1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants (but not 198 /// globals/constant expressions). 199 static bool allConstant(ArrayRef<Value *> VL) { 200 // Constant expressions and globals can't be vectorized like normal integer/FP 201 // constants. 202 for (Value *i : VL) 203 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 204 return false; 205 return true; 206 } 207 208 /// \returns True if all of the values in \p VL are identical. 209 static bool isSplat(ArrayRef<Value *> VL) { 210 for (unsigned i = 1, e = VL.size(); i < e; ++i) 211 if (VL[i] != VL[0]) 212 return false; 213 return true; 214 } 215 216 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 217 static bool isCommutative(Instruction *I) { 218 if (auto *IC = dyn_cast<CmpInst>(I)) 219 return IC->isCommutative(); 220 return I->isCommutative(); 221 } 222 223 /// Checks if the vector of instructions can be represented as a shuffle, like: 224 /// %x0 = extractelement <4 x i8> %x, i32 0 225 /// %x3 = extractelement <4 x i8> %x, i32 3 226 /// %y1 = extractelement <4 x i8> %y, i32 1 227 /// %y2 = extractelement <4 x i8> %y, i32 2 228 /// %x0x0 = mul i8 %x0, %x0 229 /// %x3x3 = mul i8 %x3, %x3 230 /// %y1y1 = mul i8 %y1, %y1 231 /// %y2y2 = mul i8 %y2, %y2 232 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 233 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 234 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 235 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 236 /// ret <4 x i8> %ins4 237 /// can be transformed into: 238 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 239 /// i32 6> 240 /// %2 = mul <4 x i8> %1, %1 241 /// ret <4 x i8> %2 242 /// We convert this initially to something like: 243 /// %x0 = extractelement <4 x i8> %x, i32 0 244 /// %x3 = extractelement <4 x i8> %x, i32 3 245 /// %y1 = extractelement <4 x i8> %y, i32 1 246 /// %y2 = extractelement <4 x i8> %y, i32 2 247 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 248 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 249 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 250 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 251 /// %5 = mul <4 x i8> %4, %4 252 /// %6 = extractelement <4 x i8> %5, i32 0 253 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 254 /// %7 = extractelement <4 x i8> %5, i32 1 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 256 /// %8 = extractelement <4 x i8> %5, i32 2 257 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 258 /// %9 = extractelement <4 x i8> %5, i32 3 259 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 260 /// ret <4 x i8> %ins4 261 /// InstCombiner transforms this into a shuffle and vector mul 262 /// TODO: Can we split off and reuse the shuffle mask detection from 263 /// TargetTransformInfo::getInstructionThroughput? 264 static Optional<TargetTransformInfo::ShuffleKind> 265 isShuffle(ArrayRef<Value *> VL) { 266 auto *EI0 = cast<ExtractElementInst>(VL[0]); 267 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 268 Value *Vec1 = nullptr; 269 Value *Vec2 = nullptr; 270 enum ShuffleMode { Unknown, Select, Permute }; 271 ShuffleMode CommonShuffleMode = Unknown; 272 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 273 auto *EI = cast<ExtractElementInst>(VL[I]); 274 auto *Vec = EI->getVectorOperand(); 275 // All vector operands must have the same number of vector elements. 276 if (Vec->getType()->getVectorNumElements() != Size) 277 return None; 278 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 279 if (!Idx) 280 return None; 281 // Undefined behavior if Idx is negative or >= Size. 282 if (Idx->getValue().uge(Size)) 283 continue; 284 unsigned IntIdx = Idx->getValue().getZExtValue(); 285 // We can extractelement from undef vector. 286 if (isa<UndefValue>(Vec)) 287 continue; 288 // For correct shuffling we have to have at most 2 different vector operands 289 // in all extractelement instructions. 290 if (!Vec1 || Vec1 == Vec) 291 Vec1 = Vec; 292 else if (!Vec2 || Vec2 == Vec) 293 Vec2 = Vec; 294 else 295 return None; 296 if (CommonShuffleMode == Permute) 297 continue; 298 // If the extract index is not the same as the operation number, it is a 299 // permutation. 300 if (IntIdx != I) { 301 CommonShuffleMode = Permute; 302 continue; 303 } 304 CommonShuffleMode = Select; 305 } 306 // If we're not crossing lanes in different vectors, consider it as blending. 307 if (CommonShuffleMode == Select && Vec2) 308 return TargetTransformInfo::SK_Select; 309 // If Vec2 was never used, we have a permutation of a single vector, otherwise 310 // we have permutation of 2 vectors. 311 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 312 : TargetTransformInfo::SK_PermuteSingleSrc; 313 } 314 315 namespace { 316 317 /// Main data required for vectorization of instructions. 318 struct InstructionsState { 319 /// The very first instruction in the list with the main opcode. 320 Value *OpValue = nullptr; 321 322 /// The main/alternate instruction. 323 Instruction *MainOp = nullptr; 324 Instruction *AltOp = nullptr; 325 326 /// The main/alternate opcodes for the list of instructions. 327 unsigned getOpcode() const { 328 return MainOp ? MainOp->getOpcode() : 0; 329 } 330 331 unsigned getAltOpcode() const { 332 return AltOp ? AltOp->getOpcode() : 0; 333 } 334 335 /// Some of the instructions in the list have alternate opcodes. 336 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 337 338 bool isOpcodeOrAlt(Instruction *I) const { 339 unsigned CheckedOpcode = I->getOpcode(); 340 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 341 } 342 343 InstructionsState() = delete; 344 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 345 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 346 }; 347 348 } // end anonymous namespace 349 350 /// Chooses the correct key for scheduling data. If \p Op has the same (or 351 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 352 /// OpValue. 353 static Value *isOneOf(const InstructionsState &S, Value *Op) { 354 auto *I = dyn_cast<Instruction>(Op); 355 if (I && S.isOpcodeOrAlt(I)) 356 return Op; 357 return S.OpValue; 358 } 359 360 /// \returns analysis of the Instructions in \p VL described in 361 /// InstructionsState, the Opcode that we suppose the whole list 362 /// could be vectorized even if its structure is diverse. 363 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 364 unsigned BaseIndex = 0) { 365 // Make sure these are all Instructions. 366 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 367 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 368 369 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 370 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 371 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 372 unsigned AltOpcode = Opcode; 373 unsigned AltIndex = BaseIndex; 374 375 // Check for one alternate opcode from another BinaryOperator. 376 // TODO - generalize to support all operators (types, calls etc.). 377 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 378 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 379 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 380 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 381 continue; 382 if (Opcode == AltOpcode) { 383 AltOpcode = InstOpcode; 384 AltIndex = Cnt; 385 continue; 386 } 387 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 388 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 389 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 390 if (Ty0 == Ty1) { 391 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 392 continue; 393 if (Opcode == AltOpcode) { 394 AltOpcode = InstOpcode; 395 AltIndex = Cnt; 396 continue; 397 } 398 } 399 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 400 continue; 401 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 402 } 403 404 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 405 cast<Instruction>(VL[AltIndex])); 406 } 407 408 /// \returns true if all of the values in \p VL have the same type or false 409 /// otherwise. 410 static bool allSameType(ArrayRef<Value *> VL) { 411 Type *Ty = VL[0]->getType(); 412 for (int i = 1, e = VL.size(); i < e; i++) 413 if (VL[i]->getType() != Ty) 414 return false; 415 416 return true; 417 } 418 419 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 420 static Optional<unsigned> getExtractIndex(Instruction *E) { 421 unsigned Opcode = E->getOpcode(); 422 assert((Opcode == Instruction::ExtractElement || 423 Opcode == Instruction::ExtractValue) && 424 "Expected extractelement or extractvalue instruction."); 425 if (Opcode == Instruction::ExtractElement) { 426 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 427 if (!CI) 428 return None; 429 return CI->getZExtValue(); 430 } 431 ExtractValueInst *EI = cast<ExtractValueInst>(E); 432 if (EI->getNumIndices() != 1) 433 return None; 434 return *EI->idx_begin(); 435 } 436 437 /// \returns True if in-tree use also needs extract. This refers to 438 /// possible scalar operand in vectorized instruction. 439 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 440 TargetLibraryInfo *TLI) { 441 unsigned Opcode = UserInst->getOpcode(); 442 switch (Opcode) { 443 case Instruction::Load: { 444 LoadInst *LI = cast<LoadInst>(UserInst); 445 return (LI->getPointerOperand() == Scalar); 446 } 447 case Instruction::Store: { 448 StoreInst *SI = cast<StoreInst>(UserInst); 449 return (SI->getPointerOperand() == Scalar); 450 } 451 case Instruction::Call: { 452 CallInst *CI = cast<CallInst>(UserInst); 453 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 454 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 455 if (hasVectorInstrinsicScalarOpd(ID, i)) 456 return (CI->getArgOperand(i) == Scalar); 457 } 458 LLVM_FALLTHROUGH; 459 } 460 default: 461 return false; 462 } 463 } 464 465 /// \returns the AA location that is being access by the instruction. 466 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 467 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 468 return MemoryLocation::get(SI); 469 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 470 return MemoryLocation::get(LI); 471 return MemoryLocation(); 472 } 473 474 /// \returns True if the instruction is not a volatile or atomic load/store. 475 static bool isSimple(Instruction *I) { 476 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 477 return LI->isSimple(); 478 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 479 return SI->isSimple(); 480 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 481 return !MI->isVolatile(); 482 return true; 483 } 484 485 namespace llvm { 486 487 namespace slpvectorizer { 488 489 /// Bottom Up SLP Vectorizer. 490 class BoUpSLP { 491 struct TreeEntry; 492 struct ScheduleData; 493 494 public: 495 using ValueList = SmallVector<Value *, 8>; 496 using InstrList = SmallVector<Instruction *, 16>; 497 using ValueSet = SmallPtrSet<Value *, 16>; 498 using StoreList = SmallVector<StoreInst *, 8>; 499 using ExtraValueToDebugLocsMap = 500 MapVector<Value *, SmallVector<Instruction *, 2>>; 501 502 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 503 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 504 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 505 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 506 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 507 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 508 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 509 // Use the vector register size specified by the target unless overridden 510 // by a command-line option. 511 // TODO: It would be better to limit the vectorization factor based on 512 // data type rather than just register size. For example, x86 AVX has 513 // 256-bit registers, but it does not support integer operations 514 // at that width (that requires AVX2). 515 if (MaxVectorRegSizeOption.getNumOccurrences()) 516 MaxVecRegSize = MaxVectorRegSizeOption; 517 else 518 MaxVecRegSize = TTI->getRegisterBitWidth(true); 519 520 if (MinVectorRegSizeOption.getNumOccurrences()) 521 MinVecRegSize = MinVectorRegSizeOption; 522 else 523 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 524 } 525 526 /// Vectorize the tree that starts with the elements in \p VL. 527 /// Returns the vectorized root. 528 Value *vectorizeTree(); 529 530 /// Vectorize the tree but with the list of externally used values \p 531 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 532 /// generated extractvalue instructions. 533 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 534 535 /// \returns the cost incurred by unwanted spills and fills, caused by 536 /// holding live values over call sites. 537 int getSpillCost() const; 538 539 /// \returns the vectorization cost of the subtree that starts at \p VL. 540 /// A negative number means that this is profitable. 541 int getTreeCost(); 542 543 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 544 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 545 void buildTree(ArrayRef<Value *> Roots, 546 ArrayRef<Value *> UserIgnoreLst = None); 547 548 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 549 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 550 /// into account (anf updating it, if required) list of externally used 551 /// values stored in \p ExternallyUsedValues. 552 void buildTree(ArrayRef<Value *> Roots, 553 ExtraValueToDebugLocsMap &ExternallyUsedValues, 554 ArrayRef<Value *> UserIgnoreLst = None); 555 556 /// Clear the internal data structures that are created by 'buildTree'. 557 void deleteTree() { 558 VectorizableTree.clear(); 559 ScalarToTreeEntry.clear(); 560 MustGather.clear(); 561 ExternalUses.clear(); 562 NumOpsWantToKeepOrder.clear(); 563 NumOpsWantToKeepOriginalOrder = 0; 564 for (auto &Iter : BlocksSchedules) { 565 BlockScheduling *BS = Iter.second.get(); 566 BS->clear(); 567 } 568 MinBWs.clear(); 569 } 570 571 unsigned getTreeSize() const { return VectorizableTree.size(); } 572 573 /// Perform LICM and CSE on the newly generated gather sequences. 574 void optimizeGatherSequence(); 575 576 /// \returns The best order of instructions for vectorization. 577 Optional<ArrayRef<unsigned>> bestOrder() const { 578 auto I = std::max_element( 579 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 580 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 581 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 582 return D1.second < D2.second; 583 }); 584 if (I == NumOpsWantToKeepOrder.end() || 585 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 586 return None; 587 588 return makeArrayRef(I->getFirst()); 589 } 590 591 /// \return The vector element size in bits to use when vectorizing the 592 /// expression tree ending at \p V. If V is a store, the size is the width of 593 /// the stored value. Otherwise, the size is the width of the largest loaded 594 /// value reaching V. This method is used by the vectorizer to calculate 595 /// vectorization factors. 596 unsigned getVectorElementSize(Value *V) const; 597 598 /// Compute the minimum type sizes required to represent the entries in a 599 /// vectorizable tree. 600 void computeMinimumValueSizes(); 601 602 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 603 unsigned getMaxVecRegSize() const { 604 return MaxVecRegSize; 605 } 606 607 // \returns minimum vector register size as set by cl::opt. 608 unsigned getMinVecRegSize() const { 609 return MinVecRegSize; 610 } 611 612 /// Check if ArrayType or StructType is isomorphic to some VectorType. 613 /// 614 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 615 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 616 617 /// \returns True if the VectorizableTree is both tiny and not fully 618 /// vectorizable. We do not vectorize such trees. 619 bool isTreeTinyAndNotFullyVectorizable() const; 620 621 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 622 /// can be load combined in the backend. Load combining may not be allowed in 623 /// the IR optimizer, so we do not want to alter the pattern. For example, 624 /// partially transforming a scalar bswap() pattern into vector code is 625 /// effectively impossible for the backend to undo. 626 /// TODO: If load combining is allowed in the IR optimizer, this analysis 627 /// may not be necessary. 628 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 629 630 OptimizationRemarkEmitter *getORE() { return ORE; } 631 632 /// This structure holds any data we need about the edges being traversed 633 /// during buildTree_rec(). We keep track of: 634 /// (i) the user TreeEntry index, and 635 /// (ii) the index of the edge. 636 struct EdgeInfo { 637 EdgeInfo() = default; 638 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 639 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 640 /// The user TreeEntry. 641 TreeEntry *UserTE = nullptr; 642 /// The operand index of the use. 643 unsigned EdgeIdx = UINT_MAX; 644 #ifndef NDEBUG 645 friend inline raw_ostream &operator<<(raw_ostream &OS, 646 const BoUpSLP::EdgeInfo &EI) { 647 EI.dump(OS); 648 return OS; 649 } 650 /// Debug print. 651 void dump(raw_ostream &OS) const { 652 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 653 << " EdgeIdx:" << EdgeIdx << "}"; 654 } 655 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 656 #endif 657 }; 658 659 /// A helper data structure to hold the operands of a vector of instructions. 660 /// This supports a fixed vector length for all operand vectors. 661 class VLOperands { 662 /// For each operand we need (i) the value, and (ii) the opcode that it 663 /// would be attached to if the expression was in a left-linearized form. 664 /// This is required to avoid illegal operand reordering. 665 /// For example: 666 /// \verbatim 667 /// 0 Op1 668 /// |/ 669 /// Op1 Op2 Linearized + Op2 670 /// \ / ----------> |/ 671 /// - - 672 /// 673 /// Op1 - Op2 (0 + Op1) - Op2 674 /// \endverbatim 675 /// 676 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 677 /// 678 /// Another way to think of this is to track all the operations across the 679 /// path from the operand all the way to the root of the tree and to 680 /// calculate the operation that corresponds to this path. For example, the 681 /// path from Op2 to the root crosses the RHS of the '-', therefore the 682 /// corresponding operation is a '-' (which matches the one in the 683 /// linearized tree, as shown above). 684 /// 685 /// For lack of a better term, we refer to this operation as Accumulated 686 /// Path Operation (APO). 687 struct OperandData { 688 OperandData() = default; 689 OperandData(Value *V, bool APO, bool IsUsed) 690 : V(V), APO(APO), IsUsed(IsUsed) {} 691 /// The operand value. 692 Value *V = nullptr; 693 /// TreeEntries only allow a single opcode, or an alternate sequence of 694 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 695 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 696 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 697 /// (e.g., Add/Mul) 698 bool APO = false; 699 /// Helper data for the reordering function. 700 bool IsUsed = false; 701 }; 702 703 /// During operand reordering, we are trying to select the operand at lane 704 /// that matches best with the operand at the neighboring lane. Our 705 /// selection is based on the type of value we are looking for. For example, 706 /// if the neighboring lane has a load, we need to look for a load that is 707 /// accessing a consecutive address. These strategies are summarized in the 708 /// 'ReorderingMode' enumerator. 709 enum class ReorderingMode { 710 Load, ///< Matching loads to consecutive memory addresses 711 Opcode, ///< Matching instructions based on opcode (same or alternate) 712 Constant, ///< Matching constants 713 Splat, ///< Matching the same instruction multiple times (broadcast) 714 Failed, ///< We failed to create a vectorizable group 715 }; 716 717 using OperandDataVec = SmallVector<OperandData, 2>; 718 719 /// A vector of operand vectors. 720 SmallVector<OperandDataVec, 4> OpsVec; 721 722 const DataLayout &DL; 723 ScalarEvolution &SE; 724 725 /// \returns the operand data at \p OpIdx and \p Lane. 726 OperandData &getData(unsigned OpIdx, unsigned Lane) { 727 return OpsVec[OpIdx][Lane]; 728 } 729 730 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 731 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 732 return OpsVec[OpIdx][Lane]; 733 } 734 735 /// Clears the used flag for all entries. 736 void clearUsed() { 737 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 738 OpIdx != NumOperands; ++OpIdx) 739 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 740 ++Lane) 741 OpsVec[OpIdx][Lane].IsUsed = false; 742 } 743 744 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 745 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 746 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 747 } 748 749 // Search all operands in Ops[*][Lane] for the one that matches best 750 // Ops[OpIdx][LastLane] and return its opreand index. 751 // If no good match can be found, return None. 752 Optional<unsigned> 753 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 754 ArrayRef<ReorderingMode> ReorderingModes) { 755 unsigned NumOperands = getNumOperands(); 756 757 // The operand of the previous lane at OpIdx. 758 Value *OpLastLane = getData(OpIdx, LastLane).V; 759 760 // Our strategy mode for OpIdx. 761 ReorderingMode RMode = ReorderingModes[OpIdx]; 762 763 // The linearized opcode of the operand at OpIdx, Lane. 764 bool OpIdxAPO = getData(OpIdx, Lane).APO; 765 766 const unsigned BestScore = 2; 767 const unsigned GoodScore = 1; 768 769 // The best operand index and its score. 770 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 771 // are using the score to differentiate between the two. 772 struct BestOpData { 773 Optional<unsigned> Idx = None; 774 unsigned Score = 0; 775 } BestOp; 776 777 // Iterate through all unused operands and look for the best. 778 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 779 // Get the operand at Idx and Lane. 780 OperandData &OpData = getData(Idx, Lane); 781 Value *Op = OpData.V; 782 bool OpAPO = OpData.APO; 783 784 // Skip already selected operands. 785 if (OpData.IsUsed) 786 continue; 787 788 // Skip if we are trying to move the operand to a position with a 789 // different opcode in the linearized tree form. This would break the 790 // semantics. 791 if (OpAPO != OpIdxAPO) 792 continue; 793 794 // Look for an operand that matches the current mode. 795 switch (RMode) { 796 case ReorderingMode::Load: 797 if (isa<LoadInst>(Op)) { 798 // Figure out which is left and right, so that we can check for 799 // consecutive loads 800 bool LeftToRight = Lane > LastLane; 801 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 802 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 803 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 804 cast<LoadInst>(OpRight), DL, SE)) 805 BestOp.Idx = Idx; 806 } 807 break; 808 case ReorderingMode::Opcode: 809 // We accept both Instructions and Undefs, but with different scores. 810 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 811 cast<Instruction>(Op)->getOpcode() == 812 cast<Instruction>(OpLastLane)->getOpcode()) || 813 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 814 isa<UndefValue>(Op)) { 815 // An instruction has a higher score than an undef. 816 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 817 if (Score > BestOp.Score) { 818 BestOp.Idx = Idx; 819 BestOp.Score = Score; 820 } 821 } 822 break; 823 case ReorderingMode::Constant: 824 if (isa<Constant>(Op)) { 825 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 826 if (Score > BestOp.Score) { 827 BestOp.Idx = Idx; 828 BestOp.Score = Score; 829 } 830 } 831 break; 832 case ReorderingMode::Splat: 833 if (Op == OpLastLane) 834 BestOp.Idx = Idx; 835 break; 836 case ReorderingMode::Failed: 837 return None; 838 } 839 } 840 841 if (BestOp.Idx) { 842 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 843 return BestOp.Idx; 844 } 845 // If we could not find a good match return None. 846 return None; 847 } 848 849 /// Helper for reorderOperandVecs. \Returns the lane that we should start 850 /// reordering from. This is the one which has the least number of operands 851 /// that can freely move about. 852 unsigned getBestLaneToStartReordering() const { 853 unsigned BestLane = 0; 854 unsigned Min = UINT_MAX; 855 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 856 ++Lane) { 857 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 858 if (NumFreeOps < Min) { 859 Min = NumFreeOps; 860 BestLane = Lane; 861 } 862 } 863 return BestLane; 864 } 865 866 /// \Returns the maximum number of operands that are allowed to be reordered 867 /// for \p Lane. This is used as a heuristic for selecting the first lane to 868 /// start operand reordering. 869 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 870 unsigned CntTrue = 0; 871 unsigned NumOperands = getNumOperands(); 872 // Operands with the same APO can be reordered. We therefore need to count 873 // how many of them we have for each APO, like this: Cnt[APO] = x. 874 // Since we only have two APOs, namely true and false, we can avoid using 875 // a map. Instead we can simply count the number of operands that 876 // correspond to one of them (in this case the 'true' APO), and calculate 877 // the other by subtracting it from the total number of operands. 878 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 879 if (getData(OpIdx, Lane).APO) 880 ++CntTrue; 881 unsigned CntFalse = NumOperands - CntTrue; 882 return std::max(CntTrue, CntFalse); 883 } 884 885 /// Go through the instructions in VL and append their operands. 886 void appendOperandsOfVL(ArrayRef<Value *> VL) { 887 assert(!VL.empty() && "Bad VL"); 888 assert((empty() || VL.size() == getNumLanes()) && 889 "Expected same number of lanes"); 890 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 891 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 892 OpsVec.resize(NumOperands); 893 unsigned NumLanes = VL.size(); 894 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 895 OpsVec[OpIdx].resize(NumLanes); 896 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 897 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 898 // Our tree has just 3 nodes: the root and two operands. 899 // It is therefore trivial to get the APO. We only need to check the 900 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 901 // RHS operand. The LHS operand of both add and sub is never attached 902 // to an inversese operation in the linearized form, therefore its APO 903 // is false. The RHS is true only if VL[Lane] is an inverse operation. 904 905 // Since operand reordering is performed on groups of commutative 906 // operations or alternating sequences (e.g., +, -), we can safely 907 // tell the inverse operations by checking commutativity. 908 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 909 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 910 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 911 APO, false}; 912 } 913 } 914 } 915 916 /// \returns the number of operands. 917 unsigned getNumOperands() const { return OpsVec.size(); } 918 919 /// \returns the number of lanes. 920 unsigned getNumLanes() const { return OpsVec[0].size(); } 921 922 /// \returns the operand value at \p OpIdx and \p Lane. 923 Value *getValue(unsigned OpIdx, unsigned Lane) const { 924 return getData(OpIdx, Lane).V; 925 } 926 927 /// \returns true if the data structure is empty. 928 bool empty() const { return OpsVec.empty(); } 929 930 /// Clears the data. 931 void clear() { OpsVec.clear(); } 932 933 /// \Returns true if there are enough operands identical to \p Op to fill 934 /// the whole vector. 935 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 936 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 937 bool OpAPO = getData(OpIdx, Lane).APO; 938 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 939 if (Ln == Lane) 940 continue; 941 // This is set to true if we found a candidate for broadcast at Lane. 942 bool FoundCandidate = false; 943 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 944 OperandData &Data = getData(OpI, Ln); 945 if (Data.APO != OpAPO || Data.IsUsed) 946 continue; 947 if (Data.V == Op) { 948 FoundCandidate = true; 949 Data.IsUsed = true; 950 break; 951 } 952 } 953 if (!FoundCandidate) 954 return false; 955 } 956 return true; 957 } 958 959 public: 960 /// Initialize with all the operands of the instruction vector \p RootVL. 961 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 962 ScalarEvolution &SE) 963 : DL(DL), SE(SE) { 964 // Append all the operands of RootVL. 965 appendOperandsOfVL(RootVL); 966 } 967 968 /// \Returns a value vector with the operands across all lanes for the 969 /// opearnd at \p OpIdx. 970 ValueList getVL(unsigned OpIdx) const { 971 ValueList OpVL(OpsVec[OpIdx].size()); 972 assert(OpsVec[OpIdx].size() == getNumLanes() && 973 "Expected same num of lanes across all operands"); 974 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 975 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 976 return OpVL; 977 } 978 979 // Performs operand reordering for 2 or more operands. 980 // The original operands are in OrigOps[OpIdx][Lane]. 981 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 982 void reorder() { 983 unsigned NumOperands = getNumOperands(); 984 unsigned NumLanes = getNumLanes(); 985 // Each operand has its own mode. We are using this mode to help us select 986 // the instructions for each lane, so that they match best with the ones 987 // we have selected so far. 988 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 989 990 // This is a greedy single-pass algorithm. We are going over each lane 991 // once and deciding on the best order right away with no back-tracking. 992 // However, in order to increase its effectiveness, we start with the lane 993 // that has operands that can move the least. For example, given the 994 // following lanes: 995 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 996 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 997 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 998 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 999 // we will start at Lane 1, since the operands of the subtraction cannot 1000 // be reordered. Then we will visit the rest of the lanes in a circular 1001 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1002 1003 // Find the first lane that we will start our search from. 1004 unsigned FirstLane = getBestLaneToStartReordering(); 1005 1006 // Initialize the modes. 1007 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1008 Value *OpLane0 = getValue(OpIdx, FirstLane); 1009 // Keep track if we have instructions with all the same opcode on one 1010 // side. 1011 if (isa<LoadInst>(OpLane0)) 1012 ReorderingModes[OpIdx] = ReorderingMode::Load; 1013 else if (isa<Instruction>(OpLane0)) { 1014 // Check if OpLane0 should be broadcast. 1015 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1016 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1017 else 1018 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1019 } 1020 else if (isa<Constant>(OpLane0)) 1021 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1022 else if (isa<Argument>(OpLane0)) 1023 // Our best hope is a Splat. It may save some cost in some cases. 1024 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1025 else 1026 // NOTE: This should be unreachable. 1027 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1028 } 1029 1030 // If the initial strategy fails for any of the operand indexes, then we 1031 // perform reordering again in a second pass. This helps avoid assigning 1032 // high priority to the failed strategy, and should improve reordering for 1033 // the non-failed operand indexes. 1034 for (int Pass = 0; Pass != 2; ++Pass) { 1035 // Skip the second pass if the first pass did not fail. 1036 bool StrategyFailed = false; 1037 // Mark all operand data as free to use. 1038 clearUsed(); 1039 // We keep the original operand order for the FirstLane, so reorder the 1040 // rest of the lanes. We are visiting the nodes in a circular fashion, 1041 // using FirstLane as the center point and increasing the radius 1042 // distance. 1043 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1044 // Visit the lane on the right and then the lane on the left. 1045 for (int Direction : {+1, -1}) { 1046 int Lane = FirstLane + Direction * Distance; 1047 if (Lane < 0 || Lane >= (int)NumLanes) 1048 continue; 1049 int LastLane = Lane - Direction; 1050 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1051 "Out of bounds"); 1052 // Look for a good match for each operand. 1053 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1054 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1055 Optional<unsigned> BestIdx = 1056 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1057 // By not selecting a value, we allow the operands that follow to 1058 // select a better matching value. We will get a non-null value in 1059 // the next run of getBestOperand(). 1060 if (BestIdx) { 1061 // Swap the current operand with the one returned by 1062 // getBestOperand(). 1063 swap(OpIdx, BestIdx.getValue(), Lane); 1064 } else { 1065 // We failed to find a best operand, set mode to 'Failed'. 1066 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1067 // Enable the second pass. 1068 StrategyFailed = true; 1069 } 1070 } 1071 } 1072 } 1073 // Skip second pass if the strategy did not fail. 1074 if (!StrategyFailed) 1075 break; 1076 } 1077 } 1078 1079 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1080 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1081 switch (RMode) { 1082 case ReorderingMode::Load: 1083 return "Load"; 1084 case ReorderingMode::Opcode: 1085 return "Opcode"; 1086 case ReorderingMode::Constant: 1087 return "Constant"; 1088 case ReorderingMode::Splat: 1089 return "Splat"; 1090 case ReorderingMode::Failed: 1091 return "Failed"; 1092 } 1093 llvm_unreachable("Unimplemented Reordering Type"); 1094 } 1095 1096 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1097 raw_ostream &OS) { 1098 return OS << getModeStr(RMode); 1099 } 1100 1101 /// Debug print. 1102 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1103 printMode(RMode, dbgs()); 1104 } 1105 1106 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1107 return printMode(RMode, OS); 1108 } 1109 1110 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1111 const unsigned Indent = 2; 1112 unsigned Cnt = 0; 1113 for (const OperandDataVec &OpDataVec : OpsVec) { 1114 OS << "Operand " << Cnt++ << "\n"; 1115 for (const OperandData &OpData : OpDataVec) { 1116 OS.indent(Indent) << "{"; 1117 if (Value *V = OpData.V) 1118 OS << *V; 1119 else 1120 OS << "null"; 1121 OS << ", APO:" << OpData.APO << "}\n"; 1122 } 1123 OS << "\n"; 1124 } 1125 return OS; 1126 } 1127 1128 /// Debug print. 1129 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1130 #endif 1131 }; 1132 1133 /// Checks if the instruction is marked for deletion. 1134 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1135 1136 /// Marks values operands for later deletion by replacing them with Undefs. 1137 void eraseInstructions(ArrayRef<Value *> AV); 1138 1139 ~BoUpSLP(); 1140 1141 private: 1142 /// Checks if all users of \p I are the part of the vectorization tree. 1143 bool areAllUsersVectorized(Instruction *I) const; 1144 1145 /// \returns the cost of the vectorizable entry. 1146 int getEntryCost(TreeEntry *E); 1147 1148 /// This is the recursive part of buildTree. 1149 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1150 const EdgeInfo &EI); 1151 1152 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1153 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1154 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1155 /// returns false, setting \p CurrentOrder to either an empty vector or a 1156 /// non-identity permutation that allows to reuse extract instructions. 1157 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1158 SmallVectorImpl<unsigned> &CurrentOrder) const; 1159 1160 /// Vectorize a single entry in the tree. 1161 Value *vectorizeTree(TreeEntry *E); 1162 1163 /// Vectorize a single entry in the tree, starting in \p VL. 1164 Value *vectorizeTree(ArrayRef<Value *> VL); 1165 1166 /// \returns the scalarization cost for this type. Scalarization in this 1167 /// context means the creation of vectors from a group of scalars. 1168 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1169 1170 /// \returns the scalarization cost for this list of values. Assuming that 1171 /// this subtree gets vectorized, we may need to extract the values from the 1172 /// roots. This method calculates the cost of extracting the values. 1173 int getGatherCost(ArrayRef<Value *> VL) const; 1174 1175 /// Set the Builder insert point to one after the last instruction in 1176 /// the bundle 1177 void setInsertPointAfterBundle(TreeEntry *E); 1178 1179 /// \returns a vector from a collection of scalars in \p VL. 1180 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1181 1182 /// \returns whether the VectorizableTree is fully vectorizable and will 1183 /// be beneficial even the tree height is tiny. 1184 bool isFullyVectorizableTinyTree() const; 1185 1186 /// Reorder commutative or alt operands to get better probability of 1187 /// generating vectorized code. 1188 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1189 SmallVectorImpl<Value *> &Left, 1190 SmallVectorImpl<Value *> &Right, 1191 const DataLayout &DL, 1192 ScalarEvolution &SE); 1193 struct TreeEntry { 1194 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1195 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1196 1197 /// \returns true if the scalars in VL are equal to this entry. 1198 bool isSame(ArrayRef<Value *> VL) const { 1199 if (VL.size() == Scalars.size()) 1200 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1201 return VL.size() == ReuseShuffleIndices.size() && 1202 std::equal( 1203 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1204 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1205 } 1206 1207 /// A vector of scalars. 1208 ValueList Scalars; 1209 1210 /// The Scalars are vectorized into this value. It is initialized to Null. 1211 Value *VectorizedValue = nullptr; 1212 1213 /// Do we need to gather this sequence ? 1214 bool NeedToGather = false; 1215 1216 /// Does this sequence require some shuffling? 1217 SmallVector<unsigned, 4> ReuseShuffleIndices; 1218 1219 /// Does this entry require reordering? 1220 ArrayRef<unsigned> ReorderIndices; 1221 1222 /// Points back to the VectorizableTree. 1223 /// 1224 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1225 /// to be a pointer and needs to be able to initialize the child iterator. 1226 /// Thus we need a reference back to the container to translate the indices 1227 /// to entries. 1228 VecTreeTy &Container; 1229 1230 /// The TreeEntry index containing the user of this entry. We can actually 1231 /// have multiple users so the data structure is not truly a tree. 1232 SmallVector<EdgeInfo, 1> UserTreeIndices; 1233 1234 /// The index of this treeEntry in VectorizableTree. 1235 int Idx = -1; 1236 1237 private: 1238 /// The operands of each instruction in each lane Operands[op_index][lane]. 1239 /// Note: This helps avoid the replication of the code that performs the 1240 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1241 SmallVector<ValueList, 2> Operands; 1242 1243 /// The main/alternate instruction. 1244 Instruction *MainOp = nullptr; 1245 Instruction *AltOp = nullptr; 1246 1247 public: 1248 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1249 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1250 if (Operands.size() < OpIdx + 1) 1251 Operands.resize(OpIdx + 1); 1252 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1253 Operands[OpIdx].resize(Scalars.size()); 1254 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1255 Operands[OpIdx][Lane] = OpVL[Lane]; 1256 } 1257 1258 /// Set the operands of this bundle in their original order. 1259 void setOperandsInOrder() { 1260 assert(Operands.empty() && "Already initialized?"); 1261 auto *I0 = cast<Instruction>(Scalars[0]); 1262 Operands.resize(I0->getNumOperands()); 1263 unsigned NumLanes = Scalars.size(); 1264 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1265 OpIdx != NumOperands; ++OpIdx) { 1266 Operands[OpIdx].resize(NumLanes); 1267 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1268 auto *I = cast<Instruction>(Scalars[Lane]); 1269 assert(I->getNumOperands() == NumOperands && 1270 "Expected same number of operands"); 1271 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1272 } 1273 } 1274 } 1275 1276 /// \returns the \p OpIdx operand of this TreeEntry. 1277 ValueList &getOperand(unsigned OpIdx) { 1278 assert(OpIdx < Operands.size() && "Off bounds"); 1279 return Operands[OpIdx]; 1280 } 1281 1282 /// \returns the number of operands. 1283 unsigned getNumOperands() const { return Operands.size(); } 1284 1285 /// \return the single \p OpIdx operand. 1286 Value *getSingleOperand(unsigned OpIdx) const { 1287 assert(OpIdx < Operands.size() && "Off bounds"); 1288 assert(!Operands[OpIdx].empty() && "No operand available"); 1289 return Operands[OpIdx][0]; 1290 } 1291 1292 /// Some of the instructions in the list have alternate opcodes. 1293 bool isAltShuffle() const { 1294 return getOpcode() != getAltOpcode(); 1295 } 1296 1297 bool isOpcodeOrAlt(Instruction *I) const { 1298 unsigned CheckedOpcode = I->getOpcode(); 1299 return (getOpcode() == CheckedOpcode || 1300 getAltOpcode() == CheckedOpcode); 1301 } 1302 1303 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1304 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1305 /// \p OpValue. 1306 Value *isOneOf(Value *Op) const { 1307 auto *I = dyn_cast<Instruction>(Op); 1308 if (I && isOpcodeOrAlt(I)) 1309 return Op; 1310 return MainOp; 1311 } 1312 1313 void setOperations(const InstructionsState &S) { 1314 MainOp = S.MainOp; 1315 AltOp = S.AltOp; 1316 } 1317 1318 Instruction *getMainOp() const { 1319 return MainOp; 1320 } 1321 1322 Instruction *getAltOp() const { 1323 return AltOp; 1324 } 1325 1326 /// The main/alternate opcodes for the list of instructions. 1327 unsigned getOpcode() const { 1328 return MainOp ? MainOp->getOpcode() : 0; 1329 } 1330 1331 unsigned getAltOpcode() const { 1332 return AltOp ? AltOp->getOpcode() : 0; 1333 } 1334 1335 /// Update operations state of this entry if reorder occurred. 1336 bool updateStateIfReorder() { 1337 if (ReorderIndices.empty()) 1338 return false; 1339 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1340 setOperations(S); 1341 return true; 1342 } 1343 1344 #ifndef NDEBUG 1345 /// Debug printer. 1346 LLVM_DUMP_METHOD void dump() const { 1347 dbgs() << Idx << ".\n"; 1348 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1349 dbgs() << "Operand " << OpI << ":\n"; 1350 for (const Value *V : Operands[OpI]) 1351 dbgs().indent(2) << *V << "\n"; 1352 } 1353 dbgs() << "Scalars: \n"; 1354 for (Value *V : Scalars) 1355 dbgs().indent(2) << *V << "\n"; 1356 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1357 dbgs() << "MainOp: "; 1358 if (MainOp) 1359 dbgs() << *MainOp << "\n"; 1360 else 1361 dbgs() << "NULL\n"; 1362 dbgs() << "AltOp: "; 1363 if (AltOp) 1364 dbgs() << *AltOp << "\n"; 1365 else 1366 dbgs() << "NULL\n"; 1367 dbgs() << "VectorizedValue: "; 1368 if (VectorizedValue) 1369 dbgs() << *VectorizedValue << "\n"; 1370 else 1371 dbgs() << "NULL\n"; 1372 dbgs() << "ReuseShuffleIndices: "; 1373 if (ReuseShuffleIndices.empty()) 1374 dbgs() << "Emtpy"; 1375 else 1376 for (unsigned ReuseIdx : ReuseShuffleIndices) 1377 dbgs() << ReuseIdx << ", "; 1378 dbgs() << "\n"; 1379 dbgs() << "ReorderIndices: "; 1380 for (unsigned ReorderIdx : ReorderIndices) 1381 dbgs() << ReorderIdx << ", "; 1382 dbgs() << "\n"; 1383 dbgs() << "UserTreeIndices: "; 1384 for (const auto &EInfo : UserTreeIndices) 1385 dbgs() << EInfo << ", "; 1386 dbgs() << "\n"; 1387 } 1388 #endif 1389 }; 1390 1391 /// Create a new VectorizableTree entry. 1392 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1393 const InstructionsState &S, 1394 const EdgeInfo &UserTreeIdx, 1395 ArrayRef<unsigned> ReuseShuffleIndices = None, 1396 ArrayRef<unsigned> ReorderIndices = None) { 1397 bool Vectorized = (bool)Bundle; 1398 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1399 TreeEntry *Last = VectorizableTree.back().get(); 1400 Last->Idx = VectorizableTree.size() - 1; 1401 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1402 Last->NeedToGather = !Vectorized; 1403 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1404 ReuseShuffleIndices.end()); 1405 Last->ReorderIndices = ReorderIndices; 1406 Last->setOperations(S); 1407 if (Vectorized) { 1408 for (int i = 0, e = VL.size(); i != e; ++i) { 1409 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1410 ScalarToTreeEntry[VL[i]] = Last; 1411 } 1412 // Update the scheduler bundle to point to this TreeEntry. 1413 unsigned Lane = 0; 1414 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1415 BundleMember = BundleMember->NextInBundle) { 1416 BundleMember->TE = Last; 1417 BundleMember->Lane = Lane; 1418 ++Lane; 1419 } 1420 assert((!Bundle.getValue() || Lane == VL.size()) && 1421 "Bundle and VL out of sync"); 1422 } else { 1423 MustGather.insert(VL.begin(), VL.end()); 1424 } 1425 1426 if (UserTreeIdx.UserTE) 1427 Last->UserTreeIndices.push_back(UserTreeIdx); 1428 1429 return Last; 1430 } 1431 1432 /// -- Vectorization State -- 1433 /// Holds all of the tree entries. 1434 TreeEntry::VecTreeTy VectorizableTree; 1435 1436 #ifndef NDEBUG 1437 /// Debug printer. 1438 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1439 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1440 VectorizableTree[Id]->dump(); 1441 dbgs() << "\n"; 1442 } 1443 } 1444 #endif 1445 1446 TreeEntry *getTreeEntry(Value *V) { 1447 auto I = ScalarToTreeEntry.find(V); 1448 if (I != ScalarToTreeEntry.end()) 1449 return I->second; 1450 return nullptr; 1451 } 1452 1453 const TreeEntry *getTreeEntry(Value *V) const { 1454 auto I = ScalarToTreeEntry.find(V); 1455 if (I != ScalarToTreeEntry.end()) 1456 return I->second; 1457 return nullptr; 1458 } 1459 1460 /// Maps a specific scalar to its tree entry. 1461 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1462 1463 /// A list of scalars that we found that we need to keep as scalars. 1464 ValueSet MustGather; 1465 1466 /// This POD struct describes one external user in the vectorized tree. 1467 struct ExternalUser { 1468 ExternalUser(Value *S, llvm::User *U, int L) 1469 : Scalar(S), User(U), Lane(L) {} 1470 1471 // Which scalar in our function. 1472 Value *Scalar; 1473 1474 // Which user that uses the scalar. 1475 llvm::User *User; 1476 1477 // Which lane does the scalar belong to. 1478 int Lane; 1479 }; 1480 using UserList = SmallVector<ExternalUser, 16>; 1481 1482 /// Checks if two instructions may access the same memory. 1483 /// 1484 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1485 /// is invariant in the calling loop. 1486 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1487 Instruction *Inst2) { 1488 // First check if the result is already in the cache. 1489 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1490 Optional<bool> &result = AliasCache[key]; 1491 if (result.hasValue()) { 1492 return result.getValue(); 1493 } 1494 MemoryLocation Loc2 = getLocation(Inst2, AA); 1495 bool aliased = true; 1496 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1497 // Do the alias check. 1498 aliased = AA->alias(Loc1, Loc2); 1499 } 1500 // Store the result in the cache. 1501 result = aliased; 1502 return aliased; 1503 } 1504 1505 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1506 1507 /// Cache for alias results. 1508 /// TODO: consider moving this to the AliasAnalysis itself. 1509 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1510 1511 /// Removes an instruction from its block and eventually deletes it. 1512 /// It's like Instruction::eraseFromParent() except that the actual deletion 1513 /// is delayed until BoUpSLP is destructed. 1514 /// This is required to ensure that there are no incorrect collisions in the 1515 /// AliasCache, which can happen if a new instruction is allocated at the 1516 /// same address as a previously deleted instruction. 1517 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1518 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1519 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1520 } 1521 1522 /// Temporary store for deleted instructions. Instructions will be deleted 1523 /// eventually when the BoUpSLP is destructed. 1524 DenseMap<Instruction *, bool> DeletedInstructions; 1525 1526 /// A list of values that need to extracted out of the tree. 1527 /// This list holds pairs of (Internal Scalar : External User). External User 1528 /// can be nullptr, it means that this Internal Scalar will be used later, 1529 /// after vectorization. 1530 UserList ExternalUses; 1531 1532 /// Values used only by @llvm.assume calls. 1533 SmallPtrSet<const Value *, 32> EphValues; 1534 1535 /// Holds all of the instructions that we gathered. 1536 SetVector<Instruction *> GatherSeq; 1537 1538 /// A list of blocks that we are going to CSE. 1539 SetVector<BasicBlock *> CSEBlocks; 1540 1541 /// Contains all scheduling relevant data for an instruction. 1542 /// A ScheduleData either represents a single instruction or a member of an 1543 /// instruction bundle (= a group of instructions which is combined into a 1544 /// vector instruction). 1545 struct ScheduleData { 1546 // The initial value for the dependency counters. It means that the 1547 // dependencies are not calculated yet. 1548 enum { InvalidDeps = -1 }; 1549 1550 ScheduleData() = default; 1551 1552 void init(int BlockSchedulingRegionID, Value *OpVal) { 1553 FirstInBundle = this; 1554 NextInBundle = nullptr; 1555 NextLoadStore = nullptr; 1556 IsScheduled = false; 1557 SchedulingRegionID = BlockSchedulingRegionID; 1558 UnscheduledDepsInBundle = UnscheduledDeps; 1559 clearDependencies(); 1560 OpValue = OpVal; 1561 TE = nullptr; 1562 Lane = -1; 1563 } 1564 1565 /// Returns true if the dependency information has been calculated. 1566 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1567 1568 /// Returns true for single instructions and for bundle representatives 1569 /// (= the head of a bundle). 1570 bool isSchedulingEntity() const { return FirstInBundle == this; } 1571 1572 /// Returns true if it represents an instruction bundle and not only a 1573 /// single instruction. 1574 bool isPartOfBundle() const { 1575 return NextInBundle != nullptr || FirstInBundle != this; 1576 } 1577 1578 /// Returns true if it is ready for scheduling, i.e. it has no more 1579 /// unscheduled depending instructions/bundles. 1580 bool isReady() const { 1581 assert(isSchedulingEntity() && 1582 "can't consider non-scheduling entity for ready list"); 1583 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1584 } 1585 1586 /// Modifies the number of unscheduled dependencies, also updating it for 1587 /// the whole bundle. 1588 int incrementUnscheduledDeps(int Incr) { 1589 UnscheduledDeps += Incr; 1590 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1591 } 1592 1593 /// Sets the number of unscheduled dependencies to the number of 1594 /// dependencies. 1595 void resetUnscheduledDeps() { 1596 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1597 } 1598 1599 /// Clears all dependency information. 1600 void clearDependencies() { 1601 Dependencies = InvalidDeps; 1602 resetUnscheduledDeps(); 1603 MemoryDependencies.clear(); 1604 } 1605 1606 void dump(raw_ostream &os) const { 1607 if (!isSchedulingEntity()) { 1608 os << "/ " << *Inst; 1609 } else if (NextInBundle) { 1610 os << '[' << *Inst; 1611 ScheduleData *SD = NextInBundle; 1612 while (SD) { 1613 os << ';' << *SD->Inst; 1614 SD = SD->NextInBundle; 1615 } 1616 os << ']'; 1617 } else { 1618 os << *Inst; 1619 } 1620 } 1621 1622 Instruction *Inst = nullptr; 1623 1624 /// Points to the head in an instruction bundle (and always to this for 1625 /// single instructions). 1626 ScheduleData *FirstInBundle = nullptr; 1627 1628 /// Single linked list of all instructions in a bundle. Null if it is a 1629 /// single instruction. 1630 ScheduleData *NextInBundle = nullptr; 1631 1632 /// Single linked list of all memory instructions (e.g. load, store, call) 1633 /// in the block - until the end of the scheduling region. 1634 ScheduleData *NextLoadStore = nullptr; 1635 1636 /// The dependent memory instructions. 1637 /// This list is derived on demand in calculateDependencies(). 1638 SmallVector<ScheduleData *, 4> MemoryDependencies; 1639 1640 /// This ScheduleData is in the current scheduling region if this matches 1641 /// the current SchedulingRegionID of BlockScheduling. 1642 int SchedulingRegionID = 0; 1643 1644 /// Used for getting a "good" final ordering of instructions. 1645 int SchedulingPriority = 0; 1646 1647 /// The number of dependencies. Constitutes of the number of users of the 1648 /// instruction plus the number of dependent memory instructions (if any). 1649 /// This value is calculated on demand. 1650 /// If InvalidDeps, the number of dependencies is not calculated yet. 1651 int Dependencies = InvalidDeps; 1652 1653 /// The number of dependencies minus the number of dependencies of scheduled 1654 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1655 /// for scheduling. 1656 /// Note that this is negative as long as Dependencies is not calculated. 1657 int UnscheduledDeps = InvalidDeps; 1658 1659 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1660 /// single instructions. 1661 int UnscheduledDepsInBundle = InvalidDeps; 1662 1663 /// True if this instruction is scheduled (or considered as scheduled in the 1664 /// dry-run). 1665 bool IsScheduled = false; 1666 1667 /// Opcode of the current instruction in the schedule data. 1668 Value *OpValue = nullptr; 1669 1670 /// The TreeEntry that this instruction corresponds to. 1671 TreeEntry *TE = nullptr; 1672 1673 /// The lane of this node in the TreeEntry. 1674 int Lane = -1; 1675 }; 1676 1677 #ifndef NDEBUG 1678 friend inline raw_ostream &operator<<(raw_ostream &os, 1679 const BoUpSLP::ScheduleData &SD) { 1680 SD.dump(os); 1681 return os; 1682 } 1683 #endif 1684 1685 friend struct GraphTraits<BoUpSLP *>; 1686 friend struct DOTGraphTraits<BoUpSLP *>; 1687 1688 /// Contains all scheduling data for a basic block. 1689 struct BlockScheduling { 1690 BlockScheduling(BasicBlock *BB) 1691 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1692 1693 void clear() { 1694 ReadyInsts.clear(); 1695 ScheduleStart = nullptr; 1696 ScheduleEnd = nullptr; 1697 FirstLoadStoreInRegion = nullptr; 1698 LastLoadStoreInRegion = nullptr; 1699 1700 // Reduce the maximum schedule region size by the size of the 1701 // previous scheduling run. 1702 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1703 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1704 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1705 ScheduleRegionSize = 0; 1706 1707 // Make a new scheduling region, i.e. all existing ScheduleData is not 1708 // in the new region yet. 1709 ++SchedulingRegionID; 1710 } 1711 1712 ScheduleData *getScheduleData(Value *V) { 1713 ScheduleData *SD = ScheduleDataMap[V]; 1714 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1715 return SD; 1716 return nullptr; 1717 } 1718 1719 ScheduleData *getScheduleData(Value *V, Value *Key) { 1720 if (V == Key) 1721 return getScheduleData(V); 1722 auto I = ExtraScheduleDataMap.find(V); 1723 if (I != ExtraScheduleDataMap.end()) { 1724 ScheduleData *SD = I->second[Key]; 1725 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1726 return SD; 1727 } 1728 return nullptr; 1729 } 1730 1731 bool isInSchedulingRegion(ScheduleData *SD) { 1732 return SD->SchedulingRegionID == SchedulingRegionID; 1733 } 1734 1735 /// Marks an instruction as scheduled and puts all dependent ready 1736 /// instructions into the ready-list. 1737 template <typename ReadyListType> 1738 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1739 SD->IsScheduled = true; 1740 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1741 1742 ScheduleData *BundleMember = SD; 1743 while (BundleMember) { 1744 if (BundleMember->Inst != BundleMember->OpValue) { 1745 BundleMember = BundleMember->NextInBundle; 1746 continue; 1747 } 1748 // Handle the def-use chain dependencies. 1749 1750 // Decrement the unscheduled counter and insert to ready list if ready. 1751 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1752 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1753 if (OpDef && OpDef->hasValidDependencies() && 1754 OpDef->incrementUnscheduledDeps(-1) == 0) { 1755 // There are no more unscheduled dependencies after 1756 // decrementing, so we can put the dependent instruction 1757 // into the ready list. 1758 ScheduleData *DepBundle = OpDef->FirstInBundle; 1759 assert(!DepBundle->IsScheduled && 1760 "already scheduled bundle gets ready"); 1761 ReadyList.insert(DepBundle); 1762 LLVM_DEBUG(dbgs() 1763 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1764 } 1765 }); 1766 }; 1767 1768 // If BundleMember is a vector bundle, its operands may have been 1769 // reordered duiring buildTree(). We therefore need to get its operands 1770 // through the TreeEntry. 1771 if (TreeEntry *TE = BundleMember->TE) { 1772 int Lane = BundleMember->Lane; 1773 assert(Lane >= 0 && "Lane not set"); 1774 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 1775 OpIdx != NumOperands; ++OpIdx) 1776 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 1777 DecrUnsched(I); 1778 } else { 1779 // If BundleMember is a stand-alone instruction, no operand reordering 1780 // has taken place, so we directly access its operands. 1781 for (Use &U : BundleMember->Inst->operands()) 1782 if (auto *I = dyn_cast<Instruction>(U.get())) 1783 DecrUnsched(I); 1784 } 1785 // Handle the memory dependencies. 1786 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1787 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1788 // There are no more unscheduled dependencies after decrementing, 1789 // so we can put the dependent instruction into the ready list. 1790 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1791 assert(!DepBundle->IsScheduled && 1792 "already scheduled bundle gets ready"); 1793 ReadyList.insert(DepBundle); 1794 LLVM_DEBUG(dbgs() 1795 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1796 } 1797 } 1798 BundleMember = BundleMember->NextInBundle; 1799 } 1800 } 1801 1802 void doForAllOpcodes(Value *V, 1803 function_ref<void(ScheduleData *SD)> Action) { 1804 if (ScheduleData *SD = getScheduleData(V)) 1805 Action(SD); 1806 auto I = ExtraScheduleDataMap.find(V); 1807 if (I != ExtraScheduleDataMap.end()) 1808 for (auto &P : I->second) 1809 if (P.second->SchedulingRegionID == SchedulingRegionID) 1810 Action(P.second); 1811 } 1812 1813 /// Put all instructions into the ReadyList which are ready for scheduling. 1814 template <typename ReadyListType> 1815 void initialFillReadyList(ReadyListType &ReadyList) { 1816 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1817 doForAllOpcodes(I, [&](ScheduleData *SD) { 1818 if (SD->isSchedulingEntity() && SD->isReady()) { 1819 ReadyList.insert(SD); 1820 LLVM_DEBUG(dbgs() 1821 << "SLP: initially in ready list: " << *I << "\n"); 1822 } 1823 }); 1824 } 1825 } 1826 1827 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1828 /// cyclic dependencies. This is only a dry-run, no instructions are 1829 /// actually moved at this stage. 1830 /// \returns the scheduling bundle. The returned Optional value is non-None 1831 /// if \p VL is allowed to be scheduled. 1832 Optional<ScheduleData *> 1833 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1834 const InstructionsState &S); 1835 1836 /// Un-bundles a group of instructions. 1837 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1838 1839 /// Allocates schedule data chunk. 1840 ScheduleData *allocateScheduleDataChunks(); 1841 1842 /// Extends the scheduling region so that V is inside the region. 1843 /// \returns true if the region size is within the limit. 1844 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1845 1846 /// Initialize the ScheduleData structures for new instructions in the 1847 /// scheduling region. 1848 void initScheduleData(Instruction *FromI, Instruction *ToI, 1849 ScheduleData *PrevLoadStore, 1850 ScheduleData *NextLoadStore); 1851 1852 /// Updates the dependency information of a bundle and of all instructions/ 1853 /// bundles which depend on the original bundle. 1854 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1855 BoUpSLP *SLP); 1856 1857 /// Sets all instruction in the scheduling region to un-scheduled. 1858 void resetSchedule(); 1859 1860 BasicBlock *BB; 1861 1862 /// Simple memory allocation for ScheduleData. 1863 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1864 1865 /// The size of a ScheduleData array in ScheduleDataChunks. 1866 int ChunkSize; 1867 1868 /// The allocator position in the current chunk, which is the last entry 1869 /// of ScheduleDataChunks. 1870 int ChunkPos; 1871 1872 /// Attaches ScheduleData to Instruction. 1873 /// Note that the mapping survives during all vectorization iterations, i.e. 1874 /// ScheduleData structures are recycled. 1875 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1876 1877 /// Attaches ScheduleData to Instruction with the leading key. 1878 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1879 ExtraScheduleDataMap; 1880 1881 struct ReadyList : SmallVector<ScheduleData *, 8> { 1882 void insert(ScheduleData *SD) { push_back(SD); } 1883 }; 1884 1885 /// The ready-list for scheduling (only used for the dry-run). 1886 ReadyList ReadyInsts; 1887 1888 /// The first instruction of the scheduling region. 1889 Instruction *ScheduleStart = nullptr; 1890 1891 /// The first instruction _after_ the scheduling region. 1892 Instruction *ScheduleEnd = nullptr; 1893 1894 /// The first memory accessing instruction in the scheduling region 1895 /// (can be null). 1896 ScheduleData *FirstLoadStoreInRegion = nullptr; 1897 1898 /// The last memory accessing instruction in the scheduling region 1899 /// (can be null). 1900 ScheduleData *LastLoadStoreInRegion = nullptr; 1901 1902 /// The current size of the scheduling region. 1903 int ScheduleRegionSize = 0; 1904 1905 /// The maximum size allowed for the scheduling region. 1906 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1907 1908 /// The ID of the scheduling region. For a new vectorization iteration this 1909 /// is incremented which "removes" all ScheduleData from the region. 1910 // Make sure that the initial SchedulingRegionID is greater than the 1911 // initial SchedulingRegionID in ScheduleData (which is 0). 1912 int SchedulingRegionID = 1; 1913 }; 1914 1915 /// Attaches the BlockScheduling structures to basic blocks. 1916 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1917 1918 /// Performs the "real" scheduling. Done before vectorization is actually 1919 /// performed in a basic block. 1920 void scheduleBlock(BlockScheduling *BS); 1921 1922 /// List of users to ignore during scheduling and that don't need extracting. 1923 ArrayRef<Value *> UserIgnoreList; 1924 1925 using OrdersType = SmallVector<unsigned, 4>; 1926 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1927 /// sorted SmallVectors of unsigned. 1928 struct OrdersTypeDenseMapInfo { 1929 static OrdersType getEmptyKey() { 1930 OrdersType V; 1931 V.push_back(~1U); 1932 return V; 1933 } 1934 1935 static OrdersType getTombstoneKey() { 1936 OrdersType V; 1937 V.push_back(~2U); 1938 return V; 1939 } 1940 1941 static unsigned getHashValue(const OrdersType &V) { 1942 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1943 } 1944 1945 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1946 return LHS == RHS; 1947 } 1948 }; 1949 1950 /// Contains orders of operations along with the number of bundles that have 1951 /// operations in this order. It stores only those orders that require 1952 /// reordering, if reordering is not required it is counted using \a 1953 /// NumOpsWantToKeepOriginalOrder. 1954 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1955 /// Number of bundles that do not require reordering. 1956 unsigned NumOpsWantToKeepOriginalOrder = 0; 1957 1958 // Analysis and block reference. 1959 Function *F; 1960 ScalarEvolution *SE; 1961 TargetTransformInfo *TTI; 1962 TargetLibraryInfo *TLI; 1963 AliasAnalysis *AA; 1964 LoopInfo *LI; 1965 DominatorTree *DT; 1966 AssumptionCache *AC; 1967 DemandedBits *DB; 1968 const DataLayout *DL; 1969 OptimizationRemarkEmitter *ORE; 1970 1971 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1972 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1973 1974 /// Instruction builder to construct the vectorized tree. 1975 IRBuilder<> Builder; 1976 1977 /// A map of scalar integer values to the smallest bit width with which they 1978 /// can legally be represented. The values map to (width, signed) pairs, 1979 /// where "width" indicates the minimum bit width and "signed" is True if the 1980 /// value must be signed-extended, rather than zero-extended, back to its 1981 /// original width. 1982 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1983 }; 1984 1985 } // end namespace slpvectorizer 1986 1987 template <> struct GraphTraits<BoUpSLP *> { 1988 using TreeEntry = BoUpSLP::TreeEntry; 1989 1990 /// NodeRef has to be a pointer per the GraphWriter. 1991 using NodeRef = TreeEntry *; 1992 1993 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1994 1995 /// Add the VectorizableTree to the index iterator to be able to return 1996 /// TreeEntry pointers. 1997 struct ChildIteratorType 1998 : public iterator_adaptor_base< 1999 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2000 ContainerTy &VectorizableTree; 2001 2002 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2003 ContainerTy &VT) 2004 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2005 2006 NodeRef operator*() { return I->UserTE; } 2007 }; 2008 2009 static NodeRef getEntryNode(BoUpSLP &R) { 2010 return R.VectorizableTree[0].get(); 2011 } 2012 2013 static ChildIteratorType child_begin(NodeRef N) { 2014 return {N->UserTreeIndices.begin(), N->Container}; 2015 } 2016 2017 static ChildIteratorType child_end(NodeRef N) { 2018 return {N->UserTreeIndices.end(), N->Container}; 2019 } 2020 2021 /// For the node iterator we just need to turn the TreeEntry iterator into a 2022 /// TreeEntry* iterator so that it dereferences to NodeRef. 2023 class nodes_iterator { 2024 using ItTy = ContainerTy::iterator; 2025 ItTy It; 2026 2027 public: 2028 nodes_iterator(const ItTy &It2) : It(It2) {} 2029 NodeRef operator*() { return It->get(); } 2030 nodes_iterator operator++() { 2031 ++It; 2032 return *this; 2033 } 2034 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2035 }; 2036 2037 static nodes_iterator nodes_begin(BoUpSLP *R) { 2038 return nodes_iterator(R->VectorizableTree.begin()); 2039 } 2040 2041 static nodes_iterator nodes_end(BoUpSLP *R) { 2042 return nodes_iterator(R->VectorizableTree.end()); 2043 } 2044 2045 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2046 }; 2047 2048 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2049 using TreeEntry = BoUpSLP::TreeEntry; 2050 2051 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2052 2053 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2054 std::string Str; 2055 raw_string_ostream OS(Str); 2056 if (isSplat(Entry->Scalars)) { 2057 OS << "<splat> " << *Entry->Scalars[0]; 2058 return Str; 2059 } 2060 for (auto V : Entry->Scalars) { 2061 OS << *V; 2062 if (std::any_of( 2063 R->ExternalUses.begin(), R->ExternalUses.end(), 2064 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2065 OS << " <extract>"; 2066 OS << "\n"; 2067 } 2068 return Str; 2069 } 2070 2071 static std::string getNodeAttributes(const TreeEntry *Entry, 2072 const BoUpSLP *) { 2073 if (Entry->NeedToGather) 2074 return "color=red"; 2075 return ""; 2076 } 2077 }; 2078 2079 } // end namespace llvm 2080 2081 BoUpSLP::~BoUpSLP() { 2082 for (const auto &Pair : DeletedInstructions) { 2083 // Replace operands of ignored instructions with Undefs in case if they were 2084 // marked for deletion. 2085 if (Pair.getSecond()) { 2086 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2087 Pair.getFirst()->replaceAllUsesWith(Undef); 2088 } 2089 Pair.getFirst()->dropAllReferences(); 2090 } 2091 for (const auto &Pair : DeletedInstructions) { 2092 assert(Pair.getFirst()->use_empty() && 2093 "trying to erase instruction with users."); 2094 Pair.getFirst()->eraseFromParent(); 2095 } 2096 } 2097 2098 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2099 for (auto *V : AV) { 2100 if (auto *I = dyn_cast<Instruction>(V)) 2101 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2102 }; 2103 } 2104 2105 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2106 ArrayRef<Value *> UserIgnoreLst) { 2107 ExtraValueToDebugLocsMap ExternallyUsedValues; 2108 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2109 } 2110 2111 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2112 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2113 ArrayRef<Value *> UserIgnoreLst) { 2114 deleteTree(); 2115 UserIgnoreList = UserIgnoreLst; 2116 if (!allSameType(Roots)) 2117 return; 2118 buildTree_rec(Roots, 0, EdgeInfo()); 2119 2120 // Collect the values that we need to extract from the tree. 2121 for (auto &TEPtr : VectorizableTree) { 2122 TreeEntry *Entry = TEPtr.get(); 2123 2124 // No need to handle users of gathered values. 2125 if (Entry->NeedToGather) 2126 continue; 2127 2128 // For each lane: 2129 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2130 Value *Scalar = Entry->Scalars[Lane]; 2131 int FoundLane = Lane; 2132 if (!Entry->ReuseShuffleIndices.empty()) { 2133 FoundLane = 2134 std::distance(Entry->ReuseShuffleIndices.begin(), 2135 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2136 } 2137 2138 // Check if the scalar is externally used as an extra arg. 2139 auto ExtI = ExternallyUsedValues.find(Scalar); 2140 if (ExtI != ExternallyUsedValues.end()) { 2141 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2142 << Lane << " from " << *Scalar << ".\n"); 2143 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2144 } 2145 for (User *U : Scalar->users()) { 2146 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2147 2148 Instruction *UserInst = dyn_cast<Instruction>(U); 2149 if (!UserInst) 2150 continue; 2151 2152 // Skip in-tree scalars that become vectors 2153 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2154 Value *UseScalar = UseEntry->Scalars[0]; 2155 // Some in-tree scalars will remain as scalar in vectorized 2156 // instructions. If that is the case, the one in Lane 0 will 2157 // be used. 2158 if (UseScalar != U || 2159 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2160 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2161 << ".\n"); 2162 assert(!UseEntry->NeedToGather && "Bad state"); 2163 continue; 2164 } 2165 } 2166 2167 // Ignore users in the user ignore list. 2168 if (is_contained(UserIgnoreList, UserInst)) 2169 continue; 2170 2171 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2172 << Lane << " from " << *Scalar << ".\n"); 2173 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2174 } 2175 } 2176 } 2177 } 2178 2179 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2180 const EdgeInfo &UserTreeIdx) { 2181 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2182 2183 InstructionsState S = getSameOpcode(VL); 2184 if (Depth == RecursionMaxDepth) { 2185 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2186 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2187 return; 2188 } 2189 2190 // Don't handle vectors. 2191 if (S.OpValue->getType()->isVectorTy()) { 2192 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2193 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2194 return; 2195 } 2196 2197 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2198 if (SI->getValueOperand()->getType()->isVectorTy()) { 2199 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2200 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2201 return; 2202 } 2203 2204 // If all of the operands are identical or constant we have a simple solution. 2205 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2206 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2207 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2208 return; 2209 } 2210 2211 // We now know that this is a vector of instructions of the same type from 2212 // the same block. 2213 2214 // Don't vectorize ephemeral values. 2215 for (Value *V : VL) { 2216 if (EphValues.count(V)) { 2217 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2218 << ") is ephemeral.\n"); 2219 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2220 return; 2221 } 2222 } 2223 2224 // Check if this is a duplicate of another entry. 2225 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2226 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2227 if (!E->isSame(VL)) { 2228 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2229 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2230 return; 2231 } 2232 // Record the reuse of the tree node. FIXME, currently this is only used to 2233 // properly draw the graph rather than for the actual vectorization. 2234 E->UserTreeIndices.push_back(UserTreeIdx); 2235 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2236 << ".\n"); 2237 return; 2238 } 2239 2240 // Check that none of the instructions in the bundle are already in the tree. 2241 for (Value *V : VL) { 2242 auto *I = dyn_cast<Instruction>(V); 2243 if (!I) 2244 continue; 2245 if (getTreeEntry(I)) { 2246 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2247 << ") is already in tree.\n"); 2248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2249 return; 2250 } 2251 } 2252 2253 // If any of the scalars is marked as a value that needs to stay scalar, then 2254 // we need to gather the scalars. 2255 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2256 for (Value *V : VL) { 2257 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2258 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2259 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2260 return; 2261 } 2262 } 2263 2264 // Check that all of the users of the scalars that we want to vectorize are 2265 // schedulable. 2266 auto *VL0 = cast<Instruction>(S.OpValue); 2267 BasicBlock *BB = VL0->getParent(); 2268 2269 if (!DT->isReachableFromEntry(BB)) { 2270 // Don't go into unreachable blocks. They may contain instructions with 2271 // dependency cycles which confuse the final scheduling. 2272 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2273 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2274 return; 2275 } 2276 2277 // Check that every instruction appears once in this bundle. 2278 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2279 SmallVector<Value *, 4> UniqueValues; 2280 DenseMap<Value *, unsigned> UniquePositions; 2281 for (Value *V : VL) { 2282 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2283 ReuseShuffleIndicies.emplace_back(Res.first->second); 2284 if (Res.second) 2285 UniqueValues.emplace_back(V); 2286 } 2287 size_t NumUniqueScalarValues = UniqueValues.size(); 2288 if (NumUniqueScalarValues == VL.size()) { 2289 ReuseShuffleIndicies.clear(); 2290 } else { 2291 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2292 if (NumUniqueScalarValues <= 1 || 2293 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2294 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2295 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2296 return; 2297 } 2298 VL = UniqueValues; 2299 } 2300 2301 auto &BSRef = BlocksSchedules[BB]; 2302 if (!BSRef) 2303 BSRef = std::make_unique<BlockScheduling>(BB); 2304 2305 BlockScheduling &BS = *BSRef.get(); 2306 2307 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2308 if (!Bundle) { 2309 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2310 assert((!BS.getScheduleData(VL0) || 2311 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2312 "tryScheduleBundle should cancelScheduling on failure"); 2313 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2314 ReuseShuffleIndicies); 2315 return; 2316 } 2317 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2318 2319 unsigned ShuffleOrOp = S.isAltShuffle() ? 2320 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2321 switch (ShuffleOrOp) { 2322 case Instruction::PHI: { 2323 auto *PH = cast<PHINode>(VL0); 2324 2325 // Check for terminator values (e.g. invoke). 2326 for (unsigned j = 0; j < VL.size(); ++j) 2327 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2328 Instruction *Term = dyn_cast<Instruction>( 2329 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2330 PH->getIncomingBlock(i))); 2331 if (Term && Term->isTerminator()) { 2332 LLVM_DEBUG(dbgs() 2333 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2334 BS.cancelScheduling(VL, VL0); 2335 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2336 ReuseShuffleIndicies); 2337 return; 2338 } 2339 } 2340 2341 TreeEntry *TE = 2342 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2343 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2344 2345 // Keeps the reordered operands to avoid code duplication. 2346 SmallVector<ValueList, 2> OperandsVec; 2347 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2348 ValueList Operands; 2349 // Prepare the operand vector. 2350 for (Value *j : VL) 2351 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2352 PH->getIncomingBlock(i))); 2353 TE->setOperand(i, Operands); 2354 OperandsVec.push_back(Operands); 2355 } 2356 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2357 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2358 return; 2359 } 2360 case Instruction::ExtractValue: 2361 case Instruction::ExtractElement: { 2362 OrdersType CurrentOrder; 2363 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2364 if (Reuse) { 2365 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2366 ++NumOpsWantToKeepOriginalOrder; 2367 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2368 ReuseShuffleIndicies); 2369 // This is a special case, as it does not gather, but at the same time 2370 // we are not extending buildTree_rec() towards the operands. 2371 ValueList Op0; 2372 Op0.assign(VL.size(), VL0->getOperand(0)); 2373 VectorizableTree.back()->setOperand(0, Op0); 2374 return; 2375 } 2376 if (!CurrentOrder.empty()) { 2377 LLVM_DEBUG({ 2378 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2379 "with order"; 2380 for (unsigned Idx : CurrentOrder) 2381 dbgs() << " " << Idx; 2382 dbgs() << "\n"; 2383 }); 2384 // Insert new order with initial value 0, if it does not exist, 2385 // otherwise return the iterator to the existing one. 2386 auto StoredCurrentOrderAndNum = 2387 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2388 ++StoredCurrentOrderAndNum->getSecond(); 2389 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2390 ReuseShuffleIndicies, 2391 StoredCurrentOrderAndNum->getFirst()); 2392 // This is a special case, as it does not gather, but at the same time 2393 // we are not extending buildTree_rec() towards the operands. 2394 ValueList Op0; 2395 Op0.assign(VL.size(), VL0->getOperand(0)); 2396 VectorizableTree.back()->setOperand(0, Op0); 2397 return; 2398 } 2399 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2400 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2401 ReuseShuffleIndicies); 2402 BS.cancelScheduling(VL, VL0); 2403 return; 2404 } 2405 case Instruction::Load: { 2406 // Check that a vectorized load would load the same memory as a scalar 2407 // load. For example, we don't want to vectorize loads that are smaller 2408 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2409 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2410 // from such a struct, we read/write packed bits disagreeing with the 2411 // unvectorized version. 2412 Type *ScalarTy = VL0->getType(); 2413 2414 if (DL->getTypeSizeInBits(ScalarTy) != 2415 DL->getTypeAllocSizeInBits(ScalarTy)) { 2416 BS.cancelScheduling(VL, VL0); 2417 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2418 ReuseShuffleIndicies); 2419 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2420 return; 2421 } 2422 2423 // Make sure all loads in the bundle are simple - we can't vectorize 2424 // atomic or volatile loads. 2425 SmallVector<Value *, 4> PointerOps(VL.size()); 2426 auto POIter = PointerOps.begin(); 2427 for (Value *V : VL) { 2428 auto *L = cast<LoadInst>(V); 2429 if (!L->isSimple()) { 2430 BS.cancelScheduling(VL, VL0); 2431 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2432 ReuseShuffleIndicies); 2433 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2434 return; 2435 } 2436 *POIter = L->getPointerOperand(); 2437 ++POIter; 2438 } 2439 2440 OrdersType CurrentOrder; 2441 // Check the order of pointer operands. 2442 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2443 Value *Ptr0; 2444 Value *PtrN; 2445 if (CurrentOrder.empty()) { 2446 Ptr0 = PointerOps.front(); 2447 PtrN = PointerOps.back(); 2448 } else { 2449 Ptr0 = PointerOps[CurrentOrder.front()]; 2450 PtrN = PointerOps[CurrentOrder.back()]; 2451 } 2452 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2453 const SCEV *ScevN = SE->getSCEV(PtrN); 2454 const auto *Diff = 2455 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2456 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2457 // Check that the sorted loads are consecutive. 2458 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2459 if (CurrentOrder.empty()) { 2460 // Original loads are consecutive and does not require reordering. 2461 ++NumOpsWantToKeepOriginalOrder; 2462 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2463 UserTreeIdx, ReuseShuffleIndicies); 2464 TE->setOperandsInOrder(); 2465 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2466 } else { 2467 // Need to reorder. 2468 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2469 ++I->getSecond(); 2470 TreeEntry *TE = 2471 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2472 ReuseShuffleIndicies, I->getFirst()); 2473 TE->setOperandsInOrder(); 2474 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2475 } 2476 return; 2477 } 2478 } 2479 2480 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2481 BS.cancelScheduling(VL, VL0); 2482 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2483 ReuseShuffleIndicies); 2484 return; 2485 } 2486 case Instruction::ZExt: 2487 case Instruction::SExt: 2488 case Instruction::FPToUI: 2489 case Instruction::FPToSI: 2490 case Instruction::FPExt: 2491 case Instruction::PtrToInt: 2492 case Instruction::IntToPtr: 2493 case Instruction::SIToFP: 2494 case Instruction::UIToFP: 2495 case Instruction::Trunc: 2496 case Instruction::FPTrunc: 2497 case Instruction::BitCast: { 2498 Type *SrcTy = VL0->getOperand(0)->getType(); 2499 for (Value *V : VL) { 2500 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2501 if (Ty != SrcTy || !isValidElementType(Ty)) { 2502 BS.cancelScheduling(VL, VL0); 2503 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2504 ReuseShuffleIndicies); 2505 LLVM_DEBUG(dbgs() 2506 << "SLP: Gathering casts with different src types.\n"); 2507 return; 2508 } 2509 } 2510 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2511 ReuseShuffleIndicies); 2512 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2513 2514 TE->setOperandsInOrder(); 2515 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2516 ValueList Operands; 2517 // Prepare the operand vector. 2518 for (Value *V : VL) 2519 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2520 2521 buildTree_rec(Operands, Depth + 1, {TE, i}); 2522 } 2523 return; 2524 } 2525 case Instruction::ICmp: 2526 case Instruction::FCmp: { 2527 // Check that all of the compares have the same predicate. 2528 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2529 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2530 Type *ComparedTy = VL0->getOperand(0)->getType(); 2531 for (Value *V : VL) { 2532 CmpInst *Cmp = cast<CmpInst>(V); 2533 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2534 Cmp->getOperand(0)->getType() != ComparedTy) { 2535 BS.cancelScheduling(VL, VL0); 2536 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2537 ReuseShuffleIndicies); 2538 LLVM_DEBUG(dbgs() 2539 << "SLP: Gathering cmp with different predicate.\n"); 2540 return; 2541 } 2542 } 2543 2544 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2545 ReuseShuffleIndicies); 2546 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2547 2548 ValueList Left, Right; 2549 if (cast<CmpInst>(VL0)->isCommutative()) { 2550 // Commutative predicate - collect + sort operands of the instructions 2551 // so that each side is more likely to have the same opcode. 2552 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2553 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2554 } else { 2555 // Collect operands - commute if it uses the swapped predicate. 2556 for (Value *V : VL) { 2557 auto *Cmp = cast<CmpInst>(V); 2558 Value *LHS = Cmp->getOperand(0); 2559 Value *RHS = Cmp->getOperand(1); 2560 if (Cmp->getPredicate() != P0) 2561 std::swap(LHS, RHS); 2562 Left.push_back(LHS); 2563 Right.push_back(RHS); 2564 } 2565 } 2566 TE->setOperand(0, Left); 2567 TE->setOperand(1, Right); 2568 buildTree_rec(Left, Depth + 1, {TE, 0}); 2569 buildTree_rec(Right, Depth + 1, {TE, 1}); 2570 return; 2571 } 2572 case Instruction::Select: 2573 case Instruction::FNeg: 2574 case Instruction::Add: 2575 case Instruction::FAdd: 2576 case Instruction::Sub: 2577 case Instruction::FSub: 2578 case Instruction::Mul: 2579 case Instruction::FMul: 2580 case Instruction::UDiv: 2581 case Instruction::SDiv: 2582 case Instruction::FDiv: 2583 case Instruction::URem: 2584 case Instruction::SRem: 2585 case Instruction::FRem: 2586 case Instruction::Shl: 2587 case Instruction::LShr: 2588 case Instruction::AShr: 2589 case Instruction::And: 2590 case Instruction::Or: 2591 case Instruction::Xor: { 2592 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2593 ReuseShuffleIndicies); 2594 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2595 2596 // Sort operands of the instructions so that each side is more likely to 2597 // have the same opcode. 2598 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2599 ValueList Left, Right; 2600 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2601 TE->setOperand(0, Left); 2602 TE->setOperand(1, Right); 2603 buildTree_rec(Left, Depth + 1, {TE, 0}); 2604 buildTree_rec(Right, Depth + 1, {TE, 1}); 2605 return; 2606 } 2607 2608 TE->setOperandsInOrder(); 2609 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2610 ValueList Operands; 2611 // Prepare the operand vector. 2612 for (Value *j : VL) 2613 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2614 2615 buildTree_rec(Operands, Depth + 1, {TE, i}); 2616 } 2617 return; 2618 } 2619 case Instruction::GetElementPtr: { 2620 // We don't combine GEPs with complicated (nested) indexing. 2621 for (Value *V : VL) { 2622 if (cast<Instruction>(V)->getNumOperands() != 2) { 2623 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2624 BS.cancelScheduling(VL, VL0); 2625 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2626 ReuseShuffleIndicies); 2627 return; 2628 } 2629 } 2630 2631 // We can't combine several GEPs into one vector if they operate on 2632 // different types. 2633 Type *Ty0 = VL0->getOperand(0)->getType(); 2634 for (Value *V : VL) { 2635 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2636 if (Ty0 != CurTy) { 2637 LLVM_DEBUG(dbgs() 2638 << "SLP: not-vectorizable GEP (different types).\n"); 2639 BS.cancelScheduling(VL, VL0); 2640 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2641 ReuseShuffleIndicies); 2642 return; 2643 } 2644 } 2645 2646 // We don't combine GEPs with non-constant indexes. 2647 Type *Ty1 = VL0->getOperand(1)->getType(); 2648 for (Value *V : VL) { 2649 auto Op = cast<Instruction>(V)->getOperand(1); 2650 if (!isa<ConstantInt>(Op) || 2651 (Op->getType() != Ty1 && 2652 Op->getType()->getScalarSizeInBits() > 2653 DL->getIndexSizeInBits( 2654 V->getType()->getPointerAddressSpace()))) { 2655 LLVM_DEBUG(dbgs() 2656 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2657 BS.cancelScheduling(VL, VL0); 2658 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2659 ReuseShuffleIndicies); 2660 return; 2661 } 2662 } 2663 2664 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2665 ReuseShuffleIndicies); 2666 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2667 TE->setOperandsInOrder(); 2668 for (unsigned i = 0, e = 2; i < e; ++i) { 2669 ValueList Operands; 2670 // Prepare the operand vector. 2671 for (Value *V : VL) 2672 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2673 2674 buildTree_rec(Operands, Depth + 1, {TE, i}); 2675 } 2676 return; 2677 } 2678 case Instruction::Store: { 2679 // Check if the stores are consecutive or if we need to swizzle them. 2680 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2681 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2682 BS.cancelScheduling(VL, VL0); 2683 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2684 ReuseShuffleIndicies); 2685 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2686 return; 2687 } 2688 2689 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2690 ReuseShuffleIndicies); 2691 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2692 2693 ValueList Operands; 2694 for (Value *V : VL) 2695 Operands.push_back(cast<Instruction>(V)->getOperand(0)); 2696 TE->setOperandsInOrder(); 2697 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2698 return; 2699 } 2700 case Instruction::Call: { 2701 // Check if the calls are all to the same vectorizable intrinsic. 2702 CallInst *CI = cast<CallInst>(VL0); 2703 // Check if this is an Intrinsic call or something that can be 2704 // represented by an intrinsic call 2705 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2706 if (!isTriviallyVectorizable(ID)) { 2707 BS.cancelScheduling(VL, VL0); 2708 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2709 ReuseShuffleIndicies); 2710 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2711 return; 2712 } 2713 Function *Int = CI->getCalledFunction(); 2714 unsigned NumArgs = CI->getNumArgOperands(); 2715 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2716 for (unsigned j = 0; j != NumArgs; ++j) 2717 if (hasVectorInstrinsicScalarOpd(ID, j)) 2718 ScalarArgs[j] = CI->getArgOperand(j); 2719 for (Value *V : VL) { 2720 CallInst *CI2 = dyn_cast<CallInst>(V); 2721 if (!CI2 || CI2->getCalledFunction() != Int || 2722 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2723 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2724 BS.cancelScheduling(VL, VL0); 2725 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2726 ReuseShuffleIndicies); 2727 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 2728 << "\n"); 2729 return; 2730 } 2731 // Some intrinsics have scalar arguments and should be same in order for 2732 // them to be vectorized. 2733 for (unsigned j = 0; j != NumArgs; ++j) { 2734 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2735 Value *A1J = CI2->getArgOperand(j); 2736 if (ScalarArgs[j] != A1J) { 2737 BS.cancelScheduling(VL, VL0); 2738 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2739 ReuseShuffleIndicies); 2740 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2741 << " argument " << ScalarArgs[j] << "!=" << A1J 2742 << "\n"); 2743 return; 2744 } 2745 } 2746 } 2747 // Verify that the bundle operands are identical between the two calls. 2748 if (CI->hasOperandBundles() && 2749 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2750 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2751 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2752 BS.cancelScheduling(VL, VL0); 2753 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2754 ReuseShuffleIndicies); 2755 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2756 << *CI << "!=" << *V << '\n'); 2757 return; 2758 } 2759 } 2760 2761 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2762 ReuseShuffleIndicies); 2763 TE->setOperandsInOrder(); 2764 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2765 ValueList Operands; 2766 // Prepare the operand vector. 2767 for (Value *V : VL) { 2768 auto *CI2 = cast<CallInst>(V); 2769 Operands.push_back(CI2->getArgOperand(i)); 2770 } 2771 buildTree_rec(Operands, Depth + 1, {TE, i}); 2772 } 2773 return; 2774 } 2775 case Instruction::ShuffleVector: { 2776 // If this is not an alternate sequence of opcode like add-sub 2777 // then do not vectorize this instruction. 2778 if (!S.isAltShuffle()) { 2779 BS.cancelScheduling(VL, VL0); 2780 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2781 ReuseShuffleIndicies); 2782 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2783 return; 2784 } 2785 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2786 ReuseShuffleIndicies); 2787 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2788 2789 // Reorder operands if reordering would enable vectorization. 2790 if (isa<BinaryOperator>(VL0)) { 2791 ValueList Left, Right; 2792 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2793 TE->setOperand(0, Left); 2794 TE->setOperand(1, Right); 2795 buildTree_rec(Left, Depth + 1, {TE, 0}); 2796 buildTree_rec(Right, Depth + 1, {TE, 1}); 2797 return; 2798 } 2799 2800 TE->setOperandsInOrder(); 2801 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2802 ValueList Operands; 2803 // Prepare the operand vector. 2804 for (Value *V : VL) 2805 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2806 2807 buildTree_rec(Operands, Depth + 1, {TE, i}); 2808 } 2809 return; 2810 } 2811 default: 2812 BS.cancelScheduling(VL, VL0); 2813 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2814 ReuseShuffleIndicies); 2815 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2816 return; 2817 } 2818 } 2819 2820 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2821 unsigned N; 2822 Type *EltTy; 2823 auto *ST = dyn_cast<StructType>(T); 2824 if (ST) { 2825 N = ST->getNumElements(); 2826 EltTy = *ST->element_begin(); 2827 } else { 2828 N = cast<ArrayType>(T)->getNumElements(); 2829 EltTy = cast<ArrayType>(T)->getElementType(); 2830 } 2831 if (!isValidElementType(EltTy)) 2832 return 0; 2833 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2834 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2835 return 0; 2836 if (ST) { 2837 // Check that struct is homogeneous. 2838 for (const auto *Ty : ST->elements()) 2839 if (Ty != EltTy) 2840 return 0; 2841 } 2842 return N; 2843 } 2844 2845 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2846 SmallVectorImpl<unsigned> &CurrentOrder) const { 2847 Instruction *E0 = cast<Instruction>(OpValue); 2848 assert(E0->getOpcode() == Instruction::ExtractElement || 2849 E0->getOpcode() == Instruction::ExtractValue); 2850 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2851 // Check if all of the extracts come from the same vector and from the 2852 // correct offset. 2853 Value *Vec = E0->getOperand(0); 2854 2855 CurrentOrder.clear(); 2856 2857 // We have to extract from a vector/aggregate with the same number of elements. 2858 unsigned NElts; 2859 if (E0->getOpcode() == Instruction::ExtractValue) { 2860 const DataLayout &DL = E0->getModule()->getDataLayout(); 2861 NElts = canMapToVector(Vec->getType(), DL); 2862 if (!NElts) 2863 return false; 2864 // Check if load can be rewritten as load of vector. 2865 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2866 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2867 return false; 2868 } else { 2869 NElts = Vec->getType()->getVectorNumElements(); 2870 } 2871 2872 if (NElts != VL.size()) 2873 return false; 2874 2875 // Check that all of the indices extract from the correct offset. 2876 bool ShouldKeepOrder = true; 2877 unsigned E = VL.size(); 2878 // Assign to all items the initial value E + 1 so we can check if the extract 2879 // instruction index was used already. 2880 // Also, later we can check that all the indices are used and we have a 2881 // consecutive access in the extract instructions, by checking that no 2882 // element of CurrentOrder still has value E + 1. 2883 CurrentOrder.assign(E, E + 1); 2884 unsigned I = 0; 2885 for (; I < E; ++I) { 2886 auto *Inst = cast<Instruction>(VL[I]); 2887 if (Inst->getOperand(0) != Vec) 2888 break; 2889 Optional<unsigned> Idx = getExtractIndex(Inst); 2890 if (!Idx) 2891 break; 2892 const unsigned ExtIdx = *Idx; 2893 if (ExtIdx != I) { 2894 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2895 break; 2896 ShouldKeepOrder = false; 2897 CurrentOrder[ExtIdx] = I; 2898 } else { 2899 if (CurrentOrder[I] != E + 1) 2900 break; 2901 CurrentOrder[I] = I; 2902 } 2903 } 2904 if (I < E) { 2905 CurrentOrder.clear(); 2906 return false; 2907 } 2908 2909 return ShouldKeepOrder; 2910 } 2911 2912 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2913 return I->hasOneUse() || 2914 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2915 return ScalarToTreeEntry.count(U) > 0; 2916 }); 2917 } 2918 2919 int BoUpSLP::getEntryCost(TreeEntry *E) { 2920 ArrayRef<Value*> VL = E->Scalars; 2921 2922 Type *ScalarTy = VL[0]->getType(); 2923 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2924 ScalarTy = SI->getValueOperand()->getType(); 2925 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2926 ScalarTy = CI->getOperand(0)->getType(); 2927 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2928 2929 // If we have computed a smaller type for the expression, update VecTy so 2930 // that the costs will be accurate. 2931 if (MinBWs.count(VL[0])) 2932 VecTy = VectorType::get( 2933 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2934 2935 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2936 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2937 int ReuseShuffleCost = 0; 2938 if (NeedToShuffleReuses) { 2939 ReuseShuffleCost = 2940 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2941 } 2942 if (E->NeedToGather) { 2943 if (allConstant(VL)) 2944 return 0; 2945 if (isSplat(VL)) { 2946 return ReuseShuffleCost + 2947 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2948 } 2949 if (E->getOpcode() == Instruction::ExtractElement && 2950 allSameType(VL) && allSameBlock(VL)) { 2951 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2952 if (ShuffleKind.hasValue()) { 2953 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2954 for (auto *V : VL) { 2955 // If all users of instruction are going to be vectorized and this 2956 // instruction itself is not going to be vectorized, consider this 2957 // instruction as dead and remove its cost from the final cost of the 2958 // vectorized tree. 2959 if (areAllUsersVectorized(cast<Instruction>(V)) && 2960 !ScalarToTreeEntry.count(V)) { 2961 auto *IO = cast<ConstantInt>( 2962 cast<ExtractElementInst>(V)->getIndexOperand()); 2963 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2964 IO->getZExtValue()); 2965 } 2966 } 2967 return ReuseShuffleCost + Cost; 2968 } 2969 } 2970 return ReuseShuffleCost + getGatherCost(VL); 2971 } 2972 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2973 Instruction *VL0 = E->getMainOp(); 2974 unsigned ShuffleOrOp = 2975 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 2976 switch (ShuffleOrOp) { 2977 case Instruction::PHI: 2978 return 0; 2979 2980 case Instruction::ExtractValue: 2981 case Instruction::ExtractElement: 2982 if (NeedToShuffleReuses) { 2983 unsigned Idx = 0; 2984 for (unsigned I : E->ReuseShuffleIndices) { 2985 if (ShuffleOrOp == Instruction::ExtractElement) { 2986 auto *IO = cast<ConstantInt>( 2987 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2988 Idx = IO->getZExtValue(); 2989 ReuseShuffleCost -= TTI->getVectorInstrCost( 2990 Instruction::ExtractElement, VecTy, Idx); 2991 } else { 2992 ReuseShuffleCost -= TTI->getVectorInstrCost( 2993 Instruction::ExtractElement, VecTy, Idx); 2994 ++Idx; 2995 } 2996 } 2997 Idx = ReuseShuffleNumbers; 2998 for (Value *V : VL) { 2999 if (ShuffleOrOp == Instruction::ExtractElement) { 3000 auto *IO = cast<ConstantInt>( 3001 cast<ExtractElementInst>(V)->getIndexOperand()); 3002 Idx = IO->getZExtValue(); 3003 } else { 3004 --Idx; 3005 } 3006 ReuseShuffleCost += 3007 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3008 } 3009 } 3010 if (!E->NeedToGather) { 3011 int DeadCost = ReuseShuffleCost; 3012 if (!E->ReorderIndices.empty()) { 3013 // TODO: Merge this shuffle with the ReuseShuffleCost. 3014 DeadCost += TTI->getShuffleCost( 3015 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3016 } 3017 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3018 Instruction *E = cast<Instruction>(VL[i]); 3019 // If all users are going to be vectorized, instruction can be 3020 // considered as dead. 3021 // The same, if have only one user, it will be vectorized for sure. 3022 if (areAllUsersVectorized(E)) { 3023 // Take credit for instruction that will become dead. 3024 if (E->hasOneUse()) { 3025 Instruction *Ext = E->user_back(); 3026 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3027 all_of(Ext->users(), 3028 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3029 // Use getExtractWithExtendCost() to calculate the cost of 3030 // extractelement/ext pair. 3031 DeadCost -= TTI->getExtractWithExtendCost( 3032 Ext->getOpcode(), Ext->getType(), VecTy, i); 3033 // Add back the cost of s|zext which is subtracted separately. 3034 DeadCost += TTI->getCastInstrCost( 3035 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 3036 continue; 3037 } 3038 } 3039 DeadCost -= 3040 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3041 } 3042 } 3043 return DeadCost; 3044 } 3045 return ReuseShuffleCost + getGatherCost(VL); 3046 3047 case Instruction::ZExt: 3048 case Instruction::SExt: 3049 case Instruction::FPToUI: 3050 case Instruction::FPToSI: 3051 case Instruction::FPExt: 3052 case Instruction::PtrToInt: 3053 case Instruction::IntToPtr: 3054 case Instruction::SIToFP: 3055 case Instruction::UIToFP: 3056 case Instruction::Trunc: 3057 case Instruction::FPTrunc: 3058 case Instruction::BitCast: { 3059 Type *SrcTy = VL0->getOperand(0)->getType(); 3060 int ScalarEltCost = 3061 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3062 if (NeedToShuffleReuses) { 3063 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3064 } 3065 3066 // Calculate the cost of this instruction. 3067 int ScalarCost = VL.size() * ScalarEltCost; 3068 3069 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3070 int VecCost = 0; 3071 // Check if the values are candidates to demote. 3072 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3073 VecCost = ReuseShuffleCost + 3074 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3075 } 3076 return VecCost - ScalarCost; 3077 } 3078 case Instruction::FCmp: 3079 case Instruction::ICmp: 3080 case Instruction::Select: { 3081 // Calculate the cost of this instruction. 3082 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3083 Builder.getInt1Ty(), VL0); 3084 if (NeedToShuffleReuses) { 3085 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3086 } 3087 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3088 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3089 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3090 return ReuseShuffleCost + VecCost - ScalarCost; 3091 } 3092 case Instruction::FNeg: 3093 case Instruction::Add: 3094 case Instruction::FAdd: 3095 case Instruction::Sub: 3096 case Instruction::FSub: 3097 case Instruction::Mul: 3098 case Instruction::FMul: 3099 case Instruction::UDiv: 3100 case Instruction::SDiv: 3101 case Instruction::FDiv: 3102 case Instruction::URem: 3103 case Instruction::SRem: 3104 case Instruction::FRem: 3105 case Instruction::Shl: 3106 case Instruction::LShr: 3107 case Instruction::AShr: 3108 case Instruction::And: 3109 case Instruction::Or: 3110 case Instruction::Xor: { 3111 // Certain instructions can be cheaper to vectorize if they have a 3112 // constant second vector operand. 3113 TargetTransformInfo::OperandValueKind Op1VK = 3114 TargetTransformInfo::OK_AnyValue; 3115 TargetTransformInfo::OperandValueKind Op2VK = 3116 TargetTransformInfo::OK_UniformConstantValue; 3117 TargetTransformInfo::OperandValueProperties Op1VP = 3118 TargetTransformInfo::OP_None; 3119 TargetTransformInfo::OperandValueProperties Op2VP = 3120 TargetTransformInfo::OP_PowerOf2; 3121 3122 // If all operands are exactly the same ConstantInt then set the 3123 // operand kind to OK_UniformConstantValue. 3124 // If instead not all operands are constants, then set the operand kind 3125 // to OK_AnyValue. If all operands are constants but not the same, 3126 // then set the operand kind to OK_NonUniformConstantValue. 3127 ConstantInt *CInt0 = nullptr; 3128 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3129 const Instruction *I = cast<Instruction>(VL[i]); 3130 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3131 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3132 if (!CInt) { 3133 Op2VK = TargetTransformInfo::OK_AnyValue; 3134 Op2VP = TargetTransformInfo::OP_None; 3135 break; 3136 } 3137 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3138 !CInt->getValue().isPowerOf2()) 3139 Op2VP = TargetTransformInfo::OP_None; 3140 if (i == 0) { 3141 CInt0 = CInt; 3142 continue; 3143 } 3144 if (CInt0 != CInt) 3145 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3146 } 3147 3148 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3149 int ScalarEltCost = TTI->getArithmeticInstrCost( 3150 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 3151 if (NeedToShuffleReuses) { 3152 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3153 } 3154 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3155 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK, 3156 Op2VK, Op1VP, Op2VP, Operands); 3157 return ReuseShuffleCost + VecCost - ScalarCost; 3158 } 3159 case Instruction::GetElementPtr: { 3160 TargetTransformInfo::OperandValueKind Op1VK = 3161 TargetTransformInfo::OK_AnyValue; 3162 TargetTransformInfo::OperandValueKind Op2VK = 3163 TargetTransformInfo::OK_UniformConstantValue; 3164 3165 int ScalarEltCost = 3166 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3167 if (NeedToShuffleReuses) { 3168 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3169 } 3170 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3171 int VecCost = 3172 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3173 return ReuseShuffleCost + VecCost - ScalarCost; 3174 } 3175 case Instruction::Load: { 3176 // Cost of wide load - cost of scalar loads. 3177 MaybeAlign alignment(cast<LoadInst>(VL0)->getAlignment()); 3178 int ScalarEltCost = 3179 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3180 if (NeedToShuffleReuses) { 3181 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3182 } 3183 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3184 int VecLdCost = 3185 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3186 if (!E->ReorderIndices.empty()) { 3187 // TODO: Merge this shuffle with the ReuseShuffleCost. 3188 VecLdCost += TTI->getShuffleCost( 3189 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3190 } 3191 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3192 } 3193 case Instruction::Store: { 3194 // We know that we can merge the stores. Calculate the cost. 3195 MaybeAlign alignment(cast<StoreInst>(VL0)->getAlignment()); 3196 int ScalarEltCost = 3197 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 3198 if (NeedToShuffleReuses) { 3199 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3200 } 3201 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3202 int VecStCost = 3203 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 3204 return ReuseShuffleCost + VecStCost - ScalarStCost; 3205 } 3206 case Instruction::Call: { 3207 CallInst *CI = cast<CallInst>(VL0); 3208 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3209 3210 // Calculate the cost of the scalar and vector calls. 3211 SmallVector<Type *, 4> ScalarTys; 3212 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3213 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3214 3215 FastMathFlags FMF; 3216 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3217 FMF = FPMO->getFastMathFlags(); 3218 3219 int ScalarEltCost = 3220 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3221 if (NeedToShuffleReuses) { 3222 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3223 } 3224 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3225 3226 SmallVector<Value *, 4> Args(CI->arg_operands()); 3227 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3228 VecTy->getNumElements()); 3229 3230 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3231 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3232 << " for " << *CI << "\n"); 3233 3234 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3235 } 3236 case Instruction::ShuffleVector: { 3237 assert(E->isAltShuffle() && 3238 ((Instruction::isBinaryOp(E->getOpcode()) && 3239 Instruction::isBinaryOp(E->getAltOpcode())) || 3240 (Instruction::isCast(E->getOpcode()) && 3241 Instruction::isCast(E->getAltOpcode()))) && 3242 "Invalid Shuffle Vector Operand"); 3243 int ScalarCost = 0; 3244 if (NeedToShuffleReuses) { 3245 for (unsigned Idx : E->ReuseShuffleIndices) { 3246 Instruction *I = cast<Instruction>(VL[Idx]); 3247 ReuseShuffleCost -= TTI->getInstructionCost( 3248 I, TargetTransformInfo::TCK_RecipThroughput); 3249 } 3250 for (Value *V : VL) { 3251 Instruction *I = cast<Instruction>(V); 3252 ReuseShuffleCost += TTI->getInstructionCost( 3253 I, TargetTransformInfo::TCK_RecipThroughput); 3254 } 3255 } 3256 for (Value *V : VL) { 3257 Instruction *I = cast<Instruction>(V); 3258 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3259 ScalarCost += TTI->getInstructionCost( 3260 I, TargetTransformInfo::TCK_RecipThroughput); 3261 } 3262 // VecCost is equal to sum of the cost of creating 2 vectors 3263 // and the cost of creating shuffle. 3264 int VecCost = 0; 3265 if (Instruction::isBinaryOp(E->getOpcode())) { 3266 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3267 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3268 } else { 3269 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3270 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3271 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3272 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3273 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3274 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3275 } 3276 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3277 return ReuseShuffleCost + VecCost - ScalarCost; 3278 } 3279 default: 3280 llvm_unreachable("Unknown instruction"); 3281 } 3282 } 3283 3284 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3285 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3286 << VectorizableTree.size() << " is fully vectorizable .\n"); 3287 3288 // We only handle trees of heights 1 and 2. 3289 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3290 return true; 3291 3292 if (VectorizableTree.size() != 2) 3293 return false; 3294 3295 // Handle splat and all-constants stores. 3296 if (!VectorizableTree[0]->NeedToGather && 3297 (allConstant(VectorizableTree[1]->Scalars) || 3298 isSplat(VectorizableTree[1]->Scalars))) 3299 return true; 3300 3301 // Gathering cost would be too much for tiny trees. 3302 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3303 return false; 3304 3305 return true; 3306 } 3307 3308 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3309 if (RdxOpcode != Instruction::Or) 3310 return false; 3311 3312 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3313 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3314 3315 // Look past the reduction to find a source value. Arbitrarily follow the 3316 // path through operand 0 of any 'or'. Also, peek through optional 3317 // shift-left-by-constant. 3318 Value *ZextLoad = FirstReduced; 3319 while (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3320 match(ZextLoad, m_Shl(m_Value(), m_Constant()))) 3321 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3322 3323 // Check if the input to the reduction is an extended load. 3324 Value *LoadPtr; 3325 if (!match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3326 return false; 3327 3328 // Require that the total load bit width is a legal integer type. 3329 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3330 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3331 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3332 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3333 LLVMContext &Context = FirstReduced->getContext(); 3334 if (!TTI->isTypeLegal(IntegerType::get(Context, LoadBitWidth))) 3335 return false; 3336 3337 // Everything matched - assume that we can fold the whole sequence using 3338 // load combining. 3339 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for scalar reduction of " 3340 << *(cast<Instruction>(FirstReduced)) << "\n"); 3341 3342 return true; 3343 } 3344 3345 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3346 // We can vectorize the tree if its size is greater than or equal to the 3347 // minimum size specified by the MinTreeSize command line option. 3348 if (VectorizableTree.size() >= MinTreeSize) 3349 return false; 3350 3351 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3352 // can vectorize it if we can prove it fully vectorizable. 3353 if (isFullyVectorizableTinyTree()) 3354 return false; 3355 3356 assert(VectorizableTree.empty() 3357 ? ExternalUses.empty() 3358 : true && "We shouldn't have any external users"); 3359 3360 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3361 // vectorizable. 3362 return true; 3363 } 3364 3365 int BoUpSLP::getSpillCost() const { 3366 // Walk from the bottom of the tree to the top, tracking which values are 3367 // live. When we see a call instruction that is not part of our tree, 3368 // query TTI to see if there is a cost to keeping values live over it 3369 // (for example, if spills and fills are required). 3370 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3371 int Cost = 0; 3372 3373 SmallPtrSet<Instruction*, 4> LiveValues; 3374 Instruction *PrevInst = nullptr; 3375 3376 for (const auto &TEPtr : VectorizableTree) { 3377 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3378 if (!Inst) 3379 continue; 3380 3381 if (!PrevInst) { 3382 PrevInst = Inst; 3383 continue; 3384 } 3385 3386 // Update LiveValues. 3387 LiveValues.erase(PrevInst); 3388 for (auto &J : PrevInst->operands()) { 3389 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3390 LiveValues.insert(cast<Instruction>(&*J)); 3391 } 3392 3393 LLVM_DEBUG({ 3394 dbgs() << "SLP: #LV: " << LiveValues.size(); 3395 for (auto *X : LiveValues) 3396 dbgs() << " " << X->getName(); 3397 dbgs() << ", Looking at "; 3398 Inst->dump(); 3399 }); 3400 3401 // Now find the sequence of instructions between PrevInst and Inst. 3402 unsigned NumCalls = 0; 3403 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3404 PrevInstIt = 3405 PrevInst->getIterator().getReverse(); 3406 while (InstIt != PrevInstIt) { 3407 if (PrevInstIt == PrevInst->getParent()->rend()) { 3408 PrevInstIt = Inst->getParent()->rbegin(); 3409 continue; 3410 } 3411 3412 // Debug information does not impact spill cost. 3413 if ((isa<CallInst>(&*PrevInstIt) && 3414 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3415 &*PrevInstIt != PrevInst) 3416 NumCalls++; 3417 3418 ++PrevInstIt; 3419 } 3420 3421 if (NumCalls) { 3422 SmallVector<Type*, 4> V; 3423 for (auto *II : LiveValues) 3424 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3425 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3426 } 3427 3428 PrevInst = Inst; 3429 } 3430 3431 return Cost; 3432 } 3433 3434 int BoUpSLP::getTreeCost() { 3435 int Cost = 0; 3436 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3437 << VectorizableTree.size() << ".\n"); 3438 3439 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3440 3441 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3442 TreeEntry &TE = *VectorizableTree[I].get(); 3443 3444 // We create duplicate tree entries for gather sequences that have multiple 3445 // uses. However, we should not compute the cost of duplicate sequences. 3446 // For example, if we have a build vector (i.e., insertelement sequence) 3447 // that is used by more than one vector instruction, we only need to 3448 // compute the cost of the insertelement instructions once. The redundant 3449 // instructions will be eliminated by CSE. 3450 // 3451 // We should consider not creating duplicate tree entries for gather 3452 // sequences, and instead add additional edges to the tree representing 3453 // their uses. Since such an approach results in fewer total entries, 3454 // existing heuristics based on tree size may yield different results. 3455 // 3456 if (TE.NeedToGather && 3457 std::any_of( 3458 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3459 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3460 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3461 })) 3462 continue; 3463 3464 int C = getEntryCost(&TE); 3465 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3466 << " for bundle that starts with " << *TE.Scalars[0] 3467 << ".\n"); 3468 Cost += C; 3469 } 3470 3471 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3472 int ExtractCost = 0; 3473 for (ExternalUser &EU : ExternalUses) { 3474 // We only add extract cost once for the same scalar. 3475 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3476 continue; 3477 3478 // Uses by ephemeral values are free (because the ephemeral value will be 3479 // removed prior to code generation, and so the extraction will be 3480 // removed as well). 3481 if (EphValues.count(EU.User)) 3482 continue; 3483 3484 // If we plan to rewrite the tree in a smaller type, we will need to sign 3485 // extend the extracted value back to the original type. Here, we account 3486 // for the extract and the added cost of the sign extend if needed. 3487 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3488 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3489 if (MinBWs.count(ScalarRoot)) { 3490 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3491 auto Extend = 3492 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3493 VecTy = VectorType::get(MinTy, BundleWidth); 3494 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3495 VecTy, EU.Lane); 3496 } else { 3497 ExtractCost += 3498 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3499 } 3500 } 3501 3502 int SpillCost = getSpillCost(); 3503 Cost += SpillCost + ExtractCost; 3504 3505 std::string Str; 3506 { 3507 raw_string_ostream OS(Str); 3508 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3509 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3510 << "SLP: Total Cost = " << Cost << ".\n"; 3511 } 3512 LLVM_DEBUG(dbgs() << Str); 3513 3514 if (ViewSLPTree) 3515 ViewGraph(this, "SLP" + F->getName(), false, Str); 3516 3517 return Cost; 3518 } 3519 3520 int BoUpSLP::getGatherCost(Type *Ty, 3521 const DenseSet<unsigned> &ShuffledIndices) const { 3522 int Cost = 0; 3523 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3524 if (!ShuffledIndices.count(i)) 3525 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3526 if (!ShuffledIndices.empty()) 3527 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3528 return Cost; 3529 } 3530 3531 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3532 // Find the type of the operands in VL. 3533 Type *ScalarTy = VL[0]->getType(); 3534 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3535 ScalarTy = SI->getValueOperand()->getType(); 3536 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3537 // Find the cost of inserting/extracting values from the vector. 3538 // Check if the same elements are inserted several times and count them as 3539 // shuffle candidates. 3540 DenseSet<unsigned> ShuffledElements; 3541 DenseSet<Value *> UniqueElements; 3542 // Iterate in reverse order to consider insert elements with the high cost. 3543 for (unsigned I = VL.size(); I > 0; --I) { 3544 unsigned Idx = I - 1; 3545 if (!UniqueElements.insert(VL[Idx]).second) 3546 ShuffledElements.insert(Idx); 3547 } 3548 return getGatherCost(VecTy, ShuffledElements); 3549 } 3550 3551 // Perform operand reordering on the instructions in VL and return the reordered 3552 // operands in Left and Right. 3553 void BoUpSLP::reorderInputsAccordingToOpcode( 3554 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3555 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3556 ScalarEvolution &SE) { 3557 if (VL.empty()) 3558 return; 3559 VLOperands Ops(VL, DL, SE); 3560 // Reorder the operands in place. 3561 Ops.reorder(); 3562 Left = Ops.getVL(0); 3563 Right = Ops.getVL(1); 3564 } 3565 3566 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3567 // Get the basic block this bundle is in. All instructions in the bundle 3568 // should be in this block. 3569 auto *Front = E->getMainOp(); 3570 auto *BB = Front->getParent(); 3571 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3572 [=](Value *V) -> bool { 3573 auto *I = cast<Instruction>(V); 3574 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3575 })); 3576 3577 // The last instruction in the bundle in program order. 3578 Instruction *LastInst = nullptr; 3579 3580 // Find the last instruction. The common case should be that BB has been 3581 // scheduled, and the last instruction is VL.back(). So we start with 3582 // VL.back() and iterate over schedule data until we reach the end of the 3583 // bundle. The end of the bundle is marked by null ScheduleData. 3584 if (BlocksSchedules.count(BB)) { 3585 auto *Bundle = 3586 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3587 if (Bundle && Bundle->isPartOfBundle()) 3588 for (; Bundle; Bundle = Bundle->NextInBundle) 3589 if (Bundle->OpValue == Bundle->Inst) 3590 LastInst = Bundle->Inst; 3591 } 3592 3593 // LastInst can still be null at this point if there's either not an entry 3594 // for BB in BlocksSchedules or there's no ScheduleData available for 3595 // VL.back(). This can be the case if buildTree_rec aborts for various 3596 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3597 // size is reached, etc.). ScheduleData is initialized in the scheduling 3598 // "dry-run". 3599 // 3600 // If this happens, we can still find the last instruction by brute force. We 3601 // iterate forwards from Front (inclusive) until we either see all 3602 // instructions in the bundle or reach the end of the block. If Front is the 3603 // last instruction in program order, LastInst will be set to Front, and we 3604 // will visit all the remaining instructions in the block. 3605 // 3606 // One of the reasons we exit early from buildTree_rec is to place an upper 3607 // bound on compile-time. Thus, taking an additional compile-time hit here is 3608 // not ideal. However, this should be exceedingly rare since it requires that 3609 // we both exit early from buildTree_rec and that the bundle be out-of-order 3610 // (causing us to iterate all the way to the end of the block). 3611 if (!LastInst) { 3612 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3613 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3614 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3615 LastInst = &I; 3616 if (Bundle.empty()) 3617 break; 3618 } 3619 } 3620 assert(LastInst && "Failed to find last instruction in bundle"); 3621 3622 // Set the insertion point after the last instruction in the bundle. Set the 3623 // debug location to Front. 3624 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3625 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3626 } 3627 3628 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3629 Value *Vec = UndefValue::get(Ty); 3630 // Generate the 'InsertElement' instruction. 3631 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3632 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3633 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 3634 GatherSeq.insert(Insrt); 3635 CSEBlocks.insert(Insrt->getParent()); 3636 3637 // Add to our 'need-to-extract' list. 3638 if (TreeEntry *E = getTreeEntry(VL[i])) { 3639 // Find which lane we need to extract. 3640 int FoundLane = -1; 3641 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3642 // Is this the lane of the scalar that we are looking for ? 3643 if (E->Scalars[Lane] == VL[i]) { 3644 FoundLane = Lane; 3645 break; 3646 } 3647 } 3648 assert(FoundLane >= 0 && "Could not find the correct lane"); 3649 if (!E->ReuseShuffleIndices.empty()) { 3650 FoundLane = 3651 std::distance(E->ReuseShuffleIndices.begin(), 3652 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3653 } 3654 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3655 } 3656 } 3657 } 3658 3659 return Vec; 3660 } 3661 3662 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3663 InstructionsState S = getSameOpcode(VL); 3664 if (S.getOpcode()) { 3665 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3666 if (E->isSame(VL)) { 3667 Value *V = vectorizeTree(E); 3668 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3669 // We need to get the vectorized value but without shuffle. 3670 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3671 V = SV->getOperand(0); 3672 } else { 3673 // Reshuffle to get only unique values. 3674 SmallVector<unsigned, 4> UniqueIdxs; 3675 SmallSet<unsigned, 4> UsedIdxs; 3676 for(unsigned Idx : E->ReuseShuffleIndices) 3677 if (UsedIdxs.insert(Idx).second) 3678 UniqueIdxs.emplace_back(Idx); 3679 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3680 UniqueIdxs); 3681 } 3682 } 3683 return V; 3684 } 3685 } 3686 } 3687 3688 Type *ScalarTy = S.OpValue->getType(); 3689 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3690 ScalarTy = SI->getValueOperand()->getType(); 3691 3692 // Check that every instruction appears once in this bundle. 3693 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3694 SmallVector<Value *, 4> UniqueValues; 3695 if (VL.size() > 2) { 3696 DenseMap<Value *, unsigned> UniquePositions; 3697 for (Value *V : VL) { 3698 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3699 ReuseShuffleIndicies.emplace_back(Res.first->second); 3700 if (Res.second || isa<Constant>(V)) 3701 UniqueValues.emplace_back(V); 3702 } 3703 // Do not shuffle single element or if number of unique values is not power 3704 // of 2. 3705 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3706 !llvm::isPowerOf2_32(UniqueValues.size())) 3707 ReuseShuffleIndicies.clear(); 3708 else 3709 VL = UniqueValues; 3710 } 3711 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3712 3713 Value *V = Gather(VL, VecTy); 3714 if (!ReuseShuffleIndicies.empty()) { 3715 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3716 ReuseShuffleIndicies, "shuffle"); 3717 if (auto *I = dyn_cast<Instruction>(V)) { 3718 GatherSeq.insert(I); 3719 CSEBlocks.insert(I->getParent()); 3720 } 3721 } 3722 return V; 3723 } 3724 3725 static void inversePermutation(ArrayRef<unsigned> Indices, 3726 SmallVectorImpl<unsigned> &Mask) { 3727 Mask.clear(); 3728 const unsigned E = Indices.size(); 3729 Mask.resize(E); 3730 for (unsigned I = 0; I < E; ++I) 3731 Mask[Indices[I]] = I; 3732 } 3733 3734 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3735 IRBuilder<>::InsertPointGuard Guard(Builder); 3736 3737 if (E->VectorizedValue) { 3738 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3739 return E->VectorizedValue; 3740 } 3741 3742 Instruction *VL0 = E->getMainOp(); 3743 Type *ScalarTy = VL0->getType(); 3744 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3745 ScalarTy = SI->getValueOperand()->getType(); 3746 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3747 3748 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3749 3750 if (E->NeedToGather) { 3751 setInsertPointAfterBundle(E); 3752 auto *V = Gather(E->Scalars, VecTy); 3753 if (NeedToShuffleReuses) { 3754 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3755 E->ReuseShuffleIndices, "shuffle"); 3756 if (auto *I = dyn_cast<Instruction>(V)) { 3757 GatherSeq.insert(I); 3758 CSEBlocks.insert(I->getParent()); 3759 } 3760 } 3761 E->VectorizedValue = V; 3762 return V; 3763 } 3764 3765 unsigned ShuffleOrOp = 3766 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3767 switch (ShuffleOrOp) { 3768 case Instruction::PHI: { 3769 auto *PH = cast<PHINode>(VL0); 3770 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3771 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3772 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3773 Value *V = NewPhi; 3774 if (NeedToShuffleReuses) { 3775 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3776 E->ReuseShuffleIndices, "shuffle"); 3777 } 3778 E->VectorizedValue = V; 3779 3780 // PHINodes may have multiple entries from the same block. We want to 3781 // visit every block once. 3782 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3783 3784 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3785 ValueList Operands; 3786 BasicBlock *IBB = PH->getIncomingBlock(i); 3787 3788 if (!VisitedBBs.insert(IBB).second) { 3789 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3790 continue; 3791 } 3792 3793 Builder.SetInsertPoint(IBB->getTerminator()); 3794 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3795 Value *Vec = vectorizeTree(E->getOperand(i)); 3796 NewPhi->addIncoming(Vec, IBB); 3797 } 3798 3799 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3800 "Invalid number of incoming values"); 3801 return V; 3802 } 3803 3804 case Instruction::ExtractElement: { 3805 if (!E->NeedToGather) { 3806 Value *V = E->getSingleOperand(0); 3807 if (!E->ReorderIndices.empty()) { 3808 OrdersType Mask; 3809 inversePermutation(E->ReorderIndices, Mask); 3810 Builder.SetInsertPoint(VL0); 3811 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3812 "reorder_shuffle"); 3813 } 3814 if (NeedToShuffleReuses) { 3815 // TODO: Merge this shuffle with the ReorderShuffleMask. 3816 if (E->ReorderIndices.empty()) 3817 Builder.SetInsertPoint(VL0); 3818 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3819 E->ReuseShuffleIndices, "shuffle"); 3820 } 3821 E->VectorizedValue = V; 3822 return V; 3823 } 3824 setInsertPointAfterBundle(E); 3825 auto *V = Gather(E->Scalars, VecTy); 3826 if (NeedToShuffleReuses) { 3827 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3828 E->ReuseShuffleIndices, "shuffle"); 3829 if (auto *I = dyn_cast<Instruction>(V)) { 3830 GatherSeq.insert(I); 3831 CSEBlocks.insert(I->getParent()); 3832 } 3833 } 3834 E->VectorizedValue = V; 3835 return V; 3836 } 3837 case Instruction::ExtractValue: { 3838 if (!E->NeedToGather) { 3839 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3840 Builder.SetInsertPoint(LI); 3841 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3842 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3843 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3844 Value *NewV = propagateMetadata(V, E->Scalars); 3845 if (!E->ReorderIndices.empty()) { 3846 OrdersType Mask; 3847 inversePermutation(E->ReorderIndices, Mask); 3848 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3849 "reorder_shuffle"); 3850 } 3851 if (NeedToShuffleReuses) { 3852 // TODO: Merge this shuffle with the ReorderShuffleMask. 3853 NewV = Builder.CreateShuffleVector( 3854 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3855 } 3856 E->VectorizedValue = NewV; 3857 return NewV; 3858 } 3859 setInsertPointAfterBundle(E); 3860 auto *V = Gather(E->Scalars, VecTy); 3861 if (NeedToShuffleReuses) { 3862 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3863 E->ReuseShuffleIndices, "shuffle"); 3864 if (auto *I = dyn_cast<Instruction>(V)) { 3865 GatherSeq.insert(I); 3866 CSEBlocks.insert(I->getParent()); 3867 } 3868 } 3869 E->VectorizedValue = V; 3870 return V; 3871 } 3872 case Instruction::ZExt: 3873 case Instruction::SExt: 3874 case Instruction::FPToUI: 3875 case Instruction::FPToSI: 3876 case Instruction::FPExt: 3877 case Instruction::PtrToInt: 3878 case Instruction::IntToPtr: 3879 case Instruction::SIToFP: 3880 case Instruction::UIToFP: 3881 case Instruction::Trunc: 3882 case Instruction::FPTrunc: 3883 case Instruction::BitCast: { 3884 setInsertPointAfterBundle(E); 3885 3886 Value *InVec = vectorizeTree(E->getOperand(0)); 3887 3888 if (E->VectorizedValue) { 3889 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3890 return E->VectorizedValue; 3891 } 3892 3893 auto *CI = cast<CastInst>(VL0); 3894 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3895 if (NeedToShuffleReuses) { 3896 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3897 E->ReuseShuffleIndices, "shuffle"); 3898 } 3899 E->VectorizedValue = V; 3900 ++NumVectorInstructions; 3901 return V; 3902 } 3903 case Instruction::FCmp: 3904 case Instruction::ICmp: { 3905 setInsertPointAfterBundle(E); 3906 3907 Value *L = vectorizeTree(E->getOperand(0)); 3908 Value *R = vectorizeTree(E->getOperand(1)); 3909 3910 if (E->VectorizedValue) { 3911 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3912 return E->VectorizedValue; 3913 } 3914 3915 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3916 Value *V; 3917 if (E->getOpcode() == Instruction::FCmp) 3918 V = Builder.CreateFCmp(P0, L, R); 3919 else 3920 V = Builder.CreateICmp(P0, L, R); 3921 3922 propagateIRFlags(V, E->Scalars, VL0); 3923 if (NeedToShuffleReuses) { 3924 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3925 E->ReuseShuffleIndices, "shuffle"); 3926 } 3927 E->VectorizedValue = V; 3928 ++NumVectorInstructions; 3929 return V; 3930 } 3931 case Instruction::Select: { 3932 setInsertPointAfterBundle(E); 3933 3934 Value *Cond = vectorizeTree(E->getOperand(0)); 3935 Value *True = vectorizeTree(E->getOperand(1)); 3936 Value *False = vectorizeTree(E->getOperand(2)); 3937 3938 if (E->VectorizedValue) { 3939 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3940 return E->VectorizedValue; 3941 } 3942 3943 Value *V = Builder.CreateSelect(Cond, True, False); 3944 if (NeedToShuffleReuses) { 3945 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3946 E->ReuseShuffleIndices, "shuffle"); 3947 } 3948 E->VectorizedValue = V; 3949 ++NumVectorInstructions; 3950 return V; 3951 } 3952 case Instruction::FNeg: { 3953 setInsertPointAfterBundle(E); 3954 3955 Value *Op = vectorizeTree(E->getOperand(0)); 3956 3957 if (E->VectorizedValue) { 3958 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3959 return E->VectorizedValue; 3960 } 3961 3962 Value *V = Builder.CreateUnOp( 3963 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 3964 propagateIRFlags(V, E->Scalars, VL0); 3965 if (auto *I = dyn_cast<Instruction>(V)) 3966 V = propagateMetadata(I, E->Scalars); 3967 3968 if (NeedToShuffleReuses) { 3969 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3970 E->ReuseShuffleIndices, "shuffle"); 3971 } 3972 E->VectorizedValue = V; 3973 ++NumVectorInstructions; 3974 3975 return V; 3976 } 3977 case Instruction::Add: 3978 case Instruction::FAdd: 3979 case Instruction::Sub: 3980 case Instruction::FSub: 3981 case Instruction::Mul: 3982 case Instruction::FMul: 3983 case Instruction::UDiv: 3984 case Instruction::SDiv: 3985 case Instruction::FDiv: 3986 case Instruction::URem: 3987 case Instruction::SRem: 3988 case Instruction::FRem: 3989 case Instruction::Shl: 3990 case Instruction::LShr: 3991 case Instruction::AShr: 3992 case Instruction::And: 3993 case Instruction::Or: 3994 case Instruction::Xor: { 3995 setInsertPointAfterBundle(E); 3996 3997 Value *LHS = vectorizeTree(E->getOperand(0)); 3998 Value *RHS = vectorizeTree(E->getOperand(1)); 3999 4000 if (E->VectorizedValue) { 4001 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4002 return E->VectorizedValue; 4003 } 4004 4005 Value *V = Builder.CreateBinOp( 4006 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4007 RHS); 4008 propagateIRFlags(V, E->Scalars, VL0); 4009 if (auto *I = dyn_cast<Instruction>(V)) 4010 V = propagateMetadata(I, E->Scalars); 4011 4012 if (NeedToShuffleReuses) { 4013 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4014 E->ReuseShuffleIndices, "shuffle"); 4015 } 4016 E->VectorizedValue = V; 4017 ++NumVectorInstructions; 4018 4019 return V; 4020 } 4021 case Instruction::Load: { 4022 // Loads are inserted at the head of the tree because we don't want to 4023 // sink them all the way down past store instructions. 4024 bool IsReorder = E->updateStateIfReorder(); 4025 if (IsReorder) 4026 VL0 = E->getMainOp(); 4027 setInsertPointAfterBundle(E); 4028 4029 LoadInst *LI = cast<LoadInst>(VL0); 4030 Type *ScalarLoadTy = LI->getType(); 4031 unsigned AS = LI->getPointerAddressSpace(); 4032 4033 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4034 VecTy->getPointerTo(AS)); 4035 4036 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4037 // ExternalUses list to make sure that an extract will be generated in the 4038 // future. 4039 Value *PO = LI->getPointerOperand(); 4040 if (getTreeEntry(PO)) 4041 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4042 4043 MaybeAlign Alignment = MaybeAlign(LI->getAlignment()); 4044 LI = Builder.CreateLoad(VecTy, VecPtr); 4045 if (!Alignment) 4046 Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy)); 4047 LI->setAlignment(Alignment); 4048 Value *V = propagateMetadata(LI, E->Scalars); 4049 if (IsReorder) { 4050 OrdersType Mask; 4051 inversePermutation(E->ReorderIndices, Mask); 4052 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4053 Mask, "reorder_shuffle"); 4054 } 4055 if (NeedToShuffleReuses) { 4056 // TODO: Merge this shuffle with the ReorderShuffleMask. 4057 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4058 E->ReuseShuffleIndices, "shuffle"); 4059 } 4060 E->VectorizedValue = V; 4061 ++NumVectorInstructions; 4062 return V; 4063 } 4064 case Instruction::Store: { 4065 StoreInst *SI = cast<StoreInst>(VL0); 4066 unsigned Alignment = SI->getAlignment(); 4067 unsigned AS = SI->getPointerAddressSpace(); 4068 4069 setInsertPointAfterBundle(E); 4070 4071 Value *VecValue = vectorizeTree(E->getOperand(0)); 4072 Value *ScalarPtr = SI->getPointerOperand(); 4073 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 4074 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 4075 4076 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4077 // ExternalUses to make sure that an extract will be generated in the 4078 // future. 4079 if (getTreeEntry(ScalarPtr)) 4080 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4081 4082 if (!Alignment) 4083 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 4084 4085 ST->setAlignment(Align(Alignment)); 4086 Value *V = propagateMetadata(ST, E->Scalars); 4087 if (NeedToShuffleReuses) { 4088 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4089 E->ReuseShuffleIndices, "shuffle"); 4090 } 4091 E->VectorizedValue = V; 4092 ++NumVectorInstructions; 4093 return V; 4094 } 4095 case Instruction::GetElementPtr: { 4096 setInsertPointAfterBundle(E); 4097 4098 Value *Op0 = vectorizeTree(E->getOperand(0)); 4099 4100 std::vector<Value *> OpVecs; 4101 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4102 ++j) { 4103 ValueList &VL = E->getOperand(j); 4104 // Need to cast all elements to the same type before vectorization to 4105 // avoid crash. 4106 Type *VL0Ty = VL0->getOperand(j)->getType(); 4107 Type *Ty = llvm::all_of( 4108 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4109 ? VL0Ty 4110 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4111 ->getPointerOperandType() 4112 ->getScalarType()); 4113 for (Value *&V : VL) { 4114 auto *CI = cast<ConstantInt>(V); 4115 V = ConstantExpr::getIntegerCast(CI, Ty, 4116 CI->getValue().isSignBitSet()); 4117 } 4118 Value *OpVec = vectorizeTree(VL); 4119 OpVecs.push_back(OpVec); 4120 } 4121 4122 Value *V = Builder.CreateGEP( 4123 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4124 if (Instruction *I = dyn_cast<Instruction>(V)) 4125 V = propagateMetadata(I, E->Scalars); 4126 4127 if (NeedToShuffleReuses) { 4128 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4129 E->ReuseShuffleIndices, "shuffle"); 4130 } 4131 E->VectorizedValue = V; 4132 ++NumVectorInstructions; 4133 4134 return V; 4135 } 4136 case Instruction::Call: { 4137 CallInst *CI = cast<CallInst>(VL0); 4138 setInsertPointAfterBundle(E); 4139 4140 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4141 if (Function *FI = CI->getCalledFunction()) 4142 IID = FI->getIntrinsicID(); 4143 4144 Value *ScalarArg = nullptr; 4145 std::vector<Value *> OpVecs; 4146 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4147 ValueList OpVL; 4148 // Some intrinsics have scalar arguments. This argument should not be 4149 // vectorized. 4150 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4151 CallInst *CEI = cast<CallInst>(VL0); 4152 ScalarArg = CEI->getArgOperand(j); 4153 OpVecs.push_back(CEI->getArgOperand(j)); 4154 continue; 4155 } 4156 4157 Value *OpVec = vectorizeTree(E->getOperand(j)); 4158 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4159 OpVecs.push_back(OpVec); 4160 } 4161 4162 Module *M = F->getParent(); 4163 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4164 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4165 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4166 SmallVector<OperandBundleDef, 1> OpBundles; 4167 CI->getOperandBundlesAsDefs(OpBundles); 4168 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4169 4170 // The scalar argument uses an in-tree scalar so we add the new vectorized 4171 // call to ExternalUses list to make sure that an extract will be 4172 // generated in the future. 4173 if (ScalarArg && getTreeEntry(ScalarArg)) 4174 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4175 4176 propagateIRFlags(V, E->Scalars, VL0); 4177 if (NeedToShuffleReuses) { 4178 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4179 E->ReuseShuffleIndices, "shuffle"); 4180 } 4181 E->VectorizedValue = V; 4182 ++NumVectorInstructions; 4183 return V; 4184 } 4185 case Instruction::ShuffleVector: { 4186 assert(E->isAltShuffle() && 4187 ((Instruction::isBinaryOp(E->getOpcode()) && 4188 Instruction::isBinaryOp(E->getAltOpcode())) || 4189 (Instruction::isCast(E->getOpcode()) && 4190 Instruction::isCast(E->getAltOpcode()))) && 4191 "Invalid Shuffle Vector Operand"); 4192 4193 Value *LHS = nullptr, *RHS = nullptr; 4194 if (Instruction::isBinaryOp(E->getOpcode())) { 4195 setInsertPointAfterBundle(E); 4196 LHS = vectorizeTree(E->getOperand(0)); 4197 RHS = vectorizeTree(E->getOperand(1)); 4198 } else { 4199 setInsertPointAfterBundle(E); 4200 LHS = vectorizeTree(E->getOperand(0)); 4201 } 4202 4203 if (E->VectorizedValue) { 4204 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4205 return E->VectorizedValue; 4206 } 4207 4208 Value *V0, *V1; 4209 if (Instruction::isBinaryOp(E->getOpcode())) { 4210 V0 = Builder.CreateBinOp( 4211 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4212 V1 = Builder.CreateBinOp( 4213 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4214 } else { 4215 V0 = Builder.CreateCast( 4216 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4217 V1 = Builder.CreateCast( 4218 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4219 } 4220 4221 // Create shuffle to take alternate operations from the vector. 4222 // Also, gather up main and alt scalar ops to propagate IR flags to 4223 // each vector operation. 4224 ValueList OpScalars, AltScalars; 4225 unsigned e = E->Scalars.size(); 4226 SmallVector<Constant *, 8> Mask(e); 4227 for (unsigned i = 0; i < e; ++i) { 4228 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4229 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4230 if (OpInst->getOpcode() == E->getAltOpcode()) { 4231 Mask[i] = Builder.getInt32(e + i); 4232 AltScalars.push_back(E->Scalars[i]); 4233 } else { 4234 Mask[i] = Builder.getInt32(i); 4235 OpScalars.push_back(E->Scalars[i]); 4236 } 4237 } 4238 4239 Value *ShuffleMask = ConstantVector::get(Mask); 4240 propagateIRFlags(V0, OpScalars); 4241 propagateIRFlags(V1, AltScalars); 4242 4243 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4244 if (Instruction *I = dyn_cast<Instruction>(V)) 4245 V = propagateMetadata(I, E->Scalars); 4246 if (NeedToShuffleReuses) { 4247 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4248 E->ReuseShuffleIndices, "shuffle"); 4249 } 4250 E->VectorizedValue = V; 4251 ++NumVectorInstructions; 4252 4253 return V; 4254 } 4255 default: 4256 llvm_unreachable("unknown inst"); 4257 } 4258 return nullptr; 4259 } 4260 4261 Value *BoUpSLP::vectorizeTree() { 4262 ExtraValueToDebugLocsMap ExternallyUsedValues; 4263 return vectorizeTree(ExternallyUsedValues); 4264 } 4265 4266 Value * 4267 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4268 // All blocks must be scheduled before any instructions are inserted. 4269 for (auto &BSIter : BlocksSchedules) { 4270 scheduleBlock(BSIter.second.get()); 4271 } 4272 4273 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4274 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4275 4276 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4277 // vectorized root. InstCombine will then rewrite the entire expression. We 4278 // sign extend the extracted values below. 4279 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4280 if (MinBWs.count(ScalarRoot)) { 4281 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4282 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4283 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4284 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4285 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4286 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4287 VectorizableTree[0]->VectorizedValue = Trunc; 4288 } 4289 4290 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4291 << " values .\n"); 4292 4293 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4294 // specified by ScalarType. 4295 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4296 if (!MinBWs.count(ScalarRoot)) 4297 return Ex; 4298 if (MinBWs[ScalarRoot].second) 4299 return Builder.CreateSExt(Ex, ScalarType); 4300 return Builder.CreateZExt(Ex, ScalarType); 4301 }; 4302 4303 // Extract all of the elements with the external uses. 4304 for (const auto &ExternalUse : ExternalUses) { 4305 Value *Scalar = ExternalUse.Scalar; 4306 llvm::User *User = ExternalUse.User; 4307 4308 // Skip users that we already RAUW. This happens when one instruction 4309 // has multiple uses of the same value. 4310 if (User && !is_contained(Scalar->users(), User)) 4311 continue; 4312 TreeEntry *E = getTreeEntry(Scalar); 4313 assert(E && "Invalid scalar"); 4314 assert(!E->NeedToGather && "Extracting from a gather list"); 4315 4316 Value *Vec = E->VectorizedValue; 4317 assert(Vec && "Can't find vectorizable value"); 4318 4319 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4320 // If User == nullptr, the Scalar is used as extra arg. Generate 4321 // ExtractElement instruction and update the record for this scalar in 4322 // ExternallyUsedValues. 4323 if (!User) { 4324 assert(ExternallyUsedValues.count(Scalar) && 4325 "Scalar with nullptr as an external user must be registered in " 4326 "ExternallyUsedValues map"); 4327 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4328 Builder.SetInsertPoint(VecI->getParent(), 4329 std::next(VecI->getIterator())); 4330 } else { 4331 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4332 } 4333 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4334 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4335 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4336 auto &Locs = ExternallyUsedValues[Scalar]; 4337 ExternallyUsedValues.insert({Ex, Locs}); 4338 ExternallyUsedValues.erase(Scalar); 4339 // Required to update internally referenced instructions. 4340 Scalar->replaceAllUsesWith(Ex); 4341 continue; 4342 } 4343 4344 // Generate extracts for out-of-tree users. 4345 // Find the insertion point for the extractelement lane. 4346 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4347 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4348 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4349 if (PH->getIncomingValue(i) == Scalar) { 4350 Instruction *IncomingTerminator = 4351 PH->getIncomingBlock(i)->getTerminator(); 4352 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4353 Builder.SetInsertPoint(VecI->getParent(), 4354 std::next(VecI->getIterator())); 4355 } else { 4356 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4357 } 4358 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4359 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4360 CSEBlocks.insert(PH->getIncomingBlock(i)); 4361 PH->setOperand(i, Ex); 4362 } 4363 } 4364 } else { 4365 Builder.SetInsertPoint(cast<Instruction>(User)); 4366 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4367 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4368 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4369 User->replaceUsesOfWith(Scalar, Ex); 4370 } 4371 } else { 4372 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4373 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4374 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4375 CSEBlocks.insert(&F->getEntryBlock()); 4376 User->replaceUsesOfWith(Scalar, Ex); 4377 } 4378 4379 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4380 } 4381 4382 // For each vectorized value: 4383 for (auto &TEPtr : VectorizableTree) { 4384 TreeEntry *Entry = TEPtr.get(); 4385 4386 // No need to handle users of gathered values. 4387 if (Entry->NeedToGather) 4388 continue; 4389 4390 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4391 4392 // For each lane: 4393 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4394 Value *Scalar = Entry->Scalars[Lane]; 4395 4396 #ifndef NDEBUG 4397 Type *Ty = Scalar->getType(); 4398 if (!Ty->isVoidTy()) { 4399 for (User *U : Scalar->users()) { 4400 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4401 4402 // It is legal to delete users in the ignorelist. 4403 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4404 "Deleting out-of-tree value"); 4405 } 4406 } 4407 #endif 4408 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4409 eraseInstruction(cast<Instruction>(Scalar)); 4410 } 4411 } 4412 4413 Builder.ClearInsertionPoint(); 4414 4415 return VectorizableTree[0]->VectorizedValue; 4416 } 4417 4418 void BoUpSLP::optimizeGatherSequence() { 4419 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4420 << " gather sequences instructions.\n"); 4421 // LICM InsertElementInst sequences. 4422 for (Instruction *I : GatherSeq) { 4423 if (isDeleted(I)) 4424 continue; 4425 4426 // Check if this block is inside a loop. 4427 Loop *L = LI->getLoopFor(I->getParent()); 4428 if (!L) 4429 continue; 4430 4431 // Check if it has a preheader. 4432 BasicBlock *PreHeader = L->getLoopPreheader(); 4433 if (!PreHeader) 4434 continue; 4435 4436 // If the vector or the element that we insert into it are 4437 // instructions that are defined in this basic block then we can't 4438 // hoist this instruction. 4439 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4440 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4441 if (Op0 && L->contains(Op0)) 4442 continue; 4443 if (Op1 && L->contains(Op1)) 4444 continue; 4445 4446 // We can hoist this instruction. Move it to the pre-header. 4447 I->moveBefore(PreHeader->getTerminator()); 4448 } 4449 4450 // Make a list of all reachable blocks in our CSE queue. 4451 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4452 CSEWorkList.reserve(CSEBlocks.size()); 4453 for (BasicBlock *BB : CSEBlocks) 4454 if (DomTreeNode *N = DT->getNode(BB)) { 4455 assert(DT->isReachableFromEntry(N)); 4456 CSEWorkList.push_back(N); 4457 } 4458 4459 // Sort blocks by domination. This ensures we visit a block after all blocks 4460 // dominating it are visited. 4461 llvm::stable_sort(CSEWorkList, 4462 [this](const DomTreeNode *A, const DomTreeNode *B) { 4463 return DT->properlyDominates(A, B); 4464 }); 4465 4466 // Perform O(N^2) search over the gather sequences and merge identical 4467 // instructions. TODO: We can further optimize this scan if we split the 4468 // instructions into different buckets based on the insert lane. 4469 SmallVector<Instruction *, 16> Visited; 4470 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4471 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4472 "Worklist not sorted properly!"); 4473 BasicBlock *BB = (*I)->getBlock(); 4474 // For all instructions in blocks containing gather sequences: 4475 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4476 Instruction *In = &*it++; 4477 if (isDeleted(In)) 4478 continue; 4479 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4480 continue; 4481 4482 // Check if we can replace this instruction with any of the 4483 // visited instructions. 4484 for (Instruction *v : Visited) { 4485 if (In->isIdenticalTo(v) && 4486 DT->dominates(v->getParent(), In->getParent())) { 4487 In->replaceAllUsesWith(v); 4488 eraseInstruction(In); 4489 In = nullptr; 4490 break; 4491 } 4492 } 4493 if (In) { 4494 assert(!is_contained(Visited, In)); 4495 Visited.push_back(In); 4496 } 4497 } 4498 } 4499 CSEBlocks.clear(); 4500 GatherSeq.clear(); 4501 } 4502 4503 // Groups the instructions to a bundle (which is then a single scheduling entity) 4504 // and schedules instructions until the bundle gets ready. 4505 Optional<BoUpSLP::ScheduleData *> 4506 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4507 const InstructionsState &S) { 4508 if (isa<PHINode>(S.OpValue)) 4509 return nullptr; 4510 4511 // Initialize the instruction bundle. 4512 Instruction *OldScheduleEnd = ScheduleEnd; 4513 ScheduleData *PrevInBundle = nullptr; 4514 ScheduleData *Bundle = nullptr; 4515 bool ReSchedule = false; 4516 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4517 4518 // Make sure that the scheduling region contains all 4519 // instructions of the bundle. 4520 for (Value *V : VL) { 4521 if (!extendSchedulingRegion(V, S)) 4522 return None; 4523 } 4524 4525 for (Value *V : VL) { 4526 ScheduleData *BundleMember = getScheduleData(V); 4527 assert(BundleMember && 4528 "no ScheduleData for bundle member (maybe not in same basic block)"); 4529 if (BundleMember->IsScheduled) { 4530 // A bundle member was scheduled as single instruction before and now 4531 // needs to be scheduled as part of the bundle. We just get rid of the 4532 // existing schedule. 4533 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4534 << " was already scheduled\n"); 4535 ReSchedule = true; 4536 } 4537 assert(BundleMember->isSchedulingEntity() && 4538 "bundle member already part of other bundle"); 4539 if (PrevInBundle) { 4540 PrevInBundle->NextInBundle = BundleMember; 4541 } else { 4542 Bundle = BundleMember; 4543 } 4544 BundleMember->UnscheduledDepsInBundle = 0; 4545 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4546 4547 // Group the instructions to a bundle. 4548 BundleMember->FirstInBundle = Bundle; 4549 PrevInBundle = BundleMember; 4550 } 4551 if (ScheduleEnd != OldScheduleEnd) { 4552 // The scheduling region got new instructions at the lower end (or it is a 4553 // new region for the first bundle). This makes it necessary to 4554 // recalculate all dependencies. 4555 // It is seldom that this needs to be done a second time after adding the 4556 // initial bundle to the region. 4557 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4558 doForAllOpcodes(I, [](ScheduleData *SD) { 4559 SD->clearDependencies(); 4560 }); 4561 } 4562 ReSchedule = true; 4563 } 4564 if (ReSchedule) { 4565 resetSchedule(); 4566 initialFillReadyList(ReadyInsts); 4567 } 4568 assert(Bundle && "Failed to find schedule bundle"); 4569 4570 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4571 << BB->getName() << "\n"); 4572 4573 calculateDependencies(Bundle, true, SLP); 4574 4575 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4576 // means that there are no cyclic dependencies and we can schedule it. 4577 // Note that's important that we don't "schedule" the bundle yet (see 4578 // cancelScheduling). 4579 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4580 4581 ScheduleData *pickedSD = ReadyInsts.back(); 4582 ReadyInsts.pop_back(); 4583 4584 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4585 schedule(pickedSD, ReadyInsts); 4586 } 4587 } 4588 if (!Bundle->isReady()) { 4589 cancelScheduling(VL, S.OpValue); 4590 return None; 4591 } 4592 return Bundle; 4593 } 4594 4595 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4596 Value *OpValue) { 4597 if (isa<PHINode>(OpValue)) 4598 return; 4599 4600 ScheduleData *Bundle = getScheduleData(OpValue); 4601 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4602 assert(!Bundle->IsScheduled && 4603 "Can't cancel bundle which is already scheduled"); 4604 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4605 "tried to unbundle something which is not a bundle"); 4606 4607 // Un-bundle: make single instructions out of the bundle. 4608 ScheduleData *BundleMember = Bundle; 4609 while (BundleMember) { 4610 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4611 BundleMember->FirstInBundle = BundleMember; 4612 ScheduleData *Next = BundleMember->NextInBundle; 4613 BundleMember->NextInBundle = nullptr; 4614 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4615 if (BundleMember->UnscheduledDepsInBundle == 0) { 4616 ReadyInsts.insert(BundleMember); 4617 } 4618 BundleMember = Next; 4619 } 4620 } 4621 4622 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4623 // Allocate a new ScheduleData for the instruction. 4624 if (ChunkPos >= ChunkSize) { 4625 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4626 ChunkPos = 0; 4627 } 4628 return &(ScheduleDataChunks.back()[ChunkPos++]); 4629 } 4630 4631 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4632 const InstructionsState &S) { 4633 if (getScheduleData(V, isOneOf(S, V))) 4634 return true; 4635 Instruction *I = dyn_cast<Instruction>(V); 4636 assert(I && "bundle member must be an instruction"); 4637 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4638 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4639 ScheduleData *ISD = getScheduleData(I); 4640 if (!ISD) 4641 return false; 4642 assert(isInSchedulingRegion(ISD) && 4643 "ScheduleData not in scheduling region"); 4644 ScheduleData *SD = allocateScheduleDataChunks(); 4645 SD->Inst = I; 4646 SD->init(SchedulingRegionID, S.OpValue); 4647 ExtraScheduleDataMap[I][S.OpValue] = SD; 4648 return true; 4649 }; 4650 if (CheckSheduleForI(I)) 4651 return true; 4652 if (!ScheduleStart) { 4653 // It's the first instruction in the new region. 4654 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4655 ScheduleStart = I; 4656 ScheduleEnd = I->getNextNode(); 4657 if (isOneOf(S, I) != I) 4658 CheckSheduleForI(I); 4659 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4660 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4661 return true; 4662 } 4663 // Search up and down at the same time, because we don't know if the new 4664 // instruction is above or below the existing scheduling region. 4665 BasicBlock::reverse_iterator UpIter = 4666 ++ScheduleStart->getIterator().getReverse(); 4667 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4668 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4669 BasicBlock::iterator LowerEnd = BB->end(); 4670 while (true) { 4671 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4672 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4673 return false; 4674 } 4675 4676 if (UpIter != UpperEnd) { 4677 if (&*UpIter == I) { 4678 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4679 ScheduleStart = I; 4680 if (isOneOf(S, I) != I) 4681 CheckSheduleForI(I); 4682 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4683 << "\n"); 4684 return true; 4685 } 4686 ++UpIter; 4687 } 4688 if (DownIter != LowerEnd) { 4689 if (&*DownIter == I) { 4690 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4691 nullptr); 4692 ScheduleEnd = I->getNextNode(); 4693 if (isOneOf(S, I) != I) 4694 CheckSheduleForI(I); 4695 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4696 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4697 << "\n"); 4698 return true; 4699 } 4700 ++DownIter; 4701 } 4702 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4703 "instruction not found in block"); 4704 } 4705 return true; 4706 } 4707 4708 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4709 Instruction *ToI, 4710 ScheduleData *PrevLoadStore, 4711 ScheduleData *NextLoadStore) { 4712 ScheduleData *CurrentLoadStore = PrevLoadStore; 4713 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4714 ScheduleData *SD = ScheduleDataMap[I]; 4715 if (!SD) { 4716 SD = allocateScheduleDataChunks(); 4717 ScheduleDataMap[I] = SD; 4718 SD->Inst = I; 4719 } 4720 assert(!isInSchedulingRegion(SD) && 4721 "new ScheduleData already in scheduling region"); 4722 SD->init(SchedulingRegionID, I); 4723 4724 if (I->mayReadOrWriteMemory() && 4725 (!isa<IntrinsicInst>(I) || 4726 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4727 // Update the linked list of memory accessing instructions. 4728 if (CurrentLoadStore) { 4729 CurrentLoadStore->NextLoadStore = SD; 4730 } else { 4731 FirstLoadStoreInRegion = SD; 4732 } 4733 CurrentLoadStore = SD; 4734 } 4735 } 4736 if (NextLoadStore) { 4737 if (CurrentLoadStore) 4738 CurrentLoadStore->NextLoadStore = NextLoadStore; 4739 } else { 4740 LastLoadStoreInRegion = CurrentLoadStore; 4741 } 4742 } 4743 4744 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4745 bool InsertInReadyList, 4746 BoUpSLP *SLP) { 4747 assert(SD->isSchedulingEntity()); 4748 4749 SmallVector<ScheduleData *, 10> WorkList; 4750 WorkList.push_back(SD); 4751 4752 while (!WorkList.empty()) { 4753 ScheduleData *SD = WorkList.back(); 4754 WorkList.pop_back(); 4755 4756 ScheduleData *BundleMember = SD; 4757 while (BundleMember) { 4758 assert(isInSchedulingRegion(BundleMember)); 4759 if (!BundleMember->hasValidDependencies()) { 4760 4761 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4762 << "\n"); 4763 BundleMember->Dependencies = 0; 4764 BundleMember->resetUnscheduledDeps(); 4765 4766 // Handle def-use chain dependencies. 4767 if (BundleMember->OpValue != BundleMember->Inst) { 4768 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4769 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4770 BundleMember->Dependencies++; 4771 ScheduleData *DestBundle = UseSD->FirstInBundle; 4772 if (!DestBundle->IsScheduled) 4773 BundleMember->incrementUnscheduledDeps(1); 4774 if (!DestBundle->hasValidDependencies()) 4775 WorkList.push_back(DestBundle); 4776 } 4777 } else { 4778 for (User *U : BundleMember->Inst->users()) { 4779 if (isa<Instruction>(U)) { 4780 ScheduleData *UseSD = getScheduleData(U); 4781 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4782 BundleMember->Dependencies++; 4783 ScheduleData *DestBundle = UseSD->FirstInBundle; 4784 if (!DestBundle->IsScheduled) 4785 BundleMember->incrementUnscheduledDeps(1); 4786 if (!DestBundle->hasValidDependencies()) 4787 WorkList.push_back(DestBundle); 4788 } 4789 } else { 4790 // I'm not sure if this can ever happen. But we need to be safe. 4791 // This lets the instruction/bundle never be scheduled and 4792 // eventually disable vectorization. 4793 BundleMember->Dependencies++; 4794 BundleMember->incrementUnscheduledDeps(1); 4795 } 4796 } 4797 } 4798 4799 // Handle the memory dependencies. 4800 ScheduleData *DepDest = BundleMember->NextLoadStore; 4801 if (DepDest) { 4802 Instruction *SrcInst = BundleMember->Inst; 4803 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4804 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4805 unsigned numAliased = 0; 4806 unsigned DistToSrc = 1; 4807 4808 while (DepDest) { 4809 assert(isInSchedulingRegion(DepDest)); 4810 4811 // We have two limits to reduce the complexity: 4812 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4813 // SLP->isAliased (which is the expensive part in this loop). 4814 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4815 // the whole loop (even if the loop is fast, it's quadratic). 4816 // It's important for the loop break condition (see below) to 4817 // check this limit even between two read-only instructions. 4818 if (DistToSrc >= MaxMemDepDistance || 4819 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4820 (numAliased >= AliasedCheckLimit || 4821 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4822 4823 // We increment the counter only if the locations are aliased 4824 // (instead of counting all alias checks). This gives a better 4825 // balance between reduced runtime and accurate dependencies. 4826 numAliased++; 4827 4828 DepDest->MemoryDependencies.push_back(BundleMember); 4829 BundleMember->Dependencies++; 4830 ScheduleData *DestBundle = DepDest->FirstInBundle; 4831 if (!DestBundle->IsScheduled) { 4832 BundleMember->incrementUnscheduledDeps(1); 4833 } 4834 if (!DestBundle->hasValidDependencies()) { 4835 WorkList.push_back(DestBundle); 4836 } 4837 } 4838 DepDest = DepDest->NextLoadStore; 4839 4840 // Example, explaining the loop break condition: Let's assume our 4841 // starting instruction is i0 and MaxMemDepDistance = 3. 4842 // 4843 // +--------v--v--v 4844 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4845 // +--------^--^--^ 4846 // 4847 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4848 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4849 // Previously we already added dependencies from i3 to i6,i7,i8 4850 // (because of MaxMemDepDistance). As we added a dependency from 4851 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4852 // and we can abort this loop at i6. 4853 if (DistToSrc >= 2 * MaxMemDepDistance) 4854 break; 4855 DistToSrc++; 4856 } 4857 } 4858 } 4859 BundleMember = BundleMember->NextInBundle; 4860 } 4861 if (InsertInReadyList && SD->isReady()) { 4862 ReadyInsts.push_back(SD); 4863 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4864 << "\n"); 4865 } 4866 } 4867 } 4868 4869 void BoUpSLP::BlockScheduling::resetSchedule() { 4870 assert(ScheduleStart && 4871 "tried to reset schedule on block which has not been scheduled"); 4872 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4873 doForAllOpcodes(I, [&](ScheduleData *SD) { 4874 assert(isInSchedulingRegion(SD) && 4875 "ScheduleData not in scheduling region"); 4876 SD->IsScheduled = false; 4877 SD->resetUnscheduledDeps(); 4878 }); 4879 } 4880 ReadyInsts.clear(); 4881 } 4882 4883 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4884 if (!BS->ScheduleStart) 4885 return; 4886 4887 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4888 4889 BS->resetSchedule(); 4890 4891 // For the real scheduling we use a more sophisticated ready-list: it is 4892 // sorted by the original instruction location. This lets the final schedule 4893 // be as close as possible to the original instruction order. 4894 struct ScheduleDataCompare { 4895 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4896 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4897 } 4898 }; 4899 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4900 4901 // Ensure that all dependency data is updated and fill the ready-list with 4902 // initial instructions. 4903 int Idx = 0; 4904 int NumToSchedule = 0; 4905 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4906 I = I->getNextNode()) { 4907 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4908 assert(SD->isPartOfBundle() == 4909 (getTreeEntry(SD->Inst) != nullptr) && 4910 "scheduler and vectorizer bundle mismatch"); 4911 SD->FirstInBundle->SchedulingPriority = Idx++; 4912 if (SD->isSchedulingEntity()) { 4913 BS->calculateDependencies(SD, false, this); 4914 NumToSchedule++; 4915 } 4916 }); 4917 } 4918 BS->initialFillReadyList(ReadyInsts); 4919 4920 Instruction *LastScheduledInst = BS->ScheduleEnd; 4921 4922 // Do the "real" scheduling. 4923 while (!ReadyInsts.empty()) { 4924 ScheduleData *picked = *ReadyInsts.begin(); 4925 ReadyInsts.erase(ReadyInsts.begin()); 4926 4927 // Move the scheduled instruction(s) to their dedicated places, if not 4928 // there yet. 4929 ScheduleData *BundleMember = picked; 4930 while (BundleMember) { 4931 Instruction *pickedInst = BundleMember->Inst; 4932 if (LastScheduledInst->getNextNode() != pickedInst) { 4933 BS->BB->getInstList().remove(pickedInst); 4934 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4935 pickedInst); 4936 } 4937 LastScheduledInst = pickedInst; 4938 BundleMember = BundleMember->NextInBundle; 4939 } 4940 4941 BS->schedule(picked, ReadyInsts); 4942 NumToSchedule--; 4943 } 4944 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4945 4946 // Avoid duplicate scheduling of the block. 4947 BS->ScheduleStart = nullptr; 4948 } 4949 4950 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4951 // If V is a store, just return the width of the stored value without 4952 // traversing the expression tree. This is the common case. 4953 if (auto *Store = dyn_cast<StoreInst>(V)) 4954 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4955 4956 // If V is not a store, we can traverse the expression tree to find loads 4957 // that feed it. The type of the loaded value may indicate a more suitable 4958 // width than V's type. We want to base the vector element size on the width 4959 // of memory operations where possible. 4960 SmallVector<Instruction *, 16> Worklist; 4961 SmallPtrSet<Instruction *, 16> Visited; 4962 if (auto *I = dyn_cast<Instruction>(V)) 4963 Worklist.push_back(I); 4964 4965 // Traverse the expression tree in bottom-up order looking for loads. If we 4966 // encounter an instruction we don't yet handle, we give up. 4967 auto MaxWidth = 0u; 4968 auto FoundUnknownInst = false; 4969 while (!Worklist.empty() && !FoundUnknownInst) { 4970 auto *I = Worklist.pop_back_val(); 4971 Visited.insert(I); 4972 4973 // We should only be looking at scalar instructions here. If the current 4974 // instruction has a vector type, give up. 4975 auto *Ty = I->getType(); 4976 if (isa<VectorType>(Ty)) 4977 FoundUnknownInst = true; 4978 4979 // If the current instruction is a load, update MaxWidth to reflect the 4980 // width of the loaded value. 4981 else if (isa<LoadInst>(I)) 4982 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4983 4984 // Otherwise, we need to visit the operands of the instruction. We only 4985 // handle the interesting cases from buildTree here. If an operand is an 4986 // instruction we haven't yet visited, we add it to the worklist. 4987 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4988 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4989 for (Use &U : I->operands()) 4990 if (auto *J = dyn_cast<Instruction>(U.get())) 4991 if (!Visited.count(J)) 4992 Worklist.push_back(J); 4993 } 4994 4995 // If we don't yet handle the instruction, give up. 4996 else 4997 FoundUnknownInst = true; 4998 } 4999 5000 // If we didn't encounter a memory access in the expression tree, or if we 5001 // gave up for some reason, just return the width of V. 5002 if (!MaxWidth || FoundUnknownInst) 5003 return DL->getTypeSizeInBits(V->getType()); 5004 5005 // Otherwise, return the maximum width we found. 5006 return MaxWidth; 5007 } 5008 5009 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5010 // smaller type with a truncation. We collect the values that will be demoted 5011 // in ToDemote and additional roots that require investigating in Roots. 5012 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5013 SmallVectorImpl<Value *> &ToDemote, 5014 SmallVectorImpl<Value *> &Roots) { 5015 // We can always demote constants. 5016 if (isa<Constant>(V)) { 5017 ToDemote.push_back(V); 5018 return true; 5019 } 5020 5021 // If the value is not an instruction in the expression with only one use, it 5022 // cannot be demoted. 5023 auto *I = dyn_cast<Instruction>(V); 5024 if (!I || !I->hasOneUse() || !Expr.count(I)) 5025 return false; 5026 5027 switch (I->getOpcode()) { 5028 5029 // We can always demote truncations and extensions. Since truncations can 5030 // seed additional demotion, we save the truncated value. 5031 case Instruction::Trunc: 5032 Roots.push_back(I->getOperand(0)); 5033 break; 5034 case Instruction::ZExt: 5035 case Instruction::SExt: 5036 break; 5037 5038 // We can demote certain binary operations if we can demote both of their 5039 // operands. 5040 case Instruction::Add: 5041 case Instruction::Sub: 5042 case Instruction::Mul: 5043 case Instruction::And: 5044 case Instruction::Or: 5045 case Instruction::Xor: 5046 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5047 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5048 return false; 5049 break; 5050 5051 // We can demote selects if we can demote their true and false values. 5052 case Instruction::Select: { 5053 SelectInst *SI = cast<SelectInst>(I); 5054 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5055 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5056 return false; 5057 break; 5058 } 5059 5060 // We can demote phis if we can demote all their incoming operands. Note that 5061 // we don't need to worry about cycles since we ensure single use above. 5062 case Instruction::PHI: { 5063 PHINode *PN = cast<PHINode>(I); 5064 for (Value *IncValue : PN->incoming_values()) 5065 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5066 return false; 5067 break; 5068 } 5069 5070 // Otherwise, conservatively give up. 5071 default: 5072 return false; 5073 } 5074 5075 // Record the value that we can demote. 5076 ToDemote.push_back(V); 5077 return true; 5078 } 5079 5080 void BoUpSLP::computeMinimumValueSizes() { 5081 // If there are no external uses, the expression tree must be rooted by a 5082 // store. We can't demote in-memory values, so there is nothing to do here. 5083 if (ExternalUses.empty()) 5084 return; 5085 5086 // We only attempt to truncate integer expressions. 5087 auto &TreeRoot = VectorizableTree[0]->Scalars; 5088 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5089 if (!TreeRootIT) 5090 return; 5091 5092 // If the expression is not rooted by a store, these roots should have 5093 // external uses. We will rely on InstCombine to rewrite the expression in 5094 // the narrower type. However, InstCombine only rewrites single-use values. 5095 // This means that if a tree entry other than a root is used externally, it 5096 // must have multiple uses and InstCombine will not rewrite it. The code 5097 // below ensures that only the roots are used externally. 5098 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5099 for (auto &EU : ExternalUses) 5100 if (!Expr.erase(EU.Scalar)) 5101 return; 5102 if (!Expr.empty()) 5103 return; 5104 5105 // Collect the scalar values of the vectorizable expression. We will use this 5106 // context to determine which values can be demoted. If we see a truncation, 5107 // we mark it as seeding another demotion. 5108 for (auto &EntryPtr : VectorizableTree) 5109 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5110 5111 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5112 // have a single external user that is not in the vectorizable tree. 5113 for (auto *Root : TreeRoot) 5114 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5115 return; 5116 5117 // Conservatively determine if we can actually truncate the roots of the 5118 // expression. Collect the values that can be demoted in ToDemote and 5119 // additional roots that require investigating in Roots. 5120 SmallVector<Value *, 32> ToDemote; 5121 SmallVector<Value *, 4> Roots; 5122 for (auto *Root : TreeRoot) 5123 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5124 return; 5125 5126 // The maximum bit width required to represent all the values that can be 5127 // demoted without loss of precision. It would be safe to truncate the roots 5128 // of the expression to this width. 5129 auto MaxBitWidth = 8u; 5130 5131 // We first check if all the bits of the roots are demanded. If they're not, 5132 // we can truncate the roots to this narrower type. 5133 for (auto *Root : TreeRoot) { 5134 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5135 MaxBitWidth = std::max<unsigned>( 5136 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5137 } 5138 5139 // True if the roots can be zero-extended back to their original type, rather 5140 // than sign-extended. We know that if the leading bits are not demanded, we 5141 // can safely zero-extend. So we initialize IsKnownPositive to True. 5142 bool IsKnownPositive = true; 5143 5144 // If all the bits of the roots are demanded, we can try a little harder to 5145 // compute a narrower type. This can happen, for example, if the roots are 5146 // getelementptr indices. InstCombine promotes these indices to the pointer 5147 // width. Thus, all their bits are technically demanded even though the 5148 // address computation might be vectorized in a smaller type. 5149 // 5150 // We start by looking at each entry that can be demoted. We compute the 5151 // maximum bit width required to store the scalar by using ValueTracking to 5152 // compute the number of high-order bits we can truncate. 5153 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5154 llvm::all_of(TreeRoot, [](Value *R) { 5155 assert(R->hasOneUse() && "Root should have only one use!"); 5156 return isa<GetElementPtrInst>(R->user_back()); 5157 })) { 5158 MaxBitWidth = 8u; 5159 5160 // Determine if the sign bit of all the roots is known to be zero. If not, 5161 // IsKnownPositive is set to False. 5162 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5163 KnownBits Known = computeKnownBits(R, *DL); 5164 return Known.isNonNegative(); 5165 }); 5166 5167 // Determine the maximum number of bits required to store the scalar 5168 // values. 5169 for (auto *Scalar : ToDemote) { 5170 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5171 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5172 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5173 } 5174 5175 // If we can't prove that the sign bit is zero, we must add one to the 5176 // maximum bit width to account for the unknown sign bit. This preserves 5177 // the existing sign bit so we can safely sign-extend the root back to the 5178 // original type. Otherwise, if we know the sign bit is zero, we will 5179 // zero-extend the root instead. 5180 // 5181 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5182 // one to the maximum bit width will yield a larger-than-necessary 5183 // type. In general, we need to add an extra bit only if we can't 5184 // prove that the upper bit of the original type is equal to the 5185 // upper bit of the proposed smaller type. If these two bits are the 5186 // same (either zero or one) we know that sign-extending from the 5187 // smaller type will result in the same value. Here, since we can't 5188 // yet prove this, we are just making the proposed smaller type 5189 // larger to ensure correctness. 5190 if (!IsKnownPositive) 5191 ++MaxBitWidth; 5192 } 5193 5194 // Round MaxBitWidth up to the next power-of-two. 5195 if (!isPowerOf2_64(MaxBitWidth)) 5196 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5197 5198 // If the maximum bit width we compute is less than the with of the roots' 5199 // type, we can proceed with the narrowing. Otherwise, do nothing. 5200 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5201 return; 5202 5203 // If we can truncate the root, we must collect additional values that might 5204 // be demoted as a result. That is, those seeded by truncations we will 5205 // modify. 5206 while (!Roots.empty()) 5207 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5208 5209 // Finally, map the values we can demote to the maximum bit with we computed. 5210 for (auto *Scalar : ToDemote) 5211 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5212 } 5213 5214 namespace { 5215 5216 /// The SLPVectorizer Pass. 5217 struct SLPVectorizer : public FunctionPass { 5218 SLPVectorizerPass Impl; 5219 5220 /// Pass identification, replacement for typeid 5221 static char ID; 5222 5223 explicit SLPVectorizer() : FunctionPass(ID) { 5224 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5225 } 5226 5227 bool doInitialization(Module &M) override { 5228 return false; 5229 } 5230 5231 bool runOnFunction(Function &F) override { 5232 if (skipFunction(F)) 5233 return false; 5234 5235 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5236 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5237 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5238 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5239 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5240 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5241 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5242 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5243 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5244 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5245 5246 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5247 } 5248 5249 void getAnalysisUsage(AnalysisUsage &AU) const override { 5250 FunctionPass::getAnalysisUsage(AU); 5251 AU.addRequired<AssumptionCacheTracker>(); 5252 AU.addRequired<ScalarEvolutionWrapperPass>(); 5253 AU.addRequired<AAResultsWrapperPass>(); 5254 AU.addRequired<TargetTransformInfoWrapperPass>(); 5255 AU.addRequired<LoopInfoWrapperPass>(); 5256 AU.addRequired<DominatorTreeWrapperPass>(); 5257 AU.addRequired<DemandedBitsWrapperPass>(); 5258 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5259 AU.addPreserved<LoopInfoWrapperPass>(); 5260 AU.addPreserved<DominatorTreeWrapperPass>(); 5261 AU.addPreserved<AAResultsWrapperPass>(); 5262 AU.addPreserved<GlobalsAAWrapperPass>(); 5263 AU.setPreservesCFG(); 5264 } 5265 }; 5266 5267 } // end anonymous namespace 5268 5269 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5270 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5271 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5272 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5273 auto *AA = &AM.getResult<AAManager>(F); 5274 auto *LI = &AM.getResult<LoopAnalysis>(F); 5275 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5276 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5277 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5278 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5279 5280 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5281 if (!Changed) 5282 return PreservedAnalyses::all(); 5283 5284 PreservedAnalyses PA; 5285 PA.preserveSet<CFGAnalyses>(); 5286 PA.preserve<AAManager>(); 5287 PA.preserve<GlobalsAA>(); 5288 return PA; 5289 } 5290 5291 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5292 TargetTransformInfo *TTI_, 5293 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5294 LoopInfo *LI_, DominatorTree *DT_, 5295 AssumptionCache *AC_, DemandedBits *DB_, 5296 OptimizationRemarkEmitter *ORE_) { 5297 SE = SE_; 5298 TTI = TTI_; 5299 TLI = TLI_; 5300 AA = AA_; 5301 LI = LI_; 5302 DT = DT_; 5303 AC = AC_; 5304 DB = DB_; 5305 DL = &F.getParent()->getDataLayout(); 5306 5307 Stores.clear(); 5308 GEPs.clear(); 5309 bool Changed = false; 5310 5311 // If the target claims to have no vector registers don't attempt 5312 // vectorization. 5313 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5314 return false; 5315 5316 // Don't vectorize when the attribute NoImplicitFloat is used. 5317 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5318 return false; 5319 5320 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5321 5322 // Use the bottom up slp vectorizer to construct chains that start with 5323 // store instructions. 5324 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5325 5326 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5327 // delete instructions. 5328 5329 // Scan the blocks in the function in post order. 5330 for (auto BB : post_order(&F.getEntryBlock())) { 5331 collectSeedInstructions(BB); 5332 5333 // Vectorize trees that end at stores. 5334 if (!Stores.empty()) { 5335 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5336 << " underlying objects.\n"); 5337 Changed |= vectorizeStoreChains(R); 5338 } 5339 5340 // Vectorize trees that end at reductions. 5341 Changed |= vectorizeChainsInBlock(BB, R); 5342 5343 // Vectorize the index computations of getelementptr instructions. This 5344 // is primarily intended to catch gather-like idioms ending at 5345 // non-consecutive loads. 5346 if (!GEPs.empty()) { 5347 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5348 << " underlying objects.\n"); 5349 Changed |= vectorizeGEPIndices(BB, R); 5350 } 5351 } 5352 5353 if (Changed) { 5354 R.optimizeGatherSequence(); 5355 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5356 LLVM_DEBUG(verifyFunction(F)); 5357 } 5358 return Changed; 5359 } 5360 5361 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5362 unsigned VecRegSize) { 5363 const unsigned ChainLen = Chain.size(); 5364 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5365 << "\n"); 5366 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5367 const unsigned VF = VecRegSize / Sz; 5368 5369 if (!isPowerOf2_32(Sz) || VF < 2) 5370 return false; 5371 5372 bool Changed = false; 5373 // Look for profitable vectorizable trees at all offsets, starting at zero. 5374 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5375 5376 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5377 // Check that a previous iteration of this loop did not delete the Value. 5378 if (llvm::any_of(Operands, [&R](Value *V) { 5379 auto *I = dyn_cast<Instruction>(V); 5380 return I && R.isDeleted(I); 5381 })) 5382 continue; 5383 5384 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5385 << "\n"); 5386 5387 R.buildTree(Operands); 5388 if (R.isTreeTinyAndNotFullyVectorizable()) 5389 continue; 5390 5391 R.computeMinimumValueSizes(); 5392 5393 int Cost = R.getTreeCost(); 5394 5395 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5396 << "\n"); 5397 if (Cost < -SLPCostThreshold) { 5398 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5399 5400 using namespace ore; 5401 5402 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5403 cast<StoreInst>(Chain[i])) 5404 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5405 << " and with tree size " 5406 << NV("TreeSize", R.getTreeSize())); 5407 5408 R.vectorizeTree(); 5409 5410 // Move to the next bundle. 5411 i += VF - 1; 5412 Changed = true; 5413 } 5414 } 5415 5416 return Changed; 5417 } 5418 5419 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5420 BoUpSLP &R) { 5421 SetVector<StoreInst *> Heads; 5422 SmallDenseSet<StoreInst *> Tails; 5423 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5424 5425 // We may run into multiple chains that merge into a single chain. We mark the 5426 // stores that we vectorized so that we don't visit the same store twice. 5427 BoUpSLP::ValueSet VectorizedStores; 5428 bool Changed = false; 5429 5430 auto &&FindConsecutiveAccess = 5431 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5432 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5433 return false; 5434 5435 Tails.insert(Stores[Idx]); 5436 Heads.insert(Stores[K]); 5437 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5438 return true; 5439 }; 5440 5441 // Do a quadratic search on all of the given stores in reverse order and find 5442 // all of the pairs of stores that follow each other. 5443 int E = Stores.size(); 5444 for (int Idx = E - 1; Idx >= 0; --Idx) { 5445 // If a store has multiple consecutive store candidates, search according 5446 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5447 // This is because usually pairing with immediate succeeding or preceding 5448 // candidate create the best chance to find slp vectorization opportunity. 5449 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5450 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5451 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5452 break; 5453 } 5454 5455 // For stores that start but don't end a link in the chain: 5456 for (auto *SI : llvm::reverse(Heads)) { 5457 if (Tails.count(SI)) 5458 continue; 5459 5460 // We found a store instr that starts a chain. Now follow the chain and try 5461 // to vectorize it. 5462 BoUpSLP::ValueList Operands; 5463 StoreInst *I = SI; 5464 // Collect the chain into a list. 5465 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5466 Operands.push_back(I); 5467 // Move to the next value in the chain. 5468 I = ConsecutiveChain[I]; 5469 } 5470 5471 // FIXME: Is division-by-2 the correct step? Should we assert that the 5472 // register size is a power-of-2? 5473 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5474 Size /= 2) { 5475 if (vectorizeStoreChain(Operands, R, Size)) { 5476 // Mark the vectorized stores so that we don't vectorize them again. 5477 VectorizedStores.insert(Operands.begin(), Operands.end()); 5478 Changed = true; 5479 break; 5480 } 5481 } 5482 } 5483 5484 return Changed; 5485 } 5486 5487 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5488 // Initialize the collections. We will make a single pass over the block. 5489 Stores.clear(); 5490 GEPs.clear(); 5491 5492 // Visit the store and getelementptr instructions in BB and organize them in 5493 // Stores and GEPs according to the underlying objects of their pointer 5494 // operands. 5495 for (Instruction &I : *BB) { 5496 // Ignore store instructions that are volatile or have a pointer operand 5497 // that doesn't point to a scalar type. 5498 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5499 if (!SI->isSimple()) 5500 continue; 5501 if (!isValidElementType(SI->getValueOperand()->getType())) 5502 continue; 5503 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5504 } 5505 5506 // Ignore getelementptr instructions that have more than one index, a 5507 // constant index, or a pointer operand that doesn't point to a scalar 5508 // type. 5509 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5510 auto Idx = GEP->idx_begin()->get(); 5511 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5512 continue; 5513 if (!isValidElementType(Idx->getType())) 5514 continue; 5515 if (GEP->getType()->isVectorTy()) 5516 continue; 5517 GEPs[GEP->getPointerOperand()].push_back(GEP); 5518 } 5519 } 5520 } 5521 5522 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5523 if (!A || !B) 5524 return false; 5525 Value *VL[] = { A, B }; 5526 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5527 } 5528 5529 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5530 int UserCost, bool AllowReorder) { 5531 if (VL.size() < 2) 5532 return false; 5533 5534 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5535 << VL.size() << ".\n"); 5536 5537 // Check that all of the parts are scalar instructions of the same type, 5538 // we permit an alternate opcode via InstructionsState. 5539 InstructionsState S = getSameOpcode(VL); 5540 if (!S.getOpcode()) 5541 return false; 5542 5543 Instruction *I0 = cast<Instruction>(S.OpValue); 5544 unsigned Sz = R.getVectorElementSize(I0); 5545 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5546 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5547 if (MaxVF < 2) { 5548 R.getORE()->emit([&]() { 5549 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5550 << "Cannot SLP vectorize list: vectorization factor " 5551 << "less than 2 is not supported"; 5552 }); 5553 return false; 5554 } 5555 5556 for (Value *V : VL) { 5557 Type *Ty = V->getType(); 5558 if (!isValidElementType(Ty)) { 5559 // NOTE: the following will give user internal llvm type name, which may 5560 // not be useful. 5561 R.getORE()->emit([&]() { 5562 std::string type_str; 5563 llvm::raw_string_ostream rso(type_str); 5564 Ty->print(rso); 5565 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5566 << "Cannot SLP vectorize list: type " 5567 << rso.str() + " is unsupported by vectorizer"; 5568 }); 5569 return false; 5570 } 5571 } 5572 5573 bool Changed = false; 5574 bool CandidateFound = false; 5575 int MinCost = SLPCostThreshold; 5576 5577 unsigned NextInst = 0, MaxInst = VL.size(); 5578 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5579 // No actual vectorization should happen, if number of parts is the same as 5580 // provided vectorization factor (i.e. the scalar type is used for vector 5581 // code during codegen). 5582 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5583 if (TTI->getNumberOfParts(VecTy) == VF) 5584 continue; 5585 for (unsigned I = NextInst; I < MaxInst; ++I) { 5586 unsigned OpsWidth = 0; 5587 5588 if (I + VF > MaxInst) 5589 OpsWidth = MaxInst - I; 5590 else 5591 OpsWidth = VF; 5592 5593 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5594 break; 5595 5596 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5597 // Check that a previous iteration of this loop did not delete the Value. 5598 if (llvm::any_of(Ops, [&R](Value *V) { 5599 auto *I = dyn_cast<Instruction>(V); 5600 return I && R.isDeleted(I); 5601 })) 5602 continue; 5603 5604 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5605 << "\n"); 5606 5607 R.buildTree(Ops); 5608 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5609 // TODO: check if we can allow reordering for more cases. 5610 if (AllowReorder && Order) { 5611 // TODO: reorder tree nodes without tree rebuilding. 5612 // Conceptually, there is nothing actually preventing us from trying to 5613 // reorder a larger list. In fact, we do exactly this when vectorizing 5614 // reductions. However, at this point, we only expect to get here when 5615 // there are exactly two operations. 5616 assert(Ops.size() == 2); 5617 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5618 R.buildTree(ReorderedOps, None); 5619 } 5620 if (R.isTreeTinyAndNotFullyVectorizable()) 5621 continue; 5622 5623 R.computeMinimumValueSizes(); 5624 int Cost = R.getTreeCost() - UserCost; 5625 CandidateFound = true; 5626 MinCost = std::min(MinCost, Cost); 5627 5628 if (Cost < -SLPCostThreshold) { 5629 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5630 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5631 cast<Instruction>(Ops[0])) 5632 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5633 << " and with tree size " 5634 << ore::NV("TreeSize", R.getTreeSize())); 5635 5636 R.vectorizeTree(); 5637 // Move to the next bundle. 5638 I += VF - 1; 5639 NextInst = I + 1; 5640 Changed = true; 5641 } 5642 } 5643 } 5644 5645 if (!Changed && CandidateFound) { 5646 R.getORE()->emit([&]() { 5647 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5648 << "List vectorization was possible but not beneficial with cost " 5649 << ore::NV("Cost", MinCost) << " >= " 5650 << ore::NV("Treshold", -SLPCostThreshold); 5651 }); 5652 } else if (!Changed) { 5653 R.getORE()->emit([&]() { 5654 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5655 << "Cannot SLP vectorize list: vectorization was impossible" 5656 << " with available vectorization factors"; 5657 }); 5658 } 5659 return Changed; 5660 } 5661 5662 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5663 if (!I) 5664 return false; 5665 5666 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5667 return false; 5668 5669 Value *P = I->getParent(); 5670 5671 // Vectorize in current basic block only. 5672 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5673 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5674 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5675 return false; 5676 5677 // Try to vectorize V. 5678 if (tryToVectorizePair(Op0, Op1, R)) 5679 return true; 5680 5681 auto *A = dyn_cast<BinaryOperator>(Op0); 5682 auto *B = dyn_cast<BinaryOperator>(Op1); 5683 // Try to skip B. 5684 if (B && B->hasOneUse()) { 5685 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5686 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5687 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5688 return true; 5689 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5690 return true; 5691 } 5692 5693 // Try to skip A. 5694 if (A && A->hasOneUse()) { 5695 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5696 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5697 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5698 return true; 5699 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5700 return true; 5701 } 5702 return false; 5703 } 5704 5705 /// Generate a shuffle mask to be used in a reduction tree. 5706 /// 5707 /// \param VecLen The length of the vector to be reduced. 5708 /// \param NumEltsToRdx The number of elements that should be reduced in the 5709 /// vector. 5710 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5711 /// reduction. A pairwise reduction will generate a mask of 5712 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5713 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5714 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5715 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5716 bool IsPairwise, bool IsLeft, 5717 IRBuilder<> &Builder) { 5718 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5719 5720 SmallVector<Constant *, 32> ShuffleMask( 5721 VecLen, UndefValue::get(Builder.getInt32Ty())); 5722 5723 if (IsPairwise) 5724 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5725 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5726 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5727 else 5728 // Move the upper half of the vector to the lower half. 5729 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5730 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5731 5732 return ConstantVector::get(ShuffleMask); 5733 } 5734 5735 namespace { 5736 5737 /// Model horizontal reductions. 5738 /// 5739 /// A horizontal reduction is a tree of reduction operations (currently add and 5740 /// fadd) that has operations that can be put into a vector as its leaf. 5741 /// For example, this tree: 5742 /// 5743 /// mul mul mul mul 5744 /// \ / \ / 5745 /// + + 5746 /// \ / 5747 /// + 5748 /// This tree has "mul" as its reduced values and "+" as its reduction 5749 /// operations. A reduction might be feeding into a store or a binary operation 5750 /// feeding a phi. 5751 /// ... 5752 /// \ / 5753 /// + 5754 /// | 5755 /// phi += 5756 /// 5757 /// Or: 5758 /// ... 5759 /// \ / 5760 /// + 5761 /// | 5762 /// *p = 5763 /// 5764 class HorizontalReduction { 5765 using ReductionOpsType = SmallVector<Value *, 16>; 5766 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5767 ReductionOpsListType ReductionOps; 5768 SmallVector<Value *, 32> ReducedVals; 5769 // Use map vector to make stable output. 5770 MapVector<Instruction *, Value *> ExtraArgs; 5771 5772 /// Kind of the reduction data. 5773 enum ReductionKind { 5774 RK_None, /// Not a reduction. 5775 RK_Arithmetic, /// Binary reduction data. 5776 RK_Min, /// Minimum reduction data. 5777 RK_UMin, /// Unsigned minimum reduction data. 5778 RK_Max, /// Maximum reduction data. 5779 RK_UMax, /// Unsigned maximum reduction data. 5780 }; 5781 5782 /// Contains info about operation, like its opcode, left and right operands. 5783 class OperationData { 5784 /// Opcode of the instruction. 5785 unsigned Opcode = 0; 5786 5787 /// Left operand of the reduction operation. 5788 Value *LHS = nullptr; 5789 5790 /// Right operand of the reduction operation. 5791 Value *RHS = nullptr; 5792 5793 /// Kind of the reduction operation. 5794 ReductionKind Kind = RK_None; 5795 5796 /// True if float point min/max reduction has no NaNs. 5797 bool NoNaN = false; 5798 5799 /// Checks if the reduction operation can be vectorized. 5800 bool isVectorizable() const { 5801 return LHS && RHS && 5802 // We currently only support add/mul/logical && min/max reductions. 5803 ((Kind == RK_Arithmetic && 5804 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5805 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5806 Opcode == Instruction::And || Opcode == Instruction::Or || 5807 Opcode == Instruction::Xor)) || 5808 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5809 (Kind == RK_Min || Kind == RK_Max)) || 5810 (Opcode == Instruction::ICmp && 5811 (Kind == RK_UMin || Kind == RK_UMax))); 5812 } 5813 5814 /// Creates reduction operation with the current opcode. 5815 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5816 assert(isVectorizable() && 5817 "Expected add|fadd or min/max reduction operation."); 5818 Value *Cmp = nullptr; 5819 switch (Kind) { 5820 case RK_Arithmetic: 5821 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5822 Name); 5823 case RK_Min: 5824 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5825 : Builder.CreateFCmpOLT(LHS, RHS); 5826 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5827 case RK_Max: 5828 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5829 : Builder.CreateFCmpOGT(LHS, RHS); 5830 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5831 case RK_UMin: 5832 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5833 Cmp = Builder.CreateICmpULT(LHS, RHS); 5834 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5835 case RK_UMax: 5836 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5837 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5838 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5839 case RK_None: 5840 break; 5841 } 5842 llvm_unreachable("Unknown reduction operation."); 5843 } 5844 5845 public: 5846 explicit OperationData() = default; 5847 5848 /// Construction for reduced values. They are identified by opcode only and 5849 /// don't have associated LHS/RHS values. 5850 explicit OperationData(Value *V) { 5851 if (auto *I = dyn_cast<Instruction>(V)) 5852 Opcode = I->getOpcode(); 5853 } 5854 5855 /// Constructor for reduction operations with opcode and its left and 5856 /// right operands. 5857 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5858 bool NoNaN = false) 5859 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5860 assert(Kind != RK_None && "One of the reduction operations is expected."); 5861 } 5862 5863 explicit operator bool() const { return Opcode; } 5864 5865 /// Get the index of the first operand. 5866 unsigned getFirstOperandIndex() const { 5867 assert(!!*this && "The opcode is not set."); 5868 switch (Kind) { 5869 case RK_Min: 5870 case RK_UMin: 5871 case RK_Max: 5872 case RK_UMax: 5873 return 1; 5874 case RK_Arithmetic: 5875 case RK_None: 5876 break; 5877 } 5878 return 0; 5879 } 5880 5881 /// Total number of operands in the reduction operation. 5882 unsigned getNumberOfOperands() const { 5883 assert(Kind != RK_None && !!*this && LHS && RHS && 5884 "Expected reduction operation."); 5885 switch (Kind) { 5886 case RK_Arithmetic: 5887 return 2; 5888 case RK_Min: 5889 case RK_UMin: 5890 case RK_Max: 5891 case RK_UMax: 5892 return 3; 5893 case RK_None: 5894 break; 5895 } 5896 llvm_unreachable("Reduction kind is not set"); 5897 } 5898 5899 /// Checks if the operation has the same parent as \p P. 5900 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5901 assert(Kind != RK_None && !!*this && LHS && RHS && 5902 "Expected reduction operation."); 5903 if (!IsRedOp) 5904 return I->getParent() == P; 5905 switch (Kind) { 5906 case RK_Arithmetic: 5907 // Arithmetic reduction operation must be used once only. 5908 return I->getParent() == P; 5909 case RK_Min: 5910 case RK_UMin: 5911 case RK_Max: 5912 case RK_UMax: { 5913 // SelectInst must be used twice while the condition op must have single 5914 // use only. 5915 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5916 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5917 } 5918 case RK_None: 5919 break; 5920 } 5921 llvm_unreachable("Reduction kind is not set"); 5922 } 5923 /// Expected number of uses for reduction operations/reduced values. 5924 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5925 assert(Kind != RK_None && !!*this && LHS && RHS && 5926 "Expected reduction operation."); 5927 switch (Kind) { 5928 case RK_Arithmetic: 5929 return I->hasOneUse(); 5930 case RK_Min: 5931 case RK_UMin: 5932 case RK_Max: 5933 case RK_UMax: 5934 return I->hasNUses(2) && 5935 (!IsReductionOp || 5936 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5937 case RK_None: 5938 break; 5939 } 5940 llvm_unreachable("Reduction kind is not set"); 5941 } 5942 5943 /// Initializes the list of reduction operations. 5944 void initReductionOps(ReductionOpsListType &ReductionOps) { 5945 assert(Kind != RK_None && !!*this && LHS && RHS && 5946 "Expected reduction operation."); 5947 switch (Kind) { 5948 case RK_Arithmetic: 5949 ReductionOps.assign(1, ReductionOpsType()); 5950 break; 5951 case RK_Min: 5952 case RK_UMin: 5953 case RK_Max: 5954 case RK_UMax: 5955 ReductionOps.assign(2, ReductionOpsType()); 5956 break; 5957 case RK_None: 5958 llvm_unreachable("Reduction kind is not set"); 5959 } 5960 } 5961 /// Add all reduction operations for the reduction instruction \p I. 5962 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5963 assert(Kind != RK_None && !!*this && LHS && RHS && 5964 "Expected reduction operation."); 5965 switch (Kind) { 5966 case RK_Arithmetic: 5967 ReductionOps[0].emplace_back(I); 5968 break; 5969 case RK_Min: 5970 case RK_UMin: 5971 case RK_Max: 5972 case RK_UMax: 5973 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5974 ReductionOps[1].emplace_back(I); 5975 break; 5976 case RK_None: 5977 llvm_unreachable("Reduction kind is not set"); 5978 } 5979 } 5980 5981 /// Checks if instruction is associative and can be vectorized. 5982 bool isAssociative(Instruction *I) const { 5983 assert(Kind != RK_None && *this && LHS && RHS && 5984 "Expected reduction operation."); 5985 switch (Kind) { 5986 case RK_Arithmetic: 5987 return I->isAssociative(); 5988 case RK_Min: 5989 case RK_Max: 5990 return Opcode == Instruction::ICmp || 5991 cast<Instruction>(I->getOperand(0))->isFast(); 5992 case RK_UMin: 5993 case RK_UMax: 5994 assert(Opcode == Instruction::ICmp && 5995 "Only integer compare operation is expected."); 5996 return true; 5997 case RK_None: 5998 break; 5999 } 6000 llvm_unreachable("Reduction kind is not set"); 6001 } 6002 6003 /// Checks if the reduction operation can be vectorized. 6004 bool isVectorizable(Instruction *I) const { 6005 return isVectorizable() && isAssociative(I); 6006 } 6007 6008 /// Checks if two operation data are both a reduction op or both a reduced 6009 /// value. 6010 bool operator==(const OperationData &OD) { 6011 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6012 "One of the comparing operations is incorrect."); 6013 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6014 } 6015 bool operator!=(const OperationData &OD) { return !(*this == OD); } 6016 void clear() { 6017 Opcode = 0; 6018 LHS = nullptr; 6019 RHS = nullptr; 6020 Kind = RK_None; 6021 NoNaN = false; 6022 } 6023 6024 /// Get the opcode of the reduction operation. 6025 unsigned getOpcode() const { 6026 assert(isVectorizable() && "Expected vectorizable operation."); 6027 return Opcode; 6028 } 6029 6030 /// Get kind of reduction data. 6031 ReductionKind getKind() const { return Kind; } 6032 Value *getLHS() const { return LHS; } 6033 Value *getRHS() const { return RHS; } 6034 Type *getConditionType() const { 6035 switch (Kind) { 6036 case RK_Arithmetic: 6037 return nullptr; 6038 case RK_Min: 6039 case RK_Max: 6040 case RK_UMin: 6041 case RK_UMax: 6042 return CmpInst::makeCmpResultType(LHS->getType()); 6043 case RK_None: 6044 break; 6045 } 6046 llvm_unreachable("Reduction kind is not set"); 6047 } 6048 6049 /// Creates reduction operation with the current opcode with the IR flags 6050 /// from \p ReductionOps. 6051 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6052 const ReductionOpsListType &ReductionOps) const { 6053 assert(isVectorizable() && 6054 "Expected add|fadd or min/max reduction operation."); 6055 auto *Op = createOp(Builder, Name); 6056 switch (Kind) { 6057 case RK_Arithmetic: 6058 propagateIRFlags(Op, ReductionOps[0]); 6059 return Op; 6060 case RK_Min: 6061 case RK_Max: 6062 case RK_UMin: 6063 case RK_UMax: 6064 if (auto *SI = dyn_cast<SelectInst>(Op)) 6065 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6066 propagateIRFlags(Op, ReductionOps[1]); 6067 return Op; 6068 case RK_None: 6069 break; 6070 } 6071 llvm_unreachable("Unknown reduction operation."); 6072 } 6073 /// Creates reduction operation with the current opcode with the IR flags 6074 /// from \p I. 6075 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6076 Instruction *I) const { 6077 assert(isVectorizable() && 6078 "Expected add|fadd or min/max reduction operation."); 6079 auto *Op = createOp(Builder, Name); 6080 switch (Kind) { 6081 case RK_Arithmetic: 6082 propagateIRFlags(Op, I); 6083 return Op; 6084 case RK_Min: 6085 case RK_Max: 6086 case RK_UMin: 6087 case RK_UMax: 6088 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6089 propagateIRFlags(SI->getCondition(), 6090 cast<SelectInst>(I)->getCondition()); 6091 } 6092 propagateIRFlags(Op, I); 6093 return Op; 6094 case RK_None: 6095 break; 6096 } 6097 llvm_unreachable("Unknown reduction operation."); 6098 } 6099 6100 TargetTransformInfo::ReductionFlags getFlags() const { 6101 TargetTransformInfo::ReductionFlags Flags; 6102 Flags.NoNaN = NoNaN; 6103 switch (Kind) { 6104 case RK_Arithmetic: 6105 break; 6106 case RK_Min: 6107 Flags.IsSigned = Opcode == Instruction::ICmp; 6108 Flags.IsMaxOp = false; 6109 break; 6110 case RK_Max: 6111 Flags.IsSigned = Opcode == Instruction::ICmp; 6112 Flags.IsMaxOp = true; 6113 break; 6114 case RK_UMin: 6115 Flags.IsSigned = false; 6116 Flags.IsMaxOp = false; 6117 break; 6118 case RK_UMax: 6119 Flags.IsSigned = false; 6120 Flags.IsMaxOp = true; 6121 break; 6122 case RK_None: 6123 llvm_unreachable("Reduction kind is not set"); 6124 } 6125 return Flags; 6126 } 6127 }; 6128 6129 WeakTrackingVH ReductionRoot; 6130 6131 /// The operation data of the reduction operation. 6132 OperationData ReductionData; 6133 6134 /// The operation data of the values we perform a reduction on. 6135 OperationData ReducedValueData; 6136 6137 /// Should we model this reduction as a pairwise reduction tree or a tree that 6138 /// splits the vector in halves and adds those halves. 6139 bool IsPairwiseReduction = false; 6140 6141 /// Checks if the ParentStackElem.first should be marked as a reduction 6142 /// operation with an extra argument or as extra argument itself. 6143 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6144 Value *ExtraArg) { 6145 if (ExtraArgs.count(ParentStackElem.first)) { 6146 ExtraArgs[ParentStackElem.first] = nullptr; 6147 // We ran into something like: 6148 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6149 // The whole ParentStackElem.first should be considered as an extra value 6150 // in this case. 6151 // Do not perform analysis of remaining operands of ParentStackElem.first 6152 // instruction, this whole instruction is an extra argument. 6153 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6154 } else { 6155 // We ran into something like: 6156 // ParentStackElem.first += ... + ExtraArg + ... 6157 ExtraArgs[ParentStackElem.first] = ExtraArg; 6158 } 6159 } 6160 6161 static OperationData getOperationData(Value *V) { 6162 if (!V) 6163 return OperationData(); 6164 6165 Value *LHS; 6166 Value *RHS; 6167 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6168 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6169 RK_Arithmetic); 6170 } 6171 if (auto *Select = dyn_cast<SelectInst>(V)) { 6172 // Look for a min/max pattern. 6173 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6174 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6175 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6176 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6177 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6178 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6179 return OperationData( 6180 Instruction::FCmp, LHS, RHS, RK_Min, 6181 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6182 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6183 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6184 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6185 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6186 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6187 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6188 return OperationData( 6189 Instruction::FCmp, LHS, RHS, RK_Max, 6190 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6191 } else { 6192 // Try harder: look for min/max pattern based on instructions producing 6193 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6194 // During the intermediate stages of SLP, it's very common to have 6195 // pattern like this (since optimizeGatherSequence is run only once 6196 // at the end): 6197 // %1 = extractelement <2 x i32> %a, i32 0 6198 // %2 = extractelement <2 x i32> %a, i32 1 6199 // %cond = icmp sgt i32 %1, %2 6200 // %3 = extractelement <2 x i32> %a, i32 0 6201 // %4 = extractelement <2 x i32> %a, i32 1 6202 // %select = select i1 %cond, i32 %3, i32 %4 6203 CmpInst::Predicate Pred; 6204 Instruction *L1; 6205 Instruction *L2; 6206 6207 LHS = Select->getTrueValue(); 6208 RHS = Select->getFalseValue(); 6209 Value *Cond = Select->getCondition(); 6210 6211 // TODO: Support inverse predicates. 6212 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6213 if (!isa<ExtractElementInst>(RHS) || 6214 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6215 return OperationData(V); 6216 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6217 if (!isa<ExtractElementInst>(LHS) || 6218 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6219 return OperationData(V); 6220 } else { 6221 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6222 return OperationData(V); 6223 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6224 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6225 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6226 return OperationData(V); 6227 } 6228 switch (Pred) { 6229 default: 6230 return OperationData(V); 6231 6232 case CmpInst::ICMP_ULT: 6233 case CmpInst::ICMP_ULE: 6234 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6235 6236 case CmpInst::ICMP_SLT: 6237 case CmpInst::ICMP_SLE: 6238 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6239 6240 case CmpInst::FCMP_OLT: 6241 case CmpInst::FCMP_OLE: 6242 case CmpInst::FCMP_ULT: 6243 case CmpInst::FCMP_ULE: 6244 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6245 cast<Instruction>(Cond)->hasNoNaNs()); 6246 6247 case CmpInst::ICMP_UGT: 6248 case CmpInst::ICMP_UGE: 6249 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6250 6251 case CmpInst::ICMP_SGT: 6252 case CmpInst::ICMP_SGE: 6253 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6254 6255 case CmpInst::FCMP_OGT: 6256 case CmpInst::FCMP_OGE: 6257 case CmpInst::FCMP_UGT: 6258 case CmpInst::FCMP_UGE: 6259 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6260 cast<Instruction>(Cond)->hasNoNaNs()); 6261 } 6262 } 6263 } 6264 return OperationData(V); 6265 } 6266 6267 public: 6268 HorizontalReduction() = default; 6269 6270 /// Try to find a reduction tree. 6271 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6272 assert((!Phi || is_contained(Phi->operands(), B)) && 6273 "Thi phi needs to use the binary operator"); 6274 6275 ReductionData = getOperationData(B); 6276 6277 // We could have a initial reductions that is not an add. 6278 // r *= v1 + v2 + v3 + v4 6279 // In such a case start looking for a tree rooted in the first '+'. 6280 if (Phi) { 6281 if (ReductionData.getLHS() == Phi) { 6282 Phi = nullptr; 6283 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6284 ReductionData = getOperationData(B); 6285 } else if (ReductionData.getRHS() == Phi) { 6286 Phi = nullptr; 6287 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6288 ReductionData = getOperationData(B); 6289 } 6290 } 6291 6292 if (!ReductionData.isVectorizable(B)) 6293 return false; 6294 6295 Type *Ty = B->getType(); 6296 if (!isValidElementType(Ty)) 6297 return false; 6298 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6299 return false; 6300 6301 ReducedValueData.clear(); 6302 ReductionRoot = B; 6303 6304 // Post order traverse the reduction tree starting at B. We only handle true 6305 // trees containing only binary operators. 6306 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6307 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6308 ReductionData.initReductionOps(ReductionOps); 6309 while (!Stack.empty()) { 6310 Instruction *TreeN = Stack.back().first; 6311 unsigned EdgeToVist = Stack.back().second++; 6312 OperationData OpData = getOperationData(TreeN); 6313 bool IsReducedValue = OpData != ReductionData; 6314 6315 // Postorder vist. 6316 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6317 if (IsReducedValue) 6318 ReducedVals.push_back(TreeN); 6319 else { 6320 auto I = ExtraArgs.find(TreeN); 6321 if (I != ExtraArgs.end() && !I->second) { 6322 // Check if TreeN is an extra argument of its parent operation. 6323 if (Stack.size() <= 1) { 6324 // TreeN can't be an extra argument as it is a root reduction 6325 // operation. 6326 return false; 6327 } 6328 // Yes, TreeN is an extra argument, do not add it to a list of 6329 // reduction operations. 6330 // Stack[Stack.size() - 2] always points to the parent operation. 6331 markExtraArg(Stack[Stack.size() - 2], TreeN); 6332 ExtraArgs.erase(TreeN); 6333 } else 6334 ReductionData.addReductionOps(TreeN, ReductionOps); 6335 } 6336 // Retract. 6337 Stack.pop_back(); 6338 continue; 6339 } 6340 6341 // Visit left or right. 6342 Value *NextV = TreeN->getOperand(EdgeToVist); 6343 if (NextV != Phi) { 6344 auto *I = dyn_cast<Instruction>(NextV); 6345 OpData = getOperationData(I); 6346 // Continue analysis if the next operand is a reduction operation or 6347 // (possibly) a reduced value. If the reduced value opcode is not set, 6348 // the first met operation != reduction operation is considered as the 6349 // reduced value class. 6350 if (I && (!ReducedValueData || OpData == ReducedValueData || 6351 OpData == ReductionData)) { 6352 const bool IsReductionOperation = OpData == ReductionData; 6353 // Only handle trees in the current basic block. 6354 if (!ReductionData.hasSameParent(I, B->getParent(), 6355 IsReductionOperation)) { 6356 // I is an extra argument for TreeN (its parent operation). 6357 markExtraArg(Stack.back(), I); 6358 continue; 6359 } 6360 6361 // Each tree node needs to have minimal number of users except for the 6362 // ultimate reduction. 6363 if (!ReductionData.hasRequiredNumberOfUses(I, 6364 OpData == ReductionData) && 6365 I != B) { 6366 // I is an extra argument for TreeN (its parent operation). 6367 markExtraArg(Stack.back(), I); 6368 continue; 6369 } 6370 6371 if (IsReductionOperation) { 6372 // We need to be able to reassociate the reduction operations. 6373 if (!OpData.isAssociative(I)) { 6374 // I is an extra argument for TreeN (its parent operation). 6375 markExtraArg(Stack.back(), I); 6376 continue; 6377 } 6378 } else if (ReducedValueData && 6379 ReducedValueData != OpData) { 6380 // Make sure that the opcodes of the operations that we are going to 6381 // reduce match. 6382 // I is an extra argument for TreeN (its parent operation). 6383 markExtraArg(Stack.back(), I); 6384 continue; 6385 } else if (!ReducedValueData) 6386 ReducedValueData = OpData; 6387 6388 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6389 continue; 6390 } 6391 } 6392 // NextV is an extra argument for TreeN (its parent operation). 6393 markExtraArg(Stack.back(), NextV); 6394 } 6395 return true; 6396 } 6397 6398 /// Attempt to vectorize the tree found by 6399 /// matchAssociativeReduction. 6400 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI, bool Try2WayRdx) { 6401 if (ReducedVals.empty()) 6402 return false; 6403 6404 // If there is a sufficient number of reduction values, reduce 6405 // to a nearby power-of-2. Can safely generate oversized 6406 // vectors and rely on the backend to split them to legal sizes. 6407 unsigned NumReducedVals = ReducedVals.size(); 6408 if (Try2WayRdx && NumReducedVals != 2) 6409 return false; 6410 unsigned MinRdxVals = Try2WayRdx ? 2 : 4; 6411 if (NumReducedVals < MinRdxVals) 6412 return false; 6413 6414 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6415 unsigned MinRdxWidth = Log2_32(MinRdxVals); 6416 Value *VectorizedTree = nullptr; 6417 6418 // FIXME: Fast-math-flags should be set based on the instructions in the 6419 // reduction (not all of 'fast' are required). 6420 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6421 FastMathFlags Unsafe; 6422 Unsafe.setFast(); 6423 Builder.setFastMathFlags(Unsafe); 6424 unsigned i = 0; 6425 6426 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6427 // The same extra argument may be used several time, so log each attempt 6428 // to use it. 6429 for (auto &Pair : ExtraArgs) { 6430 assert(Pair.first && "DebugLoc must be set."); 6431 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6432 } 6433 // The reduction root is used as the insertion point for new instructions, 6434 // so set it as externally used to prevent it from being deleted. 6435 ExternallyUsedValues[ReductionRoot]; 6436 SmallVector<Value *, 16> IgnoreList; 6437 for (auto &V : ReductionOps) 6438 IgnoreList.append(V.begin(), V.end()); 6439 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > MinRdxWidth) { 6440 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6441 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6442 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6443 // TODO: Handle orders of size less than number of elements in the vector. 6444 if (Order && Order->size() == VL.size()) { 6445 // TODO: reorder tree nodes without tree rebuilding. 6446 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6447 llvm::transform(*Order, ReorderedOps.begin(), 6448 [VL](const unsigned Idx) { return VL[Idx]; }); 6449 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6450 } 6451 if (V.isTreeTinyAndNotFullyVectorizable()) 6452 break; 6453 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6454 break; 6455 6456 V.computeMinimumValueSizes(); 6457 6458 // Estimate cost. 6459 int TreeCost = V.getTreeCost(); 6460 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6461 int Cost = TreeCost + ReductionCost; 6462 if (Cost >= -SLPCostThreshold) { 6463 V.getORE()->emit([&]() { 6464 return OptimizationRemarkMissed( 6465 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6466 << "Vectorizing horizontal reduction is possible" 6467 << "but not beneficial with cost " 6468 << ore::NV("Cost", Cost) << " and threshold " 6469 << ore::NV("Threshold", -SLPCostThreshold); 6470 }); 6471 break; 6472 } 6473 6474 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6475 << Cost << ". (HorRdx)\n"); 6476 V.getORE()->emit([&]() { 6477 return OptimizationRemark( 6478 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6479 << "Vectorized horizontal reduction with cost " 6480 << ore::NV("Cost", Cost) << " and with tree size " 6481 << ore::NV("TreeSize", V.getTreeSize()); 6482 }); 6483 6484 // Vectorize a tree. 6485 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6486 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6487 6488 // Emit a reduction. 6489 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6490 Value *ReducedSubTree = 6491 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6492 if (VectorizedTree) { 6493 Builder.SetCurrentDebugLocation(Loc); 6494 OperationData VectReductionData(ReductionData.getOpcode(), 6495 VectorizedTree, ReducedSubTree, 6496 ReductionData.getKind()); 6497 VectorizedTree = 6498 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6499 } else 6500 VectorizedTree = ReducedSubTree; 6501 i += ReduxWidth; 6502 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6503 } 6504 6505 if (VectorizedTree) { 6506 // Finish the reduction. 6507 for (; i < NumReducedVals; ++i) { 6508 auto *I = cast<Instruction>(ReducedVals[i]); 6509 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6510 OperationData VectReductionData(ReductionData.getOpcode(), 6511 VectorizedTree, I, 6512 ReductionData.getKind()); 6513 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6514 } 6515 for (auto &Pair : ExternallyUsedValues) { 6516 // Add each externally used value to the final reduction. 6517 for (auto *I : Pair.second) { 6518 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6519 OperationData VectReductionData(ReductionData.getOpcode(), 6520 VectorizedTree, Pair.first, 6521 ReductionData.getKind()); 6522 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6523 } 6524 } 6525 // Update users. 6526 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6527 // Mark all scalar reduction ops for deletion, they are replaced by the 6528 // vector reductions. 6529 V.eraseInstructions(IgnoreList); 6530 } 6531 return VectorizedTree != nullptr; 6532 } 6533 6534 unsigned numReductionValues() const { 6535 return ReducedVals.size(); 6536 } 6537 6538 private: 6539 /// Calculate the cost of a reduction. 6540 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6541 unsigned ReduxWidth) { 6542 Type *ScalarTy = FirstReducedVal->getType(); 6543 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6544 6545 int PairwiseRdxCost; 6546 int SplittingRdxCost; 6547 switch (ReductionData.getKind()) { 6548 case RK_Arithmetic: 6549 PairwiseRdxCost = 6550 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6551 /*IsPairwiseForm=*/true); 6552 SplittingRdxCost = 6553 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6554 /*IsPairwiseForm=*/false); 6555 break; 6556 case RK_Min: 6557 case RK_Max: 6558 case RK_UMin: 6559 case RK_UMax: { 6560 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6561 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6562 ReductionData.getKind() == RK_UMax; 6563 PairwiseRdxCost = 6564 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6565 /*IsPairwiseForm=*/true, IsUnsigned); 6566 SplittingRdxCost = 6567 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6568 /*IsPairwiseForm=*/false, IsUnsigned); 6569 break; 6570 } 6571 case RK_None: 6572 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6573 } 6574 6575 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6576 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6577 6578 int ScalarReduxCost = 0; 6579 switch (ReductionData.getKind()) { 6580 case RK_Arithmetic: 6581 ScalarReduxCost = 6582 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6583 break; 6584 case RK_Min: 6585 case RK_Max: 6586 case RK_UMin: 6587 case RK_UMax: 6588 ScalarReduxCost = 6589 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6590 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6591 CmpInst::makeCmpResultType(ScalarTy)); 6592 break; 6593 case RK_None: 6594 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6595 } 6596 ScalarReduxCost *= (ReduxWidth - 1); 6597 6598 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6599 << " for reduction that starts with " << *FirstReducedVal 6600 << " (It is a " 6601 << (IsPairwiseReduction ? "pairwise" : "splitting") 6602 << " reduction)\n"); 6603 6604 return VecReduxCost - ScalarReduxCost; 6605 } 6606 6607 /// Emit a horizontal reduction of the vectorized value. 6608 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6609 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6610 assert(VectorizedValue && "Need to have a vectorized tree node"); 6611 assert(isPowerOf2_32(ReduxWidth) && 6612 "We only handle power-of-two reductions for now"); 6613 6614 if (!IsPairwiseReduction) { 6615 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6616 // to 'fast'. 6617 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6618 return createSimpleTargetReduction( 6619 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6620 ReductionData.getFlags(), ReductionOps.back()); 6621 } 6622 6623 Value *TmpVec = VectorizedValue; 6624 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6625 Value *LeftMask = 6626 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6627 Value *RightMask = 6628 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6629 6630 Value *LeftShuf = Builder.CreateShuffleVector( 6631 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6632 Value *RightShuf = Builder.CreateShuffleVector( 6633 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6634 "rdx.shuf.r"); 6635 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6636 RightShuf, ReductionData.getKind()); 6637 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6638 } 6639 6640 // The result is in the first element of the vector. 6641 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6642 } 6643 }; 6644 6645 } // end anonymous namespace 6646 6647 /// Recognize construction of vectors like 6648 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6649 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6650 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6651 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6652 /// starting from the last insertelement instruction. 6653 /// 6654 /// Returns true if it matches 6655 static bool findBuildVector(InsertElementInst *LastInsertElem, 6656 TargetTransformInfo *TTI, 6657 SmallVectorImpl<Value *> &BuildVectorOpds, 6658 int &UserCost) { 6659 UserCost = 0; 6660 Value *V = nullptr; 6661 do { 6662 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6663 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6664 LastInsertElem->getType(), 6665 CI->getZExtValue()); 6666 } 6667 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6668 V = LastInsertElem->getOperand(0); 6669 if (isa<UndefValue>(V)) 6670 break; 6671 LastInsertElem = dyn_cast<InsertElementInst>(V); 6672 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6673 return false; 6674 } while (true); 6675 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6676 return true; 6677 } 6678 6679 /// Like findBuildVector, but looks for construction of aggregate. 6680 /// 6681 /// \return true if it matches. 6682 static bool findBuildAggregate(InsertValueInst *IV, 6683 SmallVectorImpl<Value *> &BuildVectorOpds) { 6684 do { 6685 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6686 Value *V = IV->getAggregateOperand(); 6687 if (isa<UndefValue>(V)) 6688 break; 6689 IV = dyn_cast<InsertValueInst>(V); 6690 if (!IV || !IV->hasOneUse()) 6691 return false; 6692 } while (true); 6693 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6694 return true; 6695 } 6696 6697 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6698 return V->getType() < V2->getType(); 6699 } 6700 6701 /// Try and get a reduction value from a phi node. 6702 /// 6703 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6704 /// if they come from either \p ParentBB or a containing loop latch. 6705 /// 6706 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6707 /// if not possible. 6708 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6709 BasicBlock *ParentBB, LoopInfo *LI) { 6710 // There are situations where the reduction value is not dominated by the 6711 // reduction phi. Vectorizing such cases has been reported to cause 6712 // miscompiles. See PR25787. 6713 auto DominatedReduxValue = [&](Value *R) { 6714 return isa<Instruction>(R) && 6715 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6716 }; 6717 6718 Value *Rdx = nullptr; 6719 6720 // Return the incoming value if it comes from the same BB as the phi node. 6721 if (P->getIncomingBlock(0) == ParentBB) { 6722 Rdx = P->getIncomingValue(0); 6723 } else if (P->getIncomingBlock(1) == ParentBB) { 6724 Rdx = P->getIncomingValue(1); 6725 } 6726 6727 if (Rdx && DominatedReduxValue(Rdx)) 6728 return Rdx; 6729 6730 // Otherwise, check whether we have a loop latch to look at. 6731 Loop *BBL = LI->getLoopFor(ParentBB); 6732 if (!BBL) 6733 return nullptr; 6734 BasicBlock *BBLatch = BBL->getLoopLatch(); 6735 if (!BBLatch) 6736 return nullptr; 6737 6738 // There is a loop latch, return the incoming value if it comes from 6739 // that. This reduction pattern occasionally turns up. 6740 if (P->getIncomingBlock(0) == BBLatch) { 6741 Rdx = P->getIncomingValue(0); 6742 } else if (P->getIncomingBlock(1) == BBLatch) { 6743 Rdx = P->getIncomingValue(1); 6744 } 6745 6746 if (Rdx && DominatedReduxValue(Rdx)) 6747 return Rdx; 6748 6749 return nullptr; 6750 } 6751 6752 /// Attempt to reduce a horizontal reduction. 6753 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6754 /// with reduction operators \a Root (or one of its operands) in a basic block 6755 /// \a BB, then check if it can be done. If horizontal reduction is not found 6756 /// and root instruction is a binary operation, vectorization of the operands is 6757 /// attempted. 6758 /// \returns true if a horizontal reduction was matched and reduced or operands 6759 /// of one of the binary instruction were vectorized. 6760 /// \returns false if a horizontal reduction was not matched (or not possible) 6761 /// or no vectorization of any binary operation feeding \a Root instruction was 6762 /// performed. 6763 static bool tryToVectorizeHorReductionOrInstOperands( 6764 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6765 TargetTransformInfo *TTI, bool Try2WayRdx, 6766 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6767 if (!ShouldVectorizeHor) 6768 return false; 6769 6770 if (!Root) 6771 return false; 6772 6773 if (Root->getParent() != BB || isa<PHINode>(Root)) 6774 return false; 6775 // Start analysis starting from Root instruction. If horizontal reduction is 6776 // found, try to vectorize it. If it is not a horizontal reduction or 6777 // vectorization is not possible or not effective, and currently analyzed 6778 // instruction is a binary operation, try to vectorize the operands, using 6779 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6780 // the same procedure considering each operand as a possible root of the 6781 // horizontal reduction. 6782 // Interrupt the process if the Root instruction itself was vectorized or all 6783 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6784 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 6785 SmallPtrSet<Value *, 8> VisitedInstrs; 6786 bool Res = false; 6787 while (!Stack.empty()) { 6788 Instruction *Inst; 6789 unsigned Level; 6790 std::tie(Inst, Level) = Stack.pop_back_val(); 6791 auto *BI = dyn_cast<BinaryOperator>(Inst); 6792 auto *SI = dyn_cast<SelectInst>(Inst); 6793 if (BI || SI) { 6794 HorizontalReduction HorRdx; 6795 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6796 if (HorRdx.tryToReduce(R, TTI, Try2WayRdx)) { 6797 Res = true; 6798 // Set P to nullptr to avoid re-analysis of phi node in 6799 // matchAssociativeReduction function unless this is the root node. 6800 P = nullptr; 6801 continue; 6802 } 6803 } 6804 if (P && BI) { 6805 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6806 if (Inst == P) 6807 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6808 if (!Inst) { 6809 // Set P to nullptr to avoid re-analysis of phi node in 6810 // matchAssociativeReduction function unless this is the root node. 6811 P = nullptr; 6812 continue; 6813 } 6814 } 6815 } 6816 // Set P to nullptr to avoid re-analysis of phi node in 6817 // matchAssociativeReduction function unless this is the root node. 6818 P = nullptr; 6819 if (Vectorize(Inst, R)) { 6820 Res = true; 6821 continue; 6822 } 6823 6824 // Try to vectorize operands. 6825 // Continue analysis for the instruction from the same basic block only to 6826 // save compile time. 6827 if (++Level < RecursionMaxDepth) 6828 for (auto *Op : Inst->operand_values()) 6829 if (VisitedInstrs.insert(Op).second) 6830 if (auto *I = dyn_cast<Instruction>(Op)) 6831 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 6832 Stack.emplace_back(I, Level); 6833 } 6834 return Res; 6835 } 6836 6837 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6838 BasicBlock *BB, BoUpSLP &R, 6839 TargetTransformInfo *TTI, 6840 bool Try2WayRdx) { 6841 if (!V) 6842 return false; 6843 auto *I = dyn_cast<Instruction>(V); 6844 if (!I) 6845 return false; 6846 6847 if (!isa<BinaryOperator>(I)) 6848 P = nullptr; 6849 // Try to match and vectorize a horizontal reduction. 6850 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6851 return tryToVectorize(I, R); 6852 }; 6853 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, Try2WayRdx, 6854 ExtraVectorization); 6855 } 6856 6857 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6858 BasicBlock *BB, BoUpSLP &R) { 6859 const DataLayout &DL = BB->getModule()->getDataLayout(); 6860 if (!R.canMapToVector(IVI->getType(), DL)) 6861 return false; 6862 6863 SmallVector<Value *, 16> BuildVectorOpds; 6864 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6865 return false; 6866 6867 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6868 // Aggregate value is unlikely to be processed in vector register, we need to 6869 // extract scalars into scalar registers, so NeedExtraction is set true. 6870 return tryToVectorizeList(BuildVectorOpds, R); 6871 } 6872 6873 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6874 BasicBlock *BB, BoUpSLP &R) { 6875 int UserCost; 6876 SmallVector<Value *, 16> BuildVectorOpds; 6877 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6878 (llvm::all_of(BuildVectorOpds, 6879 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6880 isShuffle(BuildVectorOpds))) 6881 return false; 6882 6883 // Vectorize starting with the build vector operands ignoring the BuildVector 6884 // instructions for the purpose of scheduling and user extraction. 6885 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6886 } 6887 6888 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6889 BoUpSLP &R) { 6890 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6891 return true; 6892 6893 bool OpsChanged = false; 6894 for (int Idx = 0; Idx < 2; ++Idx) { 6895 OpsChanged |= 6896 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6897 } 6898 return OpsChanged; 6899 } 6900 6901 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6902 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6903 bool OpsChanged = false; 6904 for (auto *I : reverse(Instructions)) { 6905 if (R.isDeleted(I)) 6906 continue; 6907 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6908 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6909 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6910 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6911 else if (auto *CI = dyn_cast<CmpInst>(I)) 6912 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6913 } 6914 Instructions.clear(); 6915 return OpsChanged; 6916 } 6917 6918 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6919 bool Changed = false; 6920 SmallVector<Value *, 4> Incoming; 6921 SmallPtrSet<Value *, 16> VisitedInstrs; 6922 6923 bool HaveVectorizedPhiNodes = true; 6924 while (HaveVectorizedPhiNodes) { 6925 HaveVectorizedPhiNodes = false; 6926 6927 // Collect the incoming values from the PHIs. 6928 Incoming.clear(); 6929 for (Instruction &I : *BB) { 6930 PHINode *P = dyn_cast<PHINode>(&I); 6931 if (!P) 6932 break; 6933 6934 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 6935 Incoming.push_back(P); 6936 } 6937 6938 // Sort by type. 6939 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6940 6941 // Try to vectorize elements base on their type. 6942 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6943 E = Incoming.end(); 6944 IncIt != E;) { 6945 6946 // Look for the next elements with the same type. 6947 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6948 while (SameTypeIt != E && 6949 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6950 VisitedInstrs.insert(*SameTypeIt); 6951 ++SameTypeIt; 6952 } 6953 6954 // Try to vectorize them. 6955 unsigned NumElts = (SameTypeIt - IncIt); 6956 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6957 << NumElts << ")\n"); 6958 // The order in which the phi nodes appear in the program does not matter. 6959 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6960 // is done when there are exactly two elements since tryToVectorizeList 6961 // asserts that there are only two values when AllowReorder is true. 6962 bool AllowReorder = NumElts == 2; 6963 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6964 /*UserCost=*/0, AllowReorder)) { 6965 // Success start over because instructions might have been changed. 6966 HaveVectorizedPhiNodes = true; 6967 Changed = true; 6968 break; 6969 } 6970 6971 // Start over at the next instruction of a different type (or the end). 6972 IncIt = SameTypeIt; 6973 } 6974 } 6975 6976 VisitedInstrs.clear(); 6977 6978 SmallVector<Instruction *, 8> PostProcessInstructions; 6979 SmallDenseSet<Instruction *, 4> KeyNodes; 6980 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6981 // Skip instructions marked for the deletion. 6982 if (R.isDeleted(&*it)) 6983 continue; 6984 // We may go through BB multiple times so skip the one we have checked. 6985 if (!VisitedInstrs.insert(&*it).second) { 6986 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6987 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6988 // We would like to start over since some instructions are deleted 6989 // and the iterator may become invalid value. 6990 Changed = true; 6991 it = BB->begin(); 6992 e = BB->end(); 6993 } 6994 continue; 6995 } 6996 6997 if (isa<DbgInfoIntrinsic>(it)) 6998 continue; 6999 7000 // Try to vectorize reductions that use PHINodes. 7001 if (PHINode *P = dyn_cast<PHINode>(it)) { 7002 // Check that the PHI is a reduction PHI. 7003 if (P->getNumIncomingValues() != 2) 7004 return Changed; 7005 7006 // Try to match and vectorize a horizontal reduction. 7007 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7008 TTI)) { 7009 Changed = true; 7010 it = BB->begin(); 7011 e = BB->end(); 7012 continue; 7013 } 7014 continue; 7015 } 7016 7017 // Ran into an instruction without users, like terminator, or function call 7018 // with ignored return value, store. Ignore unused instructions (basing on 7019 // instruction type, except for CallInst and InvokeInst). 7020 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7021 isa<InvokeInst>(it))) { 7022 KeyNodes.insert(&*it); 7023 bool OpsChanged = false; 7024 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7025 for (auto *V : it->operand_values()) { 7026 // Try to match and vectorize a horizontal reduction. 7027 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7028 } 7029 } 7030 // Start vectorization of post-process list of instructions from the 7031 // top-tree instructions to try to vectorize as many instructions as 7032 // possible. 7033 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7034 if (OpsChanged) { 7035 // We would like to start over since some instructions are deleted 7036 // and the iterator may become invalid value. 7037 Changed = true; 7038 it = BB->begin(); 7039 e = BB->end(); 7040 continue; 7041 } 7042 } 7043 7044 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7045 isa<InsertValueInst>(it)) 7046 PostProcessInstructions.push_back(&*it); 7047 } 7048 7049 // Make a final attempt to match a 2-way reduction if nothing else worked. 7050 // We do not try this above because it may interfere with other vectorization 7051 // attempts. 7052 // TODO: The constraints are copied from the above call to 7053 // vectorizeRootInstruction(), but that might be too restrictive? 7054 BasicBlock::iterator LastInst = --BB->end(); 7055 if (!Changed && LastInst->use_empty() && 7056 (LastInst->getType()->isVoidTy() || isa<CallInst>(LastInst) || 7057 isa<InvokeInst>(LastInst))) { 7058 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(LastInst)) { 7059 for (auto *V : LastInst->operand_values()) { 7060 Changed |= vectorizeRootInstruction(nullptr, V, BB, R, TTI, 7061 /* Try2WayRdx */ true); 7062 } 7063 } 7064 } 7065 7066 return Changed; 7067 } 7068 7069 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7070 auto Changed = false; 7071 for (auto &Entry : GEPs) { 7072 // If the getelementptr list has fewer than two elements, there's nothing 7073 // to do. 7074 if (Entry.second.size() < 2) 7075 continue; 7076 7077 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7078 << Entry.second.size() << ".\n"); 7079 7080 // Process the GEP list in chunks suitable for the target's supported 7081 // vector size. If a vector register can't hold 1 element, we are done. 7082 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7083 unsigned EltSize = R.getVectorElementSize(Entry.second[0]); 7084 if (MaxVecRegSize < EltSize) 7085 continue; 7086 7087 unsigned MaxElts = MaxVecRegSize / EltSize; 7088 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7089 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7090 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7091 7092 // Initialize a set a candidate getelementptrs. Note that we use a 7093 // SetVector here to preserve program order. If the index computations 7094 // are vectorizable and begin with loads, we want to minimize the chance 7095 // of having to reorder them later. 7096 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7097 7098 // Some of the candidates may have already been vectorized after we 7099 // initially collected them. If so, they are marked as deleted, so remove 7100 // them from the set of candidates. 7101 Candidates.remove_if( 7102 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7103 7104 // Remove from the set of candidates all pairs of getelementptrs with 7105 // constant differences. Such getelementptrs are likely not good 7106 // candidates for vectorization in a bottom-up phase since one can be 7107 // computed from the other. We also ensure all candidate getelementptr 7108 // indices are unique. 7109 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7110 auto *GEPI = GEPList[I]; 7111 if (!Candidates.count(GEPI)) 7112 continue; 7113 auto *SCEVI = SE->getSCEV(GEPList[I]); 7114 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7115 auto *GEPJ = GEPList[J]; 7116 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7117 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7118 Candidates.remove(GEPI); 7119 Candidates.remove(GEPJ); 7120 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7121 Candidates.remove(GEPJ); 7122 } 7123 } 7124 } 7125 7126 // We break out of the above computation as soon as we know there are 7127 // fewer than two candidates remaining. 7128 if (Candidates.size() < 2) 7129 continue; 7130 7131 // Add the single, non-constant index of each candidate to the bundle. We 7132 // ensured the indices met these constraints when we originally collected 7133 // the getelementptrs. 7134 SmallVector<Value *, 16> Bundle(Candidates.size()); 7135 auto BundleIndex = 0u; 7136 for (auto *V : Candidates) { 7137 auto *GEP = cast<GetElementPtrInst>(V); 7138 auto *GEPIdx = GEP->idx_begin()->get(); 7139 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7140 Bundle[BundleIndex++] = GEPIdx; 7141 } 7142 7143 // Try and vectorize the indices. We are currently only interested in 7144 // gather-like cases of the form: 7145 // 7146 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7147 // 7148 // where the loads of "a", the loads of "b", and the subtractions can be 7149 // performed in parallel. It's likely that detecting this pattern in a 7150 // bottom-up phase will be simpler and less costly than building a 7151 // full-blown top-down phase beginning at the consecutive loads. 7152 Changed |= tryToVectorizeList(Bundle, R); 7153 } 7154 } 7155 return Changed; 7156 } 7157 7158 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7159 bool Changed = false; 7160 // Attempt to sort and vectorize each of the store-groups. 7161 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7162 ++it) { 7163 if (it->second.size() < 2) 7164 continue; 7165 7166 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7167 << it->second.size() << ".\n"); 7168 7169 // Process the stores in chunks of 16. 7170 // TODO: The limit of 16 inhibits greater vectorization factors. 7171 // For example, AVX2 supports v32i8. Increasing this limit, however, 7172 // may cause a significant compile-time increase. 7173 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 7174 unsigned Len = std::min<unsigned>(CE - CI, 16); 7175 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 7176 } 7177 } 7178 return Changed; 7179 } 7180 7181 char SLPVectorizer::ID = 0; 7182 7183 static const char lv_name[] = "SLP Vectorizer"; 7184 7185 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7186 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7187 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7188 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7189 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7190 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7191 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7192 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7193 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7194 7195 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7196