1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 static cl::opt<unsigned> RecursionMaxDepth( 86 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 87 cl::desc("Limit the recursion depth when building a vectorizable tree")); 88 89 static cl::opt<unsigned> MinTreeSize( 90 "slp-min-tree-size", cl::init(3), cl::Hidden, 91 cl::desc("Only vectorize small trees if they are fully vectorizable")); 92 93 // Limit the number of alias checks. The limit is chosen so that 94 // it has no negative effect on the llvm benchmarks. 95 static const unsigned AliasedCheckLimit = 10; 96 97 // Another limit for the alias checks: The maximum distance between load/store 98 // instructions where alias checks are done. 99 // This limit is useful for very large basic blocks. 100 static const unsigned MaxMemDepDistance = 160; 101 102 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 103 /// regions to be handled. 104 static const int MinScheduleRegionSize = 16; 105 106 /// \brief Predicate for the element types that the SLP vectorizer supports. 107 /// 108 /// The most important thing to filter here are types which are invalid in LLVM 109 /// vectors. We also filter target specific types which have absolutely no 110 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 111 /// avoids spending time checking the cost model and realizing that they will 112 /// be inevitably scalarized. 113 static bool isValidElementType(Type *Ty) { 114 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 115 !Ty->isPPC_FP128Ty(); 116 } 117 118 /// \returns true if all of the instructions in \p VL are in the same block or 119 /// false otherwise. 120 static bool allSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return false; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return false; 129 130 if (BB != I->getParent()) 131 return false; 132 } 133 return true; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (Value *i : VL) 139 if (!isa<Constant>(i)) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 ///\returns Opcode that can be clubbed with \p Op to create an alternate 153 /// sequence which can later be merged as a ShuffleVector instruction. 154 static unsigned getAltOpcode(unsigned Op) { 155 switch (Op) { 156 case Instruction::FAdd: 157 return Instruction::FSub; 158 case Instruction::FSub: 159 return Instruction::FAdd; 160 case Instruction::Add: 161 return Instruction::Sub; 162 case Instruction::Sub: 163 return Instruction::Add; 164 default: 165 return 0; 166 } 167 } 168 169 ///\returns bool representing if Opcode \p Op can be part 170 /// of an alternate sequence which can later be merged as 171 /// a ShuffleVector instruction. 172 static bool canCombineAsAltInst(unsigned Op) { 173 return Op == Instruction::FAdd || Op == Instruction::FSub || 174 Op == Instruction::Sub || Op == Instruction::Add; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<Instruction>(I)) { 215 if (auto *Intersection = dyn_cast<Instruction>(VL[0])) { 216 // Intersection is initialized to the 0th scalar, 217 // so start counting from index '1'. 218 for (int i = 1, e = VL.size(); i < e; ++i) { 219 if (auto *Scalar = dyn_cast<Instruction>(VL[i])) 220 Intersection->andIRFlags(Scalar); 221 } 222 VecOp->copyIRFlags(Intersection); 223 } 224 } 225 } 226 227 /// \returns true if all of the values in \p VL have the same type or false 228 /// otherwise. 229 static bool allSameType(ArrayRef<Value *> VL) { 230 Type *Ty = VL[0]->getType(); 231 for (int i = 1, e = VL.size(); i < e; i++) 232 if (VL[i]->getType() != Ty) 233 return false; 234 235 return true; 236 } 237 238 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 239 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 240 assert(Opcode == Instruction::ExtractElement || 241 Opcode == Instruction::ExtractValue); 242 if (Opcode == Instruction::ExtractElement) { 243 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 244 return CI && CI->getZExtValue() == Idx; 245 } else { 246 ExtractValueInst *EI = cast<ExtractValueInst>(E); 247 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 248 } 249 } 250 251 /// \returns True if in-tree use also needs extract. This refers to 252 /// possible scalar operand in vectorized instruction. 253 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 254 TargetLibraryInfo *TLI) { 255 256 unsigned Opcode = UserInst->getOpcode(); 257 switch (Opcode) { 258 case Instruction::Load: { 259 LoadInst *LI = cast<LoadInst>(UserInst); 260 return (LI->getPointerOperand() == Scalar); 261 } 262 case Instruction::Store: { 263 StoreInst *SI = cast<StoreInst>(UserInst); 264 return (SI->getPointerOperand() == Scalar); 265 } 266 case Instruction::Call: { 267 CallInst *CI = cast<CallInst>(UserInst); 268 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 269 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 270 return (CI->getArgOperand(1) == Scalar); 271 } 272 } 273 default: 274 return false; 275 } 276 } 277 278 /// \returns the AA location that is being access by the instruction. 279 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 280 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 281 return MemoryLocation::get(SI); 282 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 283 return MemoryLocation::get(LI); 284 return MemoryLocation(); 285 } 286 287 /// \returns True if the instruction is not a volatile or atomic load/store. 288 static bool isSimple(Instruction *I) { 289 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 290 return LI->isSimple(); 291 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 292 return SI->isSimple(); 293 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 294 return !MI->isVolatile(); 295 return true; 296 } 297 298 namespace llvm { 299 namespace slpvectorizer { 300 /// Bottom Up SLP Vectorizer. 301 class BoUpSLP { 302 public: 303 typedef SmallVector<Value *, 8> ValueList; 304 typedef SmallVector<Instruction *, 16> InstrList; 305 typedef SmallPtrSet<Value *, 16> ValueSet; 306 typedef SmallVector<StoreInst *, 8> StoreList; 307 308 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 309 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 310 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 311 const DataLayout *DL) 312 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 313 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 314 DL(DL), Builder(Se->getContext()) { 315 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 316 // Use the vector register size specified by the target unless overridden 317 // by a command-line option. 318 // TODO: It would be better to limit the vectorization factor based on 319 // data type rather than just register size. For example, x86 AVX has 320 // 256-bit registers, but it does not support integer operations 321 // at that width (that requires AVX2). 322 if (MaxVectorRegSizeOption.getNumOccurrences()) 323 MaxVecRegSize = MaxVectorRegSizeOption; 324 else 325 MaxVecRegSize = TTI->getRegisterBitWidth(true); 326 327 MinVecRegSize = MinVectorRegSizeOption; 328 } 329 330 /// \brief Vectorize the tree that starts with the elements in \p VL. 331 /// Returns the vectorized root. 332 Value *vectorizeTree(); 333 334 /// \returns the cost incurred by unwanted spills and fills, caused by 335 /// holding live values over call sites. 336 int getSpillCost(); 337 338 /// \returns the vectorization cost of the subtree that starts at \p VL. 339 /// A negative number means that this is profitable. 340 int getTreeCost(); 341 342 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 343 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 344 void buildTree(ArrayRef<Value *> Roots, 345 ArrayRef<Value *> UserIgnoreLst = None); 346 347 /// Clear the internal data structures that are created by 'buildTree'. 348 void deleteTree() { 349 VectorizableTree.clear(); 350 ScalarToTreeEntry.clear(); 351 MustGather.clear(); 352 ExternalUses.clear(); 353 NumLoadsWantToKeepOrder = 0; 354 NumLoadsWantToChangeOrder = 0; 355 for (auto &Iter : BlocksSchedules) { 356 BlockScheduling *BS = Iter.second.get(); 357 BS->clear(); 358 } 359 MinBWs.clear(); 360 } 361 362 /// \brief Perform LICM and CSE on the newly generated gather sequences. 363 void optimizeGatherSequence(); 364 365 /// \returns true if it is beneficial to reverse the vector order. 366 bool shouldReorder() const { 367 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 368 } 369 370 /// \return The vector element size in bits to use when vectorizing the 371 /// expression tree ending at \p V. If V is a store, the size is the width of 372 /// the stored value. Otherwise, the size is the width of the largest loaded 373 /// value reaching V. This method is used by the vectorizer to calculate 374 /// vectorization factors. 375 unsigned getVectorElementSize(Value *V); 376 377 /// Compute the minimum type sizes required to represent the entries in a 378 /// vectorizable tree. 379 void computeMinimumValueSizes(); 380 381 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 382 unsigned getMaxVecRegSize() const { 383 return MaxVecRegSize; 384 } 385 386 // \returns minimum vector register size as set by cl::opt. 387 unsigned getMinVecRegSize() const { 388 return MinVecRegSize; 389 } 390 391 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 392 /// 393 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 394 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 395 396 /// \returns True if the VectorizableTree is both tiny and not fully 397 /// vectorizable. We do not vectorize such trees. 398 bool isTreeTinyAndNotFullyVectorizable(); 399 400 private: 401 struct TreeEntry; 402 403 /// \returns the cost of the vectorizable entry. 404 int getEntryCost(TreeEntry *E); 405 406 /// This is the recursive part of buildTree. 407 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 408 409 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 410 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 411 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 412 413 /// Vectorize a single entry in the tree. VL icontains all isomorphic scalars 414 /// in order of its usage in a user program, for example ADD1, ADD2 and so on 415 /// or LOAD1 , LOAD2 etc. 416 Value *vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E); 417 418 /// Vectorize a single entry in the tree, starting in \p VL. 419 Value *vectorizeTree(ArrayRef<Value *> VL); 420 421 /// \returns the pointer to the vectorized value if \p VL is already 422 /// vectorized, or NULL. They may happen in cycles. 423 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 424 425 /// \returns the scalarization cost for this type. Scalarization in this 426 /// context means the creation of vectors from a group of scalars. 427 int getGatherCost(Type *Ty); 428 429 /// \returns the scalarization cost for this list of values. Assuming that 430 /// this subtree gets vectorized, we may need to extract the values from the 431 /// roots. This method calculates the cost of extracting the values. 432 int getGatherCost(ArrayRef<Value *> VL); 433 434 /// \brief Set the Builder insert point to one after the last instruction in 435 /// the bundle 436 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 437 438 /// \returns a vector from a collection of scalars in \p VL. 439 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 440 441 /// \returns whether the VectorizableTree is fully vectorizable and will 442 /// be beneficial even the tree height is tiny. 443 bool isFullyVectorizableTinyTree(); 444 445 /// \reorder commutative operands in alt shuffle if they result in 446 /// vectorized code. 447 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 448 SmallVectorImpl<Value *> &Left, 449 SmallVectorImpl<Value *> &Right); 450 /// \reorder commutative operands to get better probability of 451 /// generating vectorized code. 452 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 453 SmallVectorImpl<Value *> &Left, 454 SmallVectorImpl<Value *> &Right); 455 struct TreeEntry { 456 TreeEntry() : Scalars(), VectorizedValue(nullptr), 457 NeedToGather(0), NeedToShuffle(0) {} 458 459 /// \returns true if the scalars in VL are equal to this entry. 460 bool isSame(ArrayRef<Value *> VL) const { 461 assert(VL.size() == Scalars.size() && "Invalid size"); 462 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 463 } 464 465 /// \returns true if the scalars in VL are found in this tree entry. 466 bool isFoundJumbled(ArrayRef<Value *> VL, const DataLayout &DL, 467 ScalarEvolution &SE) const { 468 assert(VL.size() == Scalars.size() && "Invalid size"); 469 SmallVector<Value *, 8> List; 470 if (!sortMemAccesses(VL, DL, SE, List)) 471 return false; 472 473 return std::equal(List.begin(), List.end(), Scalars.begin()); 474 } 475 476 /// A vector of scalars. 477 ValueList Scalars; 478 479 /// The Scalars are vectorized into this value. It is initialized to Null. 480 Value *VectorizedValue; 481 482 /// Do we need to gather this sequence ? 483 bool NeedToGather; 484 485 /// Do we need to shuffle the load ? 486 bool NeedToShuffle; 487 }; 488 489 /// Create a new VectorizableTree entry. 490 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 491 bool NeedToShuffle) { 492 VectorizableTree.emplace_back(); 493 int idx = VectorizableTree.size() - 1; 494 TreeEntry *Last = &VectorizableTree[idx]; 495 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 496 Last->NeedToGather = !Vectorized; 497 Last->NeedToShuffle = NeedToShuffle; 498 if (Vectorized) { 499 for (int i = 0, e = VL.size(); i != e; ++i) { 500 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 501 ScalarToTreeEntry[VL[i]] = idx; 502 } 503 } else { 504 MustGather.insert(VL.begin(), VL.end()); 505 } 506 return Last; 507 } 508 509 /// -- Vectorization State -- 510 /// Holds all of the tree entries. 511 std::vector<TreeEntry> VectorizableTree; 512 513 /// Maps a specific scalar to its tree entry. 514 SmallDenseMap<Value*, int> ScalarToTreeEntry; 515 516 /// A list of scalars that we found that we need to keep as scalars. 517 ValueSet MustGather; 518 519 /// This POD struct describes one external user in the vectorized tree. 520 struct ExternalUser { 521 ExternalUser (Value *S, llvm::User *U, int L) : 522 Scalar(S), User(U), Lane(L){} 523 // Which scalar in our function. 524 Value *Scalar; 525 // Which user that uses the scalar. 526 llvm::User *User; 527 // Which lane does the scalar belong to. 528 int Lane; 529 }; 530 typedef SmallVector<ExternalUser, 16> UserList; 531 532 /// Checks if two instructions may access the same memory. 533 /// 534 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 535 /// is invariant in the calling loop. 536 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 537 Instruction *Inst2) { 538 539 // First check if the result is already in the cache. 540 AliasCacheKey key = std::make_pair(Inst1, Inst2); 541 Optional<bool> &result = AliasCache[key]; 542 if (result.hasValue()) { 543 return result.getValue(); 544 } 545 MemoryLocation Loc2 = getLocation(Inst2, AA); 546 bool aliased = true; 547 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 548 // Do the alias check. 549 aliased = AA->alias(Loc1, Loc2); 550 } 551 // Store the result in the cache. 552 result = aliased; 553 return aliased; 554 } 555 556 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 557 558 /// Cache for alias results. 559 /// TODO: consider moving this to the AliasAnalysis itself. 560 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 561 562 /// Removes an instruction from its block and eventually deletes it. 563 /// It's like Instruction::eraseFromParent() except that the actual deletion 564 /// is delayed until BoUpSLP is destructed. 565 /// This is required to ensure that there are no incorrect collisions in the 566 /// AliasCache, which can happen if a new instruction is allocated at the 567 /// same address as a previously deleted instruction. 568 void eraseInstruction(Instruction *I) { 569 I->removeFromParent(); 570 I->dropAllReferences(); 571 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 572 } 573 574 /// Temporary store for deleted instructions. Instructions will be deleted 575 /// eventually when the BoUpSLP is destructed. 576 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 577 578 /// A list of values that need to extracted out of the tree. 579 /// This list holds pairs of (Internal Scalar : External User). 580 UserList ExternalUses; 581 582 /// Values used only by @llvm.assume calls. 583 SmallPtrSet<const Value *, 32> EphValues; 584 585 /// Holds all of the instructions that we gathered. 586 SetVector<Instruction *> GatherSeq; 587 /// A list of blocks that we are going to CSE. 588 SetVector<BasicBlock *> CSEBlocks; 589 590 /// Contains all scheduling relevant data for an instruction. 591 /// A ScheduleData either represents a single instruction or a member of an 592 /// instruction bundle (= a group of instructions which is combined into a 593 /// vector instruction). 594 struct ScheduleData { 595 596 // The initial value for the dependency counters. It means that the 597 // dependencies are not calculated yet. 598 enum { InvalidDeps = -1 }; 599 600 ScheduleData() 601 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 602 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 603 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 604 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 605 606 void init(int BlockSchedulingRegionID) { 607 FirstInBundle = this; 608 NextInBundle = nullptr; 609 NextLoadStore = nullptr; 610 IsScheduled = false; 611 SchedulingRegionID = BlockSchedulingRegionID; 612 UnscheduledDepsInBundle = UnscheduledDeps; 613 clearDependencies(); 614 } 615 616 /// Returns true if the dependency information has been calculated. 617 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 618 619 /// Returns true for single instructions and for bundle representatives 620 /// (= the head of a bundle). 621 bool isSchedulingEntity() const { return FirstInBundle == this; } 622 623 /// Returns true if it represents an instruction bundle and not only a 624 /// single instruction. 625 bool isPartOfBundle() const { 626 return NextInBundle != nullptr || FirstInBundle != this; 627 } 628 629 /// Returns true if it is ready for scheduling, i.e. it has no more 630 /// unscheduled depending instructions/bundles. 631 bool isReady() const { 632 assert(isSchedulingEntity() && 633 "can't consider non-scheduling entity for ready list"); 634 return UnscheduledDepsInBundle == 0 && !IsScheduled; 635 } 636 637 /// Modifies the number of unscheduled dependencies, also updating it for 638 /// the whole bundle. 639 int incrementUnscheduledDeps(int Incr) { 640 UnscheduledDeps += Incr; 641 return FirstInBundle->UnscheduledDepsInBundle += Incr; 642 } 643 644 /// Sets the number of unscheduled dependencies to the number of 645 /// dependencies. 646 void resetUnscheduledDeps() { 647 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 648 } 649 650 /// Clears all dependency information. 651 void clearDependencies() { 652 Dependencies = InvalidDeps; 653 resetUnscheduledDeps(); 654 MemoryDependencies.clear(); 655 } 656 657 void dump(raw_ostream &os) const { 658 if (!isSchedulingEntity()) { 659 os << "/ " << *Inst; 660 } else if (NextInBundle) { 661 os << '[' << *Inst; 662 ScheduleData *SD = NextInBundle; 663 while (SD) { 664 os << ';' << *SD->Inst; 665 SD = SD->NextInBundle; 666 } 667 os << ']'; 668 } else { 669 os << *Inst; 670 } 671 } 672 673 Instruction *Inst; 674 675 /// Points to the head in an instruction bundle (and always to this for 676 /// single instructions). 677 ScheduleData *FirstInBundle; 678 679 /// Single linked list of all instructions in a bundle. Null if it is a 680 /// single instruction. 681 ScheduleData *NextInBundle; 682 683 /// Single linked list of all memory instructions (e.g. load, store, call) 684 /// in the block - until the end of the scheduling region. 685 ScheduleData *NextLoadStore; 686 687 /// The dependent memory instructions. 688 /// This list is derived on demand in calculateDependencies(). 689 SmallVector<ScheduleData *, 4> MemoryDependencies; 690 691 /// This ScheduleData is in the current scheduling region if this matches 692 /// the current SchedulingRegionID of BlockScheduling. 693 int SchedulingRegionID; 694 695 /// Used for getting a "good" final ordering of instructions. 696 int SchedulingPriority; 697 698 /// The number of dependencies. Constitutes of the number of users of the 699 /// instruction plus the number of dependent memory instructions (if any). 700 /// This value is calculated on demand. 701 /// If InvalidDeps, the number of dependencies is not calculated yet. 702 /// 703 int Dependencies; 704 705 /// The number of dependencies minus the number of dependencies of scheduled 706 /// instructions. As soon as this is zero, the instruction/bundle gets ready 707 /// for scheduling. 708 /// Note that this is negative as long as Dependencies is not calculated. 709 int UnscheduledDeps; 710 711 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 712 /// single instructions. 713 int UnscheduledDepsInBundle; 714 715 /// True if this instruction is scheduled (or considered as scheduled in the 716 /// dry-run). 717 bool IsScheduled; 718 }; 719 720 #ifndef NDEBUG 721 friend inline raw_ostream &operator<<(raw_ostream &os, 722 const BoUpSLP::ScheduleData &SD) { 723 SD.dump(os); 724 return os; 725 } 726 #endif 727 728 /// Contains all scheduling data for a basic block. 729 /// 730 struct BlockScheduling { 731 732 BlockScheduling(BasicBlock *BB) 733 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 734 ScheduleStart(nullptr), ScheduleEnd(nullptr), 735 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 736 ScheduleRegionSize(0), 737 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 738 // Make sure that the initial SchedulingRegionID is greater than the 739 // initial SchedulingRegionID in ScheduleData (which is 0). 740 SchedulingRegionID(1) {} 741 742 void clear() { 743 ReadyInsts.clear(); 744 ScheduleStart = nullptr; 745 ScheduleEnd = nullptr; 746 FirstLoadStoreInRegion = nullptr; 747 LastLoadStoreInRegion = nullptr; 748 749 // Reduce the maximum schedule region size by the size of the 750 // previous scheduling run. 751 ScheduleRegionSizeLimit -= ScheduleRegionSize; 752 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 753 ScheduleRegionSizeLimit = MinScheduleRegionSize; 754 ScheduleRegionSize = 0; 755 756 // Make a new scheduling region, i.e. all existing ScheduleData is not 757 // in the new region yet. 758 ++SchedulingRegionID; 759 } 760 761 ScheduleData *getScheduleData(Value *V) { 762 ScheduleData *SD = ScheduleDataMap[V]; 763 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 764 return SD; 765 return nullptr; 766 } 767 768 bool isInSchedulingRegion(ScheduleData *SD) { 769 return SD->SchedulingRegionID == SchedulingRegionID; 770 } 771 772 /// Marks an instruction as scheduled and puts all dependent ready 773 /// instructions into the ready-list. 774 template <typename ReadyListType> 775 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 776 SD->IsScheduled = true; 777 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 778 779 ScheduleData *BundleMember = SD; 780 while (BundleMember) { 781 // Handle the def-use chain dependencies. 782 for (Use &U : BundleMember->Inst->operands()) { 783 ScheduleData *OpDef = getScheduleData(U.get()); 784 if (OpDef && OpDef->hasValidDependencies() && 785 OpDef->incrementUnscheduledDeps(-1) == 0) { 786 // There are no more unscheduled dependencies after decrementing, 787 // so we can put the dependent instruction into the ready list. 788 ScheduleData *DepBundle = OpDef->FirstInBundle; 789 assert(!DepBundle->IsScheduled && 790 "already scheduled bundle gets ready"); 791 ReadyList.insert(DepBundle); 792 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 793 } 794 } 795 // Handle the memory dependencies. 796 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 797 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 798 // There are no more unscheduled dependencies after decrementing, 799 // so we can put the dependent instruction into the ready list. 800 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 801 assert(!DepBundle->IsScheduled && 802 "already scheduled bundle gets ready"); 803 ReadyList.insert(DepBundle); 804 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 805 } 806 } 807 BundleMember = BundleMember->NextInBundle; 808 } 809 } 810 811 /// Put all instructions into the ReadyList which are ready for scheduling. 812 template <typename ReadyListType> 813 void initialFillReadyList(ReadyListType &ReadyList) { 814 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 815 ScheduleData *SD = getScheduleData(I); 816 if (SD->isSchedulingEntity() && SD->isReady()) { 817 ReadyList.insert(SD); 818 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 819 } 820 } 821 } 822 823 /// Checks if a bundle of instructions can be scheduled, i.e. has no 824 /// cyclic dependencies. This is only a dry-run, no instructions are 825 /// actually moved at this stage. 826 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 827 828 /// Un-bundles a group of instructions. 829 void cancelScheduling(ArrayRef<Value *> VL); 830 831 /// Extends the scheduling region so that V is inside the region. 832 /// \returns true if the region size is within the limit. 833 bool extendSchedulingRegion(Value *V); 834 835 /// Initialize the ScheduleData structures for new instructions in the 836 /// scheduling region. 837 void initScheduleData(Instruction *FromI, Instruction *ToI, 838 ScheduleData *PrevLoadStore, 839 ScheduleData *NextLoadStore); 840 841 /// Updates the dependency information of a bundle and of all instructions/ 842 /// bundles which depend on the original bundle. 843 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 844 BoUpSLP *SLP); 845 846 /// Sets all instruction in the scheduling region to un-scheduled. 847 void resetSchedule(); 848 849 BasicBlock *BB; 850 851 /// Simple memory allocation for ScheduleData. 852 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 853 854 /// The size of a ScheduleData array in ScheduleDataChunks. 855 int ChunkSize; 856 857 /// The allocator position in the current chunk, which is the last entry 858 /// of ScheduleDataChunks. 859 int ChunkPos; 860 861 /// Attaches ScheduleData to Instruction. 862 /// Note that the mapping survives during all vectorization iterations, i.e. 863 /// ScheduleData structures are recycled. 864 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 865 866 struct ReadyList : SmallVector<ScheduleData *, 8> { 867 void insert(ScheduleData *SD) { push_back(SD); } 868 }; 869 870 /// The ready-list for scheduling (only used for the dry-run). 871 ReadyList ReadyInsts; 872 873 /// The first instruction of the scheduling region. 874 Instruction *ScheduleStart; 875 876 /// The first instruction _after_ the scheduling region. 877 Instruction *ScheduleEnd; 878 879 /// The first memory accessing instruction in the scheduling region 880 /// (can be null). 881 ScheduleData *FirstLoadStoreInRegion; 882 883 /// The last memory accessing instruction in the scheduling region 884 /// (can be null). 885 ScheduleData *LastLoadStoreInRegion; 886 887 /// The current size of the scheduling region. 888 int ScheduleRegionSize; 889 890 /// The maximum size allowed for the scheduling region. 891 int ScheduleRegionSizeLimit; 892 893 /// The ID of the scheduling region. For a new vectorization iteration this 894 /// is incremented which "removes" all ScheduleData from the region. 895 int SchedulingRegionID; 896 }; 897 898 /// Attaches the BlockScheduling structures to basic blocks. 899 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 900 901 /// Performs the "real" scheduling. Done before vectorization is actually 902 /// performed in a basic block. 903 void scheduleBlock(BlockScheduling *BS); 904 905 /// List of users to ignore during scheduling and that don't need extracting. 906 ArrayRef<Value *> UserIgnoreList; 907 908 // Number of load bundles that contain consecutive loads. 909 int NumLoadsWantToKeepOrder; 910 911 // Number of load bundles that contain consecutive loads in reversed order. 912 int NumLoadsWantToChangeOrder; 913 914 // Analysis and block reference. 915 Function *F; 916 ScalarEvolution *SE; 917 TargetTransformInfo *TTI; 918 TargetLibraryInfo *TLI; 919 AliasAnalysis *AA; 920 LoopInfo *LI; 921 DominatorTree *DT; 922 AssumptionCache *AC; 923 DemandedBits *DB; 924 const DataLayout *DL; 925 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 926 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 927 /// Instruction builder to construct the vectorized tree. 928 IRBuilder<> Builder; 929 930 /// A map of scalar integer values to the smallest bit width with which they 931 /// can legally be represented. The values map to (width, signed) pairs, 932 /// where "width" indicates the minimum bit width and "signed" is True if the 933 /// value must be signed-extended, rather than zero-extended, back to its 934 /// original width. 935 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 936 }; 937 938 } // end namespace llvm 939 } // end namespace slpvectorizer 940 941 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 942 ArrayRef<Value *> UserIgnoreLst) { 943 deleteTree(); 944 UserIgnoreList = UserIgnoreLst; 945 if (!allSameType(Roots)) 946 return; 947 buildTree_rec(Roots, 0); 948 949 // Collect the values that we need to extract from the tree. 950 for (TreeEntry &EIdx : VectorizableTree) { 951 TreeEntry *Entry = &EIdx; 952 953 // For each lane: 954 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 955 Value *Scalar = Entry->Scalars[Lane]; 956 957 // No need to handle users of gathered values. 958 if (Entry->NeedToGather) 959 continue; 960 961 for (User *U : Scalar->users()) { 962 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 963 964 Instruction *UserInst = dyn_cast<Instruction>(U); 965 if (!UserInst) 966 continue; 967 968 // Skip in-tree scalars that become vectors 969 if (ScalarToTreeEntry.count(U)) { 970 int Idx = ScalarToTreeEntry[U]; 971 TreeEntry *UseEntry = &VectorizableTree[Idx]; 972 Value *UseScalar = UseEntry->Scalars[0]; 973 // Some in-tree scalars will remain as scalar in vectorized 974 // instructions. If that is the case, the one in Lane 0 will 975 // be used. 976 if (UseScalar != U || 977 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 978 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 979 << ".\n"); 980 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 981 continue; 982 } 983 } 984 985 // Ignore users in the user ignore list. 986 if (is_contained(UserIgnoreList, UserInst)) 987 continue; 988 989 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 990 Lane << " from " << *Scalar << ".\n"); 991 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 992 } 993 } 994 } 995 } 996 997 998 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 999 bool isAltShuffle = false; 1000 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1001 1002 if (Depth == RecursionMaxDepth) { 1003 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1004 newTreeEntry(VL, false, false); 1005 return; 1006 } 1007 1008 // Don't handle vectors. 1009 if (VL[0]->getType()->isVectorTy()) { 1010 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1011 newTreeEntry(VL, false, false); 1012 return; 1013 } 1014 1015 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1016 if (SI->getValueOperand()->getType()->isVectorTy()) { 1017 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1018 newTreeEntry(VL, false, false); 1019 return; 1020 } 1021 unsigned Opcode = getSameOpcode(VL); 1022 1023 // Check that this shuffle vector refers to the alternate 1024 // sequence of opcodes. 1025 if (Opcode == Instruction::ShuffleVector) { 1026 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1027 unsigned Op = I0->getOpcode(); 1028 if (Op != Instruction::ShuffleVector) 1029 isAltShuffle = true; 1030 } 1031 1032 // If all of the operands are identical or constant we have a simple solution. 1033 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1034 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1035 newTreeEntry(VL, false, false); 1036 return; 1037 } 1038 1039 // We now know that this is a vector of instructions of the same type from 1040 // the same block. 1041 1042 // Don't vectorize ephemeral values. 1043 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1044 if (EphValues.count(VL[i])) { 1045 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1046 ") is ephemeral.\n"); 1047 newTreeEntry(VL, false, false); 1048 return; 1049 } 1050 } 1051 1052 // Check if this is a duplicate of another entry. 1053 if (ScalarToTreeEntry.count(VL[0])) { 1054 int Idx = ScalarToTreeEntry[VL[0]]; 1055 TreeEntry *E = &VectorizableTree[Idx]; 1056 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1057 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1058 if (E->Scalars[i] != VL[i]) { 1059 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1060 newTreeEntry(VL, false, false); 1061 return; 1062 } 1063 } 1064 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1065 return; 1066 } 1067 1068 // Check that none of the instructions in the bundle are already in the tree. 1069 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1070 if (ScalarToTreeEntry.count(VL[i])) { 1071 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1072 ") is already in tree.\n"); 1073 newTreeEntry(VL, false, false); 1074 return; 1075 } 1076 } 1077 1078 // If any of the scalars is marked as a value that needs to stay scalar then 1079 // we need to gather the scalars. 1080 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1081 if (MustGather.count(VL[i])) { 1082 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1083 newTreeEntry(VL, false, false); 1084 return; 1085 } 1086 } 1087 1088 // Check that all of the users of the scalars that we want to vectorize are 1089 // schedulable. 1090 Instruction *VL0 = cast<Instruction>(VL[0]); 1091 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1092 1093 if (!DT->isReachableFromEntry(BB)) { 1094 // Don't go into unreachable blocks. They may contain instructions with 1095 // dependency cycles which confuse the final scheduling. 1096 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1097 newTreeEntry(VL, false, false); 1098 return; 1099 } 1100 1101 // Check that every instructions appears once in this bundle. 1102 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1103 for (unsigned j = i+1; j < e; ++j) 1104 if (VL[i] == VL[j]) { 1105 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1106 newTreeEntry(VL, false, false); 1107 return; 1108 } 1109 1110 auto &BSRef = BlocksSchedules[BB]; 1111 if (!BSRef) { 1112 BSRef = llvm::make_unique<BlockScheduling>(BB); 1113 } 1114 BlockScheduling &BS = *BSRef.get(); 1115 1116 if (!BS.tryScheduleBundle(VL, this)) { 1117 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1118 assert((!BS.getScheduleData(VL[0]) || 1119 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1120 "tryScheduleBundle should cancelScheduling on failure"); 1121 newTreeEntry(VL, false, false); 1122 return; 1123 } 1124 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1125 1126 switch (Opcode) { 1127 case Instruction::PHI: { 1128 PHINode *PH = dyn_cast<PHINode>(VL0); 1129 1130 // Check for terminator values (e.g. invoke). 1131 for (unsigned j = 0; j < VL.size(); ++j) 1132 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1133 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1134 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1135 if (Term) { 1136 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1137 BS.cancelScheduling(VL); 1138 newTreeEntry(VL, false, false); 1139 return; 1140 } 1141 } 1142 1143 newTreeEntry(VL, true, false); 1144 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1145 1146 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1147 ValueList Operands; 1148 // Prepare the operand vector. 1149 for (Value *j : VL) 1150 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1151 PH->getIncomingBlock(i))); 1152 1153 buildTree_rec(Operands, Depth + 1); 1154 } 1155 return; 1156 } 1157 case Instruction::ExtractValue: 1158 case Instruction::ExtractElement: { 1159 bool Reuse = canReuseExtract(VL, Opcode); 1160 if (Reuse) { 1161 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1162 } else { 1163 BS.cancelScheduling(VL); 1164 } 1165 newTreeEntry(VL, Reuse, false); 1166 return; 1167 } 1168 case Instruction::Load: { 1169 // Check that a vectorized load would load the same memory as a scalar 1170 // load. 1171 // For example we don't want vectorize loads that are smaller than 8 bit. 1172 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1173 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1174 // such a struct we read/write packed bits disagreeing with the 1175 // unvectorized version. 1176 Type *ScalarTy = VL[0]->getType(); 1177 1178 if (DL->getTypeSizeInBits(ScalarTy) != 1179 DL->getTypeAllocSizeInBits(ScalarTy)) { 1180 BS.cancelScheduling(VL); 1181 newTreeEntry(VL, false, false); 1182 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1183 return; 1184 } 1185 1186 // Make sure all loads in the bundle are simple - we can't vectorize 1187 // atomic or volatile loads. 1188 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1189 LoadInst *L = cast<LoadInst>(VL[i]); 1190 if (!L->isSimple()) { 1191 BS.cancelScheduling(VL); 1192 newTreeEntry(VL, false, false); 1193 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1194 return; 1195 } 1196 } 1197 1198 // Check if the loads are consecutive, reversed, or neither. 1199 bool Consecutive = true; 1200 bool ReverseConsecutive = true; 1201 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1202 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1203 Consecutive = false; 1204 break; 1205 } else { 1206 ReverseConsecutive = false; 1207 } 1208 } 1209 1210 if (Consecutive) { 1211 ++NumLoadsWantToKeepOrder; 1212 newTreeEntry(VL, true, false); 1213 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1214 return; 1215 } 1216 1217 // If none of the load pairs were consecutive when checked in order, 1218 // check the reverse order. 1219 if (ReverseConsecutive) 1220 for (unsigned i = VL.size() - 1; i > 0; --i) 1221 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1222 ReverseConsecutive = false; 1223 break; 1224 } 1225 1226 if (VL.size() > 2 && !ReverseConsecutive) { 1227 bool ShuffledLoads = true; 1228 SmallVector<Value *, 8> Sorted; 1229 if (sortMemAccesses(VL, *DL, *SE, Sorted)) { 1230 auto NewVL = makeArrayRef(Sorted.begin(), Sorted.end()); 1231 for (unsigned i = 0, e = NewVL.size() - 1; i < e; ++i) { 1232 if (!isConsecutiveAccess(NewVL[i], NewVL[i + 1], *DL, *SE)) { 1233 ShuffledLoads = false; 1234 break; 1235 } 1236 } 1237 if (ShuffledLoads) { 1238 newTreeEntry(NewVL, true, true); 1239 return; 1240 } 1241 } 1242 } 1243 1244 BS.cancelScheduling(VL); 1245 newTreeEntry(VL, false, false); 1246 1247 if (ReverseConsecutive) { 1248 ++NumLoadsWantToChangeOrder; 1249 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1250 } else { 1251 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1252 } 1253 return; 1254 } 1255 case Instruction::ZExt: 1256 case Instruction::SExt: 1257 case Instruction::FPToUI: 1258 case Instruction::FPToSI: 1259 case Instruction::FPExt: 1260 case Instruction::PtrToInt: 1261 case Instruction::IntToPtr: 1262 case Instruction::SIToFP: 1263 case Instruction::UIToFP: 1264 case Instruction::Trunc: 1265 case Instruction::FPTrunc: 1266 case Instruction::BitCast: { 1267 Type *SrcTy = VL0->getOperand(0)->getType(); 1268 for (Value *Val : VL) { 1269 Type *Ty = cast<Instruction>(Val)->getOperand(0)->getType(); 1270 if (Ty != SrcTy || !isValidElementType(Ty)) { 1271 BS.cancelScheduling(VL); 1272 newTreeEntry(VL, false, false); 1273 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1274 return; 1275 } 1276 } 1277 newTreeEntry(VL, true, false); 1278 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1279 1280 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1281 ValueList Operands; 1282 // Prepare the operand vector. 1283 for (Value *j : VL) 1284 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1285 1286 buildTree_rec(Operands, Depth+1); 1287 } 1288 return; 1289 } 1290 case Instruction::ICmp: 1291 case Instruction::FCmp: { 1292 // Check that all of the compares have the same predicate. 1293 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1294 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1295 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1296 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1297 if (Cmp->getPredicate() != P0 || 1298 Cmp->getOperand(0)->getType() != ComparedTy) { 1299 BS.cancelScheduling(VL); 1300 newTreeEntry(VL, false, false); 1301 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1302 return; 1303 } 1304 } 1305 1306 newTreeEntry(VL, true, false); 1307 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1308 1309 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1310 ValueList Operands; 1311 // Prepare the operand vector. 1312 for (Value *j : VL) 1313 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1314 1315 buildTree_rec(Operands, Depth+1); 1316 } 1317 return; 1318 } 1319 case Instruction::Select: 1320 case Instruction::Add: 1321 case Instruction::FAdd: 1322 case Instruction::Sub: 1323 case Instruction::FSub: 1324 case Instruction::Mul: 1325 case Instruction::FMul: 1326 case Instruction::UDiv: 1327 case Instruction::SDiv: 1328 case Instruction::FDiv: 1329 case Instruction::URem: 1330 case Instruction::SRem: 1331 case Instruction::FRem: 1332 case Instruction::Shl: 1333 case Instruction::LShr: 1334 case Instruction::AShr: 1335 case Instruction::And: 1336 case Instruction::Or: 1337 case Instruction::Xor: { 1338 newTreeEntry(VL, true, false); 1339 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1340 1341 // Sort operands of the instructions so that each side is more likely to 1342 // have the same opcode. 1343 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1344 ValueList Left, Right; 1345 reorderInputsAccordingToOpcode(VL, Left, Right); 1346 buildTree_rec(Left, Depth + 1); 1347 buildTree_rec(Right, Depth + 1); 1348 return; 1349 } 1350 1351 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1352 ValueList Operands; 1353 // Prepare the operand vector. 1354 for (Value *j : VL) 1355 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1356 1357 buildTree_rec(Operands, Depth+1); 1358 } 1359 return; 1360 } 1361 case Instruction::GetElementPtr: { 1362 // We don't combine GEPs with complicated (nested) indexing. 1363 for (Value *Val : VL) { 1364 if (cast<Instruction>(Val)->getNumOperands() != 2) { 1365 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1366 BS.cancelScheduling(VL); 1367 newTreeEntry(VL, false, false); 1368 return; 1369 } 1370 } 1371 1372 // We can't combine several GEPs into one vector if they operate on 1373 // different types. 1374 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1375 for (Value *Val : VL) { 1376 Type *CurTy = cast<Instruction>(Val)->getOperand(0)->getType(); 1377 if (Ty0 != CurTy) { 1378 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1379 BS.cancelScheduling(VL); 1380 newTreeEntry(VL, false, false); 1381 return; 1382 } 1383 } 1384 1385 // We don't combine GEPs with non-constant indexes. 1386 for (Value *Val : VL) { 1387 auto Op = cast<Instruction>(Val)->getOperand(1); 1388 if (!isa<ConstantInt>(Op)) { 1389 DEBUG( 1390 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1391 BS.cancelScheduling(VL); 1392 newTreeEntry(VL, false, false); 1393 return; 1394 } 1395 } 1396 1397 newTreeEntry(VL, true, false); 1398 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1399 for (unsigned i = 0, e = 2; i < e; ++i) { 1400 ValueList Operands; 1401 // Prepare the operand vector. 1402 for (Value *j : VL) 1403 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1404 1405 buildTree_rec(Operands, Depth + 1); 1406 } 1407 return; 1408 } 1409 case Instruction::Store: { 1410 // Check if the stores are consecutive or of we need to swizzle them. 1411 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1412 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1413 BS.cancelScheduling(VL); 1414 newTreeEntry(VL, false, false); 1415 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1416 return; 1417 } 1418 1419 newTreeEntry(VL, true, false); 1420 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1421 1422 ValueList Operands; 1423 for (Value *j : VL) 1424 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1425 1426 buildTree_rec(Operands, Depth + 1); 1427 return; 1428 } 1429 case Instruction::Call: { 1430 // Check if the calls are all to the same vectorizable intrinsic. 1431 CallInst *CI = cast<CallInst>(VL[0]); 1432 // Check if this is an Intrinsic call or something that can be 1433 // represented by an intrinsic call 1434 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1435 if (!isTriviallyVectorizable(ID)) { 1436 BS.cancelScheduling(VL); 1437 newTreeEntry(VL, false, false); 1438 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1439 return; 1440 } 1441 Function *Int = CI->getCalledFunction(); 1442 Value *A1I = nullptr; 1443 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1444 A1I = CI->getArgOperand(1); 1445 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1446 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1447 if (!CI2 || CI2->getCalledFunction() != Int || 1448 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1449 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1450 BS.cancelScheduling(VL); 1451 newTreeEntry(VL, false, false); 1452 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1453 << "\n"); 1454 return; 1455 } 1456 // ctlz,cttz and powi are special intrinsics whose second argument 1457 // should be same in order for them to be vectorized. 1458 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1459 Value *A1J = CI2->getArgOperand(1); 1460 if (A1I != A1J) { 1461 BS.cancelScheduling(VL); 1462 newTreeEntry(VL, false, false); 1463 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1464 << " argument "<< A1I<<"!=" << A1J 1465 << "\n"); 1466 return; 1467 } 1468 } 1469 // Verify that the bundle operands are identical between the two calls. 1470 if (CI->hasOperandBundles() && 1471 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1472 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1473 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1474 BS.cancelScheduling(VL); 1475 newTreeEntry(VL, false, false); 1476 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1477 << *VL[i] << '\n'); 1478 return; 1479 } 1480 } 1481 1482 newTreeEntry(VL, true, false); 1483 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1484 ValueList Operands; 1485 // Prepare the operand vector. 1486 for (Value *j : VL) { 1487 CallInst *CI2 = dyn_cast<CallInst>(j); 1488 Operands.push_back(CI2->getArgOperand(i)); 1489 } 1490 buildTree_rec(Operands, Depth + 1); 1491 } 1492 return; 1493 } 1494 case Instruction::ShuffleVector: { 1495 // If this is not an alternate sequence of opcode like add-sub 1496 // then do not vectorize this instruction. 1497 if (!isAltShuffle) { 1498 BS.cancelScheduling(VL); 1499 newTreeEntry(VL, false, false); 1500 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1501 return; 1502 } 1503 newTreeEntry(VL, true, false); 1504 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1505 1506 // Reorder operands if reordering would enable vectorization. 1507 if (isa<BinaryOperator>(VL0)) { 1508 ValueList Left, Right; 1509 reorderAltShuffleOperands(VL, Left, Right); 1510 buildTree_rec(Left, Depth + 1); 1511 buildTree_rec(Right, Depth + 1); 1512 return; 1513 } 1514 1515 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1516 ValueList Operands; 1517 // Prepare the operand vector. 1518 for (Value *j : VL) 1519 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1520 1521 buildTree_rec(Operands, Depth + 1); 1522 } 1523 return; 1524 } 1525 default: 1526 BS.cancelScheduling(VL); 1527 newTreeEntry(VL, false, false); 1528 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1529 return; 1530 } 1531 } 1532 1533 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1534 unsigned N; 1535 Type *EltTy; 1536 auto *ST = dyn_cast<StructType>(T); 1537 if (ST) { 1538 N = ST->getNumElements(); 1539 EltTy = *ST->element_begin(); 1540 } else { 1541 N = cast<ArrayType>(T)->getNumElements(); 1542 EltTy = cast<ArrayType>(T)->getElementType(); 1543 } 1544 if (!isValidElementType(EltTy)) 1545 return 0; 1546 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1547 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1548 return 0; 1549 if (ST) { 1550 // Check that struct is homogeneous. 1551 for (const auto *Ty : ST->elements()) 1552 if (Ty != EltTy) 1553 return 0; 1554 } 1555 return N; 1556 } 1557 1558 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1559 assert(Opcode == Instruction::ExtractElement || 1560 Opcode == Instruction::ExtractValue); 1561 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1562 // Check if all of the extracts come from the same vector and from the 1563 // correct offset. 1564 Value *VL0 = VL[0]; 1565 Instruction *E0 = cast<Instruction>(VL0); 1566 Value *Vec = E0->getOperand(0); 1567 1568 // We have to extract from a vector/aggregate with the same number of elements. 1569 unsigned NElts; 1570 if (Opcode == Instruction::ExtractValue) { 1571 const DataLayout &DL = E0->getModule()->getDataLayout(); 1572 NElts = canMapToVector(Vec->getType(), DL); 1573 if (!NElts) 1574 return false; 1575 // Check if load can be rewritten as load of vector. 1576 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1577 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1578 return false; 1579 } else { 1580 NElts = Vec->getType()->getVectorNumElements(); 1581 } 1582 1583 if (NElts != VL.size()) 1584 return false; 1585 1586 // Check that all of the indices extract from the correct offset. 1587 if (!matchExtractIndex(E0, 0, Opcode)) 1588 return false; 1589 1590 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1591 Instruction *E = cast<Instruction>(VL[i]); 1592 if (!matchExtractIndex(E, i, Opcode)) 1593 return false; 1594 if (E->getOperand(0) != Vec) 1595 return false; 1596 } 1597 1598 return true; 1599 } 1600 1601 int BoUpSLP::getEntryCost(TreeEntry *E) { 1602 ArrayRef<Value*> VL = E->Scalars; 1603 1604 Type *ScalarTy = VL[0]->getType(); 1605 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1606 ScalarTy = SI->getValueOperand()->getType(); 1607 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1608 1609 // If we have computed a smaller type for the expression, update VecTy so 1610 // that the costs will be accurate. 1611 if (MinBWs.count(VL[0])) 1612 VecTy = VectorType::get( 1613 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1614 1615 if (E->NeedToGather) { 1616 if (allConstant(VL)) 1617 return 0; 1618 if (isSplat(VL)) { 1619 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1620 } 1621 return getGatherCost(E->Scalars); 1622 } 1623 unsigned Opcode = getSameOpcode(VL); 1624 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1625 Instruction *VL0 = cast<Instruction>(VL[0]); 1626 switch (Opcode) { 1627 case Instruction::PHI: { 1628 return 0; 1629 } 1630 case Instruction::ExtractValue: 1631 case Instruction::ExtractElement: { 1632 if (canReuseExtract(VL, Opcode)) { 1633 int DeadCost = 0; 1634 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1635 Instruction *E = cast<Instruction>(VL[i]); 1636 if (E->hasOneUse()) 1637 // Take credit for instruction that will become dead. 1638 DeadCost += 1639 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1640 } 1641 return -DeadCost; 1642 } 1643 return getGatherCost(VecTy); 1644 } 1645 case Instruction::ZExt: 1646 case Instruction::SExt: 1647 case Instruction::FPToUI: 1648 case Instruction::FPToSI: 1649 case Instruction::FPExt: 1650 case Instruction::PtrToInt: 1651 case Instruction::IntToPtr: 1652 case Instruction::SIToFP: 1653 case Instruction::UIToFP: 1654 case Instruction::Trunc: 1655 case Instruction::FPTrunc: 1656 case Instruction::BitCast: { 1657 Type *SrcTy = VL0->getOperand(0)->getType(); 1658 1659 // Calculate the cost of this instruction. 1660 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1661 VL0->getType(), SrcTy); 1662 1663 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1664 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1665 return VecCost - ScalarCost; 1666 } 1667 case Instruction::FCmp: 1668 case Instruction::ICmp: 1669 case Instruction::Select: { 1670 // Calculate the cost of this instruction. 1671 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1672 int ScalarCost = VecTy->getNumElements() * 1673 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1674 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1675 return VecCost - ScalarCost; 1676 } 1677 case Instruction::Add: 1678 case Instruction::FAdd: 1679 case Instruction::Sub: 1680 case Instruction::FSub: 1681 case Instruction::Mul: 1682 case Instruction::FMul: 1683 case Instruction::UDiv: 1684 case Instruction::SDiv: 1685 case Instruction::FDiv: 1686 case Instruction::URem: 1687 case Instruction::SRem: 1688 case Instruction::FRem: 1689 case Instruction::Shl: 1690 case Instruction::LShr: 1691 case Instruction::AShr: 1692 case Instruction::And: 1693 case Instruction::Or: 1694 case Instruction::Xor: { 1695 // Certain instructions can be cheaper to vectorize if they have a 1696 // constant second vector operand. 1697 TargetTransformInfo::OperandValueKind Op1VK = 1698 TargetTransformInfo::OK_AnyValue; 1699 TargetTransformInfo::OperandValueKind Op2VK = 1700 TargetTransformInfo::OK_UniformConstantValue; 1701 TargetTransformInfo::OperandValueProperties Op1VP = 1702 TargetTransformInfo::OP_None; 1703 TargetTransformInfo::OperandValueProperties Op2VP = 1704 TargetTransformInfo::OP_None; 1705 1706 // If all operands are exactly the same ConstantInt then set the 1707 // operand kind to OK_UniformConstantValue. 1708 // If instead not all operands are constants, then set the operand kind 1709 // to OK_AnyValue. If all operands are constants but not the same, 1710 // then set the operand kind to OK_NonUniformConstantValue. 1711 ConstantInt *CInt = nullptr; 1712 for (unsigned i = 0; i < VL.size(); ++i) { 1713 const Instruction *I = cast<Instruction>(VL[i]); 1714 if (!isa<ConstantInt>(I->getOperand(1))) { 1715 Op2VK = TargetTransformInfo::OK_AnyValue; 1716 break; 1717 } 1718 if (i == 0) { 1719 CInt = cast<ConstantInt>(I->getOperand(1)); 1720 continue; 1721 } 1722 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1723 CInt != cast<ConstantInt>(I->getOperand(1))) 1724 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1725 } 1726 // FIXME: Currently cost of model modification for division by power of 1727 // 2 is handled for X86 and AArch64. Add support for other targets. 1728 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1729 CInt->getValue().isPowerOf2()) 1730 Op2VP = TargetTransformInfo::OP_PowerOf2; 1731 1732 int ScalarCost = VecTy->getNumElements() * 1733 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1734 Op2VK, Op1VP, Op2VP); 1735 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1736 Op1VP, Op2VP); 1737 return VecCost - ScalarCost; 1738 } 1739 case Instruction::GetElementPtr: { 1740 TargetTransformInfo::OperandValueKind Op1VK = 1741 TargetTransformInfo::OK_AnyValue; 1742 TargetTransformInfo::OperandValueKind Op2VK = 1743 TargetTransformInfo::OK_UniformConstantValue; 1744 1745 int ScalarCost = 1746 VecTy->getNumElements() * 1747 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1748 int VecCost = 1749 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1750 1751 return VecCost - ScalarCost; 1752 } 1753 case Instruction::Load: { 1754 // Cost of wide load - cost of scalar loads. 1755 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1756 int ScalarLdCost = VecTy->getNumElements() * 1757 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1758 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1759 VecTy, alignment, 0); 1760 if (E->NeedToShuffle) { 1761 VecLdCost += TTI->getShuffleCost( 1762 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 0); 1763 } 1764 return VecLdCost - ScalarLdCost; 1765 } 1766 case Instruction::Store: { 1767 // We know that we can merge the stores. Calculate the cost. 1768 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1769 int ScalarStCost = VecTy->getNumElements() * 1770 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1771 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1772 VecTy, alignment, 0); 1773 return VecStCost - ScalarStCost; 1774 } 1775 case Instruction::Call: { 1776 CallInst *CI = cast<CallInst>(VL0); 1777 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1778 1779 // Calculate the cost of the scalar and vector calls. 1780 SmallVector<Type*, 4> ScalarTys, VecTys; 1781 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1782 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1783 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1784 VecTy->getNumElements())); 1785 } 1786 1787 FastMathFlags FMF; 1788 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1789 FMF = FPMO->getFastMathFlags(); 1790 1791 int ScalarCallCost = VecTy->getNumElements() * 1792 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1793 1794 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1795 1796 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1797 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1798 << " for " << *CI << "\n"); 1799 1800 return VecCallCost - ScalarCallCost; 1801 } 1802 case Instruction::ShuffleVector: { 1803 TargetTransformInfo::OperandValueKind Op1VK = 1804 TargetTransformInfo::OK_AnyValue; 1805 TargetTransformInfo::OperandValueKind Op2VK = 1806 TargetTransformInfo::OK_AnyValue; 1807 int ScalarCost = 0; 1808 int VecCost = 0; 1809 for (Value *i : VL) { 1810 Instruction *I = cast<Instruction>(i); 1811 if (!I) 1812 break; 1813 ScalarCost += 1814 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1815 } 1816 // VecCost is equal to sum of the cost of creating 2 vectors 1817 // and the cost of creating shuffle. 1818 Instruction *I0 = cast<Instruction>(VL[0]); 1819 VecCost = 1820 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1821 Instruction *I1 = cast<Instruction>(VL[1]); 1822 VecCost += 1823 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1824 VecCost += 1825 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1826 return VecCost - ScalarCost; 1827 } 1828 default: 1829 llvm_unreachable("Unknown instruction"); 1830 } 1831 } 1832 1833 bool BoUpSLP::isFullyVectorizableTinyTree() { 1834 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1835 VectorizableTree.size() << " is fully vectorizable .\n"); 1836 1837 // We only handle trees of heights 1 and 2. 1838 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1839 return true; 1840 1841 if (VectorizableTree.size() != 2) 1842 return false; 1843 1844 // Handle splat and all-constants stores. 1845 if (!VectorizableTree[0].NeedToGather && 1846 (allConstant(VectorizableTree[1].Scalars) || 1847 isSplat(VectorizableTree[1].Scalars))) 1848 return true; 1849 1850 // Gathering cost would be too much for tiny trees. 1851 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1852 return false; 1853 1854 return true; 1855 } 1856 1857 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1858 1859 // We can vectorize the tree if its size is greater than or equal to the 1860 // minimum size specified by the MinTreeSize command line option. 1861 if (VectorizableTree.size() >= MinTreeSize) 1862 return false; 1863 1864 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1865 // can vectorize it if we can prove it fully vectorizable. 1866 if (isFullyVectorizableTinyTree()) 1867 return false; 1868 1869 assert(VectorizableTree.empty() 1870 ? ExternalUses.empty() 1871 : true && "We shouldn't have any external users"); 1872 1873 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1874 // vectorizable. 1875 return true; 1876 } 1877 1878 int BoUpSLP::getSpillCost() { 1879 // Walk from the bottom of the tree to the top, tracking which values are 1880 // live. When we see a call instruction that is not part of our tree, 1881 // query TTI to see if there is a cost to keeping values live over it 1882 // (for example, if spills and fills are required). 1883 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1884 int Cost = 0; 1885 1886 SmallPtrSet<Instruction*, 4> LiveValues; 1887 Instruction *PrevInst = nullptr; 1888 1889 for (const auto &N : VectorizableTree) { 1890 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1891 if (!Inst) 1892 continue; 1893 1894 if (!PrevInst) { 1895 PrevInst = Inst; 1896 continue; 1897 } 1898 1899 // Update LiveValues. 1900 LiveValues.erase(PrevInst); 1901 for (auto &J : PrevInst->operands()) { 1902 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1903 LiveValues.insert(cast<Instruction>(&*J)); 1904 } 1905 1906 DEBUG( 1907 dbgs() << "SLP: #LV: " << LiveValues.size(); 1908 for (auto *X : LiveValues) 1909 dbgs() << " " << X->getName(); 1910 dbgs() << ", Looking at "; 1911 Inst->dump(); 1912 ); 1913 1914 // Now find the sequence of instructions between PrevInst and Inst. 1915 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 1916 PrevInstIt = 1917 PrevInst->getIterator().getReverse(); 1918 while (InstIt != PrevInstIt) { 1919 if (PrevInstIt == PrevInst->getParent()->rend()) { 1920 PrevInstIt = Inst->getParent()->rbegin(); 1921 continue; 1922 } 1923 1924 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1925 SmallVector<Type*, 4> V; 1926 for (auto *II : LiveValues) 1927 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1928 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1929 } 1930 1931 ++PrevInstIt; 1932 } 1933 1934 PrevInst = Inst; 1935 } 1936 1937 return Cost; 1938 } 1939 1940 int BoUpSLP::getTreeCost() { 1941 int Cost = 0; 1942 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1943 VectorizableTree.size() << ".\n"); 1944 1945 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1946 1947 for (TreeEntry &TE : VectorizableTree) { 1948 int C = getEntryCost(&TE); 1949 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1950 << *TE.Scalars[0] << ".\n"); 1951 Cost += C; 1952 } 1953 1954 SmallSet<Value *, 16> ExtractCostCalculated; 1955 int ExtractCost = 0; 1956 for (ExternalUser &EU : ExternalUses) { 1957 // We only add extract cost once for the same scalar. 1958 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1959 continue; 1960 1961 // Uses by ephemeral values are free (because the ephemeral value will be 1962 // removed prior to code generation, and so the extraction will be 1963 // removed as well). 1964 if (EphValues.count(EU.User)) 1965 continue; 1966 1967 // If we plan to rewrite the tree in a smaller type, we will need to sign 1968 // extend the extracted value back to the original type. Here, we account 1969 // for the extract and the added cost of the sign extend if needed. 1970 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1971 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1972 if (MinBWs.count(ScalarRoot)) { 1973 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 1974 auto Extend = 1975 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 1976 VecTy = VectorType::get(MinTy, BundleWidth); 1977 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 1978 VecTy, EU.Lane); 1979 } else { 1980 ExtractCost += 1981 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1982 } 1983 } 1984 1985 int SpillCost = getSpillCost(); 1986 Cost += SpillCost + ExtractCost; 1987 1988 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1989 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1990 << "SLP: Total Cost = " << Cost << ".\n"); 1991 return Cost; 1992 } 1993 1994 int BoUpSLP::getGatherCost(Type *Ty) { 1995 int Cost = 0; 1996 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1997 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1998 return Cost; 1999 } 2000 2001 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2002 // Find the type of the operands in VL. 2003 Type *ScalarTy = VL[0]->getType(); 2004 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2005 ScalarTy = SI->getValueOperand()->getType(); 2006 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2007 // Find the cost of inserting/extracting values from the vector. 2008 return getGatherCost(VecTy); 2009 } 2010 2011 // Reorder commutative operations in alternate shuffle if the resulting vectors 2012 // are consecutive loads. This would allow us to vectorize the tree. 2013 // If we have something like- 2014 // load a[0] - load b[0] 2015 // load b[1] + load a[1] 2016 // load a[2] - load b[2] 2017 // load a[3] + load b[3] 2018 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2019 // code. 2020 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 2021 SmallVectorImpl<Value *> &Left, 2022 SmallVectorImpl<Value *> &Right) { 2023 // Push left and right operands of binary operation into Left and Right 2024 for (Value *i : VL) { 2025 Left.push_back(cast<Instruction>(i)->getOperand(0)); 2026 Right.push_back(cast<Instruction>(i)->getOperand(1)); 2027 } 2028 2029 // Reorder if we have a commutative operation and consecutive access 2030 // are on either side of the alternate instructions. 2031 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2032 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2033 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2034 Instruction *VL1 = cast<Instruction>(VL[j]); 2035 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2036 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2037 std::swap(Left[j], Right[j]); 2038 continue; 2039 } else if (VL2->isCommutative() && 2040 isConsecutiveAccess(L, L1, *DL, *SE)) { 2041 std::swap(Left[j + 1], Right[j + 1]); 2042 continue; 2043 } 2044 // else unchanged 2045 } 2046 } 2047 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2048 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2049 Instruction *VL1 = cast<Instruction>(VL[j]); 2050 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2051 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2052 std::swap(Left[j], Right[j]); 2053 continue; 2054 } else if (VL2->isCommutative() && 2055 isConsecutiveAccess(L, L1, *DL, *SE)) { 2056 std::swap(Left[j + 1], Right[j + 1]); 2057 continue; 2058 } 2059 // else unchanged 2060 } 2061 } 2062 } 2063 } 2064 2065 // Return true if I should be commuted before adding it's left and right 2066 // operands to the arrays Left and Right. 2067 // 2068 // The vectorizer is trying to either have all elements one side being 2069 // instruction with the same opcode to enable further vectorization, or having 2070 // a splat to lower the vectorizing cost. 2071 static bool shouldReorderOperands(int i, Instruction &I, 2072 SmallVectorImpl<Value *> &Left, 2073 SmallVectorImpl<Value *> &Right, 2074 bool AllSameOpcodeLeft, 2075 bool AllSameOpcodeRight, bool SplatLeft, 2076 bool SplatRight) { 2077 Value *VLeft = I.getOperand(0); 2078 Value *VRight = I.getOperand(1); 2079 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2080 if (SplatRight) { 2081 if (VRight == Right[i - 1]) 2082 // Preserve SplatRight 2083 return false; 2084 if (VLeft == Right[i - 1]) { 2085 // Commuting would preserve SplatRight, but we don't want to break 2086 // SplatLeft either, i.e. preserve the original order if possible. 2087 // (FIXME: why do we care?) 2088 if (SplatLeft && VLeft == Left[i - 1]) 2089 return false; 2090 return true; 2091 } 2092 } 2093 // Symmetrically handle Right side. 2094 if (SplatLeft) { 2095 if (VLeft == Left[i - 1]) 2096 // Preserve SplatLeft 2097 return false; 2098 if (VRight == Left[i - 1]) 2099 return true; 2100 } 2101 2102 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2103 Instruction *IRight = dyn_cast<Instruction>(VRight); 2104 2105 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2106 // it and not the right, in this case we want to commute. 2107 if (AllSameOpcodeRight) { 2108 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2109 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2110 // Do not commute, a match on the right preserves AllSameOpcodeRight 2111 return false; 2112 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2113 // We have a match and may want to commute, but first check if there is 2114 // not also a match on the existing operands on the Left to preserve 2115 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2116 // (FIXME: why do we care?) 2117 if (AllSameOpcodeLeft && ILeft && 2118 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2119 return false; 2120 return true; 2121 } 2122 } 2123 // Symmetrically handle Left side. 2124 if (AllSameOpcodeLeft) { 2125 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2126 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2127 return false; 2128 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2129 return true; 2130 } 2131 return false; 2132 } 2133 2134 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2135 SmallVectorImpl<Value *> &Left, 2136 SmallVectorImpl<Value *> &Right) { 2137 2138 if (VL.size()) { 2139 // Peel the first iteration out of the loop since there's nothing 2140 // interesting to do anyway and it simplifies the checks in the loop. 2141 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2142 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2143 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2144 // Favor having instruction to the right. FIXME: why? 2145 std::swap(VLeft, VRight); 2146 Left.push_back(VLeft); 2147 Right.push_back(VRight); 2148 } 2149 2150 // Keep track if we have instructions with all the same opcode on one side. 2151 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2152 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2153 // Keep track if we have one side with all the same value (broadcast). 2154 bool SplatLeft = true; 2155 bool SplatRight = true; 2156 2157 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2158 Instruction *I = cast<Instruction>(VL[i]); 2159 assert(I->isCommutative() && "Can only process commutative instruction"); 2160 // Commute to favor either a splat or maximizing having the same opcodes on 2161 // one side. 2162 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2163 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2164 Left.push_back(I->getOperand(1)); 2165 Right.push_back(I->getOperand(0)); 2166 } else { 2167 Left.push_back(I->getOperand(0)); 2168 Right.push_back(I->getOperand(1)); 2169 } 2170 // Update Splat* and AllSameOpcode* after the insertion. 2171 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2172 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2173 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2174 (cast<Instruction>(Left[i - 1])->getOpcode() == 2175 cast<Instruction>(Left[i])->getOpcode()); 2176 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2177 (cast<Instruction>(Right[i - 1])->getOpcode() == 2178 cast<Instruction>(Right[i])->getOpcode()); 2179 } 2180 2181 // If one operand end up being broadcast, return this operand order. 2182 if (SplatRight || SplatLeft) 2183 return; 2184 2185 // Finally check if we can get longer vectorizable chain by reordering 2186 // without breaking the good operand order detected above. 2187 // E.g. If we have something like- 2188 // load a[0] load b[0] 2189 // load b[1] load a[1] 2190 // load a[2] load b[2] 2191 // load a[3] load b[3] 2192 // Reordering the second load b[1] load a[1] would allow us to vectorize 2193 // this code and we still retain AllSameOpcode property. 2194 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2195 // such as- 2196 // add a[0],c[0] load b[0] 2197 // add a[1],c[2] load b[1] 2198 // b[2] load b[2] 2199 // add a[3],c[3] load b[3] 2200 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2201 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2202 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2203 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2204 std::swap(Left[j + 1], Right[j + 1]); 2205 continue; 2206 } 2207 } 2208 } 2209 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2210 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2211 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2212 std::swap(Left[j + 1], Right[j + 1]); 2213 continue; 2214 } 2215 } 2216 } 2217 // else unchanged 2218 } 2219 } 2220 2221 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2222 2223 // Get the basic block this bundle is in. All instructions in the bundle 2224 // should be in this block. 2225 auto *Front = cast<Instruction>(VL.front()); 2226 auto *BB = Front->getParent(); 2227 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2228 return cast<Instruction>(V)->getParent() == BB; 2229 })); 2230 2231 // The last instruction in the bundle in program order. 2232 Instruction *LastInst = nullptr; 2233 2234 // Find the last instruction. The common case should be that BB has been 2235 // scheduled, and the last instruction is VL.back(). So we start with 2236 // VL.back() and iterate over schedule data until we reach the end of the 2237 // bundle. The end of the bundle is marked by null ScheduleData. 2238 if (BlocksSchedules.count(BB)) { 2239 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2240 if (Bundle && Bundle->isPartOfBundle()) 2241 for (; Bundle; Bundle = Bundle->NextInBundle) 2242 LastInst = Bundle->Inst; 2243 } 2244 2245 // LastInst can still be null at this point if there's either not an entry 2246 // for BB in BlocksSchedules or there's no ScheduleData available for 2247 // VL.back(). This can be the case if buildTree_rec aborts for various 2248 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2249 // size is reached, etc.). ScheduleData is initialized in the scheduling 2250 // "dry-run". 2251 // 2252 // If this happens, we can still find the last instruction by brute force. We 2253 // iterate forwards from Front (inclusive) until we either see all 2254 // instructions in the bundle or reach the end of the block. If Front is the 2255 // last instruction in program order, LastInst will be set to Front, and we 2256 // will visit all the remaining instructions in the block. 2257 // 2258 // One of the reasons we exit early from buildTree_rec is to place an upper 2259 // bound on compile-time. Thus, taking an additional compile-time hit here is 2260 // not ideal. However, this should be exceedingly rare since it requires that 2261 // we both exit early from buildTree_rec and that the bundle be out-of-order 2262 // (causing us to iterate all the way to the end of the block). 2263 if (!LastInst) { 2264 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2265 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2266 if (Bundle.erase(&I)) 2267 LastInst = &I; 2268 if (Bundle.empty()) 2269 break; 2270 } 2271 } 2272 2273 // Set the insertion point after the last instruction in the bundle. Set the 2274 // debug location to Front. 2275 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2276 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2277 } 2278 2279 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2280 Value *Vec = UndefValue::get(Ty); 2281 // Generate the 'InsertElement' instruction. 2282 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2283 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2284 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2285 GatherSeq.insert(Insrt); 2286 CSEBlocks.insert(Insrt->getParent()); 2287 2288 // Add to our 'need-to-extract' list. 2289 if (ScalarToTreeEntry.count(VL[i])) { 2290 int Idx = ScalarToTreeEntry[VL[i]]; 2291 TreeEntry *E = &VectorizableTree[Idx]; 2292 // Find which lane we need to extract. 2293 int FoundLane = -1; 2294 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2295 // Is this the lane of the scalar that we are looking for ? 2296 if (E->Scalars[Lane] == VL[i]) { 2297 FoundLane = Lane; 2298 break; 2299 } 2300 } 2301 assert(FoundLane >= 0 && "Could not find the correct lane"); 2302 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2303 } 2304 } 2305 } 2306 2307 return Vec; 2308 } 2309 2310 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2311 SmallDenseMap<Value*, int>::const_iterator Entry 2312 = ScalarToTreeEntry.find(VL[0]); 2313 if (Entry != ScalarToTreeEntry.end()) { 2314 int Idx = Entry->second; 2315 const TreeEntry *En = &VectorizableTree[Idx]; 2316 if (En->isSame(VL) && En->VectorizedValue) 2317 return En->VectorizedValue; 2318 } 2319 return nullptr; 2320 } 2321 2322 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2323 if (ScalarToTreeEntry.count(VL[0])) { 2324 int Idx = ScalarToTreeEntry[VL[0]]; 2325 TreeEntry *E = &VectorizableTree[Idx]; 2326 if (E->isSame(VL) || (E->NeedToShuffle && E->isFoundJumbled(VL, *DL, *SE))) 2327 return vectorizeTree(VL, E); 2328 } 2329 2330 Type *ScalarTy = VL[0]->getType(); 2331 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2332 ScalarTy = SI->getValueOperand()->getType(); 2333 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2334 2335 return Gather(VL, VecTy); 2336 } 2337 2338 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E) { 2339 IRBuilder<>::InsertPointGuard Guard(Builder); 2340 2341 if (E->VectorizedValue && !E->NeedToShuffle) { 2342 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2343 return E->VectorizedValue; 2344 } 2345 2346 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2347 Type *ScalarTy = VL0->getType(); 2348 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2349 ScalarTy = SI->getValueOperand()->getType(); 2350 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2351 2352 if (E->NeedToGather) { 2353 setInsertPointAfterBundle(E->Scalars); 2354 auto *V = Gather(E->Scalars, VecTy); 2355 E->VectorizedValue = V; 2356 return V; 2357 } 2358 2359 unsigned Opcode = getSameOpcode(E->Scalars); 2360 2361 switch (Opcode) { 2362 case Instruction::PHI: { 2363 PHINode *PH = dyn_cast<PHINode>(VL0); 2364 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2365 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2366 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2367 E->VectorizedValue = NewPhi; 2368 2369 // PHINodes may have multiple entries from the same block. We want to 2370 // visit every block once. 2371 SmallSet<BasicBlock*, 4> VisitedBBs; 2372 2373 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2374 ValueList Operands; 2375 BasicBlock *IBB = PH->getIncomingBlock(i); 2376 2377 if (!VisitedBBs.insert(IBB).second) { 2378 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2379 continue; 2380 } 2381 2382 // Prepare the operand vector. 2383 for (Value *V : E->Scalars) 2384 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2385 2386 Builder.SetInsertPoint(IBB->getTerminator()); 2387 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2388 Value *Vec = vectorizeTree(Operands); 2389 NewPhi->addIncoming(Vec, IBB); 2390 } 2391 2392 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2393 "Invalid number of incoming values"); 2394 return NewPhi; 2395 } 2396 2397 case Instruction::ExtractElement: { 2398 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2399 Value *V = VL0->getOperand(0); 2400 E->VectorizedValue = V; 2401 return V; 2402 } 2403 setInsertPointAfterBundle(E->Scalars); 2404 auto *V = Gather(E->Scalars, VecTy); 2405 E->VectorizedValue = V; 2406 return V; 2407 } 2408 case Instruction::ExtractValue: { 2409 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2410 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2411 Builder.SetInsertPoint(LI); 2412 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2413 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2414 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2415 E->VectorizedValue = V; 2416 return propagateMetadata(V, E->Scalars); 2417 } 2418 setInsertPointAfterBundle(E->Scalars); 2419 auto *V = Gather(E->Scalars, VecTy); 2420 E->VectorizedValue = V; 2421 return V; 2422 } 2423 case Instruction::ZExt: 2424 case Instruction::SExt: 2425 case Instruction::FPToUI: 2426 case Instruction::FPToSI: 2427 case Instruction::FPExt: 2428 case Instruction::PtrToInt: 2429 case Instruction::IntToPtr: 2430 case Instruction::SIToFP: 2431 case Instruction::UIToFP: 2432 case Instruction::Trunc: 2433 case Instruction::FPTrunc: 2434 case Instruction::BitCast: { 2435 ValueList INVL; 2436 for (Value *V : E->Scalars) 2437 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2438 2439 setInsertPointAfterBundle(E->Scalars); 2440 2441 Value *InVec = vectorizeTree(INVL); 2442 2443 if (Value *V = alreadyVectorized(E->Scalars)) 2444 return V; 2445 2446 CastInst *CI = dyn_cast<CastInst>(VL0); 2447 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2448 E->VectorizedValue = V; 2449 ++NumVectorInstructions; 2450 return V; 2451 } 2452 case Instruction::FCmp: 2453 case Instruction::ICmp: { 2454 ValueList LHSV, RHSV; 2455 for (Value *V : E->Scalars) { 2456 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2457 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2458 } 2459 2460 setInsertPointAfterBundle(E->Scalars); 2461 2462 Value *L = vectorizeTree(LHSV); 2463 Value *R = vectorizeTree(RHSV); 2464 2465 if (Value *V = alreadyVectorized(E->Scalars)) 2466 return V; 2467 2468 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2469 Value *V; 2470 if (Opcode == Instruction::FCmp) 2471 V = Builder.CreateFCmp(P0, L, R); 2472 else 2473 V = Builder.CreateICmp(P0, L, R); 2474 2475 E->VectorizedValue = V; 2476 propagateIRFlags(E->VectorizedValue, E->Scalars); 2477 ++NumVectorInstructions; 2478 return V; 2479 } 2480 case Instruction::Select: { 2481 ValueList TrueVec, FalseVec, CondVec; 2482 for (Value *V : E->Scalars) { 2483 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2484 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2485 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2486 } 2487 2488 setInsertPointAfterBundle(E->Scalars); 2489 2490 Value *Cond = vectorizeTree(CondVec); 2491 Value *True = vectorizeTree(TrueVec); 2492 Value *False = vectorizeTree(FalseVec); 2493 2494 if (Value *V = alreadyVectorized(E->Scalars)) 2495 return V; 2496 2497 Value *V = Builder.CreateSelect(Cond, True, False); 2498 E->VectorizedValue = V; 2499 ++NumVectorInstructions; 2500 return V; 2501 } 2502 case Instruction::Add: 2503 case Instruction::FAdd: 2504 case Instruction::Sub: 2505 case Instruction::FSub: 2506 case Instruction::Mul: 2507 case Instruction::FMul: 2508 case Instruction::UDiv: 2509 case Instruction::SDiv: 2510 case Instruction::FDiv: 2511 case Instruction::URem: 2512 case Instruction::SRem: 2513 case Instruction::FRem: 2514 case Instruction::Shl: 2515 case Instruction::LShr: 2516 case Instruction::AShr: 2517 case Instruction::And: 2518 case Instruction::Or: 2519 case Instruction::Xor: { 2520 ValueList LHSVL, RHSVL; 2521 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2522 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2523 else 2524 for (Value *V : E->Scalars) { 2525 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2526 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2527 } 2528 2529 setInsertPointAfterBundle(E->Scalars); 2530 2531 Value *LHS = vectorizeTree(LHSVL); 2532 Value *RHS = vectorizeTree(RHSVL); 2533 2534 if (Value *V = alreadyVectorized(E->Scalars)) 2535 return V; 2536 2537 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2538 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2539 E->VectorizedValue = V; 2540 propagateIRFlags(E->VectorizedValue, E->Scalars); 2541 ++NumVectorInstructions; 2542 2543 if (Instruction *I = dyn_cast<Instruction>(V)) 2544 return propagateMetadata(I, E->Scalars); 2545 2546 return V; 2547 } 2548 case Instruction::Load: { 2549 // Loads are inserted at the head of the tree because we don't want to 2550 // sink them all the way down past store instructions. 2551 setInsertPointAfterBundle(E->Scalars); 2552 2553 LoadInst *LI = cast<LoadInst>(VL0); 2554 Type *ScalarLoadTy = LI->getType(); 2555 unsigned AS = LI->getPointerAddressSpace(); 2556 2557 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2558 VecTy->getPointerTo(AS)); 2559 2560 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2561 // ExternalUses list to make sure that an extract will be generated in the 2562 // future. 2563 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2564 ExternalUses.push_back( 2565 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2566 2567 unsigned Alignment = LI->getAlignment(); 2568 LI = Builder.CreateLoad(VecPtr); 2569 if (!Alignment) { 2570 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2571 } 2572 LI->setAlignment(Alignment); 2573 E->VectorizedValue = LI; 2574 ++NumVectorInstructions; 2575 propagateMetadata(LI, E->Scalars); 2576 2577 // As program order of scalar loads are jumbled, the vectorized 'load' 2578 // must be followed by a 'shuffle' with the required jumbled mask. 2579 if (!VL.empty() && (E->NeedToShuffle)) { 2580 assert(VL.size() == E->Scalars.size() && 2581 "Equal number of scalars expected"); 2582 SmallVector<Constant *, 8> Mask; 2583 for (Value *Val : VL) { 2584 if (ScalarToTreeEntry.count(Val)) { 2585 int Idx = ScalarToTreeEntry[Val]; 2586 TreeEntry *E = &VectorizableTree[Idx]; 2587 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2588 if (E->Scalars[Lane] == Val) { 2589 Mask.push_back(Builder.getInt32(Lane)); 2590 break; 2591 } 2592 } 2593 } 2594 } 2595 2596 // Generate shuffle for jumbled memory access 2597 Value *Undef = UndefValue::get(VecTy); 2598 Value *Shuf = Builder.CreateShuffleVector((Value *)LI, Undef, 2599 ConstantVector::get(Mask)); 2600 return Shuf; 2601 } 2602 2603 return LI; 2604 } 2605 case Instruction::Store: { 2606 StoreInst *SI = cast<StoreInst>(VL0); 2607 unsigned Alignment = SI->getAlignment(); 2608 unsigned AS = SI->getPointerAddressSpace(); 2609 2610 ValueList ValueOp; 2611 for (Value *V : E->Scalars) 2612 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2613 2614 setInsertPointAfterBundle(E->Scalars); 2615 2616 Value *VecValue = vectorizeTree(ValueOp); 2617 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2618 VecTy->getPointerTo(AS)); 2619 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2620 2621 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2622 // ExternalUses list to make sure that an extract will be generated in the 2623 // future. 2624 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2625 ExternalUses.push_back( 2626 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2627 2628 if (!Alignment) { 2629 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2630 } 2631 S->setAlignment(Alignment); 2632 E->VectorizedValue = S; 2633 ++NumVectorInstructions; 2634 return propagateMetadata(S, E->Scalars); 2635 } 2636 case Instruction::GetElementPtr: { 2637 setInsertPointAfterBundle(E->Scalars); 2638 2639 ValueList Op0VL; 2640 for (Value *V : E->Scalars) 2641 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2642 2643 Value *Op0 = vectorizeTree(Op0VL); 2644 2645 std::vector<Value *> OpVecs; 2646 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2647 ++j) { 2648 ValueList OpVL; 2649 for (Value *V : E->Scalars) 2650 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2651 2652 Value *OpVec = vectorizeTree(OpVL); 2653 OpVecs.push_back(OpVec); 2654 } 2655 2656 Value *V = Builder.CreateGEP( 2657 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2658 E->VectorizedValue = V; 2659 ++NumVectorInstructions; 2660 2661 if (Instruction *I = dyn_cast<Instruction>(V)) 2662 return propagateMetadata(I, E->Scalars); 2663 2664 return V; 2665 } 2666 case Instruction::Call: { 2667 CallInst *CI = cast<CallInst>(VL0); 2668 setInsertPointAfterBundle(E->Scalars); 2669 Function *FI; 2670 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2671 Value *ScalarArg = nullptr; 2672 if (CI && (FI = CI->getCalledFunction())) { 2673 IID = FI->getIntrinsicID(); 2674 } 2675 std::vector<Value *> OpVecs; 2676 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2677 ValueList OpVL; 2678 // ctlz,cttz and powi are special intrinsics whose second argument is 2679 // a scalar. This argument should not be vectorized. 2680 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2681 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2682 ScalarArg = CEI->getArgOperand(j); 2683 OpVecs.push_back(CEI->getArgOperand(j)); 2684 continue; 2685 } 2686 for (Value *V : E->Scalars) { 2687 CallInst *CEI = cast<CallInst>(V); 2688 OpVL.push_back(CEI->getArgOperand(j)); 2689 } 2690 2691 Value *OpVec = vectorizeTree(OpVL); 2692 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2693 OpVecs.push_back(OpVec); 2694 } 2695 2696 Module *M = F->getParent(); 2697 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2698 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2699 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2700 SmallVector<OperandBundleDef, 1> OpBundles; 2701 CI->getOperandBundlesAsDefs(OpBundles); 2702 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2703 2704 // The scalar argument uses an in-tree scalar so we add the new vectorized 2705 // call to ExternalUses list to make sure that an extract will be 2706 // generated in the future. 2707 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2708 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2709 2710 E->VectorizedValue = V; 2711 propagateIRFlags(E->VectorizedValue, E->Scalars); 2712 ++NumVectorInstructions; 2713 return V; 2714 } 2715 case Instruction::ShuffleVector: { 2716 ValueList LHSVL, RHSVL; 2717 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2718 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2719 setInsertPointAfterBundle(E->Scalars); 2720 2721 Value *LHS = vectorizeTree(LHSVL); 2722 Value *RHS = vectorizeTree(RHSVL); 2723 2724 if (Value *V = alreadyVectorized(E->Scalars)) 2725 return V; 2726 2727 // Create a vector of LHS op1 RHS 2728 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2729 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2730 2731 // Create a vector of LHS op2 RHS 2732 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2733 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2734 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2735 2736 // Create shuffle to take alternate operations from the vector. 2737 // Also, gather up odd and even scalar ops to propagate IR flags to 2738 // each vector operation. 2739 ValueList OddScalars, EvenScalars; 2740 unsigned e = E->Scalars.size(); 2741 SmallVector<Constant *, 8> Mask(e); 2742 for (unsigned i = 0; i < e; ++i) { 2743 if (i & 1) { 2744 Mask[i] = Builder.getInt32(e + i); 2745 OddScalars.push_back(E->Scalars[i]); 2746 } else { 2747 Mask[i] = Builder.getInt32(i); 2748 EvenScalars.push_back(E->Scalars[i]); 2749 } 2750 } 2751 2752 Value *ShuffleMask = ConstantVector::get(Mask); 2753 propagateIRFlags(V0, EvenScalars); 2754 propagateIRFlags(V1, OddScalars); 2755 2756 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2757 E->VectorizedValue = V; 2758 ++NumVectorInstructions; 2759 if (Instruction *I = dyn_cast<Instruction>(V)) 2760 return propagateMetadata(I, E->Scalars); 2761 2762 return V; 2763 } 2764 default: 2765 llvm_unreachable("unknown inst"); 2766 } 2767 return nullptr; 2768 } 2769 2770 Value *BoUpSLP::vectorizeTree() { 2771 2772 // All blocks must be scheduled before any instructions are inserted. 2773 for (auto &BSIter : BlocksSchedules) { 2774 scheduleBlock(BSIter.second.get()); 2775 } 2776 2777 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2778 auto *VectorRoot = vectorizeTree(ArrayRef<Value *>(), &VectorizableTree[0]); 2779 2780 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2781 // vectorized root. InstCombine will then rewrite the entire expression. We 2782 // sign extend the extracted values below. 2783 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2784 if (MinBWs.count(ScalarRoot)) { 2785 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2786 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2787 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2788 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2789 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2790 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2791 VectorizableTree[0].VectorizedValue = Trunc; 2792 } 2793 2794 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2795 2796 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 2797 // specified by ScalarType. 2798 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 2799 if (!MinBWs.count(ScalarRoot)) 2800 return Ex; 2801 if (MinBWs[ScalarRoot].second) 2802 return Builder.CreateSExt(Ex, ScalarType); 2803 return Builder.CreateZExt(Ex, ScalarType); 2804 }; 2805 2806 // Extract all of the elements with the external uses. 2807 for (const auto &ExternalUse : ExternalUses) { 2808 Value *Scalar = ExternalUse.Scalar; 2809 llvm::User *User = ExternalUse.User; 2810 2811 // Skip users that we already RAUW. This happens when one instruction 2812 // has multiple uses of the same value. 2813 if (!is_contained(Scalar->users(), User)) 2814 continue; 2815 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2816 2817 int Idx = ScalarToTreeEntry[Scalar]; 2818 TreeEntry *E = &VectorizableTree[Idx]; 2819 assert(!E->NeedToGather && "Extracting from a gather list"); 2820 2821 Value *Vec = E->VectorizedValue; 2822 assert(Vec && "Can't find vectorizable value"); 2823 2824 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2825 // Generate extracts for out-of-tree users. 2826 // Find the insertion point for the extractelement lane. 2827 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2828 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2829 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2830 if (PH->getIncomingValue(i) == Scalar) { 2831 TerminatorInst *IncomingTerminator = 2832 PH->getIncomingBlock(i)->getTerminator(); 2833 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2834 Builder.SetInsertPoint(VecI->getParent(), 2835 std::next(VecI->getIterator())); 2836 } else { 2837 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2838 } 2839 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2840 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2841 CSEBlocks.insert(PH->getIncomingBlock(i)); 2842 PH->setOperand(i, Ex); 2843 } 2844 } 2845 } else { 2846 Builder.SetInsertPoint(cast<Instruction>(User)); 2847 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2848 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2849 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2850 User->replaceUsesOfWith(Scalar, Ex); 2851 } 2852 } else { 2853 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2854 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2855 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2856 CSEBlocks.insert(&F->getEntryBlock()); 2857 User->replaceUsesOfWith(Scalar, Ex); 2858 } 2859 2860 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2861 } 2862 2863 // For each vectorized value: 2864 for (TreeEntry &EIdx : VectorizableTree) { 2865 TreeEntry *Entry = &EIdx; 2866 2867 // For each lane: 2868 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2869 Value *Scalar = Entry->Scalars[Lane]; 2870 // No need to handle users of gathered values. 2871 if (Entry->NeedToGather) 2872 continue; 2873 2874 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2875 2876 Type *Ty = Scalar->getType(); 2877 if (!Ty->isVoidTy()) { 2878 #ifndef NDEBUG 2879 for (User *U : Scalar->users()) { 2880 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2881 2882 assert((ScalarToTreeEntry.count(U) || 2883 // It is legal to replace users in the ignorelist by undef. 2884 is_contained(UserIgnoreList, U)) && 2885 "Replacing out-of-tree value with undef"); 2886 } 2887 #endif 2888 Value *Undef = UndefValue::get(Ty); 2889 Scalar->replaceAllUsesWith(Undef); 2890 } 2891 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2892 eraseInstruction(cast<Instruction>(Scalar)); 2893 } 2894 } 2895 2896 Builder.ClearInsertionPoint(); 2897 2898 return VectorizableTree[0].VectorizedValue; 2899 } 2900 2901 void BoUpSLP::optimizeGatherSequence() { 2902 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2903 << " gather sequences instructions.\n"); 2904 // LICM InsertElementInst sequences. 2905 for (Instruction *it : GatherSeq) { 2906 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2907 2908 if (!Insert) 2909 continue; 2910 2911 // Check if this block is inside a loop. 2912 Loop *L = LI->getLoopFor(Insert->getParent()); 2913 if (!L) 2914 continue; 2915 2916 // Check if it has a preheader. 2917 BasicBlock *PreHeader = L->getLoopPreheader(); 2918 if (!PreHeader) 2919 continue; 2920 2921 // If the vector or the element that we insert into it are 2922 // instructions that are defined in this basic block then we can't 2923 // hoist this instruction. 2924 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2925 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2926 if (CurrVec && L->contains(CurrVec)) 2927 continue; 2928 if (NewElem && L->contains(NewElem)) 2929 continue; 2930 2931 // We can hoist this instruction. Move it to the pre-header. 2932 Insert->moveBefore(PreHeader->getTerminator()); 2933 } 2934 2935 // Make a list of all reachable blocks in our CSE queue. 2936 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2937 CSEWorkList.reserve(CSEBlocks.size()); 2938 for (BasicBlock *BB : CSEBlocks) 2939 if (DomTreeNode *N = DT->getNode(BB)) { 2940 assert(DT->isReachableFromEntry(N)); 2941 CSEWorkList.push_back(N); 2942 } 2943 2944 // Sort blocks by domination. This ensures we visit a block after all blocks 2945 // dominating it are visited. 2946 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2947 [this](const DomTreeNode *A, const DomTreeNode *B) { 2948 return DT->properlyDominates(A, B); 2949 }); 2950 2951 // Perform O(N^2) search over the gather sequences and merge identical 2952 // instructions. TODO: We can further optimize this scan if we split the 2953 // instructions into different buckets based on the insert lane. 2954 SmallVector<Instruction *, 16> Visited; 2955 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2956 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2957 "Worklist not sorted properly!"); 2958 BasicBlock *BB = (*I)->getBlock(); 2959 // For all instructions in blocks containing gather sequences: 2960 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2961 Instruction *In = &*it++; 2962 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2963 continue; 2964 2965 // Check if we can replace this instruction with any of the 2966 // visited instructions. 2967 for (Instruction *v : Visited) { 2968 if (In->isIdenticalTo(v) && 2969 DT->dominates(v->getParent(), In->getParent())) { 2970 In->replaceAllUsesWith(v); 2971 eraseInstruction(In); 2972 In = nullptr; 2973 break; 2974 } 2975 } 2976 if (In) { 2977 assert(!is_contained(Visited, In)); 2978 Visited.push_back(In); 2979 } 2980 } 2981 } 2982 CSEBlocks.clear(); 2983 GatherSeq.clear(); 2984 } 2985 2986 // Groups the instructions to a bundle (which is then a single scheduling entity) 2987 // and schedules instructions until the bundle gets ready. 2988 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2989 BoUpSLP *SLP) { 2990 if (isa<PHINode>(VL[0])) 2991 return true; 2992 2993 // Initialize the instruction bundle. 2994 Instruction *OldScheduleEnd = ScheduleEnd; 2995 ScheduleData *PrevInBundle = nullptr; 2996 ScheduleData *Bundle = nullptr; 2997 bool ReSchedule = false; 2998 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2999 3000 // Make sure that the scheduling region contains all 3001 // instructions of the bundle. 3002 for (Value *V : VL) { 3003 if (!extendSchedulingRegion(V)) 3004 return false; 3005 } 3006 3007 for (Value *V : VL) { 3008 ScheduleData *BundleMember = getScheduleData(V); 3009 assert(BundleMember && 3010 "no ScheduleData for bundle member (maybe not in same basic block)"); 3011 if (BundleMember->IsScheduled) { 3012 // A bundle member was scheduled as single instruction before and now 3013 // needs to be scheduled as part of the bundle. We just get rid of the 3014 // existing schedule. 3015 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3016 << " was already scheduled\n"); 3017 ReSchedule = true; 3018 } 3019 assert(BundleMember->isSchedulingEntity() && 3020 "bundle member already part of other bundle"); 3021 if (PrevInBundle) { 3022 PrevInBundle->NextInBundle = BundleMember; 3023 } else { 3024 Bundle = BundleMember; 3025 } 3026 BundleMember->UnscheduledDepsInBundle = 0; 3027 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3028 3029 // Group the instructions to a bundle. 3030 BundleMember->FirstInBundle = Bundle; 3031 PrevInBundle = BundleMember; 3032 } 3033 if (ScheduleEnd != OldScheduleEnd) { 3034 // The scheduling region got new instructions at the lower end (or it is a 3035 // new region for the first bundle). This makes it necessary to 3036 // recalculate all dependencies. 3037 // It is seldom that this needs to be done a second time after adding the 3038 // initial bundle to the region. 3039 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3040 ScheduleData *SD = getScheduleData(I); 3041 SD->clearDependencies(); 3042 } 3043 ReSchedule = true; 3044 } 3045 if (ReSchedule) { 3046 resetSchedule(); 3047 initialFillReadyList(ReadyInsts); 3048 } 3049 3050 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3051 << BB->getName() << "\n"); 3052 3053 calculateDependencies(Bundle, true, SLP); 3054 3055 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3056 // means that there are no cyclic dependencies and we can schedule it. 3057 // Note that's important that we don't "schedule" the bundle yet (see 3058 // cancelScheduling). 3059 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3060 3061 ScheduleData *pickedSD = ReadyInsts.back(); 3062 ReadyInsts.pop_back(); 3063 3064 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3065 schedule(pickedSD, ReadyInsts); 3066 } 3067 } 3068 if (!Bundle->isReady()) { 3069 cancelScheduling(VL); 3070 return false; 3071 } 3072 return true; 3073 } 3074 3075 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3076 if (isa<PHINode>(VL[0])) 3077 return; 3078 3079 ScheduleData *Bundle = getScheduleData(VL[0]); 3080 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3081 assert(!Bundle->IsScheduled && 3082 "Can't cancel bundle which is already scheduled"); 3083 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3084 "tried to unbundle something which is not a bundle"); 3085 3086 // Un-bundle: make single instructions out of the bundle. 3087 ScheduleData *BundleMember = Bundle; 3088 while (BundleMember) { 3089 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3090 BundleMember->FirstInBundle = BundleMember; 3091 ScheduleData *Next = BundleMember->NextInBundle; 3092 BundleMember->NextInBundle = nullptr; 3093 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3094 if (BundleMember->UnscheduledDepsInBundle == 0) { 3095 ReadyInsts.insert(BundleMember); 3096 } 3097 BundleMember = Next; 3098 } 3099 } 3100 3101 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3102 if (getScheduleData(V)) 3103 return true; 3104 Instruction *I = dyn_cast<Instruction>(V); 3105 assert(I && "bundle member must be an instruction"); 3106 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3107 if (!ScheduleStart) { 3108 // It's the first instruction in the new region. 3109 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3110 ScheduleStart = I; 3111 ScheduleEnd = I->getNextNode(); 3112 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3113 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3114 return true; 3115 } 3116 // Search up and down at the same time, because we don't know if the new 3117 // instruction is above or below the existing scheduling region. 3118 BasicBlock::reverse_iterator UpIter = 3119 ++ScheduleStart->getIterator().getReverse(); 3120 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3121 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3122 BasicBlock::iterator LowerEnd = BB->end(); 3123 for (;;) { 3124 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3125 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3126 return false; 3127 } 3128 3129 if (UpIter != UpperEnd) { 3130 if (&*UpIter == I) { 3131 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3132 ScheduleStart = I; 3133 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3134 return true; 3135 } 3136 UpIter++; 3137 } 3138 if (DownIter != LowerEnd) { 3139 if (&*DownIter == I) { 3140 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3141 nullptr); 3142 ScheduleEnd = I->getNextNode(); 3143 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3144 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3145 return true; 3146 } 3147 DownIter++; 3148 } 3149 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3150 "instruction not found in block"); 3151 } 3152 return true; 3153 } 3154 3155 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3156 Instruction *ToI, 3157 ScheduleData *PrevLoadStore, 3158 ScheduleData *NextLoadStore) { 3159 ScheduleData *CurrentLoadStore = PrevLoadStore; 3160 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3161 ScheduleData *SD = ScheduleDataMap[I]; 3162 if (!SD) { 3163 // Allocate a new ScheduleData for the instruction. 3164 if (ChunkPos >= ChunkSize) { 3165 ScheduleDataChunks.push_back( 3166 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3167 ChunkPos = 0; 3168 } 3169 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3170 ScheduleDataMap[I] = SD; 3171 SD->Inst = I; 3172 } 3173 assert(!isInSchedulingRegion(SD) && 3174 "new ScheduleData already in scheduling region"); 3175 SD->init(SchedulingRegionID); 3176 3177 if (I->mayReadOrWriteMemory()) { 3178 // Update the linked list of memory accessing instructions. 3179 if (CurrentLoadStore) { 3180 CurrentLoadStore->NextLoadStore = SD; 3181 } else { 3182 FirstLoadStoreInRegion = SD; 3183 } 3184 CurrentLoadStore = SD; 3185 } 3186 } 3187 if (NextLoadStore) { 3188 if (CurrentLoadStore) 3189 CurrentLoadStore->NextLoadStore = NextLoadStore; 3190 } else { 3191 LastLoadStoreInRegion = CurrentLoadStore; 3192 } 3193 } 3194 3195 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3196 bool InsertInReadyList, 3197 BoUpSLP *SLP) { 3198 assert(SD->isSchedulingEntity()); 3199 3200 SmallVector<ScheduleData *, 10> WorkList; 3201 WorkList.push_back(SD); 3202 3203 while (!WorkList.empty()) { 3204 ScheduleData *SD = WorkList.back(); 3205 WorkList.pop_back(); 3206 3207 ScheduleData *BundleMember = SD; 3208 while (BundleMember) { 3209 assert(isInSchedulingRegion(BundleMember)); 3210 if (!BundleMember->hasValidDependencies()) { 3211 3212 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3213 BundleMember->Dependencies = 0; 3214 BundleMember->resetUnscheduledDeps(); 3215 3216 // Handle def-use chain dependencies. 3217 for (User *U : BundleMember->Inst->users()) { 3218 if (isa<Instruction>(U)) { 3219 ScheduleData *UseSD = getScheduleData(U); 3220 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3221 BundleMember->Dependencies++; 3222 ScheduleData *DestBundle = UseSD->FirstInBundle; 3223 if (!DestBundle->IsScheduled) { 3224 BundleMember->incrementUnscheduledDeps(1); 3225 } 3226 if (!DestBundle->hasValidDependencies()) { 3227 WorkList.push_back(DestBundle); 3228 } 3229 } 3230 } else { 3231 // I'm not sure if this can ever happen. But we need to be safe. 3232 // This lets the instruction/bundle never be scheduled and 3233 // eventually disable vectorization. 3234 BundleMember->Dependencies++; 3235 BundleMember->incrementUnscheduledDeps(1); 3236 } 3237 } 3238 3239 // Handle the memory dependencies. 3240 ScheduleData *DepDest = BundleMember->NextLoadStore; 3241 if (DepDest) { 3242 Instruction *SrcInst = BundleMember->Inst; 3243 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3244 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3245 unsigned numAliased = 0; 3246 unsigned DistToSrc = 1; 3247 3248 while (DepDest) { 3249 assert(isInSchedulingRegion(DepDest)); 3250 3251 // We have two limits to reduce the complexity: 3252 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3253 // SLP->isAliased (which is the expensive part in this loop). 3254 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3255 // the whole loop (even if the loop is fast, it's quadratic). 3256 // It's important for the loop break condition (see below) to 3257 // check this limit even between two read-only instructions. 3258 if (DistToSrc >= MaxMemDepDistance || 3259 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3260 (numAliased >= AliasedCheckLimit || 3261 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3262 3263 // We increment the counter only if the locations are aliased 3264 // (instead of counting all alias checks). This gives a better 3265 // balance between reduced runtime and accurate dependencies. 3266 numAliased++; 3267 3268 DepDest->MemoryDependencies.push_back(BundleMember); 3269 BundleMember->Dependencies++; 3270 ScheduleData *DestBundle = DepDest->FirstInBundle; 3271 if (!DestBundle->IsScheduled) { 3272 BundleMember->incrementUnscheduledDeps(1); 3273 } 3274 if (!DestBundle->hasValidDependencies()) { 3275 WorkList.push_back(DestBundle); 3276 } 3277 } 3278 DepDest = DepDest->NextLoadStore; 3279 3280 // Example, explaining the loop break condition: Let's assume our 3281 // starting instruction is i0 and MaxMemDepDistance = 3. 3282 // 3283 // +--------v--v--v 3284 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3285 // +--------^--^--^ 3286 // 3287 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3288 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3289 // Previously we already added dependencies from i3 to i6,i7,i8 3290 // (because of MaxMemDepDistance). As we added a dependency from 3291 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3292 // and we can abort this loop at i6. 3293 if (DistToSrc >= 2 * MaxMemDepDistance) 3294 break; 3295 DistToSrc++; 3296 } 3297 } 3298 } 3299 BundleMember = BundleMember->NextInBundle; 3300 } 3301 if (InsertInReadyList && SD->isReady()) { 3302 ReadyInsts.push_back(SD); 3303 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3304 } 3305 } 3306 } 3307 3308 void BoUpSLP::BlockScheduling::resetSchedule() { 3309 assert(ScheduleStart && 3310 "tried to reset schedule on block which has not been scheduled"); 3311 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3312 ScheduleData *SD = getScheduleData(I); 3313 assert(isInSchedulingRegion(SD)); 3314 SD->IsScheduled = false; 3315 SD->resetUnscheduledDeps(); 3316 } 3317 ReadyInsts.clear(); 3318 } 3319 3320 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3321 3322 if (!BS->ScheduleStart) 3323 return; 3324 3325 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3326 3327 BS->resetSchedule(); 3328 3329 // For the real scheduling we use a more sophisticated ready-list: it is 3330 // sorted by the original instruction location. This lets the final schedule 3331 // be as close as possible to the original instruction order. 3332 struct ScheduleDataCompare { 3333 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3334 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3335 } 3336 }; 3337 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3338 3339 // Ensure that all dependency data is updated and fill the ready-list with 3340 // initial instructions. 3341 int Idx = 0; 3342 int NumToSchedule = 0; 3343 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3344 I = I->getNextNode()) { 3345 ScheduleData *SD = BS->getScheduleData(I); 3346 assert( 3347 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3348 "scheduler and vectorizer have different opinion on what is a bundle"); 3349 SD->FirstInBundle->SchedulingPriority = Idx++; 3350 if (SD->isSchedulingEntity()) { 3351 BS->calculateDependencies(SD, false, this); 3352 NumToSchedule++; 3353 } 3354 } 3355 BS->initialFillReadyList(ReadyInsts); 3356 3357 Instruction *LastScheduledInst = BS->ScheduleEnd; 3358 3359 // Do the "real" scheduling. 3360 while (!ReadyInsts.empty()) { 3361 ScheduleData *picked = *ReadyInsts.begin(); 3362 ReadyInsts.erase(ReadyInsts.begin()); 3363 3364 // Move the scheduled instruction(s) to their dedicated places, if not 3365 // there yet. 3366 ScheduleData *BundleMember = picked; 3367 while (BundleMember) { 3368 Instruction *pickedInst = BundleMember->Inst; 3369 if (LastScheduledInst->getNextNode() != pickedInst) { 3370 BS->BB->getInstList().remove(pickedInst); 3371 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3372 pickedInst); 3373 } 3374 LastScheduledInst = pickedInst; 3375 BundleMember = BundleMember->NextInBundle; 3376 } 3377 3378 BS->schedule(picked, ReadyInsts); 3379 NumToSchedule--; 3380 } 3381 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3382 3383 // Avoid duplicate scheduling of the block. 3384 BS->ScheduleStart = nullptr; 3385 } 3386 3387 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3388 // If V is a store, just return the width of the stored value without 3389 // traversing the expression tree. This is the common case. 3390 if (auto *Store = dyn_cast<StoreInst>(V)) 3391 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3392 3393 // If V is not a store, we can traverse the expression tree to find loads 3394 // that feed it. The type of the loaded value may indicate a more suitable 3395 // width than V's type. We want to base the vector element size on the width 3396 // of memory operations where possible. 3397 SmallVector<Instruction *, 16> Worklist; 3398 SmallPtrSet<Instruction *, 16> Visited; 3399 if (auto *I = dyn_cast<Instruction>(V)) 3400 Worklist.push_back(I); 3401 3402 // Traverse the expression tree in bottom-up order looking for loads. If we 3403 // encounter an instruciton we don't yet handle, we give up. 3404 auto MaxWidth = 0u; 3405 auto FoundUnknownInst = false; 3406 while (!Worklist.empty() && !FoundUnknownInst) { 3407 auto *I = Worklist.pop_back_val(); 3408 Visited.insert(I); 3409 3410 // We should only be looking at scalar instructions here. If the current 3411 // instruction has a vector type, give up. 3412 auto *Ty = I->getType(); 3413 if (isa<VectorType>(Ty)) 3414 FoundUnknownInst = true; 3415 3416 // If the current instruction is a load, update MaxWidth to reflect the 3417 // width of the loaded value. 3418 else if (isa<LoadInst>(I)) 3419 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3420 3421 // Otherwise, we need to visit the operands of the instruction. We only 3422 // handle the interesting cases from buildTree here. If an operand is an 3423 // instruction we haven't yet visited, we add it to the worklist. 3424 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3425 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3426 for (Use &U : I->operands()) 3427 if (auto *J = dyn_cast<Instruction>(U.get())) 3428 if (!Visited.count(J)) 3429 Worklist.push_back(J); 3430 } 3431 3432 // If we don't yet handle the instruction, give up. 3433 else 3434 FoundUnknownInst = true; 3435 } 3436 3437 // If we didn't encounter a memory access in the expression tree, or if we 3438 // gave up for some reason, just return the width of V. 3439 if (!MaxWidth || FoundUnknownInst) 3440 return DL->getTypeSizeInBits(V->getType()); 3441 3442 // Otherwise, return the maximum width we found. 3443 return MaxWidth; 3444 } 3445 3446 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3447 // smaller type with a truncation. We collect the values that will be demoted 3448 // in ToDemote and additional roots that require investigating in Roots. 3449 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3450 SmallVectorImpl<Value *> &ToDemote, 3451 SmallVectorImpl<Value *> &Roots) { 3452 3453 // We can always demote constants. 3454 if (isa<Constant>(V)) { 3455 ToDemote.push_back(V); 3456 return true; 3457 } 3458 3459 // If the value is not an instruction in the expression with only one use, it 3460 // cannot be demoted. 3461 auto *I = dyn_cast<Instruction>(V); 3462 if (!I || !I->hasOneUse() || !Expr.count(I)) 3463 return false; 3464 3465 switch (I->getOpcode()) { 3466 3467 // We can always demote truncations and extensions. Since truncations can 3468 // seed additional demotion, we save the truncated value. 3469 case Instruction::Trunc: 3470 Roots.push_back(I->getOperand(0)); 3471 case Instruction::ZExt: 3472 case Instruction::SExt: 3473 break; 3474 3475 // We can demote certain binary operations if we can demote both of their 3476 // operands. 3477 case Instruction::Add: 3478 case Instruction::Sub: 3479 case Instruction::Mul: 3480 case Instruction::And: 3481 case Instruction::Or: 3482 case Instruction::Xor: 3483 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3484 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3485 return false; 3486 break; 3487 3488 // We can demote selects if we can demote their true and false values. 3489 case Instruction::Select: { 3490 SelectInst *SI = cast<SelectInst>(I); 3491 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3492 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3493 return false; 3494 break; 3495 } 3496 3497 // We can demote phis if we can demote all their incoming operands. Note that 3498 // we don't need to worry about cycles since we ensure single use above. 3499 case Instruction::PHI: { 3500 PHINode *PN = cast<PHINode>(I); 3501 for (Value *IncValue : PN->incoming_values()) 3502 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3503 return false; 3504 break; 3505 } 3506 3507 // Otherwise, conservatively give up. 3508 default: 3509 return false; 3510 } 3511 3512 // Record the value that we can demote. 3513 ToDemote.push_back(V); 3514 return true; 3515 } 3516 3517 void BoUpSLP::computeMinimumValueSizes() { 3518 // If there are no external uses, the expression tree must be rooted by a 3519 // store. We can't demote in-memory values, so there is nothing to do here. 3520 if (ExternalUses.empty()) 3521 return; 3522 3523 // We only attempt to truncate integer expressions. 3524 auto &TreeRoot = VectorizableTree[0].Scalars; 3525 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3526 if (!TreeRootIT) 3527 return; 3528 3529 // If the expression is not rooted by a store, these roots should have 3530 // external uses. We will rely on InstCombine to rewrite the expression in 3531 // the narrower type. However, InstCombine only rewrites single-use values. 3532 // This means that if a tree entry other than a root is used externally, it 3533 // must have multiple uses and InstCombine will not rewrite it. The code 3534 // below ensures that only the roots are used externally. 3535 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3536 for (auto &EU : ExternalUses) 3537 if (!Expr.erase(EU.Scalar)) 3538 return; 3539 if (!Expr.empty()) 3540 return; 3541 3542 // Collect the scalar values of the vectorizable expression. We will use this 3543 // context to determine which values can be demoted. If we see a truncation, 3544 // we mark it as seeding another demotion. 3545 for (auto &Entry : VectorizableTree) 3546 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3547 3548 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3549 // have a single external user that is not in the vectorizable tree. 3550 for (auto *Root : TreeRoot) 3551 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3552 return; 3553 3554 // Conservatively determine if we can actually truncate the roots of the 3555 // expression. Collect the values that can be demoted in ToDemote and 3556 // additional roots that require investigating in Roots. 3557 SmallVector<Value *, 32> ToDemote; 3558 SmallVector<Value *, 4> Roots; 3559 for (auto *Root : TreeRoot) 3560 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3561 return; 3562 3563 // The maximum bit width required to represent all the values that can be 3564 // demoted without loss of precision. It would be safe to truncate the roots 3565 // of the expression to this width. 3566 auto MaxBitWidth = 8u; 3567 3568 // We first check if all the bits of the roots are demanded. If they're not, 3569 // we can truncate the roots to this narrower type. 3570 for (auto *Root : TreeRoot) { 3571 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3572 MaxBitWidth = std::max<unsigned>( 3573 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3574 } 3575 3576 // True if the roots can be zero-extended back to their original type, rather 3577 // than sign-extended. We know that if the leading bits are not demanded, we 3578 // can safely zero-extend. So we initialize IsKnownPositive to True. 3579 bool IsKnownPositive = true; 3580 3581 // If all the bits of the roots are demanded, we can try a little harder to 3582 // compute a narrower type. This can happen, for example, if the roots are 3583 // getelementptr indices. InstCombine promotes these indices to the pointer 3584 // width. Thus, all their bits are technically demanded even though the 3585 // address computation might be vectorized in a smaller type. 3586 // 3587 // We start by looking at each entry that can be demoted. We compute the 3588 // maximum bit width required to store the scalar by using ValueTracking to 3589 // compute the number of high-order bits we can truncate. 3590 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3591 MaxBitWidth = 8u; 3592 3593 // Determine if the sign bit of all the roots is known to be zero. If not, 3594 // IsKnownPositive is set to False. 3595 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3596 bool KnownZero = false; 3597 bool KnownOne = false; 3598 ComputeSignBit(R, KnownZero, KnownOne, *DL); 3599 return KnownZero; 3600 }); 3601 3602 // Determine the maximum number of bits required to store the scalar 3603 // values. 3604 for (auto *Scalar : ToDemote) { 3605 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3606 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3607 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3608 } 3609 3610 // If we can't prove that the sign bit is zero, we must add one to the 3611 // maximum bit width to account for the unknown sign bit. This preserves 3612 // the existing sign bit so we can safely sign-extend the root back to the 3613 // original type. Otherwise, if we know the sign bit is zero, we will 3614 // zero-extend the root instead. 3615 // 3616 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3617 // one to the maximum bit width will yield a larger-than-necessary 3618 // type. In general, we need to add an extra bit only if we can't 3619 // prove that the upper bit of the original type is equal to the 3620 // upper bit of the proposed smaller type. If these two bits are the 3621 // same (either zero or one) we know that sign-extending from the 3622 // smaller type will result in the same value. Here, since we can't 3623 // yet prove this, we are just making the proposed smaller type 3624 // larger to ensure correctness. 3625 if (!IsKnownPositive) 3626 ++MaxBitWidth; 3627 } 3628 3629 // Round MaxBitWidth up to the next power-of-two. 3630 if (!isPowerOf2_64(MaxBitWidth)) 3631 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3632 3633 // If the maximum bit width we compute is less than the with of the roots' 3634 // type, we can proceed with the narrowing. Otherwise, do nothing. 3635 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3636 return; 3637 3638 // If we can truncate the root, we must collect additional values that might 3639 // be demoted as a result. That is, those seeded by truncations we will 3640 // modify. 3641 while (!Roots.empty()) 3642 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3643 3644 // Finally, map the values we can demote to the maximum bit with we computed. 3645 for (auto *Scalar : ToDemote) 3646 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3647 } 3648 3649 namespace { 3650 /// The SLPVectorizer Pass. 3651 struct SLPVectorizer : public FunctionPass { 3652 SLPVectorizerPass Impl; 3653 3654 /// Pass identification, replacement for typeid 3655 static char ID; 3656 3657 explicit SLPVectorizer() : FunctionPass(ID) { 3658 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3659 } 3660 3661 3662 bool doInitialization(Module &M) override { 3663 return false; 3664 } 3665 3666 bool runOnFunction(Function &F) override { 3667 if (skipFunction(F)) 3668 return false; 3669 3670 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3671 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3672 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3673 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3674 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3675 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3676 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3677 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3678 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3679 3680 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3681 } 3682 3683 void getAnalysisUsage(AnalysisUsage &AU) const override { 3684 FunctionPass::getAnalysisUsage(AU); 3685 AU.addRequired<AssumptionCacheTracker>(); 3686 AU.addRequired<ScalarEvolutionWrapperPass>(); 3687 AU.addRequired<AAResultsWrapperPass>(); 3688 AU.addRequired<TargetTransformInfoWrapperPass>(); 3689 AU.addRequired<LoopInfoWrapperPass>(); 3690 AU.addRequired<DominatorTreeWrapperPass>(); 3691 AU.addRequired<DemandedBitsWrapperPass>(); 3692 AU.addPreserved<LoopInfoWrapperPass>(); 3693 AU.addPreserved<DominatorTreeWrapperPass>(); 3694 AU.addPreserved<AAResultsWrapperPass>(); 3695 AU.addPreserved<GlobalsAAWrapperPass>(); 3696 AU.setPreservesCFG(); 3697 } 3698 }; 3699 } // end anonymous namespace 3700 3701 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3702 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3703 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3704 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3705 auto *AA = &AM.getResult<AAManager>(F); 3706 auto *LI = &AM.getResult<LoopAnalysis>(F); 3707 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3708 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3709 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3710 3711 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3712 if (!Changed) 3713 return PreservedAnalyses::all(); 3714 3715 PreservedAnalyses PA; 3716 PA.preserveSet<CFGAnalyses>(); 3717 PA.preserve<AAManager>(); 3718 PA.preserve<GlobalsAA>(); 3719 return PA; 3720 } 3721 3722 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3723 TargetTransformInfo *TTI_, 3724 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3725 LoopInfo *LI_, DominatorTree *DT_, 3726 AssumptionCache *AC_, DemandedBits *DB_) { 3727 SE = SE_; 3728 TTI = TTI_; 3729 TLI = TLI_; 3730 AA = AA_; 3731 LI = LI_; 3732 DT = DT_; 3733 AC = AC_; 3734 DB = DB_; 3735 DL = &F.getParent()->getDataLayout(); 3736 3737 Stores.clear(); 3738 GEPs.clear(); 3739 bool Changed = false; 3740 3741 // If the target claims to have no vector registers don't attempt 3742 // vectorization. 3743 if (!TTI->getNumberOfRegisters(true)) 3744 return false; 3745 3746 // Don't vectorize when the attribute NoImplicitFloat is used. 3747 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3748 return false; 3749 3750 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3751 3752 // Use the bottom up slp vectorizer to construct chains that start with 3753 // store instructions. 3754 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3755 3756 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3757 // delete instructions. 3758 3759 // Scan the blocks in the function in post order. 3760 for (auto BB : post_order(&F.getEntryBlock())) { 3761 collectSeedInstructions(BB); 3762 3763 // Vectorize trees that end at stores. 3764 if (!Stores.empty()) { 3765 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3766 << " underlying objects.\n"); 3767 Changed |= vectorizeStoreChains(R); 3768 } 3769 3770 // Vectorize trees that end at reductions. 3771 Changed |= vectorizeChainsInBlock(BB, R); 3772 3773 // Vectorize the index computations of getelementptr instructions. This 3774 // is primarily intended to catch gather-like idioms ending at 3775 // non-consecutive loads. 3776 if (!GEPs.empty()) { 3777 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3778 << " underlying objects.\n"); 3779 Changed |= vectorizeGEPIndices(BB, R); 3780 } 3781 } 3782 3783 if (Changed) { 3784 R.optimizeGatherSequence(); 3785 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3786 DEBUG(verifyFunction(F)); 3787 } 3788 return Changed; 3789 } 3790 3791 /// \brief Check that the Values in the slice in VL array are still existent in 3792 /// the WeakVH array. 3793 /// Vectorization of part of the VL array may cause later values in the VL array 3794 /// to become invalid. We track when this has happened in the WeakVH array. 3795 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3796 unsigned SliceBegin, unsigned SliceSize) { 3797 VL = VL.slice(SliceBegin, SliceSize); 3798 VH = VH.slice(SliceBegin, SliceSize); 3799 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3800 } 3801 3802 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3803 unsigned VecRegSize) { 3804 unsigned ChainLen = Chain.size(); 3805 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3806 << "\n"); 3807 unsigned Sz = R.getVectorElementSize(Chain[0]); 3808 unsigned VF = VecRegSize / Sz; 3809 3810 if (!isPowerOf2_32(Sz) || VF < 2) 3811 return false; 3812 3813 // Keep track of values that were deleted by vectorizing in the loop below. 3814 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3815 3816 bool Changed = false; 3817 // Look for profitable vectorizable trees at all offsets, starting at zero. 3818 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3819 if (i + VF > e) 3820 break; 3821 3822 // Check that a previous iteration of this loop did not delete the Value. 3823 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3824 continue; 3825 3826 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3827 << "\n"); 3828 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3829 3830 R.buildTree(Operands); 3831 if (R.isTreeTinyAndNotFullyVectorizable()) 3832 continue; 3833 3834 R.computeMinimumValueSizes(); 3835 3836 int Cost = R.getTreeCost(); 3837 3838 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3839 if (Cost < -SLPCostThreshold) { 3840 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3841 R.vectorizeTree(); 3842 3843 // Move to the next bundle. 3844 i += VF - 1; 3845 Changed = true; 3846 } 3847 } 3848 3849 return Changed; 3850 } 3851 3852 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3853 BoUpSLP &R) { 3854 SetVector<StoreInst *> Heads, Tails; 3855 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3856 3857 // We may run into multiple chains that merge into a single chain. We mark the 3858 // stores that we vectorized so that we don't visit the same store twice. 3859 BoUpSLP::ValueSet VectorizedStores; 3860 bool Changed = false; 3861 3862 // Do a quadratic search on all of the given stores and find 3863 // all of the pairs of stores that follow each other. 3864 SmallVector<unsigned, 16> IndexQueue; 3865 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3866 IndexQueue.clear(); 3867 // If a store has multiple consecutive store candidates, search Stores 3868 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3869 // This is because usually pairing with immediate succeeding or preceding 3870 // candidate create the best chance to find slp vectorization opportunity. 3871 unsigned j = 0; 3872 for (j = i + 1; j < e; ++j) 3873 IndexQueue.push_back(j); 3874 for (j = i; j > 0; --j) 3875 IndexQueue.push_back(j - 1); 3876 3877 for (auto &k : IndexQueue) { 3878 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3879 Tails.insert(Stores[k]); 3880 Heads.insert(Stores[i]); 3881 ConsecutiveChain[Stores[i]] = Stores[k]; 3882 break; 3883 } 3884 } 3885 } 3886 3887 // For stores that start but don't end a link in the chain: 3888 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3889 it != e; ++it) { 3890 if (Tails.count(*it)) 3891 continue; 3892 3893 // We found a store instr that starts a chain. Now follow the chain and try 3894 // to vectorize it. 3895 BoUpSLP::ValueList Operands; 3896 StoreInst *I = *it; 3897 // Collect the chain into a list. 3898 while (Tails.count(I) || Heads.count(I)) { 3899 if (VectorizedStores.count(I)) 3900 break; 3901 Operands.push_back(I); 3902 // Move to the next value in the chain. 3903 I = ConsecutiveChain[I]; 3904 } 3905 3906 // FIXME: Is division-by-2 the correct step? Should we assert that the 3907 // register size is a power-of-2? 3908 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 3909 Size /= 2) { 3910 if (vectorizeStoreChain(Operands, R, Size)) { 3911 // Mark the vectorized stores so that we don't vectorize them again. 3912 VectorizedStores.insert(Operands.begin(), Operands.end()); 3913 Changed = true; 3914 break; 3915 } 3916 } 3917 } 3918 3919 return Changed; 3920 } 3921 3922 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3923 3924 // Initialize the collections. We will make a single pass over the block. 3925 Stores.clear(); 3926 GEPs.clear(); 3927 3928 // Visit the store and getelementptr instructions in BB and organize them in 3929 // Stores and GEPs according to the underlying objects of their pointer 3930 // operands. 3931 for (Instruction &I : *BB) { 3932 3933 // Ignore store instructions that are volatile or have a pointer operand 3934 // that doesn't point to a scalar type. 3935 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3936 if (!SI->isSimple()) 3937 continue; 3938 if (!isValidElementType(SI->getValueOperand()->getType())) 3939 continue; 3940 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3941 } 3942 3943 // Ignore getelementptr instructions that have more than one index, a 3944 // constant index, or a pointer operand that doesn't point to a scalar 3945 // type. 3946 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3947 auto Idx = GEP->idx_begin()->get(); 3948 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3949 continue; 3950 if (!isValidElementType(Idx->getType())) 3951 continue; 3952 if (GEP->getType()->isVectorTy()) 3953 continue; 3954 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3955 } 3956 } 3957 } 3958 3959 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3960 if (!A || !B) 3961 return false; 3962 Value *VL[] = { A, B }; 3963 return tryToVectorizeList(VL, R, None, true); 3964 } 3965 3966 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3967 ArrayRef<Value *> BuildVector, 3968 bool AllowReorder) { 3969 if (VL.size() < 2) 3970 return false; 3971 3972 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 3973 << ".\n"); 3974 3975 // Check that all of the parts are scalar instructions of the same type. 3976 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3977 if (!I0) 3978 return false; 3979 3980 unsigned Opcode0 = I0->getOpcode(); 3981 3982 unsigned Sz = R.getVectorElementSize(I0); 3983 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 3984 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 3985 if (MaxVF < 2) 3986 return false; 3987 3988 for (Value *V : VL) { 3989 Type *Ty = V->getType(); 3990 if (!isValidElementType(Ty)) 3991 return false; 3992 Instruction *Inst = dyn_cast<Instruction>(V); 3993 if (!Inst || Inst->getOpcode() != Opcode0) 3994 return false; 3995 } 3996 3997 bool Changed = false; 3998 3999 // Keep track of values that were deleted by vectorizing in the loop below. 4000 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 4001 4002 unsigned NextInst = 0, MaxInst = VL.size(); 4003 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4004 VF /= 2) { 4005 // No actual vectorization should happen, if number of parts is the same as 4006 // provided vectorization factor (i.e. the scalar type is used for vector 4007 // code during codegen). 4008 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4009 if (TTI->getNumberOfParts(VecTy) == VF) 4010 continue; 4011 for (unsigned I = NextInst; I < MaxInst; ++I) { 4012 unsigned OpsWidth = 0; 4013 4014 if (I + VF > MaxInst) 4015 OpsWidth = MaxInst - I; 4016 else 4017 OpsWidth = VF; 4018 4019 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4020 break; 4021 4022 // Check that a previous iteration of this loop did not delete the Value. 4023 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4024 continue; 4025 4026 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4027 << "\n"); 4028 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4029 4030 ArrayRef<Value *> BuildVectorSlice; 4031 if (!BuildVector.empty()) 4032 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4033 4034 R.buildTree(Ops, BuildVectorSlice); 4035 // TODO: check if we can allow reordering for more cases. 4036 if (AllowReorder && R.shouldReorder()) { 4037 // Conceptually, there is nothing actually preventing us from trying to 4038 // reorder a larger list. In fact, we do exactly this when vectorizing 4039 // reductions. However, at this point, we only expect to get here from 4040 // tryToVectorizePair(). 4041 assert(Ops.size() == 2); 4042 assert(BuildVectorSlice.empty()); 4043 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4044 R.buildTree(ReorderedOps, None); 4045 } 4046 if (R.isTreeTinyAndNotFullyVectorizable()) 4047 continue; 4048 4049 R.computeMinimumValueSizes(); 4050 int Cost = R.getTreeCost(); 4051 4052 if (Cost < -SLPCostThreshold) { 4053 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4054 Value *VectorizedRoot = R.vectorizeTree(); 4055 4056 // Reconstruct the build vector by extracting the vectorized root. This 4057 // way we handle the case where some elements of the vector are 4058 // undefined. 4059 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4060 if (!BuildVectorSlice.empty()) { 4061 // The insert point is the last build vector instruction. The 4062 // vectorized root will precede it. This guarantees that we get an 4063 // instruction. The vectorized tree could have been constant folded. 4064 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4065 unsigned VecIdx = 0; 4066 for (auto &V : BuildVectorSlice) { 4067 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4068 ++BasicBlock::iterator(InsertAfter)); 4069 Instruction *I = cast<Instruction>(V); 4070 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4071 Instruction *Extract = 4072 cast<Instruction>(Builder.CreateExtractElement( 4073 VectorizedRoot, Builder.getInt32(VecIdx++))); 4074 I->setOperand(1, Extract); 4075 I->removeFromParent(); 4076 I->insertAfter(Extract); 4077 InsertAfter = I; 4078 } 4079 } 4080 // Move to the next bundle. 4081 I += VF - 1; 4082 NextInst = I + 1; 4083 Changed = true; 4084 } 4085 } 4086 } 4087 4088 return Changed; 4089 } 4090 4091 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 4092 if (!V) 4093 return false; 4094 4095 Value *P = V->getParent(); 4096 4097 // Vectorize in current basic block only. 4098 auto *Op0 = dyn_cast<Instruction>(V->getOperand(0)); 4099 auto *Op1 = dyn_cast<Instruction>(V->getOperand(1)); 4100 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4101 return false; 4102 4103 // Try to vectorize V. 4104 if (tryToVectorizePair(Op0, Op1, R)) 4105 return true; 4106 4107 auto *A = dyn_cast<BinaryOperator>(Op0); 4108 auto *B = dyn_cast<BinaryOperator>(Op1); 4109 // Try to skip B. 4110 if (B && B->hasOneUse()) { 4111 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4112 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4113 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4114 return true; 4115 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4116 return true; 4117 } 4118 4119 // Try to skip A. 4120 if (A && A->hasOneUse()) { 4121 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4122 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4123 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4124 return true; 4125 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4126 return true; 4127 } 4128 return false; 4129 } 4130 4131 /// \brief Generate a shuffle mask to be used in a reduction tree. 4132 /// 4133 /// \param VecLen The length of the vector to be reduced. 4134 /// \param NumEltsToRdx The number of elements that should be reduced in the 4135 /// vector. 4136 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4137 /// reduction. A pairwise reduction will generate a mask of 4138 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4139 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4140 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4141 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4142 bool IsPairwise, bool IsLeft, 4143 IRBuilder<> &Builder) { 4144 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4145 4146 SmallVector<Constant *, 32> ShuffleMask( 4147 VecLen, UndefValue::get(Builder.getInt32Ty())); 4148 4149 if (IsPairwise) 4150 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4151 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4152 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4153 else 4154 // Move the upper half of the vector to the lower half. 4155 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4156 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4157 4158 return ConstantVector::get(ShuffleMask); 4159 } 4160 4161 namespace { 4162 /// Model horizontal reductions. 4163 /// 4164 /// A horizontal reduction is a tree of reduction operations (currently add and 4165 /// fadd) that has operations that can be put into a vector as its leaf. 4166 /// For example, this tree: 4167 /// 4168 /// mul mul mul mul 4169 /// \ / \ / 4170 /// + + 4171 /// \ / 4172 /// + 4173 /// This tree has "mul" as its reduced values and "+" as its reduction 4174 /// operations. A reduction might be feeding into a store or a binary operation 4175 /// feeding a phi. 4176 /// ... 4177 /// \ / 4178 /// + 4179 /// | 4180 /// phi += 4181 /// 4182 /// Or: 4183 /// ... 4184 /// \ / 4185 /// + 4186 /// | 4187 /// *p = 4188 /// 4189 class HorizontalReduction { 4190 SmallVector<Value *, 16> ReductionOps; 4191 SmallVector<Value *, 32> ReducedVals; 4192 4193 BinaryOperator *ReductionRoot = nullptr; 4194 // After successfull horizontal reduction vectorization attempt for PHI node 4195 // vectorizer tries to update root binary op by combining vectorized tree and 4196 // the ReductionPHI node. But during vectorization this ReductionPHI can be 4197 // vectorized itself and replaced by the undef value, while the instruction 4198 // itself is marked for deletion. This 'marked for deletion' PHI node then can 4199 // be used in new binary operation, causing "Use still stuck around after Def 4200 // is destroyed" crash upon PHI node deletion. 4201 WeakVH ReductionPHI; 4202 4203 /// The opcode of the reduction. 4204 Instruction::BinaryOps ReductionOpcode = Instruction::BinaryOpsEnd; 4205 /// The opcode of the values we perform a reduction on. 4206 unsigned ReducedValueOpcode = 0; 4207 /// Should we model this reduction as a pairwise reduction tree or a tree that 4208 /// splits the vector in halves and adds those halves. 4209 bool IsPairwiseReduction = false; 4210 4211 public: 4212 HorizontalReduction() = default; 4213 4214 /// \brief Try to find a reduction tree. 4215 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4216 assert((!Phi || is_contained(Phi->operands(), B)) && 4217 "Thi phi needs to use the binary operator"); 4218 4219 // We could have a initial reductions that is not an add. 4220 // r *= v1 + v2 + v3 + v4 4221 // In such a case start looking for a tree rooted in the first '+'. 4222 if (Phi) { 4223 if (B->getOperand(0) == Phi) { 4224 Phi = nullptr; 4225 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4226 } else if (B->getOperand(1) == Phi) { 4227 Phi = nullptr; 4228 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4229 } 4230 } 4231 4232 if (!B) 4233 return false; 4234 4235 Type *Ty = B->getType(); 4236 if (!isValidElementType(Ty)) 4237 return false; 4238 4239 ReductionOpcode = B->getOpcode(); 4240 ReducedValueOpcode = 0; 4241 ReductionRoot = B; 4242 ReductionPHI = Phi; 4243 4244 // We currently only support adds. 4245 if ((ReductionOpcode != Instruction::Add && 4246 ReductionOpcode != Instruction::FAdd) || 4247 !B->isAssociative()) 4248 return false; 4249 4250 // Post order traverse the reduction tree starting at B. We only handle true 4251 // trees containing only binary operators or selects. 4252 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4253 Stack.push_back(std::make_pair(B, 0)); 4254 while (!Stack.empty()) { 4255 Instruction *TreeN = Stack.back().first; 4256 unsigned EdgeToVist = Stack.back().second++; 4257 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4258 4259 // Postorder vist. 4260 if (EdgeToVist == 2 || IsReducedValue) { 4261 if (IsReducedValue) 4262 ReducedVals.push_back(TreeN); 4263 else 4264 ReductionOps.push_back(TreeN); 4265 // Retract. 4266 Stack.pop_back(); 4267 continue; 4268 } 4269 4270 // Visit left or right. 4271 Value *NextV = TreeN->getOperand(EdgeToVist); 4272 if (NextV != Phi) { 4273 auto *I = dyn_cast<Instruction>(NextV); 4274 // Continue analysis if the next operand is a reduction operation or 4275 // (possibly) a reduced value. If the reduced value opcode is not set, 4276 // the first met operation != reduction operation is considered as the 4277 // reduced value class. 4278 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4279 I->getOpcode() == ReductionOpcode)) { 4280 // Only handle trees in the current basic block. 4281 if (I->getParent() != B->getParent()) 4282 return false; 4283 4284 // Each tree node needs to have one user except for the ultimate 4285 // reduction. 4286 if (!I->hasOneUse() && I != B) 4287 return false; 4288 4289 if (I->getOpcode() == ReductionOpcode) { 4290 // We need to be able to reassociate the reduction operations. 4291 if (!I->isAssociative()) 4292 return false; 4293 } else if (ReducedValueOpcode && 4294 ReducedValueOpcode != I->getOpcode()) { 4295 // Make sure that the opcodes of the operations that we are going to 4296 // reduce match. 4297 return false; 4298 } else if (!ReducedValueOpcode) 4299 ReducedValueOpcode = I->getOpcode(); 4300 4301 Stack.push_back(std::make_pair(I, 0)); 4302 continue; 4303 } 4304 return false; 4305 } 4306 } 4307 return true; 4308 } 4309 4310 /// \brief Attempt to vectorize the tree found by 4311 /// matchAssociativeReduction. 4312 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4313 if (ReducedVals.empty()) 4314 return false; 4315 4316 // If there is a sufficient number of reduction values, reduce 4317 // to a nearby power-of-2. Can safely generate oversized 4318 // vectors and rely on the backend to split them to legal sizes. 4319 unsigned NumReducedVals = ReducedVals.size(); 4320 if (NumReducedVals < 4) 4321 return false; 4322 4323 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 4324 4325 Value *VectorizedTree = nullptr; 4326 IRBuilder<> Builder(ReductionRoot); 4327 FastMathFlags Unsafe; 4328 Unsafe.setUnsafeAlgebra(); 4329 Builder.setFastMathFlags(Unsafe); 4330 unsigned i = 0; 4331 4332 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 4333 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4334 V.buildTree(VL, ReductionOps); 4335 if (V.shouldReorder()) { 4336 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4337 V.buildTree(Reversed, ReductionOps); 4338 } 4339 if (V.isTreeTinyAndNotFullyVectorizable()) 4340 break; 4341 4342 V.computeMinimumValueSizes(); 4343 4344 // Estimate cost. 4345 int Cost = 4346 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 4347 if (Cost >= -SLPCostThreshold) 4348 break; 4349 4350 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4351 << ". (HorRdx)\n"); 4352 4353 // Vectorize a tree. 4354 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4355 Value *VectorizedRoot = V.vectorizeTree(); 4356 4357 // Emit a reduction. 4358 Value *ReducedSubTree = 4359 emitReduction(VectorizedRoot, Builder, ReduxWidth); 4360 if (VectorizedTree) { 4361 Builder.SetCurrentDebugLocation(Loc); 4362 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4363 ReducedSubTree, "bin.rdx"); 4364 } else 4365 VectorizedTree = ReducedSubTree; 4366 i += ReduxWidth; 4367 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 4368 } 4369 4370 if (VectorizedTree) { 4371 // Finish the reduction. 4372 for (; i < NumReducedVals; ++i) { 4373 Builder.SetCurrentDebugLocation( 4374 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4375 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4376 ReducedVals[i]); 4377 } 4378 // Update users. 4379 if (ReductionPHI && !isa<UndefValue>(ReductionPHI)) { 4380 assert(ReductionRoot && "Need a reduction operation"); 4381 ReductionRoot->setOperand(0, VectorizedTree); 4382 ReductionRoot->setOperand(1, ReductionPHI); 4383 } else 4384 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4385 } 4386 return VectorizedTree != nullptr; 4387 } 4388 4389 unsigned numReductionValues() const { 4390 return ReducedVals.size(); 4391 } 4392 4393 private: 4394 /// \brief Calculate the cost of a reduction. 4395 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 4396 unsigned ReduxWidth) { 4397 Type *ScalarTy = FirstReducedVal->getType(); 4398 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4399 4400 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4401 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4402 4403 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4404 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4405 4406 int ScalarReduxCost = 4407 (ReduxWidth - 1) * 4408 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy); 4409 4410 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4411 << " for reduction that starts with " << *FirstReducedVal 4412 << " (It is a " 4413 << (IsPairwiseReduction ? "pairwise" : "splitting") 4414 << " reduction)\n"); 4415 4416 return VecReduxCost - ScalarReduxCost; 4417 } 4418 4419 /// \brief Emit a horizontal reduction of the vectorized value. 4420 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 4421 unsigned ReduxWidth) { 4422 assert(VectorizedValue && "Need to have a vectorized tree node"); 4423 assert(isPowerOf2_32(ReduxWidth) && 4424 "We only handle power-of-two reductions for now"); 4425 4426 Value *TmpVec = VectorizedValue; 4427 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4428 if (IsPairwiseReduction) { 4429 Value *LeftMask = 4430 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4431 Value *RightMask = 4432 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4433 4434 Value *LeftShuf = Builder.CreateShuffleVector( 4435 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4436 Value *RightShuf = Builder.CreateShuffleVector( 4437 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4438 "rdx.shuf.r"); 4439 TmpVec = Builder.CreateBinOp(ReductionOpcode, LeftShuf, RightShuf, 4440 "bin.rdx"); 4441 } else { 4442 Value *UpperHalf = 4443 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4444 Value *Shuf = Builder.CreateShuffleVector( 4445 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4446 TmpVec = Builder.CreateBinOp(ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4447 } 4448 } 4449 4450 // The result is in the first element of the vector. 4451 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4452 } 4453 }; 4454 } // end anonymous namespace 4455 4456 /// \brief Recognize construction of vectors like 4457 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4458 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4459 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4460 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4461 /// 4462 /// Returns true if it matches 4463 /// 4464 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4465 SmallVectorImpl<Value *> &BuildVector, 4466 SmallVectorImpl<Value *> &BuildVectorOpds) { 4467 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4468 return false; 4469 4470 InsertElementInst *IE = FirstInsertElem; 4471 while (true) { 4472 BuildVector.push_back(IE); 4473 BuildVectorOpds.push_back(IE->getOperand(1)); 4474 4475 if (IE->use_empty()) 4476 return false; 4477 4478 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4479 if (!NextUse) 4480 return true; 4481 4482 // If this isn't the final use, make sure the next insertelement is the only 4483 // use. It's OK if the final constructed vector is used multiple times 4484 if (!IE->hasOneUse()) 4485 return false; 4486 4487 IE = NextUse; 4488 } 4489 4490 return false; 4491 } 4492 4493 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4494 /// 4495 /// \return true if it matches. 4496 static bool findBuildAggregate(InsertValueInst *IV, 4497 SmallVectorImpl<Value *> &BuildVector, 4498 SmallVectorImpl<Value *> &BuildVectorOpds) { 4499 if (!IV->hasOneUse()) 4500 return false; 4501 Value *V = IV->getAggregateOperand(); 4502 if (!isa<UndefValue>(V)) { 4503 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4504 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4505 return false; 4506 } 4507 BuildVector.push_back(IV); 4508 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4509 return true; 4510 } 4511 4512 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4513 return V->getType() < V2->getType(); 4514 } 4515 4516 /// \brief Try and get a reduction value from a phi node. 4517 /// 4518 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4519 /// if they come from either \p ParentBB or a containing loop latch. 4520 /// 4521 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4522 /// if not possible. 4523 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4524 BasicBlock *ParentBB, LoopInfo *LI) { 4525 // There are situations where the reduction value is not dominated by the 4526 // reduction phi. Vectorizing such cases has been reported to cause 4527 // miscompiles. See PR25787. 4528 auto DominatedReduxValue = [&](Value *R) { 4529 return ( 4530 dyn_cast<Instruction>(R) && 4531 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4532 }; 4533 4534 Value *Rdx = nullptr; 4535 4536 // Return the incoming value if it comes from the same BB as the phi node. 4537 if (P->getIncomingBlock(0) == ParentBB) { 4538 Rdx = P->getIncomingValue(0); 4539 } else if (P->getIncomingBlock(1) == ParentBB) { 4540 Rdx = P->getIncomingValue(1); 4541 } 4542 4543 if (Rdx && DominatedReduxValue(Rdx)) 4544 return Rdx; 4545 4546 // Otherwise, check whether we have a loop latch to look at. 4547 Loop *BBL = LI->getLoopFor(ParentBB); 4548 if (!BBL) 4549 return nullptr; 4550 BasicBlock *BBLatch = BBL->getLoopLatch(); 4551 if (!BBLatch) 4552 return nullptr; 4553 4554 // There is a loop latch, return the incoming value if it comes from 4555 // that. This reduction pattern occasionally turns up. 4556 if (P->getIncomingBlock(0) == BBLatch) { 4557 Rdx = P->getIncomingValue(0); 4558 } else if (P->getIncomingBlock(1) == BBLatch) { 4559 Rdx = P->getIncomingValue(1); 4560 } 4561 4562 if (Rdx && DominatedReduxValue(Rdx)) 4563 return Rdx; 4564 4565 return nullptr; 4566 } 4567 4568 namespace { 4569 /// Tracks instructons and its children. 4570 class WeakVHWithLevel final : public CallbackVH { 4571 /// Operand index of the instruction currently beeing analized. 4572 unsigned Level = 0; 4573 /// Is this the instruction that should be vectorized, or are we now 4574 /// processing children (i.e. operands of this instruction) for potential 4575 /// vectorization? 4576 bool IsInitial = true; 4577 4578 public: 4579 explicit WeakVHWithLevel() = default; 4580 WeakVHWithLevel(Value *V) : CallbackVH(V){}; 4581 /// Restart children analysis each time it is repaced by the new instruction. 4582 void allUsesReplacedWith(Value *New) override { 4583 setValPtr(New); 4584 Level = 0; 4585 IsInitial = true; 4586 } 4587 /// Check if the instruction was not deleted during vectorization. 4588 bool isValid() const { return !getValPtr(); } 4589 /// Is the istruction itself must be vectorized? 4590 bool isInitial() const { return IsInitial; } 4591 /// Try to vectorize children. 4592 void clearInitial() { IsInitial = false; } 4593 /// Are all children processed already? 4594 bool isFinal() const { 4595 assert(getValPtr() && 4596 (isa<Instruction>(getValPtr()) && 4597 cast<Instruction>(getValPtr())->getNumOperands() >= Level)); 4598 return getValPtr() && 4599 cast<Instruction>(getValPtr())->getNumOperands() == Level; 4600 } 4601 /// Get next child operation. 4602 Value *nextOperand() { 4603 assert(getValPtr() && isa<Instruction>(getValPtr()) && 4604 cast<Instruction>(getValPtr())->getNumOperands() > Level); 4605 return cast<Instruction>(getValPtr())->getOperand(Level++); 4606 } 4607 virtual ~WeakVHWithLevel() = default; 4608 }; 4609 } // namespace 4610 4611 /// \brief Attempt to reduce a horizontal reduction. 4612 /// If it is legal to match a horizontal reduction feeding 4613 /// the phi node P with reduction operators Root in a basic block BB, then check 4614 /// if it can be done. 4615 /// \returns true if a horizontal reduction was matched and reduced. 4616 /// \returns false if a horizontal reduction was not matched. 4617 static bool canBeVectorized( 4618 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 4619 TargetTransformInfo *TTI, 4620 const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) { 4621 if (!ShouldVectorizeHor) 4622 return false; 4623 4624 if (!Root) 4625 return false; 4626 4627 if (Root->getParent() != BB) 4628 return false; 4629 SmallVector<WeakVHWithLevel, 8> Stack(1, Root); 4630 SmallSet<Value *, 8> VisitedInstrs; 4631 bool Res = false; 4632 while (!Stack.empty()) { 4633 Value *V = Stack.back(); 4634 if (!V) { 4635 Stack.pop_back(); 4636 continue; 4637 } 4638 auto *Inst = dyn_cast<Instruction>(V); 4639 if (!Inst || isa<PHINode>(Inst)) { 4640 Stack.pop_back(); 4641 continue; 4642 } 4643 if (Stack.back().isInitial()) { 4644 Stack.back().clearInitial(); 4645 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 4646 HorizontalReduction HorRdx; 4647 if (HorRdx.matchAssociativeReduction(P, BI)) { 4648 if (HorRdx.tryToReduce(R, TTI)) { 4649 Res = true; 4650 P = nullptr; 4651 continue; 4652 } 4653 } 4654 if (P) { 4655 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 4656 if (Inst == P) 4657 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 4658 if (!Inst) { 4659 P = nullptr; 4660 continue; 4661 } 4662 } 4663 } 4664 P = nullptr; 4665 if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4666 Res = true; 4667 continue; 4668 } 4669 } 4670 if (Stack.back().isFinal()) { 4671 Stack.pop_back(); 4672 continue; 4673 } 4674 4675 if (auto *NextV = dyn_cast<Instruction>(Stack.back().nextOperand())) 4676 if (NextV->getParent() == BB && VisitedInstrs.insert(NextV).second && 4677 Stack.size() < RecursionMaxDepth) 4678 Stack.push_back(NextV); 4679 } 4680 return Res; 4681 } 4682 4683 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 4684 BasicBlock *BB, BoUpSLP &R, 4685 TargetTransformInfo *TTI) { 4686 if (!V) 4687 return false; 4688 auto *I = dyn_cast<Instruction>(V); 4689 if (!I) 4690 return false; 4691 4692 if (!isa<BinaryOperator>(I)) 4693 P = nullptr; 4694 // Try to match and vectorize a horizontal reduction. 4695 return canBeVectorized(P, I, BB, R, TTI, 4696 [this](BinaryOperator *BI, BoUpSLP &R) -> bool { 4697 return tryToVectorize(BI, R); 4698 }); 4699 } 4700 4701 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4702 bool Changed = false; 4703 SmallVector<Value *, 4> Incoming; 4704 SmallSet<Value *, 16> VisitedInstrs; 4705 4706 bool HaveVectorizedPhiNodes = true; 4707 while (HaveVectorizedPhiNodes) { 4708 HaveVectorizedPhiNodes = false; 4709 4710 // Collect the incoming values from the PHIs. 4711 Incoming.clear(); 4712 for (Instruction &I : *BB) { 4713 PHINode *P = dyn_cast<PHINode>(&I); 4714 if (!P) 4715 break; 4716 4717 if (!VisitedInstrs.count(P)) 4718 Incoming.push_back(P); 4719 } 4720 4721 // Sort by type. 4722 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4723 4724 // Try to vectorize elements base on their type. 4725 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4726 E = Incoming.end(); 4727 IncIt != E;) { 4728 4729 // Look for the next elements with the same type. 4730 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4731 while (SameTypeIt != E && 4732 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4733 VisitedInstrs.insert(*SameTypeIt); 4734 ++SameTypeIt; 4735 } 4736 4737 // Try to vectorize them. 4738 unsigned NumElts = (SameTypeIt - IncIt); 4739 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4740 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4741 // Success start over because instructions might have been changed. 4742 HaveVectorizedPhiNodes = true; 4743 Changed = true; 4744 break; 4745 } 4746 4747 // Start over at the next instruction of a different type (or the end). 4748 IncIt = SameTypeIt; 4749 } 4750 } 4751 4752 VisitedInstrs.clear(); 4753 4754 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4755 // We may go through BB multiple times so skip the one we have checked. 4756 if (!VisitedInstrs.insert(&*it).second) 4757 continue; 4758 4759 if (isa<DbgInfoIntrinsic>(it)) 4760 continue; 4761 4762 // Try to vectorize reductions that use PHINodes. 4763 if (PHINode *P = dyn_cast<PHINode>(it)) { 4764 // Check that the PHI is a reduction PHI. 4765 if (P->getNumIncomingValues() != 2) 4766 return Changed; 4767 4768 // Try to match and vectorize a horizontal reduction. 4769 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 4770 TTI)) { 4771 Changed = true; 4772 it = BB->begin(); 4773 e = BB->end(); 4774 continue; 4775 } 4776 continue; 4777 } 4778 4779 if (ShouldStartVectorizeHorAtStore) { 4780 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4781 // Try to match and vectorize a horizontal reduction. 4782 if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R, 4783 TTI)) { 4784 Changed = true; 4785 it = BB->begin(); 4786 e = BB->end(); 4787 continue; 4788 } 4789 } 4790 } 4791 4792 // Try to vectorize horizontal reductions feeding into a return. 4793 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) { 4794 if (RI->getNumOperands() != 0) { 4795 // Try to match and vectorize a horizontal reduction. 4796 if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) { 4797 Changed = true; 4798 it = BB->begin(); 4799 e = BB->end(); 4800 continue; 4801 } 4802 } 4803 } 4804 4805 // Try to vectorize trees that start at compare instructions. 4806 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4807 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4808 Changed = true; 4809 // We would like to start over since some instructions are deleted 4810 // and the iterator may become invalid value. 4811 it = BB->begin(); 4812 e = BB->end(); 4813 continue; 4814 } 4815 4816 for (int I = 0; I < 2; ++I) { 4817 if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) { 4818 Changed = true; 4819 // We would like to start over since some instructions are deleted 4820 // and the iterator may become invalid value. 4821 it = BB->begin(); 4822 e = BB->end(); 4823 break; 4824 } 4825 } 4826 continue; 4827 } 4828 4829 // Try to vectorize trees that start at insertelement instructions. 4830 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4831 SmallVector<Value *, 16> BuildVector; 4832 SmallVector<Value *, 16> BuildVectorOpds; 4833 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4834 continue; 4835 4836 // Vectorize starting with the build vector operands ignoring the 4837 // BuildVector instructions for the purpose of scheduling and user 4838 // extraction. 4839 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4840 Changed = true; 4841 it = BB->begin(); 4842 e = BB->end(); 4843 } 4844 4845 continue; 4846 } 4847 4848 // Try to vectorize trees that start at insertvalue instructions feeding into 4849 // a store. 4850 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4851 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4852 const DataLayout &DL = BB->getModule()->getDataLayout(); 4853 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4854 SmallVector<Value *, 16> BuildVector; 4855 SmallVector<Value *, 16> BuildVectorOpds; 4856 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4857 continue; 4858 4859 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4860 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4861 Changed = true; 4862 it = BB->begin(); 4863 e = BB->end(); 4864 } 4865 continue; 4866 } 4867 } 4868 } 4869 } 4870 4871 return Changed; 4872 } 4873 4874 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4875 auto Changed = false; 4876 for (auto &Entry : GEPs) { 4877 4878 // If the getelementptr list has fewer than two elements, there's nothing 4879 // to do. 4880 if (Entry.second.size() < 2) 4881 continue; 4882 4883 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4884 << Entry.second.size() << ".\n"); 4885 4886 // We process the getelementptr list in chunks of 16 (like we do for 4887 // stores) to minimize compile-time. 4888 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4889 auto Len = std::min<unsigned>(BE - BI, 16); 4890 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4891 4892 // Initialize a set a candidate getelementptrs. Note that we use a 4893 // SetVector here to preserve program order. If the index computations 4894 // are vectorizable and begin with loads, we want to minimize the chance 4895 // of having to reorder them later. 4896 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4897 4898 // Some of the candidates may have already been vectorized after we 4899 // initially collected them. If so, the WeakVHs will have nullified the 4900 // values, so remove them from the set of candidates. 4901 Candidates.remove(nullptr); 4902 4903 // Remove from the set of candidates all pairs of getelementptrs with 4904 // constant differences. Such getelementptrs are likely not good 4905 // candidates for vectorization in a bottom-up phase since one can be 4906 // computed from the other. We also ensure all candidate getelementptr 4907 // indices are unique. 4908 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4909 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4910 if (!Candidates.count(GEPI)) 4911 continue; 4912 auto *SCEVI = SE->getSCEV(GEPList[I]); 4913 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4914 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4915 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4916 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4917 Candidates.remove(GEPList[I]); 4918 Candidates.remove(GEPList[J]); 4919 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4920 Candidates.remove(GEPList[J]); 4921 } 4922 } 4923 } 4924 4925 // We break out of the above computation as soon as we know there are 4926 // fewer than two candidates remaining. 4927 if (Candidates.size() < 2) 4928 continue; 4929 4930 // Add the single, non-constant index of each candidate to the bundle. We 4931 // ensured the indices met these constraints when we originally collected 4932 // the getelementptrs. 4933 SmallVector<Value *, 16> Bundle(Candidates.size()); 4934 auto BundleIndex = 0u; 4935 for (auto *V : Candidates) { 4936 auto *GEP = cast<GetElementPtrInst>(V); 4937 auto *GEPIdx = GEP->idx_begin()->get(); 4938 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4939 Bundle[BundleIndex++] = GEPIdx; 4940 } 4941 4942 // Try and vectorize the indices. We are currently only interested in 4943 // gather-like cases of the form: 4944 // 4945 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4946 // 4947 // where the loads of "a", the loads of "b", and the subtractions can be 4948 // performed in parallel. It's likely that detecting this pattern in a 4949 // bottom-up phase will be simpler and less costly than building a 4950 // full-blown top-down phase beginning at the consecutive loads. 4951 Changed |= tryToVectorizeList(Bundle, R); 4952 } 4953 } 4954 return Changed; 4955 } 4956 4957 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 4958 bool Changed = false; 4959 // Attempt to sort and vectorize each of the store-groups. 4960 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4961 ++it) { 4962 if (it->second.size() < 2) 4963 continue; 4964 4965 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4966 << it->second.size() << ".\n"); 4967 4968 // Process the stores in chunks of 16. 4969 // TODO: The limit of 16 inhibits greater vectorization factors. 4970 // For example, AVX2 supports v32i8. Increasing this limit, however, 4971 // may cause a significant compile-time increase. 4972 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4973 unsigned Len = std::min<unsigned>(CE - CI, 16); 4974 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 4975 } 4976 } 4977 return Changed; 4978 } 4979 4980 char SLPVectorizer::ID = 0; 4981 static const char lv_name[] = "SLP Vectorizer"; 4982 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4983 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4984 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4985 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4986 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4987 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4988 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4989 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4990 4991 namespace llvm { 4992 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4993 } 4994