1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/PriorityQueue.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetOperations.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallBitVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/IVDescriptors.h"
41 #include "llvm/Analysis/LoopAccessAnalysis.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/Analysis/VectorUtils.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/DOTGraphTraits.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/GraphWriter.h"
85 #include "llvm/Support/InstructionCost.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Vectorize.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <memory>
97 #include <set>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 using namespace slpvectorizer;
106 
107 #define SV_NAME "slp-vectorizer"
108 #define DEBUG_TYPE "SLP"
109 
110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111 
112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113                                   cl::desc("Run the SLP vectorization passes"));
114 
115 static cl::opt<int>
116     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                      cl::desc("Only vectorize if you gain more than this "
118                               "number "));
119 
120 static cl::opt<bool>
121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                    cl::desc("Attempt to vectorize horizontal reductions"));
123 
124 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126     cl::desc(
127         "Attempt to vectorize horizontal reductions feeding into a store"));
128 
129 static cl::opt<int>
130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131     cl::desc("Attempt to vectorize for this register size in bits"));
132 
133 static cl::opt<unsigned>
134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136 
137 static cl::opt<int>
138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139     cl::desc("Maximum depth of the lookup for consecutive stores."));
140 
141 /// Limits the size of scheduling regions in a block.
142 /// It avoid long compile times for _very_ large blocks where vector
143 /// instructions are spread over a wide range.
144 /// This limit is way higher than needed by real-world functions.
145 static cl::opt<int>
146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147     cl::desc("Limit the size of the SLP scheduling region per block"));
148 
149 static cl::opt<int> MinVectorRegSizeOption(
150     "slp-min-reg-size", cl::init(128), cl::Hidden,
151     cl::desc("Attempt to vectorize for this register size in bits"));
152 
153 static cl::opt<unsigned> RecursionMaxDepth(
154     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155     cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 
157 static cl::opt<unsigned> MinTreeSize(
158     "slp-min-tree-size", cl::init(3), cl::Hidden,
159     cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 
161 // The maximum depth that the look-ahead score heuristic will explore.
162 // The higher this value, the higher the compilation time overhead.
163 static cl::opt<int> LookAheadMaxDepth(
164     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165     cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 
167 static cl::opt<bool>
168     ViewSLPTree("view-slp-tree", cl::Hidden,
169                 cl::desc("Display the SLP trees with Graphviz"));
170 
171 // Limit the number of alias checks. The limit is chosen so that
172 // it has no negative effect on the llvm benchmarks.
173 static const unsigned AliasedCheckLimit = 10;
174 
175 // Another limit for the alias checks: The maximum distance between load/store
176 // instructions where alias checks are done.
177 // This limit is useful for very large basic blocks.
178 static const unsigned MaxMemDepDistance = 160;
179 
180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
181 /// regions to be handled.
182 static const int MinScheduleRegionSize = 16;
183 
184 /// Predicate for the element types that the SLP vectorizer supports.
185 ///
186 /// The most important thing to filter here are types which are invalid in LLVM
187 /// vectors. We also filter target specific types which have absolutely no
188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
189 /// avoids spending time checking the cost model and realizing that they will
190 /// be inevitably scalarized.
191 static bool isValidElementType(Type *Ty) {
192   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
193          !Ty->isPPC_FP128Ty();
194 }
195 
196 /// \returns True if the value is a constant (but not globals/constant
197 /// expressions).
198 static bool isConstant(Value *V) {
199   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
200 }
201 
202 /// Checks if \p V is one of vector-like instructions, i.e. undef,
203 /// insertelement/extractelement with constant indices for fixed vector type or
204 /// extractvalue instruction.
205 static bool isVectorLikeInstWithConstOps(Value *V) {
206   if (!isa<InsertElementInst, ExtractElementInst>(V) &&
207       !isa<ExtractValueInst, UndefValue>(V))
208     return false;
209   auto *I = dyn_cast<Instruction>(V);
210   if (!I || isa<ExtractValueInst>(I))
211     return true;
212   if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
213     return false;
214   if (isa<ExtractElementInst>(I))
215     return isConstant(I->getOperand(1));
216   assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
217   return isConstant(I->getOperand(2));
218 }
219 
220 /// \returns true if all of the instructions in \p VL are in the same block or
221 /// false otherwise.
222 static bool allSameBlock(ArrayRef<Value *> VL) {
223   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
224   if (!I0)
225     return false;
226   if (all_of(VL, isVectorLikeInstWithConstOps))
227     return true;
228 
229   BasicBlock *BB = I0->getParent();
230   for (int I = 1, E = VL.size(); I < E; I++) {
231     auto *II = dyn_cast<Instruction>(VL[I]);
232     if (!II)
233       return false;
234 
235     if (BB != II->getParent())
236       return false;
237   }
238   return true;
239 }
240 
241 /// \returns True if all of the values in \p VL are constants (but not
242 /// globals/constant expressions).
243 static bool allConstant(ArrayRef<Value *> VL) {
244   // Constant expressions and globals can't be vectorized like normal integer/FP
245   // constants.
246   return all_of(VL, isConstant);
247 }
248 
249 /// \returns True if all of the values in \p VL are identical or some of them
250 /// are UndefValue.
251 static bool isSplat(ArrayRef<Value *> VL) {
252   Value *FirstNonUndef = nullptr;
253   for (Value *V : VL) {
254     if (isa<UndefValue>(V))
255       continue;
256     if (!FirstNonUndef) {
257       FirstNonUndef = V;
258       continue;
259     }
260     if (V != FirstNonUndef)
261       return false;
262   }
263   return FirstNonUndef != nullptr;
264 }
265 
266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
267 static bool isCommutative(Instruction *I) {
268   if (auto *Cmp = dyn_cast<CmpInst>(I))
269     return Cmp->isCommutative();
270   if (auto *BO = dyn_cast<BinaryOperator>(I))
271     return BO->isCommutative();
272   // TODO: This should check for generic Instruction::isCommutative(), but
273   //       we need to confirm that the caller code correctly handles Intrinsics
274   //       for example (does not have 2 operands).
275   return false;
276 }
277 
278 /// Checks if the given value is actually an undefined constant vector.
279 static bool isUndefVector(const Value *V) {
280   if (isa<UndefValue>(V))
281     return true;
282   auto *C = dyn_cast<Constant>(V);
283   if (!C)
284     return false;
285   if (!C->containsUndefOrPoisonElement())
286     return false;
287   auto *VecTy = dyn_cast<FixedVectorType>(C->getType());
288   if (!VecTy)
289     return false;
290   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
291     if (Constant *Elem = C->getAggregateElement(I))
292       if (!isa<UndefValue>(Elem))
293         return false;
294   }
295   return true;
296 }
297 
298 /// Checks if the vector of instructions can be represented as a shuffle, like:
299 /// %x0 = extractelement <4 x i8> %x, i32 0
300 /// %x3 = extractelement <4 x i8> %x, i32 3
301 /// %y1 = extractelement <4 x i8> %y, i32 1
302 /// %y2 = extractelement <4 x i8> %y, i32 2
303 /// %x0x0 = mul i8 %x0, %x0
304 /// %x3x3 = mul i8 %x3, %x3
305 /// %y1y1 = mul i8 %y1, %y1
306 /// %y2y2 = mul i8 %y2, %y2
307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
311 /// ret <4 x i8> %ins4
312 /// can be transformed into:
313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
314 ///                                                         i32 6>
315 /// %2 = mul <4 x i8> %1, %1
316 /// ret <4 x i8> %2
317 /// We convert this initially to something like:
318 /// %x0 = extractelement <4 x i8> %x, i32 0
319 /// %x3 = extractelement <4 x i8> %x, i32 3
320 /// %y1 = extractelement <4 x i8> %y, i32 1
321 /// %y2 = extractelement <4 x i8> %y, i32 2
322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
326 /// %5 = mul <4 x i8> %4, %4
327 /// %6 = extractelement <4 x i8> %5, i32 0
328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
329 /// %7 = extractelement <4 x i8> %5, i32 1
330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
331 /// %8 = extractelement <4 x i8> %5, i32 2
332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
333 /// %9 = extractelement <4 x i8> %5, i32 3
334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
335 /// ret <4 x i8> %ins4
336 /// InstCombiner transforms this into a shuffle and vector mul
337 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
338 /// TODO: Can we split off and reuse the shuffle mask detection from
339 /// TargetTransformInfo::getInstructionThroughput?
340 static Optional<TargetTransformInfo::ShuffleKind>
341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
342   const auto *It =
343       find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
344   if (It == VL.end())
345     return None;
346   auto *EI0 = cast<ExtractElementInst>(*It);
347   if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
348     return None;
349   unsigned Size =
350       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
351   Value *Vec1 = nullptr;
352   Value *Vec2 = nullptr;
353   enum ShuffleMode { Unknown, Select, Permute };
354   ShuffleMode CommonShuffleMode = Unknown;
355   Mask.assign(VL.size(), UndefMaskElem);
356   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
357     // Undef can be represented as an undef element in a vector.
358     if (isa<UndefValue>(VL[I]))
359       continue;
360     auto *EI = cast<ExtractElementInst>(VL[I]);
361     if (isa<ScalableVectorType>(EI->getVectorOperandType()))
362       return None;
363     auto *Vec = EI->getVectorOperand();
364     // We can extractelement from undef or poison vector.
365     if (isUndefVector(Vec))
366       continue;
367     // All vector operands must have the same number of vector elements.
368     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
369       return None;
370     if (isa<UndefValue>(EI->getIndexOperand()))
371       continue;
372     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
373     if (!Idx)
374       return None;
375     // Undefined behavior if Idx is negative or >= Size.
376     if (Idx->getValue().uge(Size))
377       continue;
378     unsigned IntIdx = Idx->getValue().getZExtValue();
379     Mask[I] = IntIdx;
380     // For correct shuffling we have to have at most 2 different vector operands
381     // in all extractelement instructions.
382     if (!Vec1 || Vec1 == Vec) {
383       Vec1 = Vec;
384     } else if (!Vec2 || Vec2 == Vec) {
385       Vec2 = Vec;
386       Mask[I] += Size;
387     } else {
388       return None;
389     }
390     if (CommonShuffleMode == Permute)
391       continue;
392     // If the extract index is not the same as the operation number, it is a
393     // permutation.
394     if (IntIdx != I) {
395       CommonShuffleMode = Permute;
396       continue;
397     }
398     CommonShuffleMode = Select;
399   }
400   // If we're not crossing lanes in different vectors, consider it as blending.
401   if (CommonShuffleMode == Select && Vec2)
402     return TargetTransformInfo::SK_Select;
403   // If Vec2 was never used, we have a permutation of a single vector, otherwise
404   // we have permutation of 2 vectors.
405   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
406               : TargetTransformInfo::SK_PermuteSingleSrc;
407 }
408 
409 namespace {
410 
411 /// Main data required for vectorization of instructions.
412 struct InstructionsState {
413   /// The very first instruction in the list with the main opcode.
414   Value *OpValue = nullptr;
415 
416   /// The main/alternate instruction.
417   Instruction *MainOp = nullptr;
418   Instruction *AltOp = nullptr;
419 
420   /// The main/alternate opcodes for the list of instructions.
421   unsigned getOpcode() const {
422     return MainOp ? MainOp->getOpcode() : 0;
423   }
424 
425   unsigned getAltOpcode() const {
426     return AltOp ? AltOp->getOpcode() : 0;
427   }
428 
429   /// Some of the instructions in the list have alternate opcodes.
430   bool isAltShuffle() const { return AltOp != MainOp; }
431 
432   bool isOpcodeOrAlt(Instruction *I) const {
433     unsigned CheckedOpcode = I->getOpcode();
434     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
435   }
436 
437   InstructionsState() = delete;
438   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
439       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
440 };
441 
442 } // end anonymous namespace
443 
444 /// Chooses the correct key for scheduling data. If \p Op has the same (or
445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
446 /// OpValue.
447 static Value *isOneOf(const InstructionsState &S, Value *Op) {
448   auto *I = dyn_cast<Instruction>(Op);
449   if (I && S.isOpcodeOrAlt(I))
450     return Op;
451   return S.OpValue;
452 }
453 
454 /// \returns true if \p Opcode is allowed as part of of the main/alternate
455 /// instruction for SLP vectorization.
456 ///
457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
458 /// "shuffled out" lane would result in division by zero.
459 static bool isValidForAlternation(unsigned Opcode) {
460   if (Instruction::isIntDivRem(Opcode))
461     return false;
462 
463   return true;
464 }
465 
466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
467                                        unsigned BaseIndex = 0);
468 
469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
470 /// compatible instructions or constants, or just some other regular values.
471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
472                                 Value *Op1) {
473   return (isConstant(BaseOp0) && isConstant(Op0)) ||
474          (isConstant(BaseOp1) && isConstant(Op1)) ||
475          (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
476           !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
477          getSameOpcode({BaseOp0, Op0}).getOpcode() ||
478          getSameOpcode({BaseOp1, Op1}).getOpcode();
479 }
480 
481 /// \returns analysis of the Instructions in \p VL described in
482 /// InstructionsState, the Opcode that we suppose the whole list
483 /// could be vectorized even if its structure is diverse.
484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
485                                        unsigned BaseIndex) {
486   // Make sure these are all Instructions.
487   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
488     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
489 
490   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
491   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
492   bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
493   CmpInst::Predicate BasePred =
494       IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
495               : CmpInst::BAD_ICMP_PREDICATE;
496   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
497   unsigned AltOpcode = Opcode;
498   unsigned AltIndex = BaseIndex;
499 
500   // Check for one alternate opcode from another BinaryOperator.
501   // TODO - generalize to support all operators (types, calls etc.).
502   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
503     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
504     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
505       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
506         continue;
507       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
508           isValidForAlternation(Opcode)) {
509         AltOpcode = InstOpcode;
510         AltIndex = Cnt;
511         continue;
512       }
513     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
514       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
515       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
516       if (Ty0 == Ty1) {
517         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
518           continue;
519         if (Opcode == AltOpcode) {
520           assert(isValidForAlternation(Opcode) &&
521                  isValidForAlternation(InstOpcode) &&
522                  "Cast isn't safe for alternation, logic needs to be updated!");
523           AltOpcode = InstOpcode;
524           AltIndex = Cnt;
525           continue;
526         }
527       }
528     } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) {
529       auto *BaseInst = cast<Instruction>(VL[BaseIndex]);
530       auto *Inst = cast<Instruction>(VL[Cnt]);
531       Type *Ty0 = BaseInst->getOperand(0)->getType();
532       Type *Ty1 = Inst->getOperand(0)->getType();
533       if (Ty0 == Ty1) {
534         Value *BaseOp0 = BaseInst->getOperand(0);
535         Value *BaseOp1 = BaseInst->getOperand(1);
536         Value *Op0 = Inst->getOperand(0);
537         Value *Op1 = Inst->getOperand(1);
538         CmpInst::Predicate CurrentPred =
539             cast<CmpInst>(VL[Cnt])->getPredicate();
540         CmpInst::Predicate SwappedCurrentPred =
541             CmpInst::getSwappedPredicate(CurrentPred);
542         // Check for compatible operands. If the corresponding operands are not
543         // compatible - need to perform alternate vectorization.
544         if (InstOpcode == Opcode) {
545           if (BasePred == CurrentPred &&
546               areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1))
547             continue;
548           if (BasePred == SwappedCurrentPred &&
549               areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0))
550             continue;
551           if (E == 2 &&
552               (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
553             continue;
554           auto *AltInst = cast<CmpInst>(VL[AltIndex]);
555           CmpInst::Predicate AltPred = AltInst->getPredicate();
556           Value *AltOp0 = AltInst->getOperand(0);
557           Value *AltOp1 = AltInst->getOperand(1);
558           // Check if operands are compatible with alternate operands.
559           if (AltPred == CurrentPred &&
560               areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1))
561             continue;
562           if (AltPred == SwappedCurrentPred &&
563               areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0))
564             continue;
565         }
566         if (BaseIndex == AltIndex && BasePred != CurrentPred) {
567           assert(isValidForAlternation(Opcode) &&
568                  isValidForAlternation(InstOpcode) &&
569                  "Cast isn't safe for alternation, logic needs to be updated!");
570           AltIndex = Cnt;
571           continue;
572         }
573         auto *AltInst = cast<CmpInst>(VL[AltIndex]);
574         CmpInst::Predicate AltPred = AltInst->getPredicate();
575         if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
576             AltPred == CurrentPred || AltPred == SwappedCurrentPred)
577           continue;
578       }
579     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
580       continue;
581     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
582   }
583 
584   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
585                            cast<Instruction>(VL[AltIndex]));
586 }
587 
588 /// \returns true if all of the values in \p VL have the same type or false
589 /// otherwise.
590 static bool allSameType(ArrayRef<Value *> VL) {
591   Type *Ty = VL[0]->getType();
592   for (int i = 1, e = VL.size(); i < e; i++)
593     if (VL[i]->getType() != Ty)
594       return false;
595 
596   return true;
597 }
598 
599 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
600 static Optional<unsigned> getExtractIndex(Instruction *E) {
601   unsigned Opcode = E->getOpcode();
602   assert((Opcode == Instruction::ExtractElement ||
603           Opcode == Instruction::ExtractValue) &&
604          "Expected extractelement or extractvalue instruction.");
605   if (Opcode == Instruction::ExtractElement) {
606     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
607     if (!CI)
608       return None;
609     return CI->getZExtValue();
610   }
611   ExtractValueInst *EI = cast<ExtractValueInst>(E);
612   if (EI->getNumIndices() != 1)
613     return None;
614   return *EI->idx_begin();
615 }
616 
617 /// \returns True if in-tree use also needs extract. This refers to
618 /// possible scalar operand in vectorized instruction.
619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
620                                     TargetLibraryInfo *TLI) {
621   unsigned Opcode = UserInst->getOpcode();
622   switch (Opcode) {
623   case Instruction::Load: {
624     LoadInst *LI = cast<LoadInst>(UserInst);
625     return (LI->getPointerOperand() == Scalar);
626   }
627   case Instruction::Store: {
628     StoreInst *SI = cast<StoreInst>(UserInst);
629     return (SI->getPointerOperand() == Scalar);
630   }
631   case Instruction::Call: {
632     CallInst *CI = cast<CallInst>(UserInst);
633     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
634     for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
635       if (hasVectorInstrinsicScalarOpd(ID, i))
636         return (CI->getArgOperand(i) == Scalar);
637     }
638     LLVM_FALLTHROUGH;
639   }
640   default:
641     return false;
642   }
643 }
644 
645 /// \returns the AA location that is being access by the instruction.
646 static MemoryLocation getLocation(Instruction *I) {
647   if (StoreInst *SI = dyn_cast<StoreInst>(I))
648     return MemoryLocation::get(SI);
649   if (LoadInst *LI = dyn_cast<LoadInst>(I))
650     return MemoryLocation::get(LI);
651   return MemoryLocation();
652 }
653 
654 /// \returns True if the instruction is not a volatile or atomic load/store.
655 static bool isSimple(Instruction *I) {
656   if (LoadInst *LI = dyn_cast<LoadInst>(I))
657     return LI->isSimple();
658   if (StoreInst *SI = dyn_cast<StoreInst>(I))
659     return SI->isSimple();
660   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
661     return !MI->isVolatile();
662   return true;
663 }
664 
665 /// Shuffles \p Mask in accordance with the given \p SubMask.
666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
667   if (SubMask.empty())
668     return;
669   if (Mask.empty()) {
670     Mask.append(SubMask.begin(), SubMask.end());
671     return;
672   }
673   SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
674   int TermValue = std::min(Mask.size(), SubMask.size());
675   for (int I = 0, E = SubMask.size(); I < E; ++I) {
676     if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
677         Mask[SubMask[I]] >= TermValue)
678       continue;
679     NewMask[I] = Mask[SubMask[I]];
680   }
681   Mask.swap(NewMask);
682 }
683 
684 /// Order may have elements assigned special value (size) which is out of
685 /// bounds. Such indices only appear on places which correspond to undef values
686 /// (see canReuseExtract for details) and used in order to avoid undef values
687 /// have effect on operands ordering.
688 /// The first loop below simply finds all unused indices and then the next loop
689 /// nest assigns these indices for undef values positions.
690 /// As an example below Order has two undef positions and they have assigned
691 /// values 3 and 7 respectively:
692 /// before:  6 9 5 4 9 2 1 0
693 /// after:   6 3 5 4 7 2 1 0
694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
695   const unsigned Sz = Order.size();
696   SmallBitVector UnusedIndices(Sz, /*t=*/true);
697   SmallBitVector MaskedIndices(Sz);
698   for (unsigned I = 0; I < Sz; ++I) {
699     if (Order[I] < Sz)
700       UnusedIndices.reset(Order[I]);
701     else
702       MaskedIndices.set(I);
703   }
704   if (MaskedIndices.none())
705     return;
706   assert(UnusedIndices.count() == MaskedIndices.count() &&
707          "Non-synced masked/available indices.");
708   int Idx = UnusedIndices.find_first();
709   int MIdx = MaskedIndices.find_first();
710   while (MIdx >= 0) {
711     assert(Idx >= 0 && "Indices must be synced.");
712     Order[MIdx] = Idx;
713     Idx = UnusedIndices.find_next(Idx);
714     MIdx = MaskedIndices.find_next(MIdx);
715   }
716 }
717 
718 namespace llvm {
719 
720 static void inversePermutation(ArrayRef<unsigned> Indices,
721                                SmallVectorImpl<int> &Mask) {
722   Mask.clear();
723   const unsigned E = Indices.size();
724   Mask.resize(E, UndefMaskElem);
725   for (unsigned I = 0; I < E; ++I)
726     Mask[Indices[I]] = I;
727 }
728 
729 /// \returns inserting index of InsertElement or InsertValue instruction,
730 /// using Offset as base offset for index.
731 static Optional<unsigned> getInsertIndex(Value *InsertInst,
732                                          unsigned Offset = 0) {
733   int Index = Offset;
734   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
735     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
736       auto *VT = cast<FixedVectorType>(IE->getType());
737       if (CI->getValue().uge(VT->getNumElements()))
738         return None;
739       Index *= VT->getNumElements();
740       Index += CI->getZExtValue();
741       return Index;
742     }
743     return None;
744   }
745 
746   auto *IV = cast<InsertValueInst>(InsertInst);
747   Type *CurrentType = IV->getType();
748   for (unsigned I : IV->indices()) {
749     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
750       Index *= ST->getNumElements();
751       CurrentType = ST->getElementType(I);
752     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
753       Index *= AT->getNumElements();
754       CurrentType = AT->getElementType();
755     } else {
756       return None;
757     }
758     Index += I;
759   }
760   return Index;
761 }
762 
763 /// Reorders the list of scalars in accordance with the given \p Mask.
764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
765                            ArrayRef<int> Mask) {
766   assert(!Mask.empty() && "Expected non-empty mask.");
767   SmallVector<Value *> Prev(Scalars.size(),
768                             UndefValue::get(Scalars.front()->getType()));
769   Prev.swap(Scalars);
770   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
771     if (Mask[I] != UndefMaskElem)
772       Scalars[Mask[I]] = Prev[I];
773 }
774 
775 namespace slpvectorizer {
776 
777 /// Bottom Up SLP Vectorizer.
778 class BoUpSLP {
779   struct TreeEntry;
780   struct ScheduleData;
781 
782 public:
783   using ValueList = SmallVector<Value *, 8>;
784   using InstrList = SmallVector<Instruction *, 16>;
785   using ValueSet = SmallPtrSet<Value *, 16>;
786   using StoreList = SmallVector<StoreInst *, 8>;
787   using ExtraValueToDebugLocsMap =
788       MapVector<Value *, SmallVector<Instruction *, 2>>;
789   using OrdersType = SmallVector<unsigned, 4>;
790 
791   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
792           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
793           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
794           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
795       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
796         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
797     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
798     // Use the vector register size specified by the target unless overridden
799     // by a command-line option.
800     // TODO: It would be better to limit the vectorization factor based on
801     //       data type rather than just register size. For example, x86 AVX has
802     //       256-bit registers, but it does not support integer operations
803     //       at that width (that requires AVX2).
804     if (MaxVectorRegSizeOption.getNumOccurrences())
805       MaxVecRegSize = MaxVectorRegSizeOption;
806     else
807       MaxVecRegSize =
808           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
809               .getFixedSize();
810 
811     if (MinVectorRegSizeOption.getNumOccurrences())
812       MinVecRegSize = MinVectorRegSizeOption;
813     else
814       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
815   }
816 
817   /// Vectorize the tree that starts with the elements in \p VL.
818   /// Returns the vectorized root.
819   Value *vectorizeTree();
820 
821   /// Vectorize the tree but with the list of externally used values \p
822   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
823   /// generated extractvalue instructions.
824   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
825 
826   /// \returns the cost incurred by unwanted spills and fills, caused by
827   /// holding live values over call sites.
828   InstructionCost getSpillCost() const;
829 
830   /// \returns the vectorization cost of the subtree that starts at \p VL.
831   /// A negative number means that this is profitable.
832   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
833 
834   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
835   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
836   void buildTree(ArrayRef<Value *> Roots,
837                  ArrayRef<Value *> UserIgnoreLst = None);
838 
839   /// Builds external uses of the vectorized scalars, i.e. the list of
840   /// vectorized scalars to be extracted, their lanes and their scalar users. \p
841   /// ExternallyUsedValues contains additional list of external uses to handle
842   /// vectorization of reductions.
843   void
844   buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
845 
846   /// Clear the internal data structures that are created by 'buildTree'.
847   void deleteTree() {
848     VectorizableTree.clear();
849     ScalarToTreeEntry.clear();
850     MustGather.clear();
851     ExternalUses.clear();
852     for (auto &Iter : BlocksSchedules) {
853       BlockScheduling *BS = Iter.second.get();
854       BS->clear();
855     }
856     MinBWs.clear();
857     InstrElementSize.clear();
858   }
859 
860   unsigned getTreeSize() const { return VectorizableTree.size(); }
861 
862   /// Perform LICM and CSE on the newly generated gather sequences.
863   void optimizeGatherSequence();
864 
865   /// Checks if the specified gather tree entry \p TE can be represented as a
866   /// shuffled vector entry + (possibly) permutation with other gathers. It
867   /// implements the checks only for possibly ordered scalars (Loads,
868   /// ExtractElement, ExtractValue), which can be part of the graph.
869   Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
870 
871   /// Gets reordering data for the given tree entry. If the entry is vectorized
872   /// - just return ReorderIndices, otherwise check if the scalars can be
873   /// reordered and return the most optimal order.
874   /// \param TopToBottom If true, include the order of vectorized stores and
875   /// insertelement nodes, otherwise skip them.
876   Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
877 
878   /// Reorders the current graph to the most profitable order starting from the
879   /// root node to the leaf nodes. The best order is chosen only from the nodes
880   /// of the same size (vectorization factor). Smaller nodes are considered
881   /// parts of subgraph with smaller VF and they are reordered independently. We
882   /// can make it because we still need to extend smaller nodes to the wider VF
883   /// and we can merge reordering shuffles with the widening shuffles.
884   void reorderTopToBottom();
885 
886   /// Reorders the current graph to the most profitable order starting from
887   /// leaves to the root. It allows to rotate small subgraphs and reduce the
888   /// number of reshuffles if the leaf nodes use the same order. In this case we
889   /// can merge the orders and just shuffle user node instead of shuffling its
890   /// operands. Plus, even the leaf nodes have different orders, it allows to
891   /// sink reordering in the graph closer to the root node and merge it later
892   /// during analysis.
893   void reorderBottomToTop(bool IgnoreReorder = false);
894 
895   /// \return The vector element size in bits to use when vectorizing the
896   /// expression tree ending at \p V. If V is a store, the size is the width of
897   /// the stored value. Otherwise, the size is the width of the largest loaded
898   /// value reaching V. This method is used by the vectorizer to calculate
899   /// vectorization factors.
900   unsigned getVectorElementSize(Value *V);
901 
902   /// Compute the minimum type sizes required to represent the entries in a
903   /// vectorizable tree.
904   void computeMinimumValueSizes();
905 
906   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
907   unsigned getMaxVecRegSize() const {
908     return MaxVecRegSize;
909   }
910 
911   // \returns minimum vector register size as set by cl::opt.
912   unsigned getMinVecRegSize() const {
913     return MinVecRegSize;
914   }
915 
916   unsigned getMinVF(unsigned Sz) const {
917     return std::max(2U, getMinVecRegSize() / Sz);
918   }
919 
920   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
921     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
922       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
923     return MaxVF ? MaxVF : UINT_MAX;
924   }
925 
926   /// Check if homogeneous aggregate is isomorphic to some VectorType.
927   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
928   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
929   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
930   ///
931   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
932   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
933 
934   /// \returns True if the VectorizableTree is both tiny and not fully
935   /// vectorizable. We do not vectorize such trees.
936   bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
937 
938   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
939   /// can be load combined in the backend. Load combining may not be allowed in
940   /// the IR optimizer, so we do not want to alter the pattern. For example,
941   /// partially transforming a scalar bswap() pattern into vector code is
942   /// effectively impossible for the backend to undo.
943   /// TODO: If load combining is allowed in the IR optimizer, this analysis
944   ///       may not be necessary.
945   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
946 
947   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
948   /// can be load combined in the backend. Load combining may not be allowed in
949   /// the IR optimizer, so we do not want to alter the pattern. For example,
950   /// partially transforming a scalar bswap() pattern into vector code is
951   /// effectively impossible for the backend to undo.
952   /// TODO: If load combining is allowed in the IR optimizer, this analysis
953   ///       may not be necessary.
954   bool isLoadCombineCandidate() const;
955 
956   OptimizationRemarkEmitter *getORE() { return ORE; }
957 
958   /// This structure holds any data we need about the edges being traversed
959   /// during buildTree_rec(). We keep track of:
960   /// (i) the user TreeEntry index, and
961   /// (ii) the index of the edge.
962   struct EdgeInfo {
963     EdgeInfo() = default;
964     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
965         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
966     /// The user TreeEntry.
967     TreeEntry *UserTE = nullptr;
968     /// The operand index of the use.
969     unsigned EdgeIdx = UINT_MAX;
970 #ifndef NDEBUG
971     friend inline raw_ostream &operator<<(raw_ostream &OS,
972                                           const BoUpSLP::EdgeInfo &EI) {
973       EI.dump(OS);
974       return OS;
975     }
976     /// Debug print.
977     void dump(raw_ostream &OS) const {
978       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
979          << " EdgeIdx:" << EdgeIdx << "}";
980     }
981     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
982 #endif
983   };
984 
985   /// A helper data structure to hold the operands of a vector of instructions.
986   /// This supports a fixed vector length for all operand vectors.
987   class VLOperands {
988     /// For each operand we need (i) the value, and (ii) the opcode that it
989     /// would be attached to if the expression was in a left-linearized form.
990     /// This is required to avoid illegal operand reordering.
991     /// For example:
992     /// \verbatim
993     ///                         0 Op1
994     ///                         |/
995     /// Op1 Op2   Linearized    + Op2
996     ///   \ /     ---------->   |/
997     ///    -                    -
998     ///
999     /// Op1 - Op2            (0 + Op1) - Op2
1000     /// \endverbatim
1001     ///
1002     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1003     ///
1004     /// Another way to think of this is to track all the operations across the
1005     /// path from the operand all the way to the root of the tree and to
1006     /// calculate the operation that corresponds to this path. For example, the
1007     /// path from Op2 to the root crosses the RHS of the '-', therefore the
1008     /// corresponding operation is a '-' (which matches the one in the
1009     /// linearized tree, as shown above).
1010     ///
1011     /// For lack of a better term, we refer to this operation as Accumulated
1012     /// Path Operation (APO).
1013     struct OperandData {
1014       OperandData() = default;
1015       OperandData(Value *V, bool APO, bool IsUsed)
1016           : V(V), APO(APO), IsUsed(IsUsed) {}
1017       /// The operand value.
1018       Value *V = nullptr;
1019       /// TreeEntries only allow a single opcode, or an alternate sequence of
1020       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1021       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1022       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1023       /// (e.g., Add/Mul)
1024       bool APO = false;
1025       /// Helper data for the reordering function.
1026       bool IsUsed = false;
1027     };
1028 
1029     /// During operand reordering, we are trying to select the operand at lane
1030     /// that matches best with the operand at the neighboring lane. Our
1031     /// selection is based on the type of value we are looking for. For example,
1032     /// if the neighboring lane has a load, we need to look for a load that is
1033     /// accessing a consecutive address. These strategies are summarized in the
1034     /// 'ReorderingMode' enumerator.
1035     enum class ReorderingMode {
1036       Load,     ///< Matching loads to consecutive memory addresses
1037       Opcode,   ///< Matching instructions based on opcode (same or alternate)
1038       Constant, ///< Matching constants
1039       Splat,    ///< Matching the same instruction multiple times (broadcast)
1040       Failed,   ///< We failed to create a vectorizable group
1041     };
1042 
1043     using OperandDataVec = SmallVector<OperandData, 2>;
1044 
1045     /// A vector of operand vectors.
1046     SmallVector<OperandDataVec, 4> OpsVec;
1047 
1048     const DataLayout &DL;
1049     ScalarEvolution &SE;
1050     const BoUpSLP &R;
1051 
1052     /// \returns the operand data at \p OpIdx and \p Lane.
1053     OperandData &getData(unsigned OpIdx, unsigned Lane) {
1054       return OpsVec[OpIdx][Lane];
1055     }
1056 
1057     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1058     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1059       return OpsVec[OpIdx][Lane];
1060     }
1061 
1062     /// Clears the used flag for all entries.
1063     void clearUsed() {
1064       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1065            OpIdx != NumOperands; ++OpIdx)
1066         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1067              ++Lane)
1068           OpsVec[OpIdx][Lane].IsUsed = false;
1069     }
1070 
1071     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1072     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1073       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1074     }
1075 
1076     // The hard-coded scores listed here are not very important, though it shall
1077     // be higher for better matches to improve the resulting cost. When
1078     // computing the scores of matching one sub-tree with another, we are
1079     // basically counting the number of values that are matching. So even if all
1080     // scores are set to 1, we would still get a decent matching result.
1081     // However, sometimes we have to break ties. For example we may have to
1082     // choose between matching loads vs matching opcodes. This is what these
1083     // scores are helping us with: they provide the order of preference. Also,
1084     // this is important if the scalar is externally used or used in another
1085     // tree entry node in the different lane.
1086 
1087     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1088     static const int ScoreConsecutiveLoads = 4;
1089     /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1090     static const int ScoreReversedLoads = 3;
1091     /// ExtractElementInst from same vector and consecutive indexes.
1092     static const int ScoreConsecutiveExtracts = 4;
1093     /// ExtractElementInst from same vector and reversed indices.
1094     static const int ScoreReversedExtracts = 3;
1095     /// Constants.
1096     static const int ScoreConstants = 2;
1097     /// Instructions with the same opcode.
1098     static const int ScoreSameOpcode = 2;
1099     /// Instructions with alt opcodes (e.g, add + sub).
1100     static const int ScoreAltOpcodes = 1;
1101     /// Identical instructions (a.k.a. splat or broadcast).
1102     static const int ScoreSplat = 1;
1103     /// Matching with an undef is preferable to failing.
1104     static const int ScoreUndef = 1;
1105     /// Score for failing to find a decent match.
1106     static const int ScoreFail = 0;
1107     /// Score if all users are vectorized.
1108     static const int ScoreAllUserVectorized = 1;
1109 
1110     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1111     /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1112     /// MainAltOps.
1113     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
1114                                ScalarEvolution &SE, int NumLanes,
1115                                ArrayRef<Value *> MainAltOps) {
1116       if (V1 == V2)
1117         return VLOperands::ScoreSplat;
1118 
1119       auto *LI1 = dyn_cast<LoadInst>(V1);
1120       auto *LI2 = dyn_cast<LoadInst>(V2);
1121       if (LI1 && LI2) {
1122         if (LI1->getParent() != LI2->getParent())
1123           return VLOperands::ScoreFail;
1124 
1125         Optional<int> Dist = getPointersDiff(
1126             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1127             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1128         if (!Dist || *Dist == 0)
1129           return VLOperands::ScoreFail;
1130         // The distance is too large - still may be profitable to use masked
1131         // loads/gathers.
1132         if (std::abs(*Dist) > NumLanes / 2)
1133           return VLOperands::ScoreAltOpcodes;
1134         // This still will detect consecutive loads, but we might have "holes"
1135         // in some cases. It is ok for non-power-2 vectorization and may produce
1136         // better results. It should not affect current vectorization.
1137         return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads
1138                            : VLOperands::ScoreReversedLoads;
1139       }
1140 
1141       auto *C1 = dyn_cast<Constant>(V1);
1142       auto *C2 = dyn_cast<Constant>(V2);
1143       if (C1 && C2)
1144         return VLOperands::ScoreConstants;
1145 
1146       // Extracts from consecutive indexes of the same vector better score as
1147       // the extracts could be optimized away.
1148       Value *EV1;
1149       ConstantInt *Ex1Idx;
1150       if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1151         // Undefs are always profitable for extractelements.
1152         if (isa<UndefValue>(V2))
1153           return VLOperands::ScoreConsecutiveExtracts;
1154         Value *EV2 = nullptr;
1155         ConstantInt *Ex2Idx = nullptr;
1156         if (match(V2,
1157                   m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1158                                                          m_Undef())))) {
1159           // Undefs are always profitable for extractelements.
1160           if (!Ex2Idx)
1161             return VLOperands::ScoreConsecutiveExtracts;
1162           if (isUndefVector(EV2) && EV2->getType() == EV1->getType())
1163             return VLOperands::ScoreConsecutiveExtracts;
1164           if (EV2 == EV1) {
1165             int Idx1 = Ex1Idx->getZExtValue();
1166             int Idx2 = Ex2Idx->getZExtValue();
1167             int Dist = Idx2 - Idx1;
1168             // The distance is too large - still may be profitable to use
1169             // shuffles.
1170             if (std::abs(Dist) == 0)
1171               return VLOperands::ScoreSplat;
1172             if (std::abs(Dist) > NumLanes / 2)
1173               return VLOperands::ScoreSameOpcode;
1174             return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts
1175                               : VLOperands::ScoreReversedExtracts;
1176           }
1177           return VLOperands::ScoreAltOpcodes;
1178         }
1179         return VLOperands::ScoreFail;
1180       }
1181 
1182       auto *I1 = dyn_cast<Instruction>(V1);
1183       auto *I2 = dyn_cast<Instruction>(V2);
1184       if (I1 && I2) {
1185         if (I1->getParent() != I2->getParent())
1186           return VLOperands::ScoreFail;
1187         SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1188         Ops.push_back(I1);
1189         Ops.push_back(I2);
1190         InstructionsState S = getSameOpcode(Ops);
1191         // Note: Only consider instructions with <= 2 operands to avoid
1192         // complexity explosion.
1193         if (S.getOpcode() &&
1194             (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1195              !S.isAltShuffle()) &&
1196             all_of(Ops, [&S](Value *V) {
1197               return cast<Instruction>(V)->getNumOperands() ==
1198                      S.MainOp->getNumOperands();
1199             }))
1200           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1201                                   : VLOperands::ScoreSameOpcode;
1202       }
1203 
1204       if (isa<UndefValue>(V2))
1205         return VLOperands::ScoreUndef;
1206 
1207       return VLOperands::ScoreFail;
1208     }
1209 
1210     /// \param Lane lane of the operands under analysis.
1211     /// \param OpIdx operand index in \p Lane lane we're looking the best
1212     /// candidate for.
1213     /// \param Idx operand index of the current candidate value.
1214     /// \returns The additional score due to possible broadcasting of the
1215     /// elements in the lane. It is more profitable to have power-of-2 unique
1216     /// elements in the lane, it will be vectorized with higher probability
1217     /// after removing duplicates. Currently the SLP vectorizer supports only
1218     /// vectorization of the power-of-2 number of unique scalars.
1219     int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1220       Value *IdxLaneV = getData(Idx, Lane).V;
1221       if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1222         return 0;
1223       SmallPtrSet<Value *, 4> Uniques;
1224       for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1225         if (Ln == Lane)
1226           continue;
1227         Value *OpIdxLnV = getData(OpIdx, Ln).V;
1228         if (!isa<Instruction>(OpIdxLnV))
1229           return 0;
1230         Uniques.insert(OpIdxLnV);
1231       }
1232       int UniquesCount = Uniques.size();
1233       int UniquesCntWithIdxLaneV =
1234           Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1235       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1236       int UniquesCntWithOpIdxLaneV =
1237           Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1238       if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1239         return 0;
1240       return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1241               UniquesCntWithOpIdxLaneV) -
1242              (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1243     }
1244 
1245     /// \param Lane lane of the operands under analysis.
1246     /// \param OpIdx operand index in \p Lane lane we're looking the best
1247     /// candidate for.
1248     /// \param Idx operand index of the current candidate value.
1249     /// \returns The additional score for the scalar which users are all
1250     /// vectorized.
1251     int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1252       Value *IdxLaneV = getData(Idx, Lane).V;
1253       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1254       // Do not care about number of uses for vector-like instructions
1255       // (extractelement/extractvalue with constant indices), they are extracts
1256       // themselves and already externally used. Vectorization of such
1257       // instructions does not add extra extractelement instruction, just may
1258       // remove it.
1259       if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1260           isVectorLikeInstWithConstOps(OpIdxLaneV))
1261         return VLOperands::ScoreAllUserVectorized;
1262       auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1263       if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1264         return 0;
1265       return R.areAllUsersVectorized(IdxLaneI, None)
1266                  ? VLOperands::ScoreAllUserVectorized
1267                  : 0;
1268     }
1269 
1270     /// Go through the operands of \p LHS and \p RHS recursively until \p
1271     /// MaxLevel, and return the cummulative score. For example:
1272     /// \verbatim
1273     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1274     ///     \ /         \ /         \ /        \ /
1275     ///      +           +           +          +
1276     ///     G1          G2          G3         G4
1277     /// \endverbatim
1278     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1279     /// each level recursively, accumulating the score. It starts from matching
1280     /// the additions at level 0, then moves on to the loads (level 1). The
1281     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1282     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1283     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1284     /// Please note that the order of the operands does not matter, as we
1285     /// evaluate the score of all profitable combinations of operands. In
1286     /// other words the score of G1 and G4 is the same as G1 and G2. This
1287     /// heuristic is based on ideas described in:
1288     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1289     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1290     ///   Luís F. W. Góes
1291     int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel,
1292                            ArrayRef<Value *> MainAltOps) {
1293 
1294       // Get the shallow score of V1 and V2.
1295       int ShallowScoreAtThisLevel =
1296           getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps);
1297 
1298       // If reached MaxLevel,
1299       //  or if V1 and V2 are not instructions,
1300       //  or if they are SPLAT,
1301       //  or if they are not consecutive,
1302       //  or if profitable to vectorize loads or extractelements, early return
1303       //  the current cost.
1304       auto *I1 = dyn_cast<Instruction>(LHS);
1305       auto *I2 = dyn_cast<Instruction>(RHS);
1306       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1307           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1308           (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1309             (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1310             (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1311            ShallowScoreAtThisLevel))
1312         return ShallowScoreAtThisLevel;
1313       assert(I1 && I2 && "Should have early exited.");
1314 
1315       // Contains the I2 operand indexes that got matched with I1 operands.
1316       SmallSet<unsigned, 4> Op2Used;
1317 
1318       // Recursion towards the operands of I1 and I2. We are trying all possible
1319       // operand pairs, and keeping track of the best score.
1320       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1321            OpIdx1 != NumOperands1; ++OpIdx1) {
1322         // Try to pair op1I with the best operand of I2.
1323         int MaxTmpScore = 0;
1324         unsigned MaxOpIdx2 = 0;
1325         bool FoundBest = false;
1326         // If I2 is commutative try all combinations.
1327         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1328         unsigned ToIdx = isCommutative(I2)
1329                              ? I2->getNumOperands()
1330                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1331         assert(FromIdx <= ToIdx && "Bad index");
1332         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1333           // Skip operands already paired with OpIdx1.
1334           if (Op2Used.count(OpIdx2))
1335             continue;
1336           // Recursively calculate the cost at each level
1337           int TmpScore =
1338               getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1339                                  CurrLevel + 1, MaxLevel, None);
1340           // Look for the best score.
1341           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1342             MaxTmpScore = TmpScore;
1343             MaxOpIdx2 = OpIdx2;
1344             FoundBest = true;
1345           }
1346         }
1347         if (FoundBest) {
1348           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1349           Op2Used.insert(MaxOpIdx2);
1350           ShallowScoreAtThisLevel += MaxTmpScore;
1351         }
1352       }
1353       return ShallowScoreAtThisLevel;
1354     }
1355 
1356     /// Score scaling factor for fully compatible instructions but with
1357     /// different number of external uses. Allows better selection of the
1358     /// instructions with less external uses.
1359     static const int ScoreScaleFactor = 10;
1360 
1361     /// \Returns the look-ahead score, which tells us how much the sub-trees
1362     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1363     /// score. This helps break ties in an informed way when we cannot decide on
1364     /// the order of the operands by just considering the immediate
1365     /// predecessors.
1366     int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1367                           int Lane, unsigned OpIdx, unsigned Idx,
1368                           bool &IsUsed) {
1369       int Score =
1370           getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps);
1371       if (Score) {
1372         int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1373         if (Score <= -SplatScore) {
1374           // Set the minimum score for splat-like sequence to avoid setting
1375           // failed state.
1376           Score = 1;
1377         } else {
1378           Score += SplatScore;
1379           // Scale score to see the difference between different operands
1380           // and similar operands but all vectorized/not all vectorized
1381           // uses. It does not affect actual selection of the best
1382           // compatible operand in general, just allows to select the
1383           // operand with all vectorized uses.
1384           Score *= ScoreScaleFactor;
1385           Score += getExternalUseScore(Lane, OpIdx, Idx);
1386           IsUsed = true;
1387         }
1388       }
1389       return Score;
1390     }
1391 
1392     /// Best defined scores per lanes between the passes. Used to choose the
1393     /// best operand (with the highest score) between the passes.
1394     /// The key - {Operand Index, Lane}.
1395     /// The value - the best score between the passes for the lane and the
1396     /// operand.
1397     SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1398         BestScoresPerLanes;
1399 
1400     // Search all operands in Ops[*][Lane] for the one that matches best
1401     // Ops[OpIdx][LastLane] and return its opreand index.
1402     // If no good match can be found, return None.
1403     Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1404                                       ArrayRef<ReorderingMode> ReorderingModes,
1405                                       ArrayRef<Value *> MainAltOps) {
1406       unsigned NumOperands = getNumOperands();
1407 
1408       // The operand of the previous lane at OpIdx.
1409       Value *OpLastLane = getData(OpIdx, LastLane).V;
1410 
1411       // Our strategy mode for OpIdx.
1412       ReorderingMode RMode = ReorderingModes[OpIdx];
1413       if (RMode == ReorderingMode::Failed)
1414         return None;
1415 
1416       // The linearized opcode of the operand at OpIdx, Lane.
1417       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1418 
1419       // The best operand index and its score.
1420       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1421       // are using the score to differentiate between the two.
1422       struct BestOpData {
1423         Optional<unsigned> Idx = None;
1424         unsigned Score = 0;
1425       } BestOp;
1426       BestOp.Score =
1427           BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1428               .first->second;
1429 
1430       // Track if the operand must be marked as used. If the operand is set to
1431       // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1432       // want to reestimate the operands again on the following iterations).
1433       bool IsUsed =
1434           RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1435       // Iterate through all unused operands and look for the best.
1436       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1437         // Get the operand at Idx and Lane.
1438         OperandData &OpData = getData(Idx, Lane);
1439         Value *Op = OpData.V;
1440         bool OpAPO = OpData.APO;
1441 
1442         // Skip already selected operands.
1443         if (OpData.IsUsed)
1444           continue;
1445 
1446         // Skip if we are trying to move the operand to a position with a
1447         // different opcode in the linearized tree form. This would break the
1448         // semantics.
1449         if (OpAPO != OpIdxAPO)
1450           continue;
1451 
1452         // Look for an operand that matches the current mode.
1453         switch (RMode) {
1454         case ReorderingMode::Load:
1455         case ReorderingMode::Constant:
1456         case ReorderingMode::Opcode: {
1457           bool LeftToRight = Lane > LastLane;
1458           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1459           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1460           int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1461                                         OpIdx, Idx, IsUsed);
1462           if (Score > static_cast<int>(BestOp.Score)) {
1463             BestOp.Idx = Idx;
1464             BestOp.Score = Score;
1465             BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1466           }
1467           break;
1468         }
1469         case ReorderingMode::Splat:
1470           if (Op == OpLastLane)
1471             BestOp.Idx = Idx;
1472           break;
1473         case ReorderingMode::Failed:
1474           llvm_unreachable("Not expected Failed reordering mode.");
1475         }
1476       }
1477 
1478       if (BestOp.Idx) {
1479         getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed;
1480         return BestOp.Idx;
1481       }
1482       // If we could not find a good match return None.
1483       return None;
1484     }
1485 
1486     /// Helper for reorderOperandVecs.
1487     /// \returns the lane that we should start reordering from. This is the one
1488     /// which has the least number of operands that can freely move about or
1489     /// less profitable because it already has the most optimal set of operands.
1490     unsigned getBestLaneToStartReordering() const {
1491       unsigned Min = UINT_MAX;
1492       unsigned SameOpNumber = 0;
1493       // std::pair<unsigned, unsigned> is used to implement a simple voting
1494       // algorithm and choose the lane with the least number of operands that
1495       // can freely move about or less profitable because it already has the
1496       // most optimal set of operands. The first unsigned is a counter for
1497       // voting, the second unsigned is the counter of lanes with instructions
1498       // with same/alternate opcodes and same parent basic block.
1499       MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1500       // Try to be closer to the original results, if we have multiple lanes
1501       // with same cost. If 2 lanes have the same cost, use the one with the
1502       // lowest index.
1503       for (int I = getNumLanes(); I > 0; --I) {
1504         unsigned Lane = I - 1;
1505         OperandsOrderData NumFreeOpsHash =
1506             getMaxNumOperandsThatCanBeReordered(Lane);
1507         // Compare the number of operands that can move and choose the one with
1508         // the least number.
1509         if (NumFreeOpsHash.NumOfAPOs < Min) {
1510           Min = NumFreeOpsHash.NumOfAPOs;
1511           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1512           HashMap.clear();
1513           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1514         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1515                    NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1516           // Select the most optimal lane in terms of number of operands that
1517           // should be moved around.
1518           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1519           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1520         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1521                    NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1522           auto It = HashMap.find(NumFreeOpsHash.Hash);
1523           if (It == HashMap.end())
1524             HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1525           else
1526             ++It->second.first;
1527         }
1528       }
1529       // Select the lane with the minimum counter.
1530       unsigned BestLane = 0;
1531       unsigned CntMin = UINT_MAX;
1532       for (const auto &Data : reverse(HashMap)) {
1533         if (Data.second.first < CntMin) {
1534           CntMin = Data.second.first;
1535           BestLane = Data.second.second;
1536         }
1537       }
1538       return BestLane;
1539     }
1540 
1541     /// Data structure that helps to reorder operands.
1542     struct OperandsOrderData {
1543       /// The best number of operands with the same APOs, which can be
1544       /// reordered.
1545       unsigned NumOfAPOs = UINT_MAX;
1546       /// Number of operands with the same/alternate instruction opcode and
1547       /// parent.
1548       unsigned NumOpsWithSameOpcodeParent = 0;
1549       /// Hash for the actual operands ordering.
1550       /// Used to count operands, actually their position id and opcode
1551       /// value. It is used in the voting mechanism to find the lane with the
1552       /// least number of operands that can freely move about or less profitable
1553       /// because it already has the most optimal set of operands. Can be
1554       /// replaced with SmallVector<unsigned> instead but hash code is faster
1555       /// and requires less memory.
1556       unsigned Hash = 0;
1557     };
1558     /// \returns the maximum number of operands that are allowed to be reordered
1559     /// for \p Lane and the number of compatible instructions(with the same
1560     /// parent/opcode). This is used as a heuristic for selecting the first lane
1561     /// to start operand reordering.
1562     OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1563       unsigned CntTrue = 0;
1564       unsigned NumOperands = getNumOperands();
1565       // Operands with the same APO can be reordered. We therefore need to count
1566       // how many of them we have for each APO, like this: Cnt[APO] = x.
1567       // Since we only have two APOs, namely true and false, we can avoid using
1568       // a map. Instead we can simply count the number of operands that
1569       // correspond to one of them (in this case the 'true' APO), and calculate
1570       // the other by subtracting it from the total number of operands.
1571       // Operands with the same instruction opcode and parent are more
1572       // profitable since we don't need to move them in many cases, with a high
1573       // probability such lane already can be vectorized effectively.
1574       bool AllUndefs = true;
1575       unsigned NumOpsWithSameOpcodeParent = 0;
1576       Instruction *OpcodeI = nullptr;
1577       BasicBlock *Parent = nullptr;
1578       unsigned Hash = 0;
1579       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1580         const OperandData &OpData = getData(OpIdx, Lane);
1581         if (OpData.APO)
1582           ++CntTrue;
1583         // Use Boyer-Moore majority voting for finding the majority opcode and
1584         // the number of times it occurs.
1585         if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1586           if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() ||
1587               I->getParent() != Parent) {
1588             if (NumOpsWithSameOpcodeParent == 0) {
1589               NumOpsWithSameOpcodeParent = 1;
1590               OpcodeI = I;
1591               Parent = I->getParent();
1592             } else {
1593               --NumOpsWithSameOpcodeParent;
1594             }
1595           } else {
1596             ++NumOpsWithSameOpcodeParent;
1597           }
1598         }
1599         Hash = hash_combine(
1600             Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1601         AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1602       }
1603       if (AllUndefs)
1604         return {};
1605       OperandsOrderData Data;
1606       Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1607       Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1608       Data.Hash = Hash;
1609       return Data;
1610     }
1611 
1612     /// Go through the instructions in VL and append their operands.
1613     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1614       assert(!VL.empty() && "Bad VL");
1615       assert((empty() || VL.size() == getNumLanes()) &&
1616              "Expected same number of lanes");
1617       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1618       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1619       OpsVec.resize(NumOperands);
1620       unsigned NumLanes = VL.size();
1621       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1622         OpsVec[OpIdx].resize(NumLanes);
1623         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1624           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1625           // Our tree has just 3 nodes: the root and two operands.
1626           // It is therefore trivial to get the APO. We only need to check the
1627           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1628           // RHS operand. The LHS operand of both add and sub is never attached
1629           // to an inversese operation in the linearized form, therefore its APO
1630           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1631 
1632           // Since operand reordering is performed on groups of commutative
1633           // operations or alternating sequences (e.g., +, -), we can safely
1634           // tell the inverse operations by checking commutativity.
1635           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1636           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1637           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1638                                  APO, false};
1639         }
1640       }
1641     }
1642 
1643     /// \returns the number of operands.
1644     unsigned getNumOperands() const { return OpsVec.size(); }
1645 
1646     /// \returns the number of lanes.
1647     unsigned getNumLanes() const { return OpsVec[0].size(); }
1648 
1649     /// \returns the operand value at \p OpIdx and \p Lane.
1650     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1651       return getData(OpIdx, Lane).V;
1652     }
1653 
1654     /// \returns true if the data structure is empty.
1655     bool empty() const { return OpsVec.empty(); }
1656 
1657     /// Clears the data.
1658     void clear() { OpsVec.clear(); }
1659 
1660     /// \Returns true if there are enough operands identical to \p Op to fill
1661     /// the whole vector.
1662     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1663     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1664       bool OpAPO = getData(OpIdx, Lane).APO;
1665       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1666         if (Ln == Lane)
1667           continue;
1668         // This is set to true if we found a candidate for broadcast at Lane.
1669         bool FoundCandidate = false;
1670         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1671           OperandData &Data = getData(OpI, Ln);
1672           if (Data.APO != OpAPO || Data.IsUsed)
1673             continue;
1674           if (Data.V == Op) {
1675             FoundCandidate = true;
1676             Data.IsUsed = true;
1677             break;
1678           }
1679         }
1680         if (!FoundCandidate)
1681           return false;
1682       }
1683       return true;
1684     }
1685 
1686   public:
1687     /// Initialize with all the operands of the instruction vector \p RootVL.
1688     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1689                ScalarEvolution &SE, const BoUpSLP &R)
1690         : DL(DL), SE(SE), R(R) {
1691       // Append all the operands of RootVL.
1692       appendOperandsOfVL(RootVL);
1693     }
1694 
1695     /// \Returns a value vector with the operands across all lanes for the
1696     /// opearnd at \p OpIdx.
1697     ValueList getVL(unsigned OpIdx) const {
1698       ValueList OpVL(OpsVec[OpIdx].size());
1699       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1700              "Expected same num of lanes across all operands");
1701       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1702         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1703       return OpVL;
1704     }
1705 
1706     // Performs operand reordering for 2 or more operands.
1707     // The original operands are in OrigOps[OpIdx][Lane].
1708     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1709     void reorder() {
1710       unsigned NumOperands = getNumOperands();
1711       unsigned NumLanes = getNumLanes();
1712       // Each operand has its own mode. We are using this mode to help us select
1713       // the instructions for each lane, so that they match best with the ones
1714       // we have selected so far.
1715       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1716 
1717       // This is a greedy single-pass algorithm. We are going over each lane
1718       // once and deciding on the best order right away with no back-tracking.
1719       // However, in order to increase its effectiveness, we start with the lane
1720       // that has operands that can move the least. For example, given the
1721       // following lanes:
1722       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1723       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1724       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1725       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1726       // we will start at Lane 1, since the operands of the subtraction cannot
1727       // be reordered. Then we will visit the rest of the lanes in a circular
1728       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1729 
1730       // Find the first lane that we will start our search from.
1731       unsigned FirstLane = getBestLaneToStartReordering();
1732 
1733       // Initialize the modes.
1734       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1735         Value *OpLane0 = getValue(OpIdx, FirstLane);
1736         // Keep track if we have instructions with all the same opcode on one
1737         // side.
1738         if (isa<LoadInst>(OpLane0))
1739           ReorderingModes[OpIdx] = ReorderingMode::Load;
1740         else if (isa<Instruction>(OpLane0)) {
1741           // Check if OpLane0 should be broadcast.
1742           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1743             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1744           else
1745             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1746         }
1747         else if (isa<Constant>(OpLane0))
1748           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1749         else if (isa<Argument>(OpLane0))
1750           // Our best hope is a Splat. It may save some cost in some cases.
1751           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1752         else
1753           // NOTE: This should be unreachable.
1754           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1755       }
1756 
1757       // Check that we don't have same operands. No need to reorder if operands
1758       // are just perfect diamond or shuffled diamond match. Do not do it only
1759       // for possible broadcasts or non-power of 2 number of scalars (just for
1760       // now).
1761       auto &&SkipReordering = [this]() {
1762         SmallPtrSet<Value *, 4> UniqueValues;
1763         ArrayRef<OperandData> Op0 = OpsVec.front();
1764         for (const OperandData &Data : Op0)
1765           UniqueValues.insert(Data.V);
1766         for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
1767           if (any_of(Op, [&UniqueValues](const OperandData &Data) {
1768                 return !UniqueValues.contains(Data.V);
1769               }))
1770             return false;
1771         }
1772         // TODO: Check if we can remove a check for non-power-2 number of
1773         // scalars after full support of non-power-2 vectorization.
1774         return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
1775       };
1776 
1777       // If the initial strategy fails for any of the operand indexes, then we
1778       // perform reordering again in a second pass. This helps avoid assigning
1779       // high priority to the failed strategy, and should improve reordering for
1780       // the non-failed operand indexes.
1781       for (int Pass = 0; Pass != 2; ++Pass) {
1782         // Check if no need to reorder operands since they're are perfect or
1783         // shuffled diamond match.
1784         // Need to to do it to avoid extra external use cost counting for
1785         // shuffled matches, which may cause regressions.
1786         if (SkipReordering())
1787           break;
1788         // Skip the second pass if the first pass did not fail.
1789         bool StrategyFailed = false;
1790         // Mark all operand data as free to use.
1791         clearUsed();
1792         // We keep the original operand order for the FirstLane, so reorder the
1793         // rest of the lanes. We are visiting the nodes in a circular fashion,
1794         // using FirstLane as the center point and increasing the radius
1795         // distance.
1796         SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
1797         for (unsigned I = 0; I < NumOperands; ++I)
1798           MainAltOps[I].push_back(getData(I, FirstLane).V);
1799 
1800         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1801           // Visit the lane on the right and then the lane on the left.
1802           for (int Direction : {+1, -1}) {
1803             int Lane = FirstLane + Direction * Distance;
1804             if (Lane < 0 || Lane >= (int)NumLanes)
1805               continue;
1806             int LastLane = Lane - Direction;
1807             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1808                    "Out of bounds");
1809             // Look for a good match for each operand.
1810             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1811               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1812               Optional<unsigned> BestIdx = getBestOperand(
1813                   OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
1814               // By not selecting a value, we allow the operands that follow to
1815               // select a better matching value. We will get a non-null value in
1816               // the next run of getBestOperand().
1817               if (BestIdx) {
1818                 // Swap the current operand with the one returned by
1819                 // getBestOperand().
1820                 swap(OpIdx, BestIdx.getValue(), Lane);
1821               } else {
1822                 // We failed to find a best operand, set mode to 'Failed'.
1823                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1824                 // Enable the second pass.
1825                 StrategyFailed = true;
1826               }
1827               // Try to get the alternate opcode and follow it during analysis.
1828               if (MainAltOps[OpIdx].size() != 2) {
1829                 OperandData &AltOp = getData(OpIdx, Lane);
1830                 InstructionsState OpS =
1831                     getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V});
1832                 if (OpS.getOpcode() && OpS.isAltShuffle())
1833                   MainAltOps[OpIdx].push_back(AltOp.V);
1834               }
1835             }
1836           }
1837         }
1838         // Skip second pass if the strategy did not fail.
1839         if (!StrategyFailed)
1840           break;
1841       }
1842     }
1843 
1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1845     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1846       switch (RMode) {
1847       case ReorderingMode::Load:
1848         return "Load";
1849       case ReorderingMode::Opcode:
1850         return "Opcode";
1851       case ReorderingMode::Constant:
1852         return "Constant";
1853       case ReorderingMode::Splat:
1854         return "Splat";
1855       case ReorderingMode::Failed:
1856         return "Failed";
1857       }
1858       llvm_unreachable("Unimplemented Reordering Type");
1859     }
1860 
1861     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1862                                                    raw_ostream &OS) {
1863       return OS << getModeStr(RMode);
1864     }
1865 
1866     /// Debug print.
1867     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1868       printMode(RMode, dbgs());
1869     }
1870 
1871     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1872       return printMode(RMode, OS);
1873     }
1874 
1875     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1876       const unsigned Indent = 2;
1877       unsigned Cnt = 0;
1878       for (const OperandDataVec &OpDataVec : OpsVec) {
1879         OS << "Operand " << Cnt++ << "\n";
1880         for (const OperandData &OpData : OpDataVec) {
1881           OS.indent(Indent) << "{";
1882           if (Value *V = OpData.V)
1883             OS << *V;
1884           else
1885             OS << "null";
1886           OS << ", APO:" << OpData.APO << "}\n";
1887         }
1888         OS << "\n";
1889       }
1890       return OS;
1891     }
1892 
1893     /// Debug print.
1894     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1895 #endif
1896   };
1897 
1898   /// Checks if the instruction is marked for deletion.
1899   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1900 
1901   /// Marks values operands for later deletion by replacing them with Undefs.
1902   void eraseInstructions(ArrayRef<Value *> AV);
1903 
1904   ~BoUpSLP();
1905 
1906 private:
1907   /// Checks if all users of \p I are the part of the vectorization tree.
1908   bool areAllUsersVectorized(Instruction *I,
1909                              ArrayRef<Value *> VectorizedVals) const;
1910 
1911   /// \returns the cost of the vectorizable entry.
1912   InstructionCost getEntryCost(const TreeEntry *E,
1913                                ArrayRef<Value *> VectorizedVals);
1914 
1915   /// This is the recursive part of buildTree.
1916   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1917                      const EdgeInfo &EI);
1918 
1919   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1920   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1921   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1922   /// returns false, setting \p CurrentOrder to either an empty vector or a
1923   /// non-identity permutation that allows to reuse extract instructions.
1924   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1925                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1926 
1927   /// Vectorize a single entry in the tree.
1928   Value *vectorizeTree(TreeEntry *E);
1929 
1930   /// Vectorize a single entry in the tree, starting in \p VL.
1931   Value *vectorizeTree(ArrayRef<Value *> VL);
1932 
1933   /// \returns the scalarization cost for this type. Scalarization in this
1934   /// context means the creation of vectors from a group of scalars. If \p
1935   /// NeedToShuffle is true, need to add a cost of reshuffling some of the
1936   /// vector elements.
1937   InstructionCost getGatherCost(FixedVectorType *Ty,
1938                                 const APInt &ShuffledIndices,
1939                                 bool NeedToShuffle) const;
1940 
1941   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1942   /// tree entries.
1943   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1944   /// previous tree entries. \p Mask is filled with the shuffle mask.
1945   Optional<TargetTransformInfo::ShuffleKind>
1946   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1947                         SmallVectorImpl<const TreeEntry *> &Entries);
1948 
1949   /// \returns the scalarization cost for this list of values. Assuming that
1950   /// this subtree gets vectorized, we may need to extract the values from the
1951   /// roots. This method calculates the cost of extracting the values.
1952   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1953 
1954   /// Set the Builder insert point to one after the last instruction in
1955   /// the bundle
1956   void setInsertPointAfterBundle(const TreeEntry *E);
1957 
1958   /// \returns a vector from a collection of scalars in \p VL.
1959   Value *gather(ArrayRef<Value *> VL);
1960 
1961   /// \returns whether the VectorizableTree is fully vectorizable and will
1962   /// be beneficial even the tree height is tiny.
1963   bool isFullyVectorizableTinyTree(bool ForReduction) const;
1964 
1965   /// Reorder commutative or alt operands to get better probability of
1966   /// generating vectorized code.
1967   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1968                                              SmallVectorImpl<Value *> &Left,
1969                                              SmallVectorImpl<Value *> &Right,
1970                                              const DataLayout &DL,
1971                                              ScalarEvolution &SE,
1972                                              const BoUpSLP &R);
1973   struct TreeEntry {
1974     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1975     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1976 
1977     /// \returns true if the scalars in VL are equal to this entry.
1978     bool isSame(ArrayRef<Value *> VL) const {
1979       auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
1980         if (Mask.size() != VL.size() && VL.size() == Scalars.size())
1981           return std::equal(VL.begin(), VL.end(), Scalars.begin());
1982         return VL.size() == Mask.size() &&
1983                std::equal(VL.begin(), VL.end(), Mask.begin(),
1984                           [Scalars](Value *V, int Idx) {
1985                             return (isa<UndefValue>(V) &&
1986                                     Idx == UndefMaskElem) ||
1987                                    (Idx != UndefMaskElem && V == Scalars[Idx]);
1988                           });
1989       };
1990       if (!ReorderIndices.empty()) {
1991         // TODO: implement matching if the nodes are just reordered, still can
1992         // treat the vector as the same if the list of scalars matches VL
1993         // directly, without reordering.
1994         SmallVector<int> Mask;
1995         inversePermutation(ReorderIndices, Mask);
1996         if (VL.size() == Scalars.size())
1997           return IsSame(Scalars, Mask);
1998         if (VL.size() == ReuseShuffleIndices.size()) {
1999           ::addMask(Mask, ReuseShuffleIndices);
2000           return IsSame(Scalars, Mask);
2001         }
2002         return false;
2003       }
2004       return IsSame(Scalars, ReuseShuffleIndices);
2005     }
2006 
2007     /// \returns true if current entry has same operands as \p TE.
2008     bool hasEqualOperands(const TreeEntry &TE) const {
2009       if (TE.getNumOperands() != getNumOperands())
2010         return false;
2011       SmallBitVector Used(getNumOperands());
2012       for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2013         unsigned PrevCount = Used.count();
2014         for (unsigned K = 0; K < E; ++K) {
2015           if (Used.test(K))
2016             continue;
2017           if (getOperand(K) == TE.getOperand(I)) {
2018             Used.set(K);
2019             break;
2020           }
2021         }
2022         // Check if we actually found the matching operand.
2023         if (PrevCount == Used.count())
2024           return false;
2025       }
2026       return true;
2027     }
2028 
2029     /// \return Final vectorization factor for the node. Defined by the total
2030     /// number of vectorized scalars, including those, used several times in the
2031     /// entry and counted in the \a ReuseShuffleIndices, if any.
2032     unsigned getVectorFactor() const {
2033       if (!ReuseShuffleIndices.empty())
2034         return ReuseShuffleIndices.size();
2035       return Scalars.size();
2036     };
2037 
2038     /// A vector of scalars.
2039     ValueList Scalars;
2040 
2041     /// The Scalars are vectorized into this value. It is initialized to Null.
2042     Value *VectorizedValue = nullptr;
2043 
2044     /// Do we need to gather this sequence or vectorize it
2045     /// (either with vector instruction or with scatter/gather
2046     /// intrinsics for store/load)?
2047     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2048     EntryState State;
2049 
2050     /// Does this sequence require some shuffling?
2051     SmallVector<int, 4> ReuseShuffleIndices;
2052 
2053     /// Does this entry require reordering?
2054     SmallVector<unsigned, 4> ReorderIndices;
2055 
2056     /// Points back to the VectorizableTree.
2057     ///
2058     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
2059     /// to be a pointer and needs to be able to initialize the child iterator.
2060     /// Thus we need a reference back to the container to translate the indices
2061     /// to entries.
2062     VecTreeTy &Container;
2063 
2064     /// The TreeEntry index containing the user of this entry.  We can actually
2065     /// have multiple users so the data structure is not truly a tree.
2066     SmallVector<EdgeInfo, 1> UserTreeIndices;
2067 
2068     /// The index of this treeEntry in VectorizableTree.
2069     int Idx = -1;
2070 
2071   private:
2072     /// The operands of each instruction in each lane Operands[op_index][lane].
2073     /// Note: This helps avoid the replication of the code that performs the
2074     /// reordering of operands during buildTree_rec() and vectorizeTree().
2075     SmallVector<ValueList, 2> Operands;
2076 
2077     /// The main/alternate instruction.
2078     Instruction *MainOp = nullptr;
2079     Instruction *AltOp = nullptr;
2080 
2081   public:
2082     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2083     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2084       if (Operands.size() < OpIdx + 1)
2085         Operands.resize(OpIdx + 1);
2086       assert(Operands[OpIdx].empty() && "Already resized?");
2087       assert(OpVL.size() <= Scalars.size() &&
2088              "Number of operands is greater than the number of scalars.");
2089       Operands[OpIdx].resize(OpVL.size());
2090       copy(OpVL, Operands[OpIdx].begin());
2091     }
2092 
2093     /// Set the operands of this bundle in their original order.
2094     void setOperandsInOrder() {
2095       assert(Operands.empty() && "Already initialized?");
2096       auto *I0 = cast<Instruction>(Scalars[0]);
2097       Operands.resize(I0->getNumOperands());
2098       unsigned NumLanes = Scalars.size();
2099       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2100            OpIdx != NumOperands; ++OpIdx) {
2101         Operands[OpIdx].resize(NumLanes);
2102         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2103           auto *I = cast<Instruction>(Scalars[Lane]);
2104           assert(I->getNumOperands() == NumOperands &&
2105                  "Expected same number of operands");
2106           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2107         }
2108       }
2109     }
2110 
2111     /// Reorders operands of the node to the given mask \p Mask.
2112     void reorderOperands(ArrayRef<int> Mask) {
2113       for (ValueList &Operand : Operands)
2114         reorderScalars(Operand, Mask);
2115     }
2116 
2117     /// \returns the \p OpIdx operand of this TreeEntry.
2118     ValueList &getOperand(unsigned OpIdx) {
2119       assert(OpIdx < Operands.size() && "Off bounds");
2120       return Operands[OpIdx];
2121     }
2122 
2123     /// \returns the \p OpIdx operand of this TreeEntry.
2124     ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2125       assert(OpIdx < Operands.size() && "Off bounds");
2126       return Operands[OpIdx];
2127     }
2128 
2129     /// \returns the number of operands.
2130     unsigned getNumOperands() const { return Operands.size(); }
2131 
2132     /// \return the single \p OpIdx operand.
2133     Value *getSingleOperand(unsigned OpIdx) const {
2134       assert(OpIdx < Operands.size() && "Off bounds");
2135       assert(!Operands[OpIdx].empty() && "No operand available");
2136       return Operands[OpIdx][0];
2137     }
2138 
2139     /// Some of the instructions in the list have alternate opcodes.
2140     bool isAltShuffle() const { return MainOp != AltOp; }
2141 
2142     bool isOpcodeOrAlt(Instruction *I) const {
2143       unsigned CheckedOpcode = I->getOpcode();
2144       return (getOpcode() == CheckedOpcode ||
2145               getAltOpcode() == CheckedOpcode);
2146     }
2147 
2148     /// Chooses the correct key for scheduling data. If \p Op has the same (or
2149     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2150     /// \p OpValue.
2151     Value *isOneOf(Value *Op) const {
2152       auto *I = dyn_cast<Instruction>(Op);
2153       if (I && isOpcodeOrAlt(I))
2154         return Op;
2155       return MainOp;
2156     }
2157 
2158     void setOperations(const InstructionsState &S) {
2159       MainOp = S.MainOp;
2160       AltOp = S.AltOp;
2161     }
2162 
2163     Instruction *getMainOp() const {
2164       return MainOp;
2165     }
2166 
2167     Instruction *getAltOp() const {
2168       return AltOp;
2169     }
2170 
2171     /// The main/alternate opcodes for the list of instructions.
2172     unsigned getOpcode() const {
2173       return MainOp ? MainOp->getOpcode() : 0;
2174     }
2175 
2176     unsigned getAltOpcode() const {
2177       return AltOp ? AltOp->getOpcode() : 0;
2178     }
2179 
2180     /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2181     /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2182     int findLaneForValue(Value *V) const {
2183       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2184       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2185       if (!ReorderIndices.empty())
2186         FoundLane = ReorderIndices[FoundLane];
2187       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2188       if (!ReuseShuffleIndices.empty()) {
2189         FoundLane = std::distance(ReuseShuffleIndices.begin(),
2190                                   find(ReuseShuffleIndices, FoundLane));
2191       }
2192       return FoundLane;
2193     }
2194 
2195 #ifndef NDEBUG
2196     /// Debug printer.
2197     LLVM_DUMP_METHOD void dump() const {
2198       dbgs() << Idx << ".\n";
2199       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2200         dbgs() << "Operand " << OpI << ":\n";
2201         for (const Value *V : Operands[OpI])
2202           dbgs().indent(2) << *V << "\n";
2203       }
2204       dbgs() << "Scalars: \n";
2205       for (Value *V : Scalars)
2206         dbgs().indent(2) << *V << "\n";
2207       dbgs() << "State: ";
2208       switch (State) {
2209       case Vectorize:
2210         dbgs() << "Vectorize\n";
2211         break;
2212       case ScatterVectorize:
2213         dbgs() << "ScatterVectorize\n";
2214         break;
2215       case NeedToGather:
2216         dbgs() << "NeedToGather\n";
2217         break;
2218       }
2219       dbgs() << "MainOp: ";
2220       if (MainOp)
2221         dbgs() << *MainOp << "\n";
2222       else
2223         dbgs() << "NULL\n";
2224       dbgs() << "AltOp: ";
2225       if (AltOp)
2226         dbgs() << *AltOp << "\n";
2227       else
2228         dbgs() << "NULL\n";
2229       dbgs() << "VectorizedValue: ";
2230       if (VectorizedValue)
2231         dbgs() << *VectorizedValue << "\n";
2232       else
2233         dbgs() << "NULL\n";
2234       dbgs() << "ReuseShuffleIndices: ";
2235       if (ReuseShuffleIndices.empty())
2236         dbgs() << "Empty";
2237       else
2238         for (int ReuseIdx : ReuseShuffleIndices)
2239           dbgs() << ReuseIdx << ", ";
2240       dbgs() << "\n";
2241       dbgs() << "ReorderIndices: ";
2242       for (unsigned ReorderIdx : ReorderIndices)
2243         dbgs() << ReorderIdx << ", ";
2244       dbgs() << "\n";
2245       dbgs() << "UserTreeIndices: ";
2246       for (const auto &EInfo : UserTreeIndices)
2247         dbgs() << EInfo << ", ";
2248       dbgs() << "\n";
2249     }
2250 #endif
2251   };
2252 
2253 #ifndef NDEBUG
2254   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2255                      InstructionCost VecCost,
2256                      InstructionCost ScalarCost) const {
2257     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2258     dbgs() << "SLP: Costs:\n";
2259     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2260     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
2261     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
2262     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
2263                ReuseShuffleCost + VecCost - ScalarCost << "\n";
2264   }
2265 #endif
2266 
2267   /// Create a new VectorizableTree entry.
2268   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2269                           const InstructionsState &S,
2270                           const EdgeInfo &UserTreeIdx,
2271                           ArrayRef<int> ReuseShuffleIndices = None,
2272                           ArrayRef<unsigned> ReorderIndices = None) {
2273     TreeEntry::EntryState EntryState =
2274         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2275     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2276                         ReuseShuffleIndices, ReorderIndices);
2277   }
2278 
2279   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2280                           TreeEntry::EntryState EntryState,
2281                           Optional<ScheduleData *> Bundle,
2282                           const InstructionsState &S,
2283                           const EdgeInfo &UserTreeIdx,
2284                           ArrayRef<int> ReuseShuffleIndices = None,
2285                           ArrayRef<unsigned> ReorderIndices = None) {
2286     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2287             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2288            "Need to vectorize gather entry?");
2289     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2290     TreeEntry *Last = VectorizableTree.back().get();
2291     Last->Idx = VectorizableTree.size() - 1;
2292     Last->State = EntryState;
2293     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2294                                      ReuseShuffleIndices.end());
2295     if (ReorderIndices.empty()) {
2296       Last->Scalars.assign(VL.begin(), VL.end());
2297       Last->setOperations(S);
2298     } else {
2299       // Reorder scalars and build final mask.
2300       Last->Scalars.assign(VL.size(), nullptr);
2301       transform(ReorderIndices, Last->Scalars.begin(),
2302                 [VL](unsigned Idx) -> Value * {
2303                   if (Idx >= VL.size())
2304                     return UndefValue::get(VL.front()->getType());
2305                   return VL[Idx];
2306                 });
2307       InstructionsState S = getSameOpcode(Last->Scalars);
2308       Last->setOperations(S);
2309       Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2310     }
2311     if (Last->State != TreeEntry::NeedToGather) {
2312       for (Value *V : VL) {
2313         assert(!getTreeEntry(V) && "Scalar already in tree!");
2314         ScalarToTreeEntry[V] = Last;
2315       }
2316       // Update the scheduler bundle to point to this TreeEntry.
2317       unsigned Lane = 0;
2318       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
2319            BundleMember = BundleMember->NextInBundle) {
2320         BundleMember->TE = Last;
2321         BundleMember->Lane = Lane;
2322         ++Lane;
2323       }
2324       assert((!Bundle.getValue() || Lane == VL.size()) &&
2325              "Bundle and VL out of sync");
2326     } else {
2327       MustGather.insert(VL.begin(), VL.end());
2328     }
2329 
2330     if (UserTreeIdx.UserTE)
2331       Last->UserTreeIndices.push_back(UserTreeIdx);
2332 
2333     return Last;
2334   }
2335 
2336   /// -- Vectorization State --
2337   /// Holds all of the tree entries.
2338   TreeEntry::VecTreeTy VectorizableTree;
2339 
2340 #ifndef NDEBUG
2341   /// Debug printer.
2342   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2343     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2344       VectorizableTree[Id]->dump();
2345       dbgs() << "\n";
2346     }
2347   }
2348 #endif
2349 
2350   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2351 
2352   const TreeEntry *getTreeEntry(Value *V) const {
2353     return ScalarToTreeEntry.lookup(V);
2354   }
2355 
2356   /// Maps a specific scalar to its tree entry.
2357   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2358 
2359   /// Maps a value to the proposed vectorizable size.
2360   SmallDenseMap<Value *, unsigned> InstrElementSize;
2361 
2362   /// A list of scalars that we found that we need to keep as scalars.
2363   ValueSet MustGather;
2364 
2365   /// This POD struct describes one external user in the vectorized tree.
2366   struct ExternalUser {
2367     ExternalUser(Value *S, llvm::User *U, int L)
2368         : Scalar(S), User(U), Lane(L) {}
2369 
2370     // Which scalar in our function.
2371     Value *Scalar;
2372 
2373     // Which user that uses the scalar.
2374     llvm::User *User;
2375 
2376     // Which lane does the scalar belong to.
2377     int Lane;
2378   };
2379   using UserList = SmallVector<ExternalUser, 16>;
2380 
2381   /// Checks if two instructions may access the same memory.
2382   ///
2383   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2384   /// is invariant in the calling loop.
2385   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2386                  Instruction *Inst2) {
2387     // First check if the result is already in the cache.
2388     AliasCacheKey key = std::make_pair(Inst1, Inst2);
2389     Optional<bool> &result = AliasCache[key];
2390     if (result.hasValue()) {
2391       return result.getValue();
2392     }
2393     bool aliased = true;
2394     if (Loc1.Ptr && isSimple(Inst1))
2395       aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1));
2396     // Store the result in the cache.
2397     result = aliased;
2398     return aliased;
2399   }
2400 
2401   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2402 
2403   /// Cache for alias results.
2404   /// TODO: consider moving this to the AliasAnalysis itself.
2405   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2406 
2407   /// Removes an instruction from its block and eventually deletes it.
2408   /// It's like Instruction::eraseFromParent() except that the actual deletion
2409   /// is delayed until BoUpSLP is destructed.
2410   /// This is required to ensure that there are no incorrect collisions in the
2411   /// AliasCache, which can happen if a new instruction is allocated at the
2412   /// same address as a previously deleted instruction.
2413   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
2414     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
2415     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
2416   }
2417 
2418   /// Temporary store for deleted instructions. Instructions will be deleted
2419   /// eventually when the BoUpSLP is destructed.
2420   DenseMap<Instruction *, bool> DeletedInstructions;
2421 
2422   /// A list of values that need to extracted out of the tree.
2423   /// This list holds pairs of (Internal Scalar : External User). External User
2424   /// can be nullptr, it means that this Internal Scalar will be used later,
2425   /// after vectorization.
2426   UserList ExternalUses;
2427 
2428   /// Values used only by @llvm.assume calls.
2429   SmallPtrSet<const Value *, 32> EphValues;
2430 
2431   /// Holds all of the instructions that we gathered.
2432   SetVector<Instruction *> GatherShuffleSeq;
2433 
2434   /// A list of blocks that we are going to CSE.
2435   SetVector<BasicBlock *> CSEBlocks;
2436 
2437   /// Contains all scheduling relevant data for an instruction.
2438   /// A ScheduleData either represents a single instruction or a member of an
2439   /// instruction bundle (= a group of instructions which is combined into a
2440   /// vector instruction).
2441   struct ScheduleData {
2442     // The initial value for the dependency counters. It means that the
2443     // dependencies are not calculated yet.
2444     enum { InvalidDeps = -1 };
2445 
2446     ScheduleData() = default;
2447 
2448     void init(int BlockSchedulingRegionID, Value *OpVal) {
2449       FirstInBundle = this;
2450       NextInBundle = nullptr;
2451       NextLoadStore = nullptr;
2452       IsScheduled = false;
2453       SchedulingRegionID = BlockSchedulingRegionID;
2454       clearDependencies();
2455       OpValue = OpVal;
2456       TE = nullptr;
2457       Lane = -1;
2458     }
2459 
2460     /// Verify basic self consistency properties
2461     void verify() {
2462       if (hasValidDependencies()) {
2463         assert(UnscheduledDeps <= Dependencies && "invariant");
2464       } else {
2465         assert(UnscheduledDeps == Dependencies && "invariant");
2466       }
2467 
2468       if (IsScheduled) {
2469         assert(isSchedulingEntity() &&
2470                 "unexpected scheduled state");
2471         for (const ScheduleData *BundleMember = this; BundleMember;
2472              BundleMember = BundleMember->NextInBundle) {
2473           assert(BundleMember->hasValidDependencies() &&
2474                  BundleMember->UnscheduledDeps == 0 &&
2475                  "unexpected scheduled state");
2476           assert((BundleMember == this || !BundleMember->IsScheduled) &&
2477                  "only bundle is marked scheduled");
2478         }
2479       }
2480     }
2481 
2482     /// Returns true if the dependency information has been calculated.
2483     /// Note that depenendency validity can vary between instructions within
2484     /// a single bundle.
2485     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2486 
2487     /// Returns true for single instructions and for bundle representatives
2488     /// (= the head of a bundle).
2489     bool isSchedulingEntity() const { return FirstInBundle == this; }
2490 
2491     /// Returns true if it represents an instruction bundle and not only a
2492     /// single instruction.
2493     bool isPartOfBundle() const {
2494       return NextInBundle != nullptr || FirstInBundle != this;
2495     }
2496 
2497     /// Returns true if it is ready for scheduling, i.e. it has no more
2498     /// unscheduled depending instructions/bundles.
2499     bool isReady() const {
2500       assert(isSchedulingEntity() &&
2501              "can't consider non-scheduling entity for ready list");
2502       return unscheduledDepsInBundle() == 0 && !IsScheduled;
2503     }
2504 
2505     /// Modifies the number of unscheduled dependencies for this instruction,
2506     /// and returns the number of remaining dependencies for the containing
2507     /// bundle.
2508     int incrementUnscheduledDeps(int Incr) {
2509       assert(hasValidDependencies() &&
2510              "increment of unscheduled deps would be meaningless");
2511       UnscheduledDeps += Incr;
2512       return FirstInBundle->unscheduledDepsInBundle();
2513     }
2514 
2515     /// Sets the number of unscheduled dependencies to the number of
2516     /// dependencies.
2517     void resetUnscheduledDeps() {
2518       UnscheduledDeps = Dependencies;
2519     }
2520 
2521     /// Clears all dependency information.
2522     void clearDependencies() {
2523       Dependencies = InvalidDeps;
2524       resetUnscheduledDeps();
2525       MemoryDependencies.clear();
2526     }
2527 
2528     int unscheduledDepsInBundle() const {
2529       assert(isSchedulingEntity() && "only meaningful on the bundle");
2530       int Sum = 0;
2531       for (const ScheduleData *BundleMember = this; BundleMember;
2532            BundleMember = BundleMember->NextInBundle) {
2533         if (BundleMember->UnscheduledDeps == InvalidDeps)
2534           return InvalidDeps;
2535         Sum += BundleMember->UnscheduledDeps;
2536       }
2537       return Sum;
2538     }
2539 
2540     void dump(raw_ostream &os) const {
2541       if (!isSchedulingEntity()) {
2542         os << "/ " << *Inst;
2543       } else if (NextInBundle) {
2544         os << '[' << *Inst;
2545         ScheduleData *SD = NextInBundle;
2546         while (SD) {
2547           os << ';' << *SD->Inst;
2548           SD = SD->NextInBundle;
2549         }
2550         os << ']';
2551       } else {
2552         os << *Inst;
2553       }
2554     }
2555 
2556     Instruction *Inst = nullptr;
2557 
2558     /// Points to the head in an instruction bundle (and always to this for
2559     /// single instructions).
2560     ScheduleData *FirstInBundle = nullptr;
2561 
2562     /// Single linked list of all instructions in a bundle. Null if it is a
2563     /// single instruction.
2564     ScheduleData *NextInBundle = nullptr;
2565 
2566     /// Single linked list of all memory instructions (e.g. load, store, call)
2567     /// in the block - until the end of the scheduling region.
2568     ScheduleData *NextLoadStore = nullptr;
2569 
2570     /// The dependent memory instructions.
2571     /// This list is derived on demand in calculateDependencies().
2572     SmallVector<ScheduleData *, 4> MemoryDependencies;
2573 
2574     /// This ScheduleData is in the current scheduling region if this matches
2575     /// the current SchedulingRegionID of BlockScheduling.
2576     int SchedulingRegionID = 0;
2577 
2578     /// Used for getting a "good" final ordering of instructions.
2579     int SchedulingPriority = 0;
2580 
2581     /// The number of dependencies. Constitutes of the number of users of the
2582     /// instruction plus the number of dependent memory instructions (if any).
2583     /// This value is calculated on demand.
2584     /// If InvalidDeps, the number of dependencies is not calculated yet.
2585     int Dependencies = InvalidDeps;
2586 
2587     /// The number of dependencies minus the number of dependencies of scheduled
2588     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2589     /// for scheduling.
2590     /// Note that this is negative as long as Dependencies is not calculated.
2591     int UnscheduledDeps = InvalidDeps;
2592 
2593     /// True if this instruction is scheduled (or considered as scheduled in the
2594     /// dry-run).
2595     bool IsScheduled = false;
2596 
2597     /// Opcode of the current instruction in the schedule data.
2598     Value *OpValue = nullptr;
2599 
2600     /// The TreeEntry that this instruction corresponds to.
2601     TreeEntry *TE = nullptr;
2602 
2603     /// The lane of this node in the TreeEntry.
2604     int Lane = -1;
2605   };
2606 
2607 #ifndef NDEBUG
2608   friend inline raw_ostream &operator<<(raw_ostream &os,
2609                                         const BoUpSLP::ScheduleData &SD) {
2610     SD.dump(os);
2611     return os;
2612   }
2613 #endif
2614 
2615   friend struct GraphTraits<BoUpSLP *>;
2616   friend struct DOTGraphTraits<BoUpSLP *>;
2617 
2618   /// Contains all scheduling data for a basic block.
2619   struct BlockScheduling {
2620     BlockScheduling(BasicBlock *BB)
2621         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2622 
2623     void clear() {
2624       ReadyInsts.clear();
2625       ScheduleStart = nullptr;
2626       ScheduleEnd = nullptr;
2627       FirstLoadStoreInRegion = nullptr;
2628       LastLoadStoreInRegion = nullptr;
2629 
2630       // Reduce the maximum schedule region size by the size of the
2631       // previous scheduling run.
2632       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2633       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2634         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2635       ScheduleRegionSize = 0;
2636 
2637       // Make a new scheduling region, i.e. all existing ScheduleData is not
2638       // in the new region yet.
2639       ++SchedulingRegionID;
2640     }
2641 
2642     ScheduleData *getScheduleData(Value *V) {
2643       ScheduleData *SD = ScheduleDataMap[V];
2644       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2645         return SD;
2646       return nullptr;
2647     }
2648 
2649     ScheduleData *getScheduleData(Value *V, Value *Key) {
2650       if (V == Key)
2651         return getScheduleData(V);
2652       auto I = ExtraScheduleDataMap.find(V);
2653       if (I != ExtraScheduleDataMap.end()) {
2654         ScheduleData *SD = I->second[Key];
2655         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2656           return SD;
2657       }
2658       return nullptr;
2659     }
2660 
2661     bool isInSchedulingRegion(ScheduleData *SD) const {
2662       return SD->SchedulingRegionID == SchedulingRegionID;
2663     }
2664 
2665     /// Marks an instruction as scheduled and puts all dependent ready
2666     /// instructions into the ready-list.
2667     template <typename ReadyListType>
2668     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2669       SD->IsScheduled = true;
2670       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2671 
2672       for (ScheduleData *BundleMember = SD; BundleMember;
2673            BundleMember = BundleMember->NextInBundle) {
2674         if (BundleMember->Inst != BundleMember->OpValue)
2675           continue;
2676 
2677         // Handle the def-use chain dependencies.
2678 
2679         // Decrement the unscheduled counter and insert to ready list if ready.
2680         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2681           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2682             if (OpDef && OpDef->hasValidDependencies() &&
2683                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2684               // There are no more unscheduled dependencies after
2685               // decrementing, so we can put the dependent instruction
2686               // into the ready list.
2687               ScheduleData *DepBundle = OpDef->FirstInBundle;
2688               assert(!DepBundle->IsScheduled &&
2689                      "already scheduled bundle gets ready");
2690               ReadyList.insert(DepBundle);
2691               LLVM_DEBUG(dbgs()
2692                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2693             }
2694           });
2695         };
2696 
2697         // If BundleMember is a vector bundle, its operands may have been
2698         // reordered during buildTree(). We therefore need to get its operands
2699         // through the TreeEntry.
2700         if (TreeEntry *TE = BundleMember->TE) {
2701           int Lane = BundleMember->Lane;
2702           assert(Lane >= 0 && "Lane not set");
2703 
2704           // Since vectorization tree is being built recursively this assertion
2705           // ensures that the tree entry has all operands set before reaching
2706           // this code. Couple of exceptions known at the moment are extracts
2707           // where their second (immediate) operand is not added. Since
2708           // immediates do not affect scheduler behavior this is considered
2709           // okay.
2710           auto *In = TE->getMainOp();
2711           assert(In &&
2712                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2713                   In->getNumOperands() == TE->getNumOperands()) &&
2714                  "Missed TreeEntry operands?");
2715           (void)In; // fake use to avoid build failure when assertions disabled
2716 
2717           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2718                OpIdx != NumOperands; ++OpIdx)
2719             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2720               DecrUnsched(I);
2721         } else {
2722           // If BundleMember is a stand-alone instruction, no operand reordering
2723           // has taken place, so we directly access its operands.
2724           for (Use &U : BundleMember->Inst->operands())
2725             if (auto *I = dyn_cast<Instruction>(U.get()))
2726               DecrUnsched(I);
2727         }
2728         // Handle the memory dependencies.
2729         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2730           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2731             // There are no more unscheduled dependencies after decrementing,
2732             // so we can put the dependent instruction into the ready list.
2733             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2734             assert(!DepBundle->IsScheduled &&
2735                    "already scheduled bundle gets ready");
2736             ReadyList.insert(DepBundle);
2737             LLVM_DEBUG(dbgs()
2738                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2739           }
2740         }
2741       }
2742     }
2743 
2744     /// Verify basic self consistency properties of the data structure.
2745     void verify() {
2746       if (!ScheduleStart)
2747         return;
2748 
2749       assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
2750              ScheduleStart->comesBefore(ScheduleEnd) &&
2751              "Not a valid scheduling region?");
2752 
2753       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2754         auto *SD = getScheduleData(I);
2755         assert(SD && "primary scheduledata must exist in window");
2756         assert(isInSchedulingRegion(SD) &&
2757                "primary schedule data not in window?");
2758         (void)SD;
2759         doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
2760       }
2761 
2762       for (auto *SD : ReadyInsts) {
2763         assert(SD->isSchedulingEntity() && SD->isReady() &&
2764                "item in ready list not ready?");
2765         (void)SD;
2766       }
2767     }
2768 
2769     void doForAllOpcodes(Value *V,
2770                          function_ref<void(ScheduleData *SD)> Action) {
2771       if (ScheduleData *SD = getScheduleData(V))
2772         Action(SD);
2773       auto I = ExtraScheduleDataMap.find(V);
2774       if (I != ExtraScheduleDataMap.end())
2775         for (auto &P : I->second)
2776           if (P.second->SchedulingRegionID == SchedulingRegionID)
2777             Action(P.second);
2778     }
2779 
2780     /// Put all instructions into the ReadyList which are ready for scheduling.
2781     template <typename ReadyListType>
2782     void initialFillReadyList(ReadyListType &ReadyList) {
2783       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2784         doForAllOpcodes(I, [&](ScheduleData *SD) {
2785           if (SD->isSchedulingEntity() && SD->isReady()) {
2786             ReadyList.insert(SD);
2787             LLVM_DEBUG(dbgs()
2788                        << "SLP:    initially in ready list: " << *SD << "\n");
2789           }
2790         });
2791       }
2792     }
2793 
2794     /// Build a bundle from the ScheduleData nodes corresponding to the
2795     /// scalar instruction for each lane.
2796     ScheduleData *buildBundle(ArrayRef<Value *> VL);
2797 
2798     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2799     /// cyclic dependencies. This is only a dry-run, no instructions are
2800     /// actually moved at this stage.
2801     /// \returns the scheduling bundle. The returned Optional value is non-None
2802     /// if \p VL is allowed to be scheduled.
2803     Optional<ScheduleData *>
2804     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2805                       const InstructionsState &S);
2806 
2807     /// Un-bundles a group of instructions.
2808     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2809 
2810     /// Allocates schedule data chunk.
2811     ScheduleData *allocateScheduleDataChunks();
2812 
2813     /// Extends the scheduling region so that V is inside the region.
2814     /// \returns true if the region size is within the limit.
2815     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2816 
2817     /// Initialize the ScheduleData structures for new instructions in the
2818     /// scheduling region.
2819     void initScheduleData(Instruction *FromI, Instruction *ToI,
2820                           ScheduleData *PrevLoadStore,
2821                           ScheduleData *NextLoadStore);
2822 
2823     /// Updates the dependency information of a bundle and of all instructions/
2824     /// bundles which depend on the original bundle.
2825     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2826                                BoUpSLP *SLP);
2827 
2828     /// Sets all instruction in the scheduling region to un-scheduled.
2829     void resetSchedule();
2830 
2831     BasicBlock *BB;
2832 
2833     /// Simple memory allocation for ScheduleData.
2834     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2835 
2836     /// The size of a ScheduleData array in ScheduleDataChunks.
2837     int ChunkSize;
2838 
2839     /// The allocator position in the current chunk, which is the last entry
2840     /// of ScheduleDataChunks.
2841     int ChunkPos;
2842 
2843     /// Attaches ScheduleData to Instruction.
2844     /// Note that the mapping survives during all vectorization iterations, i.e.
2845     /// ScheduleData structures are recycled.
2846     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2847 
2848     /// Attaches ScheduleData to Instruction with the leading key.
2849     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2850         ExtraScheduleDataMap;
2851 
2852     /// The ready-list for scheduling (only used for the dry-run).
2853     SetVector<ScheduleData *> ReadyInsts;
2854 
2855     /// The first instruction of the scheduling region.
2856     Instruction *ScheduleStart = nullptr;
2857 
2858     /// The first instruction _after_ the scheduling region.
2859     Instruction *ScheduleEnd = nullptr;
2860 
2861     /// The first memory accessing instruction in the scheduling region
2862     /// (can be null).
2863     ScheduleData *FirstLoadStoreInRegion = nullptr;
2864 
2865     /// The last memory accessing instruction in the scheduling region
2866     /// (can be null).
2867     ScheduleData *LastLoadStoreInRegion = nullptr;
2868 
2869     /// The current size of the scheduling region.
2870     int ScheduleRegionSize = 0;
2871 
2872     /// The maximum size allowed for the scheduling region.
2873     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2874 
2875     /// The ID of the scheduling region. For a new vectorization iteration this
2876     /// is incremented which "removes" all ScheduleData from the region.
2877     // Make sure that the initial SchedulingRegionID is greater than the
2878     // initial SchedulingRegionID in ScheduleData (which is 0).
2879     int SchedulingRegionID = 1;
2880   };
2881 
2882   /// Attaches the BlockScheduling structures to basic blocks.
2883   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2884 
2885   /// Performs the "real" scheduling. Done before vectorization is actually
2886   /// performed in a basic block.
2887   void scheduleBlock(BlockScheduling *BS);
2888 
2889   /// List of users to ignore during scheduling and that don't need extracting.
2890   ArrayRef<Value *> UserIgnoreList;
2891 
2892   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2893   /// sorted SmallVectors of unsigned.
2894   struct OrdersTypeDenseMapInfo {
2895     static OrdersType getEmptyKey() {
2896       OrdersType V;
2897       V.push_back(~1U);
2898       return V;
2899     }
2900 
2901     static OrdersType getTombstoneKey() {
2902       OrdersType V;
2903       V.push_back(~2U);
2904       return V;
2905     }
2906 
2907     static unsigned getHashValue(const OrdersType &V) {
2908       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2909     }
2910 
2911     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2912       return LHS == RHS;
2913     }
2914   };
2915 
2916   // Analysis and block reference.
2917   Function *F;
2918   ScalarEvolution *SE;
2919   TargetTransformInfo *TTI;
2920   TargetLibraryInfo *TLI;
2921   AAResults *AA;
2922   LoopInfo *LI;
2923   DominatorTree *DT;
2924   AssumptionCache *AC;
2925   DemandedBits *DB;
2926   const DataLayout *DL;
2927   OptimizationRemarkEmitter *ORE;
2928 
2929   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2930   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2931 
2932   /// Instruction builder to construct the vectorized tree.
2933   IRBuilder<> Builder;
2934 
2935   /// A map of scalar integer values to the smallest bit width with which they
2936   /// can legally be represented. The values map to (width, signed) pairs,
2937   /// where "width" indicates the minimum bit width and "signed" is True if the
2938   /// value must be signed-extended, rather than zero-extended, back to its
2939   /// original width.
2940   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2941 };
2942 
2943 } // end namespace slpvectorizer
2944 
2945 template <> struct GraphTraits<BoUpSLP *> {
2946   using TreeEntry = BoUpSLP::TreeEntry;
2947 
2948   /// NodeRef has to be a pointer per the GraphWriter.
2949   using NodeRef = TreeEntry *;
2950 
2951   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2952 
2953   /// Add the VectorizableTree to the index iterator to be able to return
2954   /// TreeEntry pointers.
2955   struct ChildIteratorType
2956       : public iterator_adaptor_base<
2957             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2958     ContainerTy &VectorizableTree;
2959 
2960     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2961                       ContainerTy &VT)
2962         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2963 
2964     NodeRef operator*() { return I->UserTE; }
2965   };
2966 
2967   static NodeRef getEntryNode(BoUpSLP &R) {
2968     return R.VectorizableTree[0].get();
2969   }
2970 
2971   static ChildIteratorType child_begin(NodeRef N) {
2972     return {N->UserTreeIndices.begin(), N->Container};
2973   }
2974 
2975   static ChildIteratorType child_end(NodeRef N) {
2976     return {N->UserTreeIndices.end(), N->Container};
2977   }
2978 
2979   /// For the node iterator we just need to turn the TreeEntry iterator into a
2980   /// TreeEntry* iterator so that it dereferences to NodeRef.
2981   class nodes_iterator {
2982     using ItTy = ContainerTy::iterator;
2983     ItTy It;
2984 
2985   public:
2986     nodes_iterator(const ItTy &It2) : It(It2) {}
2987     NodeRef operator*() { return It->get(); }
2988     nodes_iterator operator++() {
2989       ++It;
2990       return *this;
2991     }
2992     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2993   };
2994 
2995   static nodes_iterator nodes_begin(BoUpSLP *R) {
2996     return nodes_iterator(R->VectorizableTree.begin());
2997   }
2998 
2999   static nodes_iterator nodes_end(BoUpSLP *R) {
3000     return nodes_iterator(R->VectorizableTree.end());
3001   }
3002 
3003   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3004 };
3005 
3006 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3007   using TreeEntry = BoUpSLP::TreeEntry;
3008 
3009   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3010 
3011   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3012     std::string Str;
3013     raw_string_ostream OS(Str);
3014     if (isSplat(Entry->Scalars))
3015       OS << "<splat> ";
3016     for (auto V : Entry->Scalars) {
3017       OS << *V;
3018       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3019             return EU.Scalar == V;
3020           }))
3021         OS << " <extract>";
3022       OS << "\n";
3023     }
3024     return Str;
3025   }
3026 
3027   static std::string getNodeAttributes(const TreeEntry *Entry,
3028                                        const BoUpSLP *) {
3029     if (Entry->State == TreeEntry::NeedToGather)
3030       return "color=red";
3031     return "";
3032   }
3033 };
3034 
3035 } // end namespace llvm
3036 
3037 BoUpSLP::~BoUpSLP() {
3038   for (const auto &Pair : DeletedInstructions) {
3039     // Replace operands of ignored instructions with Undefs in case if they were
3040     // marked for deletion.
3041     if (Pair.getSecond()) {
3042       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
3043       Pair.getFirst()->replaceAllUsesWith(Undef);
3044     }
3045     Pair.getFirst()->dropAllReferences();
3046   }
3047   for (const auto &Pair : DeletedInstructions) {
3048     assert(Pair.getFirst()->use_empty() &&
3049            "trying to erase instruction with users.");
3050     Pair.getFirst()->eraseFromParent();
3051   }
3052 #ifdef EXPENSIVE_CHECKS
3053   // If we could guarantee that this call is not extremely slow, we could
3054   // remove the ifdef limitation (see PR47712).
3055   assert(!verifyFunction(*F, &dbgs()));
3056 #endif
3057 }
3058 
3059 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
3060   for (auto *V : AV) {
3061     if (auto *I = dyn_cast<Instruction>(V))
3062       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
3063   };
3064 }
3065 
3066 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3067 /// contains original mask for the scalars reused in the node. Procedure
3068 /// transform this mask in accordance with the given \p Mask.
3069 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3070   assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3071          "Expected non-empty mask.");
3072   SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3073   Prev.swap(Reuses);
3074   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3075     if (Mask[I] != UndefMaskElem)
3076       Reuses[Mask[I]] = Prev[I];
3077 }
3078 
3079 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3080 /// the original order of the scalars. Procedure transforms the provided order
3081 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3082 /// identity order, \p Order is cleared.
3083 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3084   assert(!Mask.empty() && "Expected non-empty mask.");
3085   SmallVector<int> MaskOrder;
3086   if (Order.empty()) {
3087     MaskOrder.resize(Mask.size());
3088     std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3089   } else {
3090     inversePermutation(Order, MaskOrder);
3091   }
3092   reorderReuses(MaskOrder, Mask);
3093   if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3094     Order.clear();
3095     return;
3096   }
3097   Order.assign(Mask.size(), Mask.size());
3098   for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3099     if (MaskOrder[I] != UndefMaskElem)
3100       Order[MaskOrder[I]] = I;
3101   fixupOrderingIndices(Order);
3102 }
3103 
3104 Optional<BoUpSLP::OrdersType>
3105 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3106   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3107   unsigned NumScalars = TE.Scalars.size();
3108   OrdersType CurrentOrder(NumScalars, NumScalars);
3109   SmallVector<int> Positions;
3110   SmallBitVector UsedPositions(NumScalars);
3111   const TreeEntry *STE = nullptr;
3112   // Try to find all gathered scalars that are gets vectorized in other
3113   // vectorize node. Here we can have only one single tree vector node to
3114   // correctly identify order of the gathered scalars.
3115   for (unsigned I = 0; I < NumScalars; ++I) {
3116     Value *V = TE.Scalars[I];
3117     if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3118       continue;
3119     if (const auto *LocalSTE = getTreeEntry(V)) {
3120       if (!STE)
3121         STE = LocalSTE;
3122       else if (STE != LocalSTE)
3123         // Take the order only from the single vector node.
3124         return None;
3125       unsigned Lane =
3126           std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3127       if (Lane >= NumScalars)
3128         return None;
3129       if (CurrentOrder[Lane] != NumScalars) {
3130         if (Lane != I)
3131           continue;
3132         UsedPositions.reset(CurrentOrder[Lane]);
3133       }
3134       // The partial identity (where only some elements of the gather node are
3135       // in the identity order) is good.
3136       CurrentOrder[Lane] = I;
3137       UsedPositions.set(I);
3138     }
3139   }
3140   // Need to keep the order if we have a vector entry and at least 2 scalars or
3141   // the vectorized entry has just 2 scalars.
3142   if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3143     auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3144       for (unsigned I = 0; I < NumScalars; ++I)
3145         if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3146           return false;
3147       return true;
3148     };
3149     if (IsIdentityOrder(CurrentOrder)) {
3150       CurrentOrder.clear();
3151       return CurrentOrder;
3152     }
3153     auto *It = CurrentOrder.begin();
3154     for (unsigned I = 0; I < NumScalars;) {
3155       if (UsedPositions.test(I)) {
3156         ++I;
3157         continue;
3158       }
3159       if (*It == NumScalars) {
3160         *It = I;
3161         ++I;
3162       }
3163       ++It;
3164     }
3165     return CurrentOrder;
3166   }
3167   return None;
3168 }
3169 
3170 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3171                                                          bool TopToBottom) {
3172   // No need to reorder if need to shuffle reuses, still need to shuffle the
3173   // node.
3174   if (!TE.ReuseShuffleIndices.empty())
3175     return None;
3176   if (TE.State == TreeEntry::Vectorize &&
3177       (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3178        (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3179       !TE.isAltShuffle())
3180     return TE.ReorderIndices;
3181   if (TE.State == TreeEntry::NeedToGather) {
3182     // TODO: add analysis of other gather nodes with extractelement
3183     // instructions and other values/instructions, not only undefs.
3184     if (((TE.getOpcode() == Instruction::ExtractElement &&
3185           !TE.isAltShuffle()) ||
3186          (all_of(TE.Scalars,
3187                  [](Value *V) {
3188                    return isa<UndefValue, ExtractElementInst>(V);
3189                  }) &&
3190           any_of(TE.Scalars,
3191                  [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3192         all_of(TE.Scalars,
3193                [](Value *V) {
3194                  auto *EE = dyn_cast<ExtractElementInst>(V);
3195                  return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3196                }) &&
3197         allSameType(TE.Scalars)) {
3198       // Check that gather of extractelements can be represented as
3199       // just a shuffle of a single vector.
3200       OrdersType CurrentOrder;
3201       bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3202       if (Reuse || !CurrentOrder.empty()) {
3203         if (!CurrentOrder.empty())
3204           fixupOrderingIndices(CurrentOrder);
3205         return CurrentOrder;
3206       }
3207     }
3208     if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3209       return CurrentOrder;
3210   }
3211   return None;
3212 }
3213 
3214 void BoUpSLP::reorderTopToBottom() {
3215   // Maps VF to the graph nodes.
3216   DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
3217   // ExtractElement gather nodes which can be vectorized and need to handle
3218   // their ordering.
3219   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3220   // Find all reorderable nodes with the given VF.
3221   // Currently the are vectorized stores,loads,extracts + some gathering of
3222   // extracts.
3223   for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders](
3224                                  const std::unique_ptr<TreeEntry> &TE) {
3225     if (Optional<OrdersType> CurrentOrder =
3226             getReorderingData(*TE.get(), /*TopToBottom=*/true)) {
3227       // Do not include ordering for nodes used in the alt opcode vectorization,
3228       // better to reorder them during bottom-to-top stage. If follow the order
3229       // here, it causes reordering of the whole graph though actually it is
3230       // profitable just to reorder the subgraph that starts from the alternate
3231       // opcode vectorization node. Such nodes already end-up with the shuffle
3232       // instruction and it is just enough to change this shuffle rather than
3233       // rotate the scalars for the whole graph.
3234       unsigned Cnt = 0;
3235       const TreeEntry *UserTE = TE.get();
3236       while (UserTE && Cnt < RecursionMaxDepth) {
3237         if (UserTE->UserTreeIndices.size() != 1)
3238           break;
3239         if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
3240               return EI.UserTE->State == TreeEntry::Vectorize &&
3241                      EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
3242             }))
3243           return;
3244         if (UserTE->UserTreeIndices.empty())
3245           UserTE = nullptr;
3246         else
3247           UserTE = UserTE->UserTreeIndices.back().UserTE;
3248         ++Cnt;
3249       }
3250       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3251       if (TE->State != TreeEntry::Vectorize)
3252         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3253     }
3254   });
3255 
3256   // Reorder the graph nodes according to their vectorization factor.
3257   for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
3258        VF /= 2) {
3259     auto It = VFToOrderedEntries.find(VF);
3260     if (It == VFToOrderedEntries.end())
3261       continue;
3262     // Try to find the most profitable order. We just are looking for the most
3263     // used order and reorder scalar elements in the nodes according to this
3264     // mostly used order.
3265     ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
3266     // All operands are reordered and used only in this node - propagate the
3267     // most used order to the user node.
3268     MapVector<OrdersType, unsigned,
3269               DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3270         OrdersUses;
3271     SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3272     for (const TreeEntry *OpTE : OrderedEntries) {
3273       // No need to reorder this nodes, still need to extend and to use shuffle,
3274       // just need to merge reordering shuffle and the reuse shuffle.
3275       if (!OpTE->ReuseShuffleIndices.empty())
3276         continue;
3277       // Count number of orders uses.
3278       const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3279         if (OpTE->State == TreeEntry::NeedToGather)
3280           return GathersToOrders.find(OpTE)->second;
3281         return OpTE->ReorderIndices;
3282       }();
3283       // Stores actually store the mask, not the order, need to invert.
3284       if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3285           OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3286         SmallVector<int> Mask;
3287         inversePermutation(Order, Mask);
3288         unsigned E = Order.size();
3289         OrdersType CurrentOrder(E, E);
3290         transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3291           return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3292         });
3293         fixupOrderingIndices(CurrentOrder);
3294         ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3295       } else {
3296         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3297       }
3298     }
3299     // Set order of the user node.
3300     if (OrdersUses.empty())
3301       continue;
3302     // Choose the most used order.
3303     ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3304     unsigned Cnt = OrdersUses.front().second;
3305     for (const auto &Pair : drop_begin(OrdersUses)) {
3306       if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3307         BestOrder = Pair.first;
3308         Cnt = Pair.second;
3309       }
3310     }
3311     // Set order of the user node.
3312     if (BestOrder.empty())
3313       continue;
3314     SmallVector<int> Mask;
3315     inversePermutation(BestOrder, Mask);
3316     SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3317     unsigned E = BestOrder.size();
3318     transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3319       return I < E ? static_cast<int>(I) : UndefMaskElem;
3320     });
3321     // Do an actual reordering, if profitable.
3322     for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
3323       // Just do the reordering for the nodes with the given VF.
3324       if (TE->Scalars.size() != VF) {
3325         if (TE->ReuseShuffleIndices.size() == VF) {
3326           // Need to reorder the reuses masks of the operands with smaller VF to
3327           // be able to find the match between the graph nodes and scalar
3328           // operands of the given node during vectorization/cost estimation.
3329           assert(all_of(TE->UserTreeIndices,
3330                         [VF, &TE](const EdgeInfo &EI) {
3331                           return EI.UserTE->Scalars.size() == VF ||
3332                                  EI.UserTE->Scalars.size() ==
3333                                      TE->Scalars.size();
3334                         }) &&
3335                  "All users must be of VF size.");
3336           // Update ordering of the operands with the smaller VF than the given
3337           // one.
3338           reorderReuses(TE->ReuseShuffleIndices, Mask);
3339         }
3340         continue;
3341       }
3342       if (TE->State == TreeEntry::Vectorize &&
3343           isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
3344               InsertElementInst>(TE->getMainOp()) &&
3345           !TE->isAltShuffle()) {
3346         // Build correct orders for extract{element,value}, loads and
3347         // stores.
3348         reorderOrder(TE->ReorderIndices, Mask);
3349         if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
3350           TE->reorderOperands(Mask);
3351       } else {
3352         // Reorder the node and its operands.
3353         TE->reorderOperands(Mask);
3354         assert(TE->ReorderIndices.empty() &&
3355                "Expected empty reorder sequence.");
3356         reorderScalars(TE->Scalars, Mask);
3357       }
3358       if (!TE->ReuseShuffleIndices.empty()) {
3359         // Apply reversed order to keep the original ordering of the reused
3360         // elements to avoid extra reorder indices shuffling.
3361         OrdersType CurrentOrder;
3362         reorderOrder(CurrentOrder, MaskOrder);
3363         SmallVector<int> NewReuses;
3364         inversePermutation(CurrentOrder, NewReuses);
3365         addMask(NewReuses, TE->ReuseShuffleIndices);
3366         TE->ReuseShuffleIndices.swap(NewReuses);
3367       }
3368     }
3369   }
3370 }
3371 
3372 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
3373   SetVector<TreeEntry *> OrderedEntries;
3374   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3375   // Find all reorderable leaf nodes with the given VF.
3376   // Currently the are vectorized loads,extracts without alternate operands +
3377   // some gathering of extracts.
3378   SmallVector<TreeEntry *> NonVectorized;
3379   for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
3380                               &NonVectorized](
3381                                  const std::unique_ptr<TreeEntry> &TE) {
3382     if (TE->State != TreeEntry::Vectorize)
3383       NonVectorized.push_back(TE.get());
3384     if (Optional<OrdersType> CurrentOrder =
3385             getReorderingData(*TE.get(), /*TopToBottom=*/false)) {
3386       OrderedEntries.insert(TE.get());
3387       if (TE->State != TreeEntry::Vectorize)
3388         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3389     }
3390   });
3391 
3392   // Checks if the operands of the users are reordarable and have only single
3393   // use.
3394   auto &&CheckOperands =
3395       [this, &NonVectorized](const auto &Data,
3396                              SmallVectorImpl<TreeEntry *> &GatherOps) {
3397         for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) {
3398           if (any_of(Data.second,
3399                      [I](const std::pair<unsigned, TreeEntry *> &OpData) {
3400                        return OpData.first == I &&
3401                               OpData.second->State == TreeEntry::Vectorize;
3402                      }))
3403             continue;
3404           ArrayRef<Value *> VL = Data.first->getOperand(I);
3405           const TreeEntry *TE = nullptr;
3406           const auto *It = find_if(VL, [this, &TE](Value *V) {
3407             TE = getTreeEntry(V);
3408             return TE;
3409           });
3410           if (It != VL.end() && TE->isSame(VL))
3411             return false;
3412           TreeEntry *Gather = nullptr;
3413           if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) {
3414                 assert(TE->State != TreeEntry::Vectorize &&
3415                        "Only non-vectorized nodes are expected.");
3416                 if (TE->isSame(VL)) {
3417                   Gather = TE;
3418                   return true;
3419                 }
3420                 return false;
3421               }) > 1)
3422             return false;
3423           if (Gather)
3424             GatherOps.push_back(Gather);
3425         }
3426         return true;
3427       };
3428   // 1. Propagate order to the graph nodes, which use only reordered nodes.
3429   // I.e., if the node has operands, that are reordered, try to make at least
3430   // one operand order in the natural order and reorder others + reorder the
3431   // user node itself.
3432   SmallPtrSet<const TreeEntry *, 4> Visited;
3433   while (!OrderedEntries.empty()) {
3434     // 1. Filter out only reordered nodes.
3435     // 2. If the entry has multiple uses - skip it and jump to the next node.
3436     MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
3437     SmallVector<TreeEntry *> Filtered;
3438     for (TreeEntry *TE : OrderedEntries) {
3439       if (!(TE->State == TreeEntry::Vectorize ||
3440             (TE->State == TreeEntry::NeedToGather &&
3441              GathersToOrders.count(TE))) ||
3442           TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
3443           !all_of(drop_begin(TE->UserTreeIndices),
3444                   [TE](const EdgeInfo &EI) {
3445                     return EI.UserTE == TE->UserTreeIndices.front().UserTE;
3446                   }) ||
3447           !Visited.insert(TE).second) {
3448         Filtered.push_back(TE);
3449         continue;
3450       }
3451       // Build a map between user nodes and their operands order to speedup
3452       // search. The graph currently does not provide this dependency directly.
3453       for (EdgeInfo &EI : TE->UserTreeIndices) {
3454         TreeEntry *UserTE = EI.UserTE;
3455         auto It = Users.find(UserTE);
3456         if (It == Users.end())
3457           It = Users.insert({UserTE, {}}).first;
3458         It->second.emplace_back(EI.EdgeIdx, TE);
3459       }
3460     }
3461     // Erase filtered entries.
3462     for_each(Filtered,
3463              [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
3464     for (const auto &Data : Users) {
3465       // Check that operands are used only in the User node.
3466       SmallVector<TreeEntry *> GatherOps;
3467       if (!CheckOperands(Data, GatherOps)) {
3468         for_each(Data.second,
3469                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3470                    OrderedEntries.remove(Op.second);
3471                  });
3472         continue;
3473       }
3474       // All operands are reordered and used only in this node - propagate the
3475       // most used order to the user node.
3476       MapVector<OrdersType, unsigned,
3477                 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3478           OrdersUses;
3479       // Do the analysis for each tree entry only once, otherwise the order of
3480       // the same node my be considered several times, though might be not
3481       // profitable.
3482       SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3483       for (const auto &Op : Data.second) {
3484         TreeEntry *OpTE = Op.second;
3485         if (!VisitedOps.insert(OpTE).second)
3486           continue;
3487         if (!OpTE->ReuseShuffleIndices.empty() ||
3488             (IgnoreReorder && OpTE == VectorizableTree.front().get()))
3489           continue;
3490         const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3491           if (OpTE->State == TreeEntry::NeedToGather)
3492             return GathersToOrders.find(OpTE)->second;
3493           return OpTE->ReorderIndices;
3494         }();
3495         // Stores actually store the mask, not the order, need to invert.
3496         if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3497             OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3498           SmallVector<int> Mask;
3499           inversePermutation(Order, Mask);
3500           unsigned E = Order.size();
3501           OrdersType CurrentOrder(E, E);
3502           transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3503             return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3504           });
3505           fixupOrderingIndices(CurrentOrder);
3506           ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3507         } else {
3508           ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3509         }
3510         OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second +=
3511             OpTE->UserTreeIndices.size();
3512         assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0.");
3513         --OrdersUses[{}];
3514       }
3515       // If no orders - skip current nodes and jump to the next one, if any.
3516       if (OrdersUses.empty()) {
3517         for_each(Data.second,
3518                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3519                    OrderedEntries.remove(Op.second);
3520                  });
3521         continue;
3522       }
3523       // Choose the best order.
3524       ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3525       unsigned Cnt = OrdersUses.front().second;
3526       for (const auto &Pair : drop_begin(OrdersUses)) {
3527         if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3528           BestOrder = Pair.first;
3529           Cnt = Pair.second;
3530         }
3531       }
3532       // Set order of the user node (reordering of operands and user nodes).
3533       if (BestOrder.empty()) {
3534         for_each(Data.second,
3535                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3536                    OrderedEntries.remove(Op.second);
3537                  });
3538         continue;
3539       }
3540       // Erase operands from OrderedEntries list and adjust their orders.
3541       VisitedOps.clear();
3542       SmallVector<int> Mask;
3543       inversePermutation(BestOrder, Mask);
3544       SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3545       unsigned E = BestOrder.size();
3546       transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3547         return I < E ? static_cast<int>(I) : UndefMaskElem;
3548       });
3549       for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
3550         TreeEntry *TE = Op.second;
3551         OrderedEntries.remove(TE);
3552         if (!VisitedOps.insert(TE).second)
3553           continue;
3554         if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) {
3555           // Just reorder reuses indices.
3556           reorderReuses(TE->ReuseShuffleIndices, Mask);
3557           continue;
3558         }
3559         // Gathers are processed separately.
3560         if (TE->State != TreeEntry::Vectorize)
3561           continue;
3562         assert((BestOrder.size() == TE->ReorderIndices.size() ||
3563                 TE->ReorderIndices.empty()) &&
3564                "Non-matching sizes of user/operand entries.");
3565         reorderOrder(TE->ReorderIndices, Mask);
3566       }
3567       // For gathers just need to reorder its scalars.
3568       for (TreeEntry *Gather : GatherOps) {
3569         assert(Gather->ReorderIndices.empty() &&
3570                "Unexpected reordering of gathers.");
3571         if (!Gather->ReuseShuffleIndices.empty()) {
3572           // Just reorder reuses indices.
3573           reorderReuses(Gather->ReuseShuffleIndices, Mask);
3574           continue;
3575         }
3576         reorderScalars(Gather->Scalars, Mask);
3577         OrderedEntries.remove(Gather);
3578       }
3579       // Reorder operands of the user node and set the ordering for the user
3580       // node itself.
3581       if (Data.first->State != TreeEntry::Vectorize ||
3582           !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
3583               Data.first->getMainOp()) ||
3584           Data.first->isAltShuffle())
3585         Data.first->reorderOperands(Mask);
3586       if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
3587           Data.first->isAltShuffle()) {
3588         reorderScalars(Data.first->Scalars, Mask);
3589         reorderOrder(Data.first->ReorderIndices, MaskOrder);
3590         if (Data.first->ReuseShuffleIndices.empty() &&
3591             !Data.first->ReorderIndices.empty() &&
3592             !Data.first->isAltShuffle()) {
3593           // Insert user node to the list to try to sink reordering deeper in
3594           // the graph.
3595           OrderedEntries.insert(Data.first);
3596         }
3597       } else {
3598         reorderOrder(Data.first->ReorderIndices, Mask);
3599       }
3600     }
3601   }
3602   // If the reordering is unnecessary, just remove the reorder.
3603   if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
3604       VectorizableTree.front()->ReuseShuffleIndices.empty())
3605     VectorizableTree.front()->ReorderIndices.clear();
3606 }
3607 
3608 void BoUpSLP::buildExternalUses(
3609     const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3610   // Collect the values that we need to extract from the tree.
3611   for (auto &TEPtr : VectorizableTree) {
3612     TreeEntry *Entry = TEPtr.get();
3613 
3614     // No need to handle users of gathered values.
3615     if (Entry->State == TreeEntry::NeedToGather)
3616       continue;
3617 
3618     // For each lane:
3619     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
3620       Value *Scalar = Entry->Scalars[Lane];
3621       int FoundLane = Entry->findLaneForValue(Scalar);
3622 
3623       // Check if the scalar is externally used as an extra arg.
3624       auto ExtI = ExternallyUsedValues.find(Scalar);
3625       if (ExtI != ExternallyUsedValues.end()) {
3626         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
3627                           << Lane << " from " << *Scalar << ".\n");
3628         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
3629       }
3630       for (User *U : Scalar->users()) {
3631         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
3632 
3633         Instruction *UserInst = dyn_cast<Instruction>(U);
3634         if (!UserInst)
3635           continue;
3636 
3637         if (isDeleted(UserInst))
3638           continue;
3639 
3640         // Skip in-tree scalars that become vectors
3641         if (TreeEntry *UseEntry = getTreeEntry(U)) {
3642           Value *UseScalar = UseEntry->Scalars[0];
3643           // Some in-tree scalars will remain as scalar in vectorized
3644           // instructions. If that is the case, the one in Lane 0 will
3645           // be used.
3646           if (UseScalar != U ||
3647               UseEntry->State == TreeEntry::ScatterVectorize ||
3648               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
3649             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
3650                               << ".\n");
3651             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
3652             continue;
3653           }
3654         }
3655 
3656         // Ignore users in the user ignore list.
3657         if (is_contained(UserIgnoreList, UserInst))
3658           continue;
3659 
3660         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
3661                           << Lane << " from " << *Scalar << ".\n");
3662         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
3663       }
3664     }
3665   }
3666 }
3667 
3668 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
3669                         ArrayRef<Value *> UserIgnoreLst) {
3670   deleteTree();
3671   UserIgnoreList = UserIgnoreLst;
3672   if (!allSameType(Roots))
3673     return;
3674   buildTree_rec(Roots, 0, EdgeInfo());
3675 }
3676 
3677 namespace {
3678 /// Tracks the state we can represent the loads in the given sequence.
3679 enum class LoadsState { Gather, Vectorize, ScatterVectorize };
3680 } // anonymous namespace
3681 
3682 /// Checks if the given array of loads can be represented as a vectorized,
3683 /// scatter or just simple gather.
3684 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3685                                     const TargetTransformInfo &TTI,
3686                                     const DataLayout &DL, ScalarEvolution &SE,
3687                                     SmallVectorImpl<unsigned> &Order,
3688                                     SmallVectorImpl<Value *> &PointerOps) {
3689   // Check that a vectorized load would load the same memory as a scalar
3690   // load. For example, we don't want to vectorize loads that are smaller
3691   // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3692   // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3693   // from such a struct, we read/write packed bits disagreeing with the
3694   // unvectorized version.
3695   Type *ScalarTy = VL0->getType();
3696 
3697   if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3698     return LoadsState::Gather;
3699 
3700   // Make sure all loads in the bundle are simple - we can't vectorize
3701   // atomic or volatile loads.
3702   PointerOps.clear();
3703   PointerOps.resize(VL.size());
3704   auto *POIter = PointerOps.begin();
3705   for (Value *V : VL) {
3706     auto *L = cast<LoadInst>(V);
3707     if (!L->isSimple())
3708       return LoadsState::Gather;
3709     *POIter = L->getPointerOperand();
3710     ++POIter;
3711   }
3712 
3713   Order.clear();
3714   // Check the order of pointer operands.
3715   if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) {
3716     Value *Ptr0;
3717     Value *PtrN;
3718     if (Order.empty()) {
3719       Ptr0 = PointerOps.front();
3720       PtrN = PointerOps.back();
3721     } else {
3722       Ptr0 = PointerOps[Order.front()];
3723       PtrN = PointerOps[Order.back()];
3724     }
3725     Optional<int> Diff =
3726         getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3727     // Check that the sorted loads are consecutive.
3728     if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3729       return LoadsState::Vectorize;
3730     Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3731     for (Value *V : VL)
3732       CommonAlignment =
3733           commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
3734     if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()),
3735                                 CommonAlignment))
3736       return LoadsState::ScatterVectorize;
3737   }
3738 
3739   return LoadsState::Gather;
3740 }
3741 
3742 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
3743                             const EdgeInfo &UserTreeIdx) {
3744   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
3745 
3746   SmallVector<int> ReuseShuffleIndicies;
3747   SmallVector<Value *> UniqueValues;
3748   auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
3749                                 &UserTreeIdx,
3750                                 this](const InstructionsState &S) {
3751     // Check that every instruction appears once in this bundle.
3752     DenseMap<Value *, unsigned> UniquePositions;
3753     for (Value *V : VL) {
3754       if (isConstant(V)) {
3755         ReuseShuffleIndicies.emplace_back(
3756             isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
3757         UniqueValues.emplace_back(V);
3758         continue;
3759       }
3760       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
3761       ReuseShuffleIndicies.emplace_back(Res.first->second);
3762       if (Res.second)
3763         UniqueValues.emplace_back(V);
3764     }
3765     size_t NumUniqueScalarValues = UniqueValues.size();
3766     if (NumUniqueScalarValues == VL.size()) {
3767       ReuseShuffleIndicies.clear();
3768     } else {
3769       LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
3770       if (NumUniqueScalarValues <= 1 ||
3771           (UniquePositions.size() == 1 && all_of(UniqueValues,
3772                                                  [](Value *V) {
3773                                                    return isa<UndefValue>(V) ||
3774                                                           !isConstant(V);
3775                                                  })) ||
3776           !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
3777         LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
3778         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3779         return false;
3780       }
3781       VL = UniqueValues;
3782     }
3783     return true;
3784   };
3785 
3786   InstructionsState S = getSameOpcode(VL);
3787   if (Depth == RecursionMaxDepth) {
3788     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
3789     if (TryToFindDuplicates(S))
3790       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3791                    ReuseShuffleIndicies);
3792     return;
3793   }
3794 
3795   // Don't handle scalable vectors
3796   if (S.getOpcode() == Instruction::ExtractElement &&
3797       isa<ScalableVectorType>(
3798           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
3799     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
3800     if (TryToFindDuplicates(S))
3801       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3802                    ReuseShuffleIndicies);
3803     return;
3804   }
3805 
3806   // Don't handle vectors.
3807   if (S.OpValue->getType()->isVectorTy() &&
3808       !isa<InsertElementInst>(S.OpValue)) {
3809     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
3810     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3811     return;
3812   }
3813 
3814   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3815     if (SI->getValueOperand()->getType()->isVectorTy()) {
3816       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
3817       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3818       return;
3819     }
3820 
3821   // If all of the operands are identical or constant we have a simple solution.
3822   // If we deal with insert/extract instructions, they all must have constant
3823   // indices, otherwise we should gather them, not try to vectorize.
3824   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() ||
3825       (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) &&
3826        !all_of(VL, isVectorLikeInstWithConstOps))) {
3827     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
3828     if (TryToFindDuplicates(S))
3829       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3830                    ReuseShuffleIndicies);
3831     return;
3832   }
3833 
3834   // We now know that this is a vector of instructions of the same type from
3835   // the same block.
3836 
3837   // Don't vectorize ephemeral values.
3838   for (Value *V : VL) {
3839     if (EphValues.count(V)) {
3840       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
3841                         << ") is ephemeral.\n");
3842       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3843       return;
3844     }
3845   }
3846 
3847   // Check if this is a duplicate of another entry.
3848   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3849     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
3850     if (!E->isSame(VL)) {
3851       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
3852       if (TryToFindDuplicates(S))
3853         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3854                      ReuseShuffleIndicies);
3855       return;
3856     }
3857     // Record the reuse of the tree node.  FIXME, currently this is only used to
3858     // properly draw the graph rather than for the actual vectorization.
3859     E->UserTreeIndices.push_back(UserTreeIdx);
3860     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
3861                       << ".\n");
3862     return;
3863   }
3864 
3865   // Check that none of the instructions in the bundle are already in the tree.
3866   for (Value *V : VL) {
3867     auto *I = dyn_cast<Instruction>(V);
3868     if (!I)
3869       continue;
3870     if (getTreeEntry(I)) {
3871       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
3872                         << ") is already in tree.\n");
3873       if (TryToFindDuplicates(S))
3874         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3875                      ReuseShuffleIndicies);
3876       return;
3877     }
3878   }
3879 
3880   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
3881   for (Value *V : VL) {
3882     if (is_contained(UserIgnoreList, V)) {
3883       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
3884       if (TryToFindDuplicates(S))
3885         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3886                      ReuseShuffleIndicies);
3887       return;
3888     }
3889   }
3890 
3891   // Check that all of the users of the scalars that we want to vectorize are
3892   // schedulable.
3893   auto *VL0 = cast<Instruction>(S.OpValue);
3894   BasicBlock *BB = VL0->getParent();
3895 
3896   if (!DT->isReachableFromEntry(BB)) {
3897     // Don't go into unreachable blocks. They may contain instructions with
3898     // dependency cycles which confuse the final scheduling.
3899     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
3900     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3901     return;
3902   }
3903 
3904   // Check that every instruction appears once in this bundle.
3905   if (!TryToFindDuplicates(S))
3906     return;
3907 
3908   auto &BSRef = BlocksSchedules[BB];
3909   if (!BSRef)
3910     BSRef = std::make_unique<BlockScheduling>(BB);
3911 
3912   BlockScheduling &BS = *BSRef.get();
3913 
3914   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
3915 #ifdef EXPENSIVE_CHECKS
3916   // Make sure we didn't break any internal invariants
3917   BS.verify();
3918 #endif
3919   if (!Bundle) {
3920     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
3921     assert((!BS.getScheduleData(VL0) ||
3922             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
3923            "tryScheduleBundle should cancelScheduling on failure");
3924     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3925                  ReuseShuffleIndicies);
3926     return;
3927   }
3928   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
3929 
3930   unsigned ShuffleOrOp = S.isAltShuffle() ?
3931                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
3932   switch (ShuffleOrOp) {
3933     case Instruction::PHI: {
3934       auto *PH = cast<PHINode>(VL0);
3935 
3936       // Check for terminator values (e.g. invoke).
3937       for (Value *V : VL)
3938         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
3939           Instruction *Term = dyn_cast<Instruction>(
3940               cast<PHINode>(V)->getIncomingValueForBlock(
3941                   PH->getIncomingBlock(I)));
3942           if (Term && Term->isTerminator()) {
3943             LLVM_DEBUG(dbgs()
3944                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
3945             BS.cancelScheduling(VL, VL0);
3946             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3947                          ReuseShuffleIndicies);
3948             return;
3949           }
3950         }
3951 
3952       TreeEntry *TE =
3953           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
3954       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
3955 
3956       // Keeps the reordered operands to avoid code duplication.
3957       SmallVector<ValueList, 2> OperandsVec;
3958       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
3959         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
3960           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
3961           TE->setOperand(I, Operands);
3962           OperandsVec.push_back(Operands);
3963           continue;
3964         }
3965         ValueList Operands;
3966         // Prepare the operand vector.
3967         for (Value *V : VL)
3968           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
3969               PH->getIncomingBlock(I)));
3970         TE->setOperand(I, Operands);
3971         OperandsVec.push_back(Operands);
3972       }
3973       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
3974         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
3975       return;
3976     }
3977     case Instruction::ExtractValue:
3978     case Instruction::ExtractElement: {
3979       OrdersType CurrentOrder;
3980       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
3981       if (Reuse) {
3982         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
3983         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3984                      ReuseShuffleIndicies);
3985         // This is a special case, as it does not gather, but at the same time
3986         // we are not extending buildTree_rec() towards the operands.
3987         ValueList Op0;
3988         Op0.assign(VL.size(), VL0->getOperand(0));
3989         VectorizableTree.back()->setOperand(0, Op0);
3990         return;
3991       }
3992       if (!CurrentOrder.empty()) {
3993         LLVM_DEBUG({
3994           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
3995                     "with order";
3996           for (unsigned Idx : CurrentOrder)
3997             dbgs() << " " << Idx;
3998           dbgs() << "\n";
3999         });
4000         fixupOrderingIndices(CurrentOrder);
4001         // Insert new order with initial value 0, if it does not exist,
4002         // otherwise return the iterator to the existing one.
4003         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4004                      ReuseShuffleIndicies, CurrentOrder);
4005         // This is a special case, as it does not gather, but at the same time
4006         // we are not extending buildTree_rec() towards the operands.
4007         ValueList Op0;
4008         Op0.assign(VL.size(), VL0->getOperand(0));
4009         VectorizableTree.back()->setOperand(0, Op0);
4010         return;
4011       }
4012       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
4013       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4014                    ReuseShuffleIndicies);
4015       BS.cancelScheduling(VL, VL0);
4016       return;
4017     }
4018     case Instruction::InsertElement: {
4019       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
4020 
4021       // Check that we have a buildvector and not a shuffle of 2 or more
4022       // different vectors.
4023       ValueSet SourceVectors;
4024       for (Value *V : VL) {
4025         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
4026         assert(getInsertIndex(V) != None && "Non-constant or undef index?");
4027       }
4028 
4029       if (count_if(VL, [&SourceVectors](Value *V) {
4030             return !SourceVectors.contains(V);
4031           }) >= 2) {
4032         // Found 2nd source vector - cancel.
4033         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
4034                              "different source vectors.\n");
4035         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4036         BS.cancelScheduling(VL, VL0);
4037         return;
4038       }
4039 
4040       auto OrdCompare = [](const std::pair<int, int> &P1,
4041                            const std::pair<int, int> &P2) {
4042         return P1.first > P2.first;
4043       };
4044       PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
4045                     decltype(OrdCompare)>
4046           Indices(OrdCompare);
4047       for (int I = 0, E = VL.size(); I < E; ++I) {
4048         unsigned Idx = *getInsertIndex(VL[I]);
4049         Indices.emplace(Idx, I);
4050       }
4051       OrdersType CurrentOrder(VL.size(), VL.size());
4052       bool IsIdentity = true;
4053       for (int I = 0, E = VL.size(); I < E; ++I) {
4054         CurrentOrder[Indices.top().second] = I;
4055         IsIdentity &= Indices.top().second == I;
4056         Indices.pop();
4057       }
4058       if (IsIdentity)
4059         CurrentOrder.clear();
4060       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4061                                    None, CurrentOrder);
4062       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
4063 
4064       constexpr int NumOps = 2;
4065       ValueList VectorOperands[NumOps];
4066       for (int I = 0; I < NumOps; ++I) {
4067         for (Value *V : VL)
4068           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
4069 
4070         TE->setOperand(I, VectorOperands[I]);
4071       }
4072       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
4073       return;
4074     }
4075     case Instruction::Load: {
4076       // Check that a vectorized load would load the same memory as a scalar
4077       // load. For example, we don't want to vectorize loads that are smaller
4078       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4079       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
4080       // from such a struct, we read/write packed bits disagreeing with the
4081       // unvectorized version.
4082       SmallVector<Value *> PointerOps;
4083       OrdersType CurrentOrder;
4084       TreeEntry *TE = nullptr;
4085       switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder,
4086                                 PointerOps)) {
4087       case LoadsState::Vectorize:
4088         if (CurrentOrder.empty()) {
4089           // Original loads are consecutive and does not require reordering.
4090           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4091                             ReuseShuffleIndicies);
4092           LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
4093         } else {
4094           fixupOrderingIndices(CurrentOrder);
4095           // Need to reorder.
4096           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4097                             ReuseShuffleIndicies, CurrentOrder);
4098           LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
4099         }
4100         TE->setOperandsInOrder();
4101         break;
4102       case LoadsState::ScatterVectorize:
4103         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
4104         TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
4105                           UserTreeIdx, ReuseShuffleIndicies);
4106         TE->setOperandsInOrder();
4107         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
4108         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
4109         break;
4110       case LoadsState::Gather:
4111         BS.cancelScheduling(VL, VL0);
4112         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4113                      ReuseShuffleIndicies);
4114 #ifndef NDEBUG
4115         Type *ScalarTy = VL0->getType();
4116         if (DL->getTypeSizeInBits(ScalarTy) !=
4117             DL->getTypeAllocSizeInBits(ScalarTy))
4118           LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
4119         else if (any_of(VL, [](Value *V) {
4120                    return !cast<LoadInst>(V)->isSimple();
4121                  }))
4122           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
4123         else
4124           LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
4125 #endif // NDEBUG
4126         break;
4127       }
4128       return;
4129     }
4130     case Instruction::ZExt:
4131     case Instruction::SExt:
4132     case Instruction::FPToUI:
4133     case Instruction::FPToSI:
4134     case Instruction::FPExt:
4135     case Instruction::PtrToInt:
4136     case Instruction::IntToPtr:
4137     case Instruction::SIToFP:
4138     case Instruction::UIToFP:
4139     case Instruction::Trunc:
4140     case Instruction::FPTrunc:
4141     case Instruction::BitCast: {
4142       Type *SrcTy = VL0->getOperand(0)->getType();
4143       for (Value *V : VL) {
4144         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
4145         if (Ty != SrcTy || !isValidElementType(Ty)) {
4146           BS.cancelScheduling(VL, VL0);
4147           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4148                        ReuseShuffleIndicies);
4149           LLVM_DEBUG(dbgs()
4150                      << "SLP: Gathering casts with different src types.\n");
4151           return;
4152         }
4153       }
4154       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4155                                    ReuseShuffleIndicies);
4156       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
4157 
4158       TE->setOperandsInOrder();
4159       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4160         ValueList Operands;
4161         // Prepare the operand vector.
4162         for (Value *V : VL)
4163           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4164 
4165         buildTree_rec(Operands, Depth + 1, {TE, i});
4166       }
4167       return;
4168     }
4169     case Instruction::ICmp:
4170     case Instruction::FCmp: {
4171       // Check that all of the compares have the same predicate.
4172       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4173       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
4174       Type *ComparedTy = VL0->getOperand(0)->getType();
4175       for (Value *V : VL) {
4176         CmpInst *Cmp = cast<CmpInst>(V);
4177         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
4178             Cmp->getOperand(0)->getType() != ComparedTy) {
4179           BS.cancelScheduling(VL, VL0);
4180           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4181                        ReuseShuffleIndicies);
4182           LLVM_DEBUG(dbgs()
4183                      << "SLP: Gathering cmp with different predicate.\n");
4184           return;
4185         }
4186       }
4187 
4188       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4189                                    ReuseShuffleIndicies);
4190       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
4191 
4192       ValueList Left, Right;
4193       if (cast<CmpInst>(VL0)->isCommutative()) {
4194         // Commutative predicate - collect + sort operands of the instructions
4195         // so that each side is more likely to have the same opcode.
4196         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
4197         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4198       } else {
4199         // Collect operands - commute if it uses the swapped predicate.
4200         for (Value *V : VL) {
4201           auto *Cmp = cast<CmpInst>(V);
4202           Value *LHS = Cmp->getOperand(0);
4203           Value *RHS = Cmp->getOperand(1);
4204           if (Cmp->getPredicate() != P0)
4205             std::swap(LHS, RHS);
4206           Left.push_back(LHS);
4207           Right.push_back(RHS);
4208         }
4209       }
4210       TE->setOperand(0, Left);
4211       TE->setOperand(1, Right);
4212       buildTree_rec(Left, Depth + 1, {TE, 0});
4213       buildTree_rec(Right, Depth + 1, {TE, 1});
4214       return;
4215     }
4216     case Instruction::Select:
4217     case Instruction::FNeg:
4218     case Instruction::Add:
4219     case Instruction::FAdd:
4220     case Instruction::Sub:
4221     case Instruction::FSub:
4222     case Instruction::Mul:
4223     case Instruction::FMul:
4224     case Instruction::UDiv:
4225     case Instruction::SDiv:
4226     case Instruction::FDiv:
4227     case Instruction::URem:
4228     case Instruction::SRem:
4229     case Instruction::FRem:
4230     case Instruction::Shl:
4231     case Instruction::LShr:
4232     case Instruction::AShr:
4233     case Instruction::And:
4234     case Instruction::Or:
4235     case Instruction::Xor: {
4236       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4237                                    ReuseShuffleIndicies);
4238       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
4239 
4240       // Sort operands of the instructions so that each side is more likely to
4241       // have the same opcode.
4242       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
4243         ValueList Left, Right;
4244         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4245         TE->setOperand(0, Left);
4246         TE->setOperand(1, Right);
4247         buildTree_rec(Left, Depth + 1, {TE, 0});
4248         buildTree_rec(Right, Depth + 1, {TE, 1});
4249         return;
4250       }
4251 
4252       TE->setOperandsInOrder();
4253       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4254         ValueList Operands;
4255         // Prepare the operand vector.
4256         for (Value *V : VL)
4257           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4258 
4259         buildTree_rec(Operands, Depth + 1, {TE, i});
4260       }
4261       return;
4262     }
4263     case Instruction::GetElementPtr: {
4264       // We don't combine GEPs with complicated (nested) indexing.
4265       for (Value *V : VL) {
4266         if (cast<Instruction>(V)->getNumOperands() != 2) {
4267           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
4268           BS.cancelScheduling(VL, VL0);
4269           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4270                        ReuseShuffleIndicies);
4271           return;
4272         }
4273       }
4274 
4275       // We can't combine several GEPs into one vector if they operate on
4276       // different types.
4277       Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
4278       for (Value *V : VL) {
4279         Type *CurTy = cast<GEPOperator>(V)->getSourceElementType();
4280         if (Ty0 != CurTy) {
4281           LLVM_DEBUG(dbgs()
4282                      << "SLP: not-vectorizable GEP (different types).\n");
4283           BS.cancelScheduling(VL, VL0);
4284           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4285                        ReuseShuffleIndicies);
4286           return;
4287         }
4288       }
4289 
4290       // We don't combine GEPs with non-constant indexes.
4291       Type *Ty1 = VL0->getOperand(1)->getType();
4292       for (Value *V : VL) {
4293         auto Op = cast<Instruction>(V)->getOperand(1);
4294         if (!isa<ConstantInt>(Op) ||
4295             (Op->getType() != Ty1 &&
4296              Op->getType()->getScalarSizeInBits() >
4297                  DL->getIndexSizeInBits(
4298                      V->getType()->getPointerAddressSpace()))) {
4299           LLVM_DEBUG(dbgs()
4300                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
4301           BS.cancelScheduling(VL, VL0);
4302           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4303                        ReuseShuffleIndicies);
4304           return;
4305         }
4306       }
4307 
4308       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4309                                    ReuseShuffleIndicies);
4310       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
4311       SmallVector<ValueList, 2> Operands(2);
4312       // Prepare the operand vector for pointer operands.
4313       for (Value *V : VL)
4314         Operands.front().push_back(
4315             cast<GetElementPtrInst>(V)->getPointerOperand());
4316       TE->setOperand(0, Operands.front());
4317       // Need to cast all indices to the same type before vectorization to
4318       // avoid crash.
4319       // Required to be able to find correct matches between different gather
4320       // nodes and reuse the vectorized values rather than trying to gather them
4321       // again.
4322       int IndexIdx = 1;
4323       Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
4324       Type *Ty = all_of(VL,
4325                         [VL0Ty, IndexIdx](Value *V) {
4326                           return VL0Ty == cast<GetElementPtrInst>(V)
4327                                               ->getOperand(IndexIdx)
4328                                               ->getType();
4329                         })
4330                      ? VL0Ty
4331                      : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4332                                             ->getPointerOperandType()
4333                                             ->getScalarType());
4334       // Prepare the operand vector.
4335       for (Value *V : VL) {
4336         auto *Op = cast<Instruction>(V)->getOperand(IndexIdx);
4337         auto *CI = cast<ConstantInt>(Op);
4338         Operands.back().push_back(ConstantExpr::getIntegerCast(
4339             CI, Ty, CI->getValue().isSignBitSet()));
4340       }
4341       TE->setOperand(IndexIdx, Operands.back());
4342 
4343       for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
4344         buildTree_rec(Operands[I], Depth + 1, {TE, I});
4345       return;
4346     }
4347     case Instruction::Store: {
4348       // Check if the stores are consecutive or if we need to swizzle them.
4349       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
4350       // Avoid types that are padded when being allocated as scalars, while
4351       // being packed together in a vector (such as i1).
4352       if (DL->getTypeSizeInBits(ScalarTy) !=
4353           DL->getTypeAllocSizeInBits(ScalarTy)) {
4354         BS.cancelScheduling(VL, VL0);
4355         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4356                      ReuseShuffleIndicies);
4357         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
4358         return;
4359       }
4360       // Make sure all stores in the bundle are simple - we can't vectorize
4361       // atomic or volatile stores.
4362       SmallVector<Value *, 4> PointerOps(VL.size());
4363       ValueList Operands(VL.size());
4364       auto POIter = PointerOps.begin();
4365       auto OIter = Operands.begin();
4366       for (Value *V : VL) {
4367         auto *SI = cast<StoreInst>(V);
4368         if (!SI->isSimple()) {
4369           BS.cancelScheduling(VL, VL0);
4370           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4371                        ReuseShuffleIndicies);
4372           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
4373           return;
4374         }
4375         *POIter = SI->getPointerOperand();
4376         *OIter = SI->getValueOperand();
4377         ++POIter;
4378         ++OIter;
4379       }
4380 
4381       OrdersType CurrentOrder;
4382       // Check the order of pointer operands.
4383       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
4384         Value *Ptr0;
4385         Value *PtrN;
4386         if (CurrentOrder.empty()) {
4387           Ptr0 = PointerOps.front();
4388           PtrN = PointerOps.back();
4389         } else {
4390           Ptr0 = PointerOps[CurrentOrder.front()];
4391           PtrN = PointerOps[CurrentOrder.back()];
4392         }
4393         Optional<int> Dist =
4394             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
4395         // Check that the sorted pointer operands are consecutive.
4396         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
4397           if (CurrentOrder.empty()) {
4398             // Original stores are consecutive and does not require reordering.
4399             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
4400                                          UserTreeIdx, ReuseShuffleIndicies);
4401             TE->setOperandsInOrder();
4402             buildTree_rec(Operands, Depth + 1, {TE, 0});
4403             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
4404           } else {
4405             fixupOrderingIndices(CurrentOrder);
4406             TreeEntry *TE =
4407                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4408                              ReuseShuffleIndicies, CurrentOrder);
4409             TE->setOperandsInOrder();
4410             buildTree_rec(Operands, Depth + 1, {TE, 0});
4411             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
4412           }
4413           return;
4414         }
4415       }
4416 
4417       BS.cancelScheduling(VL, VL0);
4418       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4419                    ReuseShuffleIndicies);
4420       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
4421       return;
4422     }
4423     case Instruction::Call: {
4424       // Check if the calls are all to the same vectorizable intrinsic or
4425       // library function.
4426       CallInst *CI = cast<CallInst>(VL0);
4427       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4428 
4429       VFShape Shape = VFShape::get(
4430           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
4431           false /*HasGlobalPred*/);
4432       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4433 
4434       if (!VecFunc && !isTriviallyVectorizable(ID)) {
4435         BS.cancelScheduling(VL, VL0);
4436         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4437                      ReuseShuffleIndicies);
4438         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
4439         return;
4440       }
4441       Function *F = CI->getCalledFunction();
4442       unsigned NumArgs = CI->arg_size();
4443       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
4444       for (unsigned j = 0; j != NumArgs; ++j)
4445         if (hasVectorInstrinsicScalarOpd(ID, j))
4446           ScalarArgs[j] = CI->getArgOperand(j);
4447       for (Value *V : VL) {
4448         CallInst *CI2 = dyn_cast<CallInst>(V);
4449         if (!CI2 || CI2->getCalledFunction() != F ||
4450             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
4451             (VecFunc &&
4452              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
4453             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
4454           BS.cancelScheduling(VL, VL0);
4455           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4456                        ReuseShuffleIndicies);
4457           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
4458                             << "\n");
4459           return;
4460         }
4461         // Some intrinsics have scalar arguments and should be same in order for
4462         // them to be vectorized.
4463         for (unsigned j = 0; j != NumArgs; ++j) {
4464           if (hasVectorInstrinsicScalarOpd(ID, j)) {
4465             Value *A1J = CI2->getArgOperand(j);
4466             if (ScalarArgs[j] != A1J) {
4467               BS.cancelScheduling(VL, VL0);
4468               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4469                            ReuseShuffleIndicies);
4470               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
4471                                 << " argument " << ScalarArgs[j] << "!=" << A1J
4472                                 << "\n");
4473               return;
4474             }
4475           }
4476         }
4477         // Verify that the bundle operands are identical between the two calls.
4478         if (CI->hasOperandBundles() &&
4479             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
4480                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
4481                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
4482           BS.cancelScheduling(VL, VL0);
4483           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4484                        ReuseShuffleIndicies);
4485           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
4486                             << *CI << "!=" << *V << '\n');
4487           return;
4488         }
4489       }
4490 
4491       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4492                                    ReuseShuffleIndicies);
4493       TE->setOperandsInOrder();
4494       for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
4495         // For scalar operands no need to to create an entry since no need to
4496         // vectorize it.
4497         if (hasVectorInstrinsicScalarOpd(ID, i))
4498           continue;
4499         ValueList Operands;
4500         // Prepare the operand vector.
4501         for (Value *V : VL) {
4502           auto *CI2 = cast<CallInst>(V);
4503           Operands.push_back(CI2->getArgOperand(i));
4504         }
4505         buildTree_rec(Operands, Depth + 1, {TE, i});
4506       }
4507       return;
4508     }
4509     case Instruction::ShuffleVector: {
4510       // If this is not an alternate sequence of opcode like add-sub
4511       // then do not vectorize this instruction.
4512       if (!S.isAltShuffle()) {
4513         BS.cancelScheduling(VL, VL0);
4514         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4515                      ReuseShuffleIndicies);
4516         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
4517         return;
4518       }
4519       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4520                                    ReuseShuffleIndicies);
4521       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
4522 
4523       // Reorder operands if reordering would enable vectorization.
4524       auto *CI = dyn_cast<CmpInst>(VL0);
4525       if (isa<BinaryOperator>(VL0) || CI) {
4526         ValueList Left, Right;
4527         if (!CI || all_of(VL, [](Value *V) {
4528               return cast<CmpInst>(V)->isCommutative();
4529             })) {
4530           reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4531         } else {
4532           CmpInst::Predicate P0 = CI->getPredicate();
4533           CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate();
4534           assert(P0 != AltP0 &&
4535                  "Expected different main/alternate predicates.");
4536           CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
4537           Value *BaseOp0 = VL0->getOperand(0);
4538           Value *BaseOp1 = VL0->getOperand(1);
4539           // Collect operands - commute if it uses the swapped predicate or
4540           // alternate operation.
4541           for (Value *V : VL) {
4542             auto *Cmp = cast<CmpInst>(V);
4543             Value *LHS = Cmp->getOperand(0);
4544             Value *RHS = Cmp->getOperand(1);
4545             CmpInst::Predicate CurrentPred = Cmp->getPredicate();
4546             if (P0 == AltP0Swapped) {
4547               if (CI != Cmp && S.AltOp != Cmp &&
4548                   ((P0 == CurrentPred &&
4549                     !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) ||
4550                    (AltP0 == CurrentPred &&
4551                     areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))))
4552                 std::swap(LHS, RHS);
4553             } else if (P0 != CurrentPred && AltP0 != CurrentPred) {
4554               std::swap(LHS, RHS);
4555             }
4556             Left.push_back(LHS);
4557             Right.push_back(RHS);
4558           }
4559         }
4560         TE->setOperand(0, Left);
4561         TE->setOperand(1, Right);
4562         buildTree_rec(Left, Depth + 1, {TE, 0});
4563         buildTree_rec(Right, Depth + 1, {TE, 1});
4564         return;
4565       }
4566 
4567       TE->setOperandsInOrder();
4568       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4569         ValueList Operands;
4570         // Prepare the operand vector.
4571         for (Value *V : VL)
4572           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4573 
4574         buildTree_rec(Operands, Depth + 1, {TE, i});
4575       }
4576       return;
4577     }
4578     default:
4579       BS.cancelScheduling(VL, VL0);
4580       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4581                    ReuseShuffleIndicies);
4582       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
4583       return;
4584   }
4585 }
4586 
4587 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
4588   unsigned N = 1;
4589   Type *EltTy = T;
4590 
4591   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
4592          isa<VectorType>(EltTy)) {
4593     if (auto *ST = dyn_cast<StructType>(EltTy)) {
4594       // Check that struct is homogeneous.
4595       for (const auto *Ty : ST->elements())
4596         if (Ty != *ST->element_begin())
4597           return 0;
4598       N *= ST->getNumElements();
4599       EltTy = *ST->element_begin();
4600     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
4601       N *= AT->getNumElements();
4602       EltTy = AT->getElementType();
4603     } else {
4604       auto *VT = cast<FixedVectorType>(EltTy);
4605       N *= VT->getNumElements();
4606       EltTy = VT->getElementType();
4607     }
4608   }
4609 
4610   if (!isValidElementType(EltTy))
4611     return 0;
4612   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
4613   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
4614     return 0;
4615   return N;
4616 }
4617 
4618 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
4619                               SmallVectorImpl<unsigned> &CurrentOrder) const {
4620   const auto *It = find_if(VL, [](Value *V) {
4621     return isa<ExtractElementInst, ExtractValueInst>(V);
4622   });
4623   assert(It != VL.end() && "Expected at least one extract instruction.");
4624   auto *E0 = cast<Instruction>(*It);
4625   assert(all_of(VL,
4626                 [](Value *V) {
4627                   return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
4628                       V);
4629                 }) &&
4630          "Invalid opcode");
4631   // Check if all of the extracts come from the same vector and from the
4632   // correct offset.
4633   Value *Vec = E0->getOperand(0);
4634 
4635   CurrentOrder.clear();
4636 
4637   // We have to extract from a vector/aggregate with the same number of elements.
4638   unsigned NElts;
4639   if (E0->getOpcode() == Instruction::ExtractValue) {
4640     const DataLayout &DL = E0->getModule()->getDataLayout();
4641     NElts = canMapToVector(Vec->getType(), DL);
4642     if (!NElts)
4643       return false;
4644     // Check if load can be rewritten as load of vector.
4645     LoadInst *LI = dyn_cast<LoadInst>(Vec);
4646     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
4647       return false;
4648   } else {
4649     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
4650   }
4651 
4652   if (NElts != VL.size())
4653     return false;
4654 
4655   // Check that all of the indices extract from the correct offset.
4656   bool ShouldKeepOrder = true;
4657   unsigned E = VL.size();
4658   // Assign to all items the initial value E + 1 so we can check if the extract
4659   // instruction index was used already.
4660   // Also, later we can check that all the indices are used and we have a
4661   // consecutive access in the extract instructions, by checking that no
4662   // element of CurrentOrder still has value E + 1.
4663   CurrentOrder.assign(E, E);
4664   unsigned I = 0;
4665   for (; I < E; ++I) {
4666     auto *Inst = dyn_cast<Instruction>(VL[I]);
4667     if (!Inst)
4668       continue;
4669     if (Inst->getOperand(0) != Vec)
4670       break;
4671     if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
4672       if (isa<UndefValue>(EE->getIndexOperand()))
4673         continue;
4674     Optional<unsigned> Idx = getExtractIndex(Inst);
4675     if (!Idx)
4676       break;
4677     const unsigned ExtIdx = *Idx;
4678     if (ExtIdx != I) {
4679       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
4680         break;
4681       ShouldKeepOrder = false;
4682       CurrentOrder[ExtIdx] = I;
4683     } else {
4684       if (CurrentOrder[I] != E)
4685         break;
4686       CurrentOrder[I] = I;
4687     }
4688   }
4689   if (I < E) {
4690     CurrentOrder.clear();
4691     return false;
4692   }
4693   if (ShouldKeepOrder)
4694     CurrentOrder.clear();
4695 
4696   return ShouldKeepOrder;
4697 }
4698 
4699 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
4700                                     ArrayRef<Value *> VectorizedVals) const {
4701   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
4702          all_of(I->users(), [this](User *U) {
4703            return ScalarToTreeEntry.count(U) > 0 ||
4704                   isVectorLikeInstWithConstOps(U) ||
4705                   (isa<ExtractElementInst>(U) && MustGather.contains(U));
4706          });
4707 }
4708 
4709 static std::pair<InstructionCost, InstructionCost>
4710 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
4711                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
4712   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4713 
4714   // Calculate the cost of the scalar and vector calls.
4715   SmallVector<Type *, 4> VecTys;
4716   for (Use &Arg : CI->args())
4717     VecTys.push_back(
4718         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
4719   FastMathFlags FMF;
4720   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
4721     FMF = FPCI->getFastMathFlags();
4722   SmallVector<const Value *> Arguments(CI->args());
4723   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
4724                                     dyn_cast<IntrinsicInst>(CI));
4725   auto IntrinsicCost =
4726     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
4727 
4728   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
4729                                      VecTy->getNumElements())),
4730                             false /*HasGlobalPred*/);
4731   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4732   auto LibCost = IntrinsicCost;
4733   if (!CI->isNoBuiltin() && VecFunc) {
4734     // Calculate the cost of the vector library call.
4735     // If the corresponding vector call is cheaper, return its cost.
4736     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
4737                                     TTI::TCK_RecipThroughput);
4738   }
4739   return {IntrinsicCost, LibCost};
4740 }
4741 
4742 /// Compute the cost of creating a vector of type \p VecTy containing the
4743 /// extracted values from \p VL.
4744 static InstructionCost
4745 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
4746                    TargetTransformInfo::ShuffleKind ShuffleKind,
4747                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
4748   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
4749 
4750   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
4751       VecTy->getNumElements() < NumOfParts)
4752     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
4753 
4754   bool AllConsecutive = true;
4755   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
4756   unsigned Idx = -1;
4757   InstructionCost Cost = 0;
4758 
4759   // Process extracts in blocks of EltsPerVector to check if the source vector
4760   // operand can be re-used directly. If not, add the cost of creating a shuffle
4761   // to extract the values into a vector register.
4762   for (auto *V : VL) {
4763     ++Idx;
4764 
4765     // Need to exclude undefs from analysis.
4766     if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
4767       continue;
4768 
4769     // Reached the start of a new vector registers.
4770     if (Idx % EltsPerVector == 0) {
4771       AllConsecutive = true;
4772       continue;
4773     }
4774 
4775     // Check all extracts for a vector register on the target directly
4776     // extract values in order.
4777     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
4778     if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
4779       unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
4780       AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
4781                         CurrentIdx % EltsPerVector == Idx % EltsPerVector;
4782     }
4783 
4784     if (AllConsecutive)
4785       continue;
4786 
4787     // Skip all indices, except for the last index per vector block.
4788     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
4789       continue;
4790 
4791     // If we have a series of extracts which are not consecutive and hence
4792     // cannot re-use the source vector register directly, compute the shuffle
4793     // cost to extract the a vector with EltsPerVector elements.
4794     Cost += TTI.getShuffleCost(
4795         TargetTransformInfo::SK_PermuteSingleSrc,
4796         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
4797   }
4798   return Cost;
4799 }
4800 
4801 /// Build shuffle mask for shuffle graph entries and lists of main and alternate
4802 /// operations operands.
4803 static void
4804 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
4805                       ArrayRef<int> ReusesIndices,
4806                       const function_ref<bool(Instruction *)> IsAltOp,
4807                       SmallVectorImpl<int> &Mask,
4808                       SmallVectorImpl<Value *> *OpScalars = nullptr,
4809                       SmallVectorImpl<Value *> *AltScalars = nullptr) {
4810   unsigned Sz = VL.size();
4811   Mask.assign(Sz, UndefMaskElem);
4812   SmallVector<int> OrderMask;
4813   if (!ReorderIndices.empty())
4814     inversePermutation(ReorderIndices, OrderMask);
4815   for (unsigned I = 0; I < Sz; ++I) {
4816     unsigned Idx = I;
4817     if (!ReorderIndices.empty())
4818       Idx = OrderMask[I];
4819     auto *OpInst = cast<Instruction>(VL[Idx]);
4820     if (IsAltOp(OpInst)) {
4821       Mask[I] = Sz + Idx;
4822       if (AltScalars)
4823         AltScalars->push_back(OpInst);
4824     } else {
4825       Mask[I] = Idx;
4826       if (OpScalars)
4827         OpScalars->push_back(OpInst);
4828     }
4829   }
4830   if (!ReusesIndices.empty()) {
4831     SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
4832     transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
4833       return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
4834     });
4835     Mask.swap(NewMask);
4836   }
4837 }
4838 
4839 /// Checks if the specified instruction \p I is an alternate operation for the
4840 /// given \p MainOp and \p AltOp instructions.
4841 static bool isAlternateInstruction(const Instruction *I,
4842                                    const Instruction *MainOp,
4843                                    const Instruction *AltOp) {
4844   if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) {
4845     auto *AltCI0 = cast<CmpInst>(AltOp);
4846     auto *CI = cast<CmpInst>(I);
4847     CmpInst::Predicate P0 = CI0->getPredicate();
4848     CmpInst::Predicate AltP0 = AltCI0->getPredicate();
4849     assert(P0 != AltP0 && "Expected different main/alternate predicates.");
4850     CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
4851     CmpInst::Predicate CurrentPred = CI->getPredicate();
4852     if (P0 == AltP0Swapped)
4853       return I == AltCI0 ||
4854              (I != MainOp &&
4855               !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1),
4856                                    CI->getOperand(0), CI->getOperand(1)));
4857     return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
4858   }
4859   return I->getOpcode() == AltOp->getOpcode();
4860 }
4861 
4862 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
4863                                       ArrayRef<Value *> VectorizedVals) {
4864   ArrayRef<Value*> VL = E->Scalars;
4865 
4866   Type *ScalarTy = VL[0]->getType();
4867   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4868     ScalarTy = SI->getValueOperand()->getType();
4869   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
4870     ScalarTy = CI->getOperand(0)->getType();
4871   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
4872     ScalarTy = IE->getOperand(1)->getType();
4873   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4874   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4875 
4876   // If we have computed a smaller type for the expression, update VecTy so
4877   // that the costs will be accurate.
4878   if (MinBWs.count(VL[0]))
4879     VecTy = FixedVectorType::get(
4880         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
4881   unsigned EntryVF = E->getVectorFactor();
4882   auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
4883 
4884   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4885   // FIXME: it tries to fix a problem with MSVC buildbots.
4886   TargetTransformInfo &TTIRef = *TTI;
4887   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
4888                                VectorizedVals, E](InstructionCost &Cost) {
4889     DenseMap<Value *, int> ExtractVectorsTys;
4890     SmallPtrSet<Value *, 4> CheckedExtracts;
4891     for (auto *V : VL) {
4892       if (isa<UndefValue>(V))
4893         continue;
4894       // If all users of instruction are going to be vectorized and this
4895       // instruction itself is not going to be vectorized, consider this
4896       // instruction as dead and remove its cost from the final cost of the
4897       // vectorized tree.
4898       // Also, avoid adjusting the cost for extractelements with multiple uses
4899       // in different graph entries.
4900       const TreeEntry *VE = getTreeEntry(V);
4901       if (!CheckedExtracts.insert(V).second ||
4902           !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
4903           (VE && VE != E))
4904         continue;
4905       auto *EE = cast<ExtractElementInst>(V);
4906       Optional<unsigned> EEIdx = getExtractIndex(EE);
4907       if (!EEIdx)
4908         continue;
4909       unsigned Idx = *EEIdx;
4910       if (TTIRef.getNumberOfParts(VecTy) !=
4911           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
4912         auto It =
4913             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
4914         It->getSecond() = std::min<int>(It->second, Idx);
4915       }
4916       // Take credit for instruction that will become dead.
4917       if (EE->hasOneUse()) {
4918         Instruction *Ext = EE->user_back();
4919         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4920             all_of(Ext->users(),
4921                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
4922           // Use getExtractWithExtendCost() to calculate the cost of
4923           // extractelement/ext pair.
4924           Cost -=
4925               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
4926                                               EE->getVectorOperandType(), Idx);
4927           // Add back the cost of s|zext which is subtracted separately.
4928           Cost += TTIRef.getCastInstrCost(
4929               Ext->getOpcode(), Ext->getType(), EE->getType(),
4930               TTI::getCastContextHint(Ext), CostKind, Ext);
4931           continue;
4932         }
4933       }
4934       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
4935                                         EE->getVectorOperandType(), Idx);
4936     }
4937     // Add a cost for subvector extracts/inserts if required.
4938     for (const auto &Data : ExtractVectorsTys) {
4939       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
4940       unsigned NumElts = VecTy->getNumElements();
4941       if (Data.second % NumElts == 0)
4942         continue;
4943       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
4944         unsigned Idx = (Data.second / NumElts) * NumElts;
4945         unsigned EENumElts = EEVTy->getNumElements();
4946         if (Idx + NumElts <= EENumElts) {
4947           Cost +=
4948               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
4949                                     EEVTy, None, Idx, VecTy);
4950         } else {
4951           // Need to round up the subvector type vectorization factor to avoid a
4952           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
4953           // <= EENumElts.
4954           auto *SubVT =
4955               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
4956           Cost +=
4957               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
4958                                     EEVTy, None, Idx, SubVT);
4959         }
4960       } else {
4961         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
4962                                       VecTy, None, 0, EEVTy);
4963       }
4964     }
4965   };
4966   if (E->State == TreeEntry::NeedToGather) {
4967     if (allConstant(VL))
4968       return 0;
4969     if (isa<InsertElementInst>(VL[0]))
4970       return InstructionCost::getInvalid();
4971     SmallVector<int> Mask;
4972     SmallVector<const TreeEntry *> Entries;
4973     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
4974         isGatherShuffledEntry(E, Mask, Entries);
4975     if (Shuffle.hasValue()) {
4976       InstructionCost GatherCost = 0;
4977       if (ShuffleVectorInst::isIdentityMask(Mask)) {
4978         // Perfect match in the graph, will reuse the previously vectorized
4979         // node. Cost is 0.
4980         LLVM_DEBUG(
4981             dbgs()
4982             << "SLP: perfect diamond match for gather bundle that starts with "
4983             << *VL.front() << ".\n");
4984         if (NeedToShuffleReuses)
4985           GatherCost =
4986               TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
4987                                   FinalVecTy, E->ReuseShuffleIndices);
4988       } else {
4989         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
4990                           << " entries for bundle that starts with "
4991                           << *VL.front() << ".\n");
4992         // Detected that instead of gather we can emit a shuffle of single/two
4993         // previously vectorized nodes. Add the cost of the permutation rather
4994         // than gather.
4995         ::addMask(Mask, E->ReuseShuffleIndices);
4996         GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
4997       }
4998       return GatherCost;
4999     }
5000     if ((E->getOpcode() == Instruction::ExtractElement ||
5001          all_of(E->Scalars,
5002                 [](Value *V) {
5003                   return isa<ExtractElementInst, UndefValue>(V);
5004                 })) &&
5005         allSameType(VL)) {
5006       // Check that gather of extractelements can be represented as just a
5007       // shuffle of a single/two vectors the scalars are extracted from.
5008       SmallVector<int> Mask;
5009       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
5010           isFixedVectorShuffle(VL, Mask);
5011       if (ShuffleKind.hasValue()) {
5012         // Found the bunch of extractelement instructions that must be gathered
5013         // into a vector and can be represented as a permutation elements in a
5014         // single input vector or of 2 input vectors.
5015         InstructionCost Cost =
5016             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
5017         AdjustExtractsCost(Cost);
5018         if (NeedToShuffleReuses)
5019           Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5020                                       FinalVecTy, E->ReuseShuffleIndices);
5021         return Cost;
5022       }
5023     }
5024     if (isSplat(VL)) {
5025       // Found the broadcasting of the single scalar, calculate the cost as the
5026       // broadcast.
5027       assert(VecTy == FinalVecTy &&
5028              "No reused scalars expected for broadcast.");
5029       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
5030     }
5031     InstructionCost ReuseShuffleCost = 0;
5032     if (NeedToShuffleReuses)
5033       ReuseShuffleCost = TTI->getShuffleCost(
5034           TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
5035     // Improve gather cost for gather of loads, if we can group some of the
5036     // loads into vector loads.
5037     if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
5038         !E->isAltShuffle()) {
5039       BoUpSLP::ValueSet VectorizedLoads;
5040       unsigned StartIdx = 0;
5041       unsigned VF = VL.size() / 2;
5042       unsigned VectorizedCnt = 0;
5043       unsigned ScatterVectorizeCnt = 0;
5044       const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
5045       for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
5046         for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
5047              Cnt += VF) {
5048           ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
5049           if (!VectorizedLoads.count(Slice.front()) &&
5050               !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
5051             SmallVector<Value *> PointerOps;
5052             OrdersType CurrentOrder;
5053             LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL,
5054                                               *SE, CurrentOrder, PointerOps);
5055             switch (LS) {
5056             case LoadsState::Vectorize:
5057             case LoadsState::ScatterVectorize:
5058               // Mark the vectorized loads so that we don't vectorize them
5059               // again.
5060               if (LS == LoadsState::Vectorize)
5061                 ++VectorizedCnt;
5062               else
5063                 ++ScatterVectorizeCnt;
5064               VectorizedLoads.insert(Slice.begin(), Slice.end());
5065               // If we vectorized initial block, no need to try to vectorize it
5066               // again.
5067               if (Cnt == StartIdx)
5068                 StartIdx += VF;
5069               break;
5070             case LoadsState::Gather:
5071               break;
5072             }
5073           }
5074         }
5075         // Check if the whole array was vectorized already - exit.
5076         if (StartIdx >= VL.size())
5077           break;
5078         // Found vectorizable parts - exit.
5079         if (!VectorizedLoads.empty())
5080           break;
5081       }
5082       if (!VectorizedLoads.empty()) {
5083         InstructionCost GatherCost = 0;
5084         unsigned NumParts = TTI->getNumberOfParts(VecTy);
5085         bool NeedInsertSubvectorAnalysis =
5086             !NumParts || (VL.size() / VF) > NumParts;
5087         // Get the cost for gathered loads.
5088         for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
5089           if (VectorizedLoads.contains(VL[I]))
5090             continue;
5091           GatherCost += getGatherCost(VL.slice(I, VF));
5092         }
5093         // The cost for vectorized loads.
5094         InstructionCost ScalarsCost = 0;
5095         for (Value *V : VectorizedLoads) {
5096           auto *LI = cast<LoadInst>(V);
5097           ScalarsCost += TTI->getMemoryOpCost(
5098               Instruction::Load, LI->getType(), LI->getAlign(),
5099               LI->getPointerAddressSpace(), CostKind, LI);
5100         }
5101         auto *LI = cast<LoadInst>(E->getMainOp());
5102         auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
5103         Align Alignment = LI->getAlign();
5104         GatherCost +=
5105             VectorizedCnt *
5106             TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
5107                                  LI->getPointerAddressSpace(), CostKind, LI);
5108         GatherCost += ScatterVectorizeCnt *
5109                       TTI->getGatherScatterOpCost(
5110                           Instruction::Load, LoadTy, LI->getPointerOperand(),
5111                           /*VariableMask=*/false, Alignment, CostKind, LI);
5112         if (NeedInsertSubvectorAnalysis) {
5113           // Add the cost for the subvectors insert.
5114           for (int I = VF, E = VL.size(); I < E; I += VF)
5115             GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
5116                                               None, I, LoadTy);
5117         }
5118         return ReuseShuffleCost + GatherCost - ScalarsCost;
5119       }
5120     }
5121     return ReuseShuffleCost + getGatherCost(VL);
5122   }
5123   InstructionCost CommonCost = 0;
5124   SmallVector<int> Mask;
5125   if (!E->ReorderIndices.empty()) {
5126     SmallVector<int> NewMask;
5127     if (E->getOpcode() == Instruction::Store) {
5128       // For stores the order is actually a mask.
5129       NewMask.resize(E->ReorderIndices.size());
5130       copy(E->ReorderIndices, NewMask.begin());
5131     } else {
5132       inversePermutation(E->ReorderIndices, NewMask);
5133     }
5134     ::addMask(Mask, NewMask);
5135   }
5136   if (NeedToShuffleReuses)
5137     ::addMask(Mask, E->ReuseShuffleIndices);
5138   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
5139     CommonCost =
5140         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
5141   assert((E->State == TreeEntry::Vectorize ||
5142           E->State == TreeEntry::ScatterVectorize) &&
5143          "Unhandled state");
5144   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
5145   Instruction *VL0 = E->getMainOp();
5146   unsigned ShuffleOrOp =
5147       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5148   switch (ShuffleOrOp) {
5149     case Instruction::PHI:
5150       return 0;
5151 
5152     case Instruction::ExtractValue:
5153     case Instruction::ExtractElement: {
5154       // The common cost of removal ExtractElement/ExtractValue instructions +
5155       // the cost of shuffles, if required to resuffle the original vector.
5156       if (NeedToShuffleReuses) {
5157         unsigned Idx = 0;
5158         for (unsigned I : E->ReuseShuffleIndices) {
5159           if (ShuffleOrOp == Instruction::ExtractElement) {
5160             auto *EE = cast<ExtractElementInst>(VL[I]);
5161             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5162                                                   EE->getVectorOperandType(),
5163                                                   *getExtractIndex(EE));
5164           } else {
5165             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5166                                                   VecTy, Idx);
5167             ++Idx;
5168           }
5169         }
5170         Idx = EntryVF;
5171         for (Value *V : VL) {
5172           if (ShuffleOrOp == Instruction::ExtractElement) {
5173             auto *EE = cast<ExtractElementInst>(V);
5174             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5175                                                   EE->getVectorOperandType(),
5176                                                   *getExtractIndex(EE));
5177           } else {
5178             --Idx;
5179             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5180                                                   VecTy, Idx);
5181           }
5182         }
5183       }
5184       if (ShuffleOrOp == Instruction::ExtractValue) {
5185         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
5186           auto *EI = cast<Instruction>(VL[I]);
5187           // Take credit for instruction that will become dead.
5188           if (EI->hasOneUse()) {
5189             Instruction *Ext = EI->user_back();
5190             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5191                 all_of(Ext->users(),
5192                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
5193               // Use getExtractWithExtendCost() to calculate the cost of
5194               // extractelement/ext pair.
5195               CommonCost -= TTI->getExtractWithExtendCost(
5196                   Ext->getOpcode(), Ext->getType(), VecTy, I);
5197               // Add back the cost of s|zext which is subtracted separately.
5198               CommonCost += TTI->getCastInstrCost(
5199                   Ext->getOpcode(), Ext->getType(), EI->getType(),
5200                   TTI::getCastContextHint(Ext), CostKind, Ext);
5201               continue;
5202             }
5203           }
5204           CommonCost -=
5205               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
5206         }
5207       } else {
5208         AdjustExtractsCost(CommonCost);
5209       }
5210       return CommonCost;
5211     }
5212     case Instruction::InsertElement: {
5213       assert(E->ReuseShuffleIndices.empty() &&
5214              "Unique insertelements only are expected.");
5215       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
5216 
5217       unsigned const NumElts = SrcVecTy->getNumElements();
5218       unsigned const NumScalars = VL.size();
5219       APInt DemandedElts = APInt::getZero(NumElts);
5220       // TODO: Add support for Instruction::InsertValue.
5221       SmallVector<int> Mask;
5222       if (!E->ReorderIndices.empty()) {
5223         inversePermutation(E->ReorderIndices, Mask);
5224         Mask.append(NumElts - NumScalars, UndefMaskElem);
5225       } else {
5226         Mask.assign(NumElts, UndefMaskElem);
5227         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5228       }
5229       unsigned Offset = *getInsertIndex(VL0);
5230       bool IsIdentity = true;
5231       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
5232       Mask.swap(PrevMask);
5233       for (unsigned I = 0; I < NumScalars; ++I) {
5234         unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
5235         DemandedElts.setBit(InsertIdx);
5236         IsIdentity &= InsertIdx - Offset == I;
5237         Mask[InsertIdx - Offset] = I;
5238       }
5239       assert(Offset < NumElts && "Failed to find vector index offset");
5240 
5241       InstructionCost Cost = 0;
5242       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
5243                                             /*Insert*/ true, /*Extract*/ false);
5244 
5245       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
5246         // FIXME: Replace with SK_InsertSubvector once it is properly supported.
5247         unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
5248         Cost += TTI->getShuffleCost(
5249             TargetTransformInfo::SK_PermuteSingleSrc,
5250             FixedVectorType::get(SrcVecTy->getElementType(), Sz));
5251       } else if (!IsIdentity) {
5252         auto *FirstInsert =
5253             cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
5254               return !is_contained(E->Scalars,
5255                                    cast<Instruction>(V)->getOperand(0));
5256             }));
5257         if (isUndefVector(FirstInsert->getOperand(0))) {
5258           Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask);
5259         } else {
5260           SmallVector<int> InsertMask(NumElts);
5261           std::iota(InsertMask.begin(), InsertMask.end(), 0);
5262           for (unsigned I = 0; I < NumElts; I++) {
5263             if (Mask[I] != UndefMaskElem)
5264               InsertMask[Offset + I] = NumElts + I;
5265           }
5266           Cost +=
5267               TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask);
5268         }
5269       }
5270 
5271       return Cost;
5272     }
5273     case Instruction::ZExt:
5274     case Instruction::SExt:
5275     case Instruction::FPToUI:
5276     case Instruction::FPToSI:
5277     case Instruction::FPExt:
5278     case Instruction::PtrToInt:
5279     case Instruction::IntToPtr:
5280     case Instruction::SIToFP:
5281     case Instruction::UIToFP:
5282     case Instruction::Trunc:
5283     case Instruction::FPTrunc:
5284     case Instruction::BitCast: {
5285       Type *SrcTy = VL0->getOperand(0)->getType();
5286       InstructionCost ScalarEltCost =
5287           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
5288                                 TTI::getCastContextHint(VL0), CostKind, VL0);
5289       if (NeedToShuffleReuses) {
5290         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5291       }
5292 
5293       // Calculate the cost of this instruction.
5294       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
5295 
5296       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
5297       InstructionCost VecCost = 0;
5298       // Check if the values are candidates to demote.
5299       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
5300         VecCost = CommonCost + TTI->getCastInstrCost(
5301                                    E->getOpcode(), VecTy, SrcVecTy,
5302                                    TTI::getCastContextHint(VL0), CostKind, VL0);
5303       }
5304       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5305       return VecCost - ScalarCost;
5306     }
5307     case Instruction::FCmp:
5308     case Instruction::ICmp:
5309     case Instruction::Select: {
5310       // Calculate the cost of this instruction.
5311       InstructionCost ScalarEltCost =
5312           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5313                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
5314       if (NeedToShuffleReuses) {
5315         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5316       }
5317       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
5318       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5319 
5320       // Check if all entries in VL are either compares or selects with compares
5321       // as condition that have the same predicates.
5322       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
5323       bool First = true;
5324       for (auto *V : VL) {
5325         CmpInst::Predicate CurrentPred;
5326         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
5327         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
5328              !match(V, MatchCmp)) ||
5329             (!First && VecPred != CurrentPred)) {
5330           VecPred = CmpInst::BAD_ICMP_PREDICATE;
5331           break;
5332         }
5333         First = false;
5334         VecPred = CurrentPred;
5335       }
5336 
5337       InstructionCost VecCost = TTI->getCmpSelInstrCost(
5338           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
5339       // Check if it is possible and profitable to use min/max for selects in
5340       // VL.
5341       //
5342       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
5343       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
5344         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
5345                                           {VecTy, VecTy});
5346         InstructionCost IntrinsicCost =
5347             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5348         // If the selects are the only uses of the compares, they will be dead
5349         // and we can adjust the cost by removing their cost.
5350         if (IntrinsicAndUse.second)
5351           IntrinsicCost -=
5352               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
5353                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
5354         VecCost = std::min(VecCost, IntrinsicCost);
5355       }
5356       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5357       return CommonCost + VecCost - ScalarCost;
5358     }
5359     case Instruction::FNeg:
5360     case Instruction::Add:
5361     case Instruction::FAdd:
5362     case Instruction::Sub:
5363     case Instruction::FSub:
5364     case Instruction::Mul:
5365     case Instruction::FMul:
5366     case Instruction::UDiv:
5367     case Instruction::SDiv:
5368     case Instruction::FDiv:
5369     case Instruction::URem:
5370     case Instruction::SRem:
5371     case Instruction::FRem:
5372     case Instruction::Shl:
5373     case Instruction::LShr:
5374     case Instruction::AShr:
5375     case Instruction::And:
5376     case Instruction::Or:
5377     case Instruction::Xor: {
5378       // Certain instructions can be cheaper to vectorize if they have a
5379       // constant second vector operand.
5380       TargetTransformInfo::OperandValueKind Op1VK =
5381           TargetTransformInfo::OK_AnyValue;
5382       TargetTransformInfo::OperandValueKind Op2VK =
5383           TargetTransformInfo::OK_UniformConstantValue;
5384       TargetTransformInfo::OperandValueProperties Op1VP =
5385           TargetTransformInfo::OP_None;
5386       TargetTransformInfo::OperandValueProperties Op2VP =
5387           TargetTransformInfo::OP_PowerOf2;
5388 
5389       // If all operands are exactly the same ConstantInt then set the
5390       // operand kind to OK_UniformConstantValue.
5391       // If instead not all operands are constants, then set the operand kind
5392       // to OK_AnyValue. If all operands are constants but not the same,
5393       // then set the operand kind to OK_NonUniformConstantValue.
5394       ConstantInt *CInt0 = nullptr;
5395       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
5396         const Instruction *I = cast<Instruction>(VL[i]);
5397         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
5398         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
5399         if (!CInt) {
5400           Op2VK = TargetTransformInfo::OK_AnyValue;
5401           Op2VP = TargetTransformInfo::OP_None;
5402           break;
5403         }
5404         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
5405             !CInt->getValue().isPowerOf2())
5406           Op2VP = TargetTransformInfo::OP_None;
5407         if (i == 0) {
5408           CInt0 = CInt;
5409           continue;
5410         }
5411         if (CInt0 != CInt)
5412           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5413       }
5414 
5415       SmallVector<const Value *, 4> Operands(VL0->operand_values());
5416       InstructionCost ScalarEltCost =
5417           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
5418                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
5419       if (NeedToShuffleReuses) {
5420         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5421       }
5422       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5423       InstructionCost VecCost =
5424           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
5425                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
5426       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5427       return CommonCost + VecCost - ScalarCost;
5428     }
5429     case Instruction::GetElementPtr: {
5430       TargetTransformInfo::OperandValueKind Op1VK =
5431           TargetTransformInfo::OK_AnyValue;
5432       TargetTransformInfo::OperandValueKind Op2VK =
5433           TargetTransformInfo::OK_UniformConstantValue;
5434 
5435       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
5436           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
5437       if (NeedToShuffleReuses) {
5438         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5439       }
5440       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5441       InstructionCost VecCost = TTI->getArithmeticInstrCost(
5442           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
5443       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5444       return CommonCost + VecCost - ScalarCost;
5445     }
5446     case Instruction::Load: {
5447       // Cost of wide load - cost of scalar loads.
5448       Align Alignment = cast<LoadInst>(VL0)->getAlign();
5449       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5450           Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
5451       if (NeedToShuffleReuses) {
5452         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5453       }
5454       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
5455       InstructionCost VecLdCost;
5456       if (E->State == TreeEntry::Vectorize) {
5457         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
5458                                          CostKind, VL0);
5459       } else {
5460         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
5461         Align CommonAlignment = Alignment;
5462         for (Value *V : VL)
5463           CommonAlignment =
5464               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5465         VecLdCost = TTI->getGatherScatterOpCost(
5466             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
5467             /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
5468       }
5469       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
5470       return CommonCost + VecLdCost - ScalarLdCost;
5471     }
5472     case Instruction::Store: {
5473       // We know that we can merge the stores. Calculate the cost.
5474       bool IsReorder = !E->ReorderIndices.empty();
5475       auto *SI =
5476           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
5477       Align Alignment = SI->getAlign();
5478       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5479           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
5480       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
5481       InstructionCost VecStCost = TTI->getMemoryOpCost(
5482           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
5483       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
5484       return CommonCost + VecStCost - ScalarStCost;
5485     }
5486     case Instruction::Call: {
5487       CallInst *CI = cast<CallInst>(VL0);
5488       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5489 
5490       // Calculate the cost of the scalar and vector calls.
5491       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
5492       InstructionCost ScalarEltCost =
5493           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5494       if (NeedToShuffleReuses) {
5495         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5496       }
5497       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
5498 
5499       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5500       InstructionCost VecCallCost =
5501           std::min(VecCallCosts.first, VecCallCosts.second);
5502 
5503       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
5504                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
5505                         << " for " << *CI << "\n");
5506 
5507       return CommonCost + VecCallCost - ScalarCallCost;
5508     }
5509     case Instruction::ShuffleVector: {
5510       assert(E->isAltShuffle() &&
5511              ((Instruction::isBinaryOp(E->getOpcode()) &&
5512                Instruction::isBinaryOp(E->getAltOpcode())) ||
5513               (Instruction::isCast(E->getOpcode()) &&
5514                Instruction::isCast(E->getAltOpcode())) ||
5515               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
5516              "Invalid Shuffle Vector Operand");
5517       InstructionCost ScalarCost = 0;
5518       if (NeedToShuffleReuses) {
5519         for (unsigned Idx : E->ReuseShuffleIndices) {
5520           Instruction *I = cast<Instruction>(VL[Idx]);
5521           CommonCost -= TTI->getInstructionCost(I, CostKind);
5522         }
5523         for (Value *V : VL) {
5524           Instruction *I = cast<Instruction>(V);
5525           CommonCost += TTI->getInstructionCost(I, CostKind);
5526         }
5527       }
5528       for (Value *V : VL) {
5529         Instruction *I = cast<Instruction>(V);
5530         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
5531         ScalarCost += TTI->getInstructionCost(I, CostKind);
5532       }
5533       // VecCost is equal to sum of the cost of creating 2 vectors
5534       // and the cost of creating shuffle.
5535       InstructionCost VecCost = 0;
5536       // Try to find the previous shuffle node with the same operands and same
5537       // main/alternate ops.
5538       auto &&TryFindNodeWithEqualOperands = [this, E]() {
5539         for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
5540           if (TE.get() == E)
5541             break;
5542           if (TE->isAltShuffle() &&
5543               ((TE->getOpcode() == E->getOpcode() &&
5544                 TE->getAltOpcode() == E->getAltOpcode()) ||
5545                (TE->getOpcode() == E->getAltOpcode() &&
5546                 TE->getAltOpcode() == E->getOpcode())) &&
5547               TE->hasEqualOperands(*E))
5548             return true;
5549         }
5550         return false;
5551       };
5552       if (TryFindNodeWithEqualOperands()) {
5553         LLVM_DEBUG({
5554           dbgs() << "SLP: diamond match for alternate node found.\n";
5555           E->dump();
5556         });
5557         // No need to add new vector costs here since we're going to reuse
5558         // same main/alternate vector ops, just do different shuffling.
5559       } else if (Instruction::isBinaryOp(E->getOpcode())) {
5560         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
5561         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
5562                                                CostKind);
5563       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
5564         VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
5565                                           Builder.getInt1Ty(),
5566                                           CI0->getPredicate(), CostKind, VL0);
5567         VecCost += TTI->getCmpSelInstrCost(
5568             E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5569             cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
5570             E->getAltOp());
5571       } else {
5572         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
5573         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
5574         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
5575         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
5576         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
5577                                         TTI::CastContextHint::None, CostKind);
5578         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
5579                                          TTI::CastContextHint::None, CostKind);
5580       }
5581 
5582       SmallVector<int> Mask;
5583       buildShuffleEntryMask(
5584           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
5585           [E](Instruction *I) {
5586             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
5587             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
5588           },
5589           Mask);
5590       CommonCost =
5591           TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask);
5592       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5593       return CommonCost + VecCost - ScalarCost;
5594     }
5595     default:
5596       llvm_unreachable("Unknown instruction");
5597   }
5598 }
5599 
5600 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
5601   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
5602                     << VectorizableTree.size() << " is fully vectorizable .\n");
5603 
5604   auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
5605     SmallVector<int> Mask;
5606     return TE->State == TreeEntry::NeedToGather &&
5607            !any_of(TE->Scalars,
5608                    [this](Value *V) { return EphValues.contains(V); }) &&
5609            (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
5610             TE->Scalars.size() < Limit ||
5611             ((TE->getOpcode() == Instruction::ExtractElement ||
5612               all_of(TE->Scalars,
5613                      [](Value *V) {
5614                        return isa<ExtractElementInst, UndefValue>(V);
5615                      })) &&
5616              isFixedVectorShuffle(TE->Scalars, Mask)) ||
5617             (TE->State == TreeEntry::NeedToGather &&
5618              TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
5619   };
5620 
5621   // We only handle trees of heights 1 and 2.
5622   if (VectorizableTree.size() == 1 &&
5623       (VectorizableTree[0]->State == TreeEntry::Vectorize ||
5624        (ForReduction &&
5625         AreVectorizableGathers(VectorizableTree[0].get(),
5626                                VectorizableTree[0]->Scalars.size()) &&
5627         VectorizableTree[0]->getVectorFactor() > 2)))
5628     return true;
5629 
5630   if (VectorizableTree.size() != 2)
5631     return false;
5632 
5633   // Handle splat and all-constants stores. Also try to vectorize tiny trees
5634   // with the second gather nodes if they have less scalar operands rather than
5635   // the initial tree element (may be profitable to shuffle the second gather)
5636   // or they are extractelements, which form shuffle.
5637   SmallVector<int> Mask;
5638   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
5639       AreVectorizableGathers(VectorizableTree[1].get(),
5640                              VectorizableTree[0]->Scalars.size()))
5641     return true;
5642 
5643   // Gathering cost would be too much for tiny trees.
5644   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
5645       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
5646        VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
5647     return false;
5648 
5649   return true;
5650 }
5651 
5652 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
5653                                        TargetTransformInfo *TTI,
5654                                        bool MustMatchOrInst) {
5655   // Look past the root to find a source value. Arbitrarily follow the
5656   // path through operand 0 of any 'or'. Also, peek through optional
5657   // shift-left-by-multiple-of-8-bits.
5658   Value *ZextLoad = Root;
5659   const APInt *ShAmtC;
5660   bool FoundOr = false;
5661   while (!isa<ConstantExpr>(ZextLoad) &&
5662          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
5663           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
5664            ShAmtC->urem(8) == 0))) {
5665     auto *BinOp = cast<BinaryOperator>(ZextLoad);
5666     ZextLoad = BinOp->getOperand(0);
5667     if (BinOp->getOpcode() == Instruction::Or)
5668       FoundOr = true;
5669   }
5670   // Check if the input is an extended load of the required or/shift expression.
5671   Value *Load;
5672   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
5673       !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
5674     return false;
5675 
5676   // Require that the total load bit width is a legal integer type.
5677   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
5678   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
5679   Type *SrcTy = Load->getType();
5680   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
5681   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
5682     return false;
5683 
5684   // Everything matched - assume that we can fold the whole sequence using
5685   // load combining.
5686   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
5687              << *(cast<Instruction>(Root)) << "\n");
5688 
5689   return true;
5690 }
5691 
5692 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
5693   if (RdxKind != RecurKind::Or)
5694     return false;
5695 
5696   unsigned NumElts = VectorizableTree[0]->Scalars.size();
5697   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
5698   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
5699                                     /* MatchOr */ false);
5700 }
5701 
5702 bool BoUpSLP::isLoadCombineCandidate() const {
5703   // Peek through a final sequence of stores and check if all operations are
5704   // likely to be load-combined.
5705   unsigned NumElts = VectorizableTree[0]->Scalars.size();
5706   for (Value *Scalar : VectorizableTree[0]->Scalars) {
5707     Value *X;
5708     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
5709         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
5710       return false;
5711   }
5712   return true;
5713 }
5714 
5715 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
5716   // No need to vectorize inserts of gathered values.
5717   if (VectorizableTree.size() == 2 &&
5718       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
5719       VectorizableTree[1]->State == TreeEntry::NeedToGather)
5720     return true;
5721 
5722   // We can vectorize the tree if its size is greater than or equal to the
5723   // minimum size specified by the MinTreeSize command line option.
5724   if (VectorizableTree.size() >= MinTreeSize)
5725     return false;
5726 
5727   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
5728   // can vectorize it if we can prove it fully vectorizable.
5729   if (isFullyVectorizableTinyTree(ForReduction))
5730     return false;
5731 
5732   assert(VectorizableTree.empty()
5733              ? ExternalUses.empty()
5734              : true && "We shouldn't have any external users");
5735 
5736   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
5737   // vectorizable.
5738   return true;
5739 }
5740 
5741 InstructionCost BoUpSLP::getSpillCost() const {
5742   // Walk from the bottom of the tree to the top, tracking which values are
5743   // live. When we see a call instruction that is not part of our tree,
5744   // query TTI to see if there is a cost to keeping values live over it
5745   // (for example, if spills and fills are required).
5746   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
5747   InstructionCost Cost = 0;
5748 
5749   SmallPtrSet<Instruction*, 4> LiveValues;
5750   Instruction *PrevInst = nullptr;
5751 
5752   // The entries in VectorizableTree are not necessarily ordered by their
5753   // position in basic blocks. Collect them and order them by dominance so later
5754   // instructions are guaranteed to be visited first. For instructions in
5755   // different basic blocks, we only scan to the beginning of the block, so
5756   // their order does not matter, as long as all instructions in a basic block
5757   // are grouped together. Using dominance ensures a deterministic order.
5758   SmallVector<Instruction *, 16> OrderedScalars;
5759   for (const auto &TEPtr : VectorizableTree) {
5760     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
5761     if (!Inst)
5762       continue;
5763     OrderedScalars.push_back(Inst);
5764   }
5765   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
5766     auto *NodeA = DT->getNode(A->getParent());
5767     auto *NodeB = DT->getNode(B->getParent());
5768     assert(NodeA && "Should only process reachable instructions");
5769     assert(NodeB && "Should only process reachable instructions");
5770     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
5771            "Different nodes should have different DFS numbers");
5772     if (NodeA != NodeB)
5773       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
5774     return B->comesBefore(A);
5775   });
5776 
5777   for (Instruction *Inst : OrderedScalars) {
5778     if (!PrevInst) {
5779       PrevInst = Inst;
5780       continue;
5781     }
5782 
5783     // Update LiveValues.
5784     LiveValues.erase(PrevInst);
5785     for (auto &J : PrevInst->operands()) {
5786       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
5787         LiveValues.insert(cast<Instruction>(&*J));
5788     }
5789 
5790     LLVM_DEBUG({
5791       dbgs() << "SLP: #LV: " << LiveValues.size();
5792       for (auto *X : LiveValues)
5793         dbgs() << " " << X->getName();
5794       dbgs() << ", Looking at ";
5795       Inst->dump();
5796     });
5797 
5798     // Now find the sequence of instructions between PrevInst and Inst.
5799     unsigned NumCalls = 0;
5800     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
5801                                  PrevInstIt =
5802                                      PrevInst->getIterator().getReverse();
5803     while (InstIt != PrevInstIt) {
5804       if (PrevInstIt == PrevInst->getParent()->rend()) {
5805         PrevInstIt = Inst->getParent()->rbegin();
5806         continue;
5807       }
5808 
5809       // Debug information does not impact spill cost.
5810       if ((isa<CallInst>(&*PrevInstIt) &&
5811            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
5812           &*PrevInstIt != PrevInst)
5813         NumCalls++;
5814 
5815       ++PrevInstIt;
5816     }
5817 
5818     if (NumCalls) {
5819       SmallVector<Type*, 4> V;
5820       for (auto *II : LiveValues) {
5821         auto *ScalarTy = II->getType();
5822         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
5823           ScalarTy = VectorTy->getElementType();
5824         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
5825       }
5826       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
5827     }
5828 
5829     PrevInst = Inst;
5830   }
5831 
5832   return Cost;
5833 }
5834 
5835 /// Check if two insertelement instructions are from the same buildvector.
5836 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU,
5837                                             InsertElementInst *V) {
5838   // Instructions must be from the same basic blocks.
5839   if (VU->getParent() != V->getParent())
5840     return false;
5841   // Checks if 2 insertelements are from the same buildvector.
5842   if (VU->getType() != V->getType())
5843     return false;
5844   // Multiple used inserts are separate nodes.
5845   if (!VU->hasOneUse() && !V->hasOneUse())
5846     return false;
5847   auto *IE1 = VU;
5848   auto *IE2 = V;
5849   // Go through the vector operand of insertelement instructions trying to find
5850   // either VU as the original vector for IE2 or V as the original vector for
5851   // IE1.
5852   do {
5853     if (IE2 == VU || IE1 == V)
5854       return true;
5855     if (IE1) {
5856       if (IE1 != VU && !IE1->hasOneUse())
5857         IE1 = nullptr;
5858       else
5859         IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
5860     }
5861     if (IE2) {
5862       if (IE2 != V && !IE2->hasOneUse())
5863         IE2 = nullptr;
5864       else
5865         IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
5866     }
5867   } while (IE1 || IE2);
5868   return false;
5869 }
5870 
5871 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
5872   InstructionCost Cost = 0;
5873   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
5874                     << VectorizableTree.size() << ".\n");
5875 
5876   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
5877 
5878   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
5879     TreeEntry &TE = *VectorizableTree[I].get();
5880 
5881     InstructionCost C = getEntryCost(&TE, VectorizedVals);
5882     Cost += C;
5883     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
5884                       << " for bundle that starts with " << *TE.Scalars[0]
5885                       << ".\n"
5886                       << "SLP: Current total cost = " << Cost << "\n");
5887   }
5888 
5889   SmallPtrSet<Value *, 16> ExtractCostCalculated;
5890   InstructionCost ExtractCost = 0;
5891   SmallVector<unsigned> VF;
5892   SmallVector<SmallVector<int>> ShuffleMask;
5893   SmallVector<Value *> FirstUsers;
5894   SmallVector<APInt> DemandedElts;
5895   for (ExternalUser &EU : ExternalUses) {
5896     // We only add extract cost once for the same scalar.
5897     if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
5898         !ExtractCostCalculated.insert(EU.Scalar).second)
5899       continue;
5900 
5901     // Uses by ephemeral values are free (because the ephemeral value will be
5902     // removed prior to code generation, and so the extraction will be
5903     // removed as well).
5904     if (EphValues.count(EU.User))
5905       continue;
5906 
5907     // No extract cost for vector "scalar"
5908     if (isa<FixedVectorType>(EU.Scalar->getType()))
5909       continue;
5910 
5911     // Already counted the cost for external uses when tried to adjust the cost
5912     // for extractelements, no need to add it again.
5913     if (isa<ExtractElementInst>(EU.Scalar))
5914       continue;
5915 
5916     // If found user is an insertelement, do not calculate extract cost but try
5917     // to detect it as a final shuffled/identity match.
5918     if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
5919       if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
5920         unsigned InsertIdx = *getInsertIndex(VU);
5921         auto *It = find_if(FirstUsers, [VU](Value *V) {
5922           return areTwoInsertFromSameBuildVector(VU,
5923                                                  cast<InsertElementInst>(V));
5924         });
5925         int VecId = -1;
5926         if (It == FirstUsers.end()) {
5927           VF.push_back(FTy->getNumElements());
5928           ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
5929           // Find the insertvector, vectorized in tree, if any.
5930           Value *Base = VU;
5931           while (isa<InsertElementInst>(Base)) {
5932             // Build the mask for the vectorized insertelement instructions.
5933             if (const TreeEntry *E = getTreeEntry(Base)) {
5934               VU = cast<InsertElementInst>(Base);
5935               do {
5936                 int Idx = E->findLaneForValue(Base);
5937                 ShuffleMask.back()[Idx] = Idx;
5938                 Base = cast<InsertElementInst>(Base)->getOperand(0);
5939               } while (E == getTreeEntry(Base));
5940               break;
5941             }
5942             Base = cast<InsertElementInst>(Base)->getOperand(0);
5943           }
5944           FirstUsers.push_back(VU);
5945           DemandedElts.push_back(APInt::getZero(VF.back()));
5946           VecId = FirstUsers.size() - 1;
5947         } else {
5948           VecId = std::distance(FirstUsers.begin(), It);
5949         }
5950         ShuffleMask[VecId][InsertIdx] = EU.Lane;
5951         DemandedElts[VecId].setBit(InsertIdx);
5952         continue;
5953       }
5954     }
5955 
5956     // If we plan to rewrite the tree in a smaller type, we will need to sign
5957     // extend the extracted value back to the original type. Here, we account
5958     // for the extract and the added cost of the sign extend if needed.
5959     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
5960     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5961     if (MinBWs.count(ScalarRoot)) {
5962       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5963       auto Extend =
5964           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
5965       VecTy = FixedVectorType::get(MinTy, BundleWidth);
5966       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
5967                                                    VecTy, EU.Lane);
5968     } else {
5969       ExtractCost +=
5970           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
5971     }
5972   }
5973 
5974   InstructionCost SpillCost = getSpillCost();
5975   Cost += SpillCost + ExtractCost;
5976   if (FirstUsers.size() == 1) {
5977     int Limit = ShuffleMask.front().size() * 2;
5978     if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) &&
5979         !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) {
5980       InstructionCost C = TTI->getShuffleCost(
5981           TTI::SK_PermuteSingleSrc,
5982           cast<FixedVectorType>(FirstUsers.front()->getType()),
5983           ShuffleMask.front());
5984       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
5985                         << " for final shuffle of insertelement external users "
5986                         << *VectorizableTree.front()->Scalars.front() << ".\n"
5987                         << "SLP: Current total cost = " << Cost << "\n");
5988       Cost += C;
5989     }
5990     InstructionCost InsertCost = TTI->getScalarizationOverhead(
5991         cast<FixedVectorType>(FirstUsers.front()->getType()),
5992         DemandedElts.front(), /*Insert*/ true, /*Extract*/ false);
5993     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
5994                       << " for insertelements gather.\n"
5995                       << "SLP: Current total cost = " << Cost << "\n");
5996     Cost -= InsertCost;
5997   } else if (FirstUsers.size() >= 2) {
5998     unsigned MaxVF = *std::max_element(VF.begin(), VF.end());
5999     // Combined masks of the first 2 vectors.
6000     SmallVector<int> CombinedMask(MaxVF, UndefMaskElem);
6001     copy(ShuffleMask.front(), CombinedMask.begin());
6002     APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF);
6003     auto *VecTy = FixedVectorType::get(
6004         cast<VectorType>(FirstUsers.front()->getType())->getElementType(),
6005         MaxVF);
6006     for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) {
6007       if (ShuffleMask[1][I] != UndefMaskElem) {
6008         CombinedMask[I] = ShuffleMask[1][I] + MaxVF;
6009         CombinedDemandedElts.setBit(I);
6010       }
6011     }
6012     InstructionCost C =
6013         TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6014     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6015                       << " for final shuffle of vector node and external "
6016                          "insertelement users "
6017                       << *VectorizableTree.front()->Scalars.front() << ".\n"
6018                       << "SLP: Current total cost = " << Cost << "\n");
6019     Cost += C;
6020     InstructionCost InsertCost = TTI->getScalarizationOverhead(
6021         VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false);
6022     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
6023                       << " for insertelements gather.\n"
6024                       << "SLP: Current total cost = " << Cost << "\n");
6025     Cost -= InsertCost;
6026     for (int I = 2, E = FirstUsers.size(); I < E; ++I) {
6027       // Other elements - permutation of 2 vectors (the initial one and the
6028       // next Ith incoming vector).
6029       unsigned VF = ShuffleMask[I].size();
6030       for (unsigned Idx = 0; Idx < VF; ++Idx) {
6031         int Mask = ShuffleMask[I][Idx];
6032         if (Mask != UndefMaskElem)
6033           CombinedMask[Idx] = MaxVF + Mask;
6034         else if (CombinedMask[Idx] != UndefMaskElem)
6035           CombinedMask[Idx] = Idx;
6036       }
6037       for (unsigned Idx = VF; Idx < MaxVF; ++Idx)
6038         if (CombinedMask[Idx] != UndefMaskElem)
6039           CombinedMask[Idx] = Idx;
6040       InstructionCost C =
6041           TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6042       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6043                         << " for final shuffle of vector node and external "
6044                            "insertelement users "
6045                         << *VectorizableTree.front()->Scalars.front() << ".\n"
6046                         << "SLP: Current total cost = " << Cost << "\n");
6047       Cost += C;
6048       InstructionCost InsertCost = TTI->getScalarizationOverhead(
6049           cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
6050           /*Insert*/ true, /*Extract*/ false);
6051       LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
6052                         << " for insertelements gather.\n"
6053                         << "SLP: Current total cost = " << Cost << "\n");
6054       Cost -= InsertCost;
6055     }
6056   }
6057 
6058 #ifndef NDEBUG
6059   SmallString<256> Str;
6060   {
6061     raw_svector_ostream OS(Str);
6062     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
6063        << "SLP: Extract Cost = " << ExtractCost << ".\n"
6064        << "SLP: Total Cost = " << Cost << ".\n";
6065   }
6066   LLVM_DEBUG(dbgs() << Str);
6067   if (ViewSLPTree)
6068     ViewGraph(this, "SLP" + F->getName(), false, Str);
6069 #endif
6070 
6071   return Cost;
6072 }
6073 
6074 Optional<TargetTransformInfo::ShuffleKind>
6075 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
6076                                SmallVectorImpl<const TreeEntry *> &Entries) {
6077   // TODO: currently checking only for Scalars in the tree entry, need to count
6078   // reused elements too for better cost estimation.
6079   Mask.assign(TE->Scalars.size(), UndefMaskElem);
6080   Entries.clear();
6081   // Build a lists of values to tree entries.
6082   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
6083   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
6084     if (EntryPtr.get() == TE)
6085       break;
6086     if (EntryPtr->State != TreeEntry::NeedToGather)
6087       continue;
6088     for (Value *V : EntryPtr->Scalars)
6089       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
6090   }
6091   // Find all tree entries used by the gathered values. If no common entries
6092   // found - not a shuffle.
6093   // Here we build a set of tree nodes for each gathered value and trying to
6094   // find the intersection between these sets. If we have at least one common
6095   // tree node for each gathered value - we have just a permutation of the
6096   // single vector. If we have 2 different sets, we're in situation where we
6097   // have a permutation of 2 input vectors.
6098   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
6099   DenseMap<Value *, int> UsedValuesEntry;
6100   for (Value *V : TE->Scalars) {
6101     if (isa<UndefValue>(V))
6102       continue;
6103     // Build a list of tree entries where V is used.
6104     SmallPtrSet<const TreeEntry *, 4> VToTEs;
6105     auto It = ValueToTEs.find(V);
6106     if (It != ValueToTEs.end())
6107       VToTEs = It->second;
6108     if (const TreeEntry *VTE = getTreeEntry(V))
6109       VToTEs.insert(VTE);
6110     if (VToTEs.empty())
6111       return None;
6112     if (UsedTEs.empty()) {
6113       // The first iteration, just insert the list of nodes to vector.
6114       UsedTEs.push_back(VToTEs);
6115     } else {
6116       // Need to check if there are any previously used tree nodes which use V.
6117       // If there are no such nodes, consider that we have another one input
6118       // vector.
6119       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
6120       unsigned Idx = 0;
6121       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
6122         // Do we have a non-empty intersection of previously listed tree entries
6123         // and tree entries using current V?
6124         set_intersect(VToTEs, Set);
6125         if (!VToTEs.empty()) {
6126           // Yes, write the new subset and continue analysis for the next
6127           // scalar.
6128           Set.swap(VToTEs);
6129           break;
6130         }
6131         VToTEs = SavedVToTEs;
6132         ++Idx;
6133       }
6134       // No non-empty intersection found - need to add a second set of possible
6135       // source vectors.
6136       if (Idx == UsedTEs.size()) {
6137         // If the number of input vectors is greater than 2 - not a permutation,
6138         // fallback to the regular gather.
6139         if (UsedTEs.size() == 2)
6140           return None;
6141         UsedTEs.push_back(SavedVToTEs);
6142         Idx = UsedTEs.size() - 1;
6143       }
6144       UsedValuesEntry.try_emplace(V, Idx);
6145     }
6146   }
6147 
6148   unsigned VF = 0;
6149   if (UsedTEs.size() == 1) {
6150     // Try to find the perfect match in another gather node at first.
6151     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
6152       return EntryPtr->isSame(TE->Scalars);
6153     });
6154     if (It != UsedTEs.front().end()) {
6155       Entries.push_back(*It);
6156       std::iota(Mask.begin(), Mask.end(), 0);
6157       return TargetTransformInfo::SK_PermuteSingleSrc;
6158     }
6159     // No perfect match, just shuffle, so choose the first tree node.
6160     Entries.push_back(*UsedTEs.front().begin());
6161   } else {
6162     // Try to find nodes with the same vector factor.
6163     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
6164     DenseMap<int, const TreeEntry *> VFToTE;
6165     for (const TreeEntry *TE : UsedTEs.front())
6166       VFToTE.try_emplace(TE->getVectorFactor(), TE);
6167     for (const TreeEntry *TE : UsedTEs.back()) {
6168       auto It = VFToTE.find(TE->getVectorFactor());
6169       if (It != VFToTE.end()) {
6170         VF = It->first;
6171         Entries.push_back(It->second);
6172         Entries.push_back(TE);
6173         break;
6174       }
6175     }
6176     // No 2 source vectors with the same vector factor - give up and do regular
6177     // gather.
6178     if (Entries.empty())
6179       return None;
6180   }
6181 
6182   // Build a shuffle mask for better cost estimation and vector emission.
6183   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
6184     Value *V = TE->Scalars[I];
6185     if (isa<UndefValue>(V))
6186       continue;
6187     unsigned Idx = UsedValuesEntry.lookup(V);
6188     const TreeEntry *VTE = Entries[Idx];
6189     int FoundLane = VTE->findLaneForValue(V);
6190     Mask[I] = Idx * VF + FoundLane;
6191     // Extra check required by isSingleSourceMaskImpl function (called by
6192     // ShuffleVectorInst::isSingleSourceMask).
6193     if (Mask[I] >= 2 * E)
6194       return None;
6195   }
6196   switch (Entries.size()) {
6197   case 1:
6198     return TargetTransformInfo::SK_PermuteSingleSrc;
6199   case 2:
6200     return TargetTransformInfo::SK_PermuteTwoSrc;
6201   default:
6202     break;
6203   }
6204   return None;
6205 }
6206 
6207 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
6208                                        const APInt &ShuffledIndices,
6209                                        bool NeedToShuffle) const {
6210   InstructionCost Cost =
6211       TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
6212                                     /*Extract*/ false);
6213   if (NeedToShuffle)
6214     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
6215   return Cost;
6216 }
6217 
6218 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
6219   // Find the type of the operands in VL.
6220   Type *ScalarTy = VL[0]->getType();
6221   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
6222     ScalarTy = SI->getValueOperand()->getType();
6223   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
6224   bool DuplicateNonConst = false;
6225   // Find the cost of inserting/extracting values from the vector.
6226   // Check if the same elements are inserted several times and count them as
6227   // shuffle candidates.
6228   APInt ShuffledElements = APInt::getZero(VL.size());
6229   DenseSet<Value *> UniqueElements;
6230   // Iterate in reverse order to consider insert elements with the high cost.
6231   for (unsigned I = VL.size(); I > 0; --I) {
6232     unsigned Idx = I - 1;
6233     // No need to shuffle duplicates for constants.
6234     if (isConstant(VL[Idx])) {
6235       ShuffledElements.setBit(Idx);
6236       continue;
6237     }
6238     if (!UniqueElements.insert(VL[Idx]).second) {
6239       DuplicateNonConst = true;
6240       ShuffledElements.setBit(Idx);
6241     }
6242   }
6243   return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
6244 }
6245 
6246 // Perform operand reordering on the instructions in VL and return the reordered
6247 // operands in Left and Right.
6248 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
6249                                              SmallVectorImpl<Value *> &Left,
6250                                              SmallVectorImpl<Value *> &Right,
6251                                              const DataLayout &DL,
6252                                              ScalarEvolution &SE,
6253                                              const BoUpSLP &R) {
6254   if (VL.empty())
6255     return;
6256   VLOperands Ops(VL, DL, SE, R);
6257   // Reorder the operands in place.
6258   Ops.reorder();
6259   Left = Ops.getVL(0);
6260   Right = Ops.getVL(1);
6261 }
6262 
6263 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
6264   // Get the basic block this bundle is in. All instructions in the bundle
6265   // should be in this block.
6266   auto *Front = E->getMainOp();
6267   auto *BB = Front->getParent();
6268   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
6269     auto *I = cast<Instruction>(V);
6270     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
6271   }));
6272 
6273   // The last instruction in the bundle in program order.
6274   Instruction *LastInst = nullptr;
6275 
6276   // Find the last instruction. The common case should be that BB has been
6277   // scheduled, and the last instruction is VL.back(). So we start with
6278   // VL.back() and iterate over schedule data until we reach the end of the
6279   // bundle. The end of the bundle is marked by null ScheduleData.
6280   if (BlocksSchedules.count(BB)) {
6281     auto *Bundle =
6282         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
6283     if (Bundle && Bundle->isPartOfBundle())
6284       for (; Bundle; Bundle = Bundle->NextInBundle)
6285         if (Bundle->OpValue == Bundle->Inst)
6286           LastInst = Bundle->Inst;
6287   }
6288 
6289   // LastInst can still be null at this point if there's either not an entry
6290   // for BB in BlocksSchedules or there's no ScheduleData available for
6291   // VL.back(). This can be the case if buildTree_rec aborts for various
6292   // reasons (e.g., the maximum recursion depth is reached, the maximum region
6293   // size is reached, etc.). ScheduleData is initialized in the scheduling
6294   // "dry-run".
6295   //
6296   // If this happens, we can still find the last instruction by brute force. We
6297   // iterate forwards from Front (inclusive) until we either see all
6298   // instructions in the bundle or reach the end of the block. If Front is the
6299   // last instruction in program order, LastInst will be set to Front, and we
6300   // will visit all the remaining instructions in the block.
6301   //
6302   // One of the reasons we exit early from buildTree_rec is to place an upper
6303   // bound on compile-time. Thus, taking an additional compile-time hit here is
6304   // not ideal. However, this should be exceedingly rare since it requires that
6305   // we both exit early from buildTree_rec and that the bundle be out-of-order
6306   // (causing us to iterate all the way to the end of the block).
6307   if (!LastInst) {
6308     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
6309     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
6310       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
6311         LastInst = &I;
6312       if (Bundle.empty())
6313         break;
6314     }
6315   }
6316   assert(LastInst && "Failed to find last instruction in bundle");
6317 
6318   // Set the insertion point after the last instruction in the bundle. Set the
6319   // debug location to Front.
6320   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
6321   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
6322 }
6323 
6324 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
6325   // List of instructions/lanes from current block and/or the blocks which are
6326   // part of the current loop. These instructions will be inserted at the end to
6327   // make it possible to optimize loops and hoist invariant instructions out of
6328   // the loops body with better chances for success.
6329   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
6330   SmallSet<int, 4> PostponedIndices;
6331   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
6332   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
6333     SmallPtrSet<BasicBlock *, 4> Visited;
6334     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
6335       InsertBB = InsertBB->getSinglePredecessor();
6336     return InsertBB && InsertBB == InstBB;
6337   };
6338   for (int I = 0, E = VL.size(); I < E; ++I) {
6339     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
6340       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
6341            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
6342           PostponedIndices.insert(I).second)
6343         PostponedInsts.emplace_back(Inst, I);
6344   }
6345 
6346   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
6347     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
6348     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
6349     if (!InsElt)
6350       return Vec;
6351     GatherShuffleSeq.insert(InsElt);
6352     CSEBlocks.insert(InsElt->getParent());
6353     // Add to our 'need-to-extract' list.
6354     if (TreeEntry *Entry = getTreeEntry(V)) {
6355       // Find which lane we need to extract.
6356       unsigned FoundLane = Entry->findLaneForValue(V);
6357       ExternalUses.emplace_back(V, InsElt, FoundLane);
6358     }
6359     return Vec;
6360   };
6361   Value *Val0 =
6362       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
6363   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
6364   Value *Vec = PoisonValue::get(VecTy);
6365   SmallVector<int> NonConsts;
6366   // Insert constant values at first.
6367   for (int I = 0, E = VL.size(); I < E; ++I) {
6368     if (PostponedIndices.contains(I))
6369       continue;
6370     if (!isConstant(VL[I])) {
6371       NonConsts.push_back(I);
6372       continue;
6373     }
6374     Vec = CreateInsertElement(Vec, VL[I], I);
6375   }
6376   // Insert non-constant values.
6377   for (int I : NonConsts)
6378     Vec = CreateInsertElement(Vec, VL[I], I);
6379   // Append instructions, which are/may be part of the loop, in the end to make
6380   // it possible to hoist non-loop-based instructions.
6381   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
6382     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
6383 
6384   return Vec;
6385 }
6386 
6387 namespace {
6388 /// Merges shuffle masks and emits final shuffle instruction, if required.
6389 class ShuffleInstructionBuilder {
6390   IRBuilderBase &Builder;
6391   const unsigned VF = 0;
6392   bool IsFinalized = false;
6393   SmallVector<int, 4> Mask;
6394   /// Holds all of the instructions that we gathered.
6395   SetVector<Instruction *> &GatherShuffleSeq;
6396   /// A list of blocks that we are going to CSE.
6397   SetVector<BasicBlock *> &CSEBlocks;
6398 
6399 public:
6400   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
6401                             SetVector<Instruction *> &GatherShuffleSeq,
6402                             SetVector<BasicBlock *> &CSEBlocks)
6403       : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
6404         CSEBlocks(CSEBlocks) {}
6405 
6406   /// Adds a mask, inverting it before applying.
6407   void addInversedMask(ArrayRef<unsigned> SubMask) {
6408     if (SubMask.empty())
6409       return;
6410     SmallVector<int, 4> NewMask;
6411     inversePermutation(SubMask, NewMask);
6412     addMask(NewMask);
6413   }
6414 
6415   /// Functions adds masks, merging them into  single one.
6416   void addMask(ArrayRef<unsigned> SubMask) {
6417     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
6418     addMask(NewMask);
6419   }
6420 
6421   void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
6422 
6423   Value *finalize(Value *V) {
6424     IsFinalized = true;
6425     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
6426     if (VF == ValueVF && Mask.empty())
6427       return V;
6428     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
6429     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
6430     addMask(NormalizedMask);
6431 
6432     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
6433       return V;
6434     Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
6435     if (auto *I = dyn_cast<Instruction>(Vec)) {
6436       GatherShuffleSeq.insert(I);
6437       CSEBlocks.insert(I->getParent());
6438     }
6439     return Vec;
6440   }
6441 
6442   ~ShuffleInstructionBuilder() {
6443     assert((IsFinalized || Mask.empty()) &&
6444            "Shuffle construction must be finalized.");
6445   }
6446 };
6447 } // namespace
6448 
6449 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
6450   unsigned VF = VL.size();
6451   InstructionsState S = getSameOpcode(VL);
6452   if (S.getOpcode()) {
6453     if (TreeEntry *E = getTreeEntry(S.OpValue))
6454       if (E->isSame(VL)) {
6455         Value *V = vectorizeTree(E);
6456         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
6457           if (!E->ReuseShuffleIndices.empty()) {
6458             // Reshuffle to get only unique values.
6459             // If some of the scalars are duplicated in the vectorization tree
6460             // entry, we do not vectorize them but instead generate a mask for
6461             // the reuses. But if there are several users of the same entry,
6462             // they may have different vectorization factors. This is especially
6463             // important for PHI nodes. In this case, we need to adapt the
6464             // resulting instruction for the user vectorization factor and have
6465             // to reshuffle it again to take only unique elements of the vector.
6466             // Without this code the function incorrectly returns reduced vector
6467             // instruction with the same elements, not with the unique ones.
6468 
6469             // block:
6470             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
6471             // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
6472             // ... (use %2)
6473             // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
6474             // br %block
6475             SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
6476             SmallSet<int, 4> UsedIdxs;
6477             int Pos = 0;
6478             int Sz = VL.size();
6479             for (int Idx : E->ReuseShuffleIndices) {
6480               if (Idx != Sz && Idx != UndefMaskElem &&
6481                   UsedIdxs.insert(Idx).second)
6482                 UniqueIdxs[Idx] = Pos;
6483               ++Pos;
6484             }
6485             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
6486                                             "less than original vector size.");
6487             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
6488             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
6489           } else {
6490             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
6491                    "Expected vectorization factor less "
6492                    "than original vector size.");
6493             SmallVector<int> UniformMask(VF, 0);
6494             std::iota(UniformMask.begin(), UniformMask.end(), 0);
6495             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
6496           }
6497           if (auto *I = dyn_cast<Instruction>(V)) {
6498             GatherShuffleSeq.insert(I);
6499             CSEBlocks.insert(I->getParent());
6500           }
6501         }
6502         return V;
6503       }
6504   }
6505 
6506   // Check that every instruction appears once in this bundle.
6507   SmallVector<int> ReuseShuffleIndicies;
6508   SmallVector<Value *> UniqueValues;
6509   if (VL.size() > 2) {
6510     DenseMap<Value *, unsigned> UniquePositions;
6511     unsigned NumValues =
6512         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
6513                                     return !isa<UndefValue>(V);
6514                                   }).base());
6515     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
6516     int UniqueVals = 0;
6517     for (Value *V : VL.drop_back(VL.size() - VF)) {
6518       if (isa<UndefValue>(V)) {
6519         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
6520         continue;
6521       }
6522       if (isConstant(V)) {
6523         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
6524         UniqueValues.emplace_back(V);
6525         continue;
6526       }
6527       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
6528       ReuseShuffleIndicies.emplace_back(Res.first->second);
6529       if (Res.second) {
6530         UniqueValues.emplace_back(V);
6531         ++UniqueVals;
6532       }
6533     }
6534     if (UniqueVals == 1 && UniqueValues.size() == 1) {
6535       // Emit pure splat vector.
6536       ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
6537                                   UndefMaskElem);
6538     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
6539       ReuseShuffleIndicies.clear();
6540       UniqueValues.clear();
6541       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
6542     }
6543     UniqueValues.append(VF - UniqueValues.size(),
6544                         PoisonValue::get(VL[0]->getType()));
6545     VL = UniqueValues;
6546   }
6547 
6548   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6549                                            CSEBlocks);
6550   Value *Vec = gather(VL);
6551   if (!ReuseShuffleIndicies.empty()) {
6552     ShuffleBuilder.addMask(ReuseShuffleIndicies);
6553     Vec = ShuffleBuilder.finalize(Vec);
6554   }
6555   return Vec;
6556 }
6557 
6558 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
6559   IRBuilder<>::InsertPointGuard Guard(Builder);
6560 
6561   if (E->VectorizedValue) {
6562     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
6563     return E->VectorizedValue;
6564   }
6565 
6566   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
6567   unsigned VF = E->getVectorFactor();
6568   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6569                                            CSEBlocks);
6570   if (E->State == TreeEntry::NeedToGather) {
6571     if (E->getMainOp())
6572       setInsertPointAfterBundle(E);
6573     Value *Vec;
6574     SmallVector<int> Mask;
6575     SmallVector<const TreeEntry *> Entries;
6576     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
6577         isGatherShuffledEntry(E, Mask, Entries);
6578     if (Shuffle.hasValue()) {
6579       assert((Entries.size() == 1 || Entries.size() == 2) &&
6580              "Expected shuffle of 1 or 2 entries.");
6581       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
6582                                         Entries.back()->VectorizedValue, Mask);
6583       if (auto *I = dyn_cast<Instruction>(Vec)) {
6584         GatherShuffleSeq.insert(I);
6585         CSEBlocks.insert(I->getParent());
6586       }
6587     } else {
6588       Vec = gather(E->Scalars);
6589     }
6590     if (NeedToShuffleReuses) {
6591       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6592       Vec = ShuffleBuilder.finalize(Vec);
6593     }
6594     E->VectorizedValue = Vec;
6595     return Vec;
6596   }
6597 
6598   assert((E->State == TreeEntry::Vectorize ||
6599           E->State == TreeEntry::ScatterVectorize) &&
6600          "Unhandled state");
6601   unsigned ShuffleOrOp =
6602       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
6603   Instruction *VL0 = E->getMainOp();
6604   Type *ScalarTy = VL0->getType();
6605   if (auto *Store = dyn_cast<StoreInst>(VL0))
6606     ScalarTy = Store->getValueOperand()->getType();
6607   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
6608     ScalarTy = IE->getOperand(1)->getType();
6609   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
6610   switch (ShuffleOrOp) {
6611     case Instruction::PHI: {
6612       assert(
6613           (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) &&
6614           "PHI reordering is free.");
6615       auto *PH = cast<PHINode>(VL0);
6616       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
6617       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6618       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
6619       Value *V = NewPhi;
6620       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6621       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6622       V = ShuffleBuilder.finalize(V);
6623 
6624       E->VectorizedValue = V;
6625 
6626       // PHINodes may have multiple entries from the same block. We want to
6627       // visit every block once.
6628       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
6629 
6630       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
6631         ValueList Operands;
6632         BasicBlock *IBB = PH->getIncomingBlock(i);
6633 
6634         if (!VisitedBBs.insert(IBB).second) {
6635           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
6636           continue;
6637         }
6638 
6639         Builder.SetInsertPoint(IBB->getTerminator());
6640         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6641         Value *Vec = vectorizeTree(E->getOperand(i));
6642         NewPhi->addIncoming(Vec, IBB);
6643       }
6644 
6645       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
6646              "Invalid number of incoming values");
6647       return V;
6648     }
6649 
6650     case Instruction::ExtractElement: {
6651       Value *V = E->getSingleOperand(0);
6652       Builder.SetInsertPoint(VL0);
6653       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6654       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6655       V = ShuffleBuilder.finalize(V);
6656       E->VectorizedValue = V;
6657       return V;
6658     }
6659     case Instruction::ExtractValue: {
6660       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
6661       Builder.SetInsertPoint(LI);
6662       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
6663       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
6664       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
6665       Value *NewV = propagateMetadata(V, E->Scalars);
6666       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6667       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6668       NewV = ShuffleBuilder.finalize(NewV);
6669       E->VectorizedValue = NewV;
6670       return NewV;
6671     }
6672     case Instruction::InsertElement: {
6673       assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
6674       Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
6675       Value *V = vectorizeTree(E->getOperand(1));
6676 
6677       // Create InsertVector shuffle if necessary
6678       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6679         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
6680       }));
6681       const unsigned NumElts =
6682           cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
6683       const unsigned NumScalars = E->Scalars.size();
6684 
6685       unsigned Offset = *getInsertIndex(VL0);
6686       assert(Offset < NumElts && "Failed to find vector index offset");
6687 
6688       // Create shuffle to resize vector
6689       SmallVector<int> Mask;
6690       if (!E->ReorderIndices.empty()) {
6691         inversePermutation(E->ReorderIndices, Mask);
6692         Mask.append(NumElts - NumScalars, UndefMaskElem);
6693       } else {
6694         Mask.assign(NumElts, UndefMaskElem);
6695         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
6696       }
6697       // Create InsertVector shuffle if necessary
6698       bool IsIdentity = true;
6699       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
6700       Mask.swap(PrevMask);
6701       for (unsigned I = 0; I < NumScalars; ++I) {
6702         Value *Scalar = E->Scalars[PrevMask[I]];
6703         unsigned InsertIdx = *getInsertIndex(Scalar);
6704         IsIdentity &= InsertIdx - Offset == I;
6705         Mask[InsertIdx - Offset] = I;
6706       }
6707       if (!IsIdentity || NumElts != NumScalars) {
6708         V = Builder.CreateShuffleVector(V, Mask);
6709         if (auto *I = dyn_cast<Instruction>(V)) {
6710           GatherShuffleSeq.insert(I);
6711           CSEBlocks.insert(I->getParent());
6712         }
6713       }
6714 
6715       if ((!IsIdentity || Offset != 0 ||
6716            !isUndefVector(FirstInsert->getOperand(0))) &&
6717           NumElts != NumScalars) {
6718         SmallVector<int> InsertMask(NumElts);
6719         std::iota(InsertMask.begin(), InsertMask.end(), 0);
6720         for (unsigned I = 0; I < NumElts; I++) {
6721           if (Mask[I] != UndefMaskElem)
6722             InsertMask[Offset + I] = NumElts + I;
6723         }
6724 
6725         V = Builder.CreateShuffleVector(
6726             FirstInsert->getOperand(0), V, InsertMask,
6727             cast<Instruction>(E->Scalars.back())->getName());
6728         if (auto *I = dyn_cast<Instruction>(V)) {
6729           GatherShuffleSeq.insert(I);
6730           CSEBlocks.insert(I->getParent());
6731         }
6732       }
6733 
6734       ++NumVectorInstructions;
6735       E->VectorizedValue = V;
6736       return V;
6737     }
6738     case Instruction::ZExt:
6739     case Instruction::SExt:
6740     case Instruction::FPToUI:
6741     case Instruction::FPToSI:
6742     case Instruction::FPExt:
6743     case Instruction::PtrToInt:
6744     case Instruction::IntToPtr:
6745     case Instruction::SIToFP:
6746     case Instruction::UIToFP:
6747     case Instruction::Trunc:
6748     case Instruction::FPTrunc:
6749     case Instruction::BitCast: {
6750       setInsertPointAfterBundle(E);
6751 
6752       Value *InVec = vectorizeTree(E->getOperand(0));
6753 
6754       if (E->VectorizedValue) {
6755         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6756         return E->VectorizedValue;
6757       }
6758 
6759       auto *CI = cast<CastInst>(VL0);
6760       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
6761       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6762       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6763       V = ShuffleBuilder.finalize(V);
6764 
6765       E->VectorizedValue = V;
6766       ++NumVectorInstructions;
6767       return V;
6768     }
6769     case Instruction::FCmp:
6770     case Instruction::ICmp: {
6771       setInsertPointAfterBundle(E);
6772 
6773       Value *L = vectorizeTree(E->getOperand(0));
6774       Value *R = vectorizeTree(E->getOperand(1));
6775 
6776       if (E->VectorizedValue) {
6777         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6778         return E->VectorizedValue;
6779       }
6780 
6781       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
6782       Value *V = Builder.CreateCmp(P0, L, R);
6783       propagateIRFlags(V, E->Scalars, VL0);
6784       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6785       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6786       V = ShuffleBuilder.finalize(V);
6787 
6788       E->VectorizedValue = V;
6789       ++NumVectorInstructions;
6790       return V;
6791     }
6792     case Instruction::Select: {
6793       setInsertPointAfterBundle(E);
6794 
6795       Value *Cond = vectorizeTree(E->getOperand(0));
6796       Value *True = vectorizeTree(E->getOperand(1));
6797       Value *False = vectorizeTree(E->getOperand(2));
6798 
6799       if (E->VectorizedValue) {
6800         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6801         return E->VectorizedValue;
6802       }
6803 
6804       Value *V = Builder.CreateSelect(Cond, True, False);
6805       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6806       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6807       V = ShuffleBuilder.finalize(V);
6808 
6809       E->VectorizedValue = V;
6810       ++NumVectorInstructions;
6811       return V;
6812     }
6813     case Instruction::FNeg: {
6814       setInsertPointAfterBundle(E);
6815 
6816       Value *Op = vectorizeTree(E->getOperand(0));
6817 
6818       if (E->VectorizedValue) {
6819         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6820         return E->VectorizedValue;
6821       }
6822 
6823       Value *V = Builder.CreateUnOp(
6824           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
6825       propagateIRFlags(V, E->Scalars, VL0);
6826       if (auto *I = dyn_cast<Instruction>(V))
6827         V = propagateMetadata(I, E->Scalars);
6828 
6829       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6830       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6831       V = ShuffleBuilder.finalize(V);
6832 
6833       E->VectorizedValue = V;
6834       ++NumVectorInstructions;
6835 
6836       return V;
6837     }
6838     case Instruction::Add:
6839     case Instruction::FAdd:
6840     case Instruction::Sub:
6841     case Instruction::FSub:
6842     case Instruction::Mul:
6843     case Instruction::FMul:
6844     case Instruction::UDiv:
6845     case Instruction::SDiv:
6846     case Instruction::FDiv:
6847     case Instruction::URem:
6848     case Instruction::SRem:
6849     case Instruction::FRem:
6850     case Instruction::Shl:
6851     case Instruction::LShr:
6852     case Instruction::AShr:
6853     case Instruction::And:
6854     case Instruction::Or:
6855     case Instruction::Xor: {
6856       setInsertPointAfterBundle(E);
6857 
6858       Value *LHS = vectorizeTree(E->getOperand(0));
6859       Value *RHS = vectorizeTree(E->getOperand(1));
6860 
6861       if (E->VectorizedValue) {
6862         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6863         return E->VectorizedValue;
6864       }
6865 
6866       Value *V = Builder.CreateBinOp(
6867           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
6868           RHS);
6869       propagateIRFlags(V, E->Scalars, VL0);
6870       if (auto *I = dyn_cast<Instruction>(V))
6871         V = propagateMetadata(I, E->Scalars);
6872 
6873       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6874       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6875       V = ShuffleBuilder.finalize(V);
6876 
6877       E->VectorizedValue = V;
6878       ++NumVectorInstructions;
6879 
6880       return V;
6881     }
6882     case Instruction::Load: {
6883       // Loads are inserted at the head of the tree because we don't want to
6884       // sink them all the way down past store instructions.
6885       setInsertPointAfterBundle(E);
6886 
6887       LoadInst *LI = cast<LoadInst>(VL0);
6888       Instruction *NewLI;
6889       unsigned AS = LI->getPointerAddressSpace();
6890       Value *PO = LI->getPointerOperand();
6891       if (E->State == TreeEntry::Vectorize) {
6892 
6893         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
6894 
6895         // The pointer operand uses an in-tree scalar so we add the new BitCast
6896         // to ExternalUses list to make sure that an extract will be generated
6897         // in the future.
6898         if (TreeEntry *Entry = getTreeEntry(PO)) {
6899           // Find which lane we need to extract.
6900           unsigned FoundLane = Entry->findLaneForValue(PO);
6901           ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane);
6902         }
6903 
6904         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
6905       } else {
6906         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
6907         Value *VecPtr = vectorizeTree(E->getOperand(0));
6908         // Use the minimum alignment of the gathered loads.
6909         Align CommonAlignment = LI->getAlign();
6910         for (Value *V : E->Scalars)
6911           CommonAlignment =
6912               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
6913         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
6914       }
6915       Value *V = propagateMetadata(NewLI, E->Scalars);
6916 
6917       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6918       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6919       V = ShuffleBuilder.finalize(V);
6920       E->VectorizedValue = V;
6921       ++NumVectorInstructions;
6922       return V;
6923     }
6924     case Instruction::Store: {
6925       auto *SI = cast<StoreInst>(VL0);
6926       unsigned AS = SI->getPointerAddressSpace();
6927 
6928       setInsertPointAfterBundle(E);
6929 
6930       Value *VecValue = vectorizeTree(E->getOperand(0));
6931       ShuffleBuilder.addMask(E->ReorderIndices);
6932       VecValue = ShuffleBuilder.finalize(VecValue);
6933 
6934       Value *ScalarPtr = SI->getPointerOperand();
6935       Value *VecPtr = Builder.CreateBitCast(
6936           ScalarPtr, VecValue->getType()->getPointerTo(AS));
6937       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
6938                                                  SI->getAlign());
6939 
6940       // The pointer operand uses an in-tree scalar, so add the new BitCast to
6941       // ExternalUses to make sure that an extract will be generated in the
6942       // future.
6943       if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
6944         // Find which lane we need to extract.
6945         unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
6946         ExternalUses.push_back(
6947             ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane));
6948       }
6949 
6950       Value *V = propagateMetadata(ST, E->Scalars);
6951 
6952       E->VectorizedValue = V;
6953       ++NumVectorInstructions;
6954       return V;
6955     }
6956     case Instruction::GetElementPtr: {
6957       auto *GEP0 = cast<GetElementPtrInst>(VL0);
6958       setInsertPointAfterBundle(E);
6959 
6960       Value *Op0 = vectorizeTree(E->getOperand(0));
6961 
6962       SmallVector<Value *> OpVecs;
6963       for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
6964         Value *OpVec = vectorizeTree(E->getOperand(J));
6965         OpVecs.push_back(OpVec);
6966       }
6967 
6968       Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
6969       if (Instruction *I = dyn_cast<Instruction>(V))
6970         V = propagateMetadata(I, E->Scalars);
6971 
6972       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6973       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6974       V = ShuffleBuilder.finalize(V);
6975 
6976       E->VectorizedValue = V;
6977       ++NumVectorInstructions;
6978 
6979       return V;
6980     }
6981     case Instruction::Call: {
6982       CallInst *CI = cast<CallInst>(VL0);
6983       setInsertPointAfterBundle(E);
6984 
6985       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
6986       if (Function *FI = CI->getCalledFunction())
6987         IID = FI->getIntrinsicID();
6988 
6989       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6990 
6991       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
6992       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
6993                           VecCallCosts.first <= VecCallCosts.second;
6994 
6995       Value *ScalarArg = nullptr;
6996       std::vector<Value *> OpVecs;
6997       SmallVector<Type *, 2> TysForDecl =
6998           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
6999       for (int j = 0, e = CI->arg_size(); j < e; ++j) {
7000         ValueList OpVL;
7001         // Some intrinsics have scalar arguments. This argument should not be
7002         // vectorized.
7003         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
7004           CallInst *CEI = cast<CallInst>(VL0);
7005           ScalarArg = CEI->getArgOperand(j);
7006           OpVecs.push_back(CEI->getArgOperand(j));
7007           if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
7008             TysForDecl.push_back(ScalarArg->getType());
7009           continue;
7010         }
7011 
7012         Value *OpVec = vectorizeTree(E->getOperand(j));
7013         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
7014         OpVecs.push_back(OpVec);
7015       }
7016 
7017       Function *CF;
7018       if (!UseIntrinsic) {
7019         VFShape Shape =
7020             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
7021                                   VecTy->getNumElements())),
7022                          false /*HasGlobalPred*/);
7023         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
7024       } else {
7025         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
7026       }
7027 
7028       SmallVector<OperandBundleDef, 1> OpBundles;
7029       CI->getOperandBundlesAsDefs(OpBundles);
7030       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
7031 
7032       // The scalar argument uses an in-tree scalar so we add the new vectorized
7033       // call to ExternalUses list to make sure that an extract will be
7034       // generated in the future.
7035       if (ScalarArg) {
7036         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
7037           // Find which lane we need to extract.
7038           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
7039           ExternalUses.push_back(
7040               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
7041         }
7042       }
7043 
7044       propagateIRFlags(V, E->Scalars, VL0);
7045       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7046       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7047       V = ShuffleBuilder.finalize(V);
7048 
7049       E->VectorizedValue = V;
7050       ++NumVectorInstructions;
7051       return V;
7052     }
7053     case Instruction::ShuffleVector: {
7054       assert(E->isAltShuffle() &&
7055              ((Instruction::isBinaryOp(E->getOpcode()) &&
7056                Instruction::isBinaryOp(E->getAltOpcode())) ||
7057               (Instruction::isCast(E->getOpcode()) &&
7058                Instruction::isCast(E->getAltOpcode())) ||
7059               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
7060              "Invalid Shuffle Vector Operand");
7061 
7062       Value *LHS = nullptr, *RHS = nullptr;
7063       if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
7064         setInsertPointAfterBundle(E);
7065         LHS = vectorizeTree(E->getOperand(0));
7066         RHS = vectorizeTree(E->getOperand(1));
7067       } else {
7068         setInsertPointAfterBundle(E);
7069         LHS = vectorizeTree(E->getOperand(0));
7070       }
7071 
7072       if (E->VectorizedValue) {
7073         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7074         return E->VectorizedValue;
7075       }
7076 
7077       Value *V0, *V1;
7078       if (Instruction::isBinaryOp(E->getOpcode())) {
7079         V0 = Builder.CreateBinOp(
7080             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
7081         V1 = Builder.CreateBinOp(
7082             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
7083       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
7084         V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
7085         auto *AltCI = cast<CmpInst>(E->getAltOp());
7086         CmpInst::Predicate AltPred = AltCI->getPredicate();
7087         V1 = Builder.CreateCmp(AltPred, LHS, RHS);
7088       } else {
7089         V0 = Builder.CreateCast(
7090             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
7091         V1 = Builder.CreateCast(
7092             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
7093       }
7094       // Add V0 and V1 to later analysis to try to find and remove matching
7095       // instruction, if any.
7096       for (Value *V : {V0, V1}) {
7097         if (auto *I = dyn_cast<Instruction>(V)) {
7098           GatherShuffleSeq.insert(I);
7099           CSEBlocks.insert(I->getParent());
7100         }
7101       }
7102 
7103       // Create shuffle to take alternate operations from the vector.
7104       // Also, gather up main and alt scalar ops to propagate IR flags to
7105       // each vector operation.
7106       ValueList OpScalars, AltScalars;
7107       SmallVector<int> Mask;
7108       buildShuffleEntryMask(
7109           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
7110           [E](Instruction *I) {
7111             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
7112             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
7113           },
7114           Mask, &OpScalars, &AltScalars);
7115 
7116       propagateIRFlags(V0, OpScalars);
7117       propagateIRFlags(V1, AltScalars);
7118 
7119       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
7120       if (auto *I = dyn_cast<Instruction>(V)) {
7121         V = propagateMetadata(I, E->Scalars);
7122         GatherShuffleSeq.insert(I);
7123         CSEBlocks.insert(I->getParent());
7124       }
7125       V = ShuffleBuilder.finalize(V);
7126 
7127       E->VectorizedValue = V;
7128       ++NumVectorInstructions;
7129 
7130       return V;
7131     }
7132     default:
7133     llvm_unreachable("unknown inst");
7134   }
7135   return nullptr;
7136 }
7137 
7138 Value *BoUpSLP::vectorizeTree() {
7139   ExtraValueToDebugLocsMap ExternallyUsedValues;
7140   return vectorizeTree(ExternallyUsedValues);
7141 }
7142 
7143 Value *
7144 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
7145   // All blocks must be scheduled before any instructions are inserted.
7146   for (auto &BSIter : BlocksSchedules) {
7147     scheduleBlock(BSIter.second.get());
7148   }
7149 
7150   Builder.SetInsertPoint(&F->getEntryBlock().front());
7151   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
7152 
7153   // If the vectorized tree can be rewritten in a smaller type, we truncate the
7154   // vectorized root. InstCombine will then rewrite the entire expression. We
7155   // sign extend the extracted values below.
7156   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
7157   if (MinBWs.count(ScalarRoot)) {
7158     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
7159       // If current instr is a phi and not the last phi, insert it after the
7160       // last phi node.
7161       if (isa<PHINode>(I))
7162         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
7163       else
7164         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
7165     }
7166     auto BundleWidth = VectorizableTree[0]->Scalars.size();
7167     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
7168     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
7169     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
7170     VectorizableTree[0]->VectorizedValue = Trunc;
7171   }
7172 
7173   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
7174                     << " values .\n");
7175 
7176   // Extract all of the elements with the external uses.
7177   for (const auto &ExternalUse : ExternalUses) {
7178     Value *Scalar = ExternalUse.Scalar;
7179     llvm::User *User = ExternalUse.User;
7180 
7181     // Skip users that we already RAUW. This happens when one instruction
7182     // has multiple uses of the same value.
7183     if (User && !is_contained(Scalar->users(), User))
7184       continue;
7185     TreeEntry *E = getTreeEntry(Scalar);
7186     assert(E && "Invalid scalar");
7187     assert(E->State != TreeEntry::NeedToGather &&
7188            "Extracting from a gather list");
7189 
7190     Value *Vec = E->VectorizedValue;
7191     assert(Vec && "Can't find vectorizable value");
7192 
7193     Value *Lane = Builder.getInt32(ExternalUse.Lane);
7194     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
7195       if (Scalar->getType() != Vec->getType()) {
7196         Value *Ex;
7197         // "Reuse" the existing extract to improve final codegen.
7198         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
7199           Ex = Builder.CreateExtractElement(ES->getOperand(0),
7200                                             ES->getOperand(1));
7201         } else {
7202           Ex = Builder.CreateExtractElement(Vec, Lane);
7203         }
7204         // If necessary, sign-extend or zero-extend ScalarRoot
7205         // to the larger type.
7206         if (!MinBWs.count(ScalarRoot))
7207           return Ex;
7208         if (MinBWs[ScalarRoot].second)
7209           return Builder.CreateSExt(Ex, Scalar->getType());
7210         return Builder.CreateZExt(Ex, Scalar->getType());
7211       }
7212       assert(isa<FixedVectorType>(Scalar->getType()) &&
7213              isa<InsertElementInst>(Scalar) &&
7214              "In-tree scalar of vector type is not insertelement?");
7215       return Vec;
7216     };
7217     // If User == nullptr, the Scalar is used as extra arg. Generate
7218     // ExtractElement instruction and update the record for this scalar in
7219     // ExternallyUsedValues.
7220     if (!User) {
7221       assert(ExternallyUsedValues.count(Scalar) &&
7222              "Scalar with nullptr as an external user must be registered in "
7223              "ExternallyUsedValues map");
7224       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7225         Builder.SetInsertPoint(VecI->getParent(),
7226                                std::next(VecI->getIterator()));
7227       } else {
7228         Builder.SetInsertPoint(&F->getEntryBlock().front());
7229       }
7230       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7231       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
7232       auto &NewInstLocs = ExternallyUsedValues[NewInst];
7233       auto It = ExternallyUsedValues.find(Scalar);
7234       assert(It != ExternallyUsedValues.end() &&
7235              "Externally used scalar is not found in ExternallyUsedValues");
7236       NewInstLocs.append(It->second);
7237       ExternallyUsedValues.erase(Scalar);
7238       // Required to update internally referenced instructions.
7239       Scalar->replaceAllUsesWith(NewInst);
7240       continue;
7241     }
7242 
7243     // Generate extracts for out-of-tree users.
7244     // Find the insertion point for the extractelement lane.
7245     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7246       if (PHINode *PH = dyn_cast<PHINode>(User)) {
7247         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
7248           if (PH->getIncomingValue(i) == Scalar) {
7249             Instruction *IncomingTerminator =
7250                 PH->getIncomingBlock(i)->getTerminator();
7251             if (isa<CatchSwitchInst>(IncomingTerminator)) {
7252               Builder.SetInsertPoint(VecI->getParent(),
7253                                      std::next(VecI->getIterator()));
7254             } else {
7255               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
7256             }
7257             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7258             CSEBlocks.insert(PH->getIncomingBlock(i));
7259             PH->setOperand(i, NewInst);
7260           }
7261         }
7262       } else {
7263         Builder.SetInsertPoint(cast<Instruction>(User));
7264         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7265         CSEBlocks.insert(cast<Instruction>(User)->getParent());
7266         User->replaceUsesOfWith(Scalar, NewInst);
7267       }
7268     } else {
7269       Builder.SetInsertPoint(&F->getEntryBlock().front());
7270       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7271       CSEBlocks.insert(&F->getEntryBlock());
7272       User->replaceUsesOfWith(Scalar, NewInst);
7273     }
7274 
7275     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
7276   }
7277 
7278   // For each vectorized value:
7279   for (auto &TEPtr : VectorizableTree) {
7280     TreeEntry *Entry = TEPtr.get();
7281 
7282     // No need to handle users of gathered values.
7283     if (Entry->State == TreeEntry::NeedToGather)
7284       continue;
7285 
7286     assert(Entry->VectorizedValue && "Can't find vectorizable value");
7287 
7288     // For each lane:
7289     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
7290       Value *Scalar = Entry->Scalars[Lane];
7291 
7292 #ifndef NDEBUG
7293       Type *Ty = Scalar->getType();
7294       if (!Ty->isVoidTy()) {
7295         for (User *U : Scalar->users()) {
7296           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
7297 
7298           // It is legal to delete users in the ignorelist.
7299           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) ||
7300                   (isa_and_nonnull<Instruction>(U) &&
7301                    isDeleted(cast<Instruction>(U)))) &&
7302                  "Deleting out-of-tree value");
7303         }
7304       }
7305 #endif
7306       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
7307       eraseInstruction(cast<Instruction>(Scalar));
7308     }
7309   }
7310 
7311   Builder.ClearInsertionPoint();
7312   InstrElementSize.clear();
7313 
7314   return VectorizableTree[0]->VectorizedValue;
7315 }
7316 
7317 void BoUpSLP::optimizeGatherSequence() {
7318   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size()
7319                     << " gather sequences instructions.\n");
7320   // LICM InsertElementInst sequences.
7321   for (Instruction *I : GatherShuffleSeq) {
7322     if (isDeleted(I))
7323       continue;
7324 
7325     // Check if this block is inside a loop.
7326     Loop *L = LI->getLoopFor(I->getParent());
7327     if (!L)
7328       continue;
7329 
7330     // Check if it has a preheader.
7331     BasicBlock *PreHeader = L->getLoopPreheader();
7332     if (!PreHeader)
7333       continue;
7334 
7335     // If the vector or the element that we insert into it are
7336     // instructions that are defined in this basic block then we can't
7337     // hoist this instruction.
7338     if (any_of(I->operands(), [L](Value *V) {
7339           auto *OpI = dyn_cast<Instruction>(V);
7340           return OpI && L->contains(OpI);
7341         }))
7342       continue;
7343 
7344     // We can hoist this instruction. Move it to the pre-header.
7345     I->moveBefore(PreHeader->getTerminator());
7346   }
7347 
7348   // Make a list of all reachable blocks in our CSE queue.
7349   SmallVector<const DomTreeNode *, 8> CSEWorkList;
7350   CSEWorkList.reserve(CSEBlocks.size());
7351   for (BasicBlock *BB : CSEBlocks)
7352     if (DomTreeNode *N = DT->getNode(BB)) {
7353       assert(DT->isReachableFromEntry(N));
7354       CSEWorkList.push_back(N);
7355     }
7356 
7357   // Sort blocks by domination. This ensures we visit a block after all blocks
7358   // dominating it are visited.
7359   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
7360     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
7361            "Different nodes should have different DFS numbers");
7362     return A->getDFSNumIn() < B->getDFSNumIn();
7363   });
7364 
7365   // Less defined shuffles can be replaced by the more defined copies.
7366   // Between two shuffles one is less defined if it has the same vector operands
7367   // and its mask indeces are the same as in the first one or undefs. E.g.
7368   // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
7369   // poison, <0, 0, 0, 0>.
7370   auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
7371                                            SmallVectorImpl<int> &NewMask) {
7372     if (I1->getType() != I2->getType())
7373       return false;
7374     auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
7375     auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
7376     if (!SI1 || !SI2)
7377       return I1->isIdenticalTo(I2);
7378     if (SI1->isIdenticalTo(SI2))
7379       return true;
7380     for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
7381       if (SI1->getOperand(I) != SI2->getOperand(I))
7382         return false;
7383     // Check if the second instruction is more defined than the first one.
7384     NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
7385     ArrayRef<int> SM1 = SI1->getShuffleMask();
7386     // Count trailing undefs in the mask to check the final number of used
7387     // registers.
7388     unsigned LastUndefsCnt = 0;
7389     for (int I = 0, E = NewMask.size(); I < E; ++I) {
7390       if (SM1[I] == UndefMaskElem)
7391         ++LastUndefsCnt;
7392       else
7393         LastUndefsCnt = 0;
7394       if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
7395           NewMask[I] != SM1[I])
7396         return false;
7397       if (NewMask[I] == UndefMaskElem)
7398         NewMask[I] = SM1[I];
7399     }
7400     // Check if the last undefs actually change the final number of used vector
7401     // registers.
7402     return SM1.size() - LastUndefsCnt > 1 &&
7403            TTI->getNumberOfParts(SI1->getType()) ==
7404                TTI->getNumberOfParts(
7405                    FixedVectorType::get(SI1->getType()->getElementType(),
7406                                         SM1.size() - LastUndefsCnt));
7407   };
7408   // Perform O(N^2) search over the gather/shuffle sequences and merge identical
7409   // instructions. TODO: We can further optimize this scan if we split the
7410   // instructions into different buckets based on the insert lane.
7411   SmallVector<Instruction *, 16> Visited;
7412   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
7413     assert(*I &&
7414            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
7415            "Worklist not sorted properly!");
7416     BasicBlock *BB = (*I)->getBlock();
7417     // For all instructions in blocks containing gather sequences:
7418     for (Instruction &In : llvm::make_early_inc_range(*BB)) {
7419       if (isDeleted(&In))
7420         continue;
7421       if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) &&
7422           !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In))
7423         continue;
7424 
7425       // Check if we can replace this instruction with any of the
7426       // visited instructions.
7427       bool Replaced = false;
7428       for (Instruction *&V : Visited) {
7429         SmallVector<int> NewMask;
7430         if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
7431             DT->dominates(V->getParent(), In.getParent())) {
7432           In.replaceAllUsesWith(V);
7433           eraseInstruction(&In);
7434           if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
7435             if (!NewMask.empty())
7436               SI->setShuffleMask(NewMask);
7437           Replaced = true;
7438           break;
7439         }
7440         if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
7441             GatherShuffleSeq.contains(V) &&
7442             IsIdenticalOrLessDefined(V, &In, NewMask) &&
7443             DT->dominates(In.getParent(), V->getParent())) {
7444           In.moveAfter(V);
7445           V->replaceAllUsesWith(&In);
7446           eraseInstruction(V);
7447           if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
7448             if (!NewMask.empty())
7449               SI->setShuffleMask(NewMask);
7450           V = &In;
7451           Replaced = true;
7452           break;
7453         }
7454       }
7455       if (!Replaced) {
7456         assert(!is_contained(Visited, &In));
7457         Visited.push_back(&In);
7458       }
7459     }
7460   }
7461   CSEBlocks.clear();
7462   GatherShuffleSeq.clear();
7463 }
7464 
7465 BoUpSLP::ScheduleData *
7466 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
7467   ScheduleData *Bundle = nullptr;
7468   ScheduleData *PrevInBundle = nullptr;
7469   for (Value *V : VL) {
7470     ScheduleData *BundleMember = getScheduleData(V);
7471     assert(BundleMember &&
7472            "no ScheduleData for bundle member "
7473            "(maybe not in same basic block)");
7474     assert(BundleMember->isSchedulingEntity() &&
7475            "bundle member already part of other bundle");
7476     if (PrevInBundle) {
7477       PrevInBundle->NextInBundle = BundleMember;
7478     } else {
7479       Bundle = BundleMember;
7480     }
7481 
7482     // Group the instructions to a bundle.
7483     BundleMember->FirstInBundle = Bundle;
7484     PrevInBundle = BundleMember;
7485   }
7486   assert(Bundle && "Failed to find schedule bundle");
7487   return Bundle;
7488 }
7489 
7490 // Groups the instructions to a bundle (which is then a single scheduling entity)
7491 // and schedules instructions until the bundle gets ready.
7492 Optional<BoUpSLP::ScheduleData *>
7493 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
7494                                             const InstructionsState &S) {
7495   // No need to schedule PHIs, insertelement, extractelement and extractvalue
7496   // instructions.
7497   if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue))
7498     return nullptr;
7499 
7500   // Initialize the instruction bundle.
7501   Instruction *OldScheduleEnd = ScheduleEnd;
7502   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
7503 
7504   auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
7505                                                          ScheduleData *Bundle) {
7506     // The scheduling region got new instructions at the lower end (or it is a
7507     // new region for the first bundle). This makes it necessary to
7508     // recalculate all dependencies.
7509     // It is seldom that this needs to be done a second time after adding the
7510     // initial bundle to the region.
7511     if (ScheduleEnd != OldScheduleEnd) {
7512       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
7513         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
7514       ReSchedule = true;
7515     }
7516     if (Bundle) {
7517       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
7518                         << " in block " << BB->getName() << "\n");
7519       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
7520     }
7521 
7522     if (ReSchedule) {
7523       resetSchedule();
7524       initialFillReadyList(ReadyInsts);
7525     }
7526 
7527     // Now try to schedule the new bundle or (if no bundle) just calculate
7528     // dependencies. As soon as the bundle is "ready" it means that there are no
7529     // cyclic dependencies and we can schedule it. Note that's important that we
7530     // don't "schedule" the bundle yet (see cancelScheduling).
7531     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
7532            !ReadyInsts.empty()) {
7533       ScheduleData *Picked = ReadyInsts.pop_back_val();
7534       assert(Picked->isSchedulingEntity() && Picked->isReady() &&
7535              "must be ready to schedule");
7536       schedule(Picked, ReadyInsts);
7537     }
7538   };
7539 
7540   // Make sure that the scheduling region contains all
7541   // instructions of the bundle.
7542   for (Value *V : VL) {
7543     if (!extendSchedulingRegion(V, S)) {
7544       // If the scheduling region got new instructions at the lower end (or it
7545       // is a new region for the first bundle). This makes it necessary to
7546       // recalculate all dependencies.
7547       // Otherwise the compiler may crash trying to incorrectly calculate
7548       // dependencies and emit instruction in the wrong order at the actual
7549       // scheduling.
7550       TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
7551       return None;
7552     }
7553   }
7554 
7555   bool ReSchedule = false;
7556   for (Value *V : VL) {
7557     ScheduleData *BundleMember = getScheduleData(V);
7558     assert(BundleMember &&
7559            "no ScheduleData for bundle member (maybe not in same basic block)");
7560 
7561     // Make sure we don't leave the pieces of the bundle in the ready list when
7562     // whole bundle might not be ready.
7563     ReadyInsts.remove(BundleMember);
7564 
7565     if (!BundleMember->IsScheduled)
7566       continue;
7567     // A bundle member was scheduled as single instruction before and now
7568     // needs to be scheduled as part of the bundle. We just get rid of the
7569     // existing schedule.
7570     LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
7571                       << " was already scheduled\n");
7572     ReSchedule = true;
7573   }
7574 
7575   auto *Bundle = buildBundle(VL);
7576   TryScheduleBundleImpl(ReSchedule, Bundle);
7577   if (!Bundle->isReady()) {
7578     cancelScheduling(VL, S.OpValue);
7579     return None;
7580   }
7581   return Bundle;
7582 }
7583 
7584 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
7585                                                 Value *OpValue) {
7586   if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue))
7587     return;
7588 
7589   ScheduleData *Bundle = getScheduleData(OpValue);
7590   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
7591   assert(!Bundle->IsScheduled &&
7592          "Can't cancel bundle which is already scheduled");
7593   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
7594          "tried to unbundle something which is not a bundle");
7595 
7596   // Remove the bundle from the ready list.
7597   if (Bundle->isReady())
7598     ReadyInsts.remove(Bundle);
7599 
7600   // Un-bundle: make single instructions out of the bundle.
7601   ScheduleData *BundleMember = Bundle;
7602   while (BundleMember) {
7603     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
7604     BundleMember->FirstInBundle = BundleMember;
7605     ScheduleData *Next = BundleMember->NextInBundle;
7606     BundleMember->NextInBundle = nullptr;
7607     if (BundleMember->unscheduledDepsInBundle() == 0) {
7608       ReadyInsts.insert(BundleMember);
7609     }
7610     BundleMember = Next;
7611   }
7612 }
7613 
7614 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
7615   // Allocate a new ScheduleData for the instruction.
7616   if (ChunkPos >= ChunkSize) {
7617     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
7618     ChunkPos = 0;
7619   }
7620   return &(ScheduleDataChunks.back()[ChunkPos++]);
7621 }
7622 
7623 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
7624                                                       const InstructionsState &S) {
7625   if (getScheduleData(V, isOneOf(S, V)))
7626     return true;
7627   Instruction *I = dyn_cast<Instruction>(V);
7628   assert(I && "bundle member must be an instruction");
7629   assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
7630          "phi nodes/insertelements/extractelements/extractvalues don't need to "
7631          "be scheduled");
7632   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
7633     ScheduleData *ISD = getScheduleData(I);
7634     if (!ISD)
7635       return false;
7636     assert(isInSchedulingRegion(ISD) &&
7637            "ScheduleData not in scheduling region");
7638     ScheduleData *SD = allocateScheduleDataChunks();
7639     SD->Inst = I;
7640     SD->init(SchedulingRegionID, S.OpValue);
7641     ExtraScheduleDataMap[I][S.OpValue] = SD;
7642     return true;
7643   };
7644   if (CheckSheduleForI(I))
7645     return true;
7646   if (!ScheduleStart) {
7647     // It's the first instruction in the new region.
7648     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
7649     ScheduleStart = I;
7650     ScheduleEnd = I->getNextNode();
7651     if (isOneOf(S, I) != I)
7652       CheckSheduleForI(I);
7653     assert(ScheduleEnd && "tried to vectorize a terminator?");
7654     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
7655     return true;
7656   }
7657   // Search up and down at the same time, because we don't know if the new
7658   // instruction is above or below the existing scheduling region.
7659   BasicBlock::reverse_iterator UpIter =
7660       ++ScheduleStart->getIterator().getReverse();
7661   BasicBlock::reverse_iterator UpperEnd = BB->rend();
7662   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
7663   BasicBlock::iterator LowerEnd = BB->end();
7664   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
7665          &*DownIter != I) {
7666     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
7667       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
7668       return false;
7669     }
7670 
7671     ++UpIter;
7672     ++DownIter;
7673   }
7674   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
7675     assert(I->getParent() == ScheduleStart->getParent() &&
7676            "Instruction is in wrong basic block.");
7677     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
7678     ScheduleStart = I;
7679     if (isOneOf(S, I) != I)
7680       CheckSheduleForI(I);
7681     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
7682                       << "\n");
7683     return true;
7684   }
7685   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
7686          "Expected to reach top of the basic block or instruction down the "
7687          "lower end.");
7688   assert(I->getParent() == ScheduleEnd->getParent() &&
7689          "Instruction is in wrong basic block.");
7690   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
7691                    nullptr);
7692   ScheduleEnd = I->getNextNode();
7693   if (isOneOf(S, I) != I)
7694     CheckSheduleForI(I);
7695   assert(ScheduleEnd && "tried to vectorize a terminator?");
7696   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
7697   return true;
7698 }
7699 
7700 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
7701                                                 Instruction *ToI,
7702                                                 ScheduleData *PrevLoadStore,
7703                                                 ScheduleData *NextLoadStore) {
7704   ScheduleData *CurrentLoadStore = PrevLoadStore;
7705   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
7706     ScheduleData *SD = ScheduleDataMap[I];
7707     if (!SD) {
7708       SD = allocateScheduleDataChunks();
7709       ScheduleDataMap[I] = SD;
7710       SD->Inst = I;
7711     }
7712     assert(!isInSchedulingRegion(SD) &&
7713            "new ScheduleData already in scheduling region");
7714     SD->init(SchedulingRegionID, I);
7715 
7716     if (I->mayReadOrWriteMemory() &&
7717         (!isa<IntrinsicInst>(I) ||
7718          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
7719           cast<IntrinsicInst>(I)->getIntrinsicID() !=
7720               Intrinsic::pseudoprobe))) {
7721       // Update the linked list of memory accessing instructions.
7722       if (CurrentLoadStore) {
7723         CurrentLoadStore->NextLoadStore = SD;
7724       } else {
7725         FirstLoadStoreInRegion = SD;
7726       }
7727       CurrentLoadStore = SD;
7728     }
7729   }
7730   if (NextLoadStore) {
7731     if (CurrentLoadStore)
7732       CurrentLoadStore->NextLoadStore = NextLoadStore;
7733   } else {
7734     LastLoadStoreInRegion = CurrentLoadStore;
7735   }
7736 }
7737 
7738 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
7739                                                      bool InsertInReadyList,
7740                                                      BoUpSLP *SLP) {
7741   assert(SD->isSchedulingEntity());
7742 
7743   SmallVector<ScheduleData *, 10> WorkList;
7744   WorkList.push_back(SD);
7745 
7746   while (!WorkList.empty()) {
7747     ScheduleData *SD = WorkList.pop_back_val();
7748     for (ScheduleData *BundleMember = SD; BundleMember;
7749          BundleMember = BundleMember->NextInBundle) {
7750       assert(isInSchedulingRegion(BundleMember));
7751       if (BundleMember->hasValidDependencies())
7752         continue;
7753 
7754       LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
7755                  << "\n");
7756       BundleMember->Dependencies = 0;
7757       BundleMember->resetUnscheduledDeps();
7758 
7759       // Handle def-use chain dependencies.
7760       if (BundleMember->OpValue != BundleMember->Inst) {
7761         ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
7762         if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
7763           BundleMember->Dependencies++;
7764           ScheduleData *DestBundle = UseSD->FirstInBundle;
7765           if (!DestBundle->IsScheduled)
7766             BundleMember->incrementUnscheduledDeps(1);
7767           if (!DestBundle->hasValidDependencies())
7768             WorkList.push_back(DestBundle);
7769         }
7770       } else {
7771         for (User *U : BundleMember->Inst->users()) {
7772           assert(isa<Instruction>(U) &&
7773                  "user of instruction must be instruction");
7774           ScheduleData *UseSD = getScheduleData(U);
7775           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
7776             BundleMember->Dependencies++;
7777             ScheduleData *DestBundle = UseSD->FirstInBundle;
7778             if (!DestBundle->IsScheduled)
7779               BundleMember->incrementUnscheduledDeps(1);
7780             if (!DestBundle->hasValidDependencies())
7781               WorkList.push_back(DestBundle);
7782           }
7783         }
7784       }
7785 
7786       // Handle the memory dependencies (if any).
7787       ScheduleData *DepDest = BundleMember->NextLoadStore;
7788       if (!DepDest)
7789         continue;
7790       Instruction *SrcInst = BundleMember->Inst;
7791       assert(SrcInst->mayReadOrWriteMemory() &&
7792              "NextLoadStore list for non memory effecting bundle?");
7793       MemoryLocation SrcLoc = getLocation(SrcInst);
7794       bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
7795       unsigned numAliased = 0;
7796       unsigned DistToSrc = 1;
7797 
7798       for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
7799         assert(isInSchedulingRegion(DepDest));
7800 
7801         // We have two limits to reduce the complexity:
7802         // 1) AliasedCheckLimit: It's a small limit to reduce calls to
7803         //    SLP->isAliased (which is the expensive part in this loop).
7804         // 2) MaxMemDepDistance: It's for very large blocks and it aborts
7805         //    the whole loop (even if the loop is fast, it's quadratic).
7806         //    It's important for the loop break condition (see below) to
7807         //    check this limit even between two read-only instructions.
7808         if (DistToSrc >= MaxMemDepDistance ||
7809             ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
7810              (numAliased >= AliasedCheckLimit ||
7811               SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
7812 
7813           // We increment the counter only if the locations are aliased
7814           // (instead of counting all alias checks). This gives a better
7815           // balance between reduced runtime and accurate dependencies.
7816           numAliased++;
7817 
7818           DepDest->MemoryDependencies.push_back(BundleMember);
7819           BundleMember->Dependencies++;
7820           ScheduleData *DestBundle = DepDest->FirstInBundle;
7821           if (!DestBundle->IsScheduled) {
7822             BundleMember->incrementUnscheduledDeps(1);
7823           }
7824           if (!DestBundle->hasValidDependencies()) {
7825             WorkList.push_back(DestBundle);
7826           }
7827         }
7828 
7829         // Example, explaining the loop break condition: Let's assume our
7830         // starting instruction is i0 and MaxMemDepDistance = 3.
7831         //
7832         //                      +--------v--v--v
7833         //             i0,i1,i2,i3,i4,i5,i6,i7,i8
7834         //             +--------^--^--^
7835         //
7836         // MaxMemDepDistance let us stop alias-checking at i3 and we add
7837         // dependencies from i0 to i3,i4,.. (even if they are not aliased).
7838         // Previously we already added dependencies from i3 to i6,i7,i8
7839         // (because of MaxMemDepDistance). As we added a dependency from
7840         // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
7841         // and we can abort this loop at i6.
7842         if (DistToSrc >= 2 * MaxMemDepDistance)
7843           break;
7844         DistToSrc++;
7845       }
7846     }
7847     if (InsertInReadyList && SD->isReady()) {
7848       ReadyInsts.insert(SD);
7849       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
7850                         << "\n");
7851     }
7852   }
7853 }
7854 
7855 void BoUpSLP::BlockScheduling::resetSchedule() {
7856   assert(ScheduleStart &&
7857          "tried to reset schedule on block which has not been scheduled");
7858   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
7859     doForAllOpcodes(I, [&](ScheduleData *SD) {
7860       assert(isInSchedulingRegion(SD) &&
7861              "ScheduleData not in scheduling region");
7862       SD->IsScheduled = false;
7863       SD->resetUnscheduledDeps();
7864     });
7865   }
7866   ReadyInsts.clear();
7867 }
7868 
7869 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
7870   if (!BS->ScheduleStart)
7871     return;
7872 
7873   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
7874 
7875   BS->resetSchedule();
7876 
7877   // For the real scheduling we use a more sophisticated ready-list: it is
7878   // sorted by the original instruction location. This lets the final schedule
7879   // be as  close as possible to the original instruction order.
7880   struct ScheduleDataCompare {
7881     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
7882       return SD2->SchedulingPriority < SD1->SchedulingPriority;
7883     }
7884   };
7885   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
7886 
7887   // Ensure that all dependency data is updated and fill the ready-list with
7888   // initial instructions.
7889   int Idx = 0;
7890   int NumToSchedule = 0;
7891   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
7892        I = I->getNextNode()) {
7893     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
7894       assert((isVectorLikeInstWithConstOps(SD->Inst) ||
7895               SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
7896              "scheduler and vectorizer bundle mismatch");
7897       SD->FirstInBundle->SchedulingPriority = Idx++;
7898       if (SD->isSchedulingEntity()) {
7899         BS->calculateDependencies(SD, false, this);
7900         NumToSchedule++;
7901       }
7902     });
7903   }
7904   BS->initialFillReadyList(ReadyInsts);
7905 
7906   Instruction *LastScheduledInst = BS->ScheduleEnd;
7907 
7908   // Do the "real" scheduling.
7909   while (!ReadyInsts.empty()) {
7910     ScheduleData *picked = *ReadyInsts.begin();
7911     ReadyInsts.erase(ReadyInsts.begin());
7912 
7913     // Move the scheduled instruction(s) to their dedicated places, if not
7914     // there yet.
7915     for (ScheduleData *BundleMember = picked; BundleMember;
7916          BundleMember = BundleMember->NextInBundle) {
7917       Instruction *pickedInst = BundleMember->Inst;
7918       if (pickedInst->getNextNode() != LastScheduledInst)
7919         pickedInst->moveBefore(LastScheduledInst);
7920       LastScheduledInst = pickedInst;
7921     }
7922 
7923     BS->schedule(picked, ReadyInsts);
7924     NumToSchedule--;
7925   }
7926   assert(NumToSchedule == 0 && "could not schedule all instructions");
7927 
7928   // Check that we didn't break any of our invariants.
7929 #ifdef EXPENSIVE_CHECKS
7930   BS->verify();
7931 #endif
7932 
7933 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
7934   // Check that all schedulable entities got scheduled
7935   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
7936     BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
7937       if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
7938         assert(SD->IsScheduled && "must be scheduled at this point");
7939       }
7940     });
7941   }
7942 #endif
7943 
7944   // Avoid duplicate scheduling of the block.
7945   BS->ScheduleStart = nullptr;
7946 }
7947 
7948 unsigned BoUpSLP::getVectorElementSize(Value *V) {
7949   // If V is a store, just return the width of the stored value (or value
7950   // truncated just before storing) without traversing the expression tree.
7951   // This is the common case.
7952   if (auto *Store = dyn_cast<StoreInst>(V)) {
7953     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
7954       return DL->getTypeSizeInBits(Trunc->getSrcTy());
7955     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
7956   }
7957 
7958   if (auto *IEI = dyn_cast<InsertElementInst>(V))
7959     return getVectorElementSize(IEI->getOperand(1));
7960 
7961   auto E = InstrElementSize.find(V);
7962   if (E != InstrElementSize.end())
7963     return E->second;
7964 
7965   // If V is not a store, we can traverse the expression tree to find loads
7966   // that feed it. The type of the loaded value may indicate a more suitable
7967   // width than V's type. We want to base the vector element size on the width
7968   // of memory operations where possible.
7969   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
7970   SmallPtrSet<Instruction *, 16> Visited;
7971   if (auto *I = dyn_cast<Instruction>(V)) {
7972     Worklist.emplace_back(I, I->getParent());
7973     Visited.insert(I);
7974   }
7975 
7976   // Traverse the expression tree in bottom-up order looking for loads. If we
7977   // encounter an instruction we don't yet handle, we give up.
7978   auto Width = 0u;
7979   while (!Worklist.empty()) {
7980     Instruction *I;
7981     BasicBlock *Parent;
7982     std::tie(I, Parent) = Worklist.pop_back_val();
7983 
7984     // We should only be looking at scalar instructions here. If the current
7985     // instruction has a vector type, skip.
7986     auto *Ty = I->getType();
7987     if (isa<VectorType>(Ty))
7988       continue;
7989 
7990     // If the current instruction is a load, update MaxWidth to reflect the
7991     // width of the loaded value.
7992     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
7993         isa<ExtractValueInst>(I))
7994       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
7995 
7996     // Otherwise, we need to visit the operands of the instruction. We only
7997     // handle the interesting cases from buildTree here. If an operand is an
7998     // instruction we haven't yet visited and from the same basic block as the
7999     // user or the use is a PHI node, we add it to the worklist.
8000     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8001              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
8002              isa<UnaryOperator>(I)) {
8003       for (Use &U : I->operands())
8004         if (auto *J = dyn_cast<Instruction>(U.get()))
8005           if (Visited.insert(J).second &&
8006               (isa<PHINode>(I) || J->getParent() == Parent))
8007             Worklist.emplace_back(J, J->getParent());
8008     } else {
8009       break;
8010     }
8011   }
8012 
8013   // If we didn't encounter a memory access in the expression tree, or if we
8014   // gave up for some reason, just return the width of V. Otherwise, return the
8015   // maximum width we found.
8016   if (!Width) {
8017     if (auto *CI = dyn_cast<CmpInst>(V))
8018       V = CI->getOperand(0);
8019     Width = DL->getTypeSizeInBits(V->getType());
8020   }
8021 
8022   for (Instruction *I : Visited)
8023     InstrElementSize[I] = Width;
8024 
8025   return Width;
8026 }
8027 
8028 // Determine if a value V in a vectorizable expression Expr can be demoted to a
8029 // smaller type with a truncation. We collect the values that will be demoted
8030 // in ToDemote and additional roots that require investigating in Roots.
8031 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
8032                                   SmallVectorImpl<Value *> &ToDemote,
8033                                   SmallVectorImpl<Value *> &Roots) {
8034   // We can always demote constants.
8035   if (isa<Constant>(V)) {
8036     ToDemote.push_back(V);
8037     return true;
8038   }
8039 
8040   // If the value is not an instruction in the expression with only one use, it
8041   // cannot be demoted.
8042   auto *I = dyn_cast<Instruction>(V);
8043   if (!I || !I->hasOneUse() || !Expr.count(I))
8044     return false;
8045 
8046   switch (I->getOpcode()) {
8047 
8048   // We can always demote truncations and extensions. Since truncations can
8049   // seed additional demotion, we save the truncated value.
8050   case Instruction::Trunc:
8051     Roots.push_back(I->getOperand(0));
8052     break;
8053   case Instruction::ZExt:
8054   case Instruction::SExt:
8055     if (isa<ExtractElementInst>(I->getOperand(0)) ||
8056         isa<InsertElementInst>(I->getOperand(0)))
8057       return false;
8058     break;
8059 
8060   // We can demote certain binary operations if we can demote both of their
8061   // operands.
8062   case Instruction::Add:
8063   case Instruction::Sub:
8064   case Instruction::Mul:
8065   case Instruction::And:
8066   case Instruction::Or:
8067   case Instruction::Xor:
8068     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
8069         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
8070       return false;
8071     break;
8072 
8073   // We can demote selects if we can demote their true and false values.
8074   case Instruction::Select: {
8075     SelectInst *SI = cast<SelectInst>(I);
8076     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
8077         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
8078       return false;
8079     break;
8080   }
8081 
8082   // We can demote phis if we can demote all their incoming operands. Note that
8083   // we don't need to worry about cycles since we ensure single use above.
8084   case Instruction::PHI: {
8085     PHINode *PN = cast<PHINode>(I);
8086     for (Value *IncValue : PN->incoming_values())
8087       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
8088         return false;
8089     break;
8090   }
8091 
8092   // Otherwise, conservatively give up.
8093   default:
8094     return false;
8095   }
8096 
8097   // Record the value that we can demote.
8098   ToDemote.push_back(V);
8099   return true;
8100 }
8101 
8102 void BoUpSLP::computeMinimumValueSizes() {
8103   // If there are no external uses, the expression tree must be rooted by a
8104   // store. We can't demote in-memory values, so there is nothing to do here.
8105   if (ExternalUses.empty())
8106     return;
8107 
8108   // We only attempt to truncate integer expressions.
8109   auto &TreeRoot = VectorizableTree[0]->Scalars;
8110   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
8111   if (!TreeRootIT)
8112     return;
8113 
8114   // If the expression is not rooted by a store, these roots should have
8115   // external uses. We will rely on InstCombine to rewrite the expression in
8116   // the narrower type. However, InstCombine only rewrites single-use values.
8117   // This means that if a tree entry other than a root is used externally, it
8118   // must have multiple uses and InstCombine will not rewrite it. The code
8119   // below ensures that only the roots are used externally.
8120   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
8121   for (auto &EU : ExternalUses)
8122     if (!Expr.erase(EU.Scalar))
8123       return;
8124   if (!Expr.empty())
8125     return;
8126 
8127   // Collect the scalar values of the vectorizable expression. We will use this
8128   // context to determine which values can be demoted. If we see a truncation,
8129   // we mark it as seeding another demotion.
8130   for (auto &EntryPtr : VectorizableTree)
8131     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
8132 
8133   // Ensure the roots of the vectorizable tree don't form a cycle. They must
8134   // have a single external user that is not in the vectorizable tree.
8135   for (auto *Root : TreeRoot)
8136     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
8137       return;
8138 
8139   // Conservatively determine if we can actually truncate the roots of the
8140   // expression. Collect the values that can be demoted in ToDemote and
8141   // additional roots that require investigating in Roots.
8142   SmallVector<Value *, 32> ToDemote;
8143   SmallVector<Value *, 4> Roots;
8144   for (auto *Root : TreeRoot)
8145     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
8146       return;
8147 
8148   // The maximum bit width required to represent all the values that can be
8149   // demoted without loss of precision. It would be safe to truncate the roots
8150   // of the expression to this width.
8151   auto MaxBitWidth = 8u;
8152 
8153   // We first check if all the bits of the roots are demanded. If they're not,
8154   // we can truncate the roots to this narrower type.
8155   for (auto *Root : TreeRoot) {
8156     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
8157     MaxBitWidth = std::max<unsigned>(
8158         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
8159   }
8160 
8161   // True if the roots can be zero-extended back to their original type, rather
8162   // than sign-extended. We know that if the leading bits are not demanded, we
8163   // can safely zero-extend. So we initialize IsKnownPositive to True.
8164   bool IsKnownPositive = true;
8165 
8166   // If all the bits of the roots are demanded, we can try a little harder to
8167   // compute a narrower type. This can happen, for example, if the roots are
8168   // getelementptr indices. InstCombine promotes these indices to the pointer
8169   // width. Thus, all their bits are technically demanded even though the
8170   // address computation might be vectorized in a smaller type.
8171   //
8172   // We start by looking at each entry that can be demoted. We compute the
8173   // maximum bit width required to store the scalar by using ValueTracking to
8174   // compute the number of high-order bits we can truncate.
8175   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
8176       llvm::all_of(TreeRoot, [](Value *R) {
8177         assert(R->hasOneUse() && "Root should have only one use!");
8178         return isa<GetElementPtrInst>(R->user_back());
8179       })) {
8180     MaxBitWidth = 8u;
8181 
8182     // Determine if the sign bit of all the roots is known to be zero. If not,
8183     // IsKnownPositive is set to False.
8184     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
8185       KnownBits Known = computeKnownBits(R, *DL);
8186       return Known.isNonNegative();
8187     });
8188 
8189     // Determine the maximum number of bits required to store the scalar
8190     // values.
8191     for (auto *Scalar : ToDemote) {
8192       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
8193       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
8194       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
8195     }
8196 
8197     // If we can't prove that the sign bit is zero, we must add one to the
8198     // maximum bit width to account for the unknown sign bit. This preserves
8199     // the existing sign bit so we can safely sign-extend the root back to the
8200     // original type. Otherwise, if we know the sign bit is zero, we will
8201     // zero-extend the root instead.
8202     //
8203     // FIXME: This is somewhat suboptimal, as there will be cases where adding
8204     //        one to the maximum bit width will yield a larger-than-necessary
8205     //        type. In general, we need to add an extra bit only if we can't
8206     //        prove that the upper bit of the original type is equal to the
8207     //        upper bit of the proposed smaller type. If these two bits are the
8208     //        same (either zero or one) we know that sign-extending from the
8209     //        smaller type will result in the same value. Here, since we can't
8210     //        yet prove this, we are just making the proposed smaller type
8211     //        larger to ensure correctness.
8212     if (!IsKnownPositive)
8213       ++MaxBitWidth;
8214   }
8215 
8216   // Round MaxBitWidth up to the next power-of-two.
8217   if (!isPowerOf2_64(MaxBitWidth))
8218     MaxBitWidth = NextPowerOf2(MaxBitWidth);
8219 
8220   // If the maximum bit width we compute is less than the with of the roots'
8221   // type, we can proceed with the narrowing. Otherwise, do nothing.
8222   if (MaxBitWidth >= TreeRootIT->getBitWidth())
8223     return;
8224 
8225   // If we can truncate the root, we must collect additional values that might
8226   // be demoted as a result. That is, those seeded by truncations we will
8227   // modify.
8228   while (!Roots.empty())
8229     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
8230 
8231   // Finally, map the values we can demote to the maximum bit with we computed.
8232   for (auto *Scalar : ToDemote)
8233     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
8234 }
8235 
8236 namespace {
8237 
8238 /// The SLPVectorizer Pass.
8239 struct SLPVectorizer : public FunctionPass {
8240   SLPVectorizerPass Impl;
8241 
8242   /// Pass identification, replacement for typeid
8243   static char ID;
8244 
8245   explicit SLPVectorizer() : FunctionPass(ID) {
8246     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
8247   }
8248 
8249   bool doInitialization(Module &M) override { return false; }
8250 
8251   bool runOnFunction(Function &F) override {
8252     if (skipFunction(F))
8253       return false;
8254 
8255     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
8256     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
8257     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
8258     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
8259     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
8260     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
8261     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
8262     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
8263     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
8264     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
8265 
8266     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8267   }
8268 
8269   void getAnalysisUsage(AnalysisUsage &AU) const override {
8270     FunctionPass::getAnalysisUsage(AU);
8271     AU.addRequired<AssumptionCacheTracker>();
8272     AU.addRequired<ScalarEvolutionWrapperPass>();
8273     AU.addRequired<AAResultsWrapperPass>();
8274     AU.addRequired<TargetTransformInfoWrapperPass>();
8275     AU.addRequired<LoopInfoWrapperPass>();
8276     AU.addRequired<DominatorTreeWrapperPass>();
8277     AU.addRequired<DemandedBitsWrapperPass>();
8278     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
8279     AU.addRequired<InjectTLIMappingsLegacy>();
8280     AU.addPreserved<LoopInfoWrapperPass>();
8281     AU.addPreserved<DominatorTreeWrapperPass>();
8282     AU.addPreserved<AAResultsWrapperPass>();
8283     AU.addPreserved<GlobalsAAWrapperPass>();
8284     AU.setPreservesCFG();
8285   }
8286 };
8287 
8288 } // end anonymous namespace
8289 
8290 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
8291   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
8292   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
8293   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
8294   auto *AA = &AM.getResult<AAManager>(F);
8295   auto *LI = &AM.getResult<LoopAnalysis>(F);
8296   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
8297   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
8298   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
8299   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8300 
8301   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8302   if (!Changed)
8303     return PreservedAnalyses::all();
8304 
8305   PreservedAnalyses PA;
8306   PA.preserveSet<CFGAnalyses>();
8307   return PA;
8308 }
8309 
8310 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
8311                                 TargetTransformInfo *TTI_,
8312                                 TargetLibraryInfo *TLI_, AAResults *AA_,
8313                                 LoopInfo *LI_, DominatorTree *DT_,
8314                                 AssumptionCache *AC_, DemandedBits *DB_,
8315                                 OptimizationRemarkEmitter *ORE_) {
8316   if (!RunSLPVectorization)
8317     return false;
8318   SE = SE_;
8319   TTI = TTI_;
8320   TLI = TLI_;
8321   AA = AA_;
8322   LI = LI_;
8323   DT = DT_;
8324   AC = AC_;
8325   DB = DB_;
8326   DL = &F.getParent()->getDataLayout();
8327 
8328   Stores.clear();
8329   GEPs.clear();
8330   bool Changed = false;
8331 
8332   // If the target claims to have no vector registers don't attempt
8333   // vectorization.
8334   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
8335     LLVM_DEBUG(
8336         dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
8337     return false;
8338   }
8339 
8340   // Don't vectorize when the attribute NoImplicitFloat is used.
8341   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
8342     return false;
8343 
8344   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
8345 
8346   // Use the bottom up slp vectorizer to construct chains that start with
8347   // store instructions.
8348   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
8349 
8350   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
8351   // delete instructions.
8352 
8353   // Update DFS numbers now so that we can use them for ordering.
8354   DT->updateDFSNumbers();
8355 
8356   // Scan the blocks in the function in post order.
8357   for (auto BB : post_order(&F.getEntryBlock())) {
8358     collectSeedInstructions(BB);
8359 
8360     // Vectorize trees that end at stores.
8361     if (!Stores.empty()) {
8362       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
8363                         << " underlying objects.\n");
8364       Changed |= vectorizeStoreChains(R);
8365     }
8366 
8367     // Vectorize trees that end at reductions.
8368     Changed |= vectorizeChainsInBlock(BB, R);
8369 
8370     // Vectorize the index computations of getelementptr instructions. This
8371     // is primarily intended to catch gather-like idioms ending at
8372     // non-consecutive loads.
8373     if (!GEPs.empty()) {
8374       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
8375                         << " underlying objects.\n");
8376       Changed |= vectorizeGEPIndices(BB, R);
8377     }
8378   }
8379 
8380   if (Changed) {
8381     R.optimizeGatherSequence();
8382     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
8383   }
8384   return Changed;
8385 }
8386 
8387 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
8388                                             unsigned Idx) {
8389   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
8390                     << "\n");
8391   const unsigned Sz = R.getVectorElementSize(Chain[0]);
8392   const unsigned MinVF = R.getMinVecRegSize() / Sz;
8393   unsigned VF = Chain.size();
8394 
8395   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
8396     return false;
8397 
8398   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
8399                     << "\n");
8400 
8401   R.buildTree(Chain);
8402   if (R.isTreeTinyAndNotFullyVectorizable())
8403     return false;
8404   if (R.isLoadCombineCandidate())
8405     return false;
8406   R.reorderTopToBottom();
8407   R.reorderBottomToTop();
8408   R.buildExternalUses();
8409 
8410   R.computeMinimumValueSizes();
8411 
8412   InstructionCost Cost = R.getTreeCost();
8413 
8414   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
8415   if (Cost < -SLPCostThreshold) {
8416     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
8417 
8418     using namespace ore;
8419 
8420     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
8421                                         cast<StoreInst>(Chain[0]))
8422                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
8423                      << " and with tree size "
8424                      << NV("TreeSize", R.getTreeSize()));
8425 
8426     R.vectorizeTree();
8427     return true;
8428   }
8429 
8430   return false;
8431 }
8432 
8433 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
8434                                         BoUpSLP &R) {
8435   // We may run into multiple chains that merge into a single chain. We mark the
8436   // stores that we vectorized so that we don't visit the same store twice.
8437   BoUpSLP::ValueSet VectorizedStores;
8438   bool Changed = false;
8439 
8440   int E = Stores.size();
8441   SmallBitVector Tails(E, false);
8442   int MaxIter = MaxStoreLookup.getValue();
8443   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
8444       E, std::make_pair(E, INT_MAX));
8445   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
8446   int IterCnt;
8447   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
8448                                   &CheckedPairs,
8449                                   &ConsecutiveChain](int K, int Idx) {
8450     if (IterCnt >= MaxIter)
8451       return true;
8452     if (CheckedPairs[Idx].test(K))
8453       return ConsecutiveChain[K].second == 1 &&
8454              ConsecutiveChain[K].first == Idx;
8455     ++IterCnt;
8456     CheckedPairs[Idx].set(K);
8457     CheckedPairs[K].set(Idx);
8458     Optional<int> Diff = getPointersDiff(
8459         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
8460         Stores[Idx]->getValueOperand()->getType(),
8461         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
8462     if (!Diff || *Diff == 0)
8463       return false;
8464     int Val = *Diff;
8465     if (Val < 0) {
8466       if (ConsecutiveChain[Idx].second > -Val) {
8467         Tails.set(K);
8468         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
8469       }
8470       return false;
8471     }
8472     if (ConsecutiveChain[K].second <= Val)
8473       return false;
8474 
8475     Tails.set(Idx);
8476     ConsecutiveChain[K] = std::make_pair(Idx, Val);
8477     return Val == 1;
8478   };
8479   // Do a quadratic search on all of the given stores in reverse order and find
8480   // all of the pairs of stores that follow each other.
8481   for (int Idx = E - 1; Idx >= 0; --Idx) {
8482     // If a store has multiple consecutive store candidates, search according
8483     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
8484     // This is because usually pairing with immediate succeeding or preceding
8485     // candidate create the best chance to find slp vectorization opportunity.
8486     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
8487     IterCnt = 0;
8488     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
8489       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
8490           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
8491         break;
8492   }
8493 
8494   // Tracks if we tried to vectorize stores starting from the given tail
8495   // already.
8496   SmallBitVector TriedTails(E, false);
8497   // For stores that start but don't end a link in the chain:
8498   for (int Cnt = E; Cnt > 0; --Cnt) {
8499     int I = Cnt - 1;
8500     if (ConsecutiveChain[I].first == E || Tails.test(I))
8501       continue;
8502     // We found a store instr that starts a chain. Now follow the chain and try
8503     // to vectorize it.
8504     BoUpSLP::ValueList Operands;
8505     // Collect the chain into a list.
8506     while (I != E && !VectorizedStores.count(Stores[I])) {
8507       Operands.push_back(Stores[I]);
8508       Tails.set(I);
8509       if (ConsecutiveChain[I].second != 1) {
8510         // Mark the new end in the chain and go back, if required. It might be
8511         // required if the original stores come in reversed order, for example.
8512         if (ConsecutiveChain[I].first != E &&
8513             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
8514             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
8515           TriedTails.set(I);
8516           Tails.reset(ConsecutiveChain[I].first);
8517           if (Cnt < ConsecutiveChain[I].first + 2)
8518             Cnt = ConsecutiveChain[I].first + 2;
8519         }
8520         break;
8521       }
8522       // Move to the next value in the chain.
8523       I = ConsecutiveChain[I].first;
8524     }
8525     assert(!Operands.empty() && "Expected non-empty list of stores.");
8526 
8527     unsigned MaxVecRegSize = R.getMaxVecRegSize();
8528     unsigned EltSize = R.getVectorElementSize(Operands[0]);
8529     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
8530 
8531     unsigned MinVF = R.getMinVF(EltSize);
8532     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
8533                               MaxElts);
8534 
8535     // FIXME: Is division-by-2 the correct step? Should we assert that the
8536     // register size is a power-of-2?
8537     unsigned StartIdx = 0;
8538     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
8539       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
8540         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
8541         if (!VectorizedStores.count(Slice.front()) &&
8542             !VectorizedStores.count(Slice.back()) &&
8543             vectorizeStoreChain(Slice, R, Cnt)) {
8544           // Mark the vectorized stores so that we don't vectorize them again.
8545           VectorizedStores.insert(Slice.begin(), Slice.end());
8546           Changed = true;
8547           // If we vectorized initial block, no need to try to vectorize it
8548           // again.
8549           if (Cnt == StartIdx)
8550             StartIdx += Size;
8551           Cnt += Size;
8552           continue;
8553         }
8554         ++Cnt;
8555       }
8556       // Check if the whole array was vectorized already - exit.
8557       if (StartIdx >= Operands.size())
8558         break;
8559     }
8560   }
8561 
8562   return Changed;
8563 }
8564 
8565 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
8566   // Initialize the collections. We will make a single pass over the block.
8567   Stores.clear();
8568   GEPs.clear();
8569 
8570   // Visit the store and getelementptr instructions in BB and organize them in
8571   // Stores and GEPs according to the underlying objects of their pointer
8572   // operands.
8573   for (Instruction &I : *BB) {
8574     // Ignore store instructions that are volatile or have a pointer operand
8575     // that doesn't point to a scalar type.
8576     if (auto *SI = dyn_cast<StoreInst>(&I)) {
8577       if (!SI->isSimple())
8578         continue;
8579       if (!isValidElementType(SI->getValueOperand()->getType()))
8580         continue;
8581       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
8582     }
8583 
8584     // Ignore getelementptr instructions that have more than one index, a
8585     // constant index, or a pointer operand that doesn't point to a scalar
8586     // type.
8587     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
8588       auto Idx = GEP->idx_begin()->get();
8589       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
8590         continue;
8591       if (!isValidElementType(Idx->getType()))
8592         continue;
8593       if (GEP->getType()->isVectorTy())
8594         continue;
8595       GEPs[GEP->getPointerOperand()].push_back(GEP);
8596     }
8597   }
8598 }
8599 
8600 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
8601   if (!A || !B)
8602     return false;
8603   if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
8604     return false;
8605   Value *VL[] = {A, B};
8606   return tryToVectorizeList(VL, R);
8607 }
8608 
8609 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
8610                                            bool LimitForRegisterSize) {
8611   if (VL.size() < 2)
8612     return false;
8613 
8614   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
8615                     << VL.size() << ".\n");
8616 
8617   // Check that all of the parts are instructions of the same type,
8618   // we permit an alternate opcode via InstructionsState.
8619   InstructionsState S = getSameOpcode(VL);
8620   if (!S.getOpcode())
8621     return false;
8622 
8623   Instruction *I0 = cast<Instruction>(S.OpValue);
8624   // Make sure invalid types (including vector type) are rejected before
8625   // determining vectorization factor for scalar instructions.
8626   for (Value *V : VL) {
8627     Type *Ty = V->getType();
8628     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
8629       // NOTE: the following will give user internal llvm type name, which may
8630       // not be useful.
8631       R.getORE()->emit([&]() {
8632         std::string type_str;
8633         llvm::raw_string_ostream rso(type_str);
8634         Ty->print(rso);
8635         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
8636                << "Cannot SLP vectorize list: type "
8637                << rso.str() + " is unsupported by vectorizer";
8638       });
8639       return false;
8640     }
8641   }
8642 
8643   unsigned Sz = R.getVectorElementSize(I0);
8644   unsigned MinVF = R.getMinVF(Sz);
8645   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
8646   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
8647   if (MaxVF < 2) {
8648     R.getORE()->emit([&]() {
8649       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
8650              << "Cannot SLP vectorize list: vectorization factor "
8651              << "less than 2 is not supported";
8652     });
8653     return false;
8654   }
8655 
8656   bool Changed = false;
8657   bool CandidateFound = false;
8658   InstructionCost MinCost = SLPCostThreshold.getValue();
8659   Type *ScalarTy = VL[0]->getType();
8660   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
8661     ScalarTy = IE->getOperand(1)->getType();
8662 
8663   unsigned NextInst = 0, MaxInst = VL.size();
8664   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
8665     // No actual vectorization should happen, if number of parts is the same as
8666     // provided vectorization factor (i.e. the scalar type is used for vector
8667     // code during codegen).
8668     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
8669     if (TTI->getNumberOfParts(VecTy) == VF)
8670       continue;
8671     for (unsigned I = NextInst; I < MaxInst; ++I) {
8672       unsigned OpsWidth = 0;
8673 
8674       if (I + VF > MaxInst)
8675         OpsWidth = MaxInst - I;
8676       else
8677         OpsWidth = VF;
8678 
8679       if (!isPowerOf2_32(OpsWidth))
8680         continue;
8681 
8682       if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
8683           (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
8684         break;
8685 
8686       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
8687       // Check that a previous iteration of this loop did not delete the Value.
8688       if (llvm::any_of(Ops, [&R](Value *V) {
8689             auto *I = dyn_cast<Instruction>(V);
8690             return I && R.isDeleted(I);
8691           }))
8692         continue;
8693 
8694       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
8695                         << "\n");
8696 
8697       R.buildTree(Ops);
8698       if (R.isTreeTinyAndNotFullyVectorizable())
8699         continue;
8700       R.reorderTopToBottom();
8701       R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
8702       R.buildExternalUses();
8703 
8704       R.computeMinimumValueSizes();
8705       InstructionCost Cost = R.getTreeCost();
8706       CandidateFound = true;
8707       MinCost = std::min(MinCost, Cost);
8708 
8709       if (Cost < -SLPCostThreshold) {
8710         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
8711         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
8712                                                     cast<Instruction>(Ops[0]))
8713                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
8714                                  << " and with tree size "
8715                                  << ore::NV("TreeSize", R.getTreeSize()));
8716 
8717         R.vectorizeTree();
8718         // Move to the next bundle.
8719         I += VF - 1;
8720         NextInst = I + 1;
8721         Changed = true;
8722       }
8723     }
8724   }
8725 
8726   if (!Changed && CandidateFound) {
8727     R.getORE()->emit([&]() {
8728       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
8729              << "List vectorization was possible but not beneficial with cost "
8730              << ore::NV("Cost", MinCost) << " >= "
8731              << ore::NV("Treshold", -SLPCostThreshold);
8732     });
8733   } else if (!Changed) {
8734     R.getORE()->emit([&]() {
8735       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
8736              << "Cannot SLP vectorize list: vectorization was impossible"
8737              << " with available vectorization factors";
8738     });
8739   }
8740   return Changed;
8741 }
8742 
8743 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
8744   if (!I)
8745     return false;
8746 
8747   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
8748     return false;
8749 
8750   Value *P = I->getParent();
8751 
8752   // Vectorize in current basic block only.
8753   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
8754   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
8755   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
8756     return false;
8757 
8758   // Try to vectorize V.
8759   if (tryToVectorizePair(Op0, Op1, R))
8760     return true;
8761 
8762   auto *A = dyn_cast<BinaryOperator>(Op0);
8763   auto *B = dyn_cast<BinaryOperator>(Op1);
8764   // Try to skip B.
8765   if (B && B->hasOneUse()) {
8766     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
8767     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
8768     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
8769       return true;
8770     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
8771       return true;
8772   }
8773 
8774   // Try to skip A.
8775   if (A && A->hasOneUse()) {
8776     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
8777     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
8778     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
8779       return true;
8780     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
8781       return true;
8782   }
8783   return false;
8784 }
8785 
8786 namespace {
8787 
8788 /// Model horizontal reductions.
8789 ///
8790 /// A horizontal reduction is a tree of reduction instructions that has values
8791 /// that can be put into a vector as its leaves. For example:
8792 ///
8793 /// mul mul mul mul
8794 ///  \  /    \  /
8795 ///   +       +
8796 ///    \     /
8797 ///       +
8798 /// This tree has "mul" as its leaf values and "+" as its reduction
8799 /// instructions. A reduction can feed into a store or a binary operation
8800 /// feeding a phi.
8801 ///    ...
8802 ///    \  /
8803 ///     +
8804 ///     |
8805 ///  phi +=
8806 ///
8807 ///  Or:
8808 ///    ...
8809 ///    \  /
8810 ///     +
8811 ///     |
8812 ///   *p =
8813 ///
8814 class HorizontalReduction {
8815   using ReductionOpsType = SmallVector<Value *, 16>;
8816   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
8817   ReductionOpsListType ReductionOps;
8818   SmallVector<Value *, 32> ReducedVals;
8819   // Use map vector to make stable output.
8820   MapVector<Instruction *, Value *> ExtraArgs;
8821   WeakTrackingVH ReductionRoot;
8822   /// The type of reduction operation.
8823   RecurKind RdxKind;
8824 
8825   const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max();
8826 
8827   static bool isCmpSelMinMax(Instruction *I) {
8828     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
8829            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
8830   }
8831 
8832   // And/or are potentially poison-safe logical patterns like:
8833   // select x, y, false
8834   // select x, true, y
8835   static bool isBoolLogicOp(Instruction *I) {
8836     return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
8837            match(I, m_LogicalOr(m_Value(), m_Value()));
8838   }
8839 
8840   /// Checks if instruction is associative and can be vectorized.
8841   static bool isVectorizable(RecurKind Kind, Instruction *I) {
8842     if (Kind == RecurKind::None)
8843       return false;
8844 
8845     // Integer ops that map to select instructions or intrinsics are fine.
8846     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
8847         isBoolLogicOp(I))
8848       return true;
8849 
8850     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
8851       // FP min/max are associative except for NaN and -0.0. We do not
8852       // have to rule out -0.0 here because the intrinsic semantics do not
8853       // specify a fixed result for it.
8854       return I->getFastMathFlags().noNaNs();
8855     }
8856 
8857     return I->isAssociative();
8858   }
8859 
8860   static Value *getRdxOperand(Instruction *I, unsigned Index) {
8861     // Poison-safe 'or' takes the form: select X, true, Y
8862     // To make that work with the normal operand processing, we skip the
8863     // true value operand.
8864     // TODO: Change the code and data structures to handle this without a hack.
8865     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
8866       return I->getOperand(2);
8867     return I->getOperand(Index);
8868   }
8869 
8870   /// Checks if the ParentStackElem.first should be marked as a reduction
8871   /// operation with an extra argument or as extra argument itself.
8872   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
8873                     Value *ExtraArg) {
8874     if (ExtraArgs.count(ParentStackElem.first)) {
8875       ExtraArgs[ParentStackElem.first] = nullptr;
8876       // We ran into something like:
8877       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
8878       // The whole ParentStackElem.first should be considered as an extra value
8879       // in this case.
8880       // Do not perform analysis of remaining operands of ParentStackElem.first
8881       // instruction, this whole instruction is an extra argument.
8882       ParentStackElem.second = INVALID_OPERAND_INDEX;
8883     } else {
8884       // We ran into something like:
8885       // ParentStackElem.first += ... + ExtraArg + ...
8886       ExtraArgs[ParentStackElem.first] = ExtraArg;
8887     }
8888   }
8889 
8890   /// Creates reduction operation with the current opcode.
8891   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
8892                          Value *RHS, const Twine &Name, bool UseSelect) {
8893     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
8894     switch (Kind) {
8895     case RecurKind::Or:
8896       if (UseSelect &&
8897           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
8898         return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
8899       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8900                                  Name);
8901     case RecurKind::And:
8902       if (UseSelect &&
8903           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
8904         return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
8905       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8906                                  Name);
8907     case RecurKind::Add:
8908     case RecurKind::Mul:
8909     case RecurKind::Xor:
8910     case RecurKind::FAdd:
8911     case RecurKind::FMul:
8912       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8913                                  Name);
8914     case RecurKind::FMax:
8915       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
8916     case RecurKind::FMin:
8917       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
8918     case RecurKind::SMax:
8919       if (UseSelect) {
8920         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
8921         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8922       }
8923       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
8924     case RecurKind::SMin:
8925       if (UseSelect) {
8926         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
8927         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8928       }
8929       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
8930     case RecurKind::UMax:
8931       if (UseSelect) {
8932         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
8933         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8934       }
8935       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
8936     case RecurKind::UMin:
8937       if (UseSelect) {
8938         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
8939         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8940       }
8941       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
8942     default:
8943       llvm_unreachable("Unknown reduction operation.");
8944     }
8945   }
8946 
8947   /// Creates reduction operation with the current opcode with the IR flags
8948   /// from \p ReductionOps.
8949   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
8950                          Value *RHS, const Twine &Name,
8951                          const ReductionOpsListType &ReductionOps) {
8952     bool UseSelect = ReductionOps.size() == 2 ||
8953                      // Logical or/and.
8954                      (ReductionOps.size() == 1 &&
8955                       isa<SelectInst>(ReductionOps.front().front()));
8956     assert((!UseSelect || ReductionOps.size() != 2 ||
8957             isa<SelectInst>(ReductionOps[1][0])) &&
8958            "Expected cmp + select pairs for reduction");
8959     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
8960     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
8961       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
8962         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
8963         propagateIRFlags(Op, ReductionOps[1]);
8964         return Op;
8965       }
8966     }
8967     propagateIRFlags(Op, ReductionOps[0]);
8968     return Op;
8969   }
8970 
8971   /// Creates reduction operation with the current opcode with the IR flags
8972   /// from \p I.
8973   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
8974                          Value *RHS, const Twine &Name, Instruction *I) {
8975     auto *SelI = dyn_cast<SelectInst>(I);
8976     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
8977     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
8978       if (auto *Sel = dyn_cast<SelectInst>(Op))
8979         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
8980     }
8981     propagateIRFlags(Op, I);
8982     return Op;
8983   }
8984 
8985   static RecurKind getRdxKind(Instruction *I) {
8986     assert(I && "Expected instruction for reduction matching");
8987     if (match(I, m_Add(m_Value(), m_Value())))
8988       return RecurKind::Add;
8989     if (match(I, m_Mul(m_Value(), m_Value())))
8990       return RecurKind::Mul;
8991     if (match(I, m_And(m_Value(), m_Value())) ||
8992         match(I, m_LogicalAnd(m_Value(), m_Value())))
8993       return RecurKind::And;
8994     if (match(I, m_Or(m_Value(), m_Value())) ||
8995         match(I, m_LogicalOr(m_Value(), m_Value())))
8996       return RecurKind::Or;
8997     if (match(I, m_Xor(m_Value(), m_Value())))
8998       return RecurKind::Xor;
8999     if (match(I, m_FAdd(m_Value(), m_Value())))
9000       return RecurKind::FAdd;
9001     if (match(I, m_FMul(m_Value(), m_Value())))
9002       return RecurKind::FMul;
9003 
9004     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
9005       return RecurKind::FMax;
9006     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
9007       return RecurKind::FMin;
9008 
9009     // This matches either cmp+select or intrinsics. SLP is expected to handle
9010     // either form.
9011     // TODO: If we are canonicalizing to intrinsics, we can remove several
9012     //       special-case paths that deal with selects.
9013     if (match(I, m_SMax(m_Value(), m_Value())))
9014       return RecurKind::SMax;
9015     if (match(I, m_SMin(m_Value(), m_Value())))
9016       return RecurKind::SMin;
9017     if (match(I, m_UMax(m_Value(), m_Value())))
9018       return RecurKind::UMax;
9019     if (match(I, m_UMin(m_Value(), m_Value())))
9020       return RecurKind::UMin;
9021 
9022     if (auto *Select = dyn_cast<SelectInst>(I)) {
9023       // Try harder: look for min/max pattern based on instructions producing
9024       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
9025       // During the intermediate stages of SLP, it's very common to have
9026       // pattern like this (since optimizeGatherSequence is run only once
9027       // at the end):
9028       // %1 = extractelement <2 x i32> %a, i32 0
9029       // %2 = extractelement <2 x i32> %a, i32 1
9030       // %cond = icmp sgt i32 %1, %2
9031       // %3 = extractelement <2 x i32> %a, i32 0
9032       // %4 = extractelement <2 x i32> %a, i32 1
9033       // %select = select i1 %cond, i32 %3, i32 %4
9034       CmpInst::Predicate Pred;
9035       Instruction *L1;
9036       Instruction *L2;
9037 
9038       Value *LHS = Select->getTrueValue();
9039       Value *RHS = Select->getFalseValue();
9040       Value *Cond = Select->getCondition();
9041 
9042       // TODO: Support inverse predicates.
9043       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
9044         if (!isa<ExtractElementInst>(RHS) ||
9045             !L2->isIdenticalTo(cast<Instruction>(RHS)))
9046           return RecurKind::None;
9047       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
9048         if (!isa<ExtractElementInst>(LHS) ||
9049             !L1->isIdenticalTo(cast<Instruction>(LHS)))
9050           return RecurKind::None;
9051       } else {
9052         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
9053           return RecurKind::None;
9054         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
9055             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
9056             !L2->isIdenticalTo(cast<Instruction>(RHS)))
9057           return RecurKind::None;
9058       }
9059 
9060       switch (Pred) {
9061       default:
9062         return RecurKind::None;
9063       case CmpInst::ICMP_SGT:
9064       case CmpInst::ICMP_SGE:
9065         return RecurKind::SMax;
9066       case CmpInst::ICMP_SLT:
9067       case CmpInst::ICMP_SLE:
9068         return RecurKind::SMin;
9069       case CmpInst::ICMP_UGT:
9070       case CmpInst::ICMP_UGE:
9071         return RecurKind::UMax;
9072       case CmpInst::ICMP_ULT:
9073       case CmpInst::ICMP_ULE:
9074         return RecurKind::UMin;
9075       }
9076     }
9077     return RecurKind::None;
9078   }
9079 
9080   /// Get the index of the first operand.
9081   static unsigned getFirstOperandIndex(Instruction *I) {
9082     return isCmpSelMinMax(I) ? 1 : 0;
9083   }
9084 
9085   /// Total number of operands in the reduction operation.
9086   static unsigned getNumberOfOperands(Instruction *I) {
9087     return isCmpSelMinMax(I) ? 3 : 2;
9088   }
9089 
9090   /// Checks if the instruction is in basic block \p BB.
9091   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
9092   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
9093     if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) {
9094       auto *Sel = cast<SelectInst>(I);
9095       auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
9096       return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
9097     }
9098     return I->getParent() == BB;
9099   }
9100 
9101   /// Expected number of uses for reduction operations/reduced values.
9102   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
9103     if (IsCmpSelMinMax) {
9104       // SelectInst must be used twice while the condition op must have single
9105       // use only.
9106       if (auto *Sel = dyn_cast<SelectInst>(I))
9107         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
9108       return I->hasNUses(2);
9109     }
9110 
9111     // Arithmetic reduction operation must be used once only.
9112     return I->hasOneUse();
9113   }
9114 
9115   /// Initializes the list of reduction operations.
9116   void initReductionOps(Instruction *I) {
9117     if (isCmpSelMinMax(I))
9118       ReductionOps.assign(2, ReductionOpsType());
9119     else
9120       ReductionOps.assign(1, ReductionOpsType());
9121   }
9122 
9123   /// Add all reduction operations for the reduction instruction \p I.
9124   void addReductionOps(Instruction *I) {
9125     if (isCmpSelMinMax(I)) {
9126       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
9127       ReductionOps[1].emplace_back(I);
9128     } else {
9129       ReductionOps[0].emplace_back(I);
9130     }
9131   }
9132 
9133   static Value *getLHS(RecurKind Kind, Instruction *I) {
9134     if (Kind == RecurKind::None)
9135       return nullptr;
9136     return I->getOperand(getFirstOperandIndex(I));
9137   }
9138   static Value *getRHS(RecurKind Kind, Instruction *I) {
9139     if (Kind == RecurKind::None)
9140       return nullptr;
9141     return I->getOperand(getFirstOperandIndex(I) + 1);
9142   }
9143 
9144 public:
9145   HorizontalReduction() = default;
9146 
9147   /// Try to find a reduction tree.
9148   bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) {
9149     assert((!Phi || is_contained(Phi->operands(), Inst)) &&
9150            "Phi needs to use the binary operator");
9151     assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
9152             isa<IntrinsicInst>(Inst)) &&
9153            "Expected binop, select, or intrinsic for reduction matching");
9154     RdxKind = getRdxKind(Inst);
9155 
9156     // We could have a initial reductions that is not an add.
9157     //  r *= v1 + v2 + v3 + v4
9158     // In such a case start looking for a tree rooted in the first '+'.
9159     if (Phi) {
9160       if (getLHS(RdxKind, Inst) == Phi) {
9161         Phi = nullptr;
9162         Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
9163         if (!Inst)
9164           return false;
9165         RdxKind = getRdxKind(Inst);
9166       } else if (getRHS(RdxKind, Inst) == Phi) {
9167         Phi = nullptr;
9168         Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
9169         if (!Inst)
9170           return false;
9171         RdxKind = getRdxKind(Inst);
9172       }
9173     }
9174 
9175     if (!isVectorizable(RdxKind, Inst))
9176       return false;
9177 
9178     // Analyze "regular" integer/FP types for reductions - no target-specific
9179     // types or pointers.
9180     Type *Ty = Inst->getType();
9181     if (!isValidElementType(Ty) || Ty->isPointerTy())
9182       return false;
9183 
9184     // Though the ultimate reduction may have multiple uses, its condition must
9185     // have only single use.
9186     if (auto *Sel = dyn_cast<SelectInst>(Inst))
9187       if (!Sel->getCondition()->hasOneUse())
9188         return false;
9189 
9190     ReductionRoot = Inst;
9191 
9192     // The opcode for leaf values that we perform a reduction on.
9193     // For example: load(x) + load(y) + load(z) + fptoui(w)
9194     // The leaf opcode for 'w' does not match, so we don't include it as a
9195     // potential candidate for the reduction.
9196     unsigned LeafOpcode = 0;
9197 
9198     // Post-order traverse the reduction tree starting at Inst. We only handle
9199     // true trees containing binary operators or selects.
9200     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
9201     Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst)));
9202     initReductionOps(Inst);
9203     while (!Stack.empty()) {
9204       Instruction *TreeN = Stack.back().first;
9205       unsigned EdgeToVisit = Stack.back().second++;
9206       const RecurKind TreeRdxKind = getRdxKind(TreeN);
9207       bool IsReducedValue = TreeRdxKind != RdxKind;
9208 
9209       // Postorder visit.
9210       if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) {
9211         if (IsReducedValue)
9212           ReducedVals.push_back(TreeN);
9213         else {
9214           auto ExtraArgsIter = ExtraArgs.find(TreeN);
9215           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
9216             // Check if TreeN is an extra argument of its parent operation.
9217             if (Stack.size() <= 1) {
9218               // TreeN can't be an extra argument as it is a root reduction
9219               // operation.
9220               return false;
9221             }
9222             // Yes, TreeN is an extra argument, do not add it to a list of
9223             // reduction operations.
9224             // Stack[Stack.size() - 2] always points to the parent operation.
9225             markExtraArg(Stack[Stack.size() - 2], TreeN);
9226             ExtraArgs.erase(TreeN);
9227           } else
9228             addReductionOps(TreeN);
9229         }
9230         // Retract.
9231         Stack.pop_back();
9232         continue;
9233       }
9234 
9235       // Visit operands.
9236       Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit);
9237       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
9238       if (!EdgeInst) {
9239         // Edge value is not a reduction instruction or a leaf instruction.
9240         // (It may be a constant, function argument, or something else.)
9241         markExtraArg(Stack.back(), EdgeVal);
9242         continue;
9243       }
9244       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
9245       // Continue analysis if the next operand is a reduction operation or
9246       // (possibly) a leaf value. If the leaf value opcode is not set,
9247       // the first met operation != reduction operation is considered as the
9248       // leaf opcode.
9249       // Only handle trees in the current basic block.
9250       // Each tree node needs to have minimal number of users except for the
9251       // ultimate reduction.
9252       const bool IsRdxInst = EdgeRdxKind == RdxKind;
9253       if (EdgeInst != Phi && EdgeInst != Inst &&
9254           hasSameParent(EdgeInst, Inst->getParent()) &&
9255           hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) &&
9256           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
9257         if (IsRdxInst) {
9258           // We need to be able to reassociate the reduction operations.
9259           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
9260             // I is an extra argument for TreeN (its parent operation).
9261             markExtraArg(Stack.back(), EdgeInst);
9262             continue;
9263           }
9264         } else if (!LeafOpcode) {
9265           LeafOpcode = EdgeInst->getOpcode();
9266         }
9267         Stack.push_back(
9268             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
9269         continue;
9270       }
9271       // I is an extra argument for TreeN (its parent operation).
9272       markExtraArg(Stack.back(), EdgeInst);
9273     }
9274     return true;
9275   }
9276 
9277   /// Attempt to vectorize the tree found by matchAssociativeReduction.
9278   Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
9279     // If there are a sufficient number of reduction values, reduce
9280     // to a nearby power-of-2. We can safely generate oversized
9281     // vectors and rely on the backend to split them to legal sizes.
9282     unsigned NumReducedVals = ReducedVals.size();
9283     if (NumReducedVals < 4)
9284       return nullptr;
9285 
9286     // Intersect the fast-math-flags from all reduction operations.
9287     FastMathFlags RdxFMF;
9288     RdxFMF.set();
9289     for (ReductionOpsType &RdxOp : ReductionOps) {
9290       for (Value *RdxVal : RdxOp) {
9291         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
9292           RdxFMF &= FPMO->getFastMathFlags();
9293       }
9294     }
9295 
9296     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
9297     Builder.setFastMathFlags(RdxFMF);
9298 
9299     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
9300     // The same extra argument may be used several times, so log each attempt
9301     // to use it.
9302     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
9303       assert(Pair.first && "DebugLoc must be set.");
9304       ExternallyUsedValues[Pair.second].push_back(Pair.first);
9305     }
9306 
9307     // The compare instruction of a min/max is the insertion point for new
9308     // instructions and may be replaced with a new compare instruction.
9309     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
9310       assert(isa<SelectInst>(RdxRootInst) &&
9311              "Expected min/max reduction to have select root instruction");
9312       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
9313       assert(isa<Instruction>(ScalarCond) &&
9314              "Expected min/max reduction to have compare condition");
9315       return cast<Instruction>(ScalarCond);
9316     };
9317 
9318     // The reduction root is used as the insertion point for new instructions,
9319     // so set it as externally used to prevent it from being deleted.
9320     ExternallyUsedValues[ReductionRoot];
9321     SmallVector<Value *, 16> IgnoreList;
9322     for (ReductionOpsType &RdxOp : ReductionOps)
9323       IgnoreList.append(RdxOp.begin(), RdxOp.end());
9324 
9325     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
9326     if (NumReducedVals > ReduxWidth) {
9327       // In the loop below, we are building a tree based on a window of
9328       // 'ReduxWidth' values.
9329       // If the operands of those values have common traits (compare predicate,
9330       // constant operand, etc), then we want to group those together to
9331       // minimize the cost of the reduction.
9332 
9333       // TODO: This should be extended to count common operands for
9334       //       compares and binops.
9335 
9336       // Step 1: Count the number of times each compare predicate occurs.
9337       SmallDenseMap<unsigned, unsigned> PredCountMap;
9338       for (Value *RdxVal : ReducedVals) {
9339         CmpInst::Predicate Pred;
9340         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
9341           ++PredCountMap[Pred];
9342       }
9343       // Step 2: Sort the values so the most common predicates come first.
9344       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
9345         CmpInst::Predicate PredA, PredB;
9346         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
9347             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
9348           return PredCountMap[PredA] > PredCountMap[PredB];
9349         }
9350         return false;
9351       });
9352     }
9353 
9354     Value *VectorizedTree = nullptr;
9355     unsigned i = 0;
9356     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
9357       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
9358       V.buildTree(VL, IgnoreList);
9359       if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true))
9360         break;
9361       if (V.isLoadCombineReductionCandidate(RdxKind))
9362         break;
9363       V.reorderTopToBottom();
9364       V.reorderBottomToTop(/*IgnoreReorder=*/true);
9365       V.buildExternalUses(ExternallyUsedValues);
9366 
9367       // For a poison-safe boolean logic reduction, do not replace select
9368       // instructions with logic ops. All reduced values will be frozen (see
9369       // below) to prevent leaking poison.
9370       if (isa<SelectInst>(ReductionRoot) &&
9371           isBoolLogicOp(cast<Instruction>(ReductionRoot)) &&
9372           NumReducedVals != ReduxWidth)
9373         break;
9374 
9375       V.computeMinimumValueSizes();
9376 
9377       // Estimate cost.
9378       InstructionCost TreeCost =
9379           V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
9380       InstructionCost ReductionCost =
9381           getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF);
9382       InstructionCost Cost = TreeCost + ReductionCost;
9383       if (!Cost.isValid()) {
9384         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
9385         return nullptr;
9386       }
9387       if (Cost >= -SLPCostThreshold) {
9388         V.getORE()->emit([&]() {
9389           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
9390                                           cast<Instruction>(VL[0]))
9391                  << "Vectorizing horizontal reduction is possible"
9392                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
9393                  << " and threshold "
9394                  << ore::NV("Threshold", -SLPCostThreshold);
9395         });
9396         break;
9397       }
9398 
9399       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
9400                         << Cost << ". (HorRdx)\n");
9401       V.getORE()->emit([&]() {
9402         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
9403                                   cast<Instruction>(VL[0]))
9404                << "Vectorized horizontal reduction with cost "
9405                << ore::NV("Cost", Cost) << " and with tree size "
9406                << ore::NV("TreeSize", V.getTreeSize());
9407       });
9408 
9409       // Vectorize a tree.
9410       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
9411       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
9412 
9413       // Emit a reduction. If the root is a select (min/max idiom), the insert
9414       // point is the compare condition of that select.
9415       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
9416       if (isCmpSelMinMax(RdxRootInst))
9417         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
9418       else
9419         Builder.SetInsertPoint(RdxRootInst);
9420 
9421       // To prevent poison from leaking across what used to be sequential, safe,
9422       // scalar boolean logic operations, the reduction operand must be frozen.
9423       if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
9424         VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
9425 
9426       Value *ReducedSubTree =
9427           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
9428 
9429       if (!VectorizedTree) {
9430         // Initialize the final value in the reduction.
9431         VectorizedTree = ReducedSubTree;
9432       } else {
9433         // Update the final value in the reduction.
9434         Builder.SetCurrentDebugLocation(Loc);
9435         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9436                                   ReducedSubTree, "op.rdx", ReductionOps);
9437       }
9438       i += ReduxWidth;
9439       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
9440     }
9441 
9442     if (VectorizedTree) {
9443       // Finish the reduction.
9444       for (; i < NumReducedVals; ++i) {
9445         auto *I = cast<Instruction>(ReducedVals[i]);
9446         Builder.SetCurrentDebugLocation(I->getDebugLoc());
9447         VectorizedTree =
9448             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
9449       }
9450       for (auto &Pair : ExternallyUsedValues) {
9451         // Add each externally used value to the final reduction.
9452         for (auto *I : Pair.second) {
9453           Builder.SetCurrentDebugLocation(I->getDebugLoc());
9454           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9455                                     Pair.first, "op.extra", I);
9456         }
9457       }
9458 
9459       ReductionRoot->replaceAllUsesWith(VectorizedTree);
9460 
9461       // Mark all scalar reduction ops for deletion, they are replaced by the
9462       // vector reductions.
9463       V.eraseInstructions(IgnoreList);
9464     }
9465     return VectorizedTree;
9466   }
9467 
9468   unsigned numReductionValues() const { return ReducedVals.size(); }
9469 
9470 private:
9471   /// Calculate the cost of a reduction.
9472   InstructionCost getReductionCost(TargetTransformInfo *TTI,
9473                                    Value *FirstReducedVal, unsigned ReduxWidth,
9474                                    FastMathFlags FMF) {
9475     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9476     Type *ScalarTy = FirstReducedVal->getType();
9477     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
9478     InstructionCost VectorCost, ScalarCost;
9479     switch (RdxKind) {
9480     case RecurKind::Add:
9481     case RecurKind::Mul:
9482     case RecurKind::Or:
9483     case RecurKind::And:
9484     case RecurKind::Xor:
9485     case RecurKind::FAdd:
9486     case RecurKind::FMul: {
9487       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
9488       VectorCost =
9489           TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
9490       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
9491       break;
9492     }
9493     case RecurKind::FMax:
9494     case RecurKind::FMin: {
9495       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9496       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9497       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
9498                                                /*IsUnsigned=*/false, CostKind);
9499       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9500       ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
9501                                            SclCondTy, RdxPred, CostKind) +
9502                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9503                                            SclCondTy, RdxPred, CostKind);
9504       break;
9505     }
9506     case RecurKind::SMax:
9507     case RecurKind::SMin:
9508     case RecurKind::UMax:
9509     case RecurKind::UMin: {
9510       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9511       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9512       bool IsUnsigned =
9513           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
9514       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned,
9515                                                CostKind);
9516       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9517       ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
9518                                            SclCondTy, RdxPred, CostKind) +
9519                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9520                                            SclCondTy, RdxPred, CostKind);
9521       break;
9522     }
9523     default:
9524       llvm_unreachable("Expected arithmetic or min/max reduction operation");
9525     }
9526 
9527     // Scalar cost is repeated for N-1 elements.
9528     ScalarCost *= (ReduxWidth - 1);
9529     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
9530                       << " for reduction that starts with " << *FirstReducedVal
9531                       << " (It is a splitting reduction)\n");
9532     return VectorCost - ScalarCost;
9533   }
9534 
9535   /// Emit a horizontal reduction of the vectorized value.
9536   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
9537                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
9538     assert(VectorizedValue && "Need to have a vectorized tree node");
9539     assert(isPowerOf2_32(ReduxWidth) &&
9540            "We only handle power-of-two reductions for now");
9541     assert(RdxKind != RecurKind::FMulAdd &&
9542            "A call to the llvm.fmuladd intrinsic is not handled yet");
9543 
9544     ++NumVectorInstructions;
9545     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
9546   }
9547 };
9548 
9549 } // end anonymous namespace
9550 
9551 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
9552   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
9553     return cast<FixedVectorType>(IE->getType())->getNumElements();
9554 
9555   unsigned AggregateSize = 1;
9556   auto *IV = cast<InsertValueInst>(InsertInst);
9557   Type *CurrentType = IV->getType();
9558   do {
9559     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
9560       for (auto *Elt : ST->elements())
9561         if (Elt != ST->getElementType(0)) // check homogeneity
9562           return None;
9563       AggregateSize *= ST->getNumElements();
9564       CurrentType = ST->getElementType(0);
9565     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
9566       AggregateSize *= AT->getNumElements();
9567       CurrentType = AT->getElementType();
9568     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
9569       AggregateSize *= VT->getNumElements();
9570       return AggregateSize;
9571     } else if (CurrentType->isSingleValueType()) {
9572       return AggregateSize;
9573     } else {
9574       return None;
9575     }
9576   } while (true);
9577 }
9578 
9579 static void findBuildAggregate_rec(Instruction *LastInsertInst,
9580                                    TargetTransformInfo *TTI,
9581                                    SmallVectorImpl<Value *> &BuildVectorOpds,
9582                                    SmallVectorImpl<Value *> &InsertElts,
9583                                    unsigned OperandOffset) {
9584   do {
9585     Value *InsertedOperand = LastInsertInst->getOperand(1);
9586     Optional<unsigned> OperandIndex =
9587         getInsertIndex(LastInsertInst, OperandOffset);
9588     if (!OperandIndex)
9589       return;
9590     if (isa<InsertElementInst>(InsertedOperand) ||
9591         isa<InsertValueInst>(InsertedOperand)) {
9592       findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
9593                              BuildVectorOpds, InsertElts, *OperandIndex);
9594 
9595     } else {
9596       BuildVectorOpds[*OperandIndex] = InsertedOperand;
9597       InsertElts[*OperandIndex] = LastInsertInst;
9598     }
9599     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
9600   } while (LastInsertInst != nullptr &&
9601            (isa<InsertValueInst>(LastInsertInst) ||
9602             isa<InsertElementInst>(LastInsertInst)) &&
9603            LastInsertInst->hasOneUse());
9604 }
9605 
9606 /// Recognize construction of vectors like
9607 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
9608 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
9609 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
9610 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
9611 ///  starting from the last insertelement or insertvalue instruction.
9612 ///
9613 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
9614 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
9615 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
9616 ///
9617 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
9618 ///
9619 /// \return true if it matches.
9620 static bool findBuildAggregate(Instruction *LastInsertInst,
9621                                TargetTransformInfo *TTI,
9622                                SmallVectorImpl<Value *> &BuildVectorOpds,
9623                                SmallVectorImpl<Value *> &InsertElts) {
9624 
9625   assert((isa<InsertElementInst>(LastInsertInst) ||
9626           isa<InsertValueInst>(LastInsertInst)) &&
9627          "Expected insertelement or insertvalue instruction!");
9628 
9629   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
9630          "Expected empty result vectors!");
9631 
9632   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
9633   if (!AggregateSize)
9634     return false;
9635   BuildVectorOpds.resize(*AggregateSize);
9636   InsertElts.resize(*AggregateSize);
9637 
9638   findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
9639   llvm::erase_value(BuildVectorOpds, nullptr);
9640   llvm::erase_value(InsertElts, nullptr);
9641   if (BuildVectorOpds.size() >= 2)
9642     return true;
9643 
9644   return false;
9645 }
9646 
9647 /// Try and get a reduction value from a phi node.
9648 ///
9649 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
9650 /// if they come from either \p ParentBB or a containing loop latch.
9651 ///
9652 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
9653 /// if not possible.
9654 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
9655                                 BasicBlock *ParentBB, LoopInfo *LI) {
9656   // There are situations where the reduction value is not dominated by the
9657   // reduction phi. Vectorizing such cases has been reported to cause
9658   // miscompiles. See PR25787.
9659   auto DominatedReduxValue = [&](Value *R) {
9660     return isa<Instruction>(R) &&
9661            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
9662   };
9663 
9664   Value *Rdx = nullptr;
9665 
9666   // Return the incoming value if it comes from the same BB as the phi node.
9667   if (P->getIncomingBlock(0) == ParentBB) {
9668     Rdx = P->getIncomingValue(0);
9669   } else if (P->getIncomingBlock(1) == ParentBB) {
9670     Rdx = P->getIncomingValue(1);
9671   }
9672 
9673   if (Rdx && DominatedReduxValue(Rdx))
9674     return Rdx;
9675 
9676   // Otherwise, check whether we have a loop latch to look at.
9677   Loop *BBL = LI->getLoopFor(ParentBB);
9678   if (!BBL)
9679     return nullptr;
9680   BasicBlock *BBLatch = BBL->getLoopLatch();
9681   if (!BBLatch)
9682     return nullptr;
9683 
9684   // There is a loop latch, return the incoming value if it comes from
9685   // that. This reduction pattern occasionally turns up.
9686   if (P->getIncomingBlock(0) == BBLatch) {
9687     Rdx = P->getIncomingValue(0);
9688   } else if (P->getIncomingBlock(1) == BBLatch) {
9689     Rdx = P->getIncomingValue(1);
9690   }
9691 
9692   if (Rdx && DominatedReduxValue(Rdx))
9693     return Rdx;
9694 
9695   return nullptr;
9696 }
9697 
9698 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
9699   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
9700     return true;
9701   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
9702     return true;
9703   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
9704     return true;
9705   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
9706     return true;
9707   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
9708     return true;
9709   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
9710     return true;
9711   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
9712     return true;
9713   return false;
9714 }
9715 
9716 /// Attempt to reduce a horizontal reduction.
9717 /// If it is legal to match a horizontal reduction feeding the phi node \a P
9718 /// with reduction operators \a Root (or one of its operands) in a basic block
9719 /// \a BB, then check if it can be done. If horizontal reduction is not found
9720 /// and root instruction is a binary operation, vectorization of the operands is
9721 /// attempted.
9722 /// \returns true if a horizontal reduction was matched and reduced or operands
9723 /// of one of the binary instruction were vectorized.
9724 /// \returns false if a horizontal reduction was not matched (or not possible)
9725 /// or no vectorization of any binary operation feeding \a Root instruction was
9726 /// performed.
9727 static bool tryToVectorizeHorReductionOrInstOperands(
9728     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
9729     TargetTransformInfo *TTI,
9730     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
9731   if (!ShouldVectorizeHor)
9732     return false;
9733 
9734   if (!Root)
9735     return false;
9736 
9737   if (Root->getParent() != BB || isa<PHINode>(Root))
9738     return false;
9739   // Start analysis starting from Root instruction. If horizontal reduction is
9740   // found, try to vectorize it. If it is not a horizontal reduction or
9741   // vectorization is not possible or not effective, and currently analyzed
9742   // instruction is a binary operation, try to vectorize the operands, using
9743   // pre-order DFS traversal order. If the operands were not vectorized, repeat
9744   // the same procedure considering each operand as a possible root of the
9745   // horizontal reduction.
9746   // Interrupt the process if the Root instruction itself was vectorized or all
9747   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
9748   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
9749   // CmpInsts so we can skip extra attempts in
9750   // tryToVectorizeHorReductionOrInstOperands and save compile time.
9751   std::queue<std::pair<Instruction *, unsigned>> Stack;
9752   Stack.emplace(Root, 0);
9753   SmallPtrSet<Value *, 8> VisitedInstrs;
9754   SmallVector<WeakTrackingVH> PostponedInsts;
9755   bool Res = false;
9756   auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0,
9757                                      Value *&B1) -> Value * {
9758     bool IsBinop = matchRdxBop(Inst, B0, B1);
9759     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
9760     if (IsBinop || IsSelect) {
9761       HorizontalReduction HorRdx;
9762       if (HorRdx.matchAssociativeReduction(P, Inst))
9763         return HorRdx.tryToReduce(R, TTI);
9764     }
9765     return nullptr;
9766   };
9767   while (!Stack.empty()) {
9768     Instruction *Inst;
9769     unsigned Level;
9770     std::tie(Inst, Level) = Stack.front();
9771     Stack.pop();
9772     // Do not try to analyze instruction that has already been vectorized.
9773     // This may happen when we vectorize instruction operands on a previous
9774     // iteration while stack was populated before that happened.
9775     if (R.isDeleted(Inst))
9776       continue;
9777     Value *B0 = nullptr, *B1 = nullptr;
9778     if (Value *V = TryToReduce(Inst, B0, B1)) {
9779       Res = true;
9780       // Set P to nullptr to avoid re-analysis of phi node in
9781       // matchAssociativeReduction function unless this is the root node.
9782       P = nullptr;
9783       if (auto *I = dyn_cast<Instruction>(V)) {
9784         // Try to find another reduction.
9785         Stack.emplace(I, Level);
9786         continue;
9787       }
9788     } else {
9789       bool IsBinop = B0 && B1;
9790       if (P && IsBinop) {
9791         Inst = dyn_cast<Instruction>(B0);
9792         if (Inst == P)
9793           Inst = dyn_cast<Instruction>(B1);
9794         if (!Inst) {
9795           // Set P to nullptr to avoid re-analysis of phi node in
9796           // matchAssociativeReduction function unless this is the root node.
9797           P = nullptr;
9798           continue;
9799         }
9800       }
9801       // Set P to nullptr to avoid re-analysis of phi node in
9802       // matchAssociativeReduction function unless this is the root node.
9803       P = nullptr;
9804       // Do not try to vectorize CmpInst operands, this is done separately.
9805       // Final attempt for binop args vectorization should happen after the loop
9806       // to try to find reductions.
9807       if (!isa<CmpInst>(Inst))
9808         PostponedInsts.push_back(Inst);
9809     }
9810 
9811     // Try to vectorize operands.
9812     // Continue analysis for the instruction from the same basic block only to
9813     // save compile time.
9814     if (++Level < RecursionMaxDepth)
9815       for (auto *Op : Inst->operand_values())
9816         if (VisitedInstrs.insert(Op).second)
9817           if (auto *I = dyn_cast<Instruction>(Op))
9818             // Do not try to vectorize CmpInst operands,  this is done
9819             // separately.
9820             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
9821                 I->getParent() == BB)
9822               Stack.emplace(I, Level);
9823   }
9824   // Try to vectorized binops where reductions were not found.
9825   for (Value *V : PostponedInsts)
9826     if (auto *Inst = dyn_cast<Instruction>(V))
9827       if (!R.isDeleted(Inst))
9828         Res |= Vectorize(Inst, R);
9829   return Res;
9830 }
9831 
9832 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
9833                                                  BasicBlock *BB, BoUpSLP &R,
9834                                                  TargetTransformInfo *TTI) {
9835   auto *I = dyn_cast_or_null<Instruction>(V);
9836   if (!I)
9837     return false;
9838 
9839   if (!isa<BinaryOperator>(I))
9840     P = nullptr;
9841   // Try to match and vectorize a horizontal reduction.
9842   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
9843     return tryToVectorize(I, R);
9844   };
9845   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
9846                                                   ExtraVectorization);
9847 }
9848 
9849 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
9850                                                  BasicBlock *BB, BoUpSLP &R) {
9851   const DataLayout &DL = BB->getModule()->getDataLayout();
9852   if (!R.canMapToVector(IVI->getType(), DL))
9853     return false;
9854 
9855   SmallVector<Value *, 16> BuildVectorOpds;
9856   SmallVector<Value *, 16> BuildVectorInsts;
9857   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
9858     return false;
9859 
9860   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
9861   // Aggregate value is unlikely to be processed in vector register.
9862   return tryToVectorizeList(BuildVectorOpds, R);
9863 }
9864 
9865 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
9866                                                    BasicBlock *BB, BoUpSLP &R) {
9867   SmallVector<Value *, 16> BuildVectorInsts;
9868   SmallVector<Value *, 16> BuildVectorOpds;
9869   SmallVector<int> Mask;
9870   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
9871       (llvm::all_of(
9872            BuildVectorOpds,
9873            [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
9874        isFixedVectorShuffle(BuildVectorOpds, Mask)))
9875     return false;
9876 
9877   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
9878   return tryToVectorizeList(BuildVectorInsts, R);
9879 }
9880 
9881 template <typename T>
9882 static bool
9883 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
9884                        function_ref<unsigned(T *)> Limit,
9885                        function_ref<bool(T *, T *)> Comparator,
9886                        function_ref<bool(T *, T *)> AreCompatible,
9887                        function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
9888                        bool LimitForRegisterSize) {
9889   bool Changed = false;
9890   // Sort by type, parent, operands.
9891   stable_sort(Incoming, Comparator);
9892 
9893   // Try to vectorize elements base on their type.
9894   SmallVector<T *> Candidates;
9895   for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
9896     // Look for the next elements with the same type, parent and operand
9897     // kinds.
9898     auto *SameTypeIt = IncIt;
9899     while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
9900       ++SameTypeIt;
9901 
9902     // Try to vectorize them.
9903     unsigned NumElts = (SameTypeIt - IncIt);
9904     LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
9905                       << NumElts << ")\n");
9906     // The vectorization is a 3-state attempt:
9907     // 1. Try to vectorize instructions with the same/alternate opcodes with the
9908     // size of maximal register at first.
9909     // 2. Try to vectorize remaining instructions with the same type, if
9910     // possible. This may result in the better vectorization results rather than
9911     // if we try just to vectorize instructions with the same/alternate opcodes.
9912     // 3. Final attempt to try to vectorize all instructions with the
9913     // same/alternate ops only, this may result in some extra final
9914     // vectorization.
9915     if (NumElts > 1 &&
9916         TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
9917       // Success start over because instructions might have been changed.
9918       Changed = true;
9919     } else if (NumElts < Limit(*IncIt) &&
9920                (Candidates.empty() ||
9921                 Candidates.front()->getType() == (*IncIt)->getType())) {
9922       Candidates.append(IncIt, std::next(IncIt, NumElts));
9923     }
9924     // Final attempt to vectorize instructions with the same types.
9925     if (Candidates.size() > 1 &&
9926         (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
9927       if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
9928         // Success start over because instructions might have been changed.
9929         Changed = true;
9930       } else if (LimitForRegisterSize) {
9931         // Try to vectorize using small vectors.
9932         for (auto *It = Candidates.begin(), *End = Candidates.end();
9933              It != End;) {
9934           auto *SameTypeIt = It;
9935           while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
9936             ++SameTypeIt;
9937           unsigned NumElts = (SameTypeIt - It);
9938           if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
9939                                             /*LimitForRegisterSize=*/false))
9940             Changed = true;
9941           It = SameTypeIt;
9942         }
9943       }
9944       Candidates.clear();
9945     }
9946 
9947     // Start over at the next instruction of a different type (or the end).
9948     IncIt = SameTypeIt;
9949   }
9950   return Changed;
9951 }
9952 
9953 /// Compare two cmp instructions. If IsCompatibility is true, function returns
9954 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
9955 /// operands. If IsCompatibility is false, function implements strict weak
9956 /// ordering relation between two cmp instructions, returning true if the first
9957 /// instruction is "less" than the second, i.e. its predicate is less than the
9958 /// predicate of the second or the operands IDs are less than the operands IDs
9959 /// of the second cmp instruction.
9960 template <bool IsCompatibility>
9961 static bool compareCmp(Value *V, Value *V2,
9962                        function_ref<bool(Instruction *)> IsDeleted) {
9963   auto *CI1 = cast<CmpInst>(V);
9964   auto *CI2 = cast<CmpInst>(V2);
9965   if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
9966     return false;
9967   if (CI1->getOperand(0)->getType()->getTypeID() <
9968       CI2->getOperand(0)->getType()->getTypeID())
9969     return !IsCompatibility;
9970   if (CI1->getOperand(0)->getType()->getTypeID() >
9971       CI2->getOperand(0)->getType()->getTypeID())
9972     return false;
9973   CmpInst::Predicate Pred1 = CI1->getPredicate();
9974   CmpInst::Predicate Pred2 = CI2->getPredicate();
9975   CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
9976   CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
9977   CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
9978   CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
9979   if (BasePred1 < BasePred2)
9980     return !IsCompatibility;
9981   if (BasePred1 > BasePred2)
9982     return false;
9983   // Compare operands.
9984   bool LEPreds = Pred1 <= Pred2;
9985   bool GEPreds = Pred1 >= Pred2;
9986   for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
9987     auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
9988     auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
9989     if (Op1->getValueID() < Op2->getValueID())
9990       return !IsCompatibility;
9991     if (Op1->getValueID() > Op2->getValueID())
9992       return false;
9993     if (auto *I1 = dyn_cast<Instruction>(Op1))
9994       if (auto *I2 = dyn_cast<Instruction>(Op2)) {
9995         if (I1->getParent() != I2->getParent())
9996           return false;
9997         InstructionsState S = getSameOpcode({I1, I2});
9998         if (S.getOpcode())
9999           continue;
10000         return false;
10001       }
10002   }
10003   return IsCompatibility;
10004 }
10005 
10006 bool SLPVectorizerPass::vectorizeSimpleInstructions(
10007     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
10008     bool AtTerminator) {
10009   bool OpsChanged = false;
10010   SmallVector<Instruction *, 4> PostponedCmps;
10011   for (auto *I : reverse(Instructions)) {
10012     if (R.isDeleted(I))
10013       continue;
10014     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
10015       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
10016     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
10017       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
10018     else if (isa<CmpInst>(I))
10019       PostponedCmps.push_back(I);
10020   }
10021   if (AtTerminator) {
10022     // Try to find reductions first.
10023     for (Instruction *I : PostponedCmps) {
10024       if (R.isDeleted(I))
10025         continue;
10026       for (Value *Op : I->operands())
10027         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
10028     }
10029     // Try to vectorize operands as vector bundles.
10030     for (Instruction *I : PostponedCmps) {
10031       if (R.isDeleted(I))
10032         continue;
10033       OpsChanged |= tryToVectorize(I, R);
10034     }
10035     // Try to vectorize list of compares.
10036     // Sort by type, compare predicate, etc.
10037     auto &&CompareSorter = [&R](Value *V, Value *V2) {
10038       return compareCmp<false>(V, V2,
10039                                [&R](Instruction *I) { return R.isDeleted(I); });
10040     };
10041 
10042     auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) {
10043       if (V1 == V2)
10044         return true;
10045       return compareCmp<true>(V1, V2,
10046                               [&R](Instruction *I) { return R.isDeleted(I); });
10047     };
10048     auto Limit = [&R](Value *V) {
10049       unsigned EltSize = R.getVectorElementSize(V);
10050       return std::max(2U, R.getMaxVecRegSize() / EltSize);
10051     };
10052 
10053     SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
10054     OpsChanged |= tryToVectorizeSequence<Value>(
10055         Vals, Limit, CompareSorter, AreCompatibleCompares,
10056         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10057           // Exclude possible reductions from other blocks.
10058           bool ArePossiblyReducedInOtherBlock =
10059               any_of(Candidates, [](Value *V) {
10060                 return any_of(V->users(), [V](User *U) {
10061                   return isa<SelectInst>(U) &&
10062                          cast<SelectInst>(U)->getParent() !=
10063                              cast<Instruction>(V)->getParent();
10064                 });
10065               });
10066           if (ArePossiblyReducedInOtherBlock)
10067             return false;
10068           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10069         },
10070         /*LimitForRegisterSize=*/true);
10071     Instructions.clear();
10072   } else {
10073     // Insert in reverse order since the PostponedCmps vector was filled in
10074     // reverse order.
10075     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
10076   }
10077   return OpsChanged;
10078 }
10079 
10080 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
10081   bool Changed = false;
10082   SmallVector<Value *, 4> Incoming;
10083   SmallPtrSet<Value *, 16> VisitedInstrs;
10084   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
10085   // node. Allows better to identify the chains that can be vectorized in the
10086   // better way.
10087   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
10088   auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
10089     assert(isValidElementType(V1->getType()) &&
10090            isValidElementType(V2->getType()) &&
10091            "Expected vectorizable types only.");
10092     // It is fine to compare type IDs here, since we expect only vectorizable
10093     // types, like ints, floats and pointers, we don't care about other type.
10094     if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
10095       return true;
10096     if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
10097       return false;
10098     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10099     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10100     if (Opcodes1.size() < Opcodes2.size())
10101       return true;
10102     if (Opcodes1.size() > Opcodes2.size())
10103       return false;
10104     Optional<bool> ConstOrder;
10105     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10106       // Undefs are compatible with any other value.
10107       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
10108         if (!ConstOrder)
10109           ConstOrder =
10110               !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
10111         continue;
10112       }
10113       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10114         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10115           DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
10116           DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
10117           if (!NodeI1)
10118             return NodeI2 != nullptr;
10119           if (!NodeI2)
10120             return false;
10121           assert((NodeI1 == NodeI2) ==
10122                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
10123                  "Different nodes should have different DFS numbers");
10124           if (NodeI1 != NodeI2)
10125             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10126           InstructionsState S = getSameOpcode({I1, I2});
10127           if (S.getOpcode())
10128             continue;
10129           return I1->getOpcode() < I2->getOpcode();
10130         }
10131       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
10132         if (!ConstOrder)
10133           ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
10134         continue;
10135       }
10136       if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
10137         return true;
10138       if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
10139         return false;
10140     }
10141     return ConstOrder && *ConstOrder;
10142   };
10143   auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
10144     if (V1 == V2)
10145       return true;
10146     if (V1->getType() != V2->getType())
10147       return false;
10148     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10149     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10150     if (Opcodes1.size() != Opcodes2.size())
10151       return false;
10152     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10153       // Undefs are compatible with any other value.
10154       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
10155         continue;
10156       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10157         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10158           if (I1->getParent() != I2->getParent())
10159             return false;
10160           InstructionsState S = getSameOpcode({I1, I2});
10161           if (S.getOpcode())
10162             continue;
10163           return false;
10164         }
10165       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
10166         continue;
10167       if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
10168         return false;
10169     }
10170     return true;
10171   };
10172   auto Limit = [&R](Value *V) {
10173     unsigned EltSize = R.getVectorElementSize(V);
10174     return std::max(2U, R.getMaxVecRegSize() / EltSize);
10175   };
10176 
10177   bool HaveVectorizedPhiNodes = false;
10178   do {
10179     // Collect the incoming values from the PHIs.
10180     Incoming.clear();
10181     for (Instruction &I : *BB) {
10182       PHINode *P = dyn_cast<PHINode>(&I);
10183       if (!P)
10184         break;
10185 
10186       // No need to analyze deleted, vectorized and non-vectorizable
10187       // instructions.
10188       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
10189           isValidElementType(P->getType()))
10190         Incoming.push_back(P);
10191     }
10192 
10193     // Find the corresponding non-phi nodes for better matching when trying to
10194     // build the tree.
10195     for (Value *V : Incoming) {
10196       SmallVectorImpl<Value *> &Opcodes =
10197           PHIToOpcodes.try_emplace(V).first->getSecond();
10198       if (!Opcodes.empty())
10199         continue;
10200       SmallVector<Value *, 4> Nodes(1, V);
10201       SmallPtrSet<Value *, 4> Visited;
10202       while (!Nodes.empty()) {
10203         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
10204         if (!Visited.insert(PHI).second)
10205           continue;
10206         for (Value *V : PHI->incoming_values()) {
10207           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
10208             Nodes.push_back(PHI1);
10209             continue;
10210           }
10211           Opcodes.emplace_back(V);
10212         }
10213       }
10214     }
10215 
10216     HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
10217         Incoming, Limit, PHICompare, AreCompatiblePHIs,
10218         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10219           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10220         },
10221         /*LimitForRegisterSize=*/true);
10222     Changed |= HaveVectorizedPhiNodes;
10223     VisitedInstrs.insert(Incoming.begin(), Incoming.end());
10224   } while (HaveVectorizedPhiNodes);
10225 
10226   VisitedInstrs.clear();
10227 
10228   SmallVector<Instruction *, 8> PostProcessInstructions;
10229   SmallDenseSet<Instruction *, 4> KeyNodes;
10230   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
10231     // Skip instructions with scalable type. The num of elements is unknown at
10232     // compile-time for scalable type.
10233     if (isa<ScalableVectorType>(it->getType()))
10234       continue;
10235 
10236     // Skip instructions marked for the deletion.
10237     if (R.isDeleted(&*it))
10238       continue;
10239     // We may go through BB multiple times so skip the one we have checked.
10240     if (!VisitedInstrs.insert(&*it).second) {
10241       if (it->use_empty() && KeyNodes.contains(&*it) &&
10242           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10243                                       it->isTerminator())) {
10244         // We would like to start over since some instructions are deleted
10245         // and the iterator may become invalid value.
10246         Changed = true;
10247         it = BB->begin();
10248         e = BB->end();
10249       }
10250       continue;
10251     }
10252 
10253     if (isa<DbgInfoIntrinsic>(it))
10254       continue;
10255 
10256     // Try to vectorize reductions that use PHINodes.
10257     if (PHINode *P = dyn_cast<PHINode>(it)) {
10258       // Check that the PHI is a reduction PHI.
10259       if (P->getNumIncomingValues() == 2) {
10260         // Try to match and vectorize a horizontal reduction.
10261         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
10262                                      TTI)) {
10263           Changed = true;
10264           it = BB->begin();
10265           e = BB->end();
10266           continue;
10267         }
10268       }
10269       // Try to vectorize the incoming values of the PHI, to catch reductions
10270       // that feed into PHIs.
10271       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
10272         // Skip if the incoming block is the current BB for now. Also, bypass
10273         // unreachable IR for efficiency and to avoid crashing.
10274         // TODO: Collect the skipped incoming values and try to vectorize them
10275         // after processing BB.
10276         if (BB == P->getIncomingBlock(I) ||
10277             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
10278           continue;
10279 
10280         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
10281                                             P->getIncomingBlock(I), R, TTI);
10282       }
10283       continue;
10284     }
10285 
10286     // Ran into an instruction without users, like terminator, or function call
10287     // with ignored return value, store. Ignore unused instructions (basing on
10288     // instruction type, except for CallInst and InvokeInst).
10289     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
10290                             isa<InvokeInst>(it))) {
10291       KeyNodes.insert(&*it);
10292       bool OpsChanged = false;
10293       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
10294         for (auto *V : it->operand_values()) {
10295           // Try to match and vectorize a horizontal reduction.
10296           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
10297         }
10298       }
10299       // Start vectorization of post-process list of instructions from the
10300       // top-tree instructions to try to vectorize as many instructions as
10301       // possible.
10302       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10303                                                 it->isTerminator());
10304       if (OpsChanged) {
10305         // We would like to start over since some instructions are deleted
10306         // and the iterator may become invalid value.
10307         Changed = true;
10308         it = BB->begin();
10309         e = BB->end();
10310         continue;
10311       }
10312     }
10313 
10314     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
10315         isa<InsertValueInst>(it))
10316       PostProcessInstructions.push_back(&*it);
10317   }
10318 
10319   return Changed;
10320 }
10321 
10322 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
10323   auto Changed = false;
10324   for (auto &Entry : GEPs) {
10325     // If the getelementptr list has fewer than two elements, there's nothing
10326     // to do.
10327     if (Entry.second.size() < 2)
10328       continue;
10329 
10330     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
10331                       << Entry.second.size() << ".\n");
10332 
10333     // Process the GEP list in chunks suitable for the target's supported
10334     // vector size. If a vector register can't hold 1 element, we are done. We
10335     // are trying to vectorize the index computations, so the maximum number of
10336     // elements is based on the size of the index expression, rather than the
10337     // size of the GEP itself (the target's pointer size).
10338     unsigned MaxVecRegSize = R.getMaxVecRegSize();
10339     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
10340     if (MaxVecRegSize < EltSize)
10341       continue;
10342 
10343     unsigned MaxElts = MaxVecRegSize / EltSize;
10344     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
10345       auto Len = std::min<unsigned>(BE - BI, MaxElts);
10346       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
10347 
10348       // Initialize a set a candidate getelementptrs. Note that we use a
10349       // SetVector here to preserve program order. If the index computations
10350       // are vectorizable and begin with loads, we want to minimize the chance
10351       // of having to reorder them later.
10352       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
10353 
10354       // Some of the candidates may have already been vectorized after we
10355       // initially collected them. If so, they are marked as deleted, so remove
10356       // them from the set of candidates.
10357       Candidates.remove_if(
10358           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
10359 
10360       // Remove from the set of candidates all pairs of getelementptrs with
10361       // constant differences. Such getelementptrs are likely not good
10362       // candidates for vectorization in a bottom-up phase since one can be
10363       // computed from the other. We also ensure all candidate getelementptr
10364       // indices are unique.
10365       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
10366         auto *GEPI = GEPList[I];
10367         if (!Candidates.count(GEPI))
10368           continue;
10369         auto *SCEVI = SE->getSCEV(GEPList[I]);
10370         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
10371           auto *GEPJ = GEPList[J];
10372           auto *SCEVJ = SE->getSCEV(GEPList[J]);
10373           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
10374             Candidates.remove(GEPI);
10375             Candidates.remove(GEPJ);
10376           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
10377             Candidates.remove(GEPJ);
10378           }
10379         }
10380       }
10381 
10382       // We break out of the above computation as soon as we know there are
10383       // fewer than two candidates remaining.
10384       if (Candidates.size() < 2)
10385         continue;
10386 
10387       // Add the single, non-constant index of each candidate to the bundle. We
10388       // ensured the indices met these constraints when we originally collected
10389       // the getelementptrs.
10390       SmallVector<Value *, 16> Bundle(Candidates.size());
10391       auto BundleIndex = 0u;
10392       for (auto *V : Candidates) {
10393         auto *GEP = cast<GetElementPtrInst>(V);
10394         auto *GEPIdx = GEP->idx_begin()->get();
10395         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
10396         Bundle[BundleIndex++] = GEPIdx;
10397       }
10398 
10399       // Try and vectorize the indices. We are currently only interested in
10400       // gather-like cases of the form:
10401       //
10402       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
10403       //
10404       // where the loads of "a", the loads of "b", and the subtractions can be
10405       // performed in parallel. It's likely that detecting this pattern in a
10406       // bottom-up phase will be simpler and less costly than building a
10407       // full-blown top-down phase beginning at the consecutive loads.
10408       Changed |= tryToVectorizeList(Bundle, R);
10409     }
10410   }
10411   return Changed;
10412 }
10413 
10414 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
10415   bool Changed = false;
10416   // Sort by type, base pointers and values operand. Value operands must be
10417   // compatible (have the same opcode, same parent), otherwise it is
10418   // definitely not profitable to try to vectorize them.
10419   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
10420     if (V->getPointerOperandType()->getTypeID() <
10421         V2->getPointerOperandType()->getTypeID())
10422       return true;
10423     if (V->getPointerOperandType()->getTypeID() >
10424         V2->getPointerOperandType()->getTypeID())
10425       return false;
10426     // UndefValues are compatible with all other values.
10427     if (isa<UndefValue>(V->getValueOperand()) ||
10428         isa<UndefValue>(V2->getValueOperand()))
10429       return false;
10430     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
10431       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10432         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
10433             DT->getNode(I1->getParent());
10434         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
10435             DT->getNode(I2->getParent());
10436         assert(NodeI1 && "Should only process reachable instructions");
10437         assert(NodeI1 && "Should only process reachable instructions");
10438         assert((NodeI1 == NodeI2) ==
10439                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
10440                "Different nodes should have different DFS numbers");
10441         if (NodeI1 != NodeI2)
10442           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10443         InstructionsState S = getSameOpcode({I1, I2});
10444         if (S.getOpcode())
10445           return false;
10446         return I1->getOpcode() < I2->getOpcode();
10447       }
10448     if (isa<Constant>(V->getValueOperand()) &&
10449         isa<Constant>(V2->getValueOperand()))
10450       return false;
10451     return V->getValueOperand()->getValueID() <
10452            V2->getValueOperand()->getValueID();
10453   };
10454 
10455   auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
10456     if (V1 == V2)
10457       return true;
10458     if (V1->getPointerOperandType() != V2->getPointerOperandType())
10459       return false;
10460     // Undefs are compatible with any other value.
10461     if (isa<UndefValue>(V1->getValueOperand()) ||
10462         isa<UndefValue>(V2->getValueOperand()))
10463       return true;
10464     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
10465       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10466         if (I1->getParent() != I2->getParent())
10467           return false;
10468         InstructionsState S = getSameOpcode({I1, I2});
10469         return S.getOpcode() > 0;
10470       }
10471     if (isa<Constant>(V1->getValueOperand()) &&
10472         isa<Constant>(V2->getValueOperand()))
10473       return true;
10474     return V1->getValueOperand()->getValueID() ==
10475            V2->getValueOperand()->getValueID();
10476   };
10477   auto Limit = [&R, this](StoreInst *SI) {
10478     unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
10479     return R.getMinVF(EltSize);
10480   };
10481 
10482   // Attempt to sort and vectorize each of the store-groups.
10483   for (auto &Pair : Stores) {
10484     if (Pair.second.size() < 2)
10485       continue;
10486 
10487     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
10488                       << Pair.second.size() << ".\n");
10489 
10490     if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
10491       continue;
10492 
10493     Changed |= tryToVectorizeSequence<StoreInst>(
10494         Pair.second, Limit, StoreSorter, AreCompatibleStores,
10495         [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
10496           return vectorizeStores(Candidates, R);
10497         },
10498         /*LimitForRegisterSize=*/false);
10499   }
10500   return Changed;
10501 }
10502 
10503 char SLPVectorizer::ID = 0;
10504 
10505 static const char lv_name[] = "SLP Vectorizer";
10506 
10507 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
10508 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
10509 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
10510 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10511 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
10512 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
10513 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
10514 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
10515 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
10516 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
10517 
10518 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
10519