1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 namespace slpvectorizer { 776 777 /// Bottom Up SLP Vectorizer. 778 class BoUpSLP { 779 struct TreeEntry; 780 struct ScheduleData; 781 782 public: 783 using ValueList = SmallVector<Value *, 8>; 784 using InstrList = SmallVector<Instruction *, 16>; 785 using ValueSet = SmallPtrSet<Value *, 16>; 786 using StoreList = SmallVector<StoreInst *, 8>; 787 using ExtraValueToDebugLocsMap = 788 MapVector<Value *, SmallVector<Instruction *, 2>>; 789 using OrdersType = SmallVector<unsigned, 4>; 790 791 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 792 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 793 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 794 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 795 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 796 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 797 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 798 // Use the vector register size specified by the target unless overridden 799 // by a command-line option. 800 // TODO: It would be better to limit the vectorization factor based on 801 // data type rather than just register size. For example, x86 AVX has 802 // 256-bit registers, but it does not support integer operations 803 // at that width (that requires AVX2). 804 if (MaxVectorRegSizeOption.getNumOccurrences()) 805 MaxVecRegSize = MaxVectorRegSizeOption; 806 else 807 MaxVecRegSize = 808 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 809 .getFixedSize(); 810 811 if (MinVectorRegSizeOption.getNumOccurrences()) 812 MinVecRegSize = MinVectorRegSizeOption; 813 else 814 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 815 } 816 817 /// Vectorize the tree that starts with the elements in \p VL. 818 /// Returns the vectorized root. 819 Value *vectorizeTree(); 820 821 /// Vectorize the tree but with the list of externally used values \p 822 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 823 /// generated extractvalue instructions. 824 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 825 826 /// \returns the cost incurred by unwanted spills and fills, caused by 827 /// holding live values over call sites. 828 InstructionCost getSpillCost() const; 829 830 /// \returns the vectorization cost of the subtree that starts at \p VL. 831 /// A negative number means that this is profitable. 832 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 833 834 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 835 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 836 void buildTree(ArrayRef<Value *> Roots, 837 ArrayRef<Value *> UserIgnoreLst = None); 838 839 /// Builds external uses of the vectorized scalars, i.e. the list of 840 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 841 /// ExternallyUsedValues contains additional list of external uses to handle 842 /// vectorization of reductions. 843 void 844 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 845 846 /// Clear the internal data structures that are created by 'buildTree'. 847 void deleteTree() { 848 VectorizableTree.clear(); 849 ScalarToTreeEntry.clear(); 850 MustGather.clear(); 851 ExternalUses.clear(); 852 for (auto &Iter : BlocksSchedules) { 853 BlockScheduling *BS = Iter.second.get(); 854 BS->clear(); 855 } 856 MinBWs.clear(); 857 InstrElementSize.clear(); 858 } 859 860 unsigned getTreeSize() const { return VectorizableTree.size(); } 861 862 /// Perform LICM and CSE on the newly generated gather sequences. 863 void optimizeGatherSequence(); 864 865 /// Checks if the specified gather tree entry \p TE can be represented as a 866 /// shuffled vector entry + (possibly) permutation with other gathers. It 867 /// implements the checks only for possibly ordered scalars (Loads, 868 /// ExtractElement, ExtractValue), which can be part of the graph. 869 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 870 871 /// Gets reordering data for the given tree entry. If the entry is vectorized 872 /// - just return ReorderIndices, otherwise check if the scalars can be 873 /// reordered and return the most optimal order. 874 /// \param TopToBottom If true, include the order of vectorized stores and 875 /// insertelement nodes, otherwise skip them. 876 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 877 878 /// Reorders the current graph to the most profitable order starting from the 879 /// root node to the leaf nodes. The best order is chosen only from the nodes 880 /// of the same size (vectorization factor). Smaller nodes are considered 881 /// parts of subgraph with smaller VF and they are reordered independently. We 882 /// can make it because we still need to extend smaller nodes to the wider VF 883 /// and we can merge reordering shuffles with the widening shuffles. 884 void reorderTopToBottom(); 885 886 /// Reorders the current graph to the most profitable order starting from 887 /// leaves to the root. It allows to rotate small subgraphs and reduce the 888 /// number of reshuffles if the leaf nodes use the same order. In this case we 889 /// can merge the orders and just shuffle user node instead of shuffling its 890 /// operands. Plus, even the leaf nodes have different orders, it allows to 891 /// sink reordering in the graph closer to the root node and merge it later 892 /// during analysis. 893 void reorderBottomToTop(bool IgnoreReorder = false); 894 895 /// \return The vector element size in bits to use when vectorizing the 896 /// expression tree ending at \p V. If V is a store, the size is the width of 897 /// the stored value. Otherwise, the size is the width of the largest loaded 898 /// value reaching V. This method is used by the vectorizer to calculate 899 /// vectorization factors. 900 unsigned getVectorElementSize(Value *V); 901 902 /// Compute the minimum type sizes required to represent the entries in a 903 /// vectorizable tree. 904 void computeMinimumValueSizes(); 905 906 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 907 unsigned getMaxVecRegSize() const { 908 return MaxVecRegSize; 909 } 910 911 // \returns minimum vector register size as set by cl::opt. 912 unsigned getMinVecRegSize() const { 913 return MinVecRegSize; 914 } 915 916 unsigned getMinVF(unsigned Sz) const { 917 return std::max(2U, getMinVecRegSize() / Sz); 918 } 919 920 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 921 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 922 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 923 return MaxVF ? MaxVF : UINT_MAX; 924 } 925 926 /// Check if homogeneous aggregate is isomorphic to some VectorType. 927 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 928 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 929 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 930 /// 931 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 932 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 933 934 /// \returns True if the VectorizableTree is both tiny and not fully 935 /// vectorizable. We do not vectorize such trees. 936 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 937 938 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 939 /// can be load combined in the backend. Load combining may not be allowed in 940 /// the IR optimizer, so we do not want to alter the pattern. For example, 941 /// partially transforming a scalar bswap() pattern into vector code is 942 /// effectively impossible for the backend to undo. 943 /// TODO: If load combining is allowed in the IR optimizer, this analysis 944 /// may not be necessary. 945 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 946 947 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 948 /// can be load combined in the backend. Load combining may not be allowed in 949 /// the IR optimizer, so we do not want to alter the pattern. For example, 950 /// partially transforming a scalar bswap() pattern into vector code is 951 /// effectively impossible for the backend to undo. 952 /// TODO: If load combining is allowed in the IR optimizer, this analysis 953 /// may not be necessary. 954 bool isLoadCombineCandidate() const; 955 956 OptimizationRemarkEmitter *getORE() { return ORE; } 957 958 /// This structure holds any data we need about the edges being traversed 959 /// during buildTree_rec(). We keep track of: 960 /// (i) the user TreeEntry index, and 961 /// (ii) the index of the edge. 962 struct EdgeInfo { 963 EdgeInfo() = default; 964 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 965 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 966 /// The user TreeEntry. 967 TreeEntry *UserTE = nullptr; 968 /// The operand index of the use. 969 unsigned EdgeIdx = UINT_MAX; 970 #ifndef NDEBUG 971 friend inline raw_ostream &operator<<(raw_ostream &OS, 972 const BoUpSLP::EdgeInfo &EI) { 973 EI.dump(OS); 974 return OS; 975 } 976 /// Debug print. 977 void dump(raw_ostream &OS) const { 978 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 979 << " EdgeIdx:" << EdgeIdx << "}"; 980 } 981 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 982 #endif 983 }; 984 985 /// A helper data structure to hold the operands of a vector of instructions. 986 /// This supports a fixed vector length for all operand vectors. 987 class VLOperands { 988 /// For each operand we need (i) the value, and (ii) the opcode that it 989 /// would be attached to if the expression was in a left-linearized form. 990 /// This is required to avoid illegal operand reordering. 991 /// For example: 992 /// \verbatim 993 /// 0 Op1 994 /// |/ 995 /// Op1 Op2 Linearized + Op2 996 /// \ / ----------> |/ 997 /// - - 998 /// 999 /// Op1 - Op2 (0 + Op1) - Op2 1000 /// \endverbatim 1001 /// 1002 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1003 /// 1004 /// Another way to think of this is to track all the operations across the 1005 /// path from the operand all the way to the root of the tree and to 1006 /// calculate the operation that corresponds to this path. For example, the 1007 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1008 /// corresponding operation is a '-' (which matches the one in the 1009 /// linearized tree, as shown above). 1010 /// 1011 /// For lack of a better term, we refer to this operation as Accumulated 1012 /// Path Operation (APO). 1013 struct OperandData { 1014 OperandData() = default; 1015 OperandData(Value *V, bool APO, bool IsUsed) 1016 : V(V), APO(APO), IsUsed(IsUsed) {} 1017 /// The operand value. 1018 Value *V = nullptr; 1019 /// TreeEntries only allow a single opcode, or an alternate sequence of 1020 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1021 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1022 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1023 /// (e.g., Add/Mul) 1024 bool APO = false; 1025 /// Helper data for the reordering function. 1026 bool IsUsed = false; 1027 }; 1028 1029 /// During operand reordering, we are trying to select the operand at lane 1030 /// that matches best with the operand at the neighboring lane. Our 1031 /// selection is based on the type of value we are looking for. For example, 1032 /// if the neighboring lane has a load, we need to look for a load that is 1033 /// accessing a consecutive address. These strategies are summarized in the 1034 /// 'ReorderingMode' enumerator. 1035 enum class ReorderingMode { 1036 Load, ///< Matching loads to consecutive memory addresses 1037 Opcode, ///< Matching instructions based on opcode (same or alternate) 1038 Constant, ///< Matching constants 1039 Splat, ///< Matching the same instruction multiple times (broadcast) 1040 Failed, ///< We failed to create a vectorizable group 1041 }; 1042 1043 using OperandDataVec = SmallVector<OperandData, 2>; 1044 1045 /// A vector of operand vectors. 1046 SmallVector<OperandDataVec, 4> OpsVec; 1047 1048 const DataLayout &DL; 1049 ScalarEvolution &SE; 1050 const BoUpSLP &R; 1051 1052 /// \returns the operand data at \p OpIdx and \p Lane. 1053 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1054 return OpsVec[OpIdx][Lane]; 1055 } 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1058 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// Clears the used flag for all entries. 1063 void clearUsed() { 1064 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1065 OpIdx != NumOperands; ++OpIdx) 1066 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1067 ++Lane) 1068 OpsVec[OpIdx][Lane].IsUsed = false; 1069 } 1070 1071 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1072 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1073 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1074 } 1075 1076 // The hard-coded scores listed here are not very important, though it shall 1077 // be higher for better matches to improve the resulting cost. When 1078 // computing the scores of matching one sub-tree with another, we are 1079 // basically counting the number of values that are matching. So even if all 1080 // scores are set to 1, we would still get a decent matching result. 1081 // However, sometimes we have to break ties. For example we may have to 1082 // choose between matching loads vs matching opcodes. This is what these 1083 // scores are helping us with: they provide the order of preference. Also, 1084 // this is important if the scalar is externally used or used in another 1085 // tree entry node in the different lane. 1086 1087 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1088 static const int ScoreConsecutiveLoads = 4; 1089 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1090 static const int ScoreReversedLoads = 3; 1091 /// ExtractElementInst from same vector and consecutive indexes. 1092 static const int ScoreConsecutiveExtracts = 4; 1093 /// ExtractElementInst from same vector and reversed indices. 1094 static const int ScoreReversedExtracts = 3; 1095 /// Constants. 1096 static const int ScoreConstants = 2; 1097 /// Instructions with the same opcode. 1098 static const int ScoreSameOpcode = 2; 1099 /// Instructions with alt opcodes (e.g, add + sub). 1100 static const int ScoreAltOpcodes = 1; 1101 /// Identical instructions (a.k.a. splat or broadcast). 1102 static const int ScoreSplat = 1; 1103 /// Matching with an undef is preferable to failing. 1104 static const int ScoreUndef = 1; 1105 /// Score for failing to find a decent match. 1106 static const int ScoreFail = 0; 1107 /// Score if all users are vectorized. 1108 static const int ScoreAllUserVectorized = 1; 1109 1110 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1111 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1112 /// MainAltOps. 1113 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1114 ScalarEvolution &SE, int NumLanes, 1115 ArrayRef<Value *> MainAltOps) { 1116 if (V1 == V2) 1117 return VLOperands::ScoreSplat; 1118 1119 auto *LI1 = dyn_cast<LoadInst>(V1); 1120 auto *LI2 = dyn_cast<LoadInst>(V2); 1121 if (LI1 && LI2) { 1122 if (LI1->getParent() != LI2->getParent()) 1123 return VLOperands::ScoreFail; 1124 1125 Optional<int> Dist = getPointersDiff( 1126 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1127 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1128 if (!Dist || *Dist == 0) 1129 return VLOperands::ScoreFail; 1130 // The distance is too large - still may be profitable to use masked 1131 // loads/gathers. 1132 if (std::abs(*Dist) > NumLanes / 2) 1133 return VLOperands::ScoreAltOpcodes; 1134 // This still will detect consecutive loads, but we might have "holes" 1135 // in some cases. It is ok for non-power-2 vectorization and may produce 1136 // better results. It should not affect current vectorization. 1137 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1138 : VLOperands::ScoreReversedLoads; 1139 } 1140 1141 auto *C1 = dyn_cast<Constant>(V1); 1142 auto *C2 = dyn_cast<Constant>(V2); 1143 if (C1 && C2) 1144 return VLOperands::ScoreConstants; 1145 1146 // Extracts from consecutive indexes of the same vector better score as 1147 // the extracts could be optimized away. 1148 Value *EV1; 1149 ConstantInt *Ex1Idx; 1150 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1151 // Undefs are always profitable for extractelements. 1152 if (isa<UndefValue>(V2)) 1153 return VLOperands::ScoreConsecutiveExtracts; 1154 Value *EV2 = nullptr; 1155 ConstantInt *Ex2Idx = nullptr; 1156 if (match(V2, 1157 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1158 m_Undef())))) { 1159 // Undefs are always profitable for extractelements. 1160 if (!Ex2Idx) 1161 return VLOperands::ScoreConsecutiveExtracts; 1162 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1163 return VLOperands::ScoreConsecutiveExtracts; 1164 if (EV2 == EV1) { 1165 int Idx1 = Ex1Idx->getZExtValue(); 1166 int Idx2 = Ex2Idx->getZExtValue(); 1167 int Dist = Idx2 - Idx1; 1168 // The distance is too large - still may be profitable to use 1169 // shuffles. 1170 if (std::abs(Dist) == 0) 1171 return VLOperands::ScoreSplat; 1172 if (std::abs(Dist) > NumLanes / 2) 1173 return VLOperands::ScoreSameOpcode; 1174 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1175 : VLOperands::ScoreReversedExtracts; 1176 } 1177 return VLOperands::ScoreAltOpcodes; 1178 } 1179 return VLOperands::ScoreFail; 1180 } 1181 1182 auto *I1 = dyn_cast<Instruction>(V1); 1183 auto *I2 = dyn_cast<Instruction>(V2); 1184 if (I1 && I2) { 1185 if (I1->getParent() != I2->getParent()) 1186 return VLOperands::ScoreFail; 1187 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1188 Ops.push_back(I1); 1189 Ops.push_back(I2); 1190 InstructionsState S = getSameOpcode(Ops); 1191 // Note: Only consider instructions with <= 2 operands to avoid 1192 // complexity explosion. 1193 if (S.getOpcode() && 1194 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1195 !S.isAltShuffle()) && 1196 all_of(Ops, [&S](Value *V) { 1197 return cast<Instruction>(V)->getNumOperands() == 1198 S.MainOp->getNumOperands(); 1199 })) 1200 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1201 : VLOperands::ScoreSameOpcode; 1202 } 1203 1204 if (isa<UndefValue>(V2)) 1205 return VLOperands::ScoreUndef; 1206 1207 return VLOperands::ScoreFail; 1208 } 1209 1210 /// \param Lane lane of the operands under analysis. 1211 /// \param OpIdx operand index in \p Lane lane we're looking the best 1212 /// candidate for. 1213 /// \param Idx operand index of the current candidate value. 1214 /// \returns The additional score due to possible broadcasting of the 1215 /// elements in the lane. It is more profitable to have power-of-2 unique 1216 /// elements in the lane, it will be vectorized with higher probability 1217 /// after removing duplicates. Currently the SLP vectorizer supports only 1218 /// vectorization of the power-of-2 number of unique scalars. 1219 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1220 Value *IdxLaneV = getData(Idx, Lane).V; 1221 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1222 return 0; 1223 SmallPtrSet<Value *, 4> Uniques; 1224 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1225 if (Ln == Lane) 1226 continue; 1227 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1228 if (!isa<Instruction>(OpIdxLnV)) 1229 return 0; 1230 Uniques.insert(OpIdxLnV); 1231 } 1232 int UniquesCount = Uniques.size(); 1233 int UniquesCntWithIdxLaneV = 1234 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1235 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1236 int UniquesCntWithOpIdxLaneV = 1237 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1238 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1239 return 0; 1240 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1241 UniquesCntWithOpIdxLaneV) - 1242 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1243 } 1244 1245 /// \param Lane lane of the operands under analysis. 1246 /// \param OpIdx operand index in \p Lane lane we're looking the best 1247 /// candidate for. 1248 /// \param Idx operand index of the current candidate value. 1249 /// \returns The additional score for the scalar which users are all 1250 /// vectorized. 1251 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1252 Value *IdxLaneV = getData(Idx, Lane).V; 1253 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1254 // Do not care about number of uses for vector-like instructions 1255 // (extractelement/extractvalue with constant indices), they are extracts 1256 // themselves and already externally used. Vectorization of such 1257 // instructions does not add extra extractelement instruction, just may 1258 // remove it. 1259 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1260 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1261 return VLOperands::ScoreAllUserVectorized; 1262 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1263 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1264 return 0; 1265 return R.areAllUsersVectorized(IdxLaneI, None) 1266 ? VLOperands::ScoreAllUserVectorized 1267 : 0; 1268 } 1269 1270 /// Go through the operands of \p LHS and \p RHS recursively until \p 1271 /// MaxLevel, and return the cummulative score. For example: 1272 /// \verbatim 1273 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1274 /// \ / \ / \ / \ / 1275 /// + + + + 1276 /// G1 G2 G3 G4 1277 /// \endverbatim 1278 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1279 /// each level recursively, accumulating the score. It starts from matching 1280 /// the additions at level 0, then moves on to the loads (level 1). The 1281 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1282 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1283 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1284 /// Please note that the order of the operands does not matter, as we 1285 /// evaluate the score of all profitable combinations of operands. In 1286 /// other words the score of G1 and G4 is the same as G1 and G2. This 1287 /// heuristic is based on ideas described in: 1288 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1289 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1290 /// Luís F. W. Góes 1291 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1292 ArrayRef<Value *> MainAltOps) { 1293 1294 // Get the shallow score of V1 and V2. 1295 int ShallowScoreAtThisLevel = 1296 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1297 1298 // If reached MaxLevel, 1299 // or if V1 and V2 are not instructions, 1300 // or if they are SPLAT, 1301 // or if they are not consecutive, 1302 // or if profitable to vectorize loads or extractelements, early return 1303 // the current cost. 1304 auto *I1 = dyn_cast<Instruction>(LHS); 1305 auto *I2 = dyn_cast<Instruction>(RHS); 1306 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1307 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1308 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1309 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1310 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1311 ShallowScoreAtThisLevel)) 1312 return ShallowScoreAtThisLevel; 1313 assert(I1 && I2 && "Should have early exited."); 1314 1315 // Contains the I2 operand indexes that got matched with I1 operands. 1316 SmallSet<unsigned, 4> Op2Used; 1317 1318 // Recursion towards the operands of I1 and I2. We are trying all possible 1319 // operand pairs, and keeping track of the best score. 1320 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1321 OpIdx1 != NumOperands1; ++OpIdx1) { 1322 // Try to pair op1I with the best operand of I2. 1323 int MaxTmpScore = 0; 1324 unsigned MaxOpIdx2 = 0; 1325 bool FoundBest = false; 1326 // If I2 is commutative try all combinations. 1327 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1328 unsigned ToIdx = isCommutative(I2) 1329 ? I2->getNumOperands() 1330 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1331 assert(FromIdx <= ToIdx && "Bad index"); 1332 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1333 // Skip operands already paired with OpIdx1. 1334 if (Op2Used.count(OpIdx2)) 1335 continue; 1336 // Recursively calculate the cost at each level 1337 int TmpScore = 1338 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1339 CurrLevel + 1, MaxLevel, None); 1340 // Look for the best score. 1341 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1342 MaxTmpScore = TmpScore; 1343 MaxOpIdx2 = OpIdx2; 1344 FoundBest = true; 1345 } 1346 } 1347 if (FoundBest) { 1348 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1349 Op2Used.insert(MaxOpIdx2); 1350 ShallowScoreAtThisLevel += MaxTmpScore; 1351 } 1352 } 1353 return ShallowScoreAtThisLevel; 1354 } 1355 1356 /// Score scaling factor for fully compatible instructions but with 1357 /// different number of external uses. Allows better selection of the 1358 /// instructions with less external uses. 1359 static const int ScoreScaleFactor = 10; 1360 1361 /// \Returns the look-ahead score, which tells us how much the sub-trees 1362 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1363 /// score. This helps break ties in an informed way when we cannot decide on 1364 /// the order of the operands by just considering the immediate 1365 /// predecessors. 1366 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1367 int Lane, unsigned OpIdx, unsigned Idx, 1368 bool &IsUsed) { 1369 int Score = 1370 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1371 if (Score) { 1372 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1373 if (Score <= -SplatScore) { 1374 // Set the minimum score for splat-like sequence to avoid setting 1375 // failed state. 1376 Score = 1; 1377 } else { 1378 Score += SplatScore; 1379 // Scale score to see the difference between different operands 1380 // and similar operands but all vectorized/not all vectorized 1381 // uses. It does not affect actual selection of the best 1382 // compatible operand in general, just allows to select the 1383 // operand with all vectorized uses. 1384 Score *= ScoreScaleFactor; 1385 Score += getExternalUseScore(Lane, OpIdx, Idx); 1386 IsUsed = true; 1387 } 1388 } 1389 return Score; 1390 } 1391 1392 /// Best defined scores per lanes between the passes. Used to choose the 1393 /// best operand (with the highest score) between the passes. 1394 /// The key - {Operand Index, Lane}. 1395 /// The value - the best score between the passes for the lane and the 1396 /// operand. 1397 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1398 BestScoresPerLanes; 1399 1400 // Search all operands in Ops[*][Lane] for the one that matches best 1401 // Ops[OpIdx][LastLane] and return its opreand index. 1402 // If no good match can be found, return None. 1403 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1404 ArrayRef<ReorderingMode> ReorderingModes, 1405 ArrayRef<Value *> MainAltOps) { 1406 unsigned NumOperands = getNumOperands(); 1407 1408 // The operand of the previous lane at OpIdx. 1409 Value *OpLastLane = getData(OpIdx, LastLane).V; 1410 1411 // Our strategy mode for OpIdx. 1412 ReorderingMode RMode = ReorderingModes[OpIdx]; 1413 if (RMode == ReorderingMode::Failed) 1414 return None; 1415 1416 // The linearized opcode of the operand at OpIdx, Lane. 1417 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1418 1419 // The best operand index and its score. 1420 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1421 // are using the score to differentiate between the two. 1422 struct BestOpData { 1423 Optional<unsigned> Idx = None; 1424 unsigned Score = 0; 1425 } BestOp; 1426 BestOp.Score = 1427 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1428 .first->second; 1429 1430 // Track if the operand must be marked as used. If the operand is set to 1431 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1432 // want to reestimate the operands again on the following iterations). 1433 bool IsUsed = 1434 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1435 // Iterate through all unused operands and look for the best. 1436 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1437 // Get the operand at Idx and Lane. 1438 OperandData &OpData = getData(Idx, Lane); 1439 Value *Op = OpData.V; 1440 bool OpAPO = OpData.APO; 1441 1442 // Skip already selected operands. 1443 if (OpData.IsUsed) 1444 continue; 1445 1446 // Skip if we are trying to move the operand to a position with a 1447 // different opcode in the linearized tree form. This would break the 1448 // semantics. 1449 if (OpAPO != OpIdxAPO) 1450 continue; 1451 1452 // Look for an operand that matches the current mode. 1453 switch (RMode) { 1454 case ReorderingMode::Load: 1455 case ReorderingMode::Constant: 1456 case ReorderingMode::Opcode: { 1457 bool LeftToRight = Lane > LastLane; 1458 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1459 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1460 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1461 OpIdx, Idx, IsUsed); 1462 if (Score > static_cast<int>(BestOp.Score)) { 1463 BestOp.Idx = Idx; 1464 BestOp.Score = Score; 1465 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1466 } 1467 break; 1468 } 1469 case ReorderingMode::Splat: 1470 if (Op == OpLastLane) 1471 BestOp.Idx = Idx; 1472 break; 1473 case ReorderingMode::Failed: 1474 llvm_unreachable("Not expected Failed reordering mode."); 1475 } 1476 } 1477 1478 if (BestOp.Idx) { 1479 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1480 return BestOp.Idx; 1481 } 1482 // If we could not find a good match return None. 1483 return None; 1484 } 1485 1486 /// Helper for reorderOperandVecs. 1487 /// \returns the lane that we should start reordering from. This is the one 1488 /// which has the least number of operands that can freely move about or 1489 /// less profitable because it already has the most optimal set of operands. 1490 unsigned getBestLaneToStartReordering() const { 1491 unsigned Min = UINT_MAX; 1492 unsigned SameOpNumber = 0; 1493 // std::pair<unsigned, unsigned> is used to implement a simple voting 1494 // algorithm and choose the lane with the least number of operands that 1495 // can freely move about or less profitable because it already has the 1496 // most optimal set of operands. The first unsigned is a counter for 1497 // voting, the second unsigned is the counter of lanes with instructions 1498 // with same/alternate opcodes and same parent basic block. 1499 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1500 // Try to be closer to the original results, if we have multiple lanes 1501 // with same cost. If 2 lanes have the same cost, use the one with the 1502 // lowest index. 1503 for (int I = getNumLanes(); I > 0; --I) { 1504 unsigned Lane = I - 1; 1505 OperandsOrderData NumFreeOpsHash = 1506 getMaxNumOperandsThatCanBeReordered(Lane); 1507 // Compare the number of operands that can move and choose the one with 1508 // the least number. 1509 if (NumFreeOpsHash.NumOfAPOs < Min) { 1510 Min = NumFreeOpsHash.NumOfAPOs; 1511 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1512 HashMap.clear(); 1513 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1514 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1515 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1516 // Select the most optimal lane in terms of number of operands that 1517 // should be moved around. 1518 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1519 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1520 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1521 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1522 auto It = HashMap.find(NumFreeOpsHash.Hash); 1523 if (It == HashMap.end()) 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 else 1526 ++It->second.first; 1527 } 1528 } 1529 // Select the lane with the minimum counter. 1530 unsigned BestLane = 0; 1531 unsigned CntMin = UINT_MAX; 1532 for (const auto &Data : reverse(HashMap)) { 1533 if (Data.second.first < CntMin) { 1534 CntMin = Data.second.first; 1535 BestLane = Data.second.second; 1536 } 1537 } 1538 return BestLane; 1539 } 1540 1541 /// Data structure that helps to reorder operands. 1542 struct OperandsOrderData { 1543 /// The best number of operands with the same APOs, which can be 1544 /// reordered. 1545 unsigned NumOfAPOs = UINT_MAX; 1546 /// Number of operands with the same/alternate instruction opcode and 1547 /// parent. 1548 unsigned NumOpsWithSameOpcodeParent = 0; 1549 /// Hash for the actual operands ordering. 1550 /// Used to count operands, actually their position id and opcode 1551 /// value. It is used in the voting mechanism to find the lane with the 1552 /// least number of operands that can freely move about or less profitable 1553 /// because it already has the most optimal set of operands. Can be 1554 /// replaced with SmallVector<unsigned> instead but hash code is faster 1555 /// and requires less memory. 1556 unsigned Hash = 0; 1557 }; 1558 /// \returns the maximum number of operands that are allowed to be reordered 1559 /// for \p Lane and the number of compatible instructions(with the same 1560 /// parent/opcode). This is used as a heuristic for selecting the first lane 1561 /// to start operand reordering. 1562 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1563 unsigned CntTrue = 0; 1564 unsigned NumOperands = getNumOperands(); 1565 // Operands with the same APO can be reordered. We therefore need to count 1566 // how many of them we have for each APO, like this: Cnt[APO] = x. 1567 // Since we only have two APOs, namely true and false, we can avoid using 1568 // a map. Instead we can simply count the number of operands that 1569 // correspond to one of them (in this case the 'true' APO), and calculate 1570 // the other by subtracting it from the total number of operands. 1571 // Operands with the same instruction opcode and parent are more 1572 // profitable since we don't need to move them in many cases, with a high 1573 // probability such lane already can be vectorized effectively. 1574 bool AllUndefs = true; 1575 unsigned NumOpsWithSameOpcodeParent = 0; 1576 Instruction *OpcodeI = nullptr; 1577 BasicBlock *Parent = nullptr; 1578 unsigned Hash = 0; 1579 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1580 const OperandData &OpData = getData(OpIdx, Lane); 1581 if (OpData.APO) 1582 ++CntTrue; 1583 // Use Boyer-Moore majority voting for finding the majority opcode and 1584 // the number of times it occurs. 1585 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1586 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1587 I->getParent() != Parent) { 1588 if (NumOpsWithSameOpcodeParent == 0) { 1589 NumOpsWithSameOpcodeParent = 1; 1590 OpcodeI = I; 1591 Parent = I->getParent(); 1592 } else { 1593 --NumOpsWithSameOpcodeParent; 1594 } 1595 } else { 1596 ++NumOpsWithSameOpcodeParent; 1597 } 1598 } 1599 Hash = hash_combine( 1600 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1601 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1602 } 1603 if (AllUndefs) 1604 return {}; 1605 OperandsOrderData Data; 1606 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1607 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1608 Data.Hash = Hash; 1609 return Data; 1610 } 1611 1612 /// Go through the instructions in VL and append their operands. 1613 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1614 assert(!VL.empty() && "Bad VL"); 1615 assert((empty() || VL.size() == getNumLanes()) && 1616 "Expected same number of lanes"); 1617 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1618 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1619 OpsVec.resize(NumOperands); 1620 unsigned NumLanes = VL.size(); 1621 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1622 OpsVec[OpIdx].resize(NumLanes); 1623 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1624 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1625 // Our tree has just 3 nodes: the root and two operands. 1626 // It is therefore trivial to get the APO. We only need to check the 1627 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1628 // RHS operand. The LHS operand of both add and sub is never attached 1629 // to an inversese operation in the linearized form, therefore its APO 1630 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1631 1632 // Since operand reordering is performed on groups of commutative 1633 // operations or alternating sequences (e.g., +, -), we can safely 1634 // tell the inverse operations by checking commutativity. 1635 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1636 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1637 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1638 APO, false}; 1639 } 1640 } 1641 } 1642 1643 /// \returns the number of operands. 1644 unsigned getNumOperands() const { return OpsVec.size(); } 1645 1646 /// \returns the number of lanes. 1647 unsigned getNumLanes() const { return OpsVec[0].size(); } 1648 1649 /// \returns the operand value at \p OpIdx and \p Lane. 1650 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1651 return getData(OpIdx, Lane).V; 1652 } 1653 1654 /// \returns true if the data structure is empty. 1655 bool empty() const { return OpsVec.empty(); } 1656 1657 /// Clears the data. 1658 void clear() { OpsVec.clear(); } 1659 1660 /// \Returns true if there are enough operands identical to \p Op to fill 1661 /// the whole vector. 1662 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1663 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1664 bool OpAPO = getData(OpIdx, Lane).APO; 1665 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1666 if (Ln == Lane) 1667 continue; 1668 // This is set to true if we found a candidate for broadcast at Lane. 1669 bool FoundCandidate = false; 1670 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1671 OperandData &Data = getData(OpI, Ln); 1672 if (Data.APO != OpAPO || Data.IsUsed) 1673 continue; 1674 if (Data.V == Op) { 1675 FoundCandidate = true; 1676 Data.IsUsed = true; 1677 break; 1678 } 1679 } 1680 if (!FoundCandidate) 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 public: 1687 /// Initialize with all the operands of the instruction vector \p RootVL. 1688 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1689 ScalarEvolution &SE, const BoUpSLP &R) 1690 : DL(DL), SE(SE), R(R) { 1691 // Append all the operands of RootVL. 1692 appendOperandsOfVL(RootVL); 1693 } 1694 1695 /// \Returns a value vector with the operands across all lanes for the 1696 /// opearnd at \p OpIdx. 1697 ValueList getVL(unsigned OpIdx) const { 1698 ValueList OpVL(OpsVec[OpIdx].size()); 1699 assert(OpsVec[OpIdx].size() == getNumLanes() && 1700 "Expected same num of lanes across all operands"); 1701 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1702 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1703 return OpVL; 1704 } 1705 1706 // Performs operand reordering for 2 or more operands. 1707 // The original operands are in OrigOps[OpIdx][Lane]. 1708 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1709 void reorder() { 1710 unsigned NumOperands = getNumOperands(); 1711 unsigned NumLanes = getNumLanes(); 1712 // Each operand has its own mode. We are using this mode to help us select 1713 // the instructions for each lane, so that they match best with the ones 1714 // we have selected so far. 1715 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1716 1717 // This is a greedy single-pass algorithm. We are going over each lane 1718 // once and deciding on the best order right away with no back-tracking. 1719 // However, in order to increase its effectiveness, we start with the lane 1720 // that has operands that can move the least. For example, given the 1721 // following lanes: 1722 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1723 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1724 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1725 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1726 // we will start at Lane 1, since the operands of the subtraction cannot 1727 // be reordered. Then we will visit the rest of the lanes in a circular 1728 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1729 1730 // Find the first lane that we will start our search from. 1731 unsigned FirstLane = getBestLaneToStartReordering(); 1732 1733 // Initialize the modes. 1734 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1735 Value *OpLane0 = getValue(OpIdx, FirstLane); 1736 // Keep track if we have instructions with all the same opcode on one 1737 // side. 1738 if (isa<LoadInst>(OpLane0)) 1739 ReorderingModes[OpIdx] = ReorderingMode::Load; 1740 else if (isa<Instruction>(OpLane0)) { 1741 // Check if OpLane0 should be broadcast. 1742 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1743 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1744 else 1745 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1746 } 1747 else if (isa<Constant>(OpLane0)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1749 else if (isa<Argument>(OpLane0)) 1750 // Our best hope is a Splat. It may save some cost in some cases. 1751 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1752 else 1753 // NOTE: This should be unreachable. 1754 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1755 } 1756 1757 // Check that we don't have same operands. No need to reorder if operands 1758 // are just perfect diamond or shuffled diamond match. Do not do it only 1759 // for possible broadcasts or non-power of 2 number of scalars (just for 1760 // now). 1761 auto &&SkipReordering = [this]() { 1762 SmallPtrSet<Value *, 4> UniqueValues; 1763 ArrayRef<OperandData> Op0 = OpsVec.front(); 1764 for (const OperandData &Data : Op0) 1765 UniqueValues.insert(Data.V); 1766 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1767 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1768 return !UniqueValues.contains(Data.V); 1769 })) 1770 return false; 1771 } 1772 // TODO: Check if we can remove a check for non-power-2 number of 1773 // scalars after full support of non-power-2 vectorization. 1774 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1775 }; 1776 1777 // If the initial strategy fails for any of the operand indexes, then we 1778 // perform reordering again in a second pass. This helps avoid assigning 1779 // high priority to the failed strategy, and should improve reordering for 1780 // the non-failed operand indexes. 1781 for (int Pass = 0; Pass != 2; ++Pass) { 1782 // Check if no need to reorder operands since they're are perfect or 1783 // shuffled diamond match. 1784 // Need to to do it to avoid extra external use cost counting for 1785 // shuffled matches, which may cause regressions. 1786 if (SkipReordering()) 1787 break; 1788 // Skip the second pass if the first pass did not fail. 1789 bool StrategyFailed = false; 1790 // Mark all operand data as free to use. 1791 clearUsed(); 1792 // We keep the original operand order for the FirstLane, so reorder the 1793 // rest of the lanes. We are visiting the nodes in a circular fashion, 1794 // using FirstLane as the center point and increasing the radius 1795 // distance. 1796 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1797 for (unsigned I = 0; I < NumOperands; ++I) 1798 MainAltOps[I].push_back(getData(I, FirstLane).V); 1799 1800 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1801 // Visit the lane on the right and then the lane on the left. 1802 for (int Direction : {+1, -1}) { 1803 int Lane = FirstLane + Direction * Distance; 1804 if (Lane < 0 || Lane >= (int)NumLanes) 1805 continue; 1806 int LastLane = Lane - Direction; 1807 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1808 "Out of bounds"); 1809 // Look for a good match for each operand. 1810 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1811 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1812 Optional<unsigned> BestIdx = getBestOperand( 1813 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1814 // By not selecting a value, we allow the operands that follow to 1815 // select a better matching value. We will get a non-null value in 1816 // the next run of getBestOperand(). 1817 if (BestIdx) { 1818 // Swap the current operand with the one returned by 1819 // getBestOperand(). 1820 swap(OpIdx, BestIdx.getValue(), Lane); 1821 } else { 1822 // We failed to find a best operand, set mode to 'Failed'. 1823 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1824 // Enable the second pass. 1825 StrategyFailed = true; 1826 } 1827 // Try to get the alternate opcode and follow it during analysis. 1828 if (MainAltOps[OpIdx].size() != 2) { 1829 OperandData &AltOp = getData(OpIdx, Lane); 1830 InstructionsState OpS = 1831 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1832 if (OpS.getOpcode() && OpS.isAltShuffle()) 1833 MainAltOps[OpIdx].push_back(AltOp.V); 1834 } 1835 } 1836 } 1837 } 1838 // Skip second pass if the strategy did not fail. 1839 if (!StrategyFailed) 1840 break; 1841 } 1842 } 1843 1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1845 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1846 switch (RMode) { 1847 case ReorderingMode::Load: 1848 return "Load"; 1849 case ReorderingMode::Opcode: 1850 return "Opcode"; 1851 case ReorderingMode::Constant: 1852 return "Constant"; 1853 case ReorderingMode::Splat: 1854 return "Splat"; 1855 case ReorderingMode::Failed: 1856 return "Failed"; 1857 } 1858 llvm_unreachable("Unimplemented Reordering Type"); 1859 } 1860 1861 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1862 raw_ostream &OS) { 1863 return OS << getModeStr(RMode); 1864 } 1865 1866 /// Debug print. 1867 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1868 printMode(RMode, dbgs()); 1869 } 1870 1871 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1872 return printMode(RMode, OS); 1873 } 1874 1875 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1876 const unsigned Indent = 2; 1877 unsigned Cnt = 0; 1878 for (const OperandDataVec &OpDataVec : OpsVec) { 1879 OS << "Operand " << Cnt++ << "\n"; 1880 for (const OperandData &OpData : OpDataVec) { 1881 OS.indent(Indent) << "{"; 1882 if (Value *V = OpData.V) 1883 OS << *V; 1884 else 1885 OS << "null"; 1886 OS << ", APO:" << OpData.APO << "}\n"; 1887 } 1888 OS << "\n"; 1889 } 1890 return OS; 1891 } 1892 1893 /// Debug print. 1894 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1895 #endif 1896 }; 1897 1898 /// Checks if the instruction is marked for deletion. 1899 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1900 1901 /// Marks values operands for later deletion by replacing them with Undefs. 1902 void eraseInstructions(ArrayRef<Value *> AV); 1903 1904 ~BoUpSLP(); 1905 1906 private: 1907 /// Checks if all users of \p I are the part of the vectorization tree. 1908 bool areAllUsersVectorized(Instruction *I, 1909 ArrayRef<Value *> VectorizedVals) const; 1910 1911 /// \returns the cost of the vectorizable entry. 1912 InstructionCost getEntryCost(const TreeEntry *E, 1913 ArrayRef<Value *> VectorizedVals); 1914 1915 /// This is the recursive part of buildTree. 1916 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1917 const EdgeInfo &EI); 1918 1919 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1920 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1921 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1922 /// returns false, setting \p CurrentOrder to either an empty vector or a 1923 /// non-identity permutation that allows to reuse extract instructions. 1924 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1925 SmallVectorImpl<unsigned> &CurrentOrder) const; 1926 1927 /// Vectorize a single entry in the tree. 1928 Value *vectorizeTree(TreeEntry *E); 1929 1930 /// Vectorize a single entry in the tree, starting in \p VL. 1931 Value *vectorizeTree(ArrayRef<Value *> VL); 1932 1933 /// \returns the scalarization cost for this type. Scalarization in this 1934 /// context means the creation of vectors from a group of scalars. If \p 1935 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1936 /// vector elements. 1937 InstructionCost getGatherCost(FixedVectorType *Ty, 1938 const APInt &ShuffledIndices, 1939 bool NeedToShuffle) const; 1940 1941 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1942 /// tree entries. 1943 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1944 /// previous tree entries. \p Mask is filled with the shuffle mask. 1945 Optional<TargetTransformInfo::ShuffleKind> 1946 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1947 SmallVectorImpl<const TreeEntry *> &Entries); 1948 1949 /// \returns the scalarization cost for this list of values. Assuming that 1950 /// this subtree gets vectorized, we may need to extract the values from the 1951 /// roots. This method calculates the cost of extracting the values. 1952 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1953 1954 /// Set the Builder insert point to one after the last instruction in 1955 /// the bundle 1956 void setInsertPointAfterBundle(const TreeEntry *E); 1957 1958 /// \returns a vector from a collection of scalars in \p VL. 1959 Value *gather(ArrayRef<Value *> VL); 1960 1961 /// \returns whether the VectorizableTree is fully vectorizable and will 1962 /// be beneficial even the tree height is tiny. 1963 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1964 1965 /// Reorder commutative or alt operands to get better probability of 1966 /// generating vectorized code. 1967 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1968 SmallVectorImpl<Value *> &Left, 1969 SmallVectorImpl<Value *> &Right, 1970 const DataLayout &DL, 1971 ScalarEvolution &SE, 1972 const BoUpSLP &R); 1973 struct TreeEntry { 1974 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1975 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1976 1977 /// \returns true if the scalars in VL are equal to this entry. 1978 bool isSame(ArrayRef<Value *> VL) const { 1979 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1980 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1981 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1982 return VL.size() == Mask.size() && 1983 std::equal(VL.begin(), VL.end(), Mask.begin(), 1984 [Scalars](Value *V, int Idx) { 1985 return (isa<UndefValue>(V) && 1986 Idx == UndefMaskElem) || 1987 (Idx != UndefMaskElem && V == Scalars[Idx]); 1988 }); 1989 }; 1990 if (!ReorderIndices.empty()) { 1991 // TODO: implement matching if the nodes are just reordered, still can 1992 // treat the vector as the same if the list of scalars matches VL 1993 // directly, without reordering. 1994 SmallVector<int> Mask; 1995 inversePermutation(ReorderIndices, Mask); 1996 if (VL.size() == Scalars.size()) 1997 return IsSame(Scalars, Mask); 1998 if (VL.size() == ReuseShuffleIndices.size()) { 1999 ::addMask(Mask, ReuseShuffleIndices); 2000 return IsSame(Scalars, Mask); 2001 } 2002 return false; 2003 } 2004 return IsSame(Scalars, ReuseShuffleIndices); 2005 } 2006 2007 /// \returns true if current entry has same operands as \p TE. 2008 bool hasEqualOperands(const TreeEntry &TE) const { 2009 if (TE.getNumOperands() != getNumOperands()) 2010 return false; 2011 SmallBitVector Used(getNumOperands()); 2012 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2013 unsigned PrevCount = Used.count(); 2014 for (unsigned K = 0; K < E; ++K) { 2015 if (Used.test(K)) 2016 continue; 2017 if (getOperand(K) == TE.getOperand(I)) { 2018 Used.set(K); 2019 break; 2020 } 2021 } 2022 // Check if we actually found the matching operand. 2023 if (PrevCount == Used.count()) 2024 return false; 2025 } 2026 return true; 2027 } 2028 2029 /// \return Final vectorization factor for the node. Defined by the total 2030 /// number of vectorized scalars, including those, used several times in the 2031 /// entry and counted in the \a ReuseShuffleIndices, if any. 2032 unsigned getVectorFactor() const { 2033 if (!ReuseShuffleIndices.empty()) 2034 return ReuseShuffleIndices.size(); 2035 return Scalars.size(); 2036 }; 2037 2038 /// A vector of scalars. 2039 ValueList Scalars; 2040 2041 /// The Scalars are vectorized into this value. It is initialized to Null. 2042 Value *VectorizedValue = nullptr; 2043 2044 /// Do we need to gather this sequence or vectorize it 2045 /// (either with vector instruction or with scatter/gather 2046 /// intrinsics for store/load)? 2047 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2048 EntryState State; 2049 2050 /// Does this sequence require some shuffling? 2051 SmallVector<int, 4> ReuseShuffleIndices; 2052 2053 /// Does this entry require reordering? 2054 SmallVector<unsigned, 4> ReorderIndices; 2055 2056 /// Points back to the VectorizableTree. 2057 /// 2058 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2059 /// to be a pointer and needs to be able to initialize the child iterator. 2060 /// Thus we need a reference back to the container to translate the indices 2061 /// to entries. 2062 VecTreeTy &Container; 2063 2064 /// The TreeEntry index containing the user of this entry. We can actually 2065 /// have multiple users so the data structure is not truly a tree. 2066 SmallVector<EdgeInfo, 1> UserTreeIndices; 2067 2068 /// The index of this treeEntry in VectorizableTree. 2069 int Idx = -1; 2070 2071 private: 2072 /// The operands of each instruction in each lane Operands[op_index][lane]. 2073 /// Note: This helps avoid the replication of the code that performs the 2074 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2075 SmallVector<ValueList, 2> Operands; 2076 2077 /// The main/alternate instruction. 2078 Instruction *MainOp = nullptr; 2079 Instruction *AltOp = nullptr; 2080 2081 public: 2082 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2083 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2084 if (Operands.size() < OpIdx + 1) 2085 Operands.resize(OpIdx + 1); 2086 assert(Operands[OpIdx].empty() && "Already resized?"); 2087 assert(OpVL.size() <= Scalars.size() && 2088 "Number of operands is greater than the number of scalars."); 2089 Operands[OpIdx].resize(OpVL.size()); 2090 copy(OpVL, Operands[OpIdx].begin()); 2091 } 2092 2093 /// Set the operands of this bundle in their original order. 2094 void setOperandsInOrder() { 2095 assert(Operands.empty() && "Already initialized?"); 2096 auto *I0 = cast<Instruction>(Scalars[0]); 2097 Operands.resize(I0->getNumOperands()); 2098 unsigned NumLanes = Scalars.size(); 2099 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2100 OpIdx != NumOperands; ++OpIdx) { 2101 Operands[OpIdx].resize(NumLanes); 2102 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2103 auto *I = cast<Instruction>(Scalars[Lane]); 2104 assert(I->getNumOperands() == NumOperands && 2105 "Expected same number of operands"); 2106 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2107 } 2108 } 2109 } 2110 2111 /// Reorders operands of the node to the given mask \p Mask. 2112 void reorderOperands(ArrayRef<int> Mask) { 2113 for (ValueList &Operand : Operands) 2114 reorderScalars(Operand, Mask); 2115 } 2116 2117 /// \returns the \p OpIdx operand of this TreeEntry. 2118 ValueList &getOperand(unsigned OpIdx) { 2119 assert(OpIdx < Operands.size() && "Off bounds"); 2120 return Operands[OpIdx]; 2121 } 2122 2123 /// \returns the \p OpIdx operand of this TreeEntry. 2124 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2125 assert(OpIdx < Operands.size() && "Off bounds"); 2126 return Operands[OpIdx]; 2127 } 2128 2129 /// \returns the number of operands. 2130 unsigned getNumOperands() const { return Operands.size(); } 2131 2132 /// \return the single \p OpIdx operand. 2133 Value *getSingleOperand(unsigned OpIdx) const { 2134 assert(OpIdx < Operands.size() && "Off bounds"); 2135 assert(!Operands[OpIdx].empty() && "No operand available"); 2136 return Operands[OpIdx][0]; 2137 } 2138 2139 /// Some of the instructions in the list have alternate opcodes. 2140 bool isAltShuffle() const { return MainOp != AltOp; } 2141 2142 bool isOpcodeOrAlt(Instruction *I) const { 2143 unsigned CheckedOpcode = I->getOpcode(); 2144 return (getOpcode() == CheckedOpcode || 2145 getAltOpcode() == CheckedOpcode); 2146 } 2147 2148 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2149 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2150 /// \p OpValue. 2151 Value *isOneOf(Value *Op) const { 2152 auto *I = dyn_cast<Instruction>(Op); 2153 if (I && isOpcodeOrAlt(I)) 2154 return Op; 2155 return MainOp; 2156 } 2157 2158 void setOperations(const InstructionsState &S) { 2159 MainOp = S.MainOp; 2160 AltOp = S.AltOp; 2161 } 2162 2163 Instruction *getMainOp() const { 2164 return MainOp; 2165 } 2166 2167 Instruction *getAltOp() const { 2168 return AltOp; 2169 } 2170 2171 /// The main/alternate opcodes for the list of instructions. 2172 unsigned getOpcode() const { 2173 return MainOp ? MainOp->getOpcode() : 0; 2174 } 2175 2176 unsigned getAltOpcode() const { 2177 return AltOp ? AltOp->getOpcode() : 0; 2178 } 2179 2180 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2181 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2182 int findLaneForValue(Value *V) const { 2183 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2184 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2185 if (!ReorderIndices.empty()) 2186 FoundLane = ReorderIndices[FoundLane]; 2187 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2188 if (!ReuseShuffleIndices.empty()) { 2189 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2190 find(ReuseShuffleIndices, FoundLane)); 2191 } 2192 return FoundLane; 2193 } 2194 2195 #ifndef NDEBUG 2196 /// Debug printer. 2197 LLVM_DUMP_METHOD void dump() const { 2198 dbgs() << Idx << ".\n"; 2199 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2200 dbgs() << "Operand " << OpI << ":\n"; 2201 for (const Value *V : Operands[OpI]) 2202 dbgs().indent(2) << *V << "\n"; 2203 } 2204 dbgs() << "Scalars: \n"; 2205 for (Value *V : Scalars) 2206 dbgs().indent(2) << *V << "\n"; 2207 dbgs() << "State: "; 2208 switch (State) { 2209 case Vectorize: 2210 dbgs() << "Vectorize\n"; 2211 break; 2212 case ScatterVectorize: 2213 dbgs() << "ScatterVectorize\n"; 2214 break; 2215 case NeedToGather: 2216 dbgs() << "NeedToGather\n"; 2217 break; 2218 } 2219 dbgs() << "MainOp: "; 2220 if (MainOp) 2221 dbgs() << *MainOp << "\n"; 2222 else 2223 dbgs() << "NULL\n"; 2224 dbgs() << "AltOp: "; 2225 if (AltOp) 2226 dbgs() << *AltOp << "\n"; 2227 else 2228 dbgs() << "NULL\n"; 2229 dbgs() << "VectorizedValue: "; 2230 if (VectorizedValue) 2231 dbgs() << *VectorizedValue << "\n"; 2232 else 2233 dbgs() << "NULL\n"; 2234 dbgs() << "ReuseShuffleIndices: "; 2235 if (ReuseShuffleIndices.empty()) 2236 dbgs() << "Empty"; 2237 else 2238 for (int ReuseIdx : ReuseShuffleIndices) 2239 dbgs() << ReuseIdx << ", "; 2240 dbgs() << "\n"; 2241 dbgs() << "ReorderIndices: "; 2242 for (unsigned ReorderIdx : ReorderIndices) 2243 dbgs() << ReorderIdx << ", "; 2244 dbgs() << "\n"; 2245 dbgs() << "UserTreeIndices: "; 2246 for (const auto &EInfo : UserTreeIndices) 2247 dbgs() << EInfo << ", "; 2248 dbgs() << "\n"; 2249 } 2250 #endif 2251 }; 2252 2253 #ifndef NDEBUG 2254 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2255 InstructionCost VecCost, 2256 InstructionCost ScalarCost) const { 2257 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2258 dbgs() << "SLP: Costs:\n"; 2259 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2260 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2261 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2262 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2263 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2264 } 2265 #endif 2266 2267 /// Create a new VectorizableTree entry. 2268 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2269 const InstructionsState &S, 2270 const EdgeInfo &UserTreeIdx, 2271 ArrayRef<int> ReuseShuffleIndices = None, 2272 ArrayRef<unsigned> ReorderIndices = None) { 2273 TreeEntry::EntryState EntryState = 2274 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2275 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2276 ReuseShuffleIndices, ReorderIndices); 2277 } 2278 2279 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2280 TreeEntry::EntryState EntryState, 2281 Optional<ScheduleData *> Bundle, 2282 const InstructionsState &S, 2283 const EdgeInfo &UserTreeIdx, 2284 ArrayRef<int> ReuseShuffleIndices = None, 2285 ArrayRef<unsigned> ReorderIndices = None) { 2286 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2287 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2288 "Need to vectorize gather entry?"); 2289 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2290 TreeEntry *Last = VectorizableTree.back().get(); 2291 Last->Idx = VectorizableTree.size() - 1; 2292 Last->State = EntryState; 2293 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2294 ReuseShuffleIndices.end()); 2295 if (ReorderIndices.empty()) { 2296 Last->Scalars.assign(VL.begin(), VL.end()); 2297 Last->setOperations(S); 2298 } else { 2299 // Reorder scalars and build final mask. 2300 Last->Scalars.assign(VL.size(), nullptr); 2301 transform(ReorderIndices, Last->Scalars.begin(), 2302 [VL](unsigned Idx) -> Value * { 2303 if (Idx >= VL.size()) 2304 return UndefValue::get(VL.front()->getType()); 2305 return VL[Idx]; 2306 }); 2307 InstructionsState S = getSameOpcode(Last->Scalars); 2308 Last->setOperations(S); 2309 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2310 } 2311 if (Last->State != TreeEntry::NeedToGather) { 2312 for (Value *V : VL) { 2313 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2314 ScalarToTreeEntry[V] = Last; 2315 } 2316 // Update the scheduler bundle to point to this TreeEntry. 2317 unsigned Lane = 0; 2318 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2319 BundleMember = BundleMember->NextInBundle) { 2320 BundleMember->TE = Last; 2321 BundleMember->Lane = Lane; 2322 ++Lane; 2323 } 2324 assert((!Bundle.getValue() || Lane == VL.size()) && 2325 "Bundle and VL out of sync"); 2326 } else { 2327 MustGather.insert(VL.begin(), VL.end()); 2328 } 2329 2330 if (UserTreeIdx.UserTE) 2331 Last->UserTreeIndices.push_back(UserTreeIdx); 2332 2333 return Last; 2334 } 2335 2336 /// -- Vectorization State -- 2337 /// Holds all of the tree entries. 2338 TreeEntry::VecTreeTy VectorizableTree; 2339 2340 #ifndef NDEBUG 2341 /// Debug printer. 2342 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2343 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2344 VectorizableTree[Id]->dump(); 2345 dbgs() << "\n"; 2346 } 2347 } 2348 #endif 2349 2350 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2351 2352 const TreeEntry *getTreeEntry(Value *V) const { 2353 return ScalarToTreeEntry.lookup(V); 2354 } 2355 2356 /// Maps a specific scalar to its tree entry. 2357 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2358 2359 /// Maps a value to the proposed vectorizable size. 2360 SmallDenseMap<Value *, unsigned> InstrElementSize; 2361 2362 /// A list of scalars that we found that we need to keep as scalars. 2363 ValueSet MustGather; 2364 2365 /// This POD struct describes one external user in the vectorized tree. 2366 struct ExternalUser { 2367 ExternalUser(Value *S, llvm::User *U, int L) 2368 : Scalar(S), User(U), Lane(L) {} 2369 2370 // Which scalar in our function. 2371 Value *Scalar; 2372 2373 // Which user that uses the scalar. 2374 llvm::User *User; 2375 2376 // Which lane does the scalar belong to. 2377 int Lane; 2378 }; 2379 using UserList = SmallVector<ExternalUser, 16>; 2380 2381 /// Checks if two instructions may access the same memory. 2382 /// 2383 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2384 /// is invariant in the calling loop. 2385 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2386 Instruction *Inst2) { 2387 // First check if the result is already in the cache. 2388 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2389 Optional<bool> &result = AliasCache[key]; 2390 if (result.hasValue()) { 2391 return result.getValue(); 2392 } 2393 bool aliased = true; 2394 if (Loc1.Ptr && isSimple(Inst1)) 2395 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2396 // Store the result in the cache. 2397 result = aliased; 2398 return aliased; 2399 } 2400 2401 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2402 2403 /// Cache for alias results. 2404 /// TODO: consider moving this to the AliasAnalysis itself. 2405 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2406 2407 /// Removes an instruction from its block and eventually deletes it. 2408 /// It's like Instruction::eraseFromParent() except that the actual deletion 2409 /// is delayed until BoUpSLP is destructed. 2410 /// This is required to ensure that there are no incorrect collisions in the 2411 /// AliasCache, which can happen if a new instruction is allocated at the 2412 /// same address as a previously deleted instruction. 2413 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2414 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2415 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2416 } 2417 2418 /// Temporary store for deleted instructions. Instructions will be deleted 2419 /// eventually when the BoUpSLP is destructed. 2420 DenseMap<Instruction *, bool> DeletedInstructions; 2421 2422 /// A list of values that need to extracted out of the tree. 2423 /// This list holds pairs of (Internal Scalar : External User). External User 2424 /// can be nullptr, it means that this Internal Scalar will be used later, 2425 /// after vectorization. 2426 UserList ExternalUses; 2427 2428 /// Values used only by @llvm.assume calls. 2429 SmallPtrSet<const Value *, 32> EphValues; 2430 2431 /// Holds all of the instructions that we gathered. 2432 SetVector<Instruction *> GatherShuffleSeq; 2433 2434 /// A list of blocks that we are going to CSE. 2435 SetVector<BasicBlock *> CSEBlocks; 2436 2437 /// Contains all scheduling relevant data for an instruction. 2438 /// A ScheduleData either represents a single instruction or a member of an 2439 /// instruction bundle (= a group of instructions which is combined into a 2440 /// vector instruction). 2441 struct ScheduleData { 2442 // The initial value for the dependency counters. It means that the 2443 // dependencies are not calculated yet. 2444 enum { InvalidDeps = -1 }; 2445 2446 ScheduleData() = default; 2447 2448 void init(int BlockSchedulingRegionID, Value *OpVal) { 2449 FirstInBundle = this; 2450 NextInBundle = nullptr; 2451 NextLoadStore = nullptr; 2452 IsScheduled = false; 2453 SchedulingRegionID = BlockSchedulingRegionID; 2454 clearDependencies(); 2455 OpValue = OpVal; 2456 TE = nullptr; 2457 Lane = -1; 2458 } 2459 2460 /// Verify basic self consistency properties 2461 void verify() { 2462 if (hasValidDependencies()) { 2463 assert(UnscheduledDeps <= Dependencies && "invariant"); 2464 } else { 2465 assert(UnscheduledDeps == Dependencies && "invariant"); 2466 } 2467 2468 if (IsScheduled) { 2469 assert(isSchedulingEntity() && 2470 "unexpected scheduled state"); 2471 for (const ScheduleData *BundleMember = this; BundleMember; 2472 BundleMember = BundleMember->NextInBundle) { 2473 assert(BundleMember->hasValidDependencies() && 2474 BundleMember->UnscheduledDeps == 0 && 2475 "unexpected scheduled state"); 2476 assert((BundleMember == this || !BundleMember->IsScheduled) && 2477 "only bundle is marked scheduled"); 2478 } 2479 } 2480 } 2481 2482 /// Returns true if the dependency information has been calculated. 2483 /// Note that depenendency validity can vary between instructions within 2484 /// a single bundle. 2485 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2486 2487 /// Returns true for single instructions and for bundle representatives 2488 /// (= the head of a bundle). 2489 bool isSchedulingEntity() const { return FirstInBundle == this; } 2490 2491 /// Returns true if it represents an instruction bundle and not only a 2492 /// single instruction. 2493 bool isPartOfBundle() const { 2494 return NextInBundle != nullptr || FirstInBundle != this; 2495 } 2496 2497 /// Returns true if it is ready for scheduling, i.e. it has no more 2498 /// unscheduled depending instructions/bundles. 2499 bool isReady() const { 2500 assert(isSchedulingEntity() && 2501 "can't consider non-scheduling entity for ready list"); 2502 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2503 } 2504 2505 /// Modifies the number of unscheduled dependencies for this instruction, 2506 /// and returns the number of remaining dependencies for the containing 2507 /// bundle. 2508 int incrementUnscheduledDeps(int Incr) { 2509 assert(hasValidDependencies() && 2510 "increment of unscheduled deps would be meaningless"); 2511 UnscheduledDeps += Incr; 2512 return FirstInBundle->unscheduledDepsInBundle(); 2513 } 2514 2515 /// Sets the number of unscheduled dependencies to the number of 2516 /// dependencies. 2517 void resetUnscheduledDeps() { 2518 UnscheduledDeps = Dependencies; 2519 } 2520 2521 /// Clears all dependency information. 2522 void clearDependencies() { 2523 Dependencies = InvalidDeps; 2524 resetUnscheduledDeps(); 2525 MemoryDependencies.clear(); 2526 } 2527 2528 int unscheduledDepsInBundle() const { 2529 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2530 int Sum = 0; 2531 for (const ScheduleData *BundleMember = this; BundleMember; 2532 BundleMember = BundleMember->NextInBundle) { 2533 if (BundleMember->UnscheduledDeps == InvalidDeps) 2534 return InvalidDeps; 2535 Sum += BundleMember->UnscheduledDeps; 2536 } 2537 return Sum; 2538 } 2539 2540 void dump(raw_ostream &os) const { 2541 if (!isSchedulingEntity()) { 2542 os << "/ " << *Inst; 2543 } else if (NextInBundle) { 2544 os << '[' << *Inst; 2545 ScheduleData *SD = NextInBundle; 2546 while (SD) { 2547 os << ';' << *SD->Inst; 2548 SD = SD->NextInBundle; 2549 } 2550 os << ']'; 2551 } else { 2552 os << *Inst; 2553 } 2554 } 2555 2556 Instruction *Inst = nullptr; 2557 2558 /// Points to the head in an instruction bundle (and always to this for 2559 /// single instructions). 2560 ScheduleData *FirstInBundle = nullptr; 2561 2562 /// Single linked list of all instructions in a bundle. Null if it is a 2563 /// single instruction. 2564 ScheduleData *NextInBundle = nullptr; 2565 2566 /// Single linked list of all memory instructions (e.g. load, store, call) 2567 /// in the block - until the end of the scheduling region. 2568 ScheduleData *NextLoadStore = nullptr; 2569 2570 /// The dependent memory instructions. 2571 /// This list is derived on demand in calculateDependencies(). 2572 SmallVector<ScheduleData *, 4> MemoryDependencies; 2573 2574 /// This ScheduleData is in the current scheduling region if this matches 2575 /// the current SchedulingRegionID of BlockScheduling. 2576 int SchedulingRegionID = 0; 2577 2578 /// Used for getting a "good" final ordering of instructions. 2579 int SchedulingPriority = 0; 2580 2581 /// The number of dependencies. Constitutes of the number of users of the 2582 /// instruction plus the number of dependent memory instructions (if any). 2583 /// This value is calculated on demand. 2584 /// If InvalidDeps, the number of dependencies is not calculated yet. 2585 int Dependencies = InvalidDeps; 2586 2587 /// The number of dependencies minus the number of dependencies of scheduled 2588 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2589 /// for scheduling. 2590 /// Note that this is negative as long as Dependencies is not calculated. 2591 int UnscheduledDeps = InvalidDeps; 2592 2593 /// True if this instruction is scheduled (or considered as scheduled in the 2594 /// dry-run). 2595 bool IsScheduled = false; 2596 2597 /// Opcode of the current instruction in the schedule data. 2598 Value *OpValue = nullptr; 2599 2600 /// The TreeEntry that this instruction corresponds to. 2601 TreeEntry *TE = nullptr; 2602 2603 /// The lane of this node in the TreeEntry. 2604 int Lane = -1; 2605 }; 2606 2607 #ifndef NDEBUG 2608 friend inline raw_ostream &operator<<(raw_ostream &os, 2609 const BoUpSLP::ScheduleData &SD) { 2610 SD.dump(os); 2611 return os; 2612 } 2613 #endif 2614 2615 friend struct GraphTraits<BoUpSLP *>; 2616 friend struct DOTGraphTraits<BoUpSLP *>; 2617 2618 /// Contains all scheduling data for a basic block. 2619 struct BlockScheduling { 2620 BlockScheduling(BasicBlock *BB) 2621 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2622 2623 void clear() { 2624 ReadyInsts.clear(); 2625 ScheduleStart = nullptr; 2626 ScheduleEnd = nullptr; 2627 FirstLoadStoreInRegion = nullptr; 2628 LastLoadStoreInRegion = nullptr; 2629 2630 // Reduce the maximum schedule region size by the size of the 2631 // previous scheduling run. 2632 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2633 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2634 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2635 ScheduleRegionSize = 0; 2636 2637 // Make a new scheduling region, i.e. all existing ScheduleData is not 2638 // in the new region yet. 2639 ++SchedulingRegionID; 2640 } 2641 2642 ScheduleData *getScheduleData(Value *V) { 2643 ScheduleData *SD = ScheduleDataMap[V]; 2644 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2645 return SD; 2646 return nullptr; 2647 } 2648 2649 ScheduleData *getScheduleData(Value *V, Value *Key) { 2650 if (V == Key) 2651 return getScheduleData(V); 2652 auto I = ExtraScheduleDataMap.find(V); 2653 if (I != ExtraScheduleDataMap.end()) { 2654 ScheduleData *SD = I->second[Key]; 2655 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2656 return SD; 2657 } 2658 return nullptr; 2659 } 2660 2661 bool isInSchedulingRegion(ScheduleData *SD) const { 2662 return SD->SchedulingRegionID == SchedulingRegionID; 2663 } 2664 2665 /// Marks an instruction as scheduled and puts all dependent ready 2666 /// instructions into the ready-list. 2667 template <typename ReadyListType> 2668 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2669 SD->IsScheduled = true; 2670 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2671 2672 for (ScheduleData *BundleMember = SD; BundleMember; 2673 BundleMember = BundleMember->NextInBundle) { 2674 if (BundleMember->Inst != BundleMember->OpValue) 2675 continue; 2676 2677 // Handle the def-use chain dependencies. 2678 2679 // Decrement the unscheduled counter and insert to ready list if ready. 2680 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2681 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2682 if (OpDef && OpDef->hasValidDependencies() && 2683 OpDef->incrementUnscheduledDeps(-1) == 0) { 2684 // There are no more unscheduled dependencies after 2685 // decrementing, so we can put the dependent instruction 2686 // into the ready list. 2687 ScheduleData *DepBundle = OpDef->FirstInBundle; 2688 assert(!DepBundle->IsScheduled && 2689 "already scheduled bundle gets ready"); 2690 ReadyList.insert(DepBundle); 2691 LLVM_DEBUG(dbgs() 2692 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2693 } 2694 }); 2695 }; 2696 2697 // If BundleMember is a vector bundle, its operands may have been 2698 // reordered during buildTree(). We therefore need to get its operands 2699 // through the TreeEntry. 2700 if (TreeEntry *TE = BundleMember->TE) { 2701 int Lane = BundleMember->Lane; 2702 assert(Lane >= 0 && "Lane not set"); 2703 2704 // Since vectorization tree is being built recursively this assertion 2705 // ensures that the tree entry has all operands set before reaching 2706 // this code. Couple of exceptions known at the moment are extracts 2707 // where their second (immediate) operand is not added. Since 2708 // immediates do not affect scheduler behavior this is considered 2709 // okay. 2710 auto *In = TE->getMainOp(); 2711 assert(In && 2712 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2713 In->getNumOperands() == TE->getNumOperands()) && 2714 "Missed TreeEntry operands?"); 2715 (void)In; // fake use to avoid build failure when assertions disabled 2716 2717 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2718 OpIdx != NumOperands; ++OpIdx) 2719 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2720 DecrUnsched(I); 2721 } else { 2722 // If BundleMember is a stand-alone instruction, no operand reordering 2723 // has taken place, so we directly access its operands. 2724 for (Use &U : BundleMember->Inst->operands()) 2725 if (auto *I = dyn_cast<Instruction>(U.get())) 2726 DecrUnsched(I); 2727 } 2728 // Handle the memory dependencies. 2729 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2730 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2731 // There are no more unscheduled dependencies after decrementing, 2732 // so we can put the dependent instruction into the ready list. 2733 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2734 assert(!DepBundle->IsScheduled && 2735 "already scheduled bundle gets ready"); 2736 ReadyList.insert(DepBundle); 2737 LLVM_DEBUG(dbgs() 2738 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2739 } 2740 } 2741 } 2742 } 2743 2744 /// Verify basic self consistency properties of the data structure. 2745 void verify() { 2746 if (!ScheduleStart) 2747 return; 2748 2749 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2750 ScheduleStart->comesBefore(ScheduleEnd) && 2751 "Not a valid scheduling region?"); 2752 2753 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2754 auto *SD = getScheduleData(I); 2755 assert(SD && "primary scheduledata must exist in window"); 2756 assert(isInSchedulingRegion(SD) && 2757 "primary schedule data not in window?"); 2758 (void)SD; 2759 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2760 } 2761 2762 for (auto *SD : ReadyInsts) { 2763 assert(SD->isSchedulingEntity() && SD->isReady() && 2764 "item in ready list not ready?"); 2765 (void)SD; 2766 } 2767 } 2768 2769 void doForAllOpcodes(Value *V, 2770 function_ref<void(ScheduleData *SD)> Action) { 2771 if (ScheduleData *SD = getScheduleData(V)) 2772 Action(SD); 2773 auto I = ExtraScheduleDataMap.find(V); 2774 if (I != ExtraScheduleDataMap.end()) 2775 for (auto &P : I->second) 2776 if (P.second->SchedulingRegionID == SchedulingRegionID) 2777 Action(P.second); 2778 } 2779 2780 /// Put all instructions into the ReadyList which are ready for scheduling. 2781 template <typename ReadyListType> 2782 void initialFillReadyList(ReadyListType &ReadyList) { 2783 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2784 doForAllOpcodes(I, [&](ScheduleData *SD) { 2785 if (SD->isSchedulingEntity() && SD->isReady()) { 2786 ReadyList.insert(SD); 2787 LLVM_DEBUG(dbgs() 2788 << "SLP: initially in ready list: " << *SD << "\n"); 2789 } 2790 }); 2791 } 2792 } 2793 2794 /// Build a bundle from the ScheduleData nodes corresponding to the 2795 /// scalar instruction for each lane. 2796 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2797 2798 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2799 /// cyclic dependencies. This is only a dry-run, no instructions are 2800 /// actually moved at this stage. 2801 /// \returns the scheduling bundle. The returned Optional value is non-None 2802 /// if \p VL is allowed to be scheduled. 2803 Optional<ScheduleData *> 2804 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2805 const InstructionsState &S); 2806 2807 /// Un-bundles a group of instructions. 2808 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2809 2810 /// Allocates schedule data chunk. 2811 ScheduleData *allocateScheduleDataChunks(); 2812 2813 /// Extends the scheduling region so that V is inside the region. 2814 /// \returns true if the region size is within the limit. 2815 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2816 2817 /// Initialize the ScheduleData structures for new instructions in the 2818 /// scheduling region. 2819 void initScheduleData(Instruction *FromI, Instruction *ToI, 2820 ScheduleData *PrevLoadStore, 2821 ScheduleData *NextLoadStore); 2822 2823 /// Updates the dependency information of a bundle and of all instructions/ 2824 /// bundles which depend on the original bundle. 2825 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2826 BoUpSLP *SLP); 2827 2828 /// Sets all instruction in the scheduling region to un-scheduled. 2829 void resetSchedule(); 2830 2831 BasicBlock *BB; 2832 2833 /// Simple memory allocation for ScheduleData. 2834 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2835 2836 /// The size of a ScheduleData array in ScheduleDataChunks. 2837 int ChunkSize; 2838 2839 /// The allocator position in the current chunk, which is the last entry 2840 /// of ScheduleDataChunks. 2841 int ChunkPos; 2842 2843 /// Attaches ScheduleData to Instruction. 2844 /// Note that the mapping survives during all vectorization iterations, i.e. 2845 /// ScheduleData structures are recycled. 2846 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2847 2848 /// Attaches ScheduleData to Instruction with the leading key. 2849 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2850 ExtraScheduleDataMap; 2851 2852 /// The ready-list for scheduling (only used for the dry-run). 2853 SetVector<ScheduleData *> ReadyInsts; 2854 2855 /// The first instruction of the scheduling region. 2856 Instruction *ScheduleStart = nullptr; 2857 2858 /// The first instruction _after_ the scheduling region. 2859 Instruction *ScheduleEnd = nullptr; 2860 2861 /// The first memory accessing instruction in the scheduling region 2862 /// (can be null). 2863 ScheduleData *FirstLoadStoreInRegion = nullptr; 2864 2865 /// The last memory accessing instruction in the scheduling region 2866 /// (can be null). 2867 ScheduleData *LastLoadStoreInRegion = nullptr; 2868 2869 /// The current size of the scheduling region. 2870 int ScheduleRegionSize = 0; 2871 2872 /// The maximum size allowed for the scheduling region. 2873 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2874 2875 /// The ID of the scheduling region. For a new vectorization iteration this 2876 /// is incremented which "removes" all ScheduleData from the region. 2877 // Make sure that the initial SchedulingRegionID is greater than the 2878 // initial SchedulingRegionID in ScheduleData (which is 0). 2879 int SchedulingRegionID = 1; 2880 }; 2881 2882 /// Attaches the BlockScheduling structures to basic blocks. 2883 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2884 2885 /// Performs the "real" scheduling. Done before vectorization is actually 2886 /// performed in a basic block. 2887 void scheduleBlock(BlockScheduling *BS); 2888 2889 /// List of users to ignore during scheduling and that don't need extracting. 2890 ArrayRef<Value *> UserIgnoreList; 2891 2892 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2893 /// sorted SmallVectors of unsigned. 2894 struct OrdersTypeDenseMapInfo { 2895 static OrdersType getEmptyKey() { 2896 OrdersType V; 2897 V.push_back(~1U); 2898 return V; 2899 } 2900 2901 static OrdersType getTombstoneKey() { 2902 OrdersType V; 2903 V.push_back(~2U); 2904 return V; 2905 } 2906 2907 static unsigned getHashValue(const OrdersType &V) { 2908 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2909 } 2910 2911 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2912 return LHS == RHS; 2913 } 2914 }; 2915 2916 // Analysis and block reference. 2917 Function *F; 2918 ScalarEvolution *SE; 2919 TargetTransformInfo *TTI; 2920 TargetLibraryInfo *TLI; 2921 AAResults *AA; 2922 LoopInfo *LI; 2923 DominatorTree *DT; 2924 AssumptionCache *AC; 2925 DemandedBits *DB; 2926 const DataLayout *DL; 2927 OptimizationRemarkEmitter *ORE; 2928 2929 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2930 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2931 2932 /// Instruction builder to construct the vectorized tree. 2933 IRBuilder<> Builder; 2934 2935 /// A map of scalar integer values to the smallest bit width with which they 2936 /// can legally be represented. The values map to (width, signed) pairs, 2937 /// where "width" indicates the minimum bit width and "signed" is True if the 2938 /// value must be signed-extended, rather than zero-extended, back to its 2939 /// original width. 2940 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2941 }; 2942 2943 } // end namespace slpvectorizer 2944 2945 template <> struct GraphTraits<BoUpSLP *> { 2946 using TreeEntry = BoUpSLP::TreeEntry; 2947 2948 /// NodeRef has to be a pointer per the GraphWriter. 2949 using NodeRef = TreeEntry *; 2950 2951 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2952 2953 /// Add the VectorizableTree to the index iterator to be able to return 2954 /// TreeEntry pointers. 2955 struct ChildIteratorType 2956 : public iterator_adaptor_base< 2957 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2958 ContainerTy &VectorizableTree; 2959 2960 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2961 ContainerTy &VT) 2962 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2963 2964 NodeRef operator*() { return I->UserTE; } 2965 }; 2966 2967 static NodeRef getEntryNode(BoUpSLP &R) { 2968 return R.VectorizableTree[0].get(); 2969 } 2970 2971 static ChildIteratorType child_begin(NodeRef N) { 2972 return {N->UserTreeIndices.begin(), N->Container}; 2973 } 2974 2975 static ChildIteratorType child_end(NodeRef N) { 2976 return {N->UserTreeIndices.end(), N->Container}; 2977 } 2978 2979 /// For the node iterator we just need to turn the TreeEntry iterator into a 2980 /// TreeEntry* iterator so that it dereferences to NodeRef. 2981 class nodes_iterator { 2982 using ItTy = ContainerTy::iterator; 2983 ItTy It; 2984 2985 public: 2986 nodes_iterator(const ItTy &It2) : It(It2) {} 2987 NodeRef operator*() { return It->get(); } 2988 nodes_iterator operator++() { 2989 ++It; 2990 return *this; 2991 } 2992 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2993 }; 2994 2995 static nodes_iterator nodes_begin(BoUpSLP *R) { 2996 return nodes_iterator(R->VectorizableTree.begin()); 2997 } 2998 2999 static nodes_iterator nodes_end(BoUpSLP *R) { 3000 return nodes_iterator(R->VectorizableTree.end()); 3001 } 3002 3003 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3004 }; 3005 3006 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3007 using TreeEntry = BoUpSLP::TreeEntry; 3008 3009 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3010 3011 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3012 std::string Str; 3013 raw_string_ostream OS(Str); 3014 if (isSplat(Entry->Scalars)) 3015 OS << "<splat> "; 3016 for (auto V : Entry->Scalars) { 3017 OS << *V; 3018 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3019 return EU.Scalar == V; 3020 })) 3021 OS << " <extract>"; 3022 OS << "\n"; 3023 } 3024 return Str; 3025 } 3026 3027 static std::string getNodeAttributes(const TreeEntry *Entry, 3028 const BoUpSLP *) { 3029 if (Entry->State == TreeEntry::NeedToGather) 3030 return "color=red"; 3031 return ""; 3032 } 3033 }; 3034 3035 } // end namespace llvm 3036 3037 BoUpSLP::~BoUpSLP() { 3038 for (const auto &Pair : DeletedInstructions) { 3039 // Replace operands of ignored instructions with Undefs in case if they were 3040 // marked for deletion. 3041 if (Pair.getSecond()) { 3042 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3043 Pair.getFirst()->replaceAllUsesWith(Undef); 3044 } 3045 Pair.getFirst()->dropAllReferences(); 3046 } 3047 for (const auto &Pair : DeletedInstructions) { 3048 assert(Pair.getFirst()->use_empty() && 3049 "trying to erase instruction with users."); 3050 Pair.getFirst()->eraseFromParent(); 3051 } 3052 #ifdef EXPENSIVE_CHECKS 3053 // If we could guarantee that this call is not extremely slow, we could 3054 // remove the ifdef limitation (see PR47712). 3055 assert(!verifyFunction(*F, &dbgs())); 3056 #endif 3057 } 3058 3059 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3060 for (auto *V : AV) { 3061 if (auto *I = dyn_cast<Instruction>(V)) 3062 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3063 }; 3064 } 3065 3066 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3067 /// contains original mask for the scalars reused in the node. Procedure 3068 /// transform this mask in accordance with the given \p Mask. 3069 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3070 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3071 "Expected non-empty mask."); 3072 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3073 Prev.swap(Reuses); 3074 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3075 if (Mask[I] != UndefMaskElem) 3076 Reuses[Mask[I]] = Prev[I]; 3077 } 3078 3079 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3080 /// the original order of the scalars. Procedure transforms the provided order 3081 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3082 /// identity order, \p Order is cleared. 3083 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3084 assert(!Mask.empty() && "Expected non-empty mask."); 3085 SmallVector<int> MaskOrder; 3086 if (Order.empty()) { 3087 MaskOrder.resize(Mask.size()); 3088 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3089 } else { 3090 inversePermutation(Order, MaskOrder); 3091 } 3092 reorderReuses(MaskOrder, Mask); 3093 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3094 Order.clear(); 3095 return; 3096 } 3097 Order.assign(Mask.size(), Mask.size()); 3098 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3099 if (MaskOrder[I] != UndefMaskElem) 3100 Order[MaskOrder[I]] = I; 3101 fixupOrderingIndices(Order); 3102 } 3103 3104 Optional<BoUpSLP::OrdersType> 3105 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3106 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3107 unsigned NumScalars = TE.Scalars.size(); 3108 OrdersType CurrentOrder(NumScalars, NumScalars); 3109 SmallVector<int> Positions; 3110 SmallBitVector UsedPositions(NumScalars); 3111 const TreeEntry *STE = nullptr; 3112 // Try to find all gathered scalars that are gets vectorized in other 3113 // vectorize node. Here we can have only one single tree vector node to 3114 // correctly identify order of the gathered scalars. 3115 for (unsigned I = 0; I < NumScalars; ++I) { 3116 Value *V = TE.Scalars[I]; 3117 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3118 continue; 3119 if (const auto *LocalSTE = getTreeEntry(V)) { 3120 if (!STE) 3121 STE = LocalSTE; 3122 else if (STE != LocalSTE) 3123 // Take the order only from the single vector node. 3124 return None; 3125 unsigned Lane = 3126 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3127 if (Lane >= NumScalars) 3128 return None; 3129 if (CurrentOrder[Lane] != NumScalars) { 3130 if (Lane != I) 3131 continue; 3132 UsedPositions.reset(CurrentOrder[Lane]); 3133 } 3134 // The partial identity (where only some elements of the gather node are 3135 // in the identity order) is good. 3136 CurrentOrder[Lane] = I; 3137 UsedPositions.set(I); 3138 } 3139 } 3140 // Need to keep the order if we have a vector entry and at least 2 scalars or 3141 // the vectorized entry has just 2 scalars. 3142 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3143 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3144 for (unsigned I = 0; I < NumScalars; ++I) 3145 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3146 return false; 3147 return true; 3148 }; 3149 if (IsIdentityOrder(CurrentOrder)) { 3150 CurrentOrder.clear(); 3151 return CurrentOrder; 3152 } 3153 auto *It = CurrentOrder.begin(); 3154 for (unsigned I = 0; I < NumScalars;) { 3155 if (UsedPositions.test(I)) { 3156 ++I; 3157 continue; 3158 } 3159 if (*It == NumScalars) { 3160 *It = I; 3161 ++I; 3162 } 3163 ++It; 3164 } 3165 return CurrentOrder; 3166 } 3167 return None; 3168 } 3169 3170 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3171 bool TopToBottom) { 3172 // No need to reorder if need to shuffle reuses, still need to shuffle the 3173 // node. 3174 if (!TE.ReuseShuffleIndices.empty()) 3175 return None; 3176 if (TE.State == TreeEntry::Vectorize && 3177 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3178 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3179 !TE.isAltShuffle()) 3180 return TE.ReorderIndices; 3181 if (TE.State == TreeEntry::NeedToGather) { 3182 // TODO: add analysis of other gather nodes with extractelement 3183 // instructions and other values/instructions, not only undefs. 3184 if (((TE.getOpcode() == Instruction::ExtractElement && 3185 !TE.isAltShuffle()) || 3186 (all_of(TE.Scalars, 3187 [](Value *V) { 3188 return isa<UndefValue, ExtractElementInst>(V); 3189 }) && 3190 any_of(TE.Scalars, 3191 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3192 all_of(TE.Scalars, 3193 [](Value *V) { 3194 auto *EE = dyn_cast<ExtractElementInst>(V); 3195 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3196 }) && 3197 allSameType(TE.Scalars)) { 3198 // Check that gather of extractelements can be represented as 3199 // just a shuffle of a single vector. 3200 OrdersType CurrentOrder; 3201 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3202 if (Reuse || !CurrentOrder.empty()) { 3203 if (!CurrentOrder.empty()) 3204 fixupOrderingIndices(CurrentOrder); 3205 return CurrentOrder; 3206 } 3207 } 3208 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3209 return CurrentOrder; 3210 } 3211 return None; 3212 } 3213 3214 void BoUpSLP::reorderTopToBottom() { 3215 // Maps VF to the graph nodes. 3216 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3217 // ExtractElement gather nodes which can be vectorized and need to handle 3218 // their ordering. 3219 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3220 // Find all reorderable nodes with the given VF. 3221 // Currently the are vectorized stores,loads,extracts + some gathering of 3222 // extracts. 3223 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3224 const std::unique_ptr<TreeEntry> &TE) { 3225 if (Optional<OrdersType> CurrentOrder = 3226 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3227 // Do not include ordering for nodes used in the alt opcode vectorization, 3228 // better to reorder them during bottom-to-top stage. If follow the order 3229 // here, it causes reordering of the whole graph though actually it is 3230 // profitable just to reorder the subgraph that starts from the alternate 3231 // opcode vectorization node. Such nodes already end-up with the shuffle 3232 // instruction and it is just enough to change this shuffle rather than 3233 // rotate the scalars for the whole graph. 3234 unsigned Cnt = 0; 3235 const TreeEntry *UserTE = TE.get(); 3236 while (UserTE && Cnt < RecursionMaxDepth) { 3237 if (UserTE->UserTreeIndices.size() != 1) 3238 break; 3239 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3240 return EI.UserTE->State == TreeEntry::Vectorize && 3241 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3242 })) 3243 return; 3244 if (UserTE->UserTreeIndices.empty()) 3245 UserTE = nullptr; 3246 else 3247 UserTE = UserTE->UserTreeIndices.back().UserTE; 3248 ++Cnt; 3249 } 3250 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3251 if (TE->State != TreeEntry::Vectorize) 3252 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3253 } 3254 }); 3255 3256 // Reorder the graph nodes according to their vectorization factor. 3257 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3258 VF /= 2) { 3259 auto It = VFToOrderedEntries.find(VF); 3260 if (It == VFToOrderedEntries.end()) 3261 continue; 3262 // Try to find the most profitable order. We just are looking for the most 3263 // used order and reorder scalar elements in the nodes according to this 3264 // mostly used order. 3265 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3266 // All operands are reordered and used only in this node - propagate the 3267 // most used order to the user node. 3268 MapVector<OrdersType, unsigned, 3269 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3270 OrdersUses; 3271 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3272 for (const TreeEntry *OpTE : OrderedEntries) { 3273 // No need to reorder this nodes, still need to extend and to use shuffle, 3274 // just need to merge reordering shuffle and the reuse shuffle. 3275 if (!OpTE->ReuseShuffleIndices.empty()) 3276 continue; 3277 // Count number of orders uses. 3278 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3279 if (OpTE->State == TreeEntry::NeedToGather) 3280 return GathersToOrders.find(OpTE)->second; 3281 return OpTE->ReorderIndices; 3282 }(); 3283 // Stores actually store the mask, not the order, need to invert. 3284 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3285 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3286 SmallVector<int> Mask; 3287 inversePermutation(Order, Mask); 3288 unsigned E = Order.size(); 3289 OrdersType CurrentOrder(E, E); 3290 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3291 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3292 }); 3293 fixupOrderingIndices(CurrentOrder); 3294 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3295 } else { 3296 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3297 } 3298 } 3299 // Set order of the user node. 3300 if (OrdersUses.empty()) 3301 continue; 3302 // Choose the most used order. 3303 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3304 unsigned Cnt = OrdersUses.front().second; 3305 for (const auto &Pair : drop_begin(OrdersUses)) { 3306 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3307 BestOrder = Pair.first; 3308 Cnt = Pair.second; 3309 } 3310 } 3311 // Set order of the user node. 3312 if (BestOrder.empty()) 3313 continue; 3314 SmallVector<int> Mask; 3315 inversePermutation(BestOrder, Mask); 3316 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3317 unsigned E = BestOrder.size(); 3318 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3319 return I < E ? static_cast<int>(I) : UndefMaskElem; 3320 }); 3321 // Do an actual reordering, if profitable. 3322 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3323 // Just do the reordering for the nodes with the given VF. 3324 if (TE->Scalars.size() != VF) { 3325 if (TE->ReuseShuffleIndices.size() == VF) { 3326 // Need to reorder the reuses masks of the operands with smaller VF to 3327 // be able to find the match between the graph nodes and scalar 3328 // operands of the given node during vectorization/cost estimation. 3329 assert(all_of(TE->UserTreeIndices, 3330 [VF, &TE](const EdgeInfo &EI) { 3331 return EI.UserTE->Scalars.size() == VF || 3332 EI.UserTE->Scalars.size() == 3333 TE->Scalars.size(); 3334 }) && 3335 "All users must be of VF size."); 3336 // Update ordering of the operands with the smaller VF than the given 3337 // one. 3338 reorderReuses(TE->ReuseShuffleIndices, Mask); 3339 } 3340 continue; 3341 } 3342 if (TE->State == TreeEntry::Vectorize && 3343 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3344 InsertElementInst>(TE->getMainOp()) && 3345 !TE->isAltShuffle()) { 3346 // Build correct orders for extract{element,value}, loads and 3347 // stores. 3348 reorderOrder(TE->ReorderIndices, Mask); 3349 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3350 TE->reorderOperands(Mask); 3351 } else { 3352 // Reorder the node and its operands. 3353 TE->reorderOperands(Mask); 3354 assert(TE->ReorderIndices.empty() && 3355 "Expected empty reorder sequence."); 3356 reorderScalars(TE->Scalars, Mask); 3357 } 3358 if (!TE->ReuseShuffleIndices.empty()) { 3359 // Apply reversed order to keep the original ordering of the reused 3360 // elements to avoid extra reorder indices shuffling. 3361 OrdersType CurrentOrder; 3362 reorderOrder(CurrentOrder, MaskOrder); 3363 SmallVector<int> NewReuses; 3364 inversePermutation(CurrentOrder, NewReuses); 3365 addMask(NewReuses, TE->ReuseShuffleIndices); 3366 TE->ReuseShuffleIndices.swap(NewReuses); 3367 } 3368 } 3369 } 3370 } 3371 3372 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3373 SetVector<TreeEntry *> OrderedEntries; 3374 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3375 // Find all reorderable leaf nodes with the given VF. 3376 // Currently the are vectorized loads,extracts without alternate operands + 3377 // some gathering of extracts. 3378 SmallVector<TreeEntry *> NonVectorized; 3379 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3380 &NonVectorized]( 3381 const std::unique_ptr<TreeEntry> &TE) { 3382 if (TE->State != TreeEntry::Vectorize) 3383 NonVectorized.push_back(TE.get()); 3384 if (Optional<OrdersType> CurrentOrder = 3385 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3386 OrderedEntries.insert(TE.get()); 3387 if (TE->State != TreeEntry::Vectorize) 3388 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3389 } 3390 }); 3391 3392 // Checks if the operands of the users are reordarable and have only single 3393 // use. 3394 auto &&CheckOperands = 3395 [this, &NonVectorized](const auto &Data, 3396 SmallVectorImpl<TreeEntry *> &GatherOps) { 3397 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3398 if (any_of(Data.second, 3399 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3400 return OpData.first == I && 3401 OpData.second->State == TreeEntry::Vectorize; 3402 })) 3403 continue; 3404 ArrayRef<Value *> VL = Data.first->getOperand(I); 3405 const TreeEntry *TE = nullptr; 3406 const auto *It = find_if(VL, [this, &TE](Value *V) { 3407 TE = getTreeEntry(V); 3408 return TE; 3409 }); 3410 if (It != VL.end() && TE->isSame(VL)) 3411 return false; 3412 TreeEntry *Gather = nullptr; 3413 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3414 assert(TE->State != TreeEntry::Vectorize && 3415 "Only non-vectorized nodes are expected."); 3416 if (TE->isSame(VL)) { 3417 Gather = TE; 3418 return true; 3419 } 3420 return false; 3421 }) > 1) 3422 return false; 3423 if (Gather) 3424 GatherOps.push_back(Gather); 3425 } 3426 return true; 3427 }; 3428 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3429 // I.e., if the node has operands, that are reordered, try to make at least 3430 // one operand order in the natural order and reorder others + reorder the 3431 // user node itself. 3432 SmallPtrSet<const TreeEntry *, 4> Visited; 3433 while (!OrderedEntries.empty()) { 3434 // 1. Filter out only reordered nodes. 3435 // 2. If the entry has multiple uses - skip it and jump to the next node. 3436 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3437 SmallVector<TreeEntry *> Filtered; 3438 for (TreeEntry *TE : OrderedEntries) { 3439 if (!(TE->State == TreeEntry::Vectorize || 3440 (TE->State == TreeEntry::NeedToGather && 3441 GathersToOrders.count(TE))) || 3442 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3443 !all_of(drop_begin(TE->UserTreeIndices), 3444 [TE](const EdgeInfo &EI) { 3445 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3446 }) || 3447 !Visited.insert(TE).second) { 3448 Filtered.push_back(TE); 3449 continue; 3450 } 3451 // Build a map between user nodes and their operands order to speedup 3452 // search. The graph currently does not provide this dependency directly. 3453 for (EdgeInfo &EI : TE->UserTreeIndices) { 3454 TreeEntry *UserTE = EI.UserTE; 3455 auto It = Users.find(UserTE); 3456 if (It == Users.end()) 3457 It = Users.insert({UserTE, {}}).first; 3458 It->second.emplace_back(EI.EdgeIdx, TE); 3459 } 3460 } 3461 // Erase filtered entries. 3462 for_each(Filtered, 3463 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3464 for (const auto &Data : Users) { 3465 // Check that operands are used only in the User node. 3466 SmallVector<TreeEntry *> GatherOps; 3467 if (!CheckOperands(Data, GatherOps)) { 3468 for_each(Data.second, 3469 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3470 OrderedEntries.remove(Op.second); 3471 }); 3472 continue; 3473 } 3474 // All operands are reordered and used only in this node - propagate the 3475 // most used order to the user node. 3476 MapVector<OrdersType, unsigned, 3477 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3478 OrdersUses; 3479 // Do the analysis for each tree entry only once, otherwise the order of 3480 // the same node my be considered several times, though might be not 3481 // profitable. 3482 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3483 for (const auto &Op : Data.second) { 3484 TreeEntry *OpTE = Op.second; 3485 if (!VisitedOps.insert(OpTE).second) 3486 continue; 3487 if (!OpTE->ReuseShuffleIndices.empty() || 3488 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3489 continue; 3490 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3491 if (OpTE->State == TreeEntry::NeedToGather) 3492 return GathersToOrders.find(OpTE)->second; 3493 return OpTE->ReorderIndices; 3494 }(); 3495 // Stores actually store the mask, not the order, need to invert. 3496 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3497 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3498 SmallVector<int> Mask; 3499 inversePermutation(Order, Mask); 3500 unsigned E = Order.size(); 3501 OrdersType CurrentOrder(E, E); 3502 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3503 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3504 }); 3505 fixupOrderingIndices(CurrentOrder); 3506 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3507 } else { 3508 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3509 } 3510 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3511 OpTE->UserTreeIndices.size(); 3512 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3513 --OrdersUses[{}]; 3514 } 3515 // If no orders - skip current nodes and jump to the next one, if any. 3516 if (OrdersUses.empty()) { 3517 for_each(Data.second, 3518 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3519 OrderedEntries.remove(Op.second); 3520 }); 3521 continue; 3522 } 3523 // Choose the best order. 3524 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3525 unsigned Cnt = OrdersUses.front().second; 3526 for (const auto &Pair : drop_begin(OrdersUses)) { 3527 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3528 BestOrder = Pair.first; 3529 Cnt = Pair.second; 3530 } 3531 } 3532 // Set order of the user node (reordering of operands and user nodes). 3533 if (BestOrder.empty()) { 3534 for_each(Data.second, 3535 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3536 OrderedEntries.remove(Op.second); 3537 }); 3538 continue; 3539 } 3540 // Erase operands from OrderedEntries list and adjust their orders. 3541 VisitedOps.clear(); 3542 SmallVector<int> Mask; 3543 inversePermutation(BestOrder, Mask); 3544 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3545 unsigned E = BestOrder.size(); 3546 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3547 return I < E ? static_cast<int>(I) : UndefMaskElem; 3548 }); 3549 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3550 TreeEntry *TE = Op.second; 3551 OrderedEntries.remove(TE); 3552 if (!VisitedOps.insert(TE).second) 3553 continue; 3554 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3555 // Just reorder reuses indices. 3556 reorderReuses(TE->ReuseShuffleIndices, Mask); 3557 continue; 3558 } 3559 // Gathers are processed separately. 3560 if (TE->State != TreeEntry::Vectorize) 3561 continue; 3562 assert((BestOrder.size() == TE->ReorderIndices.size() || 3563 TE->ReorderIndices.empty()) && 3564 "Non-matching sizes of user/operand entries."); 3565 reorderOrder(TE->ReorderIndices, Mask); 3566 } 3567 // For gathers just need to reorder its scalars. 3568 for (TreeEntry *Gather : GatherOps) { 3569 assert(Gather->ReorderIndices.empty() && 3570 "Unexpected reordering of gathers."); 3571 if (!Gather->ReuseShuffleIndices.empty()) { 3572 // Just reorder reuses indices. 3573 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3574 continue; 3575 } 3576 reorderScalars(Gather->Scalars, Mask); 3577 OrderedEntries.remove(Gather); 3578 } 3579 // Reorder operands of the user node and set the ordering for the user 3580 // node itself. 3581 if (Data.first->State != TreeEntry::Vectorize || 3582 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3583 Data.first->getMainOp()) || 3584 Data.first->isAltShuffle()) 3585 Data.first->reorderOperands(Mask); 3586 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3587 Data.first->isAltShuffle()) { 3588 reorderScalars(Data.first->Scalars, Mask); 3589 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3590 if (Data.first->ReuseShuffleIndices.empty() && 3591 !Data.first->ReorderIndices.empty() && 3592 !Data.first->isAltShuffle()) { 3593 // Insert user node to the list to try to sink reordering deeper in 3594 // the graph. 3595 OrderedEntries.insert(Data.first); 3596 } 3597 } else { 3598 reorderOrder(Data.first->ReorderIndices, Mask); 3599 } 3600 } 3601 } 3602 // If the reordering is unnecessary, just remove the reorder. 3603 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3604 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3605 VectorizableTree.front()->ReorderIndices.clear(); 3606 } 3607 3608 void BoUpSLP::buildExternalUses( 3609 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3610 // Collect the values that we need to extract from the tree. 3611 for (auto &TEPtr : VectorizableTree) { 3612 TreeEntry *Entry = TEPtr.get(); 3613 3614 // No need to handle users of gathered values. 3615 if (Entry->State == TreeEntry::NeedToGather) 3616 continue; 3617 3618 // For each lane: 3619 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3620 Value *Scalar = Entry->Scalars[Lane]; 3621 int FoundLane = Entry->findLaneForValue(Scalar); 3622 3623 // Check if the scalar is externally used as an extra arg. 3624 auto ExtI = ExternallyUsedValues.find(Scalar); 3625 if (ExtI != ExternallyUsedValues.end()) { 3626 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3627 << Lane << " from " << *Scalar << ".\n"); 3628 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3629 } 3630 for (User *U : Scalar->users()) { 3631 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3632 3633 Instruction *UserInst = dyn_cast<Instruction>(U); 3634 if (!UserInst) 3635 continue; 3636 3637 if (isDeleted(UserInst)) 3638 continue; 3639 3640 // Skip in-tree scalars that become vectors 3641 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3642 Value *UseScalar = UseEntry->Scalars[0]; 3643 // Some in-tree scalars will remain as scalar in vectorized 3644 // instructions. If that is the case, the one in Lane 0 will 3645 // be used. 3646 if (UseScalar != U || 3647 UseEntry->State == TreeEntry::ScatterVectorize || 3648 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3649 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3650 << ".\n"); 3651 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3652 continue; 3653 } 3654 } 3655 3656 // Ignore users in the user ignore list. 3657 if (is_contained(UserIgnoreList, UserInst)) 3658 continue; 3659 3660 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3661 << Lane << " from " << *Scalar << ".\n"); 3662 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3663 } 3664 } 3665 } 3666 } 3667 3668 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3669 ArrayRef<Value *> UserIgnoreLst) { 3670 deleteTree(); 3671 UserIgnoreList = UserIgnoreLst; 3672 if (!allSameType(Roots)) 3673 return; 3674 buildTree_rec(Roots, 0, EdgeInfo()); 3675 } 3676 3677 namespace { 3678 /// Tracks the state we can represent the loads in the given sequence. 3679 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3680 } // anonymous namespace 3681 3682 /// Checks if the given array of loads can be represented as a vectorized, 3683 /// scatter or just simple gather. 3684 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3685 const TargetTransformInfo &TTI, 3686 const DataLayout &DL, ScalarEvolution &SE, 3687 SmallVectorImpl<unsigned> &Order, 3688 SmallVectorImpl<Value *> &PointerOps) { 3689 // Check that a vectorized load would load the same memory as a scalar 3690 // load. For example, we don't want to vectorize loads that are smaller 3691 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3692 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3693 // from such a struct, we read/write packed bits disagreeing with the 3694 // unvectorized version. 3695 Type *ScalarTy = VL0->getType(); 3696 3697 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3698 return LoadsState::Gather; 3699 3700 // Make sure all loads in the bundle are simple - we can't vectorize 3701 // atomic or volatile loads. 3702 PointerOps.clear(); 3703 PointerOps.resize(VL.size()); 3704 auto *POIter = PointerOps.begin(); 3705 for (Value *V : VL) { 3706 auto *L = cast<LoadInst>(V); 3707 if (!L->isSimple()) 3708 return LoadsState::Gather; 3709 *POIter = L->getPointerOperand(); 3710 ++POIter; 3711 } 3712 3713 Order.clear(); 3714 // Check the order of pointer operands. 3715 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3716 Value *Ptr0; 3717 Value *PtrN; 3718 if (Order.empty()) { 3719 Ptr0 = PointerOps.front(); 3720 PtrN = PointerOps.back(); 3721 } else { 3722 Ptr0 = PointerOps[Order.front()]; 3723 PtrN = PointerOps[Order.back()]; 3724 } 3725 Optional<int> Diff = 3726 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3727 // Check that the sorted loads are consecutive. 3728 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3729 return LoadsState::Vectorize; 3730 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3731 for (Value *V : VL) 3732 CommonAlignment = 3733 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3734 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3735 CommonAlignment)) 3736 return LoadsState::ScatterVectorize; 3737 } 3738 3739 return LoadsState::Gather; 3740 } 3741 3742 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3743 const EdgeInfo &UserTreeIdx) { 3744 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3745 3746 SmallVector<int> ReuseShuffleIndicies; 3747 SmallVector<Value *> UniqueValues; 3748 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3749 &UserTreeIdx, 3750 this](const InstructionsState &S) { 3751 // Check that every instruction appears once in this bundle. 3752 DenseMap<Value *, unsigned> UniquePositions; 3753 for (Value *V : VL) { 3754 if (isConstant(V)) { 3755 ReuseShuffleIndicies.emplace_back( 3756 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3757 UniqueValues.emplace_back(V); 3758 continue; 3759 } 3760 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3761 ReuseShuffleIndicies.emplace_back(Res.first->second); 3762 if (Res.second) 3763 UniqueValues.emplace_back(V); 3764 } 3765 size_t NumUniqueScalarValues = UniqueValues.size(); 3766 if (NumUniqueScalarValues == VL.size()) { 3767 ReuseShuffleIndicies.clear(); 3768 } else { 3769 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3770 if (NumUniqueScalarValues <= 1 || 3771 (UniquePositions.size() == 1 && all_of(UniqueValues, 3772 [](Value *V) { 3773 return isa<UndefValue>(V) || 3774 !isConstant(V); 3775 })) || 3776 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3777 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3778 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3779 return false; 3780 } 3781 VL = UniqueValues; 3782 } 3783 return true; 3784 }; 3785 3786 InstructionsState S = getSameOpcode(VL); 3787 if (Depth == RecursionMaxDepth) { 3788 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3789 if (TryToFindDuplicates(S)) 3790 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3791 ReuseShuffleIndicies); 3792 return; 3793 } 3794 3795 // Don't handle scalable vectors 3796 if (S.getOpcode() == Instruction::ExtractElement && 3797 isa<ScalableVectorType>( 3798 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3799 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3800 if (TryToFindDuplicates(S)) 3801 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3802 ReuseShuffleIndicies); 3803 return; 3804 } 3805 3806 // Don't handle vectors. 3807 if (S.OpValue->getType()->isVectorTy() && 3808 !isa<InsertElementInst>(S.OpValue)) { 3809 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3810 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3811 return; 3812 } 3813 3814 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3815 if (SI->getValueOperand()->getType()->isVectorTy()) { 3816 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3817 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3818 return; 3819 } 3820 3821 // If all of the operands are identical or constant we have a simple solution. 3822 // If we deal with insert/extract instructions, they all must have constant 3823 // indices, otherwise we should gather them, not try to vectorize. 3824 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3825 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3826 !all_of(VL, isVectorLikeInstWithConstOps))) { 3827 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3828 if (TryToFindDuplicates(S)) 3829 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3830 ReuseShuffleIndicies); 3831 return; 3832 } 3833 3834 // We now know that this is a vector of instructions of the same type from 3835 // the same block. 3836 3837 // Don't vectorize ephemeral values. 3838 for (Value *V : VL) { 3839 if (EphValues.count(V)) { 3840 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3841 << ") is ephemeral.\n"); 3842 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3843 return; 3844 } 3845 } 3846 3847 // Check if this is a duplicate of another entry. 3848 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3849 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3850 if (!E->isSame(VL)) { 3851 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3852 if (TryToFindDuplicates(S)) 3853 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3854 ReuseShuffleIndicies); 3855 return; 3856 } 3857 // Record the reuse of the tree node. FIXME, currently this is only used to 3858 // properly draw the graph rather than for the actual vectorization. 3859 E->UserTreeIndices.push_back(UserTreeIdx); 3860 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3861 << ".\n"); 3862 return; 3863 } 3864 3865 // Check that none of the instructions in the bundle are already in the tree. 3866 for (Value *V : VL) { 3867 auto *I = dyn_cast<Instruction>(V); 3868 if (!I) 3869 continue; 3870 if (getTreeEntry(I)) { 3871 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3872 << ") is already in tree.\n"); 3873 if (TryToFindDuplicates(S)) 3874 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3875 ReuseShuffleIndicies); 3876 return; 3877 } 3878 } 3879 3880 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3881 for (Value *V : VL) { 3882 if (is_contained(UserIgnoreList, V)) { 3883 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3884 if (TryToFindDuplicates(S)) 3885 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3886 ReuseShuffleIndicies); 3887 return; 3888 } 3889 } 3890 3891 // Check that all of the users of the scalars that we want to vectorize are 3892 // schedulable. 3893 auto *VL0 = cast<Instruction>(S.OpValue); 3894 BasicBlock *BB = VL0->getParent(); 3895 3896 if (!DT->isReachableFromEntry(BB)) { 3897 // Don't go into unreachable blocks. They may contain instructions with 3898 // dependency cycles which confuse the final scheduling. 3899 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3900 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3901 return; 3902 } 3903 3904 // Check that every instruction appears once in this bundle. 3905 if (!TryToFindDuplicates(S)) 3906 return; 3907 3908 auto &BSRef = BlocksSchedules[BB]; 3909 if (!BSRef) 3910 BSRef = std::make_unique<BlockScheduling>(BB); 3911 3912 BlockScheduling &BS = *BSRef.get(); 3913 3914 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3915 #ifdef EXPENSIVE_CHECKS 3916 // Make sure we didn't break any internal invariants 3917 BS.verify(); 3918 #endif 3919 if (!Bundle) { 3920 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3921 assert((!BS.getScheduleData(VL0) || 3922 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3923 "tryScheduleBundle should cancelScheduling on failure"); 3924 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3925 ReuseShuffleIndicies); 3926 return; 3927 } 3928 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3929 3930 unsigned ShuffleOrOp = S.isAltShuffle() ? 3931 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3932 switch (ShuffleOrOp) { 3933 case Instruction::PHI: { 3934 auto *PH = cast<PHINode>(VL0); 3935 3936 // Check for terminator values (e.g. invoke). 3937 for (Value *V : VL) 3938 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3939 Instruction *Term = dyn_cast<Instruction>( 3940 cast<PHINode>(V)->getIncomingValueForBlock( 3941 PH->getIncomingBlock(I))); 3942 if (Term && Term->isTerminator()) { 3943 LLVM_DEBUG(dbgs() 3944 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3945 BS.cancelScheduling(VL, VL0); 3946 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3947 ReuseShuffleIndicies); 3948 return; 3949 } 3950 } 3951 3952 TreeEntry *TE = 3953 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3954 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3955 3956 // Keeps the reordered operands to avoid code duplication. 3957 SmallVector<ValueList, 2> OperandsVec; 3958 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3959 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3960 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3961 TE->setOperand(I, Operands); 3962 OperandsVec.push_back(Operands); 3963 continue; 3964 } 3965 ValueList Operands; 3966 // Prepare the operand vector. 3967 for (Value *V : VL) 3968 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3969 PH->getIncomingBlock(I))); 3970 TE->setOperand(I, Operands); 3971 OperandsVec.push_back(Operands); 3972 } 3973 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3974 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3975 return; 3976 } 3977 case Instruction::ExtractValue: 3978 case Instruction::ExtractElement: { 3979 OrdersType CurrentOrder; 3980 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3981 if (Reuse) { 3982 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3983 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3984 ReuseShuffleIndicies); 3985 // This is a special case, as it does not gather, but at the same time 3986 // we are not extending buildTree_rec() towards the operands. 3987 ValueList Op0; 3988 Op0.assign(VL.size(), VL0->getOperand(0)); 3989 VectorizableTree.back()->setOperand(0, Op0); 3990 return; 3991 } 3992 if (!CurrentOrder.empty()) { 3993 LLVM_DEBUG({ 3994 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3995 "with order"; 3996 for (unsigned Idx : CurrentOrder) 3997 dbgs() << " " << Idx; 3998 dbgs() << "\n"; 3999 }); 4000 fixupOrderingIndices(CurrentOrder); 4001 // Insert new order with initial value 0, if it does not exist, 4002 // otherwise return the iterator to the existing one. 4003 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4004 ReuseShuffleIndicies, CurrentOrder); 4005 // This is a special case, as it does not gather, but at the same time 4006 // we are not extending buildTree_rec() towards the operands. 4007 ValueList Op0; 4008 Op0.assign(VL.size(), VL0->getOperand(0)); 4009 VectorizableTree.back()->setOperand(0, Op0); 4010 return; 4011 } 4012 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4013 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4014 ReuseShuffleIndicies); 4015 BS.cancelScheduling(VL, VL0); 4016 return; 4017 } 4018 case Instruction::InsertElement: { 4019 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4020 4021 // Check that we have a buildvector and not a shuffle of 2 or more 4022 // different vectors. 4023 ValueSet SourceVectors; 4024 for (Value *V : VL) { 4025 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4026 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4027 } 4028 4029 if (count_if(VL, [&SourceVectors](Value *V) { 4030 return !SourceVectors.contains(V); 4031 }) >= 2) { 4032 // Found 2nd source vector - cancel. 4033 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4034 "different source vectors.\n"); 4035 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4036 BS.cancelScheduling(VL, VL0); 4037 return; 4038 } 4039 4040 auto OrdCompare = [](const std::pair<int, int> &P1, 4041 const std::pair<int, int> &P2) { 4042 return P1.first > P2.first; 4043 }; 4044 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4045 decltype(OrdCompare)> 4046 Indices(OrdCompare); 4047 for (int I = 0, E = VL.size(); I < E; ++I) { 4048 unsigned Idx = *getInsertIndex(VL[I]); 4049 Indices.emplace(Idx, I); 4050 } 4051 OrdersType CurrentOrder(VL.size(), VL.size()); 4052 bool IsIdentity = true; 4053 for (int I = 0, E = VL.size(); I < E; ++I) { 4054 CurrentOrder[Indices.top().second] = I; 4055 IsIdentity &= Indices.top().second == I; 4056 Indices.pop(); 4057 } 4058 if (IsIdentity) 4059 CurrentOrder.clear(); 4060 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4061 None, CurrentOrder); 4062 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4063 4064 constexpr int NumOps = 2; 4065 ValueList VectorOperands[NumOps]; 4066 for (int I = 0; I < NumOps; ++I) { 4067 for (Value *V : VL) 4068 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4069 4070 TE->setOperand(I, VectorOperands[I]); 4071 } 4072 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4073 return; 4074 } 4075 case Instruction::Load: { 4076 // Check that a vectorized load would load the same memory as a scalar 4077 // load. For example, we don't want to vectorize loads that are smaller 4078 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4079 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4080 // from such a struct, we read/write packed bits disagreeing with the 4081 // unvectorized version. 4082 SmallVector<Value *> PointerOps; 4083 OrdersType CurrentOrder; 4084 TreeEntry *TE = nullptr; 4085 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4086 PointerOps)) { 4087 case LoadsState::Vectorize: 4088 if (CurrentOrder.empty()) { 4089 // Original loads are consecutive and does not require reordering. 4090 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4091 ReuseShuffleIndicies); 4092 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4093 } else { 4094 fixupOrderingIndices(CurrentOrder); 4095 // Need to reorder. 4096 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4097 ReuseShuffleIndicies, CurrentOrder); 4098 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4099 } 4100 TE->setOperandsInOrder(); 4101 break; 4102 case LoadsState::ScatterVectorize: 4103 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4104 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4105 UserTreeIdx, ReuseShuffleIndicies); 4106 TE->setOperandsInOrder(); 4107 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4108 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4109 break; 4110 case LoadsState::Gather: 4111 BS.cancelScheduling(VL, VL0); 4112 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4113 ReuseShuffleIndicies); 4114 #ifndef NDEBUG 4115 Type *ScalarTy = VL0->getType(); 4116 if (DL->getTypeSizeInBits(ScalarTy) != 4117 DL->getTypeAllocSizeInBits(ScalarTy)) 4118 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4119 else if (any_of(VL, [](Value *V) { 4120 return !cast<LoadInst>(V)->isSimple(); 4121 })) 4122 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4123 else 4124 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4125 #endif // NDEBUG 4126 break; 4127 } 4128 return; 4129 } 4130 case Instruction::ZExt: 4131 case Instruction::SExt: 4132 case Instruction::FPToUI: 4133 case Instruction::FPToSI: 4134 case Instruction::FPExt: 4135 case Instruction::PtrToInt: 4136 case Instruction::IntToPtr: 4137 case Instruction::SIToFP: 4138 case Instruction::UIToFP: 4139 case Instruction::Trunc: 4140 case Instruction::FPTrunc: 4141 case Instruction::BitCast: { 4142 Type *SrcTy = VL0->getOperand(0)->getType(); 4143 for (Value *V : VL) { 4144 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4145 if (Ty != SrcTy || !isValidElementType(Ty)) { 4146 BS.cancelScheduling(VL, VL0); 4147 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4148 ReuseShuffleIndicies); 4149 LLVM_DEBUG(dbgs() 4150 << "SLP: Gathering casts with different src types.\n"); 4151 return; 4152 } 4153 } 4154 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4155 ReuseShuffleIndicies); 4156 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4157 4158 TE->setOperandsInOrder(); 4159 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4160 ValueList Operands; 4161 // Prepare the operand vector. 4162 for (Value *V : VL) 4163 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4164 4165 buildTree_rec(Operands, Depth + 1, {TE, i}); 4166 } 4167 return; 4168 } 4169 case Instruction::ICmp: 4170 case Instruction::FCmp: { 4171 // Check that all of the compares have the same predicate. 4172 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4173 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4174 Type *ComparedTy = VL0->getOperand(0)->getType(); 4175 for (Value *V : VL) { 4176 CmpInst *Cmp = cast<CmpInst>(V); 4177 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4178 Cmp->getOperand(0)->getType() != ComparedTy) { 4179 BS.cancelScheduling(VL, VL0); 4180 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4181 ReuseShuffleIndicies); 4182 LLVM_DEBUG(dbgs() 4183 << "SLP: Gathering cmp with different predicate.\n"); 4184 return; 4185 } 4186 } 4187 4188 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4189 ReuseShuffleIndicies); 4190 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4191 4192 ValueList Left, Right; 4193 if (cast<CmpInst>(VL0)->isCommutative()) { 4194 // Commutative predicate - collect + sort operands of the instructions 4195 // so that each side is more likely to have the same opcode. 4196 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4197 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4198 } else { 4199 // Collect operands - commute if it uses the swapped predicate. 4200 for (Value *V : VL) { 4201 auto *Cmp = cast<CmpInst>(V); 4202 Value *LHS = Cmp->getOperand(0); 4203 Value *RHS = Cmp->getOperand(1); 4204 if (Cmp->getPredicate() != P0) 4205 std::swap(LHS, RHS); 4206 Left.push_back(LHS); 4207 Right.push_back(RHS); 4208 } 4209 } 4210 TE->setOperand(0, Left); 4211 TE->setOperand(1, Right); 4212 buildTree_rec(Left, Depth + 1, {TE, 0}); 4213 buildTree_rec(Right, Depth + 1, {TE, 1}); 4214 return; 4215 } 4216 case Instruction::Select: 4217 case Instruction::FNeg: 4218 case Instruction::Add: 4219 case Instruction::FAdd: 4220 case Instruction::Sub: 4221 case Instruction::FSub: 4222 case Instruction::Mul: 4223 case Instruction::FMul: 4224 case Instruction::UDiv: 4225 case Instruction::SDiv: 4226 case Instruction::FDiv: 4227 case Instruction::URem: 4228 case Instruction::SRem: 4229 case Instruction::FRem: 4230 case Instruction::Shl: 4231 case Instruction::LShr: 4232 case Instruction::AShr: 4233 case Instruction::And: 4234 case Instruction::Or: 4235 case Instruction::Xor: { 4236 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4237 ReuseShuffleIndicies); 4238 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4239 4240 // Sort operands of the instructions so that each side is more likely to 4241 // have the same opcode. 4242 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4243 ValueList Left, Right; 4244 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4245 TE->setOperand(0, Left); 4246 TE->setOperand(1, Right); 4247 buildTree_rec(Left, Depth + 1, {TE, 0}); 4248 buildTree_rec(Right, Depth + 1, {TE, 1}); 4249 return; 4250 } 4251 4252 TE->setOperandsInOrder(); 4253 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4254 ValueList Operands; 4255 // Prepare the operand vector. 4256 for (Value *V : VL) 4257 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4258 4259 buildTree_rec(Operands, Depth + 1, {TE, i}); 4260 } 4261 return; 4262 } 4263 case Instruction::GetElementPtr: { 4264 // We don't combine GEPs with complicated (nested) indexing. 4265 for (Value *V : VL) { 4266 if (cast<Instruction>(V)->getNumOperands() != 2) { 4267 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4268 BS.cancelScheduling(VL, VL0); 4269 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4270 ReuseShuffleIndicies); 4271 return; 4272 } 4273 } 4274 4275 // We can't combine several GEPs into one vector if they operate on 4276 // different types. 4277 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4278 for (Value *V : VL) { 4279 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4280 if (Ty0 != CurTy) { 4281 LLVM_DEBUG(dbgs() 4282 << "SLP: not-vectorizable GEP (different types).\n"); 4283 BS.cancelScheduling(VL, VL0); 4284 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4285 ReuseShuffleIndicies); 4286 return; 4287 } 4288 } 4289 4290 // We don't combine GEPs with non-constant indexes. 4291 Type *Ty1 = VL0->getOperand(1)->getType(); 4292 for (Value *V : VL) { 4293 auto Op = cast<Instruction>(V)->getOperand(1); 4294 if (!isa<ConstantInt>(Op) || 4295 (Op->getType() != Ty1 && 4296 Op->getType()->getScalarSizeInBits() > 4297 DL->getIndexSizeInBits( 4298 V->getType()->getPointerAddressSpace()))) { 4299 LLVM_DEBUG(dbgs() 4300 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4301 BS.cancelScheduling(VL, VL0); 4302 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4303 ReuseShuffleIndicies); 4304 return; 4305 } 4306 } 4307 4308 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4309 ReuseShuffleIndicies); 4310 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4311 SmallVector<ValueList, 2> Operands(2); 4312 // Prepare the operand vector for pointer operands. 4313 for (Value *V : VL) 4314 Operands.front().push_back( 4315 cast<GetElementPtrInst>(V)->getPointerOperand()); 4316 TE->setOperand(0, Operands.front()); 4317 // Need to cast all indices to the same type before vectorization to 4318 // avoid crash. 4319 // Required to be able to find correct matches between different gather 4320 // nodes and reuse the vectorized values rather than trying to gather them 4321 // again. 4322 int IndexIdx = 1; 4323 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4324 Type *Ty = all_of(VL, 4325 [VL0Ty, IndexIdx](Value *V) { 4326 return VL0Ty == cast<GetElementPtrInst>(V) 4327 ->getOperand(IndexIdx) 4328 ->getType(); 4329 }) 4330 ? VL0Ty 4331 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4332 ->getPointerOperandType() 4333 ->getScalarType()); 4334 // Prepare the operand vector. 4335 for (Value *V : VL) { 4336 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4337 auto *CI = cast<ConstantInt>(Op); 4338 Operands.back().push_back(ConstantExpr::getIntegerCast( 4339 CI, Ty, CI->getValue().isSignBitSet())); 4340 } 4341 TE->setOperand(IndexIdx, Operands.back()); 4342 4343 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4344 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4345 return; 4346 } 4347 case Instruction::Store: { 4348 // Check if the stores are consecutive or if we need to swizzle them. 4349 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4350 // Avoid types that are padded when being allocated as scalars, while 4351 // being packed together in a vector (such as i1). 4352 if (DL->getTypeSizeInBits(ScalarTy) != 4353 DL->getTypeAllocSizeInBits(ScalarTy)) { 4354 BS.cancelScheduling(VL, VL0); 4355 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4356 ReuseShuffleIndicies); 4357 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4358 return; 4359 } 4360 // Make sure all stores in the bundle are simple - we can't vectorize 4361 // atomic or volatile stores. 4362 SmallVector<Value *, 4> PointerOps(VL.size()); 4363 ValueList Operands(VL.size()); 4364 auto POIter = PointerOps.begin(); 4365 auto OIter = Operands.begin(); 4366 for (Value *V : VL) { 4367 auto *SI = cast<StoreInst>(V); 4368 if (!SI->isSimple()) { 4369 BS.cancelScheduling(VL, VL0); 4370 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4371 ReuseShuffleIndicies); 4372 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4373 return; 4374 } 4375 *POIter = SI->getPointerOperand(); 4376 *OIter = SI->getValueOperand(); 4377 ++POIter; 4378 ++OIter; 4379 } 4380 4381 OrdersType CurrentOrder; 4382 // Check the order of pointer operands. 4383 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4384 Value *Ptr0; 4385 Value *PtrN; 4386 if (CurrentOrder.empty()) { 4387 Ptr0 = PointerOps.front(); 4388 PtrN = PointerOps.back(); 4389 } else { 4390 Ptr0 = PointerOps[CurrentOrder.front()]; 4391 PtrN = PointerOps[CurrentOrder.back()]; 4392 } 4393 Optional<int> Dist = 4394 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4395 // Check that the sorted pointer operands are consecutive. 4396 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4397 if (CurrentOrder.empty()) { 4398 // Original stores are consecutive and does not require reordering. 4399 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4400 UserTreeIdx, ReuseShuffleIndicies); 4401 TE->setOperandsInOrder(); 4402 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4403 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4404 } else { 4405 fixupOrderingIndices(CurrentOrder); 4406 TreeEntry *TE = 4407 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4408 ReuseShuffleIndicies, CurrentOrder); 4409 TE->setOperandsInOrder(); 4410 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4411 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4412 } 4413 return; 4414 } 4415 } 4416 4417 BS.cancelScheduling(VL, VL0); 4418 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4419 ReuseShuffleIndicies); 4420 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4421 return; 4422 } 4423 case Instruction::Call: { 4424 // Check if the calls are all to the same vectorizable intrinsic or 4425 // library function. 4426 CallInst *CI = cast<CallInst>(VL0); 4427 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4428 4429 VFShape Shape = VFShape::get( 4430 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4431 false /*HasGlobalPred*/); 4432 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4433 4434 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4435 BS.cancelScheduling(VL, VL0); 4436 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4437 ReuseShuffleIndicies); 4438 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4439 return; 4440 } 4441 Function *F = CI->getCalledFunction(); 4442 unsigned NumArgs = CI->arg_size(); 4443 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4444 for (unsigned j = 0; j != NumArgs; ++j) 4445 if (hasVectorInstrinsicScalarOpd(ID, j)) 4446 ScalarArgs[j] = CI->getArgOperand(j); 4447 for (Value *V : VL) { 4448 CallInst *CI2 = dyn_cast<CallInst>(V); 4449 if (!CI2 || CI2->getCalledFunction() != F || 4450 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4451 (VecFunc && 4452 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4453 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4454 BS.cancelScheduling(VL, VL0); 4455 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4456 ReuseShuffleIndicies); 4457 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4458 << "\n"); 4459 return; 4460 } 4461 // Some intrinsics have scalar arguments and should be same in order for 4462 // them to be vectorized. 4463 for (unsigned j = 0; j != NumArgs; ++j) { 4464 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4465 Value *A1J = CI2->getArgOperand(j); 4466 if (ScalarArgs[j] != A1J) { 4467 BS.cancelScheduling(VL, VL0); 4468 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4469 ReuseShuffleIndicies); 4470 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4471 << " argument " << ScalarArgs[j] << "!=" << A1J 4472 << "\n"); 4473 return; 4474 } 4475 } 4476 } 4477 // Verify that the bundle operands are identical between the two calls. 4478 if (CI->hasOperandBundles() && 4479 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4480 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4481 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4482 BS.cancelScheduling(VL, VL0); 4483 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4484 ReuseShuffleIndicies); 4485 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4486 << *CI << "!=" << *V << '\n'); 4487 return; 4488 } 4489 } 4490 4491 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4492 ReuseShuffleIndicies); 4493 TE->setOperandsInOrder(); 4494 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4495 // For scalar operands no need to to create an entry since no need to 4496 // vectorize it. 4497 if (hasVectorInstrinsicScalarOpd(ID, i)) 4498 continue; 4499 ValueList Operands; 4500 // Prepare the operand vector. 4501 for (Value *V : VL) { 4502 auto *CI2 = cast<CallInst>(V); 4503 Operands.push_back(CI2->getArgOperand(i)); 4504 } 4505 buildTree_rec(Operands, Depth + 1, {TE, i}); 4506 } 4507 return; 4508 } 4509 case Instruction::ShuffleVector: { 4510 // If this is not an alternate sequence of opcode like add-sub 4511 // then do not vectorize this instruction. 4512 if (!S.isAltShuffle()) { 4513 BS.cancelScheduling(VL, VL0); 4514 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4515 ReuseShuffleIndicies); 4516 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4517 return; 4518 } 4519 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4520 ReuseShuffleIndicies); 4521 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4522 4523 // Reorder operands if reordering would enable vectorization. 4524 auto *CI = dyn_cast<CmpInst>(VL0); 4525 if (isa<BinaryOperator>(VL0) || CI) { 4526 ValueList Left, Right; 4527 if (!CI || all_of(VL, [](Value *V) { 4528 return cast<CmpInst>(V)->isCommutative(); 4529 })) { 4530 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4531 } else { 4532 CmpInst::Predicate P0 = CI->getPredicate(); 4533 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4534 assert(P0 != AltP0 && 4535 "Expected different main/alternate predicates."); 4536 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4537 Value *BaseOp0 = VL0->getOperand(0); 4538 Value *BaseOp1 = VL0->getOperand(1); 4539 // Collect operands - commute if it uses the swapped predicate or 4540 // alternate operation. 4541 for (Value *V : VL) { 4542 auto *Cmp = cast<CmpInst>(V); 4543 Value *LHS = Cmp->getOperand(0); 4544 Value *RHS = Cmp->getOperand(1); 4545 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4546 if (P0 == AltP0Swapped) { 4547 if (CI != Cmp && S.AltOp != Cmp && 4548 ((P0 == CurrentPred && 4549 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4550 (AltP0 == CurrentPred && 4551 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4552 std::swap(LHS, RHS); 4553 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4554 std::swap(LHS, RHS); 4555 } 4556 Left.push_back(LHS); 4557 Right.push_back(RHS); 4558 } 4559 } 4560 TE->setOperand(0, Left); 4561 TE->setOperand(1, Right); 4562 buildTree_rec(Left, Depth + 1, {TE, 0}); 4563 buildTree_rec(Right, Depth + 1, {TE, 1}); 4564 return; 4565 } 4566 4567 TE->setOperandsInOrder(); 4568 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4569 ValueList Operands; 4570 // Prepare the operand vector. 4571 for (Value *V : VL) 4572 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4573 4574 buildTree_rec(Operands, Depth + 1, {TE, i}); 4575 } 4576 return; 4577 } 4578 default: 4579 BS.cancelScheduling(VL, VL0); 4580 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4581 ReuseShuffleIndicies); 4582 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4583 return; 4584 } 4585 } 4586 4587 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4588 unsigned N = 1; 4589 Type *EltTy = T; 4590 4591 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4592 isa<VectorType>(EltTy)) { 4593 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4594 // Check that struct is homogeneous. 4595 for (const auto *Ty : ST->elements()) 4596 if (Ty != *ST->element_begin()) 4597 return 0; 4598 N *= ST->getNumElements(); 4599 EltTy = *ST->element_begin(); 4600 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4601 N *= AT->getNumElements(); 4602 EltTy = AT->getElementType(); 4603 } else { 4604 auto *VT = cast<FixedVectorType>(EltTy); 4605 N *= VT->getNumElements(); 4606 EltTy = VT->getElementType(); 4607 } 4608 } 4609 4610 if (!isValidElementType(EltTy)) 4611 return 0; 4612 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4613 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4614 return 0; 4615 return N; 4616 } 4617 4618 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4619 SmallVectorImpl<unsigned> &CurrentOrder) const { 4620 const auto *It = find_if(VL, [](Value *V) { 4621 return isa<ExtractElementInst, ExtractValueInst>(V); 4622 }); 4623 assert(It != VL.end() && "Expected at least one extract instruction."); 4624 auto *E0 = cast<Instruction>(*It); 4625 assert(all_of(VL, 4626 [](Value *V) { 4627 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4628 V); 4629 }) && 4630 "Invalid opcode"); 4631 // Check if all of the extracts come from the same vector and from the 4632 // correct offset. 4633 Value *Vec = E0->getOperand(0); 4634 4635 CurrentOrder.clear(); 4636 4637 // We have to extract from a vector/aggregate with the same number of elements. 4638 unsigned NElts; 4639 if (E0->getOpcode() == Instruction::ExtractValue) { 4640 const DataLayout &DL = E0->getModule()->getDataLayout(); 4641 NElts = canMapToVector(Vec->getType(), DL); 4642 if (!NElts) 4643 return false; 4644 // Check if load can be rewritten as load of vector. 4645 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4646 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4647 return false; 4648 } else { 4649 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4650 } 4651 4652 if (NElts != VL.size()) 4653 return false; 4654 4655 // Check that all of the indices extract from the correct offset. 4656 bool ShouldKeepOrder = true; 4657 unsigned E = VL.size(); 4658 // Assign to all items the initial value E + 1 so we can check if the extract 4659 // instruction index was used already. 4660 // Also, later we can check that all the indices are used and we have a 4661 // consecutive access in the extract instructions, by checking that no 4662 // element of CurrentOrder still has value E + 1. 4663 CurrentOrder.assign(E, E); 4664 unsigned I = 0; 4665 for (; I < E; ++I) { 4666 auto *Inst = dyn_cast<Instruction>(VL[I]); 4667 if (!Inst) 4668 continue; 4669 if (Inst->getOperand(0) != Vec) 4670 break; 4671 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4672 if (isa<UndefValue>(EE->getIndexOperand())) 4673 continue; 4674 Optional<unsigned> Idx = getExtractIndex(Inst); 4675 if (!Idx) 4676 break; 4677 const unsigned ExtIdx = *Idx; 4678 if (ExtIdx != I) { 4679 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4680 break; 4681 ShouldKeepOrder = false; 4682 CurrentOrder[ExtIdx] = I; 4683 } else { 4684 if (CurrentOrder[I] != E) 4685 break; 4686 CurrentOrder[I] = I; 4687 } 4688 } 4689 if (I < E) { 4690 CurrentOrder.clear(); 4691 return false; 4692 } 4693 if (ShouldKeepOrder) 4694 CurrentOrder.clear(); 4695 4696 return ShouldKeepOrder; 4697 } 4698 4699 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4700 ArrayRef<Value *> VectorizedVals) const { 4701 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4702 all_of(I->users(), [this](User *U) { 4703 return ScalarToTreeEntry.count(U) > 0 || 4704 isVectorLikeInstWithConstOps(U) || 4705 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4706 }); 4707 } 4708 4709 static std::pair<InstructionCost, InstructionCost> 4710 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4711 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4712 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4713 4714 // Calculate the cost of the scalar and vector calls. 4715 SmallVector<Type *, 4> VecTys; 4716 for (Use &Arg : CI->args()) 4717 VecTys.push_back( 4718 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4719 FastMathFlags FMF; 4720 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4721 FMF = FPCI->getFastMathFlags(); 4722 SmallVector<const Value *> Arguments(CI->args()); 4723 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4724 dyn_cast<IntrinsicInst>(CI)); 4725 auto IntrinsicCost = 4726 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4727 4728 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4729 VecTy->getNumElements())), 4730 false /*HasGlobalPred*/); 4731 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4732 auto LibCost = IntrinsicCost; 4733 if (!CI->isNoBuiltin() && VecFunc) { 4734 // Calculate the cost of the vector library call. 4735 // If the corresponding vector call is cheaper, return its cost. 4736 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4737 TTI::TCK_RecipThroughput); 4738 } 4739 return {IntrinsicCost, LibCost}; 4740 } 4741 4742 /// Compute the cost of creating a vector of type \p VecTy containing the 4743 /// extracted values from \p VL. 4744 static InstructionCost 4745 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4746 TargetTransformInfo::ShuffleKind ShuffleKind, 4747 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4748 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4749 4750 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4751 VecTy->getNumElements() < NumOfParts) 4752 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4753 4754 bool AllConsecutive = true; 4755 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4756 unsigned Idx = -1; 4757 InstructionCost Cost = 0; 4758 4759 // Process extracts in blocks of EltsPerVector to check if the source vector 4760 // operand can be re-used directly. If not, add the cost of creating a shuffle 4761 // to extract the values into a vector register. 4762 for (auto *V : VL) { 4763 ++Idx; 4764 4765 // Need to exclude undefs from analysis. 4766 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4767 continue; 4768 4769 // Reached the start of a new vector registers. 4770 if (Idx % EltsPerVector == 0) { 4771 AllConsecutive = true; 4772 continue; 4773 } 4774 4775 // Check all extracts for a vector register on the target directly 4776 // extract values in order. 4777 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4778 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4779 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4780 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4781 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4782 } 4783 4784 if (AllConsecutive) 4785 continue; 4786 4787 // Skip all indices, except for the last index per vector block. 4788 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4789 continue; 4790 4791 // If we have a series of extracts which are not consecutive and hence 4792 // cannot re-use the source vector register directly, compute the shuffle 4793 // cost to extract the a vector with EltsPerVector elements. 4794 Cost += TTI.getShuffleCost( 4795 TargetTransformInfo::SK_PermuteSingleSrc, 4796 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4797 } 4798 return Cost; 4799 } 4800 4801 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4802 /// operations operands. 4803 static void 4804 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4805 ArrayRef<int> ReusesIndices, 4806 const function_ref<bool(Instruction *)> IsAltOp, 4807 SmallVectorImpl<int> &Mask, 4808 SmallVectorImpl<Value *> *OpScalars = nullptr, 4809 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4810 unsigned Sz = VL.size(); 4811 Mask.assign(Sz, UndefMaskElem); 4812 SmallVector<int> OrderMask; 4813 if (!ReorderIndices.empty()) 4814 inversePermutation(ReorderIndices, OrderMask); 4815 for (unsigned I = 0; I < Sz; ++I) { 4816 unsigned Idx = I; 4817 if (!ReorderIndices.empty()) 4818 Idx = OrderMask[I]; 4819 auto *OpInst = cast<Instruction>(VL[Idx]); 4820 if (IsAltOp(OpInst)) { 4821 Mask[I] = Sz + Idx; 4822 if (AltScalars) 4823 AltScalars->push_back(OpInst); 4824 } else { 4825 Mask[I] = Idx; 4826 if (OpScalars) 4827 OpScalars->push_back(OpInst); 4828 } 4829 } 4830 if (!ReusesIndices.empty()) { 4831 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4832 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4833 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4834 }); 4835 Mask.swap(NewMask); 4836 } 4837 } 4838 4839 /// Checks if the specified instruction \p I is an alternate operation for the 4840 /// given \p MainOp and \p AltOp instructions. 4841 static bool isAlternateInstruction(const Instruction *I, 4842 const Instruction *MainOp, 4843 const Instruction *AltOp) { 4844 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4845 auto *AltCI0 = cast<CmpInst>(AltOp); 4846 auto *CI = cast<CmpInst>(I); 4847 CmpInst::Predicate P0 = CI0->getPredicate(); 4848 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4849 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4850 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4851 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4852 if (P0 == AltP0Swapped) 4853 return I == AltCI0 || 4854 (I != MainOp && 4855 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4856 CI->getOperand(0), CI->getOperand(1))); 4857 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4858 } 4859 return I->getOpcode() == AltOp->getOpcode(); 4860 } 4861 4862 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4863 ArrayRef<Value *> VectorizedVals) { 4864 ArrayRef<Value*> VL = E->Scalars; 4865 4866 Type *ScalarTy = VL[0]->getType(); 4867 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4868 ScalarTy = SI->getValueOperand()->getType(); 4869 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4870 ScalarTy = CI->getOperand(0)->getType(); 4871 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4872 ScalarTy = IE->getOperand(1)->getType(); 4873 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4874 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4875 4876 // If we have computed a smaller type for the expression, update VecTy so 4877 // that the costs will be accurate. 4878 if (MinBWs.count(VL[0])) 4879 VecTy = FixedVectorType::get( 4880 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4881 unsigned EntryVF = E->getVectorFactor(); 4882 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4883 4884 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4885 // FIXME: it tries to fix a problem with MSVC buildbots. 4886 TargetTransformInfo &TTIRef = *TTI; 4887 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4888 VectorizedVals, E](InstructionCost &Cost) { 4889 DenseMap<Value *, int> ExtractVectorsTys; 4890 SmallPtrSet<Value *, 4> CheckedExtracts; 4891 for (auto *V : VL) { 4892 if (isa<UndefValue>(V)) 4893 continue; 4894 // If all users of instruction are going to be vectorized and this 4895 // instruction itself is not going to be vectorized, consider this 4896 // instruction as dead and remove its cost from the final cost of the 4897 // vectorized tree. 4898 // Also, avoid adjusting the cost for extractelements with multiple uses 4899 // in different graph entries. 4900 const TreeEntry *VE = getTreeEntry(V); 4901 if (!CheckedExtracts.insert(V).second || 4902 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4903 (VE && VE != E)) 4904 continue; 4905 auto *EE = cast<ExtractElementInst>(V); 4906 Optional<unsigned> EEIdx = getExtractIndex(EE); 4907 if (!EEIdx) 4908 continue; 4909 unsigned Idx = *EEIdx; 4910 if (TTIRef.getNumberOfParts(VecTy) != 4911 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4912 auto It = 4913 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4914 It->getSecond() = std::min<int>(It->second, Idx); 4915 } 4916 // Take credit for instruction that will become dead. 4917 if (EE->hasOneUse()) { 4918 Instruction *Ext = EE->user_back(); 4919 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4920 all_of(Ext->users(), 4921 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4922 // Use getExtractWithExtendCost() to calculate the cost of 4923 // extractelement/ext pair. 4924 Cost -= 4925 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4926 EE->getVectorOperandType(), Idx); 4927 // Add back the cost of s|zext which is subtracted separately. 4928 Cost += TTIRef.getCastInstrCost( 4929 Ext->getOpcode(), Ext->getType(), EE->getType(), 4930 TTI::getCastContextHint(Ext), CostKind, Ext); 4931 continue; 4932 } 4933 } 4934 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4935 EE->getVectorOperandType(), Idx); 4936 } 4937 // Add a cost for subvector extracts/inserts if required. 4938 for (const auto &Data : ExtractVectorsTys) { 4939 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4940 unsigned NumElts = VecTy->getNumElements(); 4941 if (Data.second % NumElts == 0) 4942 continue; 4943 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4944 unsigned Idx = (Data.second / NumElts) * NumElts; 4945 unsigned EENumElts = EEVTy->getNumElements(); 4946 if (Idx + NumElts <= EENumElts) { 4947 Cost += 4948 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4949 EEVTy, None, Idx, VecTy); 4950 } else { 4951 // Need to round up the subvector type vectorization factor to avoid a 4952 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4953 // <= EENumElts. 4954 auto *SubVT = 4955 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4956 Cost += 4957 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4958 EEVTy, None, Idx, SubVT); 4959 } 4960 } else { 4961 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4962 VecTy, None, 0, EEVTy); 4963 } 4964 } 4965 }; 4966 if (E->State == TreeEntry::NeedToGather) { 4967 if (allConstant(VL)) 4968 return 0; 4969 if (isa<InsertElementInst>(VL[0])) 4970 return InstructionCost::getInvalid(); 4971 SmallVector<int> Mask; 4972 SmallVector<const TreeEntry *> Entries; 4973 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4974 isGatherShuffledEntry(E, Mask, Entries); 4975 if (Shuffle.hasValue()) { 4976 InstructionCost GatherCost = 0; 4977 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4978 // Perfect match in the graph, will reuse the previously vectorized 4979 // node. Cost is 0. 4980 LLVM_DEBUG( 4981 dbgs() 4982 << "SLP: perfect diamond match for gather bundle that starts with " 4983 << *VL.front() << ".\n"); 4984 if (NeedToShuffleReuses) 4985 GatherCost = 4986 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4987 FinalVecTy, E->ReuseShuffleIndices); 4988 } else { 4989 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4990 << " entries for bundle that starts with " 4991 << *VL.front() << ".\n"); 4992 // Detected that instead of gather we can emit a shuffle of single/two 4993 // previously vectorized nodes. Add the cost of the permutation rather 4994 // than gather. 4995 ::addMask(Mask, E->ReuseShuffleIndices); 4996 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4997 } 4998 return GatherCost; 4999 } 5000 if ((E->getOpcode() == Instruction::ExtractElement || 5001 all_of(E->Scalars, 5002 [](Value *V) { 5003 return isa<ExtractElementInst, UndefValue>(V); 5004 })) && 5005 allSameType(VL)) { 5006 // Check that gather of extractelements can be represented as just a 5007 // shuffle of a single/two vectors the scalars are extracted from. 5008 SmallVector<int> Mask; 5009 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5010 isFixedVectorShuffle(VL, Mask); 5011 if (ShuffleKind.hasValue()) { 5012 // Found the bunch of extractelement instructions that must be gathered 5013 // into a vector and can be represented as a permutation elements in a 5014 // single input vector or of 2 input vectors. 5015 InstructionCost Cost = 5016 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5017 AdjustExtractsCost(Cost); 5018 if (NeedToShuffleReuses) 5019 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5020 FinalVecTy, E->ReuseShuffleIndices); 5021 return Cost; 5022 } 5023 } 5024 if (isSplat(VL)) { 5025 // Found the broadcasting of the single scalar, calculate the cost as the 5026 // broadcast. 5027 assert(VecTy == FinalVecTy && 5028 "No reused scalars expected for broadcast."); 5029 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5030 } 5031 InstructionCost ReuseShuffleCost = 0; 5032 if (NeedToShuffleReuses) 5033 ReuseShuffleCost = TTI->getShuffleCost( 5034 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5035 // Improve gather cost for gather of loads, if we can group some of the 5036 // loads into vector loads. 5037 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5038 !E->isAltShuffle()) { 5039 BoUpSLP::ValueSet VectorizedLoads; 5040 unsigned StartIdx = 0; 5041 unsigned VF = VL.size() / 2; 5042 unsigned VectorizedCnt = 0; 5043 unsigned ScatterVectorizeCnt = 0; 5044 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5045 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5046 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5047 Cnt += VF) { 5048 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5049 if (!VectorizedLoads.count(Slice.front()) && 5050 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5051 SmallVector<Value *> PointerOps; 5052 OrdersType CurrentOrder; 5053 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5054 *SE, CurrentOrder, PointerOps); 5055 switch (LS) { 5056 case LoadsState::Vectorize: 5057 case LoadsState::ScatterVectorize: 5058 // Mark the vectorized loads so that we don't vectorize them 5059 // again. 5060 if (LS == LoadsState::Vectorize) 5061 ++VectorizedCnt; 5062 else 5063 ++ScatterVectorizeCnt; 5064 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5065 // If we vectorized initial block, no need to try to vectorize it 5066 // again. 5067 if (Cnt == StartIdx) 5068 StartIdx += VF; 5069 break; 5070 case LoadsState::Gather: 5071 break; 5072 } 5073 } 5074 } 5075 // Check if the whole array was vectorized already - exit. 5076 if (StartIdx >= VL.size()) 5077 break; 5078 // Found vectorizable parts - exit. 5079 if (!VectorizedLoads.empty()) 5080 break; 5081 } 5082 if (!VectorizedLoads.empty()) { 5083 InstructionCost GatherCost = 0; 5084 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5085 bool NeedInsertSubvectorAnalysis = 5086 !NumParts || (VL.size() / VF) > NumParts; 5087 // Get the cost for gathered loads. 5088 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5089 if (VectorizedLoads.contains(VL[I])) 5090 continue; 5091 GatherCost += getGatherCost(VL.slice(I, VF)); 5092 } 5093 // The cost for vectorized loads. 5094 InstructionCost ScalarsCost = 0; 5095 for (Value *V : VectorizedLoads) { 5096 auto *LI = cast<LoadInst>(V); 5097 ScalarsCost += TTI->getMemoryOpCost( 5098 Instruction::Load, LI->getType(), LI->getAlign(), 5099 LI->getPointerAddressSpace(), CostKind, LI); 5100 } 5101 auto *LI = cast<LoadInst>(E->getMainOp()); 5102 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5103 Align Alignment = LI->getAlign(); 5104 GatherCost += 5105 VectorizedCnt * 5106 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5107 LI->getPointerAddressSpace(), CostKind, LI); 5108 GatherCost += ScatterVectorizeCnt * 5109 TTI->getGatherScatterOpCost( 5110 Instruction::Load, LoadTy, LI->getPointerOperand(), 5111 /*VariableMask=*/false, Alignment, CostKind, LI); 5112 if (NeedInsertSubvectorAnalysis) { 5113 // Add the cost for the subvectors insert. 5114 for (int I = VF, E = VL.size(); I < E; I += VF) 5115 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5116 None, I, LoadTy); 5117 } 5118 return ReuseShuffleCost + GatherCost - ScalarsCost; 5119 } 5120 } 5121 return ReuseShuffleCost + getGatherCost(VL); 5122 } 5123 InstructionCost CommonCost = 0; 5124 SmallVector<int> Mask; 5125 if (!E->ReorderIndices.empty()) { 5126 SmallVector<int> NewMask; 5127 if (E->getOpcode() == Instruction::Store) { 5128 // For stores the order is actually a mask. 5129 NewMask.resize(E->ReorderIndices.size()); 5130 copy(E->ReorderIndices, NewMask.begin()); 5131 } else { 5132 inversePermutation(E->ReorderIndices, NewMask); 5133 } 5134 ::addMask(Mask, NewMask); 5135 } 5136 if (NeedToShuffleReuses) 5137 ::addMask(Mask, E->ReuseShuffleIndices); 5138 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5139 CommonCost = 5140 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5141 assert((E->State == TreeEntry::Vectorize || 5142 E->State == TreeEntry::ScatterVectorize) && 5143 "Unhandled state"); 5144 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5145 Instruction *VL0 = E->getMainOp(); 5146 unsigned ShuffleOrOp = 5147 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5148 switch (ShuffleOrOp) { 5149 case Instruction::PHI: 5150 return 0; 5151 5152 case Instruction::ExtractValue: 5153 case Instruction::ExtractElement: { 5154 // The common cost of removal ExtractElement/ExtractValue instructions + 5155 // the cost of shuffles, if required to resuffle the original vector. 5156 if (NeedToShuffleReuses) { 5157 unsigned Idx = 0; 5158 for (unsigned I : E->ReuseShuffleIndices) { 5159 if (ShuffleOrOp == Instruction::ExtractElement) { 5160 auto *EE = cast<ExtractElementInst>(VL[I]); 5161 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5162 EE->getVectorOperandType(), 5163 *getExtractIndex(EE)); 5164 } else { 5165 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5166 VecTy, Idx); 5167 ++Idx; 5168 } 5169 } 5170 Idx = EntryVF; 5171 for (Value *V : VL) { 5172 if (ShuffleOrOp == Instruction::ExtractElement) { 5173 auto *EE = cast<ExtractElementInst>(V); 5174 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5175 EE->getVectorOperandType(), 5176 *getExtractIndex(EE)); 5177 } else { 5178 --Idx; 5179 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5180 VecTy, Idx); 5181 } 5182 } 5183 } 5184 if (ShuffleOrOp == Instruction::ExtractValue) { 5185 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5186 auto *EI = cast<Instruction>(VL[I]); 5187 // Take credit for instruction that will become dead. 5188 if (EI->hasOneUse()) { 5189 Instruction *Ext = EI->user_back(); 5190 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5191 all_of(Ext->users(), 5192 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5193 // Use getExtractWithExtendCost() to calculate the cost of 5194 // extractelement/ext pair. 5195 CommonCost -= TTI->getExtractWithExtendCost( 5196 Ext->getOpcode(), Ext->getType(), VecTy, I); 5197 // Add back the cost of s|zext which is subtracted separately. 5198 CommonCost += TTI->getCastInstrCost( 5199 Ext->getOpcode(), Ext->getType(), EI->getType(), 5200 TTI::getCastContextHint(Ext), CostKind, Ext); 5201 continue; 5202 } 5203 } 5204 CommonCost -= 5205 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5206 } 5207 } else { 5208 AdjustExtractsCost(CommonCost); 5209 } 5210 return CommonCost; 5211 } 5212 case Instruction::InsertElement: { 5213 assert(E->ReuseShuffleIndices.empty() && 5214 "Unique insertelements only are expected."); 5215 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5216 5217 unsigned const NumElts = SrcVecTy->getNumElements(); 5218 unsigned const NumScalars = VL.size(); 5219 APInt DemandedElts = APInt::getZero(NumElts); 5220 // TODO: Add support for Instruction::InsertValue. 5221 SmallVector<int> Mask; 5222 if (!E->ReorderIndices.empty()) { 5223 inversePermutation(E->ReorderIndices, Mask); 5224 Mask.append(NumElts - NumScalars, UndefMaskElem); 5225 } else { 5226 Mask.assign(NumElts, UndefMaskElem); 5227 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5228 } 5229 unsigned Offset = *getInsertIndex(VL0); 5230 bool IsIdentity = true; 5231 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5232 Mask.swap(PrevMask); 5233 for (unsigned I = 0; I < NumScalars; ++I) { 5234 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5235 DemandedElts.setBit(InsertIdx); 5236 IsIdentity &= InsertIdx - Offset == I; 5237 Mask[InsertIdx - Offset] = I; 5238 } 5239 assert(Offset < NumElts && "Failed to find vector index offset"); 5240 5241 InstructionCost Cost = 0; 5242 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5243 /*Insert*/ true, /*Extract*/ false); 5244 5245 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5246 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5247 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5248 Cost += TTI->getShuffleCost( 5249 TargetTransformInfo::SK_PermuteSingleSrc, 5250 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5251 } else if (!IsIdentity) { 5252 auto *FirstInsert = 5253 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5254 return !is_contained(E->Scalars, 5255 cast<Instruction>(V)->getOperand(0)); 5256 })); 5257 if (isUndefVector(FirstInsert->getOperand(0))) { 5258 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5259 } else { 5260 SmallVector<int> InsertMask(NumElts); 5261 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5262 for (unsigned I = 0; I < NumElts; I++) { 5263 if (Mask[I] != UndefMaskElem) 5264 InsertMask[Offset + I] = NumElts + I; 5265 } 5266 Cost += 5267 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5268 } 5269 } 5270 5271 return Cost; 5272 } 5273 case Instruction::ZExt: 5274 case Instruction::SExt: 5275 case Instruction::FPToUI: 5276 case Instruction::FPToSI: 5277 case Instruction::FPExt: 5278 case Instruction::PtrToInt: 5279 case Instruction::IntToPtr: 5280 case Instruction::SIToFP: 5281 case Instruction::UIToFP: 5282 case Instruction::Trunc: 5283 case Instruction::FPTrunc: 5284 case Instruction::BitCast: { 5285 Type *SrcTy = VL0->getOperand(0)->getType(); 5286 InstructionCost ScalarEltCost = 5287 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5288 TTI::getCastContextHint(VL0), CostKind, VL0); 5289 if (NeedToShuffleReuses) { 5290 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5291 } 5292 5293 // Calculate the cost of this instruction. 5294 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5295 5296 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5297 InstructionCost VecCost = 0; 5298 // Check if the values are candidates to demote. 5299 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5300 VecCost = CommonCost + TTI->getCastInstrCost( 5301 E->getOpcode(), VecTy, SrcVecTy, 5302 TTI::getCastContextHint(VL0), CostKind, VL0); 5303 } 5304 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5305 return VecCost - ScalarCost; 5306 } 5307 case Instruction::FCmp: 5308 case Instruction::ICmp: 5309 case Instruction::Select: { 5310 // Calculate the cost of this instruction. 5311 InstructionCost ScalarEltCost = 5312 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5313 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5314 if (NeedToShuffleReuses) { 5315 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5316 } 5317 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5318 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5319 5320 // Check if all entries in VL are either compares or selects with compares 5321 // as condition that have the same predicates. 5322 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5323 bool First = true; 5324 for (auto *V : VL) { 5325 CmpInst::Predicate CurrentPred; 5326 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5327 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5328 !match(V, MatchCmp)) || 5329 (!First && VecPred != CurrentPred)) { 5330 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5331 break; 5332 } 5333 First = false; 5334 VecPred = CurrentPred; 5335 } 5336 5337 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5338 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5339 // Check if it is possible and profitable to use min/max for selects in 5340 // VL. 5341 // 5342 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5343 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5344 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5345 {VecTy, VecTy}); 5346 InstructionCost IntrinsicCost = 5347 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5348 // If the selects are the only uses of the compares, they will be dead 5349 // and we can adjust the cost by removing their cost. 5350 if (IntrinsicAndUse.second) 5351 IntrinsicCost -= 5352 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5353 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5354 VecCost = std::min(VecCost, IntrinsicCost); 5355 } 5356 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5357 return CommonCost + VecCost - ScalarCost; 5358 } 5359 case Instruction::FNeg: 5360 case Instruction::Add: 5361 case Instruction::FAdd: 5362 case Instruction::Sub: 5363 case Instruction::FSub: 5364 case Instruction::Mul: 5365 case Instruction::FMul: 5366 case Instruction::UDiv: 5367 case Instruction::SDiv: 5368 case Instruction::FDiv: 5369 case Instruction::URem: 5370 case Instruction::SRem: 5371 case Instruction::FRem: 5372 case Instruction::Shl: 5373 case Instruction::LShr: 5374 case Instruction::AShr: 5375 case Instruction::And: 5376 case Instruction::Or: 5377 case Instruction::Xor: { 5378 // Certain instructions can be cheaper to vectorize if they have a 5379 // constant second vector operand. 5380 TargetTransformInfo::OperandValueKind Op1VK = 5381 TargetTransformInfo::OK_AnyValue; 5382 TargetTransformInfo::OperandValueKind Op2VK = 5383 TargetTransformInfo::OK_UniformConstantValue; 5384 TargetTransformInfo::OperandValueProperties Op1VP = 5385 TargetTransformInfo::OP_None; 5386 TargetTransformInfo::OperandValueProperties Op2VP = 5387 TargetTransformInfo::OP_PowerOf2; 5388 5389 // If all operands are exactly the same ConstantInt then set the 5390 // operand kind to OK_UniformConstantValue. 5391 // If instead not all operands are constants, then set the operand kind 5392 // to OK_AnyValue. If all operands are constants but not the same, 5393 // then set the operand kind to OK_NonUniformConstantValue. 5394 ConstantInt *CInt0 = nullptr; 5395 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5396 const Instruction *I = cast<Instruction>(VL[i]); 5397 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5398 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5399 if (!CInt) { 5400 Op2VK = TargetTransformInfo::OK_AnyValue; 5401 Op2VP = TargetTransformInfo::OP_None; 5402 break; 5403 } 5404 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5405 !CInt->getValue().isPowerOf2()) 5406 Op2VP = TargetTransformInfo::OP_None; 5407 if (i == 0) { 5408 CInt0 = CInt; 5409 continue; 5410 } 5411 if (CInt0 != CInt) 5412 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5413 } 5414 5415 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5416 InstructionCost ScalarEltCost = 5417 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5418 Op2VK, Op1VP, Op2VP, Operands, VL0); 5419 if (NeedToShuffleReuses) { 5420 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5421 } 5422 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5423 InstructionCost VecCost = 5424 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5425 Op2VK, Op1VP, Op2VP, Operands, VL0); 5426 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5427 return CommonCost + VecCost - ScalarCost; 5428 } 5429 case Instruction::GetElementPtr: { 5430 TargetTransformInfo::OperandValueKind Op1VK = 5431 TargetTransformInfo::OK_AnyValue; 5432 TargetTransformInfo::OperandValueKind Op2VK = 5433 TargetTransformInfo::OK_UniformConstantValue; 5434 5435 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5436 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5437 if (NeedToShuffleReuses) { 5438 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5439 } 5440 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5441 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5442 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5443 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5444 return CommonCost + VecCost - ScalarCost; 5445 } 5446 case Instruction::Load: { 5447 // Cost of wide load - cost of scalar loads. 5448 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5449 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5450 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5451 if (NeedToShuffleReuses) { 5452 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5453 } 5454 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5455 InstructionCost VecLdCost; 5456 if (E->State == TreeEntry::Vectorize) { 5457 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5458 CostKind, VL0); 5459 } else { 5460 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5461 Align CommonAlignment = Alignment; 5462 for (Value *V : VL) 5463 CommonAlignment = 5464 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5465 VecLdCost = TTI->getGatherScatterOpCost( 5466 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5467 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5468 } 5469 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5470 return CommonCost + VecLdCost - ScalarLdCost; 5471 } 5472 case Instruction::Store: { 5473 // We know that we can merge the stores. Calculate the cost. 5474 bool IsReorder = !E->ReorderIndices.empty(); 5475 auto *SI = 5476 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5477 Align Alignment = SI->getAlign(); 5478 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5479 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5480 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5481 InstructionCost VecStCost = TTI->getMemoryOpCost( 5482 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5483 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5484 return CommonCost + VecStCost - ScalarStCost; 5485 } 5486 case Instruction::Call: { 5487 CallInst *CI = cast<CallInst>(VL0); 5488 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5489 5490 // Calculate the cost of the scalar and vector calls. 5491 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5492 InstructionCost ScalarEltCost = 5493 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5494 if (NeedToShuffleReuses) { 5495 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5496 } 5497 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5498 5499 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5500 InstructionCost VecCallCost = 5501 std::min(VecCallCosts.first, VecCallCosts.second); 5502 5503 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5504 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5505 << " for " << *CI << "\n"); 5506 5507 return CommonCost + VecCallCost - ScalarCallCost; 5508 } 5509 case Instruction::ShuffleVector: { 5510 assert(E->isAltShuffle() && 5511 ((Instruction::isBinaryOp(E->getOpcode()) && 5512 Instruction::isBinaryOp(E->getAltOpcode())) || 5513 (Instruction::isCast(E->getOpcode()) && 5514 Instruction::isCast(E->getAltOpcode())) || 5515 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5516 "Invalid Shuffle Vector Operand"); 5517 InstructionCost ScalarCost = 0; 5518 if (NeedToShuffleReuses) { 5519 for (unsigned Idx : E->ReuseShuffleIndices) { 5520 Instruction *I = cast<Instruction>(VL[Idx]); 5521 CommonCost -= TTI->getInstructionCost(I, CostKind); 5522 } 5523 for (Value *V : VL) { 5524 Instruction *I = cast<Instruction>(V); 5525 CommonCost += TTI->getInstructionCost(I, CostKind); 5526 } 5527 } 5528 for (Value *V : VL) { 5529 Instruction *I = cast<Instruction>(V); 5530 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5531 ScalarCost += TTI->getInstructionCost(I, CostKind); 5532 } 5533 // VecCost is equal to sum of the cost of creating 2 vectors 5534 // and the cost of creating shuffle. 5535 InstructionCost VecCost = 0; 5536 // Try to find the previous shuffle node with the same operands and same 5537 // main/alternate ops. 5538 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5539 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5540 if (TE.get() == E) 5541 break; 5542 if (TE->isAltShuffle() && 5543 ((TE->getOpcode() == E->getOpcode() && 5544 TE->getAltOpcode() == E->getAltOpcode()) || 5545 (TE->getOpcode() == E->getAltOpcode() && 5546 TE->getAltOpcode() == E->getOpcode())) && 5547 TE->hasEqualOperands(*E)) 5548 return true; 5549 } 5550 return false; 5551 }; 5552 if (TryFindNodeWithEqualOperands()) { 5553 LLVM_DEBUG({ 5554 dbgs() << "SLP: diamond match for alternate node found.\n"; 5555 E->dump(); 5556 }); 5557 // No need to add new vector costs here since we're going to reuse 5558 // same main/alternate vector ops, just do different shuffling. 5559 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5560 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5561 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5562 CostKind); 5563 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5564 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5565 Builder.getInt1Ty(), 5566 CI0->getPredicate(), CostKind, VL0); 5567 VecCost += TTI->getCmpSelInstrCost( 5568 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5569 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5570 E->getAltOp()); 5571 } else { 5572 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5573 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5574 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5575 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5576 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5577 TTI::CastContextHint::None, CostKind); 5578 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5579 TTI::CastContextHint::None, CostKind); 5580 } 5581 5582 SmallVector<int> Mask; 5583 buildShuffleEntryMask( 5584 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5585 [E](Instruction *I) { 5586 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5587 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5588 }, 5589 Mask); 5590 CommonCost = 5591 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5592 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5593 return CommonCost + VecCost - ScalarCost; 5594 } 5595 default: 5596 llvm_unreachable("Unknown instruction"); 5597 } 5598 } 5599 5600 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5601 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5602 << VectorizableTree.size() << " is fully vectorizable .\n"); 5603 5604 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5605 SmallVector<int> Mask; 5606 return TE->State == TreeEntry::NeedToGather && 5607 !any_of(TE->Scalars, 5608 [this](Value *V) { return EphValues.contains(V); }) && 5609 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5610 TE->Scalars.size() < Limit || 5611 ((TE->getOpcode() == Instruction::ExtractElement || 5612 all_of(TE->Scalars, 5613 [](Value *V) { 5614 return isa<ExtractElementInst, UndefValue>(V); 5615 })) && 5616 isFixedVectorShuffle(TE->Scalars, Mask)) || 5617 (TE->State == TreeEntry::NeedToGather && 5618 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5619 }; 5620 5621 // We only handle trees of heights 1 and 2. 5622 if (VectorizableTree.size() == 1 && 5623 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5624 (ForReduction && 5625 AreVectorizableGathers(VectorizableTree[0].get(), 5626 VectorizableTree[0]->Scalars.size()) && 5627 VectorizableTree[0]->getVectorFactor() > 2))) 5628 return true; 5629 5630 if (VectorizableTree.size() != 2) 5631 return false; 5632 5633 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5634 // with the second gather nodes if they have less scalar operands rather than 5635 // the initial tree element (may be profitable to shuffle the second gather) 5636 // or they are extractelements, which form shuffle. 5637 SmallVector<int> Mask; 5638 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5639 AreVectorizableGathers(VectorizableTree[1].get(), 5640 VectorizableTree[0]->Scalars.size())) 5641 return true; 5642 5643 // Gathering cost would be too much for tiny trees. 5644 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5645 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5646 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5647 return false; 5648 5649 return true; 5650 } 5651 5652 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5653 TargetTransformInfo *TTI, 5654 bool MustMatchOrInst) { 5655 // Look past the root to find a source value. Arbitrarily follow the 5656 // path through operand 0 of any 'or'. Also, peek through optional 5657 // shift-left-by-multiple-of-8-bits. 5658 Value *ZextLoad = Root; 5659 const APInt *ShAmtC; 5660 bool FoundOr = false; 5661 while (!isa<ConstantExpr>(ZextLoad) && 5662 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5663 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5664 ShAmtC->urem(8) == 0))) { 5665 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5666 ZextLoad = BinOp->getOperand(0); 5667 if (BinOp->getOpcode() == Instruction::Or) 5668 FoundOr = true; 5669 } 5670 // Check if the input is an extended load of the required or/shift expression. 5671 Value *Load; 5672 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5673 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5674 return false; 5675 5676 // Require that the total load bit width is a legal integer type. 5677 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5678 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5679 Type *SrcTy = Load->getType(); 5680 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5681 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5682 return false; 5683 5684 // Everything matched - assume that we can fold the whole sequence using 5685 // load combining. 5686 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5687 << *(cast<Instruction>(Root)) << "\n"); 5688 5689 return true; 5690 } 5691 5692 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5693 if (RdxKind != RecurKind::Or) 5694 return false; 5695 5696 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5697 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5698 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5699 /* MatchOr */ false); 5700 } 5701 5702 bool BoUpSLP::isLoadCombineCandidate() const { 5703 // Peek through a final sequence of stores and check if all operations are 5704 // likely to be load-combined. 5705 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5706 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5707 Value *X; 5708 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5709 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5710 return false; 5711 } 5712 return true; 5713 } 5714 5715 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5716 // No need to vectorize inserts of gathered values. 5717 if (VectorizableTree.size() == 2 && 5718 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5719 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5720 return true; 5721 5722 // We can vectorize the tree if its size is greater than or equal to the 5723 // minimum size specified by the MinTreeSize command line option. 5724 if (VectorizableTree.size() >= MinTreeSize) 5725 return false; 5726 5727 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5728 // can vectorize it if we can prove it fully vectorizable. 5729 if (isFullyVectorizableTinyTree(ForReduction)) 5730 return false; 5731 5732 assert(VectorizableTree.empty() 5733 ? ExternalUses.empty() 5734 : true && "We shouldn't have any external users"); 5735 5736 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5737 // vectorizable. 5738 return true; 5739 } 5740 5741 InstructionCost BoUpSLP::getSpillCost() const { 5742 // Walk from the bottom of the tree to the top, tracking which values are 5743 // live. When we see a call instruction that is not part of our tree, 5744 // query TTI to see if there is a cost to keeping values live over it 5745 // (for example, if spills and fills are required). 5746 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5747 InstructionCost Cost = 0; 5748 5749 SmallPtrSet<Instruction*, 4> LiveValues; 5750 Instruction *PrevInst = nullptr; 5751 5752 // The entries in VectorizableTree are not necessarily ordered by their 5753 // position in basic blocks. Collect them and order them by dominance so later 5754 // instructions are guaranteed to be visited first. For instructions in 5755 // different basic blocks, we only scan to the beginning of the block, so 5756 // their order does not matter, as long as all instructions in a basic block 5757 // are grouped together. Using dominance ensures a deterministic order. 5758 SmallVector<Instruction *, 16> OrderedScalars; 5759 for (const auto &TEPtr : VectorizableTree) { 5760 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5761 if (!Inst) 5762 continue; 5763 OrderedScalars.push_back(Inst); 5764 } 5765 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5766 auto *NodeA = DT->getNode(A->getParent()); 5767 auto *NodeB = DT->getNode(B->getParent()); 5768 assert(NodeA && "Should only process reachable instructions"); 5769 assert(NodeB && "Should only process reachable instructions"); 5770 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5771 "Different nodes should have different DFS numbers"); 5772 if (NodeA != NodeB) 5773 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5774 return B->comesBefore(A); 5775 }); 5776 5777 for (Instruction *Inst : OrderedScalars) { 5778 if (!PrevInst) { 5779 PrevInst = Inst; 5780 continue; 5781 } 5782 5783 // Update LiveValues. 5784 LiveValues.erase(PrevInst); 5785 for (auto &J : PrevInst->operands()) { 5786 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5787 LiveValues.insert(cast<Instruction>(&*J)); 5788 } 5789 5790 LLVM_DEBUG({ 5791 dbgs() << "SLP: #LV: " << LiveValues.size(); 5792 for (auto *X : LiveValues) 5793 dbgs() << " " << X->getName(); 5794 dbgs() << ", Looking at "; 5795 Inst->dump(); 5796 }); 5797 5798 // Now find the sequence of instructions between PrevInst and Inst. 5799 unsigned NumCalls = 0; 5800 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5801 PrevInstIt = 5802 PrevInst->getIterator().getReverse(); 5803 while (InstIt != PrevInstIt) { 5804 if (PrevInstIt == PrevInst->getParent()->rend()) { 5805 PrevInstIt = Inst->getParent()->rbegin(); 5806 continue; 5807 } 5808 5809 // Debug information does not impact spill cost. 5810 if ((isa<CallInst>(&*PrevInstIt) && 5811 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5812 &*PrevInstIt != PrevInst) 5813 NumCalls++; 5814 5815 ++PrevInstIt; 5816 } 5817 5818 if (NumCalls) { 5819 SmallVector<Type*, 4> V; 5820 for (auto *II : LiveValues) { 5821 auto *ScalarTy = II->getType(); 5822 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5823 ScalarTy = VectorTy->getElementType(); 5824 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5825 } 5826 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5827 } 5828 5829 PrevInst = Inst; 5830 } 5831 5832 return Cost; 5833 } 5834 5835 /// Check if two insertelement instructions are from the same buildvector. 5836 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5837 InsertElementInst *V) { 5838 // Instructions must be from the same basic blocks. 5839 if (VU->getParent() != V->getParent()) 5840 return false; 5841 // Checks if 2 insertelements are from the same buildvector. 5842 if (VU->getType() != V->getType()) 5843 return false; 5844 // Multiple used inserts are separate nodes. 5845 if (!VU->hasOneUse() && !V->hasOneUse()) 5846 return false; 5847 auto *IE1 = VU; 5848 auto *IE2 = V; 5849 // Go through the vector operand of insertelement instructions trying to find 5850 // either VU as the original vector for IE2 or V as the original vector for 5851 // IE1. 5852 do { 5853 if (IE2 == VU || IE1 == V) 5854 return true; 5855 if (IE1) { 5856 if (IE1 != VU && !IE1->hasOneUse()) 5857 IE1 = nullptr; 5858 else 5859 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5860 } 5861 if (IE2) { 5862 if (IE2 != V && !IE2->hasOneUse()) 5863 IE2 = nullptr; 5864 else 5865 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5866 } 5867 } while (IE1 || IE2); 5868 return false; 5869 } 5870 5871 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5872 InstructionCost Cost = 0; 5873 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5874 << VectorizableTree.size() << ".\n"); 5875 5876 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5877 5878 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5879 TreeEntry &TE = *VectorizableTree[I].get(); 5880 5881 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5882 Cost += C; 5883 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5884 << " for bundle that starts with " << *TE.Scalars[0] 5885 << ".\n" 5886 << "SLP: Current total cost = " << Cost << "\n"); 5887 } 5888 5889 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5890 InstructionCost ExtractCost = 0; 5891 SmallVector<unsigned> VF; 5892 SmallVector<SmallVector<int>> ShuffleMask; 5893 SmallVector<Value *> FirstUsers; 5894 SmallVector<APInt> DemandedElts; 5895 for (ExternalUser &EU : ExternalUses) { 5896 // We only add extract cost once for the same scalar. 5897 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5898 !ExtractCostCalculated.insert(EU.Scalar).second) 5899 continue; 5900 5901 // Uses by ephemeral values are free (because the ephemeral value will be 5902 // removed prior to code generation, and so the extraction will be 5903 // removed as well). 5904 if (EphValues.count(EU.User)) 5905 continue; 5906 5907 // No extract cost for vector "scalar" 5908 if (isa<FixedVectorType>(EU.Scalar->getType())) 5909 continue; 5910 5911 // Already counted the cost for external uses when tried to adjust the cost 5912 // for extractelements, no need to add it again. 5913 if (isa<ExtractElementInst>(EU.Scalar)) 5914 continue; 5915 5916 // If found user is an insertelement, do not calculate extract cost but try 5917 // to detect it as a final shuffled/identity match. 5918 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5919 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5920 unsigned InsertIdx = *getInsertIndex(VU); 5921 auto *It = find_if(FirstUsers, [VU](Value *V) { 5922 return areTwoInsertFromSameBuildVector(VU, 5923 cast<InsertElementInst>(V)); 5924 }); 5925 int VecId = -1; 5926 if (It == FirstUsers.end()) { 5927 VF.push_back(FTy->getNumElements()); 5928 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5929 // Find the insertvector, vectorized in tree, if any. 5930 Value *Base = VU; 5931 while (isa<InsertElementInst>(Base)) { 5932 // Build the mask for the vectorized insertelement instructions. 5933 if (const TreeEntry *E = getTreeEntry(Base)) { 5934 VU = cast<InsertElementInst>(Base); 5935 do { 5936 int Idx = E->findLaneForValue(Base); 5937 ShuffleMask.back()[Idx] = Idx; 5938 Base = cast<InsertElementInst>(Base)->getOperand(0); 5939 } while (E == getTreeEntry(Base)); 5940 break; 5941 } 5942 Base = cast<InsertElementInst>(Base)->getOperand(0); 5943 } 5944 FirstUsers.push_back(VU); 5945 DemandedElts.push_back(APInt::getZero(VF.back())); 5946 VecId = FirstUsers.size() - 1; 5947 } else { 5948 VecId = std::distance(FirstUsers.begin(), It); 5949 } 5950 ShuffleMask[VecId][InsertIdx] = EU.Lane; 5951 DemandedElts[VecId].setBit(InsertIdx); 5952 continue; 5953 } 5954 } 5955 5956 // If we plan to rewrite the tree in a smaller type, we will need to sign 5957 // extend the extracted value back to the original type. Here, we account 5958 // for the extract and the added cost of the sign extend if needed. 5959 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5960 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5961 if (MinBWs.count(ScalarRoot)) { 5962 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5963 auto Extend = 5964 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5965 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5966 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5967 VecTy, EU.Lane); 5968 } else { 5969 ExtractCost += 5970 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5971 } 5972 } 5973 5974 InstructionCost SpillCost = getSpillCost(); 5975 Cost += SpillCost + ExtractCost; 5976 if (FirstUsers.size() == 1) { 5977 int Limit = ShuffleMask.front().size() * 2; 5978 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5979 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5980 InstructionCost C = TTI->getShuffleCost( 5981 TTI::SK_PermuteSingleSrc, 5982 cast<FixedVectorType>(FirstUsers.front()->getType()), 5983 ShuffleMask.front()); 5984 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5985 << " for final shuffle of insertelement external users " 5986 << *VectorizableTree.front()->Scalars.front() << ".\n" 5987 << "SLP: Current total cost = " << Cost << "\n"); 5988 Cost += C; 5989 } 5990 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5991 cast<FixedVectorType>(FirstUsers.front()->getType()), 5992 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5993 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5994 << " for insertelements gather.\n" 5995 << "SLP: Current total cost = " << Cost << "\n"); 5996 Cost -= InsertCost; 5997 } else if (FirstUsers.size() >= 2) { 5998 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5999 // Combined masks of the first 2 vectors. 6000 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6001 copy(ShuffleMask.front(), CombinedMask.begin()); 6002 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6003 auto *VecTy = FixedVectorType::get( 6004 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6005 MaxVF); 6006 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6007 if (ShuffleMask[1][I] != UndefMaskElem) { 6008 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6009 CombinedDemandedElts.setBit(I); 6010 } 6011 } 6012 InstructionCost C = 6013 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6014 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6015 << " for final shuffle of vector node and external " 6016 "insertelement users " 6017 << *VectorizableTree.front()->Scalars.front() << ".\n" 6018 << "SLP: Current total cost = " << Cost << "\n"); 6019 Cost += C; 6020 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6021 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6022 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6023 << " for insertelements gather.\n" 6024 << "SLP: Current total cost = " << Cost << "\n"); 6025 Cost -= InsertCost; 6026 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6027 // Other elements - permutation of 2 vectors (the initial one and the 6028 // next Ith incoming vector). 6029 unsigned VF = ShuffleMask[I].size(); 6030 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6031 int Mask = ShuffleMask[I][Idx]; 6032 if (Mask != UndefMaskElem) 6033 CombinedMask[Idx] = MaxVF + Mask; 6034 else if (CombinedMask[Idx] != UndefMaskElem) 6035 CombinedMask[Idx] = Idx; 6036 } 6037 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6038 if (CombinedMask[Idx] != UndefMaskElem) 6039 CombinedMask[Idx] = Idx; 6040 InstructionCost C = 6041 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6042 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6043 << " for final shuffle of vector node and external " 6044 "insertelement users " 6045 << *VectorizableTree.front()->Scalars.front() << ".\n" 6046 << "SLP: Current total cost = " << Cost << "\n"); 6047 Cost += C; 6048 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6049 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6050 /*Insert*/ true, /*Extract*/ false); 6051 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6052 << " for insertelements gather.\n" 6053 << "SLP: Current total cost = " << Cost << "\n"); 6054 Cost -= InsertCost; 6055 } 6056 } 6057 6058 #ifndef NDEBUG 6059 SmallString<256> Str; 6060 { 6061 raw_svector_ostream OS(Str); 6062 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6063 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6064 << "SLP: Total Cost = " << Cost << ".\n"; 6065 } 6066 LLVM_DEBUG(dbgs() << Str); 6067 if (ViewSLPTree) 6068 ViewGraph(this, "SLP" + F->getName(), false, Str); 6069 #endif 6070 6071 return Cost; 6072 } 6073 6074 Optional<TargetTransformInfo::ShuffleKind> 6075 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6076 SmallVectorImpl<const TreeEntry *> &Entries) { 6077 // TODO: currently checking only for Scalars in the tree entry, need to count 6078 // reused elements too for better cost estimation. 6079 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6080 Entries.clear(); 6081 // Build a lists of values to tree entries. 6082 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6083 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6084 if (EntryPtr.get() == TE) 6085 break; 6086 if (EntryPtr->State != TreeEntry::NeedToGather) 6087 continue; 6088 for (Value *V : EntryPtr->Scalars) 6089 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6090 } 6091 // Find all tree entries used by the gathered values. If no common entries 6092 // found - not a shuffle. 6093 // Here we build a set of tree nodes for each gathered value and trying to 6094 // find the intersection between these sets. If we have at least one common 6095 // tree node for each gathered value - we have just a permutation of the 6096 // single vector. If we have 2 different sets, we're in situation where we 6097 // have a permutation of 2 input vectors. 6098 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6099 DenseMap<Value *, int> UsedValuesEntry; 6100 for (Value *V : TE->Scalars) { 6101 if (isa<UndefValue>(V)) 6102 continue; 6103 // Build a list of tree entries where V is used. 6104 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6105 auto It = ValueToTEs.find(V); 6106 if (It != ValueToTEs.end()) 6107 VToTEs = It->second; 6108 if (const TreeEntry *VTE = getTreeEntry(V)) 6109 VToTEs.insert(VTE); 6110 if (VToTEs.empty()) 6111 return None; 6112 if (UsedTEs.empty()) { 6113 // The first iteration, just insert the list of nodes to vector. 6114 UsedTEs.push_back(VToTEs); 6115 } else { 6116 // Need to check if there are any previously used tree nodes which use V. 6117 // If there are no such nodes, consider that we have another one input 6118 // vector. 6119 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6120 unsigned Idx = 0; 6121 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6122 // Do we have a non-empty intersection of previously listed tree entries 6123 // and tree entries using current V? 6124 set_intersect(VToTEs, Set); 6125 if (!VToTEs.empty()) { 6126 // Yes, write the new subset and continue analysis for the next 6127 // scalar. 6128 Set.swap(VToTEs); 6129 break; 6130 } 6131 VToTEs = SavedVToTEs; 6132 ++Idx; 6133 } 6134 // No non-empty intersection found - need to add a second set of possible 6135 // source vectors. 6136 if (Idx == UsedTEs.size()) { 6137 // If the number of input vectors is greater than 2 - not a permutation, 6138 // fallback to the regular gather. 6139 if (UsedTEs.size() == 2) 6140 return None; 6141 UsedTEs.push_back(SavedVToTEs); 6142 Idx = UsedTEs.size() - 1; 6143 } 6144 UsedValuesEntry.try_emplace(V, Idx); 6145 } 6146 } 6147 6148 unsigned VF = 0; 6149 if (UsedTEs.size() == 1) { 6150 // Try to find the perfect match in another gather node at first. 6151 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6152 return EntryPtr->isSame(TE->Scalars); 6153 }); 6154 if (It != UsedTEs.front().end()) { 6155 Entries.push_back(*It); 6156 std::iota(Mask.begin(), Mask.end(), 0); 6157 return TargetTransformInfo::SK_PermuteSingleSrc; 6158 } 6159 // No perfect match, just shuffle, so choose the first tree node. 6160 Entries.push_back(*UsedTEs.front().begin()); 6161 } else { 6162 // Try to find nodes with the same vector factor. 6163 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6164 DenseMap<int, const TreeEntry *> VFToTE; 6165 for (const TreeEntry *TE : UsedTEs.front()) 6166 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6167 for (const TreeEntry *TE : UsedTEs.back()) { 6168 auto It = VFToTE.find(TE->getVectorFactor()); 6169 if (It != VFToTE.end()) { 6170 VF = It->first; 6171 Entries.push_back(It->second); 6172 Entries.push_back(TE); 6173 break; 6174 } 6175 } 6176 // No 2 source vectors with the same vector factor - give up and do regular 6177 // gather. 6178 if (Entries.empty()) 6179 return None; 6180 } 6181 6182 // Build a shuffle mask for better cost estimation and vector emission. 6183 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6184 Value *V = TE->Scalars[I]; 6185 if (isa<UndefValue>(V)) 6186 continue; 6187 unsigned Idx = UsedValuesEntry.lookup(V); 6188 const TreeEntry *VTE = Entries[Idx]; 6189 int FoundLane = VTE->findLaneForValue(V); 6190 Mask[I] = Idx * VF + FoundLane; 6191 // Extra check required by isSingleSourceMaskImpl function (called by 6192 // ShuffleVectorInst::isSingleSourceMask). 6193 if (Mask[I] >= 2 * E) 6194 return None; 6195 } 6196 switch (Entries.size()) { 6197 case 1: 6198 return TargetTransformInfo::SK_PermuteSingleSrc; 6199 case 2: 6200 return TargetTransformInfo::SK_PermuteTwoSrc; 6201 default: 6202 break; 6203 } 6204 return None; 6205 } 6206 6207 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6208 const APInt &ShuffledIndices, 6209 bool NeedToShuffle) const { 6210 InstructionCost Cost = 6211 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6212 /*Extract*/ false); 6213 if (NeedToShuffle) 6214 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6215 return Cost; 6216 } 6217 6218 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6219 // Find the type of the operands in VL. 6220 Type *ScalarTy = VL[0]->getType(); 6221 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6222 ScalarTy = SI->getValueOperand()->getType(); 6223 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6224 bool DuplicateNonConst = false; 6225 // Find the cost of inserting/extracting values from the vector. 6226 // Check if the same elements are inserted several times and count them as 6227 // shuffle candidates. 6228 APInt ShuffledElements = APInt::getZero(VL.size()); 6229 DenseSet<Value *> UniqueElements; 6230 // Iterate in reverse order to consider insert elements with the high cost. 6231 for (unsigned I = VL.size(); I > 0; --I) { 6232 unsigned Idx = I - 1; 6233 // No need to shuffle duplicates for constants. 6234 if (isConstant(VL[Idx])) { 6235 ShuffledElements.setBit(Idx); 6236 continue; 6237 } 6238 if (!UniqueElements.insert(VL[Idx]).second) { 6239 DuplicateNonConst = true; 6240 ShuffledElements.setBit(Idx); 6241 } 6242 } 6243 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6244 } 6245 6246 // Perform operand reordering on the instructions in VL and return the reordered 6247 // operands in Left and Right. 6248 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6249 SmallVectorImpl<Value *> &Left, 6250 SmallVectorImpl<Value *> &Right, 6251 const DataLayout &DL, 6252 ScalarEvolution &SE, 6253 const BoUpSLP &R) { 6254 if (VL.empty()) 6255 return; 6256 VLOperands Ops(VL, DL, SE, R); 6257 // Reorder the operands in place. 6258 Ops.reorder(); 6259 Left = Ops.getVL(0); 6260 Right = Ops.getVL(1); 6261 } 6262 6263 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6264 // Get the basic block this bundle is in. All instructions in the bundle 6265 // should be in this block. 6266 auto *Front = E->getMainOp(); 6267 auto *BB = Front->getParent(); 6268 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6269 auto *I = cast<Instruction>(V); 6270 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6271 })); 6272 6273 // The last instruction in the bundle in program order. 6274 Instruction *LastInst = nullptr; 6275 6276 // Find the last instruction. The common case should be that BB has been 6277 // scheduled, and the last instruction is VL.back(). So we start with 6278 // VL.back() and iterate over schedule data until we reach the end of the 6279 // bundle. The end of the bundle is marked by null ScheduleData. 6280 if (BlocksSchedules.count(BB)) { 6281 auto *Bundle = 6282 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6283 if (Bundle && Bundle->isPartOfBundle()) 6284 for (; Bundle; Bundle = Bundle->NextInBundle) 6285 if (Bundle->OpValue == Bundle->Inst) 6286 LastInst = Bundle->Inst; 6287 } 6288 6289 // LastInst can still be null at this point if there's either not an entry 6290 // for BB in BlocksSchedules or there's no ScheduleData available for 6291 // VL.back(). This can be the case if buildTree_rec aborts for various 6292 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6293 // size is reached, etc.). ScheduleData is initialized in the scheduling 6294 // "dry-run". 6295 // 6296 // If this happens, we can still find the last instruction by brute force. We 6297 // iterate forwards from Front (inclusive) until we either see all 6298 // instructions in the bundle or reach the end of the block. If Front is the 6299 // last instruction in program order, LastInst will be set to Front, and we 6300 // will visit all the remaining instructions in the block. 6301 // 6302 // One of the reasons we exit early from buildTree_rec is to place an upper 6303 // bound on compile-time. Thus, taking an additional compile-time hit here is 6304 // not ideal. However, this should be exceedingly rare since it requires that 6305 // we both exit early from buildTree_rec and that the bundle be out-of-order 6306 // (causing us to iterate all the way to the end of the block). 6307 if (!LastInst) { 6308 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6309 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6310 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6311 LastInst = &I; 6312 if (Bundle.empty()) 6313 break; 6314 } 6315 } 6316 assert(LastInst && "Failed to find last instruction in bundle"); 6317 6318 // Set the insertion point after the last instruction in the bundle. Set the 6319 // debug location to Front. 6320 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6321 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6322 } 6323 6324 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6325 // List of instructions/lanes from current block and/or the blocks which are 6326 // part of the current loop. These instructions will be inserted at the end to 6327 // make it possible to optimize loops and hoist invariant instructions out of 6328 // the loops body with better chances for success. 6329 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6330 SmallSet<int, 4> PostponedIndices; 6331 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6332 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6333 SmallPtrSet<BasicBlock *, 4> Visited; 6334 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6335 InsertBB = InsertBB->getSinglePredecessor(); 6336 return InsertBB && InsertBB == InstBB; 6337 }; 6338 for (int I = 0, E = VL.size(); I < E; ++I) { 6339 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6340 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6341 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6342 PostponedIndices.insert(I).second) 6343 PostponedInsts.emplace_back(Inst, I); 6344 } 6345 6346 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6347 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6348 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6349 if (!InsElt) 6350 return Vec; 6351 GatherShuffleSeq.insert(InsElt); 6352 CSEBlocks.insert(InsElt->getParent()); 6353 // Add to our 'need-to-extract' list. 6354 if (TreeEntry *Entry = getTreeEntry(V)) { 6355 // Find which lane we need to extract. 6356 unsigned FoundLane = Entry->findLaneForValue(V); 6357 ExternalUses.emplace_back(V, InsElt, FoundLane); 6358 } 6359 return Vec; 6360 }; 6361 Value *Val0 = 6362 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6363 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6364 Value *Vec = PoisonValue::get(VecTy); 6365 SmallVector<int> NonConsts; 6366 // Insert constant values at first. 6367 for (int I = 0, E = VL.size(); I < E; ++I) { 6368 if (PostponedIndices.contains(I)) 6369 continue; 6370 if (!isConstant(VL[I])) { 6371 NonConsts.push_back(I); 6372 continue; 6373 } 6374 Vec = CreateInsertElement(Vec, VL[I], I); 6375 } 6376 // Insert non-constant values. 6377 for (int I : NonConsts) 6378 Vec = CreateInsertElement(Vec, VL[I], I); 6379 // Append instructions, which are/may be part of the loop, in the end to make 6380 // it possible to hoist non-loop-based instructions. 6381 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6382 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6383 6384 return Vec; 6385 } 6386 6387 namespace { 6388 /// Merges shuffle masks and emits final shuffle instruction, if required. 6389 class ShuffleInstructionBuilder { 6390 IRBuilderBase &Builder; 6391 const unsigned VF = 0; 6392 bool IsFinalized = false; 6393 SmallVector<int, 4> Mask; 6394 /// Holds all of the instructions that we gathered. 6395 SetVector<Instruction *> &GatherShuffleSeq; 6396 /// A list of blocks that we are going to CSE. 6397 SetVector<BasicBlock *> &CSEBlocks; 6398 6399 public: 6400 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6401 SetVector<Instruction *> &GatherShuffleSeq, 6402 SetVector<BasicBlock *> &CSEBlocks) 6403 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6404 CSEBlocks(CSEBlocks) {} 6405 6406 /// Adds a mask, inverting it before applying. 6407 void addInversedMask(ArrayRef<unsigned> SubMask) { 6408 if (SubMask.empty()) 6409 return; 6410 SmallVector<int, 4> NewMask; 6411 inversePermutation(SubMask, NewMask); 6412 addMask(NewMask); 6413 } 6414 6415 /// Functions adds masks, merging them into single one. 6416 void addMask(ArrayRef<unsigned> SubMask) { 6417 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6418 addMask(NewMask); 6419 } 6420 6421 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6422 6423 Value *finalize(Value *V) { 6424 IsFinalized = true; 6425 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6426 if (VF == ValueVF && Mask.empty()) 6427 return V; 6428 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6429 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6430 addMask(NormalizedMask); 6431 6432 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6433 return V; 6434 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6435 if (auto *I = dyn_cast<Instruction>(Vec)) { 6436 GatherShuffleSeq.insert(I); 6437 CSEBlocks.insert(I->getParent()); 6438 } 6439 return Vec; 6440 } 6441 6442 ~ShuffleInstructionBuilder() { 6443 assert((IsFinalized || Mask.empty()) && 6444 "Shuffle construction must be finalized."); 6445 } 6446 }; 6447 } // namespace 6448 6449 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6450 unsigned VF = VL.size(); 6451 InstructionsState S = getSameOpcode(VL); 6452 if (S.getOpcode()) { 6453 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6454 if (E->isSame(VL)) { 6455 Value *V = vectorizeTree(E); 6456 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6457 if (!E->ReuseShuffleIndices.empty()) { 6458 // Reshuffle to get only unique values. 6459 // If some of the scalars are duplicated in the vectorization tree 6460 // entry, we do not vectorize them but instead generate a mask for 6461 // the reuses. But if there are several users of the same entry, 6462 // they may have different vectorization factors. This is especially 6463 // important for PHI nodes. In this case, we need to adapt the 6464 // resulting instruction for the user vectorization factor and have 6465 // to reshuffle it again to take only unique elements of the vector. 6466 // Without this code the function incorrectly returns reduced vector 6467 // instruction with the same elements, not with the unique ones. 6468 6469 // block: 6470 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6471 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6472 // ... (use %2) 6473 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6474 // br %block 6475 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6476 SmallSet<int, 4> UsedIdxs; 6477 int Pos = 0; 6478 int Sz = VL.size(); 6479 for (int Idx : E->ReuseShuffleIndices) { 6480 if (Idx != Sz && Idx != UndefMaskElem && 6481 UsedIdxs.insert(Idx).second) 6482 UniqueIdxs[Idx] = Pos; 6483 ++Pos; 6484 } 6485 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6486 "less than original vector size."); 6487 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6488 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6489 } else { 6490 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6491 "Expected vectorization factor less " 6492 "than original vector size."); 6493 SmallVector<int> UniformMask(VF, 0); 6494 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6495 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6496 } 6497 if (auto *I = dyn_cast<Instruction>(V)) { 6498 GatherShuffleSeq.insert(I); 6499 CSEBlocks.insert(I->getParent()); 6500 } 6501 } 6502 return V; 6503 } 6504 } 6505 6506 // Check that every instruction appears once in this bundle. 6507 SmallVector<int> ReuseShuffleIndicies; 6508 SmallVector<Value *> UniqueValues; 6509 if (VL.size() > 2) { 6510 DenseMap<Value *, unsigned> UniquePositions; 6511 unsigned NumValues = 6512 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6513 return !isa<UndefValue>(V); 6514 }).base()); 6515 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6516 int UniqueVals = 0; 6517 for (Value *V : VL.drop_back(VL.size() - VF)) { 6518 if (isa<UndefValue>(V)) { 6519 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6520 continue; 6521 } 6522 if (isConstant(V)) { 6523 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6524 UniqueValues.emplace_back(V); 6525 continue; 6526 } 6527 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6528 ReuseShuffleIndicies.emplace_back(Res.first->second); 6529 if (Res.second) { 6530 UniqueValues.emplace_back(V); 6531 ++UniqueVals; 6532 } 6533 } 6534 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6535 // Emit pure splat vector. 6536 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6537 UndefMaskElem); 6538 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6539 ReuseShuffleIndicies.clear(); 6540 UniqueValues.clear(); 6541 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6542 } 6543 UniqueValues.append(VF - UniqueValues.size(), 6544 PoisonValue::get(VL[0]->getType())); 6545 VL = UniqueValues; 6546 } 6547 6548 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6549 CSEBlocks); 6550 Value *Vec = gather(VL); 6551 if (!ReuseShuffleIndicies.empty()) { 6552 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6553 Vec = ShuffleBuilder.finalize(Vec); 6554 } 6555 return Vec; 6556 } 6557 6558 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6559 IRBuilder<>::InsertPointGuard Guard(Builder); 6560 6561 if (E->VectorizedValue) { 6562 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6563 return E->VectorizedValue; 6564 } 6565 6566 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6567 unsigned VF = E->getVectorFactor(); 6568 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6569 CSEBlocks); 6570 if (E->State == TreeEntry::NeedToGather) { 6571 if (E->getMainOp()) 6572 setInsertPointAfterBundle(E); 6573 Value *Vec; 6574 SmallVector<int> Mask; 6575 SmallVector<const TreeEntry *> Entries; 6576 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6577 isGatherShuffledEntry(E, Mask, Entries); 6578 if (Shuffle.hasValue()) { 6579 assert((Entries.size() == 1 || Entries.size() == 2) && 6580 "Expected shuffle of 1 or 2 entries."); 6581 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6582 Entries.back()->VectorizedValue, Mask); 6583 if (auto *I = dyn_cast<Instruction>(Vec)) { 6584 GatherShuffleSeq.insert(I); 6585 CSEBlocks.insert(I->getParent()); 6586 } 6587 } else { 6588 Vec = gather(E->Scalars); 6589 } 6590 if (NeedToShuffleReuses) { 6591 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6592 Vec = ShuffleBuilder.finalize(Vec); 6593 } 6594 E->VectorizedValue = Vec; 6595 return Vec; 6596 } 6597 6598 assert((E->State == TreeEntry::Vectorize || 6599 E->State == TreeEntry::ScatterVectorize) && 6600 "Unhandled state"); 6601 unsigned ShuffleOrOp = 6602 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6603 Instruction *VL0 = E->getMainOp(); 6604 Type *ScalarTy = VL0->getType(); 6605 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6606 ScalarTy = Store->getValueOperand()->getType(); 6607 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6608 ScalarTy = IE->getOperand(1)->getType(); 6609 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6610 switch (ShuffleOrOp) { 6611 case Instruction::PHI: { 6612 assert( 6613 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6614 "PHI reordering is free."); 6615 auto *PH = cast<PHINode>(VL0); 6616 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6617 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6618 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6619 Value *V = NewPhi; 6620 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6621 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6622 V = ShuffleBuilder.finalize(V); 6623 6624 E->VectorizedValue = V; 6625 6626 // PHINodes may have multiple entries from the same block. We want to 6627 // visit every block once. 6628 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6629 6630 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6631 ValueList Operands; 6632 BasicBlock *IBB = PH->getIncomingBlock(i); 6633 6634 if (!VisitedBBs.insert(IBB).second) { 6635 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6636 continue; 6637 } 6638 6639 Builder.SetInsertPoint(IBB->getTerminator()); 6640 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6641 Value *Vec = vectorizeTree(E->getOperand(i)); 6642 NewPhi->addIncoming(Vec, IBB); 6643 } 6644 6645 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6646 "Invalid number of incoming values"); 6647 return V; 6648 } 6649 6650 case Instruction::ExtractElement: { 6651 Value *V = E->getSingleOperand(0); 6652 Builder.SetInsertPoint(VL0); 6653 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6654 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6655 V = ShuffleBuilder.finalize(V); 6656 E->VectorizedValue = V; 6657 return V; 6658 } 6659 case Instruction::ExtractValue: { 6660 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6661 Builder.SetInsertPoint(LI); 6662 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6663 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6664 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6665 Value *NewV = propagateMetadata(V, E->Scalars); 6666 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6667 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6668 NewV = ShuffleBuilder.finalize(NewV); 6669 E->VectorizedValue = NewV; 6670 return NewV; 6671 } 6672 case Instruction::InsertElement: { 6673 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6674 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6675 Value *V = vectorizeTree(E->getOperand(1)); 6676 6677 // Create InsertVector shuffle if necessary 6678 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6679 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6680 })); 6681 const unsigned NumElts = 6682 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6683 const unsigned NumScalars = E->Scalars.size(); 6684 6685 unsigned Offset = *getInsertIndex(VL0); 6686 assert(Offset < NumElts && "Failed to find vector index offset"); 6687 6688 // Create shuffle to resize vector 6689 SmallVector<int> Mask; 6690 if (!E->ReorderIndices.empty()) { 6691 inversePermutation(E->ReorderIndices, Mask); 6692 Mask.append(NumElts - NumScalars, UndefMaskElem); 6693 } else { 6694 Mask.assign(NumElts, UndefMaskElem); 6695 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6696 } 6697 // Create InsertVector shuffle if necessary 6698 bool IsIdentity = true; 6699 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6700 Mask.swap(PrevMask); 6701 for (unsigned I = 0; I < NumScalars; ++I) { 6702 Value *Scalar = E->Scalars[PrevMask[I]]; 6703 unsigned InsertIdx = *getInsertIndex(Scalar); 6704 IsIdentity &= InsertIdx - Offset == I; 6705 Mask[InsertIdx - Offset] = I; 6706 } 6707 if (!IsIdentity || NumElts != NumScalars) { 6708 V = Builder.CreateShuffleVector(V, Mask); 6709 if (auto *I = dyn_cast<Instruction>(V)) { 6710 GatherShuffleSeq.insert(I); 6711 CSEBlocks.insert(I->getParent()); 6712 } 6713 } 6714 6715 if ((!IsIdentity || Offset != 0 || 6716 !isUndefVector(FirstInsert->getOperand(0))) && 6717 NumElts != NumScalars) { 6718 SmallVector<int> InsertMask(NumElts); 6719 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6720 for (unsigned I = 0; I < NumElts; I++) { 6721 if (Mask[I] != UndefMaskElem) 6722 InsertMask[Offset + I] = NumElts + I; 6723 } 6724 6725 V = Builder.CreateShuffleVector( 6726 FirstInsert->getOperand(0), V, InsertMask, 6727 cast<Instruction>(E->Scalars.back())->getName()); 6728 if (auto *I = dyn_cast<Instruction>(V)) { 6729 GatherShuffleSeq.insert(I); 6730 CSEBlocks.insert(I->getParent()); 6731 } 6732 } 6733 6734 ++NumVectorInstructions; 6735 E->VectorizedValue = V; 6736 return V; 6737 } 6738 case Instruction::ZExt: 6739 case Instruction::SExt: 6740 case Instruction::FPToUI: 6741 case Instruction::FPToSI: 6742 case Instruction::FPExt: 6743 case Instruction::PtrToInt: 6744 case Instruction::IntToPtr: 6745 case Instruction::SIToFP: 6746 case Instruction::UIToFP: 6747 case Instruction::Trunc: 6748 case Instruction::FPTrunc: 6749 case Instruction::BitCast: { 6750 setInsertPointAfterBundle(E); 6751 6752 Value *InVec = vectorizeTree(E->getOperand(0)); 6753 6754 if (E->VectorizedValue) { 6755 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6756 return E->VectorizedValue; 6757 } 6758 6759 auto *CI = cast<CastInst>(VL0); 6760 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6761 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6762 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6763 V = ShuffleBuilder.finalize(V); 6764 6765 E->VectorizedValue = V; 6766 ++NumVectorInstructions; 6767 return V; 6768 } 6769 case Instruction::FCmp: 6770 case Instruction::ICmp: { 6771 setInsertPointAfterBundle(E); 6772 6773 Value *L = vectorizeTree(E->getOperand(0)); 6774 Value *R = vectorizeTree(E->getOperand(1)); 6775 6776 if (E->VectorizedValue) { 6777 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6778 return E->VectorizedValue; 6779 } 6780 6781 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6782 Value *V = Builder.CreateCmp(P0, L, R); 6783 propagateIRFlags(V, E->Scalars, VL0); 6784 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6785 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6786 V = ShuffleBuilder.finalize(V); 6787 6788 E->VectorizedValue = V; 6789 ++NumVectorInstructions; 6790 return V; 6791 } 6792 case Instruction::Select: { 6793 setInsertPointAfterBundle(E); 6794 6795 Value *Cond = vectorizeTree(E->getOperand(0)); 6796 Value *True = vectorizeTree(E->getOperand(1)); 6797 Value *False = vectorizeTree(E->getOperand(2)); 6798 6799 if (E->VectorizedValue) { 6800 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6801 return E->VectorizedValue; 6802 } 6803 6804 Value *V = Builder.CreateSelect(Cond, True, False); 6805 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6806 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6807 V = ShuffleBuilder.finalize(V); 6808 6809 E->VectorizedValue = V; 6810 ++NumVectorInstructions; 6811 return V; 6812 } 6813 case Instruction::FNeg: { 6814 setInsertPointAfterBundle(E); 6815 6816 Value *Op = vectorizeTree(E->getOperand(0)); 6817 6818 if (E->VectorizedValue) { 6819 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6820 return E->VectorizedValue; 6821 } 6822 6823 Value *V = Builder.CreateUnOp( 6824 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6825 propagateIRFlags(V, E->Scalars, VL0); 6826 if (auto *I = dyn_cast<Instruction>(V)) 6827 V = propagateMetadata(I, E->Scalars); 6828 6829 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6830 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6831 V = ShuffleBuilder.finalize(V); 6832 6833 E->VectorizedValue = V; 6834 ++NumVectorInstructions; 6835 6836 return V; 6837 } 6838 case Instruction::Add: 6839 case Instruction::FAdd: 6840 case Instruction::Sub: 6841 case Instruction::FSub: 6842 case Instruction::Mul: 6843 case Instruction::FMul: 6844 case Instruction::UDiv: 6845 case Instruction::SDiv: 6846 case Instruction::FDiv: 6847 case Instruction::URem: 6848 case Instruction::SRem: 6849 case Instruction::FRem: 6850 case Instruction::Shl: 6851 case Instruction::LShr: 6852 case Instruction::AShr: 6853 case Instruction::And: 6854 case Instruction::Or: 6855 case Instruction::Xor: { 6856 setInsertPointAfterBundle(E); 6857 6858 Value *LHS = vectorizeTree(E->getOperand(0)); 6859 Value *RHS = vectorizeTree(E->getOperand(1)); 6860 6861 if (E->VectorizedValue) { 6862 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6863 return E->VectorizedValue; 6864 } 6865 6866 Value *V = Builder.CreateBinOp( 6867 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6868 RHS); 6869 propagateIRFlags(V, E->Scalars, VL0); 6870 if (auto *I = dyn_cast<Instruction>(V)) 6871 V = propagateMetadata(I, E->Scalars); 6872 6873 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6874 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6875 V = ShuffleBuilder.finalize(V); 6876 6877 E->VectorizedValue = V; 6878 ++NumVectorInstructions; 6879 6880 return V; 6881 } 6882 case Instruction::Load: { 6883 // Loads are inserted at the head of the tree because we don't want to 6884 // sink them all the way down past store instructions. 6885 setInsertPointAfterBundle(E); 6886 6887 LoadInst *LI = cast<LoadInst>(VL0); 6888 Instruction *NewLI; 6889 unsigned AS = LI->getPointerAddressSpace(); 6890 Value *PO = LI->getPointerOperand(); 6891 if (E->State == TreeEntry::Vectorize) { 6892 6893 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6894 6895 // The pointer operand uses an in-tree scalar so we add the new BitCast 6896 // to ExternalUses list to make sure that an extract will be generated 6897 // in the future. 6898 if (TreeEntry *Entry = getTreeEntry(PO)) { 6899 // Find which lane we need to extract. 6900 unsigned FoundLane = Entry->findLaneForValue(PO); 6901 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6902 } 6903 6904 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6905 } else { 6906 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6907 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6908 // Use the minimum alignment of the gathered loads. 6909 Align CommonAlignment = LI->getAlign(); 6910 for (Value *V : E->Scalars) 6911 CommonAlignment = 6912 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6913 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6914 } 6915 Value *V = propagateMetadata(NewLI, E->Scalars); 6916 6917 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6918 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6919 V = ShuffleBuilder.finalize(V); 6920 E->VectorizedValue = V; 6921 ++NumVectorInstructions; 6922 return V; 6923 } 6924 case Instruction::Store: { 6925 auto *SI = cast<StoreInst>(VL0); 6926 unsigned AS = SI->getPointerAddressSpace(); 6927 6928 setInsertPointAfterBundle(E); 6929 6930 Value *VecValue = vectorizeTree(E->getOperand(0)); 6931 ShuffleBuilder.addMask(E->ReorderIndices); 6932 VecValue = ShuffleBuilder.finalize(VecValue); 6933 6934 Value *ScalarPtr = SI->getPointerOperand(); 6935 Value *VecPtr = Builder.CreateBitCast( 6936 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6937 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6938 SI->getAlign()); 6939 6940 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6941 // ExternalUses to make sure that an extract will be generated in the 6942 // future. 6943 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6944 // Find which lane we need to extract. 6945 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6946 ExternalUses.push_back( 6947 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6948 } 6949 6950 Value *V = propagateMetadata(ST, E->Scalars); 6951 6952 E->VectorizedValue = V; 6953 ++NumVectorInstructions; 6954 return V; 6955 } 6956 case Instruction::GetElementPtr: { 6957 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6958 setInsertPointAfterBundle(E); 6959 6960 Value *Op0 = vectorizeTree(E->getOperand(0)); 6961 6962 SmallVector<Value *> OpVecs; 6963 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6964 Value *OpVec = vectorizeTree(E->getOperand(J)); 6965 OpVecs.push_back(OpVec); 6966 } 6967 6968 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6969 if (Instruction *I = dyn_cast<Instruction>(V)) 6970 V = propagateMetadata(I, E->Scalars); 6971 6972 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6973 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6974 V = ShuffleBuilder.finalize(V); 6975 6976 E->VectorizedValue = V; 6977 ++NumVectorInstructions; 6978 6979 return V; 6980 } 6981 case Instruction::Call: { 6982 CallInst *CI = cast<CallInst>(VL0); 6983 setInsertPointAfterBundle(E); 6984 6985 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6986 if (Function *FI = CI->getCalledFunction()) 6987 IID = FI->getIntrinsicID(); 6988 6989 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6990 6991 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6992 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6993 VecCallCosts.first <= VecCallCosts.second; 6994 6995 Value *ScalarArg = nullptr; 6996 std::vector<Value *> OpVecs; 6997 SmallVector<Type *, 2> TysForDecl = 6998 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6999 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7000 ValueList OpVL; 7001 // Some intrinsics have scalar arguments. This argument should not be 7002 // vectorized. 7003 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7004 CallInst *CEI = cast<CallInst>(VL0); 7005 ScalarArg = CEI->getArgOperand(j); 7006 OpVecs.push_back(CEI->getArgOperand(j)); 7007 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7008 TysForDecl.push_back(ScalarArg->getType()); 7009 continue; 7010 } 7011 7012 Value *OpVec = vectorizeTree(E->getOperand(j)); 7013 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7014 OpVecs.push_back(OpVec); 7015 } 7016 7017 Function *CF; 7018 if (!UseIntrinsic) { 7019 VFShape Shape = 7020 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7021 VecTy->getNumElements())), 7022 false /*HasGlobalPred*/); 7023 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7024 } else { 7025 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7026 } 7027 7028 SmallVector<OperandBundleDef, 1> OpBundles; 7029 CI->getOperandBundlesAsDefs(OpBundles); 7030 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7031 7032 // The scalar argument uses an in-tree scalar so we add the new vectorized 7033 // call to ExternalUses list to make sure that an extract will be 7034 // generated in the future. 7035 if (ScalarArg) { 7036 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7037 // Find which lane we need to extract. 7038 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7039 ExternalUses.push_back( 7040 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7041 } 7042 } 7043 7044 propagateIRFlags(V, E->Scalars, VL0); 7045 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7046 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7047 V = ShuffleBuilder.finalize(V); 7048 7049 E->VectorizedValue = V; 7050 ++NumVectorInstructions; 7051 return V; 7052 } 7053 case Instruction::ShuffleVector: { 7054 assert(E->isAltShuffle() && 7055 ((Instruction::isBinaryOp(E->getOpcode()) && 7056 Instruction::isBinaryOp(E->getAltOpcode())) || 7057 (Instruction::isCast(E->getOpcode()) && 7058 Instruction::isCast(E->getAltOpcode())) || 7059 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7060 "Invalid Shuffle Vector Operand"); 7061 7062 Value *LHS = nullptr, *RHS = nullptr; 7063 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7064 setInsertPointAfterBundle(E); 7065 LHS = vectorizeTree(E->getOperand(0)); 7066 RHS = vectorizeTree(E->getOperand(1)); 7067 } else { 7068 setInsertPointAfterBundle(E); 7069 LHS = vectorizeTree(E->getOperand(0)); 7070 } 7071 7072 if (E->VectorizedValue) { 7073 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7074 return E->VectorizedValue; 7075 } 7076 7077 Value *V0, *V1; 7078 if (Instruction::isBinaryOp(E->getOpcode())) { 7079 V0 = Builder.CreateBinOp( 7080 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7081 V1 = Builder.CreateBinOp( 7082 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7083 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7084 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7085 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7086 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7087 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7088 } else { 7089 V0 = Builder.CreateCast( 7090 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7091 V1 = Builder.CreateCast( 7092 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7093 } 7094 // Add V0 and V1 to later analysis to try to find and remove matching 7095 // instruction, if any. 7096 for (Value *V : {V0, V1}) { 7097 if (auto *I = dyn_cast<Instruction>(V)) { 7098 GatherShuffleSeq.insert(I); 7099 CSEBlocks.insert(I->getParent()); 7100 } 7101 } 7102 7103 // Create shuffle to take alternate operations from the vector. 7104 // Also, gather up main and alt scalar ops to propagate IR flags to 7105 // each vector operation. 7106 ValueList OpScalars, AltScalars; 7107 SmallVector<int> Mask; 7108 buildShuffleEntryMask( 7109 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7110 [E](Instruction *I) { 7111 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7112 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7113 }, 7114 Mask, &OpScalars, &AltScalars); 7115 7116 propagateIRFlags(V0, OpScalars); 7117 propagateIRFlags(V1, AltScalars); 7118 7119 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7120 if (auto *I = dyn_cast<Instruction>(V)) { 7121 V = propagateMetadata(I, E->Scalars); 7122 GatherShuffleSeq.insert(I); 7123 CSEBlocks.insert(I->getParent()); 7124 } 7125 V = ShuffleBuilder.finalize(V); 7126 7127 E->VectorizedValue = V; 7128 ++NumVectorInstructions; 7129 7130 return V; 7131 } 7132 default: 7133 llvm_unreachable("unknown inst"); 7134 } 7135 return nullptr; 7136 } 7137 7138 Value *BoUpSLP::vectorizeTree() { 7139 ExtraValueToDebugLocsMap ExternallyUsedValues; 7140 return vectorizeTree(ExternallyUsedValues); 7141 } 7142 7143 Value * 7144 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7145 // All blocks must be scheduled before any instructions are inserted. 7146 for (auto &BSIter : BlocksSchedules) { 7147 scheduleBlock(BSIter.second.get()); 7148 } 7149 7150 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7151 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7152 7153 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7154 // vectorized root. InstCombine will then rewrite the entire expression. We 7155 // sign extend the extracted values below. 7156 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7157 if (MinBWs.count(ScalarRoot)) { 7158 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7159 // If current instr is a phi and not the last phi, insert it after the 7160 // last phi node. 7161 if (isa<PHINode>(I)) 7162 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7163 else 7164 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7165 } 7166 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7167 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7168 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7169 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7170 VectorizableTree[0]->VectorizedValue = Trunc; 7171 } 7172 7173 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7174 << " values .\n"); 7175 7176 // Extract all of the elements with the external uses. 7177 for (const auto &ExternalUse : ExternalUses) { 7178 Value *Scalar = ExternalUse.Scalar; 7179 llvm::User *User = ExternalUse.User; 7180 7181 // Skip users that we already RAUW. This happens when one instruction 7182 // has multiple uses of the same value. 7183 if (User && !is_contained(Scalar->users(), User)) 7184 continue; 7185 TreeEntry *E = getTreeEntry(Scalar); 7186 assert(E && "Invalid scalar"); 7187 assert(E->State != TreeEntry::NeedToGather && 7188 "Extracting from a gather list"); 7189 7190 Value *Vec = E->VectorizedValue; 7191 assert(Vec && "Can't find vectorizable value"); 7192 7193 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7194 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7195 if (Scalar->getType() != Vec->getType()) { 7196 Value *Ex; 7197 // "Reuse" the existing extract to improve final codegen. 7198 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7199 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7200 ES->getOperand(1)); 7201 } else { 7202 Ex = Builder.CreateExtractElement(Vec, Lane); 7203 } 7204 // If necessary, sign-extend or zero-extend ScalarRoot 7205 // to the larger type. 7206 if (!MinBWs.count(ScalarRoot)) 7207 return Ex; 7208 if (MinBWs[ScalarRoot].second) 7209 return Builder.CreateSExt(Ex, Scalar->getType()); 7210 return Builder.CreateZExt(Ex, Scalar->getType()); 7211 } 7212 assert(isa<FixedVectorType>(Scalar->getType()) && 7213 isa<InsertElementInst>(Scalar) && 7214 "In-tree scalar of vector type is not insertelement?"); 7215 return Vec; 7216 }; 7217 // If User == nullptr, the Scalar is used as extra arg. Generate 7218 // ExtractElement instruction and update the record for this scalar in 7219 // ExternallyUsedValues. 7220 if (!User) { 7221 assert(ExternallyUsedValues.count(Scalar) && 7222 "Scalar with nullptr as an external user must be registered in " 7223 "ExternallyUsedValues map"); 7224 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7225 Builder.SetInsertPoint(VecI->getParent(), 7226 std::next(VecI->getIterator())); 7227 } else { 7228 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7229 } 7230 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7231 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7232 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7233 auto It = ExternallyUsedValues.find(Scalar); 7234 assert(It != ExternallyUsedValues.end() && 7235 "Externally used scalar is not found in ExternallyUsedValues"); 7236 NewInstLocs.append(It->second); 7237 ExternallyUsedValues.erase(Scalar); 7238 // Required to update internally referenced instructions. 7239 Scalar->replaceAllUsesWith(NewInst); 7240 continue; 7241 } 7242 7243 // Generate extracts for out-of-tree users. 7244 // Find the insertion point for the extractelement lane. 7245 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7246 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7247 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7248 if (PH->getIncomingValue(i) == Scalar) { 7249 Instruction *IncomingTerminator = 7250 PH->getIncomingBlock(i)->getTerminator(); 7251 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7252 Builder.SetInsertPoint(VecI->getParent(), 7253 std::next(VecI->getIterator())); 7254 } else { 7255 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7256 } 7257 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7258 CSEBlocks.insert(PH->getIncomingBlock(i)); 7259 PH->setOperand(i, NewInst); 7260 } 7261 } 7262 } else { 7263 Builder.SetInsertPoint(cast<Instruction>(User)); 7264 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7265 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7266 User->replaceUsesOfWith(Scalar, NewInst); 7267 } 7268 } else { 7269 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7270 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7271 CSEBlocks.insert(&F->getEntryBlock()); 7272 User->replaceUsesOfWith(Scalar, NewInst); 7273 } 7274 7275 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7276 } 7277 7278 // For each vectorized value: 7279 for (auto &TEPtr : VectorizableTree) { 7280 TreeEntry *Entry = TEPtr.get(); 7281 7282 // No need to handle users of gathered values. 7283 if (Entry->State == TreeEntry::NeedToGather) 7284 continue; 7285 7286 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7287 7288 // For each lane: 7289 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7290 Value *Scalar = Entry->Scalars[Lane]; 7291 7292 #ifndef NDEBUG 7293 Type *Ty = Scalar->getType(); 7294 if (!Ty->isVoidTy()) { 7295 for (User *U : Scalar->users()) { 7296 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7297 7298 // It is legal to delete users in the ignorelist. 7299 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7300 (isa_and_nonnull<Instruction>(U) && 7301 isDeleted(cast<Instruction>(U)))) && 7302 "Deleting out-of-tree value"); 7303 } 7304 } 7305 #endif 7306 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7307 eraseInstruction(cast<Instruction>(Scalar)); 7308 } 7309 } 7310 7311 Builder.ClearInsertionPoint(); 7312 InstrElementSize.clear(); 7313 7314 return VectorizableTree[0]->VectorizedValue; 7315 } 7316 7317 void BoUpSLP::optimizeGatherSequence() { 7318 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7319 << " gather sequences instructions.\n"); 7320 // LICM InsertElementInst sequences. 7321 for (Instruction *I : GatherShuffleSeq) { 7322 if (isDeleted(I)) 7323 continue; 7324 7325 // Check if this block is inside a loop. 7326 Loop *L = LI->getLoopFor(I->getParent()); 7327 if (!L) 7328 continue; 7329 7330 // Check if it has a preheader. 7331 BasicBlock *PreHeader = L->getLoopPreheader(); 7332 if (!PreHeader) 7333 continue; 7334 7335 // If the vector or the element that we insert into it are 7336 // instructions that are defined in this basic block then we can't 7337 // hoist this instruction. 7338 if (any_of(I->operands(), [L](Value *V) { 7339 auto *OpI = dyn_cast<Instruction>(V); 7340 return OpI && L->contains(OpI); 7341 })) 7342 continue; 7343 7344 // We can hoist this instruction. Move it to the pre-header. 7345 I->moveBefore(PreHeader->getTerminator()); 7346 } 7347 7348 // Make a list of all reachable blocks in our CSE queue. 7349 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7350 CSEWorkList.reserve(CSEBlocks.size()); 7351 for (BasicBlock *BB : CSEBlocks) 7352 if (DomTreeNode *N = DT->getNode(BB)) { 7353 assert(DT->isReachableFromEntry(N)); 7354 CSEWorkList.push_back(N); 7355 } 7356 7357 // Sort blocks by domination. This ensures we visit a block after all blocks 7358 // dominating it are visited. 7359 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7360 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7361 "Different nodes should have different DFS numbers"); 7362 return A->getDFSNumIn() < B->getDFSNumIn(); 7363 }); 7364 7365 // Less defined shuffles can be replaced by the more defined copies. 7366 // Between two shuffles one is less defined if it has the same vector operands 7367 // and its mask indeces are the same as in the first one or undefs. E.g. 7368 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7369 // poison, <0, 0, 0, 0>. 7370 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7371 SmallVectorImpl<int> &NewMask) { 7372 if (I1->getType() != I2->getType()) 7373 return false; 7374 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7375 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7376 if (!SI1 || !SI2) 7377 return I1->isIdenticalTo(I2); 7378 if (SI1->isIdenticalTo(SI2)) 7379 return true; 7380 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7381 if (SI1->getOperand(I) != SI2->getOperand(I)) 7382 return false; 7383 // Check if the second instruction is more defined than the first one. 7384 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7385 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7386 // Count trailing undefs in the mask to check the final number of used 7387 // registers. 7388 unsigned LastUndefsCnt = 0; 7389 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7390 if (SM1[I] == UndefMaskElem) 7391 ++LastUndefsCnt; 7392 else 7393 LastUndefsCnt = 0; 7394 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7395 NewMask[I] != SM1[I]) 7396 return false; 7397 if (NewMask[I] == UndefMaskElem) 7398 NewMask[I] = SM1[I]; 7399 } 7400 // Check if the last undefs actually change the final number of used vector 7401 // registers. 7402 return SM1.size() - LastUndefsCnt > 1 && 7403 TTI->getNumberOfParts(SI1->getType()) == 7404 TTI->getNumberOfParts( 7405 FixedVectorType::get(SI1->getType()->getElementType(), 7406 SM1.size() - LastUndefsCnt)); 7407 }; 7408 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7409 // instructions. TODO: We can further optimize this scan if we split the 7410 // instructions into different buckets based on the insert lane. 7411 SmallVector<Instruction *, 16> Visited; 7412 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7413 assert(*I && 7414 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7415 "Worklist not sorted properly!"); 7416 BasicBlock *BB = (*I)->getBlock(); 7417 // For all instructions in blocks containing gather sequences: 7418 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7419 if (isDeleted(&In)) 7420 continue; 7421 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7422 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7423 continue; 7424 7425 // Check if we can replace this instruction with any of the 7426 // visited instructions. 7427 bool Replaced = false; 7428 for (Instruction *&V : Visited) { 7429 SmallVector<int> NewMask; 7430 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7431 DT->dominates(V->getParent(), In.getParent())) { 7432 In.replaceAllUsesWith(V); 7433 eraseInstruction(&In); 7434 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7435 if (!NewMask.empty()) 7436 SI->setShuffleMask(NewMask); 7437 Replaced = true; 7438 break; 7439 } 7440 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7441 GatherShuffleSeq.contains(V) && 7442 IsIdenticalOrLessDefined(V, &In, NewMask) && 7443 DT->dominates(In.getParent(), V->getParent())) { 7444 In.moveAfter(V); 7445 V->replaceAllUsesWith(&In); 7446 eraseInstruction(V); 7447 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7448 if (!NewMask.empty()) 7449 SI->setShuffleMask(NewMask); 7450 V = &In; 7451 Replaced = true; 7452 break; 7453 } 7454 } 7455 if (!Replaced) { 7456 assert(!is_contained(Visited, &In)); 7457 Visited.push_back(&In); 7458 } 7459 } 7460 } 7461 CSEBlocks.clear(); 7462 GatherShuffleSeq.clear(); 7463 } 7464 7465 BoUpSLP::ScheduleData * 7466 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7467 ScheduleData *Bundle = nullptr; 7468 ScheduleData *PrevInBundle = nullptr; 7469 for (Value *V : VL) { 7470 ScheduleData *BundleMember = getScheduleData(V); 7471 assert(BundleMember && 7472 "no ScheduleData for bundle member " 7473 "(maybe not in same basic block)"); 7474 assert(BundleMember->isSchedulingEntity() && 7475 "bundle member already part of other bundle"); 7476 if (PrevInBundle) { 7477 PrevInBundle->NextInBundle = BundleMember; 7478 } else { 7479 Bundle = BundleMember; 7480 } 7481 7482 // Group the instructions to a bundle. 7483 BundleMember->FirstInBundle = Bundle; 7484 PrevInBundle = BundleMember; 7485 } 7486 assert(Bundle && "Failed to find schedule bundle"); 7487 return Bundle; 7488 } 7489 7490 // Groups the instructions to a bundle (which is then a single scheduling entity) 7491 // and schedules instructions until the bundle gets ready. 7492 Optional<BoUpSLP::ScheduleData *> 7493 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7494 const InstructionsState &S) { 7495 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7496 // instructions. 7497 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7498 return nullptr; 7499 7500 // Initialize the instruction bundle. 7501 Instruction *OldScheduleEnd = ScheduleEnd; 7502 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7503 7504 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7505 ScheduleData *Bundle) { 7506 // The scheduling region got new instructions at the lower end (or it is a 7507 // new region for the first bundle). This makes it necessary to 7508 // recalculate all dependencies. 7509 // It is seldom that this needs to be done a second time after adding the 7510 // initial bundle to the region. 7511 if (ScheduleEnd != OldScheduleEnd) { 7512 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7513 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7514 ReSchedule = true; 7515 } 7516 if (Bundle) { 7517 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7518 << " in block " << BB->getName() << "\n"); 7519 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7520 } 7521 7522 if (ReSchedule) { 7523 resetSchedule(); 7524 initialFillReadyList(ReadyInsts); 7525 } 7526 7527 // Now try to schedule the new bundle or (if no bundle) just calculate 7528 // dependencies. As soon as the bundle is "ready" it means that there are no 7529 // cyclic dependencies and we can schedule it. Note that's important that we 7530 // don't "schedule" the bundle yet (see cancelScheduling). 7531 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7532 !ReadyInsts.empty()) { 7533 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7534 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7535 "must be ready to schedule"); 7536 schedule(Picked, ReadyInsts); 7537 } 7538 }; 7539 7540 // Make sure that the scheduling region contains all 7541 // instructions of the bundle. 7542 for (Value *V : VL) { 7543 if (!extendSchedulingRegion(V, S)) { 7544 // If the scheduling region got new instructions at the lower end (or it 7545 // is a new region for the first bundle). This makes it necessary to 7546 // recalculate all dependencies. 7547 // Otherwise the compiler may crash trying to incorrectly calculate 7548 // dependencies and emit instruction in the wrong order at the actual 7549 // scheduling. 7550 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7551 return None; 7552 } 7553 } 7554 7555 bool ReSchedule = false; 7556 for (Value *V : VL) { 7557 ScheduleData *BundleMember = getScheduleData(V); 7558 assert(BundleMember && 7559 "no ScheduleData for bundle member (maybe not in same basic block)"); 7560 7561 // Make sure we don't leave the pieces of the bundle in the ready list when 7562 // whole bundle might not be ready. 7563 ReadyInsts.remove(BundleMember); 7564 7565 if (!BundleMember->IsScheduled) 7566 continue; 7567 // A bundle member was scheduled as single instruction before and now 7568 // needs to be scheduled as part of the bundle. We just get rid of the 7569 // existing schedule. 7570 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7571 << " was already scheduled\n"); 7572 ReSchedule = true; 7573 } 7574 7575 auto *Bundle = buildBundle(VL); 7576 TryScheduleBundleImpl(ReSchedule, Bundle); 7577 if (!Bundle->isReady()) { 7578 cancelScheduling(VL, S.OpValue); 7579 return None; 7580 } 7581 return Bundle; 7582 } 7583 7584 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7585 Value *OpValue) { 7586 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7587 return; 7588 7589 ScheduleData *Bundle = getScheduleData(OpValue); 7590 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7591 assert(!Bundle->IsScheduled && 7592 "Can't cancel bundle which is already scheduled"); 7593 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7594 "tried to unbundle something which is not a bundle"); 7595 7596 // Remove the bundle from the ready list. 7597 if (Bundle->isReady()) 7598 ReadyInsts.remove(Bundle); 7599 7600 // Un-bundle: make single instructions out of the bundle. 7601 ScheduleData *BundleMember = Bundle; 7602 while (BundleMember) { 7603 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7604 BundleMember->FirstInBundle = BundleMember; 7605 ScheduleData *Next = BundleMember->NextInBundle; 7606 BundleMember->NextInBundle = nullptr; 7607 if (BundleMember->unscheduledDepsInBundle() == 0) { 7608 ReadyInsts.insert(BundleMember); 7609 } 7610 BundleMember = Next; 7611 } 7612 } 7613 7614 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7615 // Allocate a new ScheduleData for the instruction. 7616 if (ChunkPos >= ChunkSize) { 7617 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7618 ChunkPos = 0; 7619 } 7620 return &(ScheduleDataChunks.back()[ChunkPos++]); 7621 } 7622 7623 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7624 const InstructionsState &S) { 7625 if (getScheduleData(V, isOneOf(S, V))) 7626 return true; 7627 Instruction *I = dyn_cast<Instruction>(V); 7628 assert(I && "bundle member must be an instruction"); 7629 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7630 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7631 "be scheduled"); 7632 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7633 ScheduleData *ISD = getScheduleData(I); 7634 if (!ISD) 7635 return false; 7636 assert(isInSchedulingRegion(ISD) && 7637 "ScheduleData not in scheduling region"); 7638 ScheduleData *SD = allocateScheduleDataChunks(); 7639 SD->Inst = I; 7640 SD->init(SchedulingRegionID, S.OpValue); 7641 ExtraScheduleDataMap[I][S.OpValue] = SD; 7642 return true; 7643 }; 7644 if (CheckSheduleForI(I)) 7645 return true; 7646 if (!ScheduleStart) { 7647 // It's the first instruction in the new region. 7648 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7649 ScheduleStart = I; 7650 ScheduleEnd = I->getNextNode(); 7651 if (isOneOf(S, I) != I) 7652 CheckSheduleForI(I); 7653 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7654 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7655 return true; 7656 } 7657 // Search up and down at the same time, because we don't know if the new 7658 // instruction is above or below the existing scheduling region. 7659 BasicBlock::reverse_iterator UpIter = 7660 ++ScheduleStart->getIterator().getReverse(); 7661 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7662 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7663 BasicBlock::iterator LowerEnd = BB->end(); 7664 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7665 &*DownIter != I) { 7666 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7667 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7668 return false; 7669 } 7670 7671 ++UpIter; 7672 ++DownIter; 7673 } 7674 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7675 assert(I->getParent() == ScheduleStart->getParent() && 7676 "Instruction is in wrong basic block."); 7677 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7678 ScheduleStart = I; 7679 if (isOneOf(S, I) != I) 7680 CheckSheduleForI(I); 7681 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7682 << "\n"); 7683 return true; 7684 } 7685 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7686 "Expected to reach top of the basic block or instruction down the " 7687 "lower end."); 7688 assert(I->getParent() == ScheduleEnd->getParent() && 7689 "Instruction is in wrong basic block."); 7690 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7691 nullptr); 7692 ScheduleEnd = I->getNextNode(); 7693 if (isOneOf(S, I) != I) 7694 CheckSheduleForI(I); 7695 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7696 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7697 return true; 7698 } 7699 7700 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7701 Instruction *ToI, 7702 ScheduleData *PrevLoadStore, 7703 ScheduleData *NextLoadStore) { 7704 ScheduleData *CurrentLoadStore = PrevLoadStore; 7705 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7706 ScheduleData *SD = ScheduleDataMap[I]; 7707 if (!SD) { 7708 SD = allocateScheduleDataChunks(); 7709 ScheduleDataMap[I] = SD; 7710 SD->Inst = I; 7711 } 7712 assert(!isInSchedulingRegion(SD) && 7713 "new ScheduleData already in scheduling region"); 7714 SD->init(SchedulingRegionID, I); 7715 7716 if (I->mayReadOrWriteMemory() && 7717 (!isa<IntrinsicInst>(I) || 7718 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7719 cast<IntrinsicInst>(I)->getIntrinsicID() != 7720 Intrinsic::pseudoprobe))) { 7721 // Update the linked list of memory accessing instructions. 7722 if (CurrentLoadStore) { 7723 CurrentLoadStore->NextLoadStore = SD; 7724 } else { 7725 FirstLoadStoreInRegion = SD; 7726 } 7727 CurrentLoadStore = SD; 7728 } 7729 } 7730 if (NextLoadStore) { 7731 if (CurrentLoadStore) 7732 CurrentLoadStore->NextLoadStore = NextLoadStore; 7733 } else { 7734 LastLoadStoreInRegion = CurrentLoadStore; 7735 } 7736 } 7737 7738 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7739 bool InsertInReadyList, 7740 BoUpSLP *SLP) { 7741 assert(SD->isSchedulingEntity()); 7742 7743 SmallVector<ScheduleData *, 10> WorkList; 7744 WorkList.push_back(SD); 7745 7746 while (!WorkList.empty()) { 7747 ScheduleData *SD = WorkList.pop_back_val(); 7748 for (ScheduleData *BundleMember = SD; BundleMember; 7749 BundleMember = BundleMember->NextInBundle) { 7750 assert(isInSchedulingRegion(BundleMember)); 7751 if (BundleMember->hasValidDependencies()) 7752 continue; 7753 7754 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7755 << "\n"); 7756 BundleMember->Dependencies = 0; 7757 BundleMember->resetUnscheduledDeps(); 7758 7759 // Handle def-use chain dependencies. 7760 if (BundleMember->OpValue != BundleMember->Inst) { 7761 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7762 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7763 BundleMember->Dependencies++; 7764 ScheduleData *DestBundle = UseSD->FirstInBundle; 7765 if (!DestBundle->IsScheduled) 7766 BundleMember->incrementUnscheduledDeps(1); 7767 if (!DestBundle->hasValidDependencies()) 7768 WorkList.push_back(DestBundle); 7769 } 7770 } else { 7771 for (User *U : BundleMember->Inst->users()) { 7772 assert(isa<Instruction>(U) && 7773 "user of instruction must be instruction"); 7774 ScheduleData *UseSD = getScheduleData(U); 7775 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7776 BundleMember->Dependencies++; 7777 ScheduleData *DestBundle = UseSD->FirstInBundle; 7778 if (!DestBundle->IsScheduled) 7779 BundleMember->incrementUnscheduledDeps(1); 7780 if (!DestBundle->hasValidDependencies()) 7781 WorkList.push_back(DestBundle); 7782 } 7783 } 7784 } 7785 7786 // Handle the memory dependencies (if any). 7787 ScheduleData *DepDest = BundleMember->NextLoadStore; 7788 if (!DepDest) 7789 continue; 7790 Instruction *SrcInst = BundleMember->Inst; 7791 assert(SrcInst->mayReadOrWriteMemory() && 7792 "NextLoadStore list for non memory effecting bundle?"); 7793 MemoryLocation SrcLoc = getLocation(SrcInst); 7794 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7795 unsigned numAliased = 0; 7796 unsigned DistToSrc = 1; 7797 7798 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7799 assert(isInSchedulingRegion(DepDest)); 7800 7801 // We have two limits to reduce the complexity: 7802 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7803 // SLP->isAliased (which is the expensive part in this loop). 7804 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7805 // the whole loop (even if the loop is fast, it's quadratic). 7806 // It's important for the loop break condition (see below) to 7807 // check this limit even between two read-only instructions. 7808 if (DistToSrc >= MaxMemDepDistance || 7809 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7810 (numAliased >= AliasedCheckLimit || 7811 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7812 7813 // We increment the counter only if the locations are aliased 7814 // (instead of counting all alias checks). This gives a better 7815 // balance between reduced runtime and accurate dependencies. 7816 numAliased++; 7817 7818 DepDest->MemoryDependencies.push_back(BundleMember); 7819 BundleMember->Dependencies++; 7820 ScheduleData *DestBundle = DepDest->FirstInBundle; 7821 if (!DestBundle->IsScheduled) { 7822 BundleMember->incrementUnscheduledDeps(1); 7823 } 7824 if (!DestBundle->hasValidDependencies()) { 7825 WorkList.push_back(DestBundle); 7826 } 7827 } 7828 7829 // Example, explaining the loop break condition: Let's assume our 7830 // starting instruction is i0 and MaxMemDepDistance = 3. 7831 // 7832 // +--------v--v--v 7833 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7834 // +--------^--^--^ 7835 // 7836 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7837 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7838 // Previously we already added dependencies from i3 to i6,i7,i8 7839 // (because of MaxMemDepDistance). As we added a dependency from 7840 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7841 // and we can abort this loop at i6. 7842 if (DistToSrc >= 2 * MaxMemDepDistance) 7843 break; 7844 DistToSrc++; 7845 } 7846 } 7847 if (InsertInReadyList && SD->isReady()) { 7848 ReadyInsts.insert(SD); 7849 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7850 << "\n"); 7851 } 7852 } 7853 } 7854 7855 void BoUpSLP::BlockScheduling::resetSchedule() { 7856 assert(ScheduleStart && 7857 "tried to reset schedule on block which has not been scheduled"); 7858 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7859 doForAllOpcodes(I, [&](ScheduleData *SD) { 7860 assert(isInSchedulingRegion(SD) && 7861 "ScheduleData not in scheduling region"); 7862 SD->IsScheduled = false; 7863 SD->resetUnscheduledDeps(); 7864 }); 7865 } 7866 ReadyInsts.clear(); 7867 } 7868 7869 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7870 if (!BS->ScheduleStart) 7871 return; 7872 7873 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7874 7875 BS->resetSchedule(); 7876 7877 // For the real scheduling we use a more sophisticated ready-list: it is 7878 // sorted by the original instruction location. This lets the final schedule 7879 // be as close as possible to the original instruction order. 7880 struct ScheduleDataCompare { 7881 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7882 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7883 } 7884 }; 7885 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7886 7887 // Ensure that all dependency data is updated and fill the ready-list with 7888 // initial instructions. 7889 int Idx = 0; 7890 int NumToSchedule = 0; 7891 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7892 I = I->getNextNode()) { 7893 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7894 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7895 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7896 "scheduler and vectorizer bundle mismatch"); 7897 SD->FirstInBundle->SchedulingPriority = Idx++; 7898 if (SD->isSchedulingEntity()) { 7899 BS->calculateDependencies(SD, false, this); 7900 NumToSchedule++; 7901 } 7902 }); 7903 } 7904 BS->initialFillReadyList(ReadyInsts); 7905 7906 Instruction *LastScheduledInst = BS->ScheduleEnd; 7907 7908 // Do the "real" scheduling. 7909 while (!ReadyInsts.empty()) { 7910 ScheduleData *picked = *ReadyInsts.begin(); 7911 ReadyInsts.erase(ReadyInsts.begin()); 7912 7913 // Move the scheduled instruction(s) to their dedicated places, if not 7914 // there yet. 7915 for (ScheduleData *BundleMember = picked; BundleMember; 7916 BundleMember = BundleMember->NextInBundle) { 7917 Instruction *pickedInst = BundleMember->Inst; 7918 if (pickedInst->getNextNode() != LastScheduledInst) 7919 pickedInst->moveBefore(LastScheduledInst); 7920 LastScheduledInst = pickedInst; 7921 } 7922 7923 BS->schedule(picked, ReadyInsts); 7924 NumToSchedule--; 7925 } 7926 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7927 7928 // Check that we didn't break any of our invariants. 7929 #ifdef EXPENSIVE_CHECKS 7930 BS->verify(); 7931 #endif 7932 7933 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 7934 // Check that all schedulable entities got scheduled 7935 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 7936 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 7937 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 7938 assert(SD->IsScheduled && "must be scheduled at this point"); 7939 } 7940 }); 7941 } 7942 #endif 7943 7944 // Avoid duplicate scheduling of the block. 7945 BS->ScheduleStart = nullptr; 7946 } 7947 7948 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7949 // If V is a store, just return the width of the stored value (or value 7950 // truncated just before storing) without traversing the expression tree. 7951 // This is the common case. 7952 if (auto *Store = dyn_cast<StoreInst>(V)) { 7953 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7954 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7955 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7956 } 7957 7958 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7959 return getVectorElementSize(IEI->getOperand(1)); 7960 7961 auto E = InstrElementSize.find(V); 7962 if (E != InstrElementSize.end()) 7963 return E->second; 7964 7965 // If V is not a store, we can traverse the expression tree to find loads 7966 // that feed it. The type of the loaded value may indicate a more suitable 7967 // width than V's type. We want to base the vector element size on the width 7968 // of memory operations where possible. 7969 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7970 SmallPtrSet<Instruction *, 16> Visited; 7971 if (auto *I = dyn_cast<Instruction>(V)) { 7972 Worklist.emplace_back(I, I->getParent()); 7973 Visited.insert(I); 7974 } 7975 7976 // Traverse the expression tree in bottom-up order looking for loads. If we 7977 // encounter an instruction we don't yet handle, we give up. 7978 auto Width = 0u; 7979 while (!Worklist.empty()) { 7980 Instruction *I; 7981 BasicBlock *Parent; 7982 std::tie(I, Parent) = Worklist.pop_back_val(); 7983 7984 // We should only be looking at scalar instructions here. If the current 7985 // instruction has a vector type, skip. 7986 auto *Ty = I->getType(); 7987 if (isa<VectorType>(Ty)) 7988 continue; 7989 7990 // If the current instruction is a load, update MaxWidth to reflect the 7991 // width of the loaded value. 7992 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7993 isa<ExtractValueInst>(I)) 7994 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7995 7996 // Otherwise, we need to visit the operands of the instruction. We only 7997 // handle the interesting cases from buildTree here. If an operand is an 7998 // instruction we haven't yet visited and from the same basic block as the 7999 // user or the use is a PHI node, we add it to the worklist. 8000 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8001 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8002 isa<UnaryOperator>(I)) { 8003 for (Use &U : I->operands()) 8004 if (auto *J = dyn_cast<Instruction>(U.get())) 8005 if (Visited.insert(J).second && 8006 (isa<PHINode>(I) || J->getParent() == Parent)) 8007 Worklist.emplace_back(J, J->getParent()); 8008 } else { 8009 break; 8010 } 8011 } 8012 8013 // If we didn't encounter a memory access in the expression tree, or if we 8014 // gave up for some reason, just return the width of V. Otherwise, return the 8015 // maximum width we found. 8016 if (!Width) { 8017 if (auto *CI = dyn_cast<CmpInst>(V)) 8018 V = CI->getOperand(0); 8019 Width = DL->getTypeSizeInBits(V->getType()); 8020 } 8021 8022 for (Instruction *I : Visited) 8023 InstrElementSize[I] = Width; 8024 8025 return Width; 8026 } 8027 8028 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8029 // smaller type with a truncation. We collect the values that will be demoted 8030 // in ToDemote and additional roots that require investigating in Roots. 8031 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8032 SmallVectorImpl<Value *> &ToDemote, 8033 SmallVectorImpl<Value *> &Roots) { 8034 // We can always demote constants. 8035 if (isa<Constant>(V)) { 8036 ToDemote.push_back(V); 8037 return true; 8038 } 8039 8040 // If the value is not an instruction in the expression with only one use, it 8041 // cannot be demoted. 8042 auto *I = dyn_cast<Instruction>(V); 8043 if (!I || !I->hasOneUse() || !Expr.count(I)) 8044 return false; 8045 8046 switch (I->getOpcode()) { 8047 8048 // We can always demote truncations and extensions. Since truncations can 8049 // seed additional demotion, we save the truncated value. 8050 case Instruction::Trunc: 8051 Roots.push_back(I->getOperand(0)); 8052 break; 8053 case Instruction::ZExt: 8054 case Instruction::SExt: 8055 if (isa<ExtractElementInst>(I->getOperand(0)) || 8056 isa<InsertElementInst>(I->getOperand(0))) 8057 return false; 8058 break; 8059 8060 // We can demote certain binary operations if we can demote both of their 8061 // operands. 8062 case Instruction::Add: 8063 case Instruction::Sub: 8064 case Instruction::Mul: 8065 case Instruction::And: 8066 case Instruction::Or: 8067 case Instruction::Xor: 8068 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8069 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8070 return false; 8071 break; 8072 8073 // We can demote selects if we can demote their true and false values. 8074 case Instruction::Select: { 8075 SelectInst *SI = cast<SelectInst>(I); 8076 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8077 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8078 return false; 8079 break; 8080 } 8081 8082 // We can demote phis if we can demote all their incoming operands. Note that 8083 // we don't need to worry about cycles since we ensure single use above. 8084 case Instruction::PHI: { 8085 PHINode *PN = cast<PHINode>(I); 8086 for (Value *IncValue : PN->incoming_values()) 8087 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8088 return false; 8089 break; 8090 } 8091 8092 // Otherwise, conservatively give up. 8093 default: 8094 return false; 8095 } 8096 8097 // Record the value that we can demote. 8098 ToDemote.push_back(V); 8099 return true; 8100 } 8101 8102 void BoUpSLP::computeMinimumValueSizes() { 8103 // If there are no external uses, the expression tree must be rooted by a 8104 // store. We can't demote in-memory values, so there is nothing to do here. 8105 if (ExternalUses.empty()) 8106 return; 8107 8108 // We only attempt to truncate integer expressions. 8109 auto &TreeRoot = VectorizableTree[0]->Scalars; 8110 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8111 if (!TreeRootIT) 8112 return; 8113 8114 // If the expression is not rooted by a store, these roots should have 8115 // external uses. We will rely on InstCombine to rewrite the expression in 8116 // the narrower type. However, InstCombine only rewrites single-use values. 8117 // This means that if a tree entry other than a root is used externally, it 8118 // must have multiple uses and InstCombine will not rewrite it. The code 8119 // below ensures that only the roots are used externally. 8120 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8121 for (auto &EU : ExternalUses) 8122 if (!Expr.erase(EU.Scalar)) 8123 return; 8124 if (!Expr.empty()) 8125 return; 8126 8127 // Collect the scalar values of the vectorizable expression. We will use this 8128 // context to determine which values can be demoted. If we see a truncation, 8129 // we mark it as seeding another demotion. 8130 for (auto &EntryPtr : VectorizableTree) 8131 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8132 8133 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8134 // have a single external user that is not in the vectorizable tree. 8135 for (auto *Root : TreeRoot) 8136 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8137 return; 8138 8139 // Conservatively determine if we can actually truncate the roots of the 8140 // expression. Collect the values that can be demoted in ToDemote and 8141 // additional roots that require investigating in Roots. 8142 SmallVector<Value *, 32> ToDemote; 8143 SmallVector<Value *, 4> Roots; 8144 for (auto *Root : TreeRoot) 8145 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8146 return; 8147 8148 // The maximum bit width required to represent all the values that can be 8149 // demoted without loss of precision. It would be safe to truncate the roots 8150 // of the expression to this width. 8151 auto MaxBitWidth = 8u; 8152 8153 // We first check if all the bits of the roots are demanded. If they're not, 8154 // we can truncate the roots to this narrower type. 8155 for (auto *Root : TreeRoot) { 8156 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8157 MaxBitWidth = std::max<unsigned>( 8158 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8159 } 8160 8161 // True if the roots can be zero-extended back to their original type, rather 8162 // than sign-extended. We know that if the leading bits are not demanded, we 8163 // can safely zero-extend. So we initialize IsKnownPositive to True. 8164 bool IsKnownPositive = true; 8165 8166 // If all the bits of the roots are demanded, we can try a little harder to 8167 // compute a narrower type. This can happen, for example, if the roots are 8168 // getelementptr indices. InstCombine promotes these indices to the pointer 8169 // width. Thus, all their bits are technically demanded even though the 8170 // address computation might be vectorized in a smaller type. 8171 // 8172 // We start by looking at each entry that can be demoted. We compute the 8173 // maximum bit width required to store the scalar by using ValueTracking to 8174 // compute the number of high-order bits we can truncate. 8175 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8176 llvm::all_of(TreeRoot, [](Value *R) { 8177 assert(R->hasOneUse() && "Root should have only one use!"); 8178 return isa<GetElementPtrInst>(R->user_back()); 8179 })) { 8180 MaxBitWidth = 8u; 8181 8182 // Determine if the sign bit of all the roots is known to be zero. If not, 8183 // IsKnownPositive is set to False. 8184 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8185 KnownBits Known = computeKnownBits(R, *DL); 8186 return Known.isNonNegative(); 8187 }); 8188 8189 // Determine the maximum number of bits required to store the scalar 8190 // values. 8191 for (auto *Scalar : ToDemote) { 8192 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8193 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8194 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8195 } 8196 8197 // If we can't prove that the sign bit is zero, we must add one to the 8198 // maximum bit width to account for the unknown sign bit. This preserves 8199 // the existing sign bit so we can safely sign-extend the root back to the 8200 // original type. Otherwise, if we know the sign bit is zero, we will 8201 // zero-extend the root instead. 8202 // 8203 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8204 // one to the maximum bit width will yield a larger-than-necessary 8205 // type. In general, we need to add an extra bit only if we can't 8206 // prove that the upper bit of the original type is equal to the 8207 // upper bit of the proposed smaller type. If these two bits are the 8208 // same (either zero or one) we know that sign-extending from the 8209 // smaller type will result in the same value. Here, since we can't 8210 // yet prove this, we are just making the proposed smaller type 8211 // larger to ensure correctness. 8212 if (!IsKnownPositive) 8213 ++MaxBitWidth; 8214 } 8215 8216 // Round MaxBitWidth up to the next power-of-two. 8217 if (!isPowerOf2_64(MaxBitWidth)) 8218 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8219 8220 // If the maximum bit width we compute is less than the with of the roots' 8221 // type, we can proceed with the narrowing. Otherwise, do nothing. 8222 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8223 return; 8224 8225 // If we can truncate the root, we must collect additional values that might 8226 // be demoted as a result. That is, those seeded by truncations we will 8227 // modify. 8228 while (!Roots.empty()) 8229 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8230 8231 // Finally, map the values we can demote to the maximum bit with we computed. 8232 for (auto *Scalar : ToDemote) 8233 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8234 } 8235 8236 namespace { 8237 8238 /// The SLPVectorizer Pass. 8239 struct SLPVectorizer : public FunctionPass { 8240 SLPVectorizerPass Impl; 8241 8242 /// Pass identification, replacement for typeid 8243 static char ID; 8244 8245 explicit SLPVectorizer() : FunctionPass(ID) { 8246 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8247 } 8248 8249 bool doInitialization(Module &M) override { return false; } 8250 8251 bool runOnFunction(Function &F) override { 8252 if (skipFunction(F)) 8253 return false; 8254 8255 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8256 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8257 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8258 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8259 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8260 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8261 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8262 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8263 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8264 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8265 8266 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8267 } 8268 8269 void getAnalysisUsage(AnalysisUsage &AU) const override { 8270 FunctionPass::getAnalysisUsage(AU); 8271 AU.addRequired<AssumptionCacheTracker>(); 8272 AU.addRequired<ScalarEvolutionWrapperPass>(); 8273 AU.addRequired<AAResultsWrapperPass>(); 8274 AU.addRequired<TargetTransformInfoWrapperPass>(); 8275 AU.addRequired<LoopInfoWrapperPass>(); 8276 AU.addRequired<DominatorTreeWrapperPass>(); 8277 AU.addRequired<DemandedBitsWrapperPass>(); 8278 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8279 AU.addRequired<InjectTLIMappingsLegacy>(); 8280 AU.addPreserved<LoopInfoWrapperPass>(); 8281 AU.addPreserved<DominatorTreeWrapperPass>(); 8282 AU.addPreserved<AAResultsWrapperPass>(); 8283 AU.addPreserved<GlobalsAAWrapperPass>(); 8284 AU.setPreservesCFG(); 8285 } 8286 }; 8287 8288 } // end anonymous namespace 8289 8290 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8291 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8292 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8293 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8294 auto *AA = &AM.getResult<AAManager>(F); 8295 auto *LI = &AM.getResult<LoopAnalysis>(F); 8296 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8297 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8298 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8299 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8300 8301 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8302 if (!Changed) 8303 return PreservedAnalyses::all(); 8304 8305 PreservedAnalyses PA; 8306 PA.preserveSet<CFGAnalyses>(); 8307 return PA; 8308 } 8309 8310 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8311 TargetTransformInfo *TTI_, 8312 TargetLibraryInfo *TLI_, AAResults *AA_, 8313 LoopInfo *LI_, DominatorTree *DT_, 8314 AssumptionCache *AC_, DemandedBits *DB_, 8315 OptimizationRemarkEmitter *ORE_) { 8316 if (!RunSLPVectorization) 8317 return false; 8318 SE = SE_; 8319 TTI = TTI_; 8320 TLI = TLI_; 8321 AA = AA_; 8322 LI = LI_; 8323 DT = DT_; 8324 AC = AC_; 8325 DB = DB_; 8326 DL = &F.getParent()->getDataLayout(); 8327 8328 Stores.clear(); 8329 GEPs.clear(); 8330 bool Changed = false; 8331 8332 // If the target claims to have no vector registers don't attempt 8333 // vectorization. 8334 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8335 LLVM_DEBUG( 8336 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8337 return false; 8338 } 8339 8340 // Don't vectorize when the attribute NoImplicitFloat is used. 8341 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8342 return false; 8343 8344 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8345 8346 // Use the bottom up slp vectorizer to construct chains that start with 8347 // store instructions. 8348 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8349 8350 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8351 // delete instructions. 8352 8353 // Update DFS numbers now so that we can use them for ordering. 8354 DT->updateDFSNumbers(); 8355 8356 // Scan the blocks in the function in post order. 8357 for (auto BB : post_order(&F.getEntryBlock())) { 8358 collectSeedInstructions(BB); 8359 8360 // Vectorize trees that end at stores. 8361 if (!Stores.empty()) { 8362 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8363 << " underlying objects.\n"); 8364 Changed |= vectorizeStoreChains(R); 8365 } 8366 8367 // Vectorize trees that end at reductions. 8368 Changed |= vectorizeChainsInBlock(BB, R); 8369 8370 // Vectorize the index computations of getelementptr instructions. This 8371 // is primarily intended to catch gather-like idioms ending at 8372 // non-consecutive loads. 8373 if (!GEPs.empty()) { 8374 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8375 << " underlying objects.\n"); 8376 Changed |= vectorizeGEPIndices(BB, R); 8377 } 8378 } 8379 8380 if (Changed) { 8381 R.optimizeGatherSequence(); 8382 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8383 } 8384 return Changed; 8385 } 8386 8387 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8388 unsigned Idx) { 8389 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8390 << "\n"); 8391 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8392 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8393 unsigned VF = Chain.size(); 8394 8395 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8396 return false; 8397 8398 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8399 << "\n"); 8400 8401 R.buildTree(Chain); 8402 if (R.isTreeTinyAndNotFullyVectorizable()) 8403 return false; 8404 if (R.isLoadCombineCandidate()) 8405 return false; 8406 R.reorderTopToBottom(); 8407 R.reorderBottomToTop(); 8408 R.buildExternalUses(); 8409 8410 R.computeMinimumValueSizes(); 8411 8412 InstructionCost Cost = R.getTreeCost(); 8413 8414 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8415 if (Cost < -SLPCostThreshold) { 8416 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8417 8418 using namespace ore; 8419 8420 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8421 cast<StoreInst>(Chain[0])) 8422 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8423 << " and with tree size " 8424 << NV("TreeSize", R.getTreeSize())); 8425 8426 R.vectorizeTree(); 8427 return true; 8428 } 8429 8430 return false; 8431 } 8432 8433 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8434 BoUpSLP &R) { 8435 // We may run into multiple chains that merge into a single chain. We mark the 8436 // stores that we vectorized so that we don't visit the same store twice. 8437 BoUpSLP::ValueSet VectorizedStores; 8438 bool Changed = false; 8439 8440 int E = Stores.size(); 8441 SmallBitVector Tails(E, false); 8442 int MaxIter = MaxStoreLookup.getValue(); 8443 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8444 E, std::make_pair(E, INT_MAX)); 8445 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8446 int IterCnt; 8447 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8448 &CheckedPairs, 8449 &ConsecutiveChain](int K, int Idx) { 8450 if (IterCnt >= MaxIter) 8451 return true; 8452 if (CheckedPairs[Idx].test(K)) 8453 return ConsecutiveChain[K].second == 1 && 8454 ConsecutiveChain[K].first == Idx; 8455 ++IterCnt; 8456 CheckedPairs[Idx].set(K); 8457 CheckedPairs[K].set(Idx); 8458 Optional<int> Diff = getPointersDiff( 8459 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8460 Stores[Idx]->getValueOperand()->getType(), 8461 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8462 if (!Diff || *Diff == 0) 8463 return false; 8464 int Val = *Diff; 8465 if (Val < 0) { 8466 if (ConsecutiveChain[Idx].second > -Val) { 8467 Tails.set(K); 8468 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8469 } 8470 return false; 8471 } 8472 if (ConsecutiveChain[K].second <= Val) 8473 return false; 8474 8475 Tails.set(Idx); 8476 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8477 return Val == 1; 8478 }; 8479 // Do a quadratic search on all of the given stores in reverse order and find 8480 // all of the pairs of stores that follow each other. 8481 for (int Idx = E - 1; Idx >= 0; --Idx) { 8482 // If a store has multiple consecutive store candidates, search according 8483 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8484 // This is because usually pairing with immediate succeeding or preceding 8485 // candidate create the best chance to find slp vectorization opportunity. 8486 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8487 IterCnt = 0; 8488 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8489 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8490 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8491 break; 8492 } 8493 8494 // Tracks if we tried to vectorize stores starting from the given tail 8495 // already. 8496 SmallBitVector TriedTails(E, false); 8497 // For stores that start but don't end a link in the chain: 8498 for (int Cnt = E; Cnt > 0; --Cnt) { 8499 int I = Cnt - 1; 8500 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8501 continue; 8502 // We found a store instr that starts a chain. Now follow the chain and try 8503 // to vectorize it. 8504 BoUpSLP::ValueList Operands; 8505 // Collect the chain into a list. 8506 while (I != E && !VectorizedStores.count(Stores[I])) { 8507 Operands.push_back(Stores[I]); 8508 Tails.set(I); 8509 if (ConsecutiveChain[I].second != 1) { 8510 // Mark the new end in the chain and go back, if required. It might be 8511 // required if the original stores come in reversed order, for example. 8512 if (ConsecutiveChain[I].first != E && 8513 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8514 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8515 TriedTails.set(I); 8516 Tails.reset(ConsecutiveChain[I].first); 8517 if (Cnt < ConsecutiveChain[I].first + 2) 8518 Cnt = ConsecutiveChain[I].first + 2; 8519 } 8520 break; 8521 } 8522 // Move to the next value in the chain. 8523 I = ConsecutiveChain[I].first; 8524 } 8525 assert(!Operands.empty() && "Expected non-empty list of stores."); 8526 8527 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8528 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8529 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8530 8531 unsigned MinVF = R.getMinVF(EltSize); 8532 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8533 MaxElts); 8534 8535 // FIXME: Is division-by-2 the correct step? Should we assert that the 8536 // register size is a power-of-2? 8537 unsigned StartIdx = 0; 8538 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8539 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8540 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8541 if (!VectorizedStores.count(Slice.front()) && 8542 !VectorizedStores.count(Slice.back()) && 8543 vectorizeStoreChain(Slice, R, Cnt)) { 8544 // Mark the vectorized stores so that we don't vectorize them again. 8545 VectorizedStores.insert(Slice.begin(), Slice.end()); 8546 Changed = true; 8547 // If we vectorized initial block, no need to try to vectorize it 8548 // again. 8549 if (Cnt == StartIdx) 8550 StartIdx += Size; 8551 Cnt += Size; 8552 continue; 8553 } 8554 ++Cnt; 8555 } 8556 // Check if the whole array was vectorized already - exit. 8557 if (StartIdx >= Operands.size()) 8558 break; 8559 } 8560 } 8561 8562 return Changed; 8563 } 8564 8565 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8566 // Initialize the collections. We will make a single pass over the block. 8567 Stores.clear(); 8568 GEPs.clear(); 8569 8570 // Visit the store and getelementptr instructions in BB and organize them in 8571 // Stores and GEPs according to the underlying objects of their pointer 8572 // operands. 8573 for (Instruction &I : *BB) { 8574 // Ignore store instructions that are volatile or have a pointer operand 8575 // that doesn't point to a scalar type. 8576 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8577 if (!SI->isSimple()) 8578 continue; 8579 if (!isValidElementType(SI->getValueOperand()->getType())) 8580 continue; 8581 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8582 } 8583 8584 // Ignore getelementptr instructions that have more than one index, a 8585 // constant index, or a pointer operand that doesn't point to a scalar 8586 // type. 8587 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8588 auto Idx = GEP->idx_begin()->get(); 8589 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8590 continue; 8591 if (!isValidElementType(Idx->getType())) 8592 continue; 8593 if (GEP->getType()->isVectorTy()) 8594 continue; 8595 GEPs[GEP->getPointerOperand()].push_back(GEP); 8596 } 8597 } 8598 } 8599 8600 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8601 if (!A || !B) 8602 return false; 8603 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8604 return false; 8605 Value *VL[] = {A, B}; 8606 return tryToVectorizeList(VL, R); 8607 } 8608 8609 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8610 bool LimitForRegisterSize) { 8611 if (VL.size() < 2) 8612 return false; 8613 8614 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8615 << VL.size() << ".\n"); 8616 8617 // Check that all of the parts are instructions of the same type, 8618 // we permit an alternate opcode via InstructionsState. 8619 InstructionsState S = getSameOpcode(VL); 8620 if (!S.getOpcode()) 8621 return false; 8622 8623 Instruction *I0 = cast<Instruction>(S.OpValue); 8624 // Make sure invalid types (including vector type) are rejected before 8625 // determining vectorization factor for scalar instructions. 8626 for (Value *V : VL) { 8627 Type *Ty = V->getType(); 8628 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8629 // NOTE: the following will give user internal llvm type name, which may 8630 // not be useful. 8631 R.getORE()->emit([&]() { 8632 std::string type_str; 8633 llvm::raw_string_ostream rso(type_str); 8634 Ty->print(rso); 8635 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8636 << "Cannot SLP vectorize list: type " 8637 << rso.str() + " is unsupported by vectorizer"; 8638 }); 8639 return false; 8640 } 8641 } 8642 8643 unsigned Sz = R.getVectorElementSize(I0); 8644 unsigned MinVF = R.getMinVF(Sz); 8645 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8646 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8647 if (MaxVF < 2) { 8648 R.getORE()->emit([&]() { 8649 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8650 << "Cannot SLP vectorize list: vectorization factor " 8651 << "less than 2 is not supported"; 8652 }); 8653 return false; 8654 } 8655 8656 bool Changed = false; 8657 bool CandidateFound = false; 8658 InstructionCost MinCost = SLPCostThreshold.getValue(); 8659 Type *ScalarTy = VL[0]->getType(); 8660 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8661 ScalarTy = IE->getOperand(1)->getType(); 8662 8663 unsigned NextInst = 0, MaxInst = VL.size(); 8664 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8665 // No actual vectorization should happen, if number of parts is the same as 8666 // provided vectorization factor (i.e. the scalar type is used for vector 8667 // code during codegen). 8668 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8669 if (TTI->getNumberOfParts(VecTy) == VF) 8670 continue; 8671 for (unsigned I = NextInst; I < MaxInst; ++I) { 8672 unsigned OpsWidth = 0; 8673 8674 if (I + VF > MaxInst) 8675 OpsWidth = MaxInst - I; 8676 else 8677 OpsWidth = VF; 8678 8679 if (!isPowerOf2_32(OpsWidth)) 8680 continue; 8681 8682 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8683 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8684 break; 8685 8686 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8687 // Check that a previous iteration of this loop did not delete the Value. 8688 if (llvm::any_of(Ops, [&R](Value *V) { 8689 auto *I = dyn_cast<Instruction>(V); 8690 return I && R.isDeleted(I); 8691 })) 8692 continue; 8693 8694 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8695 << "\n"); 8696 8697 R.buildTree(Ops); 8698 if (R.isTreeTinyAndNotFullyVectorizable()) 8699 continue; 8700 R.reorderTopToBottom(); 8701 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8702 R.buildExternalUses(); 8703 8704 R.computeMinimumValueSizes(); 8705 InstructionCost Cost = R.getTreeCost(); 8706 CandidateFound = true; 8707 MinCost = std::min(MinCost, Cost); 8708 8709 if (Cost < -SLPCostThreshold) { 8710 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8711 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8712 cast<Instruction>(Ops[0])) 8713 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8714 << " and with tree size " 8715 << ore::NV("TreeSize", R.getTreeSize())); 8716 8717 R.vectorizeTree(); 8718 // Move to the next bundle. 8719 I += VF - 1; 8720 NextInst = I + 1; 8721 Changed = true; 8722 } 8723 } 8724 } 8725 8726 if (!Changed && CandidateFound) { 8727 R.getORE()->emit([&]() { 8728 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8729 << "List vectorization was possible but not beneficial with cost " 8730 << ore::NV("Cost", MinCost) << " >= " 8731 << ore::NV("Treshold", -SLPCostThreshold); 8732 }); 8733 } else if (!Changed) { 8734 R.getORE()->emit([&]() { 8735 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8736 << "Cannot SLP vectorize list: vectorization was impossible" 8737 << " with available vectorization factors"; 8738 }); 8739 } 8740 return Changed; 8741 } 8742 8743 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8744 if (!I) 8745 return false; 8746 8747 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8748 return false; 8749 8750 Value *P = I->getParent(); 8751 8752 // Vectorize in current basic block only. 8753 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8754 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8755 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8756 return false; 8757 8758 // Try to vectorize V. 8759 if (tryToVectorizePair(Op0, Op1, R)) 8760 return true; 8761 8762 auto *A = dyn_cast<BinaryOperator>(Op0); 8763 auto *B = dyn_cast<BinaryOperator>(Op1); 8764 // Try to skip B. 8765 if (B && B->hasOneUse()) { 8766 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8767 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8768 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8769 return true; 8770 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8771 return true; 8772 } 8773 8774 // Try to skip A. 8775 if (A && A->hasOneUse()) { 8776 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8777 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8778 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8779 return true; 8780 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8781 return true; 8782 } 8783 return false; 8784 } 8785 8786 namespace { 8787 8788 /// Model horizontal reductions. 8789 /// 8790 /// A horizontal reduction is a tree of reduction instructions that has values 8791 /// that can be put into a vector as its leaves. For example: 8792 /// 8793 /// mul mul mul mul 8794 /// \ / \ / 8795 /// + + 8796 /// \ / 8797 /// + 8798 /// This tree has "mul" as its leaf values and "+" as its reduction 8799 /// instructions. A reduction can feed into a store or a binary operation 8800 /// feeding a phi. 8801 /// ... 8802 /// \ / 8803 /// + 8804 /// | 8805 /// phi += 8806 /// 8807 /// Or: 8808 /// ... 8809 /// \ / 8810 /// + 8811 /// | 8812 /// *p = 8813 /// 8814 class HorizontalReduction { 8815 using ReductionOpsType = SmallVector<Value *, 16>; 8816 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8817 ReductionOpsListType ReductionOps; 8818 SmallVector<Value *, 32> ReducedVals; 8819 // Use map vector to make stable output. 8820 MapVector<Instruction *, Value *> ExtraArgs; 8821 WeakTrackingVH ReductionRoot; 8822 /// The type of reduction operation. 8823 RecurKind RdxKind; 8824 8825 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8826 8827 static bool isCmpSelMinMax(Instruction *I) { 8828 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8829 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8830 } 8831 8832 // And/or are potentially poison-safe logical patterns like: 8833 // select x, y, false 8834 // select x, true, y 8835 static bool isBoolLogicOp(Instruction *I) { 8836 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8837 match(I, m_LogicalOr(m_Value(), m_Value())); 8838 } 8839 8840 /// Checks if instruction is associative and can be vectorized. 8841 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8842 if (Kind == RecurKind::None) 8843 return false; 8844 8845 // Integer ops that map to select instructions or intrinsics are fine. 8846 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8847 isBoolLogicOp(I)) 8848 return true; 8849 8850 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8851 // FP min/max are associative except for NaN and -0.0. We do not 8852 // have to rule out -0.0 here because the intrinsic semantics do not 8853 // specify a fixed result for it. 8854 return I->getFastMathFlags().noNaNs(); 8855 } 8856 8857 return I->isAssociative(); 8858 } 8859 8860 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8861 // Poison-safe 'or' takes the form: select X, true, Y 8862 // To make that work with the normal operand processing, we skip the 8863 // true value operand. 8864 // TODO: Change the code and data structures to handle this without a hack. 8865 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8866 return I->getOperand(2); 8867 return I->getOperand(Index); 8868 } 8869 8870 /// Checks if the ParentStackElem.first should be marked as a reduction 8871 /// operation with an extra argument or as extra argument itself. 8872 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8873 Value *ExtraArg) { 8874 if (ExtraArgs.count(ParentStackElem.first)) { 8875 ExtraArgs[ParentStackElem.first] = nullptr; 8876 // We ran into something like: 8877 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8878 // The whole ParentStackElem.first should be considered as an extra value 8879 // in this case. 8880 // Do not perform analysis of remaining operands of ParentStackElem.first 8881 // instruction, this whole instruction is an extra argument. 8882 ParentStackElem.second = INVALID_OPERAND_INDEX; 8883 } else { 8884 // We ran into something like: 8885 // ParentStackElem.first += ... + ExtraArg + ... 8886 ExtraArgs[ParentStackElem.first] = ExtraArg; 8887 } 8888 } 8889 8890 /// Creates reduction operation with the current opcode. 8891 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8892 Value *RHS, const Twine &Name, bool UseSelect) { 8893 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8894 switch (Kind) { 8895 case RecurKind::Or: 8896 if (UseSelect && 8897 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8898 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8899 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8900 Name); 8901 case RecurKind::And: 8902 if (UseSelect && 8903 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8904 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8905 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8906 Name); 8907 case RecurKind::Add: 8908 case RecurKind::Mul: 8909 case RecurKind::Xor: 8910 case RecurKind::FAdd: 8911 case RecurKind::FMul: 8912 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8913 Name); 8914 case RecurKind::FMax: 8915 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8916 case RecurKind::FMin: 8917 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8918 case RecurKind::SMax: 8919 if (UseSelect) { 8920 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8921 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8922 } 8923 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8924 case RecurKind::SMin: 8925 if (UseSelect) { 8926 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8927 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8928 } 8929 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8930 case RecurKind::UMax: 8931 if (UseSelect) { 8932 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8933 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8934 } 8935 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8936 case RecurKind::UMin: 8937 if (UseSelect) { 8938 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8939 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8940 } 8941 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8942 default: 8943 llvm_unreachable("Unknown reduction operation."); 8944 } 8945 } 8946 8947 /// Creates reduction operation with the current opcode with the IR flags 8948 /// from \p ReductionOps. 8949 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8950 Value *RHS, const Twine &Name, 8951 const ReductionOpsListType &ReductionOps) { 8952 bool UseSelect = ReductionOps.size() == 2 || 8953 // Logical or/and. 8954 (ReductionOps.size() == 1 && 8955 isa<SelectInst>(ReductionOps.front().front())); 8956 assert((!UseSelect || ReductionOps.size() != 2 || 8957 isa<SelectInst>(ReductionOps[1][0])) && 8958 "Expected cmp + select pairs for reduction"); 8959 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8960 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8961 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8962 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8963 propagateIRFlags(Op, ReductionOps[1]); 8964 return Op; 8965 } 8966 } 8967 propagateIRFlags(Op, ReductionOps[0]); 8968 return Op; 8969 } 8970 8971 /// Creates reduction operation with the current opcode with the IR flags 8972 /// from \p I. 8973 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8974 Value *RHS, const Twine &Name, Instruction *I) { 8975 auto *SelI = dyn_cast<SelectInst>(I); 8976 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8977 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8978 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8979 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8980 } 8981 propagateIRFlags(Op, I); 8982 return Op; 8983 } 8984 8985 static RecurKind getRdxKind(Instruction *I) { 8986 assert(I && "Expected instruction for reduction matching"); 8987 if (match(I, m_Add(m_Value(), m_Value()))) 8988 return RecurKind::Add; 8989 if (match(I, m_Mul(m_Value(), m_Value()))) 8990 return RecurKind::Mul; 8991 if (match(I, m_And(m_Value(), m_Value())) || 8992 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8993 return RecurKind::And; 8994 if (match(I, m_Or(m_Value(), m_Value())) || 8995 match(I, m_LogicalOr(m_Value(), m_Value()))) 8996 return RecurKind::Or; 8997 if (match(I, m_Xor(m_Value(), m_Value()))) 8998 return RecurKind::Xor; 8999 if (match(I, m_FAdd(m_Value(), m_Value()))) 9000 return RecurKind::FAdd; 9001 if (match(I, m_FMul(m_Value(), m_Value()))) 9002 return RecurKind::FMul; 9003 9004 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9005 return RecurKind::FMax; 9006 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9007 return RecurKind::FMin; 9008 9009 // This matches either cmp+select or intrinsics. SLP is expected to handle 9010 // either form. 9011 // TODO: If we are canonicalizing to intrinsics, we can remove several 9012 // special-case paths that deal with selects. 9013 if (match(I, m_SMax(m_Value(), m_Value()))) 9014 return RecurKind::SMax; 9015 if (match(I, m_SMin(m_Value(), m_Value()))) 9016 return RecurKind::SMin; 9017 if (match(I, m_UMax(m_Value(), m_Value()))) 9018 return RecurKind::UMax; 9019 if (match(I, m_UMin(m_Value(), m_Value()))) 9020 return RecurKind::UMin; 9021 9022 if (auto *Select = dyn_cast<SelectInst>(I)) { 9023 // Try harder: look for min/max pattern based on instructions producing 9024 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9025 // During the intermediate stages of SLP, it's very common to have 9026 // pattern like this (since optimizeGatherSequence is run only once 9027 // at the end): 9028 // %1 = extractelement <2 x i32> %a, i32 0 9029 // %2 = extractelement <2 x i32> %a, i32 1 9030 // %cond = icmp sgt i32 %1, %2 9031 // %3 = extractelement <2 x i32> %a, i32 0 9032 // %4 = extractelement <2 x i32> %a, i32 1 9033 // %select = select i1 %cond, i32 %3, i32 %4 9034 CmpInst::Predicate Pred; 9035 Instruction *L1; 9036 Instruction *L2; 9037 9038 Value *LHS = Select->getTrueValue(); 9039 Value *RHS = Select->getFalseValue(); 9040 Value *Cond = Select->getCondition(); 9041 9042 // TODO: Support inverse predicates. 9043 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9044 if (!isa<ExtractElementInst>(RHS) || 9045 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9046 return RecurKind::None; 9047 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9048 if (!isa<ExtractElementInst>(LHS) || 9049 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9050 return RecurKind::None; 9051 } else { 9052 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9053 return RecurKind::None; 9054 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9055 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9056 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9057 return RecurKind::None; 9058 } 9059 9060 switch (Pred) { 9061 default: 9062 return RecurKind::None; 9063 case CmpInst::ICMP_SGT: 9064 case CmpInst::ICMP_SGE: 9065 return RecurKind::SMax; 9066 case CmpInst::ICMP_SLT: 9067 case CmpInst::ICMP_SLE: 9068 return RecurKind::SMin; 9069 case CmpInst::ICMP_UGT: 9070 case CmpInst::ICMP_UGE: 9071 return RecurKind::UMax; 9072 case CmpInst::ICMP_ULT: 9073 case CmpInst::ICMP_ULE: 9074 return RecurKind::UMin; 9075 } 9076 } 9077 return RecurKind::None; 9078 } 9079 9080 /// Get the index of the first operand. 9081 static unsigned getFirstOperandIndex(Instruction *I) { 9082 return isCmpSelMinMax(I) ? 1 : 0; 9083 } 9084 9085 /// Total number of operands in the reduction operation. 9086 static unsigned getNumberOfOperands(Instruction *I) { 9087 return isCmpSelMinMax(I) ? 3 : 2; 9088 } 9089 9090 /// Checks if the instruction is in basic block \p BB. 9091 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9092 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9093 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9094 auto *Sel = cast<SelectInst>(I); 9095 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9096 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9097 } 9098 return I->getParent() == BB; 9099 } 9100 9101 /// Expected number of uses for reduction operations/reduced values. 9102 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9103 if (IsCmpSelMinMax) { 9104 // SelectInst must be used twice while the condition op must have single 9105 // use only. 9106 if (auto *Sel = dyn_cast<SelectInst>(I)) 9107 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9108 return I->hasNUses(2); 9109 } 9110 9111 // Arithmetic reduction operation must be used once only. 9112 return I->hasOneUse(); 9113 } 9114 9115 /// Initializes the list of reduction operations. 9116 void initReductionOps(Instruction *I) { 9117 if (isCmpSelMinMax(I)) 9118 ReductionOps.assign(2, ReductionOpsType()); 9119 else 9120 ReductionOps.assign(1, ReductionOpsType()); 9121 } 9122 9123 /// Add all reduction operations for the reduction instruction \p I. 9124 void addReductionOps(Instruction *I) { 9125 if (isCmpSelMinMax(I)) { 9126 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9127 ReductionOps[1].emplace_back(I); 9128 } else { 9129 ReductionOps[0].emplace_back(I); 9130 } 9131 } 9132 9133 static Value *getLHS(RecurKind Kind, Instruction *I) { 9134 if (Kind == RecurKind::None) 9135 return nullptr; 9136 return I->getOperand(getFirstOperandIndex(I)); 9137 } 9138 static Value *getRHS(RecurKind Kind, Instruction *I) { 9139 if (Kind == RecurKind::None) 9140 return nullptr; 9141 return I->getOperand(getFirstOperandIndex(I) + 1); 9142 } 9143 9144 public: 9145 HorizontalReduction() = default; 9146 9147 /// Try to find a reduction tree. 9148 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9149 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9150 "Phi needs to use the binary operator"); 9151 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9152 isa<IntrinsicInst>(Inst)) && 9153 "Expected binop, select, or intrinsic for reduction matching"); 9154 RdxKind = getRdxKind(Inst); 9155 9156 // We could have a initial reductions that is not an add. 9157 // r *= v1 + v2 + v3 + v4 9158 // In such a case start looking for a tree rooted in the first '+'. 9159 if (Phi) { 9160 if (getLHS(RdxKind, Inst) == Phi) { 9161 Phi = nullptr; 9162 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9163 if (!Inst) 9164 return false; 9165 RdxKind = getRdxKind(Inst); 9166 } else if (getRHS(RdxKind, Inst) == Phi) { 9167 Phi = nullptr; 9168 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9169 if (!Inst) 9170 return false; 9171 RdxKind = getRdxKind(Inst); 9172 } 9173 } 9174 9175 if (!isVectorizable(RdxKind, Inst)) 9176 return false; 9177 9178 // Analyze "regular" integer/FP types for reductions - no target-specific 9179 // types or pointers. 9180 Type *Ty = Inst->getType(); 9181 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9182 return false; 9183 9184 // Though the ultimate reduction may have multiple uses, its condition must 9185 // have only single use. 9186 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9187 if (!Sel->getCondition()->hasOneUse()) 9188 return false; 9189 9190 ReductionRoot = Inst; 9191 9192 // The opcode for leaf values that we perform a reduction on. 9193 // For example: load(x) + load(y) + load(z) + fptoui(w) 9194 // The leaf opcode for 'w' does not match, so we don't include it as a 9195 // potential candidate for the reduction. 9196 unsigned LeafOpcode = 0; 9197 9198 // Post-order traverse the reduction tree starting at Inst. We only handle 9199 // true trees containing binary operators or selects. 9200 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9201 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9202 initReductionOps(Inst); 9203 while (!Stack.empty()) { 9204 Instruction *TreeN = Stack.back().first; 9205 unsigned EdgeToVisit = Stack.back().second++; 9206 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9207 bool IsReducedValue = TreeRdxKind != RdxKind; 9208 9209 // Postorder visit. 9210 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9211 if (IsReducedValue) 9212 ReducedVals.push_back(TreeN); 9213 else { 9214 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9215 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9216 // Check if TreeN is an extra argument of its parent operation. 9217 if (Stack.size() <= 1) { 9218 // TreeN can't be an extra argument as it is a root reduction 9219 // operation. 9220 return false; 9221 } 9222 // Yes, TreeN is an extra argument, do not add it to a list of 9223 // reduction operations. 9224 // Stack[Stack.size() - 2] always points to the parent operation. 9225 markExtraArg(Stack[Stack.size() - 2], TreeN); 9226 ExtraArgs.erase(TreeN); 9227 } else 9228 addReductionOps(TreeN); 9229 } 9230 // Retract. 9231 Stack.pop_back(); 9232 continue; 9233 } 9234 9235 // Visit operands. 9236 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9237 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9238 if (!EdgeInst) { 9239 // Edge value is not a reduction instruction or a leaf instruction. 9240 // (It may be a constant, function argument, or something else.) 9241 markExtraArg(Stack.back(), EdgeVal); 9242 continue; 9243 } 9244 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9245 // Continue analysis if the next operand is a reduction operation or 9246 // (possibly) a leaf value. If the leaf value opcode is not set, 9247 // the first met operation != reduction operation is considered as the 9248 // leaf opcode. 9249 // Only handle trees in the current basic block. 9250 // Each tree node needs to have minimal number of users except for the 9251 // ultimate reduction. 9252 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9253 if (EdgeInst != Phi && EdgeInst != Inst && 9254 hasSameParent(EdgeInst, Inst->getParent()) && 9255 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9256 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9257 if (IsRdxInst) { 9258 // We need to be able to reassociate the reduction operations. 9259 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9260 // I is an extra argument for TreeN (its parent operation). 9261 markExtraArg(Stack.back(), EdgeInst); 9262 continue; 9263 } 9264 } else if (!LeafOpcode) { 9265 LeafOpcode = EdgeInst->getOpcode(); 9266 } 9267 Stack.push_back( 9268 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9269 continue; 9270 } 9271 // I is an extra argument for TreeN (its parent operation). 9272 markExtraArg(Stack.back(), EdgeInst); 9273 } 9274 return true; 9275 } 9276 9277 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9278 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9279 // If there are a sufficient number of reduction values, reduce 9280 // to a nearby power-of-2. We can safely generate oversized 9281 // vectors and rely on the backend to split them to legal sizes. 9282 unsigned NumReducedVals = ReducedVals.size(); 9283 if (NumReducedVals < 4) 9284 return nullptr; 9285 9286 // Intersect the fast-math-flags from all reduction operations. 9287 FastMathFlags RdxFMF; 9288 RdxFMF.set(); 9289 for (ReductionOpsType &RdxOp : ReductionOps) { 9290 for (Value *RdxVal : RdxOp) { 9291 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9292 RdxFMF &= FPMO->getFastMathFlags(); 9293 } 9294 } 9295 9296 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9297 Builder.setFastMathFlags(RdxFMF); 9298 9299 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9300 // The same extra argument may be used several times, so log each attempt 9301 // to use it. 9302 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9303 assert(Pair.first && "DebugLoc must be set."); 9304 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9305 } 9306 9307 // The compare instruction of a min/max is the insertion point for new 9308 // instructions and may be replaced with a new compare instruction. 9309 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9310 assert(isa<SelectInst>(RdxRootInst) && 9311 "Expected min/max reduction to have select root instruction"); 9312 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9313 assert(isa<Instruction>(ScalarCond) && 9314 "Expected min/max reduction to have compare condition"); 9315 return cast<Instruction>(ScalarCond); 9316 }; 9317 9318 // The reduction root is used as the insertion point for new instructions, 9319 // so set it as externally used to prevent it from being deleted. 9320 ExternallyUsedValues[ReductionRoot]; 9321 SmallVector<Value *, 16> IgnoreList; 9322 for (ReductionOpsType &RdxOp : ReductionOps) 9323 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9324 9325 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9326 if (NumReducedVals > ReduxWidth) { 9327 // In the loop below, we are building a tree based on a window of 9328 // 'ReduxWidth' values. 9329 // If the operands of those values have common traits (compare predicate, 9330 // constant operand, etc), then we want to group those together to 9331 // minimize the cost of the reduction. 9332 9333 // TODO: This should be extended to count common operands for 9334 // compares and binops. 9335 9336 // Step 1: Count the number of times each compare predicate occurs. 9337 SmallDenseMap<unsigned, unsigned> PredCountMap; 9338 for (Value *RdxVal : ReducedVals) { 9339 CmpInst::Predicate Pred; 9340 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9341 ++PredCountMap[Pred]; 9342 } 9343 // Step 2: Sort the values so the most common predicates come first. 9344 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9345 CmpInst::Predicate PredA, PredB; 9346 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9347 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9348 return PredCountMap[PredA] > PredCountMap[PredB]; 9349 } 9350 return false; 9351 }); 9352 } 9353 9354 Value *VectorizedTree = nullptr; 9355 unsigned i = 0; 9356 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9357 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9358 V.buildTree(VL, IgnoreList); 9359 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9360 break; 9361 if (V.isLoadCombineReductionCandidate(RdxKind)) 9362 break; 9363 V.reorderTopToBottom(); 9364 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9365 V.buildExternalUses(ExternallyUsedValues); 9366 9367 // For a poison-safe boolean logic reduction, do not replace select 9368 // instructions with logic ops. All reduced values will be frozen (see 9369 // below) to prevent leaking poison. 9370 if (isa<SelectInst>(ReductionRoot) && 9371 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9372 NumReducedVals != ReduxWidth) 9373 break; 9374 9375 V.computeMinimumValueSizes(); 9376 9377 // Estimate cost. 9378 InstructionCost TreeCost = 9379 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9380 InstructionCost ReductionCost = 9381 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9382 InstructionCost Cost = TreeCost + ReductionCost; 9383 if (!Cost.isValid()) { 9384 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9385 return nullptr; 9386 } 9387 if (Cost >= -SLPCostThreshold) { 9388 V.getORE()->emit([&]() { 9389 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9390 cast<Instruction>(VL[0])) 9391 << "Vectorizing horizontal reduction is possible" 9392 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9393 << " and threshold " 9394 << ore::NV("Threshold", -SLPCostThreshold); 9395 }); 9396 break; 9397 } 9398 9399 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9400 << Cost << ". (HorRdx)\n"); 9401 V.getORE()->emit([&]() { 9402 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9403 cast<Instruction>(VL[0])) 9404 << "Vectorized horizontal reduction with cost " 9405 << ore::NV("Cost", Cost) << " and with tree size " 9406 << ore::NV("TreeSize", V.getTreeSize()); 9407 }); 9408 9409 // Vectorize a tree. 9410 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9411 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9412 9413 // Emit a reduction. If the root is a select (min/max idiom), the insert 9414 // point is the compare condition of that select. 9415 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9416 if (isCmpSelMinMax(RdxRootInst)) 9417 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9418 else 9419 Builder.SetInsertPoint(RdxRootInst); 9420 9421 // To prevent poison from leaking across what used to be sequential, safe, 9422 // scalar boolean logic operations, the reduction operand must be frozen. 9423 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9424 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9425 9426 Value *ReducedSubTree = 9427 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9428 9429 if (!VectorizedTree) { 9430 // Initialize the final value in the reduction. 9431 VectorizedTree = ReducedSubTree; 9432 } else { 9433 // Update the final value in the reduction. 9434 Builder.SetCurrentDebugLocation(Loc); 9435 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9436 ReducedSubTree, "op.rdx", ReductionOps); 9437 } 9438 i += ReduxWidth; 9439 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9440 } 9441 9442 if (VectorizedTree) { 9443 // Finish the reduction. 9444 for (; i < NumReducedVals; ++i) { 9445 auto *I = cast<Instruction>(ReducedVals[i]); 9446 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9447 VectorizedTree = 9448 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9449 } 9450 for (auto &Pair : ExternallyUsedValues) { 9451 // Add each externally used value to the final reduction. 9452 for (auto *I : Pair.second) { 9453 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9454 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9455 Pair.first, "op.extra", I); 9456 } 9457 } 9458 9459 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9460 9461 // Mark all scalar reduction ops for deletion, they are replaced by the 9462 // vector reductions. 9463 V.eraseInstructions(IgnoreList); 9464 } 9465 return VectorizedTree; 9466 } 9467 9468 unsigned numReductionValues() const { return ReducedVals.size(); } 9469 9470 private: 9471 /// Calculate the cost of a reduction. 9472 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9473 Value *FirstReducedVal, unsigned ReduxWidth, 9474 FastMathFlags FMF) { 9475 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9476 Type *ScalarTy = FirstReducedVal->getType(); 9477 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9478 InstructionCost VectorCost, ScalarCost; 9479 switch (RdxKind) { 9480 case RecurKind::Add: 9481 case RecurKind::Mul: 9482 case RecurKind::Or: 9483 case RecurKind::And: 9484 case RecurKind::Xor: 9485 case RecurKind::FAdd: 9486 case RecurKind::FMul: { 9487 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9488 VectorCost = 9489 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9490 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9491 break; 9492 } 9493 case RecurKind::FMax: 9494 case RecurKind::FMin: { 9495 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9496 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9497 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9498 /*IsUnsigned=*/false, CostKind); 9499 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9500 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9501 SclCondTy, RdxPred, CostKind) + 9502 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9503 SclCondTy, RdxPred, CostKind); 9504 break; 9505 } 9506 case RecurKind::SMax: 9507 case RecurKind::SMin: 9508 case RecurKind::UMax: 9509 case RecurKind::UMin: { 9510 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9511 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9512 bool IsUnsigned = 9513 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9514 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9515 CostKind); 9516 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9517 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9518 SclCondTy, RdxPred, CostKind) + 9519 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9520 SclCondTy, RdxPred, CostKind); 9521 break; 9522 } 9523 default: 9524 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9525 } 9526 9527 // Scalar cost is repeated for N-1 elements. 9528 ScalarCost *= (ReduxWidth - 1); 9529 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9530 << " for reduction that starts with " << *FirstReducedVal 9531 << " (It is a splitting reduction)\n"); 9532 return VectorCost - ScalarCost; 9533 } 9534 9535 /// Emit a horizontal reduction of the vectorized value. 9536 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9537 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9538 assert(VectorizedValue && "Need to have a vectorized tree node"); 9539 assert(isPowerOf2_32(ReduxWidth) && 9540 "We only handle power-of-two reductions for now"); 9541 assert(RdxKind != RecurKind::FMulAdd && 9542 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9543 9544 ++NumVectorInstructions; 9545 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9546 } 9547 }; 9548 9549 } // end anonymous namespace 9550 9551 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9552 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9553 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9554 9555 unsigned AggregateSize = 1; 9556 auto *IV = cast<InsertValueInst>(InsertInst); 9557 Type *CurrentType = IV->getType(); 9558 do { 9559 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9560 for (auto *Elt : ST->elements()) 9561 if (Elt != ST->getElementType(0)) // check homogeneity 9562 return None; 9563 AggregateSize *= ST->getNumElements(); 9564 CurrentType = ST->getElementType(0); 9565 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9566 AggregateSize *= AT->getNumElements(); 9567 CurrentType = AT->getElementType(); 9568 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9569 AggregateSize *= VT->getNumElements(); 9570 return AggregateSize; 9571 } else if (CurrentType->isSingleValueType()) { 9572 return AggregateSize; 9573 } else { 9574 return None; 9575 } 9576 } while (true); 9577 } 9578 9579 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9580 TargetTransformInfo *TTI, 9581 SmallVectorImpl<Value *> &BuildVectorOpds, 9582 SmallVectorImpl<Value *> &InsertElts, 9583 unsigned OperandOffset) { 9584 do { 9585 Value *InsertedOperand = LastInsertInst->getOperand(1); 9586 Optional<unsigned> OperandIndex = 9587 getInsertIndex(LastInsertInst, OperandOffset); 9588 if (!OperandIndex) 9589 return; 9590 if (isa<InsertElementInst>(InsertedOperand) || 9591 isa<InsertValueInst>(InsertedOperand)) { 9592 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9593 BuildVectorOpds, InsertElts, *OperandIndex); 9594 9595 } else { 9596 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9597 InsertElts[*OperandIndex] = LastInsertInst; 9598 } 9599 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9600 } while (LastInsertInst != nullptr && 9601 (isa<InsertValueInst>(LastInsertInst) || 9602 isa<InsertElementInst>(LastInsertInst)) && 9603 LastInsertInst->hasOneUse()); 9604 } 9605 9606 /// Recognize construction of vectors like 9607 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9608 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9609 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9610 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9611 /// starting from the last insertelement or insertvalue instruction. 9612 /// 9613 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9614 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9615 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9616 /// 9617 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9618 /// 9619 /// \return true if it matches. 9620 static bool findBuildAggregate(Instruction *LastInsertInst, 9621 TargetTransformInfo *TTI, 9622 SmallVectorImpl<Value *> &BuildVectorOpds, 9623 SmallVectorImpl<Value *> &InsertElts) { 9624 9625 assert((isa<InsertElementInst>(LastInsertInst) || 9626 isa<InsertValueInst>(LastInsertInst)) && 9627 "Expected insertelement or insertvalue instruction!"); 9628 9629 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9630 "Expected empty result vectors!"); 9631 9632 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9633 if (!AggregateSize) 9634 return false; 9635 BuildVectorOpds.resize(*AggregateSize); 9636 InsertElts.resize(*AggregateSize); 9637 9638 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9639 llvm::erase_value(BuildVectorOpds, nullptr); 9640 llvm::erase_value(InsertElts, nullptr); 9641 if (BuildVectorOpds.size() >= 2) 9642 return true; 9643 9644 return false; 9645 } 9646 9647 /// Try and get a reduction value from a phi node. 9648 /// 9649 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9650 /// if they come from either \p ParentBB or a containing loop latch. 9651 /// 9652 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9653 /// if not possible. 9654 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9655 BasicBlock *ParentBB, LoopInfo *LI) { 9656 // There are situations where the reduction value is not dominated by the 9657 // reduction phi. Vectorizing such cases has been reported to cause 9658 // miscompiles. See PR25787. 9659 auto DominatedReduxValue = [&](Value *R) { 9660 return isa<Instruction>(R) && 9661 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9662 }; 9663 9664 Value *Rdx = nullptr; 9665 9666 // Return the incoming value if it comes from the same BB as the phi node. 9667 if (P->getIncomingBlock(0) == ParentBB) { 9668 Rdx = P->getIncomingValue(0); 9669 } else if (P->getIncomingBlock(1) == ParentBB) { 9670 Rdx = P->getIncomingValue(1); 9671 } 9672 9673 if (Rdx && DominatedReduxValue(Rdx)) 9674 return Rdx; 9675 9676 // Otherwise, check whether we have a loop latch to look at. 9677 Loop *BBL = LI->getLoopFor(ParentBB); 9678 if (!BBL) 9679 return nullptr; 9680 BasicBlock *BBLatch = BBL->getLoopLatch(); 9681 if (!BBLatch) 9682 return nullptr; 9683 9684 // There is a loop latch, return the incoming value if it comes from 9685 // that. This reduction pattern occasionally turns up. 9686 if (P->getIncomingBlock(0) == BBLatch) { 9687 Rdx = P->getIncomingValue(0); 9688 } else if (P->getIncomingBlock(1) == BBLatch) { 9689 Rdx = P->getIncomingValue(1); 9690 } 9691 9692 if (Rdx && DominatedReduxValue(Rdx)) 9693 return Rdx; 9694 9695 return nullptr; 9696 } 9697 9698 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9699 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9700 return true; 9701 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9702 return true; 9703 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9704 return true; 9705 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9706 return true; 9707 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9708 return true; 9709 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9710 return true; 9711 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9712 return true; 9713 return false; 9714 } 9715 9716 /// Attempt to reduce a horizontal reduction. 9717 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9718 /// with reduction operators \a Root (or one of its operands) in a basic block 9719 /// \a BB, then check if it can be done. If horizontal reduction is not found 9720 /// and root instruction is a binary operation, vectorization of the operands is 9721 /// attempted. 9722 /// \returns true if a horizontal reduction was matched and reduced or operands 9723 /// of one of the binary instruction were vectorized. 9724 /// \returns false if a horizontal reduction was not matched (or not possible) 9725 /// or no vectorization of any binary operation feeding \a Root instruction was 9726 /// performed. 9727 static bool tryToVectorizeHorReductionOrInstOperands( 9728 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9729 TargetTransformInfo *TTI, 9730 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9731 if (!ShouldVectorizeHor) 9732 return false; 9733 9734 if (!Root) 9735 return false; 9736 9737 if (Root->getParent() != BB || isa<PHINode>(Root)) 9738 return false; 9739 // Start analysis starting from Root instruction. If horizontal reduction is 9740 // found, try to vectorize it. If it is not a horizontal reduction or 9741 // vectorization is not possible or not effective, and currently analyzed 9742 // instruction is a binary operation, try to vectorize the operands, using 9743 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9744 // the same procedure considering each operand as a possible root of the 9745 // horizontal reduction. 9746 // Interrupt the process if the Root instruction itself was vectorized or all 9747 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9748 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9749 // CmpInsts so we can skip extra attempts in 9750 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9751 std::queue<std::pair<Instruction *, unsigned>> Stack; 9752 Stack.emplace(Root, 0); 9753 SmallPtrSet<Value *, 8> VisitedInstrs; 9754 SmallVector<WeakTrackingVH> PostponedInsts; 9755 bool Res = false; 9756 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9757 Value *&B1) -> Value * { 9758 bool IsBinop = matchRdxBop(Inst, B0, B1); 9759 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9760 if (IsBinop || IsSelect) { 9761 HorizontalReduction HorRdx; 9762 if (HorRdx.matchAssociativeReduction(P, Inst)) 9763 return HorRdx.tryToReduce(R, TTI); 9764 } 9765 return nullptr; 9766 }; 9767 while (!Stack.empty()) { 9768 Instruction *Inst; 9769 unsigned Level; 9770 std::tie(Inst, Level) = Stack.front(); 9771 Stack.pop(); 9772 // Do not try to analyze instruction that has already been vectorized. 9773 // This may happen when we vectorize instruction operands on a previous 9774 // iteration while stack was populated before that happened. 9775 if (R.isDeleted(Inst)) 9776 continue; 9777 Value *B0 = nullptr, *B1 = nullptr; 9778 if (Value *V = TryToReduce(Inst, B0, B1)) { 9779 Res = true; 9780 // Set P to nullptr to avoid re-analysis of phi node in 9781 // matchAssociativeReduction function unless this is the root node. 9782 P = nullptr; 9783 if (auto *I = dyn_cast<Instruction>(V)) { 9784 // Try to find another reduction. 9785 Stack.emplace(I, Level); 9786 continue; 9787 } 9788 } else { 9789 bool IsBinop = B0 && B1; 9790 if (P && IsBinop) { 9791 Inst = dyn_cast<Instruction>(B0); 9792 if (Inst == P) 9793 Inst = dyn_cast<Instruction>(B1); 9794 if (!Inst) { 9795 // Set P to nullptr to avoid re-analysis of phi node in 9796 // matchAssociativeReduction function unless this is the root node. 9797 P = nullptr; 9798 continue; 9799 } 9800 } 9801 // Set P to nullptr to avoid re-analysis of phi node in 9802 // matchAssociativeReduction function unless this is the root node. 9803 P = nullptr; 9804 // Do not try to vectorize CmpInst operands, this is done separately. 9805 // Final attempt for binop args vectorization should happen after the loop 9806 // to try to find reductions. 9807 if (!isa<CmpInst>(Inst)) 9808 PostponedInsts.push_back(Inst); 9809 } 9810 9811 // Try to vectorize operands. 9812 // Continue analysis for the instruction from the same basic block only to 9813 // save compile time. 9814 if (++Level < RecursionMaxDepth) 9815 for (auto *Op : Inst->operand_values()) 9816 if (VisitedInstrs.insert(Op).second) 9817 if (auto *I = dyn_cast<Instruction>(Op)) 9818 // Do not try to vectorize CmpInst operands, this is done 9819 // separately. 9820 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9821 I->getParent() == BB) 9822 Stack.emplace(I, Level); 9823 } 9824 // Try to vectorized binops where reductions were not found. 9825 for (Value *V : PostponedInsts) 9826 if (auto *Inst = dyn_cast<Instruction>(V)) 9827 if (!R.isDeleted(Inst)) 9828 Res |= Vectorize(Inst, R); 9829 return Res; 9830 } 9831 9832 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9833 BasicBlock *BB, BoUpSLP &R, 9834 TargetTransformInfo *TTI) { 9835 auto *I = dyn_cast_or_null<Instruction>(V); 9836 if (!I) 9837 return false; 9838 9839 if (!isa<BinaryOperator>(I)) 9840 P = nullptr; 9841 // Try to match and vectorize a horizontal reduction. 9842 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9843 return tryToVectorize(I, R); 9844 }; 9845 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9846 ExtraVectorization); 9847 } 9848 9849 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9850 BasicBlock *BB, BoUpSLP &R) { 9851 const DataLayout &DL = BB->getModule()->getDataLayout(); 9852 if (!R.canMapToVector(IVI->getType(), DL)) 9853 return false; 9854 9855 SmallVector<Value *, 16> BuildVectorOpds; 9856 SmallVector<Value *, 16> BuildVectorInsts; 9857 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9858 return false; 9859 9860 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9861 // Aggregate value is unlikely to be processed in vector register. 9862 return tryToVectorizeList(BuildVectorOpds, R); 9863 } 9864 9865 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9866 BasicBlock *BB, BoUpSLP &R) { 9867 SmallVector<Value *, 16> BuildVectorInsts; 9868 SmallVector<Value *, 16> BuildVectorOpds; 9869 SmallVector<int> Mask; 9870 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9871 (llvm::all_of( 9872 BuildVectorOpds, 9873 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9874 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9875 return false; 9876 9877 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9878 return tryToVectorizeList(BuildVectorInsts, R); 9879 } 9880 9881 template <typename T> 9882 static bool 9883 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9884 function_ref<unsigned(T *)> Limit, 9885 function_ref<bool(T *, T *)> Comparator, 9886 function_ref<bool(T *, T *)> AreCompatible, 9887 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9888 bool LimitForRegisterSize) { 9889 bool Changed = false; 9890 // Sort by type, parent, operands. 9891 stable_sort(Incoming, Comparator); 9892 9893 // Try to vectorize elements base on their type. 9894 SmallVector<T *> Candidates; 9895 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9896 // Look for the next elements with the same type, parent and operand 9897 // kinds. 9898 auto *SameTypeIt = IncIt; 9899 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9900 ++SameTypeIt; 9901 9902 // Try to vectorize them. 9903 unsigned NumElts = (SameTypeIt - IncIt); 9904 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9905 << NumElts << ")\n"); 9906 // The vectorization is a 3-state attempt: 9907 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9908 // size of maximal register at first. 9909 // 2. Try to vectorize remaining instructions with the same type, if 9910 // possible. This may result in the better vectorization results rather than 9911 // if we try just to vectorize instructions with the same/alternate opcodes. 9912 // 3. Final attempt to try to vectorize all instructions with the 9913 // same/alternate ops only, this may result in some extra final 9914 // vectorization. 9915 if (NumElts > 1 && 9916 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9917 // Success start over because instructions might have been changed. 9918 Changed = true; 9919 } else if (NumElts < Limit(*IncIt) && 9920 (Candidates.empty() || 9921 Candidates.front()->getType() == (*IncIt)->getType())) { 9922 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9923 } 9924 // Final attempt to vectorize instructions with the same types. 9925 if (Candidates.size() > 1 && 9926 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9927 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9928 // Success start over because instructions might have been changed. 9929 Changed = true; 9930 } else if (LimitForRegisterSize) { 9931 // Try to vectorize using small vectors. 9932 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9933 It != End;) { 9934 auto *SameTypeIt = It; 9935 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9936 ++SameTypeIt; 9937 unsigned NumElts = (SameTypeIt - It); 9938 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9939 /*LimitForRegisterSize=*/false)) 9940 Changed = true; 9941 It = SameTypeIt; 9942 } 9943 } 9944 Candidates.clear(); 9945 } 9946 9947 // Start over at the next instruction of a different type (or the end). 9948 IncIt = SameTypeIt; 9949 } 9950 return Changed; 9951 } 9952 9953 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9954 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9955 /// operands. If IsCompatibility is false, function implements strict weak 9956 /// ordering relation between two cmp instructions, returning true if the first 9957 /// instruction is "less" than the second, i.e. its predicate is less than the 9958 /// predicate of the second or the operands IDs are less than the operands IDs 9959 /// of the second cmp instruction. 9960 template <bool IsCompatibility> 9961 static bool compareCmp(Value *V, Value *V2, 9962 function_ref<bool(Instruction *)> IsDeleted) { 9963 auto *CI1 = cast<CmpInst>(V); 9964 auto *CI2 = cast<CmpInst>(V2); 9965 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9966 return false; 9967 if (CI1->getOperand(0)->getType()->getTypeID() < 9968 CI2->getOperand(0)->getType()->getTypeID()) 9969 return !IsCompatibility; 9970 if (CI1->getOperand(0)->getType()->getTypeID() > 9971 CI2->getOperand(0)->getType()->getTypeID()) 9972 return false; 9973 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9974 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9975 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9976 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9977 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9978 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9979 if (BasePred1 < BasePred2) 9980 return !IsCompatibility; 9981 if (BasePred1 > BasePred2) 9982 return false; 9983 // Compare operands. 9984 bool LEPreds = Pred1 <= Pred2; 9985 bool GEPreds = Pred1 >= Pred2; 9986 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9987 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9988 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9989 if (Op1->getValueID() < Op2->getValueID()) 9990 return !IsCompatibility; 9991 if (Op1->getValueID() > Op2->getValueID()) 9992 return false; 9993 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9994 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9995 if (I1->getParent() != I2->getParent()) 9996 return false; 9997 InstructionsState S = getSameOpcode({I1, I2}); 9998 if (S.getOpcode()) 9999 continue; 10000 return false; 10001 } 10002 } 10003 return IsCompatibility; 10004 } 10005 10006 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10007 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10008 bool AtTerminator) { 10009 bool OpsChanged = false; 10010 SmallVector<Instruction *, 4> PostponedCmps; 10011 for (auto *I : reverse(Instructions)) { 10012 if (R.isDeleted(I)) 10013 continue; 10014 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10015 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10016 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10017 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10018 else if (isa<CmpInst>(I)) 10019 PostponedCmps.push_back(I); 10020 } 10021 if (AtTerminator) { 10022 // Try to find reductions first. 10023 for (Instruction *I : PostponedCmps) { 10024 if (R.isDeleted(I)) 10025 continue; 10026 for (Value *Op : I->operands()) 10027 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10028 } 10029 // Try to vectorize operands as vector bundles. 10030 for (Instruction *I : PostponedCmps) { 10031 if (R.isDeleted(I)) 10032 continue; 10033 OpsChanged |= tryToVectorize(I, R); 10034 } 10035 // Try to vectorize list of compares. 10036 // Sort by type, compare predicate, etc. 10037 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10038 return compareCmp<false>(V, V2, 10039 [&R](Instruction *I) { return R.isDeleted(I); }); 10040 }; 10041 10042 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10043 if (V1 == V2) 10044 return true; 10045 return compareCmp<true>(V1, V2, 10046 [&R](Instruction *I) { return R.isDeleted(I); }); 10047 }; 10048 auto Limit = [&R](Value *V) { 10049 unsigned EltSize = R.getVectorElementSize(V); 10050 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10051 }; 10052 10053 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10054 OpsChanged |= tryToVectorizeSequence<Value>( 10055 Vals, Limit, CompareSorter, AreCompatibleCompares, 10056 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10057 // Exclude possible reductions from other blocks. 10058 bool ArePossiblyReducedInOtherBlock = 10059 any_of(Candidates, [](Value *V) { 10060 return any_of(V->users(), [V](User *U) { 10061 return isa<SelectInst>(U) && 10062 cast<SelectInst>(U)->getParent() != 10063 cast<Instruction>(V)->getParent(); 10064 }); 10065 }); 10066 if (ArePossiblyReducedInOtherBlock) 10067 return false; 10068 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10069 }, 10070 /*LimitForRegisterSize=*/true); 10071 Instructions.clear(); 10072 } else { 10073 // Insert in reverse order since the PostponedCmps vector was filled in 10074 // reverse order. 10075 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10076 } 10077 return OpsChanged; 10078 } 10079 10080 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10081 bool Changed = false; 10082 SmallVector<Value *, 4> Incoming; 10083 SmallPtrSet<Value *, 16> VisitedInstrs; 10084 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10085 // node. Allows better to identify the chains that can be vectorized in the 10086 // better way. 10087 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10088 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10089 assert(isValidElementType(V1->getType()) && 10090 isValidElementType(V2->getType()) && 10091 "Expected vectorizable types only."); 10092 // It is fine to compare type IDs here, since we expect only vectorizable 10093 // types, like ints, floats and pointers, we don't care about other type. 10094 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10095 return true; 10096 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10097 return false; 10098 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10099 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10100 if (Opcodes1.size() < Opcodes2.size()) 10101 return true; 10102 if (Opcodes1.size() > Opcodes2.size()) 10103 return false; 10104 Optional<bool> ConstOrder; 10105 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10106 // Undefs are compatible with any other value. 10107 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10108 if (!ConstOrder) 10109 ConstOrder = 10110 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10111 continue; 10112 } 10113 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10114 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10115 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10116 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10117 if (!NodeI1) 10118 return NodeI2 != nullptr; 10119 if (!NodeI2) 10120 return false; 10121 assert((NodeI1 == NodeI2) == 10122 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10123 "Different nodes should have different DFS numbers"); 10124 if (NodeI1 != NodeI2) 10125 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10126 InstructionsState S = getSameOpcode({I1, I2}); 10127 if (S.getOpcode()) 10128 continue; 10129 return I1->getOpcode() < I2->getOpcode(); 10130 } 10131 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10132 if (!ConstOrder) 10133 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10134 continue; 10135 } 10136 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10137 return true; 10138 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10139 return false; 10140 } 10141 return ConstOrder && *ConstOrder; 10142 }; 10143 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10144 if (V1 == V2) 10145 return true; 10146 if (V1->getType() != V2->getType()) 10147 return false; 10148 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10149 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10150 if (Opcodes1.size() != Opcodes2.size()) 10151 return false; 10152 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10153 // Undefs are compatible with any other value. 10154 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10155 continue; 10156 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10157 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10158 if (I1->getParent() != I2->getParent()) 10159 return false; 10160 InstructionsState S = getSameOpcode({I1, I2}); 10161 if (S.getOpcode()) 10162 continue; 10163 return false; 10164 } 10165 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10166 continue; 10167 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10168 return false; 10169 } 10170 return true; 10171 }; 10172 auto Limit = [&R](Value *V) { 10173 unsigned EltSize = R.getVectorElementSize(V); 10174 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10175 }; 10176 10177 bool HaveVectorizedPhiNodes = false; 10178 do { 10179 // Collect the incoming values from the PHIs. 10180 Incoming.clear(); 10181 for (Instruction &I : *BB) { 10182 PHINode *P = dyn_cast<PHINode>(&I); 10183 if (!P) 10184 break; 10185 10186 // No need to analyze deleted, vectorized and non-vectorizable 10187 // instructions. 10188 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10189 isValidElementType(P->getType())) 10190 Incoming.push_back(P); 10191 } 10192 10193 // Find the corresponding non-phi nodes for better matching when trying to 10194 // build the tree. 10195 for (Value *V : Incoming) { 10196 SmallVectorImpl<Value *> &Opcodes = 10197 PHIToOpcodes.try_emplace(V).first->getSecond(); 10198 if (!Opcodes.empty()) 10199 continue; 10200 SmallVector<Value *, 4> Nodes(1, V); 10201 SmallPtrSet<Value *, 4> Visited; 10202 while (!Nodes.empty()) { 10203 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10204 if (!Visited.insert(PHI).second) 10205 continue; 10206 for (Value *V : PHI->incoming_values()) { 10207 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10208 Nodes.push_back(PHI1); 10209 continue; 10210 } 10211 Opcodes.emplace_back(V); 10212 } 10213 } 10214 } 10215 10216 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10217 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10218 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10219 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10220 }, 10221 /*LimitForRegisterSize=*/true); 10222 Changed |= HaveVectorizedPhiNodes; 10223 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10224 } while (HaveVectorizedPhiNodes); 10225 10226 VisitedInstrs.clear(); 10227 10228 SmallVector<Instruction *, 8> PostProcessInstructions; 10229 SmallDenseSet<Instruction *, 4> KeyNodes; 10230 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10231 // Skip instructions with scalable type. The num of elements is unknown at 10232 // compile-time for scalable type. 10233 if (isa<ScalableVectorType>(it->getType())) 10234 continue; 10235 10236 // Skip instructions marked for the deletion. 10237 if (R.isDeleted(&*it)) 10238 continue; 10239 // We may go through BB multiple times so skip the one we have checked. 10240 if (!VisitedInstrs.insert(&*it).second) { 10241 if (it->use_empty() && KeyNodes.contains(&*it) && 10242 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10243 it->isTerminator())) { 10244 // We would like to start over since some instructions are deleted 10245 // and the iterator may become invalid value. 10246 Changed = true; 10247 it = BB->begin(); 10248 e = BB->end(); 10249 } 10250 continue; 10251 } 10252 10253 if (isa<DbgInfoIntrinsic>(it)) 10254 continue; 10255 10256 // Try to vectorize reductions that use PHINodes. 10257 if (PHINode *P = dyn_cast<PHINode>(it)) { 10258 // Check that the PHI is a reduction PHI. 10259 if (P->getNumIncomingValues() == 2) { 10260 // Try to match and vectorize a horizontal reduction. 10261 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10262 TTI)) { 10263 Changed = true; 10264 it = BB->begin(); 10265 e = BB->end(); 10266 continue; 10267 } 10268 } 10269 // Try to vectorize the incoming values of the PHI, to catch reductions 10270 // that feed into PHIs. 10271 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10272 // Skip if the incoming block is the current BB for now. Also, bypass 10273 // unreachable IR for efficiency and to avoid crashing. 10274 // TODO: Collect the skipped incoming values and try to vectorize them 10275 // after processing BB. 10276 if (BB == P->getIncomingBlock(I) || 10277 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10278 continue; 10279 10280 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10281 P->getIncomingBlock(I), R, TTI); 10282 } 10283 continue; 10284 } 10285 10286 // Ran into an instruction without users, like terminator, or function call 10287 // with ignored return value, store. Ignore unused instructions (basing on 10288 // instruction type, except for CallInst and InvokeInst). 10289 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10290 isa<InvokeInst>(it))) { 10291 KeyNodes.insert(&*it); 10292 bool OpsChanged = false; 10293 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10294 for (auto *V : it->operand_values()) { 10295 // Try to match and vectorize a horizontal reduction. 10296 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10297 } 10298 } 10299 // Start vectorization of post-process list of instructions from the 10300 // top-tree instructions to try to vectorize as many instructions as 10301 // possible. 10302 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10303 it->isTerminator()); 10304 if (OpsChanged) { 10305 // We would like to start over since some instructions are deleted 10306 // and the iterator may become invalid value. 10307 Changed = true; 10308 it = BB->begin(); 10309 e = BB->end(); 10310 continue; 10311 } 10312 } 10313 10314 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10315 isa<InsertValueInst>(it)) 10316 PostProcessInstructions.push_back(&*it); 10317 } 10318 10319 return Changed; 10320 } 10321 10322 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10323 auto Changed = false; 10324 for (auto &Entry : GEPs) { 10325 // If the getelementptr list has fewer than two elements, there's nothing 10326 // to do. 10327 if (Entry.second.size() < 2) 10328 continue; 10329 10330 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10331 << Entry.second.size() << ".\n"); 10332 10333 // Process the GEP list in chunks suitable for the target's supported 10334 // vector size. If a vector register can't hold 1 element, we are done. We 10335 // are trying to vectorize the index computations, so the maximum number of 10336 // elements is based on the size of the index expression, rather than the 10337 // size of the GEP itself (the target's pointer size). 10338 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10339 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10340 if (MaxVecRegSize < EltSize) 10341 continue; 10342 10343 unsigned MaxElts = MaxVecRegSize / EltSize; 10344 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10345 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10346 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10347 10348 // Initialize a set a candidate getelementptrs. Note that we use a 10349 // SetVector here to preserve program order. If the index computations 10350 // are vectorizable and begin with loads, we want to minimize the chance 10351 // of having to reorder them later. 10352 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10353 10354 // Some of the candidates may have already been vectorized after we 10355 // initially collected them. If so, they are marked as deleted, so remove 10356 // them from the set of candidates. 10357 Candidates.remove_if( 10358 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10359 10360 // Remove from the set of candidates all pairs of getelementptrs with 10361 // constant differences. Such getelementptrs are likely not good 10362 // candidates for vectorization in a bottom-up phase since one can be 10363 // computed from the other. We also ensure all candidate getelementptr 10364 // indices are unique. 10365 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10366 auto *GEPI = GEPList[I]; 10367 if (!Candidates.count(GEPI)) 10368 continue; 10369 auto *SCEVI = SE->getSCEV(GEPList[I]); 10370 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10371 auto *GEPJ = GEPList[J]; 10372 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10373 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10374 Candidates.remove(GEPI); 10375 Candidates.remove(GEPJ); 10376 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10377 Candidates.remove(GEPJ); 10378 } 10379 } 10380 } 10381 10382 // We break out of the above computation as soon as we know there are 10383 // fewer than two candidates remaining. 10384 if (Candidates.size() < 2) 10385 continue; 10386 10387 // Add the single, non-constant index of each candidate to the bundle. We 10388 // ensured the indices met these constraints when we originally collected 10389 // the getelementptrs. 10390 SmallVector<Value *, 16> Bundle(Candidates.size()); 10391 auto BundleIndex = 0u; 10392 for (auto *V : Candidates) { 10393 auto *GEP = cast<GetElementPtrInst>(V); 10394 auto *GEPIdx = GEP->idx_begin()->get(); 10395 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10396 Bundle[BundleIndex++] = GEPIdx; 10397 } 10398 10399 // Try and vectorize the indices. We are currently only interested in 10400 // gather-like cases of the form: 10401 // 10402 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10403 // 10404 // where the loads of "a", the loads of "b", and the subtractions can be 10405 // performed in parallel. It's likely that detecting this pattern in a 10406 // bottom-up phase will be simpler and less costly than building a 10407 // full-blown top-down phase beginning at the consecutive loads. 10408 Changed |= tryToVectorizeList(Bundle, R); 10409 } 10410 } 10411 return Changed; 10412 } 10413 10414 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10415 bool Changed = false; 10416 // Sort by type, base pointers and values operand. Value operands must be 10417 // compatible (have the same opcode, same parent), otherwise it is 10418 // definitely not profitable to try to vectorize them. 10419 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10420 if (V->getPointerOperandType()->getTypeID() < 10421 V2->getPointerOperandType()->getTypeID()) 10422 return true; 10423 if (V->getPointerOperandType()->getTypeID() > 10424 V2->getPointerOperandType()->getTypeID()) 10425 return false; 10426 // UndefValues are compatible with all other values. 10427 if (isa<UndefValue>(V->getValueOperand()) || 10428 isa<UndefValue>(V2->getValueOperand())) 10429 return false; 10430 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10431 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10432 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10433 DT->getNode(I1->getParent()); 10434 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10435 DT->getNode(I2->getParent()); 10436 assert(NodeI1 && "Should only process reachable instructions"); 10437 assert(NodeI1 && "Should only process reachable instructions"); 10438 assert((NodeI1 == NodeI2) == 10439 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10440 "Different nodes should have different DFS numbers"); 10441 if (NodeI1 != NodeI2) 10442 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10443 InstructionsState S = getSameOpcode({I1, I2}); 10444 if (S.getOpcode()) 10445 return false; 10446 return I1->getOpcode() < I2->getOpcode(); 10447 } 10448 if (isa<Constant>(V->getValueOperand()) && 10449 isa<Constant>(V2->getValueOperand())) 10450 return false; 10451 return V->getValueOperand()->getValueID() < 10452 V2->getValueOperand()->getValueID(); 10453 }; 10454 10455 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10456 if (V1 == V2) 10457 return true; 10458 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10459 return false; 10460 // Undefs are compatible with any other value. 10461 if (isa<UndefValue>(V1->getValueOperand()) || 10462 isa<UndefValue>(V2->getValueOperand())) 10463 return true; 10464 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10465 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10466 if (I1->getParent() != I2->getParent()) 10467 return false; 10468 InstructionsState S = getSameOpcode({I1, I2}); 10469 return S.getOpcode() > 0; 10470 } 10471 if (isa<Constant>(V1->getValueOperand()) && 10472 isa<Constant>(V2->getValueOperand())) 10473 return true; 10474 return V1->getValueOperand()->getValueID() == 10475 V2->getValueOperand()->getValueID(); 10476 }; 10477 auto Limit = [&R, this](StoreInst *SI) { 10478 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10479 return R.getMinVF(EltSize); 10480 }; 10481 10482 // Attempt to sort and vectorize each of the store-groups. 10483 for (auto &Pair : Stores) { 10484 if (Pair.second.size() < 2) 10485 continue; 10486 10487 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10488 << Pair.second.size() << ".\n"); 10489 10490 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10491 continue; 10492 10493 Changed |= tryToVectorizeSequence<StoreInst>( 10494 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10495 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10496 return vectorizeStores(Candidates, R); 10497 }, 10498 /*LimitForRegisterSize=*/false); 10499 } 10500 return Changed; 10501 } 10502 10503 char SLPVectorizer::ID = 0; 10504 10505 static const char lv_name[] = "SLP Vectorizer"; 10506 10507 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10508 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10509 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10510 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10511 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10512 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10513 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10514 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10515 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10516 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10517 10518 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10519