1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 namespace slpvectorizer { 776 777 /// Bottom Up SLP Vectorizer. 778 class BoUpSLP { 779 struct TreeEntry; 780 struct ScheduleData; 781 782 public: 783 using ValueList = SmallVector<Value *, 8>; 784 using InstrList = SmallVector<Instruction *, 16>; 785 using ValueSet = SmallPtrSet<Value *, 16>; 786 using StoreList = SmallVector<StoreInst *, 8>; 787 using ExtraValueToDebugLocsMap = 788 MapVector<Value *, SmallVector<Instruction *, 2>>; 789 using OrdersType = SmallVector<unsigned, 4>; 790 791 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 792 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 793 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 794 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 795 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 796 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 797 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 798 // Use the vector register size specified by the target unless overridden 799 // by a command-line option. 800 // TODO: It would be better to limit the vectorization factor based on 801 // data type rather than just register size. For example, x86 AVX has 802 // 256-bit registers, but it does not support integer operations 803 // at that width (that requires AVX2). 804 if (MaxVectorRegSizeOption.getNumOccurrences()) 805 MaxVecRegSize = MaxVectorRegSizeOption; 806 else 807 MaxVecRegSize = 808 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 809 .getFixedSize(); 810 811 if (MinVectorRegSizeOption.getNumOccurrences()) 812 MinVecRegSize = MinVectorRegSizeOption; 813 else 814 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 815 } 816 817 /// Vectorize the tree that starts with the elements in \p VL. 818 /// Returns the vectorized root. 819 Value *vectorizeTree(); 820 821 /// Vectorize the tree but with the list of externally used values \p 822 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 823 /// generated extractvalue instructions. 824 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 825 826 /// \returns the cost incurred by unwanted spills and fills, caused by 827 /// holding live values over call sites. 828 InstructionCost getSpillCost() const; 829 830 /// \returns the vectorization cost of the subtree that starts at \p VL. 831 /// A negative number means that this is profitable. 832 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 833 834 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 835 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 836 void buildTree(ArrayRef<Value *> Roots, 837 ArrayRef<Value *> UserIgnoreLst = None); 838 839 /// Builds external uses of the vectorized scalars, i.e. the list of 840 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 841 /// ExternallyUsedValues contains additional list of external uses to handle 842 /// vectorization of reductions. 843 void 844 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 845 846 /// Clear the internal data structures that are created by 'buildTree'. 847 void deleteTree() { 848 VectorizableTree.clear(); 849 ScalarToTreeEntry.clear(); 850 MustGather.clear(); 851 ExternalUses.clear(); 852 for (auto &Iter : BlocksSchedules) { 853 BlockScheduling *BS = Iter.second.get(); 854 BS->clear(); 855 } 856 MinBWs.clear(); 857 InstrElementSize.clear(); 858 } 859 860 unsigned getTreeSize() const { return VectorizableTree.size(); } 861 862 /// Perform LICM and CSE on the newly generated gather sequences. 863 void optimizeGatherSequence(); 864 865 /// Checks if the specified gather tree entry \p TE can be represented as a 866 /// shuffled vector entry + (possibly) permutation with other gathers. It 867 /// implements the checks only for possibly ordered scalars (Loads, 868 /// ExtractElement, ExtractValue), which can be part of the graph. 869 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 870 871 /// Gets reordering data for the given tree entry. If the entry is vectorized 872 /// - just return ReorderIndices, otherwise check if the scalars can be 873 /// reordered and return the most optimal order. 874 /// \param TopToBottom If true, include the order of vectorized stores and 875 /// insertelement nodes, otherwise skip them. 876 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 877 878 /// Reorders the current graph to the most profitable order starting from the 879 /// root node to the leaf nodes. The best order is chosen only from the nodes 880 /// of the same size (vectorization factor). Smaller nodes are considered 881 /// parts of subgraph with smaller VF and they are reordered independently. We 882 /// can make it because we still need to extend smaller nodes to the wider VF 883 /// and we can merge reordering shuffles with the widening shuffles. 884 void reorderTopToBottom(); 885 886 /// Reorders the current graph to the most profitable order starting from 887 /// leaves to the root. It allows to rotate small subgraphs and reduce the 888 /// number of reshuffles if the leaf nodes use the same order. In this case we 889 /// can merge the orders and just shuffle user node instead of shuffling its 890 /// operands. Plus, even the leaf nodes have different orders, it allows to 891 /// sink reordering in the graph closer to the root node and merge it later 892 /// during analysis. 893 void reorderBottomToTop(bool IgnoreReorder = false); 894 895 /// \return The vector element size in bits to use when vectorizing the 896 /// expression tree ending at \p V. If V is a store, the size is the width of 897 /// the stored value. Otherwise, the size is the width of the largest loaded 898 /// value reaching V. This method is used by the vectorizer to calculate 899 /// vectorization factors. 900 unsigned getVectorElementSize(Value *V); 901 902 /// Compute the minimum type sizes required to represent the entries in a 903 /// vectorizable tree. 904 void computeMinimumValueSizes(); 905 906 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 907 unsigned getMaxVecRegSize() const { 908 return MaxVecRegSize; 909 } 910 911 // \returns minimum vector register size as set by cl::opt. 912 unsigned getMinVecRegSize() const { 913 return MinVecRegSize; 914 } 915 916 unsigned getMinVF(unsigned Sz) const { 917 return std::max(2U, getMinVecRegSize() / Sz); 918 } 919 920 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 921 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 922 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 923 return MaxVF ? MaxVF : UINT_MAX; 924 } 925 926 /// Check if homogeneous aggregate is isomorphic to some VectorType. 927 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 928 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 929 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 930 /// 931 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 932 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 933 934 /// \returns True if the VectorizableTree is both tiny and not fully 935 /// vectorizable. We do not vectorize such trees. 936 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 937 938 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 939 /// can be load combined in the backend. Load combining may not be allowed in 940 /// the IR optimizer, so we do not want to alter the pattern. For example, 941 /// partially transforming a scalar bswap() pattern into vector code is 942 /// effectively impossible for the backend to undo. 943 /// TODO: If load combining is allowed in the IR optimizer, this analysis 944 /// may not be necessary. 945 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 946 947 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 948 /// can be load combined in the backend. Load combining may not be allowed in 949 /// the IR optimizer, so we do not want to alter the pattern. For example, 950 /// partially transforming a scalar bswap() pattern into vector code is 951 /// effectively impossible for the backend to undo. 952 /// TODO: If load combining is allowed in the IR optimizer, this analysis 953 /// may not be necessary. 954 bool isLoadCombineCandidate() const; 955 956 OptimizationRemarkEmitter *getORE() { return ORE; } 957 958 /// This structure holds any data we need about the edges being traversed 959 /// during buildTree_rec(). We keep track of: 960 /// (i) the user TreeEntry index, and 961 /// (ii) the index of the edge. 962 struct EdgeInfo { 963 EdgeInfo() = default; 964 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 965 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 966 /// The user TreeEntry. 967 TreeEntry *UserTE = nullptr; 968 /// The operand index of the use. 969 unsigned EdgeIdx = UINT_MAX; 970 #ifndef NDEBUG 971 friend inline raw_ostream &operator<<(raw_ostream &OS, 972 const BoUpSLP::EdgeInfo &EI) { 973 EI.dump(OS); 974 return OS; 975 } 976 /// Debug print. 977 void dump(raw_ostream &OS) const { 978 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 979 << " EdgeIdx:" << EdgeIdx << "}"; 980 } 981 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 982 #endif 983 }; 984 985 /// A helper data structure to hold the operands of a vector of instructions. 986 /// This supports a fixed vector length for all operand vectors. 987 class VLOperands { 988 /// For each operand we need (i) the value, and (ii) the opcode that it 989 /// would be attached to if the expression was in a left-linearized form. 990 /// This is required to avoid illegal operand reordering. 991 /// For example: 992 /// \verbatim 993 /// 0 Op1 994 /// |/ 995 /// Op1 Op2 Linearized + Op2 996 /// \ / ----------> |/ 997 /// - - 998 /// 999 /// Op1 - Op2 (0 + Op1) - Op2 1000 /// \endverbatim 1001 /// 1002 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1003 /// 1004 /// Another way to think of this is to track all the operations across the 1005 /// path from the operand all the way to the root of the tree and to 1006 /// calculate the operation that corresponds to this path. For example, the 1007 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1008 /// corresponding operation is a '-' (which matches the one in the 1009 /// linearized tree, as shown above). 1010 /// 1011 /// For lack of a better term, we refer to this operation as Accumulated 1012 /// Path Operation (APO). 1013 struct OperandData { 1014 OperandData() = default; 1015 OperandData(Value *V, bool APO, bool IsUsed) 1016 : V(V), APO(APO), IsUsed(IsUsed) {} 1017 /// The operand value. 1018 Value *V = nullptr; 1019 /// TreeEntries only allow a single opcode, or an alternate sequence of 1020 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1021 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1022 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1023 /// (e.g., Add/Mul) 1024 bool APO = false; 1025 /// Helper data for the reordering function. 1026 bool IsUsed = false; 1027 }; 1028 1029 /// During operand reordering, we are trying to select the operand at lane 1030 /// that matches best with the operand at the neighboring lane. Our 1031 /// selection is based on the type of value we are looking for. For example, 1032 /// if the neighboring lane has a load, we need to look for a load that is 1033 /// accessing a consecutive address. These strategies are summarized in the 1034 /// 'ReorderingMode' enumerator. 1035 enum class ReorderingMode { 1036 Load, ///< Matching loads to consecutive memory addresses 1037 Opcode, ///< Matching instructions based on opcode (same or alternate) 1038 Constant, ///< Matching constants 1039 Splat, ///< Matching the same instruction multiple times (broadcast) 1040 Failed, ///< We failed to create a vectorizable group 1041 }; 1042 1043 using OperandDataVec = SmallVector<OperandData, 2>; 1044 1045 /// A vector of operand vectors. 1046 SmallVector<OperandDataVec, 4> OpsVec; 1047 1048 const DataLayout &DL; 1049 ScalarEvolution &SE; 1050 const BoUpSLP &R; 1051 1052 /// \returns the operand data at \p OpIdx and \p Lane. 1053 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1054 return OpsVec[OpIdx][Lane]; 1055 } 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1058 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// Clears the used flag for all entries. 1063 void clearUsed() { 1064 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1065 OpIdx != NumOperands; ++OpIdx) 1066 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1067 ++Lane) 1068 OpsVec[OpIdx][Lane].IsUsed = false; 1069 } 1070 1071 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1072 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1073 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1074 } 1075 1076 // The hard-coded scores listed here are not very important, though it shall 1077 // be higher for better matches to improve the resulting cost. When 1078 // computing the scores of matching one sub-tree with another, we are 1079 // basically counting the number of values that are matching. So even if all 1080 // scores are set to 1, we would still get a decent matching result. 1081 // However, sometimes we have to break ties. For example we may have to 1082 // choose between matching loads vs matching opcodes. This is what these 1083 // scores are helping us with: they provide the order of preference. Also, 1084 // this is important if the scalar is externally used or used in another 1085 // tree entry node in the different lane. 1086 1087 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1088 static const int ScoreConsecutiveLoads = 4; 1089 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1090 static const int ScoreReversedLoads = 3; 1091 /// ExtractElementInst from same vector and consecutive indexes. 1092 static const int ScoreConsecutiveExtracts = 4; 1093 /// ExtractElementInst from same vector and reversed indices. 1094 static const int ScoreReversedExtracts = 3; 1095 /// Constants. 1096 static const int ScoreConstants = 2; 1097 /// Instructions with the same opcode. 1098 static const int ScoreSameOpcode = 2; 1099 /// Instructions with alt opcodes (e.g, add + sub). 1100 static const int ScoreAltOpcodes = 1; 1101 /// Identical instructions (a.k.a. splat or broadcast). 1102 static const int ScoreSplat = 1; 1103 /// Matching with an undef is preferable to failing. 1104 static const int ScoreUndef = 1; 1105 /// Score for failing to find a decent match. 1106 static const int ScoreFail = 0; 1107 /// Score if all users are vectorized. 1108 static const int ScoreAllUserVectorized = 1; 1109 1110 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1111 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1112 /// MainAltOps. 1113 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1114 ScalarEvolution &SE, int NumLanes, 1115 ArrayRef<Value *> MainAltOps) { 1116 if (V1 == V2) 1117 return VLOperands::ScoreSplat; 1118 1119 auto *LI1 = dyn_cast<LoadInst>(V1); 1120 auto *LI2 = dyn_cast<LoadInst>(V2); 1121 if (LI1 && LI2) { 1122 if (LI1->getParent() != LI2->getParent()) 1123 return VLOperands::ScoreFail; 1124 1125 Optional<int> Dist = getPointersDiff( 1126 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1127 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1128 if (!Dist || *Dist == 0) 1129 return VLOperands::ScoreFail; 1130 // The distance is too large - still may be profitable to use masked 1131 // loads/gathers. 1132 if (std::abs(*Dist) > NumLanes / 2) 1133 return VLOperands::ScoreAltOpcodes; 1134 // This still will detect consecutive loads, but we might have "holes" 1135 // in some cases. It is ok for non-power-2 vectorization and may produce 1136 // better results. It should not affect current vectorization. 1137 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1138 : VLOperands::ScoreReversedLoads; 1139 } 1140 1141 auto *C1 = dyn_cast<Constant>(V1); 1142 auto *C2 = dyn_cast<Constant>(V2); 1143 if (C1 && C2) 1144 return VLOperands::ScoreConstants; 1145 1146 // Extracts from consecutive indexes of the same vector better score as 1147 // the extracts could be optimized away. 1148 Value *EV1; 1149 ConstantInt *Ex1Idx; 1150 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1151 // Undefs are always profitable for extractelements. 1152 if (isa<UndefValue>(V2)) 1153 return VLOperands::ScoreConsecutiveExtracts; 1154 Value *EV2 = nullptr; 1155 ConstantInt *Ex2Idx = nullptr; 1156 if (match(V2, 1157 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1158 m_Undef())))) { 1159 // Undefs are always profitable for extractelements. 1160 if (!Ex2Idx) 1161 return VLOperands::ScoreConsecutiveExtracts; 1162 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1163 return VLOperands::ScoreConsecutiveExtracts; 1164 if (EV2 == EV1) { 1165 int Idx1 = Ex1Idx->getZExtValue(); 1166 int Idx2 = Ex2Idx->getZExtValue(); 1167 int Dist = Idx2 - Idx1; 1168 // The distance is too large - still may be profitable to use 1169 // shuffles. 1170 if (std::abs(Dist) == 0) 1171 return VLOperands::ScoreSplat; 1172 if (std::abs(Dist) > NumLanes / 2) 1173 return VLOperands::ScoreSameOpcode; 1174 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1175 : VLOperands::ScoreReversedExtracts; 1176 } 1177 return VLOperands::ScoreAltOpcodes; 1178 } 1179 return VLOperands::ScoreFail; 1180 } 1181 1182 auto *I1 = dyn_cast<Instruction>(V1); 1183 auto *I2 = dyn_cast<Instruction>(V2); 1184 if (I1 && I2) { 1185 if (I1->getParent() != I2->getParent()) 1186 return VLOperands::ScoreFail; 1187 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1188 Ops.push_back(I1); 1189 Ops.push_back(I2); 1190 InstructionsState S = getSameOpcode(Ops); 1191 // Note: Only consider instructions with <= 2 operands to avoid 1192 // complexity explosion. 1193 if (S.getOpcode() && 1194 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1195 !S.isAltShuffle()) && 1196 all_of(Ops, [&S](Value *V) { 1197 return cast<Instruction>(V)->getNumOperands() == 1198 S.MainOp->getNumOperands(); 1199 })) 1200 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1201 : VLOperands::ScoreSameOpcode; 1202 } 1203 1204 if (isa<UndefValue>(V2)) 1205 return VLOperands::ScoreUndef; 1206 1207 return VLOperands::ScoreFail; 1208 } 1209 1210 /// \param Lane lane of the operands under analysis. 1211 /// \param OpIdx operand index in \p Lane lane we're looking the best 1212 /// candidate for. 1213 /// \param Idx operand index of the current candidate value. 1214 /// \returns The additional score due to possible broadcasting of the 1215 /// elements in the lane. It is more profitable to have power-of-2 unique 1216 /// elements in the lane, it will be vectorized with higher probability 1217 /// after removing duplicates. Currently the SLP vectorizer supports only 1218 /// vectorization of the power-of-2 number of unique scalars. 1219 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1220 Value *IdxLaneV = getData(Idx, Lane).V; 1221 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1222 return 0; 1223 SmallPtrSet<Value *, 4> Uniques; 1224 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1225 if (Ln == Lane) 1226 continue; 1227 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1228 if (!isa<Instruction>(OpIdxLnV)) 1229 return 0; 1230 Uniques.insert(OpIdxLnV); 1231 } 1232 int UniquesCount = Uniques.size(); 1233 int UniquesCntWithIdxLaneV = 1234 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1235 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1236 int UniquesCntWithOpIdxLaneV = 1237 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1238 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1239 return 0; 1240 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1241 UniquesCntWithOpIdxLaneV) - 1242 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1243 } 1244 1245 /// \param Lane lane of the operands under analysis. 1246 /// \param OpIdx operand index in \p Lane lane we're looking the best 1247 /// candidate for. 1248 /// \param Idx operand index of the current candidate value. 1249 /// \returns The additional score for the scalar which users are all 1250 /// vectorized. 1251 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1252 Value *IdxLaneV = getData(Idx, Lane).V; 1253 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1254 // Do not care about number of uses for vector-like instructions 1255 // (extractelement/extractvalue with constant indices), they are extracts 1256 // themselves and already externally used. Vectorization of such 1257 // instructions does not add extra extractelement instruction, just may 1258 // remove it. 1259 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1260 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1261 return VLOperands::ScoreAllUserVectorized; 1262 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1263 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1264 return 0; 1265 return R.areAllUsersVectorized(IdxLaneI, None) 1266 ? VLOperands::ScoreAllUserVectorized 1267 : 0; 1268 } 1269 1270 /// Go through the operands of \p LHS and \p RHS recursively until \p 1271 /// MaxLevel, and return the cummulative score. For example: 1272 /// \verbatim 1273 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1274 /// \ / \ / \ / \ / 1275 /// + + + + 1276 /// G1 G2 G3 G4 1277 /// \endverbatim 1278 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1279 /// each level recursively, accumulating the score. It starts from matching 1280 /// the additions at level 0, then moves on to the loads (level 1). The 1281 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1282 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1283 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1284 /// Please note that the order of the operands does not matter, as we 1285 /// evaluate the score of all profitable combinations of operands. In 1286 /// other words the score of G1 and G4 is the same as G1 and G2. This 1287 /// heuristic is based on ideas described in: 1288 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1289 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1290 /// Luís F. W. Góes 1291 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1292 ArrayRef<Value *> MainAltOps) { 1293 1294 // Get the shallow score of V1 and V2. 1295 int ShallowScoreAtThisLevel = 1296 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1297 1298 // If reached MaxLevel, 1299 // or if V1 and V2 are not instructions, 1300 // or if they are SPLAT, 1301 // or if they are not consecutive, 1302 // or if profitable to vectorize loads or extractelements, early return 1303 // the current cost. 1304 auto *I1 = dyn_cast<Instruction>(LHS); 1305 auto *I2 = dyn_cast<Instruction>(RHS); 1306 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1307 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1308 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1309 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1310 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1311 ShallowScoreAtThisLevel)) 1312 return ShallowScoreAtThisLevel; 1313 assert(I1 && I2 && "Should have early exited."); 1314 1315 // Contains the I2 operand indexes that got matched with I1 operands. 1316 SmallSet<unsigned, 4> Op2Used; 1317 1318 // Recursion towards the operands of I1 and I2. We are trying all possible 1319 // operand pairs, and keeping track of the best score. 1320 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1321 OpIdx1 != NumOperands1; ++OpIdx1) { 1322 // Try to pair op1I with the best operand of I2. 1323 int MaxTmpScore = 0; 1324 unsigned MaxOpIdx2 = 0; 1325 bool FoundBest = false; 1326 // If I2 is commutative try all combinations. 1327 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1328 unsigned ToIdx = isCommutative(I2) 1329 ? I2->getNumOperands() 1330 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1331 assert(FromIdx <= ToIdx && "Bad index"); 1332 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1333 // Skip operands already paired with OpIdx1. 1334 if (Op2Used.count(OpIdx2)) 1335 continue; 1336 // Recursively calculate the cost at each level 1337 int TmpScore = 1338 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1339 CurrLevel + 1, MaxLevel, None); 1340 // Look for the best score. 1341 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1342 MaxTmpScore = TmpScore; 1343 MaxOpIdx2 = OpIdx2; 1344 FoundBest = true; 1345 } 1346 } 1347 if (FoundBest) { 1348 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1349 Op2Used.insert(MaxOpIdx2); 1350 ShallowScoreAtThisLevel += MaxTmpScore; 1351 } 1352 } 1353 return ShallowScoreAtThisLevel; 1354 } 1355 1356 /// Score scaling factor for fully compatible instructions but with 1357 /// different number of external uses. Allows better selection of the 1358 /// instructions with less external uses. 1359 static const int ScoreScaleFactor = 10; 1360 1361 /// \Returns the look-ahead score, which tells us how much the sub-trees 1362 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1363 /// score. This helps break ties in an informed way when we cannot decide on 1364 /// the order of the operands by just considering the immediate 1365 /// predecessors. 1366 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1367 int Lane, unsigned OpIdx, unsigned Idx, 1368 bool &IsUsed) { 1369 int Score = 1370 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1371 if (Score) { 1372 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1373 if (Score <= -SplatScore) { 1374 // Set the minimum score for splat-like sequence to avoid setting 1375 // failed state. 1376 Score = 1; 1377 } else { 1378 Score += SplatScore; 1379 // Scale score to see the difference between different operands 1380 // and similar operands but all vectorized/not all vectorized 1381 // uses. It does not affect actual selection of the best 1382 // compatible operand in general, just allows to select the 1383 // operand with all vectorized uses. 1384 Score *= ScoreScaleFactor; 1385 Score += getExternalUseScore(Lane, OpIdx, Idx); 1386 IsUsed = true; 1387 } 1388 } 1389 return Score; 1390 } 1391 1392 /// Best defined scores per lanes between the passes. Used to choose the 1393 /// best operand (with the highest score) between the passes. 1394 /// The key - {Operand Index, Lane}. 1395 /// The value - the best score between the passes for the lane and the 1396 /// operand. 1397 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1398 BestScoresPerLanes; 1399 1400 // Search all operands in Ops[*][Lane] for the one that matches best 1401 // Ops[OpIdx][LastLane] and return its opreand index. 1402 // If no good match can be found, return None. 1403 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1404 ArrayRef<ReorderingMode> ReorderingModes, 1405 ArrayRef<Value *> MainAltOps) { 1406 unsigned NumOperands = getNumOperands(); 1407 1408 // The operand of the previous lane at OpIdx. 1409 Value *OpLastLane = getData(OpIdx, LastLane).V; 1410 1411 // Our strategy mode for OpIdx. 1412 ReorderingMode RMode = ReorderingModes[OpIdx]; 1413 if (RMode == ReorderingMode::Failed) 1414 return None; 1415 1416 // The linearized opcode of the operand at OpIdx, Lane. 1417 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1418 1419 // The best operand index and its score. 1420 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1421 // are using the score to differentiate between the two. 1422 struct BestOpData { 1423 Optional<unsigned> Idx = None; 1424 unsigned Score = 0; 1425 } BestOp; 1426 BestOp.Score = 1427 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1428 .first->second; 1429 1430 // Track if the operand must be marked as used. If the operand is set to 1431 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1432 // want to reestimate the operands again on the following iterations). 1433 bool IsUsed = 1434 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1435 // Iterate through all unused operands and look for the best. 1436 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1437 // Get the operand at Idx and Lane. 1438 OperandData &OpData = getData(Idx, Lane); 1439 Value *Op = OpData.V; 1440 bool OpAPO = OpData.APO; 1441 1442 // Skip already selected operands. 1443 if (OpData.IsUsed) 1444 continue; 1445 1446 // Skip if we are trying to move the operand to a position with a 1447 // different opcode in the linearized tree form. This would break the 1448 // semantics. 1449 if (OpAPO != OpIdxAPO) 1450 continue; 1451 1452 // Look for an operand that matches the current mode. 1453 switch (RMode) { 1454 case ReorderingMode::Load: 1455 case ReorderingMode::Constant: 1456 case ReorderingMode::Opcode: { 1457 bool LeftToRight = Lane > LastLane; 1458 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1459 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1460 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1461 OpIdx, Idx, IsUsed); 1462 if (Score > static_cast<int>(BestOp.Score)) { 1463 BestOp.Idx = Idx; 1464 BestOp.Score = Score; 1465 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1466 } 1467 break; 1468 } 1469 case ReorderingMode::Splat: 1470 if (Op == OpLastLane) 1471 BestOp.Idx = Idx; 1472 break; 1473 case ReorderingMode::Failed: 1474 llvm_unreachable("Not expected Failed reordering mode."); 1475 } 1476 } 1477 1478 if (BestOp.Idx) { 1479 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1480 return BestOp.Idx; 1481 } 1482 // If we could not find a good match return None. 1483 return None; 1484 } 1485 1486 /// Helper for reorderOperandVecs. 1487 /// \returns the lane that we should start reordering from. This is the one 1488 /// which has the least number of operands that can freely move about or 1489 /// less profitable because it already has the most optimal set of operands. 1490 unsigned getBestLaneToStartReordering() const { 1491 unsigned Min = UINT_MAX; 1492 unsigned SameOpNumber = 0; 1493 // std::pair<unsigned, unsigned> is used to implement a simple voting 1494 // algorithm and choose the lane with the least number of operands that 1495 // can freely move about or less profitable because it already has the 1496 // most optimal set of operands. The first unsigned is a counter for 1497 // voting, the second unsigned is the counter of lanes with instructions 1498 // with same/alternate opcodes and same parent basic block. 1499 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1500 // Try to be closer to the original results, if we have multiple lanes 1501 // with same cost. If 2 lanes have the same cost, use the one with the 1502 // lowest index. 1503 for (int I = getNumLanes(); I > 0; --I) { 1504 unsigned Lane = I - 1; 1505 OperandsOrderData NumFreeOpsHash = 1506 getMaxNumOperandsThatCanBeReordered(Lane); 1507 // Compare the number of operands that can move and choose the one with 1508 // the least number. 1509 if (NumFreeOpsHash.NumOfAPOs < Min) { 1510 Min = NumFreeOpsHash.NumOfAPOs; 1511 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1512 HashMap.clear(); 1513 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1514 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1515 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1516 // Select the most optimal lane in terms of number of operands that 1517 // should be moved around. 1518 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1519 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1520 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1521 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1522 auto It = HashMap.find(NumFreeOpsHash.Hash); 1523 if (It == HashMap.end()) 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 else 1526 ++It->second.first; 1527 } 1528 } 1529 // Select the lane with the minimum counter. 1530 unsigned BestLane = 0; 1531 unsigned CntMin = UINT_MAX; 1532 for (const auto &Data : reverse(HashMap)) { 1533 if (Data.second.first < CntMin) { 1534 CntMin = Data.second.first; 1535 BestLane = Data.second.second; 1536 } 1537 } 1538 return BestLane; 1539 } 1540 1541 /// Data structure that helps to reorder operands. 1542 struct OperandsOrderData { 1543 /// The best number of operands with the same APOs, which can be 1544 /// reordered. 1545 unsigned NumOfAPOs = UINT_MAX; 1546 /// Number of operands with the same/alternate instruction opcode and 1547 /// parent. 1548 unsigned NumOpsWithSameOpcodeParent = 0; 1549 /// Hash for the actual operands ordering. 1550 /// Used to count operands, actually their position id and opcode 1551 /// value. It is used in the voting mechanism to find the lane with the 1552 /// least number of operands that can freely move about or less profitable 1553 /// because it already has the most optimal set of operands. Can be 1554 /// replaced with SmallVector<unsigned> instead but hash code is faster 1555 /// and requires less memory. 1556 unsigned Hash = 0; 1557 }; 1558 /// \returns the maximum number of operands that are allowed to be reordered 1559 /// for \p Lane and the number of compatible instructions(with the same 1560 /// parent/opcode). This is used as a heuristic for selecting the first lane 1561 /// to start operand reordering. 1562 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1563 unsigned CntTrue = 0; 1564 unsigned NumOperands = getNumOperands(); 1565 // Operands with the same APO can be reordered. We therefore need to count 1566 // how many of them we have for each APO, like this: Cnt[APO] = x. 1567 // Since we only have two APOs, namely true and false, we can avoid using 1568 // a map. Instead we can simply count the number of operands that 1569 // correspond to one of them (in this case the 'true' APO), and calculate 1570 // the other by subtracting it from the total number of operands. 1571 // Operands with the same instruction opcode and parent are more 1572 // profitable since we don't need to move them in many cases, with a high 1573 // probability such lane already can be vectorized effectively. 1574 bool AllUndefs = true; 1575 unsigned NumOpsWithSameOpcodeParent = 0; 1576 Instruction *OpcodeI = nullptr; 1577 BasicBlock *Parent = nullptr; 1578 unsigned Hash = 0; 1579 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1580 const OperandData &OpData = getData(OpIdx, Lane); 1581 if (OpData.APO) 1582 ++CntTrue; 1583 // Use Boyer-Moore majority voting for finding the majority opcode and 1584 // the number of times it occurs. 1585 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1586 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1587 I->getParent() != Parent) { 1588 if (NumOpsWithSameOpcodeParent == 0) { 1589 NumOpsWithSameOpcodeParent = 1; 1590 OpcodeI = I; 1591 Parent = I->getParent(); 1592 } else { 1593 --NumOpsWithSameOpcodeParent; 1594 } 1595 } else { 1596 ++NumOpsWithSameOpcodeParent; 1597 } 1598 } 1599 Hash = hash_combine( 1600 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1601 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1602 } 1603 if (AllUndefs) 1604 return {}; 1605 OperandsOrderData Data; 1606 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1607 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1608 Data.Hash = Hash; 1609 return Data; 1610 } 1611 1612 /// Go through the instructions in VL and append their operands. 1613 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1614 assert(!VL.empty() && "Bad VL"); 1615 assert((empty() || VL.size() == getNumLanes()) && 1616 "Expected same number of lanes"); 1617 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1618 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1619 OpsVec.resize(NumOperands); 1620 unsigned NumLanes = VL.size(); 1621 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1622 OpsVec[OpIdx].resize(NumLanes); 1623 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1624 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1625 // Our tree has just 3 nodes: the root and two operands. 1626 // It is therefore trivial to get the APO. We only need to check the 1627 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1628 // RHS operand. The LHS operand of both add and sub is never attached 1629 // to an inversese operation in the linearized form, therefore its APO 1630 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1631 1632 // Since operand reordering is performed on groups of commutative 1633 // operations or alternating sequences (e.g., +, -), we can safely 1634 // tell the inverse operations by checking commutativity. 1635 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1636 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1637 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1638 APO, false}; 1639 } 1640 } 1641 } 1642 1643 /// \returns the number of operands. 1644 unsigned getNumOperands() const { return OpsVec.size(); } 1645 1646 /// \returns the number of lanes. 1647 unsigned getNumLanes() const { return OpsVec[0].size(); } 1648 1649 /// \returns the operand value at \p OpIdx and \p Lane. 1650 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1651 return getData(OpIdx, Lane).V; 1652 } 1653 1654 /// \returns true if the data structure is empty. 1655 bool empty() const { return OpsVec.empty(); } 1656 1657 /// Clears the data. 1658 void clear() { OpsVec.clear(); } 1659 1660 /// \Returns true if there are enough operands identical to \p Op to fill 1661 /// the whole vector. 1662 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1663 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1664 bool OpAPO = getData(OpIdx, Lane).APO; 1665 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1666 if (Ln == Lane) 1667 continue; 1668 // This is set to true if we found a candidate for broadcast at Lane. 1669 bool FoundCandidate = false; 1670 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1671 OperandData &Data = getData(OpI, Ln); 1672 if (Data.APO != OpAPO || Data.IsUsed) 1673 continue; 1674 if (Data.V == Op) { 1675 FoundCandidate = true; 1676 Data.IsUsed = true; 1677 break; 1678 } 1679 } 1680 if (!FoundCandidate) 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 public: 1687 /// Initialize with all the operands of the instruction vector \p RootVL. 1688 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1689 ScalarEvolution &SE, const BoUpSLP &R) 1690 : DL(DL), SE(SE), R(R) { 1691 // Append all the operands of RootVL. 1692 appendOperandsOfVL(RootVL); 1693 } 1694 1695 /// \Returns a value vector with the operands across all lanes for the 1696 /// opearnd at \p OpIdx. 1697 ValueList getVL(unsigned OpIdx) const { 1698 ValueList OpVL(OpsVec[OpIdx].size()); 1699 assert(OpsVec[OpIdx].size() == getNumLanes() && 1700 "Expected same num of lanes across all operands"); 1701 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1702 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1703 return OpVL; 1704 } 1705 1706 // Performs operand reordering for 2 or more operands. 1707 // The original operands are in OrigOps[OpIdx][Lane]. 1708 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1709 void reorder() { 1710 unsigned NumOperands = getNumOperands(); 1711 unsigned NumLanes = getNumLanes(); 1712 // Each operand has its own mode. We are using this mode to help us select 1713 // the instructions for each lane, so that they match best with the ones 1714 // we have selected so far. 1715 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1716 1717 // This is a greedy single-pass algorithm. We are going over each lane 1718 // once and deciding on the best order right away with no back-tracking. 1719 // However, in order to increase its effectiveness, we start with the lane 1720 // that has operands that can move the least. For example, given the 1721 // following lanes: 1722 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1723 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1724 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1725 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1726 // we will start at Lane 1, since the operands of the subtraction cannot 1727 // be reordered. Then we will visit the rest of the lanes in a circular 1728 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1729 1730 // Find the first lane that we will start our search from. 1731 unsigned FirstLane = getBestLaneToStartReordering(); 1732 1733 // Initialize the modes. 1734 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1735 Value *OpLane0 = getValue(OpIdx, FirstLane); 1736 // Keep track if we have instructions with all the same opcode on one 1737 // side. 1738 if (isa<LoadInst>(OpLane0)) 1739 ReorderingModes[OpIdx] = ReorderingMode::Load; 1740 else if (isa<Instruction>(OpLane0)) { 1741 // Check if OpLane0 should be broadcast. 1742 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1743 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1744 else 1745 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1746 } 1747 else if (isa<Constant>(OpLane0)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1749 else if (isa<Argument>(OpLane0)) 1750 // Our best hope is a Splat. It may save some cost in some cases. 1751 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1752 else 1753 // NOTE: This should be unreachable. 1754 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1755 } 1756 1757 // Check that we don't have same operands. No need to reorder if operands 1758 // are just perfect diamond or shuffled diamond match. Do not do it only 1759 // for possible broadcasts or non-power of 2 number of scalars (just for 1760 // now). 1761 auto &&SkipReordering = [this]() { 1762 SmallPtrSet<Value *, 4> UniqueValues; 1763 ArrayRef<OperandData> Op0 = OpsVec.front(); 1764 for (const OperandData &Data : Op0) 1765 UniqueValues.insert(Data.V); 1766 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1767 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1768 return !UniqueValues.contains(Data.V); 1769 })) 1770 return false; 1771 } 1772 // TODO: Check if we can remove a check for non-power-2 number of 1773 // scalars after full support of non-power-2 vectorization. 1774 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1775 }; 1776 1777 // If the initial strategy fails for any of the operand indexes, then we 1778 // perform reordering again in a second pass. This helps avoid assigning 1779 // high priority to the failed strategy, and should improve reordering for 1780 // the non-failed operand indexes. 1781 for (int Pass = 0; Pass != 2; ++Pass) { 1782 // Check if no need to reorder operands since they're are perfect or 1783 // shuffled diamond match. 1784 // Need to to do it to avoid extra external use cost counting for 1785 // shuffled matches, which may cause regressions. 1786 if (SkipReordering()) 1787 break; 1788 // Skip the second pass if the first pass did not fail. 1789 bool StrategyFailed = false; 1790 // Mark all operand data as free to use. 1791 clearUsed(); 1792 // We keep the original operand order for the FirstLane, so reorder the 1793 // rest of the lanes. We are visiting the nodes in a circular fashion, 1794 // using FirstLane as the center point and increasing the radius 1795 // distance. 1796 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1797 for (unsigned I = 0; I < NumOperands; ++I) 1798 MainAltOps[I].push_back(getData(I, FirstLane).V); 1799 1800 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1801 // Visit the lane on the right and then the lane on the left. 1802 for (int Direction : {+1, -1}) { 1803 int Lane = FirstLane + Direction * Distance; 1804 if (Lane < 0 || Lane >= (int)NumLanes) 1805 continue; 1806 int LastLane = Lane - Direction; 1807 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1808 "Out of bounds"); 1809 // Look for a good match for each operand. 1810 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1811 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1812 Optional<unsigned> BestIdx = getBestOperand( 1813 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1814 // By not selecting a value, we allow the operands that follow to 1815 // select a better matching value. We will get a non-null value in 1816 // the next run of getBestOperand(). 1817 if (BestIdx) { 1818 // Swap the current operand with the one returned by 1819 // getBestOperand(). 1820 swap(OpIdx, BestIdx.getValue(), Lane); 1821 } else { 1822 // We failed to find a best operand, set mode to 'Failed'. 1823 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1824 // Enable the second pass. 1825 StrategyFailed = true; 1826 } 1827 // Try to get the alternate opcode and follow it during analysis. 1828 if (MainAltOps[OpIdx].size() != 2) { 1829 OperandData &AltOp = getData(OpIdx, Lane); 1830 InstructionsState OpS = 1831 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1832 if (OpS.getOpcode() && OpS.isAltShuffle()) 1833 MainAltOps[OpIdx].push_back(AltOp.V); 1834 } 1835 } 1836 } 1837 } 1838 // Skip second pass if the strategy did not fail. 1839 if (!StrategyFailed) 1840 break; 1841 } 1842 } 1843 1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1845 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1846 switch (RMode) { 1847 case ReorderingMode::Load: 1848 return "Load"; 1849 case ReorderingMode::Opcode: 1850 return "Opcode"; 1851 case ReorderingMode::Constant: 1852 return "Constant"; 1853 case ReorderingMode::Splat: 1854 return "Splat"; 1855 case ReorderingMode::Failed: 1856 return "Failed"; 1857 } 1858 llvm_unreachable("Unimplemented Reordering Type"); 1859 } 1860 1861 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1862 raw_ostream &OS) { 1863 return OS << getModeStr(RMode); 1864 } 1865 1866 /// Debug print. 1867 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1868 printMode(RMode, dbgs()); 1869 } 1870 1871 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1872 return printMode(RMode, OS); 1873 } 1874 1875 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1876 const unsigned Indent = 2; 1877 unsigned Cnt = 0; 1878 for (const OperandDataVec &OpDataVec : OpsVec) { 1879 OS << "Operand " << Cnt++ << "\n"; 1880 for (const OperandData &OpData : OpDataVec) { 1881 OS.indent(Indent) << "{"; 1882 if (Value *V = OpData.V) 1883 OS << *V; 1884 else 1885 OS << "null"; 1886 OS << ", APO:" << OpData.APO << "}\n"; 1887 } 1888 OS << "\n"; 1889 } 1890 return OS; 1891 } 1892 1893 /// Debug print. 1894 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1895 #endif 1896 }; 1897 1898 /// Checks if the instruction is marked for deletion. 1899 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1900 1901 /// Marks values operands for later deletion by replacing them with Undefs. 1902 void eraseInstructions(ArrayRef<Value *> AV); 1903 1904 ~BoUpSLP(); 1905 1906 private: 1907 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1908 /// reordering (i.e. the operands can be reordered because they have only one 1909 /// user and reordarable). 1910 /// \param NonVectorized List of all gather nodes that require reordering 1911 /// (e.g., gather of extractlements or partially vectorizable loads). 1912 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1913 /// reordering, subset of \p NonVectorized. 1914 bool 1915 canReorderOperands(TreeEntry *UserTE, 1916 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1917 ArrayRef<TreeEntry *> ReorderableGathers, 1918 SmallVectorImpl<TreeEntry *> &GatherOps); 1919 1920 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1921 /// if any. If it is not vectorized (gather node), returns nullptr. 1922 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1923 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1924 TreeEntry *TE = nullptr; 1925 const auto *It = find_if(VL, [this, &TE](Value *V) { 1926 TE = getTreeEntry(V); 1927 return TE; 1928 }); 1929 if (It != VL.end() && TE->isSame(VL)) 1930 return TE; 1931 return nullptr; 1932 } 1933 1934 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1935 /// if any. If it is not vectorized (gather node), returns nullptr. 1936 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1937 unsigned OpIdx) const { 1938 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1939 const_cast<TreeEntry *>(UserTE), OpIdx); 1940 } 1941 1942 /// Checks if all users of \p I are the part of the vectorization tree. 1943 bool areAllUsersVectorized(Instruction *I, 1944 ArrayRef<Value *> VectorizedVals) const; 1945 1946 /// \returns the cost of the vectorizable entry. 1947 InstructionCost getEntryCost(const TreeEntry *E, 1948 ArrayRef<Value *> VectorizedVals); 1949 1950 /// This is the recursive part of buildTree. 1951 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1952 const EdgeInfo &EI); 1953 1954 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1955 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1956 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1957 /// returns false, setting \p CurrentOrder to either an empty vector or a 1958 /// non-identity permutation that allows to reuse extract instructions. 1959 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1960 SmallVectorImpl<unsigned> &CurrentOrder) const; 1961 1962 /// Vectorize a single entry in the tree. 1963 Value *vectorizeTree(TreeEntry *E); 1964 1965 /// Vectorize a single entry in the tree, starting in \p VL. 1966 Value *vectorizeTree(ArrayRef<Value *> VL); 1967 1968 /// \returns the scalarization cost for this type. Scalarization in this 1969 /// context means the creation of vectors from a group of scalars. If \p 1970 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1971 /// vector elements. 1972 InstructionCost getGatherCost(FixedVectorType *Ty, 1973 const APInt &ShuffledIndices, 1974 bool NeedToShuffle) const; 1975 1976 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1977 /// tree entries. 1978 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1979 /// previous tree entries. \p Mask is filled with the shuffle mask. 1980 Optional<TargetTransformInfo::ShuffleKind> 1981 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1982 SmallVectorImpl<const TreeEntry *> &Entries); 1983 1984 /// \returns the scalarization cost for this list of values. Assuming that 1985 /// this subtree gets vectorized, we may need to extract the values from the 1986 /// roots. This method calculates the cost of extracting the values. 1987 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1988 1989 /// Set the Builder insert point to one after the last instruction in 1990 /// the bundle 1991 void setInsertPointAfterBundle(const TreeEntry *E); 1992 1993 /// \returns a vector from a collection of scalars in \p VL. 1994 Value *gather(ArrayRef<Value *> VL); 1995 1996 /// \returns whether the VectorizableTree is fully vectorizable and will 1997 /// be beneficial even the tree height is tiny. 1998 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1999 2000 /// Reorder commutative or alt operands to get better probability of 2001 /// generating vectorized code. 2002 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2003 SmallVectorImpl<Value *> &Left, 2004 SmallVectorImpl<Value *> &Right, 2005 const DataLayout &DL, 2006 ScalarEvolution &SE, 2007 const BoUpSLP &R); 2008 struct TreeEntry { 2009 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2010 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2011 2012 /// \returns true if the scalars in VL are equal to this entry. 2013 bool isSame(ArrayRef<Value *> VL) const { 2014 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2015 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2016 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2017 return VL.size() == Mask.size() && 2018 std::equal(VL.begin(), VL.end(), Mask.begin(), 2019 [Scalars](Value *V, int Idx) { 2020 return (isa<UndefValue>(V) && 2021 Idx == UndefMaskElem) || 2022 (Idx != UndefMaskElem && V == Scalars[Idx]); 2023 }); 2024 }; 2025 if (!ReorderIndices.empty()) { 2026 // TODO: implement matching if the nodes are just reordered, still can 2027 // treat the vector as the same if the list of scalars matches VL 2028 // directly, without reordering. 2029 SmallVector<int> Mask; 2030 inversePermutation(ReorderIndices, Mask); 2031 if (VL.size() == Scalars.size()) 2032 return IsSame(Scalars, Mask); 2033 if (VL.size() == ReuseShuffleIndices.size()) { 2034 ::addMask(Mask, ReuseShuffleIndices); 2035 return IsSame(Scalars, Mask); 2036 } 2037 return false; 2038 } 2039 return IsSame(Scalars, ReuseShuffleIndices); 2040 } 2041 2042 /// \returns true if current entry has same operands as \p TE. 2043 bool hasEqualOperands(const TreeEntry &TE) const { 2044 if (TE.getNumOperands() != getNumOperands()) 2045 return false; 2046 SmallBitVector Used(getNumOperands()); 2047 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2048 unsigned PrevCount = Used.count(); 2049 for (unsigned K = 0; K < E; ++K) { 2050 if (Used.test(K)) 2051 continue; 2052 if (getOperand(K) == TE.getOperand(I)) { 2053 Used.set(K); 2054 break; 2055 } 2056 } 2057 // Check if we actually found the matching operand. 2058 if (PrevCount == Used.count()) 2059 return false; 2060 } 2061 return true; 2062 } 2063 2064 /// \return Final vectorization factor for the node. Defined by the total 2065 /// number of vectorized scalars, including those, used several times in the 2066 /// entry and counted in the \a ReuseShuffleIndices, if any. 2067 unsigned getVectorFactor() const { 2068 if (!ReuseShuffleIndices.empty()) 2069 return ReuseShuffleIndices.size(); 2070 return Scalars.size(); 2071 }; 2072 2073 /// A vector of scalars. 2074 ValueList Scalars; 2075 2076 /// The Scalars are vectorized into this value. It is initialized to Null. 2077 Value *VectorizedValue = nullptr; 2078 2079 /// Do we need to gather this sequence or vectorize it 2080 /// (either with vector instruction or with scatter/gather 2081 /// intrinsics for store/load)? 2082 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2083 EntryState State; 2084 2085 /// Does this sequence require some shuffling? 2086 SmallVector<int, 4> ReuseShuffleIndices; 2087 2088 /// Does this entry require reordering? 2089 SmallVector<unsigned, 4> ReorderIndices; 2090 2091 /// Points back to the VectorizableTree. 2092 /// 2093 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2094 /// to be a pointer and needs to be able to initialize the child iterator. 2095 /// Thus we need a reference back to the container to translate the indices 2096 /// to entries. 2097 VecTreeTy &Container; 2098 2099 /// The TreeEntry index containing the user of this entry. We can actually 2100 /// have multiple users so the data structure is not truly a tree. 2101 SmallVector<EdgeInfo, 1> UserTreeIndices; 2102 2103 /// The index of this treeEntry in VectorizableTree. 2104 int Idx = -1; 2105 2106 private: 2107 /// The operands of each instruction in each lane Operands[op_index][lane]. 2108 /// Note: This helps avoid the replication of the code that performs the 2109 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2110 SmallVector<ValueList, 2> Operands; 2111 2112 /// The main/alternate instruction. 2113 Instruction *MainOp = nullptr; 2114 Instruction *AltOp = nullptr; 2115 2116 public: 2117 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2118 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2119 if (Operands.size() < OpIdx + 1) 2120 Operands.resize(OpIdx + 1); 2121 assert(Operands[OpIdx].empty() && "Already resized?"); 2122 assert(OpVL.size() <= Scalars.size() && 2123 "Number of operands is greater than the number of scalars."); 2124 Operands[OpIdx].resize(OpVL.size()); 2125 copy(OpVL, Operands[OpIdx].begin()); 2126 } 2127 2128 /// Set the operands of this bundle in their original order. 2129 void setOperandsInOrder() { 2130 assert(Operands.empty() && "Already initialized?"); 2131 auto *I0 = cast<Instruction>(Scalars[0]); 2132 Operands.resize(I0->getNumOperands()); 2133 unsigned NumLanes = Scalars.size(); 2134 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2135 OpIdx != NumOperands; ++OpIdx) { 2136 Operands[OpIdx].resize(NumLanes); 2137 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2138 auto *I = cast<Instruction>(Scalars[Lane]); 2139 assert(I->getNumOperands() == NumOperands && 2140 "Expected same number of operands"); 2141 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2142 } 2143 } 2144 } 2145 2146 /// Reorders operands of the node to the given mask \p Mask. 2147 void reorderOperands(ArrayRef<int> Mask) { 2148 for (ValueList &Operand : Operands) 2149 reorderScalars(Operand, Mask); 2150 } 2151 2152 /// \returns the \p OpIdx operand of this TreeEntry. 2153 ValueList &getOperand(unsigned OpIdx) { 2154 assert(OpIdx < Operands.size() && "Off bounds"); 2155 return Operands[OpIdx]; 2156 } 2157 2158 /// \returns the \p OpIdx operand of this TreeEntry. 2159 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2160 assert(OpIdx < Operands.size() && "Off bounds"); 2161 return Operands[OpIdx]; 2162 } 2163 2164 /// \returns the number of operands. 2165 unsigned getNumOperands() const { return Operands.size(); } 2166 2167 /// \return the single \p OpIdx operand. 2168 Value *getSingleOperand(unsigned OpIdx) const { 2169 assert(OpIdx < Operands.size() && "Off bounds"); 2170 assert(!Operands[OpIdx].empty() && "No operand available"); 2171 return Operands[OpIdx][0]; 2172 } 2173 2174 /// Some of the instructions in the list have alternate opcodes. 2175 bool isAltShuffle() const { return MainOp != AltOp; } 2176 2177 bool isOpcodeOrAlt(Instruction *I) const { 2178 unsigned CheckedOpcode = I->getOpcode(); 2179 return (getOpcode() == CheckedOpcode || 2180 getAltOpcode() == CheckedOpcode); 2181 } 2182 2183 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2184 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2185 /// \p OpValue. 2186 Value *isOneOf(Value *Op) const { 2187 auto *I = dyn_cast<Instruction>(Op); 2188 if (I && isOpcodeOrAlt(I)) 2189 return Op; 2190 return MainOp; 2191 } 2192 2193 void setOperations(const InstructionsState &S) { 2194 MainOp = S.MainOp; 2195 AltOp = S.AltOp; 2196 } 2197 2198 Instruction *getMainOp() const { 2199 return MainOp; 2200 } 2201 2202 Instruction *getAltOp() const { 2203 return AltOp; 2204 } 2205 2206 /// The main/alternate opcodes for the list of instructions. 2207 unsigned getOpcode() const { 2208 return MainOp ? MainOp->getOpcode() : 0; 2209 } 2210 2211 unsigned getAltOpcode() const { 2212 return AltOp ? AltOp->getOpcode() : 0; 2213 } 2214 2215 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2216 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2217 int findLaneForValue(Value *V) const { 2218 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2219 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2220 if (!ReorderIndices.empty()) 2221 FoundLane = ReorderIndices[FoundLane]; 2222 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2223 if (!ReuseShuffleIndices.empty()) { 2224 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2225 find(ReuseShuffleIndices, FoundLane)); 2226 } 2227 return FoundLane; 2228 } 2229 2230 #ifndef NDEBUG 2231 /// Debug printer. 2232 LLVM_DUMP_METHOD void dump() const { 2233 dbgs() << Idx << ".\n"; 2234 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2235 dbgs() << "Operand " << OpI << ":\n"; 2236 for (const Value *V : Operands[OpI]) 2237 dbgs().indent(2) << *V << "\n"; 2238 } 2239 dbgs() << "Scalars: \n"; 2240 for (Value *V : Scalars) 2241 dbgs().indent(2) << *V << "\n"; 2242 dbgs() << "State: "; 2243 switch (State) { 2244 case Vectorize: 2245 dbgs() << "Vectorize\n"; 2246 break; 2247 case ScatterVectorize: 2248 dbgs() << "ScatterVectorize\n"; 2249 break; 2250 case NeedToGather: 2251 dbgs() << "NeedToGather\n"; 2252 break; 2253 } 2254 dbgs() << "MainOp: "; 2255 if (MainOp) 2256 dbgs() << *MainOp << "\n"; 2257 else 2258 dbgs() << "NULL\n"; 2259 dbgs() << "AltOp: "; 2260 if (AltOp) 2261 dbgs() << *AltOp << "\n"; 2262 else 2263 dbgs() << "NULL\n"; 2264 dbgs() << "VectorizedValue: "; 2265 if (VectorizedValue) 2266 dbgs() << *VectorizedValue << "\n"; 2267 else 2268 dbgs() << "NULL\n"; 2269 dbgs() << "ReuseShuffleIndices: "; 2270 if (ReuseShuffleIndices.empty()) 2271 dbgs() << "Empty"; 2272 else 2273 for (int ReuseIdx : ReuseShuffleIndices) 2274 dbgs() << ReuseIdx << ", "; 2275 dbgs() << "\n"; 2276 dbgs() << "ReorderIndices: "; 2277 for (unsigned ReorderIdx : ReorderIndices) 2278 dbgs() << ReorderIdx << ", "; 2279 dbgs() << "\n"; 2280 dbgs() << "UserTreeIndices: "; 2281 for (const auto &EInfo : UserTreeIndices) 2282 dbgs() << EInfo << ", "; 2283 dbgs() << "\n"; 2284 } 2285 #endif 2286 }; 2287 2288 #ifndef NDEBUG 2289 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2290 InstructionCost VecCost, 2291 InstructionCost ScalarCost) const { 2292 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2293 dbgs() << "SLP: Costs:\n"; 2294 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2295 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2296 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2297 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2298 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2299 } 2300 #endif 2301 2302 /// Create a new VectorizableTree entry. 2303 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2304 const InstructionsState &S, 2305 const EdgeInfo &UserTreeIdx, 2306 ArrayRef<int> ReuseShuffleIndices = None, 2307 ArrayRef<unsigned> ReorderIndices = None) { 2308 TreeEntry::EntryState EntryState = 2309 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2310 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2311 ReuseShuffleIndices, ReorderIndices); 2312 } 2313 2314 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2315 TreeEntry::EntryState EntryState, 2316 Optional<ScheduleData *> Bundle, 2317 const InstructionsState &S, 2318 const EdgeInfo &UserTreeIdx, 2319 ArrayRef<int> ReuseShuffleIndices = None, 2320 ArrayRef<unsigned> ReorderIndices = None) { 2321 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2322 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2323 "Need to vectorize gather entry?"); 2324 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2325 TreeEntry *Last = VectorizableTree.back().get(); 2326 Last->Idx = VectorizableTree.size() - 1; 2327 Last->State = EntryState; 2328 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2329 ReuseShuffleIndices.end()); 2330 if (ReorderIndices.empty()) { 2331 Last->Scalars.assign(VL.begin(), VL.end()); 2332 Last->setOperations(S); 2333 } else { 2334 // Reorder scalars and build final mask. 2335 Last->Scalars.assign(VL.size(), nullptr); 2336 transform(ReorderIndices, Last->Scalars.begin(), 2337 [VL](unsigned Idx) -> Value * { 2338 if (Idx >= VL.size()) 2339 return UndefValue::get(VL.front()->getType()); 2340 return VL[Idx]; 2341 }); 2342 InstructionsState S = getSameOpcode(Last->Scalars); 2343 Last->setOperations(S); 2344 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2345 } 2346 if (Last->State != TreeEntry::NeedToGather) { 2347 for (Value *V : VL) { 2348 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2349 ScalarToTreeEntry[V] = Last; 2350 } 2351 // Update the scheduler bundle to point to this TreeEntry. 2352 unsigned Lane = 0; 2353 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2354 BundleMember = BundleMember->NextInBundle) { 2355 BundleMember->TE = Last; 2356 BundleMember->Lane = Lane; 2357 ++Lane; 2358 } 2359 assert((!Bundle.getValue() || Lane == VL.size()) && 2360 "Bundle and VL out of sync"); 2361 } else { 2362 MustGather.insert(VL.begin(), VL.end()); 2363 } 2364 2365 if (UserTreeIdx.UserTE) 2366 Last->UserTreeIndices.push_back(UserTreeIdx); 2367 2368 return Last; 2369 } 2370 2371 /// -- Vectorization State -- 2372 /// Holds all of the tree entries. 2373 TreeEntry::VecTreeTy VectorizableTree; 2374 2375 #ifndef NDEBUG 2376 /// Debug printer. 2377 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2378 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2379 VectorizableTree[Id]->dump(); 2380 dbgs() << "\n"; 2381 } 2382 } 2383 #endif 2384 2385 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2386 2387 const TreeEntry *getTreeEntry(Value *V) const { 2388 return ScalarToTreeEntry.lookup(V); 2389 } 2390 2391 /// Maps a specific scalar to its tree entry. 2392 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2393 2394 /// Maps a value to the proposed vectorizable size. 2395 SmallDenseMap<Value *, unsigned> InstrElementSize; 2396 2397 /// A list of scalars that we found that we need to keep as scalars. 2398 ValueSet MustGather; 2399 2400 /// This POD struct describes one external user in the vectorized tree. 2401 struct ExternalUser { 2402 ExternalUser(Value *S, llvm::User *U, int L) 2403 : Scalar(S), User(U), Lane(L) {} 2404 2405 // Which scalar in our function. 2406 Value *Scalar; 2407 2408 // Which user that uses the scalar. 2409 llvm::User *User; 2410 2411 // Which lane does the scalar belong to. 2412 int Lane; 2413 }; 2414 using UserList = SmallVector<ExternalUser, 16>; 2415 2416 /// Checks if two instructions may access the same memory. 2417 /// 2418 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2419 /// is invariant in the calling loop. 2420 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2421 Instruction *Inst2) { 2422 // First check if the result is already in the cache. 2423 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2424 Optional<bool> &result = AliasCache[key]; 2425 if (result.hasValue()) { 2426 return result.getValue(); 2427 } 2428 bool aliased = true; 2429 if (Loc1.Ptr && isSimple(Inst1)) 2430 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2431 // Store the result in the cache. 2432 result = aliased; 2433 return aliased; 2434 } 2435 2436 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2437 2438 /// Cache for alias results. 2439 /// TODO: consider moving this to the AliasAnalysis itself. 2440 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2441 2442 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2443 // globally through SLP because we don't perform any action which 2444 // invalidates capture results. 2445 BatchAAResults BatchAA; 2446 2447 /// Removes an instruction from its block and eventually deletes it. 2448 /// It's like Instruction::eraseFromParent() except that the actual deletion 2449 /// is delayed until BoUpSLP is destructed. 2450 /// This is required to ensure that there are no incorrect collisions in the 2451 /// AliasCache, which can happen if a new instruction is allocated at the 2452 /// same address as a previously deleted instruction. 2453 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2454 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2455 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2456 } 2457 2458 /// Temporary store for deleted instructions. Instructions will be deleted 2459 /// eventually when the BoUpSLP is destructed. 2460 DenseMap<Instruction *, bool> DeletedInstructions; 2461 2462 /// A list of values that need to extracted out of the tree. 2463 /// This list holds pairs of (Internal Scalar : External User). External User 2464 /// can be nullptr, it means that this Internal Scalar will be used later, 2465 /// after vectorization. 2466 UserList ExternalUses; 2467 2468 /// Values used only by @llvm.assume calls. 2469 SmallPtrSet<const Value *, 32> EphValues; 2470 2471 /// Holds all of the instructions that we gathered. 2472 SetVector<Instruction *> GatherShuffleSeq; 2473 2474 /// A list of blocks that we are going to CSE. 2475 SetVector<BasicBlock *> CSEBlocks; 2476 2477 /// Contains all scheduling relevant data for an instruction. 2478 /// A ScheduleData either represents a single instruction or a member of an 2479 /// instruction bundle (= a group of instructions which is combined into a 2480 /// vector instruction). 2481 struct ScheduleData { 2482 // The initial value for the dependency counters. It means that the 2483 // dependencies are not calculated yet. 2484 enum { InvalidDeps = -1 }; 2485 2486 ScheduleData() = default; 2487 2488 void init(int BlockSchedulingRegionID, Value *OpVal) { 2489 FirstInBundle = this; 2490 NextInBundle = nullptr; 2491 NextLoadStore = nullptr; 2492 IsScheduled = false; 2493 SchedulingRegionID = BlockSchedulingRegionID; 2494 clearDependencies(); 2495 OpValue = OpVal; 2496 TE = nullptr; 2497 Lane = -1; 2498 } 2499 2500 /// Verify basic self consistency properties 2501 void verify() { 2502 if (hasValidDependencies()) { 2503 assert(UnscheduledDeps <= Dependencies && "invariant"); 2504 } else { 2505 assert(UnscheduledDeps == Dependencies && "invariant"); 2506 } 2507 2508 if (IsScheduled) { 2509 assert(isSchedulingEntity() && 2510 "unexpected scheduled state"); 2511 for (const ScheduleData *BundleMember = this; BundleMember; 2512 BundleMember = BundleMember->NextInBundle) { 2513 assert(BundleMember->hasValidDependencies() && 2514 BundleMember->UnscheduledDeps == 0 && 2515 "unexpected scheduled state"); 2516 assert((BundleMember == this || !BundleMember->IsScheduled) && 2517 "only bundle is marked scheduled"); 2518 } 2519 } 2520 2521 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2522 "all bundle members must be in same basic block"); 2523 } 2524 2525 /// Returns true if the dependency information has been calculated. 2526 /// Note that depenendency validity can vary between instructions within 2527 /// a single bundle. 2528 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2529 2530 /// Returns true for single instructions and for bundle representatives 2531 /// (= the head of a bundle). 2532 bool isSchedulingEntity() const { return FirstInBundle == this; } 2533 2534 /// Returns true if it represents an instruction bundle and not only a 2535 /// single instruction. 2536 bool isPartOfBundle() const { 2537 return NextInBundle != nullptr || FirstInBundle != this; 2538 } 2539 2540 /// Returns true if it is ready for scheduling, i.e. it has no more 2541 /// unscheduled depending instructions/bundles. 2542 bool isReady() const { 2543 assert(isSchedulingEntity() && 2544 "can't consider non-scheduling entity for ready list"); 2545 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2546 } 2547 2548 /// Modifies the number of unscheduled dependencies for this instruction, 2549 /// and returns the number of remaining dependencies for the containing 2550 /// bundle. 2551 int incrementUnscheduledDeps(int Incr) { 2552 assert(hasValidDependencies() && 2553 "increment of unscheduled deps would be meaningless"); 2554 UnscheduledDeps += Incr; 2555 return FirstInBundle->unscheduledDepsInBundle(); 2556 } 2557 2558 /// Sets the number of unscheduled dependencies to the number of 2559 /// dependencies. 2560 void resetUnscheduledDeps() { 2561 UnscheduledDeps = Dependencies; 2562 } 2563 2564 /// Clears all dependency information. 2565 void clearDependencies() { 2566 Dependencies = InvalidDeps; 2567 resetUnscheduledDeps(); 2568 MemoryDependencies.clear(); 2569 } 2570 2571 int unscheduledDepsInBundle() const { 2572 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2573 int Sum = 0; 2574 for (const ScheduleData *BundleMember = this; BundleMember; 2575 BundleMember = BundleMember->NextInBundle) { 2576 if (BundleMember->UnscheduledDeps == InvalidDeps) 2577 return InvalidDeps; 2578 Sum += BundleMember->UnscheduledDeps; 2579 } 2580 return Sum; 2581 } 2582 2583 void dump(raw_ostream &os) const { 2584 if (!isSchedulingEntity()) { 2585 os << "/ " << *Inst; 2586 } else if (NextInBundle) { 2587 os << '[' << *Inst; 2588 ScheduleData *SD = NextInBundle; 2589 while (SD) { 2590 os << ';' << *SD->Inst; 2591 SD = SD->NextInBundle; 2592 } 2593 os << ']'; 2594 } else { 2595 os << *Inst; 2596 } 2597 } 2598 2599 Instruction *Inst = nullptr; 2600 2601 /// Opcode of the current instruction in the schedule data. 2602 Value *OpValue = nullptr; 2603 2604 /// The TreeEntry that this instruction corresponds to. 2605 TreeEntry *TE = nullptr; 2606 2607 /// Points to the head in an instruction bundle (and always to this for 2608 /// single instructions). 2609 ScheduleData *FirstInBundle = nullptr; 2610 2611 /// Single linked list of all instructions in a bundle. Null if it is a 2612 /// single instruction. 2613 ScheduleData *NextInBundle = nullptr; 2614 2615 /// Single linked list of all memory instructions (e.g. load, store, call) 2616 /// in the block - until the end of the scheduling region. 2617 ScheduleData *NextLoadStore = nullptr; 2618 2619 /// The dependent memory instructions. 2620 /// This list is derived on demand in calculateDependencies(). 2621 SmallVector<ScheduleData *, 4> MemoryDependencies; 2622 2623 /// This ScheduleData is in the current scheduling region if this matches 2624 /// the current SchedulingRegionID of BlockScheduling. 2625 int SchedulingRegionID = 0; 2626 2627 /// Used for getting a "good" final ordering of instructions. 2628 int SchedulingPriority = 0; 2629 2630 /// The number of dependencies. Constitutes of the number of users of the 2631 /// instruction plus the number of dependent memory instructions (if any). 2632 /// This value is calculated on demand. 2633 /// If InvalidDeps, the number of dependencies is not calculated yet. 2634 int Dependencies = InvalidDeps; 2635 2636 /// The number of dependencies minus the number of dependencies of scheduled 2637 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2638 /// for scheduling. 2639 /// Note that this is negative as long as Dependencies is not calculated. 2640 int UnscheduledDeps = InvalidDeps; 2641 2642 /// The lane of this node in the TreeEntry. 2643 int Lane = -1; 2644 2645 /// True if this instruction is scheduled (or considered as scheduled in the 2646 /// dry-run). 2647 bool IsScheduled = false; 2648 }; 2649 2650 #ifndef NDEBUG 2651 friend inline raw_ostream &operator<<(raw_ostream &os, 2652 const BoUpSLP::ScheduleData &SD) { 2653 SD.dump(os); 2654 return os; 2655 } 2656 #endif 2657 2658 friend struct GraphTraits<BoUpSLP *>; 2659 friend struct DOTGraphTraits<BoUpSLP *>; 2660 2661 /// Contains all scheduling data for a basic block. 2662 struct BlockScheduling { 2663 BlockScheduling(BasicBlock *BB) 2664 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2665 2666 void clear() { 2667 ReadyInsts.clear(); 2668 ScheduleStart = nullptr; 2669 ScheduleEnd = nullptr; 2670 FirstLoadStoreInRegion = nullptr; 2671 LastLoadStoreInRegion = nullptr; 2672 2673 // Reduce the maximum schedule region size by the size of the 2674 // previous scheduling run. 2675 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2676 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2677 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2678 ScheduleRegionSize = 0; 2679 2680 // Make a new scheduling region, i.e. all existing ScheduleData is not 2681 // in the new region yet. 2682 ++SchedulingRegionID; 2683 } 2684 2685 ScheduleData *getScheduleData(Instruction *I) { 2686 if (BB != I->getParent()) 2687 // Avoid lookup if can't possibly be in map. 2688 return nullptr; 2689 ScheduleData *SD = ScheduleDataMap[I]; 2690 if (SD && isInSchedulingRegion(SD)) 2691 return SD; 2692 return nullptr; 2693 } 2694 2695 ScheduleData *getScheduleData(Value *V) { 2696 if (auto *I = dyn_cast<Instruction>(V)) 2697 return getScheduleData(I); 2698 return nullptr; 2699 } 2700 2701 ScheduleData *getScheduleData(Value *V, Value *Key) { 2702 if (V == Key) 2703 return getScheduleData(V); 2704 auto I = ExtraScheduleDataMap.find(V); 2705 if (I != ExtraScheduleDataMap.end()) { 2706 ScheduleData *SD = I->second[Key]; 2707 if (SD && isInSchedulingRegion(SD)) 2708 return SD; 2709 } 2710 return nullptr; 2711 } 2712 2713 bool isInSchedulingRegion(ScheduleData *SD) const { 2714 return SD->SchedulingRegionID == SchedulingRegionID; 2715 } 2716 2717 /// Marks an instruction as scheduled and puts all dependent ready 2718 /// instructions into the ready-list. 2719 template <typename ReadyListType> 2720 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2721 SD->IsScheduled = true; 2722 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2723 2724 for (ScheduleData *BundleMember = SD; BundleMember; 2725 BundleMember = BundleMember->NextInBundle) { 2726 if (BundleMember->Inst != BundleMember->OpValue) 2727 continue; 2728 2729 // Handle the def-use chain dependencies. 2730 2731 // Decrement the unscheduled counter and insert to ready list if ready. 2732 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2733 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2734 if (OpDef && OpDef->hasValidDependencies() && 2735 OpDef->incrementUnscheduledDeps(-1) == 0) { 2736 // There are no more unscheduled dependencies after 2737 // decrementing, so we can put the dependent instruction 2738 // into the ready list. 2739 ScheduleData *DepBundle = OpDef->FirstInBundle; 2740 assert(!DepBundle->IsScheduled && 2741 "already scheduled bundle gets ready"); 2742 ReadyList.insert(DepBundle); 2743 LLVM_DEBUG(dbgs() 2744 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2745 } 2746 }); 2747 }; 2748 2749 // If BundleMember is a vector bundle, its operands may have been 2750 // reordered during buildTree(). We therefore need to get its operands 2751 // through the TreeEntry. 2752 if (TreeEntry *TE = BundleMember->TE) { 2753 int Lane = BundleMember->Lane; 2754 assert(Lane >= 0 && "Lane not set"); 2755 2756 // Since vectorization tree is being built recursively this assertion 2757 // ensures that the tree entry has all operands set before reaching 2758 // this code. Couple of exceptions known at the moment are extracts 2759 // where their second (immediate) operand is not added. Since 2760 // immediates do not affect scheduler behavior this is considered 2761 // okay. 2762 auto *In = TE->getMainOp(); 2763 assert(In && 2764 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2765 In->getNumOperands() == TE->getNumOperands()) && 2766 "Missed TreeEntry operands?"); 2767 (void)In; // fake use to avoid build failure when assertions disabled 2768 2769 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2770 OpIdx != NumOperands; ++OpIdx) 2771 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2772 DecrUnsched(I); 2773 } else { 2774 // If BundleMember is a stand-alone instruction, no operand reordering 2775 // has taken place, so we directly access its operands. 2776 for (Use &U : BundleMember->Inst->operands()) 2777 if (auto *I = dyn_cast<Instruction>(U.get())) 2778 DecrUnsched(I); 2779 } 2780 // Handle the memory dependencies. 2781 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2782 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2783 // There are no more unscheduled dependencies after decrementing, 2784 // so we can put the dependent instruction into the ready list. 2785 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2786 assert(!DepBundle->IsScheduled && 2787 "already scheduled bundle gets ready"); 2788 ReadyList.insert(DepBundle); 2789 LLVM_DEBUG(dbgs() 2790 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2791 } 2792 } 2793 } 2794 } 2795 2796 /// Verify basic self consistency properties of the data structure. 2797 void verify() { 2798 if (!ScheduleStart) 2799 return; 2800 2801 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2802 ScheduleStart->comesBefore(ScheduleEnd) && 2803 "Not a valid scheduling region?"); 2804 2805 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2806 auto *SD = getScheduleData(I); 2807 assert(SD && "primary scheduledata must exist in window"); 2808 assert(isInSchedulingRegion(SD) && 2809 "primary schedule data not in window?"); 2810 assert(isInSchedulingRegion(SD->FirstInBundle) && 2811 "entire bundle in window!"); 2812 (void)SD; 2813 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2814 } 2815 2816 for (auto *SD : ReadyInsts) { 2817 assert(SD->isSchedulingEntity() && SD->isReady() && 2818 "item in ready list not ready?"); 2819 (void)SD; 2820 } 2821 } 2822 2823 void doForAllOpcodes(Value *V, 2824 function_ref<void(ScheduleData *SD)> Action) { 2825 if (ScheduleData *SD = getScheduleData(V)) 2826 Action(SD); 2827 auto I = ExtraScheduleDataMap.find(V); 2828 if (I != ExtraScheduleDataMap.end()) 2829 for (auto &P : I->second) 2830 if (isInSchedulingRegion(P.second)) 2831 Action(P.second); 2832 } 2833 2834 /// Put all instructions into the ReadyList which are ready for scheduling. 2835 template <typename ReadyListType> 2836 void initialFillReadyList(ReadyListType &ReadyList) { 2837 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2838 doForAllOpcodes(I, [&](ScheduleData *SD) { 2839 if (SD->isSchedulingEntity() && SD->isReady()) { 2840 ReadyList.insert(SD); 2841 LLVM_DEBUG(dbgs() 2842 << "SLP: initially in ready list: " << *SD << "\n"); 2843 } 2844 }); 2845 } 2846 } 2847 2848 /// Build a bundle from the ScheduleData nodes corresponding to the 2849 /// scalar instruction for each lane. 2850 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2851 2852 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2853 /// cyclic dependencies. This is only a dry-run, no instructions are 2854 /// actually moved at this stage. 2855 /// \returns the scheduling bundle. The returned Optional value is non-None 2856 /// if \p VL is allowed to be scheduled. 2857 Optional<ScheduleData *> 2858 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2859 const InstructionsState &S); 2860 2861 /// Un-bundles a group of instructions. 2862 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2863 2864 /// Allocates schedule data chunk. 2865 ScheduleData *allocateScheduleDataChunks(); 2866 2867 /// Extends the scheduling region so that V is inside the region. 2868 /// \returns true if the region size is within the limit. 2869 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2870 2871 /// Initialize the ScheduleData structures for new instructions in the 2872 /// scheduling region. 2873 void initScheduleData(Instruction *FromI, Instruction *ToI, 2874 ScheduleData *PrevLoadStore, 2875 ScheduleData *NextLoadStore); 2876 2877 /// Updates the dependency information of a bundle and of all instructions/ 2878 /// bundles which depend on the original bundle. 2879 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2880 BoUpSLP *SLP); 2881 2882 /// Sets all instruction in the scheduling region to un-scheduled. 2883 void resetSchedule(); 2884 2885 BasicBlock *BB; 2886 2887 /// Simple memory allocation for ScheduleData. 2888 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2889 2890 /// The size of a ScheduleData array in ScheduleDataChunks. 2891 int ChunkSize; 2892 2893 /// The allocator position in the current chunk, which is the last entry 2894 /// of ScheduleDataChunks. 2895 int ChunkPos; 2896 2897 /// Attaches ScheduleData to Instruction. 2898 /// Note that the mapping survives during all vectorization iterations, i.e. 2899 /// ScheduleData structures are recycled. 2900 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2901 2902 /// Attaches ScheduleData to Instruction with the leading key. 2903 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2904 ExtraScheduleDataMap; 2905 2906 /// The ready-list for scheduling (only used for the dry-run). 2907 SetVector<ScheduleData *> ReadyInsts; 2908 2909 /// The first instruction of the scheduling region. 2910 Instruction *ScheduleStart = nullptr; 2911 2912 /// The first instruction _after_ the scheduling region. 2913 Instruction *ScheduleEnd = nullptr; 2914 2915 /// The first memory accessing instruction in the scheduling region 2916 /// (can be null). 2917 ScheduleData *FirstLoadStoreInRegion = nullptr; 2918 2919 /// The last memory accessing instruction in the scheduling region 2920 /// (can be null). 2921 ScheduleData *LastLoadStoreInRegion = nullptr; 2922 2923 /// The current size of the scheduling region. 2924 int ScheduleRegionSize = 0; 2925 2926 /// The maximum size allowed for the scheduling region. 2927 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2928 2929 /// The ID of the scheduling region. For a new vectorization iteration this 2930 /// is incremented which "removes" all ScheduleData from the region. 2931 /// Make sure that the initial SchedulingRegionID is greater than the 2932 /// initial SchedulingRegionID in ScheduleData (which is 0). 2933 int SchedulingRegionID = 1; 2934 }; 2935 2936 /// Attaches the BlockScheduling structures to basic blocks. 2937 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2938 2939 /// Performs the "real" scheduling. Done before vectorization is actually 2940 /// performed in a basic block. 2941 void scheduleBlock(BlockScheduling *BS); 2942 2943 /// List of users to ignore during scheduling and that don't need extracting. 2944 ArrayRef<Value *> UserIgnoreList; 2945 2946 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2947 /// sorted SmallVectors of unsigned. 2948 struct OrdersTypeDenseMapInfo { 2949 static OrdersType getEmptyKey() { 2950 OrdersType V; 2951 V.push_back(~1U); 2952 return V; 2953 } 2954 2955 static OrdersType getTombstoneKey() { 2956 OrdersType V; 2957 V.push_back(~2U); 2958 return V; 2959 } 2960 2961 static unsigned getHashValue(const OrdersType &V) { 2962 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2963 } 2964 2965 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2966 return LHS == RHS; 2967 } 2968 }; 2969 2970 // Analysis and block reference. 2971 Function *F; 2972 ScalarEvolution *SE; 2973 TargetTransformInfo *TTI; 2974 TargetLibraryInfo *TLI; 2975 LoopInfo *LI; 2976 DominatorTree *DT; 2977 AssumptionCache *AC; 2978 DemandedBits *DB; 2979 const DataLayout *DL; 2980 OptimizationRemarkEmitter *ORE; 2981 2982 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2983 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2984 2985 /// Instruction builder to construct the vectorized tree. 2986 IRBuilder<> Builder; 2987 2988 /// A map of scalar integer values to the smallest bit width with which they 2989 /// can legally be represented. The values map to (width, signed) pairs, 2990 /// where "width" indicates the minimum bit width and "signed" is True if the 2991 /// value must be signed-extended, rather than zero-extended, back to its 2992 /// original width. 2993 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2994 }; 2995 2996 } // end namespace slpvectorizer 2997 2998 template <> struct GraphTraits<BoUpSLP *> { 2999 using TreeEntry = BoUpSLP::TreeEntry; 3000 3001 /// NodeRef has to be a pointer per the GraphWriter. 3002 using NodeRef = TreeEntry *; 3003 3004 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3005 3006 /// Add the VectorizableTree to the index iterator to be able to return 3007 /// TreeEntry pointers. 3008 struct ChildIteratorType 3009 : public iterator_adaptor_base< 3010 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3011 ContainerTy &VectorizableTree; 3012 3013 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3014 ContainerTy &VT) 3015 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3016 3017 NodeRef operator*() { return I->UserTE; } 3018 }; 3019 3020 static NodeRef getEntryNode(BoUpSLP &R) { 3021 return R.VectorizableTree[0].get(); 3022 } 3023 3024 static ChildIteratorType child_begin(NodeRef N) { 3025 return {N->UserTreeIndices.begin(), N->Container}; 3026 } 3027 3028 static ChildIteratorType child_end(NodeRef N) { 3029 return {N->UserTreeIndices.end(), N->Container}; 3030 } 3031 3032 /// For the node iterator we just need to turn the TreeEntry iterator into a 3033 /// TreeEntry* iterator so that it dereferences to NodeRef. 3034 class nodes_iterator { 3035 using ItTy = ContainerTy::iterator; 3036 ItTy It; 3037 3038 public: 3039 nodes_iterator(const ItTy &It2) : It(It2) {} 3040 NodeRef operator*() { return It->get(); } 3041 nodes_iterator operator++() { 3042 ++It; 3043 return *this; 3044 } 3045 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3046 }; 3047 3048 static nodes_iterator nodes_begin(BoUpSLP *R) { 3049 return nodes_iterator(R->VectorizableTree.begin()); 3050 } 3051 3052 static nodes_iterator nodes_end(BoUpSLP *R) { 3053 return nodes_iterator(R->VectorizableTree.end()); 3054 } 3055 3056 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3057 }; 3058 3059 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3060 using TreeEntry = BoUpSLP::TreeEntry; 3061 3062 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3063 3064 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3065 std::string Str; 3066 raw_string_ostream OS(Str); 3067 if (isSplat(Entry->Scalars)) 3068 OS << "<splat> "; 3069 for (auto V : Entry->Scalars) { 3070 OS << *V; 3071 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3072 return EU.Scalar == V; 3073 })) 3074 OS << " <extract>"; 3075 OS << "\n"; 3076 } 3077 return Str; 3078 } 3079 3080 static std::string getNodeAttributes(const TreeEntry *Entry, 3081 const BoUpSLP *) { 3082 if (Entry->State == TreeEntry::NeedToGather) 3083 return "color=red"; 3084 return ""; 3085 } 3086 }; 3087 3088 } // end namespace llvm 3089 3090 BoUpSLP::~BoUpSLP() { 3091 for (const auto &Pair : DeletedInstructions) { 3092 // Replace operands of ignored instructions with Undefs in case if they were 3093 // marked for deletion. 3094 if (Pair.getSecond()) { 3095 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3096 Pair.getFirst()->replaceAllUsesWith(Undef); 3097 } 3098 Pair.getFirst()->dropAllReferences(); 3099 } 3100 for (const auto &Pair : DeletedInstructions) { 3101 assert(Pair.getFirst()->use_empty() && 3102 "trying to erase instruction with users."); 3103 Pair.getFirst()->eraseFromParent(); 3104 } 3105 #ifdef EXPENSIVE_CHECKS 3106 // If we could guarantee that this call is not extremely slow, we could 3107 // remove the ifdef limitation (see PR47712). 3108 assert(!verifyFunction(*F, &dbgs())); 3109 #endif 3110 } 3111 3112 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3113 for (auto *V : AV) { 3114 if (auto *I = dyn_cast<Instruction>(V)) 3115 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3116 }; 3117 } 3118 3119 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3120 /// contains original mask for the scalars reused in the node. Procedure 3121 /// transform this mask in accordance with the given \p Mask. 3122 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3123 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3124 "Expected non-empty mask."); 3125 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3126 Prev.swap(Reuses); 3127 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3128 if (Mask[I] != UndefMaskElem) 3129 Reuses[Mask[I]] = Prev[I]; 3130 } 3131 3132 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3133 /// the original order of the scalars. Procedure transforms the provided order 3134 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3135 /// identity order, \p Order is cleared. 3136 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3137 assert(!Mask.empty() && "Expected non-empty mask."); 3138 SmallVector<int> MaskOrder; 3139 if (Order.empty()) { 3140 MaskOrder.resize(Mask.size()); 3141 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3142 } else { 3143 inversePermutation(Order, MaskOrder); 3144 } 3145 reorderReuses(MaskOrder, Mask); 3146 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3147 Order.clear(); 3148 return; 3149 } 3150 Order.assign(Mask.size(), Mask.size()); 3151 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3152 if (MaskOrder[I] != UndefMaskElem) 3153 Order[MaskOrder[I]] = I; 3154 fixupOrderingIndices(Order); 3155 } 3156 3157 Optional<BoUpSLP::OrdersType> 3158 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3159 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3160 unsigned NumScalars = TE.Scalars.size(); 3161 OrdersType CurrentOrder(NumScalars, NumScalars); 3162 SmallVector<int> Positions; 3163 SmallBitVector UsedPositions(NumScalars); 3164 const TreeEntry *STE = nullptr; 3165 // Try to find all gathered scalars that are gets vectorized in other 3166 // vectorize node. Here we can have only one single tree vector node to 3167 // correctly identify order of the gathered scalars. 3168 for (unsigned I = 0; I < NumScalars; ++I) { 3169 Value *V = TE.Scalars[I]; 3170 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3171 continue; 3172 if (const auto *LocalSTE = getTreeEntry(V)) { 3173 if (!STE) 3174 STE = LocalSTE; 3175 else if (STE != LocalSTE) 3176 // Take the order only from the single vector node. 3177 return None; 3178 unsigned Lane = 3179 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3180 if (Lane >= NumScalars) 3181 return None; 3182 if (CurrentOrder[Lane] != NumScalars) { 3183 if (Lane != I) 3184 continue; 3185 UsedPositions.reset(CurrentOrder[Lane]); 3186 } 3187 // The partial identity (where only some elements of the gather node are 3188 // in the identity order) is good. 3189 CurrentOrder[Lane] = I; 3190 UsedPositions.set(I); 3191 } 3192 } 3193 // Need to keep the order if we have a vector entry and at least 2 scalars or 3194 // the vectorized entry has just 2 scalars. 3195 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3196 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3197 for (unsigned I = 0; I < NumScalars; ++I) 3198 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3199 return false; 3200 return true; 3201 }; 3202 if (IsIdentityOrder(CurrentOrder)) { 3203 CurrentOrder.clear(); 3204 return CurrentOrder; 3205 } 3206 auto *It = CurrentOrder.begin(); 3207 for (unsigned I = 0; I < NumScalars;) { 3208 if (UsedPositions.test(I)) { 3209 ++I; 3210 continue; 3211 } 3212 if (*It == NumScalars) { 3213 *It = I; 3214 ++I; 3215 } 3216 ++It; 3217 } 3218 return CurrentOrder; 3219 } 3220 return None; 3221 } 3222 3223 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3224 bool TopToBottom) { 3225 // No need to reorder if need to shuffle reuses, still need to shuffle the 3226 // node. 3227 if (!TE.ReuseShuffleIndices.empty()) 3228 return None; 3229 if (TE.State == TreeEntry::Vectorize && 3230 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3231 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3232 !TE.isAltShuffle()) 3233 return TE.ReorderIndices; 3234 if (TE.State == TreeEntry::NeedToGather) { 3235 // TODO: add analysis of other gather nodes with extractelement 3236 // instructions and other values/instructions, not only undefs. 3237 if (((TE.getOpcode() == Instruction::ExtractElement && 3238 !TE.isAltShuffle()) || 3239 (all_of(TE.Scalars, 3240 [](Value *V) { 3241 return isa<UndefValue, ExtractElementInst>(V); 3242 }) && 3243 any_of(TE.Scalars, 3244 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3245 all_of(TE.Scalars, 3246 [](Value *V) { 3247 auto *EE = dyn_cast<ExtractElementInst>(V); 3248 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3249 }) && 3250 allSameType(TE.Scalars)) { 3251 // Check that gather of extractelements can be represented as 3252 // just a shuffle of a single vector. 3253 OrdersType CurrentOrder; 3254 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3255 if (Reuse || !CurrentOrder.empty()) { 3256 if (!CurrentOrder.empty()) 3257 fixupOrderingIndices(CurrentOrder); 3258 return CurrentOrder; 3259 } 3260 } 3261 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3262 return CurrentOrder; 3263 } 3264 return None; 3265 } 3266 3267 void BoUpSLP::reorderTopToBottom() { 3268 // Maps VF to the graph nodes. 3269 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3270 // ExtractElement gather nodes which can be vectorized and need to handle 3271 // their ordering. 3272 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3273 // Find all reorderable nodes with the given VF. 3274 // Currently the are vectorized stores,loads,extracts + some gathering of 3275 // extracts. 3276 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3277 const std::unique_ptr<TreeEntry> &TE) { 3278 if (Optional<OrdersType> CurrentOrder = 3279 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3280 // Do not include ordering for nodes used in the alt opcode vectorization, 3281 // better to reorder them during bottom-to-top stage. If follow the order 3282 // here, it causes reordering of the whole graph though actually it is 3283 // profitable just to reorder the subgraph that starts from the alternate 3284 // opcode vectorization node. Such nodes already end-up with the shuffle 3285 // instruction and it is just enough to change this shuffle rather than 3286 // rotate the scalars for the whole graph. 3287 unsigned Cnt = 0; 3288 const TreeEntry *UserTE = TE.get(); 3289 while (UserTE && Cnt < RecursionMaxDepth) { 3290 if (UserTE->UserTreeIndices.size() != 1) 3291 break; 3292 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3293 return EI.UserTE->State == TreeEntry::Vectorize && 3294 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3295 })) 3296 return; 3297 if (UserTE->UserTreeIndices.empty()) 3298 UserTE = nullptr; 3299 else 3300 UserTE = UserTE->UserTreeIndices.back().UserTE; 3301 ++Cnt; 3302 } 3303 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3304 if (TE->State != TreeEntry::Vectorize) 3305 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3306 } 3307 }); 3308 3309 // Reorder the graph nodes according to their vectorization factor. 3310 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3311 VF /= 2) { 3312 auto It = VFToOrderedEntries.find(VF); 3313 if (It == VFToOrderedEntries.end()) 3314 continue; 3315 // Try to find the most profitable order. We just are looking for the most 3316 // used order and reorder scalar elements in the nodes according to this 3317 // mostly used order. 3318 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3319 // All operands are reordered and used only in this node - propagate the 3320 // most used order to the user node. 3321 MapVector<OrdersType, unsigned, 3322 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3323 OrdersUses; 3324 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3325 for (const TreeEntry *OpTE : OrderedEntries) { 3326 // No need to reorder this nodes, still need to extend and to use shuffle, 3327 // just need to merge reordering shuffle and the reuse shuffle. 3328 if (!OpTE->ReuseShuffleIndices.empty()) 3329 continue; 3330 // Count number of orders uses. 3331 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3332 if (OpTE->State == TreeEntry::NeedToGather) 3333 return GathersToOrders.find(OpTE)->second; 3334 return OpTE->ReorderIndices; 3335 }(); 3336 // Stores actually store the mask, not the order, need to invert. 3337 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3338 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3339 SmallVector<int> Mask; 3340 inversePermutation(Order, Mask); 3341 unsigned E = Order.size(); 3342 OrdersType CurrentOrder(E, E); 3343 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3344 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3345 }); 3346 fixupOrderingIndices(CurrentOrder); 3347 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3348 } else { 3349 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3350 } 3351 } 3352 // Set order of the user node. 3353 if (OrdersUses.empty()) 3354 continue; 3355 // Choose the most used order. 3356 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3357 unsigned Cnt = OrdersUses.front().second; 3358 for (const auto &Pair : drop_begin(OrdersUses)) { 3359 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3360 BestOrder = Pair.first; 3361 Cnt = Pair.second; 3362 } 3363 } 3364 // Set order of the user node. 3365 if (BestOrder.empty()) 3366 continue; 3367 SmallVector<int> Mask; 3368 inversePermutation(BestOrder, Mask); 3369 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3370 unsigned E = BestOrder.size(); 3371 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3372 return I < E ? static_cast<int>(I) : UndefMaskElem; 3373 }); 3374 // Do an actual reordering, if profitable. 3375 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3376 // Just do the reordering for the nodes with the given VF. 3377 if (TE->Scalars.size() != VF) { 3378 if (TE->ReuseShuffleIndices.size() == VF) { 3379 // Need to reorder the reuses masks of the operands with smaller VF to 3380 // be able to find the match between the graph nodes and scalar 3381 // operands of the given node during vectorization/cost estimation. 3382 assert(all_of(TE->UserTreeIndices, 3383 [VF, &TE](const EdgeInfo &EI) { 3384 return EI.UserTE->Scalars.size() == VF || 3385 EI.UserTE->Scalars.size() == 3386 TE->Scalars.size(); 3387 }) && 3388 "All users must be of VF size."); 3389 // Update ordering of the operands with the smaller VF than the given 3390 // one. 3391 reorderReuses(TE->ReuseShuffleIndices, Mask); 3392 } 3393 continue; 3394 } 3395 if (TE->State == TreeEntry::Vectorize && 3396 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3397 InsertElementInst>(TE->getMainOp()) && 3398 !TE->isAltShuffle()) { 3399 // Build correct orders for extract{element,value}, loads and 3400 // stores. 3401 reorderOrder(TE->ReorderIndices, Mask); 3402 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3403 TE->reorderOperands(Mask); 3404 } else { 3405 // Reorder the node and its operands. 3406 TE->reorderOperands(Mask); 3407 assert(TE->ReorderIndices.empty() && 3408 "Expected empty reorder sequence."); 3409 reorderScalars(TE->Scalars, Mask); 3410 } 3411 if (!TE->ReuseShuffleIndices.empty()) { 3412 // Apply reversed order to keep the original ordering of the reused 3413 // elements to avoid extra reorder indices shuffling. 3414 OrdersType CurrentOrder; 3415 reorderOrder(CurrentOrder, MaskOrder); 3416 SmallVector<int> NewReuses; 3417 inversePermutation(CurrentOrder, NewReuses); 3418 addMask(NewReuses, TE->ReuseShuffleIndices); 3419 TE->ReuseShuffleIndices.swap(NewReuses); 3420 } 3421 } 3422 } 3423 } 3424 3425 bool BoUpSLP::canReorderOperands( 3426 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3427 ArrayRef<TreeEntry *> ReorderableGathers, 3428 SmallVectorImpl<TreeEntry *> &GatherOps) { 3429 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3430 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3431 return OpData.first == I && 3432 OpData.second->State == TreeEntry::Vectorize; 3433 })) 3434 continue; 3435 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3436 // Do not reorder if operand node is used by many user nodes. 3437 if (any_of(TE->UserTreeIndices, 3438 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3439 return false; 3440 // Add the node to the list of the ordered nodes with the identity 3441 // order. 3442 Edges.emplace_back(I, TE); 3443 continue; 3444 } 3445 ArrayRef<Value *> VL = UserTE->getOperand(I); 3446 TreeEntry *Gather = nullptr; 3447 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3448 assert(TE->State != TreeEntry::Vectorize && 3449 "Only non-vectorized nodes are expected."); 3450 if (TE->isSame(VL)) { 3451 Gather = TE; 3452 return true; 3453 } 3454 return false; 3455 }) > 1) 3456 return false; 3457 if (Gather) 3458 GatherOps.push_back(Gather); 3459 } 3460 return true; 3461 } 3462 3463 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3464 SetVector<TreeEntry *> OrderedEntries; 3465 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3466 // Find all reorderable leaf nodes with the given VF. 3467 // Currently the are vectorized loads,extracts without alternate operands + 3468 // some gathering of extracts. 3469 SmallVector<TreeEntry *> NonVectorized; 3470 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3471 &NonVectorized]( 3472 const std::unique_ptr<TreeEntry> &TE) { 3473 if (TE->State != TreeEntry::Vectorize) 3474 NonVectorized.push_back(TE.get()); 3475 if (Optional<OrdersType> CurrentOrder = 3476 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3477 OrderedEntries.insert(TE.get()); 3478 if (TE->State != TreeEntry::Vectorize) 3479 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3480 } 3481 }); 3482 3483 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3484 // I.e., if the node has operands, that are reordered, try to make at least 3485 // one operand order in the natural order and reorder others + reorder the 3486 // user node itself. 3487 SmallPtrSet<const TreeEntry *, 4> Visited; 3488 while (!OrderedEntries.empty()) { 3489 // 1. Filter out only reordered nodes. 3490 // 2. If the entry has multiple uses - skip it and jump to the next node. 3491 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3492 SmallVector<TreeEntry *> Filtered; 3493 for (TreeEntry *TE : OrderedEntries) { 3494 if (!(TE->State == TreeEntry::Vectorize || 3495 (TE->State == TreeEntry::NeedToGather && 3496 GathersToOrders.count(TE))) || 3497 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3498 !all_of(drop_begin(TE->UserTreeIndices), 3499 [TE](const EdgeInfo &EI) { 3500 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3501 }) || 3502 !Visited.insert(TE).second) { 3503 Filtered.push_back(TE); 3504 continue; 3505 } 3506 // Build a map between user nodes and their operands order to speedup 3507 // search. The graph currently does not provide this dependency directly. 3508 for (EdgeInfo &EI : TE->UserTreeIndices) { 3509 TreeEntry *UserTE = EI.UserTE; 3510 auto It = Users.find(UserTE); 3511 if (It == Users.end()) 3512 It = Users.insert({UserTE, {}}).first; 3513 It->second.emplace_back(EI.EdgeIdx, TE); 3514 } 3515 } 3516 // Erase filtered entries. 3517 for_each(Filtered, 3518 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3519 for (auto &Data : Users) { 3520 // Check that operands are used only in the User node. 3521 SmallVector<TreeEntry *> GatherOps; 3522 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3523 GatherOps)) { 3524 for_each(Data.second, 3525 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3526 OrderedEntries.remove(Op.second); 3527 }); 3528 continue; 3529 } 3530 // All operands are reordered and used only in this node - propagate the 3531 // most used order to the user node. 3532 MapVector<OrdersType, unsigned, 3533 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3534 OrdersUses; 3535 // Do the analysis for each tree entry only once, otherwise the order of 3536 // the same node my be considered several times, though might be not 3537 // profitable. 3538 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3539 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3540 for (const auto &Op : Data.second) { 3541 TreeEntry *OpTE = Op.second; 3542 if (!VisitedOps.insert(OpTE).second) 3543 continue; 3544 if (!OpTE->ReuseShuffleIndices.empty() || 3545 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3546 continue; 3547 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3548 if (OpTE->State == TreeEntry::NeedToGather) 3549 return GathersToOrders.find(OpTE)->second; 3550 return OpTE->ReorderIndices; 3551 }(); 3552 unsigned NumOps = count_if( 3553 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3554 return P.second == OpTE; 3555 }); 3556 // Stores actually store the mask, not the order, need to invert. 3557 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3558 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3559 SmallVector<int> Mask; 3560 inversePermutation(Order, Mask); 3561 unsigned E = Order.size(); 3562 OrdersType CurrentOrder(E, E); 3563 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3564 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3565 }); 3566 fixupOrderingIndices(CurrentOrder); 3567 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3568 NumOps; 3569 } else { 3570 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3571 } 3572 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3573 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3574 const TreeEntry *TE) { 3575 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3576 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3577 (IgnoreReorder && TE->Idx == 0)) 3578 return true; 3579 if (TE->State == TreeEntry::NeedToGather) { 3580 auto It = GathersToOrders.find(TE); 3581 if (It != GathersToOrders.end()) 3582 return !It->second.empty(); 3583 return true; 3584 } 3585 return false; 3586 }; 3587 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3588 TreeEntry *UserTE = EI.UserTE; 3589 if (!VisitedUsers.insert(UserTE).second) 3590 continue; 3591 // May reorder user node if it requires reordering, has reused 3592 // scalars, is an alternate op vectorize node or its op nodes require 3593 // reordering. 3594 if (AllowsReordering(UserTE)) 3595 continue; 3596 // Check if users allow reordering. 3597 // Currently look up just 1 level of operands to avoid increase of 3598 // the compile time. 3599 // Profitable to reorder if definitely more operands allow 3600 // reordering rather than those with natural order. 3601 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3602 if (static_cast<unsigned>(count_if( 3603 Ops, [UserTE, &AllowsReordering]( 3604 const std::pair<unsigned, TreeEntry *> &Op) { 3605 return AllowsReordering(Op.second) && 3606 all_of(Op.second->UserTreeIndices, 3607 [UserTE](const EdgeInfo &EI) { 3608 return EI.UserTE == UserTE; 3609 }); 3610 })) <= Ops.size() / 2) 3611 ++Res.first->second; 3612 } 3613 } 3614 // If no orders - skip current nodes and jump to the next one, if any. 3615 if (OrdersUses.empty()) { 3616 for_each(Data.second, 3617 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3618 OrderedEntries.remove(Op.second); 3619 }); 3620 continue; 3621 } 3622 // Choose the best order. 3623 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3624 unsigned Cnt = OrdersUses.front().second; 3625 for (const auto &Pair : drop_begin(OrdersUses)) { 3626 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3627 BestOrder = Pair.first; 3628 Cnt = Pair.second; 3629 } 3630 } 3631 // Set order of the user node (reordering of operands and user nodes). 3632 if (BestOrder.empty()) { 3633 for_each(Data.second, 3634 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3635 OrderedEntries.remove(Op.second); 3636 }); 3637 continue; 3638 } 3639 // Erase operands from OrderedEntries list and adjust their orders. 3640 VisitedOps.clear(); 3641 SmallVector<int> Mask; 3642 inversePermutation(BestOrder, Mask); 3643 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3644 unsigned E = BestOrder.size(); 3645 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3646 return I < E ? static_cast<int>(I) : UndefMaskElem; 3647 }); 3648 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3649 TreeEntry *TE = Op.second; 3650 OrderedEntries.remove(TE); 3651 if (!VisitedOps.insert(TE).second) 3652 continue; 3653 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3654 // Just reorder reuses indices. 3655 reorderReuses(TE->ReuseShuffleIndices, Mask); 3656 continue; 3657 } 3658 // Gathers are processed separately. 3659 if (TE->State != TreeEntry::Vectorize) 3660 continue; 3661 assert((BestOrder.size() == TE->ReorderIndices.size() || 3662 TE->ReorderIndices.empty()) && 3663 "Non-matching sizes of user/operand entries."); 3664 reorderOrder(TE->ReorderIndices, Mask); 3665 } 3666 // For gathers just need to reorder its scalars. 3667 for (TreeEntry *Gather : GatherOps) { 3668 assert(Gather->ReorderIndices.empty() && 3669 "Unexpected reordering of gathers."); 3670 if (!Gather->ReuseShuffleIndices.empty()) { 3671 // Just reorder reuses indices. 3672 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3673 continue; 3674 } 3675 reorderScalars(Gather->Scalars, Mask); 3676 OrderedEntries.remove(Gather); 3677 } 3678 // Reorder operands of the user node and set the ordering for the user 3679 // node itself. 3680 if (Data.first->State != TreeEntry::Vectorize || 3681 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3682 Data.first->getMainOp()) || 3683 Data.first->isAltShuffle()) 3684 Data.first->reorderOperands(Mask); 3685 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3686 Data.first->isAltShuffle()) { 3687 reorderScalars(Data.first->Scalars, Mask); 3688 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3689 if (Data.first->ReuseShuffleIndices.empty() && 3690 !Data.first->ReorderIndices.empty() && 3691 !Data.first->isAltShuffle()) { 3692 // Insert user node to the list to try to sink reordering deeper in 3693 // the graph. 3694 OrderedEntries.insert(Data.first); 3695 } 3696 } else { 3697 reorderOrder(Data.first->ReorderIndices, Mask); 3698 } 3699 } 3700 } 3701 // If the reordering is unnecessary, just remove the reorder. 3702 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3703 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3704 VectorizableTree.front()->ReorderIndices.clear(); 3705 } 3706 3707 void BoUpSLP::buildExternalUses( 3708 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3709 // Collect the values that we need to extract from the tree. 3710 for (auto &TEPtr : VectorizableTree) { 3711 TreeEntry *Entry = TEPtr.get(); 3712 3713 // No need to handle users of gathered values. 3714 if (Entry->State == TreeEntry::NeedToGather) 3715 continue; 3716 3717 // For each lane: 3718 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3719 Value *Scalar = Entry->Scalars[Lane]; 3720 int FoundLane = Entry->findLaneForValue(Scalar); 3721 3722 // Check if the scalar is externally used as an extra arg. 3723 auto ExtI = ExternallyUsedValues.find(Scalar); 3724 if (ExtI != ExternallyUsedValues.end()) { 3725 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3726 << Lane << " from " << *Scalar << ".\n"); 3727 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3728 } 3729 for (User *U : Scalar->users()) { 3730 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3731 3732 Instruction *UserInst = dyn_cast<Instruction>(U); 3733 if (!UserInst) 3734 continue; 3735 3736 if (isDeleted(UserInst)) 3737 continue; 3738 3739 // Skip in-tree scalars that become vectors 3740 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3741 Value *UseScalar = UseEntry->Scalars[0]; 3742 // Some in-tree scalars will remain as scalar in vectorized 3743 // instructions. If that is the case, the one in Lane 0 will 3744 // be used. 3745 if (UseScalar != U || 3746 UseEntry->State == TreeEntry::ScatterVectorize || 3747 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3748 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3749 << ".\n"); 3750 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3751 continue; 3752 } 3753 } 3754 3755 // Ignore users in the user ignore list. 3756 if (is_contained(UserIgnoreList, UserInst)) 3757 continue; 3758 3759 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3760 << Lane << " from " << *Scalar << ".\n"); 3761 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3762 } 3763 } 3764 } 3765 } 3766 3767 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3768 ArrayRef<Value *> UserIgnoreLst) { 3769 deleteTree(); 3770 UserIgnoreList = UserIgnoreLst; 3771 if (!allSameType(Roots)) 3772 return; 3773 buildTree_rec(Roots, 0, EdgeInfo()); 3774 } 3775 3776 namespace { 3777 /// Tracks the state we can represent the loads in the given sequence. 3778 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3779 } // anonymous namespace 3780 3781 /// Checks if the given array of loads can be represented as a vectorized, 3782 /// scatter or just simple gather. 3783 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3784 const TargetTransformInfo &TTI, 3785 const DataLayout &DL, ScalarEvolution &SE, 3786 SmallVectorImpl<unsigned> &Order, 3787 SmallVectorImpl<Value *> &PointerOps) { 3788 // Check that a vectorized load would load the same memory as a scalar 3789 // load. For example, we don't want to vectorize loads that are smaller 3790 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3791 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3792 // from such a struct, we read/write packed bits disagreeing with the 3793 // unvectorized version. 3794 Type *ScalarTy = VL0->getType(); 3795 3796 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3797 return LoadsState::Gather; 3798 3799 // Make sure all loads in the bundle are simple - we can't vectorize 3800 // atomic or volatile loads. 3801 PointerOps.clear(); 3802 PointerOps.resize(VL.size()); 3803 auto *POIter = PointerOps.begin(); 3804 for (Value *V : VL) { 3805 auto *L = cast<LoadInst>(V); 3806 if (!L->isSimple()) 3807 return LoadsState::Gather; 3808 *POIter = L->getPointerOperand(); 3809 ++POIter; 3810 } 3811 3812 Order.clear(); 3813 // Check the order of pointer operands. 3814 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3815 Value *Ptr0; 3816 Value *PtrN; 3817 if (Order.empty()) { 3818 Ptr0 = PointerOps.front(); 3819 PtrN = PointerOps.back(); 3820 } else { 3821 Ptr0 = PointerOps[Order.front()]; 3822 PtrN = PointerOps[Order.back()]; 3823 } 3824 Optional<int> Diff = 3825 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3826 // Check that the sorted loads are consecutive. 3827 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3828 return LoadsState::Vectorize; 3829 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3830 for (Value *V : VL) 3831 CommonAlignment = 3832 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3833 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3834 CommonAlignment)) 3835 return LoadsState::ScatterVectorize; 3836 } 3837 3838 return LoadsState::Gather; 3839 } 3840 3841 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3842 const EdgeInfo &UserTreeIdx) { 3843 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3844 3845 SmallVector<int> ReuseShuffleIndicies; 3846 SmallVector<Value *> UniqueValues; 3847 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3848 &UserTreeIdx, 3849 this](const InstructionsState &S) { 3850 // Check that every instruction appears once in this bundle. 3851 DenseMap<Value *, unsigned> UniquePositions; 3852 for (Value *V : VL) { 3853 if (isConstant(V)) { 3854 ReuseShuffleIndicies.emplace_back( 3855 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3856 UniqueValues.emplace_back(V); 3857 continue; 3858 } 3859 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3860 ReuseShuffleIndicies.emplace_back(Res.first->second); 3861 if (Res.second) 3862 UniqueValues.emplace_back(V); 3863 } 3864 size_t NumUniqueScalarValues = UniqueValues.size(); 3865 if (NumUniqueScalarValues == VL.size()) { 3866 ReuseShuffleIndicies.clear(); 3867 } else { 3868 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3869 if (NumUniqueScalarValues <= 1 || 3870 (UniquePositions.size() == 1 && all_of(UniqueValues, 3871 [](Value *V) { 3872 return isa<UndefValue>(V) || 3873 !isConstant(V); 3874 })) || 3875 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3876 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3877 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3878 return false; 3879 } 3880 VL = UniqueValues; 3881 } 3882 return true; 3883 }; 3884 3885 InstructionsState S = getSameOpcode(VL); 3886 if (Depth == RecursionMaxDepth) { 3887 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3888 if (TryToFindDuplicates(S)) 3889 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3890 ReuseShuffleIndicies); 3891 return; 3892 } 3893 3894 // Don't handle scalable vectors 3895 if (S.getOpcode() == Instruction::ExtractElement && 3896 isa<ScalableVectorType>( 3897 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3898 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3899 if (TryToFindDuplicates(S)) 3900 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3901 ReuseShuffleIndicies); 3902 return; 3903 } 3904 3905 // Don't handle vectors. 3906 if (S.OpValue->getType()->isVectorTy() && 3907 !isa<InsertElementInst>(S.OpValue)) { 3908 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3909 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3910 return; 3911 } 3912 3913 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3914 if (SI->getValueOperand()->getType()->isVectorTy()) { 3915 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3916 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3917 return; 3918 } 3919 3920 // If all of the operands are identical or constant we have a simple solution. 3921 // If we deal with insert/extract instructions, they all must have constant 3922 // indices, otherwise we should gather them, not try to vectorize. 3923 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3924 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3925 !all_of(VL, isVectorLikeInstWithConstOps))) { 3926 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3927 if (TryToFindDuplicates(S)) 3928 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3929 ReuseShuffleIndicies); 3930 return; 3931 } 3932 3933 // We now know that this is a vector of instructions of the same type from 3934 // the same block. 3935 3936 // Don't vectorize ephemeral values. 3937 for (Value *V : VL) { 3938 if (EphValues.count(V)) { 3939 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3940 << ") is ephemeral.\n"); 3941 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3942 return; 3943 } 3944 } 3945 3946 // Check if this is a duplicate of another entry. 3947 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3948 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3949 if (!E->isSame(VL)) { 3950 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3951 if (TryToFindDuplicates(S)) 3952 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3953 ReuseShuffleIndicies); 3954 return; 3955 } 3956 // Record the reuse of the tree node. FIXME, currently this is only used to 3957 // properly draw the graph rather than for the actual vectorization. 3958 E->UserTreeIndices.push_back(UserTreeIdx); 3959 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3960 << ".\n"); 3961 return; 3962 } 3963 3964 // Check that none of the instructions in the bundle are already in the tree. 3965 for (Value *V : VL) { 3966 auto *I = dyn_cast<Instruction>(V); 3967 if (!I) 3968 continue; 3969 if (getTreeEntry(I)) { 3970 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3971 << ") is already in tree.\n"); 3972 if (TryToFindDuplicates(S)) 3973 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3974 ReuseShuffleIndicies); 3975 return; 3976 } 3977 } 3978 3979 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3980 for (Value *V : VL) { 3981 if (is_contained(UserIgnoreList, V)) { 3982 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3983 if (TryToFindDuplicates(S)) 3984 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3985 ReuseShuffleIndicies); 3986 return; 3987 } 3988 } 3989 3990 // Check that all of the users of the scalars that we want to vectorize are 3991 // schedulable. 3992 auto *VL0 = cast<Instruction>(S.OpValue); 3993 BasicBlock *BB = VL0->getParent(); 3994 3995 if (!DT->isReachableFromEntry(BB)) { 3996 // Don't go into unreachable blocks. They may contain instructions with 3997 // dependency cycles which confuse the final scheduling. 3998 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3999 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4000 return; 4001 } 4002 4003 // Check that every instruction appears once in this bundle. 4004 if (!TryToFindDuplicates(S)) 4005 return; 4006 4007 auto &BSRef = BlocksSchedules[BB]; 4008 if (!BSRef) 4009 BSRef = std::make_unique<BlockScheduling>(BB); 4010 4011 BlockScheduling &BS = *BSRef.get(); 4012 4013 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4014 #ifdef EXPENSIVE_CHECKS 4015 // Make sure we didn't break any internal invariants 4016 BS.verify(); 4017 #endif 4018 if (!Bundle) { 4019 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4020 assert((!BS.getScheduleData(VL0) || 4021 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4022 "tryScheduleBundle should cancelScheduling on failure"); 4023 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4024 ReuseShuffleIndicies); 4025 return; 4026 } 4027 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4028 4029 unsigned ShuffleOrOp = S.isAltShuffle() ? 4030 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4031 switch (ShuffleOrOp) { 4032 case Instruction::PHI: { 4033 auto *PH = cast<PHINode>(VL0); 4034 4035 // Check for terminator values (e.g. invoke). 4036 for (Value *V : VL) 4037 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4038 Instruction *Term = dyn_cast<Instruction>( 4039 cast<PHINode>(V)->getIncomingValueForBlock( 4040 PH->getIncomingBlock(I))); 4041 if (Term && Term->isTerminator()) { 4042 LLVM_DEBUG(dbgs() 4043 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4044 BS.cancelScheduling(VL, VL0); 4045 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4046 ReuseShuffleIndicies); 4047 return; 4048 } 4049 } 4050 4051 TreeEntry *TE = 4052 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4053 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4054 4055 // Keeps the reordered operands to avoid code duplication. 4056 SmallVector<ValueList, 2> OperandsVec; 4057 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4058 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4059 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4060 TE->setOperand(I, Operands); 4061 OperandsVec.push_back(Operands); 4062 continue; 4063 } 4064 ValueList Operands; 4065 // Prepare the operand vector. 4066 for (Value *V : VL) 4067 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4068 PH->getIncomingBlock(I))); 4069 TE->setOperand(I, Operands); 4070 OperandsVec.push_back(Operands); 4071 } 4072 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4073 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4074 return; 4075 } 4076 case Instruction::ExtractValue: 4077 case Instruction::ExtractElement: { 4078 OrdersType CurrentOrder; 4079 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4080 if (Reuse) { 4081 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4082 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4083 ReuseShuffleIndicies); 4084 // This is a special case, as it does not gather, but at the same time 4085 // we are not extending buildTree_rec() towards the operands. 4086 ValueList Op0; 4087 Op0.assign(VL.size(), VL0->getOperand(0)); 4088 VectorizableTree.back()->setOperand(0, Op0); 4089 return; 4090 } 4091 if (!CurrentOrder.empty()) { 4092 LLVM_DEBUG({ 4093 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4094 "with order"; 4095 for (unsigned Idx : CurrentOrder) 4096 dbgs() << " " << Idx; 4097 dbgs() << "\n"; 4098 }); 4099 fixupOrderingIndices(CurrentOrder); 4100 // Insert new order with initial value 0, if it does not exist, 4101 // otherwise return the iterator to the existing one. 4102 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4103 ReuseShuffleIndicies, CurrentOrder); 4104 // This is a special case, as it does not gather, but at the same time 4105 // we are not extending buildTree_rec() towards the operands. 4106 ValueList Op0; 4107 Op0.assign(VL.size(), VL0->getOperand(0)); 4108 VectorizableTree.back()->setOperand(0, Op0); 4109 return; 4110 } 4111 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4112 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4113 ReuseShuffleIndicies); 4114 BS.cancelScheduling(VL, VL0); 4115 return; 4116 } 4117 case Instruction::InsertElement: { 4118 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4119 4120 // Check that we have a buildvector and not a shuffle of 2 or more 4121 // different vectors. 4122 ValueSet SourceVectors; 4123 for (Value *V : VL) { 4124 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4125 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4126 } 4127 4128 if (count_if(VL, [&SourceVectors](Value *V) { 4129 return !SourceVectors.contains(V); 4130 }) >= 2) { 4131 // Found 2nd source vector - cancel. 4132 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4133 "different source vectors.\n"); 4134 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4135 BS.cancelScheduling(VL, VL0); 4136 return; 4137 } 4138 4139 auto OrdCompare = [](const std::pair<int, int> &P1, 4140 const std::pair<int, int> &P2) { 4141 return P1.first > P2.first; 4142 }; 4143 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4144 decltype(OrdCompare)> 4145 Indices(OrdCompare); 4146 for (int I = 0, E = VL.size(); I < E; ++I) { 4147 unsigned Idx = *getInsertIndex(VL[I]); 4148 Indices.emplace(Idx, I); 4149 } 4150 OrdersType CurrentOrder(VL.size(), VL.size()); 4151 bool IsIdentity = true; 4152 for (int I = 0, E = VL.size(); I < E; ++I) { 4153 CurrentOrder[Indices.top().second] = I; 4154 IsIdentity &= Indices.top().second == I; 4155 Indices.pop(); 4156 } 4157 if (IsIdentity) 4158 CurrentOrder.clear(); 4159 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4160 None, CurrentOrder); 4161 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4162 4163 constexpr int NumOps = 2; 4164 ValueList VectorOperands[NumOps]; 4165 for (int I = 0; I < NumOps; ++I) { 4166 for (Value *V : VL) 4167 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4168 4169 TE->setOperand(I, VectorOperands[I]); 4170 } 4171 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4172 return; 4173 } 4174 case Instruction::Load: { 4175 // Check that a vectorized load would load the same memory as a scalar 4176 // load. For example, we don't want to vectorize loads that are smaller 4177 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4178 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4179 // from such a struct, we read/write packed bits disagreeing with the 4180 // unvectorized version. 4181 SmallVector<Value *> PointerOps; 4182 OrdersType CurrentOrder; 4183 TreeEntry *TE = nullptr; 4184 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4185 PointerOps)) { 4186 case LoadsState::Vectorize: 4187 if (CurrentOrder.empty()) { 4188 // Original loads are consecutive and does not require reordering. 4189 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4190 ReuseShuffleIndicies); 4191 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4192 } else { 4193 fixupOrderingIndices(CurrentOrder); 4194 // Need to reorder. 4195 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4196 ReuseShuffleIndicies, CurrentOrder); 4197 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4198 } 4199 TE->setOperandsInOrder(); 4200 break; 4201 case LoadsState::ScatterVectorize: 4202 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4203 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4204 UserTreeIdx, ReuseShuffleIndicies); 4205 TE->setOperandsInOrder(); 4206 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4207 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4208 break; 4209 case LoadsState::Gather: 4210 BS.cancelScheduling(VL, VL0); 4211 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4212 ReuseShuffleIndicies); 4213 #ifndef NDEBUG 4214 Type *ScalarTy = VL0->getType(); 4215 if (DL->getTypeSizeInBits(ScalarTy) != 4216 DL->getTypeAllocSizeInBits(ScalarTy)) 4217 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4218 else if (any_of(VL, [](Value *V) { 4219 return !cast<LoadInst>(V)->isSimple(); 4220 })) 4221 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4222 else 4223 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4224 #endif // NDEBUG 4225 break; 4226 } 4227 return; 4228 } 4229 case Instruction::ZExt: 4230 case Instruction::SExt: 4231 case Instruction::FPToUI: 4232 case Instruction::FPToSI: 4233 case Instruction::FPExt: 4234 case Instruction::PtrToInt: 4235 case Instruction::IntToPtr: 4236 case Instruction::SIToFP: 4237 case Instruction::UIToFP: 4238 case Instruction::Trunc: 4239 case Instruction::FPTrunc: 4240 case Instruction::BitCast: { 4241 Type *SrcTy = VL0->getOperand(0)->getType(); 4242 for (Value *V : VL) { 4243 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4244 if (Ty != SrcTy || !isValidElementType(Ty)) { 4245 BS.cancelScheduling(VL, VL0); 4246 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4247 ReuseShuffleIndicies); 4248 LLVM_DEBUG(dbgs() 4249 << "SLP: Gathering casts with different src types.\n"); 4250 return; 4251 } 4252 } 4253 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4254 ReuseShuffleIndicies); 4255 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4256 4257 TE->setOperandsInOrder(); 4258 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4259 ValueList Operands; 4260 // Prepare the operand vector. 4261 for (Value *V : VL) 4262 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4263 4264 buildTree_rec(Operands, Depth + 1, {TE, i}); 4265 } 4266 return; 4267 } 4268 case Instruction::ICmp: 4269 case Instruction::FCmp: { 4270 // Check that all of the compares have the same predicate. 4271 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4272 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4273 Type *ComparedTy = VL0->getOperand(0)->getType(); 4274 for (Value *V : VL) { 4275 CmpInst *Cmp = cast<CmpInst>(V); 4276 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4277 Cmp->getOperand(0)->getType() != ComparedTy) { 4278 BS.cancelScheduling(VL, VL0); 4279 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4280 ReuseShuffleIndicies); 4281 LLVM_DEBUG(dbgs() 4282 << "SLP: Gathering cmp with different predicate.\n"); 4283 return; 4284 } 4285 } 4286 4287 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4288 ReuseShuffleIndicies); 4289 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4290 4291 ValueList Left, Right; 4292 if (cast<CmpInst>(VL0)->isCommutative()) { 4293 // Commutative predicate - collect + sort operands of the instructions 4294 // so that each side is more likely to have the same opcode. 4295 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4296 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4297 } else { 4298 // Collect operands - commute if it uses the swapped predicate. 4299 for (Value *V : VL) { 4300 auto *Cmp = cast<CmpInst>(V); 4301 Value *LHS = Cmp->getOperand(0); 4302 Value *RHS = Cmp->getOperand(1); 4303 if (Cmp->getPredicate() != P0) 4304 std::swap(LHS, RHS); 4305 Left.push_back(LHS); 4306 Right.push_back(RHS); 4307 } 4308 } 4309 TE->setOperand(0, Left); 4310 TE->setOperand(1, Right); 4311 buildTree_rec(Left, Depth + 1, {TE, 0}); 4312 buildTree_rec(Right, Depth + 1, {TE, 1}); 4313 return; 4314 } 4315 case Instruction::Select: 4316 case Instruction::FNeg: 4317 case Instruction::Add: 4318 case Instruction::FAdd: 4319 case Instruction::Sub: 4320 case Instruction::FSub: 4321 case Instruction::Mul: 4322 case Instruction::FMul: 4323 case Instruction::UDiv: 4324 case Instruction::SDiv: 4325 case Instruction::FDiv: 4326 case Instruction::URem: 4327 case Instruction::SRem: 4328 case Instruction::FRem: 4329 case Instruction::Shl: 4330 case Instruction::LShr: 4331 case Instruction::AShr: 4332 case Instruction::And: 4333 case Instruction::Or: 4334 case Instruction::Xor: { 4335 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4336 ReuseShuffleIndicies); 4337 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4338 4339 // Sort operands of the instructions so that each side is more likely to 4340 // have the same opcode. 4341 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4342 ValueList Left, Right; 4343 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4344 TE->setOperand(0, Left); 4345 TE->setOperand(1, Right); 4346 buildTree_rec(Left, Depth + 1, {TE, 0}); 4347 buildTree_rec(Right, Depth + 1, {TE, 1}); 4348 return; 4349 } 4350 4351 TE->setOperandsInOrder(); 4352 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4353 ValueList Operands; 4354 // Prepare the operand vector. 4355 for (Value *V : VL) 4356 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4357 4358 buildTree_rec(Operands, Depth + 1, {TE, i}); 4359 } 4360 return; 4361 } 4362 case Instruction::GetElementPtr: { 4363 // We don't combine GEPs with complicated (nested) indexing. 4364 for (Value *V : VL) { 4365 if (cast<Instruction>(V)->getNumOperands() != 2) { 4366 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4367 BS.cancelScheduling(VL, VL0); 4368 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4369 ReuseShuffleIndicies); 4370 return; 4371 } 4372 } 4373 4374 // We can't combine several GEPs into one vector if they operate on 4375 // different types. 4376 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4377 for (Value *V : VL) { 4378 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4379 if (Ty0 != CurTy) { 4380 LLVM_DEBUG(dbgs() 4381 << "SLP: not-vectorizable GEP (different types).\n"); 4382 BS.cancelScheduling(VL, VL0); 4383 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4384 ReuseShuffleIndicies); 4385 return; 4386 } 4387 } 4388 4389 // We don't combine GEPs with non-constant indexes. 4390 Type *Ty1 = VL0->getOperand(1)->getType(); 4391 for (Value *V : VL) { 4392 auto Op = cast<Instruction>(V)->getOperand(1); 4393 if (!isa<ConstantInt>(Op) || 4394 (Op->getType() != Ty1 && 4395 Op->getType()->getScalarSizeInBits() > 4396 DL->getIndexSizeInBits( 4397 V->getType()->getPointerAddressSpace()))) { 4398 LLVM_DEBUG(dbgs() 4399 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4400 BS.cancelScheduling(VL, VL0); 4401 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4402 ReuseShuffleIndicies); 4403 return; 4404 } 4405 } 4406 4407 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4408 ReuseShuffleIndicies); 4409 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4410 SmallVector<ValueList, 2> Operands(2); 4411 // Prepare the operand vector for pointer operands. 4412 for (Value *V : VL) 4413 Operands.front().push_back( 4414 cast<GetElementPtrInst>(V)->getPointerOperand()); 4415 TE->setOperand(0, Operands.front()); 4416 // Need to cast all indices to the same type before vectorization to 4417 // avoid crash. 4418 // Required to be able to find correct matches between different gather 4419 // nodes and reuse the vectorized values rather than trying to gather them 4420 // again. 4421 int IndexIdx = 1; 4422 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4423 Type *Ty = all_of(VL, 4424 [VL0Ty, IndexIdx](Value *V) { 4425 return VL0Ty == cast<GetElementPtrInst>(V) 4426 ->getOperand(IndexIdx) 4427 ->getType(); 4428 }) 4429 ? VL0Ty 4430 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4431 ->getPointerOperandType() 4432 ->getScalarType()); 4433 // Prepare the operand vector. 4434 for (Value *V : VL) { 4435 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4436 auto *CI = cast<ConstantInt>(Op); 4437 Operands.back().push_back(ConstantExpr::getIntegerCast( 4438 CI, Ty, CI->getValue().isSignBitSet())); 4439 } 4440 TE->setOperand(IndexIdx, Operands.back()); 4441 4442 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4443 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4444 return; 4445 } 4446 case Instruction::Store: { 4447 // Check if the stores are consecutive or if we need to swizzle them. 4448 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4449 // Avoid types that are padded when being allocated as scalars, while 4450 // being packed together in a vector (such as i1). 4451 if (DL->getTypeSizeInBits(ScalarTy) != 4452 DL->getTypeAllocSizeInBits(ScalarTy)) { 4453 BS.cancelScheduling(VL, VL0); 4454 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4455 ReuseShuffleIndicies); 4456 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4457 return; 4458 } 4459 // Make sure all stores in the bundle are simple - we can't vectorize 4460 // atomic or volatile stores. 4461 SmallVector<Value *, 4> PointerOps(VL.size()); 4462 ValueList Operands(VL.size()); 4463 auto POIter = PointerOps.begin(); 4464 auto OIter = Operands.begin(); 4465 for (Value *V : VL) { 4466 auto *SI = cast<StoreInst>(V); 4467 if (!SI->isSimple()) { 4468 BS.cancelScheduling(VL, VL0); 4469 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4470 ReuseShuffleIndicies); 4471 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4472 return; 4473 } 4474 *POIter = SI->getPointerOperand(); 4475 *OIter = SI->getValueOperand(); 4476 ++POIter; 4477 ++OIter; 4478 } 4479 4480 OrdersType CurrentOrder; 4481 // Check the order of pointer operands. 4482 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4483 Value *Ptr0; 4484 Value *PtrN; 4485 if (CurrentOrder.empty()) { 4486 Ptr0 = PointerOps.front(); 4487 PtrN = PointerOps.back(); 4488 } else { 4489 Ptr0 = PointerOps[CurrentOrder.front()]; 4490 PtrN = PointerOps[CurrentOrder.back()]; 4491 } 4492 Optional<int> Dist = 4493 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4494 // Check that the sorted pointer operands are consecutive. 4495 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4496 if (CurrentOrder.empty()) { 4497 // Original stores are consecutive and does not require reordering. 4498 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4499 UserTreeIdx, ReuseShuffleIndicies); 4500 TE->setOperandsInOrder(); 4501 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4502 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4503 } else { 4504 fixupOrderingIndices(CurrentOrder); 4505 TreeEntry *TE = 4506 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4507 ReuseShuffleIndicies, CurrentOrder); 4508 TE->setOperandsInOrder(); 4509 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4510 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4511 } 4512 return; 4513 } 4514 } 4515 4516 BS.cancelScheduling(VL, VL0); 4517 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4518 ReuseShuffleIndicies); 4519 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4520 return; 4521 } 4522 case Instruction::Call: { 4523 // Check if the calls are all to the same vectorizable intrinsic or 4524 // library function. 4525 CallInst *CI = cast<CallInst>(VL0); 4526 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4527 4528 VFShape Shape = VFShape::get( 4529 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4530 false /*HasGlobalPred*/); 4531 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4532 4533 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4534 BS.cancelScheduling(VL, VL0); 4535 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4536 ReuseShuffleIndicies); 4537 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4538 return; 4539 } 4540 Function *F = CI->getCalledFunction(); 4541 unsigned NumArgs = CI->arg_size(); 4542 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4543 for (unsigned j = 0; j != NumArgs; ++j) 4544 if (hasVectorInstrinsicScalarOpd(ID, j)) 4545 ScalarArgs[j] = CI->getArgOperand(j); 4546 for (Value *V : VL) { 4547 CallInst *CI2 = dyn_cast<CallInst>(V); 4548 if (!CI2 || CI2->getCalledFunction() != F || 4549 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4550 (VecFunc && 4551 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4552 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4553 BS.cancelScheduling(VL, VL0); 4554 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4555 ReuseShuffleIndicies); 4556 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4557 << "\n"); 4558 return; 4559 } 4560 // Some intrinsics have scalar arguments and should be same in order for 4561 // them to be vectorized. 4562 for (unsigned j = 0; j != NumArgs; ++j) { 4563 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4564 Value *A1J = CI2->getArgOperand(j); 4565 if (ScalarArgs[j] != A1J) { 4566 BS.cancelScheduling(VL, VL0); 4567 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4568 ReuseShuffleIndicies); 4569 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4570 << " argument " << ScalarArgs[j] << "!=" << A1J 4571 << "\n"); 4572 return; 4573 } 4574 } 4575 } 4576 // Verify that the bundle operands are identical between the two calls. 4577 if (CI->hasOperandBundles() && 4578 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4579 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4580 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4581 BS.cancelScheduling(VL, VL0); 4582 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4583 ReuseShuffleIndicies); 4584 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4585 << *CI << "!=" << *V << '\n'); 4586 return; 4587 } 4588 } 4589 4590 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4591 ReuseShuffleIndicies); 4592 TE->setOperandsInOrder(); 4593 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4594 // For scalar operands no need to to create an entry since no need to 4595 // vectorize it. 4596 if (hasVectorInstrinsicScalarOpd(ID, i)) 4597 continue; 4598 ValueList Operands; 4599 // Prepare the operand vector. 4600 for (Value *V : VL) { 4601 auto *CI2 = cast<CallInst>(V); 4602 Operands.push_back(CI2->getArgOperand(i)); 4603 } 4604 buildTree_rec(Operands, Depth + 1, {TE, i}); 4605 } 4606 return; 4607 } 4608 case Instruction::ShuffleVector: { 4609 // If this is not an alternate sequence of opcode like add-sub 4610 // then do not vectorize this instruction. 4611 if (!S.isAltShuffle()) { 4612 BS.cancelScheduling(VL, VL0); 4613 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4614 ReuseShuffleIndicies); 4615 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4616 return; 4617 } 4618 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4619 ReuseShuffleIndicies); 4620 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4621 4622 // Reorder operands if reordering would enable vectorization. 4623 auto *CI = dyn_cast<CmpInst>(VL0); 4624 if (isa<BinaryOperator>(VL0) || CI) { 4625 ValueList Left, Right; 4626 if (!CI || all_of(VL, [](Value *V) { 4627 return cast<CmpInst>(V)->isCommutative(); 4628 })) { 4629 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4630 } else { 4631 CmpInst::Predicate P0 = CI->getPredicate(); 4632 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4633 assert(P0 != AltP0 && 4634 "Expected different main/alternate predicates."); 4635 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4636 Value *BaseOp0 = VL0->getOperand(0); 4637 Value *BaseOp1 = VL0->getOperand(1); 4638 // Collect operands - commute if it uses the swapped predicate or 4639 // alternate operation. 4640 for (Value *V : VL) { 4641 auto *Cmp = cast<CmpInst>(V); 4642 Value *LHS = Cmp->getOperand(0); 4643 Value *RHS = Cmp->getOperand(1); 4644 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4645 if (P0 == AltP0Swapped) { 4646 if (CI != Cmp && S.AltOp != Cmp && 4647 ((P0 == CurrentPred && 4648 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4649 (AltP0 == CurrentPred && 4650 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4651 std::swap(LHS, RHS); 4652 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4653 std::swap(LHS, RHS); 4654 } 4655 Left.push_back(LHS); 4656 Right.push_back(RHS); 4657 } 4658 } 4659 TE->setOperand(0, Left); 4660 TE->setOperand(1, Right); 4661 buildTree_rec(Left, Depth + 1, {TE, 0}); 4662 buildTree_rec(Right, Depth + 1, {TE, 1}); 4663 return; 4664 } 4665 4666 TE->setOperandsInOrder(); 4667 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4668 ValueList Operands; 4669 // Prepare the operand vector. 4670 for (Value *V : VL) 4671 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4672 4673 buildTree_rec(Operands, Depth + 1, {TE, i}); 4674 } 4675 return; 4676 } 4677 default: 4678 BS.cancelScheduling(VL, VL0); 4679 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4680 ReuseShuffleIndicies); 4681 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4682 return; 4683 } 4684 } 4685 4686 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4687 unsigned N = 1; 4688 Type *EltTy = T; 4689 4690 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4691 isa<VectorType>(EltTy)) { 4692 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4693 // Check that struct is homogeneous. 4694 for (const auto *Ty : ST->elements()) 4695 if (Ty != *ST->element_begin()) 4696 return 0; 4697 N *= ST->getNumElements(); 4698 EltTy = *ST->element_begin(); 4699 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4700 N *= AT->getNumElements(); 4701 EltTy = AT->getElementType(); 4702 } else { 4703 auto *VT = cast<FixedVectorType>(EltTy); 4704 N *= VT->getNumElements(); 4705 EltTy = VT->getElementType(); 4706 } 4707 } 4708 4709 if (!isValidElementType(EltTy)) 4710 return 0; 4711 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4712 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4713 return 0; 4714 return N; 4715 } 4716 4717 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4718 SmallVectorImpl<unsigned> &CurrentOrder) const { 4719 const auto *It = find_if(VL, [](Value *V) { 4720 return isa<ExtractElementInst, ExtractValueInst>(V); 4721 }); 4722 assert(It != VL.end() && "Expected at least one extract instruction."); 4723 auto *E0 = cast<Instruction>(*It); 4724 assert(all_of(VL, 4725 [](Value *V) { 4726 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4727 V); 4728 }) && 4729 "Invalid opcode"); 4730 // Check if all of the extracts come from the same vector and from the 4731 // correct offset. 4732 Value *Vec = E0->getOperand(0); 4733 4734 CurrentOrder.clear(); 4735 4736 // We have to extract from a vector/aggregate with the same number of elements. 4737 unsigned NElts; 4738 if (E0->getOpcode() == Instruction::ExtractValue) { 4739 const DataLayout &DL = E0->getModule()->getDataLayout(); 4740 NElts = canMapToVector(Vec->getType(), DL); 4741 if (!NElts) 4742 return false; 4743 // Check if load can be rewritten as load of vector. 4744 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4745 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4746 return false; 4747 } else { 4748 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4749 } 4750 4751 if (NElts != VL.size()) 4752 return false; 4753 4754 // Check that all of the indices extract from the correct offset. 4755 bool ShouldKeepOrder = true; 4756 unsigned E = VL.size(); 4757 // Assign to all items the initial value E + 1 so we can check if the extract 4758 // instruction index was used already. 4759 // Also, later we can check that all the indices are used and we have a 4760 // consecutive access in the extract instructions, by checking that no 4761 // element of CurrentOrder still has value E + 1. 4762 CurrentOrder.assign(E, E); 4763 unsigned I = 0; 4764 for (; I < E; ++I) { 4765 auto *Inst = dyn_cast<Instruction>(VL[I]); 4766 if (!Inst) 4767 continue; 4768 if (Inst->getOperand(0) != Vec) 4769 break; 4770 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4771 if (isa<UndefValue>(EE->getIndexOperand())) 4772 continue; 4773 Optional<unsigned> Idx = getExtractIndex(Inst); 4774 if (!Idx) 4775 break; 4776 const unsigned ExtIdx = *Idx; 4777 if (ExtIdx != I) { 4778 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4779 break; 4780 ShouldKeepOrder = false; 4781 CurrentOrder[ExtIdx] = I; 4782 } else { 4783 if (CurrentOrder[I] != E) 4784 break; 4785 CurrentOrder[I] = I; 4786 } 4787 } 4788 if (I < E) { 4789 CurrentOrder.clear(); 4790 return false; 4791 } 4792 if (ShouldKeepOrder) 4793 CurrentOrder.clear(); 4794 4795 return ShouldKeepOrder; 4796 } 4797 4798 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4799 ArrayRef<Value *> VectorizedVals) const { 4800 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4801 all_of(I->users(), [this](User *U) { 4802 return ScalarToTreeEntry.count(U) > 0 || 4803 isVectorLikeInstWithConstOps(U) || 4804 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4805 }); 4806 } 4807 4808 static std::pair<InstructionCost, InstructionCost> 4809 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4810 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4811 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4812 4813 // Calculate the cost of the scalar and vector calls. 4814 SmallVector<Type *, 4> VecTys; 4815 for (Use &Arg : CI->args()) 4816 VecTys.push_back( 4817 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4818 FastMathFlags FMF; 4819 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4820 FMF = FPCI->getFastMathFlags(); 4821 SmallVector<const Value *> Arguments(CI->args()); 4822 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4823 dyn_cast<IntrinsicInst>(CI)); 4824 auto IntrinsicCost = 4825 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4826 4827 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4828 VecTy->getNumElements())), 4829 false /*HasGlobalPred*/); 4830 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4831 auto LibCost = IntrinsicCost; 4832 if (!CI->isNoBuiltin() && VecFunc) { 4833 // Calculate the cost of the vector library call. 4834 // If the corresponding vector call is cheaper, return its cost. 4835 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4836 TTI::TCK_RecipThroughput); 4837 } 4838 return {IntrinsicCost, LibCost}; 4839 } 4840 4841 /// Compute the cost of creating a vector of type \p VecTy containing the 4842 /// extracted values from \p VL. 4843 static InstructionCost 4844 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4845 TargetTransformInfo::ShuffleKind ShuffleKind, 4846 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4847 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4848 4849 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4850 VecTy->getNumElements() < NumOfParts) 4851 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4852 4853 bool AllConsecutive = true; 4854 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4855 unsigned Idx = -1; 4856 InstructionCost Cost = 0; 4857 4858 // Process extracts in blocks of EltsPerVector to check if the source vector 4859 // operand can be re-used directly. If not, add the cost of creating a shuffle 4860 // to extract the values into a vector register. 4861 for (auto *V : VL) { 4862 ++Idx; 4863 4864 // Need to exclude undefs from analysis. 4865 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4866 continue; 4867 4868 // Reached the start of a new vector registers. 4869 if (Idx % EltsPerVector == 0) { 4870 AllConsecutive = true; 4871 continue; 4872 } 4873 4874 // Check all extracts for a vector register on the target directly 4875 // extract values in order. 4876 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4877 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4878 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4879 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4880 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4881 } 4882 4883 if (AllConsecutive) 4884 continue; 4885 4886 // Skip all indices, except for the last index per vector block. 4887 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4888 continue; 4889 4890 // If we have a series of extracts which are not consecutive and hence 4891 // cannot re-use the source vector register directly, compute the shuffle 4892 // cost to extract the a vector with EltsPerVector elements. 4893 Cost += TTI.getShuffleCost( 4894 TargetTransformInfo::SK_PermuteSingleSrc, 4895 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4896 } 4897 return Cost; 4898 } 4899 4900 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4901 /// operations operands. 4902 static void 4903 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4904 ArrayRef<int> ReusesIndices, 4905 const function_ref<bool(Instruction *)> IsAltOp, 4906 SmallVectorImpl<int> &Mask, 4907 SmallVectorImpl<Value *> *OpScalars = nullptr, 4908 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4909 unsigned Sz = VL.size(); 4910 Mask.assign(Sz, UndefMaskElem); 4911 SmallVector<int> OrderMask; 4912 if (!ReorderIndices.empty()) 4913 inversePermutation(ReorderIndices, OrderMask); 4914 for (unsigned I = 0; I < Sz; ++I) { 4915 unsigned Idx = I; 4916 if (!ReorderIndices.empty()) 4917 Idx = OrderMask[I]; 4918 auto *OpInst = cast<Instruction>(VL[Idx]); 4919 if (IsAltOp(OpInst)) { 4920 Mask[I] = Sz + Idx; 4921 if (AltScalars) 4922 AltScalars->push_back(OpInst); 4923 } else { 4924 Mask[I] = Idx; 4925 if (OpScalars) 4926 OpScalars->push_back(OpInst); 4927 } 4928 } 4929 if (!ReusesIndices.empty()) { 4930 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4931 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4932 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4933 }); 4934 Mask.swap(NewMask); 4935 } 4936 } 4937 4938 /// Checks if the specified instruction \p I is an alternate operation for the 4939 /// given \p MainOp and \p AltOp instructions. 4940 static bool isAlternateInstruction(const Instruction *I, 4941 const Instruction *MainOp, 4942 const Instruction *AltOp) { 4943 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4944 auto *AltCI0 = cast<CmpInst>(AltOp); 4945 auto *CI = cast<CmpInst>(I); 4946 CmpInst::Predicate P0 = CI0->getPredicate(); 4947 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4948 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4949 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4950 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4951 if (P0 == AltP0Swapped) 4952 return I == AltCI0 || 4953 (I != MainOp && 4954 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4955 CI->getOperand(0), CI->getOperand(1))); 4956 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4957 } 4958 return I->getOpcode() == AltOp->getOpcode(); 4959 } 4960 4961 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4962 ArrayRef<Value *> VectorizedVals) { 4963 ArrayRef<Value*> VL = E->Scalars; 4964 4965 Type *ScalarTy = VL[0]->getType(); 4966 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4967 ScalarTy = SI->getValueOperand()->getType(); 4968 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4969 ScalarTy = CI->getOperand(0)->getType(); 4970 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4971 ScalarTy = IE->getOperand(1)->getType(); 4972 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4973 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4974 4975 // If we have computed a smaller type for the expression, update VecTy so 4976 // that the costs will be accurate. 4977 if (MinBWs.count(VL[0])) 4978 VecTy = FixedVectorType::get( 4979 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4980 unsigned EntryVF = E->getVectorFactor(); 4981 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4982 4983 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4984 // FIXME: it tries to fix a problem with MSVC buildbots. 4985 TargetTransformInfo &TTIRef = *TTI; 4986 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4987 VectorizedVals, E](InstructionCost &Cost) { 4988 DenseMap<Value *, int> ExtractVectorsTys; 4989 SmallPtrSet<Value *, 4> CheckedExtracts; 4990 for (auto *V : VL) { 4991 if (isa<UndefValue>(V)) 4992 continue; 4993 // If all users of instruction are going to be vectorized and this 4994 // instruction itself is not going to be vectorized, consider this 4995 // instruction as dead and remove its cost from the final cost of the 4996 // vectorized tree. 4997 // Also, avoid adjusting the cost for extractelements with multiple uses 4998 // in different graph entries. 4999 const TreeEntry *VE = getTreeEntry(V); 5000 if (!CheckedExtracts.insert(V).second || 5001 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5002 (VE && VE != E)) 5003 continue; 5004 auto *EE = cast<ExtractElementInst>(V); 5005 Optional<unsigned> EEIdx = getExtractIndex(EE); 5006 if (!EEIdx) 5007 continue; 5008 unsigned Idx = *EEIdx; 5009 if (TTIRef.getNumberOfParts(VecTy) != 5010 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5011 auto It = 5012 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5013 It->getSecond() = std::min<int>(It->second, Idx); 5014 } 5015 // Take credit for instruction that will become dead. 5016 if (EE->hasOneUse()) { 5017 Instruction *Ext = EE->user_back(); 5018 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5019 all_of(Ext->users(), 5020 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5021 // Use getExtractWithExtendCost() to calculate the cost of 5022 // extractelement/ext pair. 5023 Cost -= 5024 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5025 EE->getVectorOperandType(), Idx); 5026 // Add back the cost of s|zext which is subtracted separately. 5027 Cost += TTIRef.getCastInstrCost( 5028 Ext->getOpcode(), Ext->getType(), EE->getType(), 5029 TTI::getCastContextHint(Ext), CostKind, Ext); 5030 continue; 5031 } 5032 } 5033 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5034 EE->getVectorOperandType(), Idx); 5035 } 5036 // Add a cost for subvector extracts/inserts if required. 5037 for (const auto &Data : ExtractVectorsTys) { 5038 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5039 unsigned NumElts = VecTy->getNumElements(); 5040 if (Data.second % NumElts == 0) 5041 continue; 5042 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5043 unsigned Idx = (Data.second / NumElts) * NumElts; 5044 unsigned EENumElts = EEVTy->getNumElements(); 5045 if (Idx + NumElts <= EENumElts) { 5046 Cost += 5047 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5048 EEVTy, None, Idx, VecTy); 5049 } else { 5050 // Need to round up the subvector type vectorization factor to avoid a 5051 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5052 // <= EENumElts. 5053 auto *SubVT = 5054 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5055 Cost += 5056 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5057 EEVTy, None, Idx, SubVT); 5058 } 5059 } else { 5060 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5061 VecTy, None, 0, EEVTy); 5062 } 5063 } 5064 }; 5065 if (E->State == TreeEntry::NeedToGather) { 5066 if (allConstant(VL)) 5067 return 0; 5068 if (isa<InsertElementInst>(VL[0])) 5069 return InstructionCost::getInvalid(); 5070 SmallVector<int> Mask; 5071 SmallVector<const TreeEntry *> Entries; 5072 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5073 isGatherShuffledEntry(E, Mask, Entries); 5074 if (Shuffle.hasValue()) { 5075 InstructionCost GatherCost = 0; 5076 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5077 // Perfect match in the graph, will reuse the previously vectorized 5078 // node. Cost is 0. 5079 LLVM_DEBUG( 5080 dbgs() 5081 << "SLP: perfect diamond match for gather bundle that starts with " 5082 << *VL.front() << ".\n"); 5083 if (NeedToShuffleReuses) 5084 GatherCost = 5085 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5086 FinalVecTy, E->ReuseShuffleIndices); 5087 } else { 5088 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5089 << " entries for bundle that starts with " 5090 << *VL.front() << ".\n"); 5091 // Detected that instead of gather we can emit a shuffle of single/two 5092 // previously vectorized nodes. Add the cost of the permutation rather 5093 // than gather. 5094 ::addMask(Mask, E->ReuseShuffleIndices); 5095 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5096 } 5097 return GatherCost; 5098 } 5099 if ((E->getOpcode() == Instruction::ExtractElement || 5100 all_of(E->Scalars, 5101 [](Value *V) { 5102 return isa<ExtractElementInst, UndefValue>(V); 5103 })) && 5104 allSameType(VL)) { 5105 // Check that gather of extractelements can be represented as just a 5106 // shuffle of a single/two vectors the scalars are extracted from. 5107 SmallVector<int> Mask; 5108 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5109 isFixedVectorShuffle(VL, Mask); 5110 if (ShuffleKind.hasValue()) { 5111 // Found the bunch of extractelement instructions that must be gathered 5112 // into a vector and can be represented as a permutation elements in a 5113 // single input vector or of 2 input vectors. 5114 InstructionCost Cost = 5115 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5116 AdjustExtractsCost(Cost); 5117 if (NeedToShuffleReuses) 5118 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5119 FinalVecTy, E->ReuseShuffleIndices); 5120 return Cost; 5121 } 5122 } 5123 if (isSplat(VL)) { 5124 // Found the broadcasting of the single scalar, calculate the cost as the 5125 // broadcast. 5126 assert(VecTy == FinalVecTy && 5127 "No reused scalars expected for broadcast."); 5128 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5129 } 5130 InstructionCost ReuseShuffleCost = 0; 5131 if (NeedToShuffleReuses) 5132 ReuseShuffleCost = TTI->getShuffleCost( 5133 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5134 // Improve gather cost for gather of loads, if we can group some of the 5135 // loads into vector loads. 5136 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5137 !E->isAltShuffle()) { 5138 BoUpSLP::ValueSet VectorizedLoads; 5139 unsigned StartIdx = 0; 5140 unsigned VF = VL.size() / 2; 5141 unsigned VectorizedCnt = 0; 5142 unsigned ScatterVectorizeCnt = 0; 5143 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5144 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5145 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5146 Cnt += VF) { 5147 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5148 if (!VectorizedLoads.count(Slice.front()) && 5149 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5150 SmallVector<Value *> PointerOps; 5151 OrdersType CurrentOrder; 5152 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5153 *SE, CurrentOrder, PointerOps); 5154 switch (LS) { 5155 case LoadsState::Vectorize: 5156 case LoadsState::ScatterVectorize: 5157 // Mark the vectorized loads so that we don't vectorize them 5158 // again. 5159 if (LS == LoadsState::Vectorize) 5160 ++VectorizedCnt; 5161 else 5162 ++ScatterVectorizeCnt; 5163 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5164 // If we vectorized initial block, no need to try to vectorize it 5165 // again. 5166 if (Cnt == StartIdx) 5167 StartIdx += VF; 5168 break; 5169 case LoadsState::Gather: 5170 break; 5171 } 5172 } 5173 } 5174 // Check if the whole array was vectorized already - exit. 5175 if (StartIdx >= VL.size()) 5176 break; 5177 // Found vectorizable parts - exit. 5178 if (!VectorizedLoads.empty()) 5179 break; 5180 } 5181 if (!VectorizedLoads.empty()) { 5182 InstructionCost GatherCost = 0; 5183 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5184 bool NeedInsertSubvectorAnalysis = 5185 !NumParts || (VL.size() / VF) > NumParts; 5186 // Get the cost for gathered loads. 5187 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5188 if (VectorizedLoads.contains(VL[I])) 5189 continue; 5190 GatherCost += getGatherCost(VL.slice(I, VF)); 5191 } 5192 // The cost for vectorized loads. 5193 InstructionCost ScalarsCost = 0; 5194 for (Value *V : VectorizedLoads) { 5195 auto *LI = cast<LoadInst>(V); 5196 ScalarsCost += TTI->getMemoryOpCost( 5197 Instruction::Load, LI->getType(), LI->getAlign(), 5198 LI->getPointerAddressSpace(), CostKind, LI); 5199 } 5200 auto *LI = cast<LoadInst>(E->getMainOp()); 5201 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5202 Align Alignment = LI->getAlign(); 5203 GatherCost += 5204 VectorizedCnt * 5205 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5206 LI->getPointerAddressSpace(), CostKind, LI); 5207 GatherCost += ScatterVectorizeCnt * 5208 TTI->getGatherScatterOpCost( 5209 Instruction::Load, LoadTy, LI->getPointerOperand(), 5210 /*VariableMask=*/false, Alignment, CostKind, LI); 5211 if (NeedInsertSubvectorAnalysis) { 5212 // Add the cost for the subvectors insert. 5213 for (int I = VF, E = VL.size(); I < E; I += VF) 5214 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5215 None, I, LoadTy); 5216 } 5217 return ReuseShuffleCost + GatherCost - ScalarsCost; 5218 } 5219 } 5220 return ReuseShuffleCost + getGatherCost(VL); 5221 } 5222 InstructionCost CommonCost = 0; 5223 SmallVector<int> Mask; 5224 if (!E->ReorderIndices.empty()) { 5225 SmallVector<int> NewMask; 5226 if (E->getOpcode() == Instruction::Store) { 5227 // For stores the order is actually a mask. 5228 NewMask.resize(E->ReorderIndices.size()); 5229 copy(E->ReorderIndices, NewMask.begin()); 5230 } else { 5231 inversePermutation(E->ReorderIndices, NewMask); 5232 } 5233 ::addMask(Mask, NewMask); 5234 } 5235 if (NeedToShuffleReuses) 5236 ::addMask(Mask, E->ReuseShuffleIndices); 5237 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5238 CommonCost = 5239 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5240 assert((E->State == TreeEntry::Vectorize || 5241 E->State == TreeEntry::ScatterVectorize) && 5242 "Unhandled state"); 5243 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5244 Instruction *VL0 = E->getMainOp(); 5245 unsigned ShuffleOrOp = 5246 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5247 switch (ShuffleOrOp) { 5248 case Instruction::PHI: 5249 return 0; 5250 5251 case Instruction::ExtractValue: 5252 case Instruction::ExtractElement: { 5253 // The common cost of removal ExtractElement/ExtractValue instructions + 5254 // the cost of shuffles, if required to resuffle the original vector. 5255 if (NeedToShuffleReuses) { 5256 unsigned Idx = 0; 5257 for (unsigned I : E->ReuseShuffleIndices) { 5258 if (ShuffleOrOp == Instruction::ExtractElement) { 5259 auto *EE = cast<ExtractElementInst>(VL[I]); 5260 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5261 EE->getVectorOperandType(), 5262 *getExtractIndex(EE)); 5263 } else { 5264 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5265 VecTy, Idx); 5266 ++Idx; 5267 } 5268 } 5269 Idx = EntryVF; 5270 for (Value *V : VL) { 5271 if (ShuffleOrOp == Instruction::ExtractElement) { 5272 auto *EE = cast<ExtractElementInst>(V); 5273 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5274 EE->getVectorOperandType(), 5275 *getExtractIndex(EE)); 5276 } else { 5277 --Idx; 5278 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5279 VecTy, Idx); 5280 } 5281 } 5282 } 5283 if (ShuffleOrOp == Instruction::ExtractValue) { 5284 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5285 auto *EI = cast<Instruction>(VL[I]); 5286 // Take credit for instruction that will become dead. 5287 if (EI->hasOneUse()) { 5288 Instruction *Ext = EI->user_back(); 5289 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5290 all_of(Ext->users(), 5291 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5292 // Use getExtractWithExtendCost() to calculate the cost of 5293 // extractelement/ext pair. 5294 CommonCost -= TTI->getExtractWithExtendCost( 5295 Ext->getOpcode(), Ext->getType(), VecTy, I); 5296 // Add back the cost of s|zext which is subtracted separately. 5297 CommonCost += TTI->getCastInstrCost( 5298 Ext->getOpcode(), Ext->getType(), EI->getType(), 5299 TTI::getCastContextHint(Ext), CostKind, Ext); 5300 continue; 5301 } 5302 } 5303 CommonCost -= 5304 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5305 } 5306 } else { 5307 AdjustExtractsCost(CommonCost); 5308 } 5309 return CommonCost; 5310 } 5311 case Instruction::InsertElement: { 5312 assert(E->ReuseShuffleIndices.empty() && 5313 "Unique insertelements only are expected."); 5314 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5315 5316 unsigned const NumElts = SrcVecTy->getNumElements(); 5317 unsigned const NumScalars = VL.size(); 5318 APInt DemandedElts = APInt::getZero(NumElts); 5319 // TODO: Add support for Instruction::InsertValue. 5320 SmallVector<int> Mask; 5321 if (!E->ReorderIndices.empty()) { 5322 inversePermutation(E->ReorderIndices, Mask); 5323 Mask.append(NumElts - NumScalars, UndefMaskElem); 5324 } else { 5325 Mask.assign(NumElts, UndefMaskElem); 5326 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5327 } 5328 unsigned Offset = *getInsertIndex(VL0); 5329 bool IsIdentity = true; 5330 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5331 Mask.swap(PrevMask); 5332 for (unsigned I = 0; I < NumScalars; ++I) { 5333 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5334 DemandedElts.setBit(InsertIdx); 5335 IsIdentity &= InsertIdx - Offset == I; 5336 Mask[InsertIdx - Offset] = I; 5337 } 5338 assert(Offset < NumElts && "Failed to find vector index offset"); 5339 5340 InstructionCost Cost = 0; 5341 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5342 /*Insert*/ true, /*Extract*/ false); 5343 5344 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5345 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5346 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5347 Cost += TTI->getShuffleCost( 5348 TargetTransformInfo::SK_PermuteSingleSrc, 5349 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5350 } else if (!IsIdentity) { 5351 auto *FirstInsert = 5352 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5353 return !is_contained(E->Scalars, 5354 cast<Instruction>(V)->getOperand(0)); 5355 })); 5356 if (isUndefVector(FirstInsert->getOperand(0))) { 5357 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5358 } else { 5359 SmallVector<int> InsertMask(NumElts); 5360 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5361 for (unsigned I = 0; I < NumElts; I++) { 5362 if (Mask[I] != UndefMaskElem) 5363 InsertMask[Offset + I] = NumElts + I; 5364 } 5365 Cost += 5366 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5367 } 5368 } 5369 5370 return Cost; 5371 } 5372 case Instruction::ZExt: 5373 case Instruction::SExt: 5374 case Instruction::FPToUI: 5375 case Instruction::FPToSI: 5376 case Instruction::FPExt: 5377 case Instruction::PtrToInt: 5378 case Instruction::IntToPtr: 5379 case Instruction::SIToFP: 5380 case Instruction::UIToFP: 5381 case Instruction::Trunc: 5382 case Instruction::FPTrunc: 5383 case Instruction::BitCast: { 5384 Type *SrcTy = VL0->getOperand(0)->getType(); 5385 InstructionCost ScalarEltCost = 5386 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5387 TTI::getCastContextHint(VL0), CostKind, VL0); 5388 if (NeedToShuffleReuses) { 5389 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5390 } 5391 5392 // Calculate the cost of this instruction. 5393 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5394 5395 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5396 InstructionCost VecCost = 0; 5397 // Check if the values are candidates to demote. 5398 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5399 VecCost = CommonCost + TTI->getCastInstrCost( 5400 E->getOpcode(), VecTy, SrcVecTy, 5401 TTI::getCastContextHint(VL0), CostKind, VL0); 5402 } 5403 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5404 return VecCost - ScalarCost; 5405 } 5406 case Instruction::FCmp: 5407 case Instruction::ICmp: 5408 case Instruction::Select: { 5409 // Calculate the cost of this instruction. 5410 InstructionCost ScalarEltCost = 5411 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5412 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5413 if (NeedToShuffleReuses) { 5414 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5415 } 5416 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5417 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5418 5419 // Check if all entries in VL are either compares or selects with compares 5420 // as condition that have the same predicates. 5421 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5422 bool First = true; 5423 for (auto *V : VL) { 5424 CmpInst::Predicate CurrentPred; 5425 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5426 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5427 !match(V, MatchCmp)) || 5428 (!First && VecPred != CurrentPred)) { 5429 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5430 break; 5431 } 5432 First = false; 5433 VecPred = CurrentPred; 5434 } 5435 5436 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5437 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5438 // Check if it is possible and profitable to use min/max for selects in 5439 // VL. 5440 // 5441 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5442 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5443 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5444 {VecTy, VecTy}); 5445 InstructionCost IntrinsicCost = 5446 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5447 // If the selects are the only uses of the compares, they will be dead 5448 // and we can adjust the cost by removing their cost. 5449 if (IntrinsicAndUse.second) 5450 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5451 MaskTy, VecPred, CostKind); 5452 VecCost = std::min(VecCost, IntrinsicCost); 5453 } 5454 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5455 return CommonCost + VecCost - ScalarCost; 5456 } 5457 case Instruction::FNeg: 5458 case Instruction::Add: 5459 case Instruction::FAdd: 5460 case Instruction::Sub: 5461 case Instruction::FSub: 5462 case Instruction::Mul: 5463 case Instruction::FMul: 5464 case Instruction::UDiv: 5465 case Instruction::SDiv: 5466 case Instruction::FDiv: 5467 case Instruction::URem: 5468 case Instruction::SRem: 5469 case Instruction::FRem: 5470 case Instruction::Shl: 5471 case Instruction::LShr: 5472 case Instruction::AShr: 5473 case Instruction::And: 5474 case Instruction::Or: 5475 case Instruction::Xor: { 5476 // Certain instructions can be cheaper to vectorize if they have a 5477 // constant second vector operand. 5478 TargetTransformInfo::OperandValueKind Op1VK = 5479 TargetTransformInfo::OK_AnyValue; 5480 TargetTransformInfo::OperandValueKind Op2VK = 5481 TargetTransformInfo::OK_UniformConstantValue; 5482 TargetTransformInfo::OperandValueProperties Op1VP = 5483 TargetTransformInfo::OP_None; 5484 TargetTransformInfo::OperandValueProperties Op2VP = 5485 TargetTransformInfo::OP_PowerOf2; 5486 5487 // If all operands are exactly the same ConstantInt then set the 5488 // operand kind to OK_UniformConstantValue. 5489 // If instead not all operands are constants, then set the operand kind 5490 // to OK_AnyValue. If all operands are constants but not the same, 5491 // then set the operand kind to OK_NonUniformConstantValue. 5492 ConstantInt *CInt0 = nullptr; 5493 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5494 const Instruction *I = cast<Instruction>(VL[i]); 5495 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5496 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5497 if (!CInt) { 5498 Op2VK = TargetTransformInfo::OK_AnyValue; 5499 Op2VP = TargetTransformInfo::OP_None; 5500 break; 5501 } 5502 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5503 !CInt->getValue().isPowerOf2()) 5504 Op2VP = TargetTransformInfo::OP_None; 5505 if (i == 0) { 5506 CInt0 = CInt; 5507 continue; 5508 } 5509 if (CInt0 != CInt) 5510 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5511 } 5512 5513 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5514 InstructionCost ScalarEltCost = 5515 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5516 Op2VK, Op1VP, Op2VP, Operands, VL0); 5517 if (NeedToShuffleReuses) { 5518 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5519 } 5520 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5521 InstructionCost VecCost = 5522 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5523 Op2VK, Op1VP, Op2VP, Operands, VL0); 5524 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5525 return CommonCost + VecCost - ScalarCost; 5526 } 5527 case Instruction::GetElementPtr: { 5528 TargetTransformInfo::OperandValueKind Op1VK = 5529 TargetTransformInfo::OK_AnyValue; 5530 TargetTransformInfo::OperandValueKind Op2VK = 5531 TargetTransformInfo::OK_UniformConstantValue; 5532 5533 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5534 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5535 if (NeedToShuffleReuses) { 5536 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5537 } 5538 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5539 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5540 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5541 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5542 return CommonCost + VecCost - ScalarCost; 5543 } 5544 case Instruction::Load: { 5545 // Cost of wide load - cost of scalar loads. 5546 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5547 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5548 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5549 if (NeedToShuffleReuses) { 5550 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5551 } 5552 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5553 InstructionCost VecLdCost; 5554 if (E->State == TreeEntry::Vectorize) { 5555 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5556 CostKind, VL0); 5557 } else { 5558 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5559 Align CommonAlignment = Alignment; 5560 for (Value *V : VL) 5561 CommonAlignment = 5562 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5563 VecLdCost = TTI->getGatherScatterOpCost( 5564 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5565 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5566 } 5567 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5568 return CommonCost + VecLdCost - ScalarLdCost; 5569 } 5570 case Instruction::Store: { 5571 // We know that we can merge the stores. Calculate the cost. 5572 bool IsReorder = !E->ReorderIndices.empty(); 5573 auto *SI = 5574 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5575 Align Alignment = SI->getAlign(); 5576 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5577 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5578 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5579 InstructionCost VecStCost = TTI->getMemoryOpCost( 5580 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5581 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5582 return CommonCost + VecStCost - ScalarStCost; 5583 } 5584 case Instruction::Call: { 5585 CallInst *CI = cast<CallInst>(VL0); 5586 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5587 5588 // Calculate the cost of the scalar and vector calls. 5589 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5590 InstructionCost ScalarEltCost = 5591 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5592 if (NeedToShuffleReuses) { 5593 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5594 } 5595 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5596 5597 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5598 InstructionCost VecCallCost = 5599 std::min(VecCallCosts.first, VecCallCosts.second); 5600 5601 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5602 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5603 << " for " << *CI << "\n"); 5604 5605 return CommonCost + VecCallCost - ScalarCallCost; 5606 } 5607 case Instruction::ShuffleVector: { 5608 assert(E->isAltShuffle() && 5609 ((Instruction::isBinaryOp(E->getOpcode()) && 5610 Instruction::isBinaryOp(E->getAltOpcode())) || 5611 (Instruction::isCast(E->getOpcode()) && 5612 Instruction::isCast(E->getAltOpcode())) || 5613 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5614 "Invalid Shuffle Vector Operand"); 5615 InstructionCost ScalarCost = 0; 5616 if (NeedToShuffleReuses) { 5617 for (unsigned Idx : E->ReuseShuffleIndices) { 5618 Instruction *I = cast<Instruction>(VL[Idx]); 5619 CommonCost -= TTI->getInstructionCost(I, CostKind); 5620 } 5621 for (Value *V : VL) { 5622 Instruction *I = cast<Instruction>(V); 5623 CommonCost += TTI->getInstructionCost(I, CostKind); 5624 } 5625 } 5626 for (Value *V : VL) { 5627 Instruction *I = cast<Instruction>(V); 5628 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5629 ScalarCost += TTI->getInstructionCost(I, CostKind); 5630 } 5631 // VecCost is equal to sum of the cost of creating 2 vectors 5632 // and the cost of creating shuffle. 5633 InstructionCost VecCost = 0; 5634 // Try to find the previous shuffle node with the same operands and same 5635 // main/alternate ops. 5636 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5637 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5638 if (TE.get() == E) 5639 break; 5640 if (TE->isAltShuffle() && 5641 ((TE->getOpcode() == E->getOpcode() && 5642 TE->getAltOpcode() == E->getAltOpcode()) || 5643 (TE->getOpcode() == E->getAltOpcode() && 5644 TE->getAltOpcode() == E->getOpcode())) && 5645 TE->hasEqualOperands(*E)) 5646 return true; 5647 } 5648 return false; 5649 }; 5650 if (TryFindNodeWithEqualOperands()) { 5651 LLVM_DEBUG({ 5652 dbgs() << "SLP: diamond match for alternate node found.\n"; 5653 E->dump(); 5654 }); 5655 // No need to add new vector costs here since we're going to reuse 5656 // same main/alternate vector ops, just do different shuffling. 5657 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5658 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5659 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5660 CostKind); 5661 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5662 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5663 Builder.getInt1Ty(), 5664 CI0->getPredicate(), CostKind, VL0); 5665 VecCost += TTI->getCmpSelInstrCost( 5666 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5667 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5668 E->getAltOp()); 5669 } else { 5670 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5671 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5672 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5673 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5674 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5675 TTI::CastContextHint::None, CostKind); 5676 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5677 TTI::CastContextHint::None, CostKind); 5678 } 5679 5680 SmallVector<int> Mask; 5681 buildShuffleEntryMask( 5682 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5683 [E](Instruction *I) { 5684 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5685 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5686 }, 5687 Mask); 5688 CommonCost = 5689 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5690 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5691 return CommonCost + VecCost - ScalarCost; 5692 } 5693 default: 5694 llvm_unreachable("Unknown instruction"); 5695 } 5696 } 5697 5698 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5699 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5700 << VectorizableTree.size() << " is fully vectorizable .\n"); 5701 5702 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5703 SmallVector<int> Mask; 5704 return TE->State == TreeEntry::NeedToGather && 5705 !any_of(TE->Scalars, 5706 [this](Value *V) { return EphValues.contains(V); }) && 5707 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5708 TE->Scalars.size() < Limit || 5709 ((TE->getOpcode() == Instruction::ExtractElement || 5710 all_of(TE->Scalars, 5711 [](Value *V) { 5712 return isa<ExtractElementInst, UndefValue>(V); 5713 })) && 5714 isFixedVectorShuffle(TE->Scalars, Mask)) || 5715 (TE->State == TreeEntry::NeedToGather && 5716 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5717 }; 5718 5719 // We only handle trees of heights 1 and 2. 5720 if (VectorizableTree.size() == 1 && 5721 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5722 (ForReduction && 5723 AreVectorizableGathers(VectorizableTree[0].get(), 5724 VectorizableTree[0]->Scalars.size()) && 5725 VectorizableTree[0]->getVectorFactor() > 2))) 5726 return true; 5727 5728 if (VectorizableTree.size() != 2) 5729 return false; 5730 5731 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5732 // with the second gather nodes if they have less scalar operands rather than 5733 // the initial tree element (may be profitable to shuffle the second gather) 5734 // or they are extractelements, which form shuffle. 5735 SmallVector<int> Mask; 5736 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5737 AreVectorizableGathers(VectorizableTree[1].get(), 5738 VectorizableTree[0]->Scalars.size())) 5739 return true; 5740 5741 // Gathering cost would be too much for tiny trees. 5742 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5743 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5744 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5745 return false; 5746 5747 return true; 5748 } 5749 5750 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5751 TargetTransformInfo *TTI, 5752 bool MustMatchOrInst) { 5753 // Look past the root to find a source value. Arbitrarily follow the 5754 // path through operand 0 of any 'or'. Also, peek through optional 5755 // shift-left-by-multiple-of-8-bits. 5756 Value *ZextLoad = Root; 5757 const APInt *ShAmtC; 5758 bool FoundOr = false; 5759 while (!isa<ConstantExpr>(ZextLoad) && 5760 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5761 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5762 ShAmtC->urem(8) == 0))) { 5763 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5764 ZextLoad = BinOp->getOperand(0); 5765 if (BinOp->getOpcode() == Instruction::Or) 5766 FoundOr = true; 5767 } 5768 // Check if the input is an extended load of the required or/shift expression. 5769 Value *Load; 5770 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5771 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5772 return false; 5773 5774 // Require that the total load bit width is a legal integer type. 5775 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5776 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5777 Type *SrcTy = Load->getType(); 5778 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5779 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5780 return false; 5781 5782 // Everything matched - assume that we can fold the whole sequence using 5783 // load combining. 5784 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5785 << *(cast<Instruction>(Root)) << "\n"); 5786 5787 return true; 5788 } 5789 5790 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5791 if (RdxKind != RecurKind::Or) 5792 return false; 5793 5794 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5795 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5796 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5797 /* MatchOr */ false); 5798 } 5799 5800 bool BoUpSLP::isLoadCombineCandidate() const { 5801 // Peek through a final sequence of stores and check if all operations are 5802 // likely to be load-combined. 5803 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5804 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5805 Value *X; 5806 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5807 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5808 return false; 5809 } 5810 return true; 5811 } 5812 5813 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5814 // No need to vectorize inserts of gathered values. 5815 if (VectorizableTree.size() == 2 && 5816 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5817 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5818 return true; 5819 5820 // We can vectorize the tree if its size is greater than or equal to the 5821 // minimum size specified by the MinTreeSize command line option. 5822 if (VectorizableTree.size() >= MinTreeSize) 5823 return false; 5824 5825 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5826 // can vectorize it if we can prove it fully vectorizable. 5827 if (isFullyVectorizableTinyTree(ForReduction)) 5828 return false; 5829 5830 assert(VectorizableTree.empty() 5831 ? ExternalUses.empty() 5832 : true && "We shouldn't have any external users"); 5833 5834 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5835 // vectorizable. 5836 return true; 5837 } 5838 5839 InstructionCost BoUpSLP::getSpillCost() const { 5840 // Walk from the bottom of the tree to the top, tracking which values are 5841 // live. When we see a call instruction that is not part of our tree, 5842 // query TTI to see if there is a cost to keeping values live over it 5843 // (for example, if spills and fills are required). 5844 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5845 InstructionCost Cost = 0; 5846 5847 SmallPtrSet<Instruction*, 4> LiveValues; 5848 Instruction *PrevInst = nullptr; 5849 5850 // The entries in VectorizableTree are not necessarily ordered by their 5851 // position in basic blocks. Collect them and order them by dominance so later 5852 // instructions are guaranteed to be visited first. For instructions in 5853 // different basic blocks, we only scan to the beginning of the block, so 5854 // their order does not matter, as long as all instructions in a basic block 5855 // are grouped together. Using dominance ensures a deterministic order. 5856 SmallVector<Instruction *, 16> OrderedScalars; 5857 for (const auto &TEPtr : VectorizableTree) { 5858 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5859 if (!Inst) 5860 continue; 5861 OrderedScalars.push_back(Inst); 5862 } 5863 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5864 auto *NodeA = DT->getNode(A->getParent()); 5865 auto *NodeB = DT->getNode(B->getParent()); 5866 assert(NodeA && "Should only process reachable instructions"); 5867 assert(NodeB && "Should only process reachable instructions"); 5868 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5869 "Different nodes should have different DFS numbers"); 5870 if (NodeA != NodeB) 5871 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5872 return B->comesBefore(A); 5873 }); 5874 5875 for (Instruction *Inst : OrderedScalars) { 5876 if (!PrevInst) { 5877 PrevInst = Inst; 5878 continue; 5879 } 5880 5881 // Update LiveValues. 5882 LiveValues.erase(PrevInst); 5883 for (auto &J : PrevInst->operands()) { 5884 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5885 LiveValues.insert(cast<Instruction>(&*J)); 5886 } 5887 5888 LLVM_DEBUG({ 5889 dbgs() << "SLP: #LV: " << LiveValues.size(); 5890 for (auto *X : LiveValues) 5891 dbgs() << " " << X->getName(); 5892 dbgs() << ", Looking at "; 5893 Inst->dump(); 5894 }); 5895 5896 // Now find the sequence of instructions between PrevInst and Inst. 5897 unsigned NumCalls = 0; 5898 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5899 PrevInstIt = 5900 PrevInst->getIterator().getReverse(); 5901 while (InstIt != PrevInstIt) { 5902 if (PrevInstIt == PrevInst->getParent()->rend()) { 5903 PrevInstIt = Inst->getParent()->rbegin(); 5904 continue; 5905 } 5906 5907 // Debug information does not impact spill cost. 5908 if ((isa<CallInst>(&*PrevInstIt) && 5909 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5910 &*PrevInstIt != PrevInst) 5911 NumCalls++; 5912 5913 ++PrevInstIt; 5914 } 5915 5916 if (NumCalls) { 5917 SmallVector<Type*, 4> V; 5918 for (auto *II : LiveValues) { 5919 auto *ScalarTy = II->getType(); 5920 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5921 ScalarTy = VectorTy->getElementType(); 5922 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5923 } 5924 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5925 } 5926 5927 PrevInst = Inst; 5928 } 5929 5930 return Cost; 5931 } 5932 5933 /// Check if two insertelement instructions are from the same buildvector. 5934 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5935 InsertElementInst *V) { 5936 // Instructions must be from the same basic blocks. 5937 if (VU->getParent() != V->getParent()) 5938 return false; 5939 // Checks if 2 insertelements are from the same buildvector. 5940 if (VU->getType() != V->getType()) 5941 return false; 5942 // Multiple used inserts are separate nodes. 5943 if (!VU->hasOneUse() && !V->hasOneUse()) 5944 return false; 5945 auto *IE1 = VU; 5946 auto *IE2 = V; 5947 // Go through the vector operand of insertelement instructions trying to find 5948 // either VU as the original vector for IE2 or V as the original vector for 5949 // IE1. 5950 do { 5951 if (IE2 == VU || IE1 == V) 5952 return true; 5953 if (IE1) { 5954 if (IE1 != VU && !IE1->hasOneUse()) 5955 IE1 = nullptr; 5956 else 5957 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5958 } 5959 if (IE2) { 5960 if (IE2 != V && !IE2->hasOneUse()) 5961 IE2 = nullptr; 5962 else 5963 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5964 } 5965 } while (IE1 || IE2); 5966 return false; 5967 } 5968 5969 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5970 InstructionCost Cost = 0; 5971 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5972 << VectorizableTree.size() << ".\n"); 5973 5974 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5975 5976 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5977 TreeEntry &TE = *VectorizableTree[I].get(); 5978 5979 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5980 Cost += C; 5981 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5982 << " for bundle that starts with " << *TE.Scalars[0] 5983 << ".\n" 5984 << "SLP: Current total cost = " << Cost << "\n"); 5985 } 5986 5987 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5988 InstructionCost ExtractCost = 0; 5989 SmallVector<unsigned> VF; 5990 SmallVector<SmallVector<int>> ShuffleMask; 5991 SmallVector<Value *> FirstUsers; 5992 SmallVector<APInt> DemandedElts; 5993 for (ExternalUser &EU : ExternalUses) { 5994 // We only add extract cost once for the same scalar. 5995 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5996 !ExtractCostCalculated.insert(EU.Scalar).second) 5997 continue; 5998 5999 // Uses by ephemeral values are free (because the ephemeral value will be 6000 // removed prior to code generation, and so the extraction will be 6001 // removed as well). 6002 if (EphValues.count(EU.User)) 6003 continue; 6004 6005 // No extract cost for vector "scalar" 6006 if (isa<FixedVectorType>(EU.Scalar->getType())) 6007 continue; 6008 6009 // Already counted the cost for external uses when tried to adjust the cost 6010 // for extractelements, no need to add it again. 6011 if (isa<ExtractElementInst>(EU.Scalar)) 6012 continue; 6013 6014 // If found user is an insertelement, do not calculate extract cost but try 6015 // to detect it as a final shuffled/identity match. 6016 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6017 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6018 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6019 if (InsertIdx) { 6020 auto *It = find_if(FirstUsers, [VU](Value *V) { 6021 return areTwoInsertFromSameBuildVector(VU, 6022 cast<InsertElementInst>(V)); 6023 }); 6024 int VecId = -1; 6025 if (It == FirstUsers.end()) { 6026 VF.push_back(FTy->getNumElements()); 6027 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6028 // Find the insertvector, vectorized in tree, if any. 6029 Value *Base = VU; 6030 while (isa<InsertElementInst>(Base)) { 6031 // Build the mask for the vectorized insertelement instructions. 6032 if (const TreeEntry *E = getTreeEntry(Base)) { 6033 VU = cast<InsertElementInst>(Base); 6034 do { 6035 int Idx = E->findLaneForValue(Base); 6036 ShuffleMask.back()[Idx] = Idx; 6037 Base = cast<InsertElementInst>(Base)->getOperand(0); 6038 } while (E == getTreeEntry(Base)); 6039 break; 6040 } 6041 Base = cast<InsertElementInst>(Base)->getOperand(0); 6042 } 6043 FirstUsers.push_back(VU); 6044 DemandedElts.push_back(APInt::getZero(VF.back())); 6045 VecId = FirstUsers.size() - 1; 6046 } else { 6047 VecId = std::distance(FirstUsers.begin(), It); 6048 } 6049 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6050 DemandedElts[VecId].setBit(*InsertIdx); 6051 continue; 6052 } 6053 } 6054 } 6055 6056 // If we plan to rewrite the tree in a smaller type, we will need to sign 6057 // extend the extracted value back to the original type. Here, we account 6058 // for the extract and the added cost of the sign extend if needed. 6059 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6060 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6061 if (MinBWs.count(ScalarRoot)) { 6062 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6063 auto Extend = 6064 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6065 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6066 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6067 VecTy, EU.Lane); 6068 } else { 6069 ExtractCost += 6070 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6071 } 6072 } 6073 6074 InstructionCost SpillCost = getSpillCost(); 6075 Cost += SpillCost + ExtractCost; 6076 if (FirstUsers.size() == 1) { 6077 int Limit = ShuffleMask.front().size() * 2; 6078 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6079 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6080 InstructionCost C = TTI->getShuffleCost( 6081 TTI::SK_PermuteSingleSrc, 6082 cast<FixedVectorType>(FirstUsers.front()->getType()), 6083 ShuffleMask.front()); 6084 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6085 << " for final shuffle of insertelement external users " 6086 << *VectorizableTree.front()->Scalars.front() << ".\n" 6087 << "SLP: Current total cost = " << Cost << "\n"); 6088 Cost += C; 6089 } 6090 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6091 cast<FixedVectorType>(FirstUsers.front()->getType()), 6092 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6093 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6094 << " for insertelements gather.\n" 6095 << "SLP: Current total cost = " << Cost << "\n"); 6096 Cost -= InsertCost; 6097 } else if (FirstUsers.size() >= 2) { 6098 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6099 // Combined masks of the first 2 vectors. 6100 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6101 copy(ShuffleMask.front(), CombinedMask.begin()); 6102 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6103 auto *VecTy = FixedVectorType::get( 6104 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6105 MaxVF); 6106 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6107 if (ShuffleMask[1][I] != UndefMaskElem) { 6108 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6109 CombinedDemandedElts.setBit(I); 6110 } 6111 } 6112 InstructionCost C = 6113 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6114 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6115 << " for final shuffle of vector node and external " 6116 "insertelement users " 6117 << *VectorizableTree.front()->Scalars.front() << ".\n" 6118 << "SLP: Current total cost = " << Cost << "\n"); 6119 Cost += C; 6120 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6121 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6122 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6123 << " for insertelements gather.\n" 6124 << "SLP: Current total cost = " << Cost << "\n"); 6125 Cost -= InsertCost; 6126 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6127 // Other elements - permutation of 2 vectors (the initial one and the 6128 // next Ith incoming vector). 6129 unsigned VF = ShuffleMask[I].size(); 6130 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6131 int Mask = ShuffleMask[I][Idx]; 6132 if (Mask != UndefMaskElem) 6133 CombinedMask[Idx] = MaxVF + Mask; 6134 else if (CombinedMask[Idx] != UndefMaskElem) 6135 CombinedMask[Idx] = Idx; 6136 } 6137 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6138 if (CombinedMask[Idx] != UndefMaskElem) 6139 CombinedMask[Idx] = Idx; 6140 InstructionCost C = 6141 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6142 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6143 << " for final shuffle of vector node and external " 6144 "insertelement users " 6145 << *VectorizableTree.front()->Scalars.front() << ".\n" 6146 << "SLP: Current total cost = " << Cost << "\n"); 6147 Cost += C; 6148 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6149 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6150 /*Insert*/ true, /*Extract*/ false); 6151 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6152 << " for insertelements gather.\n" 6153 << "SLP: Current total cost = " << Cost << "\n"); 6154 Cost -= InsertCost; 6155 } 6156 } 6157 6158 #ifndef NDEBUG 6159 SmallString<256> Str; 6160 { 6161 raw_svector_ostream OS(Str); 6162 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6163 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6164 << "SLP: Total Cost = " << Cost << ".\n"; 6165 } 6166 LLVM_DEBUG(dbgs() << Str); 6167 if (ViewSLPTree) 6168 ViewGraph(this, "SLP" + F->getName(), false, Str); 6169 #endif 6170 6171 return Cost; 6172 } 6173 6174 Optional<TargetTransformInfo::ShuffleKind> 6175 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6176 SmallVectorImpl<const TreeEntry *> &Entries) { 6177 // TODO: currently checking only for Scalars in the tree entry, need to count 6178 // reused elements too for better cost estimation. 6179 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6180 Entries.clear(); 6181 // Build a lists of values to tree entries. 6182 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6183 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6184 if (EntryPtr.get() == TE) 6185 break; 6186 if (EntryPtr->State != TreeEntry::NeedToGather) 6187 continue; 6188 for (Value *V : EntryPtr->Scalars) 6189 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6190 } 6191 // Find all tree entries used by the gathered values. If no common entries 6192 // found - not a shuffle. 6193 // Here we build a set of tree nodes for each gathered value and trying to 6194 // find the intersection between these sets. If we have at least one common 6195 // tree node for each gathered value - we have just a permutation of the 6196 // single vector. If we have 2 different sets, we're in situation where we 6197 // have a permutation of 2 input vectors. 6198 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6199 DenseMap<Value *, int> UsedValuesEntry; 6200 for (Value *V : TE->Scalars) { 6201 if (isa<UndefValue>(V)) 6202 continue; 6203 // Build a list of tree entries where V is used. 6204 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6205 auto It = ValueToTEs.find(V); 6206 if (It != ValueToTEs.end()) 6207 VToTEs = It->second; 6208 if (const TreeEntry *VTE = getTreeEntry(V)) 6209 VToTEs.insert(VTE); 6210 if (VToTEs.empty()) 6211 return None; 6212 if (UsedTEs.empty()) { 6213 // The first iteration, just insert the list of nodes to vector. 6214 UsedTEs.push_back(VToTEs); 6215 } else { 6216 // Need to check if there are any previously used tree nodes which use V. 6217 // If there are no such nodes, consider that we have another one input 6218 // vector. 6219 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6220 unsigned Idx = 0; 6221 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6222 // Do we have a non-empty intersection of previously listed tree entries 6223 // and tree entries using current V? 6224 set_intersect(VToTEs, Set); 6225 if (!VToTEs.empty()) { 6226 // Yes, write the new subset and continue analysis for the next 6227 // scalar. 6228 Set.swap(VToTEs); 6229 break; 6230 } 6231 VToTEs = SavedVToTEs; 6232 ++Idx; 6233 } 6234 // No non-empty intersection found - need to add a second set of possible 6235 // source vectors. 6236 if (Idx == UsedTEs.size()) { 6237 // If the number of input vectors is greater than 2 - not a permutation, 6238 // fallback to the regular gather. 6239 if (UsedTEs.size() == 2) 6240 return None; 6241 UsedTEs.push_back(SavedVToTEs); 6242 Idx = UsedTEs.size() - 1; 6243 } 6244 UsedValuesEntry.try_emplace(V, Idx); 6245 } 6246 } 6247 6248 unsigned VF = 0; 6249 if (UsedTEs.size() == 1) { 6250 // Try to find the perfect match in another gather node at first. 6251 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6252 return EntryPtr->isSame(TE->Scalars); 6253 }); 6254 if (It != UsedTEs.front().end()) { 6255 Entries.push_back(*It); 6256 std::iota(Mask.begin(), Mask.end(), 0); 6257 return TargetTransformInfo::SK_PermuteSingleSrc; 6258 } 6259 // No perfect match, just shuffle, so choose the first tree node. 6260 Entries.push_back(*UsedTEs.front().begin()); 6261 } else { 6262 // Try to find nodes with the same vector factor. 6263 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6264 DenseMap<int, const TreeEntry *> VFToTE; 6265 for (const TreeEntry *TE : UsedTEs.front()) 6266 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6267 for (const TreeEntry *TE : UsedTEs.back()) { 6268 auto It = VFToTE.find(TE->getVectorFactor()); 6269 if (It != VFToTE.end()) { 6270 VF = It->first; 6271 Entries.push_back(It->second); 6272 Entries.push_back(TE); 6273 break; 6274 } 6275 } 6276 // No 2 source vectors with the same vector factor - give up and do regular 6277 // gather. 6278 if (Entries.empty()) 6279 return None; 6280 } 6281 6282 // Build a shuffle mask for better cost estimation and vector emission. 6283 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6284 Value *V = TE->Scalars[I]; 6285 if (isa<UndefValue>(V)) 6286 continue; 6287 unsigned Idx = UsedValuesEntry.lookup(V); 6288 const TreeEntry *VTE = Entries[Idx]; 6289 int FoundLane = VTE->findLaneForValue(V); 6290 Mask[I] = Idx * VF + FoundLane; 6291 // Extra check required by isSingleSourceMaskImpl function (called by 6292 // ShuffleVectorInst::isSingleSourceMask). 6293 if (Mask[I] >= 2 * E) 6294 return None; 6295 } 6296 switch (Entries.size()) { 6297 case 1: 6298 return TargetTransformInfo::SK_PermuteSingleSrc; 6299 case 2: 6300 return TargetTransformInfo::SK_PermuteTwoSrc; 6301 default: 6302 break; 6303 } 6304 return None; 6305 } 6306 6307 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6308 const APInt &ShuffledIndices, 6309 bool NeedToShuffle) const { 6310 InstructionCost Cost = 6311 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6312 /*Extract*/ false); 6313 if (NeedToShuffle) 6314 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6315 return Cost; 6316 } 6317 6318 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6319 // Find the type of the operands in VL. 6320 Type *ScalarTy = VL[0]->getType(); 6321 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6322 ScalarTy = SI->getValueOperand()->getType(); 6323 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6324 bool DuplicateNonConst = false; 6325 // Find the cost of inserting/extracting values from the vector. 6326 // Check if the same elements are inserted several times and count them as 6327 // shuffle candidates. 6328 APInt ShuffledElements = APInt::getZero(VL.size()); 6329 DenseSet<Value *> UniqueElements; 6330 // Iterate in reverse order to consider insert elements with the high cost. 6331 for (unsigned I = VL.size(); I > 0; --I) { 6332 unsigned Idx = I - 1; 6333 // No need to shuffle duplicates for constants. 6334 if (isConstant(VL[Idx])) { 6335 ShuffledElements.setBit(Idx); 6336 continue; 6337 } 6338 if (!UniqueElements.insert(VL[Idx]).second) { 6339 DuplicateNonConst = true; 6340 ShuffledElements.setBit(Idx); 6341 } 6342 } 6343 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6344 } 6345 6346 // Perform operand reordering on the instructions in VL and return the reordered 6347 // operands in Left and Right. 6348 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6349 SmallVectorImpl<Value *> &Left, 6350 SmallVectorImpl<Value *> &Right, 6351 const DataLayout &DL, 6352 ScalarEvolution &SE, 6353 const BoUpSLP &R) { 6354 if (VL.empty()) 6355 return; 6356 VLOperands Ops(VL, DL, SE, R); 6357 // Reorder the operands in place. 6358 Ops.reorder(); 6359 Left = Ops.getVL(0); 6360 Right = Ops.getVL(1); 6361 } 6362 6363 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6364 // Get the basic block this bundle is in. All instructions in the bundle 6365 // should be in this block. 6366 auto *Front = E->getMainOp(); 6367 auto *BB = Front->getParent(); 6368 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6369 auto *I = cast<Instruction>(V); 6370 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6371 })); 6372 6373 // The last instruction in the bundle in program order. 6374 Instruction *LastInst = nullptr; 6375 6376 // Find the last instruction. The common case should be that BB has been 6377 // scheduled, and the last instruction is VL.back(). So we start with 6378 // VL.back() and iterate over schedule data until we reach the end of the 6379 // bundle. The end of the bundle is marked by null ScheduleData. 6380 if (BlocksSchedules.count(BB)) { 6381 auto *Bundle = 6382 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6383 if (Bundle && Bundle->isPartOfBundle()) 6384 for (; Bundle; Bundle = Bundle->NextInBundle) 6385 if (Bundle->OpValue == Bundle->Inst) 6386 LastInst = Bundle->Inst; 6387 } 6388 6389 // LastInst can still be null at this point if there's either not an entry 6390 // for BB in BlocksSchedules or there's no ScheduleData available for 6391 // VL.back(). This can be the case if buildTree_rec aborts for various 6392 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6393 // size is reached, etc.). ScheduleData is initialized in the scheduling 6394 // "dry-run". 6395 // 6396 // If this happens, we can still find the last instruction by brute force. We 6397 // iterate forwards from Front (inclusive) until we either see all 6398 // instructions in the bundle or reach the end of the block. If Front is the 6399 // last instruction in program order, LastInst will be set to Front, and we 6400 // will visit all the remaining instructions in the block. 6401 // 6402 // One of the reasons we exit early from buildTree_rec is to place an upper 6403 // bound on compile-time. Thus, taking an additional compile-time hit here is 6404 // not ideal. However, this should be exceedingly rare since it requires that 6405 // we both exit early from buildTree_rec and that the bundle be out-of-order 6406 // (causing us to iterate all the way to the end of the block). 6407 if (!LastInst) { 6408 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6409 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6410 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6411 LastInst = &I; 6412 if (Bundle.empty()) 6413 break; 6414 } 6415 } 6416 assert(LastInst && "Failed to find last instruction in bundle"); 6417 6418 // Set the insertion point after the last instruction in the bundle. Set the 6419 // debug location to Front. 6420 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6421 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6422 } 6423 6424 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6425 // List of instructions/lanes from current block and/or the blocks which are 6426 // part of the current loop. These instructions will be inserted at the end to 6427 // make it possible to optimize loops and hoist invariant instructions out of 6428 // the loops body with better chances for success. 6429 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6430 SmallSet<int, 4> PostponedIndices; 6431 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6432 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6433 SmallPtrSet<BasicBlock *, 4> Visited; 6434 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6435 InsertBB = InsertBB->getSinglePredecessor(); 6436 return InsertBB && InsertBB == InstBB; 6437 }; 6438 for (int I = 0, E = VL.size(); I < E; ++I) { 6439 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6440 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6441 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6442 PostponedIndices.insert(I).second) 6443 PostponedInsts.emplace_back(Inst, I); 6444 } 6445 6446 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6447 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6448 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6449 if (!InsElt) 6450 return Vec; 6451 GatherShuffleSeq.insert(InsElt); 6452 CSEBlocks.insert(InsElt->getParent()); 6453 // Add to our 'need-to-extract' list. 6454 if (TreeEntry *Entry = getTreeEntry(V)) { 6455 // Find which lane we need to extract. 6456 unsigned FoundLane = Entry->findLaneForValue(V); 6457 ExternalUses.emplace_back(V, InsElt, FoundLane); 6458 } 6459 return Vec; 6460 }; 6461 Value *Val0 = 6462 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6463 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6464 Value *Vec = PoisonValue::get(VecTy); 6465 SmallVector<int> NonConsts; 6466 // Insert constant values at first. 6467 for (int I = 0, E = VL.size(); I < E; ++I) { 6468 if (PostponedIndices.contains(I)) 6469 continue; 6470 if (!isConstant(VL[I])) { 6471 NonConsts.push_back(I); 6472 continue; 6473 } 6474 Vec = CreateInsertElement(Vec, VL[I], I); 6475 } 6476 // Insert non-constant values. 6477 for (int I : NonConsts) 6478 Vec = CreateInsertElement(Vec, VL[I], I); 6479 // Append instructions, which are/may be part of the loop, in the end to make 6480 // it possible to hoist non-loop-based instructions. 6481 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6482 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6483 6484 return Vec; 6485 } 6486 6487 namespace { 6488 /// Merges shuffle masks and emits final shuffle instruction, if required. 6489 class ShuffleInstructionBuilder { 6490 IRBuilderBase &Builder; 6491 const unsigned VF = 0; 6492 bool IsFinalized = false; 6493 SmallVector<int, 4> Mask; 6494 /// Holds all of the instructions that we gathered. 6495 SetVector<Instruction *> &GatherShuffleSeq; 6496 /// A list of blocks that we are going to CSE. 6497 SetVector<BasicBlock *> &CSEBlocks; 6498 6499 public: 6500 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6501 SetVector<Instruction *> &GatherShuffleSeq, 6502 SetVector<BasicBlock *> &CSEBlocks) 6503 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6504 CSEBlocks(CSEBlocks) {} 6505 6506 /// Adds a mask, inverting it before applying. 6507 void addInversedMask(ArrayRef<unsigned> SubMask) { 6508 if (SubMask.empty()) 6509 return; 6510 SmallVector<int, 4> NewMask; 6511 inversePermutation(SubMask, NewMask); 6512 addMask(NewMask); 6513 } 6514 6515 /// Functions adds masks, merging them into single one. 6516 void addMask(ArrayRef<unsigned> SubMask) { 6517 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6518 addMask(NewMask); 6519 } 6520 6521 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6522 6523 Value *finalize(Value *V) { 6524 IsFinalized = true; 6525 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6526 if (VF == ValueVF && Mask.empty()) 6527 return V; 6528 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6529 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6530 addMask(NormalizedMask); 6531 6532 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6533 return V; 6534 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6535 if (auto *I = dyn_cast<Instruction>(Vec)) { 6536 GatherShuffleSeq.insert(I); 6537 CSEBlocks.insert(I->getParent()); 6538 } 6539 return Vec; 6540 } 6541 6542 ~ShuffleInstructionBuilder() { 6543 assert((IsFinalized || Mask.empty()) && 6544 "Shuffle construction must be finalized."); 6545 } 6546 }; 6547 } // namespace 6548 6549 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6550 unsigned VF = VL.size(); 6551 InstructionsState S = getSameOpcode(VL); 6552 if (S.getOpcode()) { 6553 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6554 if (E->isSame(VL)) { 6555 Value *V = vectorizeTree(E); 6556 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6557 if (!E->ReuseShuffleIndices.empty()) { 6558 // Reshuffle to get only unique values. 6559 // If some of the scalars are duplicated in the vectorization tree 6560 // entry, we do not vectorize them but instead generate a mask for 6561 // the reuses. But if there are several users of the same entry, 6562 // they may have different vectorization factors. This is especially 6563 // important for PHI nodes. In this case, we need to adapt the 6564 // resulting instruction for the user vectorization factor and have 6565 // to reshuffle it again to take only unique elements of the vector. 6566 // Without this code the function incorrectly returns reduced vector 6567 // instruction with the same elements, not with the unique ones. 6568 6569 // block: 6570 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6571 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6572 // ... (use %2) 6573 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6574 // br %block 6575 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6576 SmallSet<int, 4> UsedIdxs; 6577 int Pos = 0; 6578 int Sz = VL.size(); 6579 for (int Idx : E->ReuseShuffleIndices) { 6580 if (Idx != Sz && Idx != UndefMaskElem && 6581 UsedIdxs.insert(Idx).second) 6582 UniqueIdxs[Idx] = Pos; 6583 ++Pos; 6584 } 6585 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6586 "less than original vector size."); 6587 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6588 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6589 } else { 6590 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6591 "Expected vectorization factor less " 6592 "than original vector size."); 6593 SmallVector<int> UniformMask(VF, 0); 6594 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6595 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6596 } 6597 if (auto *I = dyn_cast<Instruction>(V)) { 6598 GatherShuffleSeq.insert(I); 6599 CSEBlocks.insert(I->getParent()); 6600 } 6601 } 6602 return V; 6603 } 6604 } 6605 6606 // Check that every instruction appears once in this bundle. 6607 SmallVector<int> ReuseShuffleIndicies; 6608 SmallVector<Value *> UniqueValues; 6609 if (VL.size() > 2) { 6610 DenseMap<Value *, unsigned> UniquePositions; 6611 unsigned NumValues = 6612 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6613 return !isa<UndefValue>(V); 6614 }).base()); 6615 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6616 int UniqueVals = 0; 6617 for (Value *V : VL.drop_back(VL.size() - VF)) { 6618 if (isa<UndefValue>(V)) { 6619 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6620 continue; 6621 } 6622 if (isConstant(V)) { 6623 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6624 UniqueValues.emplace_back(V); 6625 continue; 6626 } 6627 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6628 ReuseShuffleIndicies.emplace_back(Res.first->second); 6629 if (Res.second) { 6630 UniqueValues.emplace_back(V); 6631 ++UniqueVals; 6632 } 6633 } 6634 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6635 // Emit pure splat vector. 6636 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6637 UndefMaskElem); 6638 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6639 ReuseShuffleIndicies.clear(); 6640 UniqueValues.clear(); 6641 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6642 } 6643 UniqueValues.append(VF - UniqueValues.size(), 6644 PoisonValue::get(VL[0]->getType())); 6645 VL = UniqueValues; 6646 } 6647 6648 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6649 CSEBlocks); 6650 Value *Vec = gather(VL); 6651 if (!ReuseShuffleIndicies.empty()) { 6652 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6653 Vec = ShuffleBuilder.finalize(Vec); 6654 } 6655 return Vec; 6656 } 6657 6658 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6659 IRBuilder<>::InsertPointGuard Guard(Builder); 6660 6661 if (E->VectorizedValue) { 6662 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6663 return E->VectorizedValue; 6664 } 6665 6666 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6667 unsigned VF = E->getVectorFactor(); 6668 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6669 CSEBlocks); 6670 if (E->State == TreeEntry::NeedToGather) { 6671 if (E->getMainOp()) 6672 setInsertPointAfterBundle(E); 6673 Value *Vec; 6674 SmallVector<int> Mask; 6675 SmallVector<const TreeEntry *> Entries; 6676 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6677 isGatherShuffledEntry(E, Mask, Entries); 6678 if (Shuffle.hasValue()) { 6679 assert((Entries.size() == 1 || Entries.size() == 2) && 6680 "Expected shuffle of 1 or 2 entries."); 6681 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6682 Entries.back()->VectorizedValue, Mask); 6683 if (auto *I = dyn_cast<Instruction>(Vec)) { 6684 GatherShuffleSeq.insert(I); 6685 CSEBlocks.insert(I->getParent()); 6686 } 6687 } else { 6688 Vec = gather(E->Scalars); 6689 } 6690 if (NeedToShuffleReuses) { 6691 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6692 Vec = ShuffleBuilder.finalize(Vec); 6693 } 6694 E->VectorizedValue = Vec; 6695 return Vec; 6696 } 6697 6698 assert((E->State == TreeEntry::Vectorize || 6699 E->State == TreeEntry::ScatterVectorize) && 6700 "Unhandled state"); 6701 unsigned ShuffleOrOp = 6702 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6703 Instruction *VL0 = E->getMainOp(); 6704 Type *ScalarTy = VL0->getType(); 6705 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6706 ScalarTy = Store->getValueOperand()->getType(); 6707 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6708 ScalarTy = IE->getOperand(1)->getType(); 6709 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6710 switch (ShuffleOrOp) { 6711 case Instruction::PHI: { 6712 assert( 6713 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6714 "PHI reordering is free."); 6715 auto *PH = cast<PHINode>(VL0); 6716 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6717 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6718 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6719 Value *V = NewPhi; 6720 6721 // Adjust insertion point once all PHI's have been generated. 6722 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6723 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6724 6725 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6726 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6727 V = ShuffleBuilder.finalize(V); 6728 6729 E->VectorizedValue = V; 6730 6731 // PHINodes may have multiple entries from the same block. We want to 6732 // visit every block once. 6733 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6734 6735 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6736 ValueList Operands; 6737 BasicBlock *IBB = PH->getIncomingBlock(i); 6738 6739 if (!VisitedBBs.insert(IBB).second) { 6740 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6741 continue; 6742 } 6743 6744 Builder.SetInsertPoint(IBB->getTerminator()); 6745 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6746 Value *Vec = vectorizeTree(E->getOperand(i)); 6747 NewPhi->addIncoming(Vec, IBB); 6748 } 6749 6750 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6751 "Invalid number of incoming values"); 6752 return V; 6753 } 6754 6755 case Instruction::ExtractElement: { 6756 Value *V = E->getSingleOperand(0); 6757 Builder.SetInsertPoint(VL0); 6758 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6759 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6760 V = ShuffleBuilder.finalize(V); 6761 E->VectorizedValue = V; 6762 return V; 6763 } 6764 case Instruction::ExtractValue: { 6765 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6766 Builder.SetInsertPoint(LI); 6767 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6768 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6769 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6770 Value *NewV = propagateMetadata(V, E->Scalars); 6771 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6772 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6773 NewV = ShuffleBuilder.finalize(NewV); 6774 E->VectorizedValue = NewV; 6775 return NewV; 6776 } 6777 case Instruction::InsertElement: { 6778 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6779 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6780 Value *V = vectorizeTree(E->getOperand(1)); 6781 6782 // Create InsertVector shuffle if necessary 6783 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6784 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6785 })); 6786 const unsigned NumElts = 6787 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6788 const unsigned NumScalars = E->Scalars.size(); 6789 6790 unsigned Offset = *getInsertIndex(VL0); 6791 assert(Offset < NumElts && "Failed to find vector index offset"); 6792 6793 // Create shuffle to resize vector 6794 SmallVector<int> Mask; 6795 if (!E->ReorderIndices.empty()) { 6796 inversePermutation(E->ReorderIndices, Mask); 6797 Mask.append(NumElts - NumScalars, UndefMaskElem); 6798 } else { 6799 Mask.assign(NumElts, UndefMaskElem); 6800 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6801 } 6802 // Create InsertVector shuffle if necessary 6803 bool IsIdentity = true; 6804 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6805 Mask.swap(PrevMask); 6806 for (unsigned I = 0; I < NumScalars; ++I) { 6807 Value *Scalar = E->Scalars[PrevMask[I]]; 6808 unsigned InsertIdx = *getInsertIndex(Scalar); 6809 IsIdentity &= InsertIdx - Offset == I; 6810 Mask[InsertIdx - Offset] = I; 6811 } 6812 if (!IsIdentity || NumElts != NumScalars) { 6813 V = Builder.CreateShuffleVector(V, Mask); 6814 if (auto *I = dyn_cast<Instruction>(V)) { 6815 GatherShuffleSeq.insert(I); 6816 CSEBlocks.insert(I->getParent()); 6817 } 6818 } 6819 6820 if ((!IsIdentity || Offset != 0 || 6821 !isUndefVector(FirstInsert->getOperand(0))) && 6822 NumElts != NumScalars) { 6823 SmallVector<int> InsertMask(NumElts); 6824 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6825 for (unsigned I = 0; I < NumElts; I++) { 6826 if (Mask[I] != UndefMaskElem) 6827 InsertMask[Offset + I] = NumElts + I; 6828 } 6829 6830 V = Builder.CreateShuffleVector( 6831 FirstInsert->getOperand(0), V, InsertMask, 6832 cast<Instruction>(E->Scalars.back())->getName()); 6833 if (auto *I = dyn_cast<Instruction>(V)) { 6834 GatherShuffleSeq.insert(I); 6835 CSEBlocks.insert(I->getParent()); 6836 } 6837 } 6838 6839 ++NumVectorInstructions; 6840 E->VectorizedValue = V; 6841 return V; 6842 } 6843 case Instruction::ZExt: 6844 case Instruction::SExt: 6845 case Instruction::FPToUI: 6846 case Instruction::FPToSI: 6847 case Instruction::FPExt: 6848 case Instruction::PtrToInt: 6849 case Instruction::IntToPtr: 6850 case Instruction::SIToFP: 6851 case Instruction::UIToFP: 6852 case Instruction::Trunc: 6853 case Instruction::FPTrunc: 6854 case Instruction::BitCast: { 6855 setInsertPointAfterBundle(E); 6856 6857 Value *InVec = vectorizeTree(E->getOperand(0)); 6858 6859 if (E->VectorizedValue) { 6860 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6861 return E->VectorizedValue; 6862 } 6863 6864 auto *CI = cast<CastInst>(VL0); 6865 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6866 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6867 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6868 V = ShuffleBuilder.finalize(V); 6869 6870 E->VectorizedValue = V; 6871 ++NumVectorInstructions; 6872 return V; 6873 } 6874 case Instruction::FCmp: 6875 case Instruction::ICmp: { 6876 setInsertPointAfterBundle(E); 6877 6878 Value *L = vectorizeTree(E->getOperand(0)); 6879 Value *R = vectorizeTree(E->getOperand(1)); 6880 6881 if (E->VectorizedValue) { 6882 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6883 return E->VectorizedValue; 6884 } 6885 6886 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6887 Value *V = Builder.CreateCmp(P0, L, R); 6888 propagateIRFlags(V, E->Scalars, VL0); 6889 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6890 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6891 V = ShuffleBuilder.finalize(V); 6892 6893 E->VectorizedValue = V; 6894 ++NumVectorInstructions; 6895 return V; 6896 } 6897 case Instruction::Select: { 6898 setInsertPointAfterBundle(E); 6899 6900 Value *Cond = vectorizeTree(E->getOperand(0)); 6901 Value *True = vectorizeTree(E->getOperand(1)); 6902 Value *False = vectorizeTree(E->getOperand(2)); 6903 6904 if (E->VectorizedValue) { 6905 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6906 return E->VectorizedValue; 6907 } 6908 6909 Value *V = Builder.CreateSelect(Cond, True, False); 6910 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6911 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6912 V = ShuffleBuilder.finalize(V); 6913 6914 E->VectorizedValue = V; 6915 ++NumVectorInstructions; 6916 return V; 6917 } 6918 case Instruction::FNeg: { 6919 setInsertPointAfterBundle(E); 6920 6921 Value *Op = vectorizeTree(E->getOperand(0)); 6922 6923 if (E->VectorizedValue) { 6924 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6925 return E->VectorizedValue; 6926 } 6927 6928 Value *V = Builder.CreateUnOp( 6929 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6930 propagateIRFlags(V, E->Scalars, VL0); 6931 if (auto *I = dyn_cast<Instruction>(V)) 6932 V = propagateMetadata(I, E->Scalars); 6933 6934 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6935 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6936 V = ShuffleBuilder.finalize(V); 6937 6938 E->VectorizedValue = V; 6939 ++NumVectorInstructions; 6940 6941 return V; 6942 } 6943 case Instruction::Add: 6944 case Instruction::FAdd: 6945 case Instruction::Sub: 6946 case Instruction::FSub: 6947 case Instruction::Mul: 6948 case Instruction::FMul: 6949 case Instruction::UDiv: 6950 case Instruction::SDiv: 6951 case Instruction::FDiv: 6952 case Instruction::URem: 6953 case Instruction::SRem: 6954 case Instruction::FRem: 6955 case Instruction::Shl: 6956 case Instruction::LShr: 6957 case Instruction::AShr: 6958 case Instruction::And: 6959 case Instruction::Or: 6960 case Instruction::Xor: { 6961 setInsertPointAfterBundle(E); 6962 6963 Value *LHS = vectorizeTree(E->getOperand(0)); 6964 Value *RHS = vectorizeTree(E->getOperand(1)); 6965 6966 if (E->VectorizedValue) { 6967 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6968 return E->VectorizedValue; 6969 } 6970 6971 Value *V = Builder.CreateBinOp( 6972 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6973 RHS); 6974 propagateIRFlags(V, E->Scalars, VL0); 6975 if (auto *I = dyn_cast<Instruction>(V)) 6976 V = propagateMetadata(I, E->Scalars); 6977 6978 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6979 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6980 V = ShuffleBuilder.finalize(V); 6981 6982 E->VectorizedValue = V; 6983 ++NumVectorInstructions; 6984 6985 return V; 6986 } 6987 case Instruction::Load: { 6988 // Loads are inserted at the head of the tree because we don't want to 6989 // sink them all the way down past store instructions. 6990 setInsertPointAfterBundle(E); 6991 6992 LoadInst *LI = cast<LoadInst>(VL0); 6993 Instruction *NewLI; 6994 unsigned AS = LI->getPointerAddressSpace(); 6995 Value *PO = LI->getPointerOperand(); 6996 if (E->State == TreeEntry::Vectorize) { 6997 6998 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6999 7000 // The pointer operand uses an in-tree scalar so we add the new BitCast 7001 // to ExternalUses list to make sure that an extract will be generated 7002 // in the future. 7003 if (TreeEntry *Entry = getTreeEntry(PO)) { 7004 // Find which lane we need to extract. 7005 unsigned FoundLane = Entry->findLaneForValue(PO); 7006 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 7007 } 7008 7009 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7010 } else { 7011 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7012 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7013 // Use the minimum alignment of the gathered loads. 7014 Align CommonAlignment = LI->getAlign(); 7015 for (Value *V : E->Scalars) 7016 CommonAlignment = 7017 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7018 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7019 } 7020 Value *V = propagateMetadata(NewLI, E->Scalars); 7021 7022 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7023 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7024 V = ShuffleBuilder.finalize(V); 7025 E->VectorizedValue = V; 7026 ++NumVectorInstructions; 7027 return V; 7028 } 7029 case Instruction::Store: { 7030 auto *SI = cast<StoreInst>(VL0); 7031 unsigned AS = SI->getPointerAddressSpace(); 7032 7033 setInsertPointAfterBundle(E); 7034 7035 Value *VecValue = vectorizeTree(E->getOperand(0)); 7036 ShuffleBuilder.addMask(E->ReorderIndices); 7037 VecValue = ShuffleBuilder.finalize(VecValue); 7038 7039 Value *ScalarPtr = SI->getPointerOperand(); 7040 Value *VecPtr = Builder.CreateBitCast( 7041 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7042 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 7043 SI->getAlign()); 7044 7045 // The pointer operand uses an in-tree scalar, so add the new BitCast to 7046 // ExternalUses to make sure that an extract will be generated in the 7047 // future. 7048 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7049 // Find which lane we need to extract. 7050 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7051 ExternalUses.push_back( 7052 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 7053 } 7054 7055 Value *V = propagateMetadata(ST, E->Scalars); 7056 7057 E->VectorizedValue = V; 7058 ++NumVectorInstructions; 7059 return V; 7060 } 7061 case Instruction::GetElementPtr: { 7062 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7063 setInsertPointAfterBundle(E); 7064 7065 Value *Op0 = vectorizeTree(E->getOperand(0)); 7066 7067 SmallVector<Value *> OpVecs; 7068 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7069 Value *OpVec = vectorizeTree(E->getOperand(J)); 7070 OpVecs.push_back(OpVec); 7071 } 7072 7073 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7074 if (Instruction *I = dyn_cast<Instruction>(V)) 7075 V = propagateMetadata(I, E->Scalars); 7076 7077 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7078 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7079 V = ShuffleBuilder.finalize(V); 7080 7081 E->VectorizedValue = V; 7082 ++NumVectorInstructions; 7083 7084 return V; 7085 } 7086 case Instruction::Call: { 7087 CallInst *CI = cast<CallInst>(VL0); 7088 setInsertPointAfterBundle(E); 7089 7090 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7091 if (Function *FI = CI->getCalledFunction()) 7092 IID = FI->getIntrinsicID(); 7093 7094 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7095 7096 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7097 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7098 VecCallCosts.first <= VecCallCosts.second; 7099 7100 Value *ScalarArg = nullptr; 7101 std::vector<Value *> OpVecs; 7102 SmallVector<Type *, 2> TysForDecl = 7103 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7104 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7105 ValueList OpVL; 7106 // Some intrinsics have scalar arguments. This argument should not be 7107 // vectorized. 7108 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7109 CallInst *CEI = cast<CallInst>(VL0); 7110 ScalarArg = CEI->getArgOperand(j); 7111 OpVecs.push_back(CEI->getArgOperand(j)); 7112 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7113 TysForDecl.push_back(ScalarArg->getType()); 7114 continue; 7115 } 7116 7117 Value *OpVec = vectorizeTree(E->getOperand(j)); 7118 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7119 OpVecs.push_back(OpVec); 7120 } 7121 7122 Function *CF; 7123 if (!UseIntrinsic) { 7124 VFShape Shape = 7125 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7126 VecTy->getNumElements())), 7127 false /*HasGlobalPred*/); 7128 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7129 } else { 7130 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7131 } 7132 7133 SmallVector<OperandBundleDef, 1> OpBundles; 7134 CI->getOperandBundlesAsDefs(OpBundles); 7135 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7136 7137 // The scalar argument uses an in-tree scalar so we add the new vectorized 7138 // call to ExternalUses list to make sure that an extract will be 7139 // generated in the future. 7140 if (ScalarArg) { 7141 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7142 // Find which lane we need to extract. 7143 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7144 ExternalUses.push_back( 7145 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7146 } 7147 } 7148 7149 propagateIRFlags(V, E->Scalars, VL0); 7150 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7151 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7152 V = ShuffleBuilder.finalize(V); 7153 7154 E->VectorizedValue = V; 7155 ++NumVectorInstructions; 7156 return V; 7157 } 7158 case Instruction::ShuffleVector: { 7159 assert(E->isAltShuffle() && 7160 ((Instruction::isBinaryOp(E->getOpcode()) && 7161 Instruction::isBinaryOp(E->getAltOpcode())) || 7162 (Instruction::isCast(E->getOpcode()) && 7163 Instruction::isCast(E->getAltOpcode())) || 7164 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7165 "Invalid Shuffle Vector Operand"); 7166 7167 Value *LHS = nullptr, *RHS = nullptr; 7168 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7169 setInsertPointAfterBundle(E); 7170 LHS = vectorizeTree(E->getOperand(0)); 7171 RHS = vectorizeTree(E->getOperand(1)); 7172 } else { 7173 setInsertPointAfterBundle(E); 7174 LHS = vectorizeTree(E->getOperand(0)); 7175 } 7176 7177 if (E->VectorizedValue) { 7178 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7179 return E->VectorizedValue; 7180 } 7181 7182 Value *V0, *V1; 7183 if (Instruction::isBinaryOp(E->getOpcode())) { 7184 V0 = Builder.CreateBinOp( 7185 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7186 V1 = Builder.CreateBinOp( 7187 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7188 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7189 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7190 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7191 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7192 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7193 } else { 7194 V0 = Builder.CreateCast( 7195 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7196 V1 = Builder.CreateCast( 7197 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7198 } 7199 // Add V0 and V1 to later analysis to try to find and remove matching 7200 // instruction, if any. 7201 for (Value *V : {V0, V1}) { 7202 if (auto *I = dyn_cast<Instruction>(V)) { 7203 GatherShuffleSeq.insert(I); 7204 CSEBlocks.insert(I->getParent()); 7205 } 7206 } 7207 7208 // Create shuffle to take alternate operations from the vector. 7209 // Also, gather up main and alt scalar ops to propagate IR flags to 7210 // each vector operation. 7211 ValueList OpScalars, AltScalars; 7212 SmallVector<int> Mask; 7213 buildShuffleEntryMask( 7214 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7215 [E](Instruction *I) { 7216 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7217 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7218 }, 7219 Mask, &OpScalars, &AltScalars); 7220 7221 propagateIRFlags(V0, OpScalars); 7222 propagateIRFlags(V1, AltScalars); 7223 7224 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7225 if (auto *I = dyn_cast<Instruction>(V)) { 7226 V = propagateMetadata(I, E->Scalars); 7227 GatherShuffleSeq.insert(I); 7228 CSEBlocks.insert(I->getParent()); 7229 } 7230 V = ShuffleBuilder.finalize(V); 7231 7232 E->VectorizedValue = V; 7233 ++NumVectorInstructions; 7234 7235 return V; 7236 } 7237 default: 7238 llvm_unreachable("unknown inst"); 7239 } 7240 return nullptr; 7241 } 7242 7243 Value *BoUpSLP::vectorizeTree() { 7244 ExtraValueToDebugLocsMap ExternallyUsedValues; 7245 return vectorizeTree(ExternallyUsedValues); 7246 } 7247 7248 Value * 7249 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7250 // All blocks must be scheduled before any instructions are inserted. 7251 for (auto &BSIter : BlocksSchedules) { 7252 scheduleBlock(BSIter.second.get()); 7253 } 7254 7255 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7256 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7257 7258 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7259 // vectorized root. InstCombine will then rewrite the entire expression. We 7260 // sign extend the extracted values below. 7261 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7262 if (MinBWs.count(ScalarRoot)) { 7263 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7264 // If current instr is a phi and not the last phi, insert it after the 7265 // last phi node. 7266 if (isa<PHINode>(I)) 7267 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7268 else 7269 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7270 } 7271 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7272 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7273 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7274 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7275 VectorizableTree[0]->VectorizedValue = Trunc; 7276 } 7277 7278 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7279 << " values .\n"); 7280 7281 // Extract all of the elements with the external uses. 7282 for (const auto &ExternalUse : ExternalUses) { 7283 Value *Scalar = ExternalUse.Scalar; 7284 llvm::User *User = ExternalUse.User; 7285 7286 // Skip users that we already RAUW. This happens when one instruction 7287 // has multiple uses of the same value. 7288 if (User && !is_contained(Scalar->users(), User)) 7289 continue; 7290 TreeEntry *E = getTreeEntry(Scalar); 7291 assert(E && "Invalid scalar"); 7292 assert(E->State != TreeEntry::NeedToGather && 7293 "Extracting from a gather list"); 7294 7295 Value *Vec = E->VectorizedValue; 7296 assert(Vec && "Can't find vectorizable value"); 7297 7298 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7299 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7300 if (Scalar->getType() != Vec->getType()) { 7301 Value *Ex; 7302 // "Reuse" the existing extract to improve final codegen. 7303 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7304 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7305 ES->getOperand(1)); 7306 } else { 7307 Ex = Builder.CreateExtractElement(Vec, Lane); 7308 } 7309 // If necessary, sign-extend or zero-extend ScalarRoot 7310 // to the larger type. 7311 if (!MinBWs.count(ScalarRoot)) 7312 return Ex; 7313 if (MinBWs[ScalarRoot].second) 7314 return Builder.CreateSExt(Ex, Scalar->getType()); 7315 return Builder.CreateZExt(Ex, Scalar->getType()); 7316 } 7317 assert(isa<FixedVectorType>(Scalar->getType()) && 7318 isa<InsertElementInst>(Scalar) && 7319 "In-tree scalar of vector type is not insertelement?"); 7320 return Vec; 7321 }; 7322 // If User == nullptr, the Scalar is used as extra arg. Generate 7323 // ExtractElement instruction and update the record for this scalar in 7324 // ExternallyUsedValues. 7325 if (!User) { 7326 assert(ExternallyUsedValues.count(Scalar) && 7327 "Scalar with nullptr as an external user must be registered in " 7328 "ExternallyUsedValues map"); 7329 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7330 Builder.SetInsertPoint(VecI->getParent(), 7331 std::next(VecI->getIterator())); 7332 } else { 7333 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7334 } 7335 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7336 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7337 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7338 auto It = ExternallyUsedValues.find(Scalar); 7339 assert(It != ExternallyUsedValues.end() && 7340 "Externally used scalar is not found in ExternallyUsedValues"); 7341 NewInstLocs.append(It->second); 7342 ExternallyUsedValues.erase(Scalar); 7343 // Required to update internally referenced instructions. 7344 Scalar->replaceAllUsesWith(NewInst); 7345 continue; 7346 } 7347 7348 // Generate extracts for out-of-tree users. 7349 // Find the insertion point for the extractelement lane. 7350 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7351 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7352 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7353 if (PH->getIncomingValue(i) == Scalar) { 7354 Instruction *IncomingTerminator = 7355 PH->getIncomingBlock(i)->getTerminator(); 7356 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7357 Builder.SetInsertPoint(VecI->getParent(), 7358 std::next(VecI->getIterator())); 7359 } else { 7360 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7361 } 7362 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7363 CSEBlocks.insert(PH->getIncomingBlock(i)); 7364 PH->setOperand(i, NewInst); 7365 } 7366 } 7367 } else { 7368 Builder.SetInsertPoint(cast<Instruction>(User)); 7369 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7370 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7371 User->replaceUsesOfWith(Scalar, NewInst); 7372 } 7373 } else { 7374 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7375 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7376 CSEBlocks.insert(&F->getEntryBlock()); 7377 User->replaceUsesOfWith(Scalar, NewInst); 7378 } 7379 7380 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7381 } 7382 7383 // For each vectorized value: 7384 for (auto &TEPtr : VectorizableTree) { 7385 TreeEntry *Entry = TEPtr.get(); 7386 7387 // No need to handle users of gathered values. 7388 if (Entry->State == TreeEntry::NeedToGather) 7389 continue; 7390 7391 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7392 7393 // For each lane: 7394 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7395 Value *Scalar = Entry->Scalars[Lane]; 7396 7397 #ifndef NDEBUG 7398 Type *Ty = Scalar->getType(); 7399 if (!Ty->isVoidTy()) { 7400 for (User *U : Scalar->users()) { 7401 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7402 7403 // It is legal to delete users in the ignorelist. 7404 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7405 (isa_and_nonnull<Instruction>(U) && 7406 isDeleted(cast<Instruction>(U)))) && 7407 "Deleting out-of-tree value"); 7408 } 7409 } 7410 #endif 7411 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7412 eraseInstruction(cast<Instruction>(Scalar)); 7413 } 7414 } 7415 7416 Builder.ClearInsertionPoint(); 7417 InstrElementSize.clear(); 7418 7419 return VectorizableTree[0]->VectorizedValue; 7420 } 7421 7422 void BoUpSLP::optimizeGatherSequence() { 7423 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7424 << " gather sequences instructions.\n"); 7425 // LICM InsertElementInst sequences. 7426 for (Instruction *I : GatherShuffleSeq) { 7427 if (isDeleted(I)) 7428 continue; 7429 7430 // Check if this block is inside a loop. 7431 Loop *L = LI->getLoopFor(I->getParent()); 7432 if (!L) 7433 continue; 7434 7435 // Check if it has a preheader. 7436 BasicBlock *PreHeader = L->getLoopPreheader(); 7437 if (!PreHeader) 7438 continue; 7439 7440 // If the vector or the element that we insert into it are 7441 // instructions that are defined in this basic block then we can't 7442 // hoist this instruction. 7443 if (any_of(I->operands(), [L](Value *V) { 7444 auto *OpI = dyn_cast<Instruction>(V); 7445 return OpI && L->contains(OpI); 7446 })) 7447 continue; 7448 7449 // We can hoist this instruction. Move it to the pre-header. 7450 I->moveBefore(PreHeader->getTerminator()); 7451 } 7452 7453 // Make a list of all reachable blocks in our CSE queue. 7454 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7455 CSEWorkList.reserve(CSEBlocks.size()); 7456 for (BasicBlock *BB : CSEBlocks) 7457 if (DomTreeNode *N = DT->getNode(BB)) { 7458 assert(DT->isReachableFromEntry(N)); 7459 CSEWorkList.push_back(N); 7460 } 7461 7462 // Sort blocks by domination. This ensures we visit a block after all blocks 7463 // dominating it are visited. 7464 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7465 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7466 "Different nodes should have different DFS numbers"); 7467 return A->getDFSNumIn() < B->getDFSNumIn(); 7468 }); 7469 7470 // Less defined shuffles can be replaced by the more defined copies. 7471 // Between two shuffles one is less defined if it has the same vector operands 7472 // and its mask indeces are the same as in the first one or undefs. E.g. 7473 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7474 // poison, <0, 0, 0, 0>. 7475 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7476 SmallVectorImpl<int> &NewMask) { 7477 if (I1->getType() != I2->getType()) 7478 return false; 7479 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7480 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7481 if (!SI1 || !SI2) 7482 return I1->isIdenticalTo(I2); 7483 if (SI1->isIdenticalTo(SI2)) 7484 return true; 7485 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7486 if (SI1->getOperand(I) != SI2->getOperand(I)) 7487 return false; 7488 // Check if the second instruction is more defined than the first one. 7489 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7490 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7491 // Count trailing undefs in the mask to check the final number of used 7492 // registers. 7493 unsigned LastUndefsCnt = 0; 7494 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7495 if (SM1[I] == UndefMaskElem) 7496 ++LastUndefsCnt; 7497 else 7498 LastUndefsCnt = 0; 7499 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7500 NewMask[I] != SM1[I]) 7501 return false; 7502 if (NewMask[I] == UndefMaskElem) 7503 NewMask[I] = SM1[I]; 7504 } 7505 // Check if the last undefs actually change the final number of used vector 7506 // registers. 7507 return SM1.size() - LastUndefsCnt > 1 && 7508 TTI->getNumberOfParts(SI1->getType()) == 7509 TTI->getNumberOfParts( 7510 FixedVectorType::get(SI1->getType()->getElementType(), 7511 SM1.size() - LastUndefsCnt)); 7512 }; 7513 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7514 // instructions. TODO: We can further optimize this scan if we split the 7515 // instructions into different buckets based on the insert lane. 7516 SmallVector<Instruction *, 16> Visited; 7517 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7518 assert(*I && 7519 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7520 "Worklist not sorted properly!"); 7521 BasicBlock *BB = (*I)->getBlock(); 7522 // For all instructions in blocks containing gather sequences: 7523 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7524 if (isDeleted(&In)) 7525 continue; 7526 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7527 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7528 continue; 7529 7530 // Check if we can replace this instruction with any of the 7531 // visited instructions. 7532 bool Replaced = false; 7533 for (Instruction *&V : Visited) { 7534 SmallVector<int> NewMask; 7535 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7536 DT->dominates(V->getParent(), In.getParent())) { 7537 In.replaceAllUsesWith(V); 7538 eraseInstruction(&In); 7539 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7540 if (!NewMask.empty()) 7541 SI->setShuffleMask(NewMask); 7542 Replaced = true; 7543 break; 7544 } 7545 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7546 GatherShuffleSeq.contains(V) && 7547 IsIdenticalOrLessDefined(V, &In, NewMask) && 7548 DT->dominates(In.getParent(), V->getParent())) { 7549 In.moveAfter(V); 7550 V->replaceAllUsesWith(&In); 7551 eraseInstruction(V); 7552 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7553 if (!NewMask.empty()) 7554 SI->setShuffleMask(NewMask); 7555 V = &In; 7556 Replaced = true; 7557 break; 7558 } 7559 } 7560 if (!Replaced) { 7561 assert(!is_contained(Visited, &In)); 7562 Visited.push_back(&In); 7563 } 7564 } 7565 } 7566 CSEBlocks.clear(); 7567 GatherShuffleSeq.clear(); 7568 } 7569 7570 BoUpSLP::ScheduleData * 7571 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7572 ScheduleData *Bundle = nullptr; 7573 ScheduleData *PrevInBundle = nullptr; 7574 for (Value *V : VL) { 7575 ScheduleData *BundleMember = getScheduleData(V); 7576 assert(BundleMember && 7577 "no ScheduleData for bundle member " 7578 "(maybe not in same basic block)"); 7579 assert(BundleMember->isSchedulingEntity() && 7580 "bundle member already part of other bundle"); 7581 if (PrevInBundle) { 7582 PrevInBundle->NextInBundle = BundleMember; 7583 } else { 7584 Bundle = BundleMember; 7585 } 7586 7587 // Group the instructions to a bundle. 7588 BundleMember->FirstInBundle = Bundle; 7589 PrevInBundle = BundleMember; 7590 } 7591 assert(Bundle && "Failed to find schedule bundle"); 7592 return Bundle; 7593 } 7594 7595 // Groups the instructions to a bundle (which is then a single scheduling entity) 7596 // and schedules instructions until the bundle gets ready. 7597 Optional<BoUpSLP::ScheduleData *> 7598 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7599 const InstructionsState &S) { 7600 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7601 // instructions. 7602 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7603 return nullptr; 7604 7605 // Initialize the instruction bundle. 7606 Instruction *OldScheduleEnd = ScheduleEnd; 7607 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7608 7609 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7610 ScheduleData *Bundle) { 7611 // The scheduling region got new instructions at the lower end (or it is a 7612 // new region for the first bundle). This makes it necessary to 7613 // recalculate all dependencies. 7614 // It is seldom that this needs to be done a second time after adding the 7615 // initial bundle to the region. 7616 if (ScheduleEnd != OldScheduleEnd) { 7617 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7618 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7619 ReSchedule = true; 7620 } 7621 if (Bundle) { 7622 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7623 << " in block " << BB->getName() << "\n"); 7624 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7625 } 7626 7627 if (ReSchedule) { 7628 resetSchedule(); 7629 initialFillReadyList(ReadyInsts); 7630 } 7631 7632 // Now try to schedule the new bundle or (if no bundle) just calculate 7633 // dependencies. As soon as the bundle is "ready" it means that there are no 7634 // cyclic dependencies and we can schedule it. Note that's important that we 7635 // don't "schedule" the bundle yet (see cancelScheduling). 7636 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7637 !ReadyInsts.empty()) { 7638 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7639 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7640 "must be ready to schedule"); 7641 schedule(Picked, ReadyInsts); 7642 } 7643 }; 7644 7645 // Make sure that the scheduling region contains all 7646 // instructions of the bundle. 7647 for (Value *V : VL) { 7648 if (!extendSchedulingRegion(V, S)) { 7649 // If the scheduling region got new instructions at the lower end (or it 7650 // is a new region for the first bundle). This makes it necessary to 7651 // recalculate all dependencies. 7652 // Otherwise the compiler may crash trying to incorrectly calculate 7653 // dependencies and emit instruction in the wrong order at the actual 7654 // scheduling. 7655 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7656 return None; 7657 } 7658 } 7659 7660 bool ReSchedule = false; 7661 for (Value *V : VL) { 7662 ScheduleData *BundleMember = getScheduleData(V); 7663 assert(BundleMember && 7664 "no ScheduleData for bundle member (maybe not in same basic block)"); 7665 7666 // Make sure we don't leave the pieces of the bundle in the ready list when 7667 // whole bundle might not be ready. 7668 ReadyInsts.remove(BundleMember); 7669 7670 if (!BundleMember->IsScheduled) 7671 continue; 7672 // A bundle member was scheduled as single instruction before and now 7673 // needs to be scheduled as part of the bundle. We just get rid of the 7674 // existing schedule. 7675 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7676 << " was already scheduled\n"); 7677 ReSchedule = true; 7678 } 7679 7680 auto *Bundle = buildBundle(VL); 7681 TryScheduleBundleImpl(ReSchedule, Bundle); 7682 if (!Bundle->isReady()) { 7683 cancelScheduling(VL, S.OpValue); 7684 return None; 7685 } 7686 return Bundle; 7687 } 7688 7689 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7690 Value *OpValue) { 7691 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7692 return; 7693 7694 ScheduleData *Bundle = getScheduleData(OpValue); 7695 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7696 assert(!Bundle->IsScheduled && 7697 "Can't cancel bundle which is already scheduled"); 7698 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7699 "tried to unbundle something which is not a bundle"); 7700 7701 // Remove the bundle from the ready list. 7702 if (Bundle->isReady()) 7703 ReadyInsts.remove(Bundle); 7704 7705 // Un-bundle: make single instructions out of the bundle. 7706 ScheduleData *BundleMember = Bundle; 7707 while (BundleMember) { 7708 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7709 BundleMember->FirstInBundle = BundleMember; 7710 ScheduleData *Next = BundleMember->NextInBundle; 7711 BundleMember->NextInBundle = nullptr; 7712 if (BundleMember->unscheduledDepsInBundle() == 0) { 7713 ReadyInsts.insert(BundleMember); 7714 } 7715 BundleMember = Next; 7716 } 7717 } 7718 7719 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7720 // Allocate a new ScheduleData for the instruction. 7721 if (ChunkPos >= ChunkSize) { 7722 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7723 ChunkPos = 0; 7724 } 7725 return &(ScheduleDataChunks.back()[ChunkPos++]); 7726 } 7727 7728 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7729 const InstructionsState &S) { 7730 if (getScheduleData(V, isOneOf(S, V))) 7731 return true; 7732 Instruction *I = dyn_cast<Instruction>(V); 7733 assert(I && "bundle member must be an instruction"); 7734 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7735 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7736 "be scheduled"); 7737 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7738 ScheduleData *ISD = getScheduleData(I); 7739 if (!ISD) 7740 return false; 7741 assert(isInSchedulingRegion(ISD) && 7742 "ScheduleData not in scheduling region"); 7743 ScheduleData *SD = allocateScheduleDataChunks(); 7744 SD->Inst = I; 7745 SD->init(SchedulingRegionID, S.OpValue); 7746 ExtraScheduleDataMap[I][S.OpValue] = SD; 7747 return true; 7748 }; 7749 if (CheckSheduleForI(I)) 7750 return true; 7751 if (!ScheduleStart) { 7752 // It's the first instruction in the new region. 7753 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7754 ScheduleStart = I; 7755 ScheduleEnd = I->getNextNode(); 7756 if (isOneOf(S, I) != I) 7757 CheckSheduleForI(I); 7758 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7759 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7760 return true; 7761 } 7762 // Search up and down at the same time, because we don't know if the new 7763 // instruction is above or below the existing scheduling region. 7764 BasicBlock::reverse_iterator UpIter = 7765 ++ScheduleStart->getIterator().getReverse(); 7766 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7767 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7768 BasicBlock::iterator LowerEnd = BB->end(); 7769 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7770 &*DownIter != I) { 7771 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7772 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7773 return false; 7774 } 7775 7776 ++UpIter; 7777 ++DownIter; 7778 } 7779 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7780 assert(I->getParent() == ScheduleStart->getParent() && 7781 "Instruction is in wrong basic block."); 7782 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7783 ScheduleStart = I; 7784 if (isOneOf(S, I) != I) 7785 CheckSheduleForI(I); 7786 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7787 << "\n"); 7788 return true; 7789 } 7790 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7791 "Expected to reach top of the basic block or instruction down the " 7792 "lower end."); 7793 assert(I->getParent() == ScheduleEnd->getParent() && 7794 "Instruction is in wrong basic block."); 7795 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7796 nullptr); 7797 ScheduleEnd = I->getNextNode(); 7798 if (isOneOf(S, I) != I) 7799 CheckSheduleForI(I); 7800 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7801 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7802 return true; 7803 } 7804 7805 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7806 Instruction *ToI, 7807 ScheduleData *PrevLoadStore, 7808 ScheduleData *NextLoadStore) { 7809 ScheduleData *CurrentLoadStore = PrevLoadStore; 7810 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7811 ScheduleData *SD = ScheduleDataMap[I]; 7812 if (!SD) { 7813 SD = allocateScheduleDataChunks(); 7814 ScheduleDataMap[I] = SD; 7815 SD->Inst = I; 7816 } 7817 assert(!isInSchedulingRegion(SD) && 7818 "new ScheduleData already in scheduling region"); 7819 SD->init(SchedulingRegionID, I); 7820 7821 if (I->mayReadOrWriteMemory() && 7822 (!isa<IntrinsicInst>(I) || 7823 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7824 cast<IntrinsicInst>(I)->getIntrinsicID() != 7825 Intrinsic::pseudoprobe))) { 7826 // Update the linked list of memory accessing instructions. 7827 if (CurrentLoadStore) { 7828 CurrentLoadStore->NextLoadStore = SD; 7829 } else { 7830 FirstLoadStoreInRegion = SD; 7831 } 7832 CurrentLoadStore = SD; 7833 } 7834 } 7835 if (NextLoadStore) { 7836 if (CurrentLoadStore) 7837 CurrentLoadStore->NextLoadStore = NextLoadStore; 7838 } else { 7839 LastLoadStoreInRegion = CurrentLoadStore; 7840 } 7841 } 7842 7843 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7844 bool InsertInReadyList, 7845 BoUpSLP *SLP) { 7846 assert(SD->isSchedulingEntity()); 7847 7848 SmallVector<ScheduleData *, 10> WorkList; 7849 WorkList.push_back(SD); 7850 7851 while (!WorkList.empty()) { 7852 ScheduleData *SD = WorkList.pop_back_val(); 7853 for (ScheduleData *BundleMember = SD; BundleMember; 7854 BundleMember = BundleMember->NextInBundle) { 7855 assert(isInSchedulingRegion(BundleMember)); 7856 if (BundleMember->hasValidDependencies()) 7857 continue; 7858 7859 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7860 << "\n"); 7861 BundleMember->Dependencies = 0; 7862 BundleMember->resetUnscheduledDeps(); 7863 7864 // Handle def-use chain dependencies. 7865 if (BundleMember->OpValue != BundleMember->Inst) { 7866 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 7867 BundleMember->Dependencies++; 7868 ScheduleData *DestBundle = UseSD->FirstInBundle; 7869 if (!DestBundle->IsScheduled) 7870 BundleMember->incrementUnscheduledDeps(1); 7871 if (!DestBundle->hasValidDependencies()) 7872 WorkList.push_back(DestBundle); 7873 } 7874 } else { 7875 for (User *U : BundleMember->Inst->users()) { 7876 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 7877 BundleMember->Dependencies++; 7878 ScheduleData *DestBundle = UseSD->FirstInBundle; 7879 if (!DestBundle->IsScheduled) 7880 BundleMember->incrementUnscheduledDeps(1); 7881 if (!DestBundle->hasValidDependencies()) 7882 WorkList.push_back(DestBundle); 7883 } 7884 } 7885 } 7886 7887 // Handle the memory dependencies (if any). 7888 ScheduleData *DepDest = BundleMember->NextLoadStore; 7889 if (!DepDest) 7890 continue; 7891 Instruction *SrcInst = BundleMember->Inst; 7892 assert(SrcInst->mayReadOrWriteMemory() && 7893 "NextLoadStore list for non memory effecting bundle?"); 7894 MemoryLocation SrcLoc = getLocation(SrcInst); 7895 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7896 unsigned numAliased = 0; 7897 unsigned DistToSrc = 1; 7898 7899 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7900 assert(isInSchedulingRegion(DepDest)); 7901 7902 // We have two limits to reduce the complexity: 7903 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7904 // SLP->isAliased (which is the expensive part in this loop). 7905 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7906 // the whole loop (even if the loop is fast, it's quadratic). 7907 // It's important for the loop break condition (see below) to 7908 // check this limit even between two read-only instructions. 7909 if (DistToSrc >= MaxMemDepDistance || 7910 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7911 (numAliased >= AliasedCheckLimit || 7912 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7913 7914 // We increment the counter only if the locations are aliased 7915 // (instead of counting all alias checks). This gives a better 7916 // balance between reduced runtime and accurate dependencies. 7917 numAliased++; 7918 7919 DepDest->MemoryDependencies.push_back(BundleMember); 7920 BundleMember->Dependencies++; 7921 ScheduleData *DestBundle = DepDest->FirstInBundle; 7922 if (!DestBundle->IsScheduled) { 7923 BundleMember->incrementUnscheduledDeps(1); 7924 } 7925 if (!DestBundle->hasValidDependencies()) { 7926 WorkList.push_back(DestBundle); 7927 } 7928 } 7929 7930 // Example, explaining the loop break condition: Let's assume our 7931 // starting instruction is i0 and MaxMemDepDistance = 3. 7932 // 7933 // +--------v--v--v 7934 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7935 // +--------^--^--^ 7936 // 7937 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7938 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7939 // Previously we already added dependencies from i3 to i6,i7,i8 7940 // (because of MaxMemDepDistance). As we added a dependency from 7941 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7942 // and we can abort this loop at i6. 7943 if (DistToSrc >= 2 * MaxMemDepDistance) 7944 break; 7945 DistToSrc++; 7946 } 7947 } 7948 if (InsertInReadyList && SD->isReady()) { 7949 ReadyInsts.insert(SD); 7950 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7951 << "\n"); 7952 } 7953 } 7954 } 7955 7956 void BoUpSLP::BlockScheduling::resetSchedule() { 7957 assert(ScheduleStart && 7958 "tried to reset schedule on block which has not been scheduled"); 7959 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7960 doForAllOpcodes(I, [&](ScheduleData *SD) { 7961 assert(isInSchedulingRegion(SD) && 7962 "ScheduleData not in scheduling region"); 7963 SD->IsScheduled = false; 7964 SD->resetUnscheduledDeps(); 7965 }); 7966 } 7967 ReadyInsts.clear(); 7968 } 7969 7970 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7971 if (!BS->ScheduleStart) 7972 return; 7973 7974 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7975 7976 BS->resetSchedule(); 7977 7978 // For the real scheduling we use a more sophisticated ready-list: it is 7979 // sorted by the original instruction location. This lets the final schedule 7980 // be as close as possible to the original instruction order. 7981 struct ScheduleDataCompare { 7982 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7983 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7984 } 7985 }; 7986 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7987 7988 // Ensure that all dependency data is updated and fill the ready-list with 7989 // initial instructions. 7990 int Idx = 0; 7991 int NumToSchedule = 0; 7992 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7993 I = I->getNextNode()) { 7994 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7995 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7996 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7997 "scheduler and vectorizer bundle mismatch"); 7998 SD->FirstInBundle->SchedulingPriority = Idx++; 7999 if (SD->isSchedulingEntity()) { 8000 BS->calculateDependencies(SD, false, this); 8001 NumToSchedule++; 8002 } 8003 }); 8004 } 8005 BS->initialFillReadyList(ReadyInsts); 8006 8007 Instruction *LastScheduledInst = BS->ScheduleEnd; 8008 8009 // Do the "real" scheduling. 8010 while (!ReadyInsts.empty()) { 8011 ScheduleData *picked = *ReadyInsts.begin(); 8012 ReadyInsts.erase(ReadyInsts.begin()); 8013 8014 // Move the scheduled instruction(s) to their dedicated places, if not 8015 // there yet. 8016 for (ScheduleData *BundleMember = picked; BundleMember; 8017 BundleMember = BundleMember->NextInBundle) { 8018 Instruction *pickedInst = BundleMember->Inst; 8019 if (pickedInst->getNextNode() != LastScheduledInst) 8020 pickedInst->moveBefore(LastScheduledInst); 8021 LastScheduledInst = pickedInst; 8022 } 8023 8024 BS->schedule(picked, ReadyInsts); 8025 NumToSchedule--; 8026 } 8027 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8028 8029 // Check that we didn't break any of our invariants. 8030 #ifdef EXPENSIVE_CHECKS 8031 BS->verify(); 8032 #endif 8033 8034 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8035 // Check that all schedulable entities got scheduled 8036 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8037 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8038 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8039 assert(SD->IsScheduled && "must be scheduled at this point"); 8040 } 8041 }); 8042 } 8043 #endif 8044 8045 // Avoid duplicate scheduling of the block. 8046 BS->ScheduleStart = nullptr; 8047 } 8048 8049 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8050 // If V is a store, just return the width of the stored value (or value 8051 // truncated just before storing) without traversing the expression tree. 8052 // This is the common case. 8053 if (auto *Store = dyn_cast<StoreInst>(V)) { 8054 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8055 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8056 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8057 } 8058 8059 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8060 return getVectorElementSize(IEI->getOperand(1)); 8061 8062 auto E = InstrElementSize.find(V); 8063 if (E != InstrElementSize.end()) 8064 return E->second; 8065 8066 // If V is not a store, we can traverse the expression tree to find loads 8067 // that feed it. The type of the loaded value may indicate a more suitable 8068 // width than V's type. We want to base the vector element size on the width 8069 // of memory operations where possible. 8070 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8071 SmallPtrSet<Instruction *, 16> Visited; 8072 if (auto *I = dyn_cast<Instruction>(V)) { 8073 Worklist.emplace_back(I, I->getParent()); 8074 Visited.insert(I); 8075 } 8076 8077 // Traverse the expression tree in bottom-up order looking for loads. If we 8078 // encounter an instruction we don't yet handle, we give up. 8079 auto Width = 0u; 8080 while (!Worklist.empty()) { 8081 Instruction *I; 8082 BasicBlock *Parent; 8083 std::tie(I, Parent) = Worklist.pop_back_val(); 8084 8085 // We should only be looking at scalar instructions here. If the current 8086 // instruction has a vector type, skip. 8087 auto *Ty = I->getType(); 8088 if (isa<VectorType>(Ty)) 8089 continue; 8090 8091 // If the current instruction is a load, update MaxWidth to reflect the 8092 // width of the loaded value. 8093 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8094 isa<ExtractValueInst>(I)) 8095 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8096 8097 // Otherwise, we need to visit the operands of the instruction. We only 8098 // handle the interesting cases from buildTree here. If an operand is an 8099 // instruction we haven't yet visited and from the same basic block as the 8100 // user or the use is a PHI node, we add it to the worklist. 8101 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8102 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8103 isa<UnaryOperator>(I)) { 8104 for (Use &U : I->operands()) 8105 if (auto *J = dyn_cast<Instruction>(U.get())) 8106 if (Visited.insert(J).second && 8107 (isa<PHINode>(I) || J->getParent() == Parent)) 8108 Worklist.emplace_back(J, J->getParent()); 8109 } else { 8110 break; 8111 } 8112 } 8113 8114 // If we didn't encounter a memory access in the expression tree, or if we 8115 // gave up for some reason, just return the width of V. Otherwise, return the 8116 // maximum width we found. 8117 if (!Width) { 8118 if (auto *CI = dyn_cast<CmpInst>(V)) 8119 V = CI->getOperand(0); 8120 Width = DL->getTypeSizeInBits(V->getType()); 8121 } 8122 8123 for (Instruction *I : Visited) 8124 InstrElementSize[I] = Width; 8125 8126 return Width; 8127 } 8128 8129 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8130 // smaller type with a truncation. We collect the values that will be demoted 8131 // in ToDemote and additional roots that require investigating in Roots. 8132 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8133 SmallVectorImpl<Value *> &ToDemote, 8134 SmallVectorImpl<Value *> &Roots) { 8135 // We can always demote constants. 8136 if (isa<Constant>(V)) { 8137 ToDemote.push_back(V); 8138 return true; 8139 } 8140 8141 // If the value is not an instruction in the expression with only one use, it 8142 // cannot be demoted. 8143 auto *I = dyn_cast<Instruction>(V); 8144 if (!I || !I->hasOneUse() || !Expr.count(I)) 8145 return false; 8146 8147 switch (I->getOpcode()) { 8148 8149 // We can always demote truncations and extensions. Since truncations can 8150 // seed additional demotion, we save the truncated value. 8151 case Instruction::Trunc: 8152 Roots.push_back(I->getOperand(0)); 8153 break; 8154 case Instruction::ZExt: 8155 case Instruction::SExt: 8156 if (isa<ExtractElementInst>(I->getOperand(0)) || 8157 isa<InsertElementInst>(I->getOperand(0))) 8158 return false; 8159 break; 8160 8161 // We can demote certain binary operations if we can demote both of their 8162 // operands. 8163 case Instruction::Add: 8164 case Instruction::Sub: 8165 case Instruction::Mul: 8166 case Instruction::And: 8167 case Instruction::Or: 8168 case Instruction::Xor: 8169 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8170 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8171 return false; 8172 break; 8173 8174 // We can demote selects if we can demote their true and false values. 8175 case Instruction::Select: { 8176 SelectInst *SI = cast<SelectInst>(I); 8177 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8178 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8179 return false; 8180 break; 8181 } 8182 8183 // We can demote phis if we can demote all their incoming operands. Note that 8184 // we don't need to worry about cycles since we ensure single use above. 8185 case Instruction::PHI: { 8186 PHINode *PN = cast<PHINode>(I); 8187 for (Value *IncValue : PN->incoming_values()) 8188 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8189 return false; 8190 break; 8191 } 8192 8193 // Otherwise, conservatively give up. 8194 default: 8195 return false; 8196 } 8197 8198 // Record the value that we can demote. 8199 ToDemote.push_back(V); 8200 return true; 8201 } 8202 8203 void BoUpSLP::computeMinimumValueSizes() { 8204 // If there are no external uses, the expression tree must be rooted by a 8205 // store. We can't demote in-memory values, so there is nothing to do here. 8206 if (ExternalUses.empty()) 8207 return; 8208 8209 // We only attempt to truncate integer expressions. 8210 auto &TreeRoot = VectorizableTree[0]->Scalars; 8211 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8212 if (!TreeRootIT) 8213 return; 8214 8215 // If the expression is not rooted by a store, these roots should have 8216 // external uses. We will rely on InstCombine to rewrite the expression in 8217 // the narrower type. However, InstCombine only rewrites single-use values. 8218 // This means that if a tree entry other than a root is used externally, it 8219 // must have multiple uses and InstCombine will not rewrite it. The code 8220 // below ensures that only the roots are used externally. 8221 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8222 for (auto &EU : ExternalUses) 8223 if (!Expr.erase(EU.Scalar)) 8224 return; 8225 if (!Expr.empty()) 8226 return; 8227 8228 // Collect the scalar values of the vectorizable expression. We will use this 8229 // context to determine which values can be demoted. If we see a truncation, 8230 // we mark it as seeding another demotion. 8231 for (auto &EntryPtr : VectorizableTree) 8232 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8233 8234 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8235 // have a single external user that is not in the vectorizable tree. 8236 for (auto *Root : TreeRoot) 8237 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8238 return; 8239 8240 // Conservatively determine if we can actually truncate the roots of the 8241 // expression. Collect the values that can be demoted in ToDemote and 8242 // additional roots that require investigating in Roots. 8243 SmallVector<Value *, 32> ToDemote; 8244 SmallVector<Value *, 4> Roots; 8245 for (auto *Root : TreeRoot) 8246 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8247 return; 8248 8249 // The maximum bit width required to represent all the values that can be 8250 // demoted without loss of precision. It would be safe to truncate the roots 8251 // of the expression to this width. 8252 auto MaxBitWidth = 8u; 8253 8254 // We first check if all the bits of the roots are demanded. If they're not, 8255 // we can truncate the roots to this narrower type. 8256 for (auto *Root : TreeRoot) { 8257 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8258 MaxBitWidth = std::max<unsigned>( 8259 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8260 } 8261 8262 // True if the roots can be zero-extended back to their original type, rather 8263 // than sign-extended. We know that if the leading bits are not demanded, we 8264 // can safely zero-extend. So we initialize IsKnownPositive to True. 8265 bool IsKnownPositive = true; 8266 8267 // If all the bits of the roots are demanded, we can try a little harder to 8268 // compute a narrower type. This can happen, for example, if the roots are 8269 // getelementptr indices. InstCombine promotes these indices to the pointer 8270 // width. Thus, all their bits are technically demanded even though the 8271 // address computation might be vectorized in a smaller type. 8272 // 8273 // We start by looking at each entry that can be demoted. We compute the 8274 // maximum bit width required to store the scalar by using ValueTracking to 8275 // compute the number of high-order bits we can truncate. 8276 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8277 llvm::all_of(TreeRoot, [](Value *R) { 8278 assert(R->hasOneUse() && "Root should have only one use!"); 8279 return isa<GetElementPtrInst>(R->user_back()); 8280 })) { 8281 MaxBitWidth = 8u; 8282 8283 // Determine if the sign bit of all the roots is known to be zero. If not, 8284 // IsKnownPositive is set to False. 8285 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8286 KnownBits Known = computeKnownBits(R, *DL); 8287 return Known.isNonNegative(); 8288 }); 8289 8290 // Determine the maximum number of bits required to store the scalar 8291 // values. 8292 for (auto *Scalar : ToDemote) { 8293 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8294 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8295 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8296 } 8297 8298 // If we can't prove that the sign bit is zero, we must add one to the 8299 // maximum bit width to account for the unknown sign bit. This preserves 8300 // the existing sign bit so we can safely sign-extend the root back to the 8301 // original type. Otherwise, if we know the sign bit is zero, we will 8302 // zero-extend the root instead. 8303 // 8304 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8305 // one to the maximum bit width will yield a larger-than-necessary 8306 // type. In general, we need to add an extra bit only if we can't 8307 // prove that the upper bit of the original type is equal to the 8308 // upper bit of the proposed smaller type. If these two bits are the 8309 // same (either zero or one) we know that sign-extending from the 8310 // smaller type will result in the same value. Here, since we can't 8311 // yet prove this, we are just making the proposed smaller type 8312 // larger to ensure correctness. 8313 if (!IsKnownPositive) 8314 ++MaxBitWidth; 8315 } 8316 8317 // Round MaxBitWidth up to the next power-of-two. 8318 if (!isPowerOf2_64(MaxBitWidth)) 8319 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8320 8321 // If the maximum bit width we compute is less than the with of the roots' 8322 // type, we can proceed with the narrowing. Otherwise, do nothing. 8323 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8324 return; 8325 8326 // If we can truncate the root, we must collect additional values that might 8327 // be demoted as a result. That is, those seeded by truncations we will 8328 // modify. 8329 while (!Roots.empty()) 8330 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8331 8332 // Finally, map the values we can demote to the maximum bit with we computed. 8333 for (auto *Scalar : ToDemote) 8334 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8335 } 8336 8337 namespace { 8338 8339 /// The SLPVectorizer Pass. 8340 struct SLPVectorizer : public FunctionPass { 8341 SLPVectorizerPass Impl; 8342 8343 /// Pass identification, replacement for typeid 8344 static char ID; 8345 8346 explicit SLPVectorizer() : FunctionPass(ID) { 8347 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8348 } 8349 8350 bool doInitialization(Module &M) override { return false; } 8351 8352 bool runOnFunction(Function &F) override { 8353 if (skipFunction(F)) 8354 return false; 8355 8356 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8357 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8358 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8359 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8360 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8361 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8362 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8363 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8364 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8365 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8366 8367 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8368 } 8369 8370 void getAnalysisUsage(AnalysisUsage &AU) const override { 8371 FunctionPass::getAnalysisUsage(AU); 8372 AU.addRequired<AssumptionCacheTracker>(); 8373 AU.addRequired<ScalarEvolutionWrapperPass>(); 8374 AU.addRequired<AAResultsWrapperPass>(); 8375 AU.addRequired<TargetTransformInfoWrapperPass>(); 8376 AU.addRequired<LoopInfoWrapperPass>(); 8377 AU.addRequired<DominatorTreeWrapperPass>(); 8378 AU.addRequired<DemandedBitsWrapperPass>(); 8379 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8380 AU.addRequired<InjectTLIMappingsLegacy>(); 8381 AU.addPreserved<LoopInfoWrapperPass>(); 8382 AU.addPreserved<DominatorTreeWrapperPass>(); 8383 AU.addPreserved<AAResultsWrapperPass>(); 8384 AU.addPreserved<GlobalsAAWrapperPass>(); 8385 AU.setPreservesCFG(); 8386 } 8387 }; 8388 8389 } // end anonymous namespace 8390 8391 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8392 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8393 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8394 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8395 auto *AA = &AM.getResult<AAManager>(F); 8396 auto *LI = &AM.getResult<LoopAnalysis>(F); 8397 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8398 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8399 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8400 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8401 8402 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8403 if (!Changed) 8404 return PreservedAnalyses::all(); 8405 8406 PreservedAnalyses PA; 8407 PA.preserveSet<CFGAnalyses>(); 8408 return PA; 8409 } 8410 8411 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8412 TargetTransformInfo *TTI_, 8413 TargetLibraryInfo *TLI_, AAResults *AA_, 8414 LoopInfo *LI_, DominatorTree *DT_, 8415 AssumptionCache *AC_, DemandedBits *DB_, 8416 OptimizationRemarkEmitter *ORE_) { 8417 if (!RunSLPVectorization) 8418 return false; 8419 SE = SE_; 8420 TTI = TTI_; 8421 TLI = TLI_; 8422 AA = AA_; 8423 LI = LI_; 8424 DT = DT_; 8425 AC = AC_; 8426 DB = DB_; 8427 DL = &F.getParent()->getDataLayout(); 8428 8429 Stores.clear(); 8430 GEPs.clear(); 8431 bool Changed = false; 8432 8433 // If the target claims to have no vector registers don't attempt 8434 // vectorization. 8435 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8436 LLVM_DEBUG( 8437 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8438 return false; 8439 } 8440 8441 // Don't vectorize when the attribute NoImplicitFloat is used. 8442 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8443 return false; 8444 8445 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8446 8447 // Use the bottom up slp vectorizer to construct chains that start with 8448 // store instructions. 8449 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8450 8451 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8452 // delete instructions. 8453 8454 // Update DFS numbers now so that we can use them for ordering. 8455 DT->updateDFSNumbers(); 8456 8457 // Scan the blocks in the function in post order. 8458 for (auto BB : post_order(&F.getEntryBlock())) { 8459 collectSeedInstructions(BB); 8460 8461 // Vectorize trees that end at stores. 8462 if (!Stores.empty()) { 8463 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8464 << " underlying objects.\n"); 8465 Changed |= vectorizeStoreChains(R); 8466 } 8467 8468 // Vectorize trees that end at reductions. 8469 Changed |= vectorizeChainsInBlock(BB, R); 8470 8471 // Vectorize the index computations of getelementptr instructions. This 8472 // is primarily intended to catch gather-like idioms ending at 8473 // non-consecutive loads. 8474 if (!GEPs.empty()) { 8475 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8476 << " underlying objects.\n"); 8477 Changed |= vectorizeGEPIndices(BB, R); 8478 } 8479 } 8480 8481 if (Changed) { 8482 R.optimizeGatherSequence(); 8483 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8484 } 8485 return Changed; 8486 } 8487 8488 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8489 unsigned Idx) { 8490 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8491 << "\n"); 8492 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8493 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8494 unsigned VF = Chain.size(); 8495 8496 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8497 return false; 8498 8499 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8500 << "\n"); 8501 8502 R.buildTree(Chain); 8503 if (R.isTreeTinyAndNotFullyVectorizable()) 8504 return false; 8505 if (R.isLoadCombineCandidate()) 8506 return false; 8507 R.reorderTopToBottom(); 8508 R.reorderBottomToTop(); 8509 R.buildExternalUses(); 8510 8511 R.computeMinimumValueSizes(); 8512 8513 InstructionCost Cost = R.getTreeCost(); 8514 8515 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8516 if (Cost < -SLPCostThreshold) { 8517 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8518 8519 using namespace ore; 8520 8521 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8522 cast<StoreInst>(Chain[0])) 8523 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8524 << " and with tree size " 8525 << NV("TreeSize", R.getTreeSize())); 8526 8527 R.vectorizeTree(); 8528 return true; 8529 } 8530 8531 return false; 8532 } 8533 8534 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8535 BoUpSLP &R) { 8536 // We may run into multiple chains that merge into a single chain. We mark the 8537 // stores that we vectorized so that we don't visit the same store twice. 8538 BoUpSLP::ValueSet VectorizedStores; 8539 bool Changed = false; 8540 8541 int E = Stores.size(); 8542 SmallBitVector Tails(E, false); 8543 int MaxIter = MaxStoreLookup.getValue(); 8544 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8545 E, std::make_pair(E, INT_MAX)); 8546 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8547 int IterCnt; 8548 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8549 &CheckedPairs, 8550 &ConsecutiveChain](int K, int Idx) { 8551 if (IterCnt >= MaxIter) 8552 return true; 8553 if (CheckedPairs[Idx].test(K)) 8554 return ConsecutiveChain[K].second == 1 && 8555 ConsecutiveChain[K].first == Idx; 8556 ++IterCnt; 8557 CheckedPairs[Idx].set(K); 8558 CheckedPairs[K].set(Idx); 8559 Optional<int> Diff = getPointersDiff( 8560 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8561 Stores[Idx]->getValueOperand()->getType(), 8562 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8563 if (!Diff || *Diff == 0) 8564 return false; 8565 int Val = *Diff; 8566 if (Val < 0) { 8567 if (ConsecutiveChain[Idx].second > -Val) { 8568 Tails.set(K); 8569 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8570 } 8571 return false; 8572 } 8573 if (ConsecutiveChain[K].second <= Val) 8574 return false; 8575 8576 Tails.set(Idx); 8577 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8578 return Val == 1; 8579 }; 8580 // Do a quadratic search on all of the given stores in reverse order and find 8581 // all of the pairs of stores that follow each other. 8582 for (int Idx = E - 1; Idx >= 0; --Idx) { 8583 // If a store has multiple consecutive store candidates, search according 8584 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8585 // This is because usually pairing with immediate succeeding or preceding 8586 // candidate create the best chance to find slp vectorization opportunity. 8587 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8588 IterCnt = 0; 8589 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8590 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8591 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8592 break; 8593 } 8594 8595 // Tracks if we tried to vectorize stores starting from the given tail 8596 // already. 8597 SmallBitVector TriedTails(E, false); 8598 // For stores that start but don't end a link in the chain: 8599 for (int Cnt = E; Cnt > 0; --Cnt) { 8600 int I = Cnt - 1; 8601 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8602 continue; 8603 // We found a store instr that starts a chain. Now follow the chain and try 8604 // to vectorize it. 8605 BoUpSLP::ValueList Operands; 8606 // Collect the chain into a list. 8607 while (I != E && !VectorizedStores.count(Stores[I])) { 8608 Operands.push_back(Stores[I]); 8609 Tails.set(I); 8610 if (ConsecutiveChain[I].second != 1) { 8611 // Mark the new end in the chain and go back, if required. It might be 8612 // required if the original stores come in reversed order, for example. 8613 if (ConsecutiveChain[I].first != E && 8614 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8615 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8616 TriedTails.set(I); 8617 Tails.reset(ConsecutiveChain[I].first); 8618 if (Cnt < ConsecutiveChain[I].first + 2) 8619 Cnt = ConsecutiveChain[I].first + 2; 8620 } 8621 break; 8622 } 8623 // Move to the next value in the chain. 8624 I = ConsecutiveChain[I].first; 8625 } 8626 assert(!Operands.empty() && "Expected non-empty list of stores."); 8627 8628 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8629 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8630 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8631 8632 unsigned MinVF = R.getMinVF(EltSize); 8633 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8634 MaxElts); 8635 8636 // FIXME: Is division-by-2 the correct step? Should we assert that the 8637 // register size is a power-of-2? 8638 unsigned StartIdx = 0; 8639 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8640 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8641 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8642 if (!VectorizedStores.count(Slice.front()) && 8643 !VectorizedStores.count(Slice.back()) && 8644 vectorizeStoreChain(Slice, R, Cnt)) { 8645 // Mark the vectorized stores so that we don't vectorize them again. 8646 VectorizedStores.insert(Slice.begin(), Slice.end()); 8647 Changed = true; 8648 // If we vectorized initial block, no need to try to vectorize it 8649 // again. 8650 if (Cnt == StartIdx) 8651 StartIdx += Size; 8652 Cnt += Size; 8653 continue; 8654 } 8655 ++Cnt; 8656 } 8657 // Check if the whole array was vectorized already - exit. 8658 if (StartIdx >= Operands.size()) 8659 break; 8660 } 8661 } 8662 8663 return Changed; 8664 } 8665 8666 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8667 // Initialize the collections. We will make a single pass over the block. 8668 Stores.clear(); 8669 GEPs.clear(); 8670 8671 // Visit the store and getelementptr instructions in BB and organize them in 8672 // Stores and GEPs according to the underlying objects of their pointer 8673 // operands. 8674 for (Instruction &I : *BB) { 8675 // Ignore store instructions that are volatile or have a pointer operand 8676 // that doesn't point to a scalar type. 8677 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8678 if (!SI->isSimple()) 8679 continue; 8680 if (!isValidElementType(SI->getValueOperand()->getType())) 8681 continue; 8682 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8683 } 8684 8685 // Ignore getelementptr instructions that have more than one index, a 8686 // constant index, or a pointer operand that doesn't point to a scalar 8687 // type. 8688 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8689 auto Idx = GEP->idx_begin()->get(); 8690 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8691 continue; 8692 if (!isValidElementType(Idx->getType())) 8693 continue; 8694 if (GEP->getType()->isVectorTy()) 8695 continue; 8696 GEPs[GEP->getPointerOperand()].push_back(GEP); 8697 } 8698 } 8699 } 8700 8701 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8702 if (!A || !B) 8703 return false; 8704 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8705 return false; 8706 Value *VL[] = {A, B}; 8707 return tryToVectorizeList(VL, R); 8708 } 8709 8710 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8711 bool LimitForRegisterSize) { 8712 if (VL.size() < 2) 8713 return false; 8714 8715 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8716 << VL.size() << ".\n"); 8717 8718 // Check that all of the parts are instructions of the same type, 8719 // we permit an alternate opcode via InstructionsState. 8720 InstructionsState S = getSameOpcode(VL); 8721 if (!S.getOpcode()) 8722 return false; 8723 8724 Instruction *I0 = cast<Instruction>(S.OpValue); 8725 // Make sure invalid types (including vector type) are rejected before 8726 // determining vectorization factor for scalar instructions. 8727 for (Value *V : VL) { 8728 Type *Ty = V->getType(); 8729 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8730 // NOTE: the following will give user internal llvm type name, which may 8731 // not be useful. 8732 R.getORE()->emit([&]() { 8733 std::string type_str; 8734 llvm::raw_string_ostream rso(type_str); 8735 Ty->print(rso); 8736 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8737 << "Cannot SLP vectorize list: type " 8738 << rso.str() + " is unsupported by vectorizer"; 8739 }); 8740 return false; 8741 } 8742 } 8743 8744 unsigned Sz = R.getVectorElementSize(I0); 8745 unsigned MinVF = R.getMinVF(Sz); 8746 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8747 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8748 if (MaxVF < 2) { 8749 R.getORE()->emit([&]() { 8750 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8751 << "Cannot SLP vectorize list: vectorization factor " 8752 << "less than 2 is not supported"; 8753 }); 8754 return false; 8755 } 8756 8757 bool Changed = false; 8758 bool CandidateFound = false; 8759 InstructionCost MinCost = SLPCostThreshold.getValue(); 8760 Type *ScalarTy = VL[0]->getType(); 8761 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8762 ScalarTy = IE->getOperand(1)->getType(); 8763 8764 unsigned NextInst = 0, MaxInst = VL.size(); 8765 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8766 // No actual vectorization should happen, if number of parts is the same as 8767 // provided vectorization factor (i.e. the scalar type is used for vector 8768 // code during codegen). 8769 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8770 if (TTI->getNumberOfParts(VecTy) == VF) 8771 continue; 8772 for (unsigned I = NextInst; I < MaxInst; ++I) { 8773 unsigned OpsWidth = 0; 8774 8775 if (I + VF > MaxInst) 8776 OpsWidth = MaxInst - I; 8777 else 8778 OpsWidth = VF; 8779 8780 if (!isPowerOf2_32(OpsWidth)) 8781 continue; 8782 8783 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8784 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8785 break; 8786 8787 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8788 // Check that a previous iteration of this loop did not delete the Value. 8789 if (llvm::any_of(Ops, [&R](Value *V) { 8790 auto *I = dyn_cast<Instruction>(V); 8791 return I && R.isDeleted(I); 8792 })) 8793 continue; 8794 8795 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8796 << "\n"); 8797 8798 R.buildTree(Ops); 8799 if (R.isTreeTinyAndNotFullyVectorizable()) 8800 continue; 8801 R.reorderTopToBottom(); 8802 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8803 R.buildExternalUses(); 8804 8805 R.computeMinimumValueSizes(); 8806 InstructionCost Cost = R.getTreeCost(); 8807 CandidateFound = true; 8808 MinCost = std::min(MinCost, Cost); 8809 8810 if (Cost < -SLPCostThreshold) { 8811 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8812 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8813 cast<Instruction>(Ops[0])) 8814 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8815 << " and with tree size " 8816 << ore::NV("TreeSize", R.getTreeSize())); 8817 8818 R.vectorizeTree(); 8819 // Move to the next bundle. 8820 I += VF - 1; 8821 NextInst = I + 1; 8822 Changed = true; 8823 } 8824 } 8825 } 8826 8827 if (!Changed && CandidateFound) { 8828 R.getORE()->emit([&]() { 8829 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8830 << "List vectorization was possible but not beneficial with cost " 8831 << ore::NV("Cost", MinCost) << " >= " 8832 << ore::NV("Treshold", -SLPCostThreshold); 8833 }); 8834 } else if (!Changed) { 8835 R.getORE()->emit([&]() { 8836 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8837 << "Cannot SLP vectorize list: vectorization was impossible" 8838 << " with available vectorization factors"; 8839 }); 8840 } 8841 return Changed; 8842 } 8843 8844 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8845 if (!I) 8846 return false; 8847 8848 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8849 return false; 8850 8851 Value *P = I->getParent(); 8852 8853 // Vectorize in current basic block only. 8854 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8855 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8856 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8857 return false; 8858 8859 // Try to vectorize V. 8860 if (tryToVectorizePair(Op0, Op1, R)) 8861 return true; 8862 8863 auto *A = dyn_cast<BinaryOperator>(Op0); 8864 auto *B = dyn_cast<BinaryOperator>(Op1); 8865 // Try to skip B. 8866 if (B && B->hasOneUse()) { 8867 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8868 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8869 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8870 return true; 8871 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8872 return true; 8873 } 8874 8875 // Try to skip A. 8876 if (A && A->hasOneUse()) { 8877 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8878 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8879 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8880 return true; 8881 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8882 return true; 8883 } 8884 return false; 8885 } 8886 8887 namespace { 8888 8889 /// Model horizontal reductions. 8890 /// 8891 /// A horizontal reduction is a tree of reduction instructions that has values 8892 /// that can be put into a vector as its leaves. For example: 8893 /// 8894 /// mul mul mul mul 8895 /// \ / \ / 8896 /// + + 8897 /// \ / 8898 /// + 8899 /// This tree has "mul" as its leaf values and "+" as its reduction 8900 /// instructions. A reduction can feed into a store or a binary operation 8901 /// feeding a phi. 8902 /// ... 8903 /// \ / 8904 /// + 8905 /// | 8906 /// phi += 8907 /// 8908 /// Or: 8909 /// ... 8910 /// \ / 8911 /// + 8912 /// | 8913 /// *p = 8914 /// 8915 class HorizontalReduction { 8916 using ReductionOpsType = SmallVector<Value *, 16>; 8917 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8918 ReductionOpsListType ReductionOps; 8919 SmallVector<Value *, 32> ReducedVals; 8920 // Use map vector to make stable output. 8921 MapVector<Instruction *, Value *> ExtraArgs; 8922 WeakTrackingVH ReductionRoot; 8923 /// The type of reduction operation. 8924 RecurKind RdxKind; 8925 8926 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8927 8928 static bool isCmpSelMinMax(Instruction *I) { 8929 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8930 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8931 } 8932 8933 // And/or are potentially poison-safe logical patterns like: 8934 // select x, y, false 8935 // select x, true, y 8936 static bool isBoolLogicOp(Instruction *I) { 8937 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8938 match(I, m_LogicalOr(m_Value(), m_Value())); 8939 } 8940 8941 /// Checks if instruction is associative and can be vectorized. 8942 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8943 if (Kind == RecurKind::None) 8944 return false; 8945 8946 // Integer ops that map to select instructions or intrinsics are fine. 8947 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8948 isBoolLogicOp(I)) 8949 return true; 8950 8951 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8952 // FP min/max are associative except for NaN and -0.0. We do not 8953 // have to rule out -0.0 here because the intrinsic semantics do not 8954 // specify a fixed result for it. 8955 return I->getFastMathFlags().noNaNs(); 8956 } 8957 8958 return I->isAssociative(); 8959 } 8960 8961 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8962 // Poison-safe 'or' takes the form: select X, true, Y 8963 // To make that work with the normal operand processing, we skip the 8964 // true value operand. 8965 // TODO: Change the code and data structures to handle this without a hack. 8966 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8967 return I->getOperand(2); 8968 return I->getOperand(Index); 8969 } 8970 8971 /// Checks if the ParentStackElem.first should be marked as a reduction 8972 /// operation with an extra argument or as extra argument itself. 8973 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8974 Value *ExtraArg) { 8975 if (ExtraArgs.count(ParentStackElem.first)) { 8976 ExtraArgs[ParentStackElem.first] = nullptr; 8977 // We ran into something like: 8978 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8979 // The whole ParentStackElem.first should be considered as an extra value 8980 // in this case. 8981 // Do not perform analysis of remaining operands of ParentStackElem.first 8982 // instruction, this whole instruction is an extra argument. 8983 ParentStackElem.second = INVALID_OPERAND_INDEX; 8984 } else { 8985 // We ran into something like: 8986 // ParentStackElem.first += ... + ExtraArg + ... 8987 ExtraArgs[ParentStackElem.first] = ExtraArg; 8988 } 8989 } 8990 8991 /// Creates reduction operation with the current opcode. 8992 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8993 Value *RHS, const Twine &Name, bool UseSelect) { 8994 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8995 switch (Kind) { 8996 case RecurKind::Or: 8997 if (UseSelect && 8998 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8999 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9000 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9001 Name); 9002 case RecurKind::And: 9003 if (UseSelect && 9004 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9005 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9006 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9007 Name); 9008 case RecurKind::Add: 9009 case RecurKind::Mul: 9010 case RecurKind::Xor: 9011 case RecurKind::FAdd: 9012 case RecurKind::FMul: 9013 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9014 Name); 9015 case RecurKind::FMax: 9016 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9017 case RecurKind::FMin: 9018 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9019 case RecurKind::SMax: 9020 if (UseSelect) { 9021 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9022 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9023 } 9024 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9025 case RecurKind::SMin: 9026 if (UseSelect) { 9027 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9028 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9029 } 9030 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9031 case RecurKind::UMax: 9032 if (UseSelect) { 9033 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9034 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9035 } 9036 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9037 case RecurKind::UMin: 9038 if (UseSelect) { 9039 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9040 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9041 } 9042 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9043 default: 9044 llvm_unreachable("Unknown reduction operation."); 9045 } 9046 } 9047 9048 /// Creates reduction operation with the current opcode with the IR flags 9049 /// from \p ReductionOps. 9050 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9051 Value *RHS, const Twine &Name, 9052 const ReductionOpsListType &ReductionOps) { 9053 bool UseSelect = ReductionOps.size() == 2 || 9054 // Logical or/and. 9055 (ReductionOps.size() == 1 && 9056 isa<SelectInst>(ReductionOps.front().front())); 9057 assert((!UseSelect || ReductionOps.size() != 2 || 9058 isa<SelectInst>(ReductionOps[1][0])) && 9059 "Expected cmp + select pairs for reduction"); 9060 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9061 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9062 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9063 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9064 propagateIRFlags(Op, ReductionOps[1]); 9065 return Op; 9066 } 9067 } 9068 propagateIRFlags(Op, ReductionOps[0]); 9069 return Op; 9070 } 9071 9072 /// Creates reduction operation with the current opcode with the IR flags 9073 /// from \p I. 9074 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9075 Value *RHS, const Twine &Name, Instruction *I) { 9076 auto *SelI = dyn_cast<SelectInst>(I); 9077 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9078 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9079 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9080 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9081 } 9082 propagateIRFlags(Op, I); 9083 return Op; 9084 } 9085 9086 static RecurKind getRdxKind(Instruction *I) { 9087 assert(I && "Expected instruction for reduction matching"); 9088 if (match(I, m_Add(m_Value(), m_Value()))) 9089 return RecurKind::Add; 9090 if (match(I, m_Mul(m_Value(), m_Value()))) 9091 return RecurKind::Mul; 9092 if (match(I, m_And(m_Value(), m_Value())) || 9093 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9094 return RecurKind::And; 9095 if (match(I, m_Or(m_Value(), m_Value())) || 9096 match(I, m_LogicalOr(m_Value(), m_Value()))) 9097 return RecurKind::Or; 9098 if (match(I, m_Xor(m_Value(), m_Value()))) 9099 return RecurKind::Xor; 9100 if (match(I, m_FAdd(m_Value(), m_Value()))) 9101 return RecurKind::FAdd; 9102 if (match(I, m_FMul(m_Value(), m_Value()))) 9103 return RecurKind::FMul; 9104 9105 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9106 return RecurKind::FMax; 9107 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9108 return RecurKind::FMin; 9109 9110 // This matches either cmp+select or intrinsics. SLP is expected to handle 9111 // either form. 9112 // TODO: If we are canonicalizing to intrinsics, we can remove several 9113 // special-case paths that deal with selects. 9114 if (match(I, m_SMax(m_Value(), m_Value()))) 9115 return RecurKind::SMax; 9116 if (match(I, m_SMin(m_Value(), m_Value()))) 9117 return RecurKind::SMin; 9118 if (match(I, m_UMax(m_Value(), m_Value()))) 9119 return RecurKind::UMax; 9120 if (match(I, m_UMin(m_Value(), m_Value()))) 9121 return RecurKind::UMin; 9122 9123 if (auto *Select = dyn_cast<SelectInst>(I)) { 9124 // Try harder: look for min/max pattern based on instructions producing 9125 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9126 // During the intermediate stages of SLP, it's very common to have 9127 // pattern like this (since optimizeGatherSequence is run only once 9128 // at the end): 9129 // %1 = extractelement <2 x i32> %a, i32 0 9130 // %2 = extractelement <2 x i32> %a, i32 1 9131 // %cond = icmp sgt i32 %1, %2 9132 // %3 = extractelement <2 x i32> %a, i32 0 9133 // %4 = extractelement <2 x i32> %a, i32 1 9134 // %select = select i1 %cond, i32 %3, i32 %4 9135 CmpInst::Predicate Pred; 9136 Instruction *L1; 9137 Instruction *L2; 9138 9139 Value *LHS = Select->getTrueValue(); 9140 Value *RHS = Select->getFalseValue(); 9141 Value *Cond = Select->getCondition(); 9142 9143 // TODO: Support inverse predicates. 9144 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9145 if (!isa<ExtractElementInst>(RHS) || 9146 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9147 return RecurKind::None; 9148 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9149 if (!isa<ExtractElementInst>(LHS) || 9150 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9151 return RecurKind::None; 9152 } else { 9153 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9154 return RecurKind::None; 9155 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9156 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9157 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9158 return RecurKind::None; 9159 } 9160 9161 switch (Pred) { 9162 default: 9163 return RecurKind::None; 9164 case CmpInst::ICMP_SGT: 9165 case CmpInst::ICMP_SGE: 9166 return RecurKind::SMax; 9167 case CmpInst::ICMP_SLT: 9168 case CmpInst::ICMP_SLE: 9169 return RecurKind::SMin; 9170 case CmpInst::ICMP_UGT: 9171 case CmpInst::ICMP_UGE: 9172 return RecurKind::UMax; 9173 case CmpInst::ICMP_ULT: 9174 case CmpInst::ICMP_ULE: 9175 return RecurKind::UMin; 9176 } 9177 } 9178 return RecurKind::None; 9179 } 9180 9181 /// Get the index of the first operand. 9182 static unsigned getFirstOperandIndex(Instruction *I) { 9183 return isCmpSelMinMax(I) ? 1 : 0; 9184 } 9185 9186 /// Total number of operands in the reduction operation. 9187 static unsigned getNumberOfOperands(Instruction *I) { 9188 return isCmpSelMinMax(I) ? 3 : 2; 9189 } 9190 9191 /// Checks if the instruction is in basic block \p BB. 9192 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9193 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9194 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9195 auto *Sel = cast<SelectInst>(I); 9196 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9197 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9198 } 9199 return I->getParent() == BB; 9200 } 9201 9202 /// Expected number of uses for reduction operations/reduced values. 9203 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9204 if (IsCmpSelMinMax) { 9205 // SelectInst must be used twice while the condition op must have single 9206 // use only. 9207 if (auto *Sel = dyn_cast<SelectInst>(I)) 9208 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9209 return I->hasNUses(2); 9210 } 9211 9212 // Arithmetic reduction operation must be used once only. 9213 return I->hasOneUse(); 9214 } 9215 9216 /// Initializes the list of reduction operations. 9217 void initReductionOps(Instruction *I) { 9218 if (isCmpSelMinMax(I)) 9219 ReductionOps.assign(2, ReductionOpsType()); 9220 else 9221 ReductionOps.assign(1, ReductionOpsType()); 9222 } 9223 9224 /// Add all reduction operations for the reduction instruction \p I. 9225 void addReductionOps(Instruction *I) { 9226 if (isCmpSelMinMax(I)) { 9227 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9228 ReductionOps[1].emplace_back(I); 9229 } else { 9230 ReductionOps[0].emplace_back(I); 9231 } 9232 } 9233 9234 static Value *getLHS(RecurKind Kind, Instruction *I) { 9235 if (Kind == RecurKind::None) 9236 return nullptr; 9237 return I->getOperand(getFirstOperandIndex(I)); 9238 } 9239 static Value *getRHS(RecurKind Kind, Instruction *I) { 9240 if (Kind == RecurKind::None) 9241 return nullptr; 9242 return I->getOperand(getFirstOperandIndex(I) + 1); 9243 } 9244 9245 public: 9246 HorizontalReduction() = default; 9247 9248 /// Try to find a reduction tree. 9249 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9250 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9251 "Phi needs to use the binary operator"); 9252 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9253 isa<IntrinsicInst>(Inst)) && 9254 "Expected binop, select, or intrinsic for reduction matching"); 9255 RdxKind = getRdxKind(Inst); 9256 9257 // We could have a initial reductions that is not an add. 9258 // r *= v1 + v2 + v3 + v4 9259 // In such a case start looking for a tree rooted in the first '+'. 9260 if (Phi) { 9261 if (getLHS(RdxKind, Inst) == Phi) { 9262 Phi = nullptr; 9263 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9264 if (!Inst) 9265 return false; 9266 RdxKind = getRdxKind(Inst); 9267 } else if (getRHS(RdxKind, Inst) == Phi) { 9268 Phi = nullptr; 9269 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9270 if (!Inst) 9271 return false; 9272 RdxKind = getRdxKind(Inst); 9273 } 9274 } 9275 9276 if (!isVectorizable(RdxKind, Inst)) 9277 return false; 9278 9279 // Analyze "regular" integer/FP types for reductions - no target-specific 9280 // types or pointers. 9281 Type *Ty = Inst->getType(); 9282 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9283 return false; 9284 9285 // Though the ultimate reduction may have multiple uses, its condition must 9286 // have only single use. 9287 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9288 if (!Sel->getCondition()->hasOneUse()) 9289 return false; 9290 9291 ReductionRoot = Inst; 9292 9293 // The opcode for leaf values that we perform a reduction on. 9294 // For example: load(x) + load(y) + load(z) + fptoui(w) 9295 // The leaf opcode for 'w' does not match, so we don't include it as a 9296 // potential candidate for the reduction. 9297 unsigned LeafOpcode = 0; 9298 9299 // Post-order traverse the reduction tree starting at Inst. We only handle 9300 // true trees containing binary operators or selects. 9301 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9302 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9303 initReductionOps(Inst); 9304 while (!Stack.empty()) { 9305 Instruction *TreeN = Stack.back().first; 9306 unsigned EdgeToVisit = Stack.back().second++; 9307 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9308 bool IsReducedValue = TreeRdxKind != RdxKind; 9309 9310 // Postorder visit. 9311 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9312 if (IsReducedValue) 9313 ReducedVals.push_back(TreeN); 9314 else { 9315 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9316 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9317 // Check if TreeN is an extra argument of its parent operation. 9318 if (Stack.size() <= 1) { 9319 // TreeN can't be an extra argument as it is a root reduction 9320 // operation. 9321 return false; 9322 } 9323 // Yes, TreeN is an extra argument, do not add it to a list of 9324 // reduction operations. 9325 // Stack[Stack.size() - 2] always points to the parent operation. 9326 markExtraArg(Stack[Stack.size() - 2], TreeN); 9327 ExtraArgs.erase(TreeN); 9328 } else 9329 addReductionOps(TreeN); 9330 } 9331 // Retract. 9332 Stack.pop_back(); 9333 continue; 9334 } 9335 9336 // Visit operands. 9337 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9338 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9339 if (!EdgeInst) { 9340 // Edge value is not a reduction instruction or a leaf instruction. 9341 // (It may be a constant, function argument, or something else.) 9342 markExtraArg(Stack.back(), EdgeVal); 9343 continue; 9344 } 9345 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9346 // Continue analysis if the next operand is a reduction operation or 9347 // (possibly) a leaf value. If the leaf value opcode is not set, 9348 // the first met operation != reduction operation is considered as the 9349 // leaf opcode. 9350 // Only handle trees in the current basic block. 9351 // Each tree node needs to have minimal number of users except for the 9352 // ultimate reduction. 9353 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9354 if (EdgeInst != Phi && EdgeInst != Inst && 9355 hasSameParent(EdgeInst, Inst->getParent()) && 9356 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9357 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9358 if (IsRdxInst) { 9359 // We need to be able to reassociate the reduction operations. 9360 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9361 // I is an extra argument for TreeN (its parent operation). 9362 markExtraArg(Stack.back(), EdgeInst); 9363 continue; 9364 } 9365 } else if (!LeafOpcode) { 9366 LeafOpcode = EdgeInst->getOpcode(); 9367 } 9368 Stack.push_back( 9369 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9370 continue; 9371 } 9372 // I is an extra argument for TreeN (its parent operation). 9373 markExtraArg(Stack.back(), EdgeInst); 9374 } 9375 return true; 9376 } 9377 9378 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9379 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9380 // If there are a sufficient number of reduction values, reduce 9381 // to a nearby power-of-2. We can safely generate oversized 9382 // vectors and rely on the backend to split them to legal sizes. 9383 unsigned NumReducedVals = ReducedVals.size(); 9384 if (NumReducedVals < 4) 9385 return nullptr; 9386 9387 // Intersect the fast-math-flags from all reduction operations. 9388 FastMathFlags RdxFMF; 9389 RdxFMF.set(); 9390 for (ReductionOpsType &RdxOp : ReductionOps) { 9391 for (Value *RdxVal : RdxOp) { 9392 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9393 RdxFMF &= FPMO->getFastMathFlags(); 9394 } 9395 } 9396 9397 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9398 Builder.setFastMathFlags(RdxFMF); 9399 9400 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9401 // The same extra argument may be used several times, so log each attempt 9402 // to use it. 9403 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9404 assert(Pair.first && "DebugLoc must be set."); 9405 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9406 } 9407 9408 // The compare instruction of a min/max is the insertion point for new 9409 // instructions and may be replaced with a new compare instruction. 9410 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9411 assert(isa<SelectInst>(RdxRootInst) && 9412 "Expected min/max reduction to have select root instruction"); 9413 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9414 assert(isa<Instruction>(ScalarCond) && 9415 "Expected min/max reduction to have compare condition"); 9416 return cast<Instruction>(ScalarCond); 9417 }; 9418 9419 // The reduction root is used as the insertion point for new instructions, 9420 // so set it as externally used to prevent it from being deleted. 9421 ExternallyUsedValues[ReductionRoot]; 9422 SmallVector<Value *, 16> IgnoreList; 9423 for (ReductionOpsType &RdxOp : ReductionOps) 9424 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9425 9426 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9427 if (NumReducedVals > ReduxWidth) { 9428 // In the loop below, we are building a tree based on a window of 9429 // 'ReduxWidth' values. 9430 // If the operands of those values have common traits (compare predicate, 9431 // constant operand, etc), then we want to group those together to 9432 // minimize the cost of the reduction. 9433 9434 // TODO: This should be extended to count common operands for 9435 // compares and binops. 9436 9437 // Step 1: Count the number of times each compare predicate occurs. 9438 SmallDenseMap<unsigned, unsigned> PredCountMap; 9439 for (Value *RdxVal : ReducedVals) { 9440 CmpInst::Predicate Pred; 9441 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9442 ++PredCountMap[Pred]; 9443 } 9444 // Step 2: Sort the values so the most common predicates come first. 9445 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9446 CmpInst::Predicate PredA, PredB; 9447 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9448 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9449 return PredCountMap[PredA] > PredCountMap[PredB]; 9450 } 9451 return false; 9452 }); 9453 } 9454 9455 Value *VectorizedTree = nullptr; 9456 unsigned i = 0; 9457 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9458 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9459 V.buildTree(VL, IgnoreList); 9460 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9461 break; 9462 if (V.isLoadCombineReductionCandidate(RdxKind)) 9463 break; 9464 V.reorderTopToBottom(); 9465 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9466 V.buildExternalUses(ExternallyUsedValues); 9467 9468 // For a poison-safe boolean logic reduction, do not replace select 9469 // instructions with logic ops. All reduced values will be frozen (see 9470 // below) to prevent leaking poison. 9471 if (isa<SelectInst>(ReductionRoot) && 9472 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9473 NumReducedVals != ReduxWidth) 9474 break; 9475 9476 V.computeMinimumValueSizes(); 9477 9478 // Estimate cost. 9479 InstructionCost TreeCost = 9480 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9481 InstructionCost ReductionCost = 9482 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9483 InstructionCost Cost = TreeCost + ReductionCost; 9484 if (!Cost.isValid()) { 9485 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9486 return nullptr; 9487 } 9488 if (Cost >= -SLPCostThreshold) { 9489 V.getORE()->emit([&]() { 9490 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9491 cast<Instruction>(VL[0])) 9492 << "Vectorizing horizontal reduction is possible" 9493 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9494 << " and threshold " 9495 << ore::NV("Threshold", -SLPCostThreshold); 9496 }); 9497 break; 9498 } 9499 9500 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9501 << Cost << ". (HorRdx)\n"); 9502 V.getORE()->emit([&]() { 9503 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9504 cast<Instruction>(VL[0])) 9505 << "Vectorized horizontal reduction with cost " 9506 << ore::NV("Cost", Cost) << " and with tree size " 9507 << ore::NV("TreeSize", V.getTreeSize()); 9508 }); 9509 9510 // Vectorize a tree. 9511 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9512 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9513 9514 // Emit a reduction. If the root is a select (min/max idiom), the insert 9515 // point is the compare condition of that select. 9516 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9517 if (isCmpSelMinMax(RdxRootInst)) 9518 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9519 else 9520 Builder.SetInsertPoint(RdxRootInst); 9521 9522 // To prevent poison from leaking across what used to be sequential, safe, 9523 // scalar boolean logic operations, the reduction operand must be frozen. 9524 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9525 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9526 9527 Value *ReducedSubTree = 9528 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9529 9530 if (!VectorizedTree) { 9531 // Initialize the final value in the reduction. 9532 VectorizedTree = ReducedSubTree; 9533 } else { 9534 // Update the final value in the reduction. 9535 Builder.SetCurrentDebugLocation(Loc); 9536 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9537 ReducedSubTree, "op.rdx", ReductionOps); 9538 } 9539 i += ReduxWidth; 9540 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9541 } 9542 9543 if (VectorizedTree) { 9544 // Finish the reduction. 9545 for (; i < NumReducedVals; ++i) { 9546 auto *I = cast<Instruction>(ReducedVals[i]); 9547 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9548 VectorizedTree = 9549 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9550 } 9551 for (auto &Pair : ExternallyUsedValues) { 9552 // Add each externally used value to the final reduction. 9553 for (auto *I : Pair.second) { 9554 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9555 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9556 Pair.first, "op.extra", I); 9557 } 9558 } 9559 9560 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9561 9562 // Mark all scalar reduction ops for deletion, they are replaced by the 9563 // vector reductions. 9564 V.eraseInstructions(IgnoreList); 9565 } 9566 return VectorizedTree; 9567 } 9568 9569 unsigned numReductionValues() const { return ReducedVals.size(); } 9570 9571 private: 9572 /// Calculate the cost of a reduction. 9573 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9574 Value *FirstReducedVal, unsigned ReduxWidth, 9575 FastMathFlags FMF) { 9576 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9577 Type *ScalarTy = FirstReducedVal->getType(); 9578 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9579 InstructionCost VectorCost, ScalarCost; 9580 switch (RdxKind) { 9581 case RecurKind::Add: 9582 case RecurKind::Mul: 9583 case RecurKind::Or: 9584 case RecurKind::And: 9585 case RecurKind::Xor: 9586 case RecurKind::FAdd: 9587 case RecurKind::FMul: { 9588 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9589 VectorCost = 9590 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9591 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9592 break; 9593 } 9594 case RecurKind::FMax: 9595 case RecurKind::FMin: { 9596 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9597 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9598 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9599 /*IsUnsigned=*/false, CostKind); 9600 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9601 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9602 SclCondTy, RdxPred, CostKind) + 9603 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9604 SclCondTy, RdxPred, CostKind); 9605 break; 9606 } 9607 case RecurKind::SMax: 9608 case RecurKind::SMin: 9609 case RecurKind::UMax: 9610 case RecurKind::UMin: { 9611 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9612 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9613 bool IsUnsigned = 9614 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9615 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9616 CostKind); 9617 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9618 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9619 SclCondTy, RdxPred, CostKind) + 9620 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9621 SclCondTy, RdxPred, CostKind); 9622 break; 9623 } 9624 default: 9625 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9626 } 9627 9628 // Scalar cost is repeated for N-1 elements. 9629 ScalarCost *= (ReduxWidth - 1); 9630 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9631 << " for reduction that starts with " << *FirstReducedVal 9632 << " (It is a splitting reduction)\n"); 9633 return VectorCost - ScalarCost; 9634 } 9635 9636 /// Emit a horizontal reduction of the vectorized value. 9637 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9638 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9639 assert(VectorizedValue && "Need to have a vectorized tree node"); 9640 assert(isPowerOf2_32(ReduxWidth) && 9641 "We only handle power-of-two reductions for now"); 9642 assert(RdxKind != RecurKind::FMulAdd && 9643 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9644 9645 ++NumVectorInstructions; 9646 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9647 } 9648 }; 9649 9650 } // end anonymous namespace 9651 9652 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9653 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9654 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9655 9656 unsigned AggregateSize = 1; 9657 auto *IV = cast<InsertValueInst>(InsertInst); 9658 Type *CurrentType = IV->getType(); 9659 do { 9660 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9661 for (auto *Elt : ST->elements()) 9662 if (Elt != ST->getElementType(0)) // check homogeneity 9663 return None; 9664 AggregateSize *= ST->getNumElements(); 9665 CurrentType = ST->getElementType(0); 9666 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9667 AggregateSize *= AT->getNumElements(); 9668 CurrentType = AT->getElementType(); 9669 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9670 AggregateSize *= VT->getNumElements(); 9671 return AggregateSize; 9672 } else if (CurrentType->isSingleValueType()) { 9673 return AggregateSize; 9674 } else { 9675 return None; 9676 } 9677 } while (true); 9678 } 9679 9680 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9681 TargetTransformInfo *TTI, 9682 SmallVectorImpl<Value *> &BuildVectorOpds, 9683 SmallVectorImpl<Value *> &InsertElts, 9684 unsigned OperandOffset) { 9685 do { 9686 Value *InsertedOperand = LastInsertInst->getOperand(1); 9687 Optional<unsigned> OperandIndex = 9688 getInsertIndex(LastInsertInst, OperandOffset); 9689 if (!OperandIndex) 9690 return; 9691 if (isa<InsertElementInst>(InsertedOperand) || 9692 isa<InsertValueInst>(InsertedOperand)) { 9693 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9694 BuildVectorOpds, InsertElts, *OperandIndex); 9695 9696 } else { 9697 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9698 InsertElts[*OperandIndex] = LastInsertInst; 9699 } 9700 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9701 } while (LastInsertInst != nullptr && 9702 (isa<InsertValueInst>(LastInsertInst) || 9703 isa<InsertElementInst>(LastInsertInst)) && 9704 LastInsertInst->hasOneUse()); 9705 } 9706 9707 /// Recognize construction of vectors like 9708 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9709 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9710 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9711 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9712 /// starting from the last insertelement or insertvalue instruction. 9713 /// 9714 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9715 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9716 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9717 /// 9718 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9719 /// 9720 /// \return true if it matches. 9721 static bool findBuildAggregate(Instruction *LastInsertInst, 9722 TargetTransformInfo *TTI, 9723 SmallVectorImpl<Value *> &BuildVectorOpds, 9724 SmallVectorImpl<Value *> &InsertElts) { 9725 9726 assert((isa<InsertElementInst>(LastInsertInst) || 9727 isa<InsertValueInst>(LastInsertInst)) && 9728 "Expected insertelement or insertvalue instruction!"); 9729 9730 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9731 "Expected empty result vectors!"); 9732 9733 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9734 if (!AggregateSize) 9735 return false; 9736 BuildVectorOpds.resize(*AggregateSize); 9737 InsertElts.resize(*AggregateSize); 9738 9739 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9740 llvm::erase_value(BuildVectorOpds, nullptr); 9741 llvm::erase_value(InsertElts, nullptr); 9742 if (BuildVectorOpds.size() >= 2) 9743 return true; 9744 9745 return false; 9746 } 9747 9748 /// Try and get a reduction value from a phi node. 9749 /// 9750 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9751 /// if they come from either \p ParentBB or a containing loop latch. 9752 /// 9753 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9754 /// if not possible. 9755 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9756 BasicBlock *ParentBB, LoopInfo *LI) { 9757 // There are situations where the reduction value is not dominated by the 9758 // reduction phi. Vectorizing such cases has been reported to cause 9759 // miscompiles. See PR25787. 9760 auto DominatedReduxValue = [&](Value *R) { 9761 return isa<Instruction>(R) && 9762 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9763 }; 9764 9765 Value *Rdx = nullptr; 9766 9767 // Return the incoming value if it comes from the same BB as the phi node. 9768 if (P->getIncomingBlock(0) == ParentBB) { 9769 Rdx = P->getIncomingValue(0); 9770 } else if (P->getIncomingBlock(1) == ParentBB) { 9771 Rdx = P->getIncomingValue(1); 9772 } 9773 9774 if (Rdx && DominatedReduxValue(Rdx)) 9775 return Rdx; 9776 9777 // Otherwise, check whether we have a loop latch to look at. 9778 Loop *BBL = LI->getLoopFor(ParentBB); 9779 if (!BBL) 9780 return nullptr; 9781 BasicBlock *BBLatch = BBL->getLoopLatch(); 9782 if (!BBLatch) 9783 return nullptr; 9784 9785 // There is a loop latch, return the incoming value if it comes from 9786 // that. This reduction pattern occasionally turns up. 9787 if (P->getIncomingBlock(0) == BBLatch) { 9788 Rdx = P->getIncomingValue(0); 9789 } else if (P->getIncomingBlock(1) == BBLatch) { 9790 Rdx = P->getIncomingValue(1); 9791 } 9792 9793 if (Rdx && DominatedReduxValue(Rdx)) 9794 return Rdx; 9795 9796 return nullptr; 9797 } 9798 9799 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9800 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9801 return true; 9802 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9803 return true; 9804 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9805 return true; 9806 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9807 return true; 9808 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9809 return true; 9810 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9811 return true; 9812 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9813 return true; 9814 return false; 9815 } 9816 9817 /// Attempt to reduce a horizontal reduction. 9818 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9819 /// with reduction operators \a Root (or one of its operands) in a basic block 9820 /// \a BB, then check if it can be done. If horizontal reduction is not found 9821 /// and root instruction is a binary operation, vectorization of the operands is 9822 /// attempted. 9823 /// \returns true if a horizontal reduction was matched and reduced or operands 9824 /// of one of the binary instruction were vectorized. 9825 /// \returns false if a horizontal reduction was not matched (or not possible) 9826 /// or no vectorization of any binary operation feeding \a Root instruction was 9827 /// performed. 9828 static bool tryToVectorizeHorReductionOrInstOperands( 9829 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9830 TargetTransformInfo *TTI, 9831 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9832 if (!ShouldVectorizeHor) 9833 return false; 9834 9835 if (!Root) 9836 return false; 9837 9838 if (Root->getParent() != BB || isa<PHINode>(Root)) 9839 return false; 9840 // Start analysis starting from Root instruction. If horizontal reduction is 9841 // found, try to vectorize it. If it is not a horizontal reduction or 9842 // vectorization is not possible or not effective, and currently analyzed 9843 // instruction is a binary operation, try to vectorize the operands, using 9844 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9845 // the same procedure considering each operand as a possible root of the 9846 // horizontal reduction. 9847 // Interrupt the process if the Root instruction itself was vectorized or all 9848 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9849 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9850 // CmpInsts so we can skip extra attempts in 9851 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9852 std::queue<std::pair<Instruction *, unsigned>> Stack; 9853 Stack.emplace(Root, 0); 9854 SmallPtrSet<Value *, 8> VisitedInstrs; 9855 SmallVector<WeakTrackingVH> PostponedInsts; 9856 bool Res = false; 9857 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9858 Value *&B1) -> Value * { 9859 bool IsBinop = matchRdxBop(Inst, B0, B1); 9860 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9861 if (IsBinop || IsSelect) { 9862 HorizontalReduction HorRdx; 9863 if (HorRdx.matchAssociativeReduction(P, Inst)) 9864 return HorRdx.tryToReduce(R, TTI); 9865 } 9866 return nullptr; 9867 }; 9868 while (!Stack.empty()) { 9869 Instruction *Inst; 9870 unsigned Level; 9871 std::tie(Inst, Level) = Stack.front(); 9872 Stack.pop(); 9873 // Do not try to analyze instruction that has already been vectorized. 9874 // This may happen when we vectorize instruction operands on a previous 9875 // iteration while stack was populated before that happened. 9876 if (R.isDeleted(Inst)) 9877 continue; 9878 Value *B0 = nullptr, *B1 = nullptr; 9879 if (Value *V = TryToReduce(Inst, B0, B1)) { 9880 Res = true; 9881 // Set P to nullptr to avoid re-analysis of phi node in 9882 // matchAssociativeReduction function unless this is the root node. 9883 P = nullptr; 9884 if (auto *I = dyn_cast<Instruction>(V)) { 9885 // Try to find another reduction. 9886 Stack.emplace(I, Level); 9887 continue; 9888 } 9889 } else { 9890 bool IsBinop = B0 && B1; 9891 if (P && IsBinop) { 9892 Inst = dyn_cast<Instruction>(B0); 9893 if (Inst == P) 9894 Inst = dyn_cast<Instruction>(B1); 9895 if (!Inst) { 9896 // Set P to nullptr to avoid re-analysis of phi node in 9897 // matchAssociativeReduction function unless this is the root node. 9898 P = nullptr; 9899 continue; 9900 } 9901 } 9902 // Set P to nullptr to avoid re-analysis of phi node in 9903 // matchAssociativeReduction function unless this is the root node. 9904 P = nullptr; 9905 // Do not try to vectorize CmpInst operands, this is done separately. 9906 // Final attempt for binop args vectorization should happen after the loop 9907 // to try to find reductions. 9908 if (!isa<CmpInst>(Inst)) 9909 PostponedInsts.push_back(Inst); 9910 } 9911 9912 // Try to vectorize operands. 9913 // Continue analysis for the instruction from the same basic block only to 9914 // save compile time. 9915 if (++Level < RecursionMaxDepth) 9916 for (auto *Op : Inst->operand_values()) 9917 if (VisitedInstrs.insert(Op).second) 9918 if (auto *I = dyn_cast<Instruction>(Op)) 9919 // Do not try to vectorize CmpInst operands, this is done 9920 // separately. 9921 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9922 I->getParent() == BB) 9923 Stack.emplace(I, Level); 9924 } 9925 // Try to vectorized binops where reductions were not found. 9926 for (Value *V : PostponedInsts) 9927 if (auto *Inst = dyn_cast<Instruction>(V)) 9928 if (!R.isDeleted(Inst)) 9929 Res |= Vectorize(Inst, R); 9930 return Res; 9931 } 9932 9933 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9934 BasicBlock *BB, BoUpSLP &R, 9935 TargetTransformInfo *TTI) { 9936 auto *I = dyn_cast_or_null<Instruction>(V); 9937 if (!I) 9938 return false; 9939 9940 if (!isa<BinaryOperator>(I)) 9941 P = nullptr; 9942 // Try to match and vectorize a horizontal reduction. 9943 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9944 return tryToVectorize(I, R); 9945 }; 9946 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9947 ExtraVectorization); 9948 } 9949 9950 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9951 BasicBlock *BB, BoUpSLP &R) { 9952 const DataLayout &DL = BB->getModule()->getDataLayout(); 9953 if (!R.canMapToVector(IVI->getType(), DL)) 9954 return false; 9955 9956 SmallVector<Value *, 16> BuildVectorOpds; 9957 SmallVector<Value *, 16> BuildVectorInsts; 9958 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9959 return false; 9960 9961 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9962 // Aggregate value is unlikely to be processed in vector register. 9963 return tryToVectorizeList(BuildVectorOpds, R); 9964 } 9965 9966 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9967 BasicBlock *BB, BoUpSLP &R) { 9968 SmallVector<Value *, 16> BuildVectorInsts; 9969 SmallVector<Value *, 16> BuildVectorOpds; 9970 SmallVector<int> Mask; 9971 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9972 (llvm::all_of( 9973 BuildVectorOpds, 9974 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9975 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9976 return false; 9977 9978 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9979 return tryToVectorizeList(BuildVectorInsts, R); 9980 } 9981 9982 template <typename T> 9983 static bool 9984 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9985 function_ref<unsigned(T *)> Limit, 9986 function_ref<bool(T *, T *)> Comparator, 9987 function_ref<bool(T *, T *)> AreCompatible, 9988 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9989 bool LimitForRegisterSize) { 9990 bool Changed = false; 9991 // Sort by type, parent, operands. 9992 stable_sort(Incoming, Comparator); 9993 9994 // Try to vectorize elements base on their type. 9995 SmallVector<T *> Candidates; 9996 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9997 // Look for the next elements with the same type, parent and operand 9998 // kinds. 9999 auto *SameTypeIt = IncIt; 10000 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10001 ++SameTypeIt; 10002 10003 // Try to vectorize them. 10004 unsigned NumElts = (SameTypeIt - IncIt); 10005 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10006 << NumElts << ")\n"); 10007 // The vectorization is a 3-state attempt: 10008 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10009 // size of maximal register at first. 10010 // 2. Try to vectorize remaining instructions with the same type, if 10011 // possible. This may result in the better vectorization results rather than 10012 // if we try just to vectorize instructions with the same/alternate opcodes. 10013 // 3. Final attempt to try to vectorize all instructions with the 10014 // same/alternate ops only, this may result in some extra final 10015 // vectorization. 10016 if (NumElts > 1 && 10017 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10018 // Success start over because instructions might have been changed. 10019 Changed = true; 10020 } else if (NumElts < Limit(*IncIt) && 10021 (Candidates.empty() || 10022 Candidates.front()->getType() == (*IncIt)->getType())) { 10023 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10024 } 10025 // Final attempt to vectorize instructions with the same types. 10026 if (Candidates.size() > 1 && 10027 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10028 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10029 // Success start over because instructions might have been changed. 10030 Changed = true; 10031 } else if (LimitForRegisterSize) { 10032 // Try to vectorize using small vectors. 10033 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10034 It != End;) { 10035 auto *SameTypeIt = It; 10036 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10037 ++SameTypeIt; 10038 unsigned NumElts = (SameTypeIt - It); 10039 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10040 /*LimitForRegisterSize=*/false)) 10041 Changed = true; 10042 It = SameTypeIt; 10043 } 10044 } 10045 Candidates.clear(); 10046 } 10047 10048 // Start over at the next instruction of a different type (or the end). 10049 IncIt = SameTypeIt; 10050 } 10051 return Changed; 10052 } 10053 10054 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10055 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10056 /// operands. If IsCompatibility is false, function implements strict weak 10057 /// ordering relation between two cmp instructions, returning true if the first 10058 /// instruction is "less" than the second, i.e. its predicate is less than the 10059 /// predicate of the second or the operands IDs are less than the operands IDs 10060 /// of the second cmp instruction. 10061 template <bool IsCompatibility> 10062 static bool compareCmp(Value *V, Value *V2, 10063 function_ref<bool(Instruction *)> IsDeleted) { 10064 auto *CI1 = cast<CmpInst>(V); 10065 auto *CI2 = cast<CmpInst>(V2); 10066 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10067 return false; 10068 if (CI1->getOperand(0)->getType()->getTypeID() < 10069 CI2->getOperand(0)->getType()->getTypeID()) 10070 return !IsCompatibility; 10071 if (CI1->getOperand(0)->getType()->getTypeID() > 10072 CI2->getOperand(0)->getType()->getTypeID()) 10073 return false; 10074 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10075 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10076 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10077 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10078 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10079 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10080 if (BasePred1 < BasePred2) 10081 return !IsCompatibility; 10082 if (BasePred1 > BasePred2) 10083 return false; 10084 // Compare operands. 10085 bool LEPreds = Pred1 <= Pred2; 10086 bool GEPreds = Pred1 >= Pred2; 10087 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10088 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10089 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10090 if (Op1->getValueID() < Op2->getValueID()) 10091 return !IsCompatibility; 10092 if (Op1->getValueID() > Op2->getValueID()) 10093 return false; 10094 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10095 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10096 if (I1->getParent() != I2->getParent()) 10097 return false; 10098 InstructionsState S = getSameOpcode({I1, I2}); 10099 if (S.getOpcode()) 10100 continue; 10101 return false; 10102 } 10103 } 10104 return IsCompatibility; 10105 } 10106 10107 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10108 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10109 bool AtTerminator) { 10110 bool OpsChanged = false; 10111 SmallVector<Instruction *, 4> PostponedCmps; 10112 for (auto *I : reverse(Instructions)) { 10113 if (R.isDeleted(I)) 10114 continue; 10115 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10116 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10117 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10118 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10119 else if (isa<CmpInst>(I)) 10120 PostponedCmps.push_back(I); 10121 } 10122 if (AtTerminator) { 10123 // Try to find reductions first. 10124 for (Instruction *I : PostponedCmps) { 10125 if (R.isDeleted(I)) 10126 continue; 10127 for (Value *Op : I->operands()) 10128 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10129 } 10130 // Try to vectorize operands as vector bundles. 10131 for (Instruction *I : PostponedCmps) { 10132 if (R.isDeleted(I)) 10133 continue; 10134 OpsChanged |= tryToVectorize(I, R); 10135 } 10136 // Try to vectorize list of compares. 10137 // Sort by type, compare predicate, etc. 10138 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10139 return compareCmp<false>(V, V2, 10140 [&R](Instruction *I) { return R.isDeleted(I); }); 10141 }; 10142 10143 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10144 if (V1 == V2) 10145 return true; 10146 return compareCmp<true>(V1, V2, 10147 [&R](Instruction *I) { return R.isDeleted(I); }); 10148 }; 10149 auto Limit = [&R](Value *V) { 10150 unsigned EltSize = R.getVectorElementSize(V); 10151 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10152 }; 10153 10154 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10155 OpsChanged |= tryToVectorizeSequence<Value>( 10156 Vals, Limit, CompareSorter, AreCompatibleCompares, 10157 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10158 // Exclude possible reductions from other blocks. 10159 bool ArePossiblyReducedInOtherBlock = 10160 any_of(Candidates, [](Value *V) { 10161 return any_of(V->users(), [V](User *U) { 10162 return isa<SelectInst>(U) && 10163 cast<SelectInst>(U)->getParent() != 10164 cast<Instruction>(V)->getParent(); 10165 }); 10166 }); 10167 if (ArePossiblyReducedInOtherBlock) 10168 return false; 10169 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10170 }, 10171 /*LimitForRegisterSize=*/true); 10172 Instructions.clear(); 10173 } else { 10174 // Insert in reverse order since the PostponedCmps vector was filled in 10175 // reverse order. 10176 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10177 } 10178 return OpsChanged; 10179 } 10180 10181 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10182 bool Changed = false; 10183 SmallVector<Value *, 4> Incoming; 10184 SmallPtrSet<Value *, 16> VisitedInstrs; 10185 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10186 // node. Allows better to identify the chains that can be vectorized in the 10187 // better way. 10188 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10189 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10190 assert(isValidElementType(V1->getType()) && 10191 isValidElementType(V2->getType()) && 10192 "Expected vectorizable types only."); 10193 // It is fine to compare type IDs here, since we expect only vectorizable 10194 // types, like ints, floats and pointers, we don't care about other type. 10195 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10196 return true; 10197 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10198 return false; 10199 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10200 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10201 if (Opcodes1.size() < Opcodes2.size()) 10202 return true; 10203 if (Opcodes1.size() > Opcodes2.size()) 10204 return false; 10205 Optional<bool> ConstOrder; 10206 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10207 // Undefs are compatible with any other value. 10208 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10209 if (!ConstOrder) 10210 ConstOrder = 10211 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10212 continue; 10213 } 10214 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10215 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10216 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10217 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10218 if (!NodeI1) 10219 return NodeI2 != nullptr; 10220 if (!NodeI2) 10221 return false; 10222 assert((NodeI1 == NodeI2) == 10223 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10224 "Different nodes should have different DFS numbers"); 10225 if (NodeI1 != NodeI2) 10226 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10227 InstructionsState S = getSameOpcode({I1, I2}); 10228 if (S.getOpcode()) 10229 continue; 10230 return I1->getOpcode() < I2->getOpcode(); 10231 } 10232 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10233 if (!ConstOrder) 10234 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10235 continue; 10236 } 10237 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10238 return true; 10239 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10240 return false; 10241 } 10242 return ConstOrder && *ConstOrder; 10243 }; 10244 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10245 if (V1 == V2) 10246 return true; 10247 if (V1->getType() != V2->getType()) 10248 return false; 10249 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10250 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10251 if (Opcodes1.size() != Opcodes2.size()) 10252 return false; 10253 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10254 // Undefs are compatible with any other value. 10255 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10256 continue; 10257 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10258 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10259 if (I1->getParent() != I2->getParent()) 10260 return false; 10261 InstructionsState S = getSameOpcode({I1, I2}); 10262 if (S.getOpcode()) 10263 continue; 10264 return false; 10265 } 10266 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10267 continue; 10268 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10269 return false; 10270 } 10271 return true; 10272 }; 10273 auto Limit = [&R](Value *V) { 10274 unsigned EltSize = R.getVectorElementSize(V); 10275 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10276 }; 10277 10278 bool HaveVectorizedPhiNodes = false; 10279 do { 10280 // Collect the incoming values from the PHIs. 10281 Incoming.clear(); 10282 for (Instruction &I : *BB) { 10283 PHINode *P = dyn_cast<PHINode>(&I); 10284 if (!P) 10285 break; 10286 10287 // No need to analyze deleted, vectorized and non-vectorizable 10288 // instructions. 10289 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10290 isValidElementType(P->getType())) 10291 Incoming.push_back(P); 10292 } 10293 10294 // Find the corresponding non-phi nodes for better matching when trying to 10295 // build the tree. 10296 for (Value *V : Incoming) { 10297 SmallVectorImpl<Value *> &Opcodes = 10298 PHIToOpcodes.try_emplace(V).first->getSecond(); 10299 if (!Opcodes.empty()) 10300 continue; 10301 SmallVector<Value *, 4> Nodes(1, V); 10302 SmallPtrSet<Value *, 4> Visited; 10303 while (!Nodes.empty()) { 10304 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10305 if (!Visited.insert(PHI).second) 10306 continue; 10307 for (Value *V : PHI->incoming_values()) { 10308 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10309 Nodes.push_back(PHI1); 10310 continue; 10311 } 10312 Opcodes.emplace_back(V); 10313 } 10314 } 10315 } 10316 10317 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10318 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10319 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10320 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10321 }, 10322 /*LimitForRegisterSize=*/true); 10323 Changed |= HaveVectorizedPhiNodes; 10324 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10325 } while (HaveVectorizedPhiNodes); 10326 10327 VisitedInstrs.clear(); 10328 10329 SmallVector<Instruction *, 8> PostProcessInstructions; 10330 SmallDenseSet<Instruction *, 4> KeyNodes; 10331 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10332 // Skip instructions with scalable type. The num of elements is unknown at 10333 // compile-time for scalable type. 10334 if (isa<ScalableVectorType>(it->getType())) 10335 continue; 10336 10337 // Skip instructions marked for the deletion. 10338 if (R.isDeleted(&*it)) 10339 continue; 10340 // We may go through BB multiple times so skip the one we have checked. 10341 if (!VisitedInstrs.insert(&*it).second) { 10342 if (it->use_empty() && KeyNodes.contains(&*it) && 10343 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10344 it->isTerminator())) { 10345 // We would like to start over since some instructions are deleted 10346 // and the iterator may become invalid value. 10347 Changed = true; 10348 it = BB->begin(); 10349 e = BB->end(); 10350 } 10351 continue; 10352 } 10353 10354 if (isa<DbgInfoIntrinsic>(it)) 10355 continue; 10356 10357 // Try to vectorize reductions that use PHINodes. 10358 if (PHINode *P = dyn_cast<PHINode>(it)) { 10359 // Check that the PHI is a reduction PHI. 10360 if (P->getNumIncomingValues() == 2) { 10361 // Try to match and vectorize a horizontal reduction. 10362 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10363 TTI)) { 10364 Changed = true; 10365 it = BB->begin(); 10366 e = BB->end(); 10367 continue; 10368 } 10369 } 10370 // Try to vectorize the incoming values of the PHI, to catch reductions 10371 // that feed into PHIs. 10372 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10373 // Skip if the incoming block is the current BB for now. Also, bypass 10374 // unreachable IR for efficiency and to avoid crashing. 10375 // TODO: Collect the skipped incoming values and try to vectorize them 10376 // after processing BB. 10377 if (BB == P->getIncomingBlock(I) || 10378 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10379 continue; 10380 10381 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10382 P->getIncomingBlock(I), R, TTI); 10383 } 10384 continue; 10385 } 10386 10387 // Ran into an instruction without users, like terminator, or function call 10388 // with ignored return value, store. Ignore unused instructions (basing on 10389 // instruction type, except for CallInst and InvokeInst). 10390 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10391 isa<InvokeInst>(it))) { 10392 KeyNodes.insert(&*it); 10393 bool OpsChanged = false; 10394 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10395 for (auto *V : it->operand_values()) { 10396 // Try to match and vectorize a horizontal reduction. 10397 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10398 } 10399 } 10400 // Start vectorization of post-process list of instructions from the 10401 // top-tree instructions to try to vectorize as many instructions as 10402 // possible. 10403 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10404 it->isTerminator()); 10405 if (OpsChanged) { 10406 // We would like to start over since some instructions are deleted 10407 // and the iterator may become invalid value. 10408 Changed = true; 10409 it = BB->begin(); 10410 e = BB->end(); 10411 continue; 10412 } 10413 } 10414 10415 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10416 isa<InsertValueInst>(it)) 10417 PostProcessInstructions.push_back(&*it); 10418 } 10419 10420 return Changed; 10421 } 10422 10423 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10424 auto Changed = false; 10425 for (auto &Entry : GEPs) { 10426 // If the getelementptr list has fewer than two elements, there's nothing 10427 // to do. 10428 if (Entry.second.size() < 2) 10429 continue; 10430 10431 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10432 << Entry.second.size() << ".\n"); 10433 10434 // Process the GEP list in chunks suitable for the target's supported 10435 // vector size. If a vector register can't hold 1 element, we are done. We 10436 // are trying to vectorize the index computations, so the maximum number of 10437 // elements is based on the size of the index expression, rather than the 10438 // size of the GEP itself (the target's pointer size). 10439 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10440 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10441 if (MaxVecRegSize < EltSize) 10442 continue; 10443 10444 unsigned MaxElts = MaxVecRegSize / EltSize; 10445 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10446 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10447 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10448 10449 // Initialize a set a candidate getelementptrs. Note that we use a 10450 // SetVector here to preserve program order. If the index computations 10451 // are vectorizable and begin with loads, we want to minimize the chance 10452 // of having to reorder them later. 10453 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10454 10455 // Some of the candidates may have already been vectorized after we 10456 // initially collected them. If so, they are marked as deleted, so remove 10457 // them from the set of candidates. 10458 Candidates.remove_if( 10459 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10460 10461 // Remove from the set of candidates all pairs of getelementptrs with 10462 // constant differences. Such getelementptrs are likely not good 10463 // candidates for vectorization in a bottom-up phase since one can be 10464 // computed from the other. We also ensure all candidate getelementptr 10465 // indices are unique. 10466 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10467 auto *GEPI = GEPList[I]; 10468 if (!Candidates.count(GEPI)) 10469 continue; 10470 auto *SCEVI = SE->getSCEV(GEPList[I]); 10471 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10472 auto *GEPJ = GEPList[J]; 10473 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10474 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10475 Candidates.remove(GEPI); 10476 Candidates.remove(GEPJ); 10477 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10478 Candidates.remove(GEPJ); 10479 } 10480 } 10481 } 10482 10483 // We break out of the above computation as soon as we know there are 10484 // fewer than two candidates remaining. 10485 if (Candidates.size() < 2) 10486 continue; 10487 10488 // Add the single, non-constant index of each candidate to the bundle. We 10489 // ensured the indices met these constraints when we originally collected 10490 // the getelementptrs. 10491 SmallVector<Value *, 16> Bundle(Candidates.size()); 10492 auto BundleIndex = 0u; 10493 for (auto *V : Candidates) { 10494 auto *GEP = cast<GetElementPtrInst>(V); 10495 auto *GEPIdx = GEP->idx_begin()->get(); 10496 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10497 Bundle[BundleIndex++] = GEPIdx; 10498 } 10499 10500 // Try and vectorize the indices. We are currently only interested in 10501 // gather-like cases of the form: 10502 // 10503 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10504 // 10505 // where the loads of "a", the loads of "b", and the subtractions can be 10506 // performed in parallel. It's likely that detecting this pattern in a 10507 // bottom-up phase will be simpler and less costly than building a 10508 // full-blown top-down phase beginning at the consecutive loads. 10509 Changed |= tryToVectorizeList(Bundle, R); 10510 } 10511 } 10512 return Changed; 10513 } 10514 10515 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10516 bool Changed = false; 10517 // Sort by type, base pointers and values operand. Value operands must be 10518 // compatible (have the same opcode, same parent), otherwise it is 10519 // definitely not profitable to try to vectorize them. 10520 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10521 if (V->getPointerOperandType()->getTypeID() < 10522 V2->getPointerOperandType()->getTypeID()) 10523 return true; 10524 if (V->getPointerOperandType()->getTypeID() > 10525 V2->getPointerOperandType()->getTypeID()) 10526 return false; 10527 // UndefValues are compatible with all other values. 10528 if (isa<UndefValue>(V->getValueOperand()) || 10529 isa<UndefValue>(V2->getValueOperand())) 10530 return false; 10531 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10532 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10533 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10534 DT->getNode(I1->getParent()); 10535 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10536 DT->getNode(I2->getParent()); 10537 assert(NodeI1 && "Should only process reachable instructions"); 10538 assert(NodeI1 && "Should only process reachable instructions"); 10539 assert((NodeI1 == NodeI2) == 10540 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10541 "Different nodes should have different DFS numbers"); 10542 if (NodeI1 != NodeI2) 10543 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10544 InstructionsState S = getSameOpcode({I1, I2}); 10545 if (S.getOpcode()) 10546 return false; 10547 return I1->getOpcode() < I2->getOpcode(); 10548 } 10549 if (isa<Constant>(V->getValueOperand()) && 10550 isa<Constant>(V2->getValueOperand())) 10551 return false; 10552 return V->getValueOperand()->getValueID() < 10553 V2->getValueOperand()->getValueID(); 10554 }; 10555 10556 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10557 if (V1 == V2) 10558 return true; 10559 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10560 return false; 10561 // Undefs are compatible with any other value. 10562 if (isa<UndefValue>(V1->getValueOperand()) || 10563 isa<UndefValue>(V2->getValueOperand())) 10564 return true; 10565 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10566 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10567 if (I1->getParent() != I2->getParent()) 10568 return false; 10569 InstructionsState S = getSameOpcode({I1, I2}); 10570 return S.getOpcode() > 0; 10571 } 10572 if (isa<Constant>(V1->getValueOperand()) && 10573 isa<Constant>(V2->getValueOperand())) 10574 return true; 10575 return V1->getValueOperand()->getValueID() == 10576 V2->getValueOperand()->getValueID(); 10577 }; 10578 auto Limit = [&R, this](StoreInst *SI) { 10579 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10580 return R.getMinVF(EltSize); 10581 }; 10582 10583 // Attempt to sort and vectorize each of the store-groups. 10584 for (auto &Pair : Stores) { 10585 if (Pair.second.size() < 2) 10586 continue; 10587 10588 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10589 << Pair.second.size() << ".\n"); 10590 10591 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10592 continue; 10593 10594 Changed |= tryToVectorizeSequence<StoreInst>( 10595 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10596 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10597 return vectorizeStores(Candidates, R); 10598 }, 10599 /*LimitForRegisterSize=*/false); 10600 } 10601 return Changed; 10602 } 10603 10604 char SLPVectorizer::ID = 0; 10605 10606 static const char lv_name[] = "SLP Vectorizer"; 10607 10608 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10609 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10610 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10611 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10612 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10613 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10614 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10615 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10616 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10617 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10618 10619 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10620