the a vector with EltsPerVector elements. 3593 Cost += TTI.getShuffleCost( 3594 TargetTransformInfo::SK_PermuteSingleSrc, 3595 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 3596 } 3597 return Cost; 3598 } 3599 3600 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E) { 3601 ArrayRef<Value*> VL = E->Scalars; 3602 3603 Type *ScalarTy = VL[0]->getType(); 3604 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3605 ScalarTy = SI->getValueOperand()->getType(); 3606 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3607 ScalarTy = CI->getOperand(0)->getType(); 3608 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 3609 ScalarTy = IE->getOperand(1)->getType(); 3610 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3611 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3612 3613 // If we have computed a smaller type for the expression, update VecTy so 3614 // that the costs will be accurate. 3615 if (MinBWs.count(VL[0])) 3616 VecTy = FixedVectorType::get( 3617 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3618 3619 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3620 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3621 InstructionCost ReuseShuffleCost = 0; 3622 if (NeedToShuffleReuses) { 3623 ReuseShuffleCost = 3624 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 3625 E->ReuseShuffleIndices); 3626 } 3627 // FIXME: it tries to fix a problem with MSVC buildbots. 3628 TargetTransformInfo &TTIRef = *TTI; 3629 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, 3630 VecTy](InstructionCost &Cost, bool IsGather) { 3631 DenseMap<Value *, int> ExtractVectorsTys; 3632 for (auto *V : VL) { 3633 // If all users of instruction are going to be vectorized and this 3634 // instruction itself is not going to be vectorized, consider this 3635 // instruction as dead and remove its cost from the final cost of the 3636 // vectorized tree. 3637 if (IsGather && (!areAllUsersVectorized(cast<Instruction>(V)) || 3638 ScalarToTreeEntry.count(V))) 3639 continue; 3640 auto *EE = cast<ExtractElementInst>(V); 3641 unsigned Idx = *getExtractIndex(EE); 3642 if (TTIRef.getNumberOfParts(VecTy) != 3643 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 3644 auto It = 3645 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 3646 It->getSecond() = std::min<int>(It->second, Idx); 3647 } 3648 // Take credit for instruction that will become dead. 3649 if (EE->hasOneUse()) { 3650 Instruction *Ext = EE->user_back(); 3651 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3652 all_of(Ext->users(), 3653 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3654 // Use getExtractWithExtendCost() to calculate the cost of 3655 // extractelement/ext pair. 3656 Cost -= 3657 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 3658 EE->getVectorOperandType(), Idx); 3659 // Add back the cost of s|zext which is subtracted separately. 3660 Cost += TTIRef.getCastInstrCost( 3661 Ext->getOpcode(), Ext->getType(), EE->getType(), 3662 TTI::getCastContextHint(Ext), CostKind, Ext); 3663 continue; 3664 } 3665 } 3666 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 3667 EE->getVectorOperandType(), Idx); 3668 } 3669 // Add a cost for subvector extracts/inserts if required. 3670 for (const auto &Data : ExtractVectorsTys) { 3671 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 3672 unsigned NumElts = VecTy->getNumElements(); 3673 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 3674 unsigned Idx = (Data.second / NumElts) * NumElts; 3675 unsigned EENumElts = EEVTy->getNumElements(); 3676 if (Idx + NumElts <= EENumElts) { 3677 Cost += 3678 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3679 EEVTy, None, Idx, VecTy); 3680 } else { 3681 // Need to round up the subvector type vectorization factor to avoid a 3682 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 3683 // <= EENumElts. 3684 auto *SubVT = 3685 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 3686 Cost += 3687 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3688 EEVTy, None, Idx, SubVT); 3689 } 3690 } else { 3691 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 3692 VecTy, None, 0, EEVTy); 3693 } 3694 } 3695 }; 3696 if (E->State == TreeEntry::NeedToGather) { 3697 if (allConstant(VL)) 3698 return 0; 3699 if (isa<InsertElementInst>(VL[0])) 3700 return InstructionCost::getInvalid(); 3701 SmallVector<int> Mask; 3702 SmallVector<const TreeEntry *> Entries; 3703 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 3704 isGatherShuffledEntry(E, Mask, Entries); 3705 if (Shuffle.hasValue()) { 3706 InstructionCost GatherCost = 0; 3707 if (ShuffleVectorInst::isIdentityMask(Mask)) { 3708 // Perfect match in the graph, will reuse the previously vectorized 3709 // node. Cost is 0. 3710 LLVM_DEBUG( 3711 dbgs() 3712 << "SLP: perfect diamond match for gather bundle that starts with " 3713 << *VL.front() << ".\n"); 3714 } else { 3715 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 3716 << " entries for bundle that starts with " 3717 << *VL.front() << ".\n"); 3718 // Detected that instead of gather we can emit a shuffle of single/two 3719 // previously vectorized nodes. Add the cost of the permutation rather 3720 // than gather. 3721 GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask); 3722 } 3723 return ReuseShuffleCost + GatherCost; 3724 } 3725 if (isSplat(VL)) { 3726 // Found the broadcasting of the single scalar, calculate the cost as the 3727 // broadcast. 3728 return ReuseShuffleCost + 3729 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None, 3730 0); 3731 } 3732 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 3733 allSameBlock(VL)) { 3734 // Check that gather of extractelements can be represented as just a 3735 // shuffle of a single/two vectors the scalars are extracted from. 3736 SmallVector<int> Mask; 3737 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3738 isShuffle(VL, Mask); 3739 if (ShuffleKind.hasValue()) { 3740 // Found the bunch of extractelement instructions that must be gathered 3741 // into a vector and can be represented as a permutation elements in a 3742 // single input vector or of 2 input vectors. 3743 InstructionCost Cost = 3744 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 3745 AdjustExtractsCost(Cost, /*IsGather=*/true); 3746 return ReuseShuffleCost + Cost; 3747 } 3748 } 3749 return ReuseShuffleCost + getGatherCost(VL); 3750 } 3751 assert((E->State == TreeEntry::Vectorize || 3752 E->State == TreeEntry::ScatterVectorize) && 3753 "Unhandled state"); 3754 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3755 Instruction *VL0 = E->getMainOp(); 3756 unsigned ShuffleOrOp = 3757 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3758 switch (ShuffleOrOp) { 3759 case Instruction::PHI: 3760 return 0; 3761 3762 case Instruction::ExtractValue: 3763 case Instruction::ExtractElement: { 3764 // The common cost of removal ExtractElement/ExtractValue instructions + 3765 // the cost of shuffles, if required to resuffle the original vector. 3766 InstructionCost CommonCost = 0; 3767 if (NeedToShuffleReuses) { 3768 unsigned Idx = 0; 3769 for (unsigned I : E->ReuseShuffleIndices) { 3770 if (ShuffleOrOp == Instruction::ExtractElement) { 3771 auto *EE = cast<ExtractElementInst>(VL[I]); 3772 ReuseShuffleCost -= TTI->getVectorInstrCost( 3773 Instruction::ExtractElement, EE->getVectorOperandType(), 3774 *getExtractIndex(EE)); 3775 } else { 3776 ReuseShuffleCost -= TTI->getVectorInstrCost( 3777 Instruction::ExtractElement, VecTy, Idx); 3778 ++Idx; 3779 } 3780 } 3781 Idx = ReuseShuffleNumbers; 3782 for (Value *V : VL) { 3783 if (ShuffleOrOp == Instruction::ExtractElement) { 3784 auto *EE = cast<ExtractElementInst>(V); 3785 ReuseShuffleCost += TTI->getVectorInstrCost( 3786 Instruction::ExtractElement, EE->getVectorOperandType(), 3787 *getExtractIndex(EE)); 3788 } else { 3789 --Idx; 3790 ReuseShuffleCost += TTI->getVectorInstrCost( 3791 Instruction::ExtractElement, VecTy, Idx); 3792 } 3793 } 3794 CommonCost = ReuseShuffleCost; 3795 } else if (!E->ReorderIndices.empty()) { 3796 SmallVector<int> NewMask; 3797 inversePermutation(E->ReorderIndices, NewMask); 3798 CommonCost = TTI->getShuffleCost( 3799 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3800 } 3801 if (ShuffleOrOp == Instruction::ExtractValue) { 3802 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3803 auto *EI = cast<Instruction>(VL[I]); 3804 // Take credit for instruction that will become dead. 3805 if (EI->hasOneUse()) { 3806 Instruction *Ext = EI->user_back(); 3807 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3808 all_of(Ext->users(), 3809 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3810 // Use getExtractWithExtendCost() to calculate the cost of 3811 // extractelement/ext pair. 3812 CommonCost -= TTI->getExtractWithExtendCost( 3813 Ext->getOpcode(), Ext->getType(), VecTy, I); 3814 // Add back the cost of s|zext which is subtracted separately. 3815 CommonCost += TTI->getCastInstrCost( 3816 Ext->getOpcode(), Ext->getType(), EI->getType(), 3817 TTI::getCastContextHint(Ext), CostKind, Ext); 3818 continue; 3819 } 3820 } 3821 CommonCost -= 3822 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3823 } 3824 } else { 3825 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 3826 } 3827 return CommonCost; 3828 } 3829 case Instruction::InsertElement: { 3830 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 3831 3832 unsigned const NumElts = SrcVecTy->getNumElements(); 3833 unsigned const NumScalars = VL.size(); 3834 APInt DemandedElts = APInt::getNullValue(NumElts); 3835 // TODO: Add support for Instruction::InsertValue. 3836 unsigned Offset = UINT_MAX; 3837 bool IsIdentity = true; 3838 SmallVector<int> ShuffleMask(NumElts, UndefMaskElem); 3839 for (unsigned I = 0; I < NumScalars; ++I) { 3840 Optional<int> InsertIdx = getInsertIndex(VL[I], 0); 3841 if (!InsertIdx || *InsertIdx == UndefMaskElem) 3842 continue; 3843 unsigned Idx = *InsertIdx; 3844 DemandedElts.setBit(Idx); 3845 if (Idx < Offset) { 3846 Offset = Idx; 3847 IsIdentity &= I == 0; 3848 } else { 3849 assert(Idx >= Offset && "Failed to find vector index offset"); 3850 IsIdentity &= Idx - Offset == I; 3851 } 3852 ShuffleMask[Idx] = I; 3853 } 3854 assert(Offset < NumElts && "Failed to find vector index offset"); 3855 3856 InstructionCost Cost = 0; 3857 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 3858 /*Insert*/ true, /*Extract*/ false); 3859 3860 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) 3861 Cost += TTI->getShuffleCost( 3862 TargetTransformInfo::SK_InsertSubvector, SrcVecTy, /*Mask*/ None, 3863 Offset, 3864 FixedVectorType::get(SrcVecTy->getElementType(), NumScalars)); 3865 else if (!IsIdentity) 3866 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, 3867 ShuffleMask); 3868 3869 return Cost; 3870 } 3871 case Instruction::ZExt: 3872 case Instruction::SExt: 3873 case Instruction::FPToUI: 3874 case Instruction::FPToSI: 3875 case Instruction::FPExt: 3876 case Instruction::PtrToInt: 3877 case Instruction::IntToPtr: 3878 case Instruction::SIToFP: 3879 case Instruction::UIToFP: 3880 case Instruction::Trunc: 3881 case Instruction::FPTrunc: 3882 case Instruction::BitCast: { 3883 Type *SrcTy = VL0->getOperand(0)->getType(); 3884 InstructionCost ScalarEltCost = 3885 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3886 TTI::getCastContextHint(VL0), CostKind, VL0); 3887 if (NeedToShuffleReuses) { 3888 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3889 } 3890 3891 // Calculate the cost of this instruction. 3892 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3893 3894 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3895 InstructionCost VecCost = 0; 3896 // Check if the values are candidates to demote. 3897 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3898 VecCost = 3899 ReuseShuffleCost + 3900 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3901 TTI::getCastContextHint(VL0), CostKind, VL0); 3902 } 3903 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3904 return VecCost - ScalarCost; 3905 } 3906 case Instruction::FCmp: 3907 case Instruction::ICmp: 3908 case Instruction::Select: { 3909 // Calculate the cost of this instruction. 3910 InstructionCost ScalarEltCost = 3911 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3912 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3913 if (NeedToShuffleReuses) { 3914 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3915 } 3916 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3917 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3918 3919 // Check if all entries in VL are either compares or selects with compares 3920 // as condition that have the same predicates. 3921 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3922 bool First = true; 3923 for (auto *V : VL) { 3924 CmpInst::Predicate CurrentPred; 3925 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3926 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3927 !match(V, MatchCmp)) || 3928 (!First && VecPred != CurrentPred)) { 3929 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3930 break; 3931 } 3932 First = false; 3933 VecPred = CurrentPred; 3934 } 3935 3936 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3937 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3938 // Check if it is possible and profitable to use min/max for selects in 3939 // VL. 3940 // 3941 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3942 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3943 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3944 {VecTy, VecTy}); 3945 InstructionCost IntrinsicCost = 3946 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3947 // If the selects are the only uses of the compares, they will be dead 3948 // and we can adjust the cost by removing their cost. 3949 if (IntrinsicAndUse.second) 3950 IntrinsicCost -= 3951 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3952 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3953 VecCost = std::min(VecCost, IntrinsicCost); 3954 } 3955 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3956 return ReuseShuffleCost + VecCost - ScalarCost; 3957 } 3958 case Instruction::FNeg: 3959 case Instruction::Add: 3960 case Instruction::FAdd: 3961 case Instruction::Sub: 3962 case Instruction::FSub: 3963 case Instruction::Mul: 3964 case Instruction::FMul: 3965 case Instruction::UDiv: 3966 case Instruction::SDiv: 3967 case Instruction::FDiv: 3968 case Instruction::URem: 3969 case Instruction::SRem: 3970 case Instruction::FRem: 3971 case Instruction::Shl: 3972 case Instruction::LShr: 3973 case Instruction::AShr: 3974 case Instruction::And: 3975 case Instruction::Or: 3976 case Instruction::Xor: { 3977 // Certain instructions can be cheaper to vectorize if they have a 3978 // constant second vector operand. 3979 TargetTransformInfo::OperandValueKind Op1VK = 3980 TargetTransformInfo::OK_AnyValue; 3981 TargetTransformInfo::OperandValueKind Op2VK = 3982 TargetTransformInfo::OK_UniformConstantValue; 3983 TargetTransformInfo::OperandValueProperties Op1VP = 3984 TargetTransformInfo::OP_None; 3985 TargetTransformInfo::OperandValueProperties Op2VP = 3986 TargetTransformInfo::OP_PowerOf2; 3987 3988 // If all operands are exactly the same ConstantInt then set the 3989 // operand kind to OK_UniformConstantValue. 3990 // If instead not all operands are constants, then set the operand kind 3991 // to OK_AnyValue. If all operands are constants but not the same, 3992 // then set the operand kind to OK_NonUniformConstantValue. 3993 ConstantInt *CInt0 = nullptr; 3994 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3995 const Instruction *I = cast<Instruction>(VL[i]); 3996 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3997 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3998 if (!CInt) { 3999 Op2VK = TargetTransformInfo::OK_AnyValue; 4000 Op2VP = TargetTransformInfo::OP_None; 4001 break; 4002 } 4003 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4004 !CInt->getValue().isPowerOf2()) 4005 Op2VP = TargetTransformInfo::OP_None; 4006 if (i == 0) { 4007 CInt0 = CInt; 4008 continue; 4009 } 4010 if (CInt0 != CInt) 4011 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4012 } 4013 4014 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4015 InstructionCost ScalarEltCost = 4016 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4017 Op2VK, Op1VP, Op2VP, Operands, VL0); 4018 if (NeedToShuffleReuses) { 4019 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4020 } 4021 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4022 InstructionCost VecCost = 4023 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4024 Op2VK, Op1VP, Op2VP, Operands, VL0); 4025 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4026 return ReuseShuffleCost + VecCost - ScalarCost; 4027 } 4028 case Instruction::GetElementPtr: { 4029 TargetTransformInfo::OperandValueKind Op1VK = 4030 TargetTransformInfo::OK_AnyValue; 4031 TargetTransformInfo::OperandValueKind Op2VK = 4032 TargetTransformInfo::OK_UniformConstantValue; 4033 4034 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4035 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4036 if (NeedToShuffleReuses) { 4037 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4038 } 4039 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4040 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4041 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4042 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4043 return ReuseShuffleCost + VecCost - ScalarCost; 4044 } 4045 case Instruction::Load: { 4046 // Cost of wide load - cost of scalar loads. 4047 Align alignment = cast<LoadInst>(VL0)->getAlign(); 4048 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4049 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 4050 if (NeedToShuffleReuses) { 4051 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4052 } 4053 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4054 InstructionCost VecLdCost; 4055 if (E->State == TreeEntry::Vectorize) { 4056 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 4057 CostKind, VL0); 4058 } else { 4059 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4060 VecLdCost = TTI->getGatherScatterOpCost( 4061 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4062 /*VariableMask=*/false, alignment, CostKind, VL0); 4063 } 4064 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) { 4065 SmallVector<int> NewMask; 4066 inversePermutation(E->ReorderIndices, NewMask); 4067 VecLdCost += TTI->getShuffleCost( 4068 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 4069 } 4070 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 4071 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 4072 } 4073 case Instruction::Store: { 4074 // We know that we can merge the stores. Calculate the cost. 4075 bool IsReorder = !E->ReorderIndices.empty(); 4076 auto *SI = 4077 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4078 Align Alignment = SI->getAlign(); 4079 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4080 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4081 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4082 InstructionCost VecStCost = TTI->getMemoryOpCost( 4083 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4084 if (IsReorder) { 4085 SmallVector<int> NewMask; 4086 inversePermutation(E->ReorderIndices, NewMask); 4087 VecStCost += TTI->getShuffleCost( 4088 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 4089 } 4090 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 4091 return VecStCost - ScalarStCost; 4092 } 4093 case Instruction::Call: { 4094 CallInst *CI = cast<CallInst>(VL0); 4095 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4096 4097 // Calculate the cost of the scalar and vector calls. 4098 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4099 InstructionCost ScalarEltCost = 4100 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4101 if (NeedToShuffleReuses) { 4102 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4103 } 4104 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4105 4106 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4107 InstructionCost VecCallCost = 4108 std::min(VecCallCosts.first, VecCallCosts.second); 4109 4110 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4111 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4112 << " for " << *CI << "\n"); 4113 4114 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 4115 } 4116 case Instruction::ShuffleVector: { 4117 assert(E->isAltShuffle() && 4118 ((Instruction::isBinaryOp(E->getOpcode()) && 4119 Instruction::isBinaryOp(E->getAltOpcode())) || 4120 (Instruction::isCast(E->getOpcode()) && 4121 Instruction::isCast(E->getAltOpcode()))) && 4122 "Invalid Shuffle Vector Operand"); 4123 InstructionCost ScalarCost = 0; 4124 if (NeedToShuffleReuses) { 4125 for (unsigned Idx : E->ReuseShuffleIndices) { 4126 Instruction *I = cast<Instruction>(VL[Idx]); 4127 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 4128 } 4129 for (Value *V : VL) { 4130 Instruction *I = cast<Instruction>(V); 4131 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 4132 } 4133 } 4134 for (Value *V : VL) { 4135 Instruction *I = cast<Instruction>(V); 4136 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4137 ScalarCost += TTI->getInstructionCost(I, CostKind); 4138 } 4139 // VecCost is equal to sum of the cost of creating 2 vectors 4140 // and the cost of creating shuffle. 4141 InstructionCost VecCost = 0; 4142 if (Instruction::isBinaryOp(E->getOpcode())) { 4143 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4144 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4145 CostKind); 4146 } else { 4147 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4148 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4149 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4150 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4151 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4152 TTI::CastContextHint::None, CostKind); 4153 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4154 TTI::CastContextHint::None, CostKind); 4155 } 4156 4157 SmallVector<int> Mask(E->Scalars.size()); 4158 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 4159 auto *OpInst = cast<Instruction>(E->Scalars[I]); 4160 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4161 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 4162 } 4163 VecCost += 4164 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 4165 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4166 return ReuseShuffleCost + VecCost - ScalarCost; 4167 } 4168 default: 4169 llvm_unreachable("Unknown instruction"); 4170 } 4171 } 4172 4173 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4174 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4175 << VectorizableTree.size() << " is fully vectorizable .\n"); 4176 4177 // We only handle trees of heights 1 and 2. 4178 if (VectorizableTree.size() == 1 && 4179 VectorizableTree[0]->State == TreeEntry::Vectorize) 4180 return true; 4181 4182 if (VectorizableTree.size() != 2) 4183 return false; 4184 4185 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4186 // with the second gather nodes if they have less scalar operands rather than 4187 // the initial tree element (may be profitable to shuffle the second gather) 4188 // or they are extractelements, which form shuffle. 4189 SmallVector<int> Mask; 4190 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4191 (allConstant(VectorizableTree[1]->Scalars) || 4192 isSplat(VectorizableTree[1]->Scalars) || 4193 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4194 VectorizableTree[1]->Scalars.size() < 4195 VectorizableTree[0]->Scalars.size()) || 4196 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4197 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement && 4198 isShuffle(VectorizableTree[1]->Scalars, Mask)))) 4199 return true; 4200 4201 // Gathering cost would be too much for tiny trees. 4202 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4203 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4204 return false; 4205 4206 return true; 4207 } 4208 4209 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4210 TargetTransformInfo *TTI, 4211 bool MustMatchOrInst) { 4212 // Look past the root to find a source value. Arbitrarily follow the 4213 // path through operand 0 of any 'or'. Also, peek through optional 4214 // shift-left-by-multiple-of-8-bits. 4215 Value *ZextLoad = Root; 4216 const APInt *ShAmtC; 4217 bool FoundOr = false; 4218 while (!isa<ConstantExpr>(ZextLoad) && 4219 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4220 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4221 ShAmtC->urem(8) == 0))) { 4222 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4223 ZextLoad = BinOp->getOperand(0); 4224 if (BinOp->getOpcode() == Instruction::Or) 4225 FoundOr = true; 4226 } 4227 // Check if the input is an extended load of the required or/shift expression. 4228 Value *LoadPtr; 4229 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4230 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4231 return false; 4232 4233 // Require that the total load bit width is a legal integer type. 4234 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4235 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4236 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4237 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4238 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4239 return false; 4240 4241 // Everything matched - assume that we can fold the whole sequence using 4242 // load combining. 4243 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4244 << *(cast<Instruction>(Root)) << "\n"); 4245 4246 return true; 4247 } 4248 4249 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4250 if (RdxKind != RecurKind::Or) 4251 return false; 4252 4253 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4254 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4255 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4256 /* MatchOr */ false); 4257 } 4258 4259 bool BoUpSLP::isLoadCombineCandidate() const { 4260 // Peek through a final sequence of stores and check if all operations are 4261 // likely to be load-combined. 4262 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4263 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4264 Value *X; 4265 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4266 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 4267 return false; 4268 } 4269 return true; 4270 } 4271 4272 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4273 // No need to vectorize inserts of gathered values. 4274 if (VectorizableTree.size() == 2 && 4275 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 4276 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4277 return true; 4278 4279 // We can vectorize the tree if its size is greater than or equal to the 4280 // minimum size specified by the MinTreeSize command line option. 4281 if (VectorizableTree.size() >= MinTreeSize) 4282 return false; 4283 4284 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4285 // can vectorize it if we can prove it fully vectorizable. 4286 if (isFullyVectorizableTinyTree()) 4287 return false; 4288 4289 assert(VectorizableTree.empty() 4290 ? ExternalUses.empty() 4291 : true && "We shouldn't have any external users"); 4292 4293 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4294 // vectorizable. 4295 return true; 4296 } 4297 4298 InstructionCost BoUpSLP::getSpillCost() const { 4299 // Walk from the bottom of the tree to the top, tracking which values are 4300 // live. When we see a call instruction that is not part of our tree, 4301 // query TTI to see if there is a cost to keeping values live over it 4302 // (for example, if spills and fills are required). 4303 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4304 InstructionCost Cost = 0; 4305 4306 SmallPtrSet<Instruction*, 4> LiveValues; 4307 Instruction *PrevInst = nullptr; 4308 4309 // The entries in VectorizableTree are not necessarily ordered by their 4310 // position in basic blocks. Collect them and order them by dominance so later 4311 // instructions are guaranteed to be visited first. For instructions in 4312 // different basic blocks, we only scan to the beginning of the block, so 4313 // their order does not matter, as long as all instructions in a basic block 4314 // are grouped together. Using dominance ensures a deterministic order. 4315 SmallVector<Instruction *, 16> OrderedScalars; 4316 for (const auto &TEPtr : VectorizableTree) { 4317 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4318 if (!Inst) 4319 continue; 4320 OrderedScalars.push_back(Inst); 4321 } 4322 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 4323 return DT->dominates(B, A); 4324 }); 4325 4326 for (Instruction *Inst : OrderedScalars) { 4327 if (!PrevInst) { 4328 PrevInst = Inst; 4329 continue; 4330 } 4331 4332 // Update LiveValues. 4333 LiveValues.erase(PrevInst); 4334 for (auto &J : PrevInst->operands()) { 4335 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4336 LiveValues.insert(cast<Instruction>(&*J)); 4337 } 4338 4339 LLVM_DEBUG({ 4340 dbgs() << "SLP: #LV: " << LiveValues.size(); 4341 for (auto *X : LiveValues) 4342 dbgs() << " " << X->getName(); 4343 dbgs() << ", Looking at "; 4344 Inst->dump(); 4345 }); 4346 4347 // Now find the sequence of instructions between PrevInst and Inst. 4348 unsigned NumCalls = 0; 4349 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4350 PrevInstIt = 4351 PrevInst->getIterator().getReverse(); 4352 while (InstIt != PrevInstIt) { 4353 if (PrevInstIt == PrevInst->getParent()->rend()) { 4354 PrevInstIt = Inst->getParent()->rbegin(); 4355 continue; 4356 } 4357 4358 // Debug information does not impact spill cost. 4359 if ((isa<CallInst>(&*PrevInstIt) && 4360 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4361 &*PrevInstIt != PrevInst) 4362 NumCalls++; 4363 4364 ++PrevInstIt; 4365 } 4366 4367 if (NumCalls) { 4368 SmallVector<Type*, 4> V; 4369 for (auto *II : LiveValues) { 4370 auto *ScalarTy = II->getType(); 4371 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 4372 ScalarTy = VectorTy->getElementType(); 4373 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 4374 } 4375 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4376 } 4377 4378 PrevInst = Inst; 4379 } 4380 4381 return Cost; 4382 } 4383 4384 InstructionCost BoUpSLP::getTreeCost() { 4385 InstructionCost Cost = 0; 4386 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4387 << VectorizableTree.size() << ".\n"); 4388 4389 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4390 4391 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4392 TreeEntry &TE = *VectorizableTree[I].get(); 4393 4394 InstructionCost C = getEntryCost(&TE); 4395 Cost += C; 4396 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4397 << " for bundle that starts with " << *TE.Scalars[0] 4398 << ".\n" 4399 << "SLP: Current total cost = " << Cost << "\n"); 4400 } 4401 4402 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4403 InstructionCost ExtractCost = 0; 4404 SmallBitVector IsIdentity; 4405 SmallVector<unsigned> VF; 4406 SmallVector<SmallVector<int>> ShuffleMask; 4407 SmallVector<Value *> FirstUsers; 4408 SmallVector<APInt> DemandedElts; 4409 for (ExternalUser &EU : ExternalUses) { 4410 // We only add extract cost once for the same scalar. 4411 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4412 continue; 4413 4414 // Uses by ephemeral values are free (because the ephemeral value will be 4415 // removed prior to code generation, and so the extraction will be 4416 // removed as well). 4417 if (EphValues.count(EU.User)) 4418 continue; 4419 4420 // No extract cost for vector "scalar" 4421 if (isa<FixedVectorType>(EU.Scalar->getType())) 4422 continue; 4423 4424 // If found user is an insertelement, do not calculate extract cost but try 4425 // to detect it as a final shuffled/identity match. 4426 if (EU.User && isa<InsertElementInst>(EU.User)) { 4427 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 4428 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 4429 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4430 continue; 4431 Value *VU = EU.User; 4432 auto *It = find_if(FirstUsers, [VU](Value *V) { 4433 // Checks if 2 insertelements are from the same buildvector. 4434 if (VU->getType() != V->getType()) 4435 return false; 4436 auto *IE1 = cast<InsertElementInst>(VU); 4437 auto *IE2 = cast<InsertElementInst>(V); 4438 // Go though of insertelement instructions trying to find either VU as 4439 // the original vector for IE2 or V as the original vector for IE1. 4440 do { 4441 if (IE1 == VU || IE2 == V) 4442 return true; 4443 if (IE1) 4444 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 4445 if (IE2) 4446 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 4447 } while (IE1 || IE2); 4448 return false; 4449 }); 4450 int VecId = -1; 4451 if (It == FirstUsers.end()) { 4452 VF.push_back(FTy->getNumElements()); 4453 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 4454 FirstUsers.push_back(EU.User); 4455 DemandedElts.push_back(APInt::getNullValue(VF.back())); 4456 IsIdentity.push_back(true); 4457 VecId = FirstUsers.size() - 1; 4458 } else { 4459 VecId = std::distance(FirstUsers.begin(), It); 4460 } 4461 int Idx = *InsertIdx; 4462 ShuffleMask[VecId][Idx] = EU.Lane; 4463 IsIdentity.set(IsIdentity.test(VecId) & 4464 (EU.Lane == Idx || EU.Lane == UndefMaskElem)); 4465 DemandedElts[VecId].setBit(Idx); 4466 } 4467 } 4468 4469 // If we plan to rewrite the tree in a smaller type, we will need to sign 4470 // extend the extracted value back to the original type. Here, we account 4471 // for the extract and the added cost of the sign extend if needed. 4472 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4473 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4474 if (MinBWs.count(ScalarRoot)) { 4475 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4476 auto Extend = 4477 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4478 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4479 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4480 VecTy, EU.Lane); 4481 } else { 4482 ExtractCost += 4483 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4484 } 4485 } 4486 4487 InstructionCost SpillCost = getSpillCost(); 4488 Cost += SpillCost + ExtractCost; 4489 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 4490 if (!IsIdentity.test(I)) { 4491 InstructionCost C = TTI->getShuffleCost( 4492 TTI::SK_PermuteSingleSrc, 4493 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 4494 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4495 << " for final shuffle of insertelement external users " 4496 << *VectorizableTree.front()->Scalars.front() << ".\n" 4497 << "SLP: Current total cost = " << Cost << "\n"); 4498 Cost += C; 4499 } 4500 unsigned VF = ShuffleMask[I].size(); 4501 for (int &Mask : ShuffleMask[I]) 4502 Mask = (Mask == UndefMaskElem ? 0 : VF) + Mask; 4503 InstructionCost C = TTI->getShuffleCost( 4504 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 4505 ShuffleMask[I]); 4506 LLVM_DEBUG( 4507 dbgs() 4508 << "SLP: Adding cost " << C 4509 << " for final shuffle of vector node and external insertelement users " 4510 << *VectorizableTree.front()->Scalars.front() << ".\n" 4511 << "SLP: Current total cost = " << Cost << "\n"); 4512 Cost += C; 4513 InstructionCost InsertCost = TTI->getScalarizationOverhead( 4514 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 4515 /*Insert*/ true, 4516 /*Extract*/ false); 4517 Cost -= InsertCost; 4518 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 4519 << " for insertelements gather.\n" 4520 << "SLP: Current total cost = " << Cost << "\n"); 4521 } 4522 4523 #ifndef NDEBUG 4524 SmallString<256> Str; 4525 { 4526 raw_svector_ostream OS(Str); 4527 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4528 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4529 << "SLP: Total Cost = " << Cost << ".\n"; 4530 } 4531 LLVM_DEBUG(dbgs() << Str); 4532 if (ViewSLPTree) 4533 ViewGraph(this, "SLP" + F->getName(), false, Str); 4534 #endif 4535 4536 return Cost; 4537 } 4538 4539 Optional<TargetTransformInfo::ShuffleKind> 4540 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 4541 SmallVectorImpl<const TreeEntry *> &Entries) { 4542 // TODO: currently checking only for Scalars in the tree entry, need to count 4543 // reused elements too for better cost estimation. 4544 Mask.assign(TE->Scalars.size(), UndefMaskElem); 4545 Entries.clear(); 4546 // Build a lists of values to tree entries. 4547 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 4548 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 4549 if (EntryPtr.get() == TE) 4550 break; 4551 if (EntryPtr->State != TreeEntry::NeedToGather) 4552 continue; 4553 for (Value *V : EntryPtr->Scalars) 4554 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 4555 } 4556 // Find all tree entries used by the gathered values. If no common entries 4557 // found - not a shuffle. 4558 // Here we build a set of tree nodes for each gathered value and trying to 4559 // find the intersection between these sets. If we have at least one common 4560 // tree node for each gathered value - we have just a permutation of the 4561 // single vector. If we have 2 different sets, we're in situation where we 4562 // have a permutation of 2 input vectors. 4563 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 4564 DenseMap<Value *, int> UsedValuesEntry; 4565 for (Value *V : TE->Scalars) { 4566 if (isa<UndefValue>(V)) 4567 continue; 4568 // Build a list of tree entries where V is used. 4569 SmallPtrSet<const TreeEntry *, 4> VToTEs; 4570 auto It = ValueToTEs.find(V); 4571 if (It != ValueToTEs.end()) 4572 VToTEs = It->second; 4573 if (const TreeEntry *VTE = getTreeEntry(V)) 4574 VToTEs.insert(VTE); 4575 if (VToTEs.empty()) 4576 return None; 4577 if (UsedTEs.empty()) { 4578 // The first iteration, just insert the list of nodes to vector. 4579 UsedTEs.push_back(VToTEs); 4580 } else { 4581 // Need to check if there are any previously used tree nodes which use V. 4582 // If there are no such nodes, consider that we have another one input 4583 // vector. 4584 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 4585 unsigned Idx = 0; 4586 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 4587 // Do we have a non-empty intersection of previously listed tree entries 4588 // and tree entries using current V? 4589 set_intersect(VToTEs, Set); 4590 if (!VToTEs.empty()) { 4591 // Yes, write the new subset and continue analysis for the next 4592 // scalar. 4593 Set.swap(VToTEs); 4594 break; 4595 } 4596 VToTEs = SavedVToTEs; 4597 ++Idx; 4598 } 4599 // No non-empty intersection found - need to add a second set of possible 4600 // source vectors. 4601 if (Idx == UsedTEs.size()) { 4602 // If the number of input vectors is greater than 2 - not a permutation, 4603 // fallback to the regular gather. 4604 if (UsedTEs.size() == 2) 4605 return None; 4606 UsedTEs.push_back(SavedVToTEs); 4607 Idx = UsedTEs.size() - 1; 4608 } 4609 UsedValuesEntry.try_emplace(V, Idx); 4610 } 4611 } 4612 4613 unsigned VF = 0; 4614 if (UsedTEs.size() == 1) { 4615 // Try to find the perfect match in another gather node at first. 4616 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 4617 return EntryPtr->isSame(TE->Scalars); 4618 }); 4619 if (It != UsedTEs.front().end()) { 4620 Entries.push_back(*It); 4621 std::iota(Mask.begin(), Mask.end(), 0); 4622 return TargetTransformInfo::SK_PermuteSingleSrc; 4623 } 4624 // No perfect match, just shuffle, so choose the first tree node. 4625 Entries.push_back(*UsedTEs.front().begin()); 4626 } else { 4627 // Try to find nodes with the same vector factor. 4628 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 4629 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 4630 // landed. 4631 auto &&GetVF = [](const TreeEntry *TE) { 4632 if (!TE->ReuseShuffleIndices.empty()) 4633 return TE->ReuseShuffleIndices.size(); 4634 return TE->Scalars.size(); 4635 }; 4636 DenseMap<int, const TreeEntry *> VFToTE; 4637 for (const TreeEntry *TE : UsedTEs.front()) 4638 VFToTE.try_emplace(GetVF(TE), TE); 4639 for (const TreeEntry *TE : UsedTEs.back()) { 4640 auto It = VFToTE.find(GetVF(TE)); 4641 if (It != VFToTE.end()) { 4642 VF = It->first; 4643 Entries.push_back(It->second); 4644 Entries.push_back(TE); 4645 break; 4646 } 4647 } 4648 // No 2 source vectors with the same vector factor - give up and do regular 4649 // gather. 4650 if (Entries.empty()) 4651 return None; 4652 } 4653 4654 // Build a shuffle mask for better cost estimation and vector emission. 4655 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 4656 Value *V = TE->Scalars[I]; 4657 if (isa<UndefValue>(V)) 4658 continue; 4659 unsigned Idx = UsedValuesEntry.lookup(V); 4660 const TreeEntry *VTE = Entries[Idx]; 4661 int FoundLane = findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V); 4662 Mask[I] = Idx * VF + FoundLane; 4663 // Extra check required by isSingleSourceMaskImpl function (called by 4664 // ShuffleVectorInst::isSingleSourceMask). 4665 if (Mask[I] >= 2 * E) 4666 return None; 4667 } 4668 switch (Entries.size()) { 4669 case 1: 4670 return TargetTransformInfo::SK_PermuteSingleSrc; 4671 case 2: 4672 return TargetTransformInfo::SK_PermuteTwoSrc; 4673 default: 4674 break; 4675 } 4676 return None; 4677 } 4678 4679 InstructionCost 4680 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4681 const DenseSet<unsigned> &ShuffledIndices) const { 4682 unsigned NumElts = Ty->getNumElements(); 4683 APInt DemandedElts = APInt::getNullValue(NumElts); 4684 for (unsigned I = 0; I < NumElts; ++I) 4685 if (!ShuffledIndices.count(I)) 4686 DemandedElts.setBit(I); 4687 InstructionCost Cost = 4688 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4689 /*Extract*/ false); 4690 if (!ShuffledIndices.empty()) 4691 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4692 return Cost; 4693 } 4694 4695 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4696 // Find the type of the operands in VL. 4697 Type *ScalarTy = VL[0]->getType(); 4698 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4699 ScalarTy = SI->getValueOperand()->getType(); 4700 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4701 // Find the cost of inserting/extracting values from the vector. 4702 // Check if the same elements are inserted several times and count them as 4703 // shuffle candidates. 4704 DenseSet<unsigned> ShuffledElements; 4705 DenseSet<Value *> UniqueElements; 4706 // Iterate in reverse order to consider insert elements with the high cost. 4707 for (unsigned I = VL.size(); I > 0; --I) { 4708 unsigned Idx = I - 1; 4709 if (!UniqueElements.insert(VL[Idx]).second) 4710 ShuffledElements.insert(Idx); 4711 } 4712 return getGatherCost(VecTy, ShuffledElements); 4713 } 4714 4715 // Perform operand reordering on the instructions in VL and return the reordered 4716 // operands in Left and Right. 4717 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4718 SmallVectorImpl<Value *> &Left, 4719 SmallVectorImpl<Value *> &Right, 4720 const DataLayout &DL, 4721 ScalarEvolution &SE, 4722 const BoUpSLP &R) { 4723 if (VL.empty()) 4724 return; 4725 VLOperands Ops(VL, DL, SE, R); 4726 // Reorder the operands in place. 4727 Ops.reorder(); 4728 Left = Ops.getVL(0); 4729 Right = Ops.getVL(1); 4730 } 4731 4732 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 4733 // Get the basic block this bundle is in. All instructions in the bundle 4734 // should be in this block. 4735 auto *Front = E->getMainOp(); 4736 auto *BB = Front->getParent(); 4737 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4738 auto *I = cast<Instruction>(V); 4739 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4740 })); 4741 4742 // The last instruction in the bundle in program order. 4743 Instruction *LastInst = nullptr; 4744 4745 // Find the last instruction. The common case should be that BB has been 4746 // scheduled, and the last instruction is VL.back(). So we start with 4747 // VL.back() and iterate over schedule data until we reach the end of the 4748 // bundle. The end of the bundle is marked by null ScheduleData. 4749 if (BlocksSchedules.count(BB)) { 4750 auto *Bundle = 4751 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4752 if (Bundle && Bundle->isPartOfBundle()) 4753 for (; Bundle; Bundle = Bundle->NextInBundle) 4754 if (Bundle->OpValue == Bundle->Inst) 4755 LastInst = Bundle->Inst; 4756 } 4757 4758 // LastInst can still be null at this point if there's either not an entry 4759 // for BB in BlocksSchedules or there's no ScheduleData available for 4760 // VL.back(). This can be the case if buildTree_rec aborts for various 4761 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4762 // size is reached, etc.). ScheduleData is initialized in the scheduling 4763 // "dry-run". 4764 // 4765 // If this happens, we can still find the last instruction by brute force. We 4766 // iterate forwards from Front (inclusive) until we either see all 4767 // instructions in the bundle or reach the end of the block. If Front is the 4768 // last instruction in program order, LastInst will be set to Front, and we 4769 // will visit all the remaining instructions in the block. 4770 // 4771 // One of the reasons we exit early from buildTree_rec is to place an upper 4772 // bound on compile-time. Thus, taking an additional compile-time hit here is 4773 // not ideal. However, this should be exceedingly rare since it requires that 4774 // we both exit early from buildTree_rec and that the bundle be out-of-order 4775 // (causing us to iterate all the way to the end of the block). 4776 if (!LastInst) { 4777 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4778 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4779 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4780 LastInst = &I; 4781 if (Bundle.empty()) 4782 break; 4783 } 4784 } 4785 assert(LastInst && "Failed to find last instruction in bundle"); 4786 4787 // Set the insertion point after the last instruction in the bundle. Set the 4788 // debug location to Front. 4789 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4790 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4791 } 4792 4793 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4794 Value *Val0 = 4795 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4796 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4797 Value *Vec = PoisonValue::get(VecTy); 4798 unsigned InsIndex = 0; 4799 for (Value *Val : VL) { 4800 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4801 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4802 if (!InsElt) 4803 continue; 4804 GatherSeq.insert(InsElt); 4805 CSEBlocks.insert(InsElt->getParent()); 4806 // Add to our 'need-to-extract' list. 4807 if (TreeEntry *Entry = getTreeEntry(Val)) { 4808 // Find which lane we need to extract. 4809 int FoundLane = 4810 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Val); 4811 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4812 } 4813 } 4814 4815 return Vec; 4816 } 4817 4818 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4819 InstructionsState S = getSameOpcode(VL); 4820 if (S.getOpcode()) { 4821 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4822 if (E->isSame(VL)) { 4823 Value *V = vectorizeTree(E); 4824 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4825 // Reshuffle to get only unique values. 4826 // If some of the scalars are duplicated in the vectorization tree 4827 // entry, we do not vectorize them but instead generate a mask for the 4828 // reuses. But if there are several users of the same entry, they may 4829 // have different vectorization factors. This is especially important 4830 // for PHI nodes. In this case, we need to adapt the resulting 4831 // instruction for the user vectorization factor and have to reshuffle 4832 // it again to take only unique elements of the vector. Without this 4833 // code the function incorrectly returns reduced vector instruction 4834 // with the same elements, not with the unique ones. 4835 // block: 4836 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4837 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4838 // ... (use %2) 4839 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4840 // br %block 4841 SmallVector<int, 4> UniqueIdxs; 4842 SmallSet<int, 4> UsedIdxs; 4843 int Pos = 0; 4844 for (int Idx : E->ReuseShuffleIndices) { 4845 if (UsedIdxs.insert(Idx).second) 4846 UniqueIdxs.emplace_back(Pos); 4847 ++Pos; 4848 } 4849 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4850 } 4851 return V; 4852 } 4853 } 4854 } 4855 4856 // Check that every instruction appears once in this bundle. 4857 SmallVector<int, 4> ReuseShuffleIndicies; 4858 SmallVector<Value *, 4> UniqueValues; 4859 if (VL.size() > 2) { 4860 DenseMap<Value *, unsigned> UniquePositions; 4861 for (Value *V : VL) { 4862 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4863 ReuseShuffleIndicies.emplace_back(Res.first->second); 4864 if (Res.second || isa<Constant>(V)) 4865 UniqueValues.emplace_back(V); 4866 } 4867 // Do not shuffle single element or if number of unique values is not power 4868 // of 2. 4869 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4870 !llvm::isPowerOf2_32(UniqueValues.size())) 4871 ReuseShuffleIndicies.clear(); 4872 else 4873 VL = UniqueValues; 4874 } 4875 4876 Value *Vec = gather(VL); 4877 if (!ReuseShuffleIndicies.empty()) { 4878 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4879 if (auto *I = dyn_cast<Instruction>(Vec)) { 4880 GatherSeq.insert(I); 4881 CSEBlocks.insert(I->getParent()); 4882 } 4883 } 4884 return Vec; 4885 } 4886 4887 namespace { 4888 /// Merges shuffle masks and emits final shuffle instruction, if required. 4889 class ShuffleInstructionBuilder { 4890 IRBuilderBase &Builder; 4891 bool IsFinalized = false; 4892 SmallVector<int, 4> Mask; 4893 4894 public: 4895 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4896 4897 /// Adds a mask, inverting it before applying. 4898 void addInversedMask(ArrayRef<unsigned> SubMask) { 4899 if (SubMask.empty()) 4900 return; 4901 SmallVector<int, 4> NewMask; 4902 inversePermutation(SubMask, NewMask); 4903 addMask(NewMask); 4904 } 4905 4906 /// Functions adds masks, merging them into single one. 4907 void addMask(ArrayRef<unsigned> SubMask) { 4908 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4909 addMask(NewMask); 4910 } 4911 4912 void addMask(ArrayRef<int> SubMask) { 4913 if (SubMask.empty()) 4914 return; 4915 if (Mask.empty()) { 4916 Mask.append(SubMask.begin(), SubMask.end()); 4917 return; 4918 } 4919 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4920 int TermValue = std::min(Mask.size(), SubMask.size()); 4921 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4922 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4923 NewMask[I] = E; 4924 continue; 4925 } 4926 NewMask[I] = Mask[SubMask[I]]; 4927 } 4928 Mask.swap(NewMask); 4929 } 4930 4931 Value *finalize(Value *V) { 4932 IsFinalized = true; 4933 if (Mask.empty()) 4934 return V; 4935 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4936 } 4937 4938 ~ShuffleInstructionBuilder() { 4939 assert((IsFinalized || Mask.empty()) && 4940 "Shuffle construction must be finalized."); 4941 } 4942 }; 4943 } // namespace 4944 4945 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4946 IRBuilder<>::InsertPointGuard Guard(Builder); 4947 4948 if (E->VectorizedValue) { 4949 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4950 return E->VectorizedValue; 4951 } 4952 4953 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4954 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4955 if (E->State == TreeEntry::NeedToGather) { 4956 setInsertPointAfterBundle(E); 4957 Value *Vec; 4958 SmallVector<int> Mask; 4959 SmallVector<const TreeEntry *> Entries; 4960 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4961 isGatherShuffledEntry(E, Mask, Entries); 4962 if (Shuffle.hasValue()) { 4963 assert((Entries.size() == 1 || Entries.size() == 2) && 4964 "Expected shuffle of 1 or 2 entries."); 4965 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 4966 Entries.back()->VectorizedValue, Mask); 4967 } else { 4968 Vec = gather(E->Scalars); 4969 } 4970 if (NeedToShuffleReuses) { 4971 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4972 Vec = ShuffleBuilder.finalize(Vec); 4973 if (auto *I = dyn_cast<Instruction>(Vec)) { 4974 GatherSeq.insert(I); 4975 CSEBlocks.insert(I->getParent()); 4976 } 4977 } 4978 E->VectorizedValue = Vec; 4979 return Vec; 4980 } 4981 4982 assert((E->State == TreeEntry::Vectorize || 4983 E->State == TreeEntry::ScatterVectorize) && 4984 "Unhandled state"); 4985 unsigned ShuffleOrOp = 4986 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4987 Instruction *VL0 = E->getMainOp(); 4988 Type *ScalarTy = VL0->getType(); 4989 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4990 ScalarTy = Store->getValueOperand()->getType(); 4991 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 4992 ScalarTy = IE->getOperand(1)->getType(); 4993 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4994 switch (ShuffleOrOp) { 4995 case Instruction::PHI: { 4996 auto *PH = cast<PHINode>(VL0); 4997 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4998 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4999 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5000 Value *V = NewPhi; 5001 if (NeedToShuffleReuses) 5002 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 5003 5004 E->VectorizedValue = V; 5005 5006 // PHINodes may have multiple entries from the same block. We want to 5007 // visit every block once. 5008 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5009 5010 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5011 ValueList Operands; 5012 BasicBlock *IBB = PH->getIncomingBlock(i); 5013 5014 if (!VisitedBBs.insert(IBB).second) { 5015 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5016 continue; 5017 } 5018 5019 Builder.SetInsertPoint(IBB->getTerminator()); 5020 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5021 Value *Vec = vectorizeTree(E->getOperand(i)); 5022 NewPhi->addIncoming(Vec, IBB); 5023 } 5024 5025 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5026 "Invalid number of incoming values"); 5027 return V; 5028 } 5029 5030 case Instruction::ExtractElement: { 5031 Value *V = E->getSingleOperand(0); 5032 Builder.SetInsertPoint(VL0); 5033 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5034 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5035 V = ShuffleBuilder.finalize(V); 5036 E->VectorizedValue = V; 5037 return V; 5038 } 5039 case Instruction::ExtractValue: { 5040 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5041 Builder.SetInsertPoint(LI); 5042 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5043 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5044 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5045 Value *NewV = propagateMetadata(V, E->Scalars); 5046 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5047 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5048 NewV = ShuffleBuilder.finalize(NewV); 5049 E->VectorizedValue = NewV; 5050 return NewV; 5051 } 5052 case Instruction::InsertElement: { 5053 Builder.SetInsertPoint(VL0); 5054 Value *V = vectorizeTree(E->getOperand(1)); 5055 5056 const unsigned NumElts = 5057 cast<FixedVectorType>(VL0->getType())->getNumElements(); 5058 const unsigned NumScalars = E->Scalars.size(); 5059 5060 // Create InsertVector shuffle if necessary 5061 Instruction *FirstInsert = nullptr; 5062 bool IsIdentity = true; 5063 unsigned Offset = UINT_MAX; 5064 for (unsigned I = 0; I < NumScalars; ++I) { 5065 Value *Scalar = E->Scalars[I]; 5066 if (!FirstInsert && 5067 !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0))) 5068 FirstInsert = cast<Instruction>(Scalar); 5069 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5070 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5071 continue; 5072 unsigned Idx = *InsertIdx; 5073 if (Idx < Offset) { 5074 Offset = Idx; 5075 IsIdentity &= I == 0; 5076 } else { 5077 assert(Idx >= Offset && "Failed to find vector index offset"); 5078 IsIdentity &= Idx - Offset == I; 5079 } 5080 } 5081 assert(Offset < NumElts && "Failed to find vector index offset"); 5082 5083 // Create shuffle to resize vector 5084 SmallVector<int> Mask(NumElts, UndefMaskElem); 5085 if (!IsIdentity) { 5086 for (unsigned I = 0; I < NumScalars; ++I) { 5087 Value *Scalar = E->Scalars[I]; 5088 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5089 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5090 continue; 5091 Mask[*InsertIdx - Offset] = I; 5092 } 5093 } else { 5094 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5095 } 5096 if (!IsIdentity || NumElts != NumScalars) 5097 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask); 5098 5099 if (NumElts != NumScalars) { 5100 SmallVector<int> InsertMask(NumElts); 5101 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5102 for (unsigned I = 0; I < NumElts; I++) { 5103 if (Mask[I] != UndefMaskElem) 5104 InsertMask[Offset + I] = NumElts + I; 5105 } 5106 5107 V = Builder.CreateShuffleVector( 5108 FirstInsert->getOperand(0), V, InsertMask, 5109 cast<Instruction>(E->Scalars.back())->getName()); 5110 } 5111 5112 ++NumVectorInstructions; 5113 E->VectorizedValue = V; 5114 return V; 5115 } 5116 case Instruction::ZExt: 5117 case Instruction::SExt: 5118 case Instruction::FPToUI: 5119 case Instruction::FPToSI: 5120 case Instruction::FPExt: 5121 case Instruction::PtrToInt: 5122 case Instruction::IntToPtr: 5123 case Instruction::SIToFP: 5124 case Instruction::UIToFP: 5125 case Instruction::Trunc: 5126 case Instruction::FPTrunc: 5127 case Instruction::BitCast: { 5128 setInsertPointAfterBundle(E); 5129 5130 Value *InVec = vectorizeTree(E->getOperand(0)); 5131 5132 if (E->VectorizedValue) { 5133 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5134 return E->VectorizedValue; 5135 } 5136 5137 auto *CI = cast<CastInst>(VL0); 5138 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5139 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5140 V = ShuffleBuilder.finalize(V); 5141 5142 E->VectorizedValue = V; 5143 ++NumVectorInstructions; 5144 return V; 5145 } 5146 case Instruction::FCmp: 5147 case Instruction::ICmp: { 5148 setInsertPointAfterBundle(E); 5149 5150 Value *L = vectorizeTree(E->getOperand(0)); 5151 Value *R = vectorizeTree(E->getOperand(1)); 5152 5153 if (E->VectorizedValue) { 5154 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5155 return E->VectorizedValue; 5156 } 5157 5158 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5159 Value *V = Builder.CreateCmp(P0, L, R); 5160 propagateIRFlags(V, E->Scalars, VL0); 5161 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5162 V = ShuffleBuilder.finalize(V); 5163 5164 E->VectorizedValue = V; 5165 ++NumVectorInstructions; 5166 return V; 5167 } 5168 case Instruction::Select: { 5169 setInsertPointAfterBundle(E); 5170 5171 Value *Cond = vectorizeTree(E->getOperand(0)); 5172 Value *True = vectorizeTree(E->getOperand(1)); 5173 Value *False = vectorizeTree(E->getOperand(2)); 5174 5175 if (E->VectorizedValue) { 5176 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5177 return E->VectorizedValue; 5178 } 5179 5180 Value *V = Builder.CreateSelect(Cond, True, False); 5181 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5182 V = ShuffleBuilder.finalize(V); 5183 5184 E->VectorizedValue = V; 5185 ++NumVectorInstructions; 5186 return V; 5187 } 5188 case Instruction::FNeg: { 5189 setInsertPointAfterBundle(E); 5190 5191 Value *Op = vectorizeTree(E->getOperand(0)); 5192 5193 if (E->VectorizedValue) { 5194 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5195 return E->VectorizedValue; 5196 } 5197 5198 Value *V = Builder.CreateUnOp( 5199 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 5200 propagateIRFlags(V, E->Scalars, VL0); 5201 if (auto *I = dyn_cast<Instruction>(V)) 5202 V = propagateMetadata(I, E->Scalars); 5203 5204 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5205 V = ShuffleBuilder.finalize(V); 5206 5207 E->VectorizedValue = V; 5208 ++NumVectorInstructions; 5209 5210 return V; 5211 } 5212 case Instruction::Add: 5213 case Instruction::FAdd: 5214 case Instruction::Sub: 5215 case Instruction::FSub: 5216 case Instruction::Mul: 5217 case Instruction::FMul: 5218 case Instruction::UDiv: 5219 case Instruction::SDiv: 5220 case Instruction::FDiv: 5221 case Instruction::URem: 5222 case Instruction::SRem: 5223 case Instruction::FRem: 5224 case Instruction::Shl: 5225 case Instruction::LShr: 5226 case Instruction::AShr: 5227 case Instruction::And: 5228 case Instruction::Or: 5229 case Instruction::Xor: { 5230 setInsertPointAfterBundle(E); 5231 5232 Value *LHS = vectorizeTree(E->getOperand(0)); 5233 Value *RHS = vectorizeTree(E->getOperand(1)); 5234 5235 if (E->VectorizedValue) { 5236 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5237 return E->VectorizedValue; 5238 } 5239 5240 Value *V = Builder.CreateBinOp( 5241 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 5242 RHS); 5243 propagateIRFlags(V, E->Scalars, VL0); 5244 if (auto *I = dyn_cast<Instruction>(V)) 5245 V = propagateMetadata(I, E->Scalars); 5246 5247 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5248 V = ShuffleBuilder.finalize(V); 5249 5250 E->VectorizedValue = V; 5251 ++NumVectorInstructions; 5252 5253 return V; 5254 } 5255 case Instruction::Load: { 5256 // Loads are inserted at the head of the tree because we don't want to 5257 // sink them all the way down past store instructions. 5258 bool IsReorder = E->updateStateIfReorder(); 5259 if (IsReorder) 5260 VL0 = E->getMainOp(); 5261 setInsertPointAfterBundle(E); 5262 5263 LoadInst *LI = cast<LoadInst>(VL0); 5264 Instruction *NewLI; 5265 unsigned AS = LI->getPointerAddressSpace(); 5266 Value *PO = LI->getPointerOperand(); 5267 if (E->State == TreeEntry::Vectorize) { 5268 5269 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 5270 5271 // The pointer operand uses an in-tree scalar so we add the new BitCast 5272 // to ExternalUses list to make sure that an extract will be generated 5273 // in the future. 5274 if (getTreeEntry(PO)) 5275 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 5276 5277 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 5278 } else { 5279 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 5280 Value *VecPtr = vectorizeTree(E->getOperand(0)); 5281 // Use the minimum alignment of the gathered loads. 5282 Align CommonAlignment = LI->getAlign(); 5283 for (Value *V : E->Scalars) 5284 CommonAlignment = 5285 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5286 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 5287 } 5288 Value *V = propagateMetadata(NewLI, E->Scalars); 5289 5290 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5291 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5292 V = ShuffleBuilder.finalize(V); 5293 E->VectorizedValue = V; 5294 ++NumVectorInstructions; 5295 return V; 5296 } 5297 case Instruction::Store: { 5298 bool IsReorder = !E->ReorderIndices.empty(); 5299 auto *SI = cast<StoreInst>( 5300 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 5301 unsigned AS = SI->getPointerAddressSpace(); 5302 5303 setInsertPointAfterBundle(E); 5304 5305 Value *VecValue = vectorizeTree(E->getOperand(0)); 5306 ShuffleBuilder.addMask(E->ReorderIndices); 5307 VecValue = ShuffleBuilder.finalize(VecValue); 5308 5309 Value *ScalarPtr = SI->getPointerOperand(); 5310 Value *VecPtr = Builder.CreateBitCast( 5311 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 5312 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 5313 SI->getAlign()); 5314 5315 // The pointer operand uses an in-tree scalar, so add the new BitCast to 5316 // ExternalUses to make sure that an extract will be generated in the 5317 // future. 5318 if (getTreeEntry(ScalarPtr)) 5319 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 5320 5321 Value *V = propagateMetadata(ST, E->Scalars); 5322 5323 E->VectorizedValue = V; 5324 ++NumVectorInstructions; 5325 return V; 5326 } 5327 case Instruction::GetElementPtr: { 5328 setInsertPointAfterBundle(E); 5329 5330 Value *Op0 = vectorizeTree(E->getOperand(0)); 5331 5332 std::vector<Value *> OpVecs; 5333 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 5334 ++j) { 5335 ValueList &VL = E->getOperand(j); 5336 // Need to cast all elements to the same type before vectorization to 5337 // avoid crash. 5338 Type *VL0Ty = VL0->getOperand(j)->getType(); 5339 Type *Ty = llvm::all_of( 5340 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 5341 ? VL0Ty 5342 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5343 ->getPointerOperandType() 5344 ->getScalarType()); 5345 for (Value *&V : VL) { 5346 auto *CI = cast<ConstantInt>(V); 5347 V = ConstantExpr::getIntegerCast(CI, Ty, 5348 CI->getValue().isSignBitSet()); 5349 } 5350 Value *OpVec = vectorizeTree(VL); 5351 OpVecs.push_back(OpVec); 5352 } 5353 5354 Value *V = Builder.CreateGEP( 5355 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 5356 if (Instruction *I = dyn_cast<Instruction>(V)) 5357 V = propagateMetadata(I, E->Scalars); 5358 5359 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5360 V = ShuffleBuilder.finalize(V); 5361 5362 E->VectorizedValue = V; 5363 ++NumVectorInstructions; 5364 5365 return V; 5366 } 5367 case Instruction::Call: { 5368 CallInst *CI = cast<CallInst>(VL0); 5369 setInsertPointAfterBundle(E); 5370 5371 Intrinsic::ID IID = Intrinsic::not_intrinsic; 5372 if (Function *FI = CI->getCalledFunction()) 5373 IID = FI->getIntrinsicID(); 5374 5375 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5376 5377 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5378 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 5379 VecCallCosts.first <= VecCallCosts.second; 5380 5381 Value *ScalarArg = nullptr; 5382 std::vector<Value *> OpVecs; 5383 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 5384 ValueList OpVL; 5385 // Some intrinsics have scalar arguments. This argument should not be 5386 // vectorized. 5387 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 5388 CallInst *CEI = cast<CallInst>(VL0); 5389 ScalarArg = CEI->getArgOperand(j); 5390 OpVecs.push_back(CEI->getArgOperand(j)); 5391 continue; 5392 } 5393 5394 Value *OpVec = vectorizeTree(E->getOperand(j)); 5395 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 5396 OpVecs.push_back(OpVec); 5397 } 5398 5399 Function *CF; 5400 if (!UseIntrinsic) { 5401 VFShape Shape = 5402 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5403 VecTy->getNumElements())), 5404 false /*HasGlobalPred*/); 5405 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 5406 } else { 5407 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 5408 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 5409 } 5410 5411 SmallVector<OperandBundleDef, 1> OpBundles; 5412 CI->getOperandBundlesAsDefs(OpBundles); 5413 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 5414 5415 // The scalar argument uses an in-tree scalar so we add the new vectorized 5416 // call to ExternalUses list to make sure that an extract will be 5417 // generated in the future. 5418 if (ScalarArg && getTreeEntry(ScalarArg)) 5419 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 5420 5421 propagateIRFlags(V, E->Scalars, VL0); 5422 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5423 V = ShuffleBuilder.finalize(V); 5424 5425 E->VectorizedValue = V; 5426 ++NumVectorInstructions; 5427 return V; 5428 } 5429 case Instruction::ShuffleVector: { 5430 assert(E->isAltShuffle() && 5431 ((Instruction::isBinaryOp(E->getOpcode()) && 5432 Instruction::isBinaryOp(E->getAltOpcode())) || 5433 (Instruction::isCast(E->getOpcode()) && 5434 Instruction::isCast(E->getAltOpcode()))) && 5435 "Invalid Shuffle Vector Operand"); 5436 5437 Value *LHS = nullptr, *RHS = nullptr; 5438 if (Instruction::isBinaryOp(E->getOpcode())) { 5439 setInsertPointAfterBundle(E); 5440 LHS = vectorizeTree(E->getOperand(0)); 5441 RHS = vectorizeTree(E->getOperand(1)); 5442 } else { 5443 setInsertPointAfterBundle(E); 5444 LHS = vectorizeTree(E->getOperand(0)); 5445 } 5446 5447 if (E->VectorizedValue) { 5448 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5449 return E->VectorizedValue; 5450 } 5451 5452 Value *V0, *V1; 5453 if (Instruction::isBinaryOp(E->getOpcode())) { 5454 V0 = Builder.CreateBinOp( 5455 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 5456 V1 = Builder.CreateBinOp( 5457 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 5458 } else { 5459 V0 = Builder.CreateCast( 5460 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 5461 V1 = Builder.CreateCast( 5462 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 5463 } 5464 5465 // Create shuffle to take alternate operations from the vector. 5466 // Also, gather up main and alt scalar ops to propagate IR flags to 5467 // each vector operation. 5468 ValueList OpScalars, AltScalars; 5469 unsigned e = E->Scalars.size(); 5470 SmallVector<int, 8> Mask(e); 5471 for (unsigned i = 0; i < e; ++i) { 5472 auto *OpInst = cast<Instruction>(E->Scalars[i]); 5473 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 5474 if (OpInst->getOpcode() == E->getAltOpcode()) { 5475 Mask[i] = e + i; 5476 AltScalars.push_back(E->Scalars[i]); 5477 } else { 5478 Mask[i] = i; 5479 OpScalars.push_back(E->Scalars[i]); 5480 } 5481 } 5482 5483 propagateIRFlags(V0, OpScalars); 5484 propagateIRFlags(V1, AltScalars); 5485 5486 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 5487 if (Instruction *I = dyn_cast<Instruction>(V)) 5488 V = propagateMetadata(I, E->Scalars); 5489 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5490 V = ShuffleBuilder.finalize(V); 5491 5492 E->VectorizedValue = V; 5493 ++NumVectorInstructions; 5494 5495 return V; 5496 } 5497 default: 5498 llvm_unreachable("unknown inst"); 5499 } 5500 return nullptr; 5501 } 5502 5503 Value *BoUpSLP::vectorizeTree() { 5504 ExtraValueToDebugLocsMap ExternallyUsedValues; 5505 return vectorizeTree(ExternallyUsedValues); 5506 } 5507 5508 Value * 5509 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 5510 // All blocks must be scheduled before any instructions are inserted. 5511 for (auto &BSIter : BlocksSchedules) { 5512 scheduleBlock(BSIter.second.get()); 5513 } 5514 5515 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5516 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 5517 5518 // If the vectorized tree can be rewritten in a smaller type, we truncate the 5519 // vectorized root. InstCombine will then rewrite the entire expression. We 5520 // sign extend the extracted values below. 5521 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5522 if (MinBWs.count(ScalarRoot)) { 5523 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 5524 // If current instr is a phi and not the last phi, insert it after the 5525 // last phi node. 5526 if (isa<PHINode>(I)) 5527 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 5528 else 5529 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 5530 } 5531 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 5532 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5533 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 5534 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 5535 VectorizableTree[0]->VectorizedValue = Trunc; 5536 } 5537 5538 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 5539 << " values .\n"); 5540 5541 // Extract all of the elements with the external uses. 5542 for (const auto &ExternalUse : ExternalUses) { 5543 Value *Scalar = ExternalUse.Scalar; 5544 llvm::User *User = ExternalUse.User; 5545 5546 // Skip users that we already RAUW. This happens when one instruction 5547 // has multiple uses of the same value. 5548 if (User && !is_contained(Scalar->users(), User)) 5549 continue; 5550 TreeEntry *E = getTreeEntry(Scalar); 5551 assert(E && "Invalid scalar"); 5552 assert(E->State != TreeEntry::NeedToGather && 5553 "Extracting from a gather list"); 5554 5555 Value *Vec = E->VectorizedValue; 5556 assert(Vec && "Can't find vectorizable value"); 5557 5558 Value *Lane = Builder.getInt32(ExternalUse.Lane); 5559 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 5560 if (Scalar->getType() != Vec->getType()) { 5561 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5562 // If necessary, sign-extend or zero-extend ScalarRoot 5563 // to the larger type. 5564 if (!MinBWs.count(ScalarRoot)) 5565 return Ex; 5566 if (MinBWs[ScalarRoot].second) 5567 return Builder.CreateSExt(Ex, Scalar->getType()); 5568 return Builder.CreateZExt(Ex, Scalar->getType()); 5569 } else { 5570 assert(isa<FixedVectorType>(Scalar->getType()) && 5571 isa<InsertElementInst>(Scalar) && 5572 "In-tree scalar of vector type is not insertelement?"); 5573 return Vec; 5574 } 5575 }; 5576 // If User == nullptr, the Scalar is used as extra arg. Generate 5577 // ExtractElement instruction and update the record for this scalar in 5578 // ExternallyUsedValues. 5579 if (!User) { 5580 assert(ExternallyUsedValues.count(Scalar) && 5581 "Scalar with nullptr as an external user must be registered in " 5582 "ExternallyUsedValues map"); 5583 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5584 Builder.SetInsertPoint(VecI->getParent(), 5585 std::next(VecI->getIterator())); 5586 } else { 5587 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5588 } 5589 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5590 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 5591 auto &Locs = ExternallyUsedValues[Scalar]; 5592 ExternallyUsedValues.insert({NewInst, Locs}); 5593 ExternallyUsedValues.erase(Scalar); 5594 // Required to update internally referenced instructions. 5595 Scalar->replaceAllUsesWith(NewInst); 5596 continue; 5597 } 5598 5599 // Generate extracts for out-of-tree users. 5600 // Find the insertion point for the extractelement lane. 5601 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5602 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5603 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5604 if (PH->getIncomingValue(i) == Scalar) { 5605 Instruction *IncomingTerminator = 5606 PH->getIncomingBlock(i)->getTerminator(); 5607 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5608 Builder.SetInsertPoint(VecI->getParent(), 5609 std::next(VecI->getIterator())); 5610 } else { 5611 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5612 } 5613 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5614 CSEBlocks.insert(PH->getIncomingBlock(i)); 5615 PH->setOperand(i, NewInst); 5616 } 5617 } 5618 } else { 5619 Builder.SetInsertPoint(cast<Instruction>(User)); 5620 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5621 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5622 User->replaceUsesOfWith(Scalar, NewInst); 5623 } 5624 } else { 5625 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5626 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5627 CSEBlocks.insert(&F->getEntryBlock()); 5628 User->replaceUsesOfWith(Scalar, NewInst); 5629 } 5630 5631 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5632 } 5633 5634 // For each vectorized value: 5635 for (auto &TEPtr : VectorizableTree) { 5636 TreeEntry *Entry = TEPtr.get(); 5637 5638 // No need to handle users of gathered values. 5639 if (Entry->State == TreeEntry::NeedToGather) 5640 continue; 5641 5642 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5643 5644 // For each lane: 5645 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5646 Value *Scalar = Entry->Scalars[Lane]; 5647 5648 #ifndef NDEBUG 5649 Type *Ty = Scalar->getType(); 5650 if (!Ty->isVoidTy()) { 5651 for (User *U : Scalar->users()) { 5652 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5653 5654 // It is legal to delete users in the ignorelist. 5655 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5656 "Deleting out-of-tree value"); 5657 } 5658 } 5659 #endif 5660 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5661 eraseInstruction(cast<Instruction>(Scalar)); 5662 } 5663 } 5664 5665 Builder.ClearInsertionPoint(); 5666 InstrElementSize.clear(); 5667 5668 return VectorizableTree[0]->VectorizedValue; 5669 } 5670 5671 void BoUpSLP::optimizeGatherSequence() { 5672 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5673 << " gather sequences instructions.\n"); 5674 // LICM InsertElementInst sequences. 5675 for (Instruction *I : GatherSeq) { 5676 if (isDeleted(I)) 5677 continue; 5678 5679 // Check if this block is inside a loop. 5680 Loop *L = LI->getLoopFor(I->getParent()); 5681 if (!L) 5682 continue; 5683 5684 // Check if it has a preheader. 5685 BasicBlock *PreHeader = L->getLoopPreheader(); 5686 if (!PreHeader) 5687 continue; 5688 5689 // If the vector or the element that we insert into it are 5690 // instructions that are defined in this basic block then we can't 5691 // hoist this instruction. 5692 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5693 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5694 if (Op0 && L->contains(Op0)) 5695 continue; 5696 if (Op1 && L->contains(Op1)) 5697 continue; 5698 5699 // We can hoist this instruction. Move it to the pre-header. 5700 I->moveBefore(PreHeader->getTerminator()); 5701 } 5702 5703 // Make a list of all reachable blocks in our CSE queue. 5704 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5705 CSEWorkList.reserve(CSEBlocks.size()); 5706 for (BasicBlock *BB : CSEBlocks) 5707 if (DomTreeNode *N = DT->getNode(BB)) { 5708 assert(DT->isReachableFromEntry(N)); 5709 CSEWorkList.push_back(N); 5710 } 5711 5712 // Sort blocks by domination. This ensures we visit a block after all blocks 5713 // dominating it are visited. 5714 llvm::stable_sort(CSEWorkList, 5715 [this](const DomTreeNode *A, const DomTreeNode *B) { 5716 return DT->properlyDominates(A, B); 5717 }); 5718 5719 // Perform O(N^2) search over the gather sequences and merge identical 5720 // instructions. TODO: We can further optimize this scan if we split the 5721 // instructions into different buckets based on the insert lane. 5722 SmallVector<Instruction *, 16> Visited; 5723 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5724 assert(*I && 5725 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5726 "Worklist not sorted properly!"); 5727 BasicBlock *BB = (*I)->getBlock(); 5728 // For all instructions in blocks containing gather sequences: 5729 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5730 Instruction *In = &*it++; 5731 if (isDeleted(In)) 5732 continue; 5733 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5734 continue; 5735 5736 // Check if we can replace this instruction with any of the 5737 // visited instructions. 5738 for (Instruction *v : Visited) { 5739 if (In->isIdenticalTo(v) && 5740 DT->dominates(v->getParent(), In->getParent())) { 5741 In->replaceAllUsesWith(v); 5742 eraseInstruction(In); 5743 In = nullptr; 5744 break; 5745 } 5746 } 5747 if (In) { 5748 assert(!is_contained(Visited, In)); 5749 Visited.push_back(In); 5750 } 5751 } 5752 } 5753 CSEBlocks.clear(); 5754 GatherSeq.clear(); 5755 } 5756 5757 // Groups the instructions to a bundle (which is then a single scheduling entity) 5758 // and schedules instructions until the bundle gets ready. 5759 Optional<BoUpSLP::ScheduleData *> 5760 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5761 const InstructionsState &S) { 5762 if (isa<PHINode>(S.OpValue)) 5763 return nullptr; 5764 5765 // Initialize the instruction bundle. 5766 Instruction *OldScheduleEnd = ScheduleEnd; 5767 ScheduleData *PrevInBundle = nullptr; 5768 ScheduleData *Bundle = nullptr; 5769 bool ReSchedule = false; 5770 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5771 5772 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5773 ScheduleData *Bundle) { 5774 // The scheduling region got new instructions at the lower end (or it is a 5775 // new region for the first bundle). This makes it necessary to 5776 // recalculate all dependencies. 5777 // It is seldom that this needs to be done a second time after adding the 5778 // initial bundle to the region. 5779 if (ScheduleEnd != OldScheduleEnd) { 5780 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5781 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5782 ReSchedule = true; 5783 } 5784 if (ReSchedule) { 5785 resetSchedule(); 5786 initialFillReadyList(ReadyInsts); 5787 } 5788 if (Bundle) { 5789 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5790 << " in block " << BB->getName() << "\n"); 5791 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5792 } 5793 5794 // Now try to schedule the new bundle or (if no bundle) just calculate 5795 // dependencies. As soon as the bundle is "ready" it means that there are no 5796 // cyclic dependencies and we can schedule it. Note that's important that we 5797 // don't "schedule" the bundle yet (see cancelScheduling). 5798 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5799 !ReadyInsts.empty()) { 5800 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5801 if (Picked->isSchedulingEntity() && Picked->isReady()) 5802 schedule(Picked, ReadyInsts); 5803 } 5804 }; 5805 5806 // Make sure that the scheduling region contains all 5807 // instructions of the bundle. 5808 for (Value *V : VL) { 5809 if (!extendSchedulingRegion(V, S)) { 5810 // If the scheduling region got new instructions at the lower end (or it 5811 // is a new region for the first bundle). This makes it necessary to 5812 // recalculate all dependencies. 5813 // Otherwise the compiler may crash trying to incorrectly calculate 5814 // dependencies and emit instruction in the wrong order at the actual 5815 // scheduling. 5816 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 5817 return None; 5818 } 5819 } 5820 5821 for (Value *V : VL) { 5822 ScheduleData *BundleMember = getScheduleData(V); 5823 assert(BundleMember && 5824 "no ScheduleData for bundle member (maybe not in same basic block)"); 5825 if (BundleMember->IsScheduled) { 5826 // A bundle member was scheduled as single instruction before and now 5827 // needs to be scheduled as part of the bundle. We just get rid of the 5828 // existing schedule. 5829 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5830 << " was already scheduled\n"); 5831 ReSchedule = true; 5832 } 5833 assert(BundleMember->isSchedulingEntity() && 5834 "bundle member already part of other bundle"); 5835 if (PrevInBundle) { 5836 PrevInBundle->NextInBundle = BundleMember; 5837 } else { 5838 Bundle = BundleMember; 5839 } 5840 BundleMember->UnscheduledDepsInBundle = 0; 5841 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5842 5843 // Group the instructions to a bundle. 5844 BundleMember->FirstInBundle = Bundle; 5845 PrevInBundle = BundleMember; 5846 } 5847 assert(Bundle && "Failed to find schedule bundle"); 5848 TryScheduleBundle(ReSchedule, Bundle); 5849 if (!Bundle->isReady()) { 5850 cancelScheduling(VL, S.OpValue); 5851 return None; 5852 } 5853 return Bundle; 5854 } 5855 5856 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5857 Value *OpValue) { 5858 if (isa<PHINode>(OpValue)) 5859 return; 5860 5861 ScheduleData *Bundle = getScheduleData(OpValue); 5862 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5863 assert(!Bundle->IsScheduled && 5864 "Can't cancel bundle which is already scheduled"); 5865 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5866 "tried to unbundle something which is not a bundle"); 5867 5868 // Un-bundle: make single instructions out of the bundle. 5869 ScheduleData *BundleMember = Bundle; 5870 while (BundleMember) { 5871 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5872 BundleMember->FirstInBundle = BundleMember; 5873 ScheduleData *Next = BundleMember->NextInBundle; 5874 BundleMember->NextInBundle = nullptr; 5875 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5876 if (BundleMember->UnscheduledDepsInBundle == 0) { 5877 ReadyInsts.insert(BundleMember); 5878 } 5879 BundleMember = Next; 5880 } 5881 } 5882 5883 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5884 // Allocate a new ScheduleData for the instruction. 5885 if (ChunkPos >= ChunkSize) { 5886 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5887 ChunkPos = 0; 5888 } 5889 return &(ScheduleDataChunks.back()[ChunkPos++]); 5890 } 5891 5892 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5893 const InstructionsState &S) { 5894 if (getScheduleData(V, isOneOf(S, V))) 5895 return true; 5896 Instruction *I = dyn_cast<Instruction>(V); 5897 assert(I && "bundle member must be an instruction"); 5898 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5899 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5900 ScheduleData *ISD = getScheduleData(I); 5901 if (!ISD) 5902 return false; 5903 assert(isInSchedulingRegion(ISD) && 5904 "ScheduleData not in scheduling region"); 5905 ScheduleData *SD = allocateScheduleDataChunks(); 5906 SD->Inst = I; 5907 SD->init(SchedulingRegionID, S.OpValue); 5908 ExtraScheduleDataMap[I][S.OpValue] = SD; 5909 return true; 5910 }; 5911 if (CheckSheduleForI(I)) 5912 return true; 5913 if (!ScheduleStart) { 5914 // It's the first instruction in the new region. 5915 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5916 ScheduleStart = I; 5917 ScheduleEnd = I->getNextNode(); 5918 if (isOneOf(S, I) != I) 5919 CheckSheduleForI(I); 5920 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5921 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5922 return true; 5923 } 5924 // Search up and down at the same time, because we don't know if the new 5925 // instruction is above or below the existing scheduling region. 5926 BasicBlock::reverse_iterator UpIter = 5927 ++ScheduleStart->getIterator().getReverse(); 5928 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5929 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5930 BasicBlock::iterator LowerEnd = BB->end(); 5931 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 5932 &*DownIter != I) { 5933 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5934 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5935 return false; 5936 } 5937 5938 ++UpIter; 5939 ++DownIter; 5940 } 5941 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 5942 assert(I->getParent() == ScheduleStart->getParent() && 5943 "Instruction is in wrong basic block."); 5944 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5945 ScheduleStart = I; 5946 if (isOneOf(S, I) != I) 5947 CheckSheduleForI(I); 5948 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5949 << "\n"); 5950 return true; 5951 } 5952 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 5953 "Expected to reach top of the basic block or instruction down the " 5954 "lower end."); 5955 assert(I->getParent() == ScheduleEnd->getParent() && 5956 "Instruction is in wrong basic block."); 5957 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5958 nullptr); 5959 ScheduleEnd = I->getNextNode(); 5960 if (isOneOf(S, I) != I) 5961 CheckSheduleForI(I); 5962 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5963 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 5964 return true; 5965 } 5966 5967 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5968 Instruction *ToI, 5969 ScheduleData *PrevLoadStore, 5970 ScheduleData *NextLoadStore) { 5971 ScheduleData *CurrentLoadStore = PrevLoadStore; 5972 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5973 ScheduleData *SD = ScheduleDataMap[I]; 5974 if (!SD) { 5975 SD = allocateScheduleDataChunks(); 5976 ScheduleDataMap[I] = SD; 5977 SD->Inst = I; 5978 } 5979 assert(!isInSchedulingRegion(SD) && 5980 "new ScheduleData already in scheduling region"); 5981 SD->init(SchedulingRegionID, I); 5982 5983 if (I->mayReadOrWriteMemory() && 5984 (!isa<IntrinsicInst>(I) || 5985 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5986 cast<IntrinsicInst>(I)->getIntrinsicID() != 5987 Intrinsic::pseudoprobe))) { 5988 // Update the linked list of memory accessing instructions. 5989 if (CurrentLoadStore) { 5990 CurrentLoadStore->NextLoadStore = SD; 5991 } else { 5992 FirstLoadStoreInRegion = SD; 5993 } 5994 CurrentLoadStore = SD; 5995 } 5996 } 5997 if (NextLoadStore) { 5998 if (CurrentLoadStore) 5999 CurrentLoadStore->NextLoadStore = NextLoadStore; 6000 } else { 6001 LastLoadStoreInRegion = CurrentLoadStore; 6002 } 6003 } 6004 6005 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6006 bool InsertInReadyList, 6007 BoUpSLP *SLP) { 6008 assert(SD->isSchedulingEntity()); 6009 6010 SmallVector<ScheduleData *, 10> WorkList; 6011 WorkList.push_back(SD); 6012 6013 while (!WorkList.empty()) { 6014 ScheduleData *SD = WorkList.pop_back_val(); 6015 6016 ScheduleData *BundleMember = SD; 6017 while (BundleMember) { 6018 assert(isInSchedulingRegion(BundleMember)); 6019 if (!BundleMember->hasValidDependencies()) { 6020 6021 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6022 << "\n"); 6023 BundleMember->Dependencies = 0; 6024 BundleMember->resetUnscheduledDeps(); 6025 6026 // Handle def-use chain dependencies. 6027 if (BundleMember->OpValue != BundleMember->Inst) { 6028 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6029 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6030 BundleMember->Dependencies++; 6031 ScheduleData *DestBundle = UseSD->FirstInBundle; 6032 if (!DestBundle->IsScheduled) 6033 BundleMember->incrementUnscheduledDeps(1); 6034 if (!DestBundle->hasValidDependencies()) 6035 WorkList.push_back(DestBundle); 6036 } 6037 } else { 6038 for (User *U : BundleMember->Inst->users()) { 6039 if (isa<Instruction>(U)) { 6040 ScheduleData *UseSD = getScheduleData(U); 6041 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle) && 6042 // Ignore inner deps for insertelement 6043 !(UseSD->FirstInBundle == SD && 6044 isa<InsertElementInst>(BundleMember->Inst))) { 6045 BundleMember->Dependencies++; 6046 ScheduleData *DestBundle = UseSD->FirstInBundle; 6047 if (!DestBundle->IsScheduled) 6048 BundleMember->incrementUnscheduledDeps(1); 6049 if (!DestBundle->hasValidDependencies()) 6050 WorkList.push_back(DestBundle); 6051 } 6052 } else { 6053 // I'm not sure if this can ever happen. But we need to be safe. 6054 // This lets the instruction/bundle never be scheduled and 6055 // eventually disable vectorization. 6056 BundleMember->Dependencies++; 6057 BundleMember->incrementUnscheduledDeps(1); 6058 } 6059 } 6060 } 6061 6062 // Handle the memory dependencies. 6063 ScheduleData *DepDest = BundleMember->NextLoadStore; 6064 if (DepDest) { 6065 Instruction *SrcInst = BundleMember->Inst; 6066 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6067 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6068 unsigned numAliased = 0; 6069 unsigned DistToSrc = 1; 6070 6071 while (DepDest) { 6072 assert(isInSchedulingRegion(DepDest)); 6073 6074 // We have two limits to reduce the complexity: 6075 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6076 // SLP->isAliased (which is the expensive part in this loop). 6077 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6078 // the whole loop (even if the loop is fast, it's quadratic). 6079 // It's important for the loop break condition (see below) to 6080 // check this limit even between two read-only instructions. 6081 if (DistToSrc >= MaxMemDepDistance || 6082 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6083 (numAliased >= AliasedCheckLimit || 6084 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6085 6086 // We increment the counter only if the locations are aliased 6087 // (instead of counting all alias checks). This gives a better 6088 // balance between reduced runtime and accurate dependencies. 6089 numAliased++; 6090 6091 DepDest->MemoryDependencies.push_back(BundleMember); 6092 BundleMember->Dependencies++; 6093 ScheduleData *DestBundle = DepDest->FirstInBundle; 6094 if (!DestBundle->IsScheduled) { 6095 BundleMember->incrementUnscheduledDeps(1); 6096 } 6097 if (!DestBundle->hasValidDependencies()) { 6098 WorkList.push_back(DestBundle); 6099 } 6100 } 6101 DepDest = DepDest->NextLoadStore; 6102 6103 // Example, explaining the loop break condition: Let's assume our 6104 // starting instruction is i0 and MaxMemDepDistance = 3. 6105 // 6106 // +--------v--v--v 6107 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6108 // +--------^--^--^ 6109 // 6110 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6111 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6112 // Previously we already added dependencies from i3 to i6,i7,i8 6113 // (because of MaxMemDepDistance). As we added a dependency from 6114 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6115 // and we can abort this loop at i6. 6116 if (DistToSrc >= 2 * MaxMemDepDistance) 6117 break; 6118 DistToSrc++; 6119 } 6120 } 6121 } 6122 BundleMember = BundleMember->NextInBundle; 6123 } 6124 if (InsertInReadyList && SD->isReady()) { 6125 ReadyInsts.push_back(SD); 6126 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6127 << "\n"); 6128 } 6129 } 6130 } 6131 6132 void BoUpSLP::BlockScheduling::resetSchedule() { 6133 assert(ScheduleStart && 6134 "tried to reset schedule on block which has not been scheduled"); 6135 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6136 doForAllOpcodes(I, [&](ScheduleData *SD) { 6137 assert(isInSchedulingRegion(SD) && 6138 "ScheduleData not in scheduling region"); 6139 SD->IsScheduled = false; 6140 SD->resetUnscheduledDeps(); 6141 }); 6142 } 6143 ReadyInsts.clear(); 6144 } 6145 6146 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 6147 if (!BS->ScheduleStart) 6148 return; 6149 6150 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 6151 6152 BS->resetSchedule(); 6153 6154 // For the real scheduling we use a more sophisticated ready-list: it is 6155 // sorted by the original instruction location. This lets the final schedule 6156 // be as close as possible to the original instruction order. 6157 struct ScheduleDataCompare { 6158 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 6159 return SD2->SchedulingPriority < SD1->SchedulingPriority; 6160 } 6161 }; 6162 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 6163 6164 // Ensure that all dependency data is updated and fill the ready-list with 6165 // initial instructions. 6166 int Idx = 0; 6167 int NumToSchedule = 0; 6168 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 6169 I = I->getNextNode()) { 6170 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 6171 assert(SD->isPartOfBundle() == 6172 (getTreeEntry(SD->Inst) != nullptr) && 6173 "scheduler and vectorizer bundle mismatch"); 6174 SD->FirstInBundle->SchedulingPriority = Idx++; 6175 if (SD->isSchedulingEntity()) { 6176 BS->calculateDependencies(SD, false, this); 6177 NumToSchedule++; 6178 } 6179 }); 6180 } 6181 BS->initialFillReadyList(ReadyInsts); 6182 6183 Instruction *LastScheduledInst = BS->ScheduleEnd; 6184 6185 // Do the "real" scheduling. 6186 while (!ReadyInsts.empty()) { 6187 ScheduleData *picked = *ReadyInsts.begin(); 6188 ReadyInsts.erase(ReadyInsts.begin()); 6189 6190 // Move the scheduled instruction(s) to their dedicated places, if not 6191 // there yet. 6192 ScheduleData *BundleMember = picked; 6193 while (BundleMember) { 6194 Instruction *pickedInst = BundleMember->Inst; 6195 if (LastScheduledInst->getNextNode() != pickedInst) { 6196 BS->BB->getInstList().remove(pickedInst); 6197 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 6198 pickedInst); 6199 } 6200 LastScheduledInst = pickedInst; 6201 BundleMember = BundleMember->NextInBundle; 6202 } 6203 6204 BS->schedule(picked, ReadyInsts); 6205 NumToSchedule--; 6206 } 6207 assert(NumToSchedule == 0 && "could not schedule all instructions"); 6208 6209 // Avoid duplicate scheduling of the block. 6210 BS->ScheduleStart = nullptr; 6211 } 6212 6213 unsigned BoUpSLP::getVectorElementSize(Value *V) { 6214 // If V is a store, just return the width of the stored value (or value 6215 // truncated just before storing) without traversing the expression tree. 6216 // This is the common case. 6217 if (auto *Store = dyn_cast<StoreInst>(V)) { 6218 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 6219 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 6220 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 6221 } 6222 6223 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 6224 return getVectorElementSize(IEI->getOperand(1)); 6225 6226 auto E = InstrElementSize.find(V); 6227 if (E != InstrElementSize.end()) 6228 return E->second; 6229 6230 // If V is not a store, we can traverse the expression tree to find loads 6231 // that feed it. The type of the loaded value may indicate a more suitable 6232 // width than V's type. We want to base the vector element size on the width 6233 // of memory operations where possible. 6234 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 6235 SmallPtrSet<Instruction *, 16> Visited; 6236 if (auto *I = dyn_cast<Instruction>(V)) { 6237 Worklist.emplace_back(I, I->getParent()); 6238 Visited.insert(I); 6239 } 6240 6241 // Traverse the expression tree in bottom-up order looking for loads. If we 6242 // encounter an instruction we don't yet handle, we give up. 6243 auto Width = 0u; 6244 while (!Worklist.empty()) { 6245 Instruction *I; 6246 BasicBlock *Parent; 6247 std::tie(I, Parent) = Worklist.pop_back_val(); 6248 6249 // We should only be looking at scalar instructions here. If the current 6250 // instruction has a vector type, skip. 6251 auto *Ty = I->getType(); 6252 if (isa<VectorType>(Ty)) 6253 continue; 6254 6255 // If the current instruction is a load, update MaxWidth to reflect the 6256 // width of the loaded value. 6257 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 6258 isa<ExtractValueInst>(I)) 6259 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 6260 6261 // Otherwise, we need to visit the operands of the instruction. We only 6262 // handle the interesting cases from buildTree here. If an operand is an 6263 // instruction we haven't yet visited and from the same basic block as the 6264 // user or the use is a PHI node, we add it to the worklist. 6265 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6266 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 6267 isa<UnaryOperator>(I)) { 6268 for (Use &U : I->operands()) 6269 if (auto *J = dyn_cast<Instruction>(U.get())) 6270 if (Visited.insert(J).second && 6271 (isa<PHINode>(I) || J->getParent() == Parent)) 6272 Worklist.emplace_back(J, J->getParent()); 6273 } else { 6274 break; 6275 } 6276 } 6277 6278 // If we didn't encounter a memory access in the expression tree, or if we 6279 // gave up for some reason, just return the width of V. Otherwise, return the 6280 // maximum width we found. 6281 if (!Width) { 6282 if (auto *CI = dyn_cast<CmpInst>(V)) 6283 V = CI->getOperand(0); 6284 Width = DL->getTypeSizeInBits(V->getType()); 6285 } 6286 6287 for (Instruction *I : Visited) 6288 InstrElementSize[I] = Width; 6289 6290 return Width; 6291 } 6292 6293 // Determine if a value V in a vectorizable expression Expr can be demoted to a 6294 // smaller type with a truncation. We collect the values that will be demoted 6295 // in ToDemote and additional roots that require investigating in Roots. 6296 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 6297 SmallVectorImpl<Value *> &ToDemote, 6298 SmallVectorImpl<Value *> &Roots) { 6299 // We can always demote constants. 6300 if (isa<Constant>(V)) { 6301 ToDemote.push_back(V); 6302 return true; 6303 } 6304 6305 // If the value is not an instruction in the expression with only one use, it 6306 // cannot be demoted. 6307 auto *I = dyn_cast<Instruction>(V); 6308 if (!I || !I->hasOneUse() || !Expr.count(I)) 6309 return false; 6310 6311 switch (I->getOpcode()) { 6312 6313 // We can always demote truncations and extensions. Since truncations can 6314 // seed additional demotion, we save the truncated value. 6315 case Instruction::Trunc: 6316 Roots.push_back(I->getOperand(0)); 6317 break; 6318 case Instruction::ZExt: 6319 case Instruction::SExt: 6320 if (isa<ExtractElementInst>(I->getOperand(0)) || 6321 isa<InsertElementInst>(I->getOperand(0))) 6322 return false; 6323 break; 6324 6325 // We can demote certain binary operations if we can demote both of their 6326 // operands. 6327 case Instruction::Add: 6328 case Instruction::Sub: 6329 case Instruction::Mul: 6330 case Instruction::And: 6331 case Instruction::Or: 6332 case Instruction::Xor: 6333 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 6334 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 6335 return false; 6336 break; 6337 6338 // We can demote selects if we can demote their true and false values. 6339 case Instruction::Select: { 6340 SelectInst *SI = cast<SelectInst>(I); 6341 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 6342 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 6343 return false; 6344 break; 6345 } 6346 6347 // We can demote phis if we can demote all their incoming operands. Note that 6348 // we don't need to worry about cycles since we ensure single use above. 6349 case Instruction::PHI: { 6350 PHINode *PN = cast<PHINode>(I); 6351 for (Value *IncValue : PN->incoming_values()) 6352 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 6353 return false; 6354 break; 6355 } 6356 6357 // Otherwise, conservatively give up. 6358 default: 6359 return false; 6360 } 6361 6362 // Record the value that we can demote. 6363 ToDemote.push_back(V); 6364 return true; 6365 } 6366 6367 void BoUpSLP::computeMinimumValueSizes() { 6368 // If there are no external uses, the expression tree must be rooted by a 6369 // store. We can't demote in-memory values, so there is nothing to do here. 6370 if (ExternalUses.empty()) 6371 return; 6372 6373 // We only attempt to truncate integer expressions. 6374 auto &TreeRoot = VectorizableTree[0]->Scalars; 6375 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 6376 if (!TreeRootIT) 6377 return; 6378 6379 // If the expression is not rooted by a store, these roots should have 6380 // external uses. We will rely on InstCombine to rewrite the expression in 6381 // the narrower type. However, InstCombine only rewrites single-use values. 6382 // This means that if a tree entry other than a root is used externally, it 6383 // must have multiple uses and InstCombine will not rewrite it. The code 6384 // below ensures that only the roots are used externally. 6385 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 6386 for (auto &EU : ExternalUses) 6387 if (!Expr.erase(EU.Scalar)) 6388 return; 6389 if (!Expr.empty()) 6390 return; 6391 6392 // Collect the scalar values of the vectorizable expression. We will use this 6393 // context to determine which values can be demoted. If we see a truncation, 6394 // we mark it as seeding another demotion. 6395 for (auto &EntryPtr : VectorizableTree) 6396 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 6397 6398 // Ensure the roots of the vectorizable tree don't form a cycle. They must 6399 // have a single external user that is not in the vectorizable tree. 6400 for (auto *Root : TreeRoot) 6401 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 6402 return; 6403 6404 // Conservatively determine if we can actually truncate the roots of the 6405 // expression. Collect the values that can be demoted in ToDemote and 6406 // additional roots that require investigating in Roots. 6407 SmallVector<Value *, 32> ToDemote; 6408 SmallVector<Value *, 4> Roots; 6409 for (auto *Root : TreeRoot) 6410 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 6411 return; 6412 6413 // The maximum bit width required to represent all the values that can be 6414 // demoted without loss of precision. It would be safe to truncate the roots 6415 // of the expression to this width. 6416 auto MaxBitWidth = 8u; 6417 6418 // We first check if all the bits of the roots are demanded. If they're not, 6419 // we can truncate the roots to this narrower type. 6420 for (auto *Root : TreeRoot) { 6421 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 6422 MaxBitWidth = std::max<unsigned>( 6423 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 6424 } 6425 6426 // True if the roots can be zero-extended back to their original type, rather 6427 // than sign-extended. We know that if the leading bits are not demanded, we 6428 // can safely zero-extend. So we initialize IsKnownPositive to True. 6429 bool IsKnownPositive = true; 6430 6431 // If all the bits of the roots are demanded, we can try a little harder to 6432 // compute a narrower type. This can happen, for example, if the roots are 6433 // getelementptr indices. InstCombine promotes these indices to the pointer 6434 // width. Thus, all their bits are technically demanded even though the 6435 // address computation might be vectorized in a smaller type. 6436 // 6437 // We start by looking at each entry that can be demoted. We compute the 6438 // maximum bit width required to store the scalar by using ValueTracking to 6439 // compute the number of high-order bits we can truncate. 6440 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 6441 llvm::all_of(TreeRoot, [](Value *R) { 6442 assert(R->hasOneUse() && "Root should have only one use!"); 6443 return isa<GetElementPtrInst>(R->user_back()); 6444 })) { 6445 MaxBitWidth = 8u; 6446 6447 // Determine if the sign bit of all the roots is known to be zero. If not, 6448 // IsKnownPositive is set to False. 6449 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 6450 KnownBits Known = computeKnownBits(R, *DL); 6451 return Known.isNonNegative(); 6452 }); 6453 6454 // Determine the maximum number of bits required to store the scalar 6455 // values. 6456 for (auto *Scalar : ToDemote) { 6457 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 6458 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 6459 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 6460 } 6461 6462 // If we can't prove that the sign bit is zero, we must add one to the 6463 // maximum bit width to account for the unknown sign bit. This preserves 6464 // the existing sign bit so we can safely sign-extend the root back to the 6465 // original type. Otherwise, if we know the sign bit is zero, we will 6466 // zero-extend the root instead. 6467 // 6468 // FIXME: This is somewhat suboptimal, as there will be cases where adding 6469 // one to the maximum bit width will yield a larger-than-necessary 6470 // type. In general, we need to add an extra bit only if we can't 6471 // prove that the upper bit of the original type is equal to the 6472 // upper bit of the proposed smaller type. If these two bits are the 6473 // same (either zero or one) we know that sign-extending from the 6474 // smaller type will result in the same value. Here, since we can't 6475 // yet prove this, we are just making the proposed smaller type 6476 // larger to ensure correctness. 6477 if (!IsKnownPositive) 6478 ++MaxBitWidth; 6479 } 6480 6481 // Round MaxBitWidth up to the next power-of-two. 6482 if (!isPowerOf2_64(MaxBitWidth)) 6483 MaxBitWidth = NextPowerOf2(MaxBitWidth); 6484 6485 // If the maximum bit width we compute is less than the with of the roots' 6486 // type, we can proceed with the narrowing. Otherwise, do nothing. 6487 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 6488 return; 6489 6490 // If we can truncate the root, we must collect additional values that might 6491 // be demoted as a result. That is, those seeded by truncations we will 6492 // modify. 6493 while (!Roots.empty()) 6494 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 6495 6496 // Finally, map the values we can demote to the maximum bit with we computed. 6497 for (auto *Scalar : ToDemote) 6498 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 6499 } 6500 6501 namespace { 6502 6503 /// The SLPVectorizer Pass. 6504 struct SLPVectorizer : public FunctionPass { 6505 SLPVectorizerPass Impl; 6506 6507 /// Pass identification, replacement for typeid 6508 static char ID; 6509 6510 explicit SLPVectorizer() : FunctionPass(ID) { 6511 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 6512 } 6513 6514 bool doInitialization(Module &M) override { 6515 return false; 6516 } 6517 6518 bool runOnFunction(Function &F) override { 6519 if (skipFunction(F)) 6520 return false; 6521 6522 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6523 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 6524 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6525 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 6526 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 6527 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6528 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6529 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 6530 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 6531 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 6532 6533 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6534 } 6535 6536 void getAnalysisUsage(AnalysisUsage &AU) const override { 6537 FunctionPass::getAnalysisUsage(AU); 6538 AU.addRequired<AssumptionCacheTracker>(); 6539 AU.addRequired<ScalarEvolutionWrapperPass>(); 6540 AU.addRequired<AAResultsWrapperPass>(); 6541 AU.addRequired<TargetTransformInfoWrapperPass>(); 6542 AU.addRequired<LoopInfoWrapperPass>(); 6543 AU.addRequired<DominatorTreeWrapperPass>(); 6544 AU.addRequired<DemandedBitsWrapperPass>(); 6545 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 6546 AU.addRequired<InjectTLIMappingsLegacy>(); 6547 AU.addPreserved<LoopInfoWrapperPass>(); 6548 AU.addPreserved<DominatorTreeWrapperPass>(); 6549 AU.addPreserved<AAResultsWrapperPass>(); 6550 AU.addPreserved<GlobalsAAWrapperPass>(); 6551 AU.setPreservesCFG(); 6552 } 6553 }; 6554 6555 } // end anonymous namespace 6556 6557 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 6558 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 6559 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 6560 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6561 auto *AA = &AM.getResult<AAManager>(F); 6562 auto *LI = &AM.getResult<LoopAnalysis>(F); 6563 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 6564 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 6565 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 6566 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 6567 6568 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6569 if (!Changed) 6570 return PreservedAnalyses::all(); 6571 6572 PreservedAnalyses PA; 6573 PA.preserveSet<CFGAnalyses>(); 6574 return PA; 6575 } 6576 6577 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 6578 TargetTransformInfo *TTI_, 6579 TargetLibraryInfo *TLI_, AAResults *AA_, 6580 LoopInfo *LI_, DominatorTree *DT_, 6581 AssumptionCache *AC_, DemandedBits *DB_, 6582 OptimizationRemarkEmitter *ORE_) { 6583 if (!RunSLPVectorization) 6584 return false; 6585 SE = SE_; 6586 TTI = TTI_; 6587 TLI = TLI_; 6588 AA = AA_; 6589 LI = LI_; 6590 DT = DT_; 6591 AC = AC_; 6592 DB = DB_; 6593 DL = &F.getParent()->getDataLayout(); 6594 6595 Stores.clear(); 6596 GEPs.clear(); 6597 bool Changed = false; 6598 6599 // If the target claims to have no vector registers don't attempt 6600 // vectorization. 6601 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6602 return false; 6603 6604 // Don't vectorize when the attribute NoImplicitFloat is used. 6605 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6606 return false; 6607 6608 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6609 6610 // Use the bottom up slp vectorizer to construct chains that start with 6611 // store instructions. 6612 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6613 6614 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6615 // delete instructions. 6616 6617 // Scan the blocks in the function in post order. 6618 for (auto BB : post_order(&F.getEntryBlock())) { 6619 collectSeedInstructions(BB); 6620 6621 // Vectorize trees that end at stores. 6622 if (!Stores.empty()) { 6623 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6624 << " underlying objects.\n"); 6625 Changed |= vectorizeStoreChains(R); 6626 } 6627 6628 // Vectorize trees that end at reductions. 6629 Changed |= vectorizeChainsInBlock(BB, R); 6630 6631 // Vectorize the index computations of getelementptr instructions. This 6632 // is primarily intended to catch gather-like idioms ending at 6633 // non-consecutive loads. 6634 if (!GEPs.empty()) { 6635 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6636 << " underlying objects.\n"); 6637 Changed |= vectorizeGEPIndices(BB, R); 6638 } 6639 } 6640 6641 if (Changed) { 6642 R.optimizeGatherSequence(); 6643 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6644 } 6645 return Changed; 6646 } 6647 6648 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6649 unsigned Idx) { 6650 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6651 << "\n"); 6652 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6653 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6654 unsigned VF = Chain.size(); 6655 6656 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6657 return false; 6658 6659 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6660 << "\n"); 6661 6662 R.buildTree(Chain); 6663 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6664 // TODO: Handle orders of size less than number of elements in the vector. 6665 if (Order && Order->size() == Chain.size()) { 6666 // TODO: reorder tree nodes without tree rebuilding. 6667 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6668 llvm::transform(*Order, ReorderedOps.begin(), 6669 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6670 R.buildTree(ReorderedOps); 6671 } 6672 if (R.isTreeTinyAndNotFullyVectorizable()) 6673 return false; 6674 if (R.isLoadCombineCandidate()) 6675 return false; 6676 6677 R.computeMinimumValueSizes(); 6678 6679 InstructionCost Cost = R.getTreeCost(); 6680 6681 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6682 if (Cost < -SLPCostThreshold) { 6683 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6684 6685 using namespace ore; 6686 6687 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6688 cast<StoreInst>(Chain[0])) 6689 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6690 << " and with tree size " 6691 << NV("TreeSize", R.getTreeSize())); 6692 6693 R.vectorizeTree(); 6694 return true; 6695 } 6696 6697 return false; 6698 } 6699 6700 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6701 BoUpSLP &R) { 6702 // We may run into multiple chains that merge into a single chain. We mark the 6703 // stores that we vectorized so that we don't visit the same store twice. 6704 BoUpSLP::ValueSet VectorizedStores; 6705 bool Changed = false; 6706 6707 int E = Stores.size(); 6708 SmallBitVector Tails(E, false); 6709 int MaxIter = MaxStoreLookup.getValue(); 6710 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 6711 E, std::make_pair(E, INT_MAX)); 6712 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 6713 int IterCnt; 6714 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6715 &CheckedPairs, 6716 &ConsecutiveChain](int K, int Idx) { 6717 if (IterCnt >= MaxIter) 6718 return true; 6719 if (CheckedPairs[Idx].test(K)) 6720 return ConsecutiveChain[K].second == 1 && 6721 ConsecutiveChain[K].first == Idx; 6722 ++IterCnt; 6723 CheckedPairs[Idx].set(K); 6724 CheckedPairs[K].set(Idx); 6725 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(), 6726 Stores[Idx]->getPointerOperand(), *DL, 6727 *SE, /*StrictCheck=*/true); 6728 if (!Diff || *Diff == 0) 6729 return false; 6730 int Val = *Diff; 6731 if (Val < 0) { 6732 if (ConsecutiveChain[Idx].second > -Val) { 6733 Tails.set(K); 6734 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 6735 } 6736 return false; 6737 } 6738 if (ConsecutiveChain[K].second <= Val) 6739 return false; 6740 6741 Tails.set(Idx); 6742 ConsecutiveChain[K] = std::make_pair(Idx, Val); 6743 return Val == 1; 6744 }; 6745 // Do a quadratic search on all of the given stores in reverse order and find 6746 // all of the pairs of stores that follow each other. 6747 for (int Idx = E - 1; Idx >= 0; --Idx) { 6748 // If a store has multiple consecutive store candidates, search according 6749 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6750 // This is because usually pairing with immediate succeeding or preceding 6751 // candidate create the best chance to find slp vectorization opportunity. 6752 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6753 IterCnt = 0; 6754 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6755 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6756 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6757 break; 6758 } 6759 6760 // Tracks if we tried to vectorize stores starting from the given tail 6761 // already. 6762 SmallBitVector TriedTails(E, false); 6763 // For stores that start but don't end a link in the chain: 6764 for (int Cnt = E; Cnt > 0; --Cnt) { 6765 int I = Cnt - 1; 6766 if (ConsecutiveChain[I].first == E || Tails.test(I)) 6767 continue; 6768 // We found a store instr that starts a chain. Now follow the chain and try 6769 // to vectorize it. 6770 BoUpSLP::ValueList Operands; 6771 // Collect the chain into a list. 6772 while (I != E && !VectorizedStores.count(Stores[I])) { 6773 Operands.push_back(Stores[I]); 6774 Tails.set(I); 6775 if (ConsecutiveChain[I].second != 1) { 6776 // Mark the new end in the chain and go back, if required. It might be 6777 // required if the original stores come in reversed order, for example. 6778 if (ConsecutiveChain[I].first != E && 6779 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 6780 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 6781 TriedTails.set(I); 6782 Tails.reset(ConsecutiveChain[I].first); 6783 if (Cnt < ConsecutiveChain[I].first + 2) 6784 Cnt = ConsecutiveChain[I].first + 2; 6785 } 6786 break; 6787 } 6788 // Move to the next value in the chain. 6789 I = ConsecutiveChain[I].first; 6790 } 6791 assert(!Operands.empty() && "Expected non-empty list of stores."); 6792 6793 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6794 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6795 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 6796 6797 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 6798 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 6799 MaxElts); 6800 6801 // FIXME: Is division-by-2 the correct step? Should we assert that the 6802 // register size is a power-of-2? 6803 unsigned StartIdx = 0; 6804 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 6805 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6806 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6807 if (!VectorizedStores.count(Slice.front()) && 6808 !VectorizedStores.count(Slice.back()) && 6809 vectorizeStoreChain(Slice, R, Cnt)) { 6810 // Mark the vectorized stores so that we don't vectorize them again. 6811 VectorizedStores.insert(Slice.begin(), Slice.end()); 6812 Changed = true; 6813 // If we vectorized initial block, no need to try to vectorize it 6814 // again. 6815 if (Cnt == StartIdx) 6816 StartIdx += Size; 6817 Cnt += Size; 6818 continue; 6819 } 6820 ++Cnt; 6821 } 6822 // Check if the whole array was vectorized already - exit. 6823 if (StartIdx >= Operands.size()) 6824 break; 6825 } 6826 } 6827 6828 return Changed; 6829 } 6830 6831 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6832 // Initialize the collections. We will make a single pass over the block. 6833 Stores.clear(); 6834 GEPs.clear(); 6835 6836 // Visit the store and getelementptr instructions in BB and organize them in 6837 // Stores and GEPs according to the underlying objects of their pointer 6838 // operands. 6839 for (Instruction &I : *BB) { 6840 // Ignore store instructions that are volatile or have a pointer operand 6841 // that doesn't point to a scalar type. 6842 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6843 if (!SI->isSimple()) 6844 continue; 6845 if (!isValidElementType(SI->getValueOperand()->getType())) 6846 continue; 6847 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6848 } 6849 6850 // Ignore getelementptr instructions that have more than one index, a 6851 // constant index, or a pointer operand that doesn't point to a scalar 6852 // type. 6853 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6854 auto Idx = GEP->idx_begin()->get(); 6855 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6856 continue; 6857 if (!isValidElementType(Idx->getType())) 6858 continue; 6859 if (GEP->getType()->isVectorTy()) 6860 continue; 6861 GEPs[GEP->getPointerOperand()].push_back(GEP); 6862 } 6863 } 6864 } 6865 6866 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6867 if (!A || !B) 6868 return false; 6869 Value *VL[] = {A, B}; 6870 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6871 } 6872 6873 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6874 bool AllowReorder) { 6875 if (VL.size() < 2) 6876 return false; 6877 6878 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6879 << VL.size() << ".\n"); 6880 6881 // Check that all of the parts are instructions of the same type, 6882 // we permit an alternate opcode via InstructionsState. 6883 InstructionsState S = getSameOpcode(VL); 6884 if (!S.getOpcode()) 6885 return false; 6886 6887 Instruction *I0 = cast<Instruction>(S.OpValue); 6888 // Make sure invalid types (including vector type) are rejected before 6889 // determining vectorization factor for scalar instructions. 6890 for (Value *V : VL) { 6891 Type *Ty = V->getType(); 6892 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 6893 // NOTE: the following will give user internal llvm type name, which may 6894 // not be useful. 6895 R.getORE()->emit([&]() { 6896 std::string type_str; 6897 llvm::raw_string_ostream rso(type_str); 6898 Ty->print(rso); 6899 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6900 << "Cannot SLP vectorize list: type " 6901 << rso.str() + " is unsupported by vectorizer"; 6902 }); 6903 return false; 6904 } 6905 } 6906 6907 unsigned Sz = R.getVectorElementSize(I0); 6908 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6909 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6910 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6911 if (MaxVF < 2) { 6912 R.getORE()->emit([&]() { 6913 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6914 << "Cannot SLP vectorize list: vectorization factor " 6915 << "less than 2 is not supported"; 6916 }); 6917 return false; 6918 } 6919 6920 bool Changed = false; 6921 bool CandidateFound = false; 6922 InstructionCost MinCost = SLPCostThreshold.getValue(); 6923 Type *ScalarTy = VL[0]->getType(); 6924 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 6925 ScalarTy = IE->getOperand(1)->getType(); 6926 6927 unsigned NextInst = 0, MaxInst = VL.size(); 6928 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6929 // No actual vectorization should happen, if number of parts is the same as 6930 // provided vectorization factor (i.e. the scalar type is used for vector 6931 // code during codegen). 6932 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 6933 if (TTI->getNumberOfParts(VecTy) == VF) 6934 continue; 6935 for (unsigned I = NextInst; I < MaxInst; ++I) { 6936 unsigned OpsWidth = 0; 6937 6938 if (I + VF > MaxInst) 6939 OpsWidth = MaxInst - I; 6940 else 6941 OpsWidth = VF; 6942 6943 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6944 break; 6945 6946 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6947 // Check that a previous iteration of this loop did not delete the Value. 6948 if (llvm::any_of(Ops, [&R](Value *V) { 6949 auto *I = dyn_cast<Instruction>(V); 6950 return I && R.isDeleted(I); 6951 })) 6952 continue; 6953 6954 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6955 << "\n"); 6956 6957 R.buildTree(Ops); 6958 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6959 // TODO: check if we can allow reordering for more cases. 6960 if (AllowReorder && Order) { 6961 // TODO: reorder tree nodes without tree rebuilding. 6962 // Conceptually, there is nothing actually preventing us from trying to 6963 // reorder a larger list. In fact, we do exactly this when vectorizing 6964 // reductions. However, at this point, we only expect to get here when 6965 // there are exactly two operations. 6966 assert(Ops.size() == 2); 6967 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6968 R.buildTree(ReorderedOps, None); 6969 } 6970 if (R.isTreeTinyAndNotFullyVectorizable()) 6971 continue; 6972 6973 R.computeMinimumValueSizes(); 6974 InstructionCost Cost = R.getTreeCost(); 6975 CandidateFound = true; 6976 MinCost = std::min(MinCost, Cost); 6977 6978 if (Cost < -SLPCostThreshold) { 6979 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6980 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6981 cast<Instruction>(Ops[0])) 6982 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6983 << " and with tree size " 6984 << ore::NV("TreeSize", R.getTreeSize())); 6985 6986 R.vectorizeTree(); 6987 // Move to the next bundle. 6988 I += VF - 1; 6989 NextInst = I + 1; 6990 Changed = true; 6991 } 6992 } 6993 } 6994 6995 if (!Changed && CandidateFound) { 6996 R.getORE()->emit([&]() { 6997 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6998 << "List vectorization was possible but not beneficial with cost " 6999 << ore::NV("Cost", MinCost) << " >= " 7000 << ore::NV("Treshold", -SLPCostThreshold); 7001 }); 7002 } else if (!Changed) { 7003 R.getORE()->emit([&]() { 7004 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7005 << "Cannot SLP vectorize list: vectorization was impossible" 7006 << " with available vectorization factors"; 7007 }); 7008 } 7009 return Changed; 7010 } 7011 7012 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7013 if (!I) 7014 return false; 7015 7016 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7017 return false; 7018 7019 Value *P = I->getParent(); 7020 7021 // Vectorize in current basic block only. 7022 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7023 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7024 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7025 return false; 7026 7027 // Try to vectorize V. 7028 if (tryToVectorizePair(Op0, Op1, R)) 7029 return true; 7030 7031 auto *A = dyn_cast<BinaryOperator>(Op0); 7032 auto *B = dyn_cast<BinaryOperator>(Op1); 7033 // Try to skip B. 7034 if (B && B->hasOneUse()) { 7035 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7036 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7037 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7038 return true; 7039 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7040 return true; 7041 } 7042 7043 // Try to skip A. 7044 if (A && A->hasOneUse()) { 7045 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7046 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7047 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7048 return true; 7049 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7050 return true; 7051 } 7052 return false; 7053 } 7054 7055 namespace { 7056 7057 /// Model horizontal reductions. 7058 /// 7059 /// A horizontal reduction is a tree of reduction instructions that has values 7060 /// that can be put into a vector as its leaves. For example: 7061 /// 7062 /// mul mul mul mul 7063 /// \ / \ / 7064 /// + + 7065 /// \ / 7066 /// + 7067 /// This tree has "mul" as its leaf values and "+" as its reduction 7068 /// instructions. A reduction can feed into a store or a binary operation 7069 /// feeding a phi. 7070 /// ... 7071 /// \ / 7072 /// + 7073 /// | 7074 /// phi += 7075 /// 7076 /// Or: 7077 /// ... 7078 /// \ / 7079 /// + 7080 /// | 7081 /// *p = 7082 /// 7083 class HorizontalReduction { 7084 using ReductionOpsType = SmallVector<Value *, 16>; 7085 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7086 ReductionOpsListType ReductionOps; 7087 SmallVector<Value *, 32> ReducedVals; 7088 // Use map vector to make stable output. 7089 MapVector<Instruction *, Value *> ExtraArgs; 7090 WeakTrackingVH ReductionRoot; 7091 /// The type of reduction operation. 7092 RecurKind RdxKind; 7093 7094 /// Checks if instruction is associative and can be vectorized. 7095 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7096 if (Kind == RecurKind::None) 7097 return false; 7098 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 7099 return true; 7100 7101 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7102 // FP min/max are associative except for NaN and -0.0. We do not 7103 // have to rule out -0.0 here because the intrinsic semantics do not 7104 // specify a fixed result for it. 7105 return I->getFastMathFlags().noNaNs(); 7106 } 7107 7108 return I->isAssociative(); 7109 } 7110 7111 /// Checks if the ParentStackElem.first should be marked as a reduction 7112 /// operation with an extra argument or as extra argument itself. 7113 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7114 Value *ExtraArg) { 7115 if (ExtraArgs.count(ParentStackElem.first)) { 7116 ExtraArgs[ParentStackElem.first] = nullptr; 7117 // We ran into something like: 7118 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7119 // The whole ParentStackElem.first should be considered as an extra value 7120 // in this case. 7121 // Do not perform analysis of remaining operands of ParentStackElem.first 7122 // instruction, this whole instruction is an extra argument. 7123 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first); 7124 } else { 7125 // We ran into something like: 7126 // ParentStackElem.first += ... + ExtraArg + ... 7127 ExtraArgs[ParentStackElem.first] = ExtraArg; 7128 } 7129 } 7130 7131 /// Creates reduction operation with the current opcode. 7132 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 7133 Value *RHS, const Twine &Name, bool UseSelect) { 7134 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7135 switch (Kind) { 7136 case RecurKind::Add: 7137 case RecurKind::Mul: 7138 case RecurKind::Or: 7139 case RecurKind::And: 7140 case RecurKind::Xor: 7141 case RecurKind::FAdd: 7142 case RecurKind::FMul: 7143 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 7144 Name); 7145 case RecurKind::FMax: 7146 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 7147 case RecurKind::FMin: 7148 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 7149 case RecurKind::SMax: 7150 if (UseSelect) { 7151 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 7152 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7153 } 7154 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 7155 case RecurKind::SMin: 7156 if (UseSelect) { 7157 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 7158 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7159 } 7160 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 7161 case RecurKind::UMax: 7162 if (UseSelect) { 7163 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 7164 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7165 } 7166 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 7167 case RecurKind::UMin: 7168 if (UseSelect) { 7169 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 7170 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7171 } 7172 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 7173 default: 7174 llvm_unreachable("Unknown reduction operation."); 7175 } 7176 } 7177 7178 /// Creates reduction operation with the current opcode with the IR flags 7179 /// from \p ReductionOps. 7180 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7181 Value *RHS, const Twine &Name, 7182 const ReductionOpsListType &ReductionOps) { 7183 bool UseSelect = ReductionOps.size() == 2; 7184 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 7185 "Expected cmp + select pairs for reduction"); 7186 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 7187 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7188 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 7189 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 7190 propagateIRFlags(Op, ReductionOps[1]); 7191 return Op; 7192 } 7193 } 7194 propagateIRFlags(Op, ReductionOps[0]); 7195 return Op; 7196 } 7197 7198 /// Creates reduction operation with the current opcode with the IR flags 7199 /// from \p I. 7200 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7201 Value *RHS, const Twine &Name, Instruction *I) { 7202 auto *SelI = dyn_cast<SelectInst>(I); 7203 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 7204 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7205 if (auto *Sel = dyn_cast<SelectInst>(Op)) 7206 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 7207 } 7208 propagateIRFlags(Op, I); 7209 return Op; 7210 } 7211 7212 static RecurKind getRdxKind(Instruction *I) { 7213 assert(I && "Expected instruction for reduction matching"); 7214 TargetTransformInfo::ReductionFlags RdxFlags; 7215 if (match(I, m_Add(m_Value(), m_Value()))) 7216 return RecurKind::Add; 7217 if (match(I, m_Mul(m_Value(), m_Value()))) 7218 return RecurKind::Mul; 7219 if (match(I, m_And(m_Value(), m_Value()))) 7220 return RecurKind::And; 7221 if (match(I, m_Or(m_Value(), m_Value()))) 7222 return RecurKind::Or; 7223 if (match(I, m_Xor(m_Value(), m_Value()))) 7224 return RecurKind::Xor; 7225 if (match(I, m_FAdd(m_Value(), m_Value()))) 7226 return RecurKind::FAdd; 7227 if (match(I, m_FMul(m_Value(), m_Value()))) 7228 return RecurKind::FMul; 7229 7230 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 7231 return RecurKind::FMax; 7232 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 7233 return RecurKind::FMin; 7234 7235 // This matches either cmp+select or intrinsics. SLP is expected to handle 7236 // either form. 7237 // TODO: If we are canonicalizing to intrinsics, we can remove several 7238 // special-case paths that deal with selects. 7239 if (match(I, m_SMax(m_Value(), m_Value()))) 7240 return RecurKind::SMax; 7241 if (match(I, m_SMin(m_Value(), m_Value()))) 7242 return RecurKind::SMin; 7243 if (match(I, m_UMax(m_Value(), m_Value()))) 7244 return RecurKind::UMax; 7245 if (match(I, m_UMin(m_Value(), m_Value()))) 7246 return RecurKind::UMin; 7247 7248 if (auto *Select = dyn_cast<SelectInst>(I)) { 7249 // Try harder: look for min/max pattern based on instructions producing 7250 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 7251 // During the intermediate stages of SLP, it's very common to have 7252 // pattern like this (since optimizeGatherSequence is run only once 7253 // at the end): 7254 // %1 = extractelement <2 x i32> %a, i32 0 7255 // %2 = extractelement <2 x i32> %a, i32 1 7256 // %cond = icmp sgt i32 %1, %2 7257 // %3 = extractelement <2 x i32> %a, i32 0 7258 // %4 = extractelement <2 x i32> %a, i32 1 7259 // %select = select i1 %cond, i32 %3, i32 %4 7260 CmpInst::Predicate Pred; 7261 Instruction *L1; 7262 Instruction *L2; 7263 7264 Value *LHS = Select->getTrueValue(); 7265 Value *RHS = Select->getFalseValue(); 7266 Value *Cond = Select->getCondition(); 7267 7268 // TODO: Support inverse predicates. 7269 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 7270 if (!isa<ExtractElementInst>(RHS) || 7271 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7272 return RecurKind::None; 7273 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 7274 if (!isa<ExtractElementInst>(LHS) || 7275 !L1->isIdenticalTo(cast<Instruction>(LHS))) 7276 return RecurKind::None; 7277 } else { 7278 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 7279 return RecurKind::None; 7280 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 7281 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 7282 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7283 return RecurKind::None; 7284 } 7285 7286 TargetTransformInfo::ReductionFlags RdxFlags; 7287 switch (Pred) { 7288 default: 7289 return RecurKind::None; 7290 case CmpInst::ICMP_SGT: 7291 case CmpInst::ICMP_SGE: 7292 return RecurKind::SMax; 7293 case CmpInst::ICMP_SLT: 7294 case CmpInst::ICMP_SLE: 7295 return RecurKind::SMin; 7296 case CmpInst::ICMP_UGT: 7297 case CmpInst::ICMP_UGE: 7298 return RecurKind::UMax; 7299 case CmpInst::ICMP_ULT: 7300 case CmpInst::ICMP_ULE: 7301 return RecurKind::UMin; 7302 } 7303 } 7304 return RecurKind::None; 7305 } 7306 7307 /// Get the index of the first operand. 7308 static unsigned getFirstOperandIndex(Instruction *I) { 7309 return isa<SelectInst>(I) ? 1 : 0; 7310 } 7311 7312 /// Total number of operands in the reduction operation. 7313 static unsigned getNumberOfOperands(Instruction *I) { 7314 return isa<SelectInst>(I) ? 3 : 2; 7315 } 7316 7317 /// Checks if the instruction is in basic block \p BB. 7318 /// For a min/max reduction check that both compare and select are in \p BB. 7319 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) { 7320 auto *Sel = dyn_cast<SelectInst>(I); 7321 if (IsRedOp && Sel) { 7322 auto *Cmp = cast<Instruction>(Sel->getCondition()); 7323 return Sel->getParent() == BB && Cmp->getParent() == BB; 7324 } 7325 return I->getParent() == BB; 7326 } 7327 7328 /// Expected number of uses for reduction operations/reduced values. 7329 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) { 7330 // SelectInst must be used twice while the condition op must have single 7331 // use only. 7332 if (MatchCmpSel) { 7333 if (auto *Sel = dyn_cast<SelectInst>(I)) 7334 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 7335 return I->hasNUses(2); 7336 } 7337 7338 // Arithmetic reduction operation must be used once only. 7339 return I->hasOneUse(); 7340 } 7341 7342 /// Initializes the list of reduction operations. 7343 void initReductionOps(Instruction *I) { 7344 if (isa<SelectInst>(I)) 7345 ReductionOps.assign(2, ReductionOpsType()); 7346 else 7347 ReductionOps.assign(1, ReductionOpsType()); 7348 } 7349 7350 /// Add all reduction operations for the reduction instruction \p I. 7351 void addReductionOps(Instruction *I) { 7352 if (auto *Sel = dyn_cast<SelectInst>(I)) { 7353 ReductionOps[0].emplace_back(Sel->getCondition()); 7354 ReductionOps[1].emplace_back(Sel); 7355 } else { 7356 ReductionOps[0].emplace_back(I); 7357 } 7358 } 7359 7360 static Value *getLHS(RecurKind Kind, Instruction *I) { 7361 if (Kind == RecurKind::None) 7362 return nullptr; 7363 return I->getOperand(getFirstOperandIndex(I)); 7364 } 7365 static Value *getRHS(RecurKind Kind, Instruction *I) { 7366 if (Kind == RecurKind::None) 7367 return nullptr; 7368 return I->getOperand(getFirstOperandIndex(I) + 1); 7369 } 7370 7371 public: 7372 HorizontalReduction() = default; 7373 7374 /// Try to find a reduction tree. 7375 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 7376 assert((!Phi || is_contained(Phi->operands(), B)) && 7377 "Phi needs to use the binary operator"); 7378 7379 RdxKind = getRdxKind(B); 7380 7381 // We could have a initial reductions that is not an add. 7382 // r *= v1 + v2 + v3 + v4 7383 // In such a case start looking for a tree rooted in the first '+'. 7384 if (Phi) { 7385 if (getLHS(RdxKind, B) == Phi) { 7386 Phi = nullptr; 7387 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 7388 if (!B) 7389 return false; 7390 RdxKind = getRdxKind(B); 7391 } else if (getRHS(RdxKind, B) == Phi) { 7392 Phi = nullptr; 7393 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 7394 if (!B) 7395 return false; 7396 RdxKind = getRdxKind(B); 7397 } 7398 } 7399 7400 if (!isVectorizable(RdxKind, B)) 7401 return false; 7402 7403 // Analyze "regular" integer/FP types for reductions - no target-specific 7404 // types or pointers. 7405 Type *Ty = B->getType(); 7406 if (!isValidElementType(Ty) || Ty->isPointerTy()) 7407 return false; 7408 7409 // Though the ultimate reduction may have multiple uses, its condition must 7410 // have only single use. 7411 if (auto *SI = dyn_cast<SelectInst>(B)) 7412 if (!SI->getCondition()->hasOneUse()) 7413 return false; 7414 7415 ReductionRoot = B; 7416 7417 // The opcode for leaf values that we perform a reduction on. 7418 // For example: load(x) + load(y) + load(z) + fptoui(w) 7419 // The leaf opcode for 'w' does not match, so we don't include it as a 7420 // potential candidate for the reduction. 7421 unsigned LeafOpcode = 0; 7422 7423 // Post order traverse the reduction tree starting at B. We only handle true 7424 // trees containing only binary operators. 7425 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 7426 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B))); 7427 initReductionOps(B); 7428 while (!Stack.empty()) { 7429 Instruction *TreeN = Stack.back().first; 7430 unsigned EdgeToVisit = Stack.back().second++; 7431 const RecurKind TreeRdxKind = getRdxKind(TreeN); 7432 bool IsReducedValue = TreeRdxKind != RdxKind; 7433 7434 // Postorder visit. 7435 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) { 7436 if (IsReducedValue) 7437 ReducedVals.push_back(TreeN); 7438 else { 7439 auto ExtraArgsIter = ExtraArgs.find(TreeN); 7440 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 7441 // Check if TreeN is an extra argument of its parent operation. 7442 if (Stack.size() <= 1) { 7443 // TreeN can't be an extra argument as it is a root reduction 7444 // operation. 7445 return false; 7446 } 7447 // Yes, TreeN is an extra argument, do not add it to a list of 7448 // reduction operations. 7449 // Stack[Stack.size() - 2] always points to the parent operation. 7450 markExtraArg(Stack[Stack.size() - 2], TreeN); 7451 ExtraArgs.erase(TreeN); 7452 } else 7453 addReductionOps(TreeN); 7454 } 7455 // Retract. 7456 Stack.pop_back(); 7457 continue; 7458 } 7459 7460 // Visit left or right. 7461 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 7462 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 7463 if (!EdgeInst) { 7464 // Edge value is not a reduction instruction or a leaf instruction. 7465 // (It may be a constant, function argument, or something else.) 7466 markExtraArg(Stack.back(), EdgeVal); 7467 continue; 7468 } 7469 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 7470 // Continue analysis if the next operand is a reduction operation or 7471 // (possibly) a leaf value. If the leaf value opcode is not set, 7472 // the first met operation != reduction operation is considered as the 7473 // leaf opcode. 7474 // Only handle trees in the current basic block. 7475 // Each tree node needs to have minimal number of users except for the 7476 // ultimate reduction. 7477 const bool IsRdxInst = EdgeRdxKind == RdxKind; 7478 if (EdgeInst != Phi && EdgeInst != B && 7479 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) && 7480 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) && 7481 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 7482 if (IsRdxInst) { 7483 // We need to be able to reassociate the reduction operations. 7484 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 7485 // I is an extra argument for TreeN (its parent operation). 7486 markExtraArg(Stack.back(), EdgeInst); 7487 continue; 7488 } 7489 } else if (!LeafOpcode) { 7490 LeafOpcode = EdgeInst->getOpcode(); 7491 } 7492 Stack.push_back( 7493 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 7494 continue; 7495 } 7496 // I is an extra argument for TreeN (its parent operation). 7497 markExtraArg(Stack.back(), EdgeInst); 7498 } 7499 return true; 7500 } 7501 7502 /// Attempt to vectorize the tree found by matchAssociativeReduction. 7503 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 7504 // If there are a sufficient number of reduction values, reduce 7505 // to a nearby power-of-2. We can safely generate oversized 7506 // vectors and rely on the backend to split them to legal sizes. 7507 unsigned NumReducedVals = ReducedVals.size(); 7508 if (NumReducedVals < 4) 7509 return false; 7510 7511 // Intersect the fast-math-flags from all reduction operations. 7512 FastMathFlags RdxFMF; 7513 RdxFMF.set(); 7514 for (ReductionOpsType &RdxOp : ReductionOps) { 7515 for (Value *RdxVal : RdxOp) { 7516 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 7517 RdxFMF &= FPMO->getFastMathFlags(); 7518 } 7519 } 7520 7521 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7522 Builder.setFastMathFlags(RdxFMF); 7523 7524 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7525 // The same extra argument may be used several times, so log each attempt 7526 // to use it. 7527 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7528 assert(Pair.first && "DebugLoc must be set."); 7529 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7530 } 7531 7532 // The compare instruction of a min/max is the insertion point for new 7533 // instructions and may be replaced with a new compare instruction. 7534 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7535 assert(isa<SelectInst>(RdxRootInst) && 7536 "Expected min/max reduction to have select root instruction"); 7537 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7538 assert(isa<Instruction>(ScalarCond) && 7539 "Expected min/max reduction to have compare condition"); 7540 return cast<Instruction>(ScalarCond); 7541 }; 7542 7543 // The reduction root is used as the insertion point for new instructions, 7544 // so set it as externally used to prevent it from being deleted. 7545 ExternallyUsedValues[ReductionRoot]; 7546 SmallVector<Value *, 16> IgnoreList; 7547 for (ReductionOpsType &RdxOp : ReductionOps) 7548 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7549 7550 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7551 if (NumReducedVals > ReduxWidth) { 7552 // In the loop below, we are building a tree based on a window of 7553 // 'ReduxWidth' values. 7554 // If the operands of those values have common traits (compare predicate, 7555 // constant operand, etc), then we want to group those together to 7556 // minimize the cost of the reduction. 7557 7558 // TODO: This should be extended to count common operands for 7559 // compares and binops. 7560 7561 // Step 1: Count the number of times each compare predicate occurs. 7562 SmallDenseMap<unsigned, unsigned> PredCountMap; 7563 for (Value *RdxVal : ReducedVals) { 7564 CmpInst::Predicate Pred; 7565 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7566 ++PredCountMap[Pred]; 7567 } 7568 // Step 2: Sort the values so the most common predicates come first. 7569 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7570 CmpInst::Predicate PredA, PredB; 7571 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7572 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7573 return PredCountMap[PredA] > PredCountMap[PredB]; 7574 } 7575 return false; 7576 }); 7577 } 7578 7579 Value *VectorizedTree = nullptr; 7580 unsigned i = 0; 7581 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7582 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7583 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7584 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7585 if (Order) { 7586 assert(Order->size() == VL.size() && 7587 "Order size must be the same as number of vectorized " 7588 "instructions."); 7589 // TODO: reorder tree nodes without tree rebuilding. 7590 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7591 llvm::transform(*Order, ReorderedOps.begin(), 7592 [VL](const unsigned Idx) { return VL[Idx]; }); 7593 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7594 } 7595 if (V.isTreeTinyAndNotFullyVectorizable()) 7596 break; 7597 if (V.isLoadCombineReductionCandidate(RdxKind)) 7598 break; 7599 7600 V.computeMinimumValueSizes(); 7601 7602 // Estimate cost. 7603 InstructionCost TreeCost = V.getTreeCost(); 7604 InstructionCost ReductionCost = 7605 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7606 InstructionCost Cost = TreeCost + ReductionCost; 7607 if (!Cost.isValid()) { 7608 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7609 return false; 7610 } 7611 if (Cost >= -SLPCostThreshold) { 7612 V.getORE()->emit([&]() { 7613 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7614 cast<Instruction>(VL[0])) 7615 << "Vectorizing horizontal reduction is possible" 7616 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7617 << " and threshold " 7618 << ore::NV("Threshold", -SLPCostThreshold); 7619 }); 7620 break; 7621 } 7622 7623 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7624 << Cost << ". (HorRdx)\n"); 7625 V.getORE()->emit([&]() { 7626 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7627 cast<Instruction>(VL[0])) 7628 << "Vectorized horizontal reduction with cost " 7629 << ore::NV("Cost", Cost) << " and with tree size " 7630 << ore::NV("TreeSize", V.getTreeSize()); 7631 }); 7632 7633 // Vectorize a tree. 7634 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7635 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7636 7637 // Emit a reduction. If the root is a select (min/max idiom), the insert 7638 // point is the compare condition of that select. 7639 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7640 if (isa<SelectInst>(RdxRootInst)) 7641 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7642 else 7643 Builder.SetInsertPoint(RdxRootInst); 7644 7645 Value *ReducedSubTree = 7646 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7647 7648 if (!VectorizedTree) { 7649 // Initialize the final value in the reduction. 7650 VectorizedTree = ReducedSubTree; 7651 } else { 7652 // Update the final value in the reduction. 7653 Builder.SetCurrentDebugLocation(Loc); 7654 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7655 ReducedSubTree, "op.rdx", ReductionOps); 7656 } 7657 i += ReduxWidth; 7658 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7659 } 7660 7661 if (VectorizedTree) { 7662 // Finish the reduction. 7663 for (; i < NumReducedVals; ++i) { 7664 auto *I = cast<Instruction>(ReducedVals[i]); 7665 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7666 VectorizedTree = 7667 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7668 } 7669 for (auto &Pair : ExternallyUsedValues) { 7670 // Add each externally used value to the final reduction. 7671 for (auto *I : Pair.second) { 7672 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7673 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7674 Pair.first, "op.extra", I); 7675 } 7676 } 7677 7678 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7679 7680 // Mark all scalar reduction ops for deletion, they are replaced by the 7681 // vector reductions. 7682 V.eraseInstructions(IgnoreList); 7683 } 7684 return VectorizedTree != nullptr; 7685 } 7686 7687 unsigned numReductionValues() const { return ReducedVals.size(); } 7688 7689 private: 7690 /// Calculate the cost of a reduction. 7691 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7692 Value *FirstReducedVal, 7693 unsigned ReduxWidth) { 7694 Type *ScalarTy = FirstReducedVal->getType(); 7695 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7696 InstructionCost VectorCost, ScalarCost; 7697 switch (RdxKind) { 7698 case RecurKind::Add: 7699 case RecurKind::Mul: 7700 case RecurKind::Or: 7701 case RecurKind::And: 7702 case RecurKind::Xor: 7703 case RecurKind::FAdd: 7704 case RecurKind::FMul: { 7705 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7706 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7707 /*IsPairwiseForm=*/false); 7708 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7709 break; 7710 } 7711 case RecurKind::FMax: 7712 case RecurKind::FMin: { 7713 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7714 VectorCost = 7715 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7716 /*pairwise=*/false, /*unsigned=*/false); 7717 ScalarCost = 7718 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7719 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7720 CmpInst::makeCmpResultType(ScalarTy)); 7721 break; 7722 } 7723 case RecurKind::SMax: 7724 case RecurKind::SMin: 7725 case RecurKind::UMax: 7726 case RecurKind::UMin: { 7727 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7728 bool IsUnsigned = 7729 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7730 VectorCost = 7731 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7732 /*IsPairwiseForm=*/false, IsUnsigned); 7733 ScalarCost = 7734 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7735 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7736 CmpInst::makeCmpResultType(ScalarTy)); 7737 break; 7738 } 7739 default: 7740 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7741 } 7742 7743 // Scalar cost is repeated for N-1 elements. 7744 ScalarCost *= (ReduxWidth - 1); 7745 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7746 << " for reduction that starts with " << *FirstReducedVal 7747 << " (It is a splitting reduction)\n"); 7748 return VectorCost - ScalarCost; 7749 } 7750 7751 /// Emit a horizontal reduction of the vectorized value. 7752 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7753 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7754 assert(VectorizedValue && "Need to have a vectorized tree node"); 7755 assert(isPowerOf2_32(ReduxWidth) && 7756 "We only handle power-of-two reductions for now"); 7757 7758 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7759 ReductionOps.back()); 7760 } 7761 }; 7762 7763 } // end anonymous namespace 7764 7765 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7766 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7767 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7768 7769 unsigned AggregateSize = 1; 7770 auto *IV = cast<InsertValueInst>(InsertInst); 7771 Type *CurrentType = IV->getType(); 7772 do { 7773 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7774 for (auto *Elt : ST->elements()) 7775 if (Elt != ST->getElementType(0)) // check homogeneity 7776 return None; 7777 AggregateSize *= ST->getNumElements(); 7778 CurrentType = ST->getElementType(0); 7779 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7780 AggregateSize *= AT->getNumElements(); 7781 CurrentType = AT->getElementType(); 7782 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7783 AggregateSize *= VT->getNumElements(); 7784 return AggregateSize; 7785 } else if (CurrentType->isSingleValueType()) { 7786 return AggregateSize; 7787 } else { 7788 return None; 7789 } 7790 } while (true); 7791 } 7792 7793 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7794 TargetTransformInfo *TTI, 7795 SmallVectorImpl<Value *> &BuildVectorOpds, 7796 SmallVectorImpl<Value *> &InsertElts, 7797 unsigned OperandOffset) { 7798 do { 7799 Value *InsertedOperand = LastInsertInst->getOperand(1); 7800 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 7801 if (!OperandIndex) 7802 return false; 7803 if (isa<InsertElementInst>(InsertedOperand) || 7804 isa<InsertValueInst>(InsertedOperand)) { 7805 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7806 BuildVectorOpds, InsertElts, *OperandIndex)) 7807 return false; 7808 } else { 7809 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7810 InsertElts[*OperandIndex] = LastInsertInst; 7811 } 7812 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7813 } while (LastInsertInst != nullptr && 7814 (isa<InsertValueInst>(LastInsertInst) || 7815 isa<InsertElementInst>(LastInsertInst)) && 7816 LastInsertInst->hasOneUse()); 7817 return true; 7818 } 7819 7820 /// Recognize construction of vectors like 7821 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7822 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7823 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7824 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7825 /// starting from the last insertelement or insertvalue instruction. 7826 /// 7827 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7828 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7829 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7830 /// 7831 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7832 /// 7833 /// \return true if it matches. 7834 static bool findBuildAggregate(Instruction *LastInsertInst, 7835 TargetTransformInfo *TTI, 7836 SmallVectorImpl<Value *> &BuildVectorOpds, 7837 SmallVectorImpl<Value *> &InsertElts) { 7838 7839 assert((isa<InsertElementInst>(LastInsertInst) || 7840 isa<InsertValueInst>(LastInsertInst)) && 7841 "Expected insertelement or insertvalue instruction!"); 7842 7843 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7844 "Expected empty result vectors!"); 7845 7846 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7847 if (!AggregateSize) 7848 return false; 7849 BuildVectorOpds.resize(*AggregateSize); 7850 InsertElts.resize(*AggregateSize); 7851 7852 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7853 0)) { 7854 llvm::erase_value(BuildVectorOpds, nullptr); 7855 llvm::erase_value(InsertElts, nullptr); 7856 if (BuildVectorOpds.size() >= 2) 7857 return true; 7858 } 7859 7860 return false; 7861 } 7862 7863 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7864 return V->getType() < V2->getType(); 7865 } 7866 7867 /// Try and get a reduction value from a phi node. 7868 /// 7869 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7870 /// if they come from either \p ParentBB or a containing loop latch. 7871 /// 7872 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7873 /// if not possible. 7874 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7875 BasicBlock *ParentBB, LoopInfo *LI) { 7876 // There are situations where the reduction value is not dominated by the 7877 // reduction phi. Vectorizing such cases has been reported to cause 7878 // miscompiles. See PR25787. 7879 auto DominatedReduxValue = [&](Value *R) { 7880 return isa<Instruction>(R) && 7881 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7882 }; 7883 7884 Value *Rdx = nullptr; 7885 7886 // Return the incoming value if it comes from the same BB as the phi node. 7887 if (P->getIncomingBlock(0) == ParentBB) { 7888 Rdx = P->getIncomingValue(0); 7889 } else if (P->getIncomingBlock(1) == ParentBB) { 7890 Rdx = P->getIncomingValue(1); 7891 } 7892 7893 if (Rdx && DominatedReduxValue(Rdx)) 7894 return Rdx; 7895 7896 // Otherwise, check whether we have a loop latch to look at. 7897 Loop *BBL = LI->getLoopFor(ParentBB); 7898 if (!BBL) 7899 return nullptr; 7900 BasicBlock *BBLatch = BBL->getLoopLatch(); 7901 if (!BBLatch) 7902 return nullptr; 7903 7904 // There is a loop latch, return the incoming value if it comes from 7905 // that. This reduction pattern occasionally turns up. 7906 if (P->getIncomingBlock(0) == BBLatch) { 7907 Rdx = P->getIncomingValue(0); 7908 } else if (P->getIncomingBlock(1) == BBLatch) { 7909 Rdx = P->getIncomingValue(1); 7910 } 7911 7912 if (Rdx && DominatedReduxValue(Rdx)) 7913 return Rdx; 7914 7915 return nullptr; 7916 } 7917 7918 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7919 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7920 return true; 7921 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7922 return true; 7923 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7924 return true; 7925 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 7926 return true; 7927 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 7928 return true; 7929 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 7930 return true; 7931 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 7932 return true; 7933 return false; 7934 } 7935 7936 /// Attempt to reduce a horizontal reduction. 7937 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7938 /// with reduction operators \a Root (or one of its operands) in a basic block 7939 /// \a BB, then check if it can be done. If horizontal reduction is not found 7940 /// and root instruction is a binary operation, vectorization of the operands is 7941 /// attempted. 7942 /// \returns true if a horizontal reduction was matched and reduced or operands 7943 /// of one of the binary instruction were vectorized. 7944 /// \returns false if a horizontal reduction was not matched (or not possible) 7945 /// or no vectorization of any binary operation feeding \a Root instruction was 7946 /// performed. 7947 static bool tryToVectorizeHorReductionOrInstOperands( 7948 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7949 TargetTransformInfo *TTI, 7950 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7951 if (!ShouldVectorizeHor) 7952 return false; 7953 7954 if (!Root) 7955 return false; 7956 7957 if (Root->getParent() != BB || isa<PHINode>(Root)) 7958 return false; 7959 // Start analysis starting from Root instruction. If horizontal reduction is 7960 // found, try to vectorize it. If it is not a horizontal reduction or 7961 // vectorization is not possible or not effective, and currently analyzed 7962 // instruction is a binary operation, try to vectorize the operands, using 7963 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7964 // the same procedure considering each operand as a possible root of the 7965 // horizontal reduction. 7966 // Interrupt the process if the Root instruction itself was vectorized or all 7967 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7968 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 7969 // CmpInsts so we can skip extra attempts in 7970 // tryToVectorizeHorReductionOrInstOperands and save compile time. 7971 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7972 SmallPtrSet<Value *, 8> VisitedInstrs; 7973 bool Res = false; 7974 while (!Stack.empty()) { 7975 Instruction *Inst; 7976 unsigned Level; 7977 std::tie(Inst, Level) = Stack.pop_back_val(); 7978 Value *B0, *B1; 7979 bool IsBinop = matchRdxBop(Inst, B0, B1); 7980 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7981 if (IsBinop || IsSelect) { 7982 HorizontalReduction HorRdx; 7983 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7984 if (HorRdx.tryToReduce(R, TTI)) { 7985 Res = true; 7986 // Set P to nullptr to avoid re-analysis of phi node in 7987 // matchAssociativeReduction function unless this is the root node. 7988 P = nullptr; 7989 continue; 7990 } 7991 } 7992 if (P && IsBinop) { 7993 Inst = dyn_cast<Instruction>(B0); 7994 if (Inst == P) 7995 Inst = dyn_cast<Instruction>(B1); 7996 if (!Inst) { 7997 // Set P to nullptr to avoid re-analysis of phi node in 7998 // matchAssociativeReduction function unless this is the root node. 7999 P = nullptr; 8000 continue; 8001 } 8002 } 8003 } 8004 // Set P to nullptr to avoid re-analysis of phi node in 8005 // matchAssociativeReduction function unless this is the root node. 8006 P = nullptr; 8007 // Do not try to vectorize CmpInst operands, this is done separately. 8008 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 8009 Res = true; 8010 continue; 8011 } 8012 8013 // Try to vectorize operands. 8014 // Continue analysis for the instruction from the same basic block only to 8015 // save compile time. 8016 if (++Level < RecursionMaxDepth) 8017 for (auto *Op : Inst->operand_values()) 8018 if (VisitedInstrs.insert(Op).second) 8019 if (auto *I = dyn_cast<Instruction>(Op)) 8020 // Do not try to vectorize CmpInst operands, this is done 8021 // separately. 8022 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8023 I->getParent() == BB) 8024 Stack.emplace_back(I, Level); 8025 } 8026 return Res; 8027 } 8028 8029 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8030 BasicBlock *BB, BoUpSLP &R, 8031 TargetTransformInfo *TTI) { 8032 auto *I = dyn_cast_or_null<Instruction>(V); 8033 if (!I) 8034 return false; 8035 8036 if (!isa<BinaryOperator>(I)) 8037 P = nullptr; 8038 // Try to match and vectorize a horizontal reduction. 8039 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8040 return tryToVectorize(I, R); 8041 }; 8042 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8043 ExtraVectorization); 8044 } 8045 8046 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8047 BasicBlock *BB, BoUpSLP &R) { 8048 const DataLayout &DL = BB->getModule()->getDataLayout(); 8049 if (!R.canMapToVector(IVI->getType(), DL)) 8050 return false; 8051 8052 SmallVector<Value *, 16> BuildVectorOpds; 8053 SmallVector<Value *, 16> BuildVectorInsts; 8054 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8055 return false; 8056 8057 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8058 // Aggregate value is unlikely to be processed in vector register, we need to 8059 // extract scalars into scalar registers, so NeedExtraction is set true. 8060 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false); 8061 } 8062 8063 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8064 BasicBlock *BB, BoUpSLP &R) { 8065 SmallVector<Value *, 16> BuildVectorInsts; 8066 SmallVector<Value *, 16> BuildVectorOpds; 8067 SmallVector<int> Mask; 8068 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8069 (llvm::all_of(BuildVectorOpds, 8070 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8071 isShuffle(BuildVectorOpds, Mask))) 8072 return false; 8073 8074 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8075 return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/false); 8076 } 8077 8078 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8079 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8080 bool AtTerminator) { 8081 bool OpsChanged = false; 8082 SmallVector<Instruction *, 4> PostponedCmps; 8083 for (auto *I : reverse(Instructions)) { 8084 if (R.isDeleted(I)) 8085 continue; 8086 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8087 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 8088 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 8089 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 8090 else if (isa<CmpInst>(I)) 8091 PostponedCmps.push_back(I); 8092 } 8093 if (AtTerminator) { 8094 // Try to find reductions first. 8095 for (Instruction *I : PostponedCmps) { 8096 if (R.isDeleted(I)) 8097 continue; 8098 for (Value *Op : I->operands()) 8099 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 8100 } 8101 // Try to vectorize operands as vector bundles. 8102 for (Instruction *I : PostponedCmps) { 8103 if (R.isDeleted(I)) 8104 continue; 8105 OpsChanged |= tryToVectorize(I, R); 8106 } 8107 Instructions.clear(); 8108 } else { 8109 // Insert in reverse order since the PostponedCmps vector was filled in 8110 // reverse order. 8111 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 8112 } 8113 return OpsChanged; 8114 } 8115 8116 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 8117 bool Changed = false; 8118 SmallVector<Value *, 4> Incoming; 8119 SmallPtrSet<Value *, 16> VisitedInstrs; 8120 8121 bool HaveVectorizedPhiNodes = true; 8122 while (HaveVectorizedPhiNodes) { 8123 HaveVectorizedPhiNodes = false; 8124 8125 // Collect the incoming values from the PHIs. 8126 Incoming.clear(); 8127 for (Instruction &I : *BB) { 8128 PHINode *P = dyn_cast<PHINode>(&I); 8129 if (!P) 8130 break; 8131 8132 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 8133 Incoming.push_back(P); 8134 } 8135 8136 // Sort by type. 8137 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 8138 8139 // Try to vectorize elements base on their type. 8140 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 8141 E = Incoming.end(); 8142 IncIt != E;) { 8143 8144 // Look for the next elements with the same type. 8145 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 8146 while (SameTypeIt != E && 8147 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 8148 VisitedInstrs.insert(*SameTypeIt); 8149 ++SameTypeIt; 8150 } 8151 8152 // Try to vectorize them. 8153 unsigned NumElts = (SameTypeIt - IncIt); 8154 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 8155 << NumElts << ")\n"); 8156 // The order in which the phi nodes appear in the program does not matter. 8157 // So allow tryToVectorizeList to reorder them if it is beneficial. This 8158 // is done when there are exactly two elements since tryToVectorizeList 8159 // asserts that there are only two values when AllowReorder is true. 8160 bool AllowReorder = NumElts == 2; 8161 if (NumElts > 1 && 8162 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 8163 // Success start over because instructions might have been changed. 8164 HaveVectorizedPhiNodes = true; 8165 Changed = true; 8166 break; 8167 } 8168 8169 // Start over at the next instruction of a different type (or the end). 8170 IncIt = SameTypeIt; 8171 } 8172 } 8173 8174 VisitedInstrs.clear(); 8175 8176 SmallVector<Instruction *, 8> PostProcessInstructions; 8177 SmallDenseSet<Instruction *, 4> KeyNodes; 8178 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 8179 // Skip instructions with scalable type. The num of elements is unknown at 8180 // compile-time for scalable type. 8181 if (isa<ScalableVectorType>(it->getType())) 8182 continue; 8183 8184 // Skip instructions marked for the deletion. 8185 if (R.isDeleted(&*it)) 8186 continue; 8187 // We may go through BB multiple times so skip the one we have checked. 8188 if (!VisitedInstrs.insert(&*it).second) { 8189 if (it->use_empty() && KeyNodes.contains(&*it) && 8190 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8191 it->isTerminator())) { 8192 // We would like to start over since some instructions are deleted 8193 // and the iterator may become invalid value. 8194 Changed = true; 8195 it = BB->begin(); 8196 e = BB->end(); 8197 } 8198 continue; 8199 } 8200 8201 if (isa<DbgInfoIntrinsic>(it)) 8202 continue; 8203 8204 // Try to vectorize reductions that use PHINodes. 8205 if (PHINode *P = dyn_cast<PHINode>(it)) { 8206 // Check that the PHI is a reduction PHI. 8207 if (P->getNumIncomingValues() == 2) { 8208 // Try to match and vectorize a horizontal reduction. 8209 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 8210 TTI)) { 8211 Changed = true; 8212 it = BB->begin(); 8213 e = BB->end(); 8214 continue; 8215 } 8216 } 8217 // Try to vectorize the incoming values of the PHI, to catch reductions 8218 // that feed into PHIs. 8219 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 8220 // Skip if the incoming block is the current BB for now. Also, bypass 8221 // unreachable IR for efficiency and to avoid crashing. 8222 // TODO: Collect the skipped incoming values and try to vectorize them 8223 // after processing BB. 8224 if (BB == P->getIncomingBlock(I) || 8225 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 8226 continue; 8227 8228 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 8229 P->getIncomingBlock(I), R, TTI); 8230 } 8231 continue; 8232 } 8233 8234 // Ran into an instruction without users, like terminator, or function call 8235 // with ignored return value, store. Ignore unused instructions (basing on 8236 // instruction type, except for CallInst and InvokeInst). 8237 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 8238 isa<InvokeInst>(it))) { 8239 KeyNodes.insert(&*it); 8240 bool OpsChanged = false; 8241 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 8242 for (auto *V : it->operand_values()) { 8243 // Try to match and vectorize a horizontal reduction. 8244 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 8245 } 8246 } 8247 // Start vectorization of post-process list of instructions from the 8248 // top-tree instructions to try to vectorize as many instructions as 8249 // possible. 8250 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8251 it->isTerminator()); 8252 if (OpsChanged) { 8253 // We would like to start over since some instructions are deleted 8254 // and the iterator may become invalid value. 8255 Changed = true; 8256 it = BB->begin(); 8257 e = BB->end(); 8258 continue; 8259 } 8260 } 8261 8262 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 8263 isa<InsertValueInst>(it)) 8264 PostProcessInstructions.push_back(&*it); 8265 } 8266 8267 return Changed; 8268 } 8269 8270 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 8271 auto Changed = false; 8272 for (auto &Entry : GEPs) { 8273 // If the getelementptr list has fewer than two elements, there's nothing 8274 // to do. 8275 if (Entry.second.size() < 2) 8276 continue; 8277 8278 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 8279 << Entry.second.size() << ".\n"); 8280 8281 // Process the GEP list in chunks suitable for the target's supported 8282 // vector size. If a vector register can't hold 1 element, we are done. We 8283 // are trying to vectorize the index computations, so the maximum number of 8284 // elements is based on the size of the index expression, rather than the 8285 // size of the GEP itself (the target's pointer size). 8286 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8287 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 8288 if (MaxVecRegSize < EltSize) 8289 continue; 8290 8291 unsigned MaxElts = MaxVecRegSize / EltSize; 8292 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 8293 auto Len = std::min<unsigned>(BE - BI, MaxElts); 8294 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 8295 8296 // Initialize a set a candidate getelementptrs. Note that we use a 8297 // SetVector here to preserve program order. If the index computations 8298 // are vectorizable and begin with loads, we want to minimize the chance 8299 // of having to reorder them later. 8300 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 8301 8302 // Some of the candidates may have already been vectorized after we 8303 // initially collected them. If so, they are marked as deleted, so remove 8304 // them from the set of candidates. 8305 Candidates.remove_if( 8306 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 8307 8308 // Remove from the set of candidates all pairs of getelementptrs with 8309 // constant differences. Such getelementptrs are likely not good 8310 // candidates for vectorization in a bottom-up phase since one can be 8311 // computed from the other. We also ensure all candidate getelementptr 8312 // indices are unique. 8313 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 8314 auto *GEPI = GEPList[I]; 8315 if (!Candidates.count(GEPI)) 8316 continue; 8317 auto *SCEVI = SE->getSCEV(GEPList[I]); 8318 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 8319 auto *GEPJ = GEPList[J]; 8320 auto *SCEVJ = SE->getSCEV(GEPList[J]); 8321 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 8322 Candidates.remove(GEPI); 8323 Candidates.remove(GEPJ); 8324 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 8325 Candidates.remove(GEPJ); 8326 } 8327 } 8328 } 8329 8330 // We break out of the above computation as soon as we know there are 8331 // fewer than two candidates remaining. 8332 if (Candidates.size() < 2) 8333 continue; 8334 8335 // Add the single, non-constant index of each candidate to the bundle. We 8336 // ensured the indices met these constraints when we originally collected 8337 // the getelementptrs. 8338 SmallVector<Value *, 16> Bundle(Candidates.size()); 8339 auto BundleIndex = 0u; 8340 for (auto *V : Candidates) { 8341 auto *GEP = cast<GetElementPtrInst>(V); 8342 auto *GEPIdx = GEP->idx_begin()->get(); 8343 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 8344 Bundle[BundleIndex++] = GEPIdx; 8345 } 8346 8347 // Try and vectorize the indices. We are currently only interested in 8348 // gather-like cases of the form: 8349 // 8350 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 8351 // 8352 // where the loads of "a", the loads of "b", and the subtractions can be 8353 // performed in parallel. It's likely that detecting this pattern in a 8354 // bottom-up phase will be simpler and less costly than building a 8355 // full-blown top-down phase beginning at the consecutive loads. 8356 Changed |= tryToVectorizeList(Bundle, R); 8357 } 8358 } 8359 return Changed; 8360 } 8361 8362 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 8363 bool Changed = false; 8364 // Attempt to sort and vectorize each of the store-groups. 8365 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 8366 ++it) { 8367 if (it->second.size() < 2) 8368 continue; 8369 8370 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 8371 << it->second.size() << ".\n"); 8372 8373 Changed |= vectorizeStores(it->second, R); 8374 } 8375 return Changed; 8376 } 8377 8378 char SLPVectorizer::ID = 0; 8379 8380 static const char lv_name[] = "SLP Vectorizer"; 8381 8382 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 8383 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 8384 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 8385 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8386 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 8387 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 8388 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 8389 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 8390 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 8391 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 8392 8393 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 8394