1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 /// \returns analysis of the Instructions in \p VL described in 475 /// InstructionsState, the Opcode that we suppose the whole list 476 /// could be vectorized even if its structure is diverse. 477 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 478 unsigned BaseIndex = 0) { 479 // Make sure these are all Instructions. 480 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 481 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 482 483 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 484 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 485 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 486 unsigned AltOpcode = Opcode; 487 unsigned AltIndex = BaseIndex; 488 489 // Check for one alternate opcode from another BinaryOperator. 490 // TODO - generalize to support all operators (types, calls etc.). 491 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 492 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 493 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 494 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 495 continue; 496 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 497 isValidForAlternation(Opcode)) { 498 AltOpcode = InstOpcode; 499 AltIndex = Cnt; 500 continue; 501 } 502 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 503 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 504 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 505 if (Ty0 == Ty1) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode) { 509 assert(isValidForAlternation(Opcode) && 510 isValidForAlternation(InstOpcode) && 511 "Cast isn't safe for alternation, logic needs to be updated!"); 512 AltOpcode = InstOpcode; 513 AltIndex = Cnt; 514 continue; 515 } 516 } 517 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 520 } 521 522 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 523 cast<Instruction>(VL[AltIndex])); 524 } 525 526 /// \returns true if all of the values in \p VL have the same type or false 527 /// otherwise. 528 static bool allSameType(ArrayRef<Value *> VL) { 529 Type *Ty = VL[0]->getType(); 530 for (int i = 1, e = VL.size(); i < e; i++) 531 if (VL[i]->getType() != Ty) 532 return false; 533 534 return true; 535 } 536 537 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 538 static Optional<unsigned> getExtractIndex(Instruction *E) { 539 unsigned Opcode = E->getOpcode(); 540 assert((Opcode == Instruction::ExtractElement || 541 Opcode == Instruction::ExtractValue) && 542 "Expected extractelement or extractvalue instruction."); 543 if (Opcode == Instruction::ExtractElement) { 544 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 545 if (!CI) 546 return None; 547 return CI->getZExtValue(); 548 } 549 ExtractValueInst *EI = cast<ExtractValueInst>(E); 550 if (EI->getNumIndices() != 1) 551 return None; 552 return *EI->idx_begin(); 553 } 554 555 /// \returns True if in-tree use also needs extract. This refers to 556 /// possible scalar operand in vectorized instruction. 557 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 558 TargetLibraryInfo *TLI) { 559 unsigned Opcode = UserInst->getOpcode(); 560 switch (Opcode) { 561 case Instruction::Load: { 562 LoadInst *LI = cast<LoadInst>(UserInst); 563 return (LI->getPointerOperand() == Scalar); 564 } 565 case Instruction::Store: { 566 StoreInst *SI = cast<StoreInst>(UserInst); 567 return (SI->getPointerOperand() == Scalar); 568 } 569 case Instruction::Call: { 570 CallInst *CI = cast<CallInst>(UserInst); 571 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 572 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 573 if (hasVectorInstrinsicScalarOpd(ID, i)) 574 return (CI->getArgOperand(i) == Scalar); 575 } 576 LLVM_FALLTHROUGH; 577 } 578 default: 579 return false; 580 } 581 } 582 583 /// \returns the AA location that is being access by the instruction. 584 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 586 return MemoryLocation::get(SI); 587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 588 return MemoryLocation::get(LI); 589 return MemoryLocation(); 590 } 591 592 /// \returns True if the instruction is not a volatile or atomic load/store. 593 static bool isSimple(Instruction *I) { 594 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 595 return LI->isSimple(); 596 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 597 return SI->isSimple(); 598 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 599 return !MI->isVolatile(); 600 return true; 601 } 602 603 /// Shuffles \p Mask in accordance with the given \p SubMask. 604 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 605 if (SubMask.empty()) 606 return; 607 if (Mask.empty()) { 608 Mask.append(SubMask.begin(), SubMask.end()); 609 return; 610 } 611 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 612 int TermValue = std::min(Mask.size(), SubMask.size()); 613 for (int I = 0, E = SubMask.size(); I < E; ++I) { 614 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 615 Mask[SubMask[I]] >= TermValue) 616 continue; 617 NewMask[I] = Mask[SubMask[I]]; 618 } 619 Mask.swap(NewMask); 620 } 621 622 /// Order may have elements assigned special value (size) which is out of 623 /// bounds. Such indices only appear on places which correspond to undef values 624 /// (see canReuseExtract for details) and used in order to avoid undef values 625 /// have effect on operands ordering. 626 /// The first loop below simply finds all unused indices and then the next loop 627 /// nest assigns these indices for undef values positions. 628 /// As an example below Order has two undef positions and they have assigned 629 /// values 3 and 7 respectively: 630 /// before: 6 9 5 4 9 2 1 0 631 /// after: 6 3 5 4 7 2 1 0 632 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 633 const unsigned Sz = Order.size(); 634 SmallBitVector UnusedIndices(Sz, /*t=*/true); 635 SmallBitVector MaskedIndices(Sz); 636 for (unsigned I = 0; I < Sz; ++I) { 637 if (Order[I] < Sz) 638 UnusedIndices.reset(Order[I]); 639 else 640 MaskedIndices.set(I); 641 } 642 if (MaskedIndices.none()) 643 return; 644 assert(UnusedIndices.count() == MaskedIndices.count() && 645 "Non-synced masked/available indices."); 646 int Idx = UnusedIndices.find_first(); 647 int MIdx = MaskedIndices.find_first(); 648 while (MIdx >= 0) { 649 assert(Idx >= 0 && "Indices must be synced."); 650 Order[MIdx] = Idx; 651 Idx = UnusedIndices.find_next(Idx); 652 MIdx = MaskedIndices.find_next(MIdx); 653 } 654 } 655 656 namespace llvm { 657 658 static void inversePermutation(ArrayRef<unsigned> Indices, 659 SmallVectorImpl<int> &Mask) { 660 Mask.clear(); 661 const unsigned E = Indices.size(); 662 Mask.resize(E, UndefMaskElem); 663 for (unsigned I = 0; I < E; ++I) 664 Mask[Indices[I]] = I; 665 } 666 667 /// \returns inserting index of InsertElement or InsertValue instruction, 668 /// using Offset as base offset for index. 669 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 670 int Index = Offset; 671 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 672 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 673 auto *VT = cast<FixedVectorType>(IE->getType()); 674 if (CI->getValue().uge(VT->getNumElements())) 675 return UndefMaskElem; 676 Index *= VT->getNumElements(); 677 Index += CI->getZExtValue(); 678 return Index; 679 } 680 if (isa<UndefValue>(IE->getOperand(2))) 681 return UndefMaskElem; 682 return None; 683 } 684 685 auto *IV = cast<InsertValueInst>(InsertInst); 686 Type *CurrentType = IV->getType(); 687 for (unsigned I : IV->indices()) { 688 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 689 Index *= ST->getNumElements(); 690 CurrentType = ST->getElementType(I); 691 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 692 Index *= AT->getNumElements(); 693 CurrentType = AT->getElementType(); 694 } else { 695 return None; 696 } 697 Index += I; 698 } 699 return Index; 700 } 701 702 /// Reorders the list of scalars in accordance with the given \p Order and then 703 /// the \p Mask. \p Order - is the original order of the scalars, need to 704 /// reorder scalars into an unordered state at first according to the given 705 /// order. Then the ordered scalars are shuffled once again in accordance with 706 /// the provided mask. 707 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 708 ArrayRef<int> Mask) { 709 assert(!Mask.empty() && "Expected non-empty mask."); 710 SmallVector<Value *> Prev(Scalars.size(), 711 UndefValue::get(Scalars.front()->getType())); 712 Prev.swap(Scalars); 713 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 714 if (Mask[I] != UndefMaskElem) 715 Scalars[Mask[I]] = Prev[I]; 716 } 717 718 namespace slpvectorizer { 719 720 /// Bottom Up SLP Vectorizer. 721 class BoUpSLP { 722 struct TreeEntry; 723 struct ScheduleData; 724 725 public: 726 using ValueList = SmallVector<Value *, 8>; 727 using InstrList = SmallVector<Instruction *, 16>; 728 using ValueSet = SmallPtrSet<Value *, 16>; 729 using StoreList = SmallVector<StoreInst *, 8>; 730 using ExtraValueToDebugLocsMap = 731 MapVector<Value *, SmallVector<Instruction *, 2>>; 732 using OrdersType = SmallVector<unsigned, 4>; 733 734 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 735 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 736 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 737 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 738 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 739 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 740 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 741 // Use the vector register size specified by the target unless overridden 742 // by a command-line option. 743 // TODO: It would be better to limit the vectorization factor based on 744 // data type rather than just register size. For example, x86 AVX has 745 // 256-bit registers, but it does not support integer operations 746 // at that width (that requires AVX2). 747 if (MaxVectorRegSizeOption.getNumOccurrences()) 748 MaxVecRegSize = MaxVectorRegSizeOption; 749 else 750 MaxVecRegSize = 751 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 752 .getFixedSize(); 753 754 if (MinVectorRegSizeOption.getNumOccurrences()) 755 MinVecRegSize = MinVectorRegSizeOption; 756 else 757 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 758 } 759 760 /// Vectorize the tree that starts with the elements in \p VL. 761 /// Returns the vectorized root. 762 Value *vectorizeTree(); 763 764 /// Vectorize the tree but with the list of externally used values \p 765 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 766 /// generated extractvalue instructions. 767 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 768 769 /// \returns the cost incurred by unwanted spills and fills, caused by 770 /// holding live values over call sites. 771 InstructionCost getSpillCost() const; 772 773 /// \returns the vectorization cost of the subtree that starts at \p VL. 774 /// A negative number means that this is profitable. 775 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 776 777 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 778 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 779 void buildTree(ArrayRef<Value *> Roots, 780 ArrayRef<Value *> UserIgnoreLst = None); 781 782 /// Builds external uses of the vectorized scalars, i.e. the list of 783 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 784 /// ExternallyUsedValues contains additional list of external uses to handle 785 /// vectorization of reductions. 786 void 787 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 788 789 /// Clear the internal data structures that are created by 'buildTree'. 790 void deleteTree() { 791 VectorizableTree.clear(); 792 ScalarToTreeEntry.clear(); 793 MustGather.clear(); 794 ExternalUses.clear(); 795 for (auto &Iter : BlocksSchedules) { 796 BlockScheduling *BS = Iter.second.get(); 797 BS->clear(); 798 } 799 MinBWs.clear(); 800 InstrElementSize.clear(); 801 } 802 803 unsigned getTreeSize() const { return VectorizableTree.size(); } 804 805 /// Perform LICM and CSE on the newly generated gather sequences. 806 void optimizeGatherSequence(); 807 808 /// Checks if the specified gather tree entry \p TE can be represented as a 809 /// shuffled vector entry + (possibly) permutation with other gathers. It 810 /// implements the checks only for possibly ordered scalars (Loads, 811 /// ExtractElement, ExtractValue), which can be part of the graph. 812 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 813 814 /// Gets reordering data for the given tree entry. If the entry is vectorized 815 /// - just return ReorderIndices, otherwise check if the scalars can be 816 /// reordered and return the most optimal order. 817 /// \param TopToBottom If true, include the order of vectorized stores and 818 /// insertelement nodes, otherwise skip them. 819 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 820 821 /// Reorders the current graph to the most profitable order starting from the 822 /// root node to the leaf nodes. The best order is chosen only from the nodes 823 /// of the same size (vectorization factor). Smaller nodes are considered 824 /// parts of subgraph with smaller VF and they are reordered independently. We 825 /// can make it because we still need to extend smaller nodes to the wider VF 826 /// and we can merge reordering shuffles with the widening shuffles. 827 void reorderTopToBottom(); 828 829 /// Reorders the current graph to the most profitable order starting from 830 /// leaves to the root. It allows to rotate small subgraphs and reduce the 831 /// number of reshuffles if the leaf nodes use the same order. In this case we 832 /// can merge the orders and just shuffle user node instead of shuffling its 833 /// operands. Plus, even the leaf nodes have different orders, it allows to 834 /// sink reordering in the graph closer to the root node and merge it later 835 /// during analysis. 836 void reorderBottomToTop(bool IgnoreReorder = false); 837 838 /// \return The vector element size in bits to use when vectorizing the 839 /// expression tree ending at \p V. If V is a store, the size is the width of 840 /// the stored value. Otherwise, the size is the width of the largest loaded 841 /// value reaching V. This method is used by the vectorizer to calculate 842 /// vectorization factors. 843 unsigned getVectorElementSize(Value *V); 844 845 /// Compute the minimum type sizes required to represent the entries in a 846 /// vectorizable tree. 847 void computeMinimumValueSizes(); 848 849 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 850 unsigned getMaxVecRegSize() const { 851 return MaxVecRegSize; 852 } 853 854 // \returns minimum vector register size as set by cl::opt. 855 unsigned getMinVecRegSize() const { 856 return MinVecRegSize; 857 } 858 859 unsigned getMinVF(unsigned Sz) const { 860 return std::max(2U, getMinVecRegSize() / Sz); 861 } 862 863 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 864 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 865 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 866 return MaxVF ? MaxVF : UINT_MAX; 867 } 868 869 /// Check if homogeneous aggregate is isomorphic to some VectorType. 870 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 871 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 872 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 873 /// 874 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 875 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 876 877 /// \returns True if the VectorizableTree is both tiny and not fully 878 /// vectorizable. We do not vectorize such trees. 879 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 880 881 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 882 /// can be load combined in the backend. Load combining may not be allowed in 883 /// the IR optimizer, so we do not want to alter the pattern. For example, 884 /// partially transforming a scalar bswap() pattern into vector code is 885 /// effectively impossible for the backend to undo. 886 /// TODO: If load combining is allowed in the IR optimizer, this analysis 887 /// may not be necessary. 888 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 889 890 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 891 /// can be load combined in the backend. Load combining may not be allowed in 892 /// the IR optimizer, so we do not want to alter the pattern. For example, 893 /// partially transforming a scalar bswap() pattern into vector code is 894 /// effectively impossible for the backend to undo. 895 /// TODO: If load combining is allowed in the IR optimizer, this analysis 896 /// may not be necessary. 897 bool isLoadCombineCandidate() const; 898 899 OptimizationRemarkEmitter *getORE() { return ORE; } 900 901 /// This structure holds any data we need about the edges being traversed 902 /// during buildTree_rec(). We keep track of: 903 /// (i) the user TreeEntry index, and 904 /// (ii) the index of the edge. 905 struct EdgeInfo { 906 EdgeInfo() = default; 907 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 908 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 909 /// The user TreeEntry. 910 TreeEntry *UserTE = nullptr; 911 /// The operand index of the use. 912 unsigned EdgeIdx = UINT_MAX; 913 #ifndef NDEBUG 914 friend inline raw_ostream &operator<<(raw_ostream &OS, 915 const BoUpSLP::EdgeInfo &EI) { 916 EI.dump(OS); 917 return OS; 918 } 919 /// Debug print. 920 void dump(raw_ostream &OS) const { 921 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 922 << " EdgeIdx:" << EdgeIdx << "}"; 923 } 924 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 925 #endif 926 }; 927 928 /// A helper data structure to hold the operands of a vector of instructions. 929 /// This supports a fixed vector length for all operand vectors. 930 class VLOperands { 931 /// For each operand we need (i) the value, and (ii) the opcode that it 932 /// would be attached to if the expression was in a left-linearized form. 933 /// This is required to avoid illegal operand reordering. 934 /// For example: 935 /// \verbatim 936 /// 0 Op1 937 /// |/ 938 /// Op1 Op2 Linearized + Op2 939 /// \ / ----------> |/ 940 /// - - 941 /// 942 /// Op1 - Op2 (0 + Op1) - Op2 943 /// \endverbatim 944 /// 945 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 946 /// 947 /// Another way to think of this is to track all the operations across the 948 /// path from the operand all the way to the root of the tree and to 949 /// calculate the operation that corresponds to this path. For example, the 950 /// path from Op2 to the root crosses the RHS of the '-', therefore the 951 /// corresponding operation is a '-' (which matches the one in the 952 /// linearized tree, as shown above). 953 /// 954 /// For lack of a better term, we refer to this operation as Accumulated 955 /// Path Operation (APO). 956 struct OperandData { 957 OperandData() = default; 958 OperandData(Value *V, bool APO, bool IsUsed) 959 : V(V), APO(APO), IsUsed(IsUsed) {} 960 /// The operand value. 961 Value *V = nullptr; 962 /// TreeEntries only allow a single opcode, or an alternate sequence of 963 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 964 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 965 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 966 /// (e.g., Add/Mul) 967 bool APO = false; 968 /// Helper data for the reordering function. 969 bool IsUsed = false; 970 }; 971 972 /// During operand reordering, we are trying to select the operand at lane 973 /// that matches best with the operand at the neighboring lane. Our 974 /// selection is based on the type of value we are looking for. For example, 975 /// if the neighboring lane has a load, we need to look for a load that is 976 /// accessing a consecutive address. These strategies are summarized in the 977 /// 'ReorderingMode' enumerator. 978 enum class ReorderingMode { 979 Load, ///< Matching loads to consecutive memory addresses 980 Opcode, ///< Matching instructions based on opcode (same or alternate) 981 Constant, ///< Matching constants 982 Splat, ///< Matching the same instruction multiple times (broadcast) 983 Failed, ///< We failed to create a vectorizable group 984 }; 985 986 using OperandDataVec = SmallVector<OperandData, 2>; 987 988 /// A vector of operand vectors. 989 SmallVector<OperandDataVec, 4> OpsVec; 990 991 const DataLayout &DL; 992 ScalarEvolution &SE; 993 const BoUpSLP &R; 994 995 /// \returns the operand data at \p OpIdx and \p Lane. 996 OperandData &getData(unsigned OpIdx, unsigned Lane) { 997 return OpsVec[OpIdx][Lane]; 998 } 999 1000 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1001 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1002 return OpsVec[OpIdx][Lane]; 1003 } 1004 1005 /// Clears the used flag for all entries. 1006 void clearUsed() { 1007 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1008 OpIdx != NumOperands; ++OpIdx) 1009 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1010 ++Lane) 1011 OpsVec[OpIdx][Lane].IsUsed = false; 1012 } 1013 1014 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1015 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1016 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1017 } 1018 1019 // The hard-coded scores listed here are not very important, though it shall 1020 // be higher for better matches to improve the resulting cost. When 1021 // computing the scores of matching one sub-tree with another, we are 1022 // basically counting the number of values that are matching. So even if all 1023 // scores are set to 1, we would still get a decent matching result. 1024 // However, sometimes we have to break ties. For example we may have to 1025 // choose between matching loads vs matching opcodes. This is what these 1026 // scores are helping us with: they provide the order of preference. Also, 1027 // this is important if the scalar is externally used or used in another 1028 // tree entry node in the different lane. 1029 1030 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1031 static const int ScoreConsecutiveLoads = 4; 1032 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1033 static const int ScoreReversedLoads = 3; 1034 /// ExtractElementInst from same vector and consecutive indexes. 1035 static const int ScoreConsecutiveExtracts = 4; 1036 /// ExtractElementInst from same vector and reversed indices. 1037 static const int ScoreReversedExtracts = 3; 1038 /// Constants. 1039 static const int ScoreConstants = 2; 1040 /// Instructions with the same opcode. 1041 static const int ScoreSameOpcode = 2; 1042 /// Instructions with alt opcodes (e.g, add + sub). 1043 static const int ScoreAltOpcodes = 1; 1044 /// Identical instructions (a.k.a. splat or broadcast). 1045 static const int ScoreSplat = 1; 1046 /// Matching with an undef is preferable to failing. 1047 static const int ScoreUndef = 1; 1048 /// Score for failing to find a decent match. 1049 static const int ScoreFail = 0; 1050 /// User exteranl to the vectorized code. 1051 static const int ExternalUseCost = 1; 1052 /// The user is internal but in a different lane. 1053 static const int UserInDiffLaneCost = ExternalUseCost; 1054 1055 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1056 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1057 ScalarEvolution &SE, int NumLanes) { 1058 if (V1 == V2) 1059 return VLOperands::ScoreSplat; 1060 1061 auto *LI1 = dyn_cast<LoadInst>(V1); 1062 auto *LI2 = dyn_cast<LoadInst>(V2); 1063 if (LI1 && LI2) { 1064 if (LI1->getParent() != LI2->getParent()) 1065 return VLOperands::ScoreFail; 1066 1067 Optional<int> Dist = getPointersDiff( 1068 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1069 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1070 if (!Dist) 1071 return VLOperands::ScoreFail; 1072 // The distance is too large - still may be profitable to use masked 1073 // loads/gathers. 1074 if (std::abs(*Dist) > NumLanes / 2) 1075 return VLOperands::ScoreAltOpcodes; 1076 // This still will detect consecutive loads, but we might have "holes" 1077 // in some cases. It is ok for non-power-2 vectorization and may produce 1078 // better results. It should not affect current vectorization. 1079 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1080 : VLOperands::ScoreReversedLoads; 1081 } 1082 1083 auto *C1 = dyn_cast<Constant>(V1); 1084 auto *C2 = dyn_cast<Constant>(V2); 1085 if (C1 && C2) 1086 return VLOperands::ScoreConstants; 1087 1088 // Extracts from consecutive indexes of the same vector better score as 1089 // the extracts could be optimized away. 1090 Value *EV1; 1091 ConstantInt *Ex1Idx; 1092 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1093 // Undefs are always profitable for extractelements. 1094 if (isa<UndefValue>(V2)) 1095 return VLOperands::ScoreConsecutiveExtracts; 1096 Value *EV2 = nullptr; 1097 ConstantInt *Ex2Idx = nullptr; 1098 if (match(V2, 1099 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1100 m_Undef())))) { 1101 // Undefs are always profitable for extractelements. 1102 if (!Ex2Idx) 1103 return VLOperands::ScoreConsecutiveExtracts; 1104 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1105 return VLOperands::ScoreConsecutiveExtracts; 1106 if (EV2 == EV1) { 1107 int Idx1 = Ex1Idx->getZExtValue(); 1108 int Idx2 = Ex2Idx->getZExtValue(); 1109 int Dist = Idx2 - Idx1; 1110 // The distance is too large - still may be profitable to use 1111 // shuffles. 1112 if (std::abs(Dist) > NumLanes / 2) 1113 return VLOperands::ScoreAltOpcodes; 1114 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1115 : VLOperands::ScoreReversedExtracts; 1116 } 1117 } 1118 } 1119 1120 auto *I1 = dyn_cast<Instruction>(V1); 1121 auto *I2 = dyn_cast<Instruction>(V2); 1122 if (I1 && I2) { 1123 if (I1->getParent() != I2->getParent()) 1124 return VLOperands::ScoreFail; 1125 InstructionsState S = getSameOpcode({I1, I2}); 1126 // Note: Only consider instructions with <= 2 operands to avoid 1127 // complexity explosion. 1128 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1129 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1130 : VLOperands::ScoreSameOpcode; 1131 } 1132 1133 if (isa<UndefValue>(V2)) 1134 return VLOperands::ScoreUndef; 1135 1136 return VLOperands::ScoreFail; 1137 } 1138 1139 /// Holds the values and their lanes that are taking part in the look-ahead 1140 /// score calculation. This is used in the external uses cost calculation. 1141 /// Need to hold all the lanes in case of splat/broadcast at least to 1142 /// correctly check for the use in the different lane. 1143 SmallDenseMap<Value *, SmallSet<int, 4>> InLookAheadValues; 1144 1145 /// \returns the additional cost due to uses of \p LHS and \p RHS that are 1146 /// either external to the vectorized code, or require shuffling. 1147 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1148 const std::pair<Value *, int> &RHS) { 1149 int Cost = 0; 1150 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1151 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1152 Value *V = Values[Idx].first; 1153 if (isa<Constant>(V)) { 1154 // Since this is a function pass, it doesn't make semantic sense to 1155 // walk the users of a subclass of Constant. The users could be in 1156 // another function, or even another module that happens to be in 1157 // the same LLVMContext. 1158 continue; 1159 } 1160 1161 // Calculate the absolute lane, using the minimum relative lane of LHS 1162 // and RHS as base and Idx as the offset. 1163 int Ln = std::min(LHS.second, RHS.second) + Idx; 1164 assert(Ln >= 0 && "Bad lane calculation"); 1165 unsigned UsersBudget = LookAheadUsersBudget; 1166 for (User *U : V->users()) { 1167 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1168 // The user is in the VectorizableTree. Check if we need to insert. 1169 int UserLn = UserTE->findLaneForValue(U); 1170 assert(UserLn >= 0 && "Bad lane"); 1171 // If the values are different, check just the line of the current 1172 // value. If the values are the same, need to add UserInDiffLaneCost 1173 // only if UserLn does not match both line numbers. 1174 if ((LHS.first != RHS.first && UserLn != Ln) || 1175 (LHS.first == RHS.first && UserLn != LHS.second && 1176 UserLn != RHS.second)) { 1177 Cost += UserInDiffLaneCost; 1178 break; 1179 } 1180 } else { 1181 // Check if the user is in the look-ahead code. 1182 auto It2 = InLookAheadValues.find(U); 1183 if (It2 != InLookAheadValues.end()) { 1184 // The user is in the look-ahead code. Check the lane. 1185 if (!It2->getSecond().contains(Ln)) { 1186 Cost += UserInDiffLaneCost; 1187 break; 1188 } 1189 } else { 1190 // The user is neither in SLP tree nor in the look-ahead code. 1191 Cost += ExternalUseCost; 1192 break; 1193 } 1194 } 1195 // Limit the number of visited uses to cap compilation time. 1196 if (--UsersBudget == 0) 1197 break; 1198 } 1199 } 1200 return Cost; 1201 } 1202 1203 /// Go through the operands of \p LHS and \p RHS recursively until \p 1204 /// MaxLevel, and return the cummulative score. For example: 1205 /// \verbatim 1206 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1207 /// \ / \ / \ / \ / 1208 /// + + + + 1209 /// G1 G2 G3 G4 1210 /// \endverbatim 1211 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1212 /// each level recursively, accumulating the score. It starts from matching 1213 /// the additions at level 0, then moves on to the loads (level 1). The 1214 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1215 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1216 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1217 /// Please note that the order of the operands does not matter, as we 1218 /// evaluate the score of all profitable combinations of operands. In 1219 /// other words the score of G1 and G4 is the same as G1 and G2. This 1220 /// heuristic is based on ideas described in: 1221 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1222 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1223 /// Luís F. W. Góes 1224 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1225 const std::pair<Value *, int> &RHS, int CurrLevel, 1226 int MaxLevel) { 1227 1228 Value *V1 = LHS.first; 1229 Value *V2 = RHS.first; 1230 // Get the shallow score of V1 and V2. 1231 int ShallowScoreAtThisLevel = std::max( 1232 (int)ScoreFail, getShallowScore(V1, V2, DL, SE, getNumLanes()) - 1233 getExternalUsesCost(LHS, RHS)); 1234 int Lane1 = LHS.second; 1235 int Lane2 = RHS.second; 1236 1237 // If reached MaxLevel, 1238 // or if V1 and V2 are not instructions, 1239 // or if they are SPLAT, 1240 // or if they are not consecutive, 1241 // or if profitable to vectorize loads or extractelements, early return 1242 // the current cost. 1243 auto *I1 = dyn_cast<Instruction>(V1); 1244 auto *I2 = dyn_cast<Instruction>(V2); 1245 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1246 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1247 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1248 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1249 ShallowScoreAtThisLevel)) 1250 return ShallowScoreAtThisLevel; 1251 assert(I1 && I2 && "Should have early exited."); 1252 1253 // Keep track of in-tree values for determining the external-use cost. 1254 InLookAheadValues[V1].insert(Lane1); 1255 InLookAheadValues[V2].insert(Lane2); 1256 1257 // Contains the I2 operand indexes that got matched with I1 operands. 1258 SmallSet<unsigned, 4> Op2Used; 1259 1260 // Recursion towards the operands of I1 and I2. We are trying all possible 1261 // operand pairs, and keeping track of the best score. 1262 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1263 OpIdx1 != NumOperands1; ++OpIdx1) { 1264 // Try to pair op1I with the best operand of I2. 1265 int MaxTmpScore = 0; 1266 unsigned MaxOpIdx2 = 0; 1267 bool FoundBest = false; 1268 // If I2 is commutative try all combinations. 1269 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1270 unsigned ToIdx = isCommutative(I2) 1271 ? I2->getNumOperands() 1272 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1273 assert(FromIdx <= ToIdx && "Bad index"); 1274 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1275 // Skip operands already paired with OpIdx1. 1276 if (Op2Used.count(OpIdx2)) 1277 continue; 1278 // Recursively calculate the cost at each level 1279 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1280 {I2->getOperand(OpIdx2), Lane2}, 1281 CurrLevel + 1, MaxLevel); 1282 // Look for the best score. 1283 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1284 MaxTmpScore = TmpScore; 1285 MaxOpIdx2 = OpIdx2; 1286 FoundBest = true; 1287 } 1288 } 1289 if (FoundBest) { 1290 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1291 Op2Used.insert(MaxOpIdx2); 1292 ShallowScoreAtThisLevel += MaxTmpScore; 1293 } 1294 } 1295 return ShallowScoreAtThisLevel; 1296 } 1297 1298 /// \Returns the look-ahead score, which tells us how much the sub-trees 1299 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1300 /// score. This helps break ties in an informed way when we cannot decide on 1301 /// the order of the operands by just considering the immediate 1302 /// predecessors. 1303 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1304 const std::pair<Value *, int> &RHS) { 1305 InLookAheadValues.clear(); 1306 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1307 } 1308 1309 // Search all operands in Ops[*][Lane] for the one that matches best 1310 // Ops[OpIdx][LastLane] and return its opreand index. 1311 // If no good match can be found, return None. 1312 Optional<unsigned> 1313 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1314 ArrayRef<ReorderingMode> ReorderingModes) { 1315 unsigned NumOperands = getNumOperands(); 1316 1317 // The operand of the previous lane at OpIdx. 1318 Value *OpLastLane = getData(OpIdx, LastLane).V; 1319 1320 // Our strategy mode for OpIdx. 1321 ReorderingMode RMode = ReorderingModes[OpIdx]; 1322 1323 // The linearized opcode of the operand at OpIdx, Lane. 1324 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1325 1326 // The best operand index and its score. 1327 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1328 // are using the score to differentiate between the two. 1329 struct BestOpData { 1330 Optional<unsigned> Idx = None; 1331 unsigned Score = 0; 1332 } BestOp; 1333 1334 // Iterate through all unused operands and look for the best. 1335 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1336 // Get the operand at Idx and Lane. 1337 OperandData &OpData = getData(Idx, Lane); 1338 Value *Op = OpData.V; 1339 bool OpAPO = OpData.APO; 1340 1341 // Skip already selected operands. 1342 if (OpData.IsUsed) 1343 continue; 1344 1345 // Skip if we are trying to move the operand to a position with a 1346 // different opcode in the linearized tree form. This would break the 1347 // semantics. 1348 if (OpAPO != OpIdxAPO) 1349 continue; 1350 1351 // Look for an operand that matches the current mode. 1352 switch (RMode) { 1353 case ReorderingMode::Load: 1354 case ReorderingMode::Constant: 1355 case ReorderingMode::Opcode: { 1356 bool LeftToRight = Lane > LastLane; 1357 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1358 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1359 unsigned Score = 1360 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1361 if (Score > BestOp.Score) { 1362 BestOp.Idx = Idx; 1363 BestOp.Score = Score; 1364 } 1365 break; 1366 } 1367 case ReorderingMode::Splat: 1368 if (Op == OpLastLane) 1369 BestOp.Idx = Idx; 1370 break; 1371 case ReorderingMode::Failed: 1372 return None; 1373 } 1374 } 1375 1376 if (BestOp.Idx) { 1377 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1378 return BestOp.Idx; 1379 } 1380 // If we could not find a good match return None. 1381 return None; 1382 } 1383 1384 /// Helper for reorderOperandVecs. 1385 /// \returns the lane that we should start reordering from. This is the one 1386 /// which has the least number of operands that can freely move about or 1387 /// less profitable because it already has the most optimal set of operands. 1388 unsigned getBestLaneToStartReordering() const { 1389 unsigned Min = UINT_MAX; 1390 unsigned SameOpNumber = 0; 1391 // std::pair<unsigned, unsigned> is used to implement a simple voting 1392 // algorithm and choose the lane with the least number of operands that 1393 // can freely move about or less profitable because it already has the 1394 // most optimal set of operands. The first unsigned is a counter for 1395 // voting, the second unsigned is the counter of lanes with instructions 1396 // with same/alternate opcodes and same parent basic block. 1397 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1398 // Try to be closer to the original results, if we have multiple lanes 1399 // with same cost. If 2 lanes have the same cost, use the one with the 1400 // lowest index. 1401 for (int I = getNumLanes(); I > 0; --I) { 1402 unsigned Lane = I - 1; 1403 OperandsOrderData NumFreeOpsHash = 1404 getMaxNumOperandsThatCanBeReordered(Lane); 1405 // Compare the number of operands that can move and choose the one with 1406 // the least number. 1407 if (NumFreeOpsHash.NumOfAPOs < Min) { 1408 Min = NumFreeOpsHash.NumOfAPOs; 1409 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1410 HashMap.clear(); 1411 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1412 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1413 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1414 // Select the most optimal lane in terms of number of operands that 1415 // should be moved around. 1416 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1417 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1418 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1419 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1420 ++HashMap[NumFreeOpsHash.Hash].first; 1421 } 1422 } 1423 // Select the lane with the minimum counter. 1424 unsigned BestLane = 0; 1425 unsigned CntMin = UINT_MAX; 1426 for (const auto &Data : reverse(HashMap)) { 1427 if (Data.second.first < CntMin) { 1428 CntMin = Data.second.first; 1429 BestLane = Data.second.second; 1430 } 1431 } 1432 return BestLane; 1433 } 1434 1435 /// Data structure that helps to reorder operands. 1436 struct OperandsOrderData { 1437 /// The best number of operands with the same APOs, which can be 1438 /// reordered. 1439 unsigned NumOfAPOs = UINT_MAX; 1440 /// Number of operands with the same/alternate instruction opcode and 1441 /// parent. 1442 unsigned NumOpsWithSameOpcodeParent = 0; 1443 /// Hash for the actual operands ordering. 1444 /// Used to count operands, actually their position id and opcode 1445 /// value. It is used in the voting mechanism to find the lane with the 1446 /// least number of operands that can freely move about or less profitable 1447 /// because it already has the most optimal set of operands. Can be 1448 /// replaced with SmallVector<unsigned> instead but hash code is faster 1449 /// and requires less memory. 1450 unsigned Hash = 0; 1451 }; 1452 /// \returns the maximum number of operands that are allowed to be reordered 1453 /// for \p Lane and the number of compatible instructions(with the same 1454 /// parent/opcode). This is used as a heuristic for selecting the first lane 1455 /// to start operand reordering. 1456 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1457 unsigned CntTrue = 0; 1458 unsigned NumOperands = getNumOperands(); 1459 // Operands with the same APO can be reordered. We therefore need to count 1460 // how many of them we have for each APO, like this: Cnt[APO] = x. 1461 // Since we only have two APOs, namely true and false, we can avoid using 1462 // a map. Instead we can simply count the number of operands that 1463 // correspond to one of them (in this case the 'true' APO), and calculate 1464 // the other by subtracting it from the total number of operands. 1465 // Operands with the same instruction opcode and parent are more 1466 // profitable since we don't need to move them in many cases, with a high 1467 // probability such lane already can be vectorized effectively. 1468 bool AllUndefs = true; 1469 unsigned NumOpsWithSameOpcodeParent = 0; 1470 Instruction *OpcodeI = nullptr; 1471 BasicBlock *Parent = nullptr; 1472 unsigned Hash = 0; 1473 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1474 const OperandData &OpData = getData(OpIdx, Lane); 1475 if (OpData.APO) 1476 ++CntTrue; 1477 // Use Boyer-Moore majority voting for finding the majority opcode and 1478 // the number of times it occurs. 1479 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1480 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1481 I->getParent() != Parent) { 1482 if (NumOpsWithSameOpcodeParent == 0) { 1483 NumOpsWithSameOpcodeParent = 1; 1484 OpcodeI = I; 1485 Parent = I->getParent(); 1486 } else { 1487 --NumOpsWithSameOpcodeParent; 1488 } 1489 } else { 1490 ++NumOpsWithSameOpcodeParent; 1491 } 1492 } 1493 Hash = hash_combine( 1494 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1495 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1496 } 1497 if (AllUndefs) 1498 return {}; 1499 OperandsOrderData Data; 1500 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1501 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1502 Data.Hash = Hash; 1503 return Data; 1504 } 1505 1506 /// Go through the instructions in VL and append their operands. 1507 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1508 assert(!VL.empty() && "Bad VL"); 1509 assert((empty() || VL.size() == getNumLanes()) && 1510 "Expected same number of lanes"); 1511 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1512 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1513 OpsVec.resize(NumOperands); 1514 unsigned NumLanes = VL.size(); 1515 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1516 OpsVec[OpIdx].resize(NumLanes); 1517 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1518 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1519 // Our tree has just 3 nodes: the root and two operands. 1520 // It is therefore trivial to get the APO. We only need to check the 1521 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1522 // RHS operand. The LHS operand of both add and sub is never attached 1523 // to an inversese operation in the linearized form, therefore its APO 1524 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1525 1526 // Since operand reordering is performed on groups of commutative 1527 // operations or alternating sequences (e.g., +, -), we can safely 1528 // tell the inverse operations by checking commutativity. 1529 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1530 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1531 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1532 APO, false}; 1533 } 1534 } 1535 } 1536 1537 /// \returns the number of operands. 1538 unsigned getNumOperands() const { return OpsVec.size(); } 1539 1540 /// \returns the number of lanes. 1541 unsigned getNumLanes() const { return OpsVec[0].size(); } 1542 1543 /// \returns the operand value at \p OpIdx and \p Lane. 1544 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1545 return getData(OpIdx, Lane).V; 1546 } 1547 1548 /// \returns true if the data structure is empty. 1549 bool empty() const { return OpsVec.empty(); } 1550 1551 /// Clears the data. 1552 void clear() { OpsVec.clear(); } 1553 1554 /// \Returns true if there are enough operands identical to \p Op to fill 1555 /// the whole vector. 1556 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1557 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1558 bool OpAPO = getData(OpIdx, Lane).APO; 1559 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1560 if (Ln == Lane) 1561 continue; 1562 // This is set to true if we found a candidate for broadcast at Lane. 1563 bool FoundCandidate = false; 1564 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1565 OperandData &Data = getData(OpI, Ln); 1566 if (Data.APO != OpAPO || Data.IsUsed) 1567 continue; 1568 if (Data.V == Op) { 1569 FoundCandidate = true; 1570 Data.IsUsed = true; 1571 break; 1572 } 1573 } 1574 if (!FoundCandidate) 1575 return false; 1576 } 1577 return true; 1578 } 1579 1580 public: 1581 /// Initialize with all the operands of the instruction vector \p RootVL. 1582 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1583 ScalarEvolution &SE, const BoUpSLP &R) 1584 : DL(DL), SE(SE), R(R) { 1585 // Append all the operands of RootVL. 1586 appendOperandsOfVL(RootVL); 1587 } 1588 1589 /// \Returns a value vector with the operands across all lanes for the 1590 /// opearnd at \p OpIdx. 1591 ValueList getVL(unsigned OpIdx) const { 1592 ValueList OpVL(OpsVec[OpIdx].size()); 1593 assert(OpsVec[OpIdx].size() == getNumLanes() && 1594 "Expected same num of lanes across all operands"); 1595 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1596 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1597 return OpVL; 1598 } 1599 1600 // Performs operand reordering for 2 or more operands. 1601 // The original operands are in OrigOps[OpIdx][Lane]. 1602 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1603 void reorder() { 1604 unsigned NumOperands = getNumOperands(); 1605 unsigned NumLanes = getNumLanes(); 1606 // Each operand has its own mode. We are using this mode to help us select 1607 // the instructions for each lane, so that they match best with the ones 1608 // we have selected so far. 1609 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1610 1611 // This is a greedy single-pass algorithm. We are going over each lane 1612 // once and deciding on the best order right away with no back-tracking. 1613 // However, in order to increase its effectiveness, we start with the lane 1614 // that has operands that can move the least. For example, given the 1615 // following lanes: 1616 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1617 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1618 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1619 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1620 // we will start at Lane 1, since the operands of the subtraction cannot 1621 // be reordered. Then we will visit the rest of the lanes in a circular 1622 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1623 1624 // Find the first lane that we will start our search from. 1625 unsigned FirstLane = getBestLaneToStartReordering(); 1626 1627 // Initialize the modes. 1628 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1629 Value *OpLane0 = getValue(OpIdx, FirstLane); 1630 // Keep track if we have instructions with all the same opcode on one 1631 // side. 1632 if (isa<LoadInst>(OpLane0)) 1633 ReorderingModes[OpIdx] = ReorderingMode::Load; 1634 else if (isa<Instruction>(OpLane0)) { 1635 // Check if OpLane0 should be broadcast. 1636 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1637 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1638 else 1639 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1640 } 1641 else if (isa<Constant>(OpLane0)) 1642 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1643 else if (isa<Argument>(OpLane0)) 1644 // Our best hope is a Splat. It may save some cost in some cases. 1645 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1646 else 1647 // NOTE: This should be unreachable. 1648 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1649 } 1650 1651 // Check that we don't have same operands. No need to reorder if operands 1652 // are just perfect diamond or shuffled diamond match. Do not do it only 1653 // for possible broadcasts or non-power of 2 number of scalars (just for 1654 // now). 1655 auto &&SkipReordering = [this]() { 1656 SmallPtrSet<Value *, 4> UniqueValues; 1657 ArrayRef<OperandData> Op0 = OpsVec.front(); 1658 for (const OperandData &Data : Op0) 1659 UniqueValues.insert(Data.V); 1660 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1661 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1662 return !UniqueValues.contains(Data.V); 1663 })) 1664 return false; 1665 } 1666 // TODO: Check if we can remove a check for non-power-2 number of 1667 // scalars after full support of non-power-2 vectorization. 1668 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1669 }; 1670 1671 // If the initial strategy fails for any of the operand indexes, then we 1672 // perform reordering again in a second pass. This helps avoid assigning 1673 // high priority to the failed strategy, and should improve reordering for 1674 // the non-failed operand indexes. 1675 for (int Pass = 0; Pass != 2; ++Pass) { 1676 // Check if no need to reorder operands since they're are perfect or 1677 // shuffled diamond match. 1678 // Need to to do it to avoid extra external use cost counting for 1679 // shuffled matches, which may cause regressions. 1680 if (SkipReordering()) 1681 break; 1682 // Skip the second pass if the first pass did not fail. 1683 bool StrategyFailed = false; 1684 // Mark all operand data as free to use. 1685 clearUsed(); 1686 // We keep the original operand order for the FirstLane, so reorder the 1687 // rest of the lanes. We are visiting the nodes in a circular fashion, 1688 // using FirstLane as the center point and increasing the radius 1689 // distance. 1690 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1691 // Visit the lane on the right and then the lane on the left. 1692 for (int Direction : {+1, -1}) { 1693 int Lane = FirstLane + Direction * Distance; 1694 if (Lane < 0 || Lane >= (int)NumLanes) 1695 continue; 1696 int LastLane = Lane - Direction; 1697 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1698 "Out of bounds"); 1699 // Look for a good match for each operand. 1700 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1701 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1702 Optional<unsigned> BestIdx = 1703 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1704 // By not selecting a value, we allow the operands that follow to 1705 // select a better matching value. We will get a non-null value in 1706 // the next run of getBestOperand(). 1707 if (BestIdx) { 1708 // Swap the current operand with the one returned by 1709 // getBestOperand(). 1710 swap(OpIdx, BestIdx.getValue(), Lane); 1711 } else { 1712 // We failed to find a best operand, set mode to 'Failed'. 1713 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1714 // Enable the second pass. 1715 StrategyFailed = true; 1716 } 1717 } 1718 } 1719 } 1720 // Skip second pass if the strategy did not fail. 1721 if (!StrategyFailed) 1722 break; 1723 } 1724 } 1725 1726 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1727 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1728 switch (RMode) { 1729 case ReorderingMode::Load: 1730 return "Load"; 1731 case ReorderingMode::Opcode: 1732 return "Opcode"; 1733 case ReorderingMode::Constant: 1734 return "Constant"; 1735 case ReorderingMode::Splat: 1736 return "Splat"; 1737 case ReorderingMode::Failed: 1738 return "Failed"; 1739 } 1740 llvm_unreachable("Unimplemented Reordering Type"); 1741 } 1742 1743 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1744 raw_ostream &OS) { 1745 return OS << getModeStr(RMode); 1746 } 1747 1748 /// Debug print. 1749 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1750 printMode(RMode, dbgs()); 1751 } 1752 1753 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1754 return printMode(RMode, OS); 1755 } 1756 1757 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1758 const unsigned Indent = 2; 1759 unsigned Cnt = 0; 1760 for (const OperandDataVec &OpDataVec : OpsVec) { 1761 OS << "Operand " << Cnt++ << "\n"; 1762 for (const OperandData &OpData : OpDataVec) { 1763 OS.indent(Indent) << "{"; 1764 if (Value *V = OpData.V) 1765 OS << *V; 1766 else 1767 OS << "null"; 1768 OS << ", APO:" << OpData.APO << "}\n"; 1769 } 1770 OS << "\n"; 1771 } 1772 return OS; 1773 } 1774 1775 /// Debug print. 1776 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1777 #endif 1778 }; 1779 1780 /// Checks if the instruction is marked for deletion. 1781 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1782 1783 /// Marks values operands for later deletion by replacing them with Undefs. 1784 void eraseInstructions(ArrayRef<Value *> AV); 1785 1786 ~BoUpSLP(); 1787 1788 private: 1789 /// Checks if all users of \p I are the part of the vectorization tree. 1790 bool areAllUsersVectorized(Instruction *I, 1791 ArrayRef<Value *> VectorizedVals) const; 1792 1793 /// \returns the cost of the vectorizable entry. 1794 InstructionCost getEntryCost(const TreeEntry *E, 1795 ArrayRef<Value *> VectorizedVals); 1796 1797 /// This is the recursive part of buildTree. 1798 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1799 const EdgeInfo &EI); 1800 1801 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1802 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1803 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1804 /// returns false, setting \p CurrentOrder to either an empty vector or a 1805 /// non-identity permutation that allows to reuse extract instructions. 1806 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1807 SmallVectorImpl<unsigned> &CurrentOrder) const; 1808 1809 /// Vectorize a single entry in the tree. 1810 Value *vectorizeTree(TreeEntry *E); 1811 1812 /// Vectorize a single entry in the tree, starting in \p VL. 1813 Value *vectorizeTree(ArrayRef<Value *> VL); 1814 1815 /// \returns the scalarization cost for this type. Scalarization in this 1816 /// context means the creation of vectors from a group of scalars. If \p 1817 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1818 /// vector elements. 1819 InstructionCost getGatherCost(FixedVectorType *Ty, 1820 const DenseSet<unsigned> &ShuffledIndices, 1821 bool NeedToShuffle) const; 1822 1823 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1824 /// tree entries. 1825 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1826 /// previous tree entries. \p Mask is filled with the shuffle mask. 1827 Optional<TargetTransformInfo::ShuffleKind> 1828 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1829 SmallVectorImpl<const TreeEntry *> &Entries); 1830 1831 /// \returns the scalarization cost for this list of values. Assuming that 1832 /// this subtree gets vectorized, we may need to extract the values from the 1833 /// roots. This method calculates the cost of extracting the values. 1834 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1835 1836 /// Set the Builder insert point to one after the last instruction in 1837 /// the bundle 1838 void setInsertPointAfterBundle(const TreeEntry *E); 1839 1840 /// \returns a vector from a collection of scalars in \p VL. 1841 Value *gather(ArrayRef<Value *> VL); 1842 1843 /// \returns whether the VectorizableTree is fully vectorizable and will 1844 /// be beneficial even the tree height is tiny. 1845 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1846 1847 /// Reorder commutative or alt operands to get better probability of 1848 /// generating vectorized code. 1849 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1850 SmallVectorImpl<Value *> &Left, 1851 SmallVectorImpl<Value *> &Right, 1852 const DataLayout &DL, 1853 ScalarEvolution &SE, 1854 const BoUpSLP &R); 1855 struct TreeEntry { 1856 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1857 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1858 1859 /// \returns true if the scalars in VL are equal to this entry. 1860 bool isSame(ArrayRef<Value *> VL) const { 1861 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1862 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1863 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1864 return VL.size() == Mask.size() && 1865 std::equal(VL.begin(), VL.end(), Mask.begin(), 1866 [Scalars](Value *V, int Idx) { 1867 return (isa<UndefValue>(V) && 1868 Idx == UndefMaskElem) || 1869 (Idx != UndefMaskElem && V == Scalars[Idx]); 1870 }); 1871 }; 1872 if (!ReorderIndices.empty()) { 1873 // TODO: implement matching if the nodes are just reordered, still can 1874 // treat the vector as the same if the list of scalars matches VL 1875 // directly, without reordering. 1876 SmallVector<int> Mask; 1877 inversePermutation(ReorderIndices, Mask); 1878 if (VL.size() == Scalars.size()) 1879 return IsSame(Scalars, Mask); 1880 if (VL.size() == ReuseShuffleIndices.size()) { 1881 ::addMask(Mask, ReuseShuffleIndices); 1882 return IsSame(Scalars, Mask); 1883 } 1884 return false; 1885 } 1886 return IsSame(Scalars, ReuseShuffleIndices); 1887 } 1888 1889 /// \returns true if current entry has same operands as \p TE. 1890 bool hasEqualOperands(const TreeEntry &TE) const { 1891 if (TE.getNumOperands() != getNumOperands()) 1892 return false; 1893 SmallBitVector Used(getNumOperands()); 1894 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1895 unsigned PrevCount = Used.count(); 1896 for (unsigned K = 0; K < E; ++K) { 1897 if (Used.test(K)) 1898 continue; 1899 if (getOperand(K) == TE.getOperand(I)) { 1900 Used.set(K); 1901 break; 1902 } 1903 } 1904 // Check if we actually found the matching operand. 1905 if (PrevCount == Used.count()) 1906 return false; 1907 } 1908 return true; 1909 } 1910 1911 /// \return Final vectorization factor for the node. Defined by the total 1912 /// number of vectorized scalars, including those, used several times in the 1913 /// entry and counted in the \a ReuseShuffleIndices, if any. 1914 unsigned getVectorFactor() const { 1915 if (!ReuseShuffleIndices.empty()) 1916 return ReuseShuffleIndices.size(); 1917 return Scalars.size(); 1918 }; 1919 1920 /// A vector of scalars. 1921 ValueList Scalars; 1922 1923 /// The Scalars are vectorized into this value. It is initialized to Null. 1924 Value *VectorizedValue = nullptr; 1925 1926 /// Do we need to gather this sequence or vectorize it 1927 /// (either with vector instruction or with scatter/gather 1928 /// intrinsics for store/load)? 1929 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1930 EntryState State; 1931 1932 /// Does this sequence require some shuffling? 1933 SmallVector<int, 4> ReuseShuffleIndices; 1934 1935 /// Does this entry require reordering? 1936 SmallVector<unsigned, 4> ReorderIndices; 1937 1938 /// Points back to the VectorizableTree. 1939 /// 1940 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1941 /// to be a pointer and needs to be able to initialize the child iterator. 1942 /// Thus we need a reference back to the container to translate the indices 1943 /// to entries. 1944 VecTreeTy &Container; 1945 1946 /// The TreeEntry index containing the user of this entry. We can actually 1947 /// have multiple users so the data structure is not truly a tree. 1948 SmallVector<EdgeInfo, 1> UserTreeIndices; 1949 1950 /// The index of this treeEntry in VectorizableTree. 1951 int Idx = -1; 1952 1953 private: 1954 /// The operands of each instruction in each lane Operands[op_index][lane]. 1955 /// Note: This helps avoid the replication of the code that performs the 1956 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1957 SmallVector<ValueList, 2> Operands; 1958 1959 /// The main/alternate instruction. 1960 Instruction *MainOp = nullptr; 1961 Instruction *AltOp = nullptr; 1962 1963 public: 1964 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1965 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1966 if (Operands.size() < OpIdx + 1) 1967 Operands.resize(OpIdx + 1); 1968 assert(Operands[OpIdx].empty() && "Already resized?"); 1969 assert(OpVL.size() <= Scalars.size() && 1970 "Number of operands is greater than the number of scalars."); 1971 Operands[OpIdx].resize(OpVL.size()); 1972 copy(OpVL, Operands[OpIdx].begin()); 1973 } 1974 1975 /// Set the operands of this bundle in their original order. 1976 void setOperandsInOrder() { 1977 assert(Operands.empty() && "Already initialized?"); 1978 auto *I0 = cast<Instruction>(Scalars[0]); 1979 Operands.resize(I0->getNumOperands()); 1980 unsigned NumLanes = Scalars.size(); 1981 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1982 OpIdx != NumOperands; ++OpIdx) { 1983 Operands[OpIdx].resize(NumLanes); 1984 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1985 auto *I = cast<Instruction>(Scalars[Lane]); 1986 assert(I->getNumOperands() == NumOperands && 1987 "Expected same number of operands"); 1988 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1989 } 1990 } 1991 } 1992 1993 /// Reorders operands of the node to the given mask \p Mask. 1994 void reorderOperands(ArrayRef<int> Mask) { 1995 for (ValueList &Operand : Operands) 1996 reorderScalars(Operand, Mask); 1997 } 1998 1999 /// \returns the \p OpIdx operand of this TreeEntry. 2000 ValueList &getOperand(unsigned OpIdx) { 2001 assert(OpIdx < Operands.size() && "Off bounds"); 2002 return Operands[OpIdx]; 2003 } 2004 2005 /// \returns the \p OpIdx operand of this TreeEntry. 2006 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2007 assert(OpIdx < Operands.size() && "Off bounds"); 2008 return Operands[OpIdx]; 2009 } 2010 2011 /// \returns the number of operands. 2012 unsigned getNumOperands() const { return Operands.size(); } 2013 2014 /// \return the single \p OpIdx operand. 2015 Value *getSingleOperand(unsigned OpIdx) const { 2016 assert(OpIdx < Operands.size() && "Off bounds"); 2017 assert(!Operands[OpIdx].empty() && "No operand available"); 2018 return Operands[OpIdx][0]; 2019 } 2020 2021 /// Some of the instructions in the list have alternate opcodes. 2022 bool isAltShuffle() const { 2023 return getOpcode() != getAltOpcode(); 2024 } 2025 2026 bool isOpcodeOrAlt(Instruction *I) const { 2027 unsigned CheckedOpcode = I->getOpcode(); 2028 return (getOpcode() == CheckedOpcode || 2029 getAltOpcode() == CheckedOpcode); 2030 } 2031 2032 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2033 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2034 /// \p OpValue. 2035 Value *isOneOf(Value *Op) const { 2036 auto *I = dyn_cast<Instruction>(Op); 2037 if (I && isOpcodeOrAlt(I)) 2038 return Op; 2039 return MainOp; 2040 } 2041 2042 void setOperations(const InstructionsState &S) { 2043 MainOp = S.MainOp; 2044 AltOp = S.AltOp; 2045 } 2046 2047 Instruction *getMainOp() const { 2048 return MainOp; 2049 } 2050 2051 Instruction *getAltOp() const { 2052 return AltOp; 2053 } 2054 2055 /// The main/alternate opcodes for the list of instructions. 2056 unsigned getOpcode() const { 2057 return MainOp ? MainOp->getOpcode() : 0; 2058 } 2059 2060 unsigned getAltOpcode() const { 2061 return AltOp ? AltOp->getOpcode() : 0; 2062 } 2063 2064 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2065 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2066 int findLaneForValue(Value *V) const { 2067 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2068 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2069 if (!ReorderIndices.empty()) 2070 FoundLane = ReorderIndices[FoundLane]; 2071 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2072 if (!ReuseShuffleIndices.empty()) { 2073 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2074 find(ReuseShuffleIndices, FoundLane)); 2075 } 2076 return FoundLane; 2077 } 2078 2079 #ifndef NDEBUG 2080 /// Debug printer. 2081 LLVM_DUMP_METHOD void dump() const { 2082 dbgs() << Idx << ".\n"; 2083 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2084 dbgs() << "Operand " << OpI << ":\n"; 2085 for (const Value *V : Operands[OpI]) 2086 dbgs().indent(2) << *V << "\n"; 2087 } 2088 dbgs() << "Scalars: \n"; 2089 for (Value *V : Scalars) 2090 dbgs().indent(2) << *V << "\n"; 2091 dbgs() << "State: "; 2092 switch (State) { 2093 case Vectorize: 2094 dbgs() << "Vectorize\n"; 2095 break; 2096 case ScatterVectorize: 2097 dbgs() << "ScatterVectorize\n"; 2098 break; 2099 case NeedToGather: 2100 dbgs() << "NeedToGather\n"; 2101 break; 2102 } 2103 dbgs() << "MainOp: "; 2104 if (MainOp) 2105 dbgs() << *MainOp << "\n"; 2106 else 2107 dbgs() << "NULL\n"; 2108 dbgs() << "AltOp: "; 2109 if (AltOp) 2110 dbgs() << *AltOp << "\n"; 2111 else 2112 dbgs() << "NULL\n"; 2113 dbgs() << "VectorizedValue: "; 2114 if (VectorizedValue) 2115 dbgs() << *VectorizedValue << "\n"; 2116 else 2117 dbgs() << "NULL\n"; 2118 dbgs() << "ReuseShuffleIndices: "; 2119 if (ReuseShuffleIndices.empty()) 2120 dbgs() << "Empty"; 2121 else 2122 for (int ReuseIdx : ReuseShuffleIndices) 2123 dbgs() << ReuseIdx << ", "; 2124 dbgs() << "\n"; 2125 dbgs() << "ReorderIndices: "; 2126 for (unsigned ReorderIdx : ReorderIndices) 2127 dbgs() << ReorderIdx << ", "; 2128 dbgs() << "\n"; 2129 dbgs() << "UserTreeIndices: "; 2130 for (const auto &EInfo : UserTreeIndices) 2131 dbgs() << EInfo << ", "; 2132 dbgs() << "\n"; 2133 } 2134 #endif 2135 }; 2136 2137 #ifndef NDEBUG 2138 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2139 InstructionCost VecCost, 2140 InstructionCost ScalarCost) const { 2141 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2142 dbgs() << "SLP: Costs:\n"; 2143 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2144 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2145 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2146 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2147 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2148 } 2149 #endif 2150 2151 /// Create a new VectorizableTree entry. 2152 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2153 const InstructionsState &S, 2154 const EdgeInfo &UserTreeIdx, 2155 ArrayRef<int> ReuseShuffleIndices = None, 2156 ArrayRef<unsigned> ReorderIndices = None) { 2157 TreeEntry::EntryState EntryState = 2158 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2159 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2160 ReuseShuffleIndices, ReorderIndices); 2161 } 2162 2163 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2164 TreeEntry::EntryState EntryState, 2165 Optional<ScheduleData *> Bundle, 2166 const InstructionsState &S, 2167 const EdgeInfo &UserTreeIdx, 2168 ArrayRef<int> ReuseShuffleIndices = None, 2169 ArrayRef<unsigned> ReorderIndices = None) { 2170 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2171 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2172 "Need to vectorize gather entry?"); 2173 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2174 TreeEntry *Last = VectorizableTree.back().get(); 2175 Last->Idx = VectorizableTree.size() - 1; 2176 Last->State = EntryState; 2177 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2178 ReuseShuffleIndices.end()); 2179 if (ReorderIndices.empty()) { 2180 Last->Scalars.assign(VL.begin(), VL.end()); 2181 Last->setOperations(S); 2182 } else { 2183 // Reorder scalars and build final mask. 2184 Last->Scalars.assign(VL.size(), nullptr); 2185 transform(ReorderIndices, Last->Scalars.begin(), 2186 [VL](unsigned Idx) -> Value * { 2187 if (Idx >= VL.size()) 2188 return UndefValue::get(VL.front()->getType()); 2189 return VL[Idx]; 2190 }); 2191 InstructionsState S = getSameOpcode(Last->Scalars); 2192 Last->setOperations(S); 2193 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2194 } 2195 if (Last->State != TreeEntry::NeedToGather) { 2196 for (Value *V : VL) { 2197 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2198 ScalarToTreeEntry[V] = Last; 2199 } 2200 // Update the scheduler bundle to point to this TreeEntry. 2201 unsigned Lane = 0; 2202 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2203 BundleMember = BundleMember->NextInBundle) { 2204 BundleMember->TE = Last; 2205 BundleMember->Lane = Lane; 2206 ++Lane; 2207 } 2208 assert((!Bundle.getValue() || Lane == VL.size()) && 2209 "Bundle and VL out of sync"); 2210 } else { 2211 MustGather.insert(VL.begin(), VL.end()); 2212 } 2213 2214 if (UserTreeIdx.UserTE) 2215 Last->UserTreeIndices.push_back(UserTreeIdx); 2216 2217 return Last; 2218 } 2219 2220 /// -- Vectorization State -- 2221 /// Holds all of the tree entries. 2222 TreeEntry::VecTreeTy VectorizableTree; 2223 2224 #ifndef NDEBUG 2225 /// Debug printer. 2226 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2227 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2228 VectorizableTree[Id]->dump(); 2229 dbgs() << "\n"; 2230 } 2231 } 2232 #endif 2233 2234 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2235 2236 const TreeEntry *getTreeEntry(Value *V) const { 2237 return ScalarToTreeEntry.lookup(V); 2238 } 2239 2240 /// Maps a specific scalar to its tree entry. 2241 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2242 2243 /// Maps a value to the proposed vectorizable size. 2244 SmallDenseMap<Value *, unsigned> InstrElementSize; 2245 2246 /// A list of scalars that we found that we need to keep as scalars. 2247 ValueSet MustGather; 2248 2249 /// This POD struct describes one external user in the vectorized tree. 2250 struct ExternalUser { 2251 ExternalUser(Value *S, llvm::User *U, int L) 2252 : Scalar(S), User(U), Lane(L) {} 2253 2254 // Which scalar in our function. 2255 Value *Scalar; 2256 2257 // Which user that uses the scalar. 2258 llvm::User *User; 2259 2260 // Which lane does the scalar belong to. 2261 int Lane; 2262 }; 2263 using UserList = SmallVector<ExternalUser, 16>; 2264 2265 /// Checks if two instructions may access the same memory. 2266 /// 2267 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2268 /// is invariant in the calling loop. 2269 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2270 Instruction *Inst2) { 2271 // First check if the result is already in the cache. 2272 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2273 Optional<bool> &result = AliasCache[key]; 2274 if (result.hasValue()) { 2275 return result.getValue(); 2276 } 2277 bool aliased = true; 2278 if (Loc1.Ptr && isSimple(Inst1)) 2279 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2280 // Store the result in the cache. 2281 result = aliased; 2282 return aliased; 2283 } 2284 2285 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2286 2287 /// Cache for alias results. 2288 /// TODO: consider moving this to the AliasAnalysis itself. 2289 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2290 2291 /// Removes an instruction from its block and eventually deletes it. 2292 /// It's like Instruction::eraseFromParent() except that the actual deletion 2293 /// is delayed until BoUpSLP is destructed. 2294 /// This is required to ensure that there are no incorrect collisions in the 2295 /// AliasCache, which can happen if a new instruction is allocated at the 2296 /// same address as a previously deleted instruction. 2297 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2298 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2299 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2300 } 2301 2302 /// Temporary store for deleted instructions. Instructions will be deleted 2303 /// eventually when the BoUpSLP is destructed. 2304 DenseMap<Instruction *, bool> DeletedInstructions; 2305 2306 /// A list of values that need to extracted out of the tree. 2307 /// This list holds pairs of (Internal Scalar : External User). External User 2308 /// can be nullptr, it means that this Internal Scalar will be used later, 2309 /// after vectorization. 2310 UserList ExternalUses; 2311 2312 /// Values used only by @llvm.assume calls. 2313 SmallPtrSet<const Value *, 32> EphValues; 2314 2315 /// Holds all of the instructions that we gathered. 2316 SetVector<Instruction *> GatherShuffleSeq; 2317 2318 /// A list of blocks that we are going to CSE. 2319 SetVector<BasicBlock *> CSEBlocks; 2320 2321 /// Contains all scheduling relevant data for an instruction. 2322 /// A ScheduleData either represents a single instruction or a member of an 2323 /// instruction bundle (= a group of instructions which is combined into a 2324 /// vector instruction). 2325 struct ScheduleData { 2326 // The initial value for the dependency counters. It means that the 2327 // dependencies are not calculated yet. 2328 enum { InvalidDeps = -1 }; 2329 2330 ScheduleData() = default; 2331 2332 void init(int BlockSchedulingRegionID, Value *OpVal) { 2333 FirstInBundle = this; 2334 NextInBundle = nullptr; 2335 NextLoadStore = nullptr; 2336 IsScheduled = false; 2337 SchedulingRegionID = BlockSchedulingRegionID; 2338 UnscheduledDepsInBundle = UnscheduledDeps; 2339 clearDependencies(); 2340 OpValue = OpVal; 2341 TE = nullptr; 2342 Lane = -1; 2343 } 2344 2345 /// Returns true if the dependency information has been calculated. 2346 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2347 2348 /// Returns true for single instructions and for bundle representatives 2349 /// (= the head of a bundle). 2350 bool isSchedulingEntity() const { return FirstInBundle == this; } 2351 2352 /// Returns true if it represents an instruction bundle and not only a 2353 /// single instruction. 2354 bool isPartOfBundle() const { 2355 return NextInBundle != nullptr || FirstInBundle != this; 2356 } 2357 2358 /// Returns true if it is ready for scheduling, i.e. it has no more 2359 /// unscheduled depending instructions/bundles. 2360 bool isReady() const { 2361 assert(isSchedulingEntity() && 2362 "can't consider non-scheduling entity for ready list"); 2363 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2364 } 2365 2366 /// Modifies the number of unscheduled dependencies, also updating it for 2367 /// the whole bundle. 2368 int incrementUnscheduledDeps(int Incr) { 2369 UnscheduledDeps += Incr; 2370 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2371 } 2372 2373 /// Sets the number of unscheduled dependencies to the number of 2374 /// dependencies. 2375 void resetUnscheduledDeps() { 2376 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2377 } 2378 2379 /// Clears all dependency information. 2380 void clearDependencies() { 2381 Dependencies = InvalidDeps; 2382 resetUnscheduledDeps(); 2383 MemoryDependencies.clear(); 2384 } 2385 2386 void dump(raw_ostream &os) const { 2387 if (!isSchedulingEntity()) { 2388 os << "/ " << *Inst; 2389 } else if (NextInBundle) { 2390 os << '[' << *Inst; 2391 ScheduleData *SD = NextInBundle; 2392 while (SD) { 2393 os << ';' << *SD->Inst; 2394 SD = SD->NextInBundle; 2395 } 2396 os << ']'; 2397 } else { 2398 os << *Inst; 2399 } 2400 } 2401 2402 Instruction *Inst = nullptr; 2403 2404 /// Points to the head in an instruction bundle (and always to this for 2405 /// single instructions). 2406 ScheduleData *FirstInBundle = nullptr; 2407 2408 /// Single linked list of all instructions in a bundle. Null if it is a 2409 /// single instruction. 2410 ScheduleData *NextInBundle = nullptr; 2411 2412 /// Single linked list of all memory instructions (e.g. load, store, call) 2413 /// in the block - until the end of the scheduling region. 2414 ScheduleData *NextLoadStore = nullptr; 2415 2416 /// The dependent memory instructions. 2417 /// This list is derived on demand in calculateDependencies(). 2418 SmallVector<ScheduleData *, 4> MemoryDependencies; 2419 2420 /// This ScheduleData is in the current scheduling region if this matches 2421 /// the current SchedulingRegionID of BlockScheduling. 2422 int SchedulingRegionID = 0; 2423 2424 /// Used for getting a "good" final ordering of instructions. 2425 int SchedulingPriority = 0; 2426 2427 /// The number of dependencies. Constitutes of the number of users of the 2428 /// instruction plus the number of dependent memory instructions (if any). 2429 /// This value is calculated on demand. 2430 /// If InvalidDeps, the number of dependencies is not calculated yet. 2431 int Dependencies = InvalidDeps; 2432 2433 /// The number of dependencies minus the number of dependencies of scheduled 2434 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2435 /// for scheduling. 2436 /// Note that this is negative as long as Dependencies is not calculated. 2437 int UnscheduledDeps = InvalidDeps; 2438 2439 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2440 /// single instructions. 2441 int UnscheduledDepsInBundle = InvalidDeps; 2442 2443 /// True if this instruction is scheduled (or considered as scheduled in the 2444 /// dry-run). 2445 bool IsScheduled = false; 2446 2447 /// Opcode of the current instruction in the schedule data. 2448 Value *OpValue = nullptr; 2449 2450 /// The TreeEntry that this instruction corresponds to. 2451 TreeEntry *TE = nullptr; 2452 2453 /// The lane of this node in the TreeEntry. 2454 int Lane = -1; 2455 }; 2456 2457 #ifndef NDEBUG 2458 friend inline raw_ostream &operator<<(raw_ostream &os, 2459 const BoUpSLP::ScheduleData &SD) { 2460 SD.dump(os); 2461 return os; 2462 } 2463 #endif 2464 2465 friend struct GraphTraits<BoUpSLP *>; 2466 friend struct DOTGraphTraits<BoUpSLP *>; 2467 2468 /// Contains all scheduling data for a basic block. 2469 struct BlockScheduling { 2470 BlockScheduling(BasicBlock *BB) 2471 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2472 2473 void clear() { 2474 ReadyInsts.clear(); 2475 ScheduleStart = nullptr; 2476 ScheduleEnd = nullptr; 2477 FirstLoadStoreInRegion = nullptr; 2478 LastLoadStoreInRegion = nullptr; 2479 2480 // Reduce the maximum schedule region size by the size of the 2481 // previous scheduling run. 2482 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2483 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2484 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2485 ScheduleRegionSize = 0; 2486 2487 // Make a new scheduling region, i.e. all existing ScheduleData is not 2488 // in the new region yet. 2489 ++SchedulingRegionID; 2490 } 2491 2492 ScheduleData *getScheduleData(Value *V) { 2493 ScheduleData *SD = ScheduleDataMap[V]; 2494 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2495 return SD; 2496 return nullptr; 2497 } 2498 2499 ScheduleData *getScheduleData(Value *V, Value *Key) { 2500 if (V == Key) 2501 return getScheduleData(V); 2502 auto I = ExtraScheduleDataMap.find(V); 2503 if (I != ExtraScheduleDataMap.end()) { 2504 ScheduleData *SD = I->second[Key]; 2505 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2506 return SD; 2507 } 2508 return nullptr; 2509 } 2510 2511 bool isInSchedulingRegion(ScheduleData *SD) const { 2512 return SD->SchedulingRegionID == SchedulingRegionID; 2513 } 2514 2515 /// Marks an instruction as scheduled and puts all dependent ready 2516 /// instructions into the ready-list. 2517 template <typename ReadyListType> 2518 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2519 SD->IsScheduled = true; 2520 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2521 2522 ScheduleData *BundleMember = SD; 2523 while (BundleMember) { 2524 if (BundleMember->Inst != BundleMember->OpValue) { 2525 BundleMember = BundleMember->NextInBundle; 2526 continue; 2527 } 2528 // Handle the def-use chain dependencies. 2529 2530 // Decrement the unscheduled counter and insert to ready list if ready. 2531 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2532 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2533 if (OpDef && OpDef->hasValidDependencies() && 2534 OpDef->incrementUnscheduledDeps(-1) == 0) { 2535 // There are no more unscheduled dependencies after 2536 // decrementing, so we can put the dependent instruction 2537 // into the ready list. 2538 ScheduleData *DepBundle = OpDef->FirstInBundle; 2539 assert(!DepBundle->IsScheduled && 2540 "already scheduled bundle gets ready"); 2541 ReadyList.insert(DepBundle); 2542 LLVM_DEBUG(dbgs() 2543 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2544 } 2545 }); 2546 }; 2547 2548 // If BundleMember is a vector bundle, its operands may have been 2549 // reordered duiring buildTree(). We therefore need to get its operands 2550 // through the TreeEntry. 2551 if (TreeEntry *TE = BundleMember->TE) { 2552 int Lane = BundleMember->Lane; 2553 assert(Lane >= 0 && "Lane not set"); 2554 2555 // Since vectorization tree is being built recursively this assertion 2556 // ensures that the tree entry has all operands set before reaching 2557 // this code. Couple of exceptions known at the moment are extracts 2558 // where their second (immediate) operand is not added. Since 2559 // immediates do not affect scheduler behavior this is considered 2560 // okay. 2561 auto *In = TE->getMainOp(); 2562 assert(In && 2563 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2564 In->getNumOperands() == TE->getNumOperands()) && 2565 "Missed TreeEntry operands?"); 2566 (void)In; // fake use to avoid build failure when assertions disabled 2567 2568 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2569 OpIdx != NumOperands; ++OpIdx) 2570 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2571 DecrUnsched(I); 2572 } else { 2573 // If BundleMember is a stand-alone instruction, no operand reordering 2574 // has taken place, so we directly access its operands. 2575 for (Use &U : BundleMember->Inst->operands()) 2576 if (auto *I = dyn_cast<Instruction>(U.get())) 2577 DecrUnsched(I); 2578 } 2579 // Handle the memory dependencies. 2580 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2581 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2582 // There are no more unscheduled dependencies after decrementing, 2583 // so we can put the dependent instruction into the ready list. 2584 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2585 assert(!DepBundle->IsScheduled && 2586 "already scheduled bundle gets ready"); 2587 ReadyList.insert(DepBundle); 2588 LLVM_DEBUG(dbgs() 2589 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2590 } 2591 } 2592 BundleMember = BundleMember->NextInBundle; 2593 } 2594 } 2595 2596 void doForAllOpcodes(Value *V, 2597 function_ref<void(ScheduleData *SD)> Action) { 2598 if (ScheduleData *SD = getScheduleData(V)) 2599 Action(SD); 2600 auto I = ExtraScheduleDataMap.find(V); 2601 if (I != ExtraScheduleDataMap.end()) 2602 for (auto &P : I->second) 2603 if (P.second->SchedulingRegionID == SchedulingRegionID) 2604 Action(P.second); 2605 } 2606 2607 /// Put all instructions into the ReadyList which are ready for scheduling. 2608 template <typename ReadyListType> 2609 void initialFillReadyList(ReadyListType &ReadyList) { 2610 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2611 doForAllOpcodes(I, [&](ScheduleData *SD) { 2612 if (SD->isSchedulingEntity() && SD->isReady()) { 2613 ReadyList.insert(SD); 2614 LLVM_DEBUG(dbgs() 2615 << "SLP: initially in ready list: " << *I << "\n"); 2616 } 2617 }); 2618 } 2619 } 2620 2621 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2622 /// cyclic dependencies. This is only a dry-run, no instructions are 2623 /// actually moved at this stage. 2624 /// \returns the scheduling bundle. The returned Optional value is non-None 2625 /// if \p VL is allowed to be scheduled. 2626 Optional<ScheduleData *> 2627 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2628 const InstructionsState &S); 2629 2630 /// Un-bundles a group of instructions. 2631 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2632 2633 /// Allocates schedule data chunk. 2634 ScheduleData *allocateScheduleDataChunks(); 2635 2636 /// Extends the scheduling region so that V is inside the region. 2637 /// \returns true if the region size is within the limit. 2638 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2639 2640 /// Initialize the ScheduleData structures for new instructions in the 2641 /// scheduling region. 2642 void initScheduleData(Instruction *FromI, Instruction *ToI, 2643 ScheduleData *PrevLoadStore, 2644 ScheduleData *NextLoadStore); 2645 2646 /// Updates the dependency information of a bundle and of all instructions/ 2647 /// bundles which depend on the original bundle. 2648 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2649 BoUpSLP *SLP); 2650 2651 /// Sets all instruction in the scheduling region to un-scheduled. 2652 void resetSchedule(); 2653 2654 BasicBlock *BB; 2655 2656 /// Simple memory allocation for ScheduleData. 2657 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2658 2659 /// The size of a ScheduleData array in ScheduleDataChunks. 2660 int ChunkSize; 2661 2662 /// The allocator position in the current chunk, which is the last entry 2663 /// of ScheduleDataChunks. 2664 int ChunkPos; 2665 2666 /// Attaches ScheduleData to Instruction. 2667 /// Note that the mapping survives during all vectorization iterations, i.e. 2668 /// ScheduleData structures are recycled. 2669 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2670 2671 /// Attaches ScheduleData to Instruction with the leading key. 2672 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2673 ExtraScheduleDataMap; 2674 2675 struct ReadyList : SmallVector<ScheduleData *, 8> { 2676 void insert(ScheduleData *SD) { push_back(SD); } 2677 }; 2678 2679 /// The ready-list for scheduling (only used for the dry-run). 2680 ReadyList ReadyInsts; 2681 2682 /// The first instruction of the scheduling region. 2683 Instruction *ScheduleStart = nullptr; 2684 2685 /// The first instruction _after_ the scheduling region. 2686 Instruction *ScheduleEnd = nullptr; 2687 2688 /// The first memory accessing instruction in the scheduling region 2689 /// (can be null). 2690 ScheduleData *FirstLoadStoreInRegion = nullptr; 2691 2692 /// The last memory accessing instruction in the scheduling region 2693 /// (can be null). 2694 ScheduleData *LastLoadStoreInRegion = nullptr; 2695 2696 /// The current size of the scheduling region. 2697 int ScheduleRegionSize = 0; 2698 2699 /// The maximum size allowed for the scheduling region. 2700 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2701 2702 /// The ID of the scheduling region. For a new vectorization iteration this 2703 /// is incremented which "removes" all ScheduleData from the region. 2704 // Make sure that the initial SchedulingRegionID is greater than the 2705 // initial SchedulingRegionID in ScheduleData (which is 0). 2706 int SchedulingRegionID = 1; 2707 }; 2708 2709 /// Attaches the BlockScheduling structures to basic blocks. 2710 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2711 2712 /// Performs the "real" scheduling. Done before vectorization is actually 2713 /// performed in a basic block. 2714 void scheduleBlock(BlockScheduling *BS); 2715 2716 /// List of users to ignore during scheduling and that don't need extracting. 2717 ArrayRef<Value *> UserIgnoreList; 2718 2719 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2720 /// sorted SmallVectors of unsigned. 2721 struct OrdersTypeDenseMapInfo { 2722 static OrdersType getEmptyKey() { 2723 OrdersType V; 2724 V.push_back(~1U); 2725 return V; 2726 } 2727 2728 static OrdersType getTombstoneKey() { 2729 OrdersType V; 2730 V.push_back(~2U); 2731 return V; 2732 } 2733 2734 static unsigned getHashValue(const OrdersType &V) { 2735 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2736 } 2737 2738 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2739 return LHS == RHS; 2740 } 2741 }; 2742 2743 // Analysis and block reference. 2744 Function *F; 2745 ScalarEvolution *SE; 2746 TargetTransformInfo *TTI; 2747 TargetLibraryInfo *TLI; 2748 AAResults *AA; 2749 LoopInfo *LI; 2750 DominatorTree *DT; 2751 AssumptionCache *AC; 2752 DemandedBits *DB; 2753 const DataLayout *DL; 2754 OptimizationRemarkEmitter *ORE; 2755 2756 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2757 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2758 2759 /// Instruction builder to construct the vectorized tree. 2760 IRBuilder<> Builder; 2761 2762 /// A map of scalar integer values to the smallest bit width with which they 2763 /// can legally be represented. The values map to (width, signed) pairs, 2764 /// where "width" indicates the minimum bit width and "signed" is True if the 2765 /// value must be signed-extended, rather than zero-extended, back to its 2766 /// original width. 2767 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2768 }; 2769 2770 } // end namespace slpvectorizer 2771 2772 template <> struct GraphTraits<BoUpSLP *> { 2773 using TreeEntry = BoUpSLP::TreeEntry; 2774 2775 /// NodeRef has to be a pointer per the GraphWriter. 2776 using NodeRef = TreeEntry *; 2777 2778 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2779 2780 /// Add the VectorizableTree to the index iterator to be able to return 2781 /// TreeEntry pointers. 2782 struct ChildIteratorType 2783 : public iterator_adaptor_base< 2784 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2785 ContainerTy &VectorizableTree; 2786 2787 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2788 ContainerTy &VT) 2789 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2790 2791 NodeRef operator*() { return I->UserTE; } 2792 }; 2793 2794 static NodeRef getEntryNode(BoUpSLP &R) { 2795 return R.VectorizableTree[0].get(); 2796 } 2797 2798 static ChildIteratorType child_begin(NodeRef N) { 2799 return {N->UserTreeIndices.begin(), N->Container}; 2800 } 2801 2802 static ChildIteratorType child_end(NodeRef N) { 2803 return {N->UserTreeIndices.end(), N->Container}; 2804 } 2805 2806 /// For the node iterator we just need to turn the TreeEntry iterator into a 2807 /// TreeEntry* iterator so that it dereferences to NodeRef. 2808 class nodes_iterator { 2809 using ItTy = ContainerTy::iterator; 2810 ItTy It; 2811 2812 public: 2813 nodes_iterator(const ItTy &It2) : It(It2) {} 2814 NodeRef operator*() { return It->get(); } 2815 nodes_iterator operator++() { 2816 ++It; 2817 return *this; 2818 } 2819 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2820 }; 2821 2822 static nodes_iterator nodes_begin(BoUpSLP *R) { 2823 return nodes_iterator(R->VectorizableTree.begin()); 2824 } 2825 2826 static nodes_iterator nodes_end(BoUpSLP *R) { 2827 return nodes_iterator(R->VectorizableTree.end()); 2828 } 2829 2830 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2831 }; 2832 2833 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2834 using TreeEntry = BoUpSLP::TreeEntry; 2835 2836 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2837 2838 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2839 std::string Str; 2840 raw_string_ostream OS(Str); 2841 if (isSplat(Entry->Scalars)) 2842 OS << "<splat> "; 2843 for (auto V : Entry->Scalars) { 2844 OS << *V; 2845 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2846 return EU.Scalar == V; 2847 })) 2848 OS << " <extract>"; 2849 OS << "\n"; 2850 } 2851 return Str; 2852 } 2853 2854 static std::string getNodeAttributes(const TreeEntry *Entry, 2855 const BoUpSLP *) { 2856 if (Entry->State == TreeEntry::NeedToGather) 2857 return "color=red"; 2858 return ""; 2859 } 2860 }; 2861 2862 } // end namespace llvm 2863 2864 BoUpSLP::~BoUpSLP() { 2865 for (const auto &Pair : DeletedInstructions) { 2866 // Replace operands of ignored instructions with Undefs in case if they were 2867 // marked for deletion. 2868 if (Pair.getSecond()) { 2869 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2870 Pair.getFirst()->replaceAllUsesWith(Undef); 2871 } 2872 Pair.getFirst()->dropAllReferences(); 2873 } 2874 for (const auto &Pair : DeletedInstructions) { 2875 assert(Pair.getFirst()->use_empty() && 2876 "trying to erase instruction with users."); 2877 Pair.getFirst()->eraseFromParent(); 2878 } 2879 #ifdef EXPENSIVE_CHECKS 2880 // If we could guarantee that this call is not extremely slow, we could 2881 // remove the ifdef limitation (see PR47712). 2882 assert(!verifyFunction(*F, &dbgs())); 2883 #endif 2884 } 2885 2886 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2887 for (auto *V : AV) { 2888 if (auto *I = dyn_cast<Instruction>(V)) 2889 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2890 }; 2891 } 2892 2893 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2894 /// contains original mask for the scalars reused in the node. Procedure 2895 /// transform this mask in accordance with the given \p Mask. 2896 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2897 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2898 "Expected non-empty mask."); 2899 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2900 Prev.swap(Reuses); 2901 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2902 if (Mask[I] != UndefMaskElem) 2903 Reuses[Mask[I]] = Prev[I]; 2904 } 2905 2906 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2907 /// the original order of the scalars. Procedure transforms the provided order 2908 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2909 /// identity order, \p Order is cleared. 2910 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2911 assert(!Mask.empty() && "Expected non-empty mask."); 2912 SmallVector<int> MaskOrder; 2913 if (Order.empty()) { 2914 MaskOrder.resize(Mask.size()); 2915 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2916 } else { 2917 inversePermutation(Order, MaskOrder); 2918 } 2919 reorderReuses(MaskOrder, Mask); 2920 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2921 Order.clear(); 2922 return; 2923 } 2924 Order.assign(Mask.size(), Mask.size()); 2925 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2926 if (MaskOrder[I] != UndefMaskElem) 2927 Order[MaskOrder[I]] = I; 2928 fixupOrderingIndices(Order); 2929 } 2930 2931 Optional<BoUpSLP::OrdersType> 2932 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2933 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2934 unsigned NumScalars = TE.Scalars.size(); 2935 OrdersType CurrentOrder(NumScalars, NumScalars); 2936 SmallVector<int> Positions; 2937 SmallBitVector UsedPositions(NumScalars); 2938 const TreeEntry *STE = nullptr; 2939 // Try to find all gathered scalars that are gets vectorized in other 2940 // vectorize node. Here we can have only one single tree vector node to 2941 // correctly identify order of the gathered scalars. 2942 for (unsigned I = 0; I < NumScalars; ++I) { 2943 Value *V = TE.Scalars[I]; 2944 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2945 continue; 2946 if (const auto *LocalSTE = getTreeEntry(V)) { 2947 if (!STE) 2948 STE = LocalSTE; 2949 else if (STE != LocalSTE) 2950 // Take the order only from the single vector node. 2951 return None; 2952 unsigned Lane = 2953 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2954 if (Lane >= NumScalars) 2955 return None; 2956 if (CurrentOrder[Lane] != NumScalars) { 2957 if (Lane != I) 2958 continue; 2959 UsedPositions.reset(CurrentOrder[Lane]); 2960 } 2961 // The partial identity (where only some elements of the gather node are 2962 // in the identity order) is good. 2963 CurrentOrder[Lane] = I; 2964 UsedPositions.set(I); 2965 } 2966 } 2967 // Need to keep the order if we have a vector entry and at least 2 scalars or 2968 // the vectorized entry has just 2 scalars. 2969 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2970 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2971 for (unsigned I = 0; I < NumScalars; ++I) 2972 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2973 return false; 2974 return true; 2975 }; 2976 if (IsIdentityOrder(CurrentOrder)) { 2977 CurrentOrder.clear(); 2978 return CurrentOrder; 2979 } 2980 auto *It = CurrentOrder.begin(); 2981 for (unsigned I = 0; I < NumScalars;) { 2982 if (UsedPositions.test(I)) { 2983 ++I; 2984 continue; 2985 } 2986 if (*It == NumScalars) { 2987 *It = I; 2988 ++I; 2989 } 2990 ++It; 2991 } 2992 return CurrentOrder; 2993 } 2994 return None; 2995 } 2996 2997 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 2998 bool TopToBottom) { 2999 // No need to reorder if need to shuffle reuses, still need to shuffle the 3000 // node. 3001 if (!TE.ReuseShuffleIndices.empty()) 3002 return None; 3003 if (TE.State == TreeEntry::Vectorize && 3004 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3005 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3006 !TE.isAltShuffle()) 3007 return TE.ReorderIndices; 3008 if (TE.State == TreeEntry::NeedToGather) { 3009 // TODO: add analysis of other gather nodes with extractelement 3010 // instructions and other values/instructions, not only undefs. 3011 if (((TE.getOpcode() == Instruction::ExtractElement && 3012 !TE.isAltShuffle()) || 3013 (all_of(TE.Scalars, 3014 [](Value *V) { 3015 return isa<UndefValue, ExtractElementInst>(V); 3016 }) && 3017 any_of(TE.Scalars, 3018 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3019 all_of(TE.Scalars, 3020 [](Value *V) { 3021 auto *EE = dyn_cast<ExtractElementInst>(V); 3022 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3023 }) && 3024 allSameType(TE.Scalars)) { 3025 // Check that gather of extractelements can be represented as 3026 // just a shuffle of a single vector. 3027 OrdersType CurrentOrder; 3028 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3029 if (Reuse || !CurrentOrder.empty()) { 3030 if (!CurrentOrder.empty()) 3031 fixupOrderingIndices(CurrentOrder); 3032 return CurrentOrder; 3033 } 3034 } 3035 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3036 return CurrentOrder; 3037 } 3038 return None; 3039 } 3040 3041 void BoUpSLP::reorderTopToBottom() { 3042 // Maps VF to the graph nodes. 3043 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 3044 // ExtractElement gather nodes which can be vectorized and need to handle 3045 // their ordering. 3046 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3047 // Find all reorderable nodes with the given VF. 3048 // Currently the are vectorized stores,loads,extracts + some gathering of 3049 // extracts. 3050 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3051 const std::unique_ptr<TreeEntry> &TE) { 3052 if (Optional<OrdersType> CurrentOrder = 3053 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3054 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3055 if (TE->State != TreeEntry::Vectorize) 3056 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3057 } 3058 }); 3059 3060 // Reorder the graph nodes according to their vectorization factor. 3061 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3062 VF /= 2) { 3063 auto It = VFToOrderedEntries.find(VF); 3064 if (It == VFToOrderedEntries.end()) 3065 continue; 3066 // Try to find the most profitable order. We just are looking for the most 3067 // used order and reorder scalar elements in the nodes according to this 3068 // mostly used order. 3069 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 3070 // All operands are reordered and used only in this node - propagate the 3071 // most used order to the user node. 3072 MapVector<OrdersType, unsigned, 3073 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3074 OrdersUses; 3075 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3076 for (const TreeEntry *OpTE : OrderedEntries) { 3077 // No need to reorder this nodes, still need to extend and to use shuffle, 3078 // just need to merge reordering shuffle and the reuse shuffle. 3079 if (!OpTE->ReuseShuffleIndices.empty()) 3080 continue; 3081 // Count number of orders uses. 3082 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3083 if (OpTE->State == TreeEntry::NeedToGather) 3084 return GathersToOrders.find(OpTE)->second; 3085 return OpTE->ReorderIndices; 3086 }(); 3087 // Stores actually store the mask, not the order, need to invert. 3088 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3089 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3090 SmallVector<int> Mask; 3091 inversePermutation(Order, Mask); 3092 unsigned E = Order.size(); 3093 OrdersType CurrentOrder(E, E); 3094 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3095 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3096 }); 3097 fixupOrderingIndices(CurrentOrder); 3098 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3099 } else { 3100 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3101 } 3102 } 3103 // Set order of the user node. 3104 if (OrdersUses.empty()) 3105 continue; 3106 // Choose the most used order. 3107 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3108 unsigned Cnt = OrdersUses.front().second; 3109 for (const auto &Pair : drop_begin(OrdersUses)) { 3110 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3111 BestOrder = Pair.first; 3112 Cnt = Pair.second; 3113 } 3114 } 3115 // Set order of the user node. 3116 if (BestOrder.empty()) 3117 continue; 3118 SmallVector<int> Mask; 3119 inversePermutation(BestOrder, Mask); 3120 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3121 unsigned E = BestOrder.size(); 3122 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3123 return I < E ? static_cast<int>(I) : UndefMaskElem; 3124 }); 3125 // Do an actual reordering, if profitable. 3126 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3127 // Just do the reordering for the nodes with the given VF. 3128 if (TE->Scalars.size() != VF) { 3129 if (TE->ReuseShuffleIndices.size() == VF) { 3130 // Need to reorder the reuses masks of the operands with smaller VF to 3131 // be able to find the match between the graph nodes and scalar 3132 // operands of the given node during vectorization/cost estimation. 3133 assert(all_of(TE->UserTreeIndices, 3134 [VF, &TE](const EdgeInfo &EI) { 3135 return EI.UserTE->Scalars.size() == VF || 3136 EI.UserTE->Scalars.size() == 3137 TE->Scalars.size(); 3138 }) && 3139 "All users must be of VF size."); 3140 // Update ordering of the operands with the smaller VF than the given 3141 // one. 3142 reorderReuses(TE->ReuseShuffleIndices, Mask); 3143 } 3144 continue; 3145 } 3146 if (TE->State == TreeEntry::Vectorize && 3147 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3148 InsertElementInst>(TE->getMainOp()) && 3149 !TE->isAltShuffle()) { 3150 // Build correct orders for extract{element,value}, loads and 3151 // stores. 3152 reorderOrder(TE->ReorderIndices, Mask); 3153 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3154 TE->reorderOperands(Mask); 3155 } else { 3156 // Reorder the node and its operands. 3157 TE->reorderOperands(Mask); 3158 assert(TE->ReorderIndices.empty() && 3159 "Expected empty reorder sequence."); 3160 reorderScalars(TE->Scalars, Mask); 3161 } 3162 if (!TE->ReuseShuffleIndices.empty()) { 3163 // Apply reversed order to keep the original ordering of the reused 3164 // elements to avoid extra reorder indices shuffling. 3165 OrdersType CurrentOrder; 3166 reorderOrder(CurrentOrder, MaskOrder); 3167 SmallVector<int> NewReuses; 3168 inversePermutation(CurrentOrder, NewReuses); 3169 addMask(NewReuses, TE->ReuseShuffleIndices); 3170 TE->ReuseShuffleIndices.swap(NewReuses); 3171 } 3172 } 3173 } 3174 } 3175 3176 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3177 SetVector<TreeEntry *> OrderedEntries; 3178 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3179 // Find all reorderable leaf nodes with the given VF. 3180 // Currently the are vectorized loads,extracts without alternate operands + 3181 // some gathering of extracts. 3182 SmallVector<TreeEntry *> NonVectorized; 3183 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3184 &NonVectorized]( 3185 const std::unique_ptr<TreeEntry> &TE) { 3186 if (TE->State != TreeEntry::Vectorize) 3187 NonVectorized.push_back(TE.get()); 3188 if (Optional<OrdersType> CurrentOrder = 3189 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3190 OrderedEntries.insert(TE.get()); 3191 if (TE->State != TreeEntry::Vectorize) 3192 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3193 } 3194 }); 3195 3196 // Checks if the operands of the users are reordarable and have only single 3197 // use. 3198 auto &&CheckOperands = 3199 [this, &NonVectorized](const auto &Data, 3200 SmallVectorImpl<TreeEntry *> &GatherOps) { 3201 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3202 if (any_of(Data.second, 3203 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3204 return OpData.first == I && 3205 OpData.second->State == TreeEntry::Vectorize; 3206 })) 3207 continue; 3208 ArrayRef<Value *> VL = Data.first->getOperand(I); 3209 const TreeEntry *TE = nullptr; 3210 const auto *It = find_if(VL, [this, &TE](Value *V) { 3211 TE = getTreeEntry(V); 3212 return TE; 3213 }); 3214 if (It != VL.end() && TE->isSame(VL)) 3215 return false; 3216 TreeEntry *Gather = nullptr; 3217 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3218 assert(TE->State != TreeEntry::Vectorize && 3219 "Only non-vectorized nodes are expected."); 3220 if (TE->isSame(VL)) { 3221 Gather = TE; 3222 return true; 3223 } 3224 return false; 3225 }) > 1) 3226 return false; 3227 if (Gather) 3228 GatherOps.push_back(Gather); 3229 } 3230 return true; 3231 }; 3232 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3233 // I.e., if the node has operands, that are reordered, try to make at least 3234 // one operand order in the natural order and reorder others + reorder the 3235 // user node itself. 3236 SmallPtrSet<const TreeEntry *, 4> Visited; 3237 while (!OrderedEntries.empty()) { 3238 // 1. Filter out only reordered nodes. 3239 // 2. If the entry has multiple uses - skip it and jump to the next node. 3240 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3241 SmallVector<TreeEntry *> Filtered; 3242 for (TreeEntry *TE : OrderedEntries) { 3243 if (!(TE->State == TreeEntry::Vectorize || 3244 (TE->State == TreeEntry::NeedToGather && 3245 GathersToOrders.count(TE))) || 3246 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3247 !all_of(drop_begin(TE->UserTreeIndices), 3248 [TE](const EdgeInfo &EI) { 3249 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3250 }) || 3251 !Visited.insert(TE).second) { 3252 Filtered.push_back(TE); 3253 continue; 3254 } 3255 // Build a map between user nodes and their operands order to speedup 3256 // search. The graph currently does not provide this dependency directly. 3257 for (EdgeInfo &EI : TE->UserTreeIndices) { 3258 TreeEntry *UserTE = EI.UserTE; 3259 auto It = Users.find(UserTE); 3260 if (It == Users.end()) 3261 It = Users.insert({UserTE, {}}).first; 3262 It->second.emplace_back(EI.EdgeIdx, TE); 3263 } 3264 } 3265 // Erase filtered entries. 3266 for_each(Filtered, 3267 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3268 for (const auto &Data : Users) { 3269 // Check that operands are used only in the User node. 3270 SmallVector<TreeEntry *> GatherOps; 3271 if (!CheckOperands(Data, GatherOps)) { 3272 for_each(Data.second, 3273 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3274 OrderedEntries.remove(Op.second); 3275 }); 3276 continue; 3277 } 3278 // All operands are reordered and used only in this node - propagate the 3279 // most used order to the user node. 3280 MapVector<OrdersType, unsigned, 3281 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3282 OrdersUses; 3283 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3284 for (const auto &Op : Data.second) { 3285 TreeEntry *OpTE = Op.second; 3286 if (!OpTE->ReuseShuffleIndices.empty() || 3287 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3288 continue; 3289 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3290 if (OpTE->State == TreeEntry::NeedToGather) 3291 return GathersToOrders.find(OpTE)->second; 3292 return OpTE->ReorderIndices; 3293 }(); 3294 // Stores actually store the mask, not the order, need to invert. 3295 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3296 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3297 SmallVector<int> Mask; 3298 inversePermutation(Order, Mask); 3299 unsigned E = Order.size(); 3300 OrdersType CurrentOrder(E, E); 3301 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3302 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3303 }); 3304 fixupOrderingIndices(CurrentOrder); 3305 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3306 } else { 3307 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3308 } 3309 if (VisitedOps.insert(OpTE).second) 3310 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3311 OpTE->UserTreeIndices.size(); 3312 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3313 --OrdersUses[{}]; 3314 } 3315 // If no orders - skip current nodes and jump to the next one, if any. 3316 if (OrdersUses.empty()) { 3317 for_each(Data.second, 3318 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3319 OrderedEntries.remove(Op.second); 3320 }); 3321 continue; 3322 } 3323 // Choose the best order. 3324 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3325 unsigned Cnt = OrdersUses.front().second; 3326 for (const auto &Pair : drop_begin(OrdersUses)) { 3327 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3328 BestOrder = Pair.first; 3329 Cnt = Pair.second; 3330 } 3331 } 3332 // Set order of the user node (reordering of operands and user nodes). 3333 if (BestOrder.empty()) { 3334 for_each(Data.second, 3335 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3336 OrderedEntries.remove(Op.second); 3337 }); 3338 continue; 3339 } 3340 // Erase operands from OrderedEntries list and adjust their orders. 3341 VisitedOps.clear(); 3342 SmallVector<int> Mask; 3343 inversePermutation(BestOrder, Mask); 3344 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3345 unsigned E = BestOrder.size(); 3346 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3347 return I < E ? static_cast<int>(I) : UndefMaskElem; 3348 }); 3349 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3350 TreeEntry *TE = Op.second; 3351 OrderedEntries.remove(TE); 3352 if (!VisitedOps.insert(TE).second) 3353 continue; 3354 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3355 // Just reorder reuses indices. 3356 reorderReuses(TE->ReuseShuffleIndices, Mask); 3357 continue; 3358 } 3359 // Gathers are processed separately. 3360 if (TE->State != TreeEntry::Vectorize) 3361 continue; 3362 assert((BestOrder.size() == TE->ReorderIndices.size() || 3363 TE->ReorderIndices.empty()) && 3364 "Non-matching sizes of user/operand entries."); 3365 reorderOrder(TE->ReorderIndices, Mask); 3366 } 3367 // For gathers just need to reorder its scalars. 3368 for (TreeEntry *Gather : GatherOps) { 3369 assert(Gather->ReorderIndices.empty() && 3370 "Unexpected reordering of gathers."); 3371 if (!Gather->ReuseShuffleIndices.empty()) { 3372 // Just reorder reuses indices. 3373 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3374 continue; 3375 } 3376 reorderScalars(Gather->Scalars, Mask); 3377 OrderedEntries.remove(Gather); 3378 } 3379 // Reorder operands of the user node and set the ordering for the user 3380 // node itself. 3381 if (Data.first->State != TreeEntry::Vectorize || 3382 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3383 Data.first->getMainOp()) || 3384 Data.first->isAltShuffle()) 3385 Data.first->reorderOperands(Mask); 3386 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3387 Data.first->isAltShuffle()) { 3388 reorderScalars(Data.first->Scalars, Mask); 3389 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3390 if (Data.first->ReuseShuffleIndices.empty() && 3391 !Data.first->ReorderIndices.empty() && 3392 !Data.first->isAltShuffle()) { 3393 // Insert user node to the list to try to sink reordering deeper in 3394 // the graph. 3395 OrderedEntries.insert(Data.first); 3396 } 3397 } else { 3398 reorderOrder(Data.first->ReorderIndices, Mask); 3399 } 3400 } 3401 } 3402 // If the reordering is unnecessary, just remove the reorder. 3403 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3404 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3405 VectorizableTree.front()->ReorderIndices.clear(); 3406 } 3407 3408 void BoUpSLP::buildExternalUses( 3409 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3410 // Collect the values that we need to extract from the tree. 3411 for (auto &TEPtr : VectorizableTree) { 3412 TreeEntry *Entry = TEPtr.get(); 3413 3414 // No need to handle users of gathered values. 3415 if (Entry->State == TreeEntry::NeedToGather) 3416 continue; 3417 3418 // For each lane: 3419 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3420 Value *Scalar = Entry->Scalars[Lane]; 3421 int FoundLane = Entry->findLaneForValue(Scalar); 3422 3423 // Check if the scalar is externally used as an extra arg. 3424 auto ExtI = ExternallyUsedValues.find(Scalar); 3425 if (ExtI != ExternallyUsedValues.end()) { 3426 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3427 << Lane << " from " << *Scalar << ".\n"); 3428 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3429 } 3430 for (User *U : Scalar->users()) { 3431 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3432 3433 Instruction *UserInst = dyn_cast<Instruction>(U); 3434 if (!UserInst) 3435 continue; 3436 3437 if (isDeleted(UserInst)) 3438 continue; 3439 3440 // Skip in-tree scalars that become vectors 3441 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3442 Value *UseScalar = UseEntry->Scalars[0]; 3443 // Some in-tree scalars will remain as scalar in vectorized 3444 // instructions. If that is the case, the one in Lane 0 will 3445 // be used. 3446 if (UseScalar != U || 3447 UseEntry->State == TreeEntry::ScatterVectorize || 3448 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3449 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3450 << ".\n"); 3451 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3452 continue; 3453 } 3454 } 3455 3456 // Ignore users in the user ignore list. 3457 if (is_contained(UserIgnoreList, UserInst)) 3458 continue; 3459 3460 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3461 << Lane << " from " << *Scalar << ".\n"); 3462 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3463 } 3464 } 3465 } 3466 } 3467 3468 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3469 ArrayRef<Value *> UserIgnoreLst) { 3470 deleteTree(); 3471 UserIgnoreList = UserIgnoreLst; 3472 if (!allSameType(Roots)) 3473 return; 3474 buildTree_rec(Roots, 0, EdgeInfo()); 3475 } 3476 3477 namespace { 3478 /// Tracks the state we can represent the loads in the given sequence. 3479 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3480 } // anonymous namespace 3481 3482 /// Checks if the given array of loads can be represented as a vectorized, 3483 /// scatter or just simple gather. 3484 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3485 const TargetTransformInfo &TTI, 3486 const DataLayout &DL, ScalarEvolution &SE, 3487 SmallVectorImpl<unsigned> &Order, 3488 SmallVectorImpl<Value *> &PointerOps) { 3489 // Check that a vectorized load would load the same memory as a scalar 3490 // load. For example, we don't want to vectorize loads that are smaller 3491 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3492 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3493 // from such a struct, we read/write packed bits disagreeing with the 3494 // unvectorized version. 3495 Type *ScalarTy = VL0->getType(); 3496 3497 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3498 return LoadsState::Gather; 3499 3500 // Make sure all loads in the bundle are simple - we can't vectorize 3501 // atomic or volatile loads. 3502 PointerOps.clear(); 3503 PointerOps.resize(VL.size()); 3504 auto *POIter = PointerOps.begin(); 3505 for (Value *V : VL) { 3506 auto *L = cast<LoadInst>(V); 3507 if (!L->isSimple()) 3508 return LoadsState::Gather; 3509 *POIter = L->getPointerOperand(); 3510 ++POIter; 3511 } 3512 3513 Order.clear(); 3514 // Check the order of pointer operands. 3515 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3516 Value *Ptr0; 3517 Value *PtrN; 3518 if (Order.empty()) { 3519 Ptr0 = PointerOps.front(); 3520 PtrN = PointerOps.back(); 3521 } else { 3522 Ptr0 = PointerOps[Order.front()]; 3523 PtrN = PointerOps[Order.back()]; 3524 } 3525 Optional<int> Diff = 3526 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3527 // Check that the sorted loads are consecutive. 3528 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3529 return LoadsState::Vectorize; 3530 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3531 for (Value *V : VL) 3532 CommonAlignment = 3533 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3534 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3535 CommonAlignment)) 3536 return LoadsState::ScatterVectorize; 3537 } 3538 3539 return LoadsState::Gather; 3540 } 3541 3542 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3543 const EdgeInfo &UserTreeIdx) { 3544 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3545 3546 SmallVector<int> ReuseShuffleIndicies; 3547 SmallVector<Value *> UniqueValues; 3548 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3549 &UserTreeIdx, 3550 this](const InstructionsState &S) { 3551 // Check that every instruction appears once in this bundle. 3552 DenseMap<Value *, unsigned> UniquePositions; 3553 for (Value *V : VL) { 3554 if (isConstant(V)) { 3555 ReuseShuffleIndicies.emplace_back( 3556 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3557 UniqueValues.emplace_back(V); 3558 continue; 3559 } 3560 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3561 ReuseShuffleIndicies.emplace_back(Res.first->second); 3562 if (Res.second) 3563 UniqueValues.emplace_back(V); 3564 } 3565 size_t NumUniqueScalarValues = UniqueValues.size(); 3566 if (NumUniqueScalarValues == VL.size()) { 3567 ReuseShuffleIndicies.clear(); 3568 } else { 3569 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3570 if (NumUniqueScalarValues <= 1 || 3571 (NumUniqueScalarValues == 2 && 3572 any_of(UniqueValues, UndefValue::classof)) || 3573 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3574 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3575 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3576 return false; 3577 } 3578 VL = UniqueValues; 3579 } 3580 return true; 3581 }; 3582 3583 InstructionsState S = getSameOpcode(VL); 3584 if (Depth == RecursionMaxDepth) { 3585 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3586 if (TryToFindDuplicates(S)) 3587 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3588 ReuseShuffleIndicies); 3589 return; 3590 } 3591 3592 // Don't handle scalable vectors 3593 if (S.getOpcode() == Instruction::ExtractElement && 3594 isa<ScalableVectorType>( 3595 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3596 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3597 if (TryToFindDuplicates(S)) 3598 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3599 ReuseShuffleIndicies); 3600 return; 3601 } 3602 3603 // Don't handle vectors. 3604 if (S.OpValue->getType()->isVectorTy() && 3605 !isa<InsertElementInst>(S.OpValue)) { 3606 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3607 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3608 return; 3609 } 3610 3611 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3612 if (SI->getValueOperand()->getType()->isVectorTy()) { 3613 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3614 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3615 return; 3616 } 3617 3618 // If all of the operands are identical or constant we have a simple solution. 3619 // If we deal with insert/extract instructions, they all must have constant 3620 // indices, otherwise we should gather them, not try to vectorize. 3621 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3622 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3623 !all_of(VL, isVectorLikeInstWithConstOps))) { 3624 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3625 if (TryToFindDuplicates(S)) 3626 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3627 ReuseShuffleIndicies); 3628 return; 3629 } 3630 3631 // We now know that this is a vector of instructions of the same type from 3632 // the same block. 3633 3634 // Don't vectorize ephemeral values. 3635 for (Value *V : VL) { 3636 if (EphValues.count(V)) { 3637 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3638 << ") is ephemeral.\n"); 3639 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3640 return; 3641 } 3642 } 3643 3644 // Check if this is a duplicate of another entry. 3645 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3646 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3647 if (!E->isSame(VL)) { 3648 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3649 if (TryToFindDuplicates(S)) 3650 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3651 ReuseShuffleIndicies); 3652 return; 3653 } 3654 // Record the reuse of the tree node. FIXME, currently this is only used to 3655 // properly draw the graph rather than for the actual vectorization. 3656 E->UserTreeIndices.push_back(UserTreeIdx); 3657 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3658 << ".\n"); 3659 return; 3660 } 3661 3662 // Check that none of the instructions in the bundle are already in the tree. 3663 for (Value *V : VL) { 3664 auto *I = dyn_cast<Instruction>(V); 3665 if (!I) 3666 continue; 3667 if (getTreeEntry(I)) { 3668 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3669 << ") is already in tree.\n"); 3670 if (TryToFindDuplicates(S)) 3671 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3672 ReuseShuffleIndicies); 3673 return; 3674 } 3675 } 3676 3677 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3678 for (Value *V : VL) { 3679 if (is_contained(UserIgnoreList, V)) { 3680 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3681 if (TryToFindDuplicates(S)) 3682 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3683 ReuseShuffleIndicies); 3684 return; 3685 } 3686 } 3687 3688 // Check that all of the users of the scalars that we want to vectorize are 3689 // schedulable. 3690 auto *VL0 = cast<Instruction>(S.OpValue); 3691 BasicBlock *BB = VL0->getParent(); 3692 3693 if (!DT->isReachableFromEntry(BB)) { 3694 // Don't go into unreachable blocks. They may contain instructions with 3695 // dependency cycles which confuse the final scheduling. 3696 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3697 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3698 return; 3699 } 3700 3701 // Check that every instruction appears once in this bundle. 3702 if (!TryToFindDuplicates(S)) 3703 return; 3704 3705 auto &BSRef = BlocksSchedules[BB]; 3706 if (!BSRef) 3707 BSRef = std::make_unique<BlockScheduling>(BB); 3708 3709 BlockScheduling &BS = *BSRef.get(); 3710 3711 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3712 if (!Bundle) { 3713 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3714 assert((!BS.getScheduleData(VL0) || 3715 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3716 "tryScheduleBundle should cancelScheduling on failure"); 3717 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3718 ReuseShuffleIndicies); 3719 return; 3720 } 3721 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3722 3723 unsigned ShuffleOrOp = S.isAltShuffle() ? 3724 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3725 switch (ShuffleOrOp) { 3726 case Instruction::PHI: { 3727 auto *PH = cast<PHINode>(VL0); 3728 3729 // Check for terminator values (e.g. invoke). 3730 for (Value *V : VL) 3731 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3732 Instruction *Term = dyn_cast<Instruction>( 3733 cast<PHINode>(V)->getIncomingValueForBlock( 3734 PH->getIncomingBlock(I))); 3735 if (Term && Term->isTerminator()) { 3736 LLVM_DEBUG(dbgs() 3737 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3738 BS.cancelScheduling(VL, VL0); 3739 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3740 ReuseShuffleIndicies); 3741 return; 3742 } 3743 } 3744 3745 TreeEntry *TE = 3746 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3747 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3748 3749 // Keeps the reordered operands to avoid code duplication. 3750 SmallVector<ValueList, 2> OperandsVec; 3751 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3752 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3753 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3754 TE->setOperand(I, Operands); 3755 OperandsVec.push_back(Operands); 3756 continue; 3757 } 3758 ValueList Operands; 3759 // Prepare the operand vector. 3760 for (Value *V : VL) 3761 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3762 PH->getIncomingBlock(I))); 3763 TE->setOperand(I, Operands); 3764 OperandsVec.push_back(Operands); 3765 } 3766 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3767 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3768 return; 3769 } 3770 case Instruction::ExtractValue: 3771 case Instruction::ExtractElement: { 3772 OrdersType CurrentOrder; 3773 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3774 if (Reuse) { 3775 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3776 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3777 ReuseShuffleIndicies); 3778 // This is a special case, as it does not gather, but at the same time 3779 // we are not extending buildTree_rec() towards the operands. 3780 ValueList Op0; 3781 Op0.assign(VL.size(), VL0->getOperand(0)); 3782 VectorizableTree.back()->setOperand(0, Op0); 3783 return; 3784 } 3785 if (!CurrentOrder.empty()) { 3786 LLVM_DEBUG({ 3787 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3788 "with order"; 3789 for (unsigned Idx : CurrentOrder) 3790 dbgs() << " " << Idx; 3791 dbgs() << "\n"; 3792 }); 3793 fixupOrderingIndices(CurrentOrder); 3794 // Insert new order with initial value 0, if it does not exist, 3795 // otherwise return the iterator to the existing one. 3796 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3797 ReuseShuffleIndicies, CurrentOrder); 3798 // This is a special case, as it does not gather, but at the same time 3799 // we are not extending buildTree_rec() towards the operands. 3800 ValueList Op0; 3801 Op0.assign(VL.size(), VL0->getOperand(0)); 3802 VectorizableTree.back()->setOperand(0, Op0); 3803 return; 3804 } 3805 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3806 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3807 ReuseShuffleIndicies); 3808 BS.cancelScheduling(VL, VL0); 3809 return; 3810 } 3811 case Instruction::InsertElement: { 3812 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3813 3814 // Check that we have a buildvector and not a shuffle of 2 or more 3815 // different vectors. 3816 ValueSet SourceVectors; 3817 int MinIdx = std::numeric_limits<int>::max(); 3818 for (Value *V : VL) { 3819 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3820 Optional<int> Idx = *getInsertIndex(V, 0); 3821 if (!Idx || *Idx == UndefMaskElem) 3822 continue; 3823 MinIdx = std::min(MinIdx, *Idx); 3824 } 3825 3826 if (count_if(VL, [&SourceVectors](Value *V) { 3827 return !SourceVectors.contains(V); 3828 }) >= 2) { 3829 // Found 2nd source vector - cancel. 3830 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3831 "different source vectors.\n"); 3832 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3833 BS.cancelScheduling(VL, VL0); 3834 return; 3835 } 3836 3837 auto OrdCompare = [](const std::pair<int, int> &P1, 3838 const std::pair<int, int> &P2) { 3839 return P1.first > P2.first; 3840 }; 3841 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3842 decltype(OrdCompare)> 3843 Indices(OrdCompare); 3844 for (int I = 0, E = VL.size(); I < E; ++I) { 3845 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3846 if (!Idx || *Idx == UndefMaskElem) 3847 continue; 3848 Indices.emplace(*Idx, I); 3849 } 3850 OrdersType CurrentOrder(VL.size(), VL.size()); 3851 bool IsIdentity = true; 3852 for (int I = 0, E = VL.size(); I < E; ++I) { 3853 CurrentOrder[Indices.top().second] = I; 3854 IsIdentity &= Indices.top().second == I; 3855 Indices.pop(); 3856 } 3857 if (IsIdentity) 3858 CurrentOrder.clear(); 3859 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3860 None, CurrentOrder); 3861 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3862 3863 constexpr int NumOps = 2; 3864 ValueList VectorOperands[NumOps]; 3865 for (int I = 0; I < NumOps; ++I) { 3866 for (Value *V : VL) 3867 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3868 3869 TE->setOperand(I, VectorOperands[I]); 3870 } 3871 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3872 return; 3873 } 3874 case Instruction::Load: { 3875 // Check that a vectorized load would load the same memory as a scalar 3876 // load. For example, we don't want to vectorize loads that are smaller 3877 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3878 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3879 // from such a struct, we read/write packed bits disagreeing with the 3880 // unvectorized version. 3881 SmallVector<Value *> PointerOps; 3882 OrdersType CurrentOrder; 3883 TreeEntry *TE = nullptr; 3884 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3885 PointerOps)) { 3886 case LoadsState::Vectorize: 3887 if (CurrentOrder.empty()) { 3888 // Original loads are consecutive and does not require reordering. 3889 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3890 ReuseShuffleIndicies); 3891 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3892 } else { 3893 fixupOrderingIndices(CurrentOrder); 3894 // Need to reorder. 3895 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3896 ReuseShuffleIndicies, CurrentOrder); 3897 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3898 } 3899 TE->setOperandsInOrder(); 3900 break; 3901 case LoadsState::ScatterVectorize: 3902 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3903 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3904 UserTreeIdx, ReuseShuffleIndicies); 3905 TE->setOperandsInOrder(); 3906 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3907 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3908 break; 3909 case LoadsState::Gather: 3910 BS.cancelScheduling(VL, VL0); 3911 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3912 ReuseShuffleIndicies); 3913 #ifndef NDEBUG 3914 Type *ScalarTy = VL0->getType(); 3915 if (DL->getTypeSizeInBits(ScalarTy) != 3916 DL->getTypeAllocSizeInBits(ScalarTy)) 3917 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3918 else if (any_of(VL, [](Value *V) { 3919 return !cast<LoadInst>(V)->isSimple(); 3920 })) 3921 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3922 else 3923 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3924 #endif // NDEBUG 3925 break; 3926 } 3927 return; 3928 } 3929 case Instruction::ZExt: 3930 case Instruction::SExt: 3931 case Instruction::FPToUI: 3932 case Instruction::FPToSI: 3933 case Instruction::FPExt: 3934 case Instruction::PtrToInt: 3935 case Instruction::IntToPtr: 3936 case Instruction::SIToFP: 3937 case Instruction::UIToFP: 3938 case Instruction::Trunc: 3939 case Instruction::FPTrunc: 3940 case Instruction::BitCast: { 3941 Type *SrcTy = VL0->getOperand(0)->getType(); 3942 for (Value *V : VL) { 3943 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3944 if (Ty != SrcTy || !isValidElementType(Ty)) { 3945 BS.cancelScheduling(VL, VL0); 3946 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3947 ReuseShuffleIndicies); 3948 LLVM_DEBUG(dbgs() 3949 << "SLP: Gathering casts with different src types.\n"); 3950 return; 3951 } 3952 } 3953 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3954 ReuseShuffleIndicies); 3955 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3956 3957 TE->setOperandsInOrder(); 3958 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3959 ValueList Operands; 3960 // Prepare the operand vector. 3961 for (Value *V : VL) 3962 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3963 3964 buildTree_rec(Operands, Depth + 1, {TE, i}); 3965 } 3966 return; 3967 } 3968 case Instruction::ICmp: 3969 case Instruction::FCmp: { 3970 // Check that all of the compares have the same predicate. 3971 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3972 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3973 Type *ComparedTy = VL0->getOperand(0)->getType(); 3974 for (Value *V : VL) { 3975 CmpInst *Cmp = cast<CmpInst>(V); 3976 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3977 Cmp->getOperand(0)->getType() != ComparedTy) { 3978 BS.cancelScheduling(VL, VL0); 3979 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3980 ReuseShuffleIndicies); 3981 LLVM_DEBUG(dbgs() 3982 << "SLP: Gathering cmp with different predicate.\n"); 3983 return; 3984 } 3985 } 3986 3987 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3988 ReuseShuffleIndicies); 3989 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3990 3991 ValueList Left, Right; 3992 if (cast<CmpInst>(VL0)->isCommutative()) { 3993 // Commutative predicate - collect + sort operands of the instructions 3994 // so that each side is more likely to have the same opcode. 3995 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3996 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3997 } else { 3998 // Collect operands - commute if it uses the swapped predicate. 3999 for (Value *V : VL) { 4000 auto *Cmp = cast<CmpInst>(V); 4001 Value *LHS = Cmp->getOperand(0); 4002 Value *RHS = Cmp->getOperand(1); 4003 if (Cmp->getPredicate() != P0) 4004 std::swap(LHS, RHS); 4005 Left.push_back(LHS); 4006 Right.push_back(RHS); 4007 } 4008 } 4009 TE->setOperand(0, Left); 4010 TE->setOperand(1, Right); 4011 buildTree_rec(Left, Depth + 1, {TE, 0}); 4012 buildTree_rec(Right, Depth + 1, {TE, 1}); 4013 return; 4014 } 4015 case Instruction::Select: 4016 case Instruction::FNeg: 4017 case Instruction::Add: 4018 case Instruction::FAdd: 4019 case Instruction::Sub: 4020 case Instruction::FSub: 4021 case Instruction::Mul: 4022 case Instruction::FMul: 4023 case Instruction::UDiv: 4024 case Instruction::SDiv: 4025 case Instruction::FDiv: 4026 case Instruction::URem: 4027 case Instruction::SRem: 4028 case Instruction::FRem: 4029 case Instruction::Shl: 4030 case Instruction::LShr: 4031 case Instruction::AShr: 4032 case Instruction::And: 4033 case Instruction::Or: 4034 case Instruction::Xor: { 4035 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4036 ReuseShuffleIndicies); 4037 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4038 4039 // Sort operands of the instructions so that each side is more likely to 4040 // have the same opcode. 4041 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4042 ValueList Left, Right; 4043 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4044 TE->setOperand(0, Left); 4045 TE->setOperand(1, Right); 4046 buildTree_rec(Left, Depth + 1, {TE, 0}); 4047 buildTree_rec(Right, Depth + 1, {TE, 1}); 4048 return; 4049 } 4050 4051 TE->setOperandsInOrder(); 4052 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4053 ValueList Operands; 4054 // Prepare the operand vector. 4055 for (Value *V : VL) 4056 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4057 4058 buildTree_rec(Operands, Depth + 1, {TE, i}); 4059 } 4060 return; 4061 } 4062 case Instruction::GetElementPtr: { 4063 // We don't combine GEPs with complicated (nested) indexing. 4064 for (Value *V : VL) { 4065 if (cast<Instruction>(V)->getNumOperands() != 2) { 4066 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4067 BS.cancelScheduling(VL, VL0); 4068 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4069 ReuseShuffleIndicies); 4070 return; 4071 } 4072 } 4073 4074 // We can't combine several GEPs into one vector if they operate on 4075 // different types. 4076 Type *Ty0 = VL0->getOperand(0)->getType(); 4077 for (Value *V : VL) { 4078 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4079 if (Ty0 != CurTy) { 4080 LLVM_DEBUG(dbgs() 4081 << "SLP: not-vectorizable GEP (different types).\n"); 4082 BS.cancelScheduling(VL, VL0); 4083 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4084 ReuseShuffleIndicies); 4085 return; 4086 } 4087 } 4088 4089 // We don't combine GEPs with non-constant indexes. 4090 Type *Ty1 = VL0->getOperand(1)->getType(); 4091 for (Value *V : VL) { 4092 auto Op = cast<Instruction>(V)->getOperand(1); 4093 if (!isa<ConstantInt>(Op) || 4094 (Op->getType() != Ty1 && 4095 Op->getType()->getScalarSizeInBits() > 4096 DL->getIndexSizeInBits( 4097 V->getType()->getPointerAddressSpace()))) { 4098 LLVM_DEBUG(dbgs() 4099 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4100 BS.cancelScheduling(VL, VL0); 4101 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4102 ReuseShuffleIndicies); 4103 return; 4104 } 4105 } 4106 4107 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4108 ReuseShuffleIndicies); 4109 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4110 SmallVector<ValueList, 2> Operands(2); 4111 // Prepare the operand vector for pointer operands. 4112 for (Value *V : VL) 4113 Operands.front().push_back( 4114 cast<GetElementPtrInst>(V)->getPointerOperand()); 4115 TE->setOperand(0, Operands.front()); 4116 // Need to cast all indices to the same type before vectorization to 4117 // avoid crash. 4118 // Required to be able to find correct matches between different gather 4119 // nodes and reuse the vectorized values rather than trying to gather them 4120 // again. 4121 int IndexIdx = 1; 4122 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4123 Type *Ty = all_of(VL, 4124 [VL0Ty, IndexIdx](Value *V) { 4125 return VL0Ty == cast<GetElementPtrInst>(V) 4126 ->getOperand(IndexIdx) 4127 ->getType(); 4128 }) 4129 ? VL0Ty 4130 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4131 ->getPointerOperandType() 4132 ->getScalarType()); 4133 // Prepare the operand vector. 4134 for (Value *V : VL) { 4135 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4136 auto *CI = cast<ConstantInt>(Op); 4137 Operands.back().push_back(ConstantExpr::getIntegerCast( 4138 CI, Ty, CI->getValue().isSignBitSet())); 4139 } 4140 TE->setOperand(IndexIdx, Operands.back()); 4141 4142 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4143 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4144 return; 4145 } 4146 case Instruction::Store: { 4147 // Check if the stores are consecutive or if we need to swizzle them. 4148 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4149 // Avoid types that are padded when being allocated as scalars, while 4150 // being packed together in a vector (such as i1). 4151 if (DL->getTypeSizeInBits(ScalarTy) != 4152 DL->getTypeAllocSizeInBits(ScalarTy)) { 4153 BS.cancelScheduling(VL, VL0); 4154 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4155 ReuseShuffleIndicies); 4156 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4157 return; 4158 } 4159 // Make sure all stores in the bundle are simple - we can't vectorize 4160 // atomic or volatile stores. 4161 SmallVector<Value *, 4> PointerOps(VL.size()); 4162 ValueList Operands(VL.size()); 4163 auto POIter = PointerOps.begin(); 4164 auto OIter = Operands.begin(); 4165 for (Value *V : VL) { 4166 auto *SI = cast<StoreInst>(V); 4167 if (!SI->isSimple()) { 4168 BS.cancelScheduling(VL, VL0); 4169 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4170 ReuseShuffleIndicies); 4171 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4172 return; 4173 } 4174 *POIter = SI->getPointerOperand(); 4175 *OIter = SI->getValueOperand(); 4176 ++POIter; 4177 ++OIter; 4178 } 4179 4180 OrdersType CurrentOrder; 4181 // Check the order of pointer operands. 4182 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4183 Value *Ptr0; 4184 Value *PtrN; 4185 if (CurrentOrder.empty()) { 4186 Ptr0 = PointerOps.front(); 4187 PtrN = PointerOps.back(); 4188 } else { 4189 Ptr0 = PointerOps[CurrentOrder.front()]; 4190 PtrN = PointerOps[CurrentOrder.back()]; 4191 } 4192 Optional<int> Dist = 4193 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4194 // Check that the sorted pointer operands are consecutive. 4195 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4196 if (CurrentOrder.empty()) { 4197 // Original stores are consecutive and does not require reordering. 4198 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4199 UserTreeIdx, ReuseShuffleIndicies); 4200 TE->setOperandsInOrder(); 4201 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4202 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4203 } else { 4204 fixupOrderingIndices(CurrentOrder); 4205 TreeEntry *TE = 4206 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4207 ReuseShuffleIndicies, CurrentOrder); 4208 TE->setOperandsInOrder(); 4209 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4210 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4211 } 4212 return; 4213 } 4214 } 4215 4216 BS.cancelScheduling(VL, VL0); 4217 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4218 ReuseShuffleIndicies); 4219 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4220 return; 4221 } 4222 case Instruction::Call: { 4223 // Check if the calls are all to the same vectorizable intrinsic or 4224 // library function. 4225 CallInst *CI = cast<CallInst>(VL0); 4226 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4227 4228 VFShape Shape = VFShape::get( 4229 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4230 false /*HasGlobalPred*/); 4231 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4232 4233 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4234 BS.cancelScheduling(VL, VL0); 4235 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4236 ReuseShuffleIndicies); 4237 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4238 return; 4239 } 4240 Function *F = CI->getCalledFunction(); 4241 unsigned NumArgs = CI->arg_size(); 4242 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4243 for (unsigned j = 0; j != NumArgs; ++j) 4244 if (hasVectorInstrinsicScalarOpd(ID, j)) 4245 ScalarArgs[j] = CI->getArgOperand(j); 4246 for (Value *V : VL) { 4247 CallInst *CI2 = dyn_cast<CallInst>(V); 4248 if (!CI2 || CI2->getCalledFunction() != F || 4249 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4250 (VecFunc && 4251 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4252 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4253 BS.cancelScheduling(VL, VL0); 4254 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4255 ReuseShuffleIndicies); 4256 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4257 << "\n"); 4258 return; 4259 } 4260 // Some intrinsics have scalar arguments and should be same in order for 4261 // them to be vectorized. 4262 for (unsigned j = 0; j != NumArgs; ++j) { 4263 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4264 Value *A1J = CI2->getArgOperand(j); 4265 if (ScalarArgs[j] != A1J) { 4266 BS.cancelScheduling(VL, VL0); 4267 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4268 ReuseShuffleIndicies); 4269 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4270 << " argument " << ScalarArgs[j] << "!=" << A1J 4271 << "\n"); 4272 return; 4273 } 4274 } 4275 } 4276 // Verify that the bundle operands are identical between the two calls. 4277 if (CI->hasOperandBundles() && 4278 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4279 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4280 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4281 BS.cancelScheduling(VL, VL0); 4282 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4283 ReuseShuffleIndicies); 4284 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4285 << *CI << "!=" << *V << '\n'); 4286 return; 4287 } 4288 } 4289 4290 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4291 ReuseShuffleIndicies); 4292 TE->setOperandsInOrder(); 4293 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4294 // For scalar operands no need to to create an entry since no need to 4295 // vectorize it. 4296 if (hasVectorInstrinsicScalarOpd(ID, i)) 4297 continue; 4298 ValueList Operands; 4299 // Prepare the operand vector. 4300 for (Value *V : VL) { 4301 auto *CI2 = cast<CallInst>(V); 4302 Operands.push_back(CI2->getArgOperand(i)); 4303 } 4304 buildTree_rec(Operands, Depth + 1, {TE, i}); 4305 } 4306 return; 4307 } 4308 case Instruction::ShuffleVector: { 4309 // If this is not an alternate sequence of opcode like add-sub 4310 // then do not vectorize this instruction. 4311 if (!S.isAltShuffle()) { 4312 BS.cancelScheduling(VL, VL0); 4313 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4314 ReuseShuffleIndicies); 4315 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4316 return; 4317 } 4318 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4319 ReuseShuffleIndicies); 4320 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4321 4322 // Reorder operands if reordering would enable vectorization. 4323 if (isa<BinaryOperator>(VL0)) { 4324 ValueList Left, Right; 4325 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4326 TE->setOperand(0, Left); 4327 TE->setOperand(1, Right); 4328 buildTree_rec(Left, Depth + 1, {TE, 0}); 4329 buildTree_rec(Right, Depth + 1, {TE, 1}); 4330 return; 4331 } 4332 4333 TE->setOperandsInOrder(); 4334 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4335 ValueList Operands; 4336 // Prepare the operand vector. 4337 for (Value *V : VL) 4338 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4339 4340 buildTree_rec(Operands, Depth + 1, {TE, i}); 4341 } 4342 return; 4343 } 4344 default: 4345 BS.cancelScheduling(VL, VL0); 4346 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4347 ReuseShuffleIndicies); 4348 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4349 return; 4350 } 4351 } 4352 4353 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4354 unsigned N = 1; 4355 Type *EltTy = T; 4356 4357 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4358 isa<VectorType>(EltTy)) { 4359 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4360 // Check that struct is homogeneous. 4361 for (const auto *Ty : ST->elements()) 4362 if (Ty != *ST->element_begin()) 4363 return 0; 4364 N *= ST->getNumElements(); 4365 EltTy = *ST->element_begin(); 4366 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4367 N *= AT->getNumElements(); 4368 EltTy = AT->getElementType(); 4369 } else { 4370 auto *VT = cast<FixedVectorType>(EltTy); 4371 N *= VT->getNumElements(); 4372 EltTy = VT->getElementType(); 4373 } 4374 } 4375 4376 if (!isValidElementType(EltTy)) 4377 return 0; 4378 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4379 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4380 return 0; 4381 return N; 4382 } 4383 4384 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4385 SmallVectorImpl<unsigned> &CurrentOrder) const { 4386 const auto *It = find_if(VL, [](Value *V) { 4387 return isa<ExtractElementInst, ExtractValueInst>(V); 4388 }); 4389 assert(It != VL.end() && "Expected at least one extract instruction."); 4390 auto *E0 = cast<Instruction>(*It); 4391 assert(all_of(VL, 4392 [](Value *V) { 4393 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4394 V); 4395 }) && 4396 "Invalid opcode"); 4397 // Check if all of the extracts come from the same vector and from the 4398 // correct offset. 4399 Value *Vec = E0->getOperand(0); 4400 4401 CurrentOrder.clear(); 4402 4403 // We have to extract from a vector/aggregate with the same number of elements. 4404 unsigned NElts; 4405 if (E0->getOpcode() == Instruction::ExtractValue) { 4406 const DataLayout &DL = E0->getModule()->getDataLayout(); 4407 NElts = canMapToVector(Vec->getType(), DL); 4408 if (!NElts) 4409 return false; 4410 // Check if load can be rewritten as load of vector. 4411 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4412 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4413 return false; 4414 } else { 4415 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4416 } 4417 4418 if (NElts != VL.size()) 4419 return false; 4420 4421 // Check that all of the indices extract from the correct offset. 4422 bool ShouldKeepOrder = true; 4423 unsigned E = VL.size(); 4424 // Assign to all items the initial value E + 1 so we can check if the extract 4425 // instruction index was used already. 4426 // Also, later we can check that all the indices are used and we have a 4427 // consecutive access in the extract instructions, by checking that no 4428 // element of CurrentOrder still has value E + 1. 4429 CurrentOrder.assign(E, E); 4430 unsigned I = 0; 4431 for (; I < E; ++I) { 4432 auto *Inst = dyn_cast<Instruction>(VL[I]); 4433 if (!Inst) 4434 continue; 4435 if (Inst->getOperand(0) != Vec) 4436 break; 4437 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4438 if (isa<UndefValue>(EE->getIndexOperand())) 4439 continue; 4440 Optional<unsigned> Idx = getExtractIndex(Inst); 4441 if (!Idx) 4442 break; 4443 const unsigned ExtIdx = *Idx; 4444 if (ExtIdx != I) { 4445 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4446 break; 4447 ShouldKeepOrder = false; 4448 CurrentOrder[ExtIdx] = I; 4449 } else { 4450 if (CurrentOrder[I] != E) 4451 break; 4452 CurrentOrder[I] = I; 4453 } 4454 } 4455 if (I < E) { 4456 CurrentOrder.clear(); 4457 return false; 4458 } 4459 4460 return ShouldKeepOrder; 4461 } 4462 4463 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4464 ArrayRef<Value *> VectorizedVals) const { 4465 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4466 all_of(I->users(), [this](User *U) { 4467 return ScalarToTreeEntry.count(U) > 0 || MustGather.contains(U); 4468 }); 4469 } 4470 4471 static std::pair<InstructionCost, InstructionCost> 4472 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4473 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4474 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4475 4476 // Calculate the cost of the scalar and vector calls. 4477 SmallVector<Type *, 4> VecTys; 4478 for (Use &Arg : CI->args()) 4479 VecTys.push_back( 4480 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4481 FastMathFlags FMF; 4482 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4483 FMF = FPCI->getFastMathFlags(); 4484 SmallVector<const Value *> Arguments(CI->args()); 4485 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4486 dyn_cast<IntrinsicInst>(CI)); 4487 auto IntrinsicCost = 4488 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4489 4490 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4491 VecTy->getNumElements())), 4492 false /*HasGlobalPred*/); 4493 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4494 auto LibCost = IntrinsicCost; 4495 if (!CI->isNoBuiltin() && VecFunc) { 4496 // Calculate the cost of the vector library call. 4497 // If the corresponding vector call is cheaper, return its cost. 4498 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4499 TTI::TCK_RecipThroughput); 4500 } 4501 return {IntrinsicCost, LibCost}; 4502 } 4503 4504 /// Compute the cost of creating a vector of type \p VecTy containing the 4505 /// extracted values from \p VL. 4506 static InstructionCost 4507 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4508 TargetTransformInfo::ShuffleKind ShuffleKind, 4509 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4510 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4511 4512 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4513 VecTy->getNumElements() < NumOfParts) 4514 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4515 4516 bool AllConsecutive = true; 4517 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4518 unsigned Idx = -1; 4519 InstructionCost Cost = 0; 4520 4521 // Process extracts in blocks of EltsPerVector to check if the source vector 4522 // operand can be re-used directly. If not, add the cost of creating a shuffle 4523 // to extract the values into a vector register. 4524 for (auto *V : VL) { 4525 ++Idx; 4526 4527 // Need to exclude undefs from analysis. 4528 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4529 continue; 4530 4531 // Reached the start of a new vector registers. 4532 if (Idx % EltsPerVector == 0) { 4533 AllConsecutive = true; 4534 continue; 4535 } 4536 4537 // Check all extracts for a vector register on the target directly 4538 // extract values in order. 4539 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4540 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4541 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4542 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4543 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4544 } 4545 4546 if (AllConsecutive) 4547 continue; 4548 4549 // Skip all indices, except for the last index per vector block. 4550 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4551 continue; 4552 4553 // If we have a series of extracts which are not consecutive and hence 4554 // cannot re-use the source vector register directly, compute the shuffle 4555 // cost to extract the a vector with EltsPerVector elements. 4556 Cost += TTI.getShuffleCost( 4557 TargetTransformInfo::SK_PermuteSingleSrc, 4558 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4559 } 4560 return Cost; 4561 } 4562 4563 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4564 /// operations operands. 4565 static void 4566 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4567 ArrayRef<int> ReusesIndices, 4568 const function_ref<bool(Instruction *)> IsAltOp, 4569 SmallVectorImpl<int> &Mask, 4570 SmallVectorImpl<Value *> *OpScalars = nullptr, 4571 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4572 unsigned Sz = VL.size(); 4573 Mask.assign(Sz, UndefMaskElem); 4574 SmallVector<int> OrderMask; 4575 if (!ReorderIndices.empty()) 4576 inversePermutation(ReorderIndices, OrderMask); 4577 for (unsigned I = 0; I < Sz; ++I) { 4578 unsigned Idx = I; 4579 if (!ReorderIndices.empty()) 4580 Idx = OrderMask[I]; 4581 auto *OpInst = cast<Instruction>(VL[Idx]); 4582 if (IsAltOp(OpInst)) { 4583 Mask[I] = Sz + Idx; 4584 if (AltScalars) 4585 AltScalars->push_back(OpInst); 4586 } else { 4587 Mask[I] = Idx; 4588 if (OpScalars) 4589 OpScalars->push_back(OpInst); 4590 } 4591 } 4592 if (!ReusesIndices.empty()) { 4593 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4594 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4595 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4596 }); 4597 Mask.swap(NewMask); 4598 } 4599 } 4600 4601 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4602 ArrayRef<Value *> VectorizedVals) { 4603 ArrayRef<Value*> VL = E->Scalars; 4604 4605 Type *ScalarTy = VL[0]->getType(); 4606 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4607 ScalarTy = SI->getValueOperand()->getType(); 4608 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4609 ScalarTy = CI->getOperand(0)->getType(); 4610 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4611 ScalarTy = IE->getOperand(1)->getType(); 4612 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4613 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4614 4615 // If we have computed a smaller type for the expression, update VecTy so 4616 // that the costs will be accurate. 4617 if (MinBWs.count(VL[0])) 4618 VecTy = FixedVectorType::get( 4619 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4620 unsigned EntryVF = E->getVectorFactor(); 4621 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4622 4623 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4624 // FIXME: it tries to fix a problem with MSVC buildbots. 4625 TargetTransformInfo &TTIRef = *TTI; 4626 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4627 VectorizedVals, E](InstructionCost &Cost) { 4628 DenseMap<Value *, int> ExtractVectorsTys; 4629 SmallPtrSet<Value *, 4> CheckedExtracts; 4630 for (auto *V : VL) { 4631 if (isa<UndefValue>(V)) 4632 continue; 4633 // If all users of instruction are going to be vectorized and this 4634 // instruction itself is not going to be vectorized, consider this 4635 // instruction as dead and remove its cost from the final cost of the 4636 // vectorized tree. 4637 // Also, avoid adjusting the cost for extractelements with multiple uses 4638 // in different graph entries. 4639 const TreeEntry *VE = getTreeEntry(V); 4640 if (!CheckedExtracts.insert(V).second || 4641 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4642 (VE && VE != E)) 4643 continue; 4644 auto *EE = cast<ExtractElementInst>(V); 4645 Optional<unsigned> EEIdx = getExtractIndex(EE); 4646 if (!EEIdx) 4647 continue; 4648 unsigned Idx = *EEIdx; 4649 if (TTIRef.getNumberOfParts(VecTy) != 4650 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4651 auto It = 4652 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4653 It->getSecond() = std::min<int>(It->second, Idx); 4654 } 4655 // Take credit for instruction that will become dead. 4656 if (EE->hasOneUse()) { 4657 Instruction *Ext = EE->user_back(); 4658 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4659 all_of(Ext->users(), 4660 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4661 // Use getExtractWithExtendCost() to calculate the cost of 4662 // extractelement/ext pair. 4663 Cost -= 4664 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4665 EE->getVectorOperandType(), Idx); 4666 // Add back the cost of s|zext which is subtracted separately. 4667 Cost += TTIRef.getCastInstrCost( 4668 Ext->getOpcode(), Ext->getType(), EE->getType(), 4669 TTI::getCastContextHint(Ext), CostKind, Ext); 4670 continue; 4671 } 4672 } 4673 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4674 EE->getVectorOperandType(), Idx); 4675 } 4676 // Add a cost for subvector extracts/inserts if required. 4677 for (const auto &Data : ExtractVectorsTys) { 4678 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4679 unsigned NumElts = VecTy->getNumElements(); 4680 if (Data.second % NumElts == 0) 4681 continue; 4682 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4683 unsigned Idx = (Data.second / NumElts) * NumElts; 4684 unsigned EENumElts = EEVTy->getNumElements(); 4685 if (Idx + NumElts <= EENumElts) { 4686 Cost += 4687 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4688 EEVTy, None, Idx, VecTy); 4689 } else { 4690 // Need to round up the subvector type vectorization factor to avoid a 4691 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4692 // <= EENumElts. 4693 auto *SubVT = 4694 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4695 Cost += 4696 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4697 EEVTy, None, Idx, SubVT); 4698 } 4699 } else { 4700 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4701 VecTy, None, 0, EEVTy); 4702 } 4703 } 4704 }; 4705 if (E->State == TreeEntry::NeedToGather) { 4706 if (allConstant(VL)) 4707 return 0; 4708 if (isa<InsertElementInst>(VL[0])) 4709 return InstructionCost::getInvalid(); 4710 SmallVector<int> Mask; 4711 SmallVector<const TreeEntry *> Entries; 4712 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4713 isGatherShuffledEntry(E, Mask, Entries); 4714 if (Shuffle.hasValue()) { 4715 InstructionCost GatherCost = 0; 4716 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4717 // Perfect match in the graph, will reuse the previously vectorized 4718 // node. Cost is 0. 4719 LLVM_DEBUG( 4720 dbgs() 4721 << "SLP: perfect diamond match for gather bundle that starts with " 4722 << *VL.front() << ".\n"); 4723 if (NeedToShuffleReuses) 4724 GatherCost = 4725 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4726 FinalVecTy, E->ReuseShuffleIndices); 4727 } else { 4728 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4729 << " entries for bundle that starts with " 4730 << *VL.front() << ".\n"); 4731 // Detected that instead of gather we can emit a shuffle of single/two 4732 // previously vectorized nodes. Add the cost of the permutation rather 4733 // than gather. 4734 ::addMask(Mask, E->ReuseShuffleIndices); 4735 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4736 } 4737 return GatherCost; 4738 } 4739 if ((E->getOpcode() == Instruction::ExtractElement || 4740 all_of(E->Scalars, 4741 [](Value *V) { 4742 return isa<ExtractElementInst, UndefValue>(V); 4743 })) && 4744 allSameType(VL)) { 4745 // Check that gather of extractelements can be represented as just a 4746 // shuffle of a single/two vectors the scalars are extracted from. 4747 SmallVector<int> Mask; 4748 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4749 isFixedVectorShuffle(VL, Mask); 4750 if (ShuffleKind.hasValue()) { 4751 // Found the bunch of extractelement instructions that must be gathered 4752 // into a vector and can be represented as a permutation elements in a 4753 // single input vector or of 2 input vectors. 4754 InstructionCost Cost = 4755 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4756 AdjustExtractsCost(Cost); 4757 if (NeedToShuffleReuses) 4758 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4759 FinalVecTy, E->ReuseShuffleIndices); 4760 return Cost; 4761 } 4762 } 4763 if (isSplat(VL)) { 4764 // Found the broadcasting of the single scalar, calculate the cost as the 4765 // broadcast. 4766 assert(VecTy == FinalVecTy && 4767 "No reused scalars expected for broadcast."); 4768 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4769 } 4770 InstructionCost ReuseShuffleCost = 0; 4771 if (NeedToShuffleReuses) 4772 ReuseShuffleCost = TTI->getShuffleCost( 4773 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4774 // Improve gather cost for gather of loads, if we can group some of the 4775 // loads into vector loads. 4776 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4777 !E->isAltShuffle()) { 4778 BoUpSLP::ValueSet VectorizedLoads; 4779 unsigned StartIdx = 0; 4780 unsigned VF = VL.size() / 2; 4781 unsigned VectorizedCnt = 0; 4782 unsigned ScatterVectorizeCnt = 0; 4783 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4784 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4785 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4786 Cnt += VF) { 4787 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4788 if (!VectorizedLoads.count(Slice.front()) && 4789 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4790 SmallVector<Value *> PointerOps; 4791 OrdersType CurrentOrder; 4792 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4793 *SE, CurrentOrder, PointerOps); 4794 switch (LS) { 4795 case LoadsState::Vectorize: 4796 case LoadsState::ScatterVectorize: 4797 // Mark the vectorized loads so that we don't vectorize them 4798 // again. 4799 if (LS == LoadsState::Vectorize) 4800 ++VectorizedCnt; 4801 else 4802 ++ScatterVectorizeCnt; 4803 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4804 // If we vectorized initial block, no need to try to vectorize it 4805 // again. 4806 if (Cnt == StartIdx) 4807 StartIdx += VF; 4808 break; 4809 case LoadsState::Gather: 4810 break; 4811 } 4812 } 4813 } 4814 // Check if the whole array was vectorized already - exit. 4815 if (StartIdx >= VL.size()) 4816 break; 4817 // Found vectorizable parts - exit. 4818 if (!VectorizedLoads.empty()) 4819 break; 4820 } 4821 if (!VectorizedLoads.empty()) { 4822 InstructionCost GatherCost = 0; 4823 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4824 bool NeedInsertSubvectorAnalysis = 4825 !NumParts || (VL.size() / VF) > NumParts; 4826 // Get the cost for gathered loads. 4827 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4828 if (VectorizedLoads.contains(VL[I])) 4829 continue; 4830 GatherCost += getGatherCost(VL.slice(I, VF)); 4831 } 4832 // The cost for vectorized loads. 4833 InstructionCost ScalarsCost = 0; 4834 for (Value *V : VectorizedLoads) { 4835 auto *LI = cast<LoadInst>(V); 4836 ScalarsCost += TTI->getMemoryOpCost( 4837 Instruction::Load, LI->getType(), LI->getAlign(), 4838 LI->getPointerAddressSpace(), CostKind, LI); 4839 } 4840 auto *LI = cast<LoadInst>(E->getMainOp()); 4841 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4842 Align Alignment = LI->getAlign(); 4843 GatherCost += 4844 VectorizedCnt * 4845 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4846 LI->getPointerAddressSpace(), CostKind, LI); 4847 GatherCost += ScatterVectorizeCnt * 4848 TTI->getGatherScatterOpCost( 4849 Instruction::Load, LoadTy, LI->getPointerOperand(), 4850 /*VariableMask=*/false, Alignment, CostKind, LI); 4851 if (NeedInsertSubvectorAnalysis) { 4852 // Add the cost for the subvectors insert. 4853 for (int I = VF, E = VL.size(); I < E; I += VF) 4854 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4855 None, I, LoadTy); 4856 } 4857 return ReuseShuffleCost + GatherCost - ScalarsCost; 4858 } 4859 } 4860 return ReuseShuffleCost + getGatherCost(VL); 4861 } 4862 InstructionCost CommonCost = 0; 4863 SmallVector<int> Mask; 4864 if (!E->ReorderIndices.empty()) { 4865 SmallVector<int> NewMask; 4866 if (E->getOpcode() == Instruction::Store) { 4867 // For stores the order is actually a mask. 4868 NewMask.resize(E->ReorderIndices.size()); 4869 copy(E->ReorderIndices, NewMask.begin()); 4870 } else { 4871 inversePermutation(E->ReorderIndices, NewMask); 4872 } 4873 ::addMask(Mask, NewMask); 4874 } 4875 if (NeedToShuffleReuses) 4876 ::addMask(Mask, E->ReuseShuffleIndices); 4877 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4878 CommonCost = 4879 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4880 assert((E->State == TreeEntry::Vectorize || 4881 E->State == TreeEntry::ScatterVectorize) && 4882 "Unhandled state"); 4883 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4884 Instruction *VL0 = E->getMainOp(); 4885 unsigned ShuffleOrOp = 4886 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4887 switch (ShuffleOrOp) { 4888 case Instruction::PHI: 4889 return 0; 4890 4891 case Instruction::ExtractValue: 4892 case Instruction::ExtractElement: { 4893 // The common cost of removal ExtractElement/ExtractValue instructions + 4894 // the cost of shuffles, if required to resuffle the original vector. 4895 if (NeedToShuffleReuses) { 4896 unsigned Idx = 0; 4897 for (unsigned I : E->ReuseShuffleIndices) { 4898 if (ShuffleOrOp == Instruction::ExtractElement) { 4899 auto *EE = cast<ExtractElementInst>(VL[I]); 4900 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4901 EE->getVectorOperandType(), 4902 *getExtractIndex(EE)); 4903 } else { 4904 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4905 VecTy, Idx); 4906 ++Idx; 4907 } 4908 } 4909 Idx = EntryVF; 4910 for (Value *V : VL) { 4911 if (ShuffleOrOp == Instruction::ExtractElement) { 4912 auto *EE = cast<ExtractElementInst>(V); 4913 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4914 EE->getVectorOperandType(), 4915 *getExtractIndex(EE)); 4916 } else { 4917 --Idx; 4918 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4919 VecTy, Idx); 4920 } 4921 } 4922 } 4923 if (ShuffleOrOp == Instruction::ExtractValue) { 4924 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4925 auto *EI = cast<Instruction>(VL[I]); 4926 // Take credit for instruction that will become dead. 4927 if (EI->hasOneUse()) { 4928 Instruction *Ext = EI->user_back(); 4929 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4930 all_of(Ext->users(), 4931 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4932 // Use getExtractWithExtendCost() to calculate the cost of 4933 // extractelement/ext pair. 4934 CommonCost -= TTI->getExtractWithExtendCost( 4935 Ext->getOpcode(), Ext->getType(), VecTy, I); 4936 // Add back the cost of s|zext which is subtracted separately. 4937 CommonCost += TTI->getCastInstrCost( 4938 Ext->getOpcode(), Ext->getType(), EI->getType(), 4939 TTI::getCastContextHint(Ext), CostKind, Ext); 4940 continue; 4941 } 4942 } 4943 CommonCost -= 4944 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4945 } 4946 } else { 4947 AdjustExtractsCost(CommonCost); 4948 } 4949 return CommonCost; 4950 } 4951 case Instruction::InsertElement: { 4952 assert(E->ReuseShuffleIndices.empty() && 4953 "Unique insertelements only are expected."); 4954 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4955 4956 unsigned const NumElts = SrcVecTy->getNumElements(); 4957 unsigned const NumScalars = VL.size(); 4958 APInt DemandedElts = APInt::getZero(NumElts); 4959 // TODO: Add support for Instruction::InsertValue. 4960 SmallVector<int> Mask; 4961 if (!E->ReorderIndices.empty()) { 4962 inversePermutation(E->ReorderIndices, Mask); 4963 Mask.append(NumElts - NumScalars, UndefMaskElem); 4964 } else { 4965 Mask.assign(NumElts, UndefMaskElem); 4966 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4967 } 4968 unsigned Offset = *getInsertIndex(VL0, 0); 4969 bool IsIdentity = true; 4970 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4971 Mask.swap(PrevMask); 4972 for (unsigned I = 0; I < NumScalars; ++I) { 4973 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4974 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4975 continue; 4976 DemandedElts.setBit(*InsertIdx); 4977 IsIdentity &= *InsertIdx - Offset == I; 4978 Mask[*InsertIdx - Offset] = I; 4979 } 4980 assert(Offset < NumElts && "Failed to find vector index offset"); 4981 4982 InstructionCost Cost = 0; 4983 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4984 /*Insert*/ true, /*Extract*/ false); 4985 4986 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4987 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4988 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4989 Cost += TTI->getShuffleCost( 4990 TargetTransformInfo::SK_PermuteSingleSrc, 4991 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4992 } else if (!IsIdentity) { 4993 auto *FirstInsert = 4994 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4995 return !is_contained(E->Scalars, 4996 cast<Instruction>(V)->getOperand(0)); 4997 })); 4998 if (isUndefVector(FirstInsert->getOperand(0))) { 4999 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5000 } else { 5001 SmallVector<int> InsertMask(NumElts); 5002 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5003 for (unsigned I = 0; I < NumElts; I++) { 5004 if (Mask[I] != UndefMaskElem) 5005 InsertMask[Offset + I] = NumElts + I; 5006 } 5007 Cost += 5008 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5009 } 5010 } 5011 5012 return Cost; 5013 } 5014 case Instruction::ZExt: 5015 case Instruction::SExt: 5016 case Instruction::FPToUI: 5017 case Instruction::FPToSI: 5018 case Instruction::FPExt: 5019 case Instruction::PtrToInt: 5020 case Instruction::IntToPtr: 5021 case Instruction::SIToFP: 5022 case Instruction::UIToFP: 5023 case Instruction::Trunc: 5024 case Instruction::FPTrunc: 5025 case Instruction::BitCast: { 5026 Type *SrcTy = VL0->getOperand(0)->getType(); 5027 InstructionCost ScalarEltCost = 5028 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5029 TTI::getCastContextHint(VL0), CostKind, VL0); 5030 if (NeedToShuffleReuses) { 5031 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5032 } 5033 5034 // Calculate the cost of this instruction. 5035 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5036 5037 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5038 InstructionCost VecCost = 0; 5039 // Check if the values are candidates to demote. 5040 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5041 VecCost = CommonCost + TTI->getCastInstrCost( 5042 E->getOpcode(), VecTy, SrcVecTy, 5043 TTI::getCastContextHint(VL0), CostKind, VL0); 5044 } 5045 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5046 return VecCost - ScalarCost; 5047 } 5048 case Instruction::FCmp: 5049 case Instruction::ICmp: 5050 case Instruction::Select: { 5051 // Calculate the cost of this instruction. 5052 InstructionCost ScalarEltCost = 5053 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5054 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5055 if (NeedToShuffleReuses) { 5056 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5057 } 5058 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5059 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5060 5061 // Check if all entries in VL are either compares or selects with compares 5062 // as condition that have the same predicates. 5063 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5064 bool First = true; 5065 for (auto *V : VL) { 5066 CmpInst::Predicate CurrentPred; 5067 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5068 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5069 !match(V, MatchCmp)) || 5070 (!First && VecPred != CurrentPred)) { 5071 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5072 break; 5073 } 5074 First = false; 5075 VecPred = CurrentPred; 5076 } 5077 5078 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5079 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5080 // Check if it is possible and profitable to use min/max for selects in 5081 // VL. 5082 // 5083 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5084 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5085 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5086 {VecTy, VecTy}); 5087 InstructionCost IntrinsicCost = 5088 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5089 // If the selects are the only uses of the compares, they will be dead 5090 // and we can adjust the cost by removing their cost. 5091 if (IntrinsicAndUse.second) 5092 IntrinsicCost -= 5093 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5094 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5095 VecCost = std::min(VecCost, IntrinsicCost); 5096 } 5097 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5098 return CommonCost + VecCost - ScalarCost; 5099 } 5100 case Instruction::FNeg: 5101 case Instruction::Add: 5102 case Instruction::FAdd: 5103 case Instruction::Sub: 5104 case Instruction::FSub: 5105 case Instruction::Mul: 5106 case Instruction::FMul: 5107 case Instruction::UDiv: 5108 case Instruction::SDiv: 5109 case Instruction::FDiv: 5110 case Instruction::URem: 5111 case Instruction::SRem: 5112 case Instruction::FRem: 5113 case Instruction::Shl: 5114 case Instruction::LShr: 5115 case Instruction::AShr: 5116 case Instruction::And: 5117 case Instruction::Or: 5118 case Instruction::Xor: { 5119 // Certain instructions can be cheaper to vectorize if they have a 5120 // constant second vector operand. 5121 TargetTransformInfo::OperandValueKind Op1VK = 5122 TargetTransformInfo::OK_AnyValue; 5123 TargetTransformInfo::OperandValueKind Op2VK = 5124 TargetTransformInfo::OK_UniformConstantValue; 5125 TargetTransformInfo::OperandValueProperties Op1VP = 5126 TargetTransformInfo::OP_None; 5127 TargetTransformInfo::OperandValueProperties Op2VP = 5128 TargetTransformInfo::OP_PowerOf2; 5129 5130 // If all operands are exactly the same ConstantInt then set the 5131 // operand kind to OK_UniformConstantValue. 5132 // If instead not all operands are constants, then set the operand kind 5133 // to OK_AnyValue. If all operands are constants but not the same, 5134 // then set the operand kind to OK_NonUniformConstantValue. 5135 ConstantInt *CInt0 = nullptr; 5136 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5137 const Instruction *I = cast<Instruction>(VL[i]); 5138 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5139 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5140 if (!CInt) { 5141 Op2VK = TargetTransformInfo::OK_AnyValue; 5142 Op2VP = TargetTransformInfo::OP_None; 5143 break; 5144 } 5145 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5146 !CInt->getValue().isPowerOf2()) 5147 Op2VP = TargetTransformInfo::OP_None; 5148 if (i == 0) { 5149 CInt0 = CInt; 5150 continue; 5151 } 5152 if (CInt0 != CInt) 5153 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5154 } 5155 5156 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5157 InstructionCost ScalarEltCost = 5158 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5159 Op2VK, Op1VP, Op2VP, Operands, VL0); 5160 if (NeedToShuffleReuses) { 5161 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5162 } 5163 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5164 InstructionCost VecCost = 5165 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5166 Op2VK, Op1VP, Op2VP, Operands, VL0); 5167 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5168 return CommonCost + VecCost - ScalarCost; 5169 } 5170 case Instruction::GetElementPtr: { 5171 TargetTransformInfo::OperandValueKind Op1VK = 5172 TargetTransformInfo::OK_AnyValue; 5173 TargetTransformInfo::OperandValueKind Op2VK = 5174 TargetTransformInfo::OK_UniformConstantValue; 5175 5176 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5177 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5178 if (NeedToShuffleReuses) { 5179 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5180 } 5181 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5182 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5183 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5184 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5185 return CommonCost + VecCost - ScalarCost; 5186 } 5187 case Instruction::Load: { 5188 // Cost of wide load - cost of scalar loads. 5189 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5190 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5191 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5192 if (NeedToShuffleReuses) { 5193 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5194 } 5195 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5196 InstructionCost VecLdCost; 5197 if (E->State == TreeEntry::Vectorize) { 5198 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5199 CostKind, VL0); 5200 } else { 5201 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5202 Align CommonAlignment = Alignment; 5203 for (Value *V : VL) 5204 CommonAlignment = 5205 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5206 VecLdCost = TTI->getGatherScatterOpCost( 5207 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5208 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5209 } 5210 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5211 return CommonCost + VecLdCost - ScalarLdCost; 5212 } 5213 case Instruction::Store: { 5214 // We know that we can merge the stores. Calculate the cost. 5215 bool IsReorder = !E->ReorderIndices.empty(); 5216 auto *SI = 5217 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5218 Align Alignment = SI->getAlign(); 5219 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5220 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5221 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5222 InstructionCost VecStCost = TTI->getMemoryOpCost( 5223 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5224 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5225 return CommonCost + VecStCost - ScalarStCost; 5226 } 5227 case Instruction::Call: { 5228 CallInst *CI = cast<CallInst>(VL0); 5229 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5230 5231 // Calculate the cost of the scalar and vector calls. 5232 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5233 InstructionCost ScalarEltCost = 5234 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5235 if (NeedToShuffleReuses) { 5236 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5237 } 5238 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5239 5240 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5241 InstructionCost VecCallCost = 5242 std::min(VecCallCosts.first, VecCallCosts.second); 5243 5244 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5245 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5246 << " for " << *CI << "\n"); 5247 5248 return CommonCost + VecCallCost - ScalarCallCost; 5249 } 5250 case Instruction::ShuffleVector: { 5251 assert(E->isAltShuffle() && 5252 ((Instruction::isBinaryOp(E->getOpcode()) && 5253 Instruction::isBinaryOp(E->getAltOpcode())) || 5254 (Instruction::isCast(E->getOpcode()) && 5255 Instruction::isCast(E->getAltOpcode()))) && 5256 "Invalid Shuffle Vector Operand"); 5257 InstructionCost ScalarCost = 0; 5258 if (NeedToShuffleReuses) { 5259 for (unsigned Idx : E->ReuseShuffleIndices) { 5260 Instruction *I = cast<Instruction>(VL[Idx]); 5261 CommonCost -= TTI->getInstructionCost(I, CostKind); 5262 } 5263 for (Value *V : VL) { 5264 Instruction *I = cast<Instruction>(V); 5265 CommonCost += TTI->getInstructionCost(I, CostKind); 5266 } 5267 } 5268 for (Value *V : VL) { 5269 Instruction *I = cast<Instruction>(V); 5270 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5271 ScalarCost += TTI->getInstructionCost(I, CostKind); 5272 } 5273 // VecCost is equal to sum of the cost of creating 2 vectors 5274 // and the cost of creating shuffle. 5275 InstructionCost VecCost = 0; 5276 // Try to find the previous shuffle node with the same operands and same 5277 // main/alternate ops. 5278 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5279 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5280 if (TE.get() == E) 5281 break; 5282 if (TE->isAltShuffle() && 5283 ((TE->getOpcode() == E->getOpcode() && 5284 TE->getAltOpcode() == E->getAltOpcode()) || 5285 (TE->getOpcode() == E->getAltOpcode() && 5286 TE->getAltOpcode() == E->getOpcode())) && 5287 TE->hasEqualOperands(*E)) 5288 return true; 5289 } 5290 return false; 5291 }; 5292 if (TryFindNodeWithEqualOperands()) { 5293 LLVM_DEBUG({ 5294 dbgs() << "SLP: diamond match for alternate node found.\n"; 5295 E->dump(); 5296 }); 5297 // No need to add new vector costs here since we're going to reuse 5298 // same main/alternate vector ops, just do different shuffling. 5299 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5300 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5301 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5302 CostKind); 5303 } else { 5304 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5305 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5306 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5307 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5308 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5309 TTI::CastContextHint::None, CostKind); 5310 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5311 TTI::CastContextHint::None, CostKind); 5312 } 5313 5314 SmallVector<int> Mask; 5315 buildSuffleEntryMask( 5316 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5317 [E](Instruction *I) { 5318 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5319 return I->getOpcode() == E->getAltOpcode(); 5320 }, 5321 Mask); 5322 CommonCost = 5323 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5324 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5325 return CommonCost + VecCost - ScalarCost; 5326 } 5327 default: 5328 llvm_unreachable("Unknown instruction"); 5329 } 5330 } 5331 5332 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5333 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5334 << VectorizableTree.size() << " is fully vectorizable .\n"); 5335 5336 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5337 SmallVector<int> Mask; 5338 return TE->State == TreeEntry::NeedToGather && 5339 !any_of(TE->Scalars, 5340 [this](Value *V) { return EphValues.contains(V); }) && 5341 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5342 TE->Scalars.size() < Limit || 5343 ((TE->getOpcode() == Instruction::ExtractElement || 5344 all_of(TE->Scalars, 5345 [](Value *V) { 5346 return isa<ExtractElementInst, UndefValue>(V); 5347 })) && 5348 isFixedVectorShuffle(TE->Scalars, Mask)) || 5349 (TE->State == TreeEntry::NeedToGather && 5350 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5351 }; 5352 5353 // We only handle trees of heights 1 and 2. 5354 if (VectorizableTree.size() == 1 && 5355 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5356 (ForReduction && 5357 AreVectorizableGathers(VectorizableTree[0].get(), 5358 VectorizableTree[0]->Scalars.size()) && 5359 VectorizableTree[0]->getVectorFactor() > 2))) 5360 return true; 5361 5362 if (VectorizableTree.size() != 2) 5363 return false; 5364 5365 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5366 // with the second gather nodes if they have less scalar operands rather than 5367 // the initial tree element (may be profitable to shuffle the second gather) 5368 // or they are extractelements, which form shuffle. 5369 SmallVector<int> Mask; 5370 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5371 AreVectorizableGathers(VectorizableTree[1].get(), 5372 VectorizableTree[0]->Scalars.size())) 5373 return true; 5374 5375 // Gathering cost would be too much for tiny trees. 5376 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5377 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5378 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5379 return false; 5380 5381 return true; 5382 } 5383 5384 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5385 TargetTransformInfo *TTI, 5386 bool MustMatchOrInst) { 5387 // Look past the root to find a source value. Arbitrarily follow the 5388 // path through operand 0 of any 'or'. Also, peek through optional 5389 // shift-left-by-multiple-of-8-bits. 5390 Value *ZextLoad = Root; 5391 const APInt *ShAmtC; 5392 bool FoundOr = false; 5393 while (!isa<ConstantExpr>(ZextLoad) && 5394 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5395 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5396 ShAmtC->urem(8) == 0))) { 5397 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5398 ZextLoad = BinOp->getOperand(0); 5399 if (BinOp->getOpcode() == Instruction::Or) 5400 FoundOr = true; 5401 } 5402 // Check if the input is an extended load of the required or/shift expression. 5403 Value *Load; 5404 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5405 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5406 return false; 5407 5408 // Require that the total load bit width is a legal integer type. 5409 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5410 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5411 Type *SrcTy = Load->getType(); 5412 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5413 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5414 return false; 5415 5416 // Everything matched - assume that we can fold the whole sequence using 5417 // load combining. 5418 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5419 << *(cast<Instruction>(Root)) << "\n"); 5420 5421 return true; 5422 } 5423 5424 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5425 if (RdxKind != RecurKind::Or) 5426 return false; 5427 5428 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5429 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5430 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5431 /* MatchOr */ false); 5432 } 5433 5434 bool BoUpSLP::isLoadCombineCandidate() const { 5435 // Peek through a final sequence of stores and check if all operations are 5436 // likely to be load-combined. 5437 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5438 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5439 Value *X; 5440 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5441 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5442 return false; 5443 } 5444 return true; 5445 } 5446 5447 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5448 // No need to vectorize inserts of gathered values. 5449 if (VectorizableTree.size() == 2 && 5450 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5451 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5452 return true; 5453 5454 // We can vectorize the tree if its size is greater than or equal to the 5455 // minimum size specified by the MinTreeSize command line option. 5456 if (VectorizableTree.size() >= MinTreeSize) 5457 return false; 5458 5459 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5460 // can vectorize it if we can prove it fully vectorizable. 5461 if (isFullyVectorizableTinyTree(ForReduction)) 5462 return false; 5463 5464 assert(VectorizableTree.empty() 5465 ? ExternalUses.empty() 5466 : true && "We shouldn't have any external users"); 5467 5468 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5469 // vectorizable. 5470 return true; 5471 } 5472 5473 InstructionCost BoUpSLP::getSpillCost() const { 5474 // Walk from the bottom of the tree to the top, tracking which values are 5475 // live. When we see a call instruction that is not part of our tree, 5476 // query TTI to see if there is a cost to keeping values live over it 5477 // (for example, if spills and fills are required). 5478 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5479 InstructionCost Cost = 0; 5480 5481 SmallPtrSet<Instruction*, 4> LiveValues; 5482 Instruction *PrevInst = nullptr; 5483 5484 // The entries in VectorizableTree are not necessarily ordered by their 5485 // position in basic blocks. Collect them and order them by dominance so later 5486 // instructions are guaranteed to be visited first. For instructions in 5487 // different basic blocks, we only scan to the beginning of the block, so 5488 // their order does not matter, as long as all instructions in a basic block 5489 // are grouped together. Using dominance ensures a deterministic order. 5490 SmallVector<Instruction *, 16> OrderedScalars; 5491 for (const auto &TEPtr : VectorizableTree) { 5492 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5493 if (!Inst) 5494 continue; 5495 OrderedScalars.push_back(Inst); 5496 } 5497 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5498 auto *NodeA = DT->getNode(A->getParent()); 5499 auto *NodeB = DT->getNode(B->getParent()); 5500 assert(NodeA && "Should only process reachable instructions"); 5501 assert(NodeB && "Should only process reachable instructions"); 5502 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5503 "Different nodes should have different DFS numbers"); 5504 if (NodeA != NodeB) 5505 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5506 return B->comesBefore(A); 5507 }); 5508 5509 for (Instruction *Inst : OrderedScalars) { 5510 if (!PrevInst) { 5511 PrevInst = Inst; 5512 continue; 5513 } 5514 5515 // Update LiveValues. 5516 LiveValues.erase(PrevInst); 5517 for (auto &J : PrevInst->operands()) { 5518 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5519 LiveValues.insert(cast<Instruction>(&*J)); 5520 } 5521 5522 LLVM_DEBUG({ 5523 dbgs() << "SLP: #LV: " << LiveValues.size(); 5524 for (auto *X : LiveValues) 5525 dbgs() << " " << X->getName(); 5526 dbgs() << ", Looking at "; 5527 Inst->dump(); 5528 }); 5529 5530 // Now find the sequence of instructions between PrevInst and Inst. 5531 unsigned NumCalls = 0; 5532 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5533 PrevInstIt = 5534 PrevInst->getIterator().getReverse(); 5535 while (InstIt != PrevInstIt) { 5536 if (PrevInstIt == PrevInst->getParent()->rend()) { 5537 PrevInstIt = Inst->getParent()->rbegin(); 5538 continue; 5539 } 5540 5541 // Debug information does not impact spill cost. 5542 if ((isa<CallInst>(&*PrevInstIt) && 5543 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5544 &*PrevInstIt != PrevInst) 5545 NumCalls++; 5546 5547 ++PrevInstIt; 5548 } 5549 5550 if (NumCalls) { 5551 SmallVector<Type*, 4> V; 5552 for (auto *II : LiveValues) { 5553 auto *ScalarTy = II->getType(); 5554 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5555 ScalarTy = VectorTy->getElementType(); 5556 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5557 } 5558 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5559 } 5560 5561 PrevInst = Inst; 5562 } 5563 5564 return Cost; 5565 } 5566 5567 /// Check if two insertelement instructions are from the same buildvector. 5568 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5569 InsertElementInst *V) { 5570 // Instructions must be from the same basic blocks. 5571 if (VU->getParent() != V->getParent()) 5572 return false; 5573 // Checks if 2 insertelements are from the same buildvector. 5574 if (VU->getType() != V->getType()) 5575 return false; 5576 // Multiple used inserts are separate nodes. 5577 if (!VU->hasOneUse() && !V->hasOneUse()) 5578 return false; 5579 auto *IE1 = VU; 5580 auto *IE2 = V; 5581 // Go through the vector operand of insertelement instructions trying to find 5582 // either VU as the original vector for IE2 or V as the original vector for 5583 // IE1. 5584 do { 5585 if (IE2 == VU || IE1 == V) 5586 return true; 5587 if (IE1) { 5588 if (IE1 != VU && !IE1->hasOneUse()) 5589 IE1 = nullptr; 5590 else 5591 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5592 } 5593 if (IE2) { 5594 if (IE2 != V && !IE2->hasOneUse()) 5595 IE2 = nullptr; 5596 else 5597 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5598 } 5599 } while (IE1 || IE2); 5600 return false; 5601 } 5602 5603 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5604 InstructionCost Cost = 0; 5605 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5606 << VectorizableTree.size() << ".\n"); 5607 5608 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5609 5610 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5611 TreeEntry &TE = *VectorizableTree[I].get(); 5612 5613 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5614 Cost += C; 5615 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5616 << " for bundle that starts with " << *TE.Scalars[0] 5617 << ".\n" 5618 << "SLP: Current total cost = " << Cost << "\n"); 5619 } 5620 5621 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5622 InstructionCost ExtractCost = 0; 5623 SmallVector<unsigned> VF; 5624 SmallVector<SmallVector<int>> ShuffleMask; 5625 SmallVector<Value *> FirstUsers; 5626 SmallVector<APInt> DemandedElts; 5627 for (ExternalUser &EU : ExternalUses) { 5628 // We only add extract cost once for the same scalar. 5629 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5630 !ExtractCostCalculated.insert(EU.Scalar).second) 5631 continue; 5632 5633 // Uses by ephemeral values are free (because the ephemeral value will be 5634 // removed prior to code generation, and so the extraction will be 5635 // removed as well). 5636 if (EphValues.count(EU.User)) 5637 continue; 5638 5639 // No extract cost for vector "scalar" 5640 if (isa<FixedVectorType>(EU.Scalar->getType())) 5641 continue; 5642 5643 // Already counted the cost for external uses when tried to adjust the cost 5644 // for extractelements, no need to add it again. 5645 if (isa<ExtractElementInst>(EU.Scalar)) 5646 continue; 5647 5648 // If found user is an insertelement, do not calculate extract cost but try 5649 // to detect it as a final shuffled/identity match. 5650 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5651 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5652 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5653 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5654 continue; 5655 auto *It = find_if(FirstUsers, [VU](Value *V) { 5656 return areTwoInsertFromSameBuildVector(VU, 5657 cast<InsertElementInst>(V)); 5658 }); 5659 int VecId = -1; 5660 if (It == FirstUsers.end()) { 5661 VF.push_back(FTy->getNumElements()); 5662 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5663 // Find the insertvector, vectorized in tree, if any. 5664 Value *Base = VU; 5665 while (isa<InsertElementInst>(Base)) { 5666 // Build the mask for the vectorized insertelement instructions. 5667 if (const TreeEntry *E = getTreeEntry(Base)) { 5668 VU = cast<InsertElementInst>(Base); 5669 do { 5670 int Idx = E->findLaneForValue(Base); 5671 ShuffleMask.back()[Idx] = Idx; 5672 Base = cast<InsertElementInst>(Base)->getOperand(0); 5673 } while (E == getTreeEntry(Base)); 5674 break; 5675 } 5676 Base = cast<InsertElementInst>(Base)->getOperand(0); 5677 } 5678 FirstUsers.push_back(VU); 5679 DemandedElts.push_back(APInt::getZero(VF.back())); 5680 VecId = FirstUsers.size() - 1; 5681 } else { 5682 VecId = std::distance(FirstUsers.begin(), It); 5683 } 5684 int Idx = *InsertIdx; 5685 ShuffleMask[VecId][Idx] = EU.Lane; 5686 DemandedElts[VecId].setBit(Idx); 5687 continue; 5688 } 5689 } 5690 5691 // If we plan to rewrite the tree in a smaller type, we will need to sign 5692 // extend the extracted value back to the original type. Here, we account 5693 // for the extract and the added cost of the sign extend if needed. 5694 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5695 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5696 if (MinBWs.count(ScalarRoot)) { 5697 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5698 auto Extend = 5699 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5700 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5701 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5702 VecTy, EU.Lane); 5703 } else { 5704 ExtractCost += 5705 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5706 } 5707 } 5708 5709 InstructionCost SpillCost = getSpillCost(); 5710 Cost += SpillCost + ExtractCost; 5711 if (FirstUsers.size() == 1) { 5712 int Limit = ShuffleMask.front().size() * 2; 5713 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5714 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5715 InstructionCost C = TTI->getShuffleCost( 5716 TTI::SK_PermuteSingleSrc, 5717 cast<FixedVectorType>(FirstUsers.front()->getType()), 5718 ShuffleMask.front()); 5719 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5720 << " for final shuffle of insertelement external users " 5721 << *VectorizableTree.front()->Scalars.front() << ".\n" 5722 << "SLP: Current total cost = " << Cost << "\n"); 5723 Cost += C; 5724 } 5725 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5726 cast<FixedVectorType>(FirstUsers.front()->getType()), 5727 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5728 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5729 << " for insertelements gather.\n" 5730 << "SLP: Current total cost = " << Cost << "\n"); 5731 Cost -= InsertCost; 5732 } else if (FirstUsers.size() >= 2) { 5733 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5734 // Combined masks of the first 2 vectors. 5735 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5736 copy(ShuffleMask.front(), CombinedMask.begin()); 5737 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5738 auto *VecTy = FixedVectorType::get( 5739 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5740 MaxVF); 5741 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5742 if (ShuffleMask[1][I] != UndefMaskElem) { 5743 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5744 CombinedDemandedElts.setBit(I); 5745 } 5746 } 5747 InstructionCost C = 5748 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5749 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5750 << " for final shuffle of vector node and external " 5751 "insertelement users " 5752 << *VectorizableTree.front()->Scalars.front() << ".\n" 5753 << "SLP: Current total cost = " << Cost << "\n"); 5754 Cost += C; 5755 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5756 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5757 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5758 << " for insertelements gather.\n" 5759 << "SLP: Current total cost = " << Cost << "\n"); 5760 Cost -= InsertCost; 5761 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5762 // Other elements - permutation of 2 vectors (the initial one and the 5763 // next Ith incoming vector). 5764 unsigned VF = ShuffleMask[I].size(); 5765 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5766 int Mask = ShuffleMask[I][Idx]; 5767 if (Mask != UndefMaskElem) 5768 CombinedMask[Idx] = MaxVF + Mask; 5769 else if (CombinedMask[Idx] != UndefMaskElem) 5770 CombinedMask[Idx] = Idx; 5771 } 5772 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5773 if (CombinedMask[Idx] != UndefMaskElem) 5774 CombinedMask[Idx] = Idx; 5775 InstructionCost C = 5776 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5777 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5778 << " for final shuffle of vector node and external " 5779 "insertelement users " 5780 << *VectorizableTree.front()->Scalars.front() << ".\n" 5781 << "SLP: Current total cost = " << Cost << "\n"); 5782 Cost += C; 5783 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5784 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5785 /*Insert*/ true, /*Extract*/ false); 5786 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5787 << " for insertelements gather.\n" 5788 << "SLP: Current total cost = " << Cost << "\n"); 5789 Cost -= InsertCost; 5790 } 5791 } 5792 5793 #ifndef NDEBUG 5794 SmallString<256> Str; 5795 { 5796 raw_svector_ostream OS(Str); 5797 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5798 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5799 << "SLP: Total Cost = " << Cost << ".\n"; 5800 } 5801 LLVM_DEBUG(dbgs() << Str); 5802 if (ViewSLPTree) 5803 ViewGraph(this, "SLP" + F->getName(), false, Str); 5804 #endif 5805 5806 return Cost; 5807 } 5808 5809 Optional<TargetTransformInfo::ShuffleKind> 5810 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5811 SmallVectorImpl<const TreeEntry *> &Entries) { 5812 // TODO: currently checking only for Scalars in the tree entry, need to count 5813 // reused elements too for better cost estimation. 5814 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5815 Entries.clear(); 5816 // Build a lists of values to tree entries. 5817 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5818 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5819 if (EntryPtr.get() == TE) 5820 break; 5821 if (EntryPtr->State != TreeEntry::NeedToGather) 5822 continue; 5823 for (Value *V : EntryPtr->Scalars) 5824 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5825 } 5826 // Find all tree entries used by the gathered values. If no common entries 5827 // found - not a shuffle. 5828 // Here we build a set of tree nodes for each gathered value and trying to 5829 // find the intersection between these sets. If we have at least one common 5830 // tree node for each gathered value - we have just a permutation of the 5831 // single vector. If we have 2 different sets, we're in situation where we 5832 // have a permutation of 2 input vectors. 5833 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5834 DenseMap<Value *, int> UsedValuesEntry; 5835 for (Value *V : TE->Scalars) { 5836 if (isa<UndefValue>(V)) 5837 continue; 5838 // Build a list of tree entries where V is used. 5839 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5840 auto It = ValueToTEs.find(V); 5841 if (It != ValueToTEs.end()) 5842 VToTEs = It->second; 5843 if (const TreeEntry *VTE = getTreeEntry(V)) 5844 VToTEs.insert(VTE); 5845 if (VToTEs.empty()) 5846 return None; 5847 if (UsedTEs.empty()) { 5848 // The first iteration, just insert the list of nodes to vector. 5849 UsedTEs.push_back(VToTEs); 5850 } else { 5851 // Need to check if there are any previously used tree nodes which use V. 5852 // If there are no such nodes, consider that we have another one input 5853 // vector. 5854 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5855 unsigned Idx = 0; 5856 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5857 // Do we have a non-empty intersection of previously listed tree entries 5858 // and tree entries using current V? 5859 set_intersect(VToTEs, Set); 5860 if (!VToTEs.empty()) { 5861 // Yes, write the new subset and continue analysis for the next 5862 // scalar. 5863 Set.swap(VToTEs); 5864 break; 5865 } 5866 VToTEs = SavedVToTEs; 5867 ++Idx; 5868 } 5869 // No non-empty intersection found - need to add a second set of possible 5870 // source vectors. 5871 if (Idx == UsedTEs.size()) { 5872 // If the number of input vectors is greater than 2 - not a permutation, 5873 // fallback to the regular gather. 5874 if (UsedTEs.size() == 2) 5875 return None; 5876 UsedTEs.push_back(SavedVToTEs); 5877 Idx = UsedTEs.size() - 1; 5878 } 5879 UsedValuesEntry.try_emplace(V, Idx); 5880 } 5881 } 5882 5883 unsigned VF = 0; 5884 if (UsedTEs.size() == 1) { 5885 // Try to find the perfect match in another gather node at first. 5886 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5887 return EntryPtr->isSame(TE->Scalars); 5888 }); 5889 if (It != UsedTEs.front().end()) { 5890 Entries.push_back(*It); 5891 std::iota(Mask.begin(), Mask.end(), 0); 5892 return TargetTransformInfo::SK_PermuteSingleSrc; 5893 } 5894 // No perfect match, just shuffle, so choose the first tree node. 5895 Entries.push_back(*UsedTEs.front().begin()); 5896 } else { 5897 // Try to find nodes with the same vector factor. 5898 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5899 DenseMap<int, const TreeEntry *> VFToTE; 5900 for (const TreeEntry *TE : UsedTEs.front()) 5901 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5902 for (const TreeEntry *TE : UsedTEs.back()) { 5903 auto It = VFToTE.find(TE->getVectorFactor()); 5904 if (It != VFToTE.end()) { 5905 VF = It->first; 5906 Entries.push_back(It->second); 5907 Entries.push_back(TE); 5908 break; 5909 } 5910 } 5911 // No 2 source vectors with the same vector factor - give up and do regular 5912 // gather. 5913 if (Entries.empty()) 5914 return None; 5915 } 5916 5917 // Build a shuffle mask for better cost estimation and vector emission. 5918 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5919 Value *V = TE->Scalars[I]; 5920 if (isa<UndefValue>(V)) 5921 continue; 5922 unsigned Idx = UsedValuesEntry.lookup(V); 5923 const TreeEntry *VTE = Entries[Idx]; 5924 int FoundLane = VTE->findLaneForValue(V); 5925 Mask[I] = Idx * VF + FoundLane; 5926 // Extra check required by isSingleSourceMaskImpl function (called by 5927 // ShuffleVectorInst::isSingleSourceMask). 5928 if (Mask[I] >= 2 * E) 5929 return None; 5930 } 5931 switch (Entries.size()) { 5932 case 1: 5933 return TargetTransformInfo::SK_PermuteSingleSrc; 5934 case 2: 5935 return TargetTransformInfo::SK_PermuteTwoSrc; 5936 default: 5937 break; 5938 } 5939 return None; 5940 } 5941 5942 InstructionCost 5943 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5944 const DenseSet<unsigned> &ShuffledIndices, 5945 bool NeedToShuffle) const { 5946 unsigned NumElts = Ty->getNumElements(); 5947 APInt DemandedElts = APInt::getZero(NumElts); 5948 for (unsigned I = 0; I < NumElts; ++I) 5949 if (!ShuffledIndices.count(I)) 5950 DemandedElts.setBit(I); 5951 InstructionCost Cost = 5952 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5953 /*Extract*/ false); 5954 if (NeedToShuffle) 5955 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5956 return Cost; 5957 } 5958 5959 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5960 // Find the type of the operands in VL. 5961 Type *ScalarTy = VL[0]->getType(); 5962 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5963 ScalarTy = SI->getValueOperand()->getType(); 5964 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5965 bool DuplicateNonConst = false; 5966 // Find the cost of inserting/extracting values from the vector. 5967 // Check if the same elements are inserted several times and count them as 5968 // shuffle candidates. 5969 DenseSet<unsigned> ShuffledElements; 5970 DenseSet<Value *> UniqueElements; 5971 // Iterate in reverse order to consider insert elements with the high cost. 5972 for (unsigned I = VL.size(); I > 0; --I) { 5973 unsigned Idx = I - 1; 5974 // No need to shuffle duplicates for constants. 5975 if (isConstant(VL[Idx])) { 5976 ShuffledElements.insert(Idx); 5977 continue; 5978 } 5979 if (!UniqueElements.insert(VL[Idx]).second) { 5980 DuplicateNonConst = true; 5981 ShuffledElements.insert(Idx); 5982 } 5983 } 5984 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5985 } 5986 5987 // Perform operand reordering on the instructions in VL and return the reordered 5988 // operands in Left and Right. 5989 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5990 SmallVectorImpl<Value *> &Left, 5991 SmallVectorImpl<Value *> &Right, 5992 const DataLayout &DL, 5993 ScalarEvolution &SE, 5994 const BoUpSLP &R) { 5995 if (VL.empty()) 5996 return; 5997 VLOperands Ops(VL, DL, SE, R); 5998 // Reorder the operands in place. 5999 Ops.reorder(); 6000 Left = Ops.getVL(0); 6001 Right = Ops.getVL(1); 6002 } 6003 6004 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6005 // Get the basic block this bundle is in. All instructions in the bundle 6006 // should be in this block. 6007 auto *Front = E->getMainOp(); 6008 auto *BB = Front->getParent(); 6009 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6010 auto *I = cast<Instruction>(V); 6011 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6012 })); 6013 6014 // The last instruction in the bundle in program order. 6015 Instruction *LastInst = nullptr; 6016 6017 // Find the last instruction. The common case should be that BB has been 6018 // scheduled, and the last instruction is VL.back(). So we start with 6019 // VL.back() and iterate over schedule data until we reach the end of the 6020 // bundle. The end of the bundle is marked by null ScheduleData. 6021 if (BlocksSchedules.count(BB)) { 6022 auto *Bundle = 6023 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6024 if (Bundle && Bundle->isPartOfBundle()) 6025 for (; Bundle; Bundle = Bundle->NextInBundle) 6026 if (Bundle->OpValue == Bundle->Inst) 6027 LastInst = Bundle->Inst; 6028 } 6029 6030 // LastInst can still be null at this point if there's either not an entry 6031 // for BB in BlocksSchedules or there's no ScheduleData available for 6032 // VL.back(). This can be the case if buildTree_rec aborts for various 6033 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6034 // size is reached, etc.). ScheduleData is initialized in the scheduling 6035 // "dry-run". 6036 // 6037 // If this happens, we can still find the last instruction by brute force. We 6038 // iterate forwards from Front (inclusive) until we either see all 6039 // instructions in the bundle or reach the end of the block. If Front is the 6040 // last instruction in program order, LastInst will be set to Front, and we 6041 // will visit all the remaining instructions in the block. 6042 // 6043 // One of the reasons we exit early from buildTree_rec is to place an upper 6044 // bound on compile-time. Thus, taking an additional compile-time hit here is 6045 // not ideal. However, this should be exceedingly rare since it requires that 6046 // we both exit early from buildTree_rec and that the bundle be out-of-order 6047 // (causing us to iterate all the way to the end of the block). 6048 if (!LastInst) { 6049 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6050 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6051 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6052 LastInst = &I; 6053 if (Bundle.empty()) 6054 break; 6055 } 6056 } 6057 assert(LastInst && "Failed to find last instruction in bundle"); 6058 6059 // Set the insertion point after the last instruction in the bundle. Set the 6060 // debug location to Front. 6061 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6062 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6063 } 6064 6065 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6066 // List of instructions/lanes from current block and/or the blocks which are 6067 // part of the current loop. These instructions will be inserted at the end to 6068 // make it possible to optimize loops and hoist invariant instructions out of 6069 // the loops body with better chances for success. 6070 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6071 SmallSet<int, 4> PostponedIndices; 6072 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6073 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6074 SmallPtrSet<BasicBlock *, 4> Visited; 6075 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6076 InsertBB = InsertBB->getSinglePredecessor(); 6077 return InsertBB && InsertBB == InstBB; 6078 }; 6079 for (int I = 0, E = VL.size(); I < E; ++I) { 6080 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6081 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6082 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6083 PostponedIndices.insert(I).second) 6084 PostponedInsts.emplace_back(Inst, I); 6085 } 6086 6087 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6088 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6089 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6090 if (!InsElt) 6091 return Vec; 6092 GatherShuffleSeq.insert(InsElt); 6093 CSEBlocks.insert(InsElt->getParent()); 6094 // Add to our 'need-to-extract' list. 6095 if (TreeEntry *Entry = getTreeEntry(V)) { 6096 // Find which lane we need to extract. 6097 unsigned FoundLane = Entry->findLaneForValue(V); 6098 ExternalUses.emplace_back(V, InsElt, FoundLane); 6099 } 6100 return Vec; 6101 }; 6102 Value *Val0 = 6103 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6104 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6105 Value *Vec = PoisonValue::get(VecTy); 6106 SmallVector<int> NonConsts; 6107 // Insert constant values at first. 6108 for (int I = 0, E = VL.size(); I < E; ++I) { 6109 if (PostponedIndices.contains(I)) 6110 continue; 6111 if (!isConstant(VL[I])) { 6112 NonConsts.push_back(I); 6113 continue; 6114 } 6115 Vec = CreateInsertElement(Vec, VL[I], I); 6116 } 6117 // Insert non-constant values. 6118 for (int I : NonConsts) 6119 Vec = CreateInsertElement(Vec, VL[I], I); 6120 // Append instructions, which are/may be part of the loop, in the end to make 6121 // it possible to hoist non-loop-based instructions. 6122 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6123 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6124 6125 return Vec; 6126 } 6127 6128 namespace { 6129 /// Merges shuffle masks and emits final shuffle instruction, if required. 6130 class ShuffleInstructionBuilder { 6131 IRBuilderBase &Builder; 6132 const unsigned VF = 0; 6133 bool IsFinalized = false; 6134 SmallVector<int, 4> Mask; 6135 /// Holds all of the instructions that we gathered. 6136 SetVector<Instruction *> &GatherShuffleSeq; 6137 /// A list of blocks that we are going to CSE. 6138 SetVector<BasicBlock *> &CSEBlocks; 6139 6140 public: 6141 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6142 SetVector<Instruction *> &GatherShuffleSeq, 6143 SetVector<BasicBlock *> &CSEBlocks) 6144 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6145 CSEBlocks(CSEBlocks) {} 6146 6147 /// Adds a mask, inverting it before applying. 6148 void addInversedMask(ArrayRef<unsigned> SubMask) { 6149 if (SubMask.empty()) 6150 return; 6151 SmallVector<int, 4> NewMask; 6152 inversePermutation(SubMask, NewMask); 6153 addMask(NewMask); 6154 } 6155 6156 /// Functions adds masks, merging them into single one. 6157 void addMask(ArrayRef<unsigned> SubMask) { 6158 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6159 addMask(NewMask); 6160 } 6161 6162 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6163 6164 Value *finalize(Value *V) { 6165 IsFinalized = true; 6166 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6167 if (VF == ValueVF && Mask.empty()) 6168 return V; 6169 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6170 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6171 addMask(NormalizedMask); 6172 6173 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6174 return V; 6175 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6176 if (auto *I = dyn_cast<Instruction>(Vec)) { 6177 GatherShuffleSeq.insert(I); 6178 CSEBlocks.insert(I->getParent()); 6179 } 6180 return Vec; 6181 } 6182 6183 ~ShuffleInstructionBuilder() { 6184 assert((IsFinalized || Mask.empty()) && 6185 "Shuffle construction must be finalized."); 6186 } 6187 }; 6188 } // namespace 6189 6190 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6191 unsigned VF = VL.size(); 6192 InstructionsState S = getSameOpcode(VL); 6193 if (S.getOpcode()) { 6194 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6195 if (E->isSame(VL)) { 6196 Value *V = vectorizeTree(E); 6197 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6198 if (!E->ReuseShuffleIndices.empty()) { 6199 // Reshuffle to get only unique values. 6200 // If some of the scalars are duplicated in the vectorization tree 6201 // entry, we do not vectorize them but instead generate a mask for 6202 // the reuses. But if there are several users of the same entry, 6203 // they may have different vectorization factors. This is especially 6204 // important for PHI nodes. In this case, we need to adapt the 6205 // resulting instruction for the user vectorization factor and have 6206 // to reshuffle it again to take only unique elements of the vector. 6207 // Without this code the function incorrectly returns reduced vector 6208 // instruction with the same elements, not with the unique ones. 6209 6210 // block: 6211 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6212 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6213 // ... (use %2) 6214 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6215 // br %block 6216 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6217 SmallSet<int, 4> UsedIdxs; 6218 int Pos = 0; 6219 int Sz = VL.size(); 6220 for (int Idx : E->ReuseShuffleIndices) { 6221 if (Idx != Sz && Idx != UndefMaskElem && 6222 UsedIdxs.insert(Idx).second) 6223 UniqueIdxs[Idx] = Pos; 6224 ++Pos; 6225 } 6226 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6227 "less than original vector size."); 6228 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6229 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6230 } else { 6231 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6232 "Expected vectorization factor less " 6233 "than original vector size."); 6234 SmallVector<int> UniformMask(VF, 0); 6235 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6236 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6237 } 6238 if (auto *I = dyn_cast<Instruction>(V)) { 6239 GatherShuffleSeq.insert(I); 6240 CSEBlocks.insert(I->getParent()); 6241 } 6242 } 6243 return V; 6244 } 6245 } 6246 6247 // Check that every instruction appears once in this bundle. 6248 SmallVector<int> ReuseShuffleIndicies; 6249 SmallVector<Value *> UniqueValues; 6250 if (VL.size() > 2) { 6251 DenseMap<Value *, unsigned> UniquePositions; 6252 unsigned NumValues = 6253 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6254 return !isa<UndefValue>(V); 6255 }).base()); 6256 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6257 int UniqueVals = 0; 6258 for (Value *V : VL.drop_back(VL.size() - VF)) { 6259 if (isa<UndefValue>(V)) { 6260 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6261 continue; 6262 } 6263 if (isConstant(V)) { 6264 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6265 UniqueValues.emplace_back(V); 6266 continue; 6267 } 6268 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6269 ReuseShuffleIndicies.emplace_back(Res.first->second); 6270 if (Res.second) { 6271 UniqueValues.emplace_back(V); 6272 ++UniqueVals; 6273 } 6274 } 6275 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6276 // Emit pure splat vector. 6277 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6278 UndefMaskElem); 6279 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6280 ReuseShuffleIndicies.clear(); 6281 UniqueValues.clear(); 6282 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6283 } 6284 UniqueValues.append(VF - UniqueValues.size(), 6285 PoisonValue::get(VL[0]->getType())); 6286 VL = UniqueValues; 6287 } 6288 6289 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6290 CSEBlocks); 6291 Value *Vec = gather(VL); 6292 if (!ReuseShuffleIndicies.empty()) { 6293 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6294 Vec = ShuffleBuilder.finalize(Vec); 6295 } 6296 return Vec; 6297 } 6298 6299 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6300 IRBuilder<>::InsertPointGuard Guard(Builder); 6301 6302 if (E->VectorizedValue) { 6303 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6304 return E->VectorizedValue; 6305 } 6306 6307 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6308 unsigned VF = E->getVectorFactor(); 6309 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6310 CSEBlocks); 6311 if (E->State == TreeEntry::NeedToGather) { 6312 if (E->getMainOp()) 6313 setInsertPointAfterBundle(E); 6314 Value *Vec; 6315 SmallVector<int> Mask; 6316 SmallVector<const TreeEntry *> Entries; 6317 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6318 isGatherShuffledEntry(E, Mask, Entries); 6319 if (Shuffle.hasValue()) { 6320 assert((Entries.size() == 1 || Entries.size() == 2) && 6321 "Expected shuffle of 1 or 2 entries."); 6322 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6323 Entries.back()->VectorizedValue, Mask); 6324 if (auto *I = dyn_cast<Instruction>(Vec)) { 6325 GatherShuffleSeq.insert(I); 6326 CSEBlocks.insert(I->getParent()); 6327 } 6328 } else { 6329 Vec = gather(E->Scalars); 6330 } 6331 if (NeedToShuffleReuses) { 6332 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6333 Vec = ShuffleBuilder.finalize(Vec); 6334 } 6335 E->VectorizedValue = Vec; 6336 return Vec; 6337 } 6338 6339 assert((E->State == TreeEntry::Vectorize || 6340 E->State == TreeEntry::ScatterVectorize) && 6341 "Unhandled state"); 6342 unsigned ShuffleOrOp = 6343 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6344 Instruction *VL0 = E->getMainOp(); 6345 Type *ScalarTy = VL0->getType(); 6346 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6347 ScalarTy = Store->getValueOperand()->getType(); 6348 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6349 ScalarTy = IE->getOperand(1)->getType(); 6350 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6351 switch (ShuffleOrOp) { 6352 case Instruction::PHI: { 6353 assert( 6354 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6355 "PHI reordering is free."); 6356 auto *PH = cast<PHINode>(VL0); 6357 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6358 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6359 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6360 Value *V = NewPhi; 6361 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6362 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6363 V = ShuffleBuilder.finalize(V); 6364 6365 E->VectorizedValue = V; 6366 6367 // PHINodes may have multiple entries from the same block. We want to 6368 // visit every block once. 6369 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6370 6371 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6372 ValueList Operands; 6373 BasicBlock *IBB = PH->getIncomingBlock(i); 6374 6375 if (!VisitedBBs.insert(IBB).second) { 6376 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6377 continue; 6378 } 6379 6380 Builder.SetInsertPoint(IBB->getTerminator()); 6381 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6382 Value *Vec = vectorizeTree(E->getOperand(i)); 6383 NewPhi->addIncoming(Vec, IBB); 6384 } 6385 6386 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6387 "Invalid number of incoming values"); 6388 return V; 6389 } 6390 6391 case Instruction::ExtractElement: { 6392 Value *V = E->getSingleOperand(0); 6393 Builder.SetInsertPoint(VL0); 6394 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6395 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6396 V = ShuffleBuilder.finalize(V); 6397 E->VectorizedValue = V; 6398 return V; 6399 } 6400 case Instruction::ExtractValue: { 6401 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6402 Builder.SetInsertPoint(LI); 6403 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6404 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6405 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6406 Value *NewV = propagateMetadata(V, E->Scalars); 6407 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6408 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6409 NewV = ShuffleBuilder.finalize(NewV); 6410 E->VectorizedValue = NewV; 6411 return NewV; 6412 } 6413 case Instruction::InsertElement: { 6414 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6415 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6416 Value *V = vectorizeTree(E->getOperand(1)); 6417 6418 // Create InsertVector shuffle if necessary 6419 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6420 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6421 })); 6422 const unsigned NumElts = 6423 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6424 const unsigned NumScalars = E->Scalars.size(); 6425 6426 unsigned Offset = *getInsertIndex(VL0, 0); 6427 assert(Offset < NumElts && "Failed to find vector index offset"); 6428 6429 // Create shuffle to resize vector 6430 SmallVector<int> Mask; 6431 if (!E->ReorderIndices.empty()) { 6432 inversePermutation(E->ReorderIndices, Mask); 6433 Mask.append(NumElts - NumScalars, UndefMaskElem); 6434 } else { 6435 Mask.assign(NumElts, UndefMaskElem); 6436 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6437 } 6438 // Create InsertVector shuffle if necessary 6439 bool IsIdentity = true; 6440 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6441 Mask.swap(PrevMask); 6442 for (unsigned I = 0; I < NumScalars; ++I) { 6443 Value *Scalar = E->Scalars[PrevMask[I]]; 6444 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6445 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6446 continue; 6447 IsIdentity &= *InsertIdx - Offset == I; 6448 Mask[*InsertIdx - Offset] = I; 6449 } 6450 if (!IsIdentity || NumElts != NumScalars) { 6451 V = Builder.CreateShuffleVector(V, Mask); 6452 if (auto *I = dyn_cast<Instruction>(V)) { 6453 GatherShuffleSeq.insert(I); 6454 CSEBlocks.insert(I->getParent()); 6455 } 6456 } 6457 6458 if ((!IsIdentity || Offset != 0 || 6459 !isUndefVector(FirstInsert->getOperand(0))) && 6460 NumElts != NumScalars) { 6461 SmallVector<int> InsertMask(NumElts); 6462 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6463 for (unsigned I = 0; I < NumElts; I++) { 6464 if (Mask[I] != UndefMaskElem) 6465 InsertMask[Offset + I] = NumElts + I; 6466 } 6467 6468 V = Builder.CreateShuffleVector( 6469 FirstInsert->getOperand(0), V, InsertMask, 6470 cast<Instruction>(E->Scalars.back())->getName()); 6471 if (auto *I = dyn_cast<Instruction>(V)) { 6472 GatherShuffleSeq.insert(I); 6473 CSEBlocks.insert(I->getParent()); 6474 } 6475 } 6476 6477 ++NumVectorInstructions; 6478 E->VectorizedValue = V; 6479 return V; 6480 } 6481 case Instruction::ZExt: 6482 case Instruction::SExt: 6483 case Instruction::FPToUI: 6484 case Instruction::FPToSI: 6485 case Instruction::FPExt: 6486 case Instruction::PtrToInt: 6487 case Instruction::IntToPtr: 6488 case Instruction::SIToFP: 6489 case Instruction::UIToFP: 6490 case Instruction::Trunc: 6491 case Instruction::FPTrunc: 6492 case Instruction::BitCast: { 6493 setInsertPointAfterBundle(E); 6494 6495 Value *InVec = vectorizeTree(E->getOperand(0)); 6496 6497 if (E->VectorizedValue) { 6498 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6499 return E->VectorizedValue; 6500 } 6501 6502 auto *CI = cast<CastInst>(VL0); 6503 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6504 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6505 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6506 V = ShuffleBuilder.finalize(V); 6507 6508 E->VectorizedValue = V; 6509 ++NumVectorInstructions; 6510 return V; 6511 } 6512 case Instruction::FCmp: 6513 case Instruction::ICmp: { 6514 setInsertPointAfterBundle(E); 6515 6516 Value *L = vectorizeTree(E->getOperand(0)); 6517 Value *R = vectorizeTree(E->getOperand(1)); 6518 6519 if (E->VectorizedValue) { 6520 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6521 return E->VectorizedValue; 6522 } 6523 6524 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6525 Value *V = Builder.CreateCmp(P0, L, R); 6526 propagateIRFlags(V, E->Scalars, VL0); 6527 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6528 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6529 V = ShuffleBuilder.finalize(V); 6530 6531 E->VectorizedValue = V; 6532 ++NumVectorInstructions; 6533 return V; 6534 } 6535 case Instruction::Select: { 6536 setInsertPointAfterBundle(E); 6537 6538 Value *Cond = vectorizeTree(E->getOperand(0)); 6539 Value *True = vectorizeTree(E->getOperand(1)); 6540 Value *False = vectorizeTree(E->getOperand(2)); 6541 6542 if (E->VectorizedValue) { 6543 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6544 return E->VectorizedValue; 6545 } 6546 6547 Value *V = Builder.CreateSelect(Cond, True, False); 6548 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6549 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6550 V = ShuffleBuilder.finalize(V); 6551 6552 E->VectorizedValue = V; 6553 ++NumVectorInstructions; 6554 return V; 6555 } 6556 case Instruction::FNeg: { 6557 setInsertPointAfterBundle(E); 6558 6559 Value *Op = vectorizeTree(E->getOperand(0)); 6560 6561 if (E->VectorizedValue) { 6562 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6563 return E->VectorizedValue; 6564 } 6565 6566 Value *V = Builder.CreateUnOp( 6567 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6568 propagateIRFlags(V, E->Scalars, VL0); 6569 if (auto *I = dyn_cast<Instruction>(V)) 6570 V = propagateMetadata(I, E->Scalars); 6571 6572 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6573 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6574 V = ShuffleBuilder.finalize(V); 6575 6576 E->VectorizedValue = V; 6577 ++NumVectorInstructions; 6578 6579 return V; 6580 } 6581 case Instruction::Add: 6582 case Instruction::FAdd: 6583 case Instruction::Sub: 6584 case Instruction::FSub: 6585 case Instruction::Mul: 6586 case Instruction::FMul: 6587 case Instruction::UDiv: 6588 case Instruction::SDiv: 6589 case Instruction::FDiv: 6590 case Instruction::URem: 6591 case Instruction::SRem: 6592 case Instruction::FRem: 6593 case Instruction::Shl: 6594 case Instruction::LShr: 6595 case Instruction::AShr: 6596 case Instruction::And: 6597 case Instruction::Or: 6598 case Instruction::Xor: { 6599 setInsertPointAfterBundle(E); 6600 6601 Value *LHS = vectorizeTree(E->getOperand(0)); 6602 Value *RHS = vectorizeTree(E->getOperand(1)); 6603 6604 if (E->VectorizedValue) { 6605 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6606 return E->VectorizedValue; 6607 } 6608 6609 Value *V = Builder.CreateBinOp( 6610 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6611 RHS); 6612 propagateIRFlags(V, E->Scalars, VL0); 6613 if (auto *I = dyn_cast<Instruction>(V)) 6614 V = propagateMetadata(I, E->Scalars); 6615 6616 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6617 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6618 V = ShuffleBuilder.finalize(V); 6619 6620 E->VectorizedValue = V; 6621 ++NumVectorInstructions; 6622 6623 return V; 6624 } 6625 case Instruction::Load: { 6626 // Loads are inserted at the head of the tree because we don't want to 6627 // sink them all the way down past store instructions. 6628 setInsertPointAfterBundle(E); 6629 6630 LoadInst *LI = cast<LoadInst>(VL0); 6631 Instruction *NewLI; 6632 unsigned AS = LI->getPointerAddressSpace(); 6633 Value *PO = LI->getPointerOperand(); 6634 if (E->State == TreeEntry::Vectorize) { 6635 6636 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6637 6638 // The pointer operand uses an in-tree scalar so we add the new BitCast 6639 // to ExternalUses list to make sure that an extract will be generated 6640 // in the future. 6641 if (TreeEntry *Entry = getTreeEntry(PO)) { 6642 // Find which lane we need to extract. 6643 unsigned FoundLane = Entry->findLaneForValue(PO); 6644 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6645 } 6646 6647 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6648 } else { 6649 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6650 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6651 // Use the minimum alignment of the gathered loads. 6652 Align CommonAlignment = LI->getAlign(); 6653 for (Value *V : E->Scalars) 6654 CommonAlignment = 6655 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6656 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6657 } 6658 Value *V = propagateMetadata(NewLI, E->Scalars); 6659 6660 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6661 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6662 V = ShuffleBuilder.finalize(V); 6663 E->VectorizedValue = V; 6664 ++NumVectorInstructions; 6665 return V; 6666 } 6667 case Instruction::Store: { 6668 auto *SI = cast<StoreInst>(VL0); 6669 unsigned AS = SI->getPointerAddressSpace(); 6670 6671 setInsertPointAfterBundle(E); 6672 6673 Value *VecValue = vectorizeTree(E->getOperand(0)); 6674 ShuffleBuilder.addMask(E->ReorderIndices); 6675 VecValue = ShuffleBuilder.finalize(VecValue); 6676 6677 Value *ScalarPtr = SI->getPointerOperand(); 6678 Value *VecPtr = Builder.CreateBitCast( 6679 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6680 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6681 SI->getAlign()); 6682 6683 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6684 // ExternalUses to make sure that an extract will be generated in the 6685 // future. 6686 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6687 // Find which lane we need to extract. 6688 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6689 ExternalUses.push_back( 6690 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6691 } 6692 6693 Value *V = propagateMetadata(ST, E->Scalars); 6694 6695 E->VectorizedValue = V; 6696 ++NumVectorInstructions; 6697 return V; 6698 } 6699 case Instruction::GetElementPtr: { 6700 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6701 setInsertPointAfterBundle(E); 6702 6703 Value *Op0 = vectorizeTree(E->getOperand(0)); 6704 6705 SmallVector<Value *> OpVecs; 6706 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6707 Value *OpVec = vectorizeTree(E->getOperand(J)); 6708 OpVecs.push_back(OpVec); 6709 } 6710 6711 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6712 if (Instruction *I = dyn_cast<Instruction>(V)) 6713 V = propagateMetadata(I, E->Scalars); 6714 6715 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6716 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6717 V = ShuffleBuilder.finalize(V); 6718 6719 E->VectorizedValue = V; 6720 ++NumVectorInstructions; 6721 6722 return V; 6723 } 6724 case Instruction::Call: { 6725 CallInst *CI = cast<CallInst>(VL0); 6726 setInsertPointAfterBundle(E); 6727 6728 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6729 if (Function *FI = CI->getCalledFunction()) 6730 IID = FI->getIntrinsicID(); 6731 6732 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6733 6734 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6735 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6736 VecCallCosts.first <= VecCallCosts.second; 6737 6738 Value *ScalarArg = nullptr; 6739 std::vector<Value *> OpVecs; 6740 SmallVector<Type *, 2> TysForDecl = 6741 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6742 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6743 ValueList OpVL; 6744 // Some intrinsics have scalar arguments. This argument should not be 6745 // vectorized. 6746 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6747 CallInst *CEI = cast<CallInst>(VL0); 6748 ScalarArg = CEI->getArgOperand(j); 6749 OpVecs.push_back(CEI->getArgOperand(j)); 6750 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6751 TysForDecl.push_back(ScalarArg->getType()); 6752 continue; 6753 } 6754 6755 Value *OpVec = vectorizeTree(E->getOperand(j)); 6756 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6757 OpVecs.push_back(OpVec); 6758 } 6759 6760 Function *CF; 6761 if (!UseIntrinsic) { 6762 VFShape Shape = 6763 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6764 VecTy->getNumElements())), 6765 false /*HasGlobalPred*/); 6766 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6767 } else { 6768 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6769 } 6770 6771 SmallVector<OperandBundleDef, 1> OpBundles; 6772 CI->getOperandBundlesAsDefs(OpBundles); 6773 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6774 6775 // The scalar argument uses an in-tree scalar so we add the new vectorized 6776 // call to ExternalUses list to make sure that an extract will be 6777 // generated in the future. 6778 if (ScalarArg) { 6779 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6780 // Find which lane we need to extract. 6781 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6782 ExternalUses.push_back( 6783 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6784 } 6785 } 6786 6787 propagateIRFlags(V, E->Scalars, VL0); 6788 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6789 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6790 V = ShuffleBuilder.finalize(V); 6791 6792 E->VectorizedValue = V; 6793 ++NumVectorInstructions; 6794 return V; 6795 } 6796 case Instruction::ShuffleVector: { 6797 assert(E->isAltShuffle() && 6798 ((Instruction::isBinaryOp(E->getOpcode()) && 6799 Instruction::isBinaryOp(E->getAltOpcode())) || 6800 (Instruction::isCast(E->getOpcode()) && 6801 Instruction::isCast(E->getAltOpcode()))) && 6802 "Invalid Shuffle Vector Operand"); 6803 6804 Value *LHS = nullptr, *RHS = nullptr; 6805 if (Instruction::isBinaryOp(E->getOpcode())) { 6806 setInsertPointAfterBundle(E); 6807 LHS = vectorizeTree(E->getOperand(0)); 6808 RHS = vectorizeTree(E->getOperand(1)); 6809 } else { 6810 setInsertPointAfterBundle(E); 6811 LHS = vectorizeTree(E->getOperand(0)); 6812 } 6813 6814 if (E->VectorizedValue) { 6815 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6816 return E->VectorizedValue; 6817 } 6818 6819 Value *V0, *V1; 6820 if (Instruction::isBinaryOp(E->getOpcode())) { 6821 V0 = Builder.CreateBinOp( 6822 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6823 V1 = Builder.CreateBinOp( 6824 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6825 } else { 6826 V0 = Builder.CreateCast( 6827 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6828 V1 = Builder.CreateCast( 6829 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6830 } 6831 // Add V0 and V1 to later analysis to try to find and remove matching 6832 // instruction, if any. 6833 for (Value *V : {V0, V1}) { 6834 if (auto *I = dyn_cast<Instruction>(V)) { 6835 GatherShuffleSeq.insert(I); 6836 CSEBlocks.insert(I->getParent()); 6837 } 6838 } 6839 6840 // Create shuffle to take alternate operations from the vector. 6841 // Also, gather up main and alt scalar ops to propagate IR flags to 6842 // each vector operation. 6843 ValueList OpScalars, AltScalars; 6844 SmallVector<int> Mask; 6845 buildSuffleEntryMask( 6846 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6847 [E](Instruction *I) { 6848 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6849 return I->getOpcode() == E->getAltOpcode(); 6850 }, 6851 Mask, &OpScalars, &AltScalars); 6852 6853 propagateIRFlags(V0, OpScalars); 6854 propagateIRFlags(V1, AltScalars); 6855 6856 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6857 if (auto *I = dyn_cast<Instruction>(V)) { 6858 V = propagateMetadata(I, E->Scalars); 6859 GatherShuffleSeq.insert(I); 6860 CSEBlocks.insert(I->getParent()); 6861 } 6862 V = ShuffleBuilder.finalize(V); 6863 6864 E->VectorizedValue = V; 6865 ++NumVectorInstructions; 6866 6867 return V; 6868 } 6869 default: 6870 llvm_unreachable("unknown inst"); 6871 } 6872 return nullptr; 6873 } 6874 6875 Value *BoUpSLP::vectorizeTree() { 6876 ExtraValueToDebugLocsMap ExternallyUsedValues; 6877 return vectorizeTree(ExternallyUsedValues); 6878 } 6879 6880 Value * 6881 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6882 // All blocks must be scheduled before any instructions are inserted. 6883 for (auto &BSIter : BlocksSchedules) { 6884 scheduleBlock(BSIter.second.get()); 6885 } 6886 6887 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6888 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6889 6890 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6891 // vectorized root. InstCombine will then rewrite the entire expression. We 6892 // sign extend the extracted values below. 6893 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6894 if (MinBWs.count(ScalarRoot)) { 6895 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6896 // If current instr is a phi and not the last phi, insert it after the 6897 // last phi node. 6898 if (isa<PHINode>(I)) 6899 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6900 else 6901 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6902 } 6903 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6904 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6905 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6906 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6907 VectorizableTree[0]->VectorizedValue = Trunc; 6908 } 6909 6910 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6911 << " values .\n"); 6912 6913 // Extract all of the elements with the external uses. 6914 for (const auto &ExternalUse : ExternalUses) { 6915 Value *Scalar = ExternalUse.Scalar; 6916 llvm::User *User = ExternalUse.User; 6917 6918 // Skip users that we already RAUW. This happens when one instruction 6919 // has multiple uses of the same value. 6920 if (User && !is_contained(Scalar->users(), User)) 6921 continue; 6922 TreeEntry *E = getTreeEntry(Scalar); 6923 assert(E && "Invalid scalar"); 6924 assert(E->State != TreeEntry::NeedToGather && 6925 "Extracting from a gather list"); 6926 6927 Value *Vec = E->VectorizedValue; 6928 assert(Vec && "Can't find vectorizable value"); 6929 6930 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6931 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6932 if (Scalar->getType() != Vec->getType()) { 6933 Value *Ex; 6934 // "Reuse" the existing extract to improve final codegen. 6935 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6936 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6937 ES->getOperand(1)); 6938 } else { 6939 Ex = Builder.CreateExtractElement(Vec, Lane); 6940 } 6941 // If necessary, sign-extend or zero-extend ScalarRoot 6942 // to the larger type. 6943 if (!MinBWs.count(ScalarRoot)) 6944 return Ex; 6945 if (MinBWs[ScalarRoot].second) 6946 return Builder.CreateSExt(Ex, Scalar->getType()); 6947 return Builder.CreateZExt(Ex, Scalar->getType()); 6948 } 6949 assert(isa<FixedVectorType>(Scalar->getType()) && 6950 isa<InsertElementInst>(Scalar) && 6951 "In-tree scalar of vector type is not insertelement?"); 6952 return Vec; 6953 }; 6954 // If User == nullptr, the Scalar is used as extra arg. Generate 6955 // ExtractElement instruction and update the record for this scalar in 6956 // ExternallyUsedValues. 6957 if (!User) { 6958 assert(ExternallyUsedValues.count(Scalar) && 6959 "Scalar with nullptr as an external user must be registered in " 6960 "ExternallyUsedValues map"); 6961 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6962 Builder.SetInsertPoint(VecI->getParent(), 6963 std::next(VecI->getIterator())); 6964 } else { 6965 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6966 } 6967 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6968 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6969 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6970 auto It = ExternallyUsedValues.find(Scalar); 6971 assert(It != ExternallyUsedValues.end() && 6972 "Externally used scalar is not found in ExternallyUsedValues"); 6973 NewInstLocs.append(It->second); 6974 ExternallyUsedValues.erase(Scalar); 6975 // Required to update internally referenced instructions. 6976 Scalar->replaceAllUsesWith(NewInst); 6977 continue; 6978 } 6979 6980 // Generate extracts for out-of-tree users. 6981 // Find the insertion point for the extractelement lane. 6982 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6983 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6984 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6985 if (PH->getIncomingValue(i) == Scalar) { 6986 Instruction *IncomingTerminator = 6987 PH->getIncomingBlock(i)->getTerminator(); 6988 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6989 Builder.SetInsertPoint(VecI->getParent(), 6990 std::next(VecI->getIterator())); 6991 } else { 6992 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6993 } 6994 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6995 CSEBlocks.insert(PH->getIncomingBlock(i)); 6996 PH->setOperand(i, NewInst); 6997 } 6998 } 6999 } else { 7000 Builder.SetInsertPoint(cast<Instruction>(User)); 7001 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7002 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7003 User->replaceUsesOfWith(Scalar, NewInst); 7004 } 7005 } else { 7006 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7007 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7008 CSEBlocks.insert(&F->getEntryBlock()); 7009 User->replaceUsesOfWith(Scalar, NewInst); 7010 } 7011 7012 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7013 } 7014 7015 // For each vectorized value: 7016 for (auto &TEPtr : VectorizableTree) { 7017 TreeEntry *Entry = TEPtr.get(); 7018 7019 // No need to handle users of gathered values. 7020 if (Entry->State == TreeEntry::NeedToGather) 7021 continue; 7022 7023 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7024 7025 // For each lane: 7026 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7027 Value *Scalar = Entry->Scalars[Lane]; 7028 7029 #ifndef NDEBUG 7030 Type *Ty = Scalar->getType(); 7031 if (!Ty->isVoidTy()) { 7032 for (User *U : Scalar->users()) { 7033 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7034 7035 // It is legal to delete users in the ignorelist. 7036 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7037 (isa_and_nonnull<Instruction>(U) && 7038 isDeleted(cast<Instruction>(U)))) && 7039 "Deleting out-of-tree value"); 7040 } 7041 } 7042 #endif 7043 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7044 eraseInstruction(cast<Instruction>(Scalar)); 7045 } 7046 } 7047 7048 Builder.ClearInsertionPoint(); 7049 InstrElementSize.clear(); 7050 7051 return VectorizableTree[0]->VectorizedValue; 7052 } 7053 7054 void BoUpSLP::optimizeGatherSequence() { 7055 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7056 << " gather sequences instructions.\n"); 7057 // LICM InsertElementInst sequences. 7058 for (Instruction *I : GatherShuffleSeq) { 7059 if (isDeleted(I)) 7060 continue; 7061 7062 // Check if this block is inside a loop. 7063 Loop *L = LI->getLoopFor(I->getParent()); 7064 if (!L) 7065 continue; 7066 7067 // Check if it has a preheader. 7068 BasicBlock *PreHeader = L->getLoopPreheader(); 7069 if (!PreHeader) 7070 continue; 7071 7072 // If the vector or the element that we insert into it are 7073 // instructions that are defined in this basic block then we can't 7074 // hoist this instruction. 7075 if (any_of(I->operands(), [L](Value *V) { 7076 auto *OpI = dyn_cast<Instruction>(V); 7077 return OpI && L->contains(OpI); 7078 })) 7079 continue; 7080 7081 // We can hoist this instruction. Move it to the pre-header. 7082 I->moveBefore(PreHeader->getTerminator()); 7083 } 7084 7085 // Make a list of all reachable blocks in our CSE queue. 7086 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7087 CSEWorkList.reserve(CSEBlocks.size()); 7088 for (BasicBlock *BB : CSEBlocks) 7089 if (DomTreeNode *N = DT->getNode(BB)) { 7090 assert(DT->isReachableFromEntry(N)); 7091 CSEWorkList.push_back(N); 7092 } 7093 7094 // Sort blocks by domination. This ensures we visit a block after all blocks 7095 // dominating it are visited. 7096 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7097 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7098 "Different nodes should have different DFS numbers"); 7099 return A->getDFSNumIn() < B->getDFSNumIn(); 7100 }); 7101 7102 // Less defined shuffles can be replaced by the more defined copies. 7103 // Between two shuffles one is less defined if it has the same vector operands 7104 // and its mask indeces are the same as in the first one or undefs. E.g. 7105 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7106 // poison, <0, 0, 0, 0>. 7107 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7108 SmallVectorImpl<int> &NewMask) { 7109 if (I1->getType() != I2->getType()) 7110 return false; 7111 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7112 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7113 if (!SI1 || !SI2) 7114 return I1->isIdenticalTo(I2); 7115 if (SI1->isIdenticalTo(SI2)) 7116 return true; 7117 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7118 if (SI1->getOperand(I) != SI2->getOperand(I)) 7119 return false; 7120 // Check if the second instruction is more defined than the first one. 7121 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7122 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7123 // Count trailing undefs in the mask to check the final number of used 7124 // registers. 7125 unsigned LastUndefsCnt = 0; 7126 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7127 if (SM1[I] == UndefMaskElem) 7128 ++LastUndefsCnt; 7129 else 7130 LastUndefsCnt = 0; 7131 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7132 NewMask[I] != SM1[I]) 7133 return false; 7134 if (NewMask[I] == UndefMaskElem) 7135 NewMask[I] = SM1[I]; 7136 } 7137 // Check if the last undefs actually change the final number of used vector 7138 // registers. 7139 return SM1.size() - LastUndefsCnt > 1 && 7140 TTI->getNumberOfParts(SI1->getType()) == 7141 TTI->getNumberOfParts( 7142 FixedVectorType::get(SI1->getType()->getElementType(), 7143 SM1.size() - LastUndefsCnt)); 7144 }; 7145 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7146 // instructions. TODO: We can further optimize this scan if we split the 7147 // instructions into different buckets based on the insert lane. 7148 SmallVector<Instruction *, 16> Visited; 7149 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7150 assert(*I && 7151 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7152 "Worklist not sorted properly!"); 7153 BasicBlock *BB = (*I)->getBlock(); 7154 // For all instructions in blocks containing gather sequences: 7155 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7156 if (isDeleted(&In)) 7157 continue; 7158 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7159 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7160 continue; 7161 7162 // Check if we can replace this instruction with any of the 7163 // visited instructions. 7164 bool Replaced = false; 7165 for (Instruction *&V : Visited) { 7166 SmallVector<int> NewMask; 7167 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7168 DT->dominates(V->getParent(), In.getParent())) { 7169 In.replaceAllUsesWith(V); 7170 eraseInstruction(&In); 7171 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7172 if (!NewMask.empty()) 7173 SI->setShuffleMask(NewMask); 7174 Replaced = true; 7175 break; 7176 } 7177 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7178 GatherShuffleSeq.contains(V) && 7179 IsIdenticalOrLessDefined(V, &In, NewMask) && 7180 DT->dominates(In.getParent(), V->getParent())) { 7181 In.moveAfter(V); 7182 V->replaceAllUsesWith(&In); 7183 eraseInstruction(V); 7184 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7185 if (!NewMask.empty()) 7186 SI->setShuffleMask(NewMask); 7187 V = &In; 7188 Replaced = true; 7189 break; 7190 } 7191 } 7192 if (!Replaced) { 7193 assert(!is_contained(Visited, &In)); 7194 Visited.push_back(&In); 7195 } 7196 } 7197 } 7198 CSEBlocks.clear(); 7199 GatherShuffleSeq.clear(); 7200 } 7201 7202 // Groups the instructions to a bundle (which is then a single scheduling entity) 7203 // and schedules instructions until the bundle gets ready. 7204 Optional<BoUpSLP::ScheduleData *> 7205 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7206 const InstructionsState &S) { 7207 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7208 // instructions. 7209 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7210 return nullptr; 7211 7212 // Initialize the instruction bundle. 7213 Instruction *OldScheduleEnd = ScheduleEnd; 7214 ScheduleData *PrevInBundle = nullptr; 7215 ScheduleData *Bundle = nullptr; 7216 bool ReSchedule = false; 7217 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7218 7219 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 7220 ScheduleData *Bundle) { 7221 // The scheduling region got new instructions at the lower end (or it is a 7222 // new region for the first bundle). This makes it necessary to 7223 // recalculate all dependencies. 7224 // It is seldom that this needs to be done a second time after adding the 7225 // initial bundle to the region. 7226 if (ScheduleEnd != OldScheduleEnd) { 7227 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7228 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7229 ReSchedule = true; 7230 } 7231 if (ReSchedule) { 7232 resetSchedule(); 7233 initialFillReadyList(ReadyInsts); 7234 } 7235 if (Bundle) { 7236 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7237 << " in block " << BB->getName() << "\n"); 7238 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7239 } 7240 7241 // Now try to schedule the new bundle or (if no bundle) just calculate 7242 // dependencies. As soon as the bundle is "ready" it means that there are no 7243 // cyclic dependencies and we can schedule it. Note that's important that we 7244 // don't "schedule" the bundle yet (see cancelScheduling). 7245 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7246 !ReadyInsts.empty()) { 7247 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7248 if (Picked->isSchedulingEntity() && Picked->isReady()) 7249 schedule(Picked, ReadyInsts); 7250 } 7251 }; 7252 7253 // Make sure that the scheduling region contains all 7254 // instructions of the bundle. 7255 for (Value *V : VL) { 7256 if (!extendSchedulingRegion(V, S)) { 7257 // If the scheduling region got new instructions at the lower end (or it 7258 // is a new region for the first bundle). This makes it necessary to 7259 // recalculate all dependencies. 7260 // Otherwise the compiler may crash trying to incorrectly calculate 7261 // dependencies and emit instruction in the wrong order at the actual 7262 // scheduling. 7263 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 7264 return None; 7265 } 7266 } 7267 7268 for (Value *V : VL) { 7269 ScheduleData *BundleMember = getScheduleData(V); 7270 assert(BundleMember && 7271 "no ScheduleData for bundle member (maybe not in same basic block)"); 7272 if (BundleMember->IsScheduled) { 7273 // A bundle member was scheduled as single instruction before and now 7274 // needs to be scheduled as part of the bundle. We just get rid of the 7275 // existing schedule. 7276 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7277 << " was already scheduled\n"); 7278 ReSchedule = true; 7279 } 7280 assert(BundleMember->isSchedulingEntity() && 7281 "bundle member already part of other bundle"); 7282 if (PrevInBundle) { 7283 PrevInBundle->NextInBundle = BundleMember; 7284 } else { 7285 Bundle = BundleMember; 7286 } 7287 BundleMember->UnscheduledDepsInBundle = 0; 7288 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7289 7290 // Group the instructions to a bundle. 7291 BundleMember->FirstInBundle = Bundle; 7292 PrevInBundle = BundleMember; 7293 } 7294 assert(Bundle && "Failed to find schedule bundle"); 7295 TryScheduleBundle(ReSchedule, Bundle); 7296 if (!Bundle->isReady()) { 7297 cancelScheduling(VL, S.OpValue); 7298 return None; 7299 } 7300 return Bundle; 7301 } 7302 7303 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7304 Value *OpValue) { 7305 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7306 return; 7307 7308 ScheduleData *Bundle = getScheduleData(OpValue); 7309 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7310 assert(!Bundle->IsScheduled && 7311 "Can't cancel bundle which is already scheduled"); 7312 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7313 "tried to unbundle something which is not a bundle"); 7314 7315 // Un-bundle: make single instructions out of the bundle. 7316 ScheduleData *BundleMember = Bundle; 7317 while (BundleMember) { 7318 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7319 BundleMember->FirstInBundle = BundleMember; 7320 ScheduleData *Next = BundleMember->NextInBundle; 7321 BundleMember->NextInBundle = nullptr; 7322 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7323 if (BundleMember->UnscheduledDepsInBundle == 0) { 7324 ReadyInsts.insert(BundleMember); 7325 } 7326 BundleMember = Next; 7327 } 7328 } 7329 7330 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7331 // Allocate a new ScheduleData for the instruction. 7332 if (ChunkPos >= ChunkSize) { 7333 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7334 ChunkPos = 0; 7335 } 7336 return &(ScheduleDataChunks.back()[ChunkPos++]); 7337 } 7338 7339 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7340 const InstructionsState &S) { 7341 if (getScheduleData(V, isOneOf(S, V))) 7342 return true; 7343 Instruction *I = dyn_cast<Instruction>(V); 7344 assert(I && "bundle member must be an instruction"); 7345 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7346 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7347 "be scheduled"); 7348 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7349 ScheduleData *ISD = getScheduleData(I); 7350 if (!ISD) 7351 return false; 7352 assert(isInSchedulingRegion(ISD) && 7353 "ScheduleData not in scheduling region"); 7354 ScheduleData *SD = allocateScheduleDataChunks(); 7355 SD->Inst = I; 7356 SD->init(SchedulingRegionID, S.OpValue); 7357 ExtraScheduleDataMap[I][S.OpValue] = SD; 7358 return true; 7359 }; 7360 if (CheckSheduleForI(I)) 7361 return true; 7362 if (!ScheduleStart) { 7363 // It's the first instruction in the new region. 7364 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7365 ScheduleStart = I; 7366 ScheduleEnd = I->getNextNode(); 7367 if (isOneOf(S, I) != I) 7368 CheckSheduleForI(I); 7369 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7370 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7371 return true; 7372 } 7373 // Search up and down at the same time, because we don't know if the new 7374 // instruction is above or below the existing scheduling region. 7375 BasicBlock::reverse_iterator UpIter = 7376 ++ScheduleStart->getIterator().getReverse(); 7377 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7378 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7379 BasicBlock::iterator LowerEnd = BB->end(); 7380 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7381 &*DownIter != I) { 7382 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7383 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7384 return false; 7385 } 7386 7387 ++UpIter; 7388 ++DownIter; 7389 } 7390 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7391 assert(I->getParent() == ScheduleStart->getParent() && 7392 "Instruction is in wrong basic block."); 7393 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7394 ScheduleStart = I; 7395 if (isOneOf(S, I) != I) 7396 CheckSheduleForI(I); 7397 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7398 << "\n"); 7399 return true; 7400 } 7401 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7402 "Expected to reach top of the basic block or instruction down the " 7403 "lower end."); 7404 assert(I->getParent() == ScheduleEnd->getParent() && 7405 "Instruction is in wrong basic block."); 7406 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7407 nullptr); 7408 ScheduleEnd = I->getNextNode(); 7409 if (isOneOf(S, I) != I) 7410 CheckSheduleForI(I); 7411 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7412 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7413 return true; 7414 } 7415 7416 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7417 Instruction *ToI, 7418 ScheduleData *PrevLoadStore, 7419 ScheduleData *NextLoadStore) { 7420 ScheduleData *CurrentLoadStore = PrevLoadStore; 7421 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7422 ScheduleData *SD = ScheduleDataMap[I]; 7423 if (!SD) { 7424 SD = allocateScheduleDataChunks(); 7425 ScheduleDataMap[I] = SD; 7426 SD->Inst = I; 7427 } 7428 assert(!isInSchedulingRegion(SD) && 7429 "new ScheduleData already in scheduling region"); 7430 SD->init(SchedulingRegionID, I); 7431 7432 if (I->mayReadOrWriteMemory() && 7433 (!isa<IntrinsicInst>(I) || 7434 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7435 cast<IntrinsicInst>(I)->getIntrinsicID() != 7436 Intrinsic::pseudoprobe))) { 7437 // Update the linked list of memory accessing instructions. 7438 if (CurrentLoadStore) { 7439 CurrentLoadStore->NextLoadStore = SD; 7440 } else { 7441 FirstLoadStoreInRegion = SD; 7442 } 7443 CurrentLoadStore = SD; 7444 } 7445 } 7446 if (NextLoadStore) { 7447 if (CurrentLoadStore) 7448 CurrentLoadStore->NextLoadStore = NextLoadStore; 7449 } else { 7450 LastLoadStoreInRegion = CurrentLoadStore; 7451 } 7452 } 7453 7454 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7455 bool InsertInReadyList, 7456 BoUpSLP *SLP) { 7457 assert(SD->isSchedulingEntity()); 7458 7459 SmallVector<ScheduleData *, 10> WorkList; 7460 WorkList.push_back(SD); 7461 7462 while (!WorkList.empty()) { 7463 ScheduleData *SD = WorkList.pop_back_val(); 7464 7465 ScheduleData *BundleMember = SD; 7466 while (BundleMember) { 7467 assert(isInSchedulingRegion(BundleMember)); 7468 if (!BundleMember->hasValidDependencies()) { 7469 7470 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7471 << "\n"); 7472 BundleMember->Dependencies = 0; 7473 BundleMember->resetUnscheduledDeps(); 7474 7475 // Handle def-use chain dependencies. 7476 if (BundleMember->OpValue != BundleMember->Inst) { 7477 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7478 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7479 BundleMember->Dependencies++; 7480 ScheduleData *DestBundle = UseSD->FirstInBundle; 7481 if (!DestBundle->IsScheduled) 7482 BundleMember->incrementUnscheduledDeps(1); 7483 if (!DestBundle->hasValidDependencies()) 7484 WorkList.push_back(DestBundle); 7485 } 7486 } else { 7487 for (User *U : BundleMember->Inst->users()) { 7488 if (isa<Instruction>(U)) { 7489 ScheduleData *UseSD = getScheduleData(U); 7490 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7491 BundleMember->Dependencies++; 7492 ScheduleData *DestBundle = UseSD->FirstInBundle; 7493 if (!DestBundle->IsScheduled) 7494 BundleMember->incrementUnscheduledDeps(1); 7495 if (!DestBundle->hasValidDependencies()) 7496 WorkList.push_back(DestBundle); 7497 } 7498 } else { 7499 // I'm not sure if this can ever happen. But we need to be safe. 7500 // This lets the instruction/bundle never be scheduled and 7501 // eventually disable vectorization. 7502 BundleMember->Dependencies++; 7503 BundleMember->incrementUnscheduledDeps(1); 7504 } 7505 } 7506 } 7507 7508 // Handle the memory dependencies. 7509 ScheduleData *DepDest = BundleMember->NextLoadStore; 7510 if (DepDest) { 7511 Instruction *SrcInst = BundleMember->Inst; 7512 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7513 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7514 unsigned numAliased = 0; 7515 unsigned DistToSrc = 1; 7516 7517 while (DepDest) { 7518 assert(isInSchedulingRegion(DepDest)); 7519 7520 // We have two limits to reduce the complexity: 7521 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7522 // SLP->isAliased (which is the expensive part in this loop). 7523 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7524 // the whole loop (even if the loop is fast, it's quadratic). 7525 // It's important for the loop break condition (see below) to 7526 // check this limit even between two read-only instructions. 7527 if (DistToSrc >= MaxMemDepDistance || 7528 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7529 (numAliased >= AliasedCheckLimit || 7530 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7531 7532 // We increment the counter only if the locations are aliased 7533 // (instead of counting all alias checks). This gives a better 7534 // balance between reduced runtime and accurate dependencies. 7535 numAliased++; 7536 7537 DepDest->MemoryDependencies.push_back(BundleMember); 7538 BundleMember->Dependencies++; 7539 ScheduleData *DestBundle = DepDest->FirstInBundle; 7540 if (!DestBundle->IsScheduled) { 7541 BundleMember->incrementUnscheduledDeps(1); 7542 } 7543 if (!DestBundle->hasValidDependencies()) { 7544 WorkList.push_back(DestBundle); 7545 } 7546 } 7547 DepDest = DepDest->NextLoadStore; 7548 7549 // Example, explaining the loop break condition: Let's assume our 7550 // starting instruction is i0 and MaxMemDepDistance = 3. 7551 // 7552 // +--------v--v--v 7553 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7554 // +--------^--^--^ 7555 // 7556 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7557 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7558 // Previously we already added dependencies from i3 to i6,i7,i8 7559 // (because of MaxMemDepDistance). As we added a dependency from 7560 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7561 // and we can abort this loop at i6. 7562 if (DistToSrc >= 2 * MaxMemDepDistance) 7563 break; 7564 DistToSrc++; 7565 } 7566 } 7567 } 7568 BundleMember = BundleMember->NextInBundle; 7569 } 7570 if (InsertInReadyList && SD->isReady()) { 7571 ReadyInsts.push_back(SD); 7572 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7573 << "\n"); 7574 } 7575 } 7576 } 7577 7578 void BoUpSLP::BlockScheduling::resetSchedule() { 7579 assert(ScheduleStart && 7580 "tried to reset schedule on block which has not been scheduled"); 7581 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7582 doForAllOpcodes(I, [&](ScheduleData *SD) { 7583 assert(isInSchedulingRegion(SD) && 7584 "ScheduleData not in scheduling region"); 7585 SD->IsScheduled = false; 7586 SD->resetUnscheduledDeps(); 7587 }); 7588 } 7589 ReadyInsts.clear(); 7590 } 7591 7592 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7593 if (!BS->ScheduleStart) 7594 return; 7595 7596 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7597 7598 BS->resetSchedule(); 7599 7600 // For the real scheduling we use a more sophisticated ready-list: it is 7601 // sorted by the original instruction location. This lets the final schedule 7602 // be as close as possible to the original instruction order. 7603 struct ScheduleDataCompare { 7604 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7605 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7606 } 7607 }; 7608 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7609 7610 // Ensure that all dependency data is updated and fill the ready-list with 7611 // initial instructions. 7612 int Idx = 0; 7613 int NumToSchedule = 0; 7614 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7615 I = I->getNextNode()) { 7616 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7617 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7618 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7619 "scheduler and vectorizer bundle mismatch"); 7620 SD->FirstInBundle->SchedulingPriority = Idx++; 7621 if (SD->isSchedulingEntity()) { 7622 BS->calculateDependencies(SD, false, this); 7623 NumToSchedule++; 7624 } 7625 }); 7626 } 7627 BS->initialFillReadyList(ReadyInsts); 7628 7629 Instruction *LastScheduledInst = BS->ScheduleEnd; 7630 7631 // Do the "real" scheduling. 7632 while (!ReadyInsts.empty()) { 7633 ScheduleData *picked = *ReadyInsts.begin(); 7634 ReadyInsts.erase(ReadyInsts.begin()); 7635 7636 // Move the scheduled instruction(s) to their dedicated places, if not 7637 // there yet. 7638 ScheduleData *BundleMember = picked; 7639 while (BundleMember) { 7640 Instruction *pickedInst = BundleMember->Inst; 7641 if (pickedInst->getNextNode() != LastScheduledInst) { 7642 BS->BB->getInstList().remove(pickedInst); 7643 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7644 pickedInst); 7645 } 7646 LastScheduledInst = pickedInst; 7647 BundleMember = BundleMember->NextInBundle; 7648 } 7649 7650 BS->schedule(picked, ReadyInsts); 7651 NumToSchedule--; 7652 } 7653 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7654 7655 // Avoid duplicate scheduling of the block. 7656 BS->ScheduleStart = nullptr; 7657 } 7658 7659 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7660 // If V is a store, just return the width of the stored value (or value 7661 // truncated just before storing) without traversing the expression tree. 7662 // This is the common case. 7663 if (auto *Store = dyn_cast<StoreInst>(V)) { 7664 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7665 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7666 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7667 } 7668 7669 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7670 return getVectorElementSize(IEI->getOperand(1)); 7671 7672 auto E = InstrElementSize.find(V); 7673 if (E != InstrElementSize.end()) 7674 return E->second; 7675 7676 // If V is not a store, we can traverse the expression tree to find loads 7677 // that feed it. The type of the loaded value may indicate a more suitable 7678 // width than V's type. We want to base the vector element size on the width 7679 // of memory operations where possible. 7680 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7681 SmallPtrSet<Instruction *, 16> Visited; 7682 if (auto *I = dyn_cast<Instruction>(V)) { 7683 Worklist.emplace_back(I, I->getParent()); 7684 Visited.insert(I); 7685 } 7686 7687 // Traverse the expression tree in bottom-up order looking for loads. If we 7688 // encounter an instruction we don't yet handle, we give up. 7689 auto Width = 0u; 7690 while (!Worklist.empty()) { 7691 Instruction *I; 7692 BasicBlock *Parent; 7693 std::tie(I, Parent) = Worklist.pop_back_val(); 7694 7695 // We should only be looking at scalar instructions here. If the current 7696 // instruction has a vector type, skip. 7697 auto *Ty = I->getType(); 7698 if (isa<VectorType>(Ty)) 7699 continue; 7700 7701 // If the current instruction is a load, update MaxWidth to reflect the 7702 // width of the loaded value. 7703 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7704 isa<ExtractValueInst>(I)) 7705 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7706 7707 // Otherwise, we need to visit the operands of the instruction. We only 7708 // handle the interesting cases from buildTree here. If an operand is an 7709 // instruction we haven't yet visited and from the same basic block as the 7710 // user or the use is a PHI node, we add it to the worklist. 7711 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7712 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7713 isa<UnaryOperator>(I)) { 7714 for (Use &U : I->operands()) 7715 if (auto *J = dyn_cast<Instruction>(U.get())) 7716 if (Visited.insert(J).second && 7717 (isa<PHINode>(I) || J->getParent() == Parent)) 7718 Worklist.emplace_back(J, J->getParent()); 7719 } else { 7720 break; 7721 } 7722 } 7723 7724 // If we didn't encounter a memory access in the expression tree, or if we 7725 // gave up for some reason, just return the width of V. Otherwise, return the 7726 // maximum width we found. 7727 if (!Width) { 7728 if (auto *CI = dyn_cast<CmpInst>(V)) 7729 V = CI->getOperand(0); 7730 Width = DL->getTypeSizeInBits(V->getType()); 7731 } 7732 7733 for (Instruction *I : Visited) 7734 InstrElementSize[I] = Width; 7735 7736 return Width; 7737 } 7738 7739 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7740 // smaller type with a truncation. We collect the values that will be demoted 7741 // in ToDemote and additional roots that require investigating in Roots. 7742 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7743 SmallVectorImpl<Value *> &ToDemote, 7744 SmallVectorImpl<Value *> &Roots) { 7745 // We can always demote constants. 7746 if (isa<Constant>(V)) { 7747 ToDemote.push_back(V); 7748 return true; 7749 } 7750 7751 // If the value is not an instruction in the expression with only one use, it 7752 // cannot be demoted. 7753 auto *I = dyn_cast<Instruction>(V); 7754 if (!I || !I->hasOneUse() || !Expr.count(I)) 7755 return false; 7756 7757 switch (I->getOpcode()) { 7758 7759 // We can always demote truncations and extensions. Since truncations can 7760 // seed additional demotion, we save the truncated value. 7761 case Instruction::Trunc: 7762 Roots.push_back(I->getOperand(0)); 7763 break; 7764 case Instruction::ZExt: 7765 case Instruction::SExt: 7766 if (isa<ExtractElementInst>(I->getOperand(0)) || 7767 isa<InsertElementInst>(I->getOperand(0))) 7768 return false; 7769 break; 7770 7771 // We can demote certain binary operations if we can demote both of their 7772 // operands. 7773 case Instruction::Add: 7774 case Instruction::Sub: 7775 case Instruction::Mul: 7776 case Instruction::And: 7777 case Instruction::Or: 7778 case Instruction::Xor: 7779 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7780 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7781 return false; 7782 break; 7783 7784 // We can demote selects if we can demote their true and false values. 7785 case Instruction::Select: { 7786 SelectInst *SI = cast<SelectInst>(I); 7787 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7788 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7789 return false; 7790 break; 7791 } 7792 7793 // We can demote phis if we can demote all their incoming operands. Note that 7794 // we don't need to worry about cycles since we ensure single use above. 7795 case Instruction::PHI: { 7796 PHINode *PN = cast<PHINode>(I); 7797 for (Value *IncValue : PN->incoming_values()) 7798 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7799 return false; 7800 break; 7801 } 7802 7803 // Otherwise, conservatively give up. 7804 default: 7805 return false; 7806 } 7807 7808 // Record the value that we can demote. 7809 ToDemote.push_back(V); 7810 return true; 7811 } 7812 7813 void BoUpSLP::computeMinimumValueSizes() { 7814 // If there are no external uses, the expression tree must be rooted by a 7815 // store. We can't demote in-memory values, so there is nothing to do here. 7816 if (ExternalUses.empty()) 7817 return; 7818 7819 // We only attempt to truncate integer expressions. 7820 auto &TreeRoot = VectorizableTree[0]->Scalars; 7821 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7822 if (!TreeRootIT) 7823 return; 7824 7825 // If the expression is not rooted by a store, these roots should have 7826 // external uses. We will rely on InstCombine to rewrite the expression in 7827 // the narrower type. However, InstCombine only rewrites single-use values. 7828 // This means that if a tree entry other than a root is used externally, it 7829 // must have multiple uses and InstCombine will not rewrite it. The code 7830 // below ensures that only the roots are used externally. 7831 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7832 for (auto &EU : ExternalUses) 7833 if (!Expr.erase(EU.Scalar)) 7834 return; 7835 if (!Expr.empty()) 7836 return; 7837 7838 // Collect the scalar values of the vectorizable expression. We will use this 7839 // context to determine which values can be demoted. If we see a truncation, 7840 // we mark it as seeding another demotion. 7841 for (auto &EntryPtr : VectorizableTree) 7842 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7843 7844 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7845 // have a single external user that is not in the vectorizable tree. 7846 for (auto *Root : TreeRoot) 7847 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7848 return; 7849 7850 // Conservatively determine if we can actually truncate the roots of the 7851 // expression. Collect the values that can be demoted in ToDemote and 7852 // additional roots that require investigating in Roots. 7853 SmallVector<Value *, 32> ToDemote; 7854 SmallVector<Value *, 4> Roots; 7855 for (auto *Root : TreeRoot) 7856 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7857 return; 7858 7859 // The maximum bit width required to represent all the values that can be 7860 // demoted without loss of precision. It would be safe to truncate the roots 7861 // of the expression to this width. 7862 auto MaxBitWidth = 8u; 7863 7864 // We first check if all the bits of the roots are demanded. If they're not, 7865 // we can truncate the roots to this narrower type. 7866 for (auto *Root : TreeRoot) { 7867 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7868 MaxBitWidth = std::max<unsigned>( 7869 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7870 } 7871 7872 // True if the roots can be zero-extended back to their original type, rather 7873 // than sign-extended. We know that if the leading bits are not demanded, we 7874 // can safely zero-extend. So we initialize IsKnownPositive to True. 7875 bool IsKnownPositive = true; 7876 7877 // If all the bits of the roots are demanded, we can try a little harder to 7878 // compute a narrower type. This can happen, for example, if the roots are 7879 // getelementptr indices. InstCombine promotes these indices to the pointer 7880 // width. Thus, all their bits are technically demanded even though the 7881 // address computation might be vectorized in a smaller type. 7882 // 7883 // We start by looking at each entry that can be demoted. We compute the 7884 // maximum bit width required to store the scalar by using ValueTracking to 7885 // compute the number of high-order bits we can truncate. 7886 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7887 llvm::all_of(TreeRoot, [](Value *R) { 7888 assert(R->hasOneUse() && "Root should have only one use!"); 7889 return isa<GetElementPtrInst>(R->user_back()); 7890 })) { 7891 MaxBitWidth = 8u; 7892 7893 // Determine if the sign bit of all the roots is known to be zero. If not, 7894 // IsKnownPositive is set to False. 7895 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7896 KnownBits Known = computeKnownBits(R, *DL); 7897 return Known.isNonNegative(); 7898 }); 7899 7900 // Determine the maximum number of bits required to store the scalar 7901 // values. 7902 for (auto *Scalar : ToDemote) { 7903 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7904 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7905 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7906 } 7907 7908 // If we can't prove that the sign bit is zero, we must add one to the 7909 // maximum bit width to account for the unknown sign bit. This preserves 7910 // the existing sign bit so we can safely sign-extend the root back to the 7911 // original type. Otherwise, if we know the sign bit is zero, we will 7912 // zero-extend the root instead. 7913 // 7914 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7915 // one to the maximum bit width will yield a larger-than-necessary 7916 // type. In general, we need to add an extra bit only if we can't 7917 // prove that the upper bit of the original type is equal to the 7918 // upper bit of the proposed smaller type. If these two bits are the 7919 // same (either zero or one) we know that sign-extending from the 7920 // smaller type will result in the same value. Here, since we can't 7921 // yet prove this, we are just making the proposed smaller type 7922 // larger to ensure correctness. 7923 if (!IsKnownPositive) 7924 ++MaxBitWidth; 7925 } 7926 7927 // Round MaxBitWidth up to the next power-of-two. 7928 if (!isPowerOf2_64(MaxBitWidth)) 7929 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7930 7931 // If the maximum bit width we compute is less than the with of the roots' 7932 // type, we can proceed with the narrowing. Otherwise, do nothing. 7933 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7934 return; 7935 7936 // If we can truncate the root, we must collect additional values that might 7937 // be demoted as a result. That is, those seeded by truncations we will 7938 // modify. 7939 while (!Roots.empty()) 7940 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7941 7942 // Finally, map the values we can demote to the maximum bit with we computed. 7943 for (auto *Scalar : ToDemote) 7944 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7945 } 7946 7947 namespace { 7948 7949 /// The SLPVectorizer Pass. 7950 struct SLPVectorizer : public FunctionPass { 7951 SLPVectorizerPass Impl; 7952 7953 /// Pass identification, replacement for typeid 7954 static char ID; 7955 7956 explicit SLPVectorizer() : FunctionPass(ID) { 7957 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7958 } 7959 7960 bool doInitialization(Module &M) override { return false; } 7961 7962 bool runOnFunction(Function &F) override { 7963 if (skipFunction(F)) 7964 return false; 7965 7966 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7967 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7968 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7969 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7970 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7971 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7972 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7973 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7974 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7975 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7976 7977 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7978 } 7979 7980 void getAnalysisUsage(AnalysisUsage &AU) const override { 7981 FunctionPass::getAnalysisUsage(AU); 7982 AU.addRequired<AssumptionCacheTracker>(); 7983 AU.addRequired<ScalarEvolutionWrapperPass>(); 7984 AU.addRequired<AAResultsWrapperPass>(); 7985 AU.addRequired<TargetTransformInfoWrapperPass>(); 7986 AU.addRequired<LoopInfoWrapperPass>(); 7987 AU.addRequired<DominatorTreeWrapperPass>(); 7988 AU.addRequired<DemandedBitsWrapperPass>(); 7989 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7990 AU.addRequired<InjectTLIMappingsLegacy>(); 7991 AU.addPreserved<LoopInfoWrapperPass>(); 7992 AU.addPreserved<DominatorTreeWrapperPass>(); 7993 AU.addPreserved<AAResultsWrapperPass>(); 7994 AU.addPreserved<GlobalsAAWrapperPass>(); 7995 AU.setPreservesCFG(); 7996 } 7997 }; 7998 7999 } // end anonymous namespace 8000 8001 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8002 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8003 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8004 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8005 auto *AA = &AM.getResult<AAManager>(F); 8006 auto *LI = &AM.getResult<LoopAnalysis>(F); 8007 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8008 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8009 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8010 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8011 8012 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8013 if (!Changed) 8014 return PreservedAnalyses::all(); 8015 8016 PreservedAnalyses PA; 8017 PA.preserveSet<CFGAnalyses>(); 8018 return PA; 8019 } 8020 8021 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8022 TargetTransformInfo *TTI_, 8023 TargetLibraryInfo *TLI_, AAResults *AA_, 8024 LoopInfo *LI_, DominatorTree *DT_, 8025 AssumptionCache *AC_, DemandedBits *DB_, 8026 OptimizationRemarkEmitter *ORE_) { 8027 if (!RunSLPVectorization) 8028 return false; 8029 SE = SE_; 8030 TTI = TTI_; 8031 TLI = TLI_; 8032 AA = AA_; 8033 LI = LI_; 8034 DT = DT_; 8035 AC = AC_; 8036 DB = DB_; 8037 DL = &F.getParent()->getDataLayout(); 8038 8039 Stores.clear(); 8040 GEPs.clear(); 8041 bool Changed = false; 8042 8043 // If the target claims to have no vector registers don't attempt 8044 // vectorization. 8045 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 8046 return false; 8047 8048 // Don't vectorize when the attribute NoImplicitFloat is used. 8049 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8050 return false; 8051 8052 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8053 8054 // Use the bottom up slp vectorizer to construct chains that start with 8055 // store instructions. 8056 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8057 8058 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8059 // delete instructions. 8060 8061 // Update DFS numbers now so that we can use them for ordering. 8062 DT->updateDFSNumbers(); 8063 8064 // Scan the blocks in the function in post order. 8065 for (auto BB : post_order(&F.getEntryBlock())) { 8066 collectSeedInstructions(BB); 8067 8068 // Vectorize trees that end at stores. 8069 if (!Stores.empty()) { 8070 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8071 << " underlying objects.\n"); 8072 Changed |= vectorizeStoreChains(R); 8073 } 8074 8075 // Vectorize trees that end at reductions. 8076 Changed |= vectorizeChainsInBlock(BB, R); 8077 8078 // Vectorize the index computations of getelementptr instructions. This 8079 // is primarily intended to catch gather-like idioms ending at 8080 // non-consecutive loads. 8081 if (!GEPs.empty()) { 8082 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8083 << " underlying objects.\n"); 8084 Changed |= vectorizeGEPIndices(BB, R); 8085 } 8086 } 8087 8088 if (Changed) { 8089 R.optimizeGatherSequence(); 8090 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8091 } 8092 return Changed; 8093 } 8094 8095 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8096 unsigned Idx) { 8097 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8098 << "\n"); 8099 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8100 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8101 unsigned VF = Chain.size(); 8102 8103 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8104 return false; 8105 8106 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8107 << "\n"); 8108 8109 R.buildTree(Chain); 8110 if (R.isTreeTinyAndNotFullyVectorizable()) 8111 return false; 8112 if (R.isLoadCombineCandidate()) 8113 return false; 8114 R.reorderTopToBottom(); 8115 R.reorderBottomToTop(); 8116 R.buildExternalUses(); 8117 8118 R.computeMinimumValueSizes(); 8119 8120 InstructionCost Cost = R.getTreeCost(); 8121 8122 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8123 if (Cost < -SLPCostThreshold) { 8124 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8125 8126 using namespace ore; 8127 8128 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8129 cast<StoreInst>(Chain[0])) 8130 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8131 << " and with tree size " 8132 << NV("TreeSize", R.getTreeSize())); 8133 8134 R.vectorizeTree(); 8135 return true; 8136 } 8137 8138 return false; 8139 } 8140 8141 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8142 BoUpSLP &R) { 8143 // We may run into multiple chains that merge into a single chain. We mark the 8144 // stores that we vectorized so that we don't visit the same store twice. 8145 BoUpSLP::ValueSet VectorizedStores; 8146 bool Changed = false; 8147 8148 int E = Stores.size(); 8149 SmallBitVector Tails(E, false); 8150 int MaxIter = MaxStoreLookup.getValue(); 8151 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8152 E, std::make_pair(E, INT_MAX)); 8153 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8154 int IterCnt; 8155 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8156 &CheckedPairs, 8157 &ConsecutiveChain](int K, int Idx) { 8158 if (IterCnt >= MaxIter) 8159 return true; 8160 if (CheckedPairs[Idx].test(K)) 8161 return ConsecutiveChain[K].second == 1 && 8162 ConsecutiveChain[K].first == Idx; 8163 ++IterCnt; 8164 CheckedPairs[Idx].set(K); 8165 CheckedPairs[K].set(Idx); 8166 Optional<int> Diff = getPointersDiff( 8167 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8168 Stores[Idx]->getValueOperand()->getType(), 8169 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8170 if (!Diff || *Diff == 0) 8171 return false; 8172 int Val = *Diff; 8173 if (Val < 0) { 8174 if (ConsecutiveChain[Idx].second > -Val) { 8175 Tails.set(K); 8176 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8177 } 8178 return false; 8179 } 8180 if (ConsecutiveChain[K].second <= Val) 8181 return false; 8182 8183 Tails.set(Idx); 8184 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8185 return Val == 1; 8186 }; 8187 // Do a quadratic search on all of the given stores in reverse order and find 8188 // all of the pairs of stores that follow each other. 8189 for (int Idx = E - 1; Idx >= 0; --Idx) { 8190 // If a store has multiple consecutive store candidates, search according 8191 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8192 // This is because usually pairing with immediate succeeding or preceding 8193 // candidate create the best chance to find slp vectorization opportunity. 8194 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8195 IterCnt = 0; 8196 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8197 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8198 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8199 break; 8200 } 8201 8202 // Tracks if we tried to vectorize stores starting from the given tail 8203 // already. 8204 SmallBitVector TriedTails(E, false); 8205 // For stores that start but don't end a link in the chain: 8206 for (int Cnt = E; Cnt > 0; --Cnt) { 8207 int I = Cnt - 1; 8208 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8209 continue; 8210 // We found a store instr that starts a chain. Now follow the chain and try 8211 // to vectorize it. 8212 BoUpSLP::ValueList Operands; 8213 // Collect the chain into a list. 8214 while (I != E && !VectorizedStores.count(Stores[I])) { 8215 Operands.push_back(Stores[I]); 8216 Tails.set(I); 8217 if (ConsecutiveChain[I].second != 1) { 8218 // Mark the new end in the chain and go back, if required. It might be 8219 // required if the original stores come in reversed order, for example. 8220 if (ConsecutiveChain[I].first != E && 8221 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8222 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8223 TriedTails.set(I); 8224 Tails.reset(ConsecutiveChain[I].first); 8225 if (Cnt < ConsecutiveChain[I].first + 2) 8226 Cnt = ConsecutiveChain[I].first + 2; 8227 } 8228 break; 8229 } 8230 // Move to the next value in the chain. 8231 I = ConsecutiveChain[I].first; 8232 } 8233 assert(!Operands.empty() && "Expected non-empty list of stores."); 8234 8235 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8236 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8237 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8238 8239 unsigned MinVF = R.getMinVF(EltSize); 8240 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8241 MaxElts); 8242 8243 // FIXME: Is division-by-2 the correct step? Should we assert that the 8244 // register size is a power-of-2? 8245 unsigned StartIdx = 0; 8246 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8247 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8248 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8249 if (!VectorizedStores.count(Slice.front()) && 8250 !VectorizedStores.count(Slice.back()) && 8251 vectorizeStoreChain(Slice, R, Cnt)) { 8252 // Mark the vectorized stores so that we don't vectorize them again. 8253 VectorizedStores.insert(Slice.begin(), Slice.end()); 8254 Changed = true; 8255 // If we vectorized initial block, no need to try to vectorize it 8256 // again. 8257 if (Cnt == StartIdx) 8258 StartIdx += Size; 8259 Cnt += Size; 8260 continue; 8261 } 8262 ++Cnt; 8263 } 8264 // Check if the whole array was vectorized already - exit. 8265 if (StartIdx >= Operands.size()) 8266 break; 8267 } 8268 } 8269 8270 return Changed; 8271 } 8272 8273 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8274 // Initialize the collections. We will make a single pass over the block. 8275 Stores.clear(); 8276 GEPs.clear(); 8277 8278 // Visit the store and getelementptr instructions in BB and organize them in 8279 // Stores and GEPs according to the underlying objects of their pointer 8280 // operands. 8281 for (Instruction &I : *BB) { 8282 // Ignore store instructions that are volatile or have a pointer operand 8283 // that doesn't point to a scalar type. 8284 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8285 if (!SI->isSimple()) 8286 continue; 8287 if (!isValidElementType(SI->getValueOperand()->getType())) 8288 continue; 8289 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8290 } 8291 8292 // Ignore getelementptr instructions that have more than one index, a 8293 // constant index, or a pointer operand that doesn't point to a scalar 8294 // type. 8295 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8296 auto Idx = GEP->idx_begin()->get(); 8297 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8298 continue; 8299 if (!isValidElementType(Idx->getType())) 8300 continue; 8301 if (GEP->getType()->isVectorTy()) 8302 continue; 8303 GEPs[GEP->getPointerOperand()].push_back(GEP); 8304 } 8305 } 8306 } 8307 8308 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8309 if (!A || !B) 8310 return false; 8311 Value *VL[] = {A, B}; 8312 return tryToVectorizeList(VL, R); 8313 } 8314 8315 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8316 bool LimitForRegisterSize) { 8317 if (VL.size() < 2) 8318 return false; 8319 8320 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8321 << VL.size() << ".\n"); 8322 8323 // Check that all of the parts are instructions of the same type, 8324 // we permit an alternate opcode via InstructionsState. 8325 InstructionsState S = getSameOpcode(VL); 8326 if (!S.getOpcode()) 8327 return false; 8328 8329 Instruction *I0 = cast<Instruction>(S.OpValue); 8330 // Make sure invalid types (including vector type) are rejected before 8331 // determining vectorization factor for scalar instructions. 8332 for (Value *V : VL) { 8333 Type *Ty = V->getType(); 8334 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8335 // NOTE: the following will give user internal llvm type name, which may 8336 // not be useful. 8337 R.getORE()->emit([&]() { 8338 std::string type_str; 8339 llvm::raw_string_ostream rso(type_str); 8340 Ty->print(rso); 8341 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8342 << "Cannot SLP vectorize list: type " 8343 << rso.str() + " is unsupported by vectorizer"; 8344 }); 8345 return false; 8346 } 8347 } 8348 8349 unsigned Sz = R.getVectorElementSize(I0); 8350 unsigned MinVF = R.getMinVF(Sz); 8351 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8352 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8353 if (MaxVF < 2) { 8354 R.getORE()->emit([&]() { 8355 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8356 << "Cannot SLP vectorize list: vectorization factor " 8357 << "less than 2 is not supported"; 8358 }); 8359 return false; 8360 } 8361 8362 bool Changed = false; 8363 bool CandidateFound = false; 8364 InstructionCost MinCost = SLPCostThreshold.getValue(); 8365 Type *ScalarTy = VL[0]->getType(); 8366 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8367 ScalarTy = IE->getOperand(1)->getType(); 8368 8369 unsigned NextInst = 0, MaxInst = VL.size(); 8370 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8371 // No actual vectorization should happen, if number of parts is the same as 8372 // provided vectorization factor (i.e. the scalar type is used for vector 8373 // code during codegen). 8374 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8375 if (TTI->getNumberOfParts(VecTy) == VF) 8376 continue; 8377 for (unsigned I = NextInst; I < MaxInst; ++I) { 8378 unsigned OpsWidth = 0; 8379 8380 if (I + VF > MaxInst) 8381 OpsWidth = MaxInst - I; 8382 else 8383 OpsWidth = VF; 8384 8385 if (!isPowerOf2_32(OpsWidth)) 8386 continue; 8387 8388 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8389 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8390 break; 8391 8392 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8393 // Check that a previous iteration of this loop did not delete the Value. 8394 if (llvm::any_of(Ops, [&R](Value *V) { 8395 auto *I = dyn_cast<Instruction>(V); 8396 return I && R.isDeleted(I); 8397 })) 8398 continue; 8399 8400 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8401 << "\n"); 8402 8403 R.buildTree(Ops); 8404 if (R.isTreeTinyAndNotFullyVectorizable()) 8405 continue; 8406 R.reorderTopToBottom(); 8407 R.reorderBottomToTop(); 8408 R.buildExternalUses(); 8409 8410 R.computeMinimumValueSizes(); 8411 InstructionCost Cost = R.getTreeCost(); 8412 CandidateFound = true; 8413 MinCost = std::min(MinCost, Cost); 8414 8415 if (Cost < -SLPCostThreshold) { 8416 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8417 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8418 cast<Instruction>(Ops[0])) 8419 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8420 << " and with tree size " 8421 << ore::NV("TreeSize", R.getTreeSize())); 8422 8423 R.vectorizeTree(); 8424 // Move to the next bundle. 8425 I += VF - 1; 8426 NextInst = I + 1; 8427 Changed = true; 8428 } 8429 } 8430 } 8431 8432 if (!Changed && CandidateFound) { 8433 R.getORE()->emit([&]() { 8434 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8435 << "List vectorization was possible but not beneficial with cost " 8436 << ore::NV("Cost", MinCost) << " >= " 8437 << ore::NV("Treshold", -SLPCostThreshold); 8438 }); 8439 } else if (!Changed) { 8440 R.getORE()->emit([&]() { 8441 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8442 << "Cannot SLP vectorize list: vectorization was impossible" 8443 << " with available vectorization factors"; 8444 }); 8445 } 8446 return Changed; 8447 } 8448 8449 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8450 if (!I) 8451 return false; 8452 8453 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8454 return false; 8455 8456 Value *P = I->getParent(); 8457 8458 // Vectorize in current basic block only. 8459 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8460 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8461 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8462 return false; 8463 8464 // Try to vectorize V. 8465 if (tryToVectorizePair(Op0, Op1, R)) 8466 return true; 8467 8468 auto *A = dyn_cast<BinaryOperator>(Op0); 8469 auto *B = dyn_cast<BinaryOperator>(Op1); 8470 // Try to skip B. 8471 if (B && B->hasOneUse()) { 8472 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8473 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8474 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8475 return true; 8476 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8477 return true; 8478 } 8479 8480 // Try to skip A. 8481 if (A && A->hasOneUse()) { 8482 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8483 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8484 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8485 return true; 8486 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8487 return true; 8488 } 8489 return false; 8490 } 8491 8492 namespace { 8493 8494 /// Model horizontal reductions. 8495 /// 8496 /// A horizontal reduction is a tree of reduction instructions that has values 8497 /// that can be put into a vector as its leaves. For example: 8498 /// 8499 /// mul mul mul mul 8500 /// \ / \ / 8501 /// + + 8502 /// \ / 8503 /// + 8504 /// This tree has "mul" as its leaf values and "+" as its reduction 8505 /// instructions. A reduction can feed into a store or a binary operation 8506 /// feeding a phi. 8507 /// ... 8508 /// \ / 8509 /// + 8510 /// | 8511 /// phi += 8512 /// 8513 /// Or: 8514 /// ... 8515 /// \ / 8516 /// + 8517 /// | 8518 /// *p = 8519 /// 8520 class HorizontalReduction { 8521 using ReductionOpsType = SmallVector<Value *, 16>; 8522 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8523 ReductionOpsListType ReductionOps; 8524 SmallVector<Value *, 32> ReducedVals; 8525 // Use map vector to make stable output. 8526 MapVector<Instruction *, Value *> ExtraArgs; 8527 WeakTrackingVH ReductionRoot; 8528 /// The type of reduction operation. 8529 RecurKind RdxKind; 8530 8531 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8532 8533 static bool isCmpSelMinMax(Instruction *I) { 8534 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8535 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8536 } 8537 8538 // And/or are potentially poison-safe logical patterns like: 8539 // select x, y, false 8540 // select x, true, y 8541 static bool isBoolLogicOp(Instruction *I) { 8542 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8543 match(I, m_LogicalOr(m_Value(), m_Value())); 8544 } 8545 8546 /// Checks if instruction is associative and can be vectorized. 8547 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8548 if (Kind == RecurKind::None) 8549 return false; 8550 8551 // Integer ops that map to select instructions or intrinsics are fine. 8552 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8553 isBoolLogicOp(I)) 8554 return true; 8555 8556 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8557 // FP min/max are associative except for NaN and -0.0. We do not 8558 // have to rule out -0.0 here because the intrinsic semantics do not 8559 // specify a fixed result for it. 8560 return I->getFastMathFlags().noNaNs(); 8561 } 8562 8563 return I->isAssociative(); 8564 } 8565 8566 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8567 // Poison-safe 'or' takes the form: select X, true, Y 8568 // To make that work with the normal operand processing, we skip the 8569 // true value operand. 8570 // TODO: Change the code and data structures to handle this without a hack. 8571 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8572 return I->getOperand(2); 8573 return I->getOperand(Index); 8574 } 8575 8576 /// Checks if the ParentStackElem.first should be marked as a reduction 8577 /// operation with an extra argument or as extra argument itself. 8578 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8579 Value *ExtraArg) { 8580 if (ExtraArgs.count(ParentStackElem.first)) { 8581 ExtraArgs[ParentStackElem.first] = nullptr; 8582 // We ran into something like: 8583 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8584 // The whole ParentStackElem.first should be considered as an extra value 8585 // in this case. 8586 // Do not perform analysis of remaining operands of ParentStackElem.first 8587 // instruction, this whole instruction is an extra argument. 8588 ParentStackElem.second = INVALID_OPERAND_INDEX; 8589 } else { 8590 // We ran into something like: 8591 // ParentStackElem.first += ... + ExtraArg + ... 8592 ExtraArgs[ParentStackElem.first] = ExtraArg; 8593 } 8594 } 8595 8596 /// Creates reduction operation with the current opcode. 8597 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8598 Value *RHS, const Twine &Name, bool UseSelect) { 8599 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8600 switch (Kind) { 8601 case RecurKind::Or: 8602 if (UseSelect && 8603 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8604 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8605 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8606 Name); 8607 case RecurKind::And: 8608 if (UseSelect && 8609 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8610 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8611 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8612 Name); 8613 case RecurKind::Add: 8614 case RecurKind::Mul: 8615 case RecurKind::Xor: 8616 case RecurKind::FAdd: 8617 case RecurKind::FMul: 8618 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8619 Name); 8620 case RecurKind::FMax: 8621 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8622 case RecurKind::FMin: 8623 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8624 case RecurKind::SMax: 8625 if (UseSelect) { 8626 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8627 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8628 } 8629 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8630 case RecurKind::SMin: 8631 if (UseSelect) { 8632 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8633 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8634 } 8635 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8636 case RecurKind::UMax: 8637 if (UseSelect) { 8638 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8639 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8640 } 8641 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8642 case RecurKind::UMin: 8643 if (UseSelect) { 8644 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8645 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8646 } 8647 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8648 default: 8649 llvm_unreachable("Unknown reduction operation."); 8650 } 8651 } 8652 8653 /// Creates reduction operation with the current opcode with the IR flags 8654 /// from \p ReductionOps. 8655 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8656 Value *RHS, const Twine &Name, 8657 const ReductionOpsListType &ReductionOps) { 8658 bool UseSelect = ReductionOps.size() == 2 || 8659 // Logical or/and. 8660 (ReductionOps.size() == 1 && 8661 isa<SelectInst>(ReductionOps.front().front())); 8662 assert((!UseSelect || ReductionOps.size() != 2 || 8663 isa<SelectInst>(ReductionOps[1][0])) && 8664 "Expected cmp + select pairs for reduction"); 8665 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8666 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8667 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8668 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8669 propagateIRFlags(Op, ReductionOps[1]); 8670 return Op; 8671 } 8672 } 8673 propagateIRFlags(Op, ReductionOps[0]); 8674 return Op; 8675 } 8676 8677 /// Creates reduction operation with the current opcode with the IR flags 8678 /// from \p I. 8679 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8680 Value *RHS, const Twine &Name, Instruction *I) { 8681 auto *SelI = dyn_cast<SelectInst>(I); 8682 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8683 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8684 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8685 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8686 } 8687 propagateIRFlags(Op, I); 8688 return Op; 8689 } 8690 8691 static RecurKind getRdxKind(Instruction *I) { 8692 assert(I && "Expected instruction for reduction matching"); 8693 TargetTransformInfo::ReductionFlags RdxFlags; 8694 if (match(I, m_Add(m_Value(), m_Value()))) 8695 return RecurKind::Add; 8696 if (match(I, m_Mul(m_Value(), m_Value()))) 8697 return RecurKind::Mul; 8698 if (match(I, m_And(m_Value(), m_Value())) || 8699 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8700 return RecurKind::And; 8701 if (match(I, m_Or(m_Value(), m_Value())) || 8702 match(I, m_LogicalOr(m_Value(), m_Value()))) 8703 return RecurKind::Or; 8704 if (match(I, m_Xor(m_Value(), m_Value()))) 8705 return RecurKind::Xor; 8706 if (match(I, m_FAdd(m_Value(), m_Value()))) 8707 return RecurKind::FAdd; 8708 if (match(I, m_FMul(m_Value(), m_Value()))) 8709 return RecurKind::FMul; 8710 8711 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8712 return RecurKind::FMax; 8713 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8714 return RecurKind::FMin; 8715 8716 // This matches either cmp+select or intrinsics. SLP is expected to handle 8717 // either form. 8718 // TODO: If we are canonicalizing to intrinsics, we can remove several 8719 // special-case paths that deal with selects. 8720 if (match(I, m_SMax(m_Value(), m_Value()))) 8721 return RecurKind::SMax; 8722 if (match(I, m_SMin(m_Value(), m_Value()))) 8723 return RecurKind::SMin; 8724 if (match(I, m_UMax(m_Value(), m_Value()))) 8725 return RecurKind::UMax; 8726 if (match(I, m_UMin(m_Value(), m_Value()))) 8727 return RecurKind::UMin; 8728 8729 if (auto *Select = dyn_cast<SelectInst>(I)) { 8730 // Try harder: look for min/max pattern based on instructions producing 8731 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8732 // During the intermediate stages of SLP, it's very common to have 8733 // pattern like this (since optimizeGatherSequence is run only once 8734 // at the end): 8735 // %1 = extractelement <2 x i32> %a, i32 0 8736 // %2 = extractelement <2 x i32> %a, i32 1 8737 // %cond = icmp sgt i32 %1, %2 8738 // %3 = extractelement <2 x i32> %a, i32 0 8739 // %4 = extractelement <2 x i32> %a, i32 1 8740 // %select = select i1 %cond, i32 %3, i32 %4 8741 CmpInst::Predicate Pred; 8742 Instruction *L1; 8743 Instruction *L2; 8744 8745 Value *LHS = Select->getTrueValue(); 8746 Value *RHS = Select->getFalseValue(); 8747 Value *Cond = Select->getCondition(); 8748 8749 // TODO: Support inverse predicates. 8750 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8751 if (!isa<ExtractElementInst>(RHS) || 8752 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8753 return RecurKind::None; 8754 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8755 if (!isa<ExtractElementInst>(LHS) || 8756 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8757 return RecurKind::None; 8758 } else { 8759 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8760 return RecurKind::None; 8761 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8762 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8763 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8764 return RecurKind::None; 8765 } 8766 8767 TargetTransformInfo::ReductionFlags RdxFlags; 8768 switch (Pred) { 8769 default: 8770 return RecurKind::None; 8771 case CmpInst::ICMP_SGT: 8772 case CmpInst::ICMP_SGE: 8773 return RecurKind::SMax; 8774 case CmpInst::ICMP_SLT: 8775 case CmpInst::ICMP_SLE: 8776 return RecurKind::SMin; 8777 case CmpInst::ICMP_UGT: 8778 case CmpInst::ICMP_UGE: 8779 return RecurKind::UMax; 8780 case CmpInst::ICMP_ULT: 8781 case CmpInst::ICMP_ULE: 8782 return RecurKind::UMin; 8783 } 8784 } 8785 return RecurKind::None; 8786 } 8787 8788 /// Get the index of the first operand. 8789 static unsigned getFirstOperandIndex(Instruction *I) { 8790 return isCmpSelMinMax(I) ? 1 : 0; 8791 } 8792 8793 /// Total number of operands in the reduction operation. 8794 static unsigned getNumberOfOperands(Instruction *I) { 8795 return isCmpSelMinMax(I) ? 3 : 2; 8796 } 8797 8798 /// Checks if the instruction is in basic block \p BB. 8799 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8800 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8801 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8802 auto *Sel = cast<SelectInst>(I); 8803 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8804 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8805 } 8806 return I->getParent() == BB; 8807 } 8808 8809 /// Expected number of uses for reduction operations/reduced values. 8810 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8811 if (IsCmpSelMinMax) { 8812 // SelectInst must be used twice while the condition op must have single 8813 // use only. 8814 if (auto *Sel = dyn_cast<SelectInst>(I)) 8815 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8816 return I->hasNUses(2); 8817 } 8818 8819 // Arithmetic reduction operation must be used once only. 8820 return I->hasOneUse(); 8821 } 8822 8823 /// Initializes the list of reduction operations. 8824 void initReductionOps(Instruction *I) { 8825 if (isCmpSelMinMax(I)) 8826 ReductionOps.assign(2, ReductionOpsType()); 8827 else 8828 ReductionOps.assign(1, ReductionOpsType()); 8829 } 8830 8831 /// Add all reduction operations for the reduction instruction \p I. 8832 void addReductionOps(Instruction *I) { 8833 if (isCmpSelMinMax(I)) { 8834 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8835 ReductionOps[1].emplace_back(I); 8836 } else { 8837 ReductionOps[0].emplace_back(I); 8838 } 8839 } 8840 8841 static Value *getLHS(RecurKind Kind, Instruction *I) { 8842 if (Kind == RecurKind::None) 8843 return nullptr; 8844 return I->getOperand(getFirstOperandIndex(I)); 8845 } 8846 static Value *getRHS(RecurKind Kind, Instruction *I) { 8847 if (Kind == RecurKind::None) 8848 return nullptr; 8849 return I->getOperand(getFirstOperandIndex(I) + 1); 8850 } 8851 8852 public: 8853 HorizontalReduction() = default; 8854 8855 /// Try to find a reduction tree. 8856 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8857 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8858 "Phi needs to use the binary operator"); 8859 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8860 isa<IntrinsicInst>(Inst)) && 8861 "Expected binop, select, or intrinsic for reduction matching"); 8862 RdxKind = getRdxKind(Inst); 8863 8864 // We could have a initial reductions that is not an add. 8865 // r *= v1 + v2 + v3 + v4 8866 // In such a case start looking for a tree rooted in the first '+'. 8867 if (Phi) { 8868 if (getLHS(RdxKind, Inst) == Phi) { 8869 Phi = nullptr; 8870 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8871 if (!Inst) 8872 return false; 8873 RdxKind = getRdxKind(Inst); 8874 } else if (getRHS(RdxKind, Inst) == Phi) { 8875 Phi = nullptr; 8876 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8877 if (!Inst) 8878 return false; 8879 RdxKind = getRdxKind(Inst); 8880 } 8881 } 8882 8883 if (!isVectorizable(RdxKind, Inst)) 8884 return false; 8885 8886 // Analyze "regular" integer/FP types for reductions - no target-specific 8887 // types or pointers. 8888 Type *Ty = Inst->getType(); 8889 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8890 return false; 8891 8892 // Though the ultimate reduction may have multiple uses, its condition must 8893 // have only single use. 8894 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8895 if (!Sel->getCondition()->hasOneUse()) 8896 return false; 8897 8898 ReductionRoot = Inst; 8899 8900 // The opcode for leaf values that we perform a reduction on. 8901 // For example: load(x) + load(y) + load(z) + fptoui(w) 8902 // The leaf opcode for 'w' does not match, so we don't include it as a 8903 // potential candidate for the reduction. 8904 unsigned LeafOpcode = 0; 8905 8906 // Post-order traverse the reduction tree starting at Inst. We only handle 8907 // true trees containing binary operators or selects. 8908 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8909 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8910 initReductionOps(Inst); 8911 while (!Stack.empty()) { 8912 Instruction *TreeN = Stack.back().first; 8913 unsigned EdgeToVisit = Stack.back().second++; 8914 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8915 bool IsReducedValue = TreeRdxKind != RdxKind; 8916 8917 // Postorder visit. 8918 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8919 if (IsReducedValue) 8920 ReducedVals.push_back(TreeN); 8921 else { 8922 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8923 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8924 // Check if TreeN is an extra argument of its parent operation. 8925 if (Stack.size() <= 1) { 8926 // TreeN can't be an extra argument as it is a root reduction 8927 // operation. 8928 return false; 8929 } 8930 // Yes, TreeN is an extra argument, do not add it to a list of 8931 // reduction operations. 8932 // Stack[Stack.size() - 2] always points to the parent operation. 8933 markExtraArg(Stack[Stack.size() - 2], TreeN); 8934 ExtraArgs.erase(TreeN); 8935 } else 8936 addReductionOps(TreeN); 8937 } 8938 // Retract. 8939 Stack.pop_back(); 8940 continue; 8941 } 8942 8943 // Visit operands. 8944 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8945 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8946 if (!EdgeInst) { 8947 // Edge value is not a reduction instruction or a leaf instruction. 8948 // (It may be a constant, function argument, or something else.) 8949 markExtraArg(Stack.back(), EdgeVal); 8950 continue; 8951 } 8952 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8953 // Continue analysis if the next operand is a reduction operation or 8954 // (possibly) a leaf value. If the leaf value opcode is not set, 8955 // the first met operation != reduction operation is considered as the 8956 // leaf opcode. 8957 // Only handle trees in the current basic block. 8958 // Each tree node needs to have minimal number of users except for the 8959 // ultimate reduction. 8960 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8961 if (EdgeInst != Phi && EdgeInst != Inst && 8962 hasSameParent(EdgeInst, Inst->getParent()) && 8963 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8964 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8965 if (IsRdxInst) { 8966 // We need to be able to reassociate the reduction operations. 8967 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8968 // I is an extra argument for TreeN (its parent operation). 8969 markExtraArg(Stack.back(), EdgeInst); 8970 continue; 8971 } 8972 } else if (!LeafOpcode) { 8973 LeafOpcode = EdgeInst->getOpcode(); 8974 } 8975 Stack.push_back( 8976 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8977 continue; 8978 } 8979 // I is an extra argument for TreeN (its parent operation). 8980 markExtraArg(Stack.back(), EdgeInst); 8981 } 8982 return true; 8983 } 8984 8985 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8986 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8987 // If there are a sufficient number of reduction values, reduce 8988 // to a nearby power-of-2. We can safely generate oversized 8989 // vectors and rely on the backend to split them to legal sizes. 8990 unsigned NumReducedVals = ReducedVals.size(); 8991 if (NumReducedVals < 4) 8992 return nullptr; 8993 8994 // Intersect the fast-math-flags from all reduction operations. 8995 FastMathFlags RdxFMF; 8996 RdxFMF.set(); 8997 for (ReductionOpsType &RdxOp : ReductionOps) { 8998 for (Value *RdxVal : RdxOp) { 8999 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9000 RdxFMF &= FPMO->getFastMathFlags(); 9001 } 9002 } 9003 9004 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9005 Builder.setFastMathFlags(RdxFMF); 9006 9007 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9008 // The same extra argument may be used several times, so log each attempt 9009 // to use it. 9010 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9011 assert(Pair.first && "DebugLoc must be set."); 9012 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9013 } 9014 9015 // The compare instruction of a min/max is the insertion point for new 9016 // instructions and may be replaced with a new compare instruction. 9017 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9018 assert(isa<SelectInst>(RdxRootInst) && 9019 "Expected min/max reduction to have select root instruction"); 9020 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9021 assert(isa<Instruction>(ScalarCond) && 9022 "Expected min/max reduction to have compare condition"); 9023 return cast<Instruction>(ScalarCond); 9024 }; 9025 9026 // The reduction root is used as the insertion point for new instructions, 9027 // so set it as externally used to prevent it from being deleted. 9028 ExternallyUsedValues[ReductionRoot]; 9029 SmallVector<Value *, 16> IgnoreList; 9030 for (ReductionOpsType &RdxOp : ReductionOps) 9031 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9032 9033 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9034 if (NumReducedVals > ReduxWidth) { 9035 // In the loop below, we are building a tree based on a window of 9036 // 'ReduxWidth' values. 9037 // If the operands of those values have common traits (compare predicate, 9038 // constant operand, etc), then we want to group those together to 9039 // minimize the cost of the reduction. 9040 9041 // TODO: This should be extended to count common operands for 9042 // compares and binops. 9043 9044 // Step 1: Count the number of times each compare predicate occurs. 9045 SmallDenseMap<unsigned, unsigned> PredCountMap; 9046 for (Value *RdxVal : ReducedVals) { 9047 CmpInst::Predicate Pred; 9048 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9049 ++PredCountMap[Pred]; 9050 } 9051 // Step 2: Sort the values so the most common predicates come first. 9052 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9053 CmpInst::Predicate PredA, PredB; 9054 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9055 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9056 return PredCountMap[PredA] > PredCountMap[PredB]; 9057 } 9058 return false; 9059 }); 9060 } 9061 9062 Value *VectorizedTree = nullptr; 9063 unsigned i = 0; 9064 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9065 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9066 V.buildTree(VL, IgnoreList); 9067 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9068 break; 9069 if (V.isLoadCombineReductionCandidate(RdxKind)) 9070 break; 9071 V.reorderTopToBottom(); 9072 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9073 V.buildExternalUses(ExternallyUsedValues); 9074 9075 // For a poison-safe boolean logic reduction, do not replace select 9076 // instructions with logic ops. All reduced values will be frozen (see 9077 // below) to prevent leaking poison. 9078 if (isa<SelectInst>(ReductionRoot) && 9079 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9080 NumReducedVals != ReduxWidth) 9081 break; 9082 9083 V.computeMinimumValueSizes(); 9084 9085 // Estimate cost. 9086 InstructionCost TreeCost = 9087 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9088 InstructionCost ReductionCost = 9089 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9090 InstructionCost Cost = TreeCost + ReductionCost; 9091 if (!Cost.isValid()) { 9092 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9093 return nullptr; 9094 } 9095 if (Cost >= -SLPCostThreshold) { 9096 V.getORE()->emit([&]() { 9097 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9098 cast<Instruction>(VL[0])) 9099 << "Vectorizing horizontal reduction is possible" 9100 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9101 << " and threshold " 9102 << ore::NV("Threshold", -SLPCostThreshold); 9103 }); 9104 break; 9105 } 9106 9107 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9108 << Cost << ". (HorRdx)\n"); 9109 V.getORE()->emit([&]() { 9110 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9111 cast<Instruction>(VL[0])) 9112 << "Vectorized horizontal reduction with cost " 9113 << ore::NV("Cost", Cost) << " and with tree size " 9114 << ore::NV("TreeSize", V.getTreeSize()); 9115 }); 9116 9117 // Vectorize a tree. 9118 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9119 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9120 9121 // Emit a reduction. If the root is a select (min/max idiom), the insert 9122 // point is the compare condition of that select. 9123 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9124 if (isCmpSelMinMax(RdxRootInst)) 9125 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9126 else 9127 Builder.SetInsertPoint(RdxRootInst); 9128 9129 // To prevent poison from leaking across what used to be sequential, safe, 9130 // scalar boolean logic operations, the reduction operand must be frozen. 9131 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9132 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9133 9134 Value *ReducedSubTree = 9135 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9136 9137 if (!VectorizedTree) { 9138 // Initialize the final value in the reduction. 9139 VectorizedTree = ReducedSubTree; 9140 } else { 9141 // Update the final value in the reduction. 9142 Builder.SetCurrentDebugLocation(Loc); 9143 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9144 ReducedSubTree, "op.rdx", ReductionOps); 9145 } 9146 i += ReduxWidth; 9147 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9148 } 9149 9150 if (VectorizedTree) { 9151 // Finish the reduction. 9152 for (; i < NumReducedVals; ++i) { 9153 auto *I = cast<Instruction>(ReducedVals[i]); 9154 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9155 VectorizedTree = 9156 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9157 } 9158 for (auto &Pair : ExternallyUsedValues) { 9159 // Add each externally used value to the final reduction. 9160 for (auto *I : Pair.second) { 9161 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9162 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9163 Pair.first, "op.extra", I); 9164 } 9165 } 9166 9167 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9168 9169 // Mark all scalar reduction ops for deletion, they are replaced by the 9170 // vector reductions. 9171 V.eraseInstructions(IgnoreList); 9172 } 9173 return VectorizedTree; 9174 } 9175 9176 unsigned numReductionValues() const { return ReducedVals.size(); } 9177 9178 private: 9179 /// Calculate the cost of a reduction. 9180 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9181 Value *FirstReducedVal, unsigned ReduxWidth, 9182 FastMathFlags FMF) { 9183 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9184 Type *ScalarTy = FirstReducedVal->getType(); 9185 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9186 InstructionCost VectorCost, ScalarCost; 9187 switch (RdxKind) { 9188 case RecurKind::Add: 9189 case RecurKind::Mul: 9190 case RecurKind::Or: 9191 case RecurKind::And: 9192 case RecurKind::Xor: 9193 case RecurKind::FAdd: 9194 case RecurKind::FMul: { 9195 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9196 VectorCost = 9197 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9198 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9199 break; 9200 } 9201 case RecurKind::FMax: 9202 case RecurKind::FMin: { 9203 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9204 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9205 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9206 /*unsigned=*/false, CostKind); 9207 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9208 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9209 SclCondTy, RdxPred, CostKind) + 9210 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9211 SclCondTy, RdxPred, CostKind); 9212 break; 9213 } 9214 case RecurKind::SMax: 9215 case RecurKind::SMin: 9216 case RecurKind::UMax: 9217 case RecurKind::UMin: { 9218 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9219 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9220 bool IsUnsigned = 9221 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9222 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9223 CostKind); 9224 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9225 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9226 SclCondTy, RdxPred, CostKind) + 9227 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9228 SclCondTy, RdxPred, CostKind); 9229 break; 9230 } 9231 default: 9232 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9233 } 9234 9235 // Scalar cost is repeated for N-1 elements. 9236 ScalarCost *= (ReduxWidth - 1); 9237 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9238 << " for reduction that starts with " << *FirstReducedVal 9239 << " (It is a splitting reduction)\n"); 9240 return VectorCost - ScalarCost; 9241 } 9242 9243 /// Emit a horizontal reduction of the vectorized value. 9244 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9245 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9246 assert(VectorizedValue && "Need to have a vectorized tree node"); 9247 assert(isPowerOf2_32(ReduxWidth) && 9248 "We only handle power-of-two reductions for now"); 9249 assert(RdxKind != RecurKind::FMulAdd && 9250 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9251 9252 ++NumVectorInstructions; 9253 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9254 } 9255 }; 9256 9257 } // end anonymous namespace 9258 9259 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9260 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9261 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9262 9263 unsigned AggregateSize = 1; 9264 auto *IV = cast<InsertValueInst>(InsertInst); 9265 Type *CurrentType = IV->getType(); 9266 do { 9267 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9268 for (auto *Elt : ST->elements()) 9269 if (Elt != ST->getElementType(0)) // check homogeneity 9270 return None; 9271 AggregateSize *= ST->getNumElements(); 9272 CurrentType = ST->getElementType(0); 9273 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9274 AggregateSize *= AT->getNumElements(); 9275 CurrentType = AT->getElementType(); 9276 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9277 AggregateSize *= VT->getNumElements(); 9278 return AggregateSize; 9279 } else if (CurrentType->isSingleValueType()) { 9280 return AggregateSize; 9281 } else { 9282 return None; 9283 } 9284 } while (true); 9285 } 9286 9287 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9288 TargetTransformInfo *TTI, 9289 SmallVectorImpl<Value *> &BuildVectorOpds, 9290 SmallVectorImpl<Value *> &InsertElts, 9291 unsigned OperandOffset) { 9292 do { 9293 Value *InsertedOperand = LastInsertInst->getOperand(1); 9294 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9295 if (!OperandIndex) 9296 return false; 9297 if (isa<InsertElementInst>(InsertedOperand) || 9298 isa<InsertValueInst>(InsertedOperand)) { 9299 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9300 BuildVectorOpds, InsertElts, *OperandIndex)) 9301 return false; 9302 } else { 9303 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9304 InsertElts[*OperandIndex] = LastInsertInst; 9305 } 9306 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9307 } while (LastInsertInst != nullptr && 9308 (isa<InsertValueInst>(LastInsertInst) || 9309 isa<InsertElementInst>(LastInsertInst)) && 9310 LastInsertInst->hasOneUse()); 9311 return true; 9312 } 9313 9314 /// Recognize construction of vectors like 9315 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9316 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9317 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9318 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9319 /// starting from the last insertelement or insertvalue instruction. 9320 /// 9321 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9322 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9323 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9324 /// 9325 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9326 /// 9327 /// \return true if it matches. 9328 static bool findBuildAggregate(Instruction *LastInsertInst, 9329 TargetTransformInfo *TTI, 9330 SmallVectorImpl<Value *> &BuildVectorOpds, 9331 SmallVectorImpl<Value *> &InsertElts) { 9332 9333 assert((isa<InsertElementInst>(LastInsertInst) || 9334 isa<InsertValueInst>(LastInsertInst)) && 9335 "Expected insertelement or insertvalue instruction!"); 9336 9337 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9338 "Expected empty result vectors!"); 9339 9340 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9341 if (!AggregateSize) 9342 return false; 9343 BuildVectorOpds.resize(*AggregateSize); 9344 InsertElts.resize(*AggregateSize); 9345 9346 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9347 0)) { 9348 llvm::erase_value(BuildVectorOpds, nullptr); 9349 llvm::erase_value(InsertElts, nullptr); 9350 if (BuildVectorOpds.size() >= 2) 9351 return true; 9352 } 9353 9354 return false; 9355 } 9356 9357 /// Try and get a reduction value from a phi node. 9358 /// 9359 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9360 /// if they come from either \p ParentBB or a containing loop latch. 9361 /// 9362 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9363 /// if not possible. 9364 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9365 BasicBlock *ParentBB, LoopInfo *LI) { 9366 // There are situations where the reduction value is not dominated by the 9367 // reduction phi. Vectorizing such cases has been reported to cause 9368 // miscompiles. See PR25787. 9369 auto DominatedReduxValue = [&](Value *R) { 9370 return isa<Instruction>(R) && 9371 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9372 }; 9373 9374 Value *Rdx = nullptr; 9375 9376 // Return the incoming value if it comes from the same BB as the phi node. 9377 if (P->getIncomingBlock(0) == ParentBB) { 9378 Rdx = P->getIncomingValue(0); 9379 } else if (P->getIncomingBlock(1) == ParentBB) { 9380 Rdx = P->getIncomingValue(1); 9381 } 9382 9383 if (Rdx && DominatedReduxValue(Rdx)) 9384 return Rdx; 9385 9386 // Otherwise, check whether we have a loop latch to look at. 9387 Loop *BBL = LI->getLoopFor(ParentBB); 9388 if (!BBL) 9389 return nullptr; 9390 BasicBlock *BBLatch = BBL->getLoopLatch(); 9391 if (!BBLatch) 9392 return nullptr; 9393 9394 // There is a loop latch, return the incoming value if it comes from 9395 // that. This reduction pattern occasionally turns up. 9396 if (P->getIncomingBlock(0) == BBLatch) { 9397 Rdx = P->getIncomingValue(0); 9398 } else if (P->getIncomingBlock(1) == BBLatch) { 9399 Rdx = P->getIncomingValue(1); 9400 } 9401 9402 if (Rdx && DominatedReduxValue(Rdx)) 9403 return Rdx; 9404 9405 return nullptr; 9406 } 9407 9408 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9409 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9410 return true; 9411 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9412 return true; 9413 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9414 return true; 9415 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9416 return true; 9417 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9418 return true; 9419 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9420 return true; 9421 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9422 return true; 9423 return false; 9424 } 9425 9426 /// Attempt to reduce a horizontal reduction. 9427 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9428 /// with reduction operators \a Root (or one of its operands) in a basic block 9429 /// \a BB, then check if it can be done. If horizontal reduction is not found 9430 /// and root instruction is a binary operation, vectorization of the operands is 9431 /// attempted. 9432 /// \returns true if a horizontal reduction was matched and reduced or operands 9433 /// of one of the binary instruction were vectorized. 9434 /// \returns false if a horizontal reduction was not matched (or not possible) 9435 /// or no vectorization of any binary operation feeding \a Root instruction was 9436 /// performed. 9437 static bool tryToVectorizeHorReductionOrInstOperands( 9438 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9439 TargetTransformInfo *TTI, 9440 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9441 if (!ShouldVectorizeHor) 9442 return false; 9443 9444 if (!Root) 9445 return false; 9446 9447 if (Root->getParent() != BB || isa<PHINode>(Root)) 9448 return false; 9449 // Start analysis starting from Root instruction. If horizontal reduction is 9450 // found, try to vectorize it. If it is not a horizontal reduction or 9451 // vectorization is not possible or not effective, and currently analyzed 9452 // instruction is a binary operation, try to vectorize the operands, using 9453 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9454 // the same procedure considering each operand as a possible root of the 9455 // horizontal reduction. 9456 // Interrupt the process if the Root instruction itself was vectorized or all 9457 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9458 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9459 // CmpInsts so we can skip extra attempts in 9460 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9461 std::queue<std::pair<Instruction *, unsigned>> Stack; 9462 Stack.emplace(Root, 0); 9463 SmallPtrSet<Value *, 8> VisitedInstrs; 9464 SmallVector<WeakTrackingVH> PostponedInsts; 9465 bool Res = false; 9466 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9467 Value *&B1) -> Value * { 9468 bool IsBinop = matchRdxBop(Inst, B0, B1); 9469 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9470 if (IsBinop || IsSelect) { 9471 HorizontalReduction HorRdx; 9472 if (HorRdx.matchAssociativeReduction(P, Inst)) 9473 return HorRdx.tryToReduce(R, TTI); 9474 } 9475 return nullptr; 9476 }; 9477 while (!Stack.empty()) { 9478 Instruction *Inst; 9479 unsigned Level; 9480 std::tie(Inst, Level) = Stack.front(); 9481 Stack.pop(); 9482 // Do not try to analyze instruction that has already been vectorized. 9483 // This may happen when we vectorize instruction operands on a previous 9484 // iteration while stack was populated before that happened. 9485 if (R.isDeleted(Inst)) 9486 continue; 9487 Value *B0 = nullptr, *B1 = nullptr; 9488 if (Value *V = TryToReduce(Inst, B0, B1)) { 9489 Res = true; 9490 // Set P to nullptr to avoid re-analysis of phi node in 9491 // matchAssociativeReduction function unless this is the root node. 9492 P = nullptr; 9493 if (auto *I = dyn_cast<Instruction>(V)) { 9494 // Try to find another reduction. 9495 Stack.emplace(I, Level); 9496 continue; 9497 } 9498 } else { 9499 bool IsBinop = B0 && B1; 9500 if (P && IsBinop) { 9501 Inst = dyn_cast<Instruction>(B0); 9502 if (Inst == P) 9503 Inst = dyn_cast<Instruction>(B1); 9504 if (!Inst) { 9505 // Set P to nullptr to avoid re-analysis of phi node in 9506 // matchAssociativeReduction function unless this is the root node. 9507 P = nullptr; 9508 continue; 9509 } 9510 } 9511 // Set P to nullptr to avoid re-analysis of phi node in 9512 // matchAssociativeReduction function unless this is the root node. 9513 P = nullptr; 9514 // Do not try to vectorize CmpInst operands, this is done separately. 9515 // Final attempt for binop args vectorization should happen after the loop 9516 // to try to find reductions. 9517 if (!isa<CmpInst>(Inst)) 9518 PostponedInsts.push_back(Inst); 9519 } 9520 9521 // Try to vectorize operands. 9522 // Continue analysis for the instruction from the same basic block only to 9523 // save compile time. 9524 if (++Level < RecursionMaxDepth) 9525 for (auto *Op : Inst->operand_values()) 9526 if (VisitedInstrs.insert(Op).second) 9527 if (auto *I = dyn_cast<Instruction>(Op)) 9528 // Do not try to vectorize CmpInst operands, this is done 9529 // separately. 9530 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9531 I->getParent() == BB) 9532 Stack.emplace(I, Level); 9533 } 9534 // Try to vectorized binops where reductions were not found. 9535 for (Value *V : PostponedInsts) 9536 if (auto *Inst = dyn_cast<Instruction>(V)) 9537 if (!R.isDeleted(Inst)) 9538 Res |= Vectorize(Inst, R); 9539 return Res; 9540 } 9541 9542 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9543 BasicBlock *BB, BoUpSLP &R, 9544 TargetTransformInfo *TTI) { 9545 auto *I = dyn_cast_or_null<Instruction>(V); 9546 if (!I) 9547 return false; 9548 9549 if (!isa<BinaryOperator>(I)) 9550 P = nullptr; 9551 // Try to match and vectorize a horizontal reduction. 9552 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9553 return tryToVectorize(I, R); 9554 }; 9555 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9556 ExtraVectorization); 9557 } 9558 9559 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9560 BasicBlock *BB, BoUpSLP &R) { 9561 const DataLayout &DL = BB->getModule()->getDataLayout(); 9562 if (!R.canMapToVector(IVI->getType(), DL)) 9563 return false; 9564 9565 SmallVector<Value *, 16> BuildVectorOpds; 9566 SmallVector<Value *, 16> BuildVectorInsts; 9567 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9568 return false; 9569 9570 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9571 // Aggregate value is unlikely to be processed in vector register, we need to 9572 // extract scalars into scalar registers, so NeedExtraction is set true. 9573 return tryToVectorizeList(BuildVectorOpds, R); 9574 } 9575 9576 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9577 BasicBlock *BB, BoUpSLP &R) { 9578 SmallVector<Value *, 16> BuildVectorInsts; 9579 SmallVector<Value *, 16> BuildVectorOpds; 9580 SmallVector<int> Mask; 9581 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9582 (llvm::all_of( 9583 BuildVectorOpds, 9584 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9585 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9586 return false; 9587 9588 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9589 return tryToVectorizeList(BuildVectorInsts, R); 9590 } 9591 9592 template <typename T> 9593 static bool 9594 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9595 function_ref<unsigned(T *)> Limit, 9596 function_ref<bool(T *, T *)> Comparator, 9597 function_ref<bool(T *, T *)> AreCompatible, 9598 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9599 bool LimitForRegisterSize) { 9600 bool Changed = false; 9601 // Sort by type, parent, operands. 9602 stable_sort(Incoming, Comparator); 9603 9604 // Try to vectorize elements base on their type. 9605 SmallVector<T *> Candidates; 9606 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9607 // Look for the next elements with the same type, parent and operand 9608 // kinds. 9609 auto *SameTypeIt = IncIt; 9610 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9611 ++SameTypeIt; 9612 9613 // Try to vectorize them. 9614 unsigned NumElts = (SameTypeIt - IncIt); 9615 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9616 << NumElts << ")\n"); 9617 // The vectorization is a 3-state attempt: 9618 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9619 // size of maximal register at first. 9620 // 2. Try to vectorize remaining instructions with the same type, if 9621 // possible. This may result in the better vectorization results rather than 9622 // if we try just to vectorize instructions with the same/alternate opcodes. 9623 // 3. Final attempt to try to vectorize all instructions with the 9624 // same/alternate ops only, this may result in some extra final 9625 // vectorization. 9626 if (NumElts > 1 && 9627 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9628 // Success start over because instructions might have been changed. 9629 Changed = true; 9630 } else if (NumElts < Limit(*IncIt) && 9631 (Candidates.empty() || 9632 Candidates.front()->getType() == (*IncIt)->getType())) { 9633 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9634 } 9635 // Final attempt to vectorize instructions with the same types. 9636 if (Candidates.size() > 1 && 9637 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9638 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9639 // Success start over because instructions might have been changed. 9640 Changed = true; 9641 } else if (LimitForRegisterSize) { 9642 // Try to vectorize using small vectors. 9643 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9644 It != End;) { 9645 auto *SameTypeIt = It; 9646 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9647 ++SameTypeIt; 9648 unsigned NumElts = (SameTypeIt - It); 9649 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9650 /*LimitForRegisterSize=*/false)) 9651 Changed = true; 9652 It = SameTypeIt; 9653 } 9654 } 9655 Candidates.clear(); 9656 } 9657 9658 // Start over at the next instruction of a different type (or the end). 9659 IncIt = SameTypeIt; 9660 } 9661 return Changed; 9662 } 9663 9664 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9665 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9666 /// operands. If IsCompatibility is false, function implements strict weak 9667 /// ordering relation between two cmp instructions, returning true if the first 9668 /// instruction is "less" than the second, i.e. its predicate is less than the 9669 /// predicate of the second or the operands IDs are less than the operands IDs 9670 /// of the second cmp instruction. 9671 template <bool IsCompatibility> 9672 static bool compareCmp(Value *V, Value *V2, 9673 function_ref<bool(Instruction *)> IsDeleted) { 9674 auto *CI1 = cast<CmpInst>(V); 9675 auto *CI2 = cast<CmpInst>(V2); 9676 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9677 return false; 9678 if (CI1->getOperand(0)->getType()->getTypeID() < 9679 CI2->getOperand(0)->getType()->getTypeID()) 9680 return !IsCompatibility; 9681 if (CI1->getOperand(0)->getType()->getTypeID() > 9682 CI2->getOperand(0)->getType()->getTypeID()) 9683 return false; 9684 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9685 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9686 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9687 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9688 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9689 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9690 if (BasePred1 < BasePred2) 9691 return !IsCompatibility; 9692 if (BasePred1 > BasePred2) 9693 return false; 9694 // Compare operands. 9695 bool LEPreds = Pred1 <= Pred2; 9696 bool GEPreds = Pred1 >= Pred2; 9697 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9698 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9699 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9700 if (Op1->getValueID() < Op2->getValueID()) 9701 return !IsCompatibility; 9702 if (Op1->getValueID() > Op2->getValueID()) 9703 return false; 9704 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9705 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9706 if (I1->getParent() != I2->getParent()) 9707 return false; 9708 InstructionsState S = getSameOpcode({I1, I2}); 9709 if (S.getOpcode()) 9710 continue; 9711 return false; 9712 } 9713 } 9714 return IsCompatibility; 9715 } 9716 9717 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9718 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9719 bool AtTerminator) { 9720 bool OpsChanged = false; 9721 SmallVector<Instruction *, 4> PostponedCmps; 9722 for (auto *I : reverse(Instructions)) { 9723 if (R.isDeleted(I)) 9724 continue; 9725 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9726 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9727 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9728 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9729 else if (isa<CmpInst>(I)) 9730 PostponedCmps.push_back(I); 9731 } 9732 if (AtTerminator) { 9733 // Try to find reductions first. 9734 for (Instruction *I : PostponedCmps) { 9735 if (R.isDeleted(I)) 9736 continue; 9737 for (Value *Op : I->operands()) 9738 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9739 } 9740 // Try to vectorize operands as vector bundles. 9741 for (Instruction *I : PostponedCmps) { 9742 if (R.isDeleted(I)) 9743 continue; 9744 OpsChanged |= tryToVectorize(I, R); 9745 } 9746 // Try to vectorize list of compares. 9747 // Sort by type, compare predicate, etc. 9748 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9749 return compareCmp<false>(V, V2, 9750 [&R](Instruction *I) { return R.isDeleted(I); }); 9751 }; 9752 9753 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9754 if (V1 == V2) 9755 return true; 9756 return compareCmp<true>(V1, V2, 9757 [&R](Instruction *I) { return R.isDeleted(I); }); 9758 }; 9759 auto Limit = [&R](Value *V) { 9760 unsigned EltSize = R.getVectorElementSize(V); 9761 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9762 }; 9763 9764 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9765 OpsChanged |= tryToVectorizeSequence<Value>( 9766 Vals, Limit, CompareSorter, AreCompatibleCompares, 9767 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9768 // Exclude possible reductions from other blocks. 9769 bool ArePossiblyReducedInOtherBlock = 9770 any_of(Candidates, [](Value *V) { 9771 return any_of(V->users(), [V](User *U) { 9772 return isa<SelectInst>(U) && 9773 cast<SelectInst>(U)->getParent() != 9774 cast<Instruction>(V)->getParent(); 9775 }); 9776 }); 9777 if (ArePossiblyReducedInOtherBlock) 9778 return false; 9779 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9780 }, 9781 /*LimitForRegisterSize=*/true); 9782 Instructions.clear(); 9783 } else { 9784 // Insert in reverse order since the PostponedCmps vector was filled in 9785 // reverse order. 9786 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9787 } 9788 return OpsChanged; 9789 } 9790 9791 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9792 bool Changed = false; 9793 SmallVector<Value *, 4> Incoming; 9794 SmallPtrSet<Value *, 16> VisitedInstrs; 9795 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9796 // node. Allows better to identify the chains that can be vectorized in the 9797 // better way. 9798 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9799 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9800 assert(isValidElementType(V1->getType()) && 9801 isValidElementType(V2->getType()) && 9802 "Expected vectorizable types only."); 9803 // It is fine to compare type IDs here, since we expect only vectorizable 9804 // types, like ints, floats and pointers, we don't care about other type. 9805 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9806 return true; 9807 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9808 return false; 9809 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9810 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9811 if (Opcodes1.size() < Opcodes2.size()) 9812 return true; 9813 if (Opcodes1.size() > Opcodes2.size()) 9814 return false; 9815 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9816 // Undefs are compatible with any other value. 9817 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9818 continue; 9819 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9820 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9821 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9822 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9823 if (!NodeI1) 9824 return NodeI2 != nullptr; 9825 if (!NodeI2) 9826 return false; 9827 assert((NodeI1 == NodeI2) == 9828 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9829 "Different nodes should have different DFS numbers"); 9830 if (NodeI1 != NodeI2) 9831 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9832 InstructionsState S = getSameOpcode({I1, I2}); 9833 if (S.getOpcode()) 9834 continue; 9835 return I1->getOpcode() < I2->getOpcode(); 9836 } 9837 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9838 continue; 9839 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9840 return true; 9841 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9842 return false; 9843 } 9844 return false; 9845 }; 9846 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9847 if (V1 == V2) 9848 return true; 9849 if (V1->getType() != V2->getType()) 9850 return false; 9851 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9852 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9853 if (Opcodes1.size() != Opcodes2.size()) 9854 return false; 9855 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9856 // Undefs are compatible with any other value. 9857 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9858 continue; 9859 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9860 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9861 if (I1->getParent() != I2->getParent()) 9862 return false; 9863 InstructionsState S = getSameOpcode({I1, I2}); 9864 if (S.getOpcode()) 9865 continue; 9866 return false; 9867 } 9868 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9869 continue; 9870 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9871 return false; 9872 } 9873 return true; 9874 }; 9875 auto Limit = [&R](Value *V) { 9876 unsigned EltSize = R.getVectorElementSize(V); 9877 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9878 }; 9879 9880 bool HaveVectorizedPhiNodes = false; 9881 do { 9882 // Collect the incoming values from the PHIs. 9883 Incoming.clear(); 9884 for (Instruction &I : *BB) { 9885 PHINode *P = dyn_cast<PHINode>(&I); 9886 if (!P) 9887 break; 9888 9889 // No need to analyze deleted, vectorized and non-vectorizable 9890 // instructions. 9891 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9892 isValidElementType(P->getType())) 9893 Incoming.push_back(P); 9894 } 9895 9896 // Find the corresponding non-phi nodes for better matching when trying to 9897 // build the tree. 9898 for (Value *V : Incoming) { 9899 SmallVectorImpl<Value *> &Opcodes = 9900 PHIToOpcodes.try_emplace(V).first->getSecond(); 9901 if (!Opcodes.empty()) 9902 continue; 9903 SmallVector<Value *, 4> Nodes(1, V); 9904 SmallPtrSet<Value *, 4> Visited; 9905 while (!Nodes.empty()) { 9906 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9907 if (!Visited.insert(PHI).second) 9908 continue; 9909 for (Value *V : PHI->incoming_values()) { 9910 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9911 Nodes.push_back(PHI1); 9912 continue; 9913 } 9914 Opcodes.emplace_back(V); 9915 } 9916 } 9917 } 9918 9919 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9920 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9921 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9922 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9923 }, 9924 /*LimitForRegisterSize=*/true); 9925 Changed |= HaveVectorizedPhiNodes; 9926 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9927 } while (HaveVectorizedPhiNodes); 9928 9929 VisitedInstrs.clear(); 9930 9931 SmallVector<Instruction *, 8> PostProcessInstructions; 9932 SmallDenseSet<Instruction *, 4> KeyNodes; 9933 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9934 // Skip instructions with scalable type. The num of elements is unknown at 9935 // compile-time for scalable type. 9936 if (isa<ScalableVectorType>(it->getType())) 9937 continue; 9938 9939 // Skip instructions marked for the deletion. 9940 if (R.isDeleted(&*it)) 9941 continue; 9942 // We may go through BB multiple times so skip the one we have checked. 9943 if (!VisitedInstrs.insert(&*it).second) { 9944 if (it->use_empty() && KeyNodes.contains(&*it) && 9945 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9946 it->isTerminator())) { 9947 // We would like to start over since some instructions are deleted 9948 // and the iterator may become invalid value. 9949 Changed = true; 9950 it = BB->begin(); 9951 e = BB->end(); 9952 } 9953 continue; 9954 } 9955 9956 if (isa<DbgInfoIntrinsic>(it)) 9957 continue; 9958 9959 // Try to vectorize reductions that use PHINodes. 9960 if (PHINode *P = dyn_cast<PHINode>(it)) { 9961 // Check that the PHI is a reduction PHI. 9962 if (P->getNumIncomingValues() == 2) { 9963 // Try to match and vectorize a horizontal reduction. 9964 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9965 TTI)) { 9966 Changed = true; 9967 it = BB->begin(); 9968 e = BB->end(); 9969 continue; 9970 } 9971 } 9972 // Try to vectorize the incoming values of the PHI, to catch reductions 9973 // that feed into PHIs. 9974 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9975 // Skip if the incoming block is the current BB for now. Also, bypass 9976 // unreachable IR for efficiency and to avoid crashing. 9977 // TODO: Collect the skipped incoming values and try to vectorize them 9978 // after processing BB. 9979 if (BB == P->getIncomingBlock(I) || 9980 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9981 continue; 9982 9983 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9984 P->getIncomingBlock(I), R, TTI); 9985 } 9986 continue; 9987 } 9988 9989 // Ran into an instruction without users, like terminator, or function call 9990 // with ignored return value, store. Ignore unused instructions (basing on 9991 // instruction type, except for CallInst and InvokeInst). 9992 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9993 isa<InvokeInst>(it))) { 9994 KeyNodes.insert(&*it); 9995 bool OpsChanged = false; 9996 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9997 for (auto *V : it->operand_values()) { 9998 // Try to match and vectorize a horizontal reduction. 9999 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10000 } 10001 } 10002 // Start vectorization of post-process list of instructions from the 10003 // top-tree instructions to try to vectorize as many instructions as 10004 // possible. 10005 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10006 it->isTerminator()); 10007 if (OpsChanged) { 10008 // We would like to start over since some instructions are deleted 10009 // and the iterator may become invalid value. 10010 Changed = true; 10011 it = BB->begin(); 10012 e = BB->end(); 10013 continue; 10014 } 10015 } 10016 10017 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10018 isa<InsertValueInst>(it)) 10019 PostProcessInstructions.push_back(&*it); 10020 } 10021 10022 return Changed; 10023 } 10024 10025 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10026 auto Changed = false; 10027 for (auto &Entry : GEPs) { 10028 // If the getelementptr list has fewer than two elements, there's nothing 10029 // to do. 10030 if (Entry.second.size() < 2) 10031 continue; 10032 10033 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10034 << Entry.second.size() << ".\n"); 10035 10036 // Process the GEP list in chunks suitable for the target's supported 10037 // vector size. If a vector register can't hold 1 element, we are done. We 10038 // are trying to vectorize the index computations, so the maximum number of 10039 // elements is based on the size of the index expression, rather than the 10040 // size of the GEP itself (the target's pointer size). 10041 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10042 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10043 if (MaxVecRegSize < EltSize) 10044 continue; 10045 10046 unsigned MaxElts = MaxVecRegSize / EltSize; 10047 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10048 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10049 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10050 10051 // Initialize a set a candidate getelementptrs. Note that we use a 10052 // SetVector here to preserve program order. If the index computations 10053 // are vectorizable and begin with loads, we want to minimize the chance 10054 // of having to reorder them later. 10055 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10056 10057 // Some of the candidates may have already been vectorized after we 10058 // initially collected them. If so, they are marked as deleted, so remove 10059 // them from the set of candidates. 10060 Candidates.remove_if( 10061 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10062 10063 // Remove from the set of candidates all pairs of getelementptrs with 10064 // constant differences. Such getelementptrs are likely not good 10065 // candidates for vectorization in a bottom-up phase since one can be 10066 // computed from the other. We also ensure all candidate getelementptr 10067 // indices are unique. 10068 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10069 auto *GEPI = GEPList[I]; 10070 if (!Candidates.count(GEPI)) 10071 continue; 10072 auto *SCEVI = SE->getSCEV(GEPList[I]); 10073 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10074 auto *GEPJ = GEPList[J]; 10075 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10076 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10077 Candidates.remove(GEPI); 10078 Candidates.remove(GEPJ); 10079 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10080 Candidates.remove(GEPJ); 10081 } 10082 } 10083 } 10084 10085 // We break out of the above computation as soon as we know there are 10086 // fewer than two candidates remaining. 10087 if (Candidates.size() < 2) 10088 continue; 10089 10090 // Add the single, non-constant index of each candidate to the bundle. We 10091 // ensured the indices met these constraints when we originally collected 10092 // the getelementptrs. 10093 SmallVector<Value *, 16> Bundle(Candidates.size()); 10094 auto BundleIndex = 0u; 10095 for (auto *V : Candidates) { 10096 auto *GEP = cast<GetElementPtrInst>(V); 10097 auto *GEPIdx = GEP->idx_begin()->get(); 10098 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10099 Bundle[BundleIndex++] = GEPIdx; 10100 } 10101 10102 // Try and vectorize the indices. We are currently only interested in 10103 // gather-like cases of the form: 10104 // 10105 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10106 // 10107 // where the loads of "a", the loads of "b", and the subtractions can be 10108 // performed in parallel. It's likely that detecting this pattern in a 10109 // bottom-up phase will be simpler and less costly than building a 10110 // full-blown top-down phase beginning at the consecutive loads. 10111 Changed |= tryToVectorizeList(Bundle, R); 10112 } 10113 } 10114 return Changed; 10115 } 10116 10117 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10118 bool Changed = false; 10119 // Sort by type, base pointers and values operand. Value operands must be 10120 // compatible (have the same opcode, same parent), otherwise it is 10121 // definitely not profitable to try to vectorize them. 10122 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10123 if (V->getPointerOperandType()->getTypeID() < 10124 V2->getPointerOperandType()->getTypeID()) 10125 return true; 10126 if (V->getPointerOperandType()->getTypeID() > 10127 V2->getPointerOperandType()->getTypeID()) 10128 return false; 10129 // UndefValues are compatible with all other values. 10130 if (isa<UndefValue>(V->getValueOperand()) || 10131 isa<UndefValue>(V2->getValueOperand())) 10132 return false; 10133 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10134 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10135 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10136 DT->getNode(I1->getParent()); 10137 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10138 DT->getNode(I2->getParent()); 10139 assert(NodeI1 && "Should only process reachable instructions"); 10140 assert(NodeI1 && "Should only process reachable instructions"); 10141 assert((NodeI1 == NodeI2) == 10142 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10143 "Different nodes should have different DFS numbers"); 10144 if (NodeI1 != NodeI2) 10145 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10146 InstructionsState S = getSameOpcode({I1, I2}); 10147 if (S.getOpcode()) 10148 return false; 10149 return I1->getOpcode() < I2->getOpcode(); 10150 } 10151 if (isa<Constant>(V->getValueOperand()) && 10152 isa<Constant>(V2->getValueOperand())) 10153 return false; 10154 return V->getValueOperand()->getValueID() < 10155 V2->getValueOperand()->getValueID(); 10156 }; 10157 10158 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10159 if (V1 == V2) 10160 return true; 10161 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10162 return false; 10163 // Undefs are compatible with any other value. 10164 if (isa<UndefValue>(V1->getValueOperand()) || 10165 isa<UndefValue>(V2->getValueOperand())) 10166 return true; 10167 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10168 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10169 if (I1->getParent() != I2->getParent()) 10170 return false; 10171 InstructionsState S = getSameOpcode({I1, I2}); 10172 return S.getOpcode() > 0; 10173 } 10174 if (isa<Constant>(V1->getValueOperand()) && 10175 isa<Constant>(V2->getValueOperand())) 10176 return true; 10177 return V1->getValueOperand()->getValueID() == 10178 V2->getValueOperand()->getValueID(); 10179 }; 10180 auto Limit = [&R, this](StoreInst *SI) { 10181 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10182 return R.getMinVF(EltSize); 10183 }; 10184 10185 // Attempt to sort and vectorize each of the store-groups. 10186 for (auto &Pair : Stores) { 10187 if (Pair.second.size() < 2) 10188 continue; 10189 10190 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10191 << Pair.second.size() << ".\n"); 10192 10193 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10194 continue; 10195 10196 Changed |= tryToVectorizeSequence<StoreInst>( 10197 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10198 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10199 return vectorizeStores(Candidates, R); 10200 }, 10201 /*LimitForRegisterSize=*/false); 10202 } 10203 return Changed; 10204 } 10205 10206 char SLPVectorizer::ID = 0; 10207 10208 static const char lv_name[] = "SLP Vectorizer"; 10209 10210 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10211 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10212 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10213 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10214 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10215 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10216 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10217 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10218 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10219 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10220 10221 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10222