1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 cl::opt<bool> 110 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 /// Limits the size of scheduling regions in a block. 132 /// It avoid long compile times for _very_ large blocks where vector 133 /// instructions are spread over a wide range. 134 /// This limit is way higher than needed by real-world functions. 135 static cl::opt<int> 136 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 137 cl::desc("Limit the size of the SLP scheduling region per block")); 138 139 static cl::opt<int> MinVectorRegSizeOption( 140 "slp-min-reg-size", cl::init(128), cl::Hidden, 141 cl::desc("Attempt to vectorize for this register size in bits")); 142 143 static cl::opt<unsigned> RecursionMaxDepth( 144 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 145 cl::desc("Limit the recursion depth when building a vectorizable tree")); 146 147 static cl::opt<unsigned> MinTreeSize( 148 "slp-min-tree-size", cl::init(3), cl::Hidden, 149 cl::desc("Only vectorize small trees if they are fully vectorizable")); 150 151 static cl::opt<bool> 152 ViewSLPTree("view-slp-tree", cl::Hidden, 153 cl::desc("Display the SLP trees with Graphviz")); 154 155 // Limit the number of alias checks. The limit is chosen so that 156 // it has no negative effect on the llvm benchmarks. 157 static const unsigned AliasedCheckLimit = 10; 158 159 // Another limit for the alias checks: The maximum distance between load/store 160 // instructions where alias checks are done. 161 // This limit is useful for very large basic blocks. 162 static const unsigned MaxMemDepDistance = 160; 163 164 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 165 /// regions to be handled. 166 static const int MinScheduleRegionSize = 16; 167 168 /// Predicate for the element types that the SLP vectorizer supports. 169 /// 170 /// The most important thing to filter here are types which are invalid in LLVM 171 /// vectors. We also filter target specific types which have absolutely no 172 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 173 /// avoids spending time checking the cost model and realizing that they will 174 /// be inevitably scalarized. 175 static bool isValidElementType(Type *Ty) { 176 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 177 !Ty->isPPC_FP128Ty(); 178 } 179 180 /// \returns true if all of the instructions in \p VL are in the same block or 181 /// false otherwise. 182 static bool allSameBlock(ArrayRef<Value *> VL) { 183 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 184 if (!I0) 185 return false; 186 BasicBlock *BB = I0->getParent(); 187 for (int i = 1, e = VL.size(); i < e; i++) { 188 Instruction *I = dyn_cast<Instruction>(VL[i]); 189 if (!I) 190 return false; 191 192 if (BB != I->getParent()) 193 return false; 194 } 195 return true; 196 } 197 198 /// \returns True if all of the values in \p VL are constants (but not 199 /// globals/constant expressions). 200 static bool allConstant(ArrayRef<Value *> VL) { 201 // Constant expressions and globals can't be vectorized like normal integer/FP 202 // constants. 203 for (Value *i : VL) 204 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 205 return false; 206 return true; 207 } 208 209 /// \returns True if all of the values in \p VL are identical. 210 static bool isSplat(ArrayRef<Value *> VL) { 211 for (unsigned i = 1, e = VL.size(); i < e; ++i) 212 if (VL[i] != VL[0]) 213 return false; 214 return true; 215 } 216 217 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 218 static bool isCommutative(Instruction *I) { 219 if (auto *IC = dyn_cast<CmpInst>(I)) 220 return IC->isCommutative(); 221 return I->isCommutative(); 222 } 223 224 /// Checks if the vector of instructions can be represented as a shuffle, like: 225 /// %x0 = extractelement <4 x i8> %x, i32 0 226 /// %x3 = extractelement <4 x i8> %x, i32 3 227 /// %y1 = extractelement <4 x i8> %y, i32 1 228 /// %y2 = extractelement <4 x i8> %y, i32 2 229 /// %x0x0 = mul i8 %x0, %x0 230 /// %x3x3 = mul i8 %x3, %x3 231 /// %y1y1 = mul i8 %y1, %y1 232 /// %y2y2 = mul i8 %y2, %y2 233 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 234 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 235 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 236 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 237 /// ret <4 x i8> %ins4 238 /// can be transformed into: 239 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 240 /// i32 6> 241 /// %2 = mul <4 x i8> %1, %1 242 /// ret <4 x i8> %2 243 /// We convert this initially to something like: 244 /// %x0 = extractelement <4 x i8> %x, i32 0 245 /// %x3 = extractelement <4 x i8> %x, i32 3 246 /// %y1 = extractelement <4 x i8> %y, i32 1 247 /// %y2 = extractelement <4 x i8> %y, i32 2 248 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 249 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 250 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 251 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 252 /// %5 = mul <4 x i8> %4, %4 253 /// %6 = extractelement <4 x i8> %5, i32 0 254 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 255 /// %7 = extractelement <4 x i8> %5, i32 1 256 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 257 /// %8 = extractelement <4 x i8> %5, i32 2 258 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 259 /// %9 = extractelement <4 x i8> %5, i32 3 260 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 261 /// ret <4 x i8> %ins4 262 /// InstCombiner transforms this into a shuffle and vector mul 263 /// TODO: Can we split off and reuse the shuffle mask detection from 264 /// TargetTransformInfo::getInstructionThroughput? 265 static Optional<TargetTransformInfo::ShuffleKind> 266 isShuffle(ArrayRef<Value *> VL) { 267 auto *EI0 = cast<ExtractElementInst>(VL[0]); 268 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 269 Value *Vec1 = nullptr; 270 Value *Vec2 = nullptr; 271 enum ShuffleMode { Unknown, Select, Permute }; 272 ShuffleMode CommonShuffleMode = Unknown; 273 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 274 auto *EI = cast<ExtractElementInst>(VL[I]); 275 auto *Vec = EI->getVectorOperand(); 276 // All vector operands must have the same number of vector elements. 277 if (Vec->getType()->getVectorNumElements() != Size) 278 return None; 279 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 280 if (!Idx) 281 return None; 282 // Undefined behavior if Idx is negative or >= Size. 283 if (Idx->getValue().uge(Size)) 284 continue; 285 unsigned IntIdx = Idx->getValue().getZExtValue(); 286 // We can extractelement from undef vector. 287 if (isa<UndefValue>(Vec)) 288 continue; 289 // For correct shuffling we have to have at most 2 different vector operands 290 // in all extractelement instructions. 291 if (!Vec1 || Vec1 == Vec) 292 Vec1 = Vec; 293 else if (!Vec2 || Vec2 == Vec) 294 Vec2 = Vec; 295 else 296 return None; 297 if (CommonShuffleMode == Permute) 298 continue; 299 // If the extract index is not the same as the operation number, it is a 300 // permutation. 301 if (IntIdx != I) { 302 CommonShuffleMode = Permute; 303 continue; 304 } 305 CommonShuffleMode = Select; 306 } 307 // If we're not crossing lanes in different vectors, consider it as blending. 308 if (CommonShuffleMode == Select && Vec2) 309 return TargetTransformInfo::SK_Select; 310 // If Vec2 was never used, we have a permutation of a single vector, otherwise 311 // we have permutation of 2 vectors. 312 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 313 : TargetTransformInfo::SK_PermuteSingleSrc; 314 } 315 316 namespace { 317 318 /// Main data required for vectorization of instructions. 319 struct InstructionsState { 320 /// The very first instruction in the list with the main opcode. 321 Value *OpValue = nullptr; 322 323 /// The main/alternate instruction. 324 Instruction *MainOp = nullptr; 325 Instruction *AltOp = nullptr; 326 327 /// The main/alternate opcodes for the list of instructions. 328 unsigned getOpcode() const { 329 return MainOp ? MainOp->getOpcode() : 0; 330 } 331 332 unsigned getAltOpcode() const { 333 return AltOp ? AltOp->getOpcode() : 0; 334 } 335 336 /// Some of the instructions in the list have alternate opcodes. 337 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 338 339 bool isOpcodeOrAlt(Instruction *I) const { 340 unsigned CheckedOpcode = I->getOpcode(); 341 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 342 } 343 344 InstructionsState() = delete; 345 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 346 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 347 }; 348 349 } // end anonymous namespace 350 351 /// Chooses the correct key for scheduling data. If \p Op has the same (or 352 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 353 /// OpValue. 354 static Value *isOneOf(const InstructionsState &S, Value *Op) { 355 auto *I = dyn_cast<Instruction>(Op); 356 if (I && S.isOpcodeOrAlt(I)) 357 return Op; 358 return S.OpValue; 359 } 360 361 /// \returns analysis of the Instructions in \p VL described in 362 /// InstructionsState, the Opcode that we suppose the whole list 363 /// could be vectorized even if its structure is diverse. 364 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 365 unsigned BaseIndex = 0) { 366 // Make sure these are all Instructions. 367 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 368 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 369 370 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 371 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 372 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 373 unsigned AltOpcode = Opcode; 374 unsigned AltIndex = BaseIndex; 375 376 // Check for one alternate opcode from another BinaryOperator. 377 // TODO - generalize to support all operators (types, calls etc.). 378 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 379 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 380 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 381 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 382 continue; 383 if (Opcode == AltOpcode) { 384 AltOpcode = InstOpcode; 385 AltIndex = Cnt; 386 continue; 387 } 388 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 389 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 390 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 391 if (Ty0 == Ty1) { 392 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 393 continue; 394 if (Opcode == AltOpcode) { 395 AltOpcode = InstOpcode; 396 AltIndex = Cnt; 397 continue; 398 } 399 } 400 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 401 continue; 402 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 403 } 404 405 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 406 cast<Instruction>(VL[AltIndex])); 407 } 408 409 /// \returns true if all of the values in \p VL have the same type or false 410 /// otherwise. 411 static bool allSameType(ArrayRef<Value *> VL) { 412 Type *Ty = VL[0]->getType(); 413 for (int i = 1, e = VL.size(); i < e; i++) 414 if (VL[i]->getType() != Ty) 415 return false; 416 417 return true; 418 } 419 420 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 421 static Optional<unsigned> getExtractIndex(Instruction *E) { 422 unsigned Opcode = E->getOpcode(); 423 assert((Opcode == Instruction::ExtractElement || 424 Opcode == Instruction::ExtractValue) && 425 "Expected extractelement or extractvalue instruction."); 426 if (Opcode == Instruction::ExtractElement) { 427 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 428 if (!CI) 429 return None; 430 return CI->getZExtValue(); 431 } 432 ExtractValueInst *EI = cast<ExtractValueInst>(E); 433 if (EI->getNumIndices() != 1) 434 return None; 435 return *EI->idx_begin(); 436 } 437 438 /// \returns True if in-tree use also needs extract. This refers to 439 /// possible scalar operand in vectorized instruction. 440 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 441 TargetLibraryInfo *TLI) { 442 unsigned Opcode = UserInst->getOpcode(); 443 switch (Opcode) { 444 case Instruction::Load: { 445 LoadInst *LI = cast<LoadInst>(UserInst); 446 return (LI->getPointerOperand() == Scalar); 447 } 448 case Instruction::Store: { 449 StoreInst *SI = cast<StoreInst>(UserInst); 450 return (SI->getPointerOperand() == Scalar); 451 } 452 case Instruction::Call: { 453 CallInst *CI = cast<CallInst>(UserInst); 454 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 455 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 456 if (hasVectorInstrinsicScalarOpd(ID, i)) 457 return (CI->getArgOperand(i) == Scalar); 458 } 459 LLVM_FALLTHROUGH; 460 } 461 default: 462 return false; 463 } 464 } 465 466 /// \returns the AA location that is being access by the instruction. 467 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 468 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 469 return MemoryLocation::get(SI); 470 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 471 return MemoryLocation::get(LI); 472 return MemoryLocation(); 473 } 474 475 /// \returns True if the instruction is not a volatile or atomic load/store. 476 static bool isSimple(Instruction *I) { 477 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 478 return LI->isSimple(); 479 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 480 return SI->isSimple(); 481 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 482 return !MI->isVolatile(); 483 return true; 484 } 485 486 namespace llvm { 487 488 namespace slpvectorizer { 489 490 /// Bottom Up SLP Vectorizer. 491 class BoUpSLP { 492 struct TreeEntry; 493 struct ScheduleData; 494 495 public: 496 using ValueList = SmallVector<Value *, 8>; 497 using InstrList = SmallVector<Instruction *, 16>; 498 using ValueSet = SmallPtrSet<Value *, 16>; 499 using StoreList = SmallVector<StoreInst *, 8>; 500 using ExtraValueToDebugLocsMap = 501 MapVector<Value *, SmallVector<Instruction *, 2>>; 502 503 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 504 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 505 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 506 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 507 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 508 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 509 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 510 // Use the vector register size specified by the target unless overridden 511 // by a command-line option. 512 // TODO: It would be better to limit the vectorization factor based on 513 // data type rather than just register size. For example, x86 AVX has 514 // 256-bit registers, but it does not support integer operations 515 // at that width (that requires AVX2). 516 if (MaxVectorRegSizeOption.getNumOccurrences()) 517 MaxVecRegSize = MaxVectorRegSizeOption; 518 else 519 MaxVecRegSize = TTI->getRegisterBitWidth(true); 520 521 if (MinVectorRegSizeOption.getNumOccurrences()) 522 MinVecRegSize = MinVectorRegSizeOption; 523 else 524 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 525 } 526 527 /// Vectorize the tree that starts with the elements in \p VL. 528 /// Returns the vectorized root. 529 Value *vectorizeTree(); 530 531 /// Vectorize the tree but with the list of externally used values \p 532 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 533 /// generated extractvalue instructions. 534 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 535 536 /// \returns the cost incurred by unwanted spills and fills, caused by 537 /// holding live values over call sites. 538 int getSpillCost() const; 539 540 /// \returns the vectorization cost of the subtree that starts at \p VL. 541 /// A negative number means that this is profitable. 542 int getTreeCost(); 543 544 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 545 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 546 void buildTree(ArrayRef<Value *> Roots, 547 ArrayRef<Value *> UserIgnoreLst = None); 548 549 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 550 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 551 /// into account (anf updating it, if required) list of externally used 552 /// values stored in \p ExternallyUsedValues. 553 void buildTree(ArrayRef<Value *> Roots, 554 ExtraValueToDebugLocsMap &ExternallyUsedValues, 555 ArrayRef<Value *> UserIgnoreLst = None); 556 557 /// Clear the internal data structures that are created by 'buildTree'. 558 void deleteTree() { 559 VectorizableTree.clear(); 560 ScalarToTreeEntry.clear(); 561 MustGather.clear(); 562 ExternalUses.clear(); 563 NumOpsWantToKeepOrder.clear(); 564 NumOpsWantToKeepOriginalOrder = 0; 565 for (auto &Iter : BlocksSchedules) { 566 BlockScheduling *BS = Iter.second.get(); 567 BS->clear(); 568 } 569 MinBWs.clear(); 570 } 571 572 unsigned getTreeSize() const { return VectorizableTree.size(); } 573 574 /// Perform LICM and CSE on the newly generated gather sequences. 575 void optimizeGatherSequence(); 576 577 /// \returns The best order of instructions for vectorization. 578 Optional<ArrayRef<unsigned>> bestOrder() const { 579 auto I = std::max_element( 580 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 581 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 582 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 583 return D1.second < D2.second; 584 }); 585 if (I == NumOpsWantToKeepOrder.end() || 586 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 587 return None; 588 589 return makeArrayRef(I->getFirst()); 590 } 591 592 /// \return The vector element size in bits to use when vectorizing the 593 /// expression tree ending at \p V. If V is a store, the size is the width of 594 /// the stored value. Otherwise, the size is the width of the largest loaded 595 /// value reaching V. This method is used by the vectorizer to calculate 596 /// vectorization factors. 597 unsigned getVectorElementSize(Value *V) const; 598 599 /// Compute the minimum type sizes required to represent the entries in a 600 /// vectorizable tree. 601 void computeMinimumValueSizes(); 602 603 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 604 unsigned getMaxVecRegSize() const { 605 return MaxVecRegSize; 606 } 607 608 // \returns minimum vector register size as set by cl::opt. 609 unsigned getMinVecRegSize() const { 610 return MinVecRegSize; 611 } 612 613 /// Check if ArrayType or StructType is isomorphic to some VectorType. 614 /// 615 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 616 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 617 618 /// \returns True if the VectorizableTree is both tiny and not fully 619 /// vectorizable. We do not vectorize such trees. 620 bool isTreeTinyAndNotFullyVectorizable() const; 621 622 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 623 /// can be load combined in the backend. Load combining may not be allowed in 624 /// the IR optimizer, so we do not want to alter the pattern. For example, 625 /// partially transforming a scalar bswap() pattern into vector code is 626 /// effectively impossible for the backend to undo. 627 /// TODO: If load combining is allowed in the IR optimizer, this analysis 628 /// may not be necessary. 629 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 630 631 OptimizationRemarkEmitter *getORE() { return ORE; } 632 633 /// This structure holds any data we need about the edges being traversed 634 /// during buildTree_rec(). We keep track of: 635 /// (i) the user TreeEntry index, and 636 /// (ii) the index of the edge. 637 struct EdgeInfo { 638 EdgeInfo() = default; 639 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 640 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 641 /// The user TreeEntry. 642 TreeEntry *UserTE = nullptr; 643 /// The operand index of the use. 644 unsigned EdgeIdx = UINT_MAX; 645 #ifndef NDEBUG 646 friend inline raw_ostream &operator<<(raw_ostream &OS, 647 const BoUpSLP::EdgeInfo &EI) { 648 EI.dump(OS); 649 return OS; 650 } 651 /// Debug print. 652 void dump(raw_ostream &OS) const { 653 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 654 << " EdgeIdx:" << EdgeIdx << "}"; 655 } 656 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 657 #endif 658 }; 659 660 /// A helper data structure to hold the operands of a vector of instructions. 661 /// This supports a fixed vector length for all operand vectors. 662 class VLOperands { 663 /// For each operand we need (i) the value, and (ii) the opcode that it 664 /// would be attached to if the expression was in a left-linearized form. 665 /// This is required to avoid illegal operand reordering. 666 /// For example: 667 /// \verbatim 668 /// 0 Op1 669 /// |/ 670 /// Op1 Op2 Linearized + Op2 671 /// \ / ----------> |/ 672 /// - - 673 /// 674 /// Op1 - Op2 (0 + Op1) - Op2 675 /// \endverbatim 676 /// 677 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 678 /// 679 /// Another way to think of this is to track all the operations across the 680 /// path from the operand all the way to the root of the tree and to 681 /// calculate the operation that corresponds to this path. For example, the 682 /// path from Op2 to the root crosses the RHS of the '-', therefore the 683 /// corresponding operation is a '-' (which matches the one in the 684 /// linearized tree, as shown above). 685 /// 686 /// For lack of a better term, we refer to this operation as Accumulated 687 /// Path Operation (APO). 688 struct OperandData { 689 OperandData() = default; 690 OperandData(Value *V, bool APO, bool IsUsed) 691 : V(V), APO(APO), IsUsed(IsUsed) {} 692 /// The operand value. 693 Value *V = nullptr; 694 /// TreeEntries only allow a single opcode, or an alternate sequence of 695 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 696 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 697 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 698 /// (e.g., Add/Mul) 699 bool APO = false; 700 /// Helper data for the reordering function. 701 bool IsUsed = false; 702 }; 703 704 /// During operand reordering, we are trying to select the operand at lane 705 /// that matches best with the operand at the neighboring lane. Our 706 /// selection is based on the type of value we are looking for. For example, 707 /// if the neighboring lane has a load, we need to look for a load that is 708 /// accessing a consecutive address. These strategies are summarized in the 709 /// 'ReorderingMode' enumerator. 710 enum class ReorderingMode { 711 Load, ///< Matching loads to consecutive memory addresses 712 Opcode, ///< Matching instructions based on opcode (same or alternate) 713 Constant, ///< Matching constants 714 Splat, ///< Matching the same instruction multiple times (broadcast) 715 Failed, ///< We failed to create a vectorizable group 716 }; 717 718 using OperandDataVec = SmallVector<OperandData, 2>; 719 720 /// A vector of operand vectors. 721 SmallVector<OperandDataVec, 4> OpsVec; 722 723 const DataLayout &DL; 724 ScalarEvolution &SE; 725 726 /// \returns the operand data at \p OpIdx and \p Lane. 727 OperandData &getData(unsigned OpIdx, unsigned Lane) { 728 return OpsVec[OpIdx][Lane]; 729 } 730 731 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 732 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 733 return OpsVec[OpIdx][Lane]; 734 } 735 736 /// Clears the used flag for all entries. 737 void clearUsed() { 738 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 739 OpIdx != NumOperands; ++OpIdx) 740 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 741 ++Lane) 742 OpsVec[OpIdx][Lane].IsUsed = false; 743 } 744 745 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 746 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 747 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 748 } 749 750 // Search all operands in Ops[*][Lane] for the one that matches best 751 // Ops[OpIdx][LastLane] and return its opreand index. 752 // If no good match can be found, return None. 753 Optional<unsigned> 754 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 755 ArrayRef<ReorderingMode> ReorderingModes) { 756 unsigned NumOperands = getNumOperands(); 757 758 // The operand of the previous lane at OpIdx. 759 Value *OpLastLane = getData(OpIdx, LastLane).V; 760 761 // Our strategy mode for OpIdx. 762 ReorderingMode RMode = ReorderingModes[OpIdx]; 763 764 // The linearized opcode of the operand at OpIdx, Lane. 765 bool OpIdxAPO = getData(OpIdx, Lane).APO; 766 767 const unsigned BestScore = 2; 768 const unsigned GoodScore = 1; 769 770 // The best operand index and its score. 771 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 772 // are using the score to differentiate between the two. 773 struct BestOpData { 774 Optional<unsigned> Idx = None; 775 unsigned Score = 0; 776 } BestOp; 777 778 // Iterate through all unused operands and look for the best. 779 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 780 // Get the operand at Idx and Lane. 781 OperandData &OpData = getData(Idx, Lane); 782 Value *Op = OpData.V; 783 bool OpAPO = OpData.APO; 784 785 // Skip already selected operands. 786 if (OpData.IsUsed) 787 continue; 788 789 // Skip if we are trying to move the operand to a position with a 790 // different opcode in the linearized tree form. This would break the 791 // semantics. 792 if (OpAPO != OpIdxAPO) 793 continue; 794 795 // Look for an operand that matches the current mode. 796 switch (RMode) { 797 case ReorderingMode::Load: 798 if (isa<LoadInst>(Op)) { 799 // Figure out which is left and right, so that we can check for 800 // consecutive loads 801 bool LeftToRight = Lane > LastLane; 802 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 803 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 804 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 805 cast<LoadInst>(OpRight), DL, SE)) 806 BestOp.Idx = Idx; 807 } 808 break; 809 case ReorderingMode::Opcode: 810 // We accept both Instructions and Undefs, but with different scores. 811 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 812 cast<Instruction>(Op)->getOpcode() == 813 cast<Instruction>(OpLastLane)->getOpcode()) || 814 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 815 isa<UndefValue>(Op)) { 816 // An instruction has a higher score than an undef. 817 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 818 if (Score > BestOp.Score) { 819 BestOp.Idx = Idx; 820 BestOp.Score = Score; 821 } 822 } 823 break; 824 case ReorderingMode::Constant: 825 if (isa<Constant>(Op)) { 826 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 827 if (Score > BestOp.Score) { 828 BestOp.Idx = Idx; 829 BestOp.Score = Score; 830 } 831 } 832 break; 833 case ReorderingMode::Splat: 834 if (Op == OpLastLane) 835 BestOp.Idx = Idx; 836 break; 837 case ReorderingMode::Failed: 838 return None; 839 } 840 } 841 842 if (BestOp.Idx) { 843 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 844 return BestOp.Idx; 845 } 846 // If we could not find a good match return None. 847 return None; 848 } 849 850 /// Helper for reorderOperandVecs. \Returns the lane that we should start 851 /// reordering from. This is the one which has the least number of operands 852 /// that can freely move about. 853 unsigned getBestLaneToStartReordering() const { 854 unsigned BestLane = 0; 855 unsigned Min = UINT_MAX; 856 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 857 ++Lane) { 858 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 859 if (NumFreeOps < Min) { 860 Min = NumFreeOps; 861 BestLane = Lane; 862 } 863 } 864 return BestLane; 865 } 866 867 /// \Returns the maximum number of operands that are allowed to be reordered 868 /// for \p Lane. This is used as a heuristic for selecting the first lane to 869 /// start operand reordering. 870 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 871 unsigned CntTrue = 0; 872 unsigned NumOperands = getNumOperands(); 873 // Operands with the same APO can be reordered. We therefore need to count 874 // how many of them we have for each APO, like this: Cnt[APO] = x. 875 // Since we only have two APOs, namely true and false, we can avoid using 876 // a map. Instead we can simply count the number of operands that 877 // correspond to one of them (in this case the 'true' APO), and calculate 878 // the other by subtracting it from the total number of operands. 879 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 880 if (getData(OpIdx, Lane).APO) 881 ++CntTrue; 882 unsigned CntFalse = NumOperands - CntTrue; 883 return std::max(CntTrue, CntFalse); 884 } 885 886 /// Go through the instructions in VL and append their operands. 887 void appendOperandsOfVL(ArrayRef<Value *> VL) { 888 assert(!VL.empty() && "Bad VL"); 889 assert((empty() || VL.size() == getNumLanes()) && 890 "Expected same number of lanes"); 891 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 892 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 893 OpsVec.resize(NumOperands); 894 unsigned NumLanes = VL.size(); 895 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 896 OpsVec[OpIdx].resize(NumLanes); 897 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 898 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 899 // Our tree has just 3 nodes: the root and two operands. 900 // It is therefore trivial to get the APO. We only need to check the 901 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 902 // RHS operand. The LHS operand of both add and sub is never attached 903 // to an inversese operation in the linearized form, therefore its APO 904 // is false. The RHS is true only if VL[Lane] is an inverse operation. 905 906 // Since operand reordering is performed on groups of commutative 907 // operations or alternating sequences (e.g., +, -), we can safely 908 // tell the inverse operations by checking commutativity. 909 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 910 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 911 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 912 APO, false}; 913 } 914 } 915 } 916 917 /// \returns the number of operands. 918 unsigned getNumOperands() const { return OpsVec.size(); } 919 920 /// \returns the number of lanes. 921 unsigned getNumLanes() const { return OpsVec[0].size(); } 922 923 /// \returns the operand value at \p OpIdx and \p Lane. 924 Value *getValue(unsigned OpIdx, unsigned Lane) const { 925 return getData(OpIdx, Lane).V; 926 } 927 928 /// \returns true if the data structure is empty. 929 bool empty() const { return OpsVec.empty(); } 930 931 /// Clears the data. 932 void clear() { OpsVec.clear(); } 933 934 /// \Returns true if there are enough operands identical to \p Op to fill 935 /// the whole vector. 936 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 937 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 938 bool OpAPO = getData(OpIdx, Lane).APO; 939 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 940 if (Ln == Lane) 941 continue; 942 // This is set to true if we found a candidate for broadcast at Lane. 943 bool FoundCandidate = false; 944 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 945 OperandData &Data = getData(OpI, Ln); 946 if (Data.APO != OpAPO || Data.IsUsed) 947 continue; 948 if (Data.V == Op) { 949 FoundCandidate = true; 950 Data.IsUsed = true; 951 break; 952 } 953 } 954 if (!FoundCandidate) 955 return false; 956 } 957 return true; 958 } 959 960 public: 961 /// Initialize with all the operands of the instruction vector \p RootVL. 962 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 963 ScalarEvolution &SE) 964 : DL(DL), SE(SE) { 965 // Append all the operands of RootVL. 966 appendOperandsOfVL(RootVL); 967 } 968 969 /// \Returns a value vector with the operands across all lanes for the 970 /// opearnd at \p OpIdx. 971 ValueList getVL(unsigned OpIdx) const { 972 ValueList OpVL(OpsVec[OpIdx].size()); 973 assert(OpsVec[OpIdx].size() == getNumLanes() && 974 "Expected same num of lanes across all operands"); 975 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 976 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 977 return OpVL; 978 } 979 980 // Performs operand reordering for 2 or more operands. 981 // The original operands are in OrigOps[OpIdx][Lane]. 982 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 983 void reorder() { 984 unsigned NumOperands = getNumOperands(); 985 unsigned NumLanes = getNumLanes(); 986 // Each operand has its own mode. We are using this mode to help us select 987 // the instructions for each lane, so that they match best with the ones 988 // we have selected so far. 989 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 990 991 // This is a greedy single-pass algorithm. We are going over each lane 992 // once and deciding on the best order right away with no back-tracking. 993 // However, in order to increase its effectiveness, we start with the lane 994 // that has operands that can move the least. For example, given the 995 // following lanes: 996 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 997 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 998 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 999 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1000 // we will start at Lane 1, since the operands of the subtraction cannot 1001 // be reordered. Then we will visit the rest of the lanes in a circular 1002 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1003 1004 // Find the first lane that we will start our search from. 1005 unsigned FirstLane = getBestLaneToStartReordering(); 1006 1007 // Initialize the modes. 1008 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1009 Value *OpLane0 = getValue(OpIdx, FirstLane); 1010 // Keep track if we have instructions with all the same opcode on one 1011 // side. 1012 if (isa<LoadInst>(OpLane0)) 1013 ReorderingModes[OpIdx] = ReorderingMode::Load; 1014 else if (isa<Instruction>(OpLane0)) { 1015 // Check if OpLane0 should be broadcast. 1016 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1017 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1018 else 1019 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1020 } 1021 else if (isa<Constant>(OpLane0)) 1022 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1023 else if (isa<Argument>(OpLane0)) 1024 // Our best hope is a Splat. It may save some cost in some cases. 1025 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1026 else 1027 // NOTE: This should be unreachable. 1028 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1029 } 1030 1031 // If the initial strategy fails for any of the operand indexes, then we 1032 // perform reordering again in a second pass. This helps avoid assigning 1033 // high priority to the failed strategy, and should improve reordering for 1034 // the non-failed operand indexes. 1035 for (int Pass = 0; Pass != 2; ++Pass) { 1036 // Skip the second pass if the first pass did not fail. 1037 bool StrategyFailed = false; 1038 // Mark all operand data as free to use. 1039 clearUsed(); 1040 // We keep the original operand order for the FirstLane, so reorder the 1041 // rest of the lanes. We are visiting the nodes in a circular fashion, 1042 // using FirstLane as the center point and increasing the radius 1043 // distance. 1044 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1045 // Visit the lane on the right and then the lane on the left. 1046 for (int Direction : {+1, -1}) { 1047 int Lane = FirstLane + Direction * Distance; 1048 if (Lane < 0 || Lane >= (int)NumLanes) 1049 continue; 1050 int LastLane = Lane - Direction; 1051 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1052 "Out of bounds"); 1053 // Look for a good match for each operand. 1054 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1055 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1056 Optional<unsigned> BestIdx = 1057 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1058 // By not selecting a value, we allow the operands that follow to 1059 // select a better matching value. We will get a non-null value in 1060 // the next run of getBestOperand(). 1061 if (BestIdx) { 1062 // Swap the current operand with the one returned by 1063 // getBestOperand(). 1064 swap(OpIdx, BestIdx.getValue(), Lane); 1065 } else { 1066 // We failed to find a best operand, set mode to 'Failed'. 1067 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1068 // Enable the second pass. 1069 StrategyFailed = true; 1070 } 1071 } 1072 } 1073 } 1074 // Skip second pass if the strategy did not fail. 1075 if (!StrategyFailed) 1076 break; 1077 } 1078 } 1079 1080 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1081 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1082 switch (RMode) { 1083 case ReorderingMode::Load: 1084 return "Load"; 1085 case ReorderingMode::Opcode: 1086 return "Opcode"; 1087 case ReorderingMode::Constant: 1088 return "Constant"; 1089 case ReorderingMode::Splat: 1090 return "Splat"; 1091 case ReorderingMode::Failed: 1092 return "Failed"; 1093 } 1094 llvm_unreachable("Unimplemented Reordering Type"); 1095 } 1096 1097 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1098 raw_ostream &OS) { 1099 return OS << getModeStr(RMode); 1100 } 1101 1102 /// Debug print. 1103 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1104 printMode(RMode, dbgs()); 1105 } 1106 1107 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1108 return printMode(RMode, OS); 1109 } 1110 1111 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1112 const unsigned Indent = 2; 1113 unsigned Cnt = 0; 1114 for (const OperandDataVec &OpDataVec : OpsVec) { 1115 OS << "Operand " << Cnt++ << "\n"; 1116 for (const OperandData &OpData : OpDataVec) { 1117 OS.indent(Indent) << "{"; 1118 if (Value *V = OpData.V) 1119 OS << *V; 1120 else 1121 OS << "null"; 1122 OS << ", APO:" << OpData.APO << "}\n"; 1123 } 1124 OS << "\n"; 1125 } 1126 return OS; 1127 } 1128 1129 /// Debug print. 1130 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1131 #endif 1132 }; 1133 1134 /// Checks if the instruction is marked for deletion. 1135 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1136 1137 /// Marks values operands for later deletion by replacing them with Undefs. 1138 void eraseInstructions(ArrayRef<Value *> AV); 1139 1140 ~BoUpSLP(); 1141 1142 private: 1143 /// Checks if all users of \p I are the part of the vectorization tree. 1144 bool areAllUsersVectorized(Instruction *I) const; 1145 1146 /// \returns the cost of the vectorizable entry. 1147 int getEntryCost(TreeEntry *E); 1148 1149 /// This is the recursive part of buildTree. 1150 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1151 const EdgeInfo &EI); 1152 1153 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1154 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1155 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1156 /// returns false, setting \p CurrentOrder to either an empty vector or a 1157 /// non-identity permutation that allows to reuse extract instructions. 1158 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1159 SmallVectorImpl<unsigned> &CurrentOrder) const; 1160 1161 /// Vectorize a single entry in the tree. 1162 Value *vectorizeTree(TreeEntry *E); 1163 1164 /// Vectorize a single entry in the tree, starting in \p VL. 1165 Value *vectorizeTree(ArrayRef<Value *> VL); 1166 1167 /// \returns the scalarization cost for this type. Scalarization in this 1168 /// context means the creation of vectors from a group of scalars. 1169 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1170 1171 /// \returns the scalarization cost for this list of values. Assuming that 1172 /// this subtree gets vectorized, we may need to extract the values from the 1173 /// roots. This method calculates the cost of extracting the values. 1174 int getGatherCost(ArrayRef<Value *> VL) const; 1175 1176 /// Set the Builder insert point to one after the last instruction in 1177 /// the bundle 1178 void setInsertPointAfterBundle(TreeEntry *E); 1179 1180 /// \returns a vector from a collection of scalars in \p VL. 1181 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1182 1183 /// \returns whether the VectorizableTree is fully vectorizable and will 1184 /// be beneficial even the tree height is tiny. 1185 bool isFullyVectorizableTinyTree() const; 1186 1187 /// Reorder commutative or alt operands to get better probability of 1188 /// generating vectorized code. 1189 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1190 SmallVectorImpl<Value *> &Left, 1191 SmallVectorImpl<Value *> &Right, 1192 const DataLayout &DL, 1193 ScalarEvolution &SE); 1194 struct TreeEntry { 1195 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1196 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1197 1198 /// \returns true if the scalars in VL are equal to this entry. 1199 bool isSame(ArrayRef<Value *> VL) const { 1200 if (VL.size() == Scalars.size()) 1201 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1202 return VL.size() == ReuseShuffleIndices.size() && 1203 std::equal( 1204 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1205 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1206 } 1207 1208 /// A vector of scalars. 1209 ValueList Scalars; 1210 1211 /// The Scalars are vectorized into this value. It is initialized to Null. 1212 Value *VectorizedValue = nullptr; 1213 1214 /// Do we need to gather this sequence ? 1215 bool NeedToGather = false; 1216 1217 /// Does this sequence require some shuffling? 1218 SmallVector<unsigned, 4> ReuseShuffleIndices; 1219 1220 /// Does this entry require reordering? 1221 ArrayRef<unsigned> ReorderIndices; 1222 1223 /// Points back to the VectorizableTree. 1224 /// 1225 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1226 /// to be a pointer and needs to be able to initialize the child iterator. 1227 /// Thus we need a reference back to the container to translate the indices 1228 /// to entries. 1229 VecTreeTy &Container; 1230 1231 /// The TreeEntry index containing the user of this entry. We can actually 1232 /// have multiple users so the data structure is not truly a tree. 1233 SmallVector<EdgeInfo, 1> UserTreeIndices; 1234 1235 /// The index of this treeEntry in VectorizableTree. 1236 int Idx = -1; 1237 1238 private: 1239 /// The operands of each instruction in each lane Operands[op_index][lane]. 1240 /// Note: This helps avoid the replication of the code that performs the 1241 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1242 SmallVector<ValueList, 2> Operands; 1243 1244 /// The main/alternate instruction. 1245 Instruction *MainOp = nullptr; 1246 Instruction *AltOp = nullptr; 1247 1248 public: 1249 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1250 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1251 if (Operands.size() < OpIdx + 1) 1252 Operands.resize(OpIdx + 1); 1253 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1254 Operands[OpIdx].resize(Scalars.size()); 1255 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1256 Operands[OpIdx][Lane] = OpVL[Lane]; 1257 } 1258 1259 /// Set the operands of this bundle in their original order. 1260 void setOperandsInOrder() { 1261 assert(Operands.empty() && "Already initialized?"); 1262 auto *I0 = cast<Instruction>(Scalars[0]); 1263 Operands.resize(I0->getNumOperands()); 1264 unsigned NumLanes = Scalars.size(); 1265 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1266 OpIdx != NumOperands; ++OpIdx) { 1267 Operands[OpIdx].resize(NumLanes); 1268 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1269 auto *I = cast<Instruction>(Scalars[Lane]); 1270 assert(I->getNumOperands() == NumOperands && 1271 "Expected same number of operands"); 1272 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1273 } 1274 } 1275 } 1276 1277 /// \returns the \p OpIdx operand of this TreeEntry. 1278 ValueList &getOperand(unsigned OpIdx) { 1279 assert(OpIdx < Operands.size() && "Off bounds"); 1280 return Operands[OpIdx]; 1281 } 1282 1283 /// \returns the number of operands. 1284 unsigned getNumOperands() const { return Operands.size(); } 1285 1286 /// \return the single \p OpIdx operand. 1287 Value *getSingleOperand(unsigned OpIdx) const { 1288 assert(OpIdx < Operands.size() && "Off bounds"); 1289 assert(!Operands[OpIdx].empty() && "No operand available"); 1290 return Operands[OpIdx][0]; 1291 } 1292 1293 /// Some of the instructions in the list have alternate opcodes. 1294 bool isAltShuffle() const { 1295 return getOpcode() != getAltOpcode(); 1296 } 1297 1298 bool isOpcodeOrAlt(Instruction *I) const { 1299 unsigned CheckedOpcode = I->getOpcode(); 1300 return (getOpcode() == CheckedOpcode || 1301 getAltOpcode() == CheckedOpcode); 1302 } 1303 1304 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1305 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1306 /// \p OpValue. 1307 Value *isOneOf(Value *Op) const { 1308 auto *I = dyn_cast<Instruction>(Op); 1309 if (I && isOpcodeOrAlt(I)) 1310 return Op; 1311 return MainOp; 1312 } 1313 1314 void setOperations(const InstructionsState &S) { 1315 MainOp = S.MainOp; 1316 AltOp = S.AltOp; 1317 } 1318 1319 Instruction *getMainOp() const { 1320 return MainOp; 1321 } 1322 1323 Instruction *getAltOp() const { 1324 return AltOp; 1325 } 1326 1327 /// The main/alternate opcodes for the list of instructions. 1328 unsigned getOpcode() const { 1329 return MainOp ? MainOp->getOpcode() : 0; 1330 } 1331 1332 unsigned getAltOpcode() const { 1333 return AltOp ? AltOp->getOpcode() : 0; 1334 } 1335 1336 /// Update operations state of this entry if reorder occurred. 1337 bool updateStateIfReorder() { 1338 if (ReorderIndices.empty()) 1339 return false; 1340 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1341 setOperations(S); 1342 return true; 1343 } 1344 1345 #ifndef NDEBUG 1346 /// Debug printer. 1347 LLVM_DUMP_METHOD void dump() const { 1348 dbgs() << Idx << ".\n"; 1349 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1350 dbgs() << "Operand " << OpI << ":\n"; 1351 for (const Value *V : Operands[OpI]) 1352 dbgs().indent(2) << *V << "\n"; 1353 } 1354 dbgs() << "Scalars: \n"; 1355 for (Value *V : Scalars) 1356 dbgs().indent(2) << *V << "\n"; 1357 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1358 dbgs() << "MainOp: " << *MainOp << "\n"; 1359 dbgs() << "AltOp: " << *AltOp << "\n"; 1360 dbgs() << "VectorizedValue: "; 1361 if (VectorizedValue) 1362 dbgs() << *VectorizedValue; 1363 else 1364 dbgs() << "NULL"; 1365 dbgs() << "\n"; 1366 dbgs() << "ReuseShuffleIndices: "; 1367 if (ReuseShuffleIndices.empty()) 1368 dbgs() << "Emtpy"; 1369 else 1370 for (unsigned ReuseIdx : ReuseShuffleIndices) 1371 dbgs() << ReuseIdx << ", "; 1372 dbgs() << "\n"; 1373 dbgs() << "ReorderIndices: "; 1374 for (unsigned ReorderIdx : ReorderIndices) 1375 dbgs() << ReorderIdx << ", "; 1376 dbgs() << "\n"; 1377 dbgs() << "UserTreeIndices: "; 1378 for (const auto &EInfo : UserTreeIndices) 1379 dbgs() << EInfo << ", "; 1380 dbgs() << "\n"; 1381 } 1382 #endif 1383 }; 1384 1385 /// Create a new VectorizableTree entry. 1386 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1387 const InstructionsState &S, 1388 const EdgeInfo &UserTreeIdx, 1389 ArrayRef<unsigned> ReuseShuffleIndices = None, 1390 ArrayRef<unsigned> ReorderIndices = None) { 1391 bool Vectorized = (bool)Bundle; 1392 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1393 TreeEntry *Last = VectorizableTree.back().get(); 1394 Last->Idx = VectorizableTree.size() - 1; 1395 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1396 Last->NeedToGather = !Vectorized; 1397 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1398 ReuseShuffleIndices.end()); 1399 Last->ReorderIndices = ReorderIndices; 1400 Last->setOperations(S); 1401 if (Vectorized) { 1402 for (int i = 0, e = VL.size(); i != e; ++i) { 1403 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1404 ScalarToTreeEntry[VL[i]] = Last; 1405 } 1406 // Update the scheduler bundle to point to this TreeEntry. 1407 unsigned Lane = 0; 1408 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1409 BundleMember = BundleMember->NextInBundle) { 1410 BundleMember->TE = Last; 1411 BundleMember->Lane = Lane; 1412 ++Lane; 1413 } 1414 assert((!Bundle.getValue() || Lane == VL.size()) && 1415 "Bundle and VL out of sync"); 1416 } else { 1417 MustGather.insert(VL.begin(), VL.end()); 1418 } 1419 1420 if (UserTreeIdx.UserTE) 1421 Last->UserTreeIndices.push_back(UserTreeIdx); 1422 1423 return Last; 1424 } 1425 1426 /// -- Vectorization State -- 1427 /// Holds all of the tree entries. 1428 TreeEntry::VecTreeTy VectorizableTree; 1429 1430 #ifndef NDEBUG 1431 /// Debug printer. 1432 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1433 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1434 VectorizableTree[Id]->dump(); 1435 dbgs() << "\n"; 1436 } 1437 } 1438 #endif 1439 1440 TreeEntry *getTreeEntry(Value *V) { 1441 auto I = ScalarToTreeEntry.find(V); 1442 if (I != ScalarToTreeEntry.end()) 1443 return I->second; 1444 return nullptr; 1445 } 1446 1447 const TreeEntry *getTreeEntry(Value *V) const { 1448 auto I = ScalarToTreeEntry.find(V); 1449 if (I != ScalarToTreeEntry.end()) 1450 return I->second; 1451 return nullptr; 1452 } 1453 1454 /// Maps a specific scalar to its tree entry. 1455 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1456 1457 /// A list of scalars that we found that we need to keep as scalars. 1458 ValueSet MustGather; 1459 1460 /// This POD struct describes one external user in the vectorized tree. 1461 struct ExternalUser { 1462 ExternalUser(Value *S, llvm::User *U, int L) 1463 : Scalar(S), User(U), Lane(L) {} 1464 1465 // Which scalar in our function. 1466 Value *Scalar; 1467 1468 // Which user that uses the scalar. 1469 llvm::User *User; 1470 1471 // Which lane does the scalar belong to. 1472 int Lane; 1473 }; 1474 using UserList = SmallVector<ExternalUser, 16>; 1475 1476 /// Checks if two instructions may access the same memory. 1477 /// 1478 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1479 /// is invariant in the calling loop. 1480 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1481 Instruction *Inst2) { 1482 // First check if the result is already in the cache. 1483 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1484 Optional<bool> &result = AliasCache[key]; 1485 if (result.hasValue()) { 1486 return result.getValue(); 1487 } 1488 MemoryLocation Loc2 = getLocation(Inst2, AA); 1489 bool aliased = true; 1490 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1491 // Do the alias check. 1492 aliased = AA->alias(Loc1, Loc2); 1493 } 1494 // Store the result in the cache. 1495 result = aliased; 1496 return aliased; 1497 } 1498 1499 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1500 1501 /// Cache for alias results. 1502 /// TODO: consider moving this to the AliasAnalysis itself. 1503 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1504 1505 /// Removes an instruction from its block and eventually deletes it. 1506 /// It's like Instruction::eraseFromParent() except that the actual deletion 1507 /// is delayed until BoUpSLP is destructed. 1508 /// This is required to ensure that there are no incorrect collisions in the 1509 /// AliasCache, which can happen if a new instruction is allocated at the 1510 /// same address as a previously deleted instruction. 1511 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1512 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1513 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1514 } 1515 1516 /// Temporary store for deleted instructions. Instructions will be deleted 1517 /// eventually when the BoUpSLP is destructed. 1518 DenseMap<Instruction *, bool> DeletedInstructions; 1519 1520 /// A list of values that need to extracted out of the tree. 1521 /// This list holds pairs of (Internal Scalar : External User). External User 1522 /// can be nullptr, it means that this Internal Scalar will be used later, 1523 /// after vectorization. 1524 UserList ExternalUses; 1525 1526 /// Values used only by @llvm.assume calls. 1527 SmallPtrSet<const Value *, 32> EphValues; 1528 1529 /// Holds all of the instructions that we gathered. 1530 SetVector<Instruction *> GatherSeq; 1531 1532 /// A list of blocks that we are going to CSE. 1533 SetVector<BasicBlock *> CSEBlocks; 1534 1535 /// Contains all scheduling relevant data for an instruction. 1536 /// A ScheduleData either represents a single instruction or a member of an 1537 /// instruction bundle (= a group of instructions which is combined into a 1538 /// vector instruction). 1539 struct ScheduleData { 1540 // The initial value for the dependency counters. It means that the 1541 // dependencies are not calculated yet. 1542 enum { InvalidDeps = -1 }; 1543 1544 ScheduleData() = default; 1545 1546 void init(int BlockSchedulingRegionID, Value *OpVal) { 1547 FirstInBundle = this; 1548 NextInBundle = nullptr; 1549 NextLoadStore = nullptr; 1550 IsScheduled = false; 1551 SchedulingRegionID = BlockSchedulingRegionID; 1552 UnscheduledDepsInBundle = UnscheduledDeps; 1553 clearDependencies(); 1554 OpValue = OpVal; 1555 TE = nullptr; 1556 Lane = -1; 1557 } 1558 1559 /// Returns true if the dependency information has been calculated. 1560 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1561 1562 /// Returns true for single instructions and for bundle representatives 1563 /// (= the head of a bundle). 1564 bool isSchedulingEntity() const { return FirstInBundle == this; } 1565 1566 /// Returns true if it represents an instruction bundle and not only a 1567 /// single instruction. 1568 bool isPartOfBundle() const { 1569 return NextInBundle != nullptr || FirstInBundle != this; 1570 } 1571 1572 /// Returns true if it is ready for scheduling, i.e. it has no more 1573 /// unscheduled depending instructions/bundles. 1574 bool isReady() const { 1575 assert(isSchedulingEntity() && 1576 "can't consider non-scheduling entity for ready list"); 1577 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1578 } 1579 1580 /// Modifies the number of unscheduled dependencies, also updating it for 1581 /// the whole bundle. 1582 int incrementUnscheduledDeps(int Incr) { 1583 UnscheduledDeps += Incr; 1584 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1585 } 1586 1587 /// Sets the number of unscheduled dependencies to the number of 1588 /// dependencies. 1589 void resetUnscheduledDeps() { 1590 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1591 } 1592 1593 /// Clears all dependency information. 1594 void clearDependencies() { 1595 Dependencies = InvalidDeps; 1596 resetUnscheduledDeps(); 1597 MemoryDependencies.clear(); 1598 } 1599 1600 void dump(raw_ostream &os) const { 1601 if (!isSchedulingEntity()) { 1602 os << "/ " << *Inst; 1603 } else if (NextInBundle) { 1604 os << '[' << *Inst; 1605 ScheduleData *SD = NextInBundle; 1606 while (SD) { 1607 os << ';' << *SD->Inst; 1608 SD = SD->NextInBundle; 1609 } 1610 os << ']'; 1611 } else { 1612 os << *Inst; 1613 } 1614 } 1615 1616 Instruction *Inst = nullptr; 1617 1618 /// Points to the head in an instruction bundle (and always to this for 1619 /// single instructions). 1620 ScheduleData *FirstInBundle = nullptr; 1621 1622 /// Single linked list of all instructions in a bundle. Null if it is a 1623 /// single instruction. 1624 ScheduleData *NextInBundle = nullptr; 1625 1626 /// Single linked list of all memory instructions (e.g. load, store, call) 1627 /// in the block - until the end of the scheduling region. 1628 ScheduleData *NextLoadStore = nullptr; 1629 1630 /// The dependent memory instructions. 1631 /// This list is derived on demand in calculateDependencies(). 1632 SmallVector<ScheduleData *, 4> MemoryDependencies; 1633 1634 /// This ScheduleData is in the current scheduling region if this matches 1635 /// the current SchedulingRegionID of BlockScheduling. 1636 int SchedulingRegionID = 0; 1637 1638 /// Used for getting a "good" final ordering of instructions. 1639 int SchedulingPriority = 0; 1640 1641 /// The number of dependencies. Constitutes of the number of users of the 1642 /// instruction plus the number of dependent memory instructions (if any). 1643 /// This value is calculated on demand. 1644 /// If InvalidDeps, the number of dependencies is not calculated yet. 1645 int Dependencies = InvalidDeps; 1646 1647 /// The number of dependencies minus the number of dependencies of scheduled 1648 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1649 /// for scheduling. 1650 /// Note that this is negative as long as Dependencies is not calculated. 1651 int UnscheduledDeps = InvalidDeps; 1652 1653 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1654 /// single instructions. 1655 int UnscheduledDepsInBundle = InvalidDeps; 1656 1657 /// True if this instruction is scheduled (or considered as scheduled in the 1658 /// dry-run). 1659 bool IsScheduled = false; 1660 1661 /// Opcode of the current instruction in the schedule data. 1662 Value *OpValue = nullptr; 1663 1664 /// The TreeEntry that this instruction corresponds to. 1665 TreeEntry *TE = nullptr; 1666 1667 /// The lane of this node in the TreeEntry. 1668 int Lane = -1; 1669 }; 1670 1671 #ifndef NDEBUG 1672 friend inline raw_ostream &operator<<(raw_ostream &os, 1673 const BoUpSLP::ScheduleData &SD) { 1674 SD.dump(os); 1675 return os; 1676 } 1677 #endif 1678 1679 friend struct GraphTraits<BoUpSLP *>; 1680 friend struct DOTGraphTraits<BoUpSLP *>; 1681 1682 /// Contains all scheduling data for a basic block. 1683 struct BlockScheduling { 1684 BlockScheduling(BasicBlock *BB) 1685 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1686 1687 void clear() { 1688 ReadyInsts.clear(); 1689 ScheduleStart = nullptr; 1690 ScheduleEnd = nullptr; 1691 FirstLoadStoreInRegion = nullptr; 1692 LastLoadStoreInRegion = nullptr; 1693 1694 // Reduce the maximum schedule region size by the size of the 1695 // previous scheduling run. 1696 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1697 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1698 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1699 ScheduleRegionSize = 0; 1700 1701 // Make a new scheduling region, i.e. all existing ScheduleData is not 1702 // in the new region yet. 1703 ++SchedulingRegionID; 1704 } 1705 1706 ScheduleData *getScheduleData(Value *V) { 1707 ScheduleData *SD = ScheduleDataMap[V]; 1708 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1709 return SD; 1710 return nullptr; 1711 } 1712 1713 ScheduleData *getScheduleData(Value *V, Value *Key) { 1714 if (V == Key) 1715 return getScheduleData(V); 1716 auto I = ExtraScheduleDataMap.find(V); 1717 if (I != ExtraScheduleDataMap.end()) { 1718 ScheduleData *SD = I->second[Key]; 1719 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1720 return SD; 1721 } 1722 return nullptr; 1723 } 1724 1725 bool isInSchedulingRegion(ScheduleData *SD) { 1726 return SD->SchedulingRegionID == SchedulingRegionID; 1727 } 1728 1729 /// Marks an instruction as scheduled and puts all dependent ready 1730 /// instructions into the ready-list. 1731 template <typename ReadyListType> 1732 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1733 SD->IsScheduled = true; 1734 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1735 1736 ScheduleData *BundleMember = SD; 1737 while (BundleMember) { 1738 if (BundleMember->Inst != BundleMember->OpValue) { 1739 BundleMember = BundleMember->NextInBundle; 1740 continue; 1741 } 1742 // Handle the def-use chain dependencies. 1743 1744 // Decrement the unscheduled counter and insert to ready list if ready. 1745 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1746 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1747 if (OpDef && OpDef->hasValidDependencies() && 1748 OpDef->incrementUnscheduledDeps(-1) == 0) { 1749 // There are no more unscheduled dependencies after 1750 // decrementing, so we can put the dependent instruction 1751 // into the ready list. 1752 ScheduleData *DepBundle = OpDef->FirstInBundle; 1753 assert(!DepBundle->IsScheduled && 1754 "already scheduled bundle gets ready"); 1755 ReadyList.insert(DepBundle); 1756 LLVM_DEBUG(dbgs() 1757 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1758 } 1759 }); 1760 }; 1761 1762 // If BundleMember is a vector bundle, its operands may have been 1763 // reordered duiring buildTree(). We therefore need to get its operands 1764 // through the TreeEntry. 1765 if (TreeEntry *TE = BundleMember->TE) { 1766 int Lane = BundleMember->Lane; 1767 assert(Lane >= 0 && "Lane not set"); 1768 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 1769 OpIdx != NumOperands; ++OpIdx) 1770 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 1771 DecrUnsched(I); 1772 } else { 1773 // If BundleMember is a stand-alone instruction, no operand reordering 1774 // has taken place, so we directly access its operands. 1775 for (Use &U : BundleMember->Inst->operands()) 1776 if (auto *I = dyn_cast<Instruction>(U.get())) 1777 DecrUnsched(I); 1778 } 1779 // Handle the memory dependencies. 1780 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1781 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1782 // There are no more unscheduled dependencies after decrementing, 1783 // so we can put the dependent instruction into the ready list. 1784 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1785 assert(!DepBundle->IsScheduled && 1786 "already scheduled bundle gets ready"); 1787 ReadyList.insert(DepBundle); 1788 LLVM_DEBUG(dbgs() 1789 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1790 } 1791 } 1792 BundleMember = BundleMember->NextInBundle; 1793 } 1794 } 1795 1796 void doForAllOpcodes(Value *V, 1797 function_ref<void(ScheduleData *SD)> Action) { 1798 if (ScheduleData *SD = getScheduleData(V)) 1799 Action(SD); 1800 auto I = ExtraScheduleDataMap.find(V); 1801 if (I != ExtraScheduleDataMap.end()) 1802 for (auto &P : I->second) 1803 if (P.second->SchedulingRegionID == SchedulingRegionID) 1804 Action(P.second); 1805 } 1806 1807 /// Put all instructions into the ReadyList which are ready for scheduling. 1808 template <typename ReadyListType> 1809 void initialFillReadyList(ReadyListType &ReadyList) { 1810 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1811 doForAllOpcodes(I, [&](ScheduleData *SD) { 1812 if (SD->isSchedulingEntity() && SD->isReady()) { 1813 ReadyList.insert(SD); 1814 LLVM_DEBUG(dbgs() 1815 << "SLP: initially in ready list: " << *I << "\n"); 1816 } 1817 }); 1818 } 1819 } 1820 1821 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1822 /// cyclic dependencies. This is only a dry-run, no instructions are 1823 /// actually moved at this stage. 1824 /// \returns the scheduling bundle. The returned Optional value is non-None 1825 /// if \p VL is allowed to be scheduled. 1826 Optional<ScheduleData *> 1827 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1828 const InstructionsState &S); 1829 1830 /// Un-bundles a group of instructions. 1831 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1832 1833 /// Allocates schedule data chunk. 1834 ScheduleData *allocateScheduleDataChunks(); 1835 1836 /// Extends the scheduling region so that V is inside the region. 1837 /// \returns true if the region size is within the limit. 1838 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1839 1840 /// Initialize the ScheduleData structures for new instructions in the 1841 /// scheduling region. 1842 void initScheduleData(Instruction *FromI, Instruction *ToI, 1843 ScheduleData *PrevLoadStore, 1844 ScheduleData *NextLoadStore); 1845 1846 /// Updates the dependency information of a bundle and of all instructions/ 1847 /// bundles which depend on the original bundle. 1848 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1849 BoUpSLP *SLP); 1850 1851 /// Sets all instruction in the scheduling region to un-scheduled. 1852 void resetSchedule(); 1853 1854 BasicBlock *BB; 1855 1856 /// Simple memory allocation for ScheduleData. 1857 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1858 1859 /// The size of a ScheduleData array in ScheduleDataChunks. 1860 int ChunkSize; 1861 1862 /// The allocator position in the current chunk, which is the last entry 1863 /// of ScheduleDataChunks. 1864 int ChunkPos; 1865 1866 /// Attaches ScheduleData to Instruction. 1867 /// Note that the mapping survives during all vectorization iterations, i.e. 1868 /// ScheduleData structures are recycled. 1869 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1870 1871 /// Attaches ScheduleData to Instruction with the leading key. 1872 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1873 ExtraScheduleDataMap; 1874 1875 struct ReadyList : SmallVector<ScheduleData *, 8> { 1876 void insert(ScheduleData *SD) { push_back(SD); } 1877 }; 1878 1879 /// The ready-list for scheduling (only used for the dry-run). 1880 ReadyList ReadyInsts; 1881 1882 /// The first instruction of the scheduling region. 1883 Instruction *ScheduleStart = nullptr; 1884 1885 /// The first instruction _after_ the scheduling region. 1886 Instruction *ScheduleEnd = nullptr; 1887 1888 /// The first memory accessing instruction in the scheduling region 1889 /// (can be null). 1890 ScheduleData *FirstLoadStoreInRegion = nullptr; 1891 1892 /// The last memory accessing instruction in the scheduling region 1893 /// (can be null). 1894 ScheduleData *LastLoadStoreInRegion = nullptr; 1895 1896 /// The current size of the scheduling region. 1897 int ScheduleRegionSize = 0; 1898 1899 /// The maximum size allowed for the scheduling region. 1900 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1901 1902 /// The ID of the scheduling region. For a new vectorization iteration this 1903 /// is incremented which "removes" all ScheduleData from the region. 1904 // Make sure that the initial SchedulingRegionID is greater than the 1905 // initial SchedulingRegionID in ScheduleData (which is 0). 1906 int SchedulingRegionID = 1; 1907 }; 1908 1909 /// Attaches the BlockScheduling structures to basic blocks. 1910 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1911 1912 /// Performs the "real" scheduling. Done before vectorization is actually 1913 /// performed in a basic block. 1914 void scheduleBlock(BlockScheduling *BS); 1915 1916 /// List of users to ignore during scheduling and that don't need extracting. 1917 ArrayRef<Value *> UserIgnoreList; 1918 1919 using OrdersType = SmallVector<unsigned, 4>; 1920 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1921 /// sorted SmallVectors of unsigned. 1922 struct OrdersTypeDenseMapInfo { 1923 static OrdersType getEmptyKey() { 1924 OrdersType V; 1925 V.push_back(~1U); 1926 return V; 1927 } 1928 1929 static OrdersType getTombstoneKey() { 1930 OrdersType V; 1931 V.push_back(~2U); 1932 return V; 1933 } 1934 1935 static unsigned getHashValue(const OrdersType &V) { 1936 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1937 } 1938 1939 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1940 return LHS == RHS; 1941 } 1942 }; 1943 1944 /// Contains orders of operations along with the number of bundles that have 1945 /// operations in this order. It stores only those orders that require 1946 /// reordering, if reordering is not required it is counted using \a 1947 /// NumOpsWantToKeepOriginalOrder. 1948 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1949 /// Number of bundles that do not require reordering. 1950 unsigned NumOpsWantToKeepOriginalOrder = 0; 1951 1952 // Analysis and block reference. 1953 Function *F; 1954 ScalarEvolution *SE; 1955 TargetTransformInfo *TTI; 1956 TargetLibraryInfo *TLI; 1957 AliasAnalysis *AA; 1958 LoopInfo *LI; 1959 DominatorTree *DT; 1960 AssumptionCache *AC; 1961 DemandedBits *DB; 1962 const DataLayout *DL; 1963 OptimizationRemarkEmitter *ORE; 1964 1965 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1966 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1967 1968 /// Instruction builder to construct the vectorized tree. 1969 IRBuilder<> Builder; 1970 1971 /// A map of scalar integer values to the smallest bit width with which they 1972 /// can legally be represented. The values map to (width, signed) pairs, 1973 /// where "width" indicates the minimum bit width and "signed" is True if the 1974 /// value must be signed-extended, rather than zero-extended, back to its 1975 /// original width. 1976 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1977 }; 1978 1979 } // end namespace slpvectorizer 1980 1981 template <> struct GraphTraits<BoUpSLP *> { 1982 using TreeEntry = BoUpSLP::TreeEntry; 1983 1984 /// NodeRef has to be a pointer per the GraphWriter. 1985 using NodeRef = TreeEntry *; 1986 1987 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1988 1989 /// Add the VectorizableTree to the index iterator to be able to return 1990 /// TreeEntry pointers. 1991 struct ChildIteratorType 1992 : public iterator_adaptor_base< 1993 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1994 ContainerTy &VectorizableTree; 1995 1996 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1997 ContainerTy &VT) 1998 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1999 2000 NodeRef operator*() { return I->UserTE; } 2001 }; 2002 2003 static NodeRef getEntryNode(BoUpSLP &R) { 2004 return R.VectorizableTree[0].get(); 2005 } 2006 2007 static ChildIteratorType child_begin(NodeRef N) { 2008 return {N->UserTreeIndices.begin(), N->Container}; 2009 } 2010 2011 static ChildIteratorType child_end(NodeRef N) { 2012 return {N->UserTreeIndices.end(), N->Container}; 2013 } 2014 2015 /// For the node iterator we just need to turn the TreeEntry iterator into a 2016 /// TreeEntry* iterator so that it dereferences to NodeRef. 2017 class nodes_iterator { 2018 using ItTy = ContainerTy::iterator; 2019 ItTy It; 2020 2021 public: 2022 nodes_iterator(const ItTy &It2) : It(It2) {} 2023 NodeRef operator*() { return It->get(); } 2024 nodes_iterator operator++() { 2025 ++It; 2026 return *this; 2027 } 2028 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2029 }; 2030 2031 static nodes_iterator nodes_begin(BoUpSLP *R) { 2032 return nodes_iterator(R->VectorizableTree.begin()); 2033 } 2034 2035 static nodes_iterator nodes_end(BoUpSLP *R) { 2036 return nodes_iterator(R->VectorizableTree.end()); 2037 } 2038 2039 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2040 }; 2041 2042 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2043 using TreeEntry = BoUpSLP::TreeEntry; 2044 2045 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2046 2047 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2048 std::string Str; 2049 raw_string_ostream OS(Str); 2050 if (isSplat(Entry->Scalars)) { 2051 OS << "<splat> " << *Entry->Scalars[0]; 2052 return Str; 2053 } 2054 for (auto V : Entry->Scalars) { 2055 OS << *V; 2056 if (std::any_of( 2057 R->ExternalUses.begin(), R->ExternalUses.end(), 2058 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2059 OS << " <extract>"; 2060 OS << "\n"; 2061 } 2062 return Str; 2063 } 2064 2065 static std::string getNodeAttributes(const TreeEntry *Entry, 2066 const BoUpSLP *) { 2067 if (Entry->NeedToGather) 2068 return "color=red"; 2069 return ""; 2070 } 2071 }; 2072 2073 } // end namespace llvm 2074 2075 BoUpSLP::~BoUpSLP() { 2076 for (const auto &Pair : DeletedInstructions) { 2077 // Replace operands of ignored instructions with Undefs in case if they were 2078 // marked for deletion. 2079 if (Pair.getSecond()) { 2080 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2081 Pair.getFirst()->replaceAllUsesWith(Undef); 2082 } 2083 Pair.getFirst()->dropAllReferences(); 2084 } 2085 for (const auto &Pair : DeletedInstructions) { 2086 assert(Pair.getFirst()->use_empty() && 2087 "trying to erase instruction with users."); 2088 Pair.getFirst()->eraseFromParent(); 2089 } 2090 } 2091 2092 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2093 for (auto *V : AV) { 2094 if (auto *I = dyn_cast<Instruction>(V)) 2095 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2096 }; 2097 } 2098 2099 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2100 ArrayRef<Value *> UserIgnoreLst) { 2101 ExtraValueToDebugLocsMap ExternallyUsedValues; 2102 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2103 } 2104 2105 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2106 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2107 ArrayRef<Value *> UserIgnoreLst) { 2108 deleteTree(); 2109 UserIgnoreList = UserIgnoreLst; 2110 if (!allSameType(Roots)) 2111 return; 2112 buildTree_rec(Roots, 0, EdgeInfo()); 2113 2114 // Collect the values that we need to extract from the tree. 2115 for (auto &TEPtr : VectorizableTree) { 2116 TreeEntry *Entry = TEPtr.get(); 2117 2118 // No need to handle users of gathered values. 2119 if (Entry->NeedToGather) 2120 continue; 2121 2122 // For each lane: 2123 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2124 Value *Scalar = Entry->Scalars[Lane]; 2125 int FoundLane = Lane; 2126 if (!Entry->ReuseShuffleIndices.empty()) { 2127 FoundLane = 2128 std::distance(Entry->ReuseShuffleIndices.begin(), 2129 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2130 } 2131 2132 // Check if the scalar is externally used as an extra arg. 2133 auto ExtI = ExternallyUsedValues.find(Scalar); 2134 if (ExtI != ExternallyUsedValues.end()) { 2135 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2136 << Lane << " from " << *Scalar << ".\n"); 2137 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2138 } 2139 for (User *U : Scalar->users()) { 2140 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2141 2142 Instruction *UserInst = dyn_cast<Instruction>(U); 2143 if (!UserInst) 2144 continue; 2145 2146 // Skip in-tree scalars that become vectors 2147 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2148 Value *UseScalar = UseEntry->Scalars[0]; 2149 // Some in-tree scalars will remain as scalar in vectorized 2150 // instructions. If that is the case, the one in Lane 0 will 2151 // be used. 2152 if (UseScalar != U || 2153 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2154 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2155 << ".\n"); 2156 assert(!UseEntry->NeedToGather && "Bad state"); 2157 continue; 2158 } 2159 } 2160 2161 // Ignore users in the user ignore list. 2162 if (is_contained(UserIgnoreList, UserInst)) 2163 continue; 2164 2165 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2166 << Lane << " from " << *Scalar << ".\n"); 2167 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2168 } 2169 } 2170 } 2171 } 2172 2173 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2174 const EdgeInfo &UserTreeIdx) { 2175 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2176 2177 InstructionsState S = getSameOpcode(VL); 2178 if (Depth == RecursionMaxDepth) { 2179 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2180 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2181 return; 2182 } 2183 2184 // Don't handle vectors. 2185 if (S.OpValue->getType()->isVectorTy()) { 2186 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2187 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2188 return; 2189 } 2190 2191 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2192 if (SI->getValueOperand()->getType()->isVectorTy()) { 2193 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2194 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2195 return; 2196 } 2197 2198 // If all of the operands are identical or constant we have a simple solution. 2199 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2200 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2201 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2202 return; 2203 } 2204 2205 // We now know that this is a vector of instructions of the same type from 2206 // the same block. 2207 2208 // Don't vectorize ephemeral values. 2209 for (Value *V : VL) { 2210 if (EphValues.count(V)) { 2211 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2212 << ") is ephemeral.\n"); 2213 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2214 return; 2215 } 2216 } 2217 2218 // Check if this is a duplicate of another entry. 2219 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2220 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2221 if (!E->isSame(VL)) { 2222 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2223 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2224 return; 2225 } 2226 // Record the reuse of the tree node. FIXME, currently this is only used to 2227 // properly draw the graph rather than for the actual vectorization. 2228 E->UserTreeIndices.push_back(UserTreeIdx); 2229 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2230 << ".\n"); 2231 return; 2232 } 2233 2234 // Check that none of the instructions in the bundle are already in the tree. 2235 for (Value *V : VL) { 2236 auto *I = dyn_cast<Instruction>(V); 2237 if (!I) 2238 continue; 2239 if (getTreeEntry(I)) { 2240 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2241 << ") is already in tree.\n"); 2242 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2243 return; 2244 } 2245 } 2246 2247 // If any of the scalars is marked as a value that needs to stay scalar, then 2248 // we need to gather the scalars. 2249 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2250 for (Value *V : VL) { 2251 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2252 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2253 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2254 return; 2255 } 2256 } 2257 2258 // Check that all of the users of the scalars that we want to vectorize are 2259 // schedulable. 2260 auto *VL0 = cast<Instruction>(S.OpValue); 2261 BasicBlock *BB = VL0->getParent(); 2262 2263 if (!DT->isReachableFromEntry(BB)) { 2264 // Don't go into unreachable blocks. They may contain instructions with 2265 // dependency cycles which confuse the final scheduling. 2266 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2267 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2268 return; 2269 } 2270 2271 // Check that every instruction appears once in this bundle. 2272 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2273 SmallVector<Value *, 4> UniqueValues; 2274 DenseMap<Value *, unsigned> UniquePositions; 2275 for (Value *V : VL) { 2276 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2277 ReuseShuffleIndicies.emplace_back(Res.first->second); 2278 if (Res.second) 2279 UniqueValues.emplace_back(V); 2280 } 2281 size_t NumUniqueScalarValues = UniqueValues.size(); 2282 if (NumUniqueScalarValues == VL.size()) { 2283 ReuseShuffleIndicies.clear(); 2284 } else { 2285 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2286 if (NumUniqueScalarValues <= 1 || 2287 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2288 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2289 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2290 return; 2291 } 2292 VL = UniqueValues; 2293 } 2294 2295 auto &BSRef = BlocksSchedules[BB]; 2296 if (!BSRef) 2297 BSRef = std::make_unique<BlockScheduling>(BB); 2298 2299 BlockScheduling &BS = *BSRef.get(); 2300 2301 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2302 if (!Bundle) { 2303 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2304 assert((!BS.getScheduleData(VL0) || 2305 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2306 "tryScheduleBundle should cancelScheduling on failure"); 2307 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2308 ReuseShuffleIndicies); 2309 return; 2310 } 2311 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2312 2313 unsigned ShuffleOrOp = S.isAltShuffle() ? 2314 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2315 switch (ShuffleOrOp) { 2316 case Instruction::PHI: { 2317 auto *PH = cast<PHINode>(VL0); 2318 2319 // Check for terminator values (e.g. invoke). 2320 for (unsigned j = 0; j < VL.size(); ++j) 2321 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2322 Instruction *Term = dyn_cast<Instruction>( 2323 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2324 PH->getIncomingBlock(i))); 2325 if (Term && Term->isTerminator()) { 2326 LLVM_DEBUG(dbgs() 2327 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2328 BS.cancelScheduling(VL, VL0); 2329 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2330 ReuseShuffleIndicies); 2331 return; 2332 } 2333 } 2334 2335 TreeEntry *TE = 2336 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2337 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2338 2339 // Keeps the reordered operands to avoid code duplication. 2340 SmallVector<ValueList, 2> OperandsVec; 2341 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2342 ValueList Operands; 2343 // Prepare the operand vector. 2344 for (Value *j : VL) 2345 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2346 PH->getIncomingBlock(i))); 2347 TE->setOperand(i, Operands); 2348 OperandsVec.push_back(Operands); 2349 } 2350 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2351 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2352 return; 2353 } 2354 case Instruction::ExtractValue: 2355 case Instruction::ExtractElement: { 2356 OrdersType CurrentOrder; 2357 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2358 if (Reuse) { 2359 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2360 ++NumOpsWantToKeepOriginalOrder; 2361 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2362 ReuseShuffleIndicies); 2363 // This is a special case, as it does not gather, but at the same time 2364 // we are not extending buildTree_rec() towards the operands. 2365 ValueList Op0; 2366 Op0.assign(VL.size(), VL0->getOperand(0)); 2367 VectorizableTree.back()->setOperand(0, Op0); 2368 return; 2369 } 2370 if (!CurrentOrder.empty()) { 2371 LLVM_DEBUG({ 2372 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2373 "with order"; 2374 for (unsigned Idx : CurrentOrder) 2375 dbgs() << " " << Idx; 2376 dbgs() << "\n"; 2377 }); 2378 // Insert new order with initial value 0, if it does not exist, 2379 // otherwise return the iterator to the existing one. 2380 auto StoredCurrentOrderAndNum = 2381 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2382 ++StoredCurrentOrderAndNum->getSecond(); 2383 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2384 ReuseShuffleIndicies, 2385 StoredCurrentOrderAndNum->getFirst()); 2386 // This is a special case, as it does not gather, but at the same time 2387 // we are not extending buildTree_rec() towards the operands. 2388 ValueList Op0; 2389 Op0.assign(VL.size(), VL0->getOperand(0)); 2390 VectorizableTree.back()->setOperand(0, Op0); 2391 return; 2392 } 2393 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2394 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2395 ReuseShuffleIndicies); 2396 BS.cancelScheduling(VL, VL0); 2397 return; 2398 } 2399 case Instruction::Load: { 2400 // Check that a vectorized load would load the same memory as a scalar 2401 // load. For example, we don't want to vectorize loads that are smaller 2402 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2403 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2404 // from such a struct, we read/write packed bits disagreeing with the 2405 // unvectorized version. 2406 Type *ScalarTy = VL0->getType(); 2407 2408 if (DL->getTypeSizeInBits(ScalarTy) != 2409 DL->getTypeAllocSizeInBits(ScalarTy)) { 2410 BS.cancelScheduling(VL, VL0); 2411 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2412 ReuseShuffleIndicies); 2413 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2414 return; 2415 } 2416 2417 // Make sure all loads in the bundle are simple - we can't vectorize 2418 // atomic or volatile loads. 2419 SmallVector<Value *, 4> PointerOps(VL.size()); 2420 auto POIter = PointerOps.begin(); 2421 for (Value *V : VL) { 2422 auto *L = cast<LoadInst>(V); 2423 if (!L->isSimple()) { 2424 BS.cancelScheduling(VL, VL0); 2425 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2426 ReuseShuffleIndicies); 2427 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2428 return; 2429 } 2430 *POIter = L->getPointerOperand(); 2431 ++POIter; 2432 } 2433 2434 OrdersType CurrentOrder; 2435 // Check the order of pointer operands. 2436 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2437 Value *Ptr0; 2438 Value *PtrN; 2439 if (CurrentOrder.empty()) { 2440 Ptr0 = PointerOps.front(); 2441 PtrN = PointerOps.back(); 2442 } else { 2443 Ptr0 = PointerOps[CurrentOrder.front()]; 2444 PtrN = PointerOps[CurrentOrder.back()]; 2445 } 2446 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2447 const SCEV *ScevN = SE->getSCEV(PtrN); 2448 const auto *Diff = 2449 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2450 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2451 // Check that the sorted loads are consecutive. 2452 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2453 if (CurrentOrder.empty()) { 2454 // Original loads are consecutive and does not require reordering. 2455 ++NumOpsWantToKeepOriginalOrder; 2456 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2457 UserTreeIdx, ReuseShuffleIndicies); 2458 TE->setOperandsInOrder(); 2459 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2460 } else { 2461 // Need to reorder. 2462 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2463 ++I->getSecond(); 2464 TreeEntry *TE = 2465 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2466 ReuseShuffleIndicies, I->getFirst()); 2467 TE->setOperandsInOrder(); 2468 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2469 } 2470 return; 2471 } 2472 } 2473 2474 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2475 BS.cancelScheduling(VL, VL0); 2476 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2477 ReuseShuffleIndicies); 2478 return; 2479 } 2480 case Instruction::ZExt: 2481 case Instruction::SExt: 2482 case Instruction::FPToUI: 2483 case Instruction::FPToSI: 2484 case Instruction::FPExt: 2485 case Instruction::PtrToInt: 2486 case Instruction::IntToPtr: 2487 case Instruction::SIToFP: 2488 case Instruction::UIToFP: 2489 case Instruction::Trunc: 2490 case Instruction::FPTrunc: 2491 case Instruction::BitCast: { 2492 Type *SrcTy = VL0->getOperand(0)->getType(); 2493 for (Value *V : VL) { 2494 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2495 if (Ty != SrcTy || !isValidElementType(Ty)) { 2496 BS.cancelScheduling(VL, VL0); 2497 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2498 ReuseShuffleIndicies); 2499 LLVM_DEBUG(dbgs() 2500 << "SLP: Gathering casts with different src types.\n"); 2501 return; 2502 } 2503 } 2504 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2505 ReuseShuffleIndicies); 2506 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2507 2508 TE->setOperandsInOrder(); 2509 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2510 ValueList Operands; 2511 // Prepare the operand vector. 2512 for (Value *V : VL) 2513 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2514 2515 buildTree_rec(Operands, Depth + 1, {TE, i}); 2516 } 2517 return; 2518 } 2519 case Instruction::ICmp: 2520 case Instruction::FCmp: { 2521 // Check that all of the compares have the same predicate. 2522 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2523 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2524 Type *ComparedTy = VL0->getOperand(0)->getType(); 2525 for (Value *V : VL) { 2526 CmpInst *Cmp = cast<CmpInst>(V); 2527 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2528 Cmp->getOperand(0)->getType() != ComparedTy) { 2529 BS.cancelScheduling(VL, VL0); 2530 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2531 ReuseShuffleIndicies); 2532 LLVM_DEBUG(dbgs() 2533 << "SLP: Gathering cmp with different predicate.\n"); 2534 return; 2535 } 2536 } 2537 2538 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2539 ReuseShuffleIndicies); 2540 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2541 2542 ValueList Left, Right; 2543 if (cast<CmpInst>(VL0)->isCommutative()) { 2544 // Commutative predicate - collect + sort operands of the instructions 2545 // so that each side is more likely to have the same opcode. 2546 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2547 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2548 } else { 2549 // Collect operands - commute if it uses the swapped predicate. 2550 for (Value *V : VL) { 2551 auto *Cmp = cast<CmpInst>(V); 2552 Value *LHS = Cmp->getOperand(0); 2553 Value *RHS = Cmp->getOperand(1); 2554 if (Cmp->getPredicate() != P0) 2555 std::swap(LHS, RHS); 2556 Left.push_back(LHS); 2557 Right.push_back(RHS); 2558 } 2559 } 2560 TE->setOperand(0, Left); 2561 TE->setOperand(1, Right); 2562 buildTree_rec(Left, Depth + 1, {TE, 0}); 2563 buildTree_rec(Right, Depth + 1, {TE, 1}); 2564 return; 2565 } 2566 case Instruction::Select: 2567 case Instruction::FNeg: 2568 case Instruction::Add: 2569 case Instruction::FAdd: 2570 case Instruction::Sub: 2571 case Instruction::FSub: 2572 case Instruction::Mul: 2573 case Instruction::FMul: 2574 case Instruction::UDiv: 2575 case Instruction::SDiv: 2576 case Instruction::FDiv: 2577 case Instruction::URem: 2578 case Instruction::SRem: 2579 case Instruction::FRem: 2580 case Instruction::Shl: 2581 case Instruction::LShr: 2582 case Instruction::AShr: 2583 case Instruction::And: 2584 case Instruction::Or: 2585 case Instruction::Xor: { 2586 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2587 ReuseShuffleIndicies); 2588 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2589 2590 // Sort operands of the instructions so that each side is more likely to 2591 // have the same opcode. 2592 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2593 ValueList Left, Right; 2594 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2595 TE->setOperand(0, Left); 2596 TE->setOperand(1, Right); 2597 buildTree_rec(Left, Depth + 1, {TE, 0}); 2598 buildTree_rec(Right, Depth + 1, {TE, 1}); 2599 return; 2600 } 2601 2602 TE->setOperandsInOrder(); 2603 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2604 ValueList Operands; 2605 // Prepare the operand vector. 2606 for (Value *j : VL) 2607 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2608 2609 buildTree_rec(Operands, Depth + 1, {TE, i}); 2610 } 2611 return; 2612 } 2613 case Instruction::GetElementPtr: { 2614 // We don't combine GEPs with complicated (nested) indexing. 2615 for (Value *V : VL) { 2616 if (cast<Instruction>(V)->getNumOperands() != 2) { 2617 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2618 BS.cancelScheduling(VL, VL0); 2619 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2620 ReuseShuffleIndicies); 2621 return; 2622 } 2623 } 2624 2625 // We can't combine several GEPs into one vector if they operate on 2626 // different types. 2627 Type *Ty0 = VL0->getOperand(0)->getType(); 2628 for (Value *V : VL) { 2629 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2630 if (Ty0 != CurTy) { 2631 LLVM_DEBUG(dbgs() 2632 << "SLP: not-vectorizable GEP (different types).\n"); 2633 BS.cancelScheduling(VL, VL0); 2634 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2635 ReuseShuffleIndicies); 2636 return; 2637 } 2638 } 2639 2640 // We don't combine GEPs with non-constant indexes. 2641 Type *Ty1 = VL0->getOperand(1)->getType(); 2642 for (Value *V : VL) { 2643 auto Op = cast<Instruction>(V)->getOperand(1); 2644 if (!isa<ConstantInt>(Op) || 2645 (Op->getType() != Ty1 && 2646 Op->getType()->getScalarSizeInBits() > 2647 DL->getIndexSizeInBits( 2648 V->getType()->getPointerAddressSpace()))) { 2649 LLVM_DEBUG(dbgs() 2650 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2651 BS.cancelScheduling(VL, VL0); 2652 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2653 ReuseShuffleIndicies); 2654 return; 2655 } 2656 } 2657 2658 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2659 ReuseShuffleIndicies); 2660 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2661 TE->setOperandsInOrder(); 2662 for (unsigned i = 0, e = 2; i < e; ++i) { 2663 ValueList Operands; 2664 // Prepare the operand vector. 2665 for (Value *V : VL) 2666 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2667 2668 buildTree_rec(Operands, Depth + 1, {TE, i}); 2669 } 2670 return; 2671 } 2672 case Instruction::Store: { 2673 // Check if the stores are consecutive or if we need to swizzle them. 2674 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2675 // Make sure all stores in the bundle are simple - we can't vectorize 2676 // atomic or volatile stores. 2677 SmallVector<Value *, 4> PointerOps(VL.size()); 2678 ValueList Operands(VL.size()); 2679 auto POIter = PointerOps.begin(); 2680 auto OIter = Operands.begin(); 2681 for (Value *V : VL) { 2682 auto *SI = cast<StoreInst>(V); 2683 if (!SI->isSimple()) { 2684 BS.cancelScheduling(VL, VL0); 2685 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2686 ReuseShuffleIndicies); 2687 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2688 return; 2689 } 2690 *POIter = SI->getPointerOperand(); 2691 *OIter = SI->getValueOperand(); 2692 ++POIter; 2693 ++OIter; 2694 } 2695 2696 OrdersType CurrentOrder; 2697 // Check the order of pointer operands. 2698 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2699 Value *Ptr0; 2700 Value *PtrN; 2701 if (CurrentOrder.empty()) { 2702 Ptr0 = PointerOps.front(); 2703 PtrN = PointerOps.back(); 2704 } else { 2705 Ptr0 = PointerOps[CurrentOrder.front()]; 2706 PtrN = PointerOps[CurrentOrder.back()]; 2707 } 2708 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2709 const SCEV *ScevN = SE->getSCEV(PtrN); 2710 const auto *Diff = 2711 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2712 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2713 // Check that the sorted pointer operands are consecutive. 2714 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2715 if (CurrentOrder.empty()) { 2716 // Original stores are consecutive and does not require reordering. 2717 ++NumOpsWantToKeepOriginalOrder; 2718 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2719 UserTreeIdx, ReuseShuffleIndicies); 2720 TE->setOperandsInOrder(); 2721 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2722 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2723 } else { 2724 // Need to reorder. 2725 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2726 ++(I->getSecond()); 2727 TreeEntry *TE = 2728 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2729 ReuseShuffleIndicies, I->getFirst()); 2730 TE->setOperandsInOrder(); 2731 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2732 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 2733 } 2734 return; 2735 } 2736 } 2737 2738 BS.cancelScheduling(VL, VL0); 2739 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2740 ReuseShuffleIndicies); 2741 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2742 return; 2743 } 2744 case Instruction::Call: { 2745 // Check if the calls are all to the same vectorizable intrinsic. 2746 CallInst *CI = cast<CallInst>(VL0); 2747 // Check if this is an Intrinsic call or something that can be 2748 // represented by an intrinsic call 2749 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2750 if (!isTriviallyVectorizable(ID)) { 2751 BS.cancelScheduling(VL, VL0); 2752 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2753 ReuseShuffleIndicies); 2754 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2755 return; 2756 } 2757 Function *Int = CI->getCalledFunction(); 2758 unsigned NumArgs = CI->getNumArgOperands(); 2759 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2760 for (unsigned j = 0; j != NumArgs; ++j) 2761 if (hasVectorInstrinsicScalarOpd(ID, j)) 2762 ScalarArgs[j] = CI->getArgOperand(j); 2763 for (Value *V : VL) { 2764 CallInst *CI2 = dyn_cast<CallInst>(V); 2765 if (!CI2 || CI2->getCalledFunction() != Int || 2766 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2767 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2768 BS.cancelScheduling(VL, VL0); 2769 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2770 ReuseShuffleIndicies); 2771 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 2772 << "\n"); 2773 return; 2774 } 2775 // Some intrinsics have scalar arguments and should be same in order for 2776 // them to be vectorized. 2777 for (unsigned j = 0; j != NumArgs; ++j) { 2778 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2779 Value *A1J = CI2->getArgOperand(j); 2780 if (ScalarArgs[j] != A1J) { 2781 BS.cancelScheduling(VL, VL0); 2782 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2783 ReuseShuffleIndicies); 2784 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2785 << " argument " << ScalarArgs[j] << "!=" << A1J 2786 << "\n"); 2787 return; 2788 } 2789 } 2790 } 2791 // Verify that the bundle operands are identical between the two calls. 2792 if (CI->hasOperandBundles() && 2793 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2794 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2795 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2796 BS.cancelScheduling(VL, VL0); 2797 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2798 ReuseShuffleIndicies); 2799 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2800 << *CI << "!=" << *V << '\n'); 2801 return; 2802 } 2803 } 2804 2805 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2806 ReuseShuffleIndicies); 2807 TE->setOperandsInOrder(); 2808 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2809 ValueList Operands; 2810 // Prepare the operand vector. 2811 for (Value *V : VL) { 2812 auto *CI2 = cast<CallInst>(V); 2813 Operands.push_back(CI2->getArgOperand(i)); 2814 } 2815 buildTree_rec(Operands, Depth + 1, {TE, i}); 2816 } 2817 return; 2818 } 2819 case Instruction::ShuffleVector: { 2820 // If this is not an alternate sequence of opcode like add-sub 2821 // then do not vectorize this instruction. 2822 if (!S.isAltShuffle()) { 2823 BS.cancelScheduling(VL, VL0); 2824 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2825 ReuseShuffleIndicies); 2826 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2827 return; 2828 } 2829 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2830 ReuseShuffleIndicies); 2831 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2832 2833 // Reorder operands if reordering would enable vectorization. 2834 if (isa<BinaryOperator>(VL0)) { 2835 ValueList Left, Right; 2836 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2837 TE->setOperand(0, Left); 2838 TE->setOperand(1, Right); 2839 buildTree_rec(Left, Depth + 1, {TE, 0}); 2840 buildTree_rec(Right, Depth + 1, {TE, 1}); 2841 return; 2842 } 2843 2844 TE->setOperandsInOrder(); 2845 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2846 ValueList Operands; 2847 // Prepare the operand vector. 2848 for (Value *V : VL) 2849 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2850 2851 buildTree_rec(Operands, Depth + 1, {TE, i}); 2852 } 2853 return; 2854 } 2855 default: 2856 BS.cancelScheduling(VL, VL0); 2857 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2858 ReuseShuffleIndicies); 2859 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2860 return; 2861 } 2862 } 2863 2864 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2865 unsigned N; 2866 Type *EltTy; 2867 auto *ST = dyn_cast<StructType>(T); 2868 if (ST) { 2869 N = ST->getNumElements(); 2870 EltTy = *ST->element_begin(); 2871 } else { 2872 N = cast<ArrayType>(T)->getNumElements(); 2873 EltTy = cast<ArrayType>(T)->getElementType(); 2874 } 2875 if (!isValidElementType(EltTy)) 2876 return 0; 2877 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2878 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2879 return 0; 2880 if (ST) { 2881 // Check that struct is homogeneous. 2882 for (const auto *Ty : ST->elements()) 2883 if (Ty != EltTy) 2884 return 0; 2885 } 2886 return N; 2887 } 2888 2889 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2890 SmallVectorImpl<unsigned> &CurrentOrder) const { 2891 Instruction *E0 = cast<Instruction>(OpValue); 2892 assert(E0->getOpcode() == Instruction::ExtractElement || 2893 E0->getOpcode() == Instruction::ExtractValue); 2894 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2895 // Check if all of the extracts come from the same vector and from the 2896 // correct offset. 2897 Value *Vec = E0->getOperand(0); 2898 2899 CurrentOrder.clear(); 2900 2901 // We have to extract from a vector/aggregate with the same number of elements. 2902 unsigned NElts; 2903 if (E0->getOpcode() == Instruction::ExtractValue) { 2904 const DataLayout &DL = E0->getModule()->getDataLayout(); 2905 NElts = canMapToVector(Vec->getType(), DL); 2906 if (!NElts) 2907 return false; 2908 // Check if load can be rewritten as load of vector. 2909 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2910 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2911 return false; 2912 } else { 2913 NElts = Vec->getType()->getVectorNumElements(); 2914 } 2915 2916 if (NElts != VL.size()) 2917 return false; 2918 2919 // Check that all of the indices extract from the correct offset. 2920 bool ShouldKeepOrder = true; 2921 unsigned E = VL.size(); 2922 // Assign to all items the initial value E + 1 so we can check if the extract 2923 // instruction index was used already. 2924 // Also, later we can check that all the indices are used and we have a 2925 // consecutive access in the extract instructions, by checking that no 2926 // element of CurrentOrder still has value E + 1. 2927 CurrentOrder.assign(E, E + 1); 2928 unsigned I = 0; 2929 for (; I < E; ++I) { 2930 auto *Inst = cast<Instruction>(VL[I]); 2931 if (Inst->getOperand(0) != Vec) 2932 break; 2933 Optional<unsigned> Idx = getExtractIndex(Inst); 2934 if (!Idx) 2935 break; 2936 const unsigned ExtIdx = *Idx; 2937 if (ExtIdx != I) { 2938 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2939 break; 2940 ShouldKeepOrder = false; 2941 CurrentOrder[ExtIdx] = I; 2942 } else { 2943 if (CurrentOrder[I] != E + 1) 2944 break; 2945 CurrentOrder[I] = I; 2946 } 2947 } 2948 if (I < E) { 2949 CurrentOrder.clear(); 2950 return false; 2951 } 2952 2953 return ShouldKeepOrder; 2954 } 2955 2956 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2957 return I->hasOneUse() || 2958 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2959 return ScalarToTreeEntry.count(U) > 0; 2960 }); 2961 } 2962 2963 int BoUpSLP::getEntryCost(TreeEntry *E) { 2964 ArrayRef<Value*> VL = E->Scalars; 2965 2966 Type *ScalarTy = VL[0]->getType(); 2967 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2968 ScalarTy = SI->getValueOperand()->getType(); 2969 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2970 ScalarTy = CI->getOperand(0)->getType(); 2971 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2972 2973 // If we have computed a smaller type for the expression, update VecTy so 2974 // that the costs will be accurate. 2975 if (MinBWs.count(VL[0])) 2976 VecTy = VectorType::get( 2977 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2978 2979 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2980 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2981 int ReuseShuffleCost = 0; 2982 if (NeedToShuffleReuses) { 2983 ReuseShuffleCost = 2984 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2985 } 2986 if (E->NeedToGather) { 2987 if (allConstant(VL)) 2988 return 0; 2989 if (isSplat(VL)) { 2990 return ReuseShuffleCost + 2991 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2992 } 2993 if (E->getOpcode() == Instruction::ExtractElement && 2994 allSameType(VL) && allSameBlock(VL)) { 2995 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2996 if (ShuffleKind.hasValue()) { 2997 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2998 for (auto *V : VL) { 2999 // If all users of instruction are going to be vectorized and this 3000 // instruction itself is not going to be vectorized, consider this 3001 // instruction as dead and remove its cost from the final cost of the 3002 // vectorized tree. 3003 if (areAllUsersVectorized(cast<Instruction>(V)) && 3004 !ScalarToTreeEntry.count(V)) { 3005 auto *IO = cast<ConstantInt>( 3006 cast<ExtractElementInst>(V)->getIndexOperand()); 3007 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3008 IO->getZExtValue()); 3009 } 3010 } 3011 return ReuseShuffleCost + Cost; 3012 } 3013 } 3014 return ReuseShuffleCost + getGatherCost(VL); 3015 } 3016 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3017 Instruction *VL0 = E->getMainOp(); 3018 unsigned ShuffleOrOp = 3019 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3020 switch (ShuffleOrOp) { 3021 case Instruction::PHI: 3022 return 0; 3023 3024 case Instruction::ExtractValue: 3025 case Instruction::ExtractElement: 3026 if (NeedToShuffleReuses) { 3027 unsigned Idx = 0; 3028 for (unsigned I : E->ReuseShuffleIndices) { 3029 if (ShuffleOrOp == Instruction::ExtractElement) { 3030 auto *IO = cast<ConstantInt>( 3031 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3032 Idx = IO->getZExtValue(); 3033 ReuseShuffleCost -= TTI->getVectorInstrCost( 3034 Instruction::ExtractElement, VecTy, Idx); 3035 } else { 3036 ReuseShuffleCost -= TTI->getVectorInstrCost( 3037 Instruction::ExtractElement, VecTy, Idx); 3038 ++Idx; 3039 } 3040 } 3041 Idx = ReuseShuffleNumbers; 3042 for (Value *V : VL) { 3043 if (ShuffleOrOp == Instruction::ExtractElement) { 3044 auto *IO = cast<ConstantInt>( 3045 cast<ExtractElementInst>(V)->getIndexOperand()); 3046 Idx = IO->getZExtValue(); 3047 } else { 3048 --Idx; 3049 } 3050 ReuseShuffleCost += 3051 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3052 } 3053 } 3054 if (!E->NeedToGather) { 3055 int DeadCost = ReuseShuffleCost; 3056 if (!E->ReorderIndices.empty()) { 3057 // TODO: Merge this shuffle with the ReuseShuffleCost. 3058 DeadCost += TTI->getShuffleCost( 3059 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3060 } 3061 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3062 Instruction *E = cast<Instruction>(VL[i]); 3063 // If all users are going to be vectorized, instruction can be 3064 // considered as dead. 3065 // The same, if have only one user, it will be vectorized for sure. 3066 if (areAllUsersVectorized(E)) { 3067 // Take credit for instruction that will become dead. 3068 if (E->hasOneUse()) { 3069 Instruction *Ext = E->user_back(); 3070 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3071 all_of(Ext->users(), 3072 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3073 // Use getExtractWithExtendCost() to calculate the cost of 3074 // extractelement/ext pair. 3075 DeadCost -= TTI->getExtractWithExtendCost( 3076 Ext->getOpcode(), Ext->getType(), VecTy, i); 3077 // Add back the cost of s|zext which is subtracted separately. 3078 DeadCost += TTI->getCastInstrCost( 3079 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 3080 continue; 3081 } 3082 } 3083 DeadCost -= 3084 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3085 } 3086 } 3087 return DeadCost; 3088 } 3089 return ReuseShuffleCost + getGatherCost(VL); 3090 3091 case Instruction::ZExt: 3092 case Instruction::SExt: 3093 case Instruction::FPToUI: 3094 case Instruction::FPToSI: 3095 case Instruction::FPExt: 3096 case Instruction::PtrToInt: 3097 case Instruction::IntToPtr: 3098 case Instruction::SIToFP: 3099 case Instruction::UIToFP: 3100 case Instruction::Trunc: 3101 case Instruction::FPTrunc: 3102 case Instruction::BitCast: { 3103 Type *SrcTy = VL0->getOperand(0)->getType(); 3104 int ScalarEltCost = 3105 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3106 if (NeedToShuffleReuses) { 3107 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3108 } 3109 3110 // Calculate the cost of this instruction. 3111 int ScalarCost = VL.size() * ScalarEltCost; 3112 3113 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3114 int VecCost = 0; 3115 // Check if the values are candidates to demote. 3116 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3117 VecCost = ReuseShuffleCost + 3118 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3119 } 3120 return VecCost - ScalarCost; 3121 } 3122 case Instruction::FCmp: 3123 case Instruction::ICmp: 3124 case Instruction::Select: { 3125 // Calculate the cost of this instruction. 3126 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3127 Builder.getInt1Ty(), VL0); 3128 if (NeedToShuffleReuses) { 3129 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3130 } 3131 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3132 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3133 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3134 return ReuseShuffleCost + VecCost - ScalarCost; 3135 } 3136 case Instruction::FNeg: 3137 case Instruction::Add: 3138 case Instruction::FAdd: 3139 case Instruction::Sub: 3140 case Instruction::FSub: 3141 case Instruction::Mul: 3142 case Instruction::FMul: 3143 case Instruction::UDiv: 3144 case Instruction::SDiv: 3145 case Instruction::FDiv: 3146 case Instruction::URem: 3147 case Instruction::SRem: 3148 case Instruction::FRem: 3149 case Instruction::Shl: 3150 case Instruction::LShr: 3151 case Instruction::AShr: 3152 case Instruction::And: 3153 case Instruction::Or: 3154 case Instruction::Xor: { 3155 // Certain instructions can be cheaper to vectorize if they have a 3156 // constant second vector operand. 3157 TargetTransformInfo::OperandValueKind Op1VK = 3158 TargetTransformInfo::OK_AnyValue; 3159 TargetTransformInfo::OperandValueKind Op2VK = 3160 TargetTransformInfo::OK_UniformConstantValue; 3161 TargetTransformInfo::OperandValueProperties Op1VP = 3162 TargetTransformInfo::OP_None; 3163 TargetTransformInfo::OperandValueProperties Op2VP = 3164 TargetTransformInfo::OP_PowerOf2; 3165 3166 // If all operands are exactly the same ConstantInt then set the 3167 // operand kind to OK_UniformConstantValue. 3168 // If instead not all operands are constants, then set the operand kind 3169 // to OK_AnyValue. If all operands are constants but not the same, 3170 // then set the operand kind to OK_NonUniformConstantValue. 3171 ConstantInt *CInt0 = nullptr; 3172 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3173 const Instruction *I = cast<Instruction>(VL[i]); 3174 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3175 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3176 if (!CInt) { 3177 Op2VK = TargetTransformInfo::OK_AnyValue; 3178 Op2VP = TargetTransformInfo::OP_None; 3179 break; 3180 } 3181 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3182 !CInt->getValue().isPowerOf2()) 3183 Op2VP = TargetTransformInfo::OP_None; 3184 if (i == 0) { 3185 CInt0 = CInt; 3186 continue; 3187 } 3188 if (CInt0 != CInt) 3189 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3190 } 3191 3192 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3193 int ScalarEltCost = TTI->getArithmeticInstrCost( 3194 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 3195 if (NeedToShuffleReuses) { 3196 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3197 } 3198 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3199 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK, 3200 Op2VK, Op1VP, Op2VP, Operands); 3201 return ReuseShuffleCost + VecCost - ScalarCost; 3202 } 3203 case Instruction::GetElementPtr: { 3204 TargetTransformInfo::OperandValueKind Op1VK = 3205 TargetTransformInfo::OK_AnyValue; 3206 TargetTransformInfo::OperandValueKind Op2VK = 3207 TargetTransformInfo::OK_UniformConstantValue; 3208 3209 int ScalarEltCost = 3210 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3211 if (NeedToShuffleReuses) { 3212 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3213 } 3214 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3215 int VecCost = 3216 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3217 return ReuseShuffleCost + VecCost - ScalarCost; 3218 } 3219 case Instruction::Load: { 3220 // Cost of wide load - cost of scalar loads. 3221 MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment()); 3222 int ScalarEltCost = 3223 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3224 if (NeedToShuffleReuses) { 3225 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3226 } 3227 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3228 int VecLdCost = 3229 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3230 if (!E->ReorderIndices.empty()) { 3231 // TODO: Merge this shuffle with the ReuseShuffleCost. 3232 VecLdCost += TTI->getShuffleCost( 3233 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3234 } 3235 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3236 } 3237 case Instruction::Store: { 3238 // We know that we can merge the stores. Calculate the cost. 3239 bool IsReorder = !E->ReorderIndices.empty(); 3240 auto *SI = 3241 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3242 MaybeAlign Alignment(SI->getAlignment()); 3243 int ScalarEltCost = 3244 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, VL0); 3245 if (NeedToShuffleReuses) 3246 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3247 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3248 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3249 VecTy, Alignment, 0, VL0); 3250 if (IsReorder) { 3251 // TODO: Merge this shuffle with the ReuseShuffleCost. 3252 VecStCost += TTI->getShuffleCost( 3253 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3254 } 3255 return ReuseShuffleCost + VecStCost - ScalarStCost; 3256 } 3257 case Instruction::Call: { 3258 CallInst *CI = cast<CallInst>(VL0); 3259 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3260 3261 // Calculate the cost of the scalar and vector calls. 3262 SmallVector<Type *, 4> ScalarTys; 3263 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3264 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3265 3266 FastMathFlags FMF; 3267 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3268 FMF = FPMO->getFastMathFlags(); 3269 3270 int ScalarEltCost = 3271 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3272 if (NeedToShuffleReuses) { 3273 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3274 } 3275 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3276 3277 SmallVector<Value *, 4> Args(CI->arg_operands()); 3278 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3279 VecTy->getNumElements()); 3280 3281 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3282 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3283 << " for " << *CI << "\n"); 3284 3285 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3286 } 3287 case Instruction::ShuffleVector: { 3288 assert(E->isAltShuffle() && 3289 ((Instruction::isBinaryOp(E->getOpcode()) && 3290 Instruction::isBinaryOp(E->getAltOpcode())) || 3291 (Instruction::isCast(E->getOpcode()) && 3292 Instruction::isCast(E->getAltOpcode()))) && 3293 "Invalid Shuffle Vector Operand"); 3294 int ScalarCost = 0; 3295 if (NeedToShuffleReuses) { 3296 for (unsigned Idx : E->ReuseShuffleIndices) { 3297 Instruction *I = cast<Instruction>(VL[Idx]); 3298 ReuseShuffleCost -= TTI->getInstructionCost( 3299 I, TargetTransformInfo::TCK_RecipThroughput); 3300 } 3301 for (Value *V : VL) { 3302 Instruction *I = cast<Instruction>(V); 3303 ReuseShuffleCost += TTI->getInstructionCost( 3304 I, TargetTransformInfo::TCK_RecipThroughput); 3305 } 3306 } 3307 for (Value *V : VL) { 3308 Instruction *I = cast<Instruction>(V); 3309 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3310 ScalarCost += TTI->getInstructionCost( 3311 I, TargetTransformInfo::TCK_RecipThroughput); 3312 } 3313 // VecCost is equal to sum of the cost of creating 2 vectors 3314 // and the cost of creating shuffle. 3315 int VecCost = 0; 3316 if (Instruction::isBinaryOp(E->getOpcode())) { 3317 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3318 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3319 } else { 3320 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3321 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3322 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3323 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3324 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3325 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3326 } 3327 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3328 return ReuseShuffleCost + VecCost - ScalarCost; 3329 } 3330 default: 3331 llvm_unreachable("Unknown instruction"); 3332 } 3333 } 3334 3335 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3336 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3337 << VectorizableTree.size() << " is fully vectorizable .\n"); 3338 3339 // We only handle trees of heights 1 and 2. 3340 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3341 return true; 3342 3343 if (VectorizableTree.size() != 2) 3344 return false; 3345 3346 // Handle splat and all-constants stores. 3347 if (!VectorizableTree[0]->NeedToGather && 3348 (allConstant(VectorizableTree[1]->Scalars) || 3349 isSplat(VectorizableTree[1]->Scalars))) 3350 return true; 3351 3352 // Gathering cost would be too much for tiny trees. 3353 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3354 return false; 3355 3356 return true; 3357 } 3358 3359 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3360 if (RdxOpcode != Instruction::Or) 3361 return false; 3362 3363 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3364 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3365 3366 // Look past the reduction to find a source value. Arbitrarily follow the 3367 // path through operand 0 of any 'or'. Also, peek through optional 3368 // shift-left-by-constant. 3369 Value *ZextLoad = FirstReduced; 3370 while (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3371 match(ZextLoad, m_Shl(m_Value(), m_Constant()))) 3372 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3373 3374 // Check if the input to the reduction is an extended load. 3375 Value *LoadPtr; 3376 if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3377 return false; 3378 3379 // Require that the total load bit width is a legal integer type. 3380 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3381 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3382 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3383 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3384 LLVMContext &Context = FirstReduced->getContext(); 3385 if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth))) 3386 return false; 3387 3388 // Everything matched - assume that we can fold the whole sequence using 3389 // load combining. 3390 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of " 3391 << *(cast<Instruction>(FirstReduced)) << "\n"); 3392 3393 return true; 3394 } 3395 3396 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3397 // We can vectorize the tree if its size is greater than or equal to the 3398 // minimum size specified by the MinTreeSize command line option. 3399 if (VectorizableTree.size() >= MinTreeSize) 3400 return false; 3401 3402 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3403 // can vectorize it if we can prove it fully vectorizable. 3404 if (isFullyVectorizableTinyTree()) 3405 return false; 3406 3407 assert(VectorizableTree.empty() 3408 ? ExternalUses.empty() 3409 : true && "We shouldn't have any external users"); 3410 3411 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3412 // vectorizable. 3413 return true; 3414 } 3415 3416 int BoUpSLP::getSpillCost() const { 3417 // Walk from the bottom of the tree to the top, tracking which values are 3418 // live. When we see a call instruction that is not part of our tree, 3419 // query TTI to see if there is a cost to keeping values live over it 3420 // (for example, if spills and fills are required). 3421 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3422 int Cost = 0; 3423 3424 SmallPtrSet<Instruction*, 4> LiveValues; 3425 Instruction *PrevInst = nullptr; 3426 3427 for (const auto &TEPtr : VectorizableTree) { 3428 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3429 if (!Inst) 3430 continue; 3431 3432 if (!PrevInst) { 3433 PrevInst = Inst; 3434 continue; 3435 } 3436 3437 // Update LiveValues. 3438 LiveValues.erase(PrevInst); 3439 for (auto &J : PrevInst->operands()) { 3440 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3441 LiveValues.insert(cast<Instruction>(&*J)); 3442 } 3443 3444 LLVM_DEBUG({ 3445 dbgs() << "SLP: #LV: " << LiveValues.size(); 3446 for (auto *X : LiveValues) 3447 dbgs() << " " << X->getName(); 3448 dbgs() << ", Looking at "; 3449 Inst->dump(); 3450 }); 3451 3452 // Now find the sequence of instructions between PrevInst and Inst. 3453 unsigned NumCalls = 0; 3454 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3455 PrevInstIt = 3456 PrevInst->getIterator().getReverse(); 3457 while (InstIt != PrevInstIt) { 3458 if (PrevInstIt == PrevInst->getParent()->rend()) { 3459 PrevInstIt = Inst->getParent()->rbegin(); 3460 continue; 3461 } 3462 3463 // Debug information does not impact spill cost. 3464 if ((isa<CallInst>(&*PrevInstIt) && 3465 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3466 &*PrevInstIt != PrevInst) 3467 NumCalls++; 3468 3469 ++PrevInstIt; 3470 } 3471 3472 if (NumCalls) { 3473 SmallVector<Type*, 4> V; 3474 for (auto *II : LiveValues) 3475 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3476 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3477 } 3478 3479 PrevInst = Inst; 3480 } 3481 3482 return Cost; 3483 } 3484 3485 int BoUpSLP::getTreeCost() { 3486 int Cost = 0; 3487 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3488 << VectorizableTree.size() << ".\n"); 3489 3490 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3491 3492 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3493 TreeEntry &TE = *VectorizableTree[I].get(); 3494 3495 // We create duplicate tree entries for gather sequences that have multiple 3496 // uses. However, we should not compute the cost of duplicate sequences. 3497 // For example, if we have a build vector (i.e., insertelement sequence) 3498 // that is used by more than one vector instruction, we only need to 3499 // compute the cost of the insertelement instructions once. The redundant 3500 // instructions will be eliminated by CSE. 3501 // 3502 // We should consider not creating duplicate tree entries for gather 3503 // sequences, and instead add additional edges to the tree representing 3504 // their uses. Since such an approach results in fewer total entries, 3505 // existing heuristics based on tree size may yield different results. 3506 // 3507 if (TE.NeedToGather && 3508 std::any_of( 3509 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3510 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3511 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3512 })) 3513 continue; 3514 3515 int C = getEntryCost(&TE); 3516 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3517 << " for bundle that starts with " << *TE.Scalars[0] 3518 << ".\n"); 3519 Cost += C; 3520 } 3521 3522 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3523 int ExtractCost = 0; 3524 for (ExternalUser &EU : ExternalUses) { 3525 // We only add extract cost once for the same scalar. 3526 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3527 continue; 3528 3529 // Uses by ephemeral values are free (because the ephemeral value will be 3530 // removed prior to code generation, and so the extraction will be 3531 // removed as well). 3532 if (EphValues.count(EU.User)) 3533 continue; 3534 3535 // If we plan to rewrite the tree in a smaller type, we will need to sign 3536 // extend the extracted value back to the original type. Here, we account 3537 // for the extract and the added cost of the sign extend if needed. 3538 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3539 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3540 if (MinBWs.count(ScalarRoot)) { 3541 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3542 auto Extend = 3543 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3544 VecTy = VectorType::get(MinTy, BundleWidth); 3545 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3546 VecTy, EU.Lane); 3547 } else { 3548 ExtractCost += 3549 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3550 } 3551 } 3552 3553 int SpillCost = getSpillCost(); 3554 Cost += SpillCost + ExtractCost; 3555 3556 std::string Str; 3557 { 3558 raw_string_ostream OS(Str); 3559 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3560 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3561 << "SLP: Total Cost = " << Cost << ".\n"; 3562 } 3563 LLVM_DEBUG(dbgs() << Str); 3564 3565 if (ViewSLPTree) 3566 ViewGraph(this, "SLP" + F->getName(), false, Str); 3567 3568 return Cost; 3569 } 3570 3571 int BoUpSLP::getGatherCost(Type *Ty, 3572 const DenseSet<unsigned> &ShuffledIndices) const { 3573 int Cost = 0; 3574 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3575 if (!ShuffledIndices.count(i)) 3576 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3577 if (!ShuffledIndices.empty()) 3578 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3579 return Cost; 3580 } 3581 3582 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3583 // Find the type of the operands in VL. 3584 Type *ScalarTy = VL[0]->getType(); 3585 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3586 ScalarTy = SI->getValueOperand()->getType(); 3587 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3588 // Find the cost of inserting/extracting values from the vector. 3589 // Check if the same elements are inserted several times and count them as 3590 // shuffle candidates. 3591 DenseSet<unsigned> ShuffledElements; 3592 DenseSet<Value *> UniqueElements; 3593 // Iterate in reverse order to consider insert elements with the high cost. 3594 for (unsigned I = VL.size(); I > 0; --I) { 3595 unsigned Idx = I - 1; 3596 if (!UniqueElements.insert(VL[Idx]).second) 3597 ShuffledElements.insert(Idx); 3598 } 3599 return getGatherCost(VecTy, ShuffledElements); 3600 } 3601 3602 // Perform operand reordering on the instructions in VL and return the reordered 3603 // operands in Left and Right. 3604 void BoUpSLP::reorderInputsAccordingToOpcode( 3605 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3606 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3607 ScalarEvolution &SE) { 3608 if (VL.empty()) 3609 return; 3610 VLOperands Ops(VL, DL, SE); 3611 // Reorder the operands in place. 3612 Ops.reorder(); 3613 Left = Ops.getVL(0); 3614 Right = Ops.getVL(1); 3615 } 3616 3617 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3618 // Get the basic block this bundle is in. All instructions in the bundle 3619 // should be in this block. 3620 auto *Front = E->getMainOp(); 3621 auto *BB = Front->getParent(); 3622 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3623 [=](Value *V) -> bool { 3624 auto *I = cast<Instruction>(V); 3625 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3626 })); 3627 3628 // The last instruction in the bundle in program order. 3629 Instruction *LastInst = nullptr; 3630 3631 // Find the last instruction. The common case should be that BB has been 3632 // scheduled, and the last instruction is VL.back(). So we start with 3633 // VL.back() and iterate over schedule data until we reach the end of the 3634 // bundle. The end of the bundle is marked by null ScheduleData. 3635 if (BlocksSchedules.count(BB)) { 3636 auto *Bundle = 3637 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3638 if (Bundle && Bundle->isPartOfBundle()) 3639 for (; Bundle; Bundle = Bundle->NextInBundle) 3640 if (Bundle->OpValue == Bundle->Inst) 3641 LastInst = Bundle->Inst; 3642 } 3643 3644 // LastInst can still be null at this point if there's either not an entry 3645 // for BB in BlocksSchedules or there's no ScheduleData available for 3646 // VL.back(). This can be the case if buildTree_rec aborts for various 3647 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3648 // size is reached, etc.). ScheduleData is initialized in the scheduling 3649 // "dry-run". 3650 // 3651 // If this happens, we can still find the last instruction by brute force. We 3652 // iterate forwards from Front (inclusive) until we either see all 3653 // instructions in the bundle or reach the end of the block. If Front is the 3654 // last instruction in program order, LastInst will be set to Front, and we 3655 // will visit all the remaining instructions in the block. 3656 // 3657 // One of the reasons we exit early from buildTree_rec is to place an upper 3658 // bound on compile-time. Thus, taking an additional compile-time hit here is 3659 // not ideal. However, this should be exceedingly rare since it requires that 3660 // we both exit early from buildTree_rec and that the bundle be out-of-order 3661 // (causing us to iterate all the way to the end of the block). 3662 if (!LastInst) { 3663 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3664 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3665 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3666 LastInst = &I; 3667 if (Bundle.empty()) 3668 break; 3669 } 3670 } 3671 assert(LastInst && "Failed to find last instruction in bundle"); 3672 3673 // Set the insertion point after the last instruction in the bundle. Set the 3674 // debug location to Front. 3675 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3676 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3677 } 3678 3679 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3680 Value *Vec = UndefValue::get(Ty); 3681 // Generate the 'InsertElement' instruction. 3682 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3683 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3684 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 3685 GatherSeq.insert(Insrt); 3686 CSEBlocks.insert(Insrt->getParent()); 3687 3688 // Add to our 'need-to-extract' list. 3689 if (TreeEntry *E = getTreeEntry(VL[i])) { 3690 // Find which lane we need to extract. 3691 int FoundLane = -1; 3692 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3693 // Is this the lane of the scalar that we are looking for ? 3694 if (E->Scalars[Lane] == VL[i]) { 3695 FoundLane = Lane; 3696 break; 3697 } 3698 } 3699 assert(FoundLane >= 0 && "Could not find the correct lane"); 3700 if (!E->ReuseShuffleIndices.empty()) { 3701 FoundLane = 3702 std::distance(E->ReuseShuffleIndices.begin(), 3703 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3704 } 3705 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3706 } 3707 } 3708 } 3709 3710 return Vec; 3711 } 3712 3713 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3714 InstructionsState S = getSameOpcode(VL); 3715 if (S.getOpcode()) { 3716 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3717 if (E->isSame(VL)) { 3718 Value *V = vectorizeTree(E); 3719 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3720 // We need to get the vectorized value but without shuffle. 3721 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3722 V = SV->getOperand(0); 3723 } else { 3724 // Reshuffle to get only unique values. 3725 SmallVector<unsigned, 4> UniqueIdxs; 3726 SmallSet<unsigned, 4> UsedIdxs; 3727 for(unsigned Idx : E->ReuseShuffleIndices) 3728 if (UsedIdxs.insert(Idx).second) 3729 UniqueIdxs.emplace_back(Idx); 3730 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3731 UniqueIdxs); 3732 } 3733 } 3734 return V; 3735 } 3736 } 3737 } 3738 3739 Type *ScalarTy = S.OpValue->getType(); 3740 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3741 ScalarTy = SI->getValueOperand()->getType(); 3742 3743 // Check that every instruction appears once in this bundle. 3744 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3745 SmallVector<Value *, 4> UniqueValues; 3746 if (VL.size() > 2) { 3747 DenseMap<Value *, unsigned> UniquePositions; 3748 for (Value *V : VL) { 3749 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3750 ReuseShuffleIndicies.emplace_back(Res.first->second); 3751 if (Res.second || isa<Constant>(V)) 3752 UniqueValues.emplace_back(V); 3753 } 3754 // Do not shuffle single element or if number of unique values is not power 3755 // of 2. 3756 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3757 !llvm::isPowerOf2_32(UniqueValues.size())) 3758 ReuseShuffleIndicies.clear(); 3759 else 3760 VL = UniqueValues; 3761 } 3762 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3763 3764 Value *V = Gather(VL, VecTy); 3765 if (!ReuseShuffleIndicies.empty()) { 3766 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3767 ReuseShuffleIndicies, "shuffle"); 3768 if (auto *I = dyn_cast<Instruction>(V)) { 3769 GatherSeq.insert(I); 3770 CSEBlocks.insert(I->getParent()); 3771 } 3772 } 3773 return V; 3774 } 3775 3776 static void inversePermutation(ArrayRef<unsigned> Indices, 3777 SmallVectorImpl<unsigned> &Mask) { 3778 Mask.clear(); 3779 const unsigned E = Indices.size(); 3780 Mask.resize(E); 3781 for (unsigned I = 0; I < E; ++I) 3782 Mask[Indices[I]] = I; 3783 } 3784 3785 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3786 IRBuilder<>::InsertPointGuard Guard(Builder); 3787 3788 if (E->VectorizedValue) { 3789 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3790 return E->VectorizedValue; 3791 } 3792 3793 Instruction *VL0 = E->getMainOp(); 3794 Type *ScalarTy = VL0->getType(); 3795 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3796 ScalarTy = SI->getValueOperand()->getType(); 3797 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3798 3799 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3800 3801 if (E->NeedToGather) { 3802 setInsertPointAfterBundle(E); 3803 auto *V = Gather(E->Scalars, VecTy); 3804 if (NeedToShuffleReuses) { 3805 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3806 E->ReuseShuffleIndices, "shuffle"); 3807 if (auto *I = dyn_cast<Instruction>(V)) { 3808 GatherSeq.insert(I); 3809 CSEBlocks.insert(I->getParent()); 3810 } 3811 } 3812 E->VectorizedValue = V; 3813 return V; 3814 } 3815 3816 unsigned ShuffleOrOp = 3817 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3818 switch (ShuffleOrOp) { 3819 case Instruction::PHI: { 3820 auto *PH = cast<PHINode>(VL0); 3821 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3822 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3823 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3824 Value *V = NewPhi; 3825 if (NeedToShuffleReuses) { 3826 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3827 E->ReuseShuffleIndices, "shuffle"); 3828 } 3829 E->VectorizedValue = V; 3830 3831 // PHINodes may have multiple entries from the same block. We want to 3832 // visit every block once. 3833 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3834 3835 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3836 ValueList Operands; 3837 BasicBlock *IBB = PH->getIncomingBlock(i); 3838 3839 if (!VisitedBBs.insert(IBB).second) { 3840 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3841 continue; 3842 } 3843 3844 Builder.SetInsertPoint(IBB->getTerminator()); 3845 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3846 Value *Vec = vectorizeTree(E->getOperand(i)); 3847 NewPhi->addIncoming(Vec, IBB); 3848 } 3849 3850 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3851 "Invalid number of incoming values"); 3852 return V; 3853 } 3854 3855 case Instruction::ExtractElement: { 3856 if (!E->NeedToGather) { 3857 Value *V = E->getSingleOperand(0); 3858 if (!E->ReorderIndices.empty()) { 3859 OrdersType Mask; 3860 inversePermutation(E->ReorderIndices, Mask); 3861 Builder.SetInsertPoint(VL0); 3862 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3863 "reorder_shuffle"); 3864 } 3865 if (NeedToShuffleReuses) { 3866 // TODO: Merge this shuffle with the ReorderShuffleMask. 3867 if (E->ReorderIndices.empty()) 3868 Builder.SetInsertPoint(VL0); 3869 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3870 E->ReuseShuffleIndices, "shuffle"); 3871 } 3872 E->VectorizedValue = V; 3873 return V; 3874 } 3875 setInsertPointAfterBundle(E); 3876 auto *V = Gather(E->Scalars, VecTy); 3877 if (NeedToShuffleReuses) { 3878 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3879 E->ReuseShuffleIndices, "shuffle"); 3880 if (auto *I = dyn_cast<Instruction>(V)) { 3881 GatherSeq.insert(I); 3882 CSEBlocks.insert(I->getParent()); 3883 } 3884 } 3885 E->VectorizedValue = V; 3886 return V; 3887 } 3888 case Instruction::ExtractValue: { 3889 if (!E->NeedToGather) { 3890 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3891 Builder.SetInsertPoint(LI); 3892 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3893 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3894 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3895 Value *NewV = propagateMetadata(V, E->Scalars); 3896 if (!E->ReorderIndices.empty()) { 3897 OrdersType Mask; 3898 inversePermutation(E->ReorderIndices, Mask); 3899 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3900 "reorder_shuffle"); 3901 } 3902 if (NeedToShuffleReuses) { 3903 // TODO: Merge this shuffle with the ReorderShuffleMask. 3904 NewV = Builder.CreateShuffleVector( 3905 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3906 } 3907 E->VectorizedValue = NewV; 3908 return NewV; 3909 } 3910 setInsertPointAfterBundle(E); 3911 auto *V = Gather(E->Scalars, VecTy); 3912 if (NeedToShuffleReuses) { 3913 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3914 E->ReuseShuffleIndices, "shuffle"); 3915 if (auto *I = dyn_cast<Instruction>(V)) { 3916 GatherSeq.insert(I); 3917 CSEBlocks.insert(I->getParent()); 3918 } 3919 } 3920 E->VectorizedValue = V; 3921 return V; 3922 } 3923 case Instruction::ZExt: 3924 case Instruction::SExt: 3925 case Instruction::FPToUI: 3926 case Instruction::FPToSI: 3927 case Instruction::FPExt: 3928 case Instruction::PtrToInt: 3929 case Instruction::IntToPtr: 3930 case Instruction::SIToFP: 3931 case Instruction::UIToFP: 3932 case Instruction::Trunc: 3933 case Instruction::FPTrunc: 3934 case Instruction::BitCast: { 3935 setInsertPointAfterBundle(E); 3936 3937 Value *InVec = vectorizeTree(E->getOperand(0)); 3938 3939 if (E->VectorizedValue) { 3940 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3941 return E->VectorizedValue; 3942 } 3943 3944 auto *CI = cast<CastInst>(VL0); 3945 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3946 if (NeedToShuffleReuses) { 3947 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3948 E->ReuseShuffleIndices, "shuffle"); 3949 } 3950 E->VectorizedValue = V; 3951 ++NumVectorInstructions; 3952 return V; 3953 } 3954 case Instruction::FCmp: 3955 case Instruction::ICmp: { 3956 setInsertPointAfterBundle(E); 3957 3958 Value *L = vectorizeTree(E->getOperand(0)); 3959 Value *R = vectorizeTree(E->getOperand(1)); 3960 3961 if (E->VectorizedValue) { 3962 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3963 return E->VectorizedValue; 3964 } 3965 3966 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3967 Value *V; 3968 if (E->getOpcode() == Instruction::FCmp) 3969 V = Builder.CreateFCmp(P0, L, R); 3970 else 3971 V = Builder.CreateICmp(P0, L, R); 3972 3973 propagateIRFlags(V, E->Scalars, VL0); 3974 if (NeedToShuffleReuses) { 3975 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3976 E->ReuseShuffleIndices, "shuffle"); 3977 } 3978 E->VectorizedValue = V; 3979 ++NumVectorInstructions; 3980 return V; 3981 } 3982 case Instruction::Select: { 3983 setInsertPointAfterBundle(E); 3984 3985 Value *Cond = vectorizeTree(E->getOperand(0)); 3986 Value *True = vectorizeTree(E->getOperand(1)); 3987 Value *False = vectorizeTree(E->getOperand(2)); 3988 3989 if (E->VectorizedValue) { 3990 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3991 return E->VectorizedValue; 3992 } 3993 3994 Value *V = Builder.CreateSelect(Cond, True, False); 3995 if (NeedToShuffleReuses) { 3996 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3997 E->ReuseShuffleIndices, "shuffle"); 3998 } 3999 E->VectorizedValue = V; 4000 ++NumVectorInstructions; 4001 return V; 4002 } 4003 case Instruction::FNeg: { 4004 setInsertPointAfterBundle(E); 4005 4006 Value *Op = vectorizeTree(E->getOperand(0)); 4007 4008 if (E->VectorizedValue) { 4009 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4010 return E->VectorizedValue; 4011 } 4012 4013 Value *V = Builder.CreateUnOp( 4014 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4015 propagateIRFlags(V, E->Scalars, VL0); 4016 if (auto *I = dyn_cast<Instruction>(V)) 4017 V = propagateMetadata(I, E->Scalars); 4018 4019 if (NeedToShuffleReuses) { 4020 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4021 E->ReuseShuffleIndices, "shuffle"); 4022 } 4023 E->VectorizedValue = V; 4024 ++NumVectorInstructions; 4025 4026 return V; 4027 } 4028 case Instruction::Add: 4029 case Instruction::FAdd: 4030 case Instruction::Sub: 4031 case Instruction::FSub: 4032 case Instruction::Mul: 4033 case Instruction::FMul: 4034 case Instruction::UDiv: 4035 case Instruction::SDiv: 4036 case Instruction::FDiv: 4037 case Instruction::URem: 4038 case Instruction::SRem: 4039 case Instruction::FRem: 4040 case Instruction::Shl: 4041 case Instruction::LShr: 4042 case Instruction::AShr: 4043 case Instruction::And: 4044 case Instruction::Or: 4045 case Instruction::Xor: { 4046 setInsertPointAfterBundle(E); 4047 4048 Value *LHS = vectorizeTree(E->getOperand(0)); 4049 Value *RHS = vectorizeTree(E->getOperand(1)); 4050 4051 if (E->VectorizedValue) { 4052 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4053 return E->VectorizedValue; 4054 } 4055 4056 Value *V = Builder.CreateBinOp( 4057 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4058 RHS); 4059 propagateIRFlags(V, E->Scalars, VL0); 4060 if (auto *I = dyn_cast<Instruction>(V)) 4061 V = propagateMetadata(I, E->Scalars); 4062 4063 if (NeedToShuffleReuses) { 4064 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4065 E->ReuseShuffleIndices, "shuffle"); 4066 } 4067 E->VectorizedValue = V; 4068 ++NumVectorInstructions; 4069 4070 return V; 4071 } 4072 case Instruction::Load: { 4073 // Loads are inserted at the head of the tree because we don't want to 4074 // sink them all the way down past store instructions. 4075 bool IsReorder = E->updateStateIfReorder(); 4076 if (IsReorder) 4077 VL0 = E->getMainOp(); 4078 setInsertPointAfterBundle(E); 4079 4080 LoadInst *LI = cast<LoadInst>(VL0); 4081 Type *ScalarLoadTy = LI->getType(); 4082 unsigned AS = LI->getPointerAddressSpace(); 4083 4084 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4085 VecTy->getPointerTo(AS)); 4086 4087 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4088 // ExternalUses list to make sure that an extract will be generated in the 4089 // future. 4090 Value *PO = LI->getPointerOperand(); 4091 if (getTreeEntry(PO)) 4092 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4093 4094 MaybeAlign Alignment = MaybeAlign(LI->getAlignment()); 4095 LI = Builder.CreateLoad(VecTy, VecPtr); 4096 if (!Alignment) 4097 Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy)); 4098 LI->setAlignment(Alignment); 4099 Value *V = propagateMetadata(LI, E->Scalars); 4100 if (IsReorder) { 4101 OrdersType Mask; 4102 inversePermutation(E->ReorderIndices, Mask); 4103 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4104 Mask, "reorder_shuffle"); 4105 } 4106 if (NeedToShuffleReuses) { 4107 // TODO: Merge this shuffle with the ReorderShuffleMask. 4108 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4109 E->ReuseShuffleIndices, "shuffle"); 4110 } 4111 E->VectorizedValue = V; 4112 ++NumVectorInstructions; 4113 return V; 4114 } 4115 case Instruction::Store: { 4116 bool IsReorder = !E->ReorderIndices.empty(); 4117 auto *SI = cast<StoreInst>( 4118 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4119 unsigned Alignment = SI->getAlignment(); 4120 unsigned AS = SI->getPointerAddressSpace(); 4121 4122 setInsertPointAfterBundle(E); 4123 4124 Value *VecValue = vectorizeTree(E->getOperand(0)); 4125 if (IsReorder) { 4126 OrdersType Mask; 4127 inversePermutation(E->ReorderIndices, Mask); 4128 VecValue = Builder.CreateShuffleVector( 4129 VecValue, UndefValue::get(VecValue->getType()), E->ReorderIndices, 4130 "reorder_shuffle"); 4131 } 4132 Value *ScalarPtr = SI->getPointerOperand(); 4133 Value *VecPtr = Builder.CreateBitCast( 4134 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4135 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 4136 4137 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4138 // ExternalUses to make sure that an extract will be generated in the 4139 // future. 4140 if (getTreeEntry(ScalarPtr)) 4141 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4142 4143 if (!Alignment) 4144 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 4145 4146 ST->setAlignment(Align(Alignment)); 4147 Value *V = propagateMetadata(ST, E->Scalars); 4148 if (NeedToShuffleReuses) { 4149 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4150 E->ReuseShuffleIndices, "shuffle"); 4151 } 4152 E->VectorizedValue = V; 4153 ++NumVectorInstructions; 4154 return V; 4155 } 4156 case Instruction::GetElementPtr: { 4157 setInsertPointAfterBundle(E); 4158 4159 Value *Op0 = vectorizeTree(E->getOperand(0)); 4160 4161 std::vector<Value *> OpVecs; 4162 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4163 ++j) { 4164 ValueList &VL = E->getOperand(j); 4165 // Need to cast all elements to the same type before vectorization to 4166 // avoid crash. 4167 Type *VL0Ty = VL0->getOperand(j)->getType(); 4168 Type *Ty = llvm::all_of( 4169 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4170 ? VL0Ty 4171 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4172 ->getPointerOperandType() 4173 ->getScalarType()); 4174 for (Value *&V : VL) { 4175 auto *CI = cast<ConstantInt>(V); 4176 V = ConstantExpr::getIntegerCast(CI, Ty, 4177 CI->getValue().isSignBitSet()); 4178 } 4179 Value *OpVec = vectorizeTree(VL); 4180 OpVecs.push_back(OpVec); 4181 } 4182 4183 Value *V = Builder.CreateGEP( 4184 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4185 if (Instruction *I = dyn_cast<Instruction>(V)) 4186 V = propagateMetadata(I, E->Scalars); 4187 4188 if (NeedToShuffleReuses) { 4189 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4190 E->ReuseShuffleIndices, "shuffle"); 4191 } 4192 E->VectorizedValue = V; 4193 ++NumVectorInstructions; 4194 4195 return V; 4196 } 4197 case Instruction::Call: { 4198 CallInst *CI = cast<CallInst>(VL0); 4199 setInsertPointAfterBundle(E); 4200 4201 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4202 if (Function *FI = CI->getCalledFunction()) 4203 IID = FI->getIntrinsicID(); 4204 4205 Value *ScalarArg = nullptr; 4206 std::vector<Value *> OpVecs; 4207 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4208 ValueList OpVL; 4209 // Some intrinsics have scalar arguments. This argument should not be 4210 // vectorized. 4211 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4212 CallInst *CEI = cast<CallInst>(VL0); 4213 ScalarArg = CEI->getArgOperand(j); 4214 OpVecs.push_back(CEI->getArgOperand(j)); 4215 continue; 4216 } 4217 4218 Value *OpVec = vectorizeTree(E->getOperand(j)); 4219 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4220 OpVecs.push_back(OpVec); 4221 } 4222 4223 Module *M = F->getParent(); 4224 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4225 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4226 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4227 SmallVector<OperandBundleDef, 1> OpBundles; 4228 CI->getOperandBundlesAsDefs(OpBundles); 4229 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4230 4231 // The scalar argument uses an in-tree scalar so we add the new vectorized 4232 // call to ExternalUses list to make sure that an extract will be 4233 // generated in the future. 4234 if (ScalarArg && getTreeEntry(ScalarArg)) 4235 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4236 4237 propagateIRFlags(V, E->Scalars, VL0); 4238 if (NeedToShuffleReuses) { 4239 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4240 E->ReuseShuffleIndices, "shuffle"); 4241 } 4242 E->VectorizedValue = V; 4243 ++NumVectorInstructions; 4244 return V; 4245 } 4246 case Instruction::ShuffleVector: { 4247 assert(E->isAltShuffle() && 4248 ((Instruction::isBinaryOp(E->getOpcode()) && 4249 Instruction::isBinaryOp(E->getAltOpcode())) || 4250 (Instruction::isCast(E->getOpcode()) && 4251 Instruction::isCast(E->getAltOpcode()))) && 4252 "Invalid Shuffle Vector Operand"); 4253 4254 Value *LHS = nullptr, *RHS = nullptr; 4255 if (Instruction::isBinaryOp(E->getOpcode())) { 4256 setInsertPointAfterBundle(E); 4257 LHS = vectorizeTree(E->getOperand(0)); 4258 RHS = vectorizeTree(E->getOperand(1)); 4259 } else { 4260 setInsertPointAfterBundle(E); 4261 LHS = vectorizeTree(E->getOperand(0)); 4262 } 4263 4264 if (E->VectorizedValue) { 4265 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4266 return E->VectorizedValue; 4267 } 4268 4269 Value *V0, *V1; 4270 if (Instruction::isBinaryOp(E->getOpcode())) { 4271 V0 = Builder.CreateBinOp( 4272 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4273 V1 = Builder.CreateBinOp( 4274 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4275 } else { 4276 V0 = Builder.CreateCast( 4277 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4278 V1 = Builder.CreateCast( 4279 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4280 } 4281 4282 // Create shuffle to take alternate operations from the vector. 4283 // Also, gather up main and alt scalar ops to propagate IR flags to 4284 // each vector operation. 4285 ValueList OpScalars, AltScalars; 4286 unsigned e = E->Scalars.size(); 4287 SmallVector<Constant *, 8> Mask(e); 4288 for (unsigned i = 0; i < e; ++i) { 4289 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4290 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4291 if (OpInst->getOpcode() == E->getAltOpcode()) { 4292 Mask[i] = Builder.getInt32(e + i); 4293 AltScalars.push_back(E->Scalars[i]); 4294 } else { 4295 Mask[i] = Builder.getInt32(i); 4296 OpScalars.push_back(E->Scalars[i]); 4297 } 4298 } 4299 4300 Value *ShuffleMask = ConstantVector::get(Mask); 4301 propagateIRFlags(V0, OpScalars); 4302 propagateIRFlags(V1, AltScalars); 4303 4304 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4305 if (Instruction *I = dyn_cast<Instruction>(V)) 4306 V = propagateMetadata(I, E->Scalars); 4307 if (NeedToShuffleReuses) { 4308 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4309 E->ReuseShuffleIndices, "shuffle"); 4310 } 4311 E->VectorizedValue = V; 4312 ++NumVectorInstructions; 4313 4314 return V; 4315 } 4316 default: 4317 llvm_unreachable("unknown inst"); 4318 } 4319 return nullptr; 4320 } 4321 4322 Value *BoUpSLP::vectorizeTree() { 4323 ExtraValueToDebugLocsMap ExternallyUsedValues; 4324 return vectorizeTree(ExternallyUsedValues); 4325 } 4326 4327 Value * 4328 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4329 // All blocks must be scheduled before any instructions are inserted. 4330 for (auto &BSIter : BlocksSchedules) { 4331 scheduleBlock(BSIter.second.get()); 4332 } 4333 4334 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4335 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4336 4337 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4338 // vectorized root. InstCombine will then rewrite the entire expression. We 4339 // sign extend the extracted values below. 4340 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4341 if (MinBWs.count(ScalarRoot)) { 4342 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4343 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4344 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4345 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4346 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4347 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4348 VectorizableTree[0]->VectorizedValue = Trunc; 4349 } 4350 4351 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4352 << " values .\n"); 4353 4354 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4355 // specified by ScalarType. 4356 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4357 if (!MinBWs.count(ScalarRoot)) 4358 return Ex; 4359 if (MinBWs[ScalarRoot].second) 4360 return Builder.CreateSExt(Ex, ScalarType); 4361 return Builder.CreateZExt(Ex, ScalarType); 4362 }; 4363 4364 // Extract all of the elements with the external uses. 4365 for (const auto &ExternalUse : ExternalUses) { 4366 Value *Scalar = ExternalUse.Scalar; 4367 llvm::User *User = ExternalUse.User; 4368 4369 // Skip users that we already RAUW. This happens when one instruction 4370 // has multiple uses of the same value. 4371 if (User && !is_contained(Scalar->users(), User)) 4372 continue; 4373 TreeEntry *E = getTreeEntry(Scalar); 4374 assert(E && "Invalid scalar"); 4375 assert(!E->NeedToGather && "Extracting from a gather list"); 4376 4377 Value *Vec = E->VectorizedValue; 4378 assert(Vec && "Can't find vectorizable value"); 4379 4380 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4381 // If User == nullptr, the Scalar is used as extra arg. Generate 4382 // ExtractElement instruction and update the record for this scalar in 4383 // ExternallyUsedValues. 4384 if (!User) { 4385 assert(ExternallyUsedValues.count(Scalar) && 4386 "Scalar with nullptr as an external user must be registered in " 4387 "ExternallyUsedValues map"); 4388 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4389 Builder.SetInsertPoint(VecI->getParent(), 4390 std::next(VecI->getIterator())); 4391 } else { 4392 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4393 } 4394 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4395 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4396 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4397 auto &Locs = ExternallyUsedValues[Scalar]; 4398 ExternallyUsedValues.insert({Ex, Locs}); 4399 ExternallyUsedValues.erase(Scalar); 4400 // Required to update internally referenced instructions. 4401 Scalar->replaceAllUsesWith(Ex); 4402 continue; 4403 } 4404 4405 // Generate extracts for out-of-tree users. 4406 // Find the insertion point for the extractelement lane. 4407 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4408 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4409 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4410 if (PH->getIncomingValue(i) == Scalar) { 4411 Instruction *IncomingTerminator = 4412 PH->getIncomingBlock(i)->getTerminator(); 4413 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4414 Builder.SetInsertPoint(VecI->getParent(), 4415 std::next(VecI->getIterator())); 4416 } else { 4417 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4418 } 4419 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4420 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4421 CSEBlocks.insert(PH->getIncomingBlock(i)); 4422 PH->setOperand(i, Ex); 4423 } 4424 } 4425 } else { 4426 Builder.SetInsertPoint(cast<Instruction>(User)); 4427 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4428 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4429 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4430 User->replaceUsesOfWith(Scalar, Ex); 4431 } 4432 } else { 4433 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4434 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4435 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4436 CSEBlocks.insert(&F->getEntryBlock()); 4437 User->replaceUsesOfWith(Scalar, Ex); 4438 } 4439 4440 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4441 } 4442 4443 // For each vectorized value: 4444 for (auto &TEPtr : VectorizableTree) { 4445 TreeEntry *Entry = TEPtr.get(); 4446 4447 // No need to handle users of gathered values. 4448 if (Entry->NeedToGather) 4449 continue; 4450 4451 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4452 4453 // For each lane: 4454 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4455 Value *Scalar = Entry->Scalars[Lane]; 4456 4457 #ifndef NDEBUG 4458 Type *Ty = Scalar->getType(); 4459 if (!Ty->isVoidTy()) { 4460 for (User *U : Scalar->users()) { 4461 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4462 4463 // It is legal to delete users in the ignorelist. 4464 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4465 "Deleting out-of-tree value"); 4466 } 4467 } 4468 #endif 4469 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4470 eraseInstruction(cast<Instruction>(Scalar)); 4471 } 4472 } 4473 4474 Builder.ClearInsertionPoint(); 4475 4476 return VectorizableTree[0]->VectorizedValue; 4477 } 4478 4479 void BoUpSLP::optimizeGatherSequence() { 4480 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4481 << " gather sequences instructions.\n"); 4482 // LICM InsertElementInst sequences. 4483 for (Instruction *I : GatherSeq) { 4484 if (isDeleted(I)) 4485 continue; 4486 4487 // Check if this block is inside a loop. 4488 Loop *L = LI->getLoopFor(I->getParent()); 4489 if (!L) 4490 continue; 4491 4492 // Check if it has a preheader. 4493 BasicBlock *PreHeader = L->getLoopPreheader(); 4494 if (!PreHeader) 4495 continue; 4496 4497 // If the vector or the element that we insert into it are 4498 // instructions that are defined in this basic block then we can't 4499 // hoist this instruction. 4500 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4501 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4502 if (Op0 && L->contains(Op0)) 4503 continue; 4504 if (Op1 && L->contains(Op1)) 4505 continue; 4506 4507 // We can hoist this instruction. Move it to the pre-header. 4508 I->moveBefore(PreHeader->getTerminator()); 4509 } 4510 4511 // Make a list of all reachable blocks in our CSE queue. 4512 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4513 CSEWorkList.reserve(CSEBlocks.size()); 4514 for (BasicBlock *BB : CSEBlocks) 4515 if (DomTreeNode *N = DT->getNode(BB)) { 4516 assert(DT->isReachableFromEntry(N)); 4517 CSEWorkList.push_back(N); 4518 } 4519 4520 // Sort blocks by domination. This ensures we visit a block after all blocks 4521 // dominating it are visited. 4522 llvm::stable_sort(CSEWorkList, 4523 [this](const DomTreeNode *A, const DomTreeNode *B) { 4524 return DT->properlyDominates(A, B); 4525 }); 4526 4527 // Perform O(N^2) search over the gather sequences and merge identical 4528 // instructions. TODO: We can further optimize this scan if we split the 4529 // instructions into different buckets based on the insert lane. 4530 SmallVector<Instruction *, 16> Visited; 4531 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4532 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4533 "Worklist not sorted properly!"); 4534 BasicBlock *BB = (*I)->getBlock(); 4535 // For all instructions in blocks containing gather sequences: 4536 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4537 Instruction *In = &*it++; 4538 if (isDeleted(In)) 4539 continue; 4540 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4541 continue; 4542 4543 // Check if we can replace this instruction with any of the 4544 // visited instructions. 4545 for (Instruction *v : Visited) { 4546 if (In->isIdenticalTo(v) && 4547 DT->dominates(v->getParent(), In->getParent())) { 4548 In->replaceAllUsesWith(v); 4549 eraseInstruction(In); 4550 In = nullptr; 4551 break; 4552 } 4553 } 4554 if (In) { 4555 assert(!is_contained(Visited, In)); 4556 Visited.push_back(In); 4557 } 4558 } 4559 } 4560 CSEBlocks.clear(); 4561 GatherSeq.clear(); 4562 } 4563 4564 // Groups the instructions to a bundle (which is then a single scheduling entity) 4565 // and schedules instructions until the bundle gets ready. 4566 Optional<BoUpSLP::ScheduleData *> 4567 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4568 const InstructionsState &S) { 4569 if (isa<PHINode>(S.OpValue)) 4570 return nullptr; 4571 4572 // Initialize the instruction bundle. 4573 Instruction *OldScheduleEnd = ScheduleEnd; 4574 ScheduleData *PrevInBundle = nullptr; 4575 ScheduleData *Bundle = nullptr; 4576 bool ReSchedule = false; 4577 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4578 4579 // Make sure that the scheduling region contains all 4580 // instructions of the bundle. 4581 for (Value *V : VL) { 4582 if (!extendSchedulingRegion(V, S)) 4583 return None; 4584 } 4585 4586 for (Value *V : VL) { 4587 ScheduleData *BundleMember = getScheduleData(V); 4588 assert(BundleMember && 4589 "no ScheduleData for bundle member (maybe not in same basic block)"); 4590 if (BundleMember->IsScheduled) { 4591 // A bundle member was scheduled as single instruction before and now 4592 // needs to be scheduled as part of the bundle. We just get rid of the 4593 // existing schedule. 4594 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4595 << " was already scheduled\n"); 4596 ReSchedule = true; 4597 } 4598 assert(BundleMember->isSchedulingEntity() && 4599 "bundle member already part of other bundle"); 4600 if (PrevInBundle) { 4601 PrevInBundle->NextInBundle = BundleMember; 4602 } else { 4603 Bundle = BundleMember; 4604 } 4605 BundleMember->UnscheduledDepsInBundle = 0; 4606 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4607 4608 // Group the instructions to a bundle. 4609 BundleMember->FirstInBundle = Bundle; 4610 PrevInBundle = BundleMember; 4611 } 4612 if (ScheduleEnd != OldScheduleEnd) { 4613 // The scheduling region got new instructions at the lower end (or it is a 4614 // new region for the first bundle). This makes it necessary to 4615 // recalculate all dependencies. 4616 // It is seldom that this needs to be done a second time after adding the 4617 // initial bundle to the region. 4618 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4619 doForAllOpcodes(I, [](ScheduleData *SD) { 4620 SD->clearDependencies(); 4621 }); 4622 } 4623 ReSchedule = true; 4624 } 4625 if (ReSchedule) { 4626 resetSchedule(); 4627 initialFillReadyList(ReadyInsts); 4628 } 4629 assert(Bundle && "Failed to find schedule bundle"); 4630 4631 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4632 << BB->getName() << "\n"); 4633 4634 calculateDependencies(Bundle, true, SLP); 4635 4636 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4637 // means that there are no cyclic dependencies and we can schedule it. 4638 // Note that's important that we don't "schedule" the bundle yet (see 4639 // cancelScheduling). 4640 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4641 4642 ScheduleData *pickedSD = ReadyInsts.back(); 4643 ReadyInsts.pop_back(); 4644 4645 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4646 schedule(pickedSD, ReadyInsts); 4647 } 4648 } 4649 if (!Bundle->isReady()) { 4650 cancelScheduling(VL, S.OpValue); 4651 return None; 4652 } 4653 return Bundle; 4654 } 4655 4656 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4657 Value *OpValue) { 4658 if (isa<PHINode>(OpValue)) 4659 return; 4660 4661 ScheduleData *Bundle = getScheduleData(OpValue); 4662 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4663 assert(!Bundle->IsScheduled && 4664 "Can't cancel bundle which is already scheduled"); 4665 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4666 "tried to unbundle something which is not a bundle"); 4667 4668 // Un-bundle: make single instructions out of the bundle. 4669 ScheduleData *BundleMember = Bundle; 4670 while (BundleMember) { 4671 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4672 BundleMember->FirstInBundle = BundleMember; 4673 ScheduleData *Next = BundleMember->NextInBundle; 4674 BundleMember->NextInBundle = nullptr; 4675 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4676 if (BundleMember->UnscheduledDepsInBundle == 0) { 4677 ReadyInsts.insert(BundleMember); 4678 } 4679 BundleMember = Next; 4680 } 4681 } 4682 4683 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4684 // Allocate a new ScheduleData for the instruction. 4685 if (ChunkPos >= ChunkSize) { 4686 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4687 ChunkPos = 0; 4688 } 4689 return &(ScheduleDataChunks.back()[ChunkPos++]); 4690 } 4691 4692 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4693 const InstructionsState &S) { 4694 if (getScheduleData(V, isOneOf(S, V))) 4695 return true; 4696 Instruction *I = dyn_cast<Instruction>(V); 4697 assert(I && "bundle member must be an instruction"); 4698 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4699 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4700 ScheduleData *ISD = getScheduleData(I); 4701 if (!ISD) 4702 return false; 4703 assert(isInSchedulingRegion(ISD) && 4704 "ScheduleData not in scheduling region"); 4705 ScheduleData *SD = allocateScheduleDataChunks(); 4706 SD->Inst = I; 4707 SD->init(SchedulingRegionID, S.OpValue); 4708 ExtraScheduleDataMap[I][S.OpValue] = SD; 4709 return true; 4710 }; 4711 if (CheckSheduleForI(I)) 4712 return true; 4713 if (!ScheduleStart) { 4714 // It's the first instruction in the new region. 4715 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4716 ScheduleStart = I; 4717 ScheduleEnd = I->getNextNode(); 4718 if (isOneOf(S, I) != I) 4719 CheckSheduleForI(I); 4720 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4721 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4722 return true; 4723 } 4724 // Search up and down at the same time, because we don't know if the new 4725 // instruction is above or below the existing scheduling region. 4726 BasicBlock::reverse_iterator UpIter = 4727 ++ScheduleStart->getIterator().getReverse(); 4728 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4729 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4730 BasicBlock::iterator LowerEnd = BB->end(); 4731 while (true) { 4732 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4733 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4734 return false; 4735 } 4736 4737 if (UpIter != UpperEnd) { 4738 if (&*UpIter == I) { 4739 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4740 ScheduleStart = I; 4741 if (isOneOf(S, I) != I) 4742 CheckSheduleForI(I); 4743 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4744 << "\n"); 4745 return true; 4746 } 4747 ++UpIter; 4748 } 4749 if (DownIter != LowerEnd) { 4750 if (&*DownIter == I) { 4751 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4752 nullptr); 4753 ScheduleEnd = I->getNextNode(); 4754 if (isOneOf(S, I) != I) 4755 CheckSheduleForI(I); 4756 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4757 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4758 << "\n"); 4759 return true; 4760 } 4761 ++DownIter; 4762 } 4763 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4764 "instruction not found in block"); 4765 } 4766 return true; 4767 } 4768 4769 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4770 Instruction *ToI, 4771 ScheduleData *PrevLoadStore, 4772 ScheduleData *NextLoadStore) { 4773 ScheduleData *CurrentLoadStore = PrevLoadStore; 4774 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4775 ScheduleData *SD = ScheduleDataMap[I]; 4776 if (!SD) { 4777 SD = allocateScheduleDataChunks(); 4778 ScheduleDataMap[I] = SD; 4779 SD->Inst = I; 4780 } 4781 assert(!isInSchedulingRegion(SD) && 4782 "new ScheduleData already in scheduling region"); 4783 SD->init(SchedulingRegionID, I); 4784 4785 if (I->mayReadOrWriteMemory() && 4786 (!isa<IntrinsicInst>(I) || 4787 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4788 // Update the linked list of memory accessing instructions. 4789 if (CurrentLoadStore) { 4790 CurrentLoadStore->NextLoadStore = SD; 4791 } else { 4792 FirstLoadStoreInRegion = SD; 4793 } 4794 CurrentLoadStore = SD; 4795 } 4796 } 4797 if (NextLoadStore) { 4798 if (CurrentLoadStore) 4799 CurrentLoadStore->NextLoadStore = NextLoadStore; 4800 } else { 4801 LastLoadStoreInRegion = CurrentLoadStore; 4802 } 4803 } 4804 4805 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4806 bool InsertInReadyList, 4807 BoUpSLP *SLP) { 4808 assert(SD->isSchedulingEntity()); 4809 4810 SmallVector<ScheduleData *, 10> WorkList; 4811 WorkList.push_back(SD); 4812 4813 while (!WorkList.empty()) { 4814 ScheduleData *SD = WorkList.back(); 4815 WorkList.pop_back(); 4816 4817 ScheduleData *BundleMember = SD; 4818 while (BundleMember) { 4819 assert(isInSchedulingRegion(BundleMember)); 4820 if (!BundleMember->hasValidDependencies()) { 4821 4822 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4823 << "\n"); 4824 BundleMember->Dependencies = 0; 4825 BundleMember->resetUnscheduledDeps(); 4826 4827 // Handle def-use chain dependencies. 4828 if (BundleMember->OpValue != BundleMember->Inst) { 4829 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4830 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4831 BundleMember->Dependencies++; 4832 ScheduleData *DestBundle = UseSD->FirstInBundle; 4833 if (!DestBundle->IsScheduled) 4834 BundleMember->incrementUnscheduledDeps(1); 4835 if (!DestBundle->hasValidDependencies()) 4836 WorkList.push_back(DestBundle); 4837 } 4838 } else { 4839 for (User *U : BundleMember->Inst->users()) { 4840 if (isa<Instruction>(U)) { 4841 ScheduleData *UseSD = getScheduleData(U); 4842 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4843 BundleMember->Dependencies++; 4844 ScheduleData *DestBundle = UseSD->FirstInBundle; 4845 if (!DestBundle->IsScheduled) 4846 BundleMember->incrementUnscheduledDeps(1); 4847 if (!DestBundle->hasValidDependencies()) 4848 WorkList.push_back(DestBundle); 4849 } 4850 } else { 4851 // I'm not sure if this can ever happen. But we need to be safe. 4852 // This lets the instruction/bundle never be scheduled and 4853 // eventually disable vectorization. 4854 BundleMember->Dependencies++; 4855 BundleMember->incrementUnscheduledDeps(1); 4856 } 4857 } 4858 } 4859 4860 // Handle the memory dependencies. 4861 ScheduleData *DepDest = BundleMember->NextLoadStore; 4862 if (DepDest) { 4863 Instruction *SrcInst = BundleMember->Inst; 4864 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4865 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4866 unsigned numAliased = 0; 4867 unsigned DistToSrc = 1; 4868 4869 while (DepDest) { 4870 assert(isInSchedulingRegion(DepDest)); 4871 4872 // We have two limits to reduce the complexity: 4873 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4874 // SLP->isAliased (which is the expensive part in this loop). 4875 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4876 // the whole loop (even if the loop is fast, it's quadratic). 4877 // It's important for the loop break condition (see below) to 4878 // check this limit even between two read-only instructions. 4879 if (DistToSrc >= MaxMemDepDistance || 4880 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4881 (numAliased >= AliasedCheckLimit || 4882 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4883 4884 // We increment the counter only if the locations are aliased 4885 // (instead of counting all alias checks). This gives a better 4886 // balance between reduced runtime and accurate dependencies. 4887 numAliased++; 4888 4889 DepDest->MemoryDependencies.push_back(BundleMember); 4890 BundleMember->Dependencies++; 4891 ScheduleData *DestBundle = DepDest->FirstInBundle; 4892 if (!DestBundle->IsScheduled) { 4893 BundleMember->incrementUnscheduledDeps(1); 4894 } 4895 if (!DestBundle->hasValidDependencies()) { 4896 WorkList.push_back(DestBundle); 4897 } 4898 } 4899 DepDest = DepDest->NextLoadStore; 4900 4901 // Example, explaining the loop break condition: Let's assume our 4902 // starting instruction is i0 and MaxMemDepDistance = 3. 4903 // 4904 // +--------v--v--v 4905 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4906 // +--------^--^--^ 4907 // 4908 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4909 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4910 // Previously we already added dependencies from i3 to i6,i7,i8 4911 // (because of MaxMemDepDistance). As we added a dependency from 4912 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4913 // and we can abort this loop at i6. 4914 if (DistToSrc >= 2 * MaxMemDepDistance) 4915 break; 4916 DistToSrc++; 4917 } 4918 } 4919 } 4920 BundleMember = BundleMember->NextInBundle; 4921 } 4922 if (InsertInReadyList && SD->isReady()) { 4923 ReadyInsts.push_back(SD); 4924 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4925 << "\n"); 4926 } 4927 } 4928 } 4929 4930 void BoUpSLP::BlockScheduling::resetSchedule() { 4931 assert(ScheduleStart && 4932 "tried to reset schedule on block which has not been scheduled"); 4933 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4934 doForAllOpcodes(I, [&](ScheduleData *SD) { 4935 assert(isInSchedulingRegion(SD) && 4936 "ScheduleData not in scheduling region"); 4937 SD->IsScheduled = false; 4938 SD->resetUnscheduledDeps(); 4939 }); 4940 } 4941 ReadyInsts.clear(); 4942 } 4943 4944 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4945 if (!BS->ScheduleStart) 4946 return; 4947 4948 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4949 4950 BS->resetSchedule(); 4951 4952 // For the real scheduling we use a more sophisticated ready-list: it is 4953 // sorted by the original instruction location. This lets the final schedule 4954 // be as close as possible to the original instruction order. 4955 struct ScheduleDataCompare { 4956 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4957 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4958 } 4959 }; 4960 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4961 4962 // Ensure that all dependency data is updated and fill the ready-list with 4963 // initial instructions. 4964 int Idx = 0; 4965 int NumToSchedule = 0; 4966 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4967 I = I->getNextNode()) { 4968 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4969 assert(SD->isPartOfBundle() == 4970 (getTreeEntry(SD->Inst) != nullptr) && 4971 "scheduler and vectorizer bundle mismatch"); 4972 SD->FirstInBundle->SchedulingPriority = Idx++; 4973 if (SD->isSchedulingEntity()) { 4974 BS->calculateDependencies(SD, false, this); 4975 NumToSchedule++; 4976 } 4977 }); 4978 } 4979 BS->initialFillReadyList(ReadyInsts); 4980 4981 Instruction *LastScheduledInst = BS->ScheduleEnd; 4982 4983 // Do the "real" scheduling. 4984 while (!ReadyInsts.empty()) { 4985 ScheduleData *picked = *ReadyInsts.begin(); 4986 ReadyInsts.erase(ReadyInsts.begin()); 4987 4988 // Move the scheduled instruction(s) to their dedicated places, if not 4989 // there yet. 4990 ScheduleData *BundleMember = picked; 4991 while (BundleMember) { 4992 Instruction *pickedInst = BundleMember->Inst; 4993 if (LastScheduledInst->getNextNode() != pickedInst) { 4994 BS->BB->getInstList().remove(pickedInst); 4995 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4996 pickedInst); 4997 } 4998 LastScheduledInst = pickedInst; 4999 BundleMember = BundleMember->NextInBundle; 5000 } 5001 5002 BS->schedule(picked, ReadyInsts); 5003 NumToSchedule--; 5004 } 5005 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5006 5007 // Avoid duplicate scheduling of the block. 5008 BS->ScheduleStart = nullptr; 5009 } 5010 5011 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 5012 // If V is a store, just return the width of the stored value without 5013 // traversing the expression tree. This is the common case. 5014 if (auto *Store = dyn_cast<StoreInst>(V)) 5015 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5016 5017 // If V is not a store, we can traverse the expression tree to find loads 5018 // that feed it. The type of the loaded value may indicate a more suitable 5019 // width than V's type. We want to base the vector element size on the width 5020 // of memory operations where possible. 5021 SmallVector<Instruction *, 16> Worklist; 5022 SmallPtrSet<Instruction *, 16> Visited; 5023 if (auto *I = dyn_cast<Instruction>(V)) 5024 Worklist.push_back(I); 5025 5026 // Traverse the expression tree in bottom-up order looking for loads. If we 5027 // encounter an instruction we don't yet handle, we give up. 5028 auto MaxWidth = 0u; 5029 auto FoundUnknownInst = false; 5030 while (!Worklist.empty() && !FoundUnknownInst) { 5031 auto *I = Worklist.pop_back_val(); 5032 Visited.insert(I); 5033 5034 // We should only be looking at scalar instructions here. If the current 5035 // instruction has a vector type, give up. 5036 auto *Ty = I->getType(); 5037 if (isa<VectorType>(Ty)) 5038 FoundUnknownInst = true; 5039 5040 // If the current instruction is a load, update MaxWidth to reflect the 5041 // width of the loaded value. 5042 else if (isa<LoadInst>(I)) 5043 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5044 5045 // Otherwise, we need to visit the operands of the instruction. We only 5046 // handle the interesting cases from buildTree here. If an operand is an 5047 // instruction we haven't yet visited, we add it to the worklist. 5048 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5049 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5050 for (Use &U : I->operands()) 5051 if (auto *J = dyn_cast<Instruction>(U.get())) 5052 if (!Visited.count(J)) 5053 Worklist.push_back(J); 5054 } 5055 5056 // If we don't yet handle the instruction, give up. 5057 else 5058 FoundUnknownInst = true; 5059 } 5060 5061 // If we didn't encounter a memory access in the expression tree, or if we 5062 // gave up for some reason, just return the width of V. 5063 if (!MaxWidth || FoundUnknownInst) 5064 return DL->getTypeSizeInBits(V->getType()); 5065 5066 // Otherwise, return the maximum width we found. 5067 return MaxWidth; 5068 } 5069 5070 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5071 // smaller type with a truncation. We collect the values that will be demoted 5072 // in ToDemote and additional roots that require investigating in Roots. 5073 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5074 SmallVectorImpl<Value *> &ToDemote, 5075 SmallVectorImpl<Value *> &Roots) { 5076 // We can always demote constants. 5077 if (isa<Constant>(V)) { 5078 ToDemote.push_back(V); 5079 return true; 5080 } 5081 5082 // If the value is not an instruction in the expression with only one use, it 5083 // cannot be demoted. 5084 auto *I = dyn_cast<Instruction>(V); 5085 if (!I || !I->hasOneUse() || !Expr.count(I)) 5086 return false; 5087 5088 switch (I->getOpcode()) { 5089 5090 // We can always demote truncations and extensions. Since truncations can 5091 // seed additional demotion, we save the truncated value. 5092 case Instruction::Trunc: 5093 Roots.push_back(I->getOperand(0)); 5094 break; 5095 case Instruction::ZExt: 5096 case Instruction::SExt: 5097 break; 5098 5099 // We can demote certain binary operations if we can demote both of their 5100 // operands. 5101 case Instruction::Add: 5102 case Instruction::Sub: 5103 case Instruction::Mul: 5104 case Instruction::And: 5105 case Instruction::Or: 5106 case Instruction::Xor: 5107 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5108 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5109 return false; 5110 break; 5111 5112 // We can demote selects if we can demote their true and false values. 5113 case Instruction::Select: { 5114 SelectInst *SI = cast<SelectInst>(I); 5115 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5116 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5117 return false; 5118 break; 5119 } 5120 5121 // We can demote phis if we can demote all their incoming operands. Note that 5122 // we don't need to worry about cycles since we ensure single use above. 5123 case Instruction::PHI: { 5124 PHINode *PN = cast<PHINode>(I); 5125 for (Value *IncValue : PN->incoming_values()) 5126 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5127 return false; 5128 break; 5129 } 5130 5131 // Otherwise, conservatively give up. 5132 default: 5133 return false; 5134 } 5135 5136 // Record the value that we can demote. 5137 ToDemote.push_back(V); 5138 return true; 5139 } 5140 5141 void BoUpSLP::computeMinimumValueSizes() { 5142 // If there are no external uses, the expression tree must be rooted by a 5143 // store. We can't demote in-memory values, so there is nothing to do here. 5144 if (ExternalUses.empty()) 5145 return; 5146 5147 // We only attempt to truncate integer expressions. 5148 auto &TreeRoot = VectorizableTree[0]->Scalars; 5149 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5150 if (!TreeRootIT) 5151 return; 5152 5153 // If the expression is not rooted by a store, these roots should have 5154 // external uses. We will rely on InstCombine to rewrite the expression in 5155 // the narrower type. However, InstCombine only rewrites single-use values. 5156 // This means that if a tree entry other than a root is used externally, it 5157 // must have multiple uses and InstCombine will not rewrite it. The code 5158 // below ensures that only the roots are used externally. 5159 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5160 for (auto &EU : ExternalUses) 5161 if (!Expr.erase(EU.Scalar)) 5162 return; 5163 if (!Expr.empty()) 5164 return; 5165 5166 // Collect the scalar values of the vectorizable expression. We will use this 5167 // context to determine which values can be demoted. If we see a truncation, 5168 // we mark it as seeding another demotion. 5169 for (auto &EntryPtr : VectorizableTree) 5170 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5171 5172 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5173 // have a single external user that is not in the vectorizable tree. 5174 for (auto *Root : TreeRoot) 5175 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5176 return; 5177 5178 // Conservatively determine if we can actually truncate the roots of the 5179 // expression. Collect the values that can be demoted in ToDemote and 5180 // additional roots that require investigating in Roots. 5181 SmallVector<Value *, 32> ToDemote; 5182 SmallVector<Value *, 4> Roots; 5183 for (auto *Root : TreeRoot) 5184 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5185 return; 5186 5187 // The maximum bit width required to represent all the values that can be 5188 // demoted without loss of precision. It would be safe to truncate the roots 5189 // of the expression to this width. 5190 auto MaxBitWidth = 8u; 5191 5192 // We first check if all the bits of the roots are demanded. If they're not, 5193 // we can truncate the roots to this narrower type. 5194 for (auto *Root : TreeRoot) { 5195 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5196 MaxBitWidth = std::max<unsigned>( 5197 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5198 } 5199 5200 // True if the roots can be zero-extended back to their original type, rather 5201 // than sign-extended. We know that if the leading bits are not demanded, we 5202 // can safely zero-extend. So we initialize IsKnownPositive to True. 5203 bool IsKnownPositive = true; 5204 5205 // If all the bits of the roots are demanded, we can try a little harder to 5206 // compute a narrower type. This can happen, for example, if the roots are 5207 // getelementptr indices. InstCombine promotes these indices to the pointer 5208 // width. Thus, all their bits are technically demanded even though the 5209 // address computation might be vectorized in a smaller type. 5210 // 5211 // We start by looking at each entry that can be demoted. We compute the 5212 // maximum bit width required to store the scalar by using ValueTracking to 5213 // compute the number of high-order bits we can truncate. 5214 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5215 llvm::all_of(TreeRoot, [](Value *R) { 5216 assert(R->hasOneUse() && "Root should have only one use!"); 5217 return isa<GetElementPtrInst>(R->user_back()); 5218 })) { 5219 MaxBitWidth = 8u; 5220 5221 // Determine if the sign bit of all the roots is known to be zero. If not, 5222 // IsKnownPositive is set to False. 5223 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5224 KnownBits Known = computeKnownBits(R, *DL); 5225 return Known.isNonNegative(); 5226 }); 5227 5228 // Determine the maximum number of bits required to store the scalar 5229 // values. 5230 for (auto *Scalar : ToDemote) { 5231 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5232 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5233 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5234 } 5235 5236 // If we can't prove that the sign bit is zero, we must add one to the 5237 // maximum bit width to account for the unknown sign bit. This preserves 5238 // the existing sign bit so we can safely sign-extend the root back to the 5239 // original type. Otherwise, if we know the sign bit is zero, we will 5240 // zero-extend the root instead. 5241 // 5242 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5243 // one to the maximum bit width will yield a larger-than-necessary 5244 // type. In general, we need to add an extra bit only if we can't 5245 // prove that the upper bit of the original type is equal to the 5246 // upper bit of the proposed smaller type. If these two bits are the 5247 // same (either zero or one) we know that sign-extending from the 5248 // smaller type will result in the same value. Here, since we can't 5249 // yet prove this, we are just making the proposed smaller type 5250 // larger to ensure correctness. 5251 if (!IsKnownPositive) 5252 ++MaxBitWidth; 5253 } 5254 5255 // Round MaxBitWidth up to the next power-of-two. 5256 if (!isPowerOf2_64(MaxBitWidth)) 5257 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5258 5259 // If the maximum bit width we compute is less than the with of the roots' 5260 // type, we can proceed with the narrowing. Otherwise, do nothing. 5261 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5262 return; 5263 5264 // If we can truncate the root, we must collect additional values that might 5265 // be demoted as a result. That is, those seeded by truncations we will 5266 // modify. 5267 while (!Roots.empty()) 5268 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5269 5270 // Finally, map the values we can demote to the maximum bit with we computed. 5271 for (auto *Scalar : ToDemote) 5272 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5273 } 5274 5275 namespace { 5276 5277 /// The SLPVectorizer Pass. 5278 struct SLPVectorizer : public FunctionPass { 5279 SLPVectorizerPass Impl; 5280 5281 /// Pass identification, replacement for typeid 5282 static char ID; 5283 5284 explicit SLPVectorizer() : FunctionPass(ID) { 5285 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5286 } 5287 5288 bool doInitialization(Module &M) override { 5289 return false; 5290 } 5291 5292 bool runOnFunction(Function &F) override { 5293 if (skipFunction(F)) 5294 return false; 5295 5296 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5297 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5298 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5299 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5300 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5301 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5302 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5303 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5304 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5305 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5306 5307 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5308 } 5309 5310 void getAnalysisUsage(AnalysisUsage &AU) const override { 5311 FunctionPass::getAnalysisUsage(AU); 5312 AU.addRequired<AssumptionCacheTracker>(); 5313 AU.addRequired<ScalarEvolutionWrapperPass>(); 5314 AU.addRequired<AAResultsWrapperPass>(); 5315 AU.addRequired<TargetTransformInfoWrapperPass>(); 5316 AU.addRequired<LoopInfoWrapperPass>(); 5317 AU.addRequired<DominatorTreeWrapperPass>(); 5318 AU.addRequired<DemandedBitsWrapperPass>(); 5319 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5320 AU.addPreserved<LoopInfoWrapperPass>(); 5321 AU.addPreserved<DominatorTreeWrapperPass>(); 5322 AU.addPreserved<AAResultsWrapperPass>(); 5323 AU.addPreserved<GlobalsAAWrapperPass>(); 5324 AU.setPreservesCFG(); 5325 } 5326 }; 5327 5328 } // end anonymous namespace 5329 5330 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5331 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5332 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5333 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5334 auto *AA = &AM.getResult<AAManager>(F); 5335 auto *LI = &AM.getResult<LoopAnalysis>(F); 5336 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5337 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5338 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5339 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5340 5341 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5342 if (!Changed) 5343 return PreservedAnalyses::all(); 5344 5345 PreservedAnalyses PA; 5346 PA.preserveSet<CFGAnalyses>(); 5347 PA.preserve<AAManager>(); 5348 PA.preserve<GlobalsAA>(); 5349 return PA; 5350 } 5351 5352 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5353 TargetTransformInfo *TTI_, 5354 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5355 LoopInfo *LI_, DominatorTree *DT_, 5356 AssumptionCache *AC_, DemandedBits *DB_, 5357 OptimizationRemarkEmitter *ORE_) { 5358 SE = SE_; 5359 TTI = TTI_; 5360 TLI = TLI_; 5361 AA = AA_; 5362 LI = LI_; 5363 DT = DT_; 5364 AC = AC_; 5365 DB = DB_; 5366 DL = &F.getParent()->getDataLayout(); 5367 5368 Stores.clear(); 5369 GEPs.clear(); 5370 bool Changed = false; 5371 5372 // If the target claims to have no vector registers don't attempt 5373 // vectorization. 5374 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5375 return false; 5376 5377 // Don't vectorize when the attribute NoImplicitFloat is used. 5378 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5379 return false; 5380 5381 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5382 5383 // Use the bottom up slp vectorizer to construct chains that start with 5384 // store instructions. 5385 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5386 5387 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5388 // delete instructions. 5389 5390 // Scan the blocks in the function in post order. 5391 for (auto BB : post_order(&F.getEntryBlock())) { 5392 collectSeedInstructions(BB); 5393 5394 // Vectorize trees that end at stores. 5395 if (!Stores.empty()) { 5396 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5397 << " underlying objects.\n"); 5398 Changed |= vectorizeStoreChains(R); 5399 } 5400 5401 // Vectorize trees that end at reductions. 5402 Changed |= vectorizeChainsInBlock(BB, R); 5403 5404 // Vectorize the index computations of getelementptr instructions. This 5405 // is primarily intended to catch gather-like idioms ending at 5406 // non-consecutive loads. 5407 if (!GEPs.empty()) { 5408 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5409 << " underlying objects.\n"); 5410 Changed |= vectorizeGEPIndices(BB, R); 5411 } 5412 } 5413 5414 if (Changed) { 5415 R.optimizeGatherSequence(); 5416 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5417 LLVM_DEBUG(verifyFunction(F)); 5418 } 5419 return Changed; 5420 } 5421 5422 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5423 unsigned Idx) { 5424 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5425 << "\n"); 5426 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5427 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5428 unsigned VF = Chain.size(); 5429 5430 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5431 return false; 5432 5433 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5434 << "\n"); 5435 5436 R.buildTree(Chain); 5437 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5438 // TODO: Handle orders of size less than number of elements in the vector. 5439 if (Order && Order->size() == Chain.size()) { 5440 // TODO: reorder tree nodes without tree rebuilding. 5441 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5442 llvm::transform(*Order, ReorderedOps.begin(), 5443 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5444 R.buildTree(ReorderedOps); 5445 } 5446 if (R.isTreeTinyAndNotFullyVectorizable()) 5447 return false; 5448 5449 R.computeMinimumValueSizes(); 5450 5451 int Cost = R.getTreeCost(); 5452 5453 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5454 if (Cost < -SLPCostThreshold) { 5455 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5456 5457 using namespace ore; 5458 5459 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5460 cast<StoreInst>(Chain[0])) 5461 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5462 << " and with tree size " 5463 << NV("TreeSize", R.getTreeSize())); 5464 5465 R.vectorizeTree(); 5466 return true; 5467 } 5468 5469 return false; 5470 } 5471 5472 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5473 BoUpSLP &R) { 5474 // We may run into multiple chains that merge into a single chain. We mark the 5475 // stores that we vectorized so that we don't visit the same store twice. 5476 BoUpSLP::ValueSet VectorizedStores; 5477 bool Changed = false; 5478 5479 int E = Stores.size(); 5480 SmallBitVector Tails(E, false); 5481 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5482 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, 5483 &ConsecutiveChain](int K, int Idx) { 5484 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5485 return false; 5486 5487 Tails.set(Idx); 5488 ConsecutiveChain[K] = Idx; 5489 return true; 5490 }; 5491 // Do a quadratic search on all of the given stores in reverse order and find 5492 // all of the pairs of stores that follow each other. 5493 for (int Idx = E - 1; Idx >= 0; --Idx) { 5494 // If a store has multiple consecutive store candidates, search according 5495 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5496 // This is because usually pairing with immediate succeeding or preceding 5497 // candidate create the best chance to find slp vectorization opportunity. 5498 const int MaxLookDepth = std::min(E - Idx, 16); 5499 for (int Offset = 1, F = std::max(MaxLookDepth, Idx + 1); Offset < F; 5500 ++Offset) 5501 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5502 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5503 break; 5504 } 5505 5506 // For stores that start but don't end a link in the chain: 5507 for (int Cnt = E; Cnt > 0; --Cnt) { 5508 int I = Cnt - 1; 5509 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5510 continue; 5511 // We found a store instr that starts a chain. Now follow the chain and try 5512 // to vectorize it. 5513 BoUpSLP::ValueList Operands; 5514 // Collect the chain into a list. 5515 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5516 Operands.push_back(Stores[I]); 5517 // Move to the next value in the chain. 5518 I = ConsecutiveChain[I]; 5519 } 5520 5521 // If a vector register can't hold 1 element, we are done. 5522 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5523 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5524 if (MaxVecRegSize % EltSize != 0) 5525 continue; 5526 5527 unsigned MaxElts = MaxVecRegSize / EltSize; 5528 // FIXME: Is division-by-2 the correct step? Should we assert that the 5529 // register size is a power-of-2? 5530 unsigned StartIdx = 0; 5531 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5532 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5533 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5534 if (!VectorizedStores.count(Slice.front()) && 5535 !VectorizedStores.count(Slice.back()) && 5536 vectorizeStoreChain(Slice, R, Cnt)) { 5537 // Mark the vectorized stores so that we don't vectorize them again. 5538 VectorizedStores.insert(Slice.begin(), Slice.end()); 5539 Changed = true; 5540 // If we vectorized initial block, no need to try to vectorize it 5541 // again. 5542 if (Cnt == StartIdx) 5543 StartIdx += Size; 5544 Cnt += Size; 5545 continue; 5546 } 5547 ++Cnt; 5548 } 5549 // Check if the whole array was vectorized already - exit. 5550 if (StartIdx >= Operands.size()) 5551 break; 5552 } 5553 } 5554 5555 return Changed; 5556 } 5557 5558 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5559 // Initialize the collections. We will make a single pass over the block. 5560 Stores.clear(); 5561 GEPs.clear(); 5562 5563 // Visit the store and getelementptr instructions in BB and organize them in 5564 // Stores and GEPs according to the underlying objects of their pointer 5565 // operands. 5566 for (Instruction &I : *BB) { 5567 // Ignore store instructions that are volatile or have a pointer operand 5568 // that doesn't point to a scalar type. 5569 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5570 if (!SI->isSimple()) 5571 continue; 5572 if (!isValidElementType(SI->getValueOperand()->getType())) 5573 continue; 5574 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5575 } 5576 5577 // Ignore getelementptr instructions that have more than one index, a 5578 // constant index, or a pointer operand that doesn't point to a scalar 5579 // type. 5580 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5581 auto Idx = GEP->idx_begin()->get(); 5582 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5583 continue; 5584 if (!isValidElementType(Idx->getType())) 5585 continue; 5586 if (GEP->getType()->isVectorTy()) 5587 continue; 5588 GEPs[GEP->getPointerOperand()].push_back(GEP); 5589 } 5590 } 5591 } 5592 5593 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5594 if (!A || !B) 5595 return false; 5596 Value *VL[] = { A, B }; 5597 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5598 } 5599 5600 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5601 int UserCost, bool AllowReorder) { 5602 if (VL.size() < 2) 5603 return false; 5604 5605 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5606 << VL.size() << ".\n"); 5607 5608 // Check that all of the parts are scalar instructions of the same type, 5609 // we permit an alternate opcode via InstructionsState. 5610 InstructionsState S = getSameOpcode(VL); 5611 if (!S.getOpcode()) 5612 return false; 5613 5614 Instruction *I0 = cast<Instruction>(S.OpValue); 5615 unsigned Sz = R.getVectorElementSize(I0); 5616 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5617 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5618 if (MaxVF < 2) { 5619 R.getORE()->emit([&]() { 5620 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5621 << "Cannot SLP vectorize list: vectorization factor " 5622 << "less than 2 is not supported"; 5623 }); 5624 return false; 5625 } 5626 5627 for (Value *V : VL) { 5628 Type *Ty = V->getType(); 5629 if (!isValidElementType(Ty)) { 5630 // NOTE: the following will give user internal llvm type name, which may 5631 // not be useful. 5632 R.getORE()->emit([&]() { 5633 std::string type_str; 5634 llvm::raw_string_ostream rso(type_str); 5635 Ty->print(rso); 5636 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5637 << "Cannot SLP vectorize list: type " 5638 << rso.str() + " is unsupported by vectorizer"; 5639 }); 5640 return false; 5641 } 5642 } 5643 5644 bool Changed = false; 5645 bool CandidateFound = false; 5646 int MinCost = SLPCostThreshold; 5647 5648 unsigned NextInst = 0, MaxInst = VL.size(); 5649 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5650 // No actual vectorization should happen, if number of parts is the same as 5651 // provided vectorization factor (i.e. the scalar type is used for vector 5652 // code during codegen). 5653 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5654 if (TTI->getNumberOfParts(VecTy) == VF) 5655 continue; 5656 for (unsigned I = NextInst; I < MaxInst; ++I) { 5657 unsigned OpsWidth = 0; 5658 5659 if (I + VF > MaxInst) 5660 OpsWidth = MaxInst - I; 5661 else 5662 OpsWidth = VF; 5663 5664 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5665 break; 5666 5667 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5668 // Check that a previous iteration of this loop did not delete the Value. 5669 if (llvm::any_of(Ops, [&R](Value *V) { 5670 auto *I = dyn_cast<Instruction>(V); 5671 return I && R.isDeleted(I); 5672 })) 5673 continue; 5674 5675 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5676 << "\n"); 5677 5678 R.buildTree(Ops); 5679 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5680 // TODO: check if we can allow reordering for more cases. 5681 if (AllowReorder && Order) { 5682 // TODO: reorder tree nodes without tree rebuilding. 5683 // Conceptually, there is nothing actually preventing us from trying to 5684 // reorder a larger list. In fact, we do exactly this when vectorizing 5685 // reductions. However, at this point, we only expect to get here when 5686 // there are exactly two operations. 5687 assert(Ops.size() == 2); 5688 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5689 R.buildTree(ReorderedOps, None); 5690 } 5691 if (R.isTreeTinyAndNotFullyVectorizable()) 5692 continue; 5693 5694 R.computeMinimumValueSizes(); 5695 int Cost = R.getTreeCost() - UserCost; 5696 CandidateFound = true; 5697 MinCost = std::min(MinCost, Cost); 5698 5699 if (Cost < -SLPCostThreshold) { 5700 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5701 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5702 cast<Instruction>(Ops[0])) 5703 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5704 << " and with tree size " 5705 << ore::NV("TreeSize", R.getTreeSize())); 5706 5707 R.vectorizeTree(); 5708 // Move to the next bundle. 5709 I += VF - 1; 5710 NextInst = I + 1; 5711 Changed = true; 5712 } 5713 } 5714 } 5715 5716 if (!Changed && CandidateFound) { 5717 R.getORE()->emit([&]() { 5718 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5719 << "List vectorization was possible but not beneficial with cost " 5720 << ore::NV("Cost", MinCost) << " >= " 5721 << ore::NV("Treshold", -SLPCostThreshold); 5722 }); 5723 } else if (!Changed) { 5724 R.getORE()->emit([&]() { 5725 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5726 << "Cannot SLP vectorize list: vectorization was impossible" 5727 << " with available vectorization factors"; 5728 }); 5729 } 5730 return Changed; 5731 } 5732 5733 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5734 if (!I) 5735 return false; 5736 5737 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5738 return false; 5739 5740 Value *P = I->getParent(); 5741 5742 // Vectorize in current basic block only. 5743 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5744 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5745 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5746 return false; 5747 5748 // Try to vectorize V. 5749 if (tryToVectorizePair(Op0, Op1, R)) 5750 return true; 5751 5752 auto *A = dyn_cast<BinaryOperator>(Op0); 5753 auto *B = dyn_cast<BinaryOperator>(Op1); 5754 // Try to skip B. 5755 if (B && B->hasOneUse()) { 5756 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5757 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5758 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5759 return true; 5760 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5761 return true; 5762 } 5763 5764 // Try to skip A. 5765 if (A && A->hasOneUse()) { 5766 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5767 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5768 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5769 return true; 5770 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5771 return true; 5772 } 5773 return false; 5774 } 5775 5776 /// Generate a shuffle mask to be used in a reduction tree. 5777 /// 5778 /// \param VecLen The length of the vector to be reduced. 5779 /// \param NumEltsToRdx The number of elements that should be reduced in the 5780 /// vector. 5781 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5782 /// reduction. A pairwise reduction will generate a mask of 5783 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5784 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5785 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5786 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5787 bool IsPairwise, bool IsLeft, 5788 IRBuilder<> &Builder) { 5789 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5790 5791 SmallVector<Constant *, 32> ShuffleMask( 5792 VecLen, UndefValue::get(Builder.getInt32Ty())); 5793 5794 if (IsPairwise) 5795 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5796 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5797 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5798 else 5799 // Move the upper half of the vector to the lower half. 5800 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5801 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5802 5803 return ConstantVector::get(ShuffleMask); 5804 } 5805 5806 namespace { 5807 5808 /// Model horizontal reductions. 5809 /// 5810 /// A horizontal reduction is a tree of reduction operations (currently add and 5811 /// fadd) that has operations that can be put into a vector as its leaf. 5812 /// For example, this tree: 5813 /// 5814 /// mul mul mul mul 5815 /// \ / \ / 5816 /// + + 5817 /// \ / 5818 /// + 5819 /// This tree has "mul" as its reduced values and "+" as its reduction 5820 /// operations. A reduction might be feeding into a store or a binary operation 5821 /// feeding a phi. 5822 /// ... 5823 /// \ / 5824 /// + 5825 /// | 5826 /// phi += 5827 /// 5828 /// Or: 5829 /// ... 5830 /// \ / 5831 /// + 5832 /// | 5833 /// *p = 5834 /// 5835 class HorizontalReduction { 5836 using ReductionOpsType = SmallVector<Value *, 16>; 5837 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5838 ReductionOpsListType ReductionOps; 5839 SmallVector<Value *, 32> ReducedVals; 5840 // Use map vector to make stable output. 5841 MapVector<Instruction *, Value *> ExtraArgs; 5842 5843 /// Kind of the reduction data. 5844 enum ReductionKind { 5845 RK_None, /// Not a reduction. 5846 RK_Arithmetic, /// Binary reduction data. 5847 RK_Min, /// Minimum reduction data. 5848 RK_UMin, /// Unsigned minimum reduction data. 5849 RK_Max, /// Maximum reduction data. 5850 RK_UMax, /// Unsigned maximum reduction data. 5851 }; 5852 5853 /// Contains info about operation, like its opcode, left and right operands. 5854 class OperationData { 5855 /// Opcode of the instruction. 5856 unsigned Opcode = 0; 5857 5858 /// Left operand of the reduction operation. 5859 Value *LHS = nullptr; 5860 5861 /// Right operand of the reduction operation. 5862 Value *RHS = nullptr; 5863 5864 /// Kind of the reduction operation. 5865 ReductionKind Kind = RK_None; 5866 5867 /// True if float point min/max reduction has no NaNs. 5868 bool NoNaN = false; 5869 5870 /// Checks if the reduction operation can be vectorized. 5871 bool isVectorizable() const { 5872 return LHS && RHS && 5873 // We currently only support add/mul/logical && min/max reductions. 5874 ((Kind == RK_Arithmetic && 5875 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5876 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5877 Opcode == Instruction::And || Opcode == Instruction::Or || 5878 Opcode == Instruction::Xor)) || 5879 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5880 (Kind == RK_Min || Kind == RK_Max)) || 5881 (Opcode == Instruction::ICmp && 5882 (Kind == RK_UMin || Kind == RK_UMax))); 5883 } 5884 5885 /// Creates reduction operation with the current opcode. 5886 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5887 assert(isVectorizable() && 5888 "Expected add|fadd or min/max reduction operation."); 5889 Value *Cmp = nullptr; 5890 switch (Kind) { 5891 case RK_Arithmetic: 5892 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5893 Name); 5894 case RK_Min: 5895 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5896 : Builder.CreateFCmpOLT(LHS, RHS); 5897 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5898 case RK_Max: 5899 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5900 : Builder.CreateFCmpOGT(LHS, RHS); 5901 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5902 case RK_UMin: 5903 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5904 Cmp = Builder.CreateICmpULT(LHS, RHS); 5905 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5906 case RK_UMax: 5907 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5908 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5909 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5910 case RK_None: 5911 break; 5912 } 5913 llvm_unreachable("Unknown reduction operation."); 5914 } 5915 5916 public: 5917 explicit OperationData() = default; 5918 5919 /// Construction for reduced values. They are identified by opcode only and 5920 /// don't have associated LHS/RHS values. 5921 explicit OperationData(Value *V) { 5922 if (auto *I = dyn_cast<Instruction>(V)) 5923 Opcode = I->getOpcode(); 5924 } 5925 5926 /// Constructor for reduction operations with opcode and its left and 5927 /// right operands. 5928 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5929 bool NoNaN = false) 5930 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5931 assert(Kind != RK_None && "One of the reduction operations is expected."); 5932 } 5933 5934 explicit operator bool() const { return Opcode; } 5935 5936 /// Get the index of the first operand. 5937 unsigned getFirstOperandIndex() const { 5938 assert(!!*this && "The opcode is not set."); 5939 switch (Kind) { 5940 case RK_Min: 5941 case RK_UMin: 5942 case RK_Max: 5943 case RK_UMax: 5944 return 1; 5945 case RK_Arithmetic: 5946 case RK_None: 5947 break; 5948 } 5949 return 0; 5950 } 5951 5952 /// Total number of operands in the reduction operation. 5953 unsigned getNumberOfOperands() const { 5954 assert(Kind != RK_None && !!*this && LHS && RHS && 5955 "Expected reduction operation."); 5956 switch (Kind) { 5957 case RK_Arithmetic: 5958 return 2; 5959 case RK_Min: 5960 case RK_UMin: 5961 case RK_Max: 5962 case RK_UMax: 5963 return 3; 5964 case RK_None: 5965 break; 5966 } 5967 llvm_unreachable("Reduction kind is not set"); 5968 } 5969 5970 /// Checks if the operation has the same parent as \p P. 5971 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5972 assert(Kind != RK_None && !!*this && LHS && RHS && 5973 "Expected reduction operation."); 5974 if (!IsRedOp) 5975 return I->getParent() == P; 5976 switch (Kind) { 5977 case RK_Arithmetic: 5978 // Arithmetic reduction operation must be used once only. 5979 return I->getParent() == P; 5980 case RK_Min: 5981 case RK_UMin: 5982 case RK_Max: 5983 case RK_UMax: { 5984 // SelectInst must be used twice while the condition op must have single 5985 // use only. 5986 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5987 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5988 } 5989 case RK_None: 5990 break; 5991 } 5992 llvm_unreachable("Reduction kind is not set"); 5993 } 5994 /// Expected number of uses for reduction operations/reduced values. 5995 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5996 assert(Kind != RK_None && !!*this && LHS && RHS && 5997 "Expected reduction operation."); 5998 switch (Kind) { 5999 case RK_Arithmetic: 6000 return I->hasOneUse(); 6001 case RK_Min: 6002 case RK_UMin: 6003 case RK_Max: 6004 case RK_UMax: 6005 return I->hasNUses(2) && 6006 (!IsReductionOp || 6007 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6008 case RK_None: 6009 break; 6010 } 6011 llvm_unreachable("Reduction kind is not set"); 6012 } 6013 6014 /// Initializes the list of reduction operations. 6015 void initReductionOps(ReductionOpsListType &ReductionOps) { 6016 assert(Kind != RK_None && !!*this && LHS && RHS && 6017 "Expected reduction operation."); 6018 switch (Kind) { 6019 case RK_Arithmetic: 6020 ReductionOps.assign(1, ReductionOpsType()); 6021 break; 6022 case RK_Min: 6023 case RK_UMin: 6024 case RK_Max: 6025 case RK_UMax: 6026 ReductionOps.assign(2, ReductionOpsType()); 6027 break; 6028 case RK_None: 6029 llvm_unreachable("Reduction kind is not set"); 6030 } 6031 } 6032 /// Add all reduction operations for the reduction instruction \p I. 6033 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6034 assert(Kind != RK_None && !!*this && LHS && RHS && 6035 "Expected reduction operation."); 6036 switch (Kind) { 6037 case RK_Arithmetic: 6038 ReductionOps[0].emplace_back(I); 6039 break; 6040 case RK_Min: 6041 case RK_UMin: 6042 case RK_Max: 6043 case RK_UMax: 6044 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6045 ReductionOps[1].emplace_back(I); 6046 break; 6047 case RK_None: 6048 llvm_unreachable("Reduction kind is not set"); 6049 } 6050 } 6051 6052 /// Checks if instruction is associative and can be vectorized. 6053 bool isAssociative(Instruction *I) const { 6054 assert(Kind != RK_None && *this && LHS && RHS && 6055 "Expected reduction operation."); 6056 switch (Kind) { 6057 case RK_Arithmetic: 6058 return I->isAssociative(); 6059 case RK_Min: 6060 case RK_Max: 6061 return Opcode == Instruction::ICmp || 6062 cast<Instruction>(I->getOperand(0))->isFast(); 6063 case RK_UMin: 6064 case RK_UMax: 6065 assert(Opcode == Instruction::ICmp && 6066 "Only integer compare operation is expected."); 6067 return true; 6068 case RK_None: 6069 break; 6070 } 6071 llvm_unreachable("Reduction kind is not set"); 6072 } 6073 6074 /// Checks if the reduction operation can be vectorized. 6075 bool isVectorizable(Instruction *I) const { 6076 return isVectorizable() && isAssociative(I); 6077 } 6078 6079 /// Checks if two operation data are both a reduction op or both a reduced 6080 /// value. 6081 bool operator==(const OperationData &OD) { 6082 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6083 "One of the comparing operations is incorrect."); 6084 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6085 } 6086 bool operator!=(const OperationData &OD) { return !(*this == OD); } 6087 void clear() { 6088 Opcode = 0; 6089 LHS = nullptr; 6090 RHS = nullptr; 6091 Kind = RK_None; 6092 NoNaN = false; 6093 } 6094 6095 /// Get the opcode of the reduction operation. 6096 unsigned getOpcode() const { 6097 assert(isVectorizable() && "Expected vectorizable operation."); 6098 return Opcode; 6099 } 6100 6101 /// Get kind of reduction data. 6102 ReductionKind getKind() const { return Kind; } 6103 Value *getLHS() const { return LHS; } 6104 Value *getRHS() const { return RHS; } 6105 Type *getConditionType() const { 6106 switch (Kind) { 6107 case RK_Arithmetic: 6108 return nullptr; 6109 case RK_Min: 6110 case RK_Max: 6111 case RK_UMin: 6112 case RK_UMax: 6113 return CmpInst::makeCmpResultType(LHS->getType()); 6114 case RK_None: 6115 break; 6116 } 6117 llvm_unreachable("Reduction kind is not set"); 6118 } 6119 6120 /// Creates reduction operation with the current opcode with the IR flags 6121 /// from \p ReductionOps. 6122 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6123 const ReductionOpsListType &ReductionOps) const { 6124 assert(isVectorizable() && 6125 "Expected add|fadd or min/max reduction operation."); 6126 auto *Op = createOp(Builder, Name); 6127 switch (Kind) { 6128 case RK_Arithmetic: 6129 propagateIRFlags(Op, ReductionOps[0]); 6130 return Op; 6131 case RK_Min: 6132 case RK_Max: 6133 case RK_UMin: 6134 case RK_UMax: 6135 if (auto *SI = dyn_cast<SelectInst>(Op)) 6136 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6137 propagateIRFlags(Op, ReductionOps[1]); 6138 return Op; 6139 case RK_None: 6140 break; 6141 } 6142 llvm_unreachable("Unknown reduction operation."); 6143 } 6144 /// Creates reduction operation with the current opcode with the IR flags 6145 /// from \p I. 6146 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6147 Instruction *I) const { 6148 assert(isVectorizable() && 6149 "Expected add|fadd or min/max reduction operation."); 6150 auto *Op = createOp(Builder, Name); 6151 switch (Kind) { 6152 case RK_Arithmetic: 6153 propagateIRFlags(Op, I); 6154 return Op; 6155 case RK_Min: 6156 case RK_Max: 6157 case RK_UMin: 6158 case RK_UMax: 6159 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6160 propagateIRFlags(SI->getCondition(), 6161 cast<SelectInst>(I)->getCondition()); 6162 } 6163 propagateIRFlags(Op, I); 6164 return Op; 6165 case RK_None: 6166 break; 6167 } 6168 llvm_unreachable("Unknown reduction operation."); 6169 } 6170 6171 TargetTransformInfo::ReductionFlags getFlags() const { 6172 TargetTransformInfo::ReductionFlags Flags; 6173 Flags.NoNaN = NoNaN; 6174 switch (Kind) { 6175 case RK_Arithmetic: 6176 break; 6177 case RK_Min: 6178 Flags.IsSigned = Opcode == Instruction::ICmp; 6179 Flags.IsMaxOp = false; 6180 break; 6181 case RK_Max: 6182 Flags.IsSigned = Opcode == Instruction::ICmp; 6183 Flags.IsMaxOp = true; 6184 break; 6185 case RK_UMin: 6186 Flags.IsSigned = false; 6187 Flags.IsMaxOp = false; 6188 break; 6189 case RK_UMax: 6190 Flags.IsSigned = false; 6191 Flags.IsMaxOp = true; 6192 break; 6193 case RK_None: 6194 llvm_unreachable("Reduction kind is not set"); 6195 } 6196 return Flags; 6197 } 6198 }; 6199 6200 WeakTrackingVH ReductionRoot; 6201 6202 /// The operation data of the reduction operation. 6203 OperationData ReductionData; 6204 6205 /// The operation data of the values we perform a reduction on. 6206 OperationData ReducedValueData; 6207 6208 /// Should we model this reduction as a pairwise reduction tree or a tree that 6209 /// splits the vector in halves and adds those halves. 6210 bool IsPairwiseReduction = false; 6211 6212 /// Checks if the ParentStackElem.first should be marked as a reduction 6213 /// operation with an extra argument or as extra argument itself. 6214 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6215 Value *ExtraArg) { 6216 if (ExtraArgs.count(ParentStackElem.first)) { 6217 ExtraArgs[ParentStackElem.first] = nullptr; 6218 // We ran into something like: 6219 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6220 // The whole ParentStackElem.first should be considered as an extra value 6221 // in this case. 6222 // Do not perform analysis of remaining operands of ParentStackElem.first 6223 // instruction, this whole instruction is an extra argument. 6224 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6225 } else { 6226 // We ran into something like: 6227 // ParentStackElem.first += ... + ExtraArg + ... 6228 ExtraArgs[ParentStackElem.first] = ExtraArg; 6229 } 6230 } 6231 6232 static OperationData getOperationData(Value *V) { 6233 if (!V) 6234 return OperationData(); 6235 6236 Value *LHS; 6237 Value *RHS; 6238 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6239 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6240 RK_Arithmetic); 6241 } 6242 if (auto *Select = dyn_cast<SelectInst>(V)) { 6243 // Look for a min/max pattern. 6244 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6245 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6246 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6247 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6248 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6249 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6250 return OperationData( 6251 Instruction::FCmp, LHS, RHS, RK_Min, 6252 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6253 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6254 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6255 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6256 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6257 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6258 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6259 return OperationData( 6260 Instruction::FCmp, LHS, RHS, RK_Max, 6261 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6262 } else { 6263 // Try harder: look for min/max pattern based on instructions producing 6264 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6265 // During the intermediate stages of SLP, it's very common to have 6266 // pattern like this (since optimizeGatherSequence is run only once 6267 // at the end): 6268 // %1 = extractelement <2 x i32> %a, i32 0 6269 // %2 = extractelement <2 x i32> %a, i32 1 6270 // %cond = icmp sgt i32 %1, %2 6271 // %3 = extractelement <2 x i32> %a, i32 0 6272 // %4 = extractelement <2 x i32> %a, i32 1 6273 // %select = select i1 %cond, i32 %3, i32 %4 6274 CmpInst::Predicate Pred; 6275 Instruction *L1; 6276 Instruction *L2; 6277 6278 LHS = Select->getTrueValue(); 6279 RHS = Select->getFalseValue(); 6280 Value *Cond = Select->getCondition(); 6281 6282 // TODO: Support inverse predicates. 6283 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6284 if (!isa<ExtractElementInst>(RHS) || 6285 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6286 return OperationData(V); 6287 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6288 if (!isa<ExtractElementInst>(LHS) || 6289 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6290 return OperationData(V); 6291 } else { 6292 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6293 return OperationData(V); 6294 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6295 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6296 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6297 return OperationData(V); 6298 } 6299 switch (Pred) { 6300 default: 6301 return OperationData(V); 6302 6303 case CmpInst::ICMP_ULT: 6304 case CmpInst::ICMP_ULE: 6305 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6306 6307 case CmpInst::ICMP_SLT: 6308 case CmpInst::ICMP_SLE: 6309 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6310 6311 case CmpInst::FCMP_OLT: 6312 case CmpInst::FCMP_OLE: 6313 case CmpInst::FCMP_ULT: 6314 case CmpInst::FCMP_ULE: 6315 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6316 cast<Instruction>(Cond)->hasNoNaNs()); 6317 6318 case CmpInst::ICMP_UGT: 6319 case CmpInst::ICMP_UGE: 6320 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6321 6322 case CmpInst::ICMP_SGT: 6323 case CmpInst::ICMP_SGE: 6324 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6325 6326 case CmpInst::FCMP_OGT: 6327 case CmpInst::FCMP_OGE: 6328 case CmpInst::FCMP_UGT: 6329 case CmpInst::FCMP_UGE: 6330 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6331 cast<Instruction>(Cond)->hasNoNaNs()); 6332 } 6333 } 6334 } 6335 return OperationData(V); 6336 } 6337 6338 public: 6339 HorizontalReduction() = default; 6340 6341 /// Try to find a reduction tree. 6342 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6343 assert((!Phi || is_contained(Phi->operands(), B)) && 6344 "Thi phi needs to use the binary operator"); 6345 6346 ReductionData = getOperationData(B); 6347 6348 // We could have a initial reductions that is not an add. 6349 // r *= v1 + v2 + v3 + v4 6350 // In such a case start looking for a tree rooted in the first '+'. 6351 if (Phi) { 6352 if (ReductionData.getLHS() == Phi) { 6353 Phi = nullptr; 6354 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6355 ReductionData = getOperationData(B); 6356 } else if (ReductionData.getRHS() == Phi) { 6357 Phi = nullptr; 6358 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6359 ReductionData = getOperationData(B); 6360 } 6361 } 6362 6363 if (!ReductionData.isVectorizable(B)) 6364 return false; 6365 6366 Type *Ty = B->getType(); 6367 if (!isValidElementType(Ty)) 6368 return false; 6369 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6370 return false; 6371 6372 ReducedValueData.clear(); 6373 ReductionRoot = B; 6374 6375 // Post order traverse the reduction tree starting at B. We only handle true 6376 // trees containing only binary operators. 6377 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6378 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6379 ReductionData.initReductionOps(ReductionOps); 6380 while (!Stack.empty()) { 6381 Instruction *TreeN = Stack.back().first; 6382 unsigned EdgeToVist = Stack.back().second++; 6383 OperationData OpData = getOperationData(TreeN); 6384 bool IsReducedValue = OpData != ReductionData; 6385 6386 // Postorder vist. 6387 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6388 if (IsReducedValue) 6389 ReducedVals.push_back(TreeN); 6390 else { 6391 auto I = ExtraArgs.find(TreeN); 6392 if (I != ExtraArgs.end() && !I->second) { 6393 // Check if TreeN is an extra argument of its parent operation. 6394 if (Stack.size() <= 1) { 6395 // TreeN can't be an extra argument as it is a root reduction 6396 // operation. 6397 return false; 6398 } 6399 // Yes, TreeN is an extra argument, do not add it to a list of 6400 // reduction operations. 6401 // Stack[Stack.size() - 2] always points to the parent operation. 6402 markExtraArg(Stack[Stack.size() - 2], TreeN); 6403 ExtraArgs.erase(TreeN); 6404 } else 6405 ReductionData.addReductionOps(TreeN, ReductionOps); 6406 } 6407 // Retract. 6408 Stack.pop_back(); 6409 continue; 6410 } 6411 6412 // Visit left or right. 6413 Value *NextV = TreeN->getOperand(EdgeToVist); 6414 if (NextV != Phi) { 6415 auto *I = dyn_cast<Instruction>(NextV); 6416 OpData = getOperationData(I); 6417 // Continue analysis if the next operand is a reduction operation or 6418 // (possibly) a reduced value. If the reduced value opcode is not set, 6419 // the first met operation != reduction operation is considered as the 6420 // reduced value class. 6421 if (I && (!ReducedValueData || OpData == ReducedValueData || 6422 OpData == ReductionData)) { 6423 const bool IsReductionOperation = OpData == ReductionData; 6424 // Only handle trees in the current basic block. 6425 if (!ReductionData.hasSameParent(I, B->getParent(), 6426 IsReductionOperation)) { 6427 // I is an extra argument for TreeN (its parent operation). 6428 markExtraArg(Stack.back(), I); 6429 continue; 6430 } 6431 6432 // Each tree node needs to have minimal number of users except for the 6433 // ultimate reduction. 6434 if (!ReductionData.hasRequiredNumberOfUses(I, 6435 OpData == ReductionData) && 6436 I != B) { 6437 // I is an extra argument for TreeN (its parent operation). 6438 markExtraArg(Stack.back(), I); 6439 continue; 6440 } 6441 6442 if (IsReductionOperation) { 6443 // We need to be able to reassociate the reduction operations. 6444 if (!OpData.isAssociative(I)) { 6445 // I is an extra argument for TreeN (its parent operation). 6446 markExtraArg(Stack.back(), I); 6447 continue; 6448 } 6449 } else if (ReducedValueData && 6450 ReducedValueData != OpData) { 6451 // Make sure that the opcodes of the operations that we are going to 6452 // reduce match. 6453 // I is an extra argument for TreeN (its parent operation). 6454 markExtraArg(Stack.back(), I); 6455 continue; 6456 } else if (!ReducedValueData) 6457 ReducedValueData = OpData; 6458 6459 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6460 continue; 6461 } 6462 } 6463 // NextV is an extra argument for TreeN (its parent operation). 6464 markExtraArg(Stack.back(), NextV); 6465 } 6466 return true; 6467 } 6468 6469 /// Attempt to vectorize the tree found by 6470 /// matchAssociativeReduction. 6471 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6472 if (ReducedVals.empty()) 6473 return false; 6474 6475 // If there is a sufficient number of reduction values, reduce 6476 // to a nearby power-of-2. Can safely generate oversized 6477 // vectors and rely on the backend to split them to legal sizes. 6478 unsigned NumReducedVals = ReducedVals.size(); 6479 if (NumReducedVals < 4) 6480 return false; 6481 6482 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6483 6484 Value *VectorizedTree = nullptr; 6485 6486 // FIXME: Fast-math-flags should be set based on the instructions in the 6487 // reduction (not all of 'fast' are required). 6488 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6489 FastMathFlags Unsafe; 6490 Unsafe.setFast(); 6491 Builder.setFastMathFlags(Unsafe); 6492 unsigned i = 0; 6493 6494 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6495 // The same extra argument may be used several time, so log each attempt 6496 // to use it. 6497 for (auto &Pair : ExtraArgs) { 6498 assert(Pair.first && "DebugLoc must be set."); 6499 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6500 } 6501 // The reduction root is used as the insertion point for new instructions, 6502 // so set it as externally used to prevent it from being deleted. 6503 ExternallyUsedValues[ReductionRoot]; 6504 SmallVector<Value *, 16> IgnoreList; 6505 for (auto &V : ReductionOps) 6506 IgnoreList.append(V.begin(), V.end()); 6507 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6508 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6509 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6510 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6511 // TODO: Handle orders of size less than number of elements in the vector. 6512 if (Order && Order->size() == VL.size()) { 6513 // TODO: reorder tree nodes without tree rebuilding. 6514 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6515 llvm::transform(*Order, ReorderedOps.begin(), 6516 [VL](const unsigned Idx) { return VL[Idx]; }); 6517 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6518 } 6519 if (V.isTreeTinyAndNotFullyVectorizable()) 6520 break; 6521 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6522 break; 6523 6524 V.computeMinimumValueSizes(); 6525 6526 // Estimate cost. 6527 int TreeCost = V.getTreeCost(); 6528 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6529 int Cost = TreeCost + ReductionCost; 6530 if (Cost >= -SLPCostThreshold) { 6531 V.getORE()->emit([&]() { 6532 return OptimizationRemarkMissed( 6533 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6534 << "Vectorizing horizontal reduction is possible" 6535 << "but not beneficial with cost " 6536 << ore::NV("Cost", Cost) << " and threshold " 6537 << ore::NV("Threshold", -SLPCostThreshold); 6538 }); 6539 break; 6540 } 6541 6542 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6543 << Cost << ". (HorRdx)\n"); 6544 V.getORE()->emit([&]() { 6545 return OptimizationRemark( 6546 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6547 << "Vectorized horizontal reduction with cost " 6548 << ore::NV("Cost", Cost) << " and with tree size " 6549 << ore::NV("TreeSize", V.getTreeSize()); 6550 }); 6551 6552 // Vectorize a tree. 6553 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6554 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6555 6556 // Emit a reduction. 6557 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6558 Value *ReducedSubTree = 6559 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6560 if (VectorizedTree) { 6561 Builder.SetCurrentDebugLocation(Loc); 6562 OperationData VectReductionData(ReductionData.getOpcode(), 6563 VectorizedTree, ReducedSubTree, 6564 ReductionData.getKind()); 6565 VectorizedTree = 6566 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6567 } else 6568 VectorizedTree = ReducedSubTree; 6569 i += ReduxWidth; 6570 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6571 } 6572 6573 if (VectorizedTree) { 6574 // Finish the reduction. 6575 for (; i < NumReducedVals; ++i) { 6576 auto *I = cast<Instruction>(ReducedVals[i]); 6577 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6578 OperationData VectReductionData(ReductionData.getOpcode(), 6579 VectorizedTree, I, 6580 ReductionData.getKind()); 6581 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6582 } 6583 for (auto &Pair : ExternallyUsedValues) { 6584 // Add each externally used value to the final reduction. 6585 for (auto *I : Pair.second) { 6586 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6587 OperationData VectReductionData(ReductionData.getOpcode(), 6588 VectorizedTree, Pair.first, 6589 ReductionData.getKind()); 6590 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6591 } 6592 } 6593 // Update users. 6594 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6595 // Mark all scalar reduction ops for deletion, they are replaced by the 6596 // vector reductions. 6597 V.eraseInstructions(IgnoreList); 6598 } 6599 return VectorizedTree != nullptr; 6600 } 6601 6602 unsigned numReductionValues() const { 6603 return ReducedVals.size(); 6604 } 6605 6606 private: 6607 /// Calculate the cost of a reduction. 6608 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6609 unsigned ReduxWidth) { 6610 Type *ScalarTy = FirstReducedVal->getType(); 6611 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6612 6613 int PairwiseRdxCost; 6614 int SplittingRdxCost; 6615 switch (ReductionData.getKind()) { 6616 case RK_Arithmetic: 6617 PairwiseRdxCost = 6618 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6619 /*IsPairwiseForm=*/true); 6620 SplittingRdxCost = 6621 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6622 /*IsPairwiseForm=*/false); 6623 break; 6624 case RK_Min: 6625 case RK_Max: 6626 case RK_UMin: 6627 case RK_UMax: { 6628 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6629 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6630 ReductionData.getKind() == RK_UMax; 6631 PairwiseRdxCost = 6632 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6633 /*IsPairwiseForm=*/true, IsUnsigned); 6634 SplittingRdxCost = 6635 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6636 /*IsPairwiseForm=*/false, IsUnsigned); 6637 break; 6638 } 6639 case RK_None: 6640 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6641 } 6642 6643 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6644 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6645 6646 int ScalarReduxCost = 0; 6647 switch (ReductionData.getKind()) { 6648 case RK_Arithmetic: 6649 ScalarReduxCost = 6650 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6651 break; 6652 case RK_Min: 6653 case RK_Max: 6654 case RK_UMin: 6655 case RK_UMax: 6656 ScalarReduxCost = 6657 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6658 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6659 CmpInst::makeCmpResultType(ScalarTy)); 6660 break; 6661 case RK_None: 6662 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6663 } 6664 ScalarReduxCost *= (ReduxWidth - 1); 6665 6666 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6667 << " for reduction that starts with " << *FirstReducedVal 6668 << " (It is a " 6669 << (IsPairwiseReduction ? "pairwise" : "splitting") 6670 << " reduction)\n"); 6671 6672 return VecReduxCost - ScalarReduxCost; 6673 } 6674 6675 /// Emit a horizontal reduction of the vectorized value. 6676 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6677 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6678 assert(VectorizedValue && "Need to have a vectorized tree node"); 6679 assert(isPowerOf2_32(ReduxWidth) && 6680 "We only handle power-of-two reductions for now"); 6681 6682 if (!IsPairwiseReduction) { 6683 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6684 // to 'fast'. 6685 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6686 return createSimpleTargetReduction( 6687 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6688 ReductionData.getFlags(), ReductionOps.back()); 6689 } 6690 6691 Value *TmpVec = VectorizedValue; 6692 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6693 Value *LeftMask = 6694 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6695 Value *RightMask = 6696 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6697 6698 Value *LeftShuf = Builder.CreateShuffleVector( 6699 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6700 Value *RightShuf = Builder.CreateShuffleVector( 6701 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6702 "rdx.shuf.r"); 6703 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6704 RightShuf, ReductionData.getKind()); 6705 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6706 } 6707 6708 // The result is in the first element of the vector. 6709 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6710 } 6711 }; 6712 6713 } // end anonymous namespace 6714 6715 /// Recognize construction of vectors like 6716 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6717 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6718 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6719 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6720 /// starting from the last insertelement instruction. 6721 /// 6722 /// Returns true if it matches 6723 static bool findBuildVector(InsertElementInst *LastInsertElem, 6724 TargetTransformInfo *TTI, 6725 SmallVectorImpl<Value *> &BuildVectorOpds, 6726 int &UserCost) { 6727 UserCost = 0; 6728 Value *V = nullptr; 6729 do { 6730 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6731 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6732 LastInsertElem->getType(), 6733 CI->getZExtValue()); 6734 } 6735 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6736 V = LastInsertElem->getOperand(0); 6737 if (isa<UndefValue>(V)) 6738 break; 6739 LastInsertElem = dyn_cast<InsertElementInst>(V); 6740 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6741 return false; 6742 } while (true); 6743 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6744 return true; 6745 } 6746 6747 /// Like findBuildVector, but looks for construction of aggregate. 6748 /// 6749 /// \return true if it matches. 6750 static bool findBuildAggregate(InsertValueInst *IV, 6751 SmallVectorImpl<Value *> &BuildVectorOpds) { 6752 do { 6753 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6754 Value *V = IV->getAggregateOperand(); 6755 if (isa<UndefValue>(V)) 6756 break; 6757 IV = dyn_cast<InsertValueInst>(V); 6758 if (!IV || !IV->hasOneUse()) 6759 return false; 6760 } while (true); 6761 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6762 return true; 6763 } 6764 6765 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6766 return V->getType() < V2->getType(); 6767 } 6768 6769 /// Try and get a reduction value from a phi node. 6770 /// 6771 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6772 /// if they come from either \p ParentBB or a containing loop latch. 6773 /// 6774 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6775 /// if not possible. 6776 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6777 BasicBlock *ParentBB, LoopInfo *LI) { 6778 // There are situations where the reduction value is not dominated by the 6779 // reduction phi. Vectorizing such cases has been reported to cause 6780 // miscompiles. See PR25787. 6781 auto DominatedReduxValue = [&](Value *R) { 6782 return isa<Instruction>(R) && 6783 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6784 }; 6785 6786 Value *Rdx = nullptr; 6787 6788 // Return the incoming value if it comes from the same BB as the phi node. 6789 if (P->getIncomingBlock(0) == ParentBB) { 6790 Rdx = P->getIncomingValue(0); 6791 } else if (P->getIncomingBlock(1) == ParentBB) { 6792 Rdx = P->getIncomingValue(1); 6793 } 6794 6795 if (Rdx && DominatedReduxValue(Rdx)) 6796 return Rdx; 6797 6798 // Otherwise, check whether we have a loop latch to look at. 6799 Loop *BBL = LI->getLoopFor(ParentBB); 6800 if (!BBL) 6801 return nullptr; 6802 BasicBlock *BBLatch = BBL->getLoopLatch(); 6803 if (!BBLatch) 6804 return nullptr; 6805 6806 // There is a loop latch, return the incoming value if it comes from 6807 // that. This reduction pattern occasionally turns up. 6808 if (P->getIncomingBlock(0) == BBLatch) { 6809 Rdx = P->getIncomingValue(0); 6810 } else if (P->getIncomingBlock(1) == BBLatch) { 6811 Rdx = P->getIncomingValue(1); 6812 } 6813 6814 if (Rdx && DominatedReduxValue(Rdx)) 6815 return Rdx; 6816 6817 return nullptr; 6818 } 6819 6820 /// Attempt to reduce a horizontal reduction. 6821 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6822 /// with reduction operators \a Root (or one of its operands) in a basic block 6823 /// \a BB, then check if it can be done. If horizontal reduction is not found 6824 /// and root instruction is a binary operation, vectorization of the operands is 6825 /// attempted. 6826 /// \returns true if a horizontal reduction was matched and reduced or operands 6827 /// of one of the binary instruction were vectorized. 6828 /// \returns false if a horizontal reduction was not matched (or not possible) 6829 /// or no vectorization of any binary operation feeding \a Root instruction was 6830 /// performed. 6831 static bool tryToVectorizeHorReductionOrInstOperands( 6832 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6833 TargetTransformInfo *TTI, 6834 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6835 if (!ShouldVectorizeHor) 6836 return false; 6837 6838 if (!Root) 6839 return false; 6840 6841 if (Root->getParent() != BB || isa<PHINode>(Root)) 6842 return false; 6843 // Start analysis starting from Root instruction. If horizontal reduction is 6844 // found, try to vectorize it. If it is not a horizontal reduction or 6845 // vectorization is not possible or not effective, and currently analyzed 6846 // instruction is a binary operation, try to vectorize the operands, using 6847 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6848 // the same procedure considering each operand as a possible root of the 6849 // horizontal reduction. 6850 // Interrupt the process if the Root instruction itself was vectorized or all 6851 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6852 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 6853 SmallPtrSet<Value *, 8> VisitedInstrs; 6854 bool Res = false; 6855 while (!Stack.empty()) { 6856 Instruction *Inst; 6857 unsigned Level; 6858 std::tie(Inst, Level) = Stack.pop_back_val(); 6859 auto *BI = dyn_cast<BinaryOperator>(Inst); 6860 auto *SI = dyn_cast<SelectInst>(Inst); 6861 if (BI || SI) { 6862 HorizontalReduction HorRdx; 6863 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6864 if (HorRdx.tryToReduce(R, TTI)) { 6865 Res = true; 6866 // Set P to nullptr to avoid re-analysis of phi node in 6867 // matchAssociativeReduction function unless this is the root node. 6868 P = nullptr; 6869 continue; 6870 } 6871 } 6872 if (P && BI) { 6873 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6874 if (Inst == P) 6875 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6876 if (!Inst) { 6877 // Set P to nullptr to avoid re-analysis of phi node in 6878 // matchAssociativeReduction function unless this is the root node. 6879 P = nullptr; 6880 continue; 6881 } 6882 } 6883 } 6884 // Set P to nullptr to avoid re-analysis of phi node in 6885 // matchAssociativeReduction function unless this is the root node. 6886 P = nullptr; 6887 if (Vectorize(Inst, R)) { 6888 Res = true; 6889 continue; 6890 } 6891 6892 // Try to vectorize operands. 6893 // Continue analysis for the instruction from the same basic block only to 6894 // save compile time. 6895 if (++Level < RecursionMaxDepth) 6896 for (auto *Op : Inst->operand_values()) 6897 if (VisitedInstrs.insert(Op).second) 6898 if (auto *I = dyn_cast<Instruction>(Op)) 6899 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 6900 Stack.emplace_back(I, Level); 6901 } 6902 return Res; 6903 } 6904 6905 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6906 BasicBlock *BB, BoUpSLP &R, 6907 TargetTransformInfo *TTI) { 6908 if (!V) 6909 return false; 6910 auto *I = dyn_cast<Instruction>(V); 6911 if (!I) 6912 return false; 6913 6914 if (!isa<BinaryOperator>(I)) 6915 P = nullptr; 6916 // Try to match and vectorize a horizontal reduction. 6917 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6918 return tryToVectorize(I, R); 6919 }; 6920 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6921 ExtraVectorization); 6922 } 6923 6924 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6925 BasicBlock *BB, BoUpSLP &R) { 6926 const DataLayout &DL = BB->getModule()->getDataLayout(); 6927 if (!R.canMapToVector(IVI->getType(), DL)) 6928 return false; 6929 6930 SmallVector<Value *, 16> BuildVectorOpds; 6931 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6932 return false; 6933 6934 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6935 // Aggregate value is unlikely to be processed in vector register, we need to 6936 // extract scalars into scalar registers, so NeedExtraction is set true. 6937 return tryToVectorizeList(BuildVectorOpds, R); 6938 } 6939 6940 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6941 BasicBlock *BB, BoUpSLP &R) { 6942 int UserCost; 6943 SmallVector<Value *, 16> BuildVectorOpds; 6944 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6945 (llvm::all_of(BuildVectorOpds, 6946 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6947 isShuffle(BuildVectorOpds))) 6948 return false; 6949 6950 // Vectorize starting with the build vector operands ignoring the BuildVector 6951 // instructions for the purpose of scheduling and user extraction. 6952 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6953 } 6954 6955 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6956 BoUpSLP &R) { 6957 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6958 return true; 6959 6960 bool OpsChanged = false; 6961 for (int Idx = 0; Idx < 2; ++Idx) { 6962 OpsChanged |= 6963 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6964 } 6965 return OpsChanged; 6966 } 6967 6968 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6969 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6970 bool OpsChanged = false; 6971 for (auto *I : reverse(Instructions)) { 6972 if (R.isDeleted(I)) 6973 continue; 6974 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6975 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6976 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6977 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6978 else if (auto *CI = dyn_cast<CmpInst>(I)) 6979 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6980 } 6981 Instructions.clear(); 6982 return OpsChanged; 6983 } 6984 6985 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6986 bool Changed = false; 6987 SmallVector<Value *, 4> Incoming; 6988 SmallPtrSet<Value *, 16> VisitedInstrs; 6989 6990 bool HaveVectorizedPhiNodes = true; 6991 while (HaveVectorizedPhiNodes) { 6992 HaveVectorizedPhiNodes = false; 6993 6994 // Collect the incoming values from the PHIs. 6995 Incoming.clear(); 6996 for (Instruction &I : *BB) { 6997 PHINode *P = dyn_cast<PHINode>(&I); 6998 if (!P) 6999 break; 7000 7001 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7002 Incoming.push_back(P); 7003 } 7004 7005 // Sort by type. 7006 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7007 7008 // Try to vectorize elements base on their type. 7009 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7010 E = Incoming.end(); 7011 IncIt != E;) { 7012 7013 // Look for the next elements with the same type. 7014 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7015 while (SameTypeIt != E && 7016 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7017 VisitedInstrs.insert(*SameTypeIt); 7018 ++SameTypeIt; 7019 } 7020 7021 // Try to vectorize them. 7022 unsigned NumElts = (SameTypeIt - IncIt); 7023 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7024 << NumElts << ")\n"); 7025 // The order in which the phi nodes appear in the program does not matter. 7026 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7027 // is done when there are exactly two elements since tryToVectorizeList 7028 // asserts that there are only two values when AllowReorder is true. 7029 bool AllowReorder = NumElts == 2; 7030 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 7031 /*UserCost=*/0, AllowReorder)) { 7032 // Success start over because instructions might have been changed. 7033 HaveVectorizedPhiNodes = true; 7034 Changed = true; 7035 break; 7036 } 7037 7038 // Start over at the next instruction of a different type (or the end). 7039 IncIt = SameTypeIt; 7040 } 7041 } 7042 7043 VisitedInstrs.clear(); 7044 7045 SmallVector<Instruction *, 8> PostProcessInstructions; 7046 SmallDenseSet<Instruction *, 4> KeyNodes; 7047 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7048 // Skip instructions marked for the deletion. 7049 if (R.isDeleted(&*it)) 7050 continue; 7051 // We may go through BB multiple times so skip the one we have checked. 7052 if (!VisitedInstrs.insert(&*it).second) { 7053 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7054 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7055 // We would like to start over since some instructions are deleted 7056 // and the iterator may become invalid value. 7057 Changed = true; 7058 it = BB->begin(); 7059 e = BB->end(); 7060 } 7061 continue; 7062 } 7063 7064 if (isa<DbgInfoIntrinsic>(it)) 7065 continue; 7066 7067 // Try to vectorize reductions that use PHINodes. 7068 if (PHINode *P = dyn_cast<PHINode>(it)) { 7069 // Check that the PHI is a reduction PHI. 7070 if (P->getNumIncomingValues() != 2) 7071 return Changed; 7072 7073 // Try to match and vectorize a horizontal reduction. 7074 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7075 TTI)) { 7076 Changed = true; 7077 it = BB->begin(); 7078 e = BB->end(); 7079 continue; 7080 } 7081 continue; 7082 } 7083 7084 // Ran into an instruction without users, like terminator, or function call 7085 // with ignored return value, store. Ignore unused instructions (basing on 7086 // instruction type, except for CallInst and InvokeInst). 7087 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7088 isa<InvokeInst>(it))) { 7089 KeyNodes.insert(&*it); 7090 bool OpsChanged = false; 7091 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7092 for (auto *V : it->operand_values()) { 7093 // Try to match and vectorize a horizontal reduction. 7094 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7095 } 7096 } 7097 // Start vectorization of post-process list of instructions from the 7098 // top-tree instructions to try to vectorize as many instructions as 7099 // possible. 7100 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7101 if (OpsChanged) { 7102 // We would like to start over since some instructions are deleted 7103 // and the iterator may become invalid value. 7104 Changed = true; 7105 it = BB->begin(); 7106 e = BB->end(); 7107 continue; 7108 } 7109 } 7110 7111 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7112 isa<InsertValueInst>(it)) 7113 PostProcessInstructions.push_back(&*it); 7114 } 7115 7116 return Changed; 7117 } 7118 7119 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7120 auto Changed = false; 7121 for (auto &Entry : GEPs) { 7122 // If the getelementptr list has fewer than two elements, there's nothing 7123 // to do. 7124 if (Entry.second.size() < 2) 7125 continue; 7126 7127 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7128 << Entry.second.size() << ".\n"); 7129 7130 // Process the GEP list in chunks suitable for the target's supported 7131 // vector size. If a vector register can't hold 1 element, we are done. 7132 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7133 unsigned EltSize = R.getVectorElementSize(Entry.second[0]); 7134 if (MaxVecRegSize < EltSize) 7135 continue; 7136 7137 unsigned MaxElts = MaxVecRegSize / EltSize; 7138 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7139 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7140 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7141 7142 // Initialize a set a candidate getelementptrs. Note that we use a 7143 // SetVector here to preserve program order. If the index computations 7144 // are vectorizable and begin with loads, we want to minimize the chance 7145 // of having to reorder them later. 7146 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7147 7148 // Some of the candidates may have already been vectorized after we 7149 // initially collected them. If so, they are marked as deleted, so remove 7150 // them from the set of candidates. 7151 Candidates.remove_if( 7152 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7153 7154 // Remove from the set of candidates all pairs of getelementptrs with 7155 // constant differences. Such getelementptrs are likely not good 7156 // candidates for vectorization in a bottom-up phase since one can be 7157 // computed from the other. We also ensure all candidate getelementptr 7158 // indices are unique. 7159 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7160 auto *GEPI = GEPList[I]; 7161 if (!Candidates.count(GEPI)) 7162 continue; 7163 auto *SCEVI = SE->getSCEV(GEPList[I]); 7164 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7165 auto *GEPJ = GEPList[J]; 7166 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7167 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7168 Candidates.remove(GEPI); 7169 Candidates.remove(GEPJ); 7170 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7171 Candidates.remove(GEPJ); 7172 } 7173 } 7174 } 7175 7176 // We break out of the above computation as soon as we know there are 7177 // fewer than two candidates remaining. 7178 if (Candidates.size() < 2) 7179 continue; 7180 7181 // Add the single, non-constant index of each candidate to the bundle. We 7182 // ensured the indices met these constraints when we originally collected 7183 // the getelementptrs. 7184 SmallVector<Value *, 16> Bundle(Candidates.size()); 7185 auto BundleIndex = 0u; 7186 for (auto *V : Candidates) { 7187 auto *GEP = cast<GetElementPtrInst>(V); 7188 auto *GEPIdx = GEP->idx_begin()->get(); 7189 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7190 Bundle[BundleIndex++] = GEPIdx; 7191 } 7192 7193 // Try and vectorize the indices. We are currently only interested in 7194 // gather-like cases of the form: 7195 // 7196 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7197 // 7198 // where the loads of "a", the loads of "b", and the subtractions can be 7199 // performed in parallel. It's likely that detecting this pattern in a 7200 // bottom-up phase will be simpler and less costly than building a 7201 // full-blown top-down phase beginning at the consecutive loads. 7202 Changed |= tryToVectorizeList(Bundle, R); 7203 } 7204 } 7205 return Changed; 7206 } 7207 7208 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7209 bool Changed = false; 7210 // Attempt to sort and vectorize each of the store-groups. 7211 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7212 ++it) { 7213 if (it->second.size() < 2) 7214 continue; 7215 7216 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7217 << it->second.size() << ".\n"); 7218 7219 Changed |= vectorizeStores(it->second, R); 7220 } 7221 return Changed; 7222 } 7223 7224 char SLPVectorizer::ID = 0; 7225 7226 static const char lv_name[] = "SLP Vectorizer"; 7227 7228 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7229 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7230 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7231 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7232 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7233 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7234 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7235 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7236 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7237 7238 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7239