1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CodeMetrics.h" 26 #include "llvm/Analysis/DemandedBits.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/LoopAccessAnalysis.h" 29 #include "llvm/Analysis/LoopAccessAnalysis.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/NoFolder.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/IR/Verifier.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Transforms/Vectorize.h" 51 #include <algorithm> 52 #include <memory> 53 54 using namespace llvm; 55 56 #define SV_NAME "slp-vectorizer" 57 #define DEBUG_TYPE "SLP" 58 59 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 60 61 static cl::opt<int> 62 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 63 cl::desc("Only vectorize if you gain more than this " 64 "number ")); 65 66 static cl::opt<bool> 67 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 68 cl::desc("Attempt to vectorize horizontal reductions")); 69 70 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 71 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 72 cl::desc( 73 "Attempt to vectorize horizontal reductions feeding into a store")); 74 75 static cl::opt<int> 76 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 77 cl::desc("Attempt to vectorize for this register size in bits")); 78 79 /// Limits the size of scheduling regions in a block. 80 /// It avoid long compile times for _very_ large blocks where vector 81 /// instructions are spread over a wide range. 82 /// This limit is way higher than needed by real-world functions. 83 static cl::opt<int> 84 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 85 cl::desc("Limit the size of the SLP scheduling region per block")); 86 87 static cl::opt<int> MinVectorRegSizeOption( 88 "slp-min-reg-size", cl::init(128), cl::Hidden, 89 cl::desc("Attempt to vectorize for this register size in bits")); 90 91 namespace { 92 93 // FIXME: Set this via cl::opt to allow overriding. 94 static const unsigned RecursionMaxDepth = 12; 95 96 // Limit the number of alias checks. The limit is chosen so that 97 // it has no negative effect on the llvm benchmarks. 98 static const unsigned AliasedCheckLimit = 10; 99 100 // Another limit for the alias checks: The maximum distance between load/store 101 // instructions where alias checks are done. 102 // This limit is useful for very large basic blocks. 103 static const unsigned MaxMemDepDistance = 160; 104 105 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 106 /// regions to be handled. 107 static const int MinScheduleRegionSize = 16; 108 109 /// \brief Predicate for the element types that the SLP vectorizer supports. 110 /// 111 /// The most important thing to filter here are types which are invalid in LLVM 112 /// vectors. We also filter target specific types which have absolutely no 113 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 114 /// avoids spending time checking the cost model and realizing that they will 115 /// be inevitably scalarized. 116 static bool isValidElementType(Type *Ty) { 117 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 118 !Ty->isPPC_FP128Ty(); 119 } 120 121 /// \returns the parent basic block if all of the instructions in \p VL 122 /// are in the same block or null otherwise. 123 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 124 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 125 if (!I0) 126 return nullptr; 127 BasicBlock *BB = I0->getParent(); 128 for (int i = 1, e = VL.size(); i < e; i++) { 129 Instruction *I = dyn_cast<Instruction>(VL[i]); 130 if (!I) 131 return nullptr; 132 133 if (BB != I->getParent()) 134 return nullptr; 135 } 136 return BB; 137 } 138 139 /// \returns True if all of the values in \p VL are constants. 140 static bool allConstant(ArrayRef<Value *> VL) { 141 for (unsigned i = 0, e = VL.size(); i < e; ++i) 142 if (!isa<Constant>(VL[i])) 143 return false; 144 return true; 145 } 146 147 /// \returns True if all of the values in \p VL are identical. 148 static bool isSplat(ArrayRef<Value *> VL) { 149 for (unsigned i = 1, e = VL.size(); i < e; ++i) 150 if (VL[i] != VL[0]) 151 return false; 152 return true; 153 } 154 155 ///\returns Opcode that can be clubbed with \p Op to create an alternate 156 /// sequence which can later be merged as a ShuffleVector instruction. 157 static unsigned getAltOpcode(unsigned Op) { 158 switch (Op) { 159 case Instruction::FAdd: 160 return Instruction::FSub; 161 case Instruction::FSub: 162 return Instruction::FAdd; 163 case Instruction::Add: 164 return Instruction::Sub; 165 case Instruction::Sub: 166 return Instruction::Add; 167 default: 168 return 0; 169 } 170 } 171 172 ///\returns bool representing if Opcode \p Op can be part 173 /// of an alternate sequence which can later be merged as 174 /// a ShuffleVector instruction. 175 static bool canCombineAsAltInst(unsigned Op) { 176 return Op == Instruction::FAdd || Op == Instruction::FSub || 177 Op == Instruction::Sub || Op == Instruction::Add; 178 } 179 180 /// \returns ShuffleVector instruction if instructions in \p VL have 181 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 182 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 183 static unsigned isAltInst(ArrayRef<Value *> VL) { 184 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 185 unsigned Opcode = I0->getOpcode(); 186 unsigned AltOpcode = getAltOpcode(Opcode); 187 for (int i = 1, e = VL.size(); i < e; i++) { 188 Instruction *I = dyn_cast<Instruction>(VL[i]); 189 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 190 return 0; 191 } 192 return Instruction::ShuffleVector; 193 } 194 195 /// \returns The opcode if all of the Instructions in \p VL have the same 196 /// opcode, or zero. 197 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 198 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 199 if (!I0) 200 return 0; 201 unsigned Opcode = I0->getOpcode(); 202 for (int i = 1, e = VL.size(); i < e; i++) { 203 Instruction *I = dyn_cast<Instruction>(VL[i]); 204 if (!I || Opcode != I->getOpcode()) { 205 if (canCombineAsAltInst(Opcode) && i == 1) 206 return isAltInst(VL); 207 return 0; 208 } 209 } 210 return Opcode; 211 } 212 213 /// Get the intersection (logical and) of all of the potential IR flags 214 /// of each scalar operation (VL) that will be converted into a vector (I). 215 /// Flag set: NSW, NUW, exact, and all of fast-math. 216 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 217 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 218 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 219 // Intersection is initialized to the 0th scalar, 220 // so start counting from index '1'. 221 for (int i = 1, e = VL.size(); i < e; ++i) { 222 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 223 Intersection->andIRFlags(Scalar); 224 } 225 VecOp->copyIRFlags(Intersection); 226 } 227 } 228 } 229 230 /// \returns \p I after propagating metadata from \p VL. 231 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 232 Instruction *I0 = cast<Instruction>(VL[0]); 233 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 234 I0->getAllMetadataOtherThanDebugLoc(Metadata); 235 236 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 237 unsigned Kind = Metadata[i].first; 238 MDNode *MD = Metadata[i].second; 239 240 for (int i = 1, e = VL.size(); MD && i != e; i++) { 241 Instruction *I = cast<Instruction>(VL[i]); 242 MDNode *IMD = I->getMetadata(Kind); 243 244 switch (Kind) { 245 default: 246 MD = nullptr; // Remove unknown metadata 247 break; 248 case LLVMContext::MD_tbaa: 249 MD = MDNode::getMostGenericTBAA(MD, IMD); 250 break; 251 case LLVMContext::MD_alias_scope: 252 MD = MDNode::getMostGenericAliasScope(MD, IMD); 253 break; 254 case LLVMContext::MD_noalias: 255 MD = MDNode::intersect(MD, IMD); 256 break; 257 case LLVMContext::MD_fpmath: 258 MD = MDNode::getMostGenericFPMath(MD, IMD); 259 break; 260 case LLVMContext::MD_nontemporal: 261 MD = MDNode::intersect(MD, IMD); 262 break; 263 } 264 } 265 I->setMetadata(Kind, MD); 266 } 267 return I; 268 } 269 270 /// \returns The type that all of the values in \p VL have or null if there 271 /// are different types. 272 static Type* getSameType(ArrayRef<Value *> VL) { 273 Type *Ty = VL[0]->getType(); 274 for (int i = 1, e = VL.size(); i < e; i++) 275 if (VL[i]->getType() != Ty) 276 return nullptr; 277 278 return Ty; 279 } 280 281 /// \returns True if the ExtractElement instructions in VL can be vectorized 282 /// to use the original vector. 283 static bool CanReuseExtract(ArrayRef<Value *> VL) { 284 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 285 // Check if all of the extracts come from the same vector and from the 286 // correct offset. 287 Value *VL0 = VL[0]; 288 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 289 Value *Vec = E0->getOperand(0); 290 291 // We have to extract from the same vector type. 292 unsigned NElts = Vec->getType()->getVectorNumElements(); 293 294 if (NElts != VL.size()) 295 return false; 296 297 // Check that all of the indices extract from the correct offset. 298 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 299 if (!CI || CI->getZExtValue()) 300 return false; 301 302 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 303 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 304 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 305 306 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 307 return false; 308 } 309 310 return true; 311 } 312 313 /// \returns True if in-tree use also needs extract. This refers to 314 /// possible scalar operand in vectorized instruction. 315 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 316 TargetLibraryInfo *TLI) { 317 318 unsigned Opcode = UserInst->getOpcode(); 319 switch (Opcode) { 320 case Instruction::Load: { 321 LoadInst *LI = cast<LoadInst>(UserInst); 322 return (LI->getPointerOperand() == Scalar); 323 } 324 case Instruction::Store: { 325 StoreInst *SI = cast<StoreInst>(UserInst); 326 return (SI->getPointerOperand() == Scalar); 327 } 328 case Instruction::Call: { 329 CallInst *CI = cast<CallInst>(UserInst); 330 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 331 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 332 return (CI->getArgOperand(1) == Scalar); 333 } 334 } 335 default: 336 return false; 337 } 338 } 339 340 /// \returns the AA location that is being access by the instruction. 341 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 342 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 343 return MemoryLocation::get(SI); 344 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 345 return MemoryLocation::get(LI); 346 return MemoryLocation(); 347 } 348 349 /// \returns True if the instruction is not a volatile or atomic load/store. 350 static bool isSimple(Instruction *I) { 351 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 352 return LI->isSimple(); 353 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 354 return SI->isSimple(); 355 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 356 return !MI->isVolatile(); 357 return true; 358 } 359 360 /// Bottom Up SLP Vectorizer. 361 class BoUpSLP { 362 public: 363 typedef SmallVector<Value *, 8> ValueList; 364 typedef SmallVector<Instruction *, 16> InstrList; 365 typedef SmallPtrSet<Value *, 16> ValueSet; 366 typedef SmallVector<StoreInst *, 8> StoreList; 367 368 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 369 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 370 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 371 const DataLayout *DL) 372 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 373 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 374 DL(DL), Builder(Se->getContext()) { 375 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 376 } 377 378 /// \brief Vectorize the tree that starts with the elements in \p VL. 379 /// Returns the vectorized root. 380 Value *vectorizeTree(); 381 382 /// \returns the cost incurred by unwanted spills and fills, caused by 383 /// holding live values over call sites. 384 int getSpillCost(); 385 386 /// \returns the vectorization cost of the subtree that starts at \p VL. 387 /// A negative number means that this is profitable. 388 int getTreeCost(); 389 390 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 391 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 392 void buildTree(ArrayRef<Value *> Roots, 393 ArrayRef<Value *> UserIgnoreLst = None); 394 395 /// Clear the internal data structures that are created by 'buildTree'. 396 void deleteTree() { 397 VectorizableTree.clear(); 398 ScalarToTreeEntry.clear(); 399 MustGather.clear(); 400 ExternalUses.clear(); 401 NumLoadsWantToKeepOrder = 0; 402 NumLoadsWantToChangeOrder = 0; 403 for (auto &Iter : BlocksSchedules) { 404 BlockScheduling *BS = Iter.second.get(); 405 BS->clear(); 406 } 407 MinBWs.clear(); 408 } 409 410 /// \brief Perform LICM and CSE on the newly generated gather sequences. 411 void optimizeGatherSequence(); 412 413 /// \returns true if it is beneficial to reverse the vector order. 414 bool shouldReorder() const { 415 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 416 } 417 418 /// \return The vector element size in bits to use when vectorizing the 419 /// expression tree ending at \p V. If V is a store, the size is the width of 420 /// the stored value. Otherwise, the size is the width of the largest loaded 421 /// value reaching V. This method is used by the vectorizer to calculate 422 /// vectorization factors. 423 unsigned getVectorElementSize(Value *V); 424 425 /// Compute the minimum type sizes required to represent the entries in a 426 /// vectorizable tree. 427 void computeMinimumValueSizes(); 428 429 private: 430 struct TreeEntry; 431 432 /// \returns the cost of the vectorizable entry. 433 int getEntryCost(TreeEntry *E); 434 435 /// This is the recursive part of buildTree. 436 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 437 438 /// Vectorize a single entry in the tree. 439 Value *vectorizeTree(TreeEntry *E); 440 441 /// Vectorize a single entry in the tree, starting in \p VL. 442 Value *vectorizeTree(ArrayRef<Value *> VL); 443 444 /// \returns the pointer to the vectorized value if \p VL is already 445 /// vectorized, or NULL. They may happen in cycles. 446 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 447 448 /// \returns the scalarization cost for this type. Scalarization in this 449 /// context means the creation of vectors from a group of scalars. 450 int getGatherCost(Type *Ty); 451 452 /// \returns the scalarization cost for this list of values. Assuming that 453 /// this subtree gets vectorized, we may need to extract the values from the 454 /// roots. This method calculates the cost of extracting the values. 455 int getGatherCost(ArrayRef<Value *> VL); 456 457 /// \brief Set the Builder insert point to one after the last instruction in 458 /// the bundle 459 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 460 461 /// \returns a vector from a collection of scalars in \p VL. 462 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 463 464 /// \returns whether the VectorizableTree is fully vectorizable and will 465 /// be beneficial even the tree height is tiny. 466 bool isFullyVectorizableTinyTree(); 467 468 /// \reorder commutative operands in alt shuffle if they result in 469 /// vectorized code. 470 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 471 SmallVectorImpl<Value *> &Left, 472 SmallVectorImpl<Value *> &Right); 473 /// \reorder commutative operands to get better probability of 474 /// generating vectorized code. 475 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 476 SmallVectorImpl<Value *> &Left, 477 SmallVectorImpl<Value *> &Right); 478 struct TreeEntry { 479 TreeEntry() : Scalars(), VectorizedValue(nullptr), 480 NeedToGather(0) {} 481 482 /// \returns true if the scalars in VL are equal to this entry. 483 bool isSame(ArrayRef<Value *> VL) const { 484 assert(VL.size() == Scalars.size() && "Invalid size"); 485 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 486 } 487 488 /// A vector of scalars. 489 ValueList Scalars; 490 491 /// The Scalars are vectorized into this value. It is initialized to Null. 492 Value *VectorizedValue; 493 494 /// Do we need to gather this sequence ? 495 bool NeedToGather; 496 }; 497 498 /// Create a new VectorizableTree entry. 499 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 500 VectorizableTree.emplace_back(); 501 int idx = VectorizableTree.size() - 1; 502 TreeEntry *Last = &VectorizableTree[idx]; 503 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 504 Last->NeedToGather = !Vectorized; 505 if (Vectorized) { 506 for (int i = 0, e = VL.size(); i != e; ++i) { 507 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 508 ScalarToTreeEntry[VL[i]] = idx; 509 } 510 } else { 511 MustGather.insert(VL.begin(), VL.end()); 512 } 513 return Last; 514 } 515 516 /// -- Vectorization State -- 517 /// Holds all of the tree entries. 518 std::vector<TreeEntry> VectorizableTree; 519 520 /// Maps a specific scalar to its tree entry. 521 SmallDenseMap<Value*, int> ScalarToTreeEntry; 522 523 /// A list of scalars that we found that we need to keep as scalars. 524 ValueSet MustGather; 525 526 /// This POD struct describes one external user in the vectorized tree. 527 struct ExternalUser { 528 ExternalUser (Value *S, llvm::User *U, int L) : 529 Scalar(S), User(U), Lane(L){} 530 // Which scalar in our function. 531 Value *Scalar; 532 // Which user that uses the scalar. 533 llvm::User *User; 534 // Which lane does the scalar belong to. 535 int Lane; 536 }; 537 typedef SmallVector<ExternalUser, 16> UserList; 538 539 /// Checks if two instructions may access the same memory. 540 /// 541 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 542 /// is invariant in the calling loop. 543 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 544 Instruction *Inst2) { 545 546 // First check if the result is already in the cache. 547 AliasCacheKey key = std::make_pair(Inst1, Inst2); 548 Optional<bool> &result = AliasCache[key]; 549 if (result.hasValue()) { 550 return result.getValue(); 551 } 552 MemoryLocation Loc2 = getLocation(Inst2, AA); 553 bool aliased = true; 554 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 555 // Do the alias check. 556 aliased = AA->alias(Loc1, Loc2); 557 } 558 // Store the result in the cache. 559 result = aliased; 560 return aliased; 561 } 562 563 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 564 565 /// Cache for alias results. 566 /// TODO: consider moving this to the AliasAnalysis itself. 567 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 568 569 /// Removes an instruction from its block and eventually deletes it. 570 /// It's like Instruction::eraseFromParent() except that the actual deletion 571 /// is delayed until BoUpSLP is destructed. 572 /// This is required to ensure that there are no incorrect collisions in the 573 /// AliasCache, which can happen if a new instruction is allocated at the 574 /// same address as a previously deleted instruction. 575 void eraseInstruction(Instruction *I) { 576 I->removeFromParent(); 577 I->dropAllReferences(); 578 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 579 } 580 581 /// Temporary store for deleted instructions. Instructions will be deleted 582 /// eventually when the BoUpSLP is destructed. 583 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 584 585 /// A list of values that need to extracted out of the tree. 586 /// This list holds pairs of (Internal Scalar : External User). 587 UserList ExternalUses; 588 589 /// Values used only by @llvm.assume calls. 590 SmallPtrSet<const Value *, 32> EphValues; 591 592 /// Holds all of the instructions that we gathered. 593 SetVector<Instruction *> GatherSeq; 594 /// A list of blocks that we are going to CSE. 595 SetVector<BasicBlock *> CSEBlocks; 596 597 /// Contains all scheduling relevant data for an instruction. 598 /// A ScheduleData either represents a single instruction or a member of an 599 /// instruction bundle (= a group of instructions which is combined into a 600 /// vector instruction). 601 struct ScheduleData { 602 603 // The initial value for the dependency counters. It means that the 604 // dependencies are not calculated yet. 605 enum { InvalidDeps = -1 }; 606 607 ScheduleData() 608 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 609 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 610 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 611 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 612 613 void init(int BlockSchedulingRegionID) { 614 FirstInBundle = this; 615 NextInBundle = nullptr; 616 NextLoadStore = nullptr; 617 IsScheduled = false; 618 SchedulingRegionID = BlockSchedulingRegionID; 619 UnscheduledDepsInBundle = UnscheduledDeps; 620 clearDependencies(); 621 } 622 623 /// Returns true if the dependency information has been calculated. 624 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 625 626 /// Returns true for single instructions and for bundle representatives 627 /// (= the head of a bundle). 628 bool isSchedulingEntity() const { return FirstInBundle == this; } 629 630 /// Returns true if it represents an instruction bundle and not only a 631 /// single instruction. 632 bool isPartOfBundle() const { 633 return NextInBundle != nullptr || FirstInBundle != this; 634 } 635 636 /// Returns true if it is ready for scheduling, i.e. it has no more 637 /// unscheduled depending instructions/bundles. 638 bool isReady() const { 639 assert(isSchedulingEntity() && 640 "can't consider non-scheduling entity for ready list"); 641 return UnscheduledDepsInBundle == 0 && !IsScheduled; 642 } 643 644 /// Modifies the number of unscheduled dependencies, also updating it for 645 /// the whole bundle. 646 int incrementUnscheduledDeps(int Incr) { 647 UnscheduledDeps += Incr; 648 return FirstInBundle->UnscheduledDepsInBundle += Incr; 649 } 650 651 /// Sets the number of unscheduled dependencies to the number of 652 /// dependencies. 653 void resetUnscheduledDeps() { 654 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 655 } 656 657 /// Clears all dependency information. 658 void clearDependencies() { 659 Dependencies = InvalidDeps; 660 resetUnscheduledDeps(); 661 MemoryDependencies.clear(); 662 } 663 664 void dump(raw_ostream &os) const { 665 if (!isSchedulingEntity()) { 666 os << "/ " << *Inst; 667 } else if (NextInBundle) { 668 os << '[' << *Inst; 669 ScheduleData *SD = NextInBundle; 670 while (SD) { 671 os << ';' << *SD->Inst; 672 SD = SD->NextInBundle; 673 } 674 os << ']'; 675 } else { 676 os << *Inst; 677 } 678 } 679 680 Instruction *Inst; 681 682 /// Points to the head in an instruction bundle (and always to this for 683 /// single instructions). 684 ScheduleData *FirstInBundle; 685 686 /// Single linked list of all instructions in a bundle. Null if it is a 687 /// single instruction. 688 ScheduleData *NextInBundle; 689 690 /// Single linked list of all memory instructions (e.g. load, store, call) 691 /// in the block - until the end of the scheduling region. 692 ScheduleData *NextLoadStore; 693 694 /// The dependent memory instructions. 695 /// This list is derived on demand in calculateDependencies(). 696 SmallVector<ScheduleData *, 4> MemoryDependencies; 697 698 /// This ScheduleData is in the current scheduling region if this matches 699 /// the current SchedulingRegionID of BlockScheduling. 700 int SchedulingRegionID; 701 702 /// Used for getting a "good" final ordering of instructions. 703 int SchedulingPriority; 704 705 /// The number of dependencies. Constitutes of the number of users of the 706 /// instruction plus the number of dependent memory instructions (if any). 707 /// This value is calculated on demand. 708 /// If InvalidDeps, the number of dependencies is not calculated yet. 709 /// 710 int Dependencies; 711 712 /// The number of dependencies minus the number of dependencies of scheduled 713 /// instructions. As soon as this is zero, the instruction/bundle gets ready 714 /// for scheduling. 715 /// Note that this is negative as long as Dependencies is not calculated. 716 int UnscheduledDeps; 717 718 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 719 /// single instructions. 720 int UnscheduledDepsInBundle; 721 722 /// True if this instruction is scheduled (or considered as scheduled in the 723 /// dry-run). 724 bool IsScheduled; 725 }; 726 727 #ifndef NDEBUG 728 friend raw_ostream &operator<<(raw_ostream &os, 729 const BoUpSLP::ScheduleData &SD); 730 #endif 731 732 /// Contains all scheduling data for a basic block. 733 /// 734 struct BlockScheduling { 735 736 BlockScheduling(BasicBlock *BB) 737 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 738 ScheduleStart(nullptr), ScheduleEnd(nullptr), 739 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 740 ScheduleRegionSize(0), 741 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 742 // Make sure that the initial SchedulingRegionID is greater than the 743 // initial SchedulingRegionID in ScheduleData (which is 0). 744 SchedulingRegionID(1) {} 745 746 void clear() { 747 ReadyInsts.clear(); 748 ScheduleStart = nullptr; 749 ScheduleEnd = nullptr; 750 FirstLoadStoreInRegion = nullptr; 751 LastLoadStoreInRegion = nullptr; 752 753 // Reduce the maximum schedule region size by the size of the 754 // previous scheduling run. 755 ScheduleRegionSizeLimit -= ScheduleRegionSize; 756 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 757 ScheduleRegionSizeLimit = MinScheduleRegionSize; 758 ScheduleRegionSize = 0; 759 760 // Make a new scheduling region, i.e. all existing ScheduleData is not 761 // in the new region yet. 762 ++SchedulingRegionID; 763 } 764 765 ScheduleData *getScheduleData(Value *V) { 766 ScheduleData *SD = ScheduleDataMap[V]; 767 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 768 return SD; 769 return nullptr; 770 } 771 772 bool isInSchedulingRegion(ScheduleData *SD) { 773 return SD->SchedulingRegionID == SchedulingRegionID; 774 } 775 776 /// Marks an instruction as scheduled and puts all dependent ready 777 /// instructions into the ready-list. 778 template <typename ReadyListType> 779 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 780 SD->IsScheduled = true; 781 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 782 783 ScheduleData *BundleMember = SD; 784 while (BundleMember) { 785 // Handle the def-use chain dependencies. 786 for (Use &U : BundleMember->Inst->operands()) { 787 ScheduleData *OpDef = getScheduleData(U.get()); 788 if (OpDef && OpDef->hasValidDependencies() && 789 OpDef->incrementUnscheduledDeps(-1) == 0) { 790 // There are no more unscheduled dependencies after decrementing, 791 // so we can put the dependent instruction into the ready list. 792 ScheduleData *DepBundle = OpDef->FirstInBundle; 793 assert(!DepBundle->IsScheduled && 794 "already scheduled bundle gets ready"); 795 ReadyList.insert(DepBundle); 796 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 797 } 798 } 799 // Handle the memory dependencies. 800 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 801 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 802 // There are no more unscheduled dependencies after decrementing, 803 // so we can put the dependent instruction into the ready list. 804 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 805 assert(!DepBundle->IsScheduled && 806 "already scheduled bundle gets ready"); 807 ReadyList.insert(DepBundle); 808 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 809 } 810 } 811 BundleMember = BundleMember->NextInBundle; 812 } 813 } 814 815 /// Put all instructions into the ReadyList which are ready for scheduling. 816 template <typename ReadyListType> 817 void initialFillReadyList(ReadyListType &ReadyList) { 818 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 819 ScheduleData *SD = getScheduleData(I); 820 if (SD->isSchedulingEntity() && SD->isReady()) { 821 ReadyList.insert(SD); 822 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 823 } 824 } 825 } 826 827 /// Checks if a bundle of instructions can be scheduled, i.e. has no 828 /// cyclic dependencies. This is only a dry-run, no instructions are 829 /// actually moved at this stage. 830 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 831 832 /// Un-bundles a group of instructions. 833 void cancelScheduling(ArrayRef<Value *> VL); 834 835 /// Extends the scheduling region so that V is inside the region. 836 /// \returns true if the region size is within the limit. 837 bool extendSchedulingRegion(Value *V); 838 839 /// Initialize the ScheduleData structures for new instructions in the 840 /// scheduling region. 841 void initScheduleData(Instruction *FromI, Instruction *ToI, 842 ScheduleData *PrevLoadStore, 843 ScheduleData *NextLoadStore); 844 845 /// Updates the dependency information of a bundle and of all instructions/ 846 /// bundles which depend on the original bundle. 847 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 848 BoUpSLP *SLP); 849 850 /// Sets all instruction in the scheduling region to un-scheduled. 851 void resetSchedule(); 852 853 BasicBlock *BB; 854 855 /// Simple memory allocation for ScheduleData. 856 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 857 858 /// The size of a ScheduleData array in ScheduleDataChunks. 859 int ChunkSize; 860 861 /// The allocator position in the current chunk, which is the last entry 862 /// of ScheduleDataChunks. 863 int ChunkPos; 864 865 /// Attaches ScheduleData to Instruction. 866 /// Note that the mapping survives during all vectorization iterations, i.e. 867 /// ScheduleData structures are recycled. 868 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 869 870 struct ReadyList : SmallVector<ScheduleData *, 8> { 871 void insert(ScheduleData *SD) { push_back(SD); } 872 }; 873 874 /// The ready-list for scheduling (only used for the dry-run). 875 ReadyList ReadyInsts; 876 877 /// The first instruction of the scheduling region. 878 Instruction *ScheduleStart; 879 880 /// The first instruction _after_ the scheduling region. 881 Instruction *ScheduleEnd; 882 883 /// The first memory accessing instruction in the scheduling region 884 /// (can be null). 885 ScheduleData *FirstLoadStoreInRegion; 886 887 /// The last memory accessing instruction in the scheduling region 888 /// (can be null). 889 ScheduleData *LastLoadStoreInRegion; 890 891 /// The current size of the scheduling region. 892 int ScheduleRegionSize; 893 894 /// The maximum size allowed for the scheduling region. 895 int ScheduleRegionSizeLimit; 896 897 /// The ID of the scheduling region. For a new vectorization iteration this 898 /// is incremented which "removes" all ScheduleData from the region. 899 int SchedulingRegionID; 900 }; 901 902 /// Attaches the BlockScheduling structures to basic blocks. 903 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 904 905 /// Performs the "real" scheduling. Done before vectorization is actually 906 /// performed in a basic block. 907 void scheduleBlock(BlockScheduling *BS); 908 909 /// List of users to ignore during scheduling and that don't need extracting. 910 ArrayRef<Value *> UserIgnoreList; 911 912 // Number of load-bundles, which contain consecutive loads. 913 int NumLoadsWantToKeepOrder; 914 915 // Number of load-bundles of size 2, which are consecutive loads if reversed. 916 int NumLoadsWantToChangeOrder; 917 918 // Analysis and block reference. 919 Function *F; 920 ScalarEvolution *SE; 921 TargetTransformInfo *TTI; 922 TargetLibraryInfo *TLI; 923 AliasAnalysis *AA; 924 LoopInfo *LI; 925 DominatorTree *DT; 926 AssumptionCache *AC; 927 DemandedBits *DB; 928 const DataLayout *DL; 929 /// Instruction builder to construct the vectorized tree. 930 IRBuilder<> Builder; 931 932 /// A map of scalar integer values to the smallest bit width with which they 933 /// can legally be represented. 934 MapVector<Value *, uint64_t> MinBWs; 935 }; 936 937 #ifndef NDEBUG 938 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { 939 SD.dump(os); 940 return os; 941 } 942 #endif 943 944 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 945 ArrayRef<Value *> UserIgnoreLst) { 946 deleteTree(); 947 UserIgnoreList = UserIgnoreLst; 948 if (!getSameType(Roots)) 949 return; 950 buildTree_rec(Roots, 0); 951 952 // Collect the values that we need to extract from the tree. 953 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 954 TreeEntry *Entry = &VectorizableTree[EIdx]; 955 956 // For each lane: 957 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 958 Value *Scalar = Entry->Scalars[Lane]; 959 960 // No need to handle users of gathered values. 961 if (Entry->NeedToGather) 962 continue; 963 964 for (User *U : Scalar->users()) { 965 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 966 967 Instruction *UserInst = dyn_cast<Instruction>(U); 968 if (!UserInst) 969 continue; 970 971 // Skip in-tree scalars that become vectors 972 if (ScalarToTreeEntry.count(U)) { 973 int Idx = ScalarToTreeEntry[U]; 974 TreeEntry *UseEntry = &VectorizableTree[Idx]; 975 Value *UseScalar = UseEntry->Scalars[0]; 976 // Some in-tree scalars will remain as scalar in vectorized 977 // instructions. If that is the case, the one in Lane 0 will 978 // be used. 979 if (UseScalar != U || 980 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 981 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 982 << ".\n"); 983 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 984 continue; 985 } 986 } 987 988 // Ignore users in the user ignore list. 989 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 990 UserIgnoreList.end()) 991 continue; 992 993 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 994 Lane << " from " << *Scalar << ".\n"); 995 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 996 } 997 } 998 } 999 } 1000 1001 1002 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 1003 bool SameTy = getSameType(VL); (void)SameTy; 1004 bool isAltShuffle = false; 1005 assert(SameTy && "Invalid types!"); 1006 1007 if (Depth == RecursionMaxDepth) { 1008 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1009 newTreeEntry(VL, false); 1010 return; 1011 } 1012 1013 // Don't handle vectors. 1014 if (VL[0]->getType()->isVectorTy()) { 1015 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1016 newTreeEntry(VL, false); 1017 return; 1018 } 1019 1020 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1021 if (SI->getValueOperand()->getType()->isVectorTy()) { 1022 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1023 newTreeEntry(VL, false); 1024 return; 1025 } 1026 unsigned Opcode = getSameOpcode(VL); 1027 1028 // Check that this shuffle vector refers to the alternate 1029 // sequence of opcodes. 1030 if (Opcode == Instruction::ShuffleVector) { 1031 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1032 unsigned Op = I0->getOpcode(); 1033 if (Op != Instruction::ShuffleVector) 1034 isAltShuffle = true; 1035 } 1036 1037 // If all of the operands are identical or constant we have a simple solution. 1038 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1039 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1040 newTreeEntry(VL, false); 1041 return; 1042 } 1043 1044 // We now know that this is a vector of instructions of the same type from 1045 // the same block. 1046 1047 // Don't vectorize ephemeral values. 1048 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1049 if (EphValues.count(VL[i])) { 1050 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1051 ") is ephemeral.\n"); 1052 newTreeEntry(VL, false); 1053 return; 1054 } 1055 } 1056 1057 // Check if this is a duplicate of another entry. 1058 if (ScalarToTreeEntry.count(VL[0])) { 1059 int Idx = ScalarToTreeEntry[VL[0]]; 1060 TreeEntry *E = &VectorizableTree[Idx]; 1061 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1062 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1063 if (E->Scalars[i] != VL[i]) { 1064 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1065 newTreeEntry(VL, false); 1066 return; 1067 } 1068 } 1069 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1070 return; 1071 } 1072 1073 // Check that none of the instructions in the bundle are already in the tree. 1074 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1075 if (ScalarToTreeEntry.count(VL[i])) { 1076 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1077 ") is already in tree.\n"); 1078 newTreeEntry(VL, false); 1079 return; 1080 } 1081 } 1082 1083 // If any of the scalars is marked as a value that needs to stay scalar then 1084 // we need to gather the scalars. 1085 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1086 if (MustGather.count(VL[i])) { 1087 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1088 newTreeEntry(VL, false); 1089 return; 1090 } 1091 } 1092 1093 // Check that all of the users of the scalars that we want to vectorize are 1094 // schedulable. 1095 Instruction *VL0 = cast<Instruction>(VL[0]); 1096 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1097 1098 if (!DT->isReachableFromEntry(BB)) { 1099 // Don't go into unreachable blocks. They may contain instructions with 1100 // dependency cycles which confuse the final scheduling. 1101 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1102 newTreeEntry(VL, false); 1103 return; 1104 } 1105 1106 // Check that every instructions appears once in this bundle. 1107 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1108 for (unsigned j = i+1; j < e; ++j) 1109 if (VL[i] == VL[j]) { 1110 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1111 newTreeEntry(VL, false); 1112 return; 1113 } 1114 1115 auto &BSRef = BlocksSchedules[BB]; 1116 if (!BSRef) { 1117 BSRef = llvm::make_unique<BlockScheduling>(BB); 1118 } 1119 BlockScheduling &BS = *BSRef.get(); 1120 1121 if (!BS.tryScheduleBundle(VL, this)) { 1122 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1123 assert((!BS.getScheduleData(VL[0]) || 1124 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1125 "tryScheduleBundle should cancelScheduling on failure"); 1126 newTreeEntry(VL, false); 1127 return; 1128 } 1129 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1130 1131 switch (Opcode) { 1132 case Instruction::PHI: { 1133 PHINode *PH = dyn_cast<PHINode>(VL0); 1134 1135 // Check for terminator values (e.g. invoke). 1136 for (unsigned j = 0; j < VL.size(); ++j) 1137 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1138 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1139 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1140 if (Term) { 1141 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1142 BS.cancelScheduling(VL); 1143 newTreeEntry(VL, false); 1144 return; 1145 } 1146 } 1147 1148 newTreeEntry(VL, true); 1149 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1150 1151 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1152 ValueList Operands; 1153 // Prepare the operand vector. 1154 for (unsigned j = 0; j < VL.size(); ++j) 1155 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 1156 PH->getIncomingBlock(i))); 1157 1158 buildTree_rec(Operands, Depth + 1); 1159 } 1160 return; 1161 } 1162 case Instruction::ExtractElement: { 1163 bool Reuse = CanReuseExtract(VL); 1164 if (Reuse) { 1165 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1166 } else { 1167 BS.cancelScheduling(VL); 1168 } 1169 newTreeEntry(VL, Reuse); 1170 return; 1171 } 1172 case Instruction::Load: { 1173 // Check that a vectorized load would load the same memory as a scalar 1174 // load. 1175 // For example we don't want vectorize loads that are smaller than 8 bit. 1176 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1177 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1178 // such a struct we read/write packed bits disagreeing with the 1179 // unvectorized version. 1180 Type *ScalarTy = VL[0]->getType(); 1181 1182 if (DL->getTypeSizeInBits(ScalarTy) != 1183 DL->getTypeAllocSizeInBits(ScalarTy)) { 1184 BS.cancelScheduling(VL); 1185 newTreeEntry(VL, false); 1186 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1187 return; 1188 } 1189 // Check if the loads are consecutive or of we need to swizzle them. 1190 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1191 LoadInst *L = cast<LoadInst>(VL[i]); 1192 if (!L->isSimple()) { 1193 BS.cancelScheduling(VL); 1194 newTreeEntry(VL, false); 1195 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1196 return; 1197 } 1198 1199 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1200 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) { 1201 ++NumLoadsWantToChangeOrder; 1202 } 1203 BS.cancelScheduling(VL); 1204 newTreeEntry(VL, false); 1205 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1206 return; 1207 } 1208 } 1209 ++NumLoadsWantToKeepOrder; 1210 newTreeEntry(VL, true); 1211 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1212 return; 1213 } 1214 case Instruction::ZExt: 1215 case Instruction::SExt: 1216 case Instruction::FPToUI: 1217 case Instruction::FPToSI: 1218 case Instruction::FPExt: 1219 case Instruction::PtrToInt: 1220 case Instruction::IntToPtr: 1221 case Instruction::SIToFP: 1222 case Instruction::UIToFP: 1223 case Instruction::Trunc: 1224 case Instruction::FPTrunc: 1225 case Instruction::BitCast: { 1226 Type *SrcTy = VL0->getOperand(0)->getType(); 1227 for (unsigned i = 0; i < VL.size(); ++i) { 1228 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1229 if (Ty != SrcTy || !isValidElementType(Ty)) { 1230 BS.cancelScheduling(VL); 1231 newTreeEntry(VL, false); 1232 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1233 return; 1234 } 1235 } 1236 newTreeEntry(VL, true); 1237 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1238 1239 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1240 ValueList Operands; 1241 // Prepare the operand vector. 1242 for (unsigned j = 0; j < VL.size(); ++j) 1243 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1244 1245 buildTree_rec(Operands, Depth+1); 1246 } 1247 return; 1248 } 1249 case Instruction::ICmp: 1250 case Instruction::FCmp: { 1251 // Check that all of the compares have the same predicate. 1252 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1253 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1254 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1255 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1256 if (Cmp->getPredicate() != P0 || 1257 Cmp->getOperand(0)->getType() != ComparedTy) { 1258 BS.cancelScheduling(VL); 1259 newTreeEntry(VL, false); 1260 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1261 return; 1262 } 1263 } 1264 1265 newTreeEntry(VL, true); 1266 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1267 1268 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1269 ValueList Operands; 1270 // Prepare the operand vector. 1271 for (unsigned j = 0; j < VL.size(); ++j) 1272 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1273 1274 buildTree_rec(Operands, Depth+1); 1275 } 1276 return; 1277 } 1278 case Instruction::Select: 1279 case Instruction::Add: 1280 case Instruction::FAdd: 1281 case Instruction::Sub: 1282 case Instruction::FSub: 1283 case Instruction::Mul: 1284 case Instruction::FMul: 1285 case Instruction::UDiv: 1286 case Instruction::SDiv: 1287 case Instruction::FDiv: 1288 case Instruction::URem: 1289 case Instruction::SRem: 1290 case Instruction::FRem: 1291 case Instruction::Shl: 1292 case Instruction::LShr: 1293 case Instruction::AShr: 1294 case Instruction::And: 1295 case Instruction::Or: 1296 case Instruction::Xor: { 1297 newTreeEntry(VL, true); 1298 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1299 1300 // Sort operands of the instructions so that each side is more likely to 1301 // have the same opcode. 1302 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1303 ValueList Left, Right; 1304 reorderInputsAccordingToOpcode(VL, Left, Right); 1305 buildTree_rec(Left, Depth + 1); 1306 buildTree_rec(Right, Depth + 1); 1307 return; 1308 } 1309 1310 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1311 ValueList Operands; 1312 // Prepare the operand vector. 1313 for (unsigned j = 0; j < VL.size(); ++j) 1314 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1315 1316 buildTree_rec(Operands, Depth+1); 1317 } 1318 return; 1319 } 1320 case Instruction::GetElementPtr: { 1321 // We don't combine GEPs with complicated (nested) indexing. 1322 for (unsigned j = 0; j < VL.size(); ++j) { 1323 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1324 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1325 BS.cancelScheduling(VL); 1326 newTreeEntry(VL, false); 1327 return; 1328 } 1329 } 1330 1331 // We can't combine several GEPs into one vector if they operate on 1332 // different types. 1333 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1334 for (unsigned j = 0; j < VL.size(); ++j) { 1335 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1336 if (Ty0 != CurTy) { 1337 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1338 BS.cancelScheduling(VL); 1339 newTreeEntry(VL, false); 1340 return; 1341 } 1342 } 1343 1344 // We don't combine GEPs with non-constant indexes. 1345 for (unsigned j = 0; j < VL.size(); ++j) { 1346 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1347 if (!isa<ConstantInt>(Op)) { 1348 DEBUG( 1349 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1350 BS.cancelScheduling(VL); 1351 newTreeEntry(VL, false); 1352 return; 1353 } 1354 } 1355 1356 newTreeEntry(VL, true); 1357 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1358 for (unsigned i = 0, e = 2; i < e; ++i) { 1359 ValueList Operands; 1360 // Prepare the operand vector. 1361 for (unsigned j = 0; j < VL.size(); ++j) 1362 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1363 1364 buildTree_rec(Operands, Depth + 1); 1365 } 1366 return; 1367 } 1368 case Instruction::Store: { 1369 // Check if the stores are consecutive or of we need to swizzle them. 1370 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1371 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1372 BS.cancelScheduling(VL); 1373 newTreeEntry(VL, false); 1374 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1375 return; 1376 } 1377 1378 newTreeEntry(VL, true); 1379 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1380 1381 ValueList Operands; 1382 for (unsigned j = 0; j < VL.size(); ++j) 1383 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 1384 1385 buildTree_rec(Operands, Depth + 1); 1386 return; 1387 } 1388 case Instruction::Call: { 1389 // Check if the calls are all to the same vectorizable intrinsic. 1390 CallInst *CI = cast<CallInst>(VL[0]); 1391 // Check if this is an Intrinsic call or something that can be 1392 // represented by an intrinsic call 1393 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1394 if (!isTriviallyVectorizable(ID)) { 1395 BS.cancelScheduling(VL); 1396 newTreeEntry(VL, false); 1397 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1398 return; 1399 } 1400 Function *Int = CI->getCalledFunction(); 1401 Value *A1I = nullptr; 1402 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1403 A1I = CI->getArgOperand(1); 1404 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1405 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1406 if (!CI2 || CI2->getCalledFunction() != Int || 1407 getVectorIntrinsicIDForCall(CI2, TLI) != ID) { 1408 BS.cancelScheduling(VL); 1409 newTreeEntry(VL, false); 1410 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1411 << "\n"); 1412 return; 1413 } 1414 // ctlz,cttz and powi are special intrinsics whose second argument 1415 // should be same in order for them to be vectorized. 1416 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1417 Value *A1J = CI2->getArgOperand(1); 1418 if (A1I != A1J) { 1419 BS.cancelScheduling(VL); 1420 newTreeEntry(VL, false); 1421 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1422 << " argument "<< A1I<<"!=" << A1J 1423 << "\n"); 1424 return; 1425 } 1426 } 1427 } 1428 1429 newTreeEntry(VL, true); 1430 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1431 ValueList Operands; 1432 // Prepare the operand vector. 1433 for (unsigned j = 0; j < VL.size(); ++j) { 1434 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 1435 Operands.push_back(CI2->getArgOperand(i)); 1436 } 1437 buildTree_rec(Operands, Depth + 1); 1438 } 1439 return; 1440 } 1441 case Instruction::ShuffleVector: { 1442 // If this is not an alternate sequence of opcode like add-sub 1443 // then do not vectorize this instruction. 1444 if (!isAltShuffle) { 1445 BS.cancelScheduling(VL); 1446 newTreeEntry(VL, false); 1447 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1448 return; 1449 } 1450 newTreeEntry(VL, true); 1451 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1452 1453 // Reorder operands if reordering would enable vectorization. 1454 if (isa<BinaryOperator>(VL0)) { 1455 ValueList Left, Right; 1456 reorderAltShuffleOperands(VL, Left, Right); 1457 buildTree_rec(Left, Depth + 1); 1458 buildTree_rec(Right, Depth + 1); 1459 return; 1460 } 1461 1462 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1463 ValueList Operands; 1464 // Prepare the operand vector. 1465 for (unsigned j = 0; j < VL.size(); ++j) 1466 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1467 1468 buildTree_rec(Operands, Depth + 1); 1469 } 1470 return; 1471 } 1472 default: 1473 BS.cancelScheduling(VL); 1474 newTreeEntry(VL, false); 1475 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1476 return; 1477 } 1478 } 1479 1480 int BoUpSLP::getEntryCost(TreeEntry *E) { 1481 ArrayRef<Value*> VL = E->Scalars; 1482 1483 Type *ScalarTy = VL[0]->getType(); 1484 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1485 ScalarTy = SI->getValueOperand()->getType(); 1486 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1487 1488 // If we have computed a smaller type for the expression, update VecTy so 1489 // that the costs will be accurate. 1490 if (MinBWs.count(VL[0])) 1491 VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]), 1492 VL.size()); 1493 1494 if (E->NeedToGather) { 1495 if (allConstant(VL)) 1496 return 0; 1497 if (isSplat(VL)) { 1498 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1499 } 1500 return getGatherCost(E->Scalars); 1501 } 1502 unsigned Opcode = getSameOpcode(VL); 1503 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1504 Instruction *VL0 = cast<Instruction>(VL[0]); 1505 switch (Opcode) { 1506 case Instruction::PHI: { 1507 return 0; 1508 } 1509 case Instruction::ExtractElement: { 1510 if (CanReuseExtract(VL)) { 1511 int DeadCost = 0; 1512 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1513 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1514 if (E->hasOneUse()) 1515 // Take credit for instruction that will become dead. 1516 DeadCost += 1517 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1518 } 1519 return -DeadCost; 1520 } 1521 return getGatherCost(VecTy); 1522 } 1523 case Instruction::ZExt: 1524 case Instruction::SExt: 1525 case Instruction::FPToUI: 1526 case Instruction::FPToSI: 1527 case Instruction::FPExt: 1528 case Instruction::PtrToInt: 1529 case Instruction::IntToPtr: 1530 case Instruction::SIToFP: 1531 case Instruction::UIToFP: 1532 case Instruction::Trunc: 1533 case Instruction::FPTrunc: 1534 case Instruction::BitCast: { 1535 Type *SrcTy = VL0->getOperand(0)->getType(); 1536 1537 // Calculate the cost of this instruction. 1538 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1539 VL0->getType(), SrcTy); 1540 1541 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1542 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1543 return VecCost - ScalarCost; 1544 } 1545 case Instruction::FCmp: 1546 case Instruction::ICmp: 1547 case Instruction::Select: 1548 case Instruction::Add: 1549 case Instruction::FAdd: 1550 case Instruction::Sub: 1551 case Instruction::FSub: 1552 case Instruction::Mul: 1553 case Instruction::FMul: 1554 case Instruction::UDiv: 1555 case Instruction::SDiv: 1556 case Instruction::FDiv: 1557 case Instruction::URem: 1558 case Instruction::SRem: 1559 case Instruction::FRem: 1560 case Instruction::Shl: 1561 case Instruction::LShr: 1562 case Instruction::AShr: 1563 case Instruction::And: 1564 case Instruction::Or: 1565 case Instruction::Xor: { 1566 // Calculate the cost of this instruction. 1567 int ScalarCost = 0; 1568 int VecCost = 0; 1569 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1570 Opcode == Instruction::Select) { 1571 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1572 ScalarCost = VecTy->getNumElements() * 1573 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1574 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1575 } else { 1576 // Certain instructions can be cheaper to vectorize if they have a 1577 // constant second vector operand. 1578 TargetTransformInfo::OperandValueKind Op1VK = 1579 TargetTransformInfo::OK_AnyValue; 1580 TargetTransformInfo::OperandValueKind Op2VK = 1581 TargetTransformInfo::OK_UniformConstantValue; 1582 TargetTransformInfo::OperandValueProperties Op1VP = 1583 TargetTransformInfo::OP_None; 1584 TargetTransformInfo::OperandValueProperties Op2VP = 1585 TargetTransformInfo::OP_None; 1586 1587 // If all operands are exactly the same ConstantInt then set the 1588 // operand kind to OK_UniformConstantValue. 1589 // If instead not all operands are constants, then set the operand kind 1590 // to OK_AnyValue. If all operands are constants but not the same, 1591 // then set the operand kind to OK_NonUniformConstantValue. 1592 ConstantInt *CInt = nullptr; 1593 for (unsigned i = 0; i < VL.size(); ++i) { 1594 const Instruction *I = cast<Instruction>(VL[i]); 1595 if (!isa<ConstantInt>(I->getOperand(1))) { 1596 Op2VK = TargetTransformInfo::OK_AnyValue; 1597 break; 1598 } 1599 if (i == 0) { 1600 CInt = cast<ConstantInt>(I->getOperand(1)); 1601 continue; 1602 } 1603 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1604 CInt != cast<ConstantInt>(I->getOperand(1))) 1605 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1606 } 1607 // FIXME: Currently cost of model modification for division by power of 1608 // 2 is handled for X86 and AArch64. Add support for other targets. 1609 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1610 CInt->getValue().isPowerOf2()) 1611 Op2VP = TargetTransformInfo::OP_PowerOf2; 1612 1613 ScalarCost = VecTy->getNumElements() * 1614 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, 1615 Op1VP, Op2VP); 1616 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1617 Op1VP, Op2VP); 1618 } 1619 return VecCost - ScalarCost; 1620 } 1621 case Instruction::GetElementPtr: { 1622 TargetTransformInfo::OperandValueKind Op1VK = 1623 TargetTransformInfo::OK_AnyValue; 1624 TargetTransformInfo::OperandValueKind Op2VK = 1625 TargetTransformInfo::OK_UniformConstantValue; 1626 1627 int ScalarCost = 1628 VecTy->getNumElements() * 1629 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1630 int VecCost = 1631 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1632 1633 return VecCost - ScalarCost; 1634 } 1635 case Instruction::Load: { 1636 // Cost of wide load - cost of scalar loads. 1637 int ScalarLdCost = VecTy->getNumElements() * 1638 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1639 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1640 return VecLdCost - ScalarLdCost; 1641 } 1642 case Instruction::Store: { 1643 // We know that we can merge the stores. Calculate the cost. 1644 int ScalarStCost = VecTy->getNumElements() * 1645 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1646 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1647 return VecStCost - ScalarStCost; 1648 } 1649 case Instruction::Call: { 1650 CallInst *CI = cast<CallInst>(VL0); 1651 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1652 1653 // Calculate the cost of the scalar and vector calls. 1654 SmallVector<Type*, 4> ScalarTys, VecTys; 1655 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1656 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1657 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1658 VecTy->getNumElements())); 1659 } 1660 1661 FastMathFlags FMF; 1662 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1663 FMF = FPMO->getFastMathFlags(); 1664 1665 int ScalarCallCost = VecTy->getNumElements() * 1666 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1667 1668 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1669 1670 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1671 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1672 << " for " << *CI << "\n"); 1673 1674 return VecCallCost - ScalarCallCost; 1675 } 1676 case Instruction::ShuffleVector: { 1677 TargetTransformInfo::OperandValueKind Op1VK = 1678 TargetTransformInfo::OK_AnyValue; 1679 TargetTransformInfo::OperandValueKind Op2VK = 1680 TargetTransformInfo::OK_AnyValue; 1681 int ScalarCost = 0; 1682 int VecCost = 0; 1683 for (unsigned i = 0; i < VL.size(); ++i) { 1684 Instruction *I = cast<Instruction>(VL[i]); 1685 if (!I) 1686 break; 1687 ScalarCost += 1688 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1689 } 1690 // VecCost is equal to sum of the cost of creating 2 vectors 1691 // and the cost of creating shuffle. 1692 Instruction *I0 = cast<Instruction>(VL[0]); 1693 VecCost = 1694 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1695 Instruction *I1 = cast<Instruction>(VL[1]); 1696 VecCost += 1697 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1698 VecCost += 1699 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1700 return VecCost - ScalarCost; 1701 } 1702 default: 1703 llvm_unreachable("Unknown instruction"); 1704 } 1705 } 1706 1707 bool BoUpSLP::isFullyVectorizableTinyTree() { 1708 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1709 VectorizableTree.size() << " is fully vectorizable .\n"); 1710 1711 // We only handle trees of height 2. 1712 if (VectorizableTree.size() != 2) 1713 return false; 1714 1715 // Handle splat and all-constants stores. 1716 if (!VectorizableTree[0].NeedToGather && 1717 (allConstant(VectorizableTree[1].Scalars) || 1718 isSplat(VectorizableTree[1].Scalars))) 1719 return true; 1720 1721 // Gathering cost would be too much for tiny trees. 1722 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1723 return false; 1724 1725 return true; 1726 } 1727 1728 int BoUpSLP::getSpillCost() { 1729 // Walk from the bottom of the tree to the top, tracking which values are 1730 // live. When we see a call instruction that is not part of our tree, 1731 // query TTI to see if there is a cost to keeping values live over it 1732 // (for example, if spills and fills are required). 1733 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1734 int Cost = 0; 1735 1736 SmallPtrSet<Instruction*, 4> LiveValues; 1737 Instruction *PrevInst = nullptr; 1738 1739 for (unsigned N = 0; N < VectorizableTree.size(); ++N) { 1740 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); 1741 if (!Inst) 1742 continue; 1743 1744 if (!PrevInst) { 1745 PrevInst = Inst; 1746 continue; 1747 } 1748 1749 // Update LiveValues. 1750 LiveValues.erase(PrevInst); 1751 for (auto &J : PrevInst->operands()) { 1752 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1753 LiveValues.insert(cast<Instruction>(&*J)); 1754 } 1755 1756 DEBUG( 1757 dbgs() << "SLP: #LV: " << LiveValues.size(); 1758 for (auto *X : LiveValues) 1759 dbgs() << " " << X->getName(); 1760 dbgs() << ", Looking at "; 1761 Inst->dump(); 1762 ); 1763 1764 // Now find the sequence of instructions between PrevInst and Inst. 1765 BasicBlock::reverse_iterator InstIt(Inst->getIterator()), 1766 PrevInstIt(PrevInst->getIterator()); 1767 --PrevInstIt; 1768 while (InstIt != PrevInstIt) { 1769 if (PrevInstIt == PrevInst->getParent()->rend()) { 1770 PrevInstIt = Inst->getParent()->rbegin(); 1771 continue; 1772 } 1773 1774 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1775 SmallVector<Type*, 4> V; 1776 for (auto *II : LiveValues) 1777 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1778 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1779 } 1780 1781 ++PrevInstIt; 1782 } 1783 1784 PrevInst = Inst; 1785 } 1786 1787 return Cost; 1788 } 1789 1790 int BoUpSLP::getTreeCost() { 1791 int Cost = 0; 1792 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1793 VectorizableTree.size() << ".\n"); 1794 1795 // We only vectorize tiny trees if it is fully vectorizable. 1796 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1797 if (VectorizableTree.empty()) { 1798 assert(!ExternalUses.size() && "We should not have any external users"); 1799 } 1800 return INT_MAX; 1801 } 1802 1803 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1804 1805 for (TreeEntry &TE : VectorizableTree) { 1806 int C = getEntryCost(&TE); 1807 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1808 << *TE.Scalars[0] << ".\n"); 1809 Cost += C; 1810 } 1811 1812 SmallSet<Value *, 16> ExtractCostCalculated; 1813 int ExtractCost = 0; 1814 for (ExternalUser &EU : ExternalUses) { 1815 // We only add extract cost once for the same scalar. 1816 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1817 continue; 1818 1819 // Uses by ephemeral values are free (because the ephemeral value will be 1820 // removed prior to code generation, and so the extraction will be 1821 // removed as well). 1822 if (EphValues.count(EU.User)) 1823 continue; 1824 1825 // If we plan to rewrite the tree in a smaller type, we will need to sign 1826 // extend the extracted value back to the original type. Here, we account 1827 // for the extract and the added cost of the sign extend if needed. 1828 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1829 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1830 if (MinBWs.count(ScalarRoot)) { 1831 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 1832 VecTy = VectorType::get(MinTy, BundleWidth); 1833 ExtractCost += 1834 TTI->getCastInstrCost(Instruction::SExt, EU.Scalar->getType(), MinTy); 1835 } 1836 ExtractCost += 1837 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1838 } 1839 1840 int SpillCost = getSpillCost(); 1841 Cost += SpillCost + ExtractCost; 1842 1843 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1844 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1845 << "SLP: Total Cost = " << Cost << ".\n"); 1846 return Cost; 1847 } 1848 1849 int BoUpSLP::getGatherCost(Type *Ty) { 1850 int Cost = 0; 1851 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1852 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1853 return Cost; 1854 } 1855 1856 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1857 // Find the type of the operands in VL. 1858 Type *ScalarTy = VL[0]->getType(); 1859 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1860 ScalarTy = SI->getValueOperand()->getType(); 1861 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1862 // Find the cost of inserting/extracting values from the vector. 1863 return getGatherCost(VecTy); 1864 } 1865 1866 // Reorder commutative operations in alternate shuffle if the resulting vectors 1867 // are consecutive loads. This would allow us to vectorize the tree. 1868 // If we have something like- 1869 // load a[0] - load b[0] 1870 // load b[1] + load a[1] 1871 // load a[2] - load b[2] 1872 // load a[3] + load b[3] 1873 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1874 // code. 1875 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1876 SmallVectorImpl<Value *> &Left, 1877 SmallVectorImpl<Value *> &Right) { 1878 // Push left and right operands of binary operation into Left and Right 1879 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1880 Left.push_back(cast<Instruction>(VL[i])->getOperand(0)); 1881 Right.push_back(cast<Instruction>(VL[i])->getOperand(1)); 1882 } 1883 1884 // Reorder if we have a commutative operation and consecutive access 1885 // are on either side of the alternate instructions. 1886 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1887 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1888 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1889 Instruction *VL1 = cast<Instruction>(VL[j]); 1890 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1891 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1892 std::swap(Left[j], Right[j]); 1893 continue; 1894 } else if (VL2->isCommutative() && 1895 isConsecutiveAccess(L, L1, *DL, *SE)) { 1896 std::swap(Left[j + 1], Right[j + 1]); 1897 continue; 1898 } 1899 // else unchanged 1900 } 1901 } 1902 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 1903 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 1904 Instruction *VL1 = cast<Instruction>(VL[j]); 1905 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1906 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1907 std::swap(Left[j], Right[j]); 1908 continue; 1909 } else if (VL2->isCommutative() && 1910 isConsecutiveAccess(L, L1, *DL, *SE)) { 1911 std::swap(Left[j + 1], Right[j + 1]); 1912 continue; 1913 } 1914 // else unchanged 1915 } 1916 } 1917 } 1918 } 1919 1920 // Return true if I should be commuted before adding it's left and right 1921 // operands to the arrays Left and Right. 1922 // 1923 // The vectorizer is trying to either have all elements one side being 1924 // instruction with the same opcode to enable further vectorization, or having 1925 // a splat to lower the vectorizing cost. 1926 static bool shouldReorderOperands(int i, Instruction &I, 1927 SmallVectorImpl<Value *> &Left, 1928 SmallVectorImpl<Value *> &Right, 1929 bool AllSameOpcodeLeft, 1930 bool AllSameOpcodeRight, bool SplatLeft, 1931 bool SplatRight) { 1932 Value *VLeft = I.getOperand(0); 1933 Value *VRight = I.getOperand(1); 1934 // If we have "SplatRight", try to see if commuting is needed to preserve it. 1935 if (SplatRight) { 1936 if (VRight == Right[i - 1]) 1937 // Preserve SplatRight 1938 return false; 1939 if (VLeft == Right[i - 1]) { 1940 // Commuting would preserve SplatRight, but we don't want to break 1941 // SplatLeft either, i.e. preserve the original order if possible. 1942 // (FIXME: why do we care?) 1943 if (SplatLeft && VLeft == Left[i - 1]) 1944 return false; 1945 return true; 1946 } 1947 } 1948 // Symmetrically handle Right side. 1949 if (SplatLeft) { 1950 if (VLeft == Left[i - 1]) 1951 // Preserve SplatLeft 1952 return false; 1953 if (VRight == Left[i - 1]) 1954 return true; 1955 } 1956 1957 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 1958 Instruction *IRight = dyn_cast<Instruction>(VRight); 1959 1960 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 1961 // it and not the right, in this case we want to commute. 1962 if (AllSameOpcodeRight) { 1963 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 1964 if (IRight && RightPrevOpcode == IRight->getOpcode()) 1965 // Do not commute, a match on the right preserves AllSameOpcodeRight 1966 return false; 1967 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 1968 // We have a match and may want to commute, but first check if there is 1969 // not also a match on the existing operands on the Left to preserve 1970 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 1971 // (FIXME: why do we care?) 1972 if (AllSameOpcodeLeft && ILeft && 1973 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 1974 return false; 1975 return true; 1976 } 1977 } 1978 // Symmetrically handle Left side. 1979 if (AllSameOpcodeLeft) { 1980 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 1981 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 1982 return false; 1983 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 1984 return true; 1985 } 1986 return false; 1987 } 1988 1989 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1990 SmallVectorImpl<Value *> &Left, 1991 SmallVectorImpl<Value *> &Right) { 1992 1993 if (VL.size()) { 1994 // Peel the first iteration out of the loop since there's nothing 1995 // interesting to do anyway and it simplifies the checks in the loop. 1996 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 1997 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 1998 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 1999 // Favor having instruction to the right. FIXME: why? 2000 std::swap(VLeft, VRight); 2001 Left.push_back(VLeft); 2002 Right.push_back(VRight); 2003 } 2004 2005 // Keep track if we have instructions with all the same opcode on one side. 2006 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2007 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2008 // Keep track if we have one side with all the same value (broadcast). 2009 bool SplatLeft = true; 2010 bool SplatRight = true; 2011 2012 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2013 Instruction *I = cast<Instruction>(VL[i]); 2014 assert(I->isCommutative() && "Can only process commutative instruction"); 2015 // Commute to favor either a splat or maximizing having the same opcodes on 2016 // one side. 2017 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2018 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2019 Left.push_back(I->getOperand(1)); 2020 Right.push_back(I->getOperand(0)); 2021 } else { 2022 Left.push_back(I->getOperand(0)); 2023 Right.push_back(I->getOperand(1)); 2024 } 2025 // Update Splat* and AllSameOpcode* after the insertion. 2026 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2027 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2028 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2029 (cast<Instruction>(Left[i - 1])->getOpcode() == 2030 cast<Instruction>(Left[i])->getOpcode()); 2031 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2032 (cast<Instruction>(Right[i - 1])->getOpcode() == 2033 cast<Instruction>(Right[i])->getOpcode()); 2034 } 2035 2036 // If one operand end up being broadcast, return this operand order. 2037 if (SplatRight || SplatLeft) 2038 return; 2039 2040 // Finally check if we can get longer vectorizable chain by reordering 2041 // without breaking the good operand order detected above. 2042 // E.g. If we have something like- 2043 // load a[0] load b[0] 2044 // load b[1] load a[1] 2045 // load a[2] load b[2] 2046 // load a[3] load b[3] 2047 // Reordering the second load b[1] load a[1] would allow us to vectorize 2048 // this code and we still retain AllSameOpcode property. 2049 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2050 // such as- 2051 // add a[0],c[0] load b[0] 2052 // add a[1],c[2] load b[1] 2053 // b[2] load b[2] 2054 // add a[3],c[3] load b[3] 2055 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2056 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2057 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2058 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2059 std::swap(Left[j + 1], Right[j + 1]); 2060 continue; 2061 } 2062 } 2063 } 2064 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2065 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2066 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2067 std::swap(Left[j + 1], Right[j + 1]); 2068 continue; 2069 } 2070 } 2071 } 2072 // else unchanged 2073 } 2074 } 2075 2076 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2077 Instruction *VL0 = cast<Instruction>(VL[0]); 2078 BasicBlock::iterator NextInst(VL0); 2079 ++NextInst; 2080 Builder.SetInsertPoint(VL0->getParent(), NextInst); 2081 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 2082 } 2083 2084 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2085 Value *Vec = UndefValue::get(Ty); 2086 // Generate the 'InsertElement' instruction. 2087 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2088 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2089 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2090 GatherSeq.insert(Insrt); 2091 CSEBlocks.insert(Insrt->getParent()); 2092 2093 // Add to our 'need-to-extract' list. 2094 if (ScalarToTreeEntry.count(VL[i])) { 2095 int Idx = ScalarToTreeEntry[VL[i]]; 2096 TreeEntry *E = &VectorizableTree[Idx]; 2097 // Find which lane we need to extract. 2098 int FoundLane = -1; 2099 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2100 // Is this the lane of the scalar that we are looking for ? 2101 if (E->Scalars[Lane] == VL[i]) { 2102 FoundLane = Lane; 2103 break; 2104 } 2105 } 2106 assert(FoundLane >= 0 && "Could not find the correct lane"); 2107 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2108 } 2109 } 2110 } 2111 2112 return Vec; 2113 } 2114 2115 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2116 SmallDenseMap<Value*, int>::const_iterator Entry 2117 = ScalarToTreeEntry.find(VL[0]); 2118 if (Entry != ScalarToTreeEntry.end()) { 2119 int Idx = Entry->second; 2120 const TreeEntry *En = &VectorizableTree[Idx]; 2121 if (En->isSame(VL) && En->VectorizedValue) 2122 return En->VectorizedValue; 2123 } 2124 return nullptr; 2125 } 2126 2127 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2128 if (ScalarToTreeEntry.count(VL[0])) { 2129 int Idx = ScalarToTreeEntry[VL[0]]; 2130 TreeEntry *E = &VectorizableTree[Idx]; 2131 if (E->isSame(VL)) 2132 return vectorizeTree(E); 2133 } 2134 2135 Type *ScalarTy = VL[0]->getType(); 2136 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2137 ScalarTy = SI->getValueOperand()->getType(); 2138 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2139 2140 return Gather(VL, VecTy); 2141 } 2142 2143 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2144 IRBuilder<>::InsertPointGuard Guard(Builder); 2145 2146 if (E->VectorizedValue) { 2147 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2148 return E->VectorizedValue; 2149 } 2150 2151 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2152 Type *ScalarTy = VL0->getType(); 2153 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2154 ScalarTy = SI->getValueOperand()->getType(); 2155 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2156 2157 if (E->NeedToGather) { 2158 setInsertPointAfterBundle(E->Scalars); 2159 return Gather(E->Scalars, VecTy); 2160 } 2161 2162 unsigned Opcode = getSameOpcode(E->Scalars); 2163 2164 switch (Opcode) { 2165 case Instruction::PHI: { 2166 PHINode *PH = dyn_cast<PHINode>(VL0); 2167 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2168 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2169 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2170 E->VectorizedValue = NewPhi; 2171 2172 // PHINodes may have multiple entries from the same block. We want to 2173 // visit every block once. 2174 SmallSet<BasicBlock*, 4> VisitedBBs; 2175 2176 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2177 ValueList Operands; 2178 BasicBlock *IBB = PH->getIncomingBlock(i); 2179 2180 if (!VisitedBBs.insert(IBB).second) { 2181 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2182 continue; 2183 } 2184 2185 // Prepare the operand vector. 2186 for (Value *V : E->Scalars) 2187 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2188 2189 Builder.SetInsertPoint(IBB->getTerminator()); 2190 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2191 Value *Vec = vectorizeTree(Operands); 2192 NewPhi->addIncoming(Vec, IBB); 2193 } 2194 2195 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2196 "Invalid number of incoming values"); 2197 return NewPhi; 2198 } 2199 2200 case Instruction::ExtractElement: { 2201 if (CanReuseExtract(E->Scalars)) { 2202 Value *V = VL0->getOperand(0); 2203 E->VectorizedValue = V; 2204 return V; 2205 } 2206 return Gather(E->Scalars, VecTy); 2207 } 2208 case Instruction::ZExt: 2209 case Instruction::SExt: 2210 case Instruction::FPToUI: 2211 case Instruction::FPToSI: 2212 case Instruction::FPExt: 2213 case Instruction::PtrToInt: 2214 case Instruction::IntToPtr: 2215 case Instruction::SIToFP: 2216 case Instruction::UIToFP: 2217 case Instruction::Trunc: 2218 case Instruction::FPTrunc: 2219 case Instruction::BitCast: { 2220 ValueList INVL; 2221 for (Value *V : E->Scalars) 2222 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2223 2224 setInsertPointAfterBundle(E->Scalars); 2225 2226 Value *InVec = vectorizeTree(INVL); 2227 2228 if (Value *V = alreadyVectorized(E->Scalars)) 2229 return V; 2230 2231 CastInst *CI = dyn_cast<CastInst>(VL0); 2232 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2233 E->VectorizedValue = V; 2234 ++NumVectorInstructions; 2235 return V; 2236 } 2237 case Instruction::FCmp: 2238 case Instruction::ICmp: { 2239 ValueList LHSV, RHSV; 2240 for (Value *V : E->Scalars) { 2241 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2242 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2243 } 2244 2245 setInsertPointAfterBundle(E->Scalars); 2246 2247 Value *L = vectorizeTree(LHSV); 2248 Value *R = vectorizeTree(RHSV); 2249 2250 if (Value *V = alreadyVectorized(E->Scalars)) 2251 return V; 2252 2253 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2254 Value *V; 2255 if (Opcode == Instruction::FCmp) 2256 V = Builder.CreateFCmp(P0, L, R); 2257 else 2258 V = Builder.CreateICmp(P0, L, R); 2259 2260 E->VectorizedValue = V; 2261 ++NumVectorInstructions; 2262 return V; 2263 } 2264 case Instruction::Select: { 2265 ValueList TrueVec, FalseVec, CondVec; 2266 for (Value *V : E->Scalars) { 2267 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2268 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2269 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2270 } 2271 2272 setInsertPointAfterBundle(E->Scalars); 2273 2274 Value *Cond = vectorizeTree(CondVec); 2275 Value *True = vectorizeTree(TrueVec); 2276 Value *False = vectorizeTree(FalseVec); 2277 2278 if (Value *V = alreadyVectorized(E->Scalars)) 2279 return V; 2280 2281 Value *V = Builder.CreateSelect(Cond, True, False); 2282 E->VectorizedValue = V; 2283 ++NumVectorInstructions; 2284 return V; 2285 } 2286 case Instruction::Add: 2287 case Instruction::FAdd: 2288 case Instruction::Sub: 2289 case Instruction::FSub: 2290 case Instruction::Mul: 2291 case Instruction::FMul: 2292 case Instruction::UDiv: 2293 case Instruction::SDiv: 2294 case Instruction::FDiv: 2295 case Instruction::URem: 2296 case Instruction::SRem: 2297 case Instruction::FRem: 2298 case Instruction::Shl: 2299 case Instruction::LShr: 2300 case Instruction::AShr: 2301 case Instruction::And: 2302 case Instruction::Or: 2303 case Instruction::Xor: { 2304 ValueList LHSVL, RHSVL; 2305 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2306 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2307 else 2308 for (Value *V : E->Scalars) { 2309 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2310 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2311 } 2312 2313 setInsertPointAfterBundle(E->Scalars); 2314 2315 Value *LHS = vectorizeTree(LHSVL); 2316 Value *RHS = vectorizeTree(RHSVL); 2317 2318 if (LHS == RHS && isa<Instruction>(LHS)) { 2319 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2320 } 2321 2322 if (Value *V = alreadyVectorized(E->Scalars)) 2323 return V; 2324 2325 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2326 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2327 E->VectorizedValue = V; 2328 propagateIRFlags(E->VectorizedValue, E->Scalars); 2329 ++NumVectorInstructions; 2330 2331 if (Instruction *I = dyn_cast<Instruction>(V)) 2332 return propagateMetadata(I, E->Scalars); 2333 2334 return V; 2335 } 2336 case Instruction::Load: { 2337 // Loads are inserted at the head of the tree because we don't want to 2338 // sink them all the way down past store instructions. 2339 setInsertPointAfterBundle(E->Scalars); 2340 2341 LoadInst *LI = cast<LoadInst>(VL0); 2342 Type *ScalarLoadTy = LI->getType(); 2343 unsigned AS = LI->getPointerAddressSpace(); 2344 2345 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2346 VecTy->getPointerTo(AS)); 2347 2348 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2349 // ExternalUses list to make sure that an extract will be generated in the 2350 // future. 2351 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2352 ExternalUses.push_back( 2353 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2354 2355 unsigned Alignment = LI->getAlignment(); 2356 LI = Builder.CreateLoad(VecPtr); 2357 if (!Alignment) { 2358 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2359 } 2360 LI->setAlignment(Alignment); 2361 E->VectorizedValue = LI; 2362 ++NumVectorInstructions; 2363 return propagateMetadata(LI, E->Scalars); 2364 } 2365 case Instruction::Store: { 2366 StoreInst *SI = cast<StoreInst>(VL0); 2367 unsigned Alignment = SI->getAlignment(); 2368 unsigned AS = SI->getPointerAddressSpace(); 2369 2370 ValueList ValueOp; 2371 for (Value *V : E->Scalars) 2372 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2373 2374 setInsertPointAfterBundle(E->Scalars); 2375 2376 Value *VecValue = vectorizeTree(ValueOp); 2377 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2378 VecTy->getPointerTo(AS)); 2379 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2380 2381 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2382 // ExternalUses list to make sure that an extract will be generated in the 2383 // future. 2384 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2385 ExternalUses.push_back( 2386 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2387 2388 if (!Alignment) { 2389 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2390 } 2391 S->setAlignment(Alignment); 2392 E->VectorizedValue = S; 2393 ++NumVectorInstructions; 2394 return propagateMetadata(S, E->Scalars); 2395 } 2396 case Instruction::GetElementPtr: { 2397 setInsertPointAfterBundle(E->Scalars); 2398 2399 ValueList Op0VL; 2400 for (Value *V : E->Scalars) 2401 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2402 2403 Value *Op0 = vectorizeTree(Op0VL); 2404 2405 std::vector<Value *> OpVecs; 2406 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2407 ++j) { 2408 ValueList OpVL; 2409 for (Value *V : E->Scalars) 2410 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2411 2412 Value *OpVec = vectorizeTree(OpVL); 2413 OpVecs.push_back(OpVec); 2414 } 2415 2416 Value *V = Builder.CreateGEP( 2417 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2418 E->VectorizedValue = V; 2419 ++NumVectorInstructions; 2420 2421 if (Instruction *I = dyn_cast<Instruction>(V)) 2422 return propagateMetadata(I, E->Scalars); 2423 2424 return V; 2425 } 2426 case Instruction::Call: { 2427 CallInst *CI = cast<CallInst>(VL0); 2428 setInsertPointAfterBundle(E->Scalars); 2429 Function *FI; 2430 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2431 Value *ScalarArg = nullptr; 2432 if (CI && (FI = CI->getCalledFunction())) { 2433 IID = FI->getIntrinsicID(); 2434 } 2435 std::vector<Value *> OpVecs; 2436 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2437 ValueList OpVL; 2438 // ctlz,cttz and powi are special intrinsics whose second argument is 2439 // a scalar. This argument should not be vectorized. 2440 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2441 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2442 ScalarArg = CEI->getArgOperand(j); 2443 OpVecs.push_back(CEI->getArgOperand(j)); 2444 continue; 2445 } 2446 for (Value *V : E->Scalars) { 2447 CallInst *CEI = cast<CallInst>(V); 2448 OpVL.push_back(CEI->getArgOperand(j)); 2449 } 2450 2451 Value *OpVec = vectorizeTree(OpVL); 2452 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2453 OpVecs.push_back(OpVec); 2454 } 2455 2456 Module *M = F->getParent(); 2457 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2458 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2459 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2460 Value *V = Builder.CreateCall(CF, OpVecs); 2461 2462 // The scalar argument uses an in-tree scalar so we add the new vectorized 2463 // call to ExternalUses list to make sure that an extract will be 2464 // generated in the future. 2465 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2466 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2467 2468 E->VectorizedValue = V; 2469 ++NumVectorInstructions; 2470 return V; 2471 } 2472 case Instruction::ShuffleVector: { 2473 ValueList LHSVL, RHSVL; 2474 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2475 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2476 setInsertPointAfterBundle(E->Scalars); 2477 2478 Value *LHS = vectorizeTree(LHSVL); 2479 Value *RHS = vectorizeTree(RHSVL); 2480 2481 if (Value *V = alreadyVectorized(E->Scalars)) 2482 return V; 2483 2484 // Create a vector of LHS op1 RHS 2485 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2486 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2487 2488 // Create a vector of LHS op2 RHS 2489 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2490 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2491 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2492 2493 // Create shuffle to take alternate operations from the vector. 2494 // Also, gather up odd and even scalar ops to propagate IR flags to 2495 // each vector operation. 2496 ValueList OddScalars, EvenScalars; 2497 unsigned e = E->Scalars.size(); 2498 SmallVector<Constant *, 8> Mask(e); 2499 for (unsigned i = 0; i < e; ++i) { 2500 if (i & 1) { 2501 Mask[i] = Builder.getInt32(e + i); 2502 OddScalars.push_back(E->Scalars[i]); 2503 } else { 2504 Mask[i] = Builder.getInt32(i); 2505 EvenScalars.push_back(E->Scalars[i]); 2506 } 2507 } 2508 2509 Value *ShuffleMask = ConstantVector::get(Mask); 2510 propagateIRFlags(V0, EvenScalars); 2511 propagateIRFlags(V1, OddScalars); 2512 2513 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2514 E->VectorizedValue = V; 2515 ++NumVectorInstructions; 2516 if (Instruction *I = dyn_cast<Instruction>(V)) 2517 return propagateMetadata(I, E->Scalars); 2518 2519 return V; 2520 } 2521 default: 2522 llvm_unreachable("unknown inst"); 2523 } 2524 return nullptr; 2525 } 2526 2527 Value *BoUpSLP::vectorizeTree() { 2528 2529 // All blocks must be scheduled before any instructions are inserted. 2530 for (auto &BSIter : BlocksSchedules) { 2531 scheduleBlock(BSIter.second.get()); 2532 } 2533 2534 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2535 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2536 2537 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2538 // vectorized root. InstCombine will then rewrite the entire expression. We 2539 // sign extend the extracted values below. 2540 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2541 if (MinBWs.count(ScalarRoot)) { 2542 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2543 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2544 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2545 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 2546 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2547 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2548 VectorizableTree[0].VectorizedValue = Trunc; 2549 } 2550 2551 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2552 2553 // Extract all of the elements with the external uses. 2554 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 2555 it != e; ++it) { 2556 Value *Scalar = it->Scalar; 2557 llvm::User *User = it->User; 2558 2559 // Skip users that we already RAUW. This happens when one instruction 2560 // has multiple uses of the same value. 2561 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2562 Scalar->user_end()) 2563 continue; 2564 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2565 2566 int Idx = ScalarToTreeEntry[Scalar]; 2567 TreeEntry *E = &VectorizableTree[Idx]; 2568 assert(!E->NeedToGather && "Extracting from a gather list"); 2569 2570 Value *Vec = E->VectorizedValue; 2571 assert(Vec && "Can't find vectorizable value"); 2572 2573 Value *Lane = Builder.getInt32(it->Lane); 2574 // Generate extracts for out-of-tree users. 2575 // Find the insertion point for the extractelement lane. 2576 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2577 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2578 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2579 if (PH->getIncomingValue(i) == Scalar) { 2580 TerminatorInst *IncomingTerminator = 2581 PH->getIncomingBlock(i)->getTerminator(); 2582 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2583 Builder.SetInsertPoint(VecI->getParent(), 2584 std::next(VecI->getIterator())); 2585 } else { 2586 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2587 } 2588 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2589 if (MinBWs.count(ScalarRoot)) 2590 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2591 CSEBlocks.insert(PH->getIncomingBlock(i)); 2592 PH->setOperand(i, Ex); 2593 } 2594 } 2595 } else { 2596 Builder.SetInsertPoint(cast<Instruction>(User)); 2597 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2598 if (MinBWs.count(ScalarRoot)) 2599 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2600 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2601 User->replaceUsesOfWith(Scalar, Ex); 2602 } 2603 } else { 2604 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2605 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2606 if (MinBWs.count(ScalarRoot)) 2607 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2608 CSEBlocks.insert(&F->getEntryBlock()); 2609 User->replaceUsesOfWith(Scalar, Ex); 2610 } 2611 2612 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2613 } 2614 2615 // For each vectorized value: 2616 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 2617 TreeEntry *Entry = &VectorizableTree[EIdx]; 2618 2619 // For each lane: 2620 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2621 Value *Scalar = Entry->Scalars[Lane]; 2622 // No need to handle users of gathered values. 2623 if (Entry->NeedToGather) 2624 continue; 2625 2626 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2627 2628 Type *Ty = Scalar->getType(); 2629 if (!Ty->isVoidTy()) { 2630 #ifndef NDEBUG 2631 for (User *U : Scalar->users()) { 2632 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2633 2634 assert((ScalarToTreeEntry.count(U) || 2635 // It is legal to replace users in the ignorelist by undef. 2636 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2637 UserIgnoreList.end())) && 2638 "Replacing out-of-tree value with undef"); 2639 } 2640 #endif 2641 Value *Undef = UndefValue::get(Ty); 2642 Scalar->replaceAllUsesWith(Undef); 2643 } 2644 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2645 eraseInstruction(cast<Instruction>(Scalar)); 2646 } 2647 } 2648 2649 Builder.ClearInsertionPoint(); 2650 2651 return VectorizableTree[0].VectorizedValue; 2652 } 2653 2654 void BoUpSLP::optimizeGatherSequence() { 2655 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2656 << " gather sequences instructions.\n"); 2657 // LICM InsertElementInst sequences. 2658 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 2659 e = GatherSeq.end(); it != e; ++it) { 2660 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 2661 2662 if (!Insert) 2663 continue; 2664 2665 // Check if this block is inside a loop. 2666 Loop *L = LI->getLoopFor(Insert->getParent()); 2667 if (!L) 2668 continue; 2669 2670 // Check if it has a preheader. 2671 BasicBlock *PreHeader = L->getLoopPreheader(); 2672 if (!PreHeader) 2673 continue; 2674 2675 // If the vector or the element that we insert into it are 2676 // instructions that are defined in this basic block then we can't 2677 // hoist this instruction. 2678 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2679 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2680 if (CurrVec && L->contains(CurrVec)) 2681 continue; 2682 if (NewElem && L->contains(NewElem)) 2683 continue; 2684 2685 // We can hoist this instruction. Move it to the pre-header. 2686 Insert->moveBefore(PreHeader->getTerminator()); 2687 } 2688 2689 // Make a list of all reachable blocks in our CSE queue. 2690 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2691 CSEWorkList.reserve(CSEBlocks.size()); 2692 for (BasicBlock *BB : CSEBlocks) 2693 if (DomTreeNode *N = DT->getNode(BB)) { 2694 assert(DT->isReachableFromEntry(N)); 2695 CSEWorkList.push_back(N); 2696 } 2697 2698 // Sort blocks by domination. This ensures we visit a block after all blocks 2699 // dominating it are visited. 2700 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2701 [this](const DomTreeNode *A, const DomTreeNode *B) { 2702 return DT->properlyDominates(A, B); 2703 }); 2704 2705 // Perform O(N^2) search over the gather sequences and merge identical 2706 // instructions. TODO: We can further optimize this scan if we split the 2707 // instructions into different buckets based on the insert lane. 2708 SmallVector<Instruction *, 16> Visited; 2709 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2710 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2711 "Worklist not sorted properly!"); 2712 BasicBlock *BB = (*I)->getBlock(); 2713 // For all instructions in blocks containing gather sequences: 2714 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2715 Instruction *In = &*it++; 2716 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2717 continue; 2718 2719 // Check if we can replace this instruction with any of the 2720 // visited instructions. 2721 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 2722 ve = Visited.end(); 2723 v != ve; ++v) { 2724 if (In->isIdenticalTo(*v) && 2725 DT->dominates((*v)->getParent(), In->getParent())) { 2726 In->replaceAllUsesWith(*v); 2727 eraseInstruction(In); 2728 In = nullptr; 2729 break; 2730 } 2731 } 2732 if (In) { 2733 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2734 Visited.push_back(In); 2735 } 2736 } 2737 } 2738 CSEBlocks.clear(); 2739 GatherSeq.clear(); 2740 } 2741 2742 // Groups the instructions to a bundle (which is then a single scheduling entity) 2743 // and schedules instructions until the bundle gets ready. 2744 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2745 BoUpSLP *SLP) { 2746 if (isa<PHINode>(VL[0])) 2747 return true; 2748 2749 // Initialize the instruction bundle. 2750 Instruction *OldScheduleEnd = ScheduleEnd; 2751 ScheduleData *PrevInBundle = nullptr; 2752 ScheduleData *Bundle = nullptr; 2753 bool ReSchedule = false; 2754 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2755 2756 // Make sure that the scheduling region contains all 2757 // instructions of the bundle. 2758 for (Value *V : VL) { 2759 if (!extendSchedulingRegion(V)) 2760 return false; 2761 } 2762 2763 for (Value *V : VL) { 2764 ScheduleData *BundleMember = getScheduleData(V); 2765 assert(BundleMember && 2766 "no ScheduleData for bundle member (maybe not in same basic block)"); 2767 if (BundleMember->IsScheduled) { 2768 // A bundle member was scheduled as single instruction before and now 2769 // needs to be scheduled as part of the bundle. We just get rid of the 2770 // existing schedule. 2771 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2772 << " was already scheduled\n"); 2773 ReSchedule = true; 2774 } 2775 assert(BundleMember->isSchedulingEntity() && 2776 "bundle member already part of other bundle"); 2777 if (PrevInBundle) { 2778 PrevInBundle->NextInBundle = BundleMember; 2779 } else { 2780 Bundle = BundleMember; 2781 } 2782 BundleMember->UnscheduledDepsInBundle = 0; 2783 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2784 2785 // Group the instructions to a bundle. 2786 BundleMember->FirstInBundle = Bundle; 2787 PrevInBundle = BundleMember; 2788 } 2789 if (ScheduleEnd != OldScheduleEnd) { 2790 // The scheduling region got new instructions at the lower end (or it is a 2791 // new region for the first bundle). This makes it necessary to 2792 // recalculate all dependencies. 2793 // It is seldom that this needs to be done a second time after adding the 2794 // initial bundle to the region. 2795 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2796 ScheduleData *SD = getScheduleData(I); 2797 SD->clearDependencies(); 2798 } 2799 ReSchedule = true; 2800 } 2801 if (ReSchedule) { 2802 resetSchedule(); 2803 initialFillReadyList(ReadyInsts); 2804 } 2805 2806 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2807 << BB->getName() << "\n"); 2808 2809 calculateDependencies(Bundle, true, SLP); 2810 2811 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2812 // means that there are no cyclic dependencies and we can schedule it. 2813 // Note that's important that we don't "schedule" the bundle yet (see 2814 // cancelScheduling). 2815 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2816 2817 ScheduleData *pickedSD = ReadyInsts.back(); 2818 ReadyInsts.pop_back(); 2819 2820 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2821 schedule(pickedSD, ReadyInsts); 2822 } 2823 } 2824 if (!Bundle->isReady()) { 2825 cancelScheduling(VL); 2826 return false; 2827 } 2828 return true; 2829 } 2830 2831 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2832 if (isa<PHINode>(VL[0])) 2833 return; 2834 2835 ScheduleData *Bundle = getScheduleData(VL[0]); 2836 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2837 assert(!Bundle->IsScheduled && 2838 "Can't cancel bundle which is already scheduled"); 2839 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2840 "tried to unbundle something which is not a bundle"); 2841 2842 // Un-bundle: make single instructions out of the bundle. 2843 ScheduleData *BundleMember = Bundle; 2844 while (BundleMember) { 2845 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2846 BundleMember->FirstInBundle = BundleMember; 2847 ScheduleData *Next = BundleMember->NextInBundle; 2848 BundleMember->NextInBundle = nullptr; 2849 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2850 if (BundleMember->UnscheduledDepsInBundle == 0) { 2851 ReadyInsts.insert(BundleMember); 2852 } 2853 BundleMember = Next; 2854 } 2855 } 2856 2857 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2858 if (getScheduleData(V)) 2859 return true; 2860 Instruction *I = dyn_cast<Instruction>(V); 2861 assert(I && "bundle member must be an instruction"); 2862 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2863 if (!ScheduleStart) { 2864 // It's the first instruction in the new region. 2865 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2866 ScheduleStart = I; 2867 ScheduleEnd = I->getNextNode(); 2868 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2869 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2870 return true; 2871 } 2872 // Search up and down at the same time, because we don't know if the new 2873 // instruction is above or below the existing scheduling region. 2874 BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); 2875 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2876 BasicBlock::iterator DownIter(ScheduleEnd); 2877 BasicBlock::iterator LowerEnd = BB->end(); 2878 for (;;) { 2879 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 2880 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 2881 return false; 2882 } 2883 2884 if (UpIter != UpperEnd) { 2885 if (&*UpIter == I) { 2886 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2887 ScheduleStart = I; 2888 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2889 return true; 2890 } 2891 UpIter++; 2892 } 2893 if (DownIter != LowerEnd) { 2894 if (&*DownIter == I) { 2895 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2896 nullptr); 2897 ScheduleEnd = I->getNextNode(); 2898 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2899 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 2900 return true; 2901 } 2902 DownIter++; 2903 } 2904 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 2905 "instruction not found in block"); 2906 } 2907 return true; 2908 } 2909 2910 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 2911 Instruction *ToI, 2912 ScheduleData *PrevLoadStore, 2913 ScheduleData *NextLoadStore) { 2914 ScheduleData *CurrentLoadStore = PrevLoadStore; 2915 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 2916 ScheduleData *SD = ScheduleDataMap[I]; 2917 if (!SD) { 2918 // Allocate a new ScheduleData for the instruction. 2919 if (ChunkPos >= ChunkSize) { 2920 ScheduleDataChunks.push_back( 2921 llvm::make_unique<ScheduleData[]>(ChunkSize)); 2922 ChunkPos = 0; 2923 } 2924 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 2925 ScheduleDataMap[I] = SD; 2926 SD->Inst = I; 2927 } 2928 assert(!isInSchedulingRegion(SD) && 2929 "new ScheduleData already in scheduling region"); 2930 SD->init(SchedulingRegionID); 2931 2932 if (I->mayReadOrWriteMemory()) { 2933 // Update the linked list of memory accessing instructions. 2934 if (CurrentLoadStore) { 2935 CurrentLoadStore->NextLoadStore = SD; 2936 } else { 2937 FirstLoadStoreInRegion = SD; 2938 } 2939 CurrentLoadStore = SD; 2940 } 2941 } 2942 if (NextLoadStore) { 2943 if (CurrentLoadStore) 2944 CurrentLoadStore->NextLoadStore = NextLoadStore; 2945 } else { 2946 LastLoadStoreInRegion = CurrentLoadStore; 2947 } 2948 } 2949 2950 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 2951 bool InsertInReadyList, 2952 BoUpSLP *SLP) { 2953 assert(SD->isSchedulingEntity()); 2954 2955 SmallVector<ScheduleData *, 10> WorkList; 2956 WorkList.push_back(SD); 2957 2958 while (!WorkList.empty()) { 2959 ScheduleData *SD = WorkList.back(); 2960 WorkList.pop_back(); 2961 2962 ScheduleData *BundleMember = SD; 2963 while (BundleMember) { 2964 assert(isInSchedulingRegion(BundleMember)); 2965 if (!BundleMember->hasValidDependencies()) { 2966 2967 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 2968 BundleMember->Dependencies = 0; 2969 BundleMember->resetUnscheduledDeps(); 2970 2971 // Handle def-use chain dependencies. 2972 for (User *U : BundleMember->Inst->users()) { 2973 if (isa<Instruction>(U)) { 2974 ScheduleData *UseSD = getScheduleData(U); 2975 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 2976 BundleMember->Dependencies++; 2977 ScheduleData *DestBundle = UseSD->FirstInBundle; 2978 if (!DestBundle->IsScheduled) { 2979 BundleMember->incrementUnscheduledDeps(1); 2980 } 2981 if (!DestBundle->hasValidDependencies()) { 2982 WorkList.push_back(DestBundle); 2983 } 2984 } 2985 } else { 2986 // I'm not sure if this can ever happen. But we need to be safe. 2987 // This lets the instruction/bundle never be scheduled and 2988 // eventually disable vectorization. 2989 BundleMember->Dependencies++; 2990 BundleMember->incrementUnscheduledDeps(1); 2991 } 2992 } 2993 2994 // Handle the memory dependencies. 2995 ScheduleData *DepDest = BundleMember->NextLoadStore; 2996 if (DepDest) { 2997 Instruction *SrcInst = BundleMember->Inst; 2998 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 2999 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3000 unsigned numAliased = 0; 3001 unsigned DistToSrc = 1; 3002 3003 while (DepDest) { 3004 assert(isInSchedulingRegion(DepDest)); 3005 3006 // We have two limits to reduce the complexity: 3007 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3008 // SLP->isAliased (which is the expensive part in this loop). 3009 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3010 // the whole loop (even if the loop is fast, it's quadratic). 3011 // It's important for the loop break condition (see below) to 3012 // check this limit even between two read-only instructions. 3013 if (DistToSrc >= MaxMemDepDistance || 3014 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3015 (numAliased >= AliasedCheckLimit || 3016 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3017 3018 // We increment the counter only if the locations are aliased 3019 // (instead of counting all alias checks). This gives a better 3020 // balance between reduced runtime and accurate dependencies. 3021 numAliased++; 3022 3023 DepDest->MemoryDependencies.push_back(BundleMember); 3024 BundleMember->Dependencies++; 3025 ScheduleData *DestBundle = DepDest->FirstInBundle; 3026 if (!DestBundle->IsScheduled) { 3027 BundleMember->incrementUnscheduledDeps(1); 3028 } 3029 if (!DestBundle->hasValidDependencies()) { 3030 WorkList.push_back(DestBundle); 3031 } 3032 } 3033 DepDest = DepDest->NextLoadStore; 3034 3035 // Example, explaining the loop break condition: Let's assume our 3036 // starting instruction is i0 and MaxMemDepDistance = 3. 3037 // 3038 // +--------v--v--v 3039 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3040 // +--------^--^--^ 3041 // 3042 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3043 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3044 // Previously we already added dependencies from i3 to i6,i7,i8 3045 // (because of MaxMemDepDistance). As we added a dependency from 3046 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3047 // and we can abort this loop at i6. 3048 if (DistToSrc >= 2 * MaxMemDepDistance) 3049 break; 3050 DistToSrc++; 3051 } 3052 } 3053 } 3054 BundleMember = BundleMember->NextInBundle; 3055 } 3056 if (InsertInReadyList && SD->isReady()) { 3057 ReadyInsts.push_back(SD); 3058 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3059 } 3060 } 3061 } 3062 3063 void BoUpSLP::BlockScheduling::resetSchedule() { 3064 assert(ScheduleStart && 3065 "tried to reset schedule on block which has not been scheduled"); 3066 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3067 ScheduleData *SD = getScheduleData(I); 3068 assert(isInSchedulingRegion(SD)); 3069 SD->IsScheduled = false; 3070 SD->resetUnscheduledDeps(); 3071 } 3072 ReadyInsts.clear(); 3073 } 3074 3075 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3076 3077 if (!BS->ScheduleStart) 3078 return; 3079 3080 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3081 3082 BS->resetSchedule(); 3083 3084 // For the real scheduling we use a more sophisticated ready-list: it is 3085 // sorted by the original instruction location. This lets the final schedule 3086 // be as close as possible to the original instruction order. 3087 struct ScheduleDataCompare { 3088 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3089 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3090 } 3091 }; 3092 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3093 3094 // Ensure that all dependency data is updated and fill the ready-list with 3095 // initial instructions. 3096 int Idx = 0; 3097 int NumToSchedule = 0; 3098 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3099 I = I->getNextNode()) { 3100 ScheduleData *SD = BS->getScheduleData(I); 3101 assert( 3102 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3103 "scheduler and vectorizer have different opinion on what is a bundle"); 3104 SD->FirstInBundle->SchedulingPriority = Idx++; 3105 if (SD->isSchedulingEntity()) { 3106 BS->calculateDependencies(SD, false, this); 3107 NumToSchedule++; 3108 } 3109 } 3110 BS->initialFillReadyList(ReadyInsts); 3111 3112 Instruction *LastScheduledInst = BS->ScheduleEnd; 3113 3114 // Do the "real" scheduling. 3115 while (!ReadyInsts.empty()) { 3116 ScheduleData *picked = *ReadyInsts.begin(); 3117 ReadyInsts.erase(ReadyInsts.begin()); 3118 3119 // Move the scheduled instruction(s) to their dedicated places, if not 3120 // there yet. 3121 ScheduleData *BundleMember = picked; 3122 while (BundleMember) { 3123 Instruction *pickedInst = BundleMember->Inst; 3124 if (LastScheduledInst->getNextNode() != pickedInst) { 3125 BS->BB->getInstList().remove(pickedInst); 3126 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3127 pickedInst); 3128 } 3129 LastScheduledInst = pickedInst; 3130 BundleMember = BundleMember->NextInBundle; 3131 } 3132 3133 BS->schedule(picked, ReadyInsts); 3134 NumToSchedule--; 3135 } 3136 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3137 3138 // Avoid duplicate scheduling of the block. 3139 BS->ScheduleStart = nullptr; 3140 } 3141 3142 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3143 // If V is a store, just return the width of the stored value without 3144 // traversing the expression tree. This is the common case. 3145 if (auto *Store = dyn_cast<StoreInst>(V)) 3146 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3147 3148 // If V is not a store, we can traverse the expression tree to find loads 3149 // that feed it. The type of the loaded value may indicate a more suitable 3150 // width than V's type. We want to base the vector element size on the width 3151 // of memory operations where possible. 3152 SmallVector<Instruction *, 16> Worklist; 3153 SmallPtrSet<Instruction *, 16> Visited; 3154 if (auto *I = dyn_cast<Instruction>(V)) 3155 Worklist.push_back(I); 3156 3157 // Traverse the expression tree in bottom-up order looking for loads. If we 3158 // encounter an instruciton we don't yet handle, we give up. 3159 auto MaxWidth = 0u; 3160 auto FoundUnknownInst = false; 3161 while (!Worklist.empty() && !FoundUnknownInst) { 3162 auto *I = Worklist.pop_back_val(); 3163 Visited.insert(I); 3164 3165 // We should only be looking at scalar instructions here. If the current 3166 // instruction has a vector type, give up. 3167 auto *Ty = I->getType(); 3168 if (isa<VectorType>(Ty)) 3169 FoundUnknownInst = true; 3170 3171 // If the current instruction is a load, update MaxWidth to reflect the 3172 // width of the loaded value. 3173 else if (isa<LoadInst>(I)) 3174 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3175 3176 // Otherwise, we need to visit the operands of the instruction. We only 3177 // handle the interesting cases from buildTree here. If an operand is an 3178 // instruction we haven't yet visited, we add it to the worklist. 3179 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3180 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3181 for (Use &U : I->operands()) 3182 if (auto *J = dyn_cast<Instruction>(U.get())) 3183 if (!Visited.count(J)) 3184 Worklist.push_back(J); 3185 } 3186 3187 // If we don't yet handle the instruction, give up. 3188 else 3189 FoundUnknownInst = true; 3190 } 3191 3192 // If we didn't encounter a memory access in the expression tree, or if we 3193 // gave up for some reason, just return the width of V. 3194 if (!MaxWidth || FoundUnknownInst) 3195 return DL->getTypeSizeInBits(V->getType()); 3196 3197 // Otherwise, return the maximum width we found. 3198 return MaxWidth; 3199 } 3200 3201 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3202 // smaller type with a truncation. We collect the values that will be demoted 3203 // in ToDemote and additional roots that require investigating in Roots. 3204 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3205 SmallVectorImpl<Value *> &ToDemote, 3206 SmallVectorImpl<Value *> &Roots) { 3207 3208 // We can always demote constants. 3209 if (isa<Constant>(V)) { 3210 ToDemote.push_back(V); 3211 return true; 3212 } 3213 3214 // If the value is not an instruction in the expression with only one use, it 3215 // cannot be demoted. 3216 auto *I = dyn_cast<Instruction>(V); 3217 if (!I || !I->hasOneUse() || !Expr.count(I)) 3218 return false; 3219 3220 switch (I->getOpcode()) { 3221 3222 // We can always demote truncations and extensions. Since truncations can 3223 // seed additional demotion, we save the truncated value. 3224 case Instruction::Trunc: 3225 Roots.push_back(I->getOperand(0)); 3226 case Instruction::ZExt: 3227 case Instruction::SExt: 3228 break; 3229 3230 // We can demote certain binary operations if we can demote both of their 3231 // operands. 3232 case Instruction::Add: 3233 case Instruction::Sub: 3234 case Instruction::Mul: 3235 case Instruction::And: 3236 case Instruction::Or: 3237 case Instruction::Xor: 3238 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3239 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3240 return false; 3241 break; 3242 3243 // We can demote selects if we can demote their true and false values. 3244 case Instruction::Select: { 3245 SelectInst *SI = cast<SelectInst>(I); 3246 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3247 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3248 return false; 3249 break; 3250 } 3251 3252 // We can demote phis if we can demote all their incoming operands. Note that 3253 // we don't need to worry about cycles since we ensure single use above. 3254 case Instruction::PHI: { 3255 PHINode *PN = cast<PHINode>(I); 3256 for (Value *IncValue : PN->incoming_values()) 3257 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3258 return false; 3259 break; 3260 } 3261 3262 // Otherwise, conservatively give up. 3263 default: 3264 return false; 3265 } 3266 3267 // Record the value that we can demote. 3268 ToDemote.push_back(V); 3269 return true; 3270 } 3271 3272 void BoUpSLP::computeMinimumValueSizes() { 3273 // If there are no external uses, the expression tree must be rooted by a 3274 // store. We can't demote in-memory values, so there is nothing to do here. 3275 if (ExternalUses.empty()) 3276 return; 3277 3278 // We only attempt to truncate integer expressions. 3279 auto &TreeRoot = VectorizableTree[0].Scalars; 3280 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3281 if (!TreeRootIT) 3282 return; 3283 3284 // If the expression is not rooted by a store, these roots should have 3285 // external uses. We will rely on InstCombine to rewrite the expression in 3286 // the narrower type. However, InstCombine only rewrites single-use values. 3287 // This means that if a tree entry other than a root is used externally, it 3288 // must have multiple uses and InstCombine will not rewrite it. The code 3289 // below ensures that only the roots are used externally. 3290 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3291 for (auto &EU : ExternalUses) 3292 if (!Expr.erase(EU.Scalar)) 3293 return; 3294 if (!Expr.empty()) 3295 return; 3296 3297 // Collect the scalar values of the vectorizable expression. We will use this 3298 // context to determine which values can be demoted. If we see a truncation, 3299 // we mark it as seeding another demotion. 3300 for (auto &Entry : VectorizableTree) 3301 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3302 3303 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3304 // have a single external user that is not in the vectorizable tree. 3305 for (auto *Root : TreeRoot) 3306 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3307 return; 3308 3309 // Conservatively determine if we can actually truncate the roots of the 3310 // expression. Collect the values that can be demoted in ToDemote and 3311 // additional roots that require investigating in Roots. 3312 SmallVector<Value *, 32> ToDemote; 3313 SmallVector<Value *, 4> Roots; 3314 for (auto *Root : TreeRoot) 3315 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3316 return; 3317 3318 // The maximum bit width required to represent all the values that can be 3319 // demoted without loss of precision. It would be safe to truncate the roots 3320 // of the expression to this width. 3321 auto MaxBitWidth = 8u; 3322 3323 // We first check if all the bits of the roots are demanded. If they're not, 3324 // we can truncate the roots to this narrower type. 3325 for (auto *Root : TreeRoot) { 3326 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3327 MaxBitWidth = std::max<unsigned>( 3328 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3329 } 3330 3331 // If all the bits of the roots are demanded, we can try a little harder to 3332 // compute a narrower type. This can happen, for example, if the roots are 3333 // getelementptr indices. InstCombine promotes these indices to the pointer 3334 // width. Thus, all their bits are technically demanded even though the 3335 // address computation might be vectorized in a smaller type. 3336 // 3337 // We start by looking at each entry that can be demoted. We compute the 3338 // maximum bit width required to store the scalar by using ValueTracking to 3339 // compute the number of high-order bits we can truncate. 3340 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3341 MaxBitWidth = 8u; 3342 for (auto *Scalar : ToDemote) { 3343 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3344 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3345 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3346 } 3347 } 3348 3349 // Round MaxBitWidth up to the next power-of-two. 3350 if (!isPowerOf2_64(MaxBitWidth)) 3351 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3352 3353 // If the maximum bit width we compute is less than the with of the roots' 3354 // type, we can proceed with the narrowing. Otherwise, do nothing. 3355 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3356 return; 3357 3358 // If we can truncate the root, we must collect additional values that might 3359 // be demoted as a result. That is, those seeded by truncations we will 3360 // modify. 3361 while (!Roots.empty()) 3362 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3363 3364 // Finally, map the values we can demote to the maximum bit with we computed. 3365 for (auto *Scalar : ToDemote) 3366 MinBWs[Scalar] = MaxBitWidth; 3367 } 3368 3369 /// The SLPVectorizer Pass. 3370 struct SLPVectorizer : public FunctionPass { 3371 typedef SmallVector<StoreInst *, 8> StoreList; 3372 typedef MapVector<Value *, StoreList> StoreListMap; 3373 typedef SmallVector<WeakVH, 8> WeakVHList; 3374 typedef MapVector<Value *, WeakVHList> WeakVHListMap; 3375 3376 /// Pass identification, replacement for typeid 3377 static char ID; 3378 3379 explicit SLPVectorizer() : FunctionPass(ID) { 3380 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3381 } 3382 3383 ScalarEvolution *SE; 3384 TargetTransformInfo *TTI; 3385 TargetLibraryInfo *TLI; 3386 AliasAnalysis *AA; 3387 LoopInfo *LI; 3388 DominatorTree *DT; 3389 AssumptionCache *AC; 3390 DemandedBits *DB; 3391 const DataLayout *DL; 3392 3393 bool doInitialization(Module &M) override { 3394 DL = &M.getDataLayout(); 3395 return false; 3396 } 3397 3398 bool runOnFunction(Function &F) override { 3399 if (skipFunction(F)) 3400 return false; 3401 3402 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3403 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3404 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3405 TLI = TLIP ? &TLIP->getTLI() : nullptr; 3406 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3407 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3408 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3409 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3410 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3411 3412 Stores.clear(); 3413 GEPs.clear(); 3414 bool Changed = false; 3415 3416 // If the target claims to have no vector registers don't attempt 3417 // vectorization. 3418 if (!TTI->getNumberOfRegisters(true)) 3419 return false; 3420 3421 // Use the vector register size specified by the target unless overridden 3422 // by a command-line option. 3423 // TODO: It would be better to limit the vectorization factor based on 3424 // data type rather than just register size. For example, x86 AVX has 3425 // 256-bit registers, but it does not support integer operations 3426 // at that width (that requires AVX2). 3427 if (MaxVectorRegSizeOption.getNumOccurrences()) 3428 MaxVecRegSize = MaxVectorRegSizeOption; 3429 else 3430 MaxVecRegSize = TTI->getRegisterBitWidth(true); 3431 3432 MinVecRegSize = MinVectorRegSizeOption; 3433 3434 // Don't vectorize when the attribute NoImplicitFloat is used. 3435 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3436 return false; 3437 3438 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3439 3440 // Use the bottom up slp vectorizer to construct chains that start with 3441 // store instructions. 3442 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3443 3444 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3445 // delete instructions. 3446 3447 // Scan the blocks in the function in post order. 3448 for (auto BB : post_order(&F.getEntryBlock())) { 3449 collectSeedInstructions(BB); 3450 3451 // Vectorize trees that end at stores. 3452 if (!Stores.empty()) { 3453 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3454 << " underlying objects.\n"); 3455 Changed |= vectorizeStoreChains(R); 3456 } 3457 3458 // Vectorize trees that end at reductions. 3459 Changed |= vectorizeChainsInBlock(BB, R); 3460 3461 // Vectorize the index computations of getelementptr instructions. This 3462 // is primarily intended to catch gather-like idioms ending at 3463 // non-consecutive loads. 3464 if (!GEPs.empty()) { 3465 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3466 << " underlying objects.\n"); 3467 Changed |= vectorizeGEPIndices(BB, R); 3468 } 3469 } 3470 3471 if (Changed) { 3472 R.optimizeGatherSequence(); 3473 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3474 DEBUG(verifyFunction(F)); 3475 } 3476 return Changed; 3477 } 3478 3479 void getAnalysisUsage(AnalysisUsage &AU) const override { 3480 FunctionPass::getAnalysisUsage(AU); 3481 AU.addRequired<AssumptionCacheTracker>(); 3482 AU.addRequired<ScalarEvolutionWrapperPass>(); 3483 AU.addRequired<AAResultsWrapperPass>(); 3484 AU.addRequired<TargetTransformInfoWrapperPass>(); 3485 AU.addRequired<LoopInfoWrapperPass>(); 3486 AU.addRequired<DominatorTreeWrapperPass>(); 3487 AU.addRequired<DemandedBitsWrapperPass>(); 3488 AU.addPreserved<LoopInfoWrapperPass>(); 3489 AU.addPreserved<DominatorTreeWrapperPass>(); 3490 AU.addPreserved<AAResultsWrapperPass>(); 3491 AU.addPreserved<GlobalsAAWrapperPass>(); 3492 AU.setPreservesCFG(); 3493 } 3494 3495 private: 3496 /// \brief Collect store and getelementptr instructions and organize them 3497 /// according to the underlying object of their pointer operands. We sort the 3498 /// instructions by their underlying objects to reduce the cost of 3499 /// consecutive access queries. 3500 /// 3501 /// TODO: We can further reduce this cost if we flush the chain creation 3502 /// every time we run into a memory barrier. 3503 void collectSeedInstructions(BasicBlock *BB); 3504 3505 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 3506 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 3507 3508 /// \brief Try to vectorize a list of operands. 3509 /// \@param BuildVector A list of users to ignore for the purpose of 3510 /// scheduling and that don't need extracting. 3511 /// \returns true if a value was vectorized. 3512 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3513 ArrayRef<Value *> BuildVector = None, 3514 bool allowReorder = false); 3515 3516 /// \brief Try to vectorize a chain that may start at the operands of \V; 3517 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 3518 3519 /// \brief Vectorize the store instructions collected in Stores. 3520 bool vectorizeStoreChains(BoUpSLP &R); 3521 3522 /// \brief Vectorize the index computations of the getelementptr instructions 3523 /// collected in GEPs. 3524 bool vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R); 3525 3526 /// \brief Scan the basic block and look for patterns that are likely to start 3527 /// a vectorization chain. 3528 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 3529 3530 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 3531 BoUpSLP &R, unsigned VecRegSize); 3532 3533 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 3534 BoUpSLP &R); 3535 3536 /// The store instructions in a basic block organized by base pointer. 3537 StoreListMap Stores; 3538 3539 /// The getelementptr instructions in a basic block organized by base pointer. 3540 WeakVHListMap GEPs; 3541 3542 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3543 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3544 }; 3545 3546 /// \brief Check that the Values in the slice in VL array are still existent in 3547 /// the WeakVH array. 3548 /// Vectorization of part of the VL array may cause later values in the VL array 3549 /// to become invalid. We track when this has happened in the WeakVH array. 3550 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3551 unsigned SliceBegin, unsigned SliceSize) { 3552 VL = VL.slice(SliceBegin, SliceSize); 3553 VH = VH.slice(SliceBegin, SliceSize); 3554 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3555 } 3556 3557 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 3558 int CostThreshold, BoUpSLP &R, 3559 unsigned VecRegSize) { 3560 unsigned ChainLen = Chain.size(); 3561 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3562 << "\n"); 3563 unsigned Sz = R.getVectorElementSize(Chain[0]); 3564 unsigned VF = VecRegSize / Sz; 3565 3566 if (!isPowerOf2_32(Sz) || VF < 2) 3567 return false; 3568 3569 // Keep track of values that were deleted by vectorizing in the loop below. 3570 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3571 3572 bool Changed = false; 3573 // Look for profitable vectorizable trees at all offsets, starting at zero. 3574 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3575 if (i + VF > e) 3576 break; 3577 3578 // Check that a previous iteration of this loop did not delete the Value. 3579 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3580 continue; 3581 3582 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3583 << "\n"); 3584 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3585 3586 R.buildTree(Operands); 3587 R.computeMinimumValueSizes(); 3588 3589 int Cost = R.getTreeCost(); 3590 3591 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3592 if (Cost < CostThreshold) { 3593 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3594 R.vectorizeTree(); 3595 3596 // Move to the next bundle. 3597 i += VF - 1; 3598 Changed = true; 3599 } 3600 } 3601 3602 return Changed; 3603 } 3604 3605 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 3606 int costThreshold, BoUpSLP &R) { 3607 SetVector<StoreInst *> Heads, Tails; 3608 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3609 3610 // We may run into multiple chains that merge into a single chain. We mark the 3611 // stores that we vectorized so that we don't visit the same store twice. 3612 BoUpSLP::ValueSet VectorizedStores; 3613 bool Changed = false; 3614 3615 // Do a quadratic search on all of the given stores and find 3616 // all of the pairs of stores that follow each other. 3617 SmallVector<unsigned, 16> IndexQueue; 3618 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3619 IndexQueue.clear(); 3620 // If a store has multiple consecutive store candidates, search Stores 3621 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3622 // This is because usually pairing with immediate succeeding or preceding 3623 // candidate create the best chance to find slp vectorization opportunity. 3624 unsigned j = 0; 3625 for (j = i + 1; j < e; ++j) 3626 IndexQueue.push_back(j); 3627 for (j = i; j > 0; --j) 3628 IndexQueue.push_back(j - 1); 3629 3630 for (auto &k : IndexQueue) { 3631 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3632 Tails.insert(Stores[k]); 3633 Heads.insert(Stores[i]); 3634 ConsecutiveChain[Stores[i]] = Stores[k]; 3635 break; 3636 } 3637 } 3638 } 3639 3640 // For stores that start but don't end a link in the chain: 3641 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3642 it != e; ++it) { 3643 if (Tails.count(*it)) 3644 continue; 3645 3646 // We found a store instr that starts a chain. Now follow the chain and try 3647 // to vectorize it. 3648 BoUpSLP::ValueList Operands; 3649 StoreInst *I = *it; 3650 // Collect the chain into a list. 3651 while (Tails.count(I) || Heads.count(I)) { 3652 if (VectorizedStores.count(I)) 3653 break; 3654 Operands.push_back(I); 3655 // Move to the next value in the chain. 3656 I = ConsecutiveChain[I]; 3657 } 3658 3659 // FIXME: Is division-by-2 the correct step? Should we assert that the 3660 // register size is a power-of-2? 3661 for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) { 3662 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { 3663 // Mark the vectorized stores so that we don't vectorize them again. 3664 VectorizedStores.insert(Operands.begin(), Operands.end()); 3665 Changed = true; 3666 break; 3667 } 3668 } 3669 } 3670 3671 return Changed; 3672 } 3673 3674 void SLPVectorizer::collectSeedInstructions(BasicBlock *BB) { 3675 3676 // Initialize the collections. We will make a single pass over the block. 3677 Stores.clear(); 3678 GEPs.clear(); 3679 3680 // Visit the store and getelementptr instructions in BB and organize them in 3681 // Stores and GEPs according to the underlying objects of their pointer 3682 // operands. 3683 for (Instruction &I : *BB) { 3684 3685 // Ignore store instructions that are volatile or have a pointer operand 3686 // that doesn't point to a scalar type. 3687 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3688 if (!SI->isSimple()) 3689 continue; 3690 if (!isValidElementType(SI->getValueOperand()->getType())) 3691 continue; 3692 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3693 } 3694 3695 // Ignore getelementptr instructions that have more than one index, a 3696 // constant index, or a pointer operand that doesn't point to a scalar 3697 // type. 3698 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3699 auto Idx = GEP->idx_begin()->get(); 3700 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3701 continue; 3702 if (!isValidElementType(Idx->getType())) 3703 continue; 3704 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3705 } 3706 } 3707 } 3708 3709 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3710 if (!A || !B) 3711 return false; 3712 Value *VL[] = { A, B }; 3713 return tryToVectorizeList(VL, R, None, true); 3714 } 3715 3716 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3717 ArrayRef<Value *> BuildVector, 3718 bool allowReorder) { 3719 if (VL.size() < 2) 3720 return false; 3721 3722 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3723 3724 // Check that all of the parts are scalar instructions of the same type. 3725 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3726 if (!I0) 3727 return false; 3728 3729 unsigned Opcode0 = I0->getOpcode(); 3730 3731 // FIXME: Register size should be a parameter to this function, so we can 3732 // try different vectorization factors. 3733 unsigned Sz = R.getVectorElementSize(I0); 3734 unsigned VF = MinVecRegSize / Sz; 3735 3736 for (Value *V : VL) { 3737 Type *Ty = V->getType(); 3738 if (!isValidElementType(Ty)) 3739 return false; 3740 Instruction *Inst = dyn_cast<Instruction>(V); 3741 if (!Inst || Inst->getOpcode() != Opcode0) 3742 return false; 3743 } 3744 3745 bool Changed = false; 3746 3747 // Keep track of values that were deleted by vectorizing in the loop below. 3748 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3749 3750 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3751 unsigned OpsWidth = 0; 3752 3753 if (i + VF > e) 3754 OpsWidth = e - i; 3755 else 3756 OpsWidth = VF; 3757 3758 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3759 break; 3760 3761 // Check that a previous iteration of this loop did not delete the Value. 3762 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3763 continue; 3764 3765 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3766 << "\n"); 3767 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3768 3769 ArrayRef<Value *> BuildVectorSlice; 3770 if (!BuildVector.empty()) 3771 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3772 3773 R.buildTree(Ops, BuildVectorSlice); 3774 // TODO: check if we can allow reordering also for other cases than 3775 // tryToVectorizePair() 3776 if (allowReorder && R.shouldReorder()) { 3777 assert(Ops.size() == 2); 3778 assert(BuildVectorSlice.empty()); 3779 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3780 R.buildTree(ReorderedOps, None); 3781 } 3782 R.computeMinimumValueSizes(); 3783 int Cost = R.getTreeCost(); 3784 3785 if (Cost < -SLPCostThreshold) { 3786 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3787 Value *VectorizedRoot = R.vectorizeTree(); 3788 3789 // Reconstruct the build vector by extracting the vectorized root. This 3790 // way we handle the case where some elements of the vector are undefined. 3791 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3792 if (!BuildVectorSlice.empty()) { 3793 // The insert point is the last build vector instruction. The vectorized 3794 // root will precede it. This guarantees that we get an instruction. The 3795 // vectorized tree could have been constant folded. 3796 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3797 unsigned VecIdx = 0; 3798 for (auto &V : BuildVectorSlice) { 3799 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 3800 ++BasicBlock::iterator(InsertAfter)); 3801 InsertElementInst *IE = cast<InsertElementInst>(V); 3802 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3803 VectorizedRoot, Builder.getInt32(VecIdx++))); 3804 IE->setOperand(1, Extract); 3805 IE->removeFromParent(); 3806 IE->insertAfter(Extract); 3807 InsertAfter = IE; 3808 } 3809 } 3810 // Move to the next bundle. 3811 i += VF - 1; 3812 Changed = true; 3813 } 3814 } 3815 3816 return Changed; 3817 } 3818 3819 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3820 if (!V) 3821 return false; 3822 3823 // Try to vectorize V. 3824 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3825 return true; 3826 3827 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3828 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3829 // Try to skip B. 3830 if (B && B->hasOneUse()) { 3831 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3832 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3833 if (tryToVectorizePair(A, B0, R)) { 3834 return true; 3835 } 3836 if (tryToVectorizePair(A, B1, R)) { 3837 return true; 3838 } 3839 } 3840 3841 // Try to skip A. 3842 if (A && A->hasOneUse()) { 3843 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3844 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3845 if (tryToVectorizePair(A0, B, R)) { 3846 return true; 3847 } 3848 if (tryToVectorizePair(A1, B, R)) { 3849 return true; 3850 } 3851 } 3852 return 0; 3853 } 3854 3855 /// \brief Generate a shuffle mask to be used in a reduction tree. 3856 /// 3857 /// \param VecLen The length of the vector to be reduced. 3858 /// \param NumEltsToRdx The number of elements that should be reduced in the 3859 /// vector. 3860 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3861 /// reduction. A pairwise reduction will generate a mask of 3862 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3863 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3864 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3865 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3866 bool IsPairwise, bool IsLeft, 3867 IRBuilder<> &Builder) { 3868 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3869 3870 SmallVector<Constant *, 32> ShuffleMask( 3871 VecLen, UndefValue::get(Builder.getInt32Ty())); 3872 3873 if (IsPairwise) 3874 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3875 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3876 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3877 else 3878 // Move the upper half of the vector to the lower half. 3879 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3880 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3881 3882 return ConstantVector::get(ShuffleMask); 3883 } 3884 3885 3886 /// Model horizontal reductions. 3887 /// 3888 /// A horizontal reduction is a tree of reduction operations (currently add and 3889 /// fadd) that has operations that can be put into a vector as its leaf. 3890 /// For example, this tree: 3891 /// 3892 /// mul mul mul mul 3893 /// \ / \ / 3894 /// + + 3895 /// \ / 3896 /// + 3897 /// This tree has "mul" as its reduced values and "+" as its reduction 3898 /// operations. A reduction might be feeding into a store or a binary operation 3899 /// feeding a phi. 3900 /// ... 3901 /// \ / 3902 /// + 3903 /// | 3904 /// phi += 3905 /// 3906 /// Or: 3907 /// ... 3908 /// \ / 3909 /// + 3910 /// | 3911 /// *p = 3912 /// 3913 class HorizontalReduction { 3914 SmallVector<Value *, 16> ReductionOps; 3915 SmallVector<Value *, 32> ReducedVals; 3916 3917 BinaryOperator *ReductionRoot; 3918 PHINode *ReductionPHI; 3919 3920 /// The opcode of the reduction. 3921 unsigned ReductionOpcode; 3922 /// The opcode of the values we perform a reduction on. 3923 unsigned ReducedValueOpcode; 3924 /// Should we model this reduction as a pairwise reduction tree or a tree that 3925 /// splits the vector in halves and adds those halves. 3926 bool IsPairwiseReduction; 3927 3928 public: 3929 /// The width of one full horizontal reduction operation. 3930 unsigned ReduxWidth; 3931 3932 /// Minimal width of available vector registers. It's used to determine 3933 /// ReduxWidth. 3934 unsigned MinVecRegSize; 3935 3936 HorizontalReduction(unsigned MinVecRegSize) 3937 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 3938 ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0), 3939 MinVecRegSize(MinVecRegSize) {} 3940 3941 /// \brief Try to find a reduction tree. 3942 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 3943 assert((!Phi || 3944 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 3945 "Thi phi needs to use the binary operator"); 3946 3947 // We could have a initial reductions that is not an add. 3948 // r *= v1 + v2 + v3 + v4 3949 // In such a case start looking for a tree rooted in the first '+'. 3950 if (Phi) { 3951 if (B->getOperand(0) == Phi) { 3952 Phi = nullptr; 3953 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 3954 } else if (B->getOperand(1) == Phi) { 3955 Phi = nullptr; 3956 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 3957 } 3958 } 3959 3960 if (!B) 3961 return false; 3962 3963 Type *Ty = B->getType(); 3964 if (!isValidElementType(Ty)) 3965 return false; 3966 3967 const DataLayout &DL = B->getModule()->getDataLayout(); 3968 ReductionOpcode = B->getOpcode(); 3969 ReducedValueOpcode = 0; 3970 // FIXME: Register size should be a parameter to this function, so we can 3971 // try different vectorization factors. 3972 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 3973 ReductionRoot = B; 3974 ReductionPHI = Phi; 3975 3976 if (ReduxWidth < 4) 3977 return false; 3978 3979 // We currently only support adds. 3980 if (ReductionOpcode != Instruction::Add && 3981 ReductionOpcode != Instruction::FAdd) 3982 return false; 3983 3984 // Post order traverse the reduction tree starting at B. We only handle true 3985 // trees containing only binary operators or selects. 3986 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 3987 Stack.push_back(std::make_pair(B, 0)); 3988 while (!Stack.empty()) { 3989 Instruction *TreeN = Stack.back().first; 3990 unsigned EdgeToVist = Stack.back().second++; 3991 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 3992 3993 // Only handle trees in the current basic block. 3994 if (TreeN->getParent() != B->getParent()) 3995 return false; 3996 3997 // Each tree node needs to have one user except for the ultimate 3998 // reduction. 3999 if (!TreeN->hasOneUse() && TreeN != B) 4000 return false; 4001 4002 // Postorder vist. 4003 if (EdgeToVist == 2 || IsReducedValue) { 4004 if (IsReducedValue) { 4005 // Make sure that the opcodes of the operations that we are going to 4006 // reduce match. 4007 if (!ReducedValueOpcode) 4008 ReducedValueOpcode = TreeN->getOpcode(); 4009 else if (ReducedValueOpcode != TreeN->getOpcode()) 4010 return false; 4011 ReducedVals.push_back(TreeN); 4012 } else { 4013 // We need to be able to reassociate the adds. 4014 if (!TreeN->isAssociative()) 4015 return false; 4016 ReductionOps.push_back(TreeN); 4017 } 4018 // Retract. 4019 Stack.pop_back(); 4020 continue; 4021 } 4022 4023 // Visit left or right. 4024 Value *NextV = TreeN->getOperand(EdgeToVist); 4025 // We currently only allow BinaryOperator's and SelectInst's as reduction 4026 // values in our tree. 4027 if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV)) 4028 Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0)); 4029 else if (NextV != Phi) 4030 return false; 4031 } 4032 return true; 4033 } 4034 4035 /// \brief Attempt to vectorize the tree found by 4036 /// matchAssociativeReduction. 4037 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4038 if (ReducedVals.empty()) 4039 return false; 4040 4041 unsigned NumReducedVals = ReducedVals.size(); 4042 if (NumReducedVals < ReduxWidth) 4043 return false; 4044 4045 Value *VectorizedTree = nullptr; 4046 IRBuilder<> Builder(ReductionRoot); 4047 FastMathFlags Unsafe; 4048 Unsafe.setUnsafeAlgebra(); 4049 Builder.setFastMathFlags(Unsafe); 4050 unsigned i = 0; 4051 4052 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 4053 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); 4054 V.computeMinimumValueSizes(); 4055 4056 // Estimate cost. 4057 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 4058 if (Cost >= -SLPCostThreshold) 4059 break; 4060 4061 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4062 << ". (HorRdx)\n"); 4063 4064 // Vectorize a tree. 4065 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4066 Value *VectorizedRoot = V.vectorizeTree(); 4067 4068 // Emit a reduction. 4069 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 4070 if (VectorizedTree) { 4071 Builder.SetCurrentDebugLocation(Loc); 4072 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4073 ReducedSubTree, "bin.rdx"); 4074 } else 4075 VectorizedTree = ReducedSubTree; 4076 } 4077 4078 if (VectorizedTree) { 4079 // Finish the reduction. 4080 for (; i < NumReducedVals; ++i) { 4081 Builder.SetCurrentDebugLocation( 4082 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4083 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4084 ReducedVals[i]); 4085 } 4086 // Update users. 4087 if (ReductionPHI) { 4088 assert(ReductionRoot && "Need a reduction operation"); 4089 ReductionRoot->setOperand(0, VectorizedTree); 4090 ReductionRoot->setOperand(1, ReductionPHI); 4091 } else 4092 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4093 } 4094 return VectorizedTree != nullptr; 4095 } 4096 4097 unsigned numReductionValues() const { 4098 return ReducedVals.size(); 4099 } 4100 4101 private: 4102 /// \brief Calculate the cost of a reduction. 4103 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 4104 Type *ScalarTy = FirstReducedVal->getType(); 4105 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4106 4107 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4108 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4109 4110 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4111 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4112 4113 int ScalarReduxCost = 4114 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 4115 4116 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4117 << " for reduction that starts with " << *FirstReducedVal 4118 << " (It is a " 4119 << (IsPairwiseReduction ? "pairwise" : "splitting") 4120 << " reduction)\n"); 4121 4122 return VecReduxCost - ScalarReduxCost; 4123 } 4124 4125 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 4126 Value *R, const Twine &Name = "") { 4127 if (Opcode == Instruction::FAdd) 4128 return Builder.CreateFAdd(L, R, Name); 4129 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 4130 } 4131 4132 /// \brief Emit a horizontal reduction of the vectorized value. 4133 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 4134 assert(VectorizedValue && "Need to have a vectorized tree node"); 4135 assert(isPowerOf2_32(ReduxWidth) && 4136 "We only handle power-of-two reductions for now"); 4137 4138 Value *TmpVec = VectorizedValue; 4139 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4140 if (IsPairwiseReduction) { 4141 Value *LeftMask = 4142 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4143 Value *RightMask = 4144 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4145 4146 Value *LeftShuf = Builder.CreateShuffleVector( 4147 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4148 Value *RightShuf = Builder.CreateShuffleVector( 4149 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4150 "rdx.shuf.r"); 4151 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 4152 "bin.rdx"); 4153 } else { 4154 Value *UpperHalf = 4155 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4156 Value *Shuf = Builder.CreateShuffleVector( 4157 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4158 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4159 } 4160 } 4161 4162 // The result is in the first element of the vector. 4163 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4164 } 4165 }; 4166 4167 /// \brief Recognize construction of vectors like 4168 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4169 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4170 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4171 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4172 /// 4173 /// Returns true if it matches 4174 /// 4175 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4176 SmallVectorImpl<Value *> &BuildVector, 4177 SmallVectorImpl<Value *> &BuildVectorOpds) { 4178 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4179 return false; 4180 4181 InsertElementInst *IE = FirstInsertElem; 4182 while (true) { 4183 BuildVector.push_back(IE); 4184 BuildVectorOpds.push_back(IE->getOperand(1)); 4185 4186 if (IE->use_empty()) 4187 return false; 4188 4189 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4190 if (!NextUse) 4191 return true; 4192 4193 // If this isn't the final use, make sure the next insertelement is the only 4194 // use. It's OK if the final constructed vector is used multiple times 4195 if (!IE->hasOneUse()) 4196 return false; 4197 4198 IE = NextUse; 4199 } 4200 4201 return false; 4202 } 4203 4204 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4205 return V->getType() < V2->getType(); 4206 } 4207 4208 /// \brief Try and get a reduction value from a phi node. 4209 /// 4210 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4211 /// if they come from either \p ParentBB or a containing loop latch. 4212 /// 4213 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4214 /// if not possible. 4215 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4216 BasicBlock *ParentBB, LoopInfo *LI) { 4217 // There are situations where the reduction value is not dominated by the 4218 // reduction phi. Vectorizing such cases has been reported to cause 4219 // miscompiles. See PR25787. 4220 auto DominatedReduxValue = [&](Value *R) { 4221 return ( 4222 dyn_cast<Instruction>(R) && 4223 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4224 }; 4225 4226 Value *Rdx = nullptr; 4227 4228 // Return the incoming value if it comes from the same BB as the phi node. 4229 if (P->getIncomingBlock(0) == ParentBB) { 4230 Rdx = P->getIncomingValue(0); 4231 } else if (P->getIncomingBlock(1) == ParentBB) { 4232 Rdx = P->getIncomingValue(1); 4233 } 4234 4235 if (Rdx && DominatedReduxValue(Rdx)) 4236 return Rdx; 4237 4238 // Otherwise, check whether we have a loop latch to look at. 4239 Loop *BBL = LI->getLoopFor(ParentBB); 4240 if (!BBL) 4241 return nullptr; 4242 BasicBlock *BBLatch = BBL->getLoopLatch(); 4243 if (!BBLatch) 4244 return nullptr; 4245 4246 // There is a loop latch, return the incoming value if it comes from 4247 // that. This reduction pattern occassionaly turns up. 4248 if (P->getIncomingBlock(0) == BBLatch) { 4249 Rdx = P->getIncomingValue(0); 4250 } else if (P->getIncomingBlock(1) == BBLatch) { 4251 Rdx = P->getIncomingValue(1); 4252 } 4253 4254 if (Rdx && DominatedReduxValue(Rdx)) 4255 return Rdx; 4256 4257 return nullptr; 4258 } 4259 4260 /// \brief Attempt to reduce a horizontal reduction. 4261 /// If it is legal to match a horizontal reduction feeding 4262 /// the phi node P with reduction operators BI, then check if it 4263 /// can be done. 4264 /// \returns true if a horizontal reduction was matched and reduced. 4265 /// \returns false if a horizontal reduction was not matched. 4266 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, 4267 BoUpSLP &R, TargetTransformInfo *TTI, 4268 unsigned MinRegSize) { 4269 if (!ShouldVectorizeHor) 4270 return false; 4271 4272 HorizontalReduction HorRdx(MinRegSize); 4273 if (!HorRdx.matchAssociativeReduction(P, BI)) 4274 return false; 4275 4276 // If there is a sufficient number of reduction values, reduce 4277 // to a nearby power-of-2. Can safely generate oversized 4278 // vectors and rely on the backend to split them to legal sizes. 4279 HorRdx.ReduxWidth = 4280 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4281 4282 return HorRdx.tryToReduce(R, TTI); 4283 } 4284 4285 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4286 bool Changed = false; 4287 SmallVector<Value *, 4> Incoming; 4288 SmallSet<Value *, 16> VisitedInstrs; 4289 4290 bool HaveVectorizedPhiNodes = true; 4291 while (HaveVectorizedPhiNodes) { 4292 HaveVectorizedPhiNodes = false; 4293 4294 // Collect the incoming values from the PHIs. 4295 Incoming.clear(); 4296 for (Instruction &I : *BB) { 4297 PHINode *P = dyn_cast<PHINode>(&I); 4298 if (!P) 4299 break; 4300 4301 if (!VisitedInstrs.count(P)) 4302 Incoming.push_back(P); 4303 } 4304 4305 // Sort by type. 4306 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4307 4308 // Try to vectorize elements base on their type. 4309 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4310 E = Incoming.end(); 4311 IncIt != E;) { 4312 4313 // Look for the next elements with the same type. 4314 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4315 while (SameTypeIt != E && 4316 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4317 VisitedInstrs.insert(*SameTypeIt); 4318 ++SameTypeIt; 4319 } 4320 4321 // Try to vectorize them. 4322 unsigned NumElts = (SameTypeIt - IncIt); 4323 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4324 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4325 // Success start over because instructions might have been changed. 4326 HaveVectorizedPhiNodes = true; 4327 Changed = true; 4328 break; 4329 } 4330 4331 // Start over at the next instruction of a different type (or the end). 4332 IncIt = SameTypeIt; 4333 } 4334 } 4335 4336 VisitedInstrs.clear(); 4337 4338 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4339 // We may go through BB multiple times so skip the one we have checked. 4340 if (!VisitedInstrs.insert(&*it).second) 4341 continue; 4342 4343 if (isa<DbgInfoIntrinsic>(it)) 4344 continue; 4345 4346 // Try to vectorize reductions that use PHINodes. 4347 if (PHINode *P = dyn_cast<PHINode>(it)) { 4348 // Check that the PHI is a reduction PHI. 4349 if (P->getNumIncomingValues() != 2) 4350 return Changed; 4351 4352 Value *Rdx = getReductionValue(DT, P, BB, LI); 4353 4354 // Check if this is a Binary Operator. 4355 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 4356 if (!BI) 4357 continue; 4358 4359 // Try to match and vectorize a horizontal reduction. 4360 if (canMatchHorizontalReduction(P, BI, R, TTI, MinVecRegSize)) { 4361 Changed = true; 4362 it = BB->begin(); 4363 e = BB->end(); 4364 continue; 4365 } 4366 4367 Value *Inst = BI->getOperand(0); 4368 if (Inst == P) 4369 Inst = BI->getOperand(1); 4370 4371 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4372 // We would like to start over since some instructions are deleted 4373 // and the iterator may become invalid value. 4374 Changed = true; 4375 it = BB->begin(); 4376 e = BB->end(); 4377 continue; 4378 } 4379 4380 continue; 4381 } 4382 4383 if (ShouldStartVectorizeHorAtStore) 4384 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4385 if (BinaryOperator *BinOp = 4386 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4387 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4388 MinVecRegSize) || 4389 tryToVectorize(BinOp, R)) { 4390 Changed = true; 4391 it = BB->begin(); 4392 e = BB->end(); 4393 continue; 4394 } 4395 } 4396 4397 // Try to vectorize horizontal reductions feeding into a return. 4398 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4399 if (RI->getNumOperands() != 0) 4400 if (BinaryOperator *BinOp = 4401 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4402 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4403 if (tryToVectorizePair(BinOp->getOperand(0), 4404 BinOp->getOperand(1), R)) { 4405 Changed = true; 4406 it = BB->begin(); 4407 e = BB->end(); 4408 continue; 4409 } 4410 } 4411 4412 // Try to vectorize trees that start at compare instructions. 4413 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4414 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4415 Changed = true; 4416 // We would like to start over since some instructions are deleted 4417 // and the iterator may become invalid value. 4418 it = BB->begin(); 4419 e = BB->end(); 4420 continue; 4421 } 4422 4423 for (int i = 0; i < 2; ++i) { 4424 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4425 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4426 Changed = true; 4427 // We would like to start over since some instructions are deleted 4428 // and the iterator may become invalid value. 4429 it = BB->begin(); 4430 e = BB->end(); 4431 break; 4432 } 4433 } 4434 } 4435 continue; 4436 } 4437 4438 // Try to vectorize trees that start at insertelement instructions. 4439 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4440 SmallVector<Value *, 16> BuildVector; 4441 SmallVector<Value *, 16> BuildVectorOpds; 4442 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4443 continue; 4444 4445 // Vectorize starting with the build vector operands ignoring the 4446 // BuildVector instructions for the purpose of scheduling and user 4447 // extraction. 4448 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4449 Changed = true; 4450 it = BB->begin(); 4451 e = BB->end(); 4452 } 4453 4454 continue; 4455 } 4456 } 4457 4458 return Changed; 4459 } 4460 4461 bool SLPVectorizer::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4462 auto Changed = false; 4463 for (auto &Entry : GEPs) { 4464 4465 // If the getelementptr list has fewer than two elements, there's nothing 4466 // to do. 4467 if (Entry.second.size() < 2) 4468 continue; 4469 4470 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4471 << Entry.second.size() << ".\n"); 4472 4473 // We process the getelementptr list in chunks of 16 (like we do for 4474 // stores) to minimize compile-time. 4475 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4476 auto Len = std::min<unsigned>(BE - BI, 16); 4477 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4478 4479 // Initialize a set a candidate getelementptrs. Note that we use a 4480 // SetVector here to preserve program order. If the index computations 4481 // are vectorizable and begin with loads, we want to minimize the chance 4482 // of having to reorder them later. 4483 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4484 4485 // Some of the candidates may have already been vectorized after we 4486 // initially collected them. If so, the WeakVHs will have nullified the 4487 // values, so remove them from the set of candidates. 4488 Candidates.remove(nullptr); 4489 4490 // Remove from the set of candidates all pairs of getelementptrs with 4491 // constant differences. Such getelementptrs are likely not good 4492 // candidates for vectorization in a bottom-up phase since one can be 4493 // computed from the other. We also ensure all candidate getelementptr 4494 // indices are unique. 4495 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4496 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4497 if (!Candidates.count(GEPI)) 4498 continue; 4499 auto *SCEVI = SE->getSCEV(GEPList[I]); 4500 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4501 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4502 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4503 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4504 Candidates.remove(GEPList[I]); 4505 Candidates.remove(GEPList[J]); 4506 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4507 Candidates.remove(GEPList[J]); 4508 } 4509 } 4510 } 4511 4512 // We break out of the above computation as soon as we know there are 4513 // fewer than two candidates remaining. 4514 if (Candidates.size() < 2) 4515 continue; 4516 4517 // Add the single, non-constant index of each candidate to the bundle. We 4518 // ensured the indices met these constraints when we originally collected 4519 // the getelementptrs. 4520 SmallVector<Value *, 16> Bundle(Candidates.size()); 4521 auto BundleIndex = 0u; 4522 for (auto *V : Candidates) { 4523 auto *GEP = cast<GetElementPtrInst>(V); 4524 auto *GEPIdx = GEP->idx_begin()->get(); 4525 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4526 Bundle[BundleIndex++] = GEPIdx; 4527 } 4528 4529 // Try and vectorize the indices. We are currently only interested in 4530 // gather-like cases of the form: 4531 // 4532 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4533 // 4534 // where the loads of "a", the loads of "b", and the subtractions can be 4535 // performed in parallel. It's likely that detecting this pattern in a 4536 // bottom-up phase will be simpler and less costly than building a 4537 // full-blown top-down phase beginning at the consecutive loads. 4538 Changed |= tryToVectorizeList(Bundle, R); 4539 } 4540 } 4541 return Changed; 4542 } 4543 4544 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 4545 bool Changed = false; 4546 // Attempt to sort and vectorize each of the store-groups. 4547 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4548 ++it) { 4549 if (it->second.size() < 2) 4550 continue; 4551 4552 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4553 << it->second.size() << ".\n"); 4554 4555 // Process the stores in chunks of 16. 4556 // TODO: The limit of 16 inhibits greater vectorization factors. 4557 // For example, AVX2 supports v32i8. Increasing this limit, however, 4558 // may cause a significant compile-time increase. 4559 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4560 unsigned Len = std::min<unsigned>(CE - CI, 16); 4561 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 4562 -SLPCostThreshold, R); 4563 } 4564 } 4565 return Changed; 4566 } 4567 4568 } // end anonymous namespace 4569 4570 char SLPVectorizer::ID = 0; 4571 static const char lv_name[] = "SLP Vectorizer"; 4572 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4573 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4574 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4575 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4576 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4577 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4578 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4579 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4580 4581 namespace llvm { 4582 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4583 } 4584