1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetOperations.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/iterator.h"
33 #include "llvm/ADT/iterator_range.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/IVDescriptors.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Vectorize.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <memory>
96 #include <set>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 using namespace slpvectorizer;
105 
106 #define SV_NAME "slp-vectorizer"
107 #define DEBUG_TYPE "SLP"
108 
109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
110 
111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
112                                   cl::desc("Run the SLP vectorization passes"));
113 
114 static cl::opt<int>
115     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116                      cl::desc("Only vectorize if you gain more than this "
117                               "number "));
118 
119 static cl::opt<bool>
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121                    cl::desc("Attempt to vectorize horizontal reductions"));
122 
123 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125     cl::desc(
126         "Attempt to vectorize horizontal reductions feeding into a store"));
127 
128 static cl::opt<int>
129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
130     cl::desc("Attempt to vectorize for this register size in bits"));
131 
132 static cl::opt<unsigned>
133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
134     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
135 
136 static cl::opt<int>
137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
138     cl::desc("Maximum depth of the lookup for consecutive stores."));
139 
140 /// Limits the size of scheduling regions in a block.
141 /// It avoid long compile times for _very_ large blocks where vector
142 /// instructions are spread over a wide range.
143 /// This limit is way higher than needed by real-world functions.
144 static cl::opt<int>
145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
146     cl::desc("Limit the size of the SLP scheduling region per block"));
147 
148 static cl::opt<int> MinVectorRegSizeOption(
149     "slp-min-reg-size", cl::init(128), cl::Hidden,
150     cl::desc("Attempt to vectorize for this register size in bits"));
151 
152 static cl::opt<unsigned> RecursionMaxDepth(
153     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
154     cl::desc("Limit the recursion depth when building a vectorizable tree"));
155 
156 static cl::opt<unsigned> MinTreeSize(
157     "slp-min-tree-size", cl::init(3), cl::Hidden,
158     cl::desc("Only vectorize small trees if they are fully vectorizable"));
159 
160 // The maximum depth that the look-ahead score heuristic will explore.
161 // The higher this value, the higher the compilation time overhead.
162 static cl::opt<int> LookAheadMaxDepth(
163     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
164     cl::desc("The maximum look-ahead depth for operand reordering scores"));
165 
166 // The Look-ahead heuristic goes through the users of the bundle to calculate
167 // the users cost in getExternalUsesCost(). To avoid compilation time increase
168 // we limit the number of users visited to this value.
169 static cl::opt<unsigned> LookAheadUsersBudget(
170     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
171     cl::desc("The maximum number of users to visit while visiting the "
172              "predecessors. This prevents compilation time increase."));
173 
174 static cl::opt<bool>
175     ViewSLPTree("view-slp-tree", cl::Hidden,
176                 cl::desc("Display the SLP trees with Graphviz"));
177 
178 // Limit the number of alias checks. The limit is chosen so that
179 // it has no negative effect on the llvm benchmarks.
180 static const unsigned AliasedCheckLimit = 10;
181 
182 // Another limit for the alias checks: The maximum distance between load/store
183 // instructions where alias checks are done.
184 // This limit is useful for very large basic blocks.
185 static const unsigned MaxMemDepDistance = 160;
186 
187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
188 /// regions to be handled.
189 static const int MinScheduleRegionSize = 16;
190 
191 /// Predicate for the element types that the SLP vectorizer supports.
192 ///
193 /// The most important thing to filter here are types which are invalid in LLVM
194 /// vectors. We also filter target specific types which have absolutely no
195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
196 /// avoids spending time checking the cost model and realizing that they will
197 /// be inevitably scalarized.
198 static bool isValidElementType(Type *Ty) {
199   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
200          !Ty->isPPC_FP128Ty();
201 }
202 
203 /// \returns true if all of the instructions in \p VL are in the same block or
204 /// false otherwise.
205 static bool allSameBlock(ArrayRef<Value *> VL) {
206   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
207   if (!I0)
208     return false;
209   BasicBlock *BB = I0->getParent();
210   for (int I = 1, E = VL.size(); I < E; I++) {
211     auto *II = dyn_cast<Instruction>(VL[I]);
212     if (!II)
213       return false;
214 
215     if (BB != II->getParent())
216       return false;
217   }
218   return true;
219 }
220 
221 /// \returns True if the value is a constant (but not globals/constant
222 /// expressions).
223 static bool isConstant(Value *V) {
224   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
225 }
226 
227 /// \returns True if all of the values in \p VL are constants (but not
228 /// globals/constant expressions).
229 static bool allConstant(ArrayRef<Value *> VL) {
230   // Constant expressions and globals can't be vectorized like normal integer/FP
231   // constants.
232   return all_of(VL, isConstant);
233 }
234 
235 /// \returns True if all of the values in \p VL are identical.
236 static bool isSplat(ArrayRef<Value *> VL) {
237   for (unsigned i = 1, e = VL.size(); i < e; ++i)
238     if (VL[i] != VL[0])
239       return false;
240   return true;
241 }
242 
243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
244 static bool isCommutative(Instruction *I) {
245   if (auto *Cmp = dyn_cast<CmpInst>(I))
246     return Cmp->isCommutative();
247   if (auto *BO = dyn_cast<BinaryOperator>(I))
248     return BO->isCommutative();
249   // TODO: This should check for generic Instruction::isCommutative(), but
250   //       we need to confirm that the caller code correctly handles Intrinsics
251   //       for example (does not have 2 operands).
252   return false;
253 }
254 
255 /// Checks if the vector of instructions can be represented as a shuffle, like:
256 /// %x0 = extractelement <4 x i8> %x, i32 0
257 /// %x3 = extractelement <4 x i8> %x, i32 3
258 /// %y1 = extractelement <4 x i8> %y, i32 1
259 /// %y2 = extractelement <4 x i8> %y, i32 2
260 /// %x0x0 = mul i8 %x0, %x0
261 /// %x3x3 = mul i8 %x3, %x3
262 /// %y1y1 = mul i8 %y1, %y1
263 /// %y2y2 = mul i8 %y2, %y2
264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
268 /// ret <4 x i8> %ins4
269 /// can be transformed into:
270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
271 ///                                                         i32 6>
272 /// %2 = mul <4 x i8> %1, %1
273 /// ret <4 x i8> %2
274 /// We convert this initially to something like:
275 /// %x0 = extractelement <4 x i8> %x, i32 0
276 /// %x3 = extractelement <4 x i8> %x, i32 3
277 /// %y1 = extractelement <4 x i8> %y, i32 1
278 /// %y2 = extractelement <4 x i8> %y, i32 2
279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
283 /// %5 = mul <4 x i8> %4, %4
284 /// %6 = extractelement <4 x i8> %5, i32 0
285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
286 /// %7 = extractelement <4 x i8> %5, i32 1
287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
288 /// %8 = extractelement <4 x i8> %5, i32 2
289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
290 /// %9 = extractelement <4 x i8> %5, i32 3
291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
292 /// ret <4 x i8> %ins4
293 /// InstCombiner transforms this into a shuffle and vector mul
294 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
295 /// TODO: Can we split off and reuse the shuffle mask detection from
296 /// TargetTransformInfo::getInstructionThroughput?
297 static Optional<TargetTransformInfo::ShuffleKind>
298 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
299   auto *EI0 = cast<ExtractElementInst>(VL[0]);
300   unsigned Size =
301       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
302   Value *Vec1 = nullptr;
303   Value *Vec2 = nullptr;
304   enum ShuffleMode { Unknown, Select, Permute };
305   ShuffleMode CommonShuffleMode = Unknown;
306   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
307     auto *EI = cast<ExtractElementInst>(VL[I]);
308     auto *Vec = EI->getVectorOperand();
309     // All vector operands must have the same number of vector elements.
310     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
311       return None;
312     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
313     if (!Idx)
314       return None;
315     // Undefined behavior if Idx is negative or >= Size.
316     if (Idx->getValue().uge(Size)) {
317       Mask.push_back(UndefMaskElem);
318       continue;
319     }
320     unsigned IntIdx = Idx->getValue().getZExtValue();
321     Mask.push_back(IntIdx);
322     // We can extractelement from undef or poison vector.
323     if (isa<UndefValue>(Vec))
324       continue;
325     // For correct shuffling we have to have at most 2 different vector operands
326     // in all extractelement instructions.
327     if (!Vec1 || Vec1 == Vec)
328       Vec1 = Vec;
329     else if (!Vec2 || Vec2 == Vec)
330       Vec2 = Vec;
331     else
332       return None;
333     if (CommonShuffleMode == Permute)
334       continue;
335     // If the extract index is not the same as the operation number, it is a
336     // permutation.
337     if (IntIdx != I) {
338       CommonShuffleMode = Permute;
339       continue;
340     }
341     CommonShuffleMode = Select;
342   }
343   // If we're not crossing lanes in different vectors, consider it as blending.
344   if (CommonShuffleMode == Select && Vec2)
345     return TargetTransformInfo::SK_Select;
346   // If Vec2 was never used, we have a permutation of a single vector, otherwise
347   // we have permutation of 2 vectors.
348   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
349               : TargetTransformInfo::SK_PermuteSingleSrc;
350 }
351 
352 namespace {
353 
354 /// Main data required for vectorization of instructions.
355 struct InstructionsState {
356   /// The very first instruction in the list with the main opcode.
357   Value *OpValue = nullptr;
358 
359   /// The main/alternate instruction.
360   Instruction *MainOp = nullptr;
361   Instruction *AltOp = nullptr;
362 
363   /// The main/alternate opcodes for the list of instructions.
364   unsigned getOpcode() const {
365     return MainOp ? MainOp->getOpcode() : 0;
366   }
367 
368   unsigned getAltOpcode() const {
369     return AltOp ? AltOp->getOpcode() : 0;
370   }
371 
372   /// Some of the instructions in the list have alternate opcodes.
373   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
374 
375   bool isOpcodeOrAlt(Instruction *I) const {
376     unsigned CheckedOpcode = I->getOpcode();
377     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
378   }
379 
380   InstructionsState() = delete;
381   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
382       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
383 };
384 
385 } // end anonymous namespace
386 
387 /// Chooses the correct key for scheduling data. If \p Op has the same (or
388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
389 /// OpValue.
390 static Value *isOneOf(const InstructionsState &S, Value *Op) {
391   auto *I = dyn_cast<Instruction>(Op);
392   if (I && S.isOpcodeOrAlt(I))
393     return Op;
394   return S.OpValue;
395 }
396 
397 /// \returns true if \p Opcode is allowed as part of of the main/alternate
398 /// instruction for SLP vectorization.
399 ///
400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
401 /// "shuffled out" lane would result in division by zero.
402 static bool isValidForAlternation(unsigned Opcode) {
403   if (Instruction::isIntDivRem(Opcode))
404     return false;
405 
406   return true;
407 }
408 
409 /// \returns analysis of the Instructions in \p VL described in
410 /// InstructionsState, the Opcode that we suppose the whole list
411 /// could be vectorized even if its structure is diverse.
412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
413                                        unsigned BaseIndex = 0) {
414   // Make sure these are all Instructions.
415   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
416     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
417 
418   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
419   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
420   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
421   unsigned AltOpcode = Opcode;
422   unsigned AltIndex = BaseIndex;
423 
424   // Check for one alternate opcode from another BinaryOperator.
425   // TODO - generalize to support all operators (types, calls etc.).
426   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
427     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
428     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
429       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
430         continue;
431       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
432           isValidForAlternation(Opcode)) {
433         AltOpcode = InstOpcode;
434         AltIndex = Cnt;
435         continue;
436       }
437     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
438       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
439       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
440       if (Ty0 == Ty1) {
441         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
442           continue;
443         if (Opcode == AltOpcode) {
444           assert(isValidForAlternation(Opcode) &&
445                  isValidForAlternation(InstOpcode) &&
446                  "Cast isn't safe for alternation, logic needs to be updated!");
447           AltOpcode = InstOpcode;
448           AltIndex = Cnt;
449           continue;
450         }
451       }
452     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
453       continue;
454     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
455   }
456 
457   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
458                            cast<Instruction>(VL[AltIndex]));
459 }
460 
461 /// \returns true if all of the values in \p VL have the same type or false
462 /// otherwise.
463 static bool allSameType(ArrayRef<Value *> VL) {
464   Type *Ty = VL[0]->getType();
465   for (int i = 1, e = VL.size(); i < e; i++)
466     if (VL[i]->getType() != Ty)
467       return false;
468 
469   return true;
470 }
471 
472 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
473 static Optional<unsigned> getExtractIndex(Instruction *E) {
474   unsigned Opcode = E->getOpcode();
475   assert((Opcode == Instruction::ExtractElement ||
476           Opcode == Instruction::ExtractValue) &&
477          "Expected extractelement or extractvalue instruction.");
478   if (Opcode == Instruction::ExtractElement) {
479     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
480     if (!CI)
481       return None;
482     return CI->getZExtValue();
483   }
484   ExtractValueInst *EI = cast<ExtractValueInst>(E);
485   if (EI->getNumIndices() != 1)
486     return None;
487   return *EI->idx_begin();
488 }
489 
490 /// \returns True if in-tree use also needs extract. This refers to
491 /// possible scalar operand in vectorized instruction.
492 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
493                                     TargetLibraryInfo *TLI) {
494   unsigned Opcode = UserInst->getOpcode();
495   switch (Opcode) {
496   case Instruction::Load: {
497     LoadInst *LI = cast<LoadInst>(UserInst);
498     return (LI->getPointerOperand() == Scalar);
499   }
500   case Instruction::Store: {
501     StoreInst *SI = cast<StoreInst>(UserInst);
502     return (SI->getPointerOperand() == Scalar);
503   }
504   case Instruction::Call: {
505     CallInst *CI = cast<CallInst>(UserInst);
506     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
507     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
508       if (hasVectorInstrinsicScalarOpd(ID, i))
509         return (CI->getArgOperand(i) == Scalar);
510     }
511     LLVM_FALLTHROUGH;
512   }
513   default:
514     return false;
515   }
516 }
517 
518 /// \returns the AA location that is being access by the instruction.
519 static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
520   if (StoreInst *SI = dyn_cast<StoreInst>(I))
521     return MemoryLocation::get(SI);
522   if (LoadInst *LI = dyn_cast<LoadInst>(I))
523     return MemoryLocation::get(LI);
524   return MemoryLocation();
525 }
526 
527 /// \returns True if the instruction is not a volatile or atomic load/store.
528 static bool isSimple(Instruction *I) {
529   if (LoadInst *LI = dyn_cast<LoadInst>(I))
530     return LI->isSimple();
531   if (StoreInst *SI = dyn_cast<StoreInst>(I))
532     return SI->isSimple();
533   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
534     return !MI->isVolatile();
535   return true;
536 }
537 
538 namespace llvm {
539 
540 static void inversePermutation(ArrayRef<unsigned> Indices,
541                                SmallVectorImpl<int> &Mask) {
542   Mask.clear();
543   const unsigned E = Indices.size();
544   Mask.resize(E, E + 1);
545   for (unsigned I = 0; I < E; ++I)
546     Mask[Indices[I]] = I;
547 }
548 
549 /// \returns inserting index of InsertElement or InsertValue instruction,
550 /// using Offset as base offset for index.
551 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) {
552   int Index = Offset;
553   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
554     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
555       auto *VT = cast<FixedVectorType>(IE->getType());
556       if (CI->getValue().uge(VT->getNumElements()))
557         return UndefMaskElem;
558       Index *= VT->getNumElements();
559       Index += CI->getZExtValue();
560       return Index;
561     }
562     if (isa<UndefValue>(IE->getOperand(2)))
563       return UndefMaskElem;
564     return None;
565   }
566 
567   auto *IV = cast<InsertValueInst>(InsertInst);
568   Type *CurrentType = IV->getType();
569   for (unsigned I : IV->indices()) {
570     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
571       Index *= ST->getNumElements();
572       CurrentType = ST->getElementType(I);
573     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
574       Index *= AT->getNumElements();
575       CurrentType = AT->getElementType();
576     } else {
577       return None;
578     }
579     Index += I;
580   }
581   return Index;
582 }
583 
584 namespace slpvectorizer {
585 
586 /// Bottom Up SLP Vectorizer.
587 class BoUpSLP {
588   struct TreeEntry;
589   struct ScheduleData;
590 
591 public:
592   using ValueList = SmallVector<Value *, 8>;
593   using InstrList = SmallVector<Instruction *, 16>;
594   using ValueSet = SmallPtrSet<Value *, 16>;
595   using StoreList = SmallVector<StoreInst *, 8>;
596   using ExtraValueToDebugLocsMap =
597       MapVector<Value *, SmallVector<Instruction *, 2>>;
598   using OrdersType = SmallVector<unsigned, 4>;
599 
600   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
601           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
602           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
603           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
604       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
605         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
606     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
607     // Use the vector register size specified by the target unless overridden
608     // by a command-line option.
609     // TODO: It would be better to limit the vectorization factor based on
610     //       data type rather than just register size. For example, x86 AVX has
611     //       256-bit registers, but it does not support integer operations
612     //       at that width (that requires AVX2).
613     if (MaxVectorRegSizeOption.getNumOccurrences())
614       MaxVecRegSize = MaxVectorRegSizeOption;
615     else
616       MaxVecRegSize =
617           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
618               .getFixedSize();
619 
620     if (MinVectorRegSizeOption.getNumOccurrences())
621       MinVecRegSize = MinVectorRegSizeOption;
622     else
623       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
624   }
625 
626   /// Vectorize the tree that starts with the elements in \p VL.
627   /// Returns the vectorized root.
628   Value *vectorizeTree();
629 
630   /// Vectorize the tree but with the list of externally used values \p
631   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
632   /// generated extractvalue instructions.
633   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
634 
635   /// \returns the cost incurred by unwanted spills and fills, caused by
636   /// holding live values over call sites.
637   InstructionCost getSpillCost() const;
638 
639   /// \returns the vectorization cost of the subtree that starts at \p VL.
640   /// A negative number means that this is profitable.
641   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
642 
643   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
644   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
645   void buildTree(ArrayRef<Value *> Roots,
646                  ArrayRef<Value *> UserIgnoreLst = None);
647 
648   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
649   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
650   /// into account (and updating it, if required) list of externally used
651   /// values stored in \p ExternallyUsedValues.
652   void buildTree(ArrayRef<Value *> Roots,
653                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
654                  ArrayRef<Value *> UserIgnoreLst = None);
655 
656   /// Clear the internal data structures that are created by 'buildTree'.
657   void deleteTree() {
658     VectorizableTree.clear();
659     ScalarToTreeEntry.clear();
660     MustGather.clear();
661     ExternalUses.clear();
662     NumOpsWantToKeepOrder.clear();
663     NumOpsWantToKeepOriginalOrder = 0;
664     for (auto &Iter : BlocksSchedules) {
665       BlockScheduling *BS = Iter.second.get();
666       BS->clear();
667     }
668     MinBWs.clear();
669     InstrElementSize.clear();
670   }
671 
672   unsigned getTreeSize() const { return VectorizableTree.size(); }
673 
674   /// Perform LICM and CSE on the newly generated gather sequences.
675   void optimizeGatherSequence();
676 
677   /// \returns The best order of instructions for vectorization.
678   Optional<ArrayRef<unsigned>> bestOrder() const {
679     assert(llvm::all_of(
680                NumOpsWantToKeepOrder,
681                [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
682                  return D.getFirst().size() ==
683                         VectorizableTree[0]->Scalars.size();
684                }) &&
685            "All orders must have the same size as number of instructions in "
686            "tree node.");
687     auto I = std::max_element(
688         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
689         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
690            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
691           return D1.second < D2.second;
692         });
693     if (I == NumOpsWantToKeepOrder.end() ||
694         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
695       return None;
696 
697     return makeArrayRef(I->getFirst());
698   }
699 
700   /// Builds the correct order for root instructions.
701   /// If some leaves have the same instructions to be vectorized, we may
702   /// incorrectly evaluate the best order for the root node (it is built for the
703   /// vector of instructions without repeated instructions and, thus, has less
704   /// elements than the root node). This function builds the correct order for
705   /// the root node.
706   /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
707   /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
708   /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
709   /// be reordered, the best order will be \<1, 0\>. We need to extend this
710   /// order for the root node. For the root node this order should look like
711   /// \<3, 0, 1, 2\>. This function extends the order for the reused
712   /// instructions.
713   void findRootOrder(OrdersType &Order) {
714     // If the leaf has the same number of instructions to vectorize as the root
715     // - order must be set already.
716     unsigned RootSize = VectorizableTree[0]->Scalars.size();
717     if (Order.size() == RootSize)
718       return;
719     SmallVector<unsigned, 4> RealOrder(Order.size());
720     std::swap(Order, RealOrder);
721     SmallVector<int, 4> Mask;
722     inversePermutation(RealOrder, Mask);
723     Order.assign(Mask.begin(), Mask.end());
724     // The leaf has less number of instructions - need to find the true order of
725     // the root.
726     // Scan the nodes starting from the leaf back to the root.
727     const TreeEntry *PNode = VectorizableTree.back().get();
728     SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
729     SmallPtrSet<const TreeEntry *, 4> Visited;
730     while (!Nodes.empty() && Order.size() != RootSize) {
731       const TreeEntry *PNode = Nodes.pop_back_val();
732       if (!Visited.insert(PNode).second)
733         continue;
734       const TreeEntry &Node = *PNode;
735       for (const EdgeInfo &EI : Node.UserTreeIndices)
736         if (EI.UserTE)
737           Nodes.push_back(EI.UserTE);
738       if (Node.ReuseShuffleIndices.empty())
739         continue;
740       // Build the order for the parent node.
741       OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
742       SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
743       // The algorithm of the order extension is:
744       // 1. Calculate the number of the same instructions for the order.
745       // 2. Calculate the index of the new order: total number of instructions
746       // with order less than the order of the current instruction + reuse
747       // number of the current instruction.
748       // 3. The new order is just the index of the instruction in the original
749       // vector of the instructions.
750       for (unsigned I : Node.ReuseShuffleIndices)
751         ++OrderCounter[Order[I]];
752       SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
753       for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
754         unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
755         unsigned OrderIdx = Order[ReusedIdx];
756         unsigned NewIdx = 0;
757         for (unsigned J = 0; J < OrderIdx; ++J)
758           NewIdx += OrderCounter[J];
759         NewIdx += CurrentCounter[OrderIdx];
760         ++CurrentCounter[OrderIdx];
761         assert(NewOrder[NewIdx] == RootSize &&
762                "The order index should not be written already.");
763         NewOrder[NewIdx] = I;
764       }
765       std::swap(Order, NewOrder);
766     }
767     assert(Order.size() == RootSize &&
768            "Root node is expected or the size of the order must be the same as "
769            "the number of elements in the root node.");
770     assert(llvm::all_of(Order,
771                         [RootSize](unsigned Val) { return Val != RootSize; }) &&
772            "All indices must be initialized");
773   }
774 
775   /// \return The vector element size in bits to use when vectorizing the
776   /// expression tree ending at \p V. If V is a store, the size is the width of
777   /// the stored value. Otherwise, the size is the width of the largest loaded
778   /// value reaching V. This method is used by the vectorizer to calculate
779   /// vectorization factors.
780   unsigned getVectorElementSize(Value *V);
781 
782   /// Compute the minimum type sizes required to represent the entries in a
783   /// vectorizable tree.
784   void computeMinimumValueSizes();
785 
786   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
787   unsigned getMaxVecRegSize() const {
788     return MaxVecRegSize;
789   }
790 
791   // \returns minimum vector register size as set by cl::opt.
792   unsigned getMinVecRegSize() const {
793     return MinVecRegSize;
794   }
795 
796   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
797     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
798       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
799     return MaxVF ? MaxVF : UINT_MAX;
800   }
801 
802   /// Check if homogeneous aggregate is isomorphic to some VectorType.
803   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
804   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
805   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
806   ///
807   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
808   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
809 
810   /// \returns True if the VectorizableTree is both tiny and not fully
811   /// vectorizable. We do not vectorize such trees.
812   bool isTreeTinyAndNotFullyVectorizable() const;
813 
814   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
815   /// can be load combined in the backend. Load combining may not be allowed in
816   /// the IR optimizer, so we do not want to alter the pattern. For example,
817   /// partially transforming a scalar bswap() pattern into vector code is
818   /// effectively impossible for the backend to undo.
819   /// TODO: If load combining is allowed in the IR optimizer, this analysis
820   ///       may not be necessary.
821   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
822 
823   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
824   /// can be load combined in the backend. Load combining may not be allowed in
825   /// the IR optimizer, so we do not want to alter the pattern. For example,
826   /// partially transforming a scalar bswap() pattern into vector code is
827   /// effectively impossible for the backend to undo.
828   /// TODO: If load combining is allowed in the IR optimizer, this analysis
829   ///       may not be necessary.
830   bool isLoadCombineCandidate() const;
831 
832   OptimizationRemarkEmitter *getORE() { return ORE; }
833 
834   /// This structure holds any data we need about the edges being traversed
835   /// during buildTree_rec(). We keep track of:
836   /// (i) the user TreeEntry index, and
837   /// (ii) the index of the edge.
838   struct EdgeInfo {
839     EdgeInfo() = default;
840     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
841         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
842     /// The user TreeEntry.
843     TreeEntry *UserTE = nullptr;
844     /// The operand index of the use.
845     unsigned EdgeIdx = UINT_MAX;
846 #ifndef NDEBUG
847     friend inline raw_ostream &operator<<(raw_ostream &OS,
848                                           const BoUpSLP::EdgeInfo &EI) {
849       EI.dump(OS);
850       return OS;
851     }
852     /// Debug print.
853     void dump(raw_ostream &OS) const {
854       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
855          << " EdgeIdx:" << EdgeIdx << "}";
856     }
857     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
858 #endif
859   };
860 
861   /// A helper data structure to hold the operands of a vector of instructions.
862   /// This supports a fixed vector length for all operand vectors.
863   class VLOperands {
864     /// For each operand we need (i) the value, and (ii) the opcode that it
865     /// would be attached to if the expression was in a left-linearized form.
866     /// This is required to avoid illegal operand reordering.
867     /// For example:
868     /// \verbatim
869     ///                         0 Op1
870     ///                         |/
871     /// Op1 Op2   Linearized    + Op2
872     ///   \ /     ---------->   |/
873     ///    -                    -
874     ///
875     /// Op1 - Op2            (0 + Op1) - Op2
876     /// \endverbatim
877     ///
878     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
879     ///
880     /// Another way to think of this is to track all the operations across the
881     /// path from the operand all the way to the root of the tree and to
882     /// calculate the operation that corresponds to this path. For example, the
883     /// path from Op2 to the root crosses the RHS of the '-', therefore the
884     /// corresponding operation is a '-' (which matches the one in the
885     /// linearized tree, as shown above).
886     ///
887     /// For lack of a better term, we refer to this operation as Accumulated
888     /// Path Operation (APO).
889     struct OperandData {
890       OperandData() = default;
891       OperandData(Value *V, bool APO, bool IsUsed)
892           : V(V), APO(APO), IsUsed(IsUsed) {}
893       /// The operand value.
894       Value *V = nullptr;
895       /// TreeEntries only allow a single opcode, or an alternate sequence of
896       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
897       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
898       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
899       /// (e.g., Add/Mul)
900       bool APO = false;
901       /// Helper data for the reordering function.
902       bool IsUsed = false;
903     };
904 
905     /// During operand reordering, we are trying to select the operand at lane
906     /// that matches best with the operand at the neighboring lane. Our
907     /// selection is based on the type of value we are looking for. For example,
908     /// if the neighboring lane has a load, we need to look for a load that is
909     /// accessing a consecutive address. These strategies are summarized in the
910     /// 'ReorderingMode' enumerator.
911     enum class ReorderingMode {
912       Load,     ///< Matching loads to consecutive memory addresses
913       Opcode,   ///< Matching instructions based on opcode (same or alternate)
914       Constant, ///< Matching constants
915       Splat,    ///< Matching the same instruction multiple times (broadcast)
916       Failed,   ///< We failed to create a vectorizable group
917     };
918 
919     using OperandDataVec = SmallVector<OperandData, 2>;
920 
921     /// A vector of operand vectors.
922     SmallVector<OperandDataVec, 4> OpsVec;
923 
924     const DataLayout &DL;
925     ScalarEvolution &SE;
926     const BoUpSLP &R;
927 
928     /// \returns the operand data at \p OpIdx and \p Lane.
929     OperandData &getData(unsigned OpIdx, unsigned Lane) {
930       return OpsVec[OpIdx][Lane];
931     }
932 
933     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
934     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
935       return OpsVec[OpIdx][Lane];
936     }
937 
938     /// Clears the used flag for all entries.
939     void clearUsed() {
940       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
941            OpIdx != NumOperands; ++OpIdx)
942         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
943              ++Lane)
944           OpsVec[OpIdx][Lane].IsUsed = false;
945     }
946 
947     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
948     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
949       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
950     }
951 
952     // The hard-coded scores listed here are not very important. When computing
953     // the scores of matching one sub-tree with another, we are basically
954     // counting the number of values that are matching. So even if all scores
955     // are set to 1, we would still get a decent matching result.
956     // However, sometimes we have to break ties. For example we may have to
957     // choose between matching loads vs matching opcodes. This is what these
958     // scores are helping us with: they provide the order of preference.
959 
960     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
961     static const int ScoreConsecutiveLoads = 3;
962     /// ExtractElementInst from same vector and consecutive indexes.
963     static const int ScoreConsecutiveExtracts = 3;
964     /// Constants.
965     static const int ScoreConstants = 2;
966     /// Instructions with the same opcode.
967     static const int ScoreSameOpcode = 2;
968     /// Instructions with alt opcodes (e.g, add + sub).
969     static const int ScoreAltOpcodes = 1;
970     /// Identical instructions (a.k.a. splat or broadcast).
971     static const int ScoreSplat = 1;
972     /// Matching with an undef is preferable to failing.
973     static const int ScoreUndef = 1;
974     /// Score for failing to find a decent match.
975     static const int ScoreFail = 0;
976     /// User exteranl to the vectorized code.
977     static const int ExternalUseCost = 1;
978     /// The user is internal but in a different lane.
979     static const int UserInDiffLaneCost = ExternalUseCost;
980 
981     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
982     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
983                                ScalarEvolution &SE) {
984       auto *LI1 = dyn_cast<LoadInst>(V1);
985       auto *LI2 = dyn_cast<LoadInst>(V2);
986       if (LI1 && LI2) {
987         if (LI1->getParent() != LI2->getParent())
988           return VLOperands::ScoreFail;
989 
990         Optional<int> Dist =
991             getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(),
992                             DL, SE, /*StrictCheck=*/true);
993         return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
994                                     : VLOperands::ScoreFail;
995       }
996 
997       auto *C1 = dyn_cast<Constant>(V1);
998       auto *C2 = dyn_cast<Constant>(V2);
999       if (C1 && C2)
1000         return VLOperands::ScoreConstants;
1001 
1002       // Extracts from consecutive indexes of the same vector better score as
1003       // the extracts could be optimized away.
1004       Value *EV;
1005       ConstantInt *Ex1Idx, *Ex2Idx;
1006       if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
1007           match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
1008           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
1009         return VLOperands::ScoreConsecutiveExtracts;
1010 
1011       auto *I1 = dyn_cast<Instruction>(V1);
1012       auto *I2 = dyn_cast<Instruction>(V2);
1013       if (I1 && I2) {
1014         if (I1 == I2)
1015           return VLOperands::ScoreSplat;
1016         InstructionsState S = getSameOpcode({I1, I2});
1017         // Note: Only consider instructions with <= 2 operands to avoid
1018         // complexity explosion.
1019         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
1020           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1021                                   : VLOperands::ScoreSameOpcode;
1022       }
1023 
1024       if (isa<UndefValue>(V2))
1025         return VLOperands::ScoreUndef;
1026 
1027       return VLOperands::ScoreFail;
1028     }
1029 
1030     /// Holds the values and their lane that are taking part in the look-ahead
1031     /// score calculation. This is used in the external uses cost calculation.
1032     SmallDenseMap<Value *, int> InLookAheadValues;
1033 
1034     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
1035     /// either external to the vectorized code, or require shuffling.
1036     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
1037                             const std::pair<Value *, int> &RHS) {
1038       int Cost = 0;
1039       std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1040       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1041         Value *V = Values[Idx].first;
1042         if (isa<Constant>(V)) {
1043           // Since this is a function pass, it doesn't make semantic sense to
1044           // walk the users of a subclass of Constant. The users could be in
1045           // another function, or even another module that happens to be in
1046           // the same LLVMContext.
1047           continue;
1048         }
1049 
1050         // Calculate the absolute lane, using the minimum relative lane of LHS
1051         // and RHS as base and Idx as the offset.
1052         int Ln = std::min(LHS.second, RHS.second) + Idx;
1053         assert(Ln >= 0 && "Bad lane calculation");
1054         unsigned UsersBudget = LookAheadUsersBudget;
1055         for (User *U : V->users()) {
1056           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1057             // The user is in the VectorizableTree. Check if we need to insert.
1058             auto It = llvm::find(UserTE->Scalars, U);
1059             assert(It != UserTE->Scalars.end() && "U is in UserTE");
1060             int UserLn = std::distance(UserTE->Scalars.begin(), It);
1061             assert(UserLn >= 0 && "Bad lane");
1062             if (UserLn != Ln)
1063               Cost += UserInDiffLaneCost;
1064           } else {
1065             // Check if the user is in the look-ahead code.
1066             auto It2 = InLookAheadValues.find(U);
1067             if (It2 != InLookAheadValues.end()) {
1068               // The user is in the look-ahead code. Check the lane.
1069               if (It2->second != Ln)
1070                 Cost += UserInDiffLaneCost;
1071             } else {
1072               // The user is neither in SLP tree nor in the look-ahead code.
1073               Cost += ExternalUseCost;
1074             }
1075           }
1076           // Limit the number of visited uses to cap compilation time.
1077           if (--UsersBudget == 0)
1078             break;
1079         }
1080       }
1081       return Cost;
1082     }
1083 
1084     /// Go through the operands of \p LHS and \p RHS recursively until \p
1085     /// MaxLevel, and return the cummulative score. For example:
1086     /// \verbatim
1087     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1088     ///     \ /         \ /         \ /        \ /
1089     ///      +           +           +          +
1090     ///     G1          G2          G3         G4
1091     /// \endverbatim
1092     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1093     /// each level recursively, accumulating the score. It starts from matching
1094     /// the additions at level 0, then moves on to the loads (level 1). The
1095     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1096     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1097     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1098     /// Please note that the order of the operands does not matter, as we
1099     /// evaluate the score of all profitable combinations of operands. In
1100     /// other words the score of G1 and G4 is the same as G1 and G2. This
1101     /// heuristic is based on ideas described in:
1102     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1103     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1104     ///   Luís F. W. Góes
1105     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1106                            const std::pair<Value *, int> &RHS, int CurrLevel,
1107                            int MaxLevel) {
1108 
1109       Value *V1 = LHS.first;
1110       Value *V2 = RHS.first;
1111       // Get the shallow score of V1 and V2.
1112       int ShallowScoreAtThisLevel =
1113           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1114                                        getExternalUsesCost(LHS, RHS));
1115       int Lane1 = LHS.second;
1116       int Lane2 = RHS.second;
1117 
1118       // If reached MaxLevel,
1119       //  or if V1 and V2 are not instructions,
1120       //  or if they are SPLAT,
1121       //  or if they are not consecutive, early return the current cost.
1122       auto *I1 = dyn_cast<Instruction>(V1);
1123       auto *I2 = dyn_cast<Instruction>(V2);
1124       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1125           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1126           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1127         return ShallowScoreAtThisLevel;
1128       assert(I1 && I2 && "Should have early exited.");
1129 
1130       // Keep track of in-tree values for determining the external-use cost.
1131       InLookAheadValues[V1] = Lane1;
1132       InLookAheadValues[V2] = Lane2;
1133 
1134       // Contains the I2 operand indexes that got matched with I1 operands.
1135       SmallSet<unsigned, 4> Op2Used;
1136 
1137       // Recursion towards the operands of I1 and I2. We are trying all possbile
1138       // operand pairs, and keeping track of the best score.
1139       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1140            OpIdx1 != NumOperands1; ++OpIdx1) {
1141         // Try to pair op1I with the best operand of I2.
1142         int MaxTmpScore = 0;
1143         unsigned MaxOpIdx2 = 0;
1144         bool FoundBest = false;
1145         // If I2 is commutative try all combinations.
1146         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1147         unsigned ToIdx = isCommutative(I2)
1148                              ? I2->getNumOperands()
1149                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1150         assert(FromIdx <= ToIdx && "Bad index");
1151         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1152           // Skip operands already paired with OpIdx1.
1153           if (Op2Used.count(OpIdx2))
1154             continue;
1155           // Recursively calculate the cost at each level
1156           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1157                                             {I2->getOperand(OpIdx2), Lane2},
1158                                             CurrLevel + 1, MaxLevel);
1159           // Look for the best score.
1160           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1161             MaxTmpScore = TmpScore;
1162             MaxOpIdx2 = OpIdx2;
1163             FoundBest = true;
1164           }
1165         }
1166         if (FoundBest) {
1167           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1168           Op2Used.insert(MaxOpIdx2);
1169           ShallowScoreAtThisLevel += MaxTmpScore;
1170         }
1171       }
1172       return ShallowScoreAtThisLevel;
1173     }
1174 
1175     /// \Returns the look-ahead score, which tells us how much the sub-trees
1176     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1177     /// score. This helps break ties in an informed way when we cannot decide on
1178     /// the order of the operands by just considering the immediate
1179     /// predecessors.
1180     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1181                           const std::pair<Value *, int> &RHS) {
1182       InLookAheadValues.clear();
1183       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1184     }
1185 
1186     // Search all operands in Ops[*][Lane] for the one that matches best
1187     // Ops[OpIdx][LastLane] and return its opreand index.
1188     // If no good match can be found, return None.
1189     Optional<unsigned>
1190     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1191                    ArrayRef<ReorderingMode> ReorderingModes) {
1192       unsigned NumOperands = getNumOperands();
1193 
1194       // The operand of the previous lane at OpIdx.
1195       Value *OpLastLane = getData(OpIdx, LastLane).V;
1196 
1197       // Our strategy mode for OpIdx.
1198       ReorderingMode RMode = ReorderingModes[OpIdx];
1199 
1200       // The linearized opcode of the operand at OpIdx, Lane.
1201       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1202 
1203       // The best operand index and its score.
1204       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1205       // are using the score to differentiate between the two.
1206       struct BestOpData {
1207         Optional<unsigned> Idx = None;
1208         unsigned Score = 0;
1209       } BestOp;
1210 
1211       // Iterate through all unused operands and look for the best.
1212       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1213         // Get the operand at Idx and Lane.
1214         OperandData &OpData = getData(Idx, Lane);
1215         Value *Op = OpData.V;
1216         bool OpAPO = OpData.APO;
1217 
1218         // Skip already selected operands.
1219         if (OpData.IsUsed)
1220           continue;
1221 
1222         // Skip if we are trying to move the operand to a position with a
1223         // different opcode in the linearized tree form. This would break the
1224         // semantics.
1225         if (OpAPO != OpIdxAPO)
1226           continue;
1227 
1228         // Look for an operand that matches the current mode.
1229         switch (RMode) {
1230         case ReorderingMode::Load:
1231         case ReorderingMode::Constant:
1232         case ReorderingMode::Opcode: {
1233           bool LeftToRight = Lane > LastLane;
1234           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1235           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1236           unsigned Score =
1237               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1238           if (Score > BestOp.Score) {
1239             BestOp.Idx = Idx;
1240             BestOp.Score = Score;
1241           }
1242           break;
1243         }
1244         case ReorderingMode::Splat:
1245           if (Op == OpLastLane)
1246             BestOp.Idx = Idx;
1247           break;
1248         case ReorderingMode::Failed:
1249           return None;
1250         }
1251       }
1252 
1253       if (BestOp.Idx) {
1254         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1255         return BestOp.Idx;
1256       }
1257       // If we could not find a good match return None.
1258       return None;
1259     }
1260 
1261     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1262     /// reordering from. This is the one which has the least number of operands
1263     /// that can freely move about.
1264     unsigned getBestLaneToStartReordering() const {
1265       unsigned BestLane = 0;
1266       unsigned Min = UINT_MAX;
1267       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1268            ++Lane) {
1269         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1270         if (NumFreeOps < Min) {
1271           Min = NumFreeOps;
1272           BestLane = Lane;
1273         }
1274       }
1275       return BestLane;
1276     }
1277 
1278     /// \Returns the maximum number of operands that are allowed to be reordered
1279     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1280     /// start operand reordering.
1281     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1282       unsigned CntTrue = 0;
1283       unsigned NumOperands = getNumOperands();
1284       // Operands with the same APO can be reordered. We therefore need to count
1285       // how many of them we have for each APO, like this: Cnt[APO] = x.
1286       // Since we only have two APOs, namely true and false, we can avoid using
1287       // a map. Instead we can simply count the number of operands that
1288       // correspond to one of them (in this case the 'true' APO), and calculate
1289       // the other by subtracting it from the total number of operands.
1290       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1291         if (getData(OpIdx, Lane).APO)
1292           ++CntTrue;
1293       unsigned CntFalse = NumOperands - CntTrue;
1294       return std::max(CntTrue, CntFalse);
1295     }
1296 
1297     /// Go through the instructions in VL and append their operands.
1298     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1299       assert(!VL.empty() && "Bad VL");
1300       assert((empty() || VL.size() == getNumLanes()) &&
1301              "Expected same number of lanes");
1302       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1303       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1304       OpsVec.resize(NumOperands);
1305       unsigned NumLanes = VL.size();
1306       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1307         OpsVec[OpIdx].resize(NumLanes);
1308         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1309           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1310           // Our tree has just 3 nodes: the root and two operands.
1311           // It is therefore trivial to get the APO. We only need to check the
1312           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1313           // RHS operand. The LHS operand of both add and sub is never attached
1314           // to an inversese operation in the linearized form, therefore its APO
1315           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1316 
1317           // Since operand reordering is performed on groups of commutative
1318           // operations or alternating sequences (e.g., +, -), we can safely
1319           // tell the inverse operations by checking commutativity.
1320           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1321           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1322           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1323                                  APO, false};
1324         }
1325       }
1326     }
1327 
1328     /// \returns the number of operands.
1329     unsigned getNumOperands() const { return OpsVec.size(); }
1330 
1331     /// \returns the number of lanes.
1332     unsigned getNumLanes() const { return OpsVec[0].size(); }
1333 
1334     /// \returns the operand value at \p OpIdx and \p Lane.
1335     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1336       return getData(OpIdx, Lane).V;
1337     }
1338 
1339     /// \returns true if the data structure is empty.
1340     bool empty() const { return OpsVec.empty(); }
1341 
1342     /// Clears the data.
1343     void clear() { OpsVec.clear(); }
1344 
1345     /// \Returns true if there are enough operands identical to \p Op to fill
1346     /// the whole vector.
1347     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1348     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1349       bool OpAPO = getData(OpIdx, Lane).APO;
1350       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1351         if (Ln == Lane)
1352           continue;
1353         // This is set to true if we found a candidate for broadcast at Lane.
1354         bool FoundCandidate = false;
1355         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1356           OperandData &Data = getData(OpI, Ln);
1357           if (Data.APO != OpAPO || Data.IsUsed)
1358             continue;
1359           if (Data.V == Op) {
1360             FoundCandidate = true;
1361             Data.IsUsed = true;
1362             break;
1363           }
1364         }
1365         if (!FoundCandidate)
1366           return false;
1367       }
1368       return true;
1369     }
1370 
1371   public:
1372     /// Initialize with all the operands of the instruction vector \p RootVL.
1373     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1374                ScalarEvolution &SE, const BoUpSLP &R)
1375         : DL(DL), SE(SE), R(R) {
1376       // Append all the operands of RootVL.
1377       appendOperandsOfVL(RootVL);
1378     }
1379 
1380     /// \Returns a value vector with the operands across all lanes for the
1381     /// opearnd at \p OpIdx.
1382     ValueList getVL(unsigned OpIdx) const {
1383       ValueList OpVL(OpsVec[OpIdx].size());
1384       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1385              "Expected same num of lanes across all operands");
1386       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1387         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1388       return OpVL;
1389     }
1390 
1391     // Performs operand reordering for 2 or more operands.
1392     // The original operands are in OrigOps[OpIdx][Lane].
1393     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1394     void reorder() {
1395       unsigned NumOperands = getNumOperands();
1396       unsigned NumLanes = getNumLanes();
1397       // Each operand has its own mode. We are using this mode to help us select
1398       // the instructions for each lane, so that they match best with the ones
1399       // we have selected so far.
1400       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1401 
1402       // This is a greedy single-pass algorithm. We are going over each lane
1403       // once and deciding on the best order right away with no back-tracking.
1404       // However, in order to increase its effectiveness, we start with the lane
1405       // that has operands that can move the least. For example, given the
1406       // following lanes:
1407       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1408       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1409       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1410       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1411       // we will start at Lane 1, since the operands of the subtraction cannot
1412       // be reordered. Then we will visit the rest of the lanes in a circular
1413       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1414 
1415       // Find the first lane that we will start our search from.
1416       unsigned FirstLane = getBestLaneToStartReordering();
1417 
1418       // Initialize the modes.
1419       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1420         Value *OpLane0 = getValue(OpIdx, FirstLane);
1421         // Keep track if we have instructions with all the same opcode on one
1422         // side.
1423         if (isa<LoadInst>(OpLane0))
1424           ReorderingModes[OpIdx] = ReorderingMode::Load;
1425         else if (isa<Instruction>(OpLane0)) {
1426           // Check if OpLane0 should be broadcast.
1427           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1428             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1429           else
1430             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1431         }
1432         else if (isa<Constant>(OpLane0))
1433           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1434         else if (isa<Argument>(OpLane0))
1435           // Our best hope is a Splat. It may save some cost in some cases.
1436           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1437         else
1438           // NOTE: This should be unreachable.
1439           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440       }
1441 
1442       // If the initial strategy fails for any of the operand indexes, then we
1443       // perform reordering again in a second pass. This helps avoid assigning
1444       // high priority to the failed strategy, and should improve reordering for
1445       // the non-failed operand indexes.
1446       for (int Pass = 0; Pass != 2; ++Pass) {
1447         // Skip the second pass if the first pass did not fail.
1448         bool StrategyFailed = false;
1449         // Mark all operand data as free to use.
1450         clearUsed();
1451         // We keep the original operand order for the FirstLane, so reorder the
1452         // rest of the lanes. We are visiting the nodes in a circular fashion,
1453         // using FirstLane as the center point and increasing the radius
1454         // distance.
1455         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1456           // Visit the lane on the right and then the lane on the left.
1457           for (int Direction : {+1, -1}) {
1458             int Lane = FirstLane + Direction * Distance;
1459             if (Lane < 0 || Lane >= (int)NumLanes)
1460               continue;
1461             int LastLane = Lane - Direction;
1462             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1463                    "Out of bounds");
1464             // Look for a good match for each operand.
1465             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1466               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1467               Optional<unsigned> BestIdx =
1468                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1469               // By not selecting a value, we allow the operands that follow to
1470               // select a better matching value. We will get a non-null value in
1471               // the next run of getBestOperand().
1472               if (BestIdx) {
1473                 // Swap the current operand with the one returned by
1474                 // getBestOperand().
1475                 swap(OpIdx, BestIdx.getValue(), Lane);
1476               } else {
1477                 // We failed to find a best operand, set mode to 'Failed'.
1478                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1479                 // Enable the second pass.
1480                 StrategyFailed = true;
1481               }
1482             }
1483           }
1484         }
1485         // Skip second pass if the strategy did not fail.
1486         if (!StrategyFailed)
1487           break;
1488       }
1489     }
1490 
1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1493       switch (RMode) {
1494       case ReorderingMode::Load:
1495         return "Load";
1496       case ReorderingMode::Opcode:
1497         return "Opcode";
1498       case ReorderingMode::Constant:
1499         return "Constant";
1500       case ReorderingMode::Splat:
1501         return "Splat";
1502       case ReorderingMode::Failed:
1503         return "Failed";
1504       }
1505       llvm_unreachable("Unimplemented Reordering Type");
1506     }
1507 
1508     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1509                                                    raw_ostream &OS) {
1510       return OS << getModeStr(RMode);
1511     }
1512 
1513     /// Debug print.
1514     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1515       printMode(RMode, dbgs());
1516     }
1517 
1518     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1519       return printMode(RMode, OS);
1520     }
1521 
1522     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1523       const unsigned Indent = 2;
1524       unsigned Cnt = 0;
1525       for (const OperandDataVec &OpDataVec : OpsVec) {
1526         OS << "Operand " << Cnt++ << "\n";
1527         for (const OperandData &OpData : OpDataVec) {
1528           OS.indent(Indent) << "{";
1529           if (Value *V = OpData.V)
1530             OS << *V;
1531           else
1532             OS << "null";
1533           OS << ", APO:" << OpData.APO << "}\n";
1534         }
1535         OS << "\n";
1536       }
1537       return OS;
1538     }
1539 
1540     /// Debug print.
1541     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1542 #endif
1543   };
1544 
1545   /// Checks if the instruction is marked for deletion.
1546   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1547 
1548   /// Marks values operands for later deletion by replacing them with Undefs.
1549   void eraseInstructions(ArrayRef<Value *> AV);
1550 
1551   ~BoUpSLP();
1552 
1553 private:
1554   /// Checks if all users of \p I are the part of the vectorization tree.
1555   bool areAllUsersVectorized(Instruction *I,
1556                              ArrayRef<Value *> VectorizedVals) const;
1557 
1558   /// \returns the cost of the vectorizable entry.
1559   InstructionCost getEntryCost(const TreeEntry *E,
1560                                ArrayRef<Value *> VectorizedVals);
1561 
1562   /// This is the recursive part of buildTree.
1563   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1564                      const EdgeInfo &EI);
1565 
1566   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1567   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1568   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1569   /// returns false, setting \p CurrentOrder to either an empty vector or a
1570   /// non-identity permutation that allows to reuse extract instructions.
1571   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1572                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1573 
1574   /// Vectorize a single entry in the tree.
1575   Value *vectorizeTree(TreeEntry *E);
1576 
1577   /// Vectorize a single entry in the tree, starting in \p VL.
1578   Value *vectorizeTree(ArrayRef<Value *> VL);
1579 
1580   /// \returns the scalarization cost for this type. Scalarization in this
1581   /// context means the creation of vectors from a group of scalars.
1582   InstructionCost
1583   getGatherCost(FixedVectorType *Ty,
1584                 const DenseSet<unsigned> &ShuffledIndices) const;
1585 
1586   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1587   /// tree entries.
1588   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1589   /// previous tree entries. \p Mask is filled with the shuffle mask.
1590   Optional<TargetTransformInfo::ShuffleKind>
1591   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1592                         SmallVectorImpl<const TreeEntry *> &Entries);
1593 
1594   /// \returns the scalarization cost for this list of values. Assuming that
1595   /// this subtree gets vectorized, we may need to extract the values from the
1596   /// roots. This method calculates the cost of extracting the values.
1597   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1598 
1599   /// Set the Builder insert point to one after the last instruction in
1600   /// the bundle
1601   void setInsertPointAfterBundle(const TreeEntry *E);
1602 
1603   /// \returns a vector from a collection of scalars in \p VL.
1604   Value *gather(ArrayRef<Value *> VL);
1605 
1606   /// \returns whether the VectorizableTree is fully vectorizable and will
1607   /// be beneficial even the tree height is tiny.
1608   bool isFullyVectorizableTinyTree() const;
1609 
1610   /// Reorder commutative or alt operands to get better probability of
1611   /// generating vectorized code.
1612   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1613                                              SmallVectorImpl<Value *> &Left,
1614                                              SmallVectorImpl<Value *> &Right,
1615                                              const DataLayout &DL,
1616                                              ScalarEvolution &SE,
1617                                              const BoUpSLP &R);
1618   struct TreeEntry {
1619     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1620     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1621 
1622     /// \returns true if the scalars in VL are equal to this entry.
1623     bool isSame(ArrayRef<Value *> VL) const {
1624       if (VL.size() == Scalars.size())
1625         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1626       return VL.size() == ReuseShuffleIndices.size() &&
1627              std::equal(
1628                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1629                  [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1630     }
1631 
1632     /// A vector of scalars.
1633     ValueList Scalars;
1634 
1635     /// The Scalars are vectorized into this value. It is initialized to Null.
1636     Value *VectorizedValue = nullptr;
1637 
1638     /// Do we need to gather this sequence or vectorize it
1639     /// (either with vector instruction or with scatter/gather
1640     /// intrinsics for store/load)?
1641     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1642     EntryState State;
1643 
1644     /// Does this sequence require some shuffling?
1645     SmallVector<int, 4> ReuseShuffleIndices;
1646 
1647     /// Does this entry require reordering?
1648     SmallVector<unsigned, 4> ReorderIndices;
1649 
1650     /// Points back to the VectorizableTree.
1651     ///
1652     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1653     /// to be a pointer and needs to be able to initialize the child iterator.
1654     /// Thus we need a reference back to the container to translate the indices
1655     /// to entries.
1656     VecTreeTy &Container;
1657 
1658     /// The TreeEntry index containing the user of this entry.  We can actually
1659     /// have multiple users so the data structure is not truly a tree.
1660     SmallVector<EdgeInfo, 1> UserTreeIndices;
1661 
1662     /// The index of this treeEntry in VectorizableTree.
1663     int Idx = -1;
1664 
1665   private:
1666     /// The operands of each instruction in each lane Operands[op_index][lane].
1667     /// Note: This helps avoid the replication of the code that performs the
1668     /// reordering of operands during buildTree_rec() and vectorizeTree().
1669     SmallVector<ValueList, 2> Operands;
1670 
1671     /// The main/alternate instruction.
1672     Instruction *MainOp = nullptr;
1673     Instruction *AltOp = nullptr;
1674 
1675   public:
1676     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1677     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1678       if (Operands.size() < OpIdx + 1)
1679         Operands.resize(OpIdx + 1);
1680       assert(Operands[OpIdx].empty() && "Already resized?");
1681       Operands[OpIdx].resize(Scalars.size());
1682       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1683         Operands[OpIdx][Lane] = OpVL[Lane];
1684     }
1685 
1686     /// Set the operands of this bundle in their original order.
1687     void setOperandsInOrder() {
1688       assert(Operands.empty() && "Already initialized?");
1689       auto *I0 = cast<Instruction>(Scalars[0]);
1690       Operands.resize(I0->getNumOperands());
1691       unsigned NumLanes = Scalars.size();
1692       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1693            OpIdx != NumOperands; ++OpIdx) {
1694         Operands[OpIdx].resize(NumLanes);
1695         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1696           auto *I = cast<Instruction>(Scalars[Lane]);
1697           assert(I->getNumOperands() == NumOperands &&
1698                  "Expected same number of operands");
1699           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1700         }
1701       }
1702     }
1703 
1704     /// \returns the \p OpIdx operand of this TreeEntry.
1705     ValueList &getOperand(unsigned OpIdx) {
1706       assert(OpIdx < Operands.size() && "Off bounds");
1707       return Operands[OpIdx];
1708     }
1709 
1710     /// \returns the number of operands.
1711     unsigned getNumOperands() const { return Operands.size(); }
1712 
1713     /// \return the single \p OpIdx operand.
1714     Value *getSingleOperand(unsigned OpIdx) const {
1715       assert(OpIdx < Operands.size() && "Off bounds");
1716       assert(!Operands[OpIdx].empty() && "No operand available");
1717       return Operands[OpIdx][0];
1718     }
1719 
1720     /// Some of the instructions in the list have alternate opcodes.
1721     bool isAltShuffle() const {
1722       return getOpcode() != getAltOpcode();
1723     }
1724 
1725     bool isOpcodeOrAlt(Instruction *I) const {
1726       unsigned CheckedOpcode = I->getOpcode();
1727       return (getOpcode() == CheckedOpcode ||
1728               getAltOpcode() == CheckedOpcode);
1729     }
1730 
1731     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1732     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1733     /// \p OpValue.
1734     Value *isOneOf(Value *Op) const {
1735       auto *I = dyn_cast<Instruction>(Op);
1736       if (I && isOpcodeOrAlt(I))
1737         return Op;
1738       return MainOp;
1739     }
1740 
1741     void setOperations(const InstructionsState &S) {
1742       MainOp = S.MainOp;
1743       AltOp = S.AltOp;
1744     }
1745 
1746     Instruction *getMainOp() const {
1747       return MainOp;
1748     }
1749 
1750     Instruction *getAltOp() const {
1751       return AltOp;
1752     }
1753 
1754     /// The main/alternate opcodes for the list of instructions.
1755     unsigned getOpcode() const {
1756       return MainOp ? MainOp->getOpcode() : 0;
1757     }
1758 
1759     unsigned getAltOpcode() const {
1760       return AltOp ? AltOp->getOpcode() : 0;
1761     }
1762 
1763     /// Update operations state of this entry if reorder occurred.
1764     bool updateStateIfReorder() {
1765       if (ReorderIndices.empty())
1766         return false;
1767       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1768       setOperations(S);
1769       return true;
1770     }
1771 
1772 #ifndef NDEBUG
1773     /// Debug printer.
1774     LLVM_DUMP_METHOD void dump() const {
1775       dbgs() << Idx << ".\n";
1776       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1777         dbgs() << "Operand " << OpI << ":\n";
1778         for (const Value *V : Operands[OpI])
1779           dbgs().indent(2) << *V << "\n";
1780       }
1781       dbgs() << "Scalars: \n";
1782       for (Value *V : Scalars)
1783         dbgs().indent(2) << *V << "\n";
1784       dbgs() << "State: ";
1785       switch (State) {
1786       case Vectorize:
1787         dbgs() << "Vectorize\n";
1788         break;
1789       case ScatterVectorize:
1790         dbgs() << "ScatterVectorize\n";
1791         break;
1792       case NeedToGather:
1793         dbgs() << "NeedToGather\n";
1794         break;
1795       }
1796       dbgs() << "MainOp: ";
1797       if (MainOp)
1798         dbgs() << *MainOp << "\n";
1799       else
1800         dbgs() << "NULL\n";
1801       dbgs() << "AltOp: ";
1802       if (AltOp)
1803         dbgs() << *AltOp << "\n";
1804       else
1805         dbgs() << "NULL\n";
1806       dbgs() << "VectorizedValue: ";
1807       if (VectorizedValue)
1808         dbgs() << *VectorizedValue << "\n";
1809       else
1810         dbgs() << "NULL\n";
1811       dbgs() << "ReuseShuffleIndices: ";
1812       if (ReuseShuffleIndices.empty())
1813         dbgs() << "Empty";
1814       else
1815         for (unsigned ReuseIdx : ReuseShuffleIndices)
1816           dbgs() << ReuseIdx << ", ";
1817       dbgs() << "\n";
1818       dbgs() << "ReorderIndices: ";
1819       for (unsigned ReorderIdx : ReorderIndices)
1820         dbgs() << ReorderIdx << ", ";
1821       dbgs() << "\n";
1822       dbgs() << "UserTreeIndices: ";
1823       for (const auto &EInfo : UserTreeIndices)
1824         dbgs() << EInfo << ", ";
1825       dbgs() << "\n";
1826     }
1827 #endif
1828   };
1829 
1830 #ifndef NDEBUG
1831   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
1832                      InstructionCost VecCost,
1833                      InstructionCost ScalarCost) const {
1834     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1835     dbgs() << "SLP: Costs:\n";
1836     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1837     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
1838     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
1839     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
1840                ReuseShuffleCost + VecCost - ScalarCost << "\n";
1841   }
1842 #endif
1843 
1844   /// Create a new VectorizableTree entry.
1845   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1846                           const InstructionsState &S,
1847                           const EdgeInfo &UserTreeIdx,
1848                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1849                           ArrayRef<unsigned> ReorderIndices = None) {
1850     TreeEntry::EntryState EntryState =
1851         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1852     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1853                         ReuseShuffleIndices, ReorderIndices);
1854   }
1855 
1856   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1857                           TreeEntry::EntryState EntryState,
1858                           Optional<ScheduleData *> Bundle,
1859                           const InstructionsState &S,
1860                           const EdgeInfo &UserTreeIdx,
1861                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1862                           ArrayRef<unsigned> ReorderIndices = None) {
1863     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
1864             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
1865            "Need to vectorize gather entry?");
1866     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1867     TreeEntry *Last = VectorizableTree.back().get();
1868     Last->Idx = VectorizableTree.size() - 1;
1869     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1870     Last->State = EntryState;
1871     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1872                                      ReuseShuffleIndices.end());
1873     Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1874     Last->setOperations(S);
1875     if (Last->State != TreeEntry::NeedToGather) {
1876       for (Value *V : VL) {
1877         assert(!getTreeEntry(V) && "Scalar already in tree!");
1878         ScalarToTreeEntry[V] = Last;
1879       }
1880       // Update the scheduler bundle to point to this TreeEntry.
1881       unsigned Lane = 0;
1882       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1883            BundleMember = BundleMember->NextInBundle) {
1884         BundleMember->TE = Last;
1885         BundleMember->Lane = Lane;
1886         ++Lane;
1887       }
1888       assert((!Bundle.getValue() || Lane == VL.size()) &&
1889              "Bundle and VL out of sync");
1890     } else {
1891       MustGather.insert(VL.begin(), VL.end());
1892     }
1893 
1894     if (UserTreeIdx.UserTE)
1895       Last->UserTreeIndices.push_back(UserTreeIdx);
1896 
1897     return Last;
1898   }
1899 
1900   /// -- Vectorization State --
1901   /// Holds all of the tree entries.
1902   TreeEntry::VecTreeTy VectorizableTree;
1903 
1904 #ifndef NDEBUG
1905   /// Debug printer.
1906   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1907     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1908       VectorizableTree[Id]->dump();
1909       dbgs() << "\n";
1910     }
1911   }
1912 #endif
1913 
1914   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1915 
1916   const TreeEntry *getTreeEntry(Value *V) const {
1917     return ScalarToTreeEntry.lookup(V);
1918   }
1919 
1920   /// Maps a specific scalar to its tree entry.
1921   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1922 
1923   /// Maps a value to the proposed vectorizable size.
1924   SmallDenseMap<Value *, unsigned> InstrElementSize;
1925 
1926   /// A list of scalars that we found that we need to keep as scalars.
1927   ValueSet MustGather;
1928 
1929   /// This POD struct describes one external user in the vectorized tree.
1930   struct ExternalUser {
1931     ExternalUser(Value *S, llvm::User *U, int L)
1932         : Scalar(S), User(U), Lane(L) {}
1933 
1934     // Which scalar in our function.
1935     Value *Scalar;
1936 
1937     // Which user that uses the scalar.
1938     llvm::User *User;
1939 
1940     // Which lane does the scalar belong to.
1941     int Lane;
1942   };
1943   using UserList = SmallVector<ExternalUser, 16>;
1944 
1945   /// Checks if two instructions may access the same memory.
1946   ///
1947   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1948   /// is invariant in the calling loop.
1949   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1950                  Instruction *Inst2) {
1951     // First check if the result is already in the cache.
1952     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1953     Optional<bool> &result = AliasCache[key];
1954     if (result.hasValue()) {
1955       return result.getValue();
1956     }
1957     MemoryLocation Loc2 = getLocation(Inst2, AA);
1958     bool aliased = true;
1959     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1960       // Do the alias check.
1961       aliased = !AA->isNoAlias(Loc1, Loc2);
1962     }
1963     // Store the result in the cache.
1964     result = aliased;
1965     return aliased;
1966   }
1967 
1968   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1969 
1970   /// Cache for alias results.
1971   /// TODO: consider moving this to the AliasAnalysis itself.
1972   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1973 
1974   /// Removes an instruction from its block and eventually deletes it.
1975   /// It's like Instruction::eraseFromParent() except that the actual deletion
1976   /// is delayed until BoUpSLP is destructed.
1977   /// This is required to ensure that there are no incorrect collisions in the
1978   /// AliasCache, which can happen if a new instruction is allocated at the
1979   /// same address as a previously deleted instruction.
1980   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1981     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1982     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1983   }
1984 
1985   /// Temporary store for deleted instructions. Instructions will be deleted
1986   /// eventually when the BoUpSLP is destructed.
1987   DenseMap<Instruction *, bool> DeletedInstructions;
1988 
1989   /// A list of values that need to extracted out of the tree.
1990   /// This list holds pairs of (Internal Scalar : External User). External User
1991   /// can be nullptr, it means that this Internal Scalar will be used later,
1992   /// after vectorization.
1993   UserList ExternalUses;
1994 
1995   /// Values used only by @llvm.assume calls.
1996   SmallPtrSet<const Value *, 32> EphValues;
1997 
1998   /// Holds all of the instructions that we gathered.
1999   SetVector<Instruction *> GatherSeq;
2000 
2001   /// A list of blocks that we are going to CSE.
2002   SetVector<BasicBlock *> CSEBlocks;
2003 
2004   /// Contains all scheduling relevant data for an instruction.
2005   /// A ScheduleData either represents a single instruction or a member of an
2006   /// instruction bundle (= a group of instructions which is combined into a
2007   /// vector instruction).
2008   struct ScheduleData {
2009     // The initial value for the dependency counters. It means that the
2010     // dependencies are not calculated yet.
2011     enum { InvalidDeps = -1 };
2012 
2013     ScheduleData() = default;
2014 
2015     void init(int BlockSchedulingRegionID, Value *OpVal) {
2016       FirstInBundle = this;
2017       NextInBundle = nullptr;
2018       NextLoadStore = nullptr;
2019       IsScheduled = false;
2020       SchedulingRegionID = BlockSchedulingRegionID;
2021       UnscheduledDepsInBundle = UnscheduledDeps;
2022       clearDependencies();
2023       OpValue = OpVal;
2024       TE = nullptr;
2025       Lane = -1;
2026     }
2027 
2028     /// Returns true if the dependency information has been calculated.
2029     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2030 
2031     /// Returns true for single instructions and for bundle representatives
2032     /// (= the head of a bundle).
2033     bool isSchedulingEntity() const { return FirstInBundle == this; }
2034 
2035     /// Returns true if it represents an instruction bundle and not only a
2036     /// single instruction.
2037     bool isPartOfBundle() const {
2038       return NextInBundle != nullptr || FirstInBundle != this;
2039     }
2040 
2041     /// Returns true if it is ready for scheduling, i.e. it has no more
2042     /// unscheduled depending instructions/bundles.
2043     bool isReady() const {
2044       assert(isSchedulingEntity() &&
2045              "can't consider non-scheduling entity for ready list");
2046       return UnscheduledDepsInBundle == 0 && !IsScheduled;
2047     }
2048 
2049     /// Modifies the number of unscheduled dependencies, also updating it for
2050     /// the whole bundle.
2051     int incrementUnscheduledDeps(int Incr) {
2052       UnscheduledDeps += Incr;
2053       return FirstInBundle->UnscheduledDepsInBundle += Incr;
2054     }
2055 
2056     /// Sets the number of unscheduled dependencies to the number of
2057     /// dependencies.
2058     void resetUnscheduledDeps() {
2059       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2060     }
2061 
2062     /// Clears all dependency information.
2063     void clearDependencies() {
2064       Dependencies = InvalidDeps;
2065       resetUnscheduledDeps();
2066       MemoryDependencies.clear();
2067     }
2068 
2069     void dump(raw_ostream &os) const {
2070       if (!isSchedulingEntity()) {
2071         os << "/ " << *Inst;
2072       } else if (NextInBundle) {
2073         os << '[' << *Inst;
2074         ScheduleData *SD = NextInBundle;
2075         while (SD) {
2076           os << ';' << *SD->Inst;
2077           SD = SD->NextInBundle;
2078         }
2079         os << ']';
2080       } else {
2081         os << *Inst;
2082       }
2083     }
2084 
2085     Instruction *Inst = nullptr;
2086 
2087     /// Points to the head in an instruction bundle (and always to this for
2088     /// single instructions).
2089     ScheduleData *FirstInBundle = nullptr;
2090 
2091     /// Single linked list of all instructions in a bundle. Null if it is a
2092     /// single instruction.
2093     ScheduleData *NextInBundle = nullptr;
2094 
2095     /// Single linked list of all memory instructions (e.g. load, store, call)
2096     /// in the block - until the end of the scheduling region.
2097     ScheduleData *NextLoadStore = nullptr;
2098 
2099     /// The dependent memory instructions.
2100     /// This list is derived on demand in calculateDependencies().
2101     SmallVector<ScheduleData *, 4> MemoryDependencies;
2102 
2103     /// This ScheduleData is in the current scheduling region if this matches
2104     /// the current SchedulingRegionID of BlockScheduling.
2105     int SchedulingRegionID = 0;
2106 
2107     /// Used for getting a "good" final ordering of instructions.
2108     int SchedulingPriority = 0;
2109 
2110     /// The number of dependencies. Constitutes of the number of users of the
2111     /// instruction plus the number of dependent memory instructions (if any).
2112     /// This value is calculated on demand.
2113     /// If InvalidDeps, the number of dependencies is not calculated yet.
2114     int Dependencies = InvalidDeps;
2115 
2116     /// The number of dependencies minus the number of dependencies of scheduled
2117     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2118     /// for scheduling.
2119     /// Note that this is negative as long as Dependencies is not calculated.
2120     int UnscheduledDeps = InvalidDeps;
2121 
2122     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2123     /// single instructions.
2124     int UnscheduledDepsInBundle = InvalidDeps;
2125 
2126     /// True if this instruction is scheduled (or considered as scheduled in the
2127     /// dry-run).
2128     bool IsScheduled = false;
2129 
2130     /// Opcode of the current instruction in the schedule data.
2131     Value *OpValue = nullptr;
2132 
2133     /// The TreeEntry that this instruction corresponds to.
2134     TreeEntry *TE = nullptr;
2135 
2136     /// The lane of this node in the TreeEntry.
2137     int Lane = -1;
2138   };
2139 
2140 #ifndef NDEBUG
2141   friend inline raw_ostream &operator<<(raw_ostream &os,
2142                                         const BoUpSLP::ScheduleData &SD) {
2143     SD.dump(os);
2144     return os;
2145   }
2146 #endif
2147 
2148   friend struct GraphTraits<BoUpSLP *>;
2149   friend struct DOTGraphTraits<BoUpSLP *>;
2150 
2151   /// Contains all scheduling data for a basic block.
2152   struct BlockScheduling {
2153     BlockScheduling(BasicBlock *BB)
2154         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2155 
2156     void clear() {
2157       ReadyInsts.clear();
2158       ScheduleStart = nullptr;
2159       ScheduleEnd = nullptr;
2160       FirstLoadStoreInRegion = nullptr;
2161       LastLoadStoreInRegion = nullptr;
2162 
2163       // Reduce the maximum schedule region size by the size of the
2164       // previous scheduling run.
2165       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2166       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2167         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2168       ScheduleRegionSize = 0;
2169 
2170       // Make a new scheduling region, i.e. all existing ScheduleData is not
2171       // in the new region yet.
2172       ++SchedulingRegionID;
2173     }
2174 
2175     ScheduleData *getScheduleData(Value *V) {
2176       ScheduleData *SD = ScheduleDataMap[V];
2177       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2178         return SD;
2179       return nullptr;
2180     }
2181 
2182     ScheduleData *getScheduleData(Value *V, Value *Key) {
2183       if (V == Key)
2184         return getScheduleData(V);
2185       auto I = ExtraScheduleDataMap.find(V);
2186       if (I != ExtraScheduleDataMap.end()) {
2187         ScheduleData *SD = I->second[Key];
2188         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2189           return SD;
2190       }
2191       return nullptr;
2192     }
2193 
2194     bool isInSchedulingRegion(ScheduleData *SD) const {
2195       return SD->SchedulingRegionID == SchedulingRegionID;
2196     }
2197 
2198     /// Marks an instruction as scheduled and puts all dependent ready
2199     /// instructions into the ready-list.
2200     template <typename ReadyListType>
2201     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2202       SD->IsScheduled = true;
2203       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2204 
2205       ScheduleData *BundleMember = SD;
2206       while (BundleMember) {
2207         if (BundleMember->Inst != BundleMember->OpValue) {
2208           BundleMember = BundleMember->NextInBundle;
2209           continue;
2210         }
2211         // Handle the def-use chain dependencies.
2212 
2213         // Decrement the unscheduled counter and insert to ready list if ready.
2214         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2215           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2216             if (OpDef && OpDef->hasValidDependencies() &&
2217                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2218               // There are no more unscheduled dependencies after
2219               // decrementing, so we can put the dependent instruction
2220               // into the ready list.
2221               ScheduleData *DepBundle = OpDef->FirstInBundle;
2222               assert(!DepBundle->IsScheduled &&
2223                      "already scheduled bundle gets ready");
2224               ReadyList.insert(DepBundle);
2225               LLVM_DEBUG(dbgs()
2226                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2227             }
2228           });
2229         };
2230 
2231         // If BundleMember is a vector bundle, its operands may have been
2232         // reordered duiring buildTree(). We therefore need to get its operands
2233         // through the TreeEntry.
2234         if (TreeEntry *TE = BundleMember->TE) {
2235           int Lane = BundleMember->Lane;
2236           assert(Lane >= 0 && "Lane not set");
2237 
2238           // Since vectorization tree is being built recursively this assertion
2239           // ensures that the tree entry has all operands set before reaching
2240           // this code. Couple of exceptions known at the moment are extracts
2241           // where their second (immediate) operand is not added. Since
2242           // immediates do not affect scheduler behavior this is considered
2243           // okay.
2244           auto *In = TE->getMainOp();
2245           assert(In &&
2246                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2247                   In->getNumOperands() == TE->getNumOperands()) &&
2248                  "Missed TreeEntry operands?");
2249           (void)In; // fake use to avoid build failure when assertions disabled
2250 
2251           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2252                OpIdx != NumOperands; ++OpIdx)
2253             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2254               DecrUnsched(I);
2255         } else {
2256           // If BundleMember is a stand-alone instruction, no operand reordering
2257           // has taken place, so we directly access its operands.
2258           for (Use &U : BundleMember->Inst->operands())
2259             if (auto *I = dyn_cast<Instruction>(U.get()))
2260               DecrUnsched(I);
2261         }
2262         // Handle the memory dependencies.
2263         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2264           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2265             // There are no more unscheduled dependencies after decrementing,
2266             // so we can put the dependent instruction into the ready list.
2267             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2268             assert(!DepBundle->IsScheduled &&
2269                    "already scheduled bundle gets ready");
2270             ReadyList.insert(DepBundle);
2271             LLVM_DEBUG(dbgs()
2272                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2273           }
2274         }
2275         BundleMember = BundleMember->NextInBundle;
2276       }
2277     }
2278 
2279     void doForAllOpcodes(Value *V,
2280                          function_ref<void(ScheduleData *SD)> Action) {
2281       if (ScheduleData *SD = getScheduleData(V))
2282         Action(SD);
2283       auto I = ExtraScheduleDataMap.find(V);
2284       if (I != ExtraScheduleDataMap.end())
2285         for (auto &P : I->second)
2286           if (P.second->SchedulingRegionID == SchedulingRegionID)
2287             Action(P.second);
2288     }
2289 
2290     /// Put all instructions into the ReadyList which are ready for scheduling.
2291     template <typename ReadyListType>
2292     void initialFillReadyList(ReadyListType &ReadyList) {
2293       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2294         doForAllOpcodes(I, [&](ScheduleData *SD) {
2295           if (SD->isSchedulingEntity() && SD->isReady()) {
2296             ReadyList.insert(SD);
2297             LLVM_DEBUG(dbgs()
2298                        << "SLP:    initially in ready list: " << *I << "\n");
2299           }
2300         });
2301       }
2302     }
2303 
2304     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2305     /// cyclic dependencies. This is only a dry-run, no instructions are
2306     /// actually moved at this stage.
2307     /// \returns the scheduling bundle. The returned Optional value is non-None
2308     /// if \p VL is allowed to be scheduled.
2309     Optional<ScheduleData *>
2310     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2311                       const InstructionsState &S);
2312 
2313     /// Un-bundles a group of instructions.
2314     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2315 
2316     /// Allocates schedule data chunk.
2317     ScheduleData *allocateScheduleDataChunks();
2318 
2319     /// Extends the scheduling region so that V is inside the region.
2320     /// \returns true if the region size is within the limit.
2321     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2322 
2323     /// Initialize the ScheduleData structures for new instructions in the
2324     /// scheduling region.
2325     void initScheduleData(Instruction *FromI, Instruction *ToI,
2326                           ScheduleData *PrevLoadStore,
2327                           ScheduleData *NextLoadStore);
2328 
2329     /// Updates the dependency information of a bundle and of all instructions/
2330     /// bundles which depend on the original bundle.
2331     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2332                                BoUpSLP *SLP);
2333 
2334     /// Sets all instruction in the scheduling region to un-scheduled.
2335     void resetSchedule();
2336 
2337     BasicBlock *BB;
2338 
2339     /// Simple memory allocation for ScheduleData.
2340     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2341 
2342     /// The size of a ScheduleData array in ScheduleDataChunks.
2343     int ChunkSize;
2344 
2345     /// The allocator position in the current chunk, which is the last entry
2346     /// of ScheduleDataChunks.
2347     int ChunkPos;
2348 
2349     /// Attaches ScheduleData to Instruction.
2350     /// Note that the mapping survives during all vectorization iterations, i.e.
2351     /// ScheduleData structures are recycled.
2352     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2353 
2354     /// Attaches ScheduleData to Instruction with the leading key.
2355     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2356         ExtraScheduleDataMap;
2357 
2358     struct ReadyList : SmallVector<ScheduleData *, 8> {
2359       void insert(ScheduleData *SD) { push_back(SD); }
2360     };
2361 
2362     /// The ready-list for scheduling (only used for the dry-run).
2363     ReadyList ReadyInsts;
2364 
2365     /// The first instruction of the scheduling region.
2366     Instruction *ScheduleStart = nullptr;
2367 
2368     /// The first instruction _after_ the scheduling region.
2369     Instruction *ScheduleEnd = nullptr;
2370 
2371     /// The first memory accessing instruction in the scheduling region
2372     /// (can be null).
2373     ScheduleData *FirstLoadStoreInRegion = nullptr;
2374 
2375     /// The last memory accessing instruction in the scheduling region
2376     /// (can be null).
2377     ScheduleData *LastLoadStoreInRegion = nullptr;
2378 
2379     /// The current size of the scheduling region.
2380     int ScheduleRegionSize = 0;
2381 
2382     /// The maximum size allowed for the scheduling region.
2383     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2384 
2385     /// The ID of the scheduling region. For a new vectorization iteration this
2386     /// is incremented which "removes" all ScheduleData from the region.
2387     // Make sure that the initial SchedulingRegionID is greater than the
2388     // initial SchedulingRegionID in ScheduleData (which is 0).
2389     int SchedulingRegionID = 1;
2390   };
2391 
2392   /// Attaches the BlockScheduling structures to basic blocks.
2393   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2394 
2395   /// Performs the "real" scheduling. Done before vectorization is actually
2396   /// performed in a basic block.
2397   void scheduleBlock(BlockScheduling *BS);
2398 
2399   /// List of users to ignore during scheduling and that don't need extracting.
2400   ArrayRef<Value *> UserIgnoreList;
2401 
2402   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2403   /// sorted SmallVectors of unsigned.
2404   struct OrdersTypeDenseMapInfo {
2405     static OrdersType getEmptyKey() {
2406       OrdersType V;
2407       V.push_back(~1U);
2408       return V;
2409     }
2410 
2411     static OrdersType getTombstoneKey() {
2412       OrdersType V;
2413       V.push_back(~2U);
2414       return V;
2415     }
2416 
2417     static unsigned getHashValue(const OrdersType &V) {
2418       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2419     }
2420 
2421     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2422       return LHS == RHS;
2423     }
2424   };
2425 
2426   /// Contains orders of operations along with the number of bundles that have
2427   /// operations in this order. It stores only those orders that require
2428   /// reordering, if reordering is not required it is counted using \a
2429   /// NumOpsWantToKeepOriginalOrder.
2430   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2431   /// Number of bundles that do not require reordering.
2432   unsigned NumOpsWantToKeepOriginalOrder = 0;
2433 
2434   // Analysis and block reference.
2435   Function *F;
2436   ScalarEvolution *SE;
2437   TargetTransformInfo *TTI;
2438   TargetLibraryInfo *TLI;
2439   AAResults *AA;
2440   LoopInfo *LI;
2441   DominatorTree *DT;
2442   AssumptionCache *AC;
2443   DemandedBits *DB;
2444   const DataLayout *DL;
2445   OptimizationRemarkEmitter *ORE;
2446 
2447   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2448   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2449 
2450   /// Instruction builder to construct the vectorized tree.
2451   IRBuilder<> Builder;
2452 
2453   /// A map of scalar integer values to the smallest bit width with which they
2454   /// can legally be represented. The values map to (width, signed) pairs,
2455   /// where "width" indicates the minimum bit width and "signed" is True if the
2456   /// value must be signed-extended, rather than zero-extended, back to its
2457   /// original width.
2458   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2459 };
2460 
2461 } // end namespace slpvectorizer
2462 
2463 template <> struct GraphTraits<BoUpSLP *> {
2464   using TreeEntry = BoUpSLP::TreeEntry;
2465 
2466   /// NodeRef has to be a pointer per the GraphWriter.
2467   using NodeRef = TreeEntry *;
2468 
2469   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2470 
2471   /// Add the VectorizableTree to the index iterator to be able to return
2472   /// TreeEntry pointers.
2473   struct ChildIteratorType
2474       : public iterator_adaptor_base<
2475             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2476     ContainerTy &VectorizableTree;
2477 
2478     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2479                       ContainerTy &VT)
2480         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2481 
2482     NodeRef operator*() { return I->UserTE; }
2483   };
2484 
2485   static NodeRef getEntryNode(BoUpSLP &R) {
2486     return R.VectorizableTree[0].get();
2487   }
2488 
2489   static ChildIteratorType child_begin(NodeRef N) {
2490     return {N->UserTreeIndices.begin(), N->Container};
2491   }
2492 
2493   static ChildIteratorType child_end(NodeRef N) {
2494     return {N->UserTreeIndices.end(), N->Container};
2495   }
2496 
2497   /// For the node iterator we just need to turn the TreeEntry iterator into a
2498   /// TreeEntry* iterator so that it dereferences to NodeRef.
2499   class nodes_iterator {
2500     using ItTy = ContainerTy::iterator;
2501     ItTy It;
2502 
2503   public:
2504     nodes_iterator(const ItTy &It2) : It(It2) {}
2505     NodeRef operator*() { return It->get(); }
2506     nodes_iterator operator++() {
2507       ++It;
2508       return *this;
2509     }
2510     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2511   };
2512 
2513   static nodes_iterator nodes_begin(BoUpSLP *R) {
2514     return nodes_iterator(R->VectorizableTree.begin());
2515   }
2516 
2517   static nodes_iterator nodes_end(BoUpSLP *R) {
2518     return nodes_iterator(R->VectorizableTree.end());
2519   }
2520 
2521   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2522 };
2523 
2524 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2525   using TreeEntry = BoUpSLP::TreeEntry;
2526 
2527   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2528 
2529   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2530     std::string Str;
2531     raw_string_ostream OS(Str);
2532     if (isSplat(Entry->Scalars)) {
2533       OS << "<splat> " << *Entry->Scalars[0];
2534       return Str;
2535     }
2536     for (auto V : Entry->Scalars) {
2537       OS << *V;
2538       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2539             return EU.Scalar == V;
2540           }))
2541         OS << " <extract>";
2542       OS << "\n";
2543     }
2544     return Str;
2545   }
2546 
2547   static std::string getNodeAttributes(const TreeEntry *Entry,
2548                                        const BoUpSLP *) {
2549     if (Entry->State == TreeEntry::NeedToGather)
2550       return "color=red";
2551     return "";
2552   }
2553 };
2554 
2555 } // end namespace llvm
2556 
2557 BoUpSLP::~BoUpSLP() {
2558   for (const auto &Pair : DeletedInstructions) {
2559     // Replace operands of ignored instructions with Undefs in case if they were
2560     // marked for deletion.
2561     if (Pair.getSecond()) {
2562       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2563       Pair.getFirst()->replaceAllUsesWith(Undef);
2564     }
2565     Pair.getFirst()->dropAllReferences();
2566   }
2567   for (const auto &Pair : DeletedInstructions) {
2568     assert(Pair.getFirst()->use_empty() &&
2569            "trying to erase instruction with users.");
2570     Pair.getFirst()->eraseFromParent();
2571   }
2572 #ifdef EXPENSIVE_CHECKS
2573   // If we could guarantee that this call is not extremely slow, we could
2574   // remove the ifdef limitation (see PR47712).
2575   assert(!verifyFunction(*F, &dbgs()));
2576 #endif
2577 }
2578 
2579 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2580   for (auto *V : AV) {
2581     if (auto *I = dyn_cast<Instruction>(V))
2582       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2583   };
2584 }
2585 
2586 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2587                         ArrayRef<Value *> UserIgnoreLst) {
2588   ExtraValueToDebugLocsMap ExternallyUsedValues;
2589   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2590 }
2591 
2592 static int findLaneForValue(ArrayRef<Value *> Scalars,
2593                             ArrayRef<int> ReuseShuffleIndices, Value *V) {
2594   unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2595   assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2596   if (!ReuseShuffleIndices.empty()) {
2597     FoundLane = std::distance(ReuseShuffleIndices.begin(),
2598                               find(ReuseShuffleIndices, FoundLane));
2599   }
2600   return FoundLane;
2601 }
2602 
2603 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2604                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2605                         ArrayRef<Value *> UserIgnoreLst) {
2606   deleteTree();
2607   UserIgnoreList = UserIgnoreLst;
2608   if (!allSameType(Roots))
2609     return;
2610   buildTree_rec(Roots, 0, EdgeInfo());
2611 
2612   // Collect the values that we need to extract from the tree.
2613   for (auto &TEPtr : VectorizableTree) {
2614     TreeEntry *Entry = TEPtr.get();
2615 
2616     // No need to handle users of gathered values.
2617     if (Entry->State == TreeEntry::NeedToGather)
2618       continue;
2619 
2620     // For each lane:
2621     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2622       Value *Scalar = Entry->Scalars[Lane];
2623       int FoundLane =
2624           findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar);
2625 
2626       // Check if the scalar is externally used as an extra arg.
2627       auto ExtI = ExternallyUsedValues.find(Scalar);
2628       if (ExtI != ExternallyUsedValues.end()) {
2629         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2630                           << Lane << " from " << *Scalar << ".\n");
2631         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2632       }
2633       for (User *U : Scalar->users()) {
2634         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2635 
2636         Instruction *UserInst = dyn_cast<Instruction>(U);
2637         if (!UserInst)
2638           continue;
2639 
2640         // Skip in-tree scalars that become vectors
2641         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2642           Value *UseScalar = UseEntry->Scalars[0];
2643           // Some in-tree scalars will remain as scalar in vectorized
2644           // instructions. If that is the case, the one in Lane 0 will
2645           // be used.
2646           if (UseScalar != U ||
2647               UseEntry->State == TreeEntry::ScatterVectorize ||
2648               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2649             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2650                               << ".\n");
2651             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2652             continue;
2653           }
2654         }
2655 
2656         // Ignore users in the user ignore list.
2657         if (is_contained(UserIgnoreList, UserInst))
2658           continue;
2659 
2660         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2661                           << Lane << " from " << *Scalar << ".\n");
2662         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2663       }
2664     }
2665   }
2666 }
2667 
2668 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2669                             const EdgeInfo &UserTreeIdx) {
2670   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2671 
2672   InstructionsState S = getSameOpcode(VL);
2673   if (Depth == RecursionMaxDepth) {
2674     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2675     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2676     return;
2677   }
2678 
2679   // Don't handle vectors.
2680   if (S.OpValue->getType()->isVectorTy() &&
2681       !isa<InsertElementInst>(S.OpValue)) {
2682     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2683     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2684     return;
2685   }
2686 
2687   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2688     if (SI->getValueOperand()->getType()->isVectorTy()) {
2689       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2690       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2691       return;
2692     }
2693 
2694   // If all of the operands are identical or constant we have a simple solution.
2695   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2696     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2697     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2698     return;
2699   }
2700 
2701   // We now know that this is a vector of instructions of the same type from
2702   // the same block.
2703 
2704   // Don't vectorize ephemeral values.
2705   for (Value *V : VL) {
2706     if (EphValues.count(V)) {
2707       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2708                         << ") is ephemeral.\n");
2709       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2710       return;
2711     }
2712   }
2713 
2714   // Check if this is a duplicate of another entry.
2715   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2716     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2717     if (!E->isSame(VL)) {
2718       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2719       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2720       return;
2721     }
2722     // Record the reuse of the tree node.  FIXME, currently this is only used to
2723     // properly draw the graph rather than for the actual vectorization.
2724     E->UserTreeIndices.push_back(UserTreeIdx);
2725     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2726                       << ".\n");
2727     return;
2728   }
2729 
2730   // Check that none of the instructions in the bundle are already in the tree.
2731   for (Value *V : VL) {
2732     auto *I = dyn_cast<Instruction>(V);
2733     if (!I)
2734       continue;
2735     if (getTreeEntry(I)) {
2736       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2737                         << ") is already in tree.\n");
2738       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2739       return;
2740     }
2741   }
2742 
2743   // If any of the scalars is marked as a value that needs to stay scalar, then
2744   // we need to gather the scalars.
2745   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2746   for (Value *V : VL) {
2747     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2748       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2749       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2750       return;
2751     }
2752   }
2753 
2754   // Check that all of the users of the scalars that we want to vectorize are
2755   // schedulable.
2756   auto *VL0 = cast<Instruction>(S.OpValue);
2757   BasicBlock *BB = VL0->getParent();
2758 
2759   if (!DT->isReachableFromEntry(BB)) {
2760     // Don't go into unreachable blocks. They may contain instructions with
2761     // dependency cycles which confuse the final scheduling.
2762     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2763     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2764     return;
2765   }
2766 
2767   // Check that every instruction appears once in this bundle.
2768   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2769   SmallVector<Value *, 4> UniqueValues;
2770   DenseMap<Value *, unsigned> UniquePositions;
2771   for (Value *V : VL) {
2772     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2773     ReuseShuffleIndicies.emplace_back(Res.first->second);
2774     if (Res.second)
2775       UniqueValues.emplace_back(V);
2776   }
2777   size_t NumUniqueScalarValues = UniqueValues.size();
2778   if (NumUniqueScalarValues == VL.size()) {
2779     ReuseShuffleIndicies.clear();
2780   } else {
2781     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2782     if (NumUniqueScalarValues <= 1 ||
2783         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2784       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2785       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2786       return;
2787     }
2788     VL = UniqueValues;
2789   }
2790 
2791   auto &BSRef = BlocksSchedules[BB];
2792   if (!BSRef)
2793     BSRef = std::make_unique<BlockScheduling>(BB);
2794 
2795   BlockScheduling &BS = *BSRef.get();
2796 
2797   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2798   if (!Bundle) {
2799     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2800     assert((!BS.getScheduleData(VL0) ||
2801             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2802            "tryScheduleBundle should cancelScheduling on failure");
2803     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2804                  ReuseShuffleIndicies);
2805     return;
2806   }
2807   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2808 
2809   unsigned ShuffleOrOp = S.isAltShuffle() ?
2810                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2811   switch (ShuffleOrOp) {
2812     case Instruction::PHI: {
2813       auto *PH = cast<PHINode>(VL0);
2814 
2815       // Check for terminator values (e.g. invoke).
2816       for (Value *V : VL)
2817         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2818           Instruction *Term = dyn_cast<Instruction>(
2819               cast<PHINode>(V)->getIncomingValueForBlock(
2820                   PH->getIncomingBlock(I)));
2821           if (Term && Term->isTerminator()) {
2822             LLVM_DEBUG(dbgs()
2823                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2824             BS.cancelScheduling(VL, VL0);
2825             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2826                          ReuseShuffleIndicies);
2827             return;
2828           }
2829         }
2830 
2831       TreeEntry *TE =
2832           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2833       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2834 
2835       // Keeps the reordered operands to avoid code duplication.
2836       SmallVector<ValueList, 2> OperandsVec;
2837       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2838         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
2839           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
2840           TE->setOperand(I, Operands);
2841           OperandsVec.push_back(Operands);
2842           continue;
2843         }
2844         ValueList Operands;
2845         // Prepare the operand vector.
2846         for (Value *V : VL)
2847           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2848               PH->getIncomingBlock(I)));
2849         TE->setOperand(I, Operands);
2850         OperandsVec.push_back(Operands);
2851       }
2852       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2853         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2854       return;
2855     }
2856     case Instruction::ExtractValue:
2857     case Instruction::ExtractElement: {
2858       OrdersType CurrentOrder;
2859       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2860       if (Reuse) {
2861         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2862         ++NumOpsWantToKeepOriginalOrder;
2863         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2864                      ReuseShuffleIndicies);
2865         // This is a special case, as it does not gather, but at the same time
2866         // we are not extending buildTree_rec() towards the operands.
2867         ValueList Op0;
2868         Op0.assign(VL.size(), VL0->getOperand(0));
2869         VectorizableTree.back()->setOperand(0, Op0);
2870         return;
2871       }
2872       if (!CurrentOrder.empty()) {
2873         LLVM_DEBUG({
2874           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2875                     "with order";
2876           for (unsigned Idx : CurrentOrder)
2877             dbgs() << " " << Idx;
2878           dbgs() << "\n";
2879         });
2880         // Insert new order with initial value 0, if it does not exist,
2881         // otherwise return the iterator to the existing one.
2882         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2883                      ReuseShuffleIndicies, CurrentOrder);
2884         findRootOrder(CurrentOrder);
2885         ++NumOpsWantToKeepOrder[CurrentOrder];
2886         // This is a special case, as it does not gather, but at the same time
2887         // we are not extending buildTree_rec() towards the operands.
2888         ValueList Op0;
2889         Op0.assign(VL.size(), VL0->getOperand(0));
2890         VectorizableTree.back()->setOperand(0, Op0);
2891         return;
2892       }
2893       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2894       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2895                    ReuseShuffleIndicies);
2896       BS.cancelScheduling(VL, VL0);
2897       return;
2898     }
2899     case Instruction::InsertElement: {
2900       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
2901 
2902       // Check that we have a buildvector and not a shuffle of 2 or more
2903       // different vectors.
2904       ValueSet SourceVectors;
2905       for (Value *V : VL)
2906         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
2907 
2908       if (count_if(VL, [&SourceVectors](Value *V) {
2909             return !SourceVectors.contains(V);
2910           }) >= 2) {
2911         // Found 2nd source vector - cancel.
2912         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
2913                              "different source vectors.\n");
2914         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2915                      ReuseShuffleIndicies);
2916         BS.cancelScheduling(VL, VL0);
2917         return;
2918       }
2919 
2920       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx);
2921       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
2922 
2923       constexpr int NumOps = 2;
2924       ValueList VectorOperands[NumOps];
2925       for (int I = 0; I < NumOps; ++I) {
2926         for (Value *V : VL)
2927           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
2928 
2929         TE->setOperand(I, VectorOperands[I]);
2930       }
2931       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0});
2932       return;
2933     }
2934     case Instruction::Load: {
2935       // Check that a vectorized load would load the same memory as a scalar
2936       // load. For example, we don't want to vectorize loads that are smaller
2937       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2938       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2939       // from such a struct, we read/write packed bits disagreeing with the
2940       // unvectorized version.
2941       Type *ScalarTy = VL0->getType();
2942 
2943       if (DL->getTypeSizeInBits(ScalarTy) !=
2944           DL->getTypeAllocSizeInBits(ScalarTy)) {
2945         BS.cancelScheduling(VL, VL0);
2946         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2947                      ReuseShuffleIndicies);
2948         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2949         return;
2950       }
2951 
2952       // Make sure all loads in the bundle are simple - we can't vectorize
2953       // atomic or volatile loads.
2954       SmallVector<Value *, 4> PointerOps(VL.size());
2955       auto POIter = PointerOps.begin();
2956       for (Value *V : VL) {
2957         auto *L = cast<LoadInst>(V);
2958         if (!L->isSimple()) {
2959           BS.cancelScheduling(VL, VL0);
2960           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2961                        ReuseShuffleIndicies);
2962           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2963           return;
2964         }
2965         *POIter = L->getPointerOperand();
2966         ++POIter;
2967       }
2968 
2969       OrdersType CurrentOrder;
2970       // Check the order of pointer operands.
2971       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2972         Value *Ptr0;
2973         Value *PtrN;
2974         if (CurrentOrder.empty()) {
2975           Ptr0 = PointerOps.front();
2976           PtrN = PointerOps.back();
2977         } else {
2978           Ptr0 = PointerOps[CurrentOrder.front()];
2979           PtrN = PointerOps[CurrentOrder.back()];
2980         }
2981         Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE);
2982         // Check that the sorted loads are consecutive.
2983         if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2984           if (CurrentOrder.empty()) {
2985             // Original loads are consecutive and does not require reordering.
2986             ++NumOpsWantToKeepOriginalOrder;
2987             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2988                                          UserTreeIdx, ReuseShuffleIndicies);
2989             TE->setOperandsInOrder();
2990             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2991           } else {
2992             // Need to reorder.
2993             TreeEntry *TE =
2994                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2995                              ReuseShuffleIndicies, CurrentOrder);
2996             TE->setOperandsInOrder();
2997             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2998             findRootOrder(CurrentOrder);
2999             ++NumOpsWantToKeepOrder[CurrentOrder];
3000           }
3001           return;
3002         }
3003         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
3004         TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
3005                                      UserTreeIdx, ReuseShuffleIndicies);
3006         TE->setOperandsInOrder();
3007         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
3008         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
3009         return;
3010       }
3011 
3012       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
3013       BS.cancelScheduling(VL, VL0);
3014       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3015                    ReuseShuffleIndicies);
3016       return;
3017     }
3018     case Instruction::ZExt:
3019     case Instruction::SExt:
3020     case Instruction::FPToUI:
3021     case Instruction::FPToSI:
3022     case Instruction::FPExt:
3023     case Instruction::PtrToInt:
3024     case Instruction::IntToPtr:
3025     case Instruction::SIToFP:
3026     case Instruction::UIToFP:
3027     case Instruction::Trunc:
3028     case Instruction::FPTrunc:
3029     case Instruction::BitCast: {
3030       Type *SrcTy = VL0->getOperand(0)->getType();
3031       for (Value *V : VL) {
3032         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
3033         if (Ty != SrcTy || !isValidElementType(Ty)) {
3034           BS.cancelScheduling(VL, VL0);
3035           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3036                        ReuseShuffleIndicies);
3037           LLVM_DEBUG(dbgs()
3038                      << "SLP: Gathering casts with different src types.\n");
3039           return;
3040         }
3041       }
3042       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3043                                    ReuseShuffleIndicies);
3044       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
3045 
3046       TE->setOperandsInOrder();
3047       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3048         ValueList Operands;
3049         // Prepare the operand vector.
3050         for (Value *V : VL)
3051           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3052 
3053         buildTree_rec(Operands, Depth + 1, {TE, i});
3054       }
3055       return;
3056     }
3057     case Instruction::ICmp:
3058     case Instruction::FCmp: {
3059       // Check that all of the compares have the same predicate.
3060       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3061       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
3062       Type *ComparedTy = VL0->getOperand(0)->getType();
3063       for (Value *V : VL) {
3064         CmpInst *Cmp = cast<CmpInst>(V);
3065         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
3066             Cmp->getOperand(0)->getType() != ComparedTy) {
3067           BS.cancelScheduling(VL, VL0);
3068           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3069                        ReuseShuffleIndicies);
3070           LLVM_DEBUG(dbgs()
3071                      << "SLP: Gathering cmp with different predicate.\n");
3072           return;
3073         }
3074       }
3075 
3076       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3077                                    ReuseShuffleIndicies);
3078       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
3079 
3080       ValueList Left, Right;
3081       if (cast<CmpInst>(VL0)->isCommutative()) {
3082         // Commutative predicate - collect + sort operands of the instructions
3083         // so that each side is more likely to have the same opcode.
3084         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
3085         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3086       } else {
3087         // Collect operands - commute if it uses the swapped predicate.
3088         for (Value *V : VL) {
3089           auto *Cmp = cast<CmpInst>(V);
3090           Value *LHS = Cmp->getOperand(0);
3091           Value *RHS = Cmp->getOperand(1);
3092           if (Cmp->getPredicate() != P0)
3093             std::swap(LHS, RHS);
3094           Left.push_back(LHS);
3095           Right.push_back(RHS);
3096         }
3097       }
3098       TE->setOperand(0, Left);
3099       TE->setOperand(1, Right);
3100       buildTree_rec(Left, Depth + 1, {TE, 0});
3101       buildTree_rec(Right, Depth + 1, {TE, 1});
3102       return;
3103     }
3104     case Instruction::Select:
3105     case Instruction::FNeg:
3106     case Instruction::Add:
3107     case Instruction::FAdd:
3108     case Instruction::Sub:
3109     case Instruction::FSub:
3110     case Instruction::Mul:
3111     case Instruction::FMul:
3112     case Instruction::UDiv:
3113     case Instruction::SDiv:
3114     case Instruction::FDiv:
3115     case Instruction::URem:
3116     case Instruction::SRem:
3117     case Instruction::FRem:
3118     case Instruction::Shl:
3119     case Instruction::LShr:
3120     case Instruction::AShr:
3121     case Instruction::And:
3122     case Instruction::Or:
3123     case Instruction::Xor: {
3124       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3125                                    ReuseShuffleIndicies);
3126       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
3127 
3128       // Sort operands of the instructions so that each side is more likely to
3129       // have the same opcode.
3130       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3131         ValueList Left, Right;
3132         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3133         TE->setOperand(0, Left);
3134         TE->setOperand(1, Right);
3135         buildTree_rec(Left, Depth + 1, {TE, 0});
3136         buildTree_rec(Right, Depth + 1, {TE, 1});
3137         return;
3138       }
3139 
3140       TE->setOperandsInOrder();
3141       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3142         ValueList Operands;
3143         // Prepare the operand vector.
3144         for (Value *V : VL)
3145           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3146 
3147         buildTree_rec(Operands, Depth + 1, {TE, i});
3148       }
3149       return;
3150     }
3151     case Instruction::GetElementPtr: {
3152       // We don't combine GEPs with complicated (nested) indexing.
3153       for (Value *V : VL) {
3154         if (cast<Instruction>(V)->getNumOperands() != 2) {
3155           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
3156           BS.cancelScheduling(VL, VL0);
3157           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3158                        ReuseShuffleIndicies);
3159           return;
3160         }
3161       }
3162 
3163       // We can't combine several GEPs into one vector if they operate on
3164       // different types.
3165       Type *Ty0 = VL0->getOperand(0)->getType();
3166       for (Value *V : VL) {
3167         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3168         if (Ty0 != CurTy) {
3169           LLVM_DEBUG(dbgs()
3170                      << "SLP: not-vectorizable GEP (different types).\n");
3171           BS.cancelScheduling(VL, VL0);
3172           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3173                        ReuseShuffleIndicies);
3174           return;
3175         }
3176       }
3177 
3178       // We don't combine GEPs with non-constant indexes.
3179       Type *Ty1 = VL0->getOperand(1)->getType();
3180       for (Value *V : VL) {
3181         auto Op = cast<Instruction>(V)->getOperand(1);
3182         if (!isa<ConstantInt>(Op) ||
3183             (Op->getType() != Ty1 &&
3184              Op->getType()->getScalarSizeInBits() >
3185                  DL->getIndexSizeInBits(
3186                      V->getType()->getPointerAddressSpace()))) {
3187           LLVM_DEBUG(dbgs()
3188                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
3189           BS.cancelScheduling(VL, VL0);
3190           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3191                        ReuseShuffleIndicies);
3192           return;
3193         }
3194       }
3195 
3196       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3197                                    ReuseShuffleIndicies);
3198       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
3199       TE->setOperandsInOrder();
3200       for (unsigned i = 0, e = 2; i < e; ++i) {
3201         ValueList Operands;
3202         // Prepare the operand vector.
3203         for (Value *V : VL)
3204           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3205 
3206         buildTree_rec(Operands, Depth + 1, {TE, i});
3207       }
3208       return;
3209     }
3210     case Instruction::Store: {
3211       // Check if the stores are consecutive or if we need to swizzle them.
3212       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3213       // Avoid types that are padded when being allocated as scalars, while
3214       // being packed together in a vector (such as i1).
3215       if (DL->getTypeSizeInBits(ScalarTy) !=
3216           DL->getTypeAllocSizeInBits(ScalarTy)) {
3217         BS.cancelScheduling(VL, VL0);
3218         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3219                      ReuseShuffleIndicies);
3220         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
3221         return;
3222       }
3223       // Make sure all stores in the bundle are simple - we can't vectorize
3224       // atomic or volatile stores.
3225       SmallVector<Value *, 4> PointerOps(VL.size());
3226       ValueList Operands(VL.size());
3227       auto POIter = PointerOps.begin();
3228       auto OIter = Operands.begin();
3229       for (Value *V : VL) {
3230         auto *SI = cast<StoreInst>(V);
3231         if (!SI->isSimple()) {
3232           BS.cancelScheduling(VL, VL0);
3233           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3234                        ReuseShuffleIndicies);
3235           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
3236           return;
3237         }
3238         *POIter = SI->getPointerOperand();
3239         *OIter = SI->getValueOperand();
3240         ++POIter;
3241         ++OIter;
3242       }
3243 
3244       OrdersType CurrentOrder;
3245       // Check the order of pointer operands.
3246       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
3247         Value *Ptr0;
3248         Value *PtrN;
3249         if (CurrentOrder.empty()) {
3250           Ptr0 = PointerOps.front();
3251           PtrN = PointerOps.back();
3252         } else {
3253           Ptr0 = PointerOps[CurrentOrder.front()];
3254           PtrN = PointerOps[CurrentOrder.back()];
3255         }
3256         Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE);
3257         // Check that the sorted pointer operands are consecutive.
3258         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3259           if (CurrentOrder.empty()) {
3260             // Original stores are consecutive and does not require reordering.
3261             ++NumOpsWantToKeepOriginalOrder;
3262             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3263                                          UserTreeIdx, ReuseShuffleIndicies);
3264             TE->setOperandsInOrder();
3265             buildTree_rec(Operands, Depth + 1, {TE, 0});
3266             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3267           } else {
3268             TreeEntry *TE =
3269                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3270                              ReuseShuffleIndicies, CurrentOrder);
3271             TE->setOperandsInOrder();
3272             buildTree_rec(Operands, Depth + 1, {TE, 0});
3273             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3274             findRootOrder(CurrentOrder);
3275             ++NumOpsWantToKeepOrder[CurrentOrder];
3276           }
3277           return;
3278         }
3279       }
3280 
3281       BS.cancelScheduling(VL, VL0);
3282       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3283                    ReuseShuffleIndicies);
3284       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3285       return;
3286     }
3287     case Instruction::Call: {
3288       // Check if the calls are all to the same vectorizable intrinsic or
3289       // library function.
3290       CallInst *CI = cast<CallInst>(VL0);
3291       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3292 
3293       VFShape Shape = VFShape::get(
3294           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3295           false /*HasGlobalPred*/);
3296       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3297 
3298       if (!VecFunc && !isTriviallyVectorizable(ID)) {
3299         BS.cancelScheduling(VL, VL0);
3300         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3301                      ReuseShuffleIndicies);
3302         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3303         return;
3304       }
3305       Function *F = CI->getCalledFunction();
3306       unsigned NumArgs = CI->getNumArgOperands();
3307       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3308       for (unsigned j = 0; j != NumArgs; ++j)
3309         if (hasVectorInstrinsicScalarOpd(ID, j))
3310           ScalarArgs[j] = CI->getArgOperand(j);
3311       for (Value *V : VL) {
3312         CallInst *CI2 = dyn_cast<CallInst>(V);
3313         if (!CI2 || CI2->getCalledFunction() != F ||
3314             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3315             (VecFunc &&
3316              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3317             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3318           BS.cancelScheduling(VL, VL0);
3319           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3320                        ReuseShuffleIndicies);
3321           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3322                             << "\n");
3323           return;
3324         }
3325         // Some intrinsics have scalar arguments and should be same in order for
3326         // them to be vectorized.
3327         for (unsigned j = 0; j != NumArgs; ++j) {
3328           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3329             Value *A1J = CI2->getArgOperand(j);
3330             if (ScalarArgs[j] != A1J) {
3331               BS.cancelScheduling(VL, VL0);
3332               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3333                            ReuseShuffleIndicies);
3334               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3335                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3336                                 << "\n");
3337               return;
3338             }
3339           }
3340         }
3341         // Verify that the bundle operands are identical between the two calls.
3342         if (CI->hasOperandBundles() &&
3343             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3344                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3345                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3346           BS.cancelScheduling(VL, VL0);
3347           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3348                        ReuseShuffleIndicies);
3349           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3350                             << *CI << "!=" << *V << '\n');
3351           return;
3352         }
3353       }
3354 
3355       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3356                                    ReuseShuffleIndicies);
3357       TE->setOperandsInOrder();
3358       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3359         ValueList Operands;
3360         // Prepare the operand vector.
3361         for (Value *V : VL) {
3362           auto *CI2 = cast<CallInst>(V);
3363           Operands.push_back(CI2->getArgOperand(i));
3364         }
3365         buildTree_rec(Operands, Depth + 1, {TE, i});
3366       }
3367       return;
3368     }
3369     case Instruction::ShuffleVector: {
3370       // If this is not an alternate sequence of opcode like add-sub
3371       // then do not vectorize this instruction.
3372       if (!S.isAltShuffle()) {
3373         BS.cancelScheduling(VL, VL0);
3374         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3375                      ReuseShuffleIndicies);
3376         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3377         return;
3378       }
3379       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3380                                    ReuseShuffleIndicies);
3381       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3382 
3383       // Reorder operands if reordering would enable vectorization.
3384       if (isa<BinaryOperator>(VL0)) {
3385         ValueList Left, Right;
3386         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3387         TE->setOperand(0, Left);
3388         TE->setOperand(1, Right);
3389         buildTree_rec(Left, Depth + 1, {TE, 0});
3390         buildTree_rec(Right, Depth + 1, {TE, 1});
3391         return;
3392       }
3393 
3394       TE->setOperandsInOrder();
3395       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3396         ValueList Operands;
3397         // Prepare the operand vector.
3398         for (Value *V : VL)
3399           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3400 
3401         buildTree_rec(Operands, Depth + 1, {TE, i});
3402       }
3403       return;
3404     }
3405     default:
3406       BS.cancelScheduling(VL, VL0);
3407       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3408                    ReuseShuffleIndicies);
3409       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3410       return;
3411   }
3412 }
3413 
3414 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3415   unsigned N = 1;
3416   Type *EltTy = T;
3417 
3418   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3419          isa<VectorType>(EltTy)) {
3420     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3421       // Check that struct is homogeneous.
3422       for (const auto *Ty : ST->elements())
3423         if (Ty != *ST->element_begin())
3424           return 0;
3425       N *= ST->getNumElements();
3426       EltTy = *ST->element_begin();
3427     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3428       N *= AT->getNumElements();
3429       EltTy = AT->getElementType();
3430     } else {
3431       auto *VT = cast<FixedVectorType>(EltTy);
3432       N *= VT->getNumElements();
3433       EltTy = VT->getElementType();
3434     }
3435   }
3436 
3437   if (!isValidElementType(EltTy))
3438     return 0;
3439   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3440   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3441     return 0;
3442   return N;
3443 }
3444 
3445 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3446                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3447   Instruction *E0 = cast<Instruction>(OpValue);
3448   assert(E0->getOpcode() == Instruction::ExtractElement ||
3449          E0->getOpcode() == Instruction::ExtractValue);
3450   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3451   // Check if all of the extracts come from the same vector and from the
3452   // correct offset.
3453   Value *Vec = E0->getOperand(0);
3454 
3455   CurrentOrder.clear();
3456 
3457   // We have to extract from a vector/aggregate with the same number of elements.
3458   unsigned NElts;
3459   if (E0->getOpcode() == Instruction::ExtractValue) {
3460     const DataLayout &DL = E0->getModule()->getDataLayout();
3461     NElts = canMapToVector(Vec->getType(), DL);
3462     if (!NElts)
3463       return false;
3464     // Check if load can be rewritten as load of vector.
3465     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3466     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3467       return false;
3468   } else {
3469     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3470   }
3471 
3472   if (NElts != VL.size())
3473     return false;
3474 
3475   // Check that all of the indices extract from the correct offset.
3476   bool ShouldKeepOrder = true;
3477   unsigned E = VL.size();
3478   // Assign to all items the initial value E + 1 so we can check if the extract
3479   // instruction index was used already.
3480   // Also, later we can check that all the indices are used and we have a
3481   // consecutive access in the extract instructions, by checking that no
3482   // element of CurrentOrder still has value E + 1.
3483   CurrentOrder.assign(E, E + 1);
3484   unsigned I = 0;
3485   for (; I < E; ++I) {
3486     auto *Inst = cast<Instruction>(VL[I]);
3487     if (Inst->getOperand(0) != Vec)
3488       break;
3489     Optional<unsigned> Idx = getExtractIndex(Inst);
3490     if (!Idx)
3491       break;
3492     const unsigned ExtIdx = *Idx;
3493     if (ExtIdx != I) {
3494       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3495         break;
3496       ShouldKeepOrder = false;
3497       CurrentOrder[ExtIdx] = I;
3498     } else {
3499       if (CurrentOrder[I] != E + 1)
3500         break;
3501       CurrentOrder[I] = I;
3502     }
3503   }
3504   if (I < E) {
3505     CurrentOrder.clear();
3506     return false;
3507   }
3508 
3509   return ShouldKeepOrder;
3510 }
3511 
3512 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
3513                                     ArrayRef<Value *> VectorizedVals) const {
3514   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
3515          llvm::all_of(I->users(), [this](User *U) {
3516            return ScalarToTreeEntry.count(U) > 0;
3517          });
3518 }
3519 
3520 static std::pair<InstructionCost, InstructionCost>
3521 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3522                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3523   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3524 
3525   // Calculate the cost of the scalar and vector calls.
3526   SmallVector<Type *, 4> VecTys;
3527   for (Use &Arg : CI->args())
3528     VecTys.push_back(
3529         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3530   FastMathFlags FMF;
3531   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3532     FMF = FPCI->getFastMathFlags();
3533   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3534   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3535                                     dyn_cast<IntrinsicInst>(CI));
3536   auto IntrinsicCost =
3537     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3538 
3539   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3540                                      VecTy->getNumElements())),
3541                             false /*HasGlobalPred*/);
3542   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3543   auto LibCost = IntrinsicCost;
3544   if (!CI->isNoBuiltin() && VecFunc) {
3545     // Calculate the cost of the vector library call.
3546     // If the corresponding vector call is cheaper, return its cost.
3547     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3548                                     TTI::TCK_RecipThroughput);
3549   }
3550   return {IntrinsicCost, LibCost};
3551 }
3552 
3553 /// Compute the cost of creating a vector of type \p VecTy containing the
3554 /// extracted values from \p VL.
3555 static InstructionCost
3556 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3557                    TargetTransformInfo::ShuffleKind ShuffleKind,
3558                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3559   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3560 
3561   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3562       VecTy->getNumElements() < NumOfParts)
3563     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3564 
3565   bool AllConsecutive = true;
3566   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3567   unsigned Idx = -1;
3568   InstructionCost Cost = 0;
3569 
3570   // Process extracts in blocks of EltsPerVector to check if the source vector
3571   // operand can be re-used directly. If not, add the cost of creating a shuffle
3572   // to extract the values into a vector register.
3573   for (auto *V : VL) {
3574     ++Idx;
3575 
3576     // Reached the start of a new vector registers.
3577     if (Idx % EltsPerVector == 0) {
3578       AllConsecutive = true;
3579       continue;
3580     }
3581 
3582     // Check all extracts for a vector register on the target directly
3583     // extract values in order.
3584     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3585     unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3586     AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3587                       CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3588 
3589     if (AllConsecutive)
3590       continue;
3591 
3592     // Skip all indices, except for the last index per vector block.
3593     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3594       continue;
3595 
3596     // If we have a series of extracts which are not consecutive and hence
3597     // cannot re-use the source vector register directly, compute the shuffle
3598     // cost to extract the a vector with EltsPerVector elements.
3599     Cost += TTI.getShuffleCost(
3600         TargetTransformInfo::SK_PermuteSingleSrc,
3601         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3602   }
3603   return Cost;
3604 }
3605 
3606 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
3607                                       ArrayRef<Value *> VectorizedVals) {
3608   ArrayRef<Value*> VL = E->Scalars;
3609 
3610   Type *ScalarTy = VL[0]->getType();
3611   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3612     ScalarTy = SI->getValueOperand()->getType();
3613   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3614     ScalarTy = CI->getOperand(0)->getType();
3615   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
3616     ScalarTy = IE->getOperand(1)->getType();
3617   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3618   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3619 
3620   // If we have computed a smaller type for the expression, update VecTy so
3621   // that the costs will be accurate.
3622   if (MinBWs.count(VL[0]))
3623     VecTy = FixedVectorType::get(
3624         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3625 
3626   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3627   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3628   InstructionCost ReuseShuffleCost = 0;
3629   if (NeedToShuffleReuses) {
3630     ReuseShuffleCost =
3631         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
3632                             E->ReuseShuffleIndices);
3633   }
3634   // FIXME: it tries to fix a problem with MSVC buildbots.
3635   TargetTransformInfo &TTIRef = *TTI;
3636   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
3637                                VectorizedVals](InstructionCost &Cost,
3638                                                bool IsGather) {
3639     DenseMap<Value *, int> ExtractVectorsTys;
3640     for (auto *V : VL) {
3641       // If all users of instruction are going to be vectorized and this
3642       // instruction itself is not going to be vectorized, consider this
3643       // instruction as dead and remove its cost from the final cost of the
3644       // vectorized tree.
3645       if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
3646           (IsGather && ScalarToTreeEntry.count(V)))
3647         continue;
3648       auto *EE = cast<ExtractElementInst>(V);
3649       unsigned Idx = *getExtractIndex(EE);
3650       if (TTIRef.getNumberOfParts(VecTy) !=
3651           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
3652         auto It =
3653             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
3654         It->getSecond() = std::min<int>(It->second, Idx);
3655       }
3656       // Take credit for instruction that will become dead.
3657       if (EE->hasOneUse()) {
3658         Instruction *Ext = EE->user_back();
3659         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3660             all_of(Ext->users(),
3661                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
3662           // Use getExtractWithExtendCost() to calculate the cost of
3663           // extractelement/ext pair.
3664           Cost -=
3665               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
3666                                               EE->getVectorOperandType(), Idx);
3667           // Add back the cost of s|zext which is subtracted separately.
3668           Cost += TTIRef.getCastInstrCost(
3669               Ext->getOpcode(), Ext->getType(), EE->getType(),
3670               TTI::getCastContextHint(Ext), CostKind, Ext);
3671           continue;
3672         }
3673       }
3674       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
3675                                         EE->getVectorOperandType(), Idx);
3676     }
3677     // Add a cost for subvector extracts/inserts if required.
3678     for (const auto &Data : ExtractVectorsTys) {
3679       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
3680       unsigned NumElts = VecTy->getNumElements();
3681       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
3682         unsigned Idx = (Data.second / NumElts) * NumElts;
3683         unsigned EENumElts = EEVTy->getNumElements();
3684         if (Idx + NumElts <= EENumElts) {
3685           Cost +=
3686               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3687                                     EEVTy, None, Idx, VecTy);
3688         } else {
3689           // Need to round up the subvector type vectorization factor to avoid a
3690           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
3691           // <= EENumElts.
3692           auto *SubVT =
3693               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
3694           Cost +=
3695               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3696                                     EEVTy, None, Idx, SubVT);
3697         }
3698       } else {
3699         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
3700                                       VecTy, None, 0, EEVTy);
3701       }
3702     }
3703   };
3704   if (E->State == TreeEntry::NeedToGather) {
3705     if (allConstant(VL))
3706       return 0;
3707     if (isa<InsertElementInst>(VL[0]))
3708       return InstructionCost::getInvalid();
3709     SmallVector<int> Mask;
3710     SmallVector<const TreeEntry *> Entries;
3711     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
3712         isGatherShuffledEntry(E, Mask, Entries);
3713     if (Shuffle.hasValue()) {
3714       InstructionCost GatherCost = 0;
3715       if (ShuffleVectorInst::isIdentityMask(Mask)) {
3716         // Perfect match in the graph, will reuse the previously vectorized
3717         // node. Cost is 0.
3718         LLVM_DEBUG(
3719             dbgs()
3720             << "SLP: perfect diamond match for gather bundle that starts with "
3721             << *VL.front() << ".\n");
3722       } else {
3723         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
3724                           << " entries for bundle that starts with "
3725                           << *VL.front() << ".\n");
3726         // Detected that instead of gather we can emit a shuffle of single/two
3727         // previously vectorized nodes. Add the cost of the permutation rather
3728         // than gather.
3729         GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask);
3730       }
3731       return ReuseShuffleCost + GatherCost;
3732     }
3733     if (isSplat(VL)) {
3734       // Found the broadcasting of the single scalar, calculate the cost as the
3735       // broadcast.
3736       return ReuseShuffleCost +
3737              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None,
3738                                  0);
3739     }
3740     if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) &&
3741         allSameBlock(VL)) {
3742       // Check that gather of extractelements can be represented as just a
3743       // shuffle of a single/two vectors the scalars are extracted from.
3744       SmallVector<int> Mask;
3745       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3746           isShuffle(VL, Mask);
3747       if (ShuffleKind.hasValue()) {
3748         // Found the bunch of extractelement instructions that must be gathered
3749         // into a vector and can be represented as a permutation elements in a
3750         // single input vector or of 2 input vectors.
3751         InstructionCost Cost =
3752             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3753         AdjustExtractsCost(Cost, /*IsGather=*/true);
3754         return ReuseShuffleCost + Cost;
3755       }
3756     }
3757     return ReuseShuffleCost + getGatherCost(VL);
3758   }
3759   assert((E->State == TreeEntry::Vectorize ||
3760           E->State == TreeEntry::ScatterVectorize) &&
3761          "Unhandled state");
3762   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3763   Instruction *VL0 = E->getMainOp();
3764   unsigned ShuffleOrOp =
3765       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3766   switch (ShuffleOrOp) {
3767     case Instruction::PHI:
3768       return 0;
3769 
3770     case Instruction::ExtractValue:
3771     case Instruction::ExtractElement: {
3772       // The common cost of removal ExtractElement/ExtractValue instructions +
3773       // the cost of shuffles, if required to resuffle the original vector.
3774       InstructionCost CommonCost = 0;
3775       if (NeedToShuffleReuses) {
3776         unsigned Idx = 0;
3777         for (unsigned I : E->ReuseShuffleIndices) {
3778           if (ShuffleOrOp == Instruction::ExtractElement) {
3779             auto *EE = cast<ExtractElementInst>(VL[I]);
3780             ReuseShuffleCost -= TTI->getVectorInstrCost(
3781                 Instruction::ExtractElement, EE->getVectorOperandType(),
3782                 *getExtractIndex(EE));
3783           } else {
3784             ReuseShuffleCost -= TTI->getVectorInstrCost(
3785                 Instruction::ExtractElement, VecTy, Idx);
3786             ++Idx;
3787           }
3788         }
3789         Idx = ReuseShuffleNumbers;
3790         for (Value *V : VL) {
3791           if (ShuffleOrOp == Instruction::ExtractElement) {
3792             auto *EE = cast<ExtractElementInst>(V);
3793             ReuseShuffleCost += TTI->getVectorInstrCost(
3794                 Instruction::ExtractElement, EE->getVectorOperandType(),
3795                 *getExtractIndex(EE));
3796           } else {
3797             --Idx;
3798             ReuseShuffleCost += TTI->getVectorInstrCost(
3799                 Instruction::ExtractElement, VecTy, Idx);
3800           }
3801         }
3802         CommonCost = ReuseShuffleCost;
3803       } else if (!E->ReorderIndices.empty()) {
3804         SmallVector<int> NewMask;
3805         inversePermutation(E->ReorderIndices, NewMask);
3806         CommonCost = TTI->getShuffleCost(
3807             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3808       }
3809       if (ShuffleOrOp == Instruction::ExtractValue) {
3810         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3811           auto *EI = cast<Instruction>(VL[I]);
3812           // Take credit for instruction that will become dead.
3813           if (EI->hasOneUse()) {
3814             Instruction *Ext = EI->user_back();
3815             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3816                 all_of(Ext->users(),
3817                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
3818               // Use getExtractWithExtendCost() to calculate the cost of
3819               // extractelement/ext pair.
3820               CommonCost -= TTI->getExtractWithExtendCost(
3821                   Ext->getOpcode(), Ext->getType(), VecTy, I);
3822               // Add back the cost of s|zext which is subtracted separately.
3823               CommonCost += TTI->getCastInstrCost(
3824                   Ext->getOpcode(), Ext->getType(), EI->getType(),
3825                   TTI::getCastContextHint(Ext), CostKind, Ext);
3826               continue;
3827             }
3828           }
3829           CommonCost -=
3830               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3831         }
3832       } else {
3833         AdjustExtractsCost(CommonCost, /*IsGather=*/false);
3834       }
3835       return CommonCost;
3836     }
3837     case Instruction::InsertElement: {
3838       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
3839 
3840       unsigned const NumElts = SrcVecTy->getNumElements();
3841       unsigned const NumScalars = VL.size();
3842       APInt DemandedElts = APInt::getNullValue(NumElts);
3843       // TODO: Add support for Instruction::InsertValue.
3844       unsigned Offset = UINT_MAX;
3845       bool IsIdentity = true;
3846       SmallVector<int> ShuffleMask(NumElts, UndefMaskElem);
3847       for (unsigned I = 0; I < NumScalars; ++I) {
3848         Optional<int> InsertIdx = getInsertIndex(VL[I], 0);
3849         if (!InsertIdx || *InsertIdx == UndefMaskElem)
3850           continue;
3851         unsigned Idx = *InsertIdx;
3852         DemandedElts.setBit(Idx);
3853         if (Idx < Offset) {
3854           Offset = Idx;
3855           IsIdentity &= I == 0;
3856         } else {
3857           assert(Idx >= Offset && "Failed to find vector index offset");
3858           IsIdentity &= Idx - Offset == I;
3859         }
3860         ShuffleMask[Idx] = I;
3861       }
3862       assert(Offset < NumElts && "Failed to find vector index offset");
3863 
3864       InstructionCost Cost = 0;
3865       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
3866                                             /*Insert*/ true, /*Extract*/ false);
3867 
3868       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0)
3869         Cost += TTI->getShuffleCost(
3870             TargetTransformInfo::SK_InsertSubvector, SrcVecTy, /*Mask*/ None,
3871             Offset,
3872             FixedVectorType::get(SrcVecTy->getElementType(), NumScalars));
3873       else if (!IsIdentity)
3874         Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy,
3875                                     ShuffleMask);
3876 
3877       return Cost;
3878     }
3879     case Instruction::ZExt:
3880     case Instruction::SExt:
3881     case Instruction::FPToUI:
3882     case Instruction::FPToSI:
3883     case Instruction::FPExt:
3884     case Instruction::PtrToInt:
3885     case Instruction::IntToPtr:
3886     case Instruction::SIToFP:
3887     case Instruction::UIToFP:
3888     case Instruction::Trunc:
3889     case Instruction::FPTrunc:
3890     case Instruction::BitCast: {
3891       Type *SrcTy = VL0->getOperand(0)->getType();
3892       InstructionCost ScalarEltCost =
3893           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3894                                 TTI::getCastContextHint(VL0), CostKind, VL0);
3895       if (NeedToShuffleReuses) {
3896         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3897       }
3898 
3899       // Calculate the cost of this instruction.
3900       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3901 
3902       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3903       InstructionCost VecCost = 0;
3904       // Check if the values are candidates to demote.
3905       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3906         VecCost =
3907             ReuseShuffleCost +
3908             TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3909                                   TTI::getCastContextHint(VL0), CostKind, VL0);
3910       }
3911       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3912       return VecCost - ScalarCost;
3913     }
3914     case Instruction::FCmp:
3915     case Instruction::ICmp:
3916     case Instruction::Select: {
3917       // Calculate the cost of this instruction.
3918       InstructionCost ScalarEltCost =
3919           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3920                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3921       if (NeedToShuffleReuses) {
3922         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3923       }
3924       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3925       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3926 
3927       // Check if all entries in VL are either compares or selects with compares
3928       // as condition that have the same predicates.
3929       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3930       bool First = true;
3931       for (auto *V : VL) {
3932         CmpInst::Predicate CurrentPred;
3933         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3934         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3935              !match(V, MatchCmp)) ||
3936             (!First && VecPred != CurrentPred)) {
3937           VecPred = CmpInst::BAD_ICMP_PREDICATE;
3938           break;
3939         }
3940         First = false;
3941         VecPred = CurrentPred;
3942       }
3943 
3944       InstructionCost VecCost = TTI->getCmpSelInstrCost(
3945           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
3946       // Check if it is possible and profitable to use min/max for selects in
3947       // VL.
3948       //
3949       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
3950       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
3951         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
3952                                           {VecTy, VecTy});
3953         InstructionCost IntrinsicCost =
3954             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3955         // If the selects are the only uses of the compares, they will be dead
3956         // and we can adjust the cost by removing their cost.
3957         if (IntrinsicAndUse.second)
3958           IntrinsicCost -=
3959               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
3960                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
3961         VecCost = std::min(VecCost, IntrinsicCost);
3962       }
3963       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3964       return ReuseShuffleCost + VecCost - ScalarCost;
3965     }
3966     case Instruction::FNeg:
3967     case Instruction::Add:
3968     case Instruction::FAdd:
3969     case Instruction::Sub:
3970     case Instruction::FSub:
3971     case Instruction::Mul:
3972     case Instruction::FMul:
3973     case Instruction::UDiv:
3974     case Instruction::SDiv:
3975     case Instruction::FDiv:
3976     case Instruction::URem:
3977     case Instruction::SRem:
3978     case Instruction::FRem:
3979     case Instruction::Shl:
3980     case Instruction::LShr:
3981     case Instruction::AShr:
3982     case Instruction::And:
3983     case Instruction::Or:
3984     case Instruction::Xor: {
3985       // Certain instructions can be cheaper to vectorize if they have a
3986       // constant second vector operand.
3987       TargetTransformInfo::OperandValueKind Op1VK =
3988           TargetTransformInfo::OK_AnyValue;
3989       TargetTransformInfo::OperandValueKind Op2VK =
3990           TargetTransformInfo::OK_UniformConstantValue;
3991       TargetTransformInfo::OperandValueProperties Op1VP =
3992           TargetTransformInfo::OP_None;
3993       TargetTransformInfo::OperandValueProperties Op2VP =
3994           TargetTransformInfo::OP_PowerOf2;
3995 
3996       // If all operands are exactly the same ConstantInt then set the
3997       // operand kind to OK_UniformConstantValue.
3998       // If instead not all operands are constants, then set the operand kind
3999       // to OK_AnyValue. If all operands are constants but not the same,
4000       // then set the operand kind to OK_NonUniformConstantValue.
4001       ConstantInt *CInt0 = nullptr;
4002       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
4003         const Instruction *I = cast<Instruction>(VL[i]);
4004         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
4005         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
4006         if (!CInt) {
4007           Op2VK = TargetTransformInfo::OK_AnyValue;
4008           Op2VP = TargetTransformInfo::OP_None;
4009           break;
4010         }
4011         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
4012             !CInt->getValue().isPowerOf2())
4013           Op2VP = TargetTransformInfo::OP_None;
4014         if (i == 0) {
4015           CInt0 = CInt;
4016           continue;
4017         }
4018         if (CInt0 != CInt)
4019           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
4020       }
4021 
4022       SmallVector<const Value *, 4> Operands(VL0->operand_values());
4023       InstructionCost ScalarEltCost =
4024           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
4025                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
4026       if (NeedToShuffleReuses) {
4027         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4028       }
4029       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4030       InstructionCost VecCost =
4031           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
4032                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
4033       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4034       return ReuseShuffleCost + VecCost - ScalarCost;
4035     }
4036     case Instruction::GetElementPtr: {
4037       TargetTransformInfo::OperandValueKind Op1VK =
4038           TargetTransformInfo::OK_AnyValue;
4039       TargetTransformInfo::OperandValueKind Op2VK =
4040           TargetTransformInfo::OK_UniformConstantValue;
4041 
4042       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
4043           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
4044       if (NeedToShuffleReuses) {
4045         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4046       }
4047       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4048       InstructionCost VecCost = TTI->getArithmeticInstrCost(
4049           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
4050       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4051       return ReuseShuffleCost + VecCost - ScalarCost;
4052     }
4053     case Instruction::Load: {
4054       // Cost of wide load - cost of scalar loads.
4055       Align alignment = cast<LoadInst>(VL0)->getAlign();
4056       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4057           Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0);
4058       if (NeedToShuffleReuses) {
4059         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4060       }
4061       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
4062       InstructionCost VecLdCost;
4063       if (E->State == TreeEntry::Vectorize) {
4064         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
4065                                          CostKind, VL0);
4066       } else {
4067         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
4068         VecLdCost = TTI->getGatherScatterOpCost(
4069             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
4070             /*VariableMask=*/false, alignment, CostKind, VL0);
4071       }
4072       if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) {
4073         SmallVector<int> NewMask;
4074         inversePermutation(E->ReorderIndices, NewMask);
4075         VecLdCost += TTI->getShuffleCost(
4076             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
4077       }
4078       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost));
4079       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
4080     }
4081     case Instruction::Store: {
4082       // We know that we can merge the stores. Calculate the cost.
4083       bool IsReorder = !E->ReorderIndices.empty();
4084       auto *SI =
4085           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
4086       Align Alignment = SI->getAlign();
4087       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4088           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
4089       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
4090       InstructionCost VecStCost = TTI->getMemoryOpCost(
4091           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
4092       if (IsReorder) {
4093         SmallVector<int> NewMask;
4094         inversePermutation(E->ReorderIndices, NewMask);
4095         VecStCost += TTI->getShuffleCost(
4096             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
4097       }
4098       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost));
4099       return VecStCost - ScalarStCost;
4100     }
4101     case Instruction::Call: {
4102       CallInst *CI = cast<CallInst>(VL0);
4103       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4104 
4105       // Calculate the cost of the scalar and vector calls.
4106       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
4107       InstructionCost ScalarEltCost =
4108           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
4109       if (NeedToShuffleReuses) {
4110         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4111       }
4112       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
4113 
4114       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4115       InstructionCost VecCallCost =
4116           std::min(VecCallCosts.first, VecCallCosts.second);
4117 
4118       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
4119                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
4120                         << " for " << *CI << "\n");
4121 
4122       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
4123     }
4124     case Instruction::ShuffleVector: {
4125       assert(E->isAltShuffle() &&
4126              ((Instruction::isBinaryOp(E->getOpcode()) &&
4127                Instruction::isBinaryOp(E->getAltOpcode())) ||
4128               (Instruction::isCast(E->getOpcode()) &&
4129                Instruction::isCast(E->getAltOpcode()))) &&
4130              "Invalid Shuffle Vector Operand");
4131       InstructionCost ScalarCost = 0;
4132       if (NeedToShuffleReuses) {
4133         for (unsigned Idx : E->ReuseShuffleIndices) {
4134           Instruction *I = cast<Instruction>(VL[Idx]);
4135           ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
4136         }
4137         for (Value *V : VL) {
4138           Instruction *I = cast<Instruction>(V);
4139           ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
4140         }
4141       }
4142       for (Value *V : VL) {
4143         Instruction *I = cast<Instruction>(V);
4144         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
4145         ScalarCost += TTI->getInstructionCost(I, CostKind);
4146       }
4147       // VecCost is equal to sum of the cost of creating 2 vectors
4148       // and the cost of creating shuffle.
4149       InstructionCost VecCost = 0;
4150       if (Instruction::isBinaryOp(E->getOpcode())) {
4151         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
4152         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
4153                                                CostKind);
4154       } else {
4155         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
4156         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
4157         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
4158         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
4159         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
4160                                         TTI::CastContextHint::None, CostKind);
4161         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
4162                                          TTI::CastContextHint::None, CostKind);
4163       }
4164 
4165       SmallVector<int> Mask(E->Scalars.size());
4166       for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
4167         auto *OpInst = cast<Instruction>(E->Scalars[I]);
4168         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4169         Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
4170       }
4171       VecCost +=
4172           TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
4173       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4174       return ReuseShuffleCost + VecCost - ScalarCost;
4175     }
4176     default:
4177       llvm_unreachable("Unknown instruction");
4178   }
4179 }
4180 
4181 bool BoUpSLP::isFullyVectorizableTinyTree() const {
4182   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
4183                     << VectorizableTree.size() << " is fully vectorizable .\n");
4184 
4185   // We only handle trees of heights 1 and 2.
4186   if (VectorizableTree.size() == 1 &&
4187       VectorizableTree[0]->State == TreeEntry::Vectorize)
4188     return true;
4189 
4190   if (VectorizableTree.size() != 2)
4191     return false;
4192 
4193   // Handle splat and all-constants stores. Also try to vectorize tiny trees
4194   // with the second gather nodes if they have less scalar operands rather than
4195   // the initial tree element (may be profitable to shuffle the second gather)
4196   // or they are extractelements, which form shuffle.
4197   SmallVector<int> Mask;
4198   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
4199       (allConstant(VectorizableTree[1]->Scalars) ||
4200        isSplat(VectorizableTree[1]->Scalars) ||
4201        (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4202         VectorizableTree[1]->Scalars.size() <
4203             VectorizableTree[0]->Scalars.size()) ||
4204        (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4205         VectorizableTree[1]->getOpcode() == Instruction::ExtractElement &&
4206         isShuffle(VectorizableTree[1]->Scalars, Mask))))
4207     return true;
4208 
4209   // Gathering cost would be too much for tiny trees.
4210   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
4211       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4212     return false;
4213 
4214   return true;
4215 }
4216 
4217 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
4218                                        TargetTransformInfo *TTI,
4219                                        bool MustMatchOrInst) {
4220   // Look past the root to find a source value. Arbitrarily follow the
4221   // path through operand 0 of any 'or'. Also, peek through optional
4222   // shift-left-by-multiple-of-8-bits.
4223   Value *ZextLoad = Root;
4224   const APInt *ShAmtC;
4225   bool FoundOr = false;
4226   while (!isa<ConstantExpr>(ZextLoad) &&
4227          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
4228           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
4229            ShAmtC->urem(8) == 0))) {
4230     auto *BinOp = cast<BinaryOperator>(ZextLoad);
4231     ZextLoad = BinOp->getOperand(0);
4232     if (BinOp->getOpcode() == Instruction::Or)
4233       FoundOr = true;
4234   }
4235   // Check if the input is an extended load of the required or/shift expression.
4236   Value *LoadPtr;
4237   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
4238       !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
4239     return false;
4240 
4241   // Require that the total load bit width is a legal integer type.
4242   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4243   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4244   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
4245   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
4246   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
4247     return false;
4248 
4249   // Everything matched - assume that we can fold the whole sequence using
4250   // load combining.
4251   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
4252              << *(cast<Instruction>(Root)) << "\n");
4253 
4254   return true;
4255 }
4256 
4257 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4258   if (RdxKind != RecurKind::Or)
4259     return false;
4260 
4261   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4262   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4263   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
4264                                     /* MatchOr */ false);
4265 }
4266 
4267 bool BoUpSLP::isLoadCombineCandidate() const {
4268   // Peek through a final sequence of stores and check if all operations are
4269   // likely to be load-combined.
4270   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4271   for (Value *Scalar : VectorizableTree[0]->Scalars) {
4272     Value *X;
4273     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4274         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
4275       return false;
4276   }
4277   return true;
4278 }
4279 
4280 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4281   // No need to vectorize inserts of gathered values.
4282   if (VectorizableTree.size() == 2 &&
4283       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
4284       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4285     return true;
4286 
4287   // We can vectorize the tree if its size is greater than or equal to the
4288   // minimum size specified by the MinTreeSize command line option.
4289   if (VectorizableTree.size() >= MinTreeSize)
4290     return false;
4291 
4292   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4293   // can vectorize it if we can prove it fully vectorizable.
4294   if (isFullyVectorizableTinyTree())
4295     return false;
4296 
4297   assert(VectorizableTree.empty()
4298              ? ExternalUses.empty()
4299              : true && "We shouldn't have any external users");
4300 
4301   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4302   // vectorizable.
4303   return true;
4304 }
4305 
4306 InstructionCost BoUpSLP::getSpillCost() const {
4307   // Walk from the bottom of the tree to the top, tracking which values are
4308   // live. When we see a call instruction that is not part of our tree,
4309   // query TTI to see if there is a cost to keeping values live over it
4310   // (for example, if spills and fills are required).
4311   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4312   InstructionCost Cost = 0;
4313 
4314   SmallPtrSet<Instruction*, 4> LiveValues;
4315   Instruction *PrevInst = nullptr;
4316 
4317   // The entries in VectorizableTree are not necessarily ordered by their
4318   // position in basic blocks. Collect them and order them by dominance so later
4319   // instructions are guaranteed to be visited first. For instructions in
4320   // different basic blocks, we only scan to the beginning of the block, so
4321   // their order does not matter, as long as all instructions in a basic block
4322   // are grouped together. Using dominance ensures a deterministic order.
4323   SmallVector<Instruction *, 16> OrderedScalars;
4324   for (const auto &TEPtr : VectorizableTree) {
4325     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4326     if (!Inst)
4327       continue;
4328     OrderedScalars.push_back(Inst);
4329   }
4330   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
4331     auto *NodeA = DT->getNode(A->getParent());
4332     auto *NodeB = DT->getNode(B->getParent());
4333     assert(NodeA && "Should only process reachable instructions");
4334     assert(NodeB && "Should only process reachable instructions");
4335     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
4336            "Different nodes should have different DFS numbers");
4337     if (NodeA != NodeB)
4338       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
4339     return B->comesBefore(A);
4340   });
4341 
4342   for (Instruction *Inst : OrderedScalars) {
4343     if (!PrevInst) {
4344       PrevInst = Inst;
4345       continue;
4346     }
4347 
4348     // Update LiveValues.
4349     LiveValues.erase(PrevInst);
4350     for (auto &J : PrevInst->operands()) {
4351       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4352         LiveValues.insert(cast<Instruction>(&*J));
4353     }
4354 
4355     LLVM_DEBUG({
4356       dbgs() << "SLP: #LV: " << LiveValues.size();
4357       for (auto *X : LiveValues)
4358         dbgs() << " " << X->getName();
4359       dbgs() << ", Looking at ";
4360       Inst->dump();
4361     });
4362 
4363     // Now find the sequence of instructions between PrevInst and Inst.
4364     unsigned NumCalls = 0;
4365     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4366                                  PrevInstIt =
4367                                      PrevInst->getIterator().getReverse();
4368     while (InstIt != PrevInstIt) {
4369       if (PrevInstIt == PrevInst->getParent()->rend()) {
4370         PrevInstIt = Inst->getParent()->rbegin();
4371         continue;
4372       }
4373 
4374       // Debug information does not impact spill cost.
4375       if ((isa<CallInst>(&*PrevInstIt) &&
4376            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4377           &*PrevInstIt != PrevInst)
4378         NumCalls++;
4379 
4380       ++PrevInstIt;
4381     }
4382 
4383     if (NumCalls) {
4384       SmallVector<Type*, 4> V;
4385       for (auto *II : LiveValues) {
4386         auto *ScalarTy = II->getType();
4387         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
4388           ScalarTy = VectorTy->getElementType();
4389         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
4390       }
4391       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4392     }
4393 
4394     PrevInst = Inst;
4395   }
4396 
4397   return Cost;
4398 }
4399 
4400 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
4401   InstructionCost Cost = 0;
4402   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
4403                     << VectorizableTree.size() << ".\n");
4404 
4405   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4406 
4407   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4408     TreeEntry &TE = *VectorizableTree[I].get();
4409 
4410     InstructionCost C = getEntryCost(&TE, VectorizedVals);
4411     Cost += C;
4412     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4413                       << " for bundle that starts with " << *TE.Scalars[0]
4414                       << ".\n"
4415                       << "SLP: Current total cost = " << Cost << "\n");
4416   }
4417 
4418   SmallPtrSet<Value *, 16> ExtractCostCalculated;
4419   InstructionCost ExtractCost = 0;
4420   SmallBitVector IsIdentity;
4421   SmallVector<unsigned> VF;
4422   SmallVector<SmallVector<int>> ShuffleMask;
4423   SmallVector<Value *> FirstUsers;
4424   SmallVector<APInt> DemandedElts;
4425   for (ExternalUser &EU : ExternalUses) {
4426     // We only add extract cost once for the same scalar.
4427     if (!ExtractCostCalculated.insert(EU.Scalar).second)
4428       continue;
4429 
4430     // Uses by ephemeral values are free (because the ephemeral value will be
4431     // removed prior to code generation, and so the extraction will be
4432     // removed as well).
4433     if (EphValues.count(EU.User))
4434       continue;
4435 
4436     // No extract cost for vector "scalar"
4437     if (isa<FixedVectorType>(EU.Scalar->getType()))
4438       continue;
4439 
4440     // Already counted the cost for external uses when tried to adjust the cost
4441     // for extractelements, no need to add it again.
4442     if (isa<ExtractElementInst>(EU.Scalar))
4443       continue;
4444 
4445     // If found user is an insertelement, do not calculate extract cost but try
4446     // to detect it as a final shuffled/identity match.
4447     if (EU.User && isa<InsertElementInst>(EU.User)) {
4448       if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) {
4449         Optional<int> InsertIdx = getInsertIndex(EU.User, 0);
4450         if (!InsertIdx || *InsertIdx == UndefMaskElem)
4451           continue;
4452         Value *VU = EU.User;
4453         auto *It = find_if(FirstUsers, [VU](Value *V) {
4454           // Checks if 2 insertelements are from the same buildvector.
4455           if (VU->getType() != V->getType())
4456             return false;
4457           auto *IE1 = cast<InsertElementInst>(VU);
4458           auto *IE2 = cast<InsertElementInst>(V);
4459           // Go though of insertelement instructions trying to find either VU as
4460           // the original vector for IE2 or V as the original vector for IE1.
4461           do {
4462             if (IE1 == VU || IE2 == V)
4463               return true;
4464             if (IE1)
4465               IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
4466             if (IE2)
4467               IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
4468           } while (IE1 || IE2);
4469           return false;
4470         });
4471         int VecId = -1;
4472         if (It == FirstUsers.end()) {
4473           VF.push_back(FTy->getNumElements());
4474           ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
4475           FirstUsers.push_back(EU.User);
4476           DemandedElts.push_back(APInt::getNullValue(VF.back()));
4477           IsIdentity.push_back(true);
4478           VecId = FirstUsers.size() - 1;
4479         } else {
4480           VecId = std::distance(FirstUsers.begin(), It);
4481         }
4482         int Idx = *InsertIdx;
4483         ShuffleMask[VecId][Idx] = EU.Lane;
4484         IsIdentity.set(IsIdentity.test(VecId) &
4485                        (EU.Lane == Idx || EU.Lane == UndefMaskElem));
4486         DemandedElts[VecId].setBit(Idx);
4487       }
4488     }
4489 
4490     // If we plan to rewrite the tree in a smaller type, we will need to sign
4491     // extend the extracted value back to the original type. Here, we account
4492     // for the extract and the added cost of the sign extend if needed.
4493     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4494     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4495     if (MinBWs.count(ScalarRoot)) {
4496       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4497       auto Extend =
4498           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4499       VecTy = FixedVectorType::get(MinTy, BundleWidth);
4500       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4501                                                    VecTy, EU.Lane);
4502     } else {
4503       ExtractCost +=
4504           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4505     }
4506   }
4507 
4508   InstructionCost SpillCost = getSpillCost();
4509   Cost += SpillCost + ExtractCost;
4510   for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
4511     if (!IsIdentity.test(I)) {
4512       InstructionCost C = TTI->getShuffleCost(
4513           TTI::SK_PermuteSingleSrc,
4514           cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]);
4515       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4516                         << " for final shuffle of insertelement external users "
4517                         << *VectorizableTree.front()->Scalars.front() << ".\n"
4518                         << "SLP: Current total cost = " << Cost << "\n");
4519       Cost += C;
4520     }
4521     unsigned VF = ShuffleMask[I].size();
4522     for (int &Mask : ShuffleMask[I])
4523       Mask = (Mask == UndefMaskElem ? 0 : VF) + Mask;
4524     InstructionCost C = TTI->getShuffleCost(
4525         TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()),
4526         ShuffleMask[I]);
4527     LLVM_DEBUG(
4528         dbgs()
4529         << "SLP: Adding cost " << C
4530         << " for final shuffle of vector node and external insertelement users "
4531         << *VectorizableTree.front()->Scalars.front() << ".\n"
4532         << "SLP: Current total cost = " << Cost << "\n");
4533     Cost += C;
4534     InstructionCost InsertCost = TTI->getScalarizationOverhead(
4535         cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
4536         /*Insert*/ true,
4537         /*Extract*/ false);
4538     Cost -= InsertCost;
4539     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
4540                       << " for insertelements gather.\n"
4541                       << "SLP: Current total cost = " << Cost << "\n");
4542   }
4543 
4544 #ifndef NDEBUG
4545   SmallString<256> Str;
4546   {
4547     raw_svector_ostream OS(Str);
4548     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4549        << "SLP: Extract Cost = " << ExtractCost << ".\n"
4550        << "SLP: Total Cost = " << Cost << ".\n";
4551   }
4552   LLVM_DEBUG(dbgs() << Str);
4553   if (ViewSLPTree)
4554     ViewGraph(this, "SLP" + F->getName(), false, Str);
4555 #endif
4556 
4557   return Cost;
4558 }
4559 
4560 Optional<TargetTransformInfo::ShuffleKind>
4561 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
4562                                SmallVectorImpl<const TreeEntry *> &Entries) {
4563   // TODO: currently checking only for Scalars in the tree entry, need to count
4564   // reused elements too for better cost estimation.
4565   Mask.assign(TE->Scalars.size(), UndefMaskElem);
4566   Entries.clear();
4567   // Build a lists of values to tree entries.
4568   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
4569   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
4570     if (EntryPtr.get() == TE)
4571       break;
4572     if (EntryPtr->State != TreeEntry::NeedToGather)
4573       continue;
4574     for (Value *V : EntryPtr->Scalars)
4575       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
4576   }
4577   // Find all tree entries used by the gathered values. If no common entries
4578   // found - not a shuffle.
4579   // Here we build a set of tree nodes for each gathered value and trying to
4580   // find the intersection between these sets. If we have at least one common
4581   // tree node for each gathered value - we have just a permutation of the
4582   // single vector. If we have 2 different sets, we're in situation where we
4583   // have a permutation of 2 input vectors.
4584   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
4585   DenseMap<Value *, int> UsedValuesEntry;
4586   for (Value *V : TE->Scalars) {
4587     if (isa<UndefValue>(V))
4588       continue;
4589     // Build a list of tree entries where V is used.
4590     SmallPtrSet<const TreeEntry *, 4> VToTEs;
4591     auto It = ValueToTEs.find(V);
4592     if (It != ValueToTEs.end())
4593       VToTEs = It->second;
4594     if (const TreeEntry *VTE = getTreeEntry(V))
4595       VToTEs.insert(VTE);
4596     if (VToTEs.empty())
4597       return None;
4598     if (UsedTEs.empty()) {
4599       // The first iteration, just insert the list of nodes to vector.
4600       UsedTEs.push_back(VToTEs);
4601     } else {
4602       // Need to check if there are any previously used tree nodes which use V.
4603       // If there are no such nodes, consider that we have another one input
4604       // vector.
4605       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
4606       unsigned Idx = 0;
4607       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
4608         // Do we have a non-empty intersection of previously listed tree entries
4609         // and tree entries using current V?
4610         set_intersect(VToTEs, Set);
4611         if (!VToTEs.empty()) {
4612           // Yes, write the new subset and continue analysis for the next
4613           // scalar.
4614           Set.swap(VToTEs);
4615           break;
4616         }
4617         VToTEs = SavedVToTEs;
4618         ++Idx;
4619       }
4620       // No non-empty intersection found - need to add a second set of possible
4621       // source vectors.
4622       if (Idx == UsedTEs.size()) {
4623         // If the number of input vectors is greater than 2 - not a permutation,
4624         // fallback to the regular gather.
4625         if (UsedTEs.size() == 2)
4626           return None;
4627         UsedTEs.push_back(SavedVToTEs);
4628         Idx = UsedTEs.size() - 1;
4629       }
4630       UsedValuesEntry.try_emplace(V, Idx);
4631     }
4632   }
4633 
4634   unsigned VF = 0;
4635   if (UsedTEs.size() == 1) {
4636     // Try to find the perfect match in another gather node at first.
4637     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
4638       return EntryPtr->isSame(TE->Scalars);
4639     });
4640     if (It != UsedTEs.front().end()) {
4641       Entries.push_back(*It);
4642       std::iota(Mask.begin(), Mask.end(), 0);
4643       return TargetTransformInfo::SK_PermuteSingleSrc;
4644     }
4645     // No perfect match, just shuffle, so choose the first tree node.
4646     Entries.push_back(*UsedTEs.front().begin());
4647   } else {
4648     // Try to find nodes with the same vector factor.
4649     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
4650     // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
4651     // landed.
4652     auto &&GetVF = [](const TreeEntry *TE) {
4653       if (!TE->ReuseShuffleIndices.empty())
4654         return TE->ReuseShuffleIndices.size();
4655       return TE->Scalars.size();
4656     };
4657     DenseMap<int, const TreeEntry *> VFToTE;
4658     for (const TreeEntry *TE : UsedTEs.front())
4659       VFToTE.try_emplace(GetVF(TE), TE);
4660     for (const TreeEntry *TE : UsedTEs.back()) {
4661       auto It = VFToTE.find(GetVF(TE));
4662       if (It != VFToTE.end()) {
4663         VF = It->first;
4664         Entries.push_back(It->second);
4665         Entries.push_back(TE);
4666         break;
4667       }
4668     }
4669     // No 2 source vectors with the same vector factor - give up and do regular
4670     // gather.
4671     if (Entries.empty())
4672       return None;
4673   }
4674 
4675   // Build a shuffle mask for better cost estimation and vector emission.
4676   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
4677     Value *V = TE->Scalars[I];
4678     if (isa<UndefValue>(V))
4679       continue;
4680     unsigned Idx = UsedValuesEntry.lookup(V);
4681     const TreeEntry *VTE = Entries[Idx];
4682     int FoundLane = findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V);
4683     Mask[I] = Idx * VF + FoundLane;
4684     // Extra check required by isSingleSourceMaskImpl function (called by
4685     // ShuffleVectorInst::isSingleSourceMask).
4686     if (Mask[I] >= 2 * E)
4687       return None;
4688   }
4689   switch (Entries.size()) {
4690   case 1:
4691     return TargetTransformInfo::SK_PermuteSingleSrc;
4692   case 2:
4693     return TargetTransformInfo::SK_PermuteTwoSrc;
4694   default:
4695     break;
4696   }
4697   return None;
4698 }
4699 
4700 InstructionCost
4701 BoUpSLP::getGatherCost(FixedVectorType *Ty,
4702                        const DenseSet<unsigned> &ShuffledIndices) const {
4703   unsigned NumElts = Ty->getNumElements();
4704   APInt DemandedElts = APInt::getNullValue(NumElts);
4705   for (unsigned I = 0; I < NumElts; ++I)
4706     if (!ShuffledIndices.count(I))
4707       DemandedElts.setBit(I);
4708   InstructionCost Cost =
4709       TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4710                                     /*Extract*/ false);
4711   if (!ShuffledIndices.empty())
4712     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4713   return Cost;
4714 }
4715 
4716 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4717   // Find the type of the operands in VL.
4718   Type *ScalarTy = VL[0]->getType();
4719   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4720     ScalarTy = SI->getValueOperand()->getType();
4721   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4722   // Find the cost of inserting/extracting values from the vector.
4723   // Check if the same elements are inserted several times and count them as
4724   // shuffle candidates.
4725   DenseSet<unsigned> ShuffledElements;
4726   DenseSet<Value *> UniqueElements;
4727   // Iterate in reverse order to consider insert elements with the high cost.
4728   for (unsigned I = VL.size(); I > 0; --I) {
4729     unsigned Idx = I - 1;
4730     if (isConstant(VL[Idx]))
4731       continue;
4732     if (!UniqueElements.insert(VL[Idx]).second)
4733       ShuffledElements.insert(Idx);
4734   }
4735   return getGatherCost(VecTy, ShuffledElements);
4736 }
4737 
4738 // Perform operand reordering on the instructions in VL and return the reordered
4739 // operands in Left and Right.
4740 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4741                                              SmallVectorImpl<Value *> &Left,
4742                                              SmallVectorImpl<Value *> &Right,
4743                                              const DataLayout &DL,
4744                                              ScalarEvolution &SE,
4745                                              const BoUpSLP &R) {
4746   if (VL.empty())
4747     return;
4748   VLOperands Ops(VL, DL, SE, R);
4749   // Reorder the operands in place.
4750   Ops.reorder();
4751   Left = Ops.getVL(0);
4752   Right = Ops.getVL(1);
4753 }
4754 
4755 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
4756   // Get the basic block this bundle is in. All instructions in the bundle
4757   // should be in this block.
4758   auto *Front = E->getMainOp();
4759   auto *BB = Front->getParent();
4760   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
4761     auto *I = cast<Instruction>(V);
4762     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
4763   }));
4764 
4765   // The last instruction in the bundle in program order.
4766   Instruction *LastInst = nullptr;
4767 
4768   // Find the last instruction. The common case should be that BB has been
4769   // scheduled, and the last instruction is VL.back(). So we start with
4770   // VL.back() and iterate over schedule data until we reach the end of the
4771   // bundle. The end of the bundle is marked by null ScheduleData.
4772   if (BlocksSchedules.count(BB)) {
4773     auto *Bundle =
4774         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4775     if (Bundle && Bundle->isPartOfBundle())
4776       for (; Bundle; Bundle = Bundle->NextInBundle)
4777         if (Bundle->OpValue == Bundle->Inst)
4778           LastInst = Bundle->Inst;
4779   }
4780 
4781   // LastInst can still be null at this point if there's either not an entry
4782   // for BB in BlocksSchedules or there's no ScheduleData available for
4783   // VL.back(). This can be the case if buildTree_rec aborts for various
4784   // reasons (e.g., the maximum recursion depth is reached, the maximum region
4785   // size is reached, etc.). ScheduleData is initialized in the scheduling
4786   // "dry-run".
4787   //
4788   // If this happens, we can still find the last instruction by brute force. We
4789   // iterate forwards from Front (inclusive) until we either see all
4790   // instructions in the bundle or reach the end of the block. If Front is the
4791   // last instruction in program order, LastInst will be set to Front, and we
4792   // will visit all the remaining instructions in the block.
4793   //
4794   // One of the reasons we exit early from buildTree_rec is to place an upper
4795   // bound on compile-time. Thus, taking an additional compile-time hit here is
4796   // not ideal. However, this should be exceedingly rare since it requires that
4797   // we both exit early from buildTree_rec and that the bundle be out-of-order
4798   // (causing us to iterate all the way to the end of the block).
4799   if (!LastInst) {
4800     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4801     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4802       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4803         LastInst = &I;
4804       if (Bundle.empty())
4805         break;
4806     }
4807   }
4808   assert(LastInst && "Failed to find last instruction in bundle");
4809 
4810   // Set the insertion point after the last instruction in the bundle. Set the
4811   // debug location to Front.
4812   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4813   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4814 }
4815 
4816 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4817   // List of instructions/lanes from current block and/or the blocks which are
4818   // part of the current loop. These instructions will be inserted at the end to
4819   // make it possible to optimize loops and hoist invariant instructions out of
4820   // the loops body with better chances for success.
4821   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
4822   SmallSet<int, 4> PostponedIndices;
4823   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
4824   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
4825     SmallPtrSet<BasicBlock *, 4> Visited;
4826     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
4827       InsertBB = InsertBB->getSinglePredecessor();
4828     return InsertBB && InsertBB == InstBB;
4829   };
4830   for (int I = 0, E = VL.size(); I < E; ++I) {
4831     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
4832       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
4833            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
4834           PostponedIndices.insert(I).second)
4835         PostponedInsts.emplace_back(Inst, I);
4836   }
4837 
4838   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
4839     // No need to insert undefs elements - exit.
4840     if (isa<UndefValue>(V))
4841       return Vec;
4842     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
4843     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4844     if (!InsElt)
4845       return Vec;
4846     GatherSeq.insert(InsElt);
4847     CSEBlocks.insert(InsElt->getParent());
4848     // Add to our 'need-to-extract' list.
4849     if (TreeEntry *Entry = getTreeEntry(V)) {
4850       // Find which lane we need to extract.
4851       unsigned FoundLane =
4852           std::distance(Entry->Scalars.begin(), find(Entry->Scalars, V));
4853       assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane");
4854       if (!Entry->ReuseShuffleIndices.empty()) {
4855         FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(),
4856                                   find(Entry->ReuseShuffleIndices, FoundLane));
4857       }
4858       ExternalUses.emplace_back(V, InsElt, FoundLane);
4859     }
4860     return Vec;
4861   };
4862   Value *Val0 =
4863       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4864   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4865   Value *Vec = PoisonValue::get(VecTy);
4866   for (int I = 0, E = VL.size(); I < E; ++I) {
4867     if (PostponedIndices.contains(I))
4868       continue;
4869     Vec = CreateInsertElement(Vec, VL[I], I);
4870   }
4871   // Append instructions, which are/may be part of the loop, in the end to make
4872   // it possible to hoist non-loop-based instructions.
4873   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
4874     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
4875 
4876   return Vec;
4877 }
4878 
4879 namespace {
4880 /// Merges shuffle masks and emits final shuffle instruction, if required.
4881 class ShuffleInstructionBuilder {
4882   IRBuilderBase &Builder;
4883   const unsigned VF = 0;
4884   bool IsFinalized = false;
4885   SmallVector<int, 4> Mask;
4886 
4887 public:
4888   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF)
4889       : Builder(Builder), VF(VF) {}
4890 
4891   /// Adds a mask, inverting it before applying.
4892   void addInversedMask(ArrayRef<unsigned> SubMask) {
4893     if (SubMask.empty())
4894       return;
4895     SmallVector<int, 4> NewMask;
4896     inversePermutation(SubMask, NewMask);
4897     addMask(NewMask);
4898   }
4899 
4900   /// Functions adds masks, merging them into  single one.
4901   void addMask(ArrayRef<unsigned> SubMask) {
4902     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4903     addMask(NewMask);
4904   }
4905 
4906   void addMask(ArrayRef<int> SubMask) {
4907     if (SubMask.empty())
4908       return;
4909     if (Mask.empty()) {
4910       Mask.append(SubMask.begin(), SubMask.end());
4911       return;
4912     }
4913     SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
4914     int TermValue = std::min(Mask.size(), SubMask.size());
4915     for (int I = 0, E = SubMask.size(); I < E; ++I) {
4916       if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
4917           Mask[SubMask[I]] >= TermValue) {
4918         NewMask[I] = UndefMaskElem;
4919         continue;
4920       }
4921       NewMask[I] = Mask[SubMask[I]];
4922     }
4923     Mask.swap(NewMask);
4924   }
4925 
4926   Value *finalize(Value *V) {
4927     IsFinalized = true;
4928     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
4929     if (VF == ValueVF && Mask.empty())
4930       return V;
4931     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
4932     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
4933     addMask(NormalizedMask);
4934 
4935     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
4936       return V;
4937     return Builder.CreateShuffleVector(V, Mask, "shuffle");
4938   }
4939 
4940   ~ShuffleInstructionBuilder() {
4941     assert((IsFinalized || Mask.empty()) &&
4942            "Shuffle construction must be finalized.");
4943   }
4944 };
4945 } // namespace
4946 
4947 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4948   unsigned VF = VL.size();
4949   InstructionsState S = getSameOpcode(VL);
4950   if (S.getOpcode()) {
4951     if (TreeEntry *E = getTreeEntry(S.OpValue))
4952       if (E->isSame(VL)) {
4953         Value *V = vectorizeTree(E);
4954         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
4955           if (!E->ReuseShuffleIndices.empty()) {
4956             // Reshuffle to get only unique values.
4957             // If some of the scalars are duplicated in the vectorization tree
4958             // entry, we do not vectorize them but instead generate a mask for
4959             // the reuses. But if there are several users of the same entry,
4960             // they may have different vectorization factors. This is especially
4961             // important for PHI nodes. In this case, we need to adapt the
4962             // resulting instruction for the user vectorization factor and have
4963             // to reshuffle it again to take only unique elements of the vector.
4964             // Without this code the function incorrectly returns reduced vector
4965             // instruction with the same elements, not with the unique ones.
4966 
4967             // block:
4968             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
4969             // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
4970             // ... (use %2)
4971             // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
4972             // br %block
4973             SmallVector<int> UniqueIdxs;
4974             SmallSet<int, 4> UsedIdxs;
4975             int Pos = 0;
4976             int Sz = VL.size();
4977             for (int Idx : E->ReuseShuffleIndices) {
4978               if (Idx != Sz && UsedIdxs.insert(Idx).second)
4979                 UniqueIdxs.emplace_back(Pos);
4980               ++Pos;
4981             }
4982             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
4983                                             "less than original vector size.");
4984             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
4985             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
4986           } else {
4987             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
4988                    "Expected vectorization factor less "
4989                    "than original vector size.");
4990             SmallVector<int> UniformMask(VF, 0);
4991             std::iota(UniformMask.begin(), UniformMask.end(), 0);
4992             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
4993           }
4994         }
4995         return V;
4996       }
4997   }
4998 
4999   // Check that every instruction appears once in this bundle.
5000   SmallVector<int> ReuseShuffleIndicies;
5001   SmallVector<Value *> UniqueValues;
5002   if (VL.size() > 2) {
5003     DenseMap<Value *, unsigned> UniquePositions;
5004     unsigned NumValues =
5005         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
5006                                     return !isa<UndefValue>(V);
5007                                   }).base());
5008     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
5009     int UniqueVals = 0;
5010     bool HasUndefs = false;
5011     for (Value *V : VL.drop_back(VL.size() - VF)) {
5012       if (isa<UndefValue>(V)) {
5013         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
5014         HasUndefs = true;
5015         continue;
5016       }
5017       if (isConstant(V)) {
5018         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
5019         UniqueValues.emplace_back(V);
5020         continue;
5021       }
5022       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
5023       ReuseShuffleIndicies.emplace_back(Res.first->second);
5024       if (Res.second) {
5025         UniqueValues.emplace_back(V);
5026         ++UniqueVals;
5027       }
5028     }
5029     if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) {
5030       // Emit pure splat vector.
5031       // FIXME: why it is not identified as an identity.
5032       unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem);
5033       if (NumUndefs == ReuseShuffleIndicies.size() - 1)
5034         ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
5035                                     UndefMaskElem);
5036       else
5037         ReuseShuffleIndicies.assign(VF, 0);
5038     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
5039       ReuseShuffleIndicies.clear();
5040       UniqueValues.clear();
5041       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
5042     }
5043     UniqueValues.append(VF - UniqueValues.size(),
5044                         UndefValue::get(VL[0]->getType()));
5045     VL = UniqueValues;
5046   }
5047 
5048   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5049   Value *Vec = gather(VL);
5050   if (!ReuseShuffleIndicies.empty()) {
5051     ShuffleBuilder.addMask(ReuseShuffleIndicies);
5052     Vec = ShuffleBuilder.finalize(Vec);
5053     if (auto *I = dyn_cast<Instruction>(Vec)) {
5054       GatherSeq.insert(I);
5055       CSEBlocks.insert(I->getParent());
5056     }
5057   }
5058   return Vec;
5059 }
5060 
5061 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
5062   IRBuilder<>::InsertPointGuard Guard(Builder);
5063 
5064   if (E->VectorizedValue) {
5065     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
5066     return E->VectorizedValue;
5067   }
5068 
5069   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5070   unsigned VF = E->Scalars.size();
5071   if (NeedToShuffleReuses)
5072     VF = E->ReuseShuffleIndices.size();
5073   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5074   if (E->State == TreeEntry::NeedToGather) {
5075     setInsertPointAfterBundle(E);
5076     Value *Vec;
5077     SmallVector<int> Mask;
5078     SmallVector<const TreeEntry *> Entries;
5079     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5080         isGatherShuffledEntry(E, Mask, Entries);
5081     if (Shuffle.hasValue()) {
5082       assert((Entries.size() == 1 || Entries.size() == 2) &&
5083              "Expected shuffle of 1 or 2 entries.");
5084       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
5085                                         Entries.back()->VectorizedValue, Mask);
5086     } else {
5087       Vec = gather(E->Scalars);
5088     }
5089     if (NeedToShuffleReuses) {
5090       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5091       Vec = ShuffleBuilder.finalize(Vec);
5092       if (auto *I = dyn_cast<Instruction>(Vec)) {
5093         GatherSeq.insert(I);
5094         CSEBlocks.insert(I->getParent());
5095       }
5096     }
5097     E->VectorizedValue = Vec;
5098     return Vec;
5099   }
5100 
5101   assert((E->State == TreeEntry::Vectorize ||
5102           E->State == TreeEntry::ScatterVectorize) &&
5103          "Unhandled state");
5104   unsigned ShuffleOrOp =
5105       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5106   Instruction *VL0 = E->getMainOp();
5107   Type *ScalarTy = VL0->getType();
5108   if (auto *Store = dyn_cast<StoreInst>(VL0))
5109     ScalarTy = Store->getValueOperand()->getType();
5110   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
5111     ScalarTy = IE->getOperand(1)->getType();
5112   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
5113   switch (ShuffleOrOp) {
5114     case Instruction::PHI: {
5115       auto *PH = cast<PHINode>(VL0);
5116       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
5117       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5118       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
5119       Value *V = NewPhi;
5120       if (NeedToShuffleReuses)
5121         V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
5122 
5123       E->VectorizedValue = V;
5124 
5125       // PHINodes may have multiple entries from the same block. We want to
5126       // visit every block once.
5127       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
5128 
5129       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
5130         ValueList Operands;
5131         BasicBlock *IBB = PH->getIncomingBlock(i);
5132 
5133         if (!VisitedBBs.insert(IBB).second) {
5134           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
5135           continue;
5136         }
5137 
5138         Builder.SetInsertPoint(IBB->getTerminator());
5139         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5140         Value *Vec = vectorizeTree(E->getOperand(i));
5141         NewPhi->addIncoming(Vec, IBB);
5142       }
5143 
5144       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
5145              "Invalid number of incoming values");
5146       return V;
5147     }
5148 
5149     case Instruction::ExtractElement: {
5150       Value *V = E->getSingleOperand(0);
5151       Builder.SetInsertPoint(VL0);
5152       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5153       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5154       V = ShuffleBuilder.finalize(V);
5155       E->VectorizedValue = V;
5156       return V;
5157     }
5158     case Instruction::ExtractValue: {
5159       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
5160       Builder.SetInsertPoint(LI);
5161       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
5162       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
5163       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
5164       Value *NewV = propagateMetadata(V, E->Scalars);
5165       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5166       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5167       NewV = ShuffleBuilder.finalize(NewV);
5168       E->VectorizedValue = NewV;
5169       return NewV;
5170     }
5171     case Instruction::InsertElement: {
5172       Builder.SetInsertPoint(VL0);
5173       Value *V = vectorizeTree(E->getOperand(1));
5174 
5175       const unsigned NumElts =
5176           cast<FixedVectorType>(VL0->getType())->getNumElements();
5177       const unsigned NumScalars = E->Scalars.size();
5178 
5179       // Create InsertVector shuffle if necessary
5180       Instruction *FirstInsert = nullptr;
5181       bool IsIdentity = true;
5182       unsigned Offset = UINT_MAX;
5183       for (unsigned I = 0; I < NumScalars; ++I) {
5184         Value *Scalar = E->Scalars[I];
5185         if (!FirstInsert &&
5186             !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0)))
5187           FirstInsert = cast<Instruction>(Scalar);
5188         Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5189         if (!InsertIdx || *InsertIdx == UndefMaskElem)
5190           continue;
5191         unsigned Idx = *InsertIdx;
5192         if (Idx < Offset) {
5193           Offset = Idx;
5194           IsIdentity &= I == 0;
5195         } else {
5196           assert(Idx >= Offset && "Failed to find vector index offset");
5197           IsIdentity &= Idx - Offset == I;
5198         }
5199       }
5200       assert(Offset < NumElts && "Failed to find vector index offset");
5201 
5202       // Create shuffle to resize vector
5203       SmallVector<int> Mask(NumElts, UndefMaskElem);
5204       if (!IsIdentity) {
5205         for (unsigned I = 0; I < NumScalars; ++I) {
5206           Value *Scalar = E->Scalars[I];
5207           Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5208           if (!InsertIdx || *InsertIdx == UndefMaskElem)
5209             continue;
5210           Mask[*InsertIdx - Offset] = I;
5211         }
5212       } else {
5213         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5214       }
5215       if (!IsIdentity || NumElts != NumScalars)
5216         V = Builder.CreateShuffleVector(V, Mask);
5217 
5218       if (NumElts != NumScalars) {
5219         SmallVector<int> InsertMask(NumElts);
5220         std::iota(InsertMask.begin(), InsertMask.end(), 0);
5221         for (unsigned I = 0; I < NumElts; I++) {
5222           if (Mask[I] != UndefMaskElem)
5223             InsertMask[Offset + I] = NumElts + I;
5224         }
5225 
5226         V = Builder.CreateShuffleVector(
5227             FirstInsert->getOperand(0), V, InsertMask,
5228             cast<Instruction>(E->Scalars.back())->getName());
5229       }
5230 
5231       ++NumVectorInstructions;
5232       E->VectorizedValue = V;
5233       return V;
5234     }
5235     case Instruction::ZExt:
5236     case Instruction::SExt:
5237     case Instruction::FPToUI:
5238     case Instruction::FPToSI:
5239     case Instruction::FPExt:
5240     case Instruction::PtrToInt:
5241     case Instruction::IntToPtr:
5242     case Instruction::SIToFP:
5243     case Instruction::UIToFP:
5244     case Instruction::Trunc:
5245     case Instruction::FPTrunc:
5246     case Instruction::BitCast: {
5247       setInsertPointAfterBundle(E);
5248 
5249       Value *InVec = vectorizeTree(E->getOperand(0));
5250 
5251       if (E->VectorizedValue) {
5252         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5253         return E->VectorizedValue;
5254       }
5255 
5256       auto *CI = cast<CastInst>(VL0);
5257       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
5258       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5259       V = ShuffleBuilder.finalize(V);
5260 
5261       E->VectorizedValue = V;
5262       ++NumVectorInstructions;
5263       return V;
5264     }
5265     case Instruction::FCmp:
5266     case Instruction::ICmp: {
5267       setInsertPointAfterBundle(E);
5268 
5269       Value *L = vectorizeTree(E->getOperand(0));
5270       Value *R = vectorizeTree(E->getOperand(1));
5271 
5272       if (E->VectorizedValue) {
5273         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5274         return E->VectorizedValue;
5275       }
5276 
5277       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5278       Value *V = Builder.CreateCmp(P0, L, R);
5279       propagateIRFlags(V, E->Scalars, VL0);
5280       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5281       V = ShuffleBuilder.finalize(V);
5282 
5283       E->VectorizedValue = V;
5284       ++NumVectorInstructions;
5285       return V;
5286     }
5287     case Instruction::Select: {
5288       setInsertPointAfterBundle(E);
5289 
5290       Value *Cond = vectorizeTree(E->getOperand(0));
5291       Value *True = vectorizeTree(E->getOperand(1));
5292       Value *False = vectorizeTree(E->getOperand(2));
5293 
5294       if (E->VectorizedValue) {
5295         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5296         return E->VectorizedValue;
5297       }
5298 
5299       Value *V = Builder.CreateSelect(Cond, True, False);
5300       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5301       V = ShuffleBuilder.finalize(V);
5302 
5303       E->VectorizedValue = V;
5304       ++NumVectorInstructions;
5305       return V;
5306     }
5307     case Instruction::FNeg: {
5308       setInsertPointAfterBundle(E);
5309 
5310       Value *Op = vectorizeTree(E->getOperand(0));
5311 
5312       if (E->VectorizedValue) {
5313         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5314         return E->VectorizedValue;
5315       }
5316 
5317       Value *V = Builder.CreateUnOp(
5318           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
5319       propagateIRFlags(V, E->Scalars, VL0);
5320       if (auto *I = dyn_cast<Instruction>(V))
5321         V = propagateMetadata(I, E->Scalars);
5322 
5323       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5324       V = ShuffleBuilder.finalize(V);
5325 
5326       E->VectorizedValue = V;
5327       ++NumVectorInstructions;
5328 
5329       return V;
5330     }
5331     case Instruction::Add:
5332     case Instruction::FAdd:
5333     case Instruction::Sub:
5334     case Instruction::FSub:
5335     case Instruction::Mul:
5336     case Instruction::FMul:
5337     case Instruction::UDiv:
5338     case Instruction::SDiv:
5339     case Instruction::FDiv:
5340     case Instruction::URem:
5341     case Instruction::SRem:
5342     case Instruction::FRem:
5343     case Instruction::Shl:
5344     case Instruction::LShr:
5345     case Instruction::AShr:
5346     case Instruction::And:
5347     case Instruction::Or:
5348     case Instruction::Xor: {
5349       setInsertPointAfterBundle(E);
5350 
5351       Value *LHS = vectorizeTree(E->getOperand(0));
5352       Value *RHS = vectorizeTree(E->getOperand(1));
5353 
5354       if (E->VectorizedValue) {
5355         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5356         return E->VectorizedValue;
5357       }
5358 
5359       Value *V = Builder.CreateBinOp(
5360           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
5361           RHS);
5362       propagateIRFlags(V, E->Scalars, VL0);
5363       if (auto *I = dyn_cast<Instruction>(V))
5364         V = propagateMetadata(I, E->Scalars);
5365 
5366       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5367       V = ShuffleBuilder.finalize(V);
5368 
5369       E->VectorizedValue = V;
5370       ++NumVectorInstructions;
5371 
5372       return V;
5373     }
5374     case Instruction::Load: {
5375       // Loads are inserted at the head of the tree because we don't want to
5376       // sink them all the way down past store instructions.
5377       bool IsReorder = E->updateStateIfReorder();
5378       if (IsReorder)
5379         VL0 = E->getMainOp();
5380       setInsertPointAfterBundle(E);
5381 
5382       LoadInst *LI = cast<LoadInst>(VL0);
5383       Instruction *NewLI;
5384       unsigned AS = LI->getPointerAddressSpace();
5385       Value *PO = LI->getPointerOperand();
5386       if (E->State == TreeEntry::Vectorize) {
5387 
5388         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
5389 
5390         // The pointer operand uses an in-tree scalar so we add the new BitCast
5391         // to ExternalUses list to make sure that an extract will be generated
5392         // in the future.
5393         if (getTreeEntry(PO))
5394           ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
5395 
5396         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
5397       } else {
5398         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
5399         Value *VecPtr = vectorizeTree(E->getOperand(0));
5400         // Use the minimum alignment of the gathered loads.
5401         Align CommonAlignment = LI->getAlign();
5402         for (Value *V : E->Scalars)
5403           CommonAlignment =
5404               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5405         NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment);
5406       }
5407       Value *V = propagateMetadata(NewLI, E->Scalars);
5408 
5409       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5410       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5411       V = ShuffleBuilder.finalize(V);
5412       E->VectorizedValue = V;
5413       ++NumVectorInstructions;
5414       return V;
5415     }
5416     case Instruction::Store: {
5417       bool IsReorder = !E->ReorderIndices.empty();
5418       auto *SI = cast<StoreInst>(
5419           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
5420       unsigned AS = SI->getPointerAddressSpace();
5421 
5422       setInsertPointAfterBundle(E);
5423 
5424       Value *VecValue = vectorizeTree(E->getOperand(0));
5425       ShuffleBuilder.addMask(E->ReorderIndices);
5426       VecValue = ShuffleBuilder.finalize(VecValue);
5427 
5428       Value *ScalarPtr = SI->getPointerOperand();
5429       Value *VecPtr = Builder.CreateBitCast(
5430           ScalarPtr, VecValue->getType()->getPointerTo(AS));
5431       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
5432                                                  SI->getAlign());
5433 
5434       // The pointer operand uses an in-tree scalar, so add the new BitCast to
5435       // ExternalUses to make sure that an extract will be generated in the
5436       // future.
5437       if (getTreeEntry(ScalarPtr))
5438         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
5439 
5440       Value *V = propagateMetadata(ST, E->Scalars);
5441 
5442       E->VectorizedValue = V;
5443       ++NumVectorInstructions;
5444       return V;
5445     }
5446     case Instruction::GetElementPtr: {
5447       setInsertPointAfterBundle(E);
5448 
5449       Value *Op0 = vectorizeTree(E->getOperand(0));
5450 
5451       std::vector<Value *> OpVecs;
5452       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
5453            ++j) {
5454         ValueList &VL = E->getOperand(j);
5455         // Need to cast all elements to the same type before vectorization to
5456         // avoid crash.
5457         Type *VL0Ty = VL0->getOperand(j)->getType();
5458         Type *Ty = llvm::all_of(
5459                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
5460                        ? VL0Ty
5461                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5462                                               ->getPointerOperandType()
5463                                               ->getScalarType());
5464         for (Value *&V : VL) {
5465           auto *CI = cast<ConstantInt>(V);
5466           V = ConstantExpr::getIntegerCast(CI, Ty,
5467                                            CI->getValue().isSignBitSet());
5468         }
5469         Value *OpVec = vectorizeTree(VL);
5470         OpVecs.push_back(OpVec);
5471       }
5472 
5473       Value *V = Builder.CreateGEP(
5474           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
5475       if (Instruction *I = dyn_cast<Instruction>(V))
5476         V = propagateMetadata(I, E->Scalars);
5477 
5478       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5479       V = ShuffleBuilder.finalize(V);
5480 
5481       E->VectorizedValue = V;
5482       ++NumVectorInstructions;
5483 
5484       return V;
5485     }
5486     case Instruction::Call: {
5487       CallInst *CI = cast<CallInst>(VL0);
5488       setInsertPointAfterBundle(E);
5489 
5490       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
5491       if (Function *FI = CI->getCalledFunction())
5492         IID = FI->getIntrinsicID();
5493 
5494       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5495 
5496       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5497       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
5498                           VecCallCosts.first <= VecCallCosts.second;
5499 
5500       Value *ScalarArg = nullptr;
5501       std::vector<Value *> OpVecs;
5502       SmallVector<Type *, 2> TysForDecl =
5503           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
5504       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
5505         ValueList OpVL;
5506         // Some intrinsics have scalar arguments. This argument should not be
5507         // vectorized.
5508         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
5509           CallInst *CEI = cast<CallInst>(VL0);
5510           ScalarArg = CEI->getArgOperand(j);
5511           OpVecs.push_back(CEI->getArgOperand(j));
5512           if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
5513             TysForDecl.push_back(ScalarArg->getType());
5514           continue;
5515         }
5516 
5517         Value *OpVec = vectorizeTree(E->getOperand(j));
5518         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
5519         OpVecs.push_back(OpVec);
5520       }
5521 
5522       Function *CF;
5523       if (!UseIntrinsic) {
5524         VFShape Shape =
5525             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5526                                   VecTy->getNumElements())),
5527                          false /*HasGlobalPred*/);
5528         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
5529       } else {
5530         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
5531       }
5532 
5533       SmallVector<OperandBundleDef, 1> OpBundles;
5534       CI->getOperandBundlesAsDefs(OpBundles);
5535       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
5536 
5537       // The scalar argument uses an in-tree scalar so we add the new vectorized
5538       // call to ExternalUses list to make sure that an extract will be
5539       // generated in the future.
5540       if (ScalarArg && getTreeEntry(ScalarArg))
5541         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
5542 
5543       propagateIRFlags(V, E->Scalars, VL0);
5544       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5545       V = ShuffleBuilder.finalize(V);
5546 
5547       E->VectorizedValue = V;
5548       ++NumVectorInstructions;
5549       return V;
5550     }
5551     case Instruction::ShuffleVector: {
5552       assert(E->isAltShuffle() &&
5553              ((Instruction::isBinaryOp(E->getOpcode()) &&
5554                Instruction::isBinaryOp(E->getAltOpcode())) ||
5555               (Instruction::isCast(E->getOpcode()) &&
5556                Instruction::isCast(E->getAltOpcode()))) &&
5557              "Invalid Shuffle Vector Operand");
5558 
5559       Value *LHS = nullptr, *RHS = nullptr;
5560       if (Instruction::isBinaryOp(E->getOpcode())) {
5561         setInsertPointAfterBundle(E);
5562         LHS = vectorizeTree(E->getOperand(0));
5563         RHS = vectorizeTree(E->getOperand(1));
5564       } else {
5565         setInsertPointAfterBundle(E);
5566         LHS = vectorizeTree(E->getOperand(0));
5567       }
5568 
5569       if (E->VectorizedValue) {
5570         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5571         return E->VectorizedValue;
5572       }
5573 
5574       Value *V0, *V1;
5575       if (Instruction::isBinaryOp(E->getOpcode())) {
5576         V0 = Builder.CreateBinOp(
5577             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
5578         V1 = Builder.CreateBinOp(
5579             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
5580       } else {
5581         V0 = Builder.CreateCast(
5582             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
5583         V1 = Builder.CreateCast(
5584             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
5585       }
5586 
5587       // Create shuffle to take alternate operations from the vector.
5588       // Also, gather up main and alt scalar ops to propagate IR flags to
5589       // each vector operation.
5590       ValueList OpScalars, AltScalars;
5591       unsigned e = E->Scalars.size();
5592       SmallVector<int, 8> Mask(e);
5593       for (unsigned i = 0; i < e; ++i) {
5594         auto *OpInst = cast<Instruction>(E->Scalars[i]);
5595         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
5596         if (OpInst->getOpcode() == E->getAltOpcode()) {
5597           Mask[i] = e + i;
5598           AltScalars.push_back(E->Scalars[i]);
5599         } else {
5600           Mask[i] = i;
5601           OpScalars.push_back(E->Scalars[i]);
5602         }
5603       }
5604 
5605       propagateIRFlags(V0, OpScalars);
5606       propagateIRFlags(V1, AltScalars);
5607 
5608       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
5609       if (Instruction *I = dyn_cast<Instruction>(V))
5610         V = propagateMetadata(I, E->Scalars);
5611       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5612       V = ShuffleBuilder.finalize(V);
5613 
5614       E->VectorizedValue = V;
5615       ++NumVectorInstructions;
5616 
5617       return V;
5618     }
5619     default:
5620     llvm_unreachable("unknown inst");
5621   }
5622   return nullptr;
5623 }
5624 
5625 Value *BoUpSLP::vectorizeTree() {
5626   ExtraValueToDebugLocsMap ExternallyUsedValues;
5627   return vectorizeTree(ExternallyUsedValues);
5628 }
5629 
5630 Value *
5631 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
5632   // All blocks must be scheduled before any instructions are inserted.
5633   for (auto &BSIter : BlocksSchedules) {
5634     scheduleBlock(BSIter.second.get());
5635   }
5636 
5637   Builder.SetInsertPoint(&F->getEntryBlock().front());
5638   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
5639 
5640   // If the vectorized tree can be rewritten in a smaller type, we truncate the
5641   // vectorized root. InstCombine will then rewrite the entire expression. We
5642   // sign extend the extracted values below.
5643   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5644   if (MinBWs.count(ScalarRoot)) {
5645     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
5646       // If current instr is a phi and not the last phi, insert it after the
5647       // last phi node.
5648       if (isa<PHINode>(I))
5649         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
5650       else
5651         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
5652     }
5653     auto BundleWidth = VectorizableTree[0]->Scalars.size();
5654     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5655     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5656     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5657     VectorizableTree[0]->VectorizedValue = Trunc;
5658   }
5659 
5660   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
5661                     << " values .\n");
5662 
5663   // Extract all of the elements with the external uses.
5664   for (const auto &ExternalUse : ExternalUses) {
5665     Value *Scalar = ExternalUse.Scalar;
5666     llvm::User *User = ExternalUse.User;
5667 
5668     // Skip users that we already RAUW. This happens when one instruction
5669     // has multiple uses of the same value.
5670     if (User && !is_contained(Scalar->users(), User))
5671       continue;
5672     TreeEntry *E = getTreeEntry(Scalar);
5673     assert(E && "Invalid scalar");
5674     assert(E->State != TreeEntry::NeedToGather &&
5675            "Extracting from a gather list");
5676 
5677     Value *Vec = E->VectorizedValue;
5678     assert(Vec && "Can't find vectorizable value");
5679 
5680     Value *Lane = Builder.getInt32(ExternalUse.Lane);
5681     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
5682       if (Scalar->getType() != Vec->getType()) {
5683         Value *Ex;
5684         // "Reuse" the existing extract to improve final codegen.
5685         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
5686           Ex = Builder.CreateExtractElement(ES->getOperand(0),
5687                                             ES->getOperand(1));
5688         } else {
5689           Ex = Builder.CreateExtractElement(Vec, Lane);
5690         }
5691         // If necessary, sign-extend or zero-extend ScalarRoot
5692         // to the larger type.
5693         if (!MinBWs.count(ScalarRoot))
5694           return Ex;
5695         if (MinBWs[ScalarRoot].second)
5696           return Builder.CreateSExt(Ex, Scalar->getType());
5697         return Builder.CreateZExt(Ex, Scalar->getType());
5698       }
5699       assert(isa<FixedVectorType>(Scalar->getType()) &&
5700              isa<InsertElementInst>(Scalar) &&
5701              "In-tree scalar of vector type is not insertelement?");
5702       return Vec;
5703     };
5704     // If User == nullptr, the Scalar is used as extra arg. Generate
5705     // ExtractElement instruction and update the record for this scalar in
5706     // ExternallyUsedValues.
5707     if (!User) {
5708       assert(ExternallyUsedValues.count(Scalar) &&
5709              "Scalar with nullptr as an external user must be registered in "
5710              "ExternallyUsedValues map");
5711       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5712         Builder.SetInsertPoint(VecI->getParent(),
5713                                std::next(VecI->getIterator()));
5714       } else {
5715         Builder.SetInsertPoint(&F->getEntryBlock().front());
5716       }
5717       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5718       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5719       auto &NewInstLocs = ExternallyUsedValues[NewInst];
5720       auto It = ExternallyUsedValues.find(Scalar);
5721       assert(It != ExternallyUsedValues.end() &&
5722              "Externally used scalar is not found in ExternallyUsedValues");
5723       NewInstLocs.append(It->second);
5724       ExternallyUsedValues.erase(Scalar);
5725       // Required to update internally referenced instructions.
5726       Scalar->replaceAllUsesWith(NewInst);
5727       continue;
5728     }
5729 
5730     // Generate extracts for out-of-tree users.
5731     // Find the insertion point for the extractelement lane.
5732     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5733       if (PHINode *PH = dyn_cast<PHINode>(User)) {
5734         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5735           if (PH->getIncomingValue(i) == Scalar) {
5736             Instruction *IncomingTerminator =
5737                 PH->getIncomingBlock(i)->getTerminator();
5738             if (isa<CatchSwitchInst>(IncomingTerminator)) {
5739               Builder.SetInsertPoint(VecI->getParent(),
5740                                      std::next(VecI->getIterator()));
5741             } else {
5742               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5743             }
5744             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5745             CSEBlocks.insert(PH->getIncomingBlock(i));
5746             PH->setOperand(i, NewInst);
5747           }
5748         }
5749       } else {
5750         Builder.SetInsertPoint(cast<Instruction>(User));
5751         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5752         CSEBlocks.insert(cast<Instruction>(User)->getParent());
5753         User->replaceUsesOfWith(Scalar, NewInst);
5754       }
5755     } else {
5756       Builder.SetInsertPoint(&F->getEntryBlock().front());
5757       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5758       CSEBlocks.insert(&F->getEntryBlock());
5759       User->replaceUsesOfWith(Scalar, NewInst);
5760     }
5761 
5762     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
5763   }
5764 
5765   // For each vectorized value:
5766   for (auto &TEPtr : VectorizableTree) {
5767     TreeEntry *Entry = TEPtr.get();
5768 
5769     // No need to handle users of gathered values.
5770     if (Entry->State == TreeEntry::NeedToGather)
5771       continue;
5772 
5773     assert(Entry->VectorizedValue && "Can't find vectorizable value");
5774 
5775     // For each lane:
5776     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5777       Value *Scalar = Entry->Scalars[Lane];
5778 
5779 #ifndef NDEBUG
5780       Type *Ty = Scalar->getType();
5781       if (!Ty->isVoidTy()) {
5782         for (User *U : Scalar->users()) {
5783           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
5784 
5785           // It is legal to delete users in the ignorelist.
5786           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
5787                  "Deleting out-of-tree value");
5788         }
5789       }
5790 #endif
5791       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
5792       eraseInstruction(cast<Instruction>(Scalar));
5793     }
5794   }
5795 
5796   Builder.ClearInsertionPoint();
5797   InstrElementSize.clear();
5798 
5799   return VectorizableTree[0]->VectorizedValue;
5800 }
5801 
5802 void BoUpSLP::optimizeGatherSequence() {
5803   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
5804                     << " gather sequences instructions.\n");
5805   // LICM InsertElementInst sequences.
5806   for (Instruction *I : GatherSeq) {
5807     if (isDeleted(I))
5808       continue;
5809 
5810     // Check if this block is inside a loop.
5811     Loop *L = LI->getLoopFor(I->getParent());
5812     if (!L)
5813       continue;
5814 
5815     // Check if it has a preheader.
5816     BasicBlock *PreHeader = L->getLoopPreheader();
5817     if (!PreHeader)
5818       continue;
5819 
5820     // If the vector or the element that we insert into it are
5821     // instructions that are defined in this basic block then we can't
5822     // hoist this instruction.
5823     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5824     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5825     if (Op0 && L->contains(Op0))
5826       continue;
5827     if (Op1 && L->contains(Op1))
5828       continue;
5829 
5830     // We can hoist this instruction. Move it to the pre-header.
5831     I->moveBefore(PreHeader->getTerminator());
5832   }
5833 
5834   // Make a list of all reachable blocks in our CSE queue.
5835   SmallVector<const DomTreeNode *, 8> CSEWorkList;
5836   CSEWorkList.reserve(CSEBlocks.size());
5837   for (BasicBlock *BB : CSEBlocks)
5838     if (DomTreeNode *N = DT->getNode(BB)) {
5839       assert(DT->isReachableFromEntry(N));
5840       CSEWorkList.push_back(N);
5841     }
5842 
5843   // Sort blocks by domination. This ensures we visit a block after all blocks
5844   // dominating it are visited.
5845   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
5846     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
5847            "Different nodes should have different DFS numbers");
5848     return A->getDFSNumIn() < B->getDFSNumIn();
5849   });
5850 
5851   // Perform O(N^2) search over the gather sequences and merge identical
5852   // instructions. TODO: We can further optimize this scan if we split the
5853   // instructions into different buckets based on the insert lane.
5854   SmallVector<Instruction *, 16> Visited;
5855   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5856     assert(*I &&
5857            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
5858            "Worklist not sorted properly!");
5859     BasicBlock *BB = (*I)->getBlock();
5860     // For all instructions in blocks containing gather sequences:
5861     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5862       Instruction *In = &*it++;
5863       if (isDeleted(In))
5864         continue;
5865       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5866         continue;
5867 
5868       // Check if we can replace this instruction with any of the
5869       // visited instructions.
5870       for (Instruction *v : Visited) {
5871         if (In->isIdenticalTo(v) &&
5872             DT->dominates(v->getParent(), In->getParent())) {
5873           In->replaceAllUsesWith(v);
5874           eraseInstruction(In);
5875           In = nullptr;
5876           break;
5877         }
5878       }
5879       if (In) {
5880         assert(!is_contained(Visited, In));
5881         Visited.push_back(In);
5882       }
5883     }
5884   }
5885   CSEBlocks.clear();
5886   GatherSeq.clear();
5887 }
5888 
5889 // Groups the instructions to a bundle (which is then a single scheduling entity)
5890 // and schedules instructions until the bundle gets ready.
5891 Optional<BoUpSLP::ScheduleData *>
5892 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5893                                             const InstructionsState &S) {
5894   if (isa<PHINode>(S.OpValue) || isa<InsertElementInst>(S.OpValue))
5895     return nullptr;
5896 
5897   // Initialize the instruction bundle.
5898   Instruction *OldScheduleEnd = ScheduleEnd;
5899   ScheduleData *PrevInBundle = nullptr;
5900   ScheduleData *Bundle = nullptr;
5901   bool ReSchedule = false;
5902   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
5903 
5904   auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5905                                                          ScheduleData *Bundle) {
5906     // The scheduling region got new instructions at the lower end (or it is a
5907     // new region for the first bundle). This makes it necessary to
5908     // recalculate all dependencies.
5909     // It is seldom that this needs to be done a second time after adding the
5910     // initial bundle to the region.
5911     if (ScheduleEnd != OldScheduleEnd) {
5912       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5913         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5914       ReSchedule = true;
5915     }
5916     if (ReSchedule) {
5917       resetSchedule();
5918       initialFillReadyList(ReadyInsts);
5919     }
5920     if (Bundle) {
5921       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
5922                         << " in block " << BB->getName() << "\n");
5923       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
5924     }
5925 
5926     // Now try to schedule the new bundle or (if no bundle) just calculate
5927     // dependencies. As soon as the bundle is "ready" it means that there are no
5928     // cyclic dependencies and we can schedule it. Note that's important that we
5929     // don't "schedule" the bundle yet (see cancelScheduling).
5930     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5931            !ReadyInsts.empty()) {
5932       ScheduleData *Picked = ReadyInsts.pop_back_val();
5933       if (Picked->isSchedulingEntity() && Picked->isReady())
5934         schedule(Picked, ReadyInsts);
5935     }
5936   };
5937 
5938   // Make sure that the scheduling region contains all
5939   // instructions of the bundle.
5940   for (Value *V : VL) {
5941     if (!extendSchedulingRegion(V, S)) {
5942       // If the scheduling region got new instructions at the lower end (or it
5943       // is a new region for the first bundle). This makes it necessary to
5944       // recalculate all dependencies.
5945       // Otherwise the compiler may crash trying to incorrectly calculate
5946       // dependencies and emit instruction in the wrong order at the actual
5947       // scheduling.
5948       TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5949       return None;
5950     }
5951   }
5952 
5953   for (Value *V : VL) {
5954     ScheduleData *BundleMember = getScheduleData(V);
5955     assert(BundleMember &&
5956            "no ScheduleData for bundle member (maybe not in same basic block)");
5957     if (BundleMember->IsScheduled) {
5958       // A bundle member was scheduled as single instruction before and now
5959       // needs to be scheduled as part of the bundle. We just get rid of the
5960       // existing schedule.
5961       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
5962                         << " was already scheduled\n");
5963       ReSchedule = true;
5964     }
5965     assert(BundleMember->isSchedulingEntity() &&
5966            "bundle member already part of other bundle");
5967     if (PrevInBundle) {
5968       PrevInBundle->NextInBundle = BundleMember;
5969     } else {
5970       Bundle = BundleMember;
5971     }
5972     BundleMember->UnscheduledDepsInBundle = 0;
5973     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
5974 
5975     // Group the instructions to a bundle.
5976     BundleMember->FirstInBundle = Bundle;
5977     PrevInBundle = BundleMember;
5978   }
5979   assert(Bundle && "Failed to find schedule bundle");
5980   TryScheduleBundle(ReSchedule, Bundle);
5981   if (!Bundle->isReady()) {
5982     cancelScheduling(VL, S.OpValue);
5983     return None;
5984   }
5985   return Bundle;
5986 }
5987 
5988 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5989                                                 Value *OpValue) {
5990   if (isa<PHINode>(OpValue) || isa<InsertElementInst>(OpValue))
5991     return;
5992 
5993   ScheduleData *Bundle = getScheduleData(OpValue);
5994   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
5995   assert(!Bundle->IsScheduled &&
5996          "Can't cancel bundle which is already scheduled");
5997   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
5998          "tried to unbundle something which is not a bundle");
5999 
6000   // Un-bundle: make single instructions out of the bundle.
6001   ScheduleData *BundleMember = Bundle;
6002   while (BundleMember) {
6003     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
6004     BundleMember->FirstInBundle = BundleMember;
6005     ScheduleData *Next = BundleMember->NextInBundle;
6006     BundleMember->NextInBundle = nullptr;
6007     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
6008     if (BundleMember->UnscheduledDepsInBundle == 0) {
6009       ReadyInsts.insert(BundleMember);
6010     }
6011     BundleMember = Next;
6012   }
6013 }
6014 
6015 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
6016   // Allocate a new ScheduleData for the instruction.
6017   if (ChunkPos >= ChunkSize) {
6018     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
6019     ChunkPos = 0;
6020   }
6021   return &(ScheduleDataChunks.back()[ChunkPos++]);
6022 }
6023 
6024 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
6025                                                       const InstructionsState &S) {
6026   if (getScheduleData(V, isOneOf(S, V)))
6027     return true;
6028   Instruction *I = dyn_cast<Instruction>(V);
6029   assert(I && "bundle member must be an instruction");
6030   assert(!isa<PHINode>(I) && !isa<InsertElementInst>(I) &&
6031          "phi nodes/insertelements don't need to be scheduled");
6032   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
6033     ScheduleData *ISD = getScheduleData(I);
6034     if (!ISD)
6035       return false;
6036     assert(isInSchedulingRegion(ISD) &&
6037            "ScheduleData not in scheduling region");
6038     ScheduleData *SD = allocateScheduleDataChunks();
6039     SD->Inst = I;
6040     SD->init(SchedulingRegionID, S.OpValue);
6041     ExtraScheduleDataMap[I][S.OpValue] = SD;
6042     return true;
6043   };
6044   if (CheckSheduleForI(I))
6045     return true;
6046   if (!ScheduleStart) {
6047     // It's the first instruction in the new region.
6048     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
6049     ScheduleStart = I;
6050     ScheduleEnd = I->getNextNode();
6051     if (isOneOf(S, I) != I)
6052       CheckSheduleForI(I);
6053     assert(ScheduleEnd && "tried to vectorize a terminator?");
6054     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
6055     return true;
6056   }
6057   // Search up and down at the same time, because we don't know if the new
6058   // instruction is above or below the existing scheduling region.
6059   BasicBlock::reverse_iterator UpIter =
6060       ++ScheduleStart->getIterator().getReverse();
6061   BasicBlock::reverse_iterator UpperEnd = BB->rend();
6062   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
6063   BasicBlock::iterator LowerEnd = BB->end();
6064   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
6065          &*DownIter != I) {
6066     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
6067       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
6068       return false;
6069     }
6070 
6071     ++UpIter;
6072     ++DownIter;
6073   }
6074   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
6075     assert(I->getParent() == ScheduleStart->getParent() &&
6076            "Instruction is in wrong basic block.");
6077     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
6078     ScheduleStart = I;
6079     if (isOneOf(S, I) != I)
6080       CheckSheduleForI(I);
6081     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
6082                       << "\n");
6083     return true;
6084   }
6085   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
6086          "Expected to reach top of the basic block or instruction down the "
6087          "lower end.");
6088   assert(I->getParent() == ScheduleEnd->getParent() &&
6089          "Instruction is in wrong basic block.");
6090   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
6091                    nullptr);
6092   ScheduleEnd = I->getNextNode();
6093   if (isOneOf(S, I) != I)
6094     CheckSheduleForI(I);
6095   assert(ScheduleEnd && "tried to vectorize a terminator?");
6096   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
6097   return true;
6098 }
6099 
6100 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
6101                                                 Instruction *ToI,
6102                                                 ScheduleData *PrevLoadStore,
6103                                                 ScheduleData *NextLoadStore) {
6104   ScheduleData *CurrentLoadStore = PrevLoadStore;
6105   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
6106     ScheduleData *SD = ScheduleDataMap[I];
6107     if (!SD) {
6108       SD = allocateScheduleDataChunks();
6109       ScheduleDataMap[I] = SD;
6110       SD->Inst = I;
6111     }
6112     assert(!isInSchedulingRegion(SD) &&
6113            "new ScheduleData already in scheduling region");
6114     SD->init(SchedulingRegionID, I);
6115 
6116     if (I->mayReadOrWriteMemory() &&
6117         (!isa<IntrinsicInst>(I) ||
6118          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
6119           cast<IntrinsicInst>(I)->getIntrinsicID() !=
6120               Intrinsic::pseudoprobe))) {
6121       // Update the linked list of memory accessing instructions.
6122       if (CurrentLoadStore) {
6123         CurrentLoadStore->NextLoadStore = SD;
6124       } else {
6125         FirstLoadStoreInRegion = SD;
6126       }
6127       CurrentLoadStore = SD;
6128     }
6129   }
6130   if (NextLoadStore) {
6131     if (CurrentLoadStore)
6132       CurrentLoadStore->NextLoadStore = NextLoadStore;
6133   } else {
6134     LastLoadStoreInRegion = CurrentLoadStore;
6135   }
6136 }
6137 
6138 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
6139                                                      bool InsertInReadyList,
6140                                                      BoUpSLP *SLP) {
6141   assert(SD->isSchedulingEntity());
6142 
6143   SmallVector<ScheduleData *, 10> WorkList;
6144   WorkList.push_back(SD);
6145 
6146   while (!WorkList.empty()) {
6147     ScheduleData *SD = WorkList.pop_back_val();
6148 
6149     ScheduleData *BundleMember = SD;
6150     while (BundleMember) {
6151       assert(isInSchedulingRegion(BundleMember));
6152       if (!BundleMember->hasValidDependencies()) {
6153 
6154         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
6155                           << "\n");
6156         BundleMember->Dependencies = 0;
6157         BundleMember->resetUnscheduledDeps();
6158 
6159         // Handle def-use chain dependencies.
6160         if (BundleMember->OpValue != BundleMember->Inst) {
6161           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
6162           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6163             BundleMember->Dependencies++;
6164             ScheduleData *DestBundle = UseSD->FirstInBundle;
6165             if (!DestBundle->IsScheduled)
6166               BundleMember->incrementUnscheduledDeps(1);
6167             if (!DestBundle->hasValidDependencies())
6168               WorkList.push_back(DestBundle);
6169           }
6170         } else {
6171           for (User *U : BundleMember->Inst->users()) {
6172             if (isa<Instruction>(U)) {
6173               ScheduleData *UseSD = getScheduleData(U);
6174               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6175                 BundleMember->Dependencies++;
6176                 ScheduleData *DestBundle = UseSD->FirstInBundle;
6177                 if (!DestBundle->IsScheduled)
6178                   BundleMember->incrementUnscheduledDeps(1);
6179                 if (!DestBundle->hasValidDependencies())
6180                   WorkList.push_back(DestBundle);
6181               }
6182             } else {
6183               // I'm not sure if this can ever happen. But we need to be safe.
6184               // This lets the instruction/bundle never be scheduled and
6185               // eventually disable vectorization.
6186               BundleMember->Dependencies++;
6187               BundleMember->incrementUnscheduledDeps(1);
6188             }
6189           }
6190         }
6191 
6192         // Handle the memory dependencies.
6193         ScheduleData *DepDest = BundleMember->NextLoadStore;
6194         if (DepDest) {
6195           Instruction *SrcInst = BundleMember->Inst;
6196           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
6197           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
6198           unsigned numAliased = 0;
6199           unsigned DistToSrc = 1;
6200 
6201           while (DepDest) {
6202             assert(isInSchedulingRegion(DepDest));
6203 
6204             // We have two limits to reduce the complexity:
6205             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
6206             //    SLP->isAliased (which is the expensive part in this loop).
6207             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
6208             //    the whole loop (even if the loop is fast, it's quadratic).
6209             //    It's important for the loop break condition (see below) to
6210             //    check this limit even between two read-only instructions.
6211             if (DistToSrc >= MaxMemDepDistance ||
6212                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
6213                      (numAliased >= AliasedCheckLimit ||
6214                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
6215 
6216               // We increment the counter only if the locations are aliased
6217               // (instead of counting all alias checks). This gives a better
6218               // balance between reduced runtime and accurate dependencies.
6219               numAliased++;
6220 
6221               DepDest->MemoryDependencies.push_back(BundleMember);
6222               BundleMember->Dependencies++;
6223               ScheduleData *DestBundle = DepDest->FirstInBundle;
6224               if (!DestBundle->IsScheduled) {
6225                 BundleMember->incrementUnscheduledDeps(1);
6226               }
6227               if (!DestBundle->hasValidDependencies()) {
6228                 WorkList.push_back(DestBundle);
6229               }
6230             }
6231             DepDest = DepDest->NextLoadStore;
6232 
6233             // Example, explaining the loop break condition: Let's assume our
6234             // starting instruction is i0 and MaxMemDepDistance = 3.
6235             //
6236             //                      +--------v--v--v
6237             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
6238             //             +--------^--^--^
6239             //
6240             // MaxMemDepDistance let us stop alias-checking at i3 and we add
6241             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
6242             // Previously we already added dependencies from i3 to i6,i7,i8
6243             // (because of MaxMemDepDistance). As we added a dependency from
6244             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
6245             // and we can abort this loop at i6.
6246             if (DistToSrc >= 2 * MaxMemDepDistance)
6247               break;
6248             DistToSrc++;
6249           }
6250         }
6251       }
6252       BundleMember = BundleMember->NextInBundle;
6253     }
6254     if (InsertInReadyList && SD->isReady()) {
6255       ReadyInsts.push_back(SD);
6256       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
6257                         << "\n");
6258     }
6259   }
6260 }
6261 
6262 void BoUpSLP::BlockScheduling::resetSchedule() {
6263   assert(ScheduleStart &&
6264          "tried to reset schedule on block which has not been scheduled");
6265   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
6266     doForAllOpcodes(I, [&](ScheduleData *SD) {
6267       assert(isInSchedulingRegion(SD) &&
6268              "ScheduleData not in scheduling region");
6269       SD->IsScheduled = false;
6270       SD->resetUnscheduledDeps();
6271     });
6272   }
6273   ReadyInsts.clear();
6274 }
6275 
6276 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
6277   if (!BS->ScheduleStart)
6278     return;
6279 
6280   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
6281 
6282   BS->resetSchedule();
6283 
6284   // For the real scheduling we use a more sophisticated ready-list: it is
6285   // sorted by the original instruction location. This lets the final schedule
6286   // be as  close as possible to the original instruction order.
6287   struct ScheduleDataCompare {
6288     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
6289       return SD2->SchedulingPriority < SD1->SchedulingPriority;
6290     }
6291   };
6292   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
6293 
6294   // Ensure that all dependency data is updated and fill the ready-list with
6295   // initial instructions.
6296   int Idx = 0;
6297   int NumToSchedule = 0;
6298   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
6299        I = I->getNextNode()) {
6300     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
6301       assert((isa<InsertElementInst>(SD->Inst) ||
6302               SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
6303              "scheduler and vectorizer bundle mismatch");
6304       SD->FirstInBundle->SchedulingPriority = Idx++;
6305       if (SD->isSchedulingEntity()) {
6306         BS->calculateDependencies(SD, false, this);
6307         NumToSchedule++;
6308       }
6309     });
6310   }
6311   BS->initialFillReadyList(ReadyInsts);
6312 
6313   Instruction *LastScheduledInst = BS->ScheduleEnd;
6314 
6315   // Do the "real" scheduling.
6316   while (!ReadyInsts.empty()) {
6317     ScheduleData *picked = *ReadyInsts.begin();
6318     ReadyInsts.erase(ReadyInsts.begin());
6319 
6320     // Move the scheduled instruction(s) to their dedicated places, if not
6321     // there yet.
6322     ScheduleData *BundleMember = picked;
6323     while (BundleMember) {
6324       Instruction *pickedInst = BundleMember->Inst;
6325       if (pickedInst->getNextNode() != LastScheduledInst) {
6326         BS->BB->getInstList().remove(pickedInst);
6327         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
6328                                      pickedInst);
6329       }
6330       LastScheduledInst = pickedInst;
6331       BundleMember = BundleMember->NextInBundle;
6332     }
6333 
6334     BS->schedule(picked, ReadyInsts);
6335     NumToSchedule--;
6336   }
6337   assert(NumToSchedule == 0 && "could not schedule all instructions");
6338 
6339   // Avoid duplicate scheduling of the block.
6340   BS->ScheduleStart = nullptr;
6341 }
6342 
6343 unsigned BoUpSLP::getVectorElementSize(Value *V) {
6344   // If V is a store, just return the width of the stored value (or value
6345   // truncated just before storing) without traversing the expression tree.
6346   // This is the common case.
6347   if (auto *Store = dyn_cast<StoreInst>(V)) {
6348     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
6349       return DL->getTypeSizeInBits(Trunc->getSrcTy());
6350     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
6351   }
6352 
6353   if (auto *IEI = dyn_cast<InsertElementInst>(V))
6354     return getVectorElementSize(IEI->getOperand(1));
6355 
6356   auto E = InstrElementSize.find(V);
6357   if (E != InstrElementSize.end())
6358     return E->second;
6359 
6360   // If V is not a store, we can traverse the expression tree to find loads
6361   // that feed it. The type of the loaded value may indicate a more suitable
6362   // width than V's type. We want to base the vector element size on the width
6363   // of memory operations where possible.
6364   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
6365   SmallPtrSet<Instruction *, 16> Visited;
6366   if (auto *I = dyn_cast<Instruction>(V)) {
6367     Worklist.emplace_back(I, I->getParent());
6368     Visited.insert(I);
6369   }
6370 
6371   // Traverse the expression tree in bottom-up order looking for loads. If we
6372   // encounter an instruction we don't yet handle, we give up.
6373   auto Width = 0u;
6374   while (!Worklist.empty()) {
6375     Instruction *I;
6376     BasicBlock *Parent;
6377     std::tie(I, Parent) = Worklist.pop_back_val();
6378 
6379     // We should only be looking at scalar instructions here. If the current
6380     // instruction has a vector type, skip.
6381     auto *Ty = I->getType();
6382     if (isa<VectorType>(Ty))
6383       continue;
6384 
6385     // If the current instruction is a load, update MaxWidth to reflect the
6386     // width of the loaded value.
6387     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
6388         isa<ExtractValueInst>(I))
6389       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
6390 
6391     // Otherwise, we need to visit the operands of the instruction. We only
6392     // handle the interesting cases from buildTree here. If an operand is an
6393     // instruction we haven't yet visited and from the same basic block as the
6394     // user or the use is a PHI node, we add it to the worklist.
6395     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6396              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
6397              isa<UnaryOperator>(I)) {
6398       for (Use &U : I->operands())
6399         if (auto *J = dyn_cast<Instruction>(U.get()))
6400           if (Visited.insert(J).second &&
6401               (isa<PHINode>(I) || J->getParent() == Parent))
6402             Worklist.emplace_back(J, J->getParent());
6403     } else {
6404       break;
6405     }
6406   }
6407 
6408   // If we didn't encounter a memory access in the expression tree, or if we
6409   // gave up for some reason, just return the width of V. Otherwise, return the
6410   // maximum width we found.
6411   if (!Width) {
6412     if (auto *CI = dyn_cast<CmpInst>(V))
6413       V = CI->getOperand(0);
6414     Width = DL->getTypeSizeInBits(V->getType());
6415   }
6416 
6417   for (Instruction *I : Visited)
6418     InstrElementSize[I] = Width;
6419 
6420   return Width;
6421 }
6422 
6423 // Determine if a value V in a vectorizable expression Expr can be demoted to a
6424 // smaller type with a truncation. We collect the values that will be demoted
6425 // in ToDemote and additional roots that require investigating in Roots.
6426 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
6427                                   SmallVectorImpl<Value *> &ToDemote,
6428                                   SmallVectorImpl<Value *> &Roots) {
6429   // We can always demote constants.
6430   if (isa<Constant>(V)) {
6431     ToDemote.push_back(V);
6432     return true;
6433   }
6434 
6435   // If the value is not an instruction in the expression with only one use, it
6436   // cannot be demoted.
6437   auto *I = dyn_cast<Instruction>(V);
6438   if (!I || !I->hasOneUse() || !Expr.count(I))
6439     return false;
6440 
6441   switch (I->getOpcode()) {
6442 
6443   // We can always demote truncations and extensions. Since truncations can
6444   // seed additional demotion, we save the truncated value.
6445   case Instruction::Trunc:
6446     Roots.push_back(I->getOperand(0));
6447     break;
6448   case Instruction::ZExt:
6449   case Instruction::SExt:
6450     if (isa<ExtractElementInst>(I->getOperand(0)) ||
6451         isa<InsertElementInst>(I->getOperand(0)))
6452       return false;
6453     break;
6454 
6455   // We can demote certain binary operations if we can demote both of their
6456   // operands.
6457   case Instruction::Add:
6458   case Instruction::Sub:
6459   case Instruction::Mul:
6460   case Instruction::And:
6461   case Instruction::Or:
6462   case Instruction::Xor:
6463     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
6464         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
6465       return false;
6466     break;
6467 
6468   // We can demote selects if we can demote their true and false values.
6469   case Instruction::Select: {
6470     SelectInst *SI = cast<SelectInst>(I);
6471     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
6472         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
6473       return false;
6474     break;
6475   }
6476 
6477   // We can demote phis if we can demote all their incoming operands. Note that
6478   // we don't need to worry about cycles since we ensure single use above.
6479   case Instruction::PHI: {
6480     PHINode *PN = cast<PHINode>(I);
6481     for (Value *IncValue : PN->incoming_values())
6482       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
6483         return false;
6484     break;
6485   }
6486 
6487   // Otherwise, conservatively give up.
6488   default:
6489     return false;
6490   }
6491 
6492   // Record the value that we can demote.
6493   ToDemote.push_back(V);
6494   return true;
6495 }
6496 
6497 void BoUpSLP::computeMinimumValueSizes() {
6498   // If there are no external uses, the expression tree must be rooted by a
6499   // store. We can't demote in-memory values, so there is nothing to do here.
6500   if (ExternalUses.empty())
6501     return;
6502 
6503   // We only attempt to truncate integer expressions.
6504   auto &TreeRoot = VectorizableTree[0]->Scalars;
6505   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
6506   if (!TreeRootIT)
6507     return;
6508 
6509   // If the expression is not rooted by a store, these roots should have
6510   // external uses. We will rely on InstCombine to rewrite the expression in
6511   // the narrower type. However, InstCombine only rewrites single-use values.
6512   // This means that if a tree entry other than a root is used externally, it
6513   // must have multiple uses and InstCombine will not rewrite it. The code
6514   // below ensures that only the roots are used externally.
6515   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
6516   for (auto &EU : ExternalUses)
6517     if (!Expr.erase(EU.Scalar))
6518       return;
6519   if (!Expr.empty())
6520     return;
6521 
6522   // Collect the scalar values of the vectorizable expression. We will use this
6523   // context to determine which values can be demoted. If we see a truncation,
6524   // we mark it as seeding another demotion.
6525   for (auto &EntryPtr : VectorizableTree)
6526     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
6527 
6528   // Ensure the roots of the vectorizable tree don't form a cycle. They must
6529   // have a single external user that is not in the vectorizable tree.
6530   for (auto *Root : TreeRoot)
6531     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
6532       return;
6533 
6534   // Conservatively determine if we can actually truncate the roots of the
6535   // expression. Collect the values that can be demoted in ToDemote and
6536   // additional roots that require investigating in Roots.
6537   SmallVector<Value *, 32> ToDemote;
6538   SmallVector<Value *, 4> Roots;
6539   for (auto *Root : TreeRoot)
6540     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
6541       return;
6542 
6543   // The maximum bit width required to represent all the values that can be
6544   // demoted without loss of precision. It would be safe to truncate the roots
6545   // of the expression to this width.
6546   auto MaxBitWidth = 8u;
6547 
6548   // We first check if all the bits of the roots are demanded. If they're not,
6549   // we can truncate the roots to this narrower type.
6550   for (auto *Root : TreeRoot) {
6551     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
6552     MaxBitWidth = std::max<unsigned>(
6553         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
6554   }
6555 
6556   // True if the roots can be zero-extended back to their original type, rather
6557   // than sign-extended. We know that if the leading bits are not demanded, we
6558   // can safely zero-extend. So we initialize IsKnownPositive to True.
6559   bool IsKnownPositive = true;
6560 
6561   // If all the bits of the roots are demanded, we can try a little harder to
6562   // compute a narrower type. This can happen, for example, if the roots are
6563   // getelementptr indices. InstCombine promotes these indices to the pointer
6564   // width. Thus, all their bits are technically demanded even though the
6565   // address computation might be vectorized in a smaller type.
6566   //
6567   // We start by looking at each entry that can be demoted. We compute the
6568   // maximum bit width required to store the scalar by using ValueTracking to
6569   // compute the number of high-order bits we can truncate.
6570   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
6571       llvm::all_of(TreeRoot, [](Value *R) {
6572         assert(R->hasOneUse() && "Root should have only one use!");
6573         return isa<GetElementPtrInst>(R->user_back());
6574       })) {
6575     MaxBitWidth = 8u;
6576 
6577     // Determine if the sign bit of all the roots is known to be zero. If not,
6578     // IsKnownPositive is set to False.
6579     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
6580       KnownBits Known = computeKnownBits(R, *DL);
6581       return Known.isNonNegative();
6582     });
6583 
6584     // Determine the maximum number of bits required to store the scalar
6585     // values.
6586     for (auto *Scalar : ToDemote) {
6587       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
6588       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
6589       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
6590     }
6591 
6592     // If we can't prove that the sign bit is zero, we must add one to the
6593     // maximum bit width to account for the unknown sign bit. This preserves
6594     // the existing sign bit so we can safely sign-extend the root back to the
6595     // original type. Otherwise, if we know the sign bit is zero, we will
6596     // zero-extend the root instead.
6597     //
6598     // FIXME: This is somewhat suboptimal, as there will be cases where adding
6599     //        one to the maximum bit width will yield a larger-than-necessary
6600     //        type. In general, we need to add an extra bit only if we can't
6601     //        prove that the upper bit of the original type is equal to the
6602     //        upper bit of the proposed smaller type. If these two bits are the
6603     //        same (either zero or one) we know that sign-extending from the
6604     //        smaller type will result in the same value. Here, since we can't
6605     //        yet prove this, we are just making the proposed smaller type
6606     //        larger to ensure correctness.
6607     if (!IsKnownPositive)
6608       ++MaxBitWidth;
6609   }
6610 
6611   // Round MaxBitWidth up to the next power-of-two.
6612   if (!isPowerOf2_64(MaxBitWidth))
6613     MaxBitWidth = NextPowerOf2(MaxBitWidth);
6614 
6615   // If the maximum bit width we compute is less than the with of the roots'
6616   // type, we can proceed with the narrowing. Otherwise, do nothing.
6617   if (MaxBitWidth >= TreeRootIT->getBitWidth())
6618     return;
6619 
6620   // If we can truncate the root, we must collect additional values that might
6621   // be demoted as a result. That is, those seeded by truncations we will
6622   // modify.
6623   while (!Roots.empty())
6624     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
6625 
6626   // Finally, map the values we can demote to the maximum bit with we computed.
6627   for (auto *Scalar : ToDemote)
6628     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
6629 }
6630 
6631 namespace {
6632 
6633 /// The SLPVectorizer Pass.
6634 struct SLPVectorizer : public FunctionPass {
6635   SLPVectorizerPass Impl;
6636 
6637   /// Pass identification, replacement for typeid
6638   static char ID;
6639 
6640   explicit SLPVectorizer() : FunctionPass(ID) {
6641     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6642   }
6643 
6644   bool doInitialization(Module &M) override {
6645     return false;
6646   }
6647 
6648   bool runOnFunction(Function &F) override {
6649     if (skipFunction(F))
6650       return false;
6651 
6652     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6653     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
6654     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6655     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
6656     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6657     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6658     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6659     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6660     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
6661     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
6662 
6663     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6664   }
6665 
6666   void getAnalysisUsage(AnalysisUsage &AU) const override {
6667     FunctionPass::getAnalysisUsage(AU);
6668     AU.addRequired<AssumptionCacheTracker>();
6669     AU.addRequired<ScalarEvolutionWrapperPass>();
6670     AU.addRequired<AAResultsWrapperPass>();
6671     AU.addRequired<TargetTransformInfoWrapperPass>();
6672     AU.addRequired<LoopInfoWrapperPass>();
6673     AU.addRequired<DominatorTreeWrapperPass>();
6674     AU.addRequired<DemandedBitsWrapperPass>();
6675     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6676     AU.addRequired<InjectTLIMappingsLegacy>();
6677     AU.addPreserved<LoopInfoWrapperPass>();
6678     AU.addPreserved<DominatorTreeWrapperPass>();
6679     AU.addPreserved<AAResultsWrapperPass>();
6680     AU.addPreserved<GlobalsAAWrapperPass>();
6681     AU.setPreservesCFG();
6682   }
6683 };
6684 
6685 } // end anonymous namespace
6686 
6687 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6688   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6689   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6690   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6691   auto *AA = &AM.getResult<AAManager>(F);
6692   auto *LI = &AM.getResult<LoopAnalysis>(F);
6693   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6694   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6695   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6696   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6697 
6698   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6699   if (!Changed)
6700     return PreservedAnalyses::all();
6701 
6702   PreservedAnalyses PA;
6703   PA.preserveSet<CFGAnalyses>();
6704   return PA;
6705 }
6706 
6707 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6708                                 TargetTransformInfo *TTI_,
6709                                 TargetLibraryInfo *TLI_, AAResults *AA_,
6710                                 LoopInfo *LI_, DominatorTree *DT_,
6711                                 AssumptionCache *AC_, DemandedBits *DB_,
6712                                 OptimizationRemarkEmitter *ORE_) {
6713   if (!RunSLPVectorization)
6714     return false;
6715   SE = SE_;
6716   TTI = TTI_;
6717   TLI = TLI_;
6718   AA = AA_;
6719   LI = LI_;
6720   DT = DT_;
6721   AC = AC_;
6722   DB = DB_;
6723   DL = &F.getParent()->getDataLayout();
6724 
6725   Stores.clear();
6726   GEPs.clear();
6727   bool Changed = false;
6728 
6729   // If the target claims to have no vector registers don't attempt
6730   // vectorization.
6731   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6732     return false;
6733 
6734   // Don't vectorize when the attribute NoImplicitFloat is used.
6735   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6736     return false;
6737 
6738   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
6739 
6740   // Use the bottom up slp vectorizer to construct chains that start with
6741   // store instructions.
6742   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6743 
6744   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6745   // delete instructions.
6746 
6747   // Update DFS numbers now so that we can use them for ordering.
6748   DT->updateDFSNumbers();
6749 
6750   // Scan the blocks in the function in post order.
6751   for (auto BB : post_order(&F.getEntryBlock())) {
6752     collectSeedInstructions(BB);
6753 
6754     // Vectorize trees that end at stores.
6755     if (!Stores.empty()) {
6756       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
6757                         << " underlying objects.\n");
6758       Changed |= vectorizeStoreChains(R);
6759     }
6760 
6761     // Vectorize trees that end at reductions.
6762     Changed |= vectorizeChainsInBlock(BB, R);
6763 
6764     // Vectorize the index computations of getelementptr instructions. This
6765     // is primarily intended to catch gather-like idioms ending at
6766     // non-consecutive loads.
6767     if (!GEPs.empty()) {
6768       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
6769                         << " underlying objects.\n");
6770       Changed |= vectorizeGEPIndices(BB, R);
6771     }
6772   }
6773 
6774   if (Changed) {
6775     R.optimizeGatherSequence();
6776     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
6777   }
6778   return Changed;
6779 }
6780 
6781 /// Order may have elements assigned special value (size) which is out of
6782 /// bounds. Such indices only appear on places which correspond to undef values
6783 /// (see canReuseExtract for details) and used in order to avoid undef values
6784 /// have effect on operands ordering.
6785 /// The first loop below simply finds all unused indices and then the next loop
6786 /// nest assigns these indices for undef values positions.
6787 /// As an example below Order has two undef positions and they have assigned
6788 /// values 3 and 7 respectively:
6789 /// before:  6 9 5 4 9 2 1 0
6790 /// after:   6 3 5 4 7 2 1 0
6791 /// \returns Fixed ordering.
6792 static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) {
6793   BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end());
6794   const unsigned Sz = NewOrder.size();
6795   SmallBitVector UsedIndices(Sz);
6796   SmallVector<int> MaskedIndices;
6797   for (int I = 0, E = NewOrder.size(); I < E; ++I) {
6798     if (NewOrder[I] < Sz)
6799       UsedIndices.set(NewOrder[I]);
6800     else
6801       MaskedIndices.push_back(I);
6802   }
6803   if (MaskedIndices.empty())
6804     return NewOrder;
6805   SmallVector<int> AvailableIndices(MaskedIndices.size());
6806   unsigned Cnt = 0;
6807   int Idx = UsedIndices.find_first();
6808   do {
6809     AvailableIndices[Cnt] = Idx;
6810     Idx = UsedIndices.find_next(Idx);
6811     ++Cnt;
6812   } while (Idx > 0);
6813   assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices.");
6814   for (int I = 0, E = MaskedIndices.size(); I < E; ++I)
6815     NewOrder[MaskedIndices[I]] = AvailableIndices[I];
6816   return NewOrder;
6817 }
6818 
6819 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6820                                             unsigned Idx) {
6821   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
6822                     << "\n");
6823   const unsigned Sz = R.getVectorElementSize(Chain[0]);
6824   const unsigned MinVF = R.getMinVecRegSize() / Sz;
6825   unsigned VF = Chain.size();
6826 
6827   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6828     return false;
6829 
6830   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
6831                     << "\n");
6832 
6833   R.buildTree(Chain);
6834   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6835   // TODO: Handle orders of size less than number of elements in the vector.
6836   if (Order && Order->size() == Chain.size()) {
6837     // TODO: reorder tree nodes without tree rebuilding.
6838     SmallVector<Value *, 4> ReorderedOps(Chain.size());
6839     transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
6840               [Chain](const unsigned Idx) { return Chain[Idx]; });
6841     R.buildTree(ReorderedOps);
6842   }
6843   if (R.isTreeTinyAndNotFullyVectorizable())
6844     return false;
6845   if (R.isLoadCombineCandidate())
6846     return false;
6847 
6848   R.computeMinimumValueSizes();
6849 
6850   InstructionCost Cost = R.getTreeCost();
6851 
6852   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
6853   if (Cost < -SLPCostThreshold) {
6854     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
6855 
6856     using namespace ore;
6857 
6858     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
6859                                         cast<StoreInst>(Chain[0]))
6860                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6861                      << " and with tree size "
6862                      << NV("TreeSize", R.getTreeSize()));
6863 
6864     R.vectorizeTree();
6865     return true;
6866   }
6867 
6868   return false;
6869 }
6870 
6871 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6872                                         BoUpSLP &R) {
6873   // We may run into multiple chains that merge into a single chain. We mark the
6874   // stores that we vectorized so that we don't visit the same store twice.
6875   BoUpSLP::ValueSet VectorizedStores;
6876   bool Changed = false;
6877 
6878   int E = Stores.size();
6879   SmallBitVector Tails(E, false);
6880   int MaxIter = MaxStoreLookup.getValue();
6881   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6882       E, std::make_pair(E, INT_MAX));
6883   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6884   int IterCnt;
6885   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6886                                   &CheckedPairs,
6887                                   &ConsecutiveChain](int K, int Idx) {
6888     if (IterCnt >= MaxIter)
6889       return true;
6890     if (CheckedPairs[Idx].test(K))
6891       return ConsecutiveChain[K].second == 1 &&
6892              ConsecutiveChain[K].first == Idx;
6893     ++IterCnt;
6894     CheckedPairs[Idx].set(K);
6895     CheckedPairs[K].set(Idx);
6896     Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(),
6897                                          Stores[Idx]->getPointerOperand(), *DL,
6898                                          *SE, /*StrictCheck=*/true);
6899     if (!Diff || *Diff == 0)
6900       return false;
6901     int Val = *Diff;
6902     if (Val < 0) {
6903       if (ConsecutiveChain[Idx].second > -Val) {
6904         Tails.set(K);
6905         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6906       }
6907       return false;
6908     }
6909     if (ConsecutiveChain[K].second <= Val)
6910       return false;
6911 
6912     Tails.set(Idx);
6913     ConsecutiveChain[K] = std::make_pair(Idx, Val);
6914     return Val == 1;
6915   };
6916   // Do a quadratic search on all of the given stores in reverse order and find
6917   // all of the pairs of stores that follow each other.
6918   for (int Idx = E - 1; Idx >= 0; --Idx) {
6919     // If a store has multiple consecutive store candidates, search according
6920     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6921     // This is because usually pairing with immediate succeeding or preceding
6922     // candidate create the best chance to find slp vectorization opportunity.
6923     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6924     IterCnt = 0;
6925     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6926       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6927           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6928         break;
6929   }
6930 
6931   // Tracks if we tried to vectorize stores starting from the given tail
6932   // already.
6933   SmallBitVector TriedTails(E, false);
6934   // For stores that start but don't end a link in the chain:
6935   for (int Cnt = E; Cnt > 0; --Cnt) {
6936     int I = Cnt - 1;
6937     if (ConsecutiveChain[I].first == E || Tails.test(I))
6938       continue;
6939     // We found a store instr that starts a chain. Now follow the chain and try
6940     // to vectorize it.
6941     BoUpSLP::ValueList Operands;
6942     // Collect the chain into a list.
6943     while (I != E && !VectorizedStores.count(Stores[I])) {
6944       Operands.push_back(Stores[I]);
6945       Tails.set(I);
6946       if (ConsecutiveChain[I].second != 1) {
6947         // Mark the new end in the chain and go back, if required. It might be
6948         // required if the original stores come in reversed order, for example.
6949         if (ConsecutiveChain[I].first != E &&
6950             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
6951             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6952           TriedTails.set(I);
6953           Tails.reset(ConsecutiveChain[I].first);
6954           if (Cnt < ConsecutiveChain[I].first + 2)
6955             Cnt = ConsecutiveChain[I].first + 2;
6956         }
6957         break;
6958       }
6959       // Move to the next value in the chain.
6960       I = ConsecutiveChain[I].first;
6961     }
6962     assert(!Operands.empty() && "Expected non-empty list of stores.");
6963 
6964     unsigned MaxVecRegSize = R.getMaxVecRegSize();
6965     unsigned EltSize = R.getVectorElementSize(Operands[0]);
6966     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
6967 
6968     unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
6969     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
6970                               MaxElts);
6971 
6972     // FIXME: Is division-by-2 the correct step? Should we assert that the
6973     // register size is a power-of-2?
6974     unsigned StartIdx = 0;
6975     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
6976       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
6977         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
6978         if (!VectorizedStores.count(Slice.front()) &&
6979             !VectorizedStores.count(Slice.back()) &&
6980             vectorizeStoreChain(Slice, R, Cnt)) {
6981           // Mark the vectorized stores so that we don't vectorize them again.
6982           VectorizedStores.insert(Slice.begin(), Slice.end());
6983           Changed = true;
6984           // If we vectorized initial block, no need to try to vectorize it
6985           // again.
6986           if (Cnt == StartIdx)
6987             StartIdx += Size;
6988           Cnt += Size;
6989           continue;
6990         }
6991         ++Cnt;
6992       }
6993       // Check if the whole array was vectorized already - exit.
6994       if (StartIdx >= Operands.size())
6995         break;
6996     }
6997   }
6998 
6999   return Changed;
7000 }
7001 
7002 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
7003   // Initialize the collections. We will make a single pass over the block.
7004   Stores.clear();
7005   GEPs.clear();
7006 
7007   // Visit the store and getelementptr instructions in BB and organize them in
7008   // Stores and GEPs according to the underlying objects of their pointer
7009   // operands.
7010   for (Instruction &I : *BB) {
7011     // Ignore store instructions that are volatile or have a pointer operand
7012     // that doesn't point to a scalar type.
7013     if (auto *SI = dyn_cast<StoreInst>(&I)) {
7014       if (!SI->isSimple())
7015         continue;
7016       if (!isValidElementType(SI->getValueOperand()->getType()))
7017         continue;
7018       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
7019     }
7020 
7021     // Ignore getelementptr instructions that have more than one index, a
7022     // constant index, or a pointer operand that doesn't point to a scalar
7023     // type.
7024     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
7025       auto Idx = GEP->idx_begin()->get();
7026       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
7027         continue;
7028       if (!isValidElementType(Idx->getType()))
7029         continue;
7030       if (GEP->getType()->isVectorTy())
7031         continue;
7032       GEPs[GEP->getPointerOperand()].push_back(GEP);
7033     }
7034   }
7035 }
7036 
7037 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
7038   if (!A || !B)
7039     return false;
7040   Value *VL[] = {A, B};
7041   return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
7042 }
7043 
7044 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
7045                                            bool AllowReorder) {
7046   if (VL.size() < 2)
7047     return false;
7048 
7049   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
7050                     << VL.size() << ".\n");
7051 
7052   // Check that all of the parts are instructions of the same type,
7053   // we permit an alternate opcode via InstructionsState.
7054   InstructionsState S = getSameOpcode(VL);
7055   if (!S.getOpcode())
7056     return false;
7057 
7058   Instruction *I0 = cast<Instruction>(S.OpValue);
7059   // Make sure invalid types (including vector type) are rejected before
7060   // determining vectorization factor for scalar instructions.
7061   for (Value *V : VL) {
7062     Type *Ty = V->getType();
7063     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
7064       // NOTE: the following will give user internal llvm type name, which may
7065       // not be useful.
7066       R.getORE()->emit([&]() {
7067         std::string type_str;
7068         llvm::raw_string_ostream rso(type_str);
7069         Ty->print(rso);
7070         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
7071                << "Cannot SLP vectorize list: type "
7072                << rso.str() + " is unsupported by vectorizer";
7073       });
7074       return false;
7075     }
7076   }
7077 
7078   unsigned Sz = R.getVectorElementSize(I0);
7079   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
7080   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
7081   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
7082   if (MaxVF < 2) {
7083     R.getORE()->emit([&]() {
7084       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
7085              << "Cannot SLP vectorize list: vectorization factor "
7086              << "less than 2 is not supported";
7087     });
7088     return false;
7089   }
7090 
7091   bool Changed = false;
7092   bool CandidateFound = false;
7093   InstructionCost MinCost = SLPCostThreshold.getValue();
7094   Type *ScalarTy = VL[0]->getType();
7095   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
7096     ScalarTy = IE->getOperand(1)->getType();
7097 
7098   unsigned NextInst = 0, MaxInst = VL.size();
7099   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
7100     // No actual vectorization should happen, if number of parts is the same as
7101     // provided vectorization factor (i.e. the scalar type is used for vector
7102     // code during codegen).
7103     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
7104     if (TTI->getNumberOfParts(VecTy) == VF)
7105       continue;
7106     for (unsigned I = NextInst; I < MaxInst; ++I) {
7107       unsigned OpsWidth = 0;
7108 
7109       if (I + VF > MaxInst)
7110         OpsWidth = MaxInst - I;
7111       else
7112         OpsWidth = VF;
7113 
7114       if (!isPowerOf2_32(OpsWidth))
7115         continue;
7116 
7117       if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
7118         break;
7119 
7120       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
7121       // Check that a previous iteration of this loop did not delete the Value.
7122       if (llvm::any_of(Ops, [&R](Value *V) {
7123             auto *I = dyn_cast<Instruction>(V);
7124             return I && R.isDeleted(I);
7125           }))
7126         continue;
7127 
7128       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
7129                         << "\n");
7130 
7131       R.buildTree(Ops);
7132       if (AllowReorder) {
7133         Optional<ArrayRef<unsigned>> Order = R.bestOrder();
7134         if (Order) {
7135           // TODO: reorder tree nodes without tree rebuilding.
7136           SmallVector<Value *, 4> ReorderedOps(Ops.size());
7137           transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7138                     [Ops](const unsigned Idx) { return Ops[Idx]; });
7139           R.buildTree(ReorderedOps);
7140         }
7141       }
7142       if (R.isTreeTinyAndNotFullyVectorizable())
7143         continue;
7144 
7145       R.computeMinimumValueSizes();
7146       InstructionCost Cost = R.getTreeCost();
7147       CandidateFound = true;
7148       MinCost = std::min(MinCost, Cost);
7149 
7150       if (Cost < -SLPCostThreshold) {
7151         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
7152         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
7153                                                     cast<Instruction>(Ops[0]))
7154                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
7155                                  << " and with tree size "
7156                                  << ore::NV("TreeSize", R.getTreeSize()));
7157 
7158         R.vectorizeTree();
7159         // Move to the next bundle.
7160         I += VF - 1;
7161         NextInst = I + 1;
7162         Changed = true;
7163       }
7164     }
7165   }
7166 
7167   if (!Changed && CandidateFound) {
7168     R.getORE()->emit([&]() {
7169       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
7170              << "List vectorization was possible but not beneficial with cost "
7171              << ore::NV("Cost", MinCost) << " >= "
7172              << ore::NV("Treshold", -SLPCostThreshold);
7173     });
7174   } else if (!Changed) {
7175     R.getORE()->emit([&]() {
7176       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
7177              << "Cannot SLP vectorize list: vectorization was impossible"
7178              << " with available vectorization factors";
7179     });
7180   }
7181   return Changed;
7182 }
7183 
7184 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
7185   if (!I)
7186     return false;
7187 
7188   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
7189     return false;
7190 
7191   Value *P = I->getParent();
7192 
7193   // Vectorize in current basic block only.
7194   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
7195   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
7196   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
7197     return false;
7198 
7199   // Try to vectorize V.
7200   if (tryToVectorizePair(Op0, Op1, R))
7201     return true;
7202 
7203   auto *A = dyn_cast<BinaryOperator>(Op0);
7204   auto *B = dyn_cast<BinaryOperator>(Op1);
7205   // Try to skip B.
7206   if (B && B->hasOneUse()) {
7207     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
7208     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
7209     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
7210       return true;
7211     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
7212       return true;
7213   }
7214 
7215   // Try to skip A.
7216   if (A && A->hasOneUse()) {
7217     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
7218     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
7219     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
7220       return true;
7221     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
7222       return true;
7223   }
7224   return false;
7225 }
7226 
7227 namespace {
7228 
7229 /// Model horizontal reductions.
7230 ///
7231 /// A horizontal reduction is a tree of reduction instructions that has values
7232 /// that can be put into a vector as its leaves. For example:
7233 ///
7234 /// mul mul mul mul
7235 ///  \  /    \  /
7236 ///   +       +
7237 ///    \     /
7238 ///       +
7239 /// This tree has "mul" as its leaf values and "+" as its reduction
7240 /// instructions. A reduction can feed into a store or a binary operation
7241 /// feeding a phi.
7242 ///    ...
7243 ///    \  /
7244 ///     +
7245 ///     |
7246 ///  phi +=
7247 ///
7248 ///  Or:
7249 ///    ...
7250 ///    \  /
7251 ///     +
7252 ///     |
7253 ///   *p =
7254 ///
7255 class HorizontalReduction {
7256   using ReductionOpsType = SmallVector<Value *, 16>;
7257   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
7258   ReductionOpsListType ReductionOps;
7259   SmallVector<Value *, 32> ReducedVals;
7260   // Use map vector to make stable output.
7261   MapVector<Instruction *, Value *> ExtraArgs;
7262   WeakTrackingVH ReductionRoot;
7263   /// The type of reduction operation.
7264   RecurKind RdxKind;
7265 
7266   /// Checks if instruction is associative and can be vectorized.
7267   static bool isVectorizable(RecurKind Kind, Instruction *I) {
7268     if (Kind == RecurKind::None)
7269       return false;
7270     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind))
7271       return true;
7272 
7273     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
7274       // FP min/max are associative except for NaN and -0.0. We do not
7275       // have to rule out -0.0 here because the intrinsic semantics do not
7276       // specify a fixed result for it.
7277       return I->getFastMathFlags().noNaNs();
7278     }
7279 
7280     return I->isAssociative();
7281   }
7282 
7283   /// Checks if the ParentStackElem.first should be marked as a reduction
7284   /// operation with an extra argument or as extra argument itself.
7285   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
7286                     Value *ExtraArg) {
7287     if (ExtraArgs.count(ParentStackElem.first)) {
7288       ExtraArgs[ParentStackElem.first] = nullptr;
7289       // We ran into something like:
7290       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
7291       // The whole ParentStackElem.first should be considered as an extra value
7292       // in this case.
7293       // Do not perform analysis of remaining operands of ParentStackElem.first
7294       // instruction, this whole instruction is an extra argument.
7295       ParentStackElem.second = getNumberOfOperands(ParentStackElem.first);
7296     } else {
7297       // We ran into something like:
7298       // ParentStackElem.first += ... + ExtraArg + ...
7299       ExtraArgs[ParentStackElem.first] = ExtraArg;
7300     }
7301   }
7302 
7303   /// Creates reduction operation with the current opcode.
7304   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
7305                          Value *RHS, const Twine &Name, bool UseSelect) {
7306     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
7307     switch (Kind) {
7308     case RecurKind::Add:
7309     case RecurKind::Mul:
7310     case RecurKind::Or:
7311     case RecurKind::And:
7312     case RecurKind::Xor:
7313     case RecurKind::FAdd:
7314     case RecurKind::FMul:
7315       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
7316                                  Name);
7317     case RecurKind::FMax:
7318       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
7319     case RecurKind::FMin:
7320       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
7321     case RecurKind::SMax:
7322       if (UseSelect) {
7323         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
7324         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7325       }
7326       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
7327     case RecurKind::SMin:
7328       if (UseSelect) {
7329         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
7330         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7331       }
7332       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
7333     case RecurKind::UMax:
7334       if (UseSelect) {
7335         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
7336         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7337       }
7338       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
7339     case RecurKind::UMin:
7340       if (UseSelect) {
7341         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
7342         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7343       }
7344       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
7345     default:
7346       llvm_unreachable("Unknown reduction operation.");
7347     }
7348   }
7349 
7350   /// Creates reduction operation with the current opcode with the IR flags
7351   /// from \p ReductionOps.
7352   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7353                          Value *RHS, const Twine &Name,
7354                          const ReductionOpsListType &ReductionOps) {
7355     bool UseSelect = ReductionOps.size() == 2;
7356     assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
7357            "Expected cmp + select pairs for reduction");
7358     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
7359     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7360       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
7361         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
7362         propagateIRFlags(Op, ReductionOps[1]);
7363         return Op;
7364       }
7365     }
7366     propagateIRFlags(Op, ReductionOps[0]);
7367     return Op;
7368   }
7369 
7370   /// Creates reduction operation with the current opcode with the IR flags
7371   /// from \p I.
7372   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7373                          Value *RHS, const Twine &Name, Instruction *I) {
7374     auto *SelI = dyn_cast<SelectInst>(I);
7375     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
7376     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7377       if (auto *Sel = dyn_cast<SelectInst>(Op))
7378         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
7379     }
7380     propagateIRFlags(Op, I);
7381     return Op;
7382   }
7383 
7384   static RecurKind getRdxKind(Instruction *I) {
7385     assert(I && "Expected instruction for reduction matching");
7386     TargetTransformInfo::ReductionFlags RdxFlags;
7387     if (match(I, m_Add(m_Value(), m_Value())))
7388       return RecurKind::Add;
7389     if (match(I, m_Mul(m_Value(), m_Value())))
7390       return RecurKind::Mul;
7391     if (match(I, m_And(m_Value(), m_Value())))
7392       return RecurKind::And;
7393     if (match(I, m_Or(m_Value(), m_Value())))
7394       return RecurKind::Or;
7395     if (match(I, m_Xor(m_Value(), m_Value())))
7396       return RecurKind::Xor;
7397     if (match(I, m_FAdd(m_Value(), m_Value())))
7398       return RecurKind::FAdd;
7399     if (match(I, m_FMul(m_Value(), m_Value())))
7400       return RecurKind::FMul;
7401 
7402     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
7403       return RecurKind::FMax;
7404     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
7405       return RecurKind::FMin;
7406 
7407     // This matches either cmp+select or intrinsics. SLP is expected to handle
7408     // either form.
7409     // TODO: If we are canonicalizing to intrinsics, we can remove several
7410     //       special-case paths that deal with selects.
7411     if (match(I, m_SMax(m_Value(), m_Value())))
7412       return RecurKind::SMax;
7413     if (match(I, m_SMin(m_Value(), m_Value())))
7414       return RecurKind::SMin;
7415     if (match(I, m_UMax(m_Value(), m_Value())))
7416       return RecurKind::UMax;
7417     if (match(I, m_UMin(m_Value(), m_Value())))
7418       return RecurKind::UMin;
7419 
7420     if (auto *Select = dyn_cast<SelectInst>(I)) {
7421       // Try harder: look for min/max pattern based on instructions producing
7422       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
7423       // During the intermediate stages of SLP, it's very common to have
7424       // pattern like this (since optimizeGatherSequence is run only once
7425       // at the end):
7426       // %1 = extractelement <2 x i32> %a, i32 0
7427       // %2 = extractelement <2 x i32> %a, i32 1
7428       // %cond = icmp sgt i32 %1, %2
7429       // %3 = extractelement <2 x i32> %a, i32 0
7430       // %4 = extractelement <2 x i32> %a, i32 1
7431       // %select = select i1 %cond, i32 %3, i32 %4
7432       CmpInst::Predicate Pred;
7433       Instruction *L1;
7434       Instruction *L2;
7435 
7436       Value *LHS = Select->getTrueValue();
7437       Value *RHS = Select->getFalseValue();
7438       Value *Cond = Select->getCondition();
7439 
7440       // TODO: Support inverse predicates.
7441       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
7442         if (!isa<ExtractElementInst>(RHS) ||
7443             !L2->isIdenticalTo(cast<Instruction>(RHS)))
7444           return RecurKind::None;
7445       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
7446         if (!isa<ExtractElementInst>(LHS) ||
7447             !L1->isIdenticalTo(cast<Instruction>(LHS)))
7448           return RecurKind::None;
7449       } else {
7450         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
7451           return RecurKind::None;
7452         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
7453             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
7454             !L2->isIdenticalTo(cast<Instruction>(RHS)))
7455           return RecurKind::None;
7456       }
7457 
7458       TargetTransformInfo::ReductionFlags RdxFlags;
7459       switch (Pred) {
7460       default:
7461         return RecurKind::None;
7462       case CmpInst::ICMP_SGT:
7463       case CmpInst::ICMP_SGE:
7464         return RecurKind::SMax;
7465       case CmpInst::ICMP_SLT:
7466       case CmpInst::ICMP_SLE:
7467         return RecurKind::SMin;
7468       case CmpInst::ICMP_UGT:
7469       case CmpInst::ICMP_UGE:
7470         return RecurKind::UMax;
7471       case CmpInst::ICMP_ULT:
7472       case CmpInst::ICMP_ULE:
7473         return RecurKind::UMin;
7474       }
7475     }
7476     return RecurKind::None;
7477   }
7478 
7479   /// Get the index of the first operand.
7480   static unsigned getFirstOperandIndex(Instruction *I) {
7481     return isa<SelectInst>(I) ? 1 : 0;
7482   }
7483 
7484   /// Total number of operands in the reduction operation.
7485   static unsigned getNumberOfOperands(Instruction *I) {
7486     return isa<SelectInst>(I) ? 3 : 2;
7487   }
7488 
7489   /// Checks if the instruction is in basic block \p BB.
7490   /// For a min/max reduction check that both compare and select are in \p BB.
7491   static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) {
7492     auto *Sel = dyn_cast<SelectInst>(I);
7493     if (IsRedOp && Sel) {
7494       auto *Cmp = cast<Instruction>(Sel->getCondition());
7495       return Sel->getParent() == BB && Cmp->getParent() == BB;
7496     }
7497     return I->getParent() == BB;
7498   }
7499 
7500   /// Expected number of uses for reduction operations/reduced values.
7501   static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) {
7502     // SelectInst must be used twice while the condition op must have single
7503     // use only.
7504     if (MatchCmpSel) {
7505       if (auto *Sel = dyn_cast<SelectInst>(I))
7506         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
7507       return I->hasNUses(2);
7508     }
7509 
7510     // Arithmetic reduction operation must be used once only.
7511     return I->hasOneUse();
7512   }
7513 
7514   /// Initializes the list of reduction operations.
7515   void initReductionOps(Instruction *I) {
7516     if (isa<SelectInst>(I))
7517       ReductionOps.assign(2, ReductionOpsType());
7518     else
7519       ReductionOps.assign(1, ReductionOpsType());
7520   }
7521 
7522   /// Add all reduction operations for the reduction instruction \p I.
7523   void addReductionOps(Instruction *I) {
7524     if (auto *Sel = dyn_cast<SelectInst>(I)) {
7525       ReductionOps[0].emplace_back(Sel->getCondition());
7526       ReductionOps[1].emplace_back(Sel);
7527     } else {
7528       ReductionOps[0].emplace_back(I);
7529     }
7530   }
7531 
7532   static Value *getLHS(RecurKind Kind, Instruction *I) {
7533     if (Kind == RecurKind::None)
7534       return nullptr;
7535     return I->getOperand(getFirstOperandIndex(I));
7536   }
7537   static Value *getRHS(RecurKind Kind, Instruction *I) {
7538     if (Kind == RecurKind::None)
7539       return nullptr;
7540     return I->getOperand(getFirstOperandIndex(I) + 1);
7541   }
7542 
7543 public:
7544   HorizontalReduction() = default;
7545 
7546   /// Try to find a reduction tree.
7547   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
7548     assert((!Phi || is_contained(Phi->operands(), B)) &&
7549            "Phi needs to use the binary operator");
7550 
7551     RdxKind = getRdxKind(B);
7552 
7553     // We could have a initial reductions that is not an add.
7554     //  r *= v1 + v2 + v3 + v4
7555     // In such a case start looking for a tree rooted in the first '+'.
7556     if (Phi) {
7557       if (getLHS(RdxKind, B) == Phi) {
7558         Phi = nullptr;
7559         B = dyn_cast<Instruction>(getRHS(RdxKind, B));
7560         if (!B)
7561           return false;
7562         RdxKind = getRdxKind(B);
7563       } else if (getRHS(RdxKind, B) == Phi) {
7564         Phi = nullptr;
7565         B = dyn_cast<Instruction>(getLHS(RdxKind, B));
7566         if (!B)
7567           return false;
7568         RdxKind = getRdxKind(B);
7569       }
7570     }
7571 
7572     if (!isVectorizable(RdxKind, B))
7573       return false;
7574 
7575     // Analyze "regular" integer/FP types for reductions - no target-specific
7576     // types or pointers.
7577     Type *Ty = B->getType();
7578     if (!isValidElementType(Ty) || Ty->isPointerTy())
7579       return false;
7580 
7581     // Though the ultimate reduction may have multiple uses, its condition must
7582     // have only single use.
7583     if (auto *SI = dyn_cast<SelectInst>(B))
7584       if (!SI->getCondition()->hasOneUse())
7585         return false;
7586 
7587     ReductionRoot = B;
7588 
7589     // The opcode for leaf values that we perform a reduction on.
7590     // For example: load(x) + load(y) + load(z) + fptoui(w)
7591     // The leaf opcode for 'w' does not match, so we don't include it as a
7592     // potential candidate for the reduction.
7593     unsigned LeafOpcode = 0;
7594 
7595     // Post order traverse the reduction tree starting at B. We only handle true
7596     // trees containing only binary operators.
7597     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
7598     Stack.push_back(std::make_pair(B, getFirstOperandIndex(B)));
7599     initReductionOps(B);
7600     while (!Stack.empty()) {
7601       Instruction *TreeN = Stack.back().first;
7602       unsigned EdgeToVisit = Stack.back().second++;
7603       const RecurKind TreeRdxKind = getRdxKind(TreeN);
7604       bool IsReducedValue = TreeRdxKind != RdxKind;
7605 
7606       // Postorder visit.
7607       if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) {
7608         if (IsReducedValue)
7609           ReducedVals.push_back(TreeN);
7610         else {
7611           auto ExtraArgsIter = ExtraArgs.find(TreeN);
7612           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
7613             // Check if TreeN is an extra argument of its parent operation.
7614             if (Stack.size() <= 1) {
7615               // TreeN can't be an extra argument as it is a root reduction
7616               // operation.
7617               return false;
7618             }
7619             // Yes, TreeN is an extra argument, do not add it to a list of
7620             // reduction operations.
7621             // Stack[Stack.size() - 2] always points to the parent operation.
7622             markExtraArg(Stack[Stack.size() - 2], TreeN);
7623             ExtraArgs.erase(TreeN);
7624           } else
7625             addReductionOps(TreeN);
7626         }
7627         // Retract.
7628         Stack.pop_back();
7629         continue;
7630       }
7631 
7632       // Visit left or right.
7633       Value *EdgeVal = TreeN->getOperand(EdgeToVisit);
7634       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
7635       if (!EdgeInst) {
7636         // Edge value is not a reduction instruction or a leaf instruction.
7637         // (It may be a constant, function argument, or something else.)
7638         markExtraArg(Stack.back(), EdgeVal);
7639         continue;
7640       }
7641       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
7642       // Continue analysis if the next operand is a reduction operation or
7643       // (possibly) a leaf value. If the leaf value opcode is not set,
7644       // the first met operation != reduction operation is considered as the
7645       // leaf opcode.
7646       // Only handle trees in the current basic block.
7647       // Each tree node needs to have minimal number of users except for the
7648       // ultimate reduction.
7649       const bool IsRdxInst = EdgeRdxKind == RdxKind;
7650       if (EdgeInst != Phi && EdgeInst != B &&
7651           hasSameParent(EdgeInst, B->getParent(), IsRdxInst) &&
7652           hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) &&
7653           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
7654         if (IsRdxInst) {
7655           // We need to be able to reassociate the reduction operations.
7656           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
7657             // I is an extra argument for TreeN (its parent operation).
7658             markExtraArg(Stack.back(), EdgeInst);
7659             continue;
7660           }
7661         } else if (!LeafOpcode) {
7662           LeafOpcode = EdgeInst->getOpcode();
7663         }
7664         Stack.push_back(
7665             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
7666         continue;
7667       }
7668       // I is an extra argument for TreeN (its parent operation).
7669       markExtraArg(Stack.back(), EdgeInst);
7670     }
7671     return true;
7672   }
7673 
7674   /// Attempt to vectorize the tree found by matchAssociativeReduction.
7675   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7676     // If there are a sufficient number of reduction values, reduce
7677     // to a nearby power-of-2. We can safely generate oversized
7678     // vectors and rely on the backend to split them to legal sizes.
7679     unsigned NumReducedVals = ReducedVals.size();
7680     if (NumReducedVals < 4)
7681       return false;
7682 
7683     // Intersect the fast-math-flags from all reduction operations.
7684     FastMathFlags RdxFMF;
7685     RdxFMF.set();
7686     for (ReductionOpsType &RdxOp : ReductionOps) {
7687       for (Value *RdxVal : RdxOp) {
7688         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7689           RdxFMF &= FPMO->getFastMathFlags();
7690       }
7691     }
7692 
7693     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7694     Builder.setFastMathFlags(RdxFMF);
7695 
7696     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7697     // The same extra argument may be used several times, so log each attempt
7698     // to use it.
7699     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7700       assert(Pair.first && "DebugLoc must be set.");
7701       ExternallyUsedValues[Pair.second].push_back(Pair.first);
7702     }
7703 
7704     // The compare instruction of a min/max is the insertion point for new
7705     // instructions and may be replaced with a new compare instruction.
7706     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7707       assert(isa<SelectInst>(RdxRootInst) &&
7708              "Expected min/max reduction to have select root instruction");
7709       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7710       assert(isa<Instruction>(ScalarCond) &&
7711              "Expected min/max reduction to have compare condition");
7712       return cast<Instruction>(ScalarCond);
7713     };
7714 
7715     // The reduction root is used as the insertion point for new instructions,
7716     // so set it as externally used to prevent it from being deleted.
7717     ExternallyUsedValues[ReductionRoot];
7718     SmallVector<Value *, 16> IgnoreList;
7719     for (ReductionOpsType &RdxOp : ReductionOps)
7720       IgnoreList.append(RdxOp.begin(), RdxOp.end());
7721 
7722     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7723     if (NumReducedVals > ReduxWidth) {
7724       // In the loop below, we are building a tree based on a window of
7725       // 'ReduxWidth' values.
7726       // If the operands of those values have common traits (compare predicate,
7727       // constant operand, etc), then we want to group those together to
7728       // minimize the cost of the reduction.
7729 
7730       // TODO: This should be extended to count common operands for
7731       //       compares and binops.
7732 
7733       // Step 1: Count the number of times each compare predicate occurs.
7734       SmallDenseMap<unsigned, unsigned> PredCountMap;
7735       for (Value *RdxVal : ReducedVals) {
7736         CmpInst::Predicate Pred;
7737         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7738           ++PredCountMap[Pred];
7739       }
7740       // Step 2: Sort the values so the most common predicates come first.
7741       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7742         CmpInst::Predicate PredA, PredB;
7743         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7744             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7745           return PredCountMap[PredA] > PredCountMap[PredB];
7746         }
7747         return false;
7748       });
7749     }
7750 
7751     Value *VectorizedTree = nullptr;
7752     unsigned i = 0;
7753     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7754       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7755       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7756       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7757       if (Order) {
7758         assert(Order->size() == VL.size() &&
7759                "Order size must be the same as number of vectorized "
7760                "instructions.");
7761         // TODO: reorder tree nodes without tree rebuilding.
7762         SmallVector<Value *, 4> ReorderedOps(VL.size());
7763         transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7764                   [VL](const unsigned Idx) { return VL[Idx]; });
7765         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7766       }
7767       if (V.isTreeTinyAndNotFullyVectorizable())
7768         break;
7769       if (V.isLoadCombineReductionCandidate(RdxKind))
7770         break;
7771 
7772       V.computeMinimumValueSizes();
7773 
7774       // Estimate cost.
7775       InstructionCost TreeCost =
7776           V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
7777       InstructionCost ReductionCost =
7778           getReductionCost(TTI, ReducedVals[i], ReduxWidth);
7779       InstructionCost Cost = TreeCost + ReductionCost;
7780       if (!Cost.isValid()) {
7781         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
7782         return false;
7783       }
7784       if (Cost >= -SLPCostThreshold) {
7785         V.getORE()->emit([&]() {
7786           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
7787                                           cast<Instruction>(VL[0]))
7788                  << "Vectorizing horizontal reduction is possible"
7789                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
7790                  << " and threshold "
7791                  << ore::NV("Threshold", -SLPCostThreshold);
7792         });
7793         break;
7794       }
7795 
7796       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
7797                         << Cost << ". (HorRdx)\n");
7798       V.getORE()->emit([&]() {
7799         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
7800                                   cast<Instruction>(VL[0]))
7801                << "Vectorized horizontal reduction with cost "
7802                << ore::NV("Cost", Cost) << " and with tree size "
7803                << ore::NV("TreeSize", V.getTreeSize());
7804       });
7805 
7806       // Vectorize a tree.
7807       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7808       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7809 
7810       // Emit a reduction. If the root is a select (min/max idiom), the insert
7811       // point is the compare condition of that select.
7812       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7813       if (isa<SelectInst>(RdxRootInst))
7814         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7815       else
7816         Builder.SetInsertPoint(RdxRootInst);
7817 
7818       Value *ReducedSubTree =
7819           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7820 
7821       if (!VectorizedTree) {
7822         // Initialize the final value in the reduction.
7823         VectorizedTree = ReducedSubTree;
7824       } else {
7825         // Update the final value in the reduction.
7826         Builder.SetCurrentDebugLocation(Loc);
7827         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7828                                   ReducedSubTree, "op.rdx", ReductionOps);
7829       }
7830       i += ReduxWidth;
7831       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7832     }
7833 
7834     if (VectorizedTree) {
7835       // Finish the reduction.
7836       for (; i < NumReducedVals; ++i) {
7837         auto *I = cast<Instruction>(ReducedVals[i]);
7838         Builder.SetCurrentDebugLocation(I->getDebugLoc());
7839         VectorizedTree =
7840             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7841       }
7842       for (auto &Pair : ExternallyUsedValues) {
7843         // Add each externally used value to the final reduction.
7844         for (auto *I : Pair.second) {
7845           Builder.SetCurrentDebugLocation(I->getDebugLoc());
7846           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7847                                     Pair.first, "op.extra", I);
7848         }
7849       }
7850 
7851       ReductionRoot->replaceAllUsesWith(VectorizedTree);
7852 
7853       // Mark all scalar reduction ops for deletion, they are replaced by the
7854       // vector reductions.
7855       V.eraseInstructions(IgnoreList);
7856     }
7857     return VectorizedTree != nullptr;
7858   }
7859 
7860   unsigned numReductionValues() const { return ReducedVals.size(); }
7861 
7862 private:
7863   /// Calculate the cost of a reduction.
7864   InstructionCost getReductionCost(TargetTransformInfo *TTI,
7865                                    Value *FirstReducedVal,
7866                                    unsigned ReduxWidth) {
7867     Type *ScalarTy = FirstReducedVal->getType();
7868     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7869     InstructionCost VectorCost, ScalarCost;
7870     switch (RdxKind) {
7871     case RecurKind::Add:
7872     case RecurKind::Mul:
7873     case RecurKind::Or:
7874     case RecurKind::And:
7875     case RecurKind::Xor:
7876     case RecurKind::FAdd:
7877     case RecurKind::FMul: {
7878       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7879       VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy,
7880                                                    /*IsPairwiseForm=*/false);
7881       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7882       break;
7883     }
7884     case RecurKind::FMax:
7885     case RecurKind::FMin: {
7886       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7887       VectorCost =
7888           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7889                                       /*pairwise=*/false, /*unsigned=*/false);
7890       ScalarCost =
7891           TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7892           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7893                                   CmpInst::makeCmpResultType(ScalarTy));
7894       break;
7895     }
7896     case RecurKind::SMax:
7897     case RecurKind::SMin:
7898     case RecurKind::UMax:
7899     case RecurKind::UMin: {
7900       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7901       bool IsUnsigned =
7902           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7903       VectorCost =
7904           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7905                                       /*IsPairwiseForm=*/false, IsUnsigned);
7906       ScalarCost =
7907           TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7908           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7909                                   CmpInst::makeCmpResultType(ScalarTy));
7910       break;
7911     }
7912     default:
7913       llvm_unreachable("Expected arithmetic or min/max reduction operation");
7914     }
7915 
7916     // Scalar cost is repeated for N-1 elements.
7917     ScalarCost *= (ReduxWidth - 1);
7918     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
7919                       << " for reduction that starts with " << *FirstReducedVal
7920                       << " (It is a splitting reduction)\n");
7921     return VectorCost - ScalarCost;
7922   }
7923 
7924   /// Emit a horizontal reduction of the vectorized value.
7925   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7926                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7927     assert(VectorizedValue && "Need to have a vectorized tree node");
7928     assert(isPowerOf2_32(ReduxWidth) &&
7929            "We only handle power-of-two reductions for now");
7930 
7931     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
7932                                        ReductionOps.back());
7933   }
7934 };
7935 
7936 } // end anonymous namespace
7937 
7938 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7939   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7940     return cast<FixedVectorType>(IE->getType())->getNumElements();
7941 
7942   unsigned AggregateSize = 1;
7943   auto *IV = cast<InsertValueInst>(InsertInst);
7944   Type *CurrentType = IV->getType();
7945   do {
7946     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7947       for (auto *Elt : ST->elements())
7948         if (Elt != ST->getElementType(0)) // check homogeneity
7949           return None;
7950       AggregateSize *= ST->getNumElements();
7951       CurrentType = ST->getElementType(0);
7952     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7953       AggregateSize *= AT->getNumElements();
7954       CurrentType = AT->getElementType();
7955     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7956       AggregateSize *= VT->getNumElements();
7957       return AggregateSize;
7958     } else if (CurrentType->isSingleValueType()) {
7959       return AggregateSize;
7960     } else {
7961       return None;
7962     }
7963   } while (true);
7964 }
7965 
7966 static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7967                                    TargetTransformInfo *TTI,
7968                                    SmallVectorImpl<Value *> &BuildVectorOpds,
7969                                    SmallVectorImpl<Value *> &InsertElts,
7970                                    unsigned OperandOffset) {
7971   do {
7972     Value *InsertedOperand = LastInsertInst->getOperand(1);
7973     Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset);
7974     if (!OperandIndex)
7975       return false;
7976     if (isa<InsertElementInst>(InsertedOperand) ||
7977         isa<InsertValueInst>(InsertedOperand)) {
7978       if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7979                                   BuildVectorOpds, InsertElts, *OperandIndex))
7980         return false;
7981     } else {
7982       BuildVectorOpds[*OperandIndex] = InsertedOperand;
7983       InsertElts[*OperandIndex] = LastInsertInst;
7984     }
7985     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7986   } while (LastInsertInst != nullptr &&
7987            (isa<InsertValueInst>(LastInsertInst) ||
7988             isa<InsertElementInst>(LastInsertInst)) &&
7989            LastInsertInst->hasOneUse());
7990   return true;
7991 }
7992 
7993 /// Recognize construction of vectors like
7994 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
7995 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
7996 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
7997 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
7998 ///  starting from the last insertelement or insertvalue instruction.
7999 ///
8000 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
8001 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
8002 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
8003 ///
8004 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
8005 ///
8006 /// \return true if it matches.
8007 static bool findBuildAggregate(Instruction *LastInsertInst,
8008                                TargetTransformInfo *TTI,
8009                                SmallVectorImpl<Value *> &BuildVectorOpds,
8010                                SmallVectorImpl<Value *> &InsertElts) {
8011 
8012   assert((isa<InsertElementInst>(LastInsertInst) ||
8013           isa<InsertValueInst>(LastInsertInst)) &&
8014          "Expected insertelement or insertvalue instruction!");
8015 
8016   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
8017          "Expected empty result vectors!");
8018 
8019   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
8020   if (!AggregateSize)
8021     return false;
8022   BuildVectorOpds.resize(*AggregateSize);
8023   InsertElts.resize(*AggregateSize);
8024 
8025   if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
8026                              0)) {
8027     llvm::erase_value(BuildVectorOpds, nullptr);
8028     llvm::erase_value(InsertElts, nullptr);
8029     if (BuildVectorOpds.size() >= 2)
8030       return true;
8031   }
8032 
8033   return false;
8034 }
8035 
8036 /// Try and get a reduction value from a phi node.
8037 ///
8038 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
8039 /// if they come from either \p ParentBB or a containing loop latch.
8040 ///
8041 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
8042 /// if not possible.
8043 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
8044                                 BasicBlock *ParentBB, LoopInfo *LI) {
8045   // There are situations where the reduction value is not dominated by the
8046   // reduction phi. Vectorizing such cases has been reported to cause
8047   // miscompiles. See PR25787.
8048   auto DominatedReduxValue = [&](Value *R) {
8049     return isa<Instruction>(R) &&
8050            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
8051   };
8052 
8053   Value *Rdx = nullptr;
8054 
8055   // Return the incoming value if it comes from the same BB as the phi node.
8056   if (P->getIncomingBlock(0) == ParentBB) {
8057     Rdx = P->getIncomingValue(0);
8058   } else if (P->getIncomingBlock(1) == ParentBB) {
8059     Rdx = P->getIncomingValue(1);
8060   }
8061 
8062   if (Rdx && DominatedReduxValue(Rdx))
8063     return Rdx;
8064 
8065   // Otherwise, check whether we have a loop latch to look at.
8066   Loop *BBL = LI->getLoopFor(ParentBB);
8067   if (!BBL)
8068     return nullptr;
8069   BasicBlock *BBLatch = BBL->getLoopLatch();
8070   if (!BBLatch)
8071     return nullptr;
8072 
8073   // There is a loop latch, return the incoming value if it comes from
8074   // that. This reduction pattern occasionally turns up.
8075   if (P->getIncomingBlock(0) == BBLatch) {
8076     Rdx = P->getIncomingValue(0);
8077   } else if (P->getIncomingBlock(1) == BBLatch) {
8078     Rdx = P->getIncomingValue(1);
8079   }
8080 
8081   if (Rdx && DominatedReduxValue(Rdx))
8082     return Rdx;
8083 
8084   return nullptr;
8085 }
8086 
8087 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
8088   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
8089     return true;
8090   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
8091     return true;
8092   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
8093     return true;
8094   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
8095     return true;
8096   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
8097     return true;
8098   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
8099     return true;
8100   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
8101     return true;
8102   return false;
8103 }
8104 
8105 /// Attempt to reduce a horizontal reduction.
8106 /// If it is legal to match a horizontal reduction feeding the phi node \a P
8107 /// with reduction operators \a Root (or one of its operands) in a basic block
8108 /// \a BB, then check if it can be done. If horizontal reduction is not found
8109 /// and root instruction is a binary operation, vectorization of the operands is
8110 /// attempted.
8111 /// \returns true if a horizontal reduction was matched and reduced or operands
8112 /// of one of the binary instruction were vectorized.
8113 /// \returns false if a horizontal reduction was not matched (or not possible)
8114 /// or no vectorization of any binary operation feeding \a Root instruction was
8115 /// performed.
8116 static bool tryToVectorizeHorReductionOrInstOperands(
8117     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
8118     TargetTransformInfo *TTI,
8119     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
8120   if (!ShouldVectorizeHor)
8121     return false;
8122 
8123   if (!Root)
8124     return false;
8125 
8126   if (Root->getParent() != BB || isa<PHINode>(Root))
8127     return false;
8128   // Start analysis starting from Root instruction. If horizontal reduction is
8129   // found, try to vectorize it. If it is not a horizontal reduction or
8130   // vectorization is not possible or not effective, and currently analyzed
8131   // instruction is a binary operation, try to vectorize the operands, using
8132   // pre-order DFS traversal order. If the operands were not vectorized, repeat
8133   // the same procedure considering each operand as a possible root of the
8134   // horizontal reduction.
8135   // Interrupt the process if the Root instruction itself was vectorized or all
8136   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
8137   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
8138   // CmpInsts so we can skip extra attempts in
8139   // tryToVectorizeHorReductionOrInstOperands and save compile time.
8140   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
8141   SmallPtrSet<Value *, 8> VisitedInstrs;
8142   bool Res = false;
8143   while (!Stack.empty()) {
8144     Instruction *Inst;
8145     unsigned Level;
8146     std::tie(Inst, Level) = Stack.pop_back_val();
8147     Value *B0, *B1;
8148     bool IsBinop = matchRdxBop(Inst, B0, B1);
8149     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
8150     if (IsBinop || IsSelect) {
8151       HorizontalReduction HorRdx;
8152       if (HorRdx.matchAssociativeReduction(P, Inst)) {
8153         if (HorRdx.tryToReduce(R, TTI)) {
8154           Res = true;
8155           // Set P to nullptr to avoid re-analysis of phi node in
8156           // matchAssociativeReduction function unless this is the root node.
8157           P = nullptr;
8158           continue;
8159         }
8160       }
8161       if (P && IsBinop) {
8162         Inst = dyn_cast<Instruction>(B0);
8163         if (Inst == P)
8164           Inst = dyn_cast<Instruction>(B1);
8165         if (!Inst) {
8166           // Set P to nullptr to avoid re-analysis of phi node in
8167           // matchAssociativeReduction function unless this is the root node.
8168           P = nullptr;
8169           continue;
8170         }
8171       }
8172     }
8173     // Set P to nullptr to avoid re-analysis of phi node in
8174     // matchAssociativeReduction function unless this is the root node.
8175     P = nullptr;
8176     // Do not try to vectorize CmpInst operands, this is done separately.
8177     if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
8178       Res = true;
8179       continue;
8180     }
8181 
8182     // Try to vectorize operands.
8183     // Continue analysis for the instruction from the same basic block only to
8184     // save compile time.
8185     if (++Level < RecursionMaxDepth)
8186       for (auto *Op : Inst->operand_values())
8187         if (VisitedInstrs.insert(Op).second)
8188           if (auto *I = dyn_cast<Instruction>(Op))
8189             // Do not try to vectorize CmpInst operands,  this is done
8190             // separately.
8191             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
8192                 I->getParent() == BB)
8193               Stack.emplace_back(I, Level);
8194   }
8195   return Res;
8196 }
8197 
8198 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
8199                                                  BasicBlock *BB, BoUpSLP &R,
8200                                                  TargetTransformInfo *TTI) {
8201   auto *I = dyn_cast_or_null<Instruction>(V);
8202   if (!I)
8203     return false;
8204 
8205   if (!isa<BinaryOperator>(I))
8206     P = nullptr;
8207   // Try to match and vectorize a horizontal reduction.
8208   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
8209     return tryToVectorize(I, R);
8210   };
8211   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
8212                                                   ExtraVectorization);
8213 }
8214 
8215 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
8216                                                  BasicBlock *BB, BoUpSLP &R) {
8217   const DataLayout &DL = BB->getModule()->getDataLayout();
8218   if (!R.canMapToVector(IVI->getType(), DL))
8219     return false;
8220 
8221   SmallVector<Value *, 16> BuildVectorOpds;
8222   SmallVector<Value *, 16> BuildVectorInsts;
8223   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
8224     return false;
8225 
8226   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
8227   // Aggregate value is unlikely to be processed in vector register, we need to
8228   // extract scalars into scalar registers, so NeedExtraction is set true.
8229   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false);
8230 }
8231 
8232 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
8233                                                    BasicBlock *BB, BoUpSLP &R) {
8234   SmallVector<Value *, 16> BuildVectorInsts;
8235   SmallVector<Value *, 16> BuildVectorOpds;
8236   SmallVector<int> Mask;
8237   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
8238       (llvm::all_of(BuildVectorOpds,
8239                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
8240        isShuffle(BuildVectorOpds, Mask)))
8241     return false;
8242 
8243   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
8244   return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/true);
8245 }
8246 
8247 bool SLPVectorizerPass::vectorizeSimpleInstructions(
8248     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
8249     bool AtTerminator) {
8250   bool OpsChanged = false;
8251   SmallVector<Instruction *, 4> PostponedCmps;
8252   for (auto *I : reverse(Instructions)) {
8253     if (R.isDeleted(I))
8254       continue;
8255     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
8256       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
8257     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
8258       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
8259     else if (isa<CmpInst>(I))
8260       PostponedCmps.push_back(I);
8261   }
8262   if (AtTerminator) {
8263     // Try to find reductions first.
8264     for (Instruction *I : PostponedCmps) {
8265       if (R.isDeleted(I))
8266         continue;
8267       for (Value *Op : I->operands())
8268         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
8269     }
8270     // Try to vectorize operands as vector bundles.
8271     for (Instruction *I : PostponedCmps) {
8272       if (R.isDeleted(I))
8273         continue;
8274       OpsChanged |= tryToVectorize(I, R);
8275     }
8276     Instructions.clear();
8277   } else {
8278     // Insert in reverse order since the PostponedCmps vector was filled in
8279     // reverse order.
8280     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
8281   }
8282   return OpsChanged;
8283 }
8284 
8285 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
8286   bool Changed = false;
8287   SmallVector<Value *, 4> Incoming;
8288   SmallPtrSet<Value *, 16> VisitedInstrs;
8289   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
8290   // node. Allows better to identify the chains that can be vectorized in the
8291   // better way.
8292   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
8293 
8294   bool HaveVectorizedPhiNodes = true;
8295   while (HaveVectorizedPhiNodes) {
8296     HaveVectorizedPhiNodes = false;
8297 
8298     // Collect the incoming values from the PHIs.
8299     Incoming.clear();
8300     for (Instruction &I : *BB) {
8301       PHINode *P = dyn_cast<PHINode>(&I);
8302       if (!P)
8303         break;
8304 
8305       // No need to analyze deleted, vectorized and non-vectorizable
8306       // instructions.
8307       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
8308           !P->getType()->isVectorTy())
8309         Incoming.push_back(P);
8310     }
8311 
8312     // Find the corresponding non-phi nodes for better matching when trying to
8313     // build the tree.
8314     for (Value *V : Incoming) {
8315       SmallVectorImpl<Value *> &Opcodes =
8316           PHIToOpcodes.try_emplace(V).first->getSecond();
8317       if (!Opcodes.empty())
8318         continue;
8319       SmallVector<Value *, 4> Nodes(1, V);
8320       SmallPtrSet<Value *, 4> Visited;
8321       while (!Nodes.empty()) {
8322         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
8323         if (!Visited.insert(PHI).second)
8324           continue;
8325         for (Value *V : PHI->incoming_values()) {
8326           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
8327             Nodes.push_back(PHI1);
8328             continue;
8329           }
8330           Opcodes.emplace_back(V);
8331         }
8332       }
8333     }
8334 
8335     // Sort by type, parent, operands.
8336     stable_sort(Incoming, [&PHIToOpcodes](Value *V1, Value *V2) {
8337       if (V1->getType() < V2->getType())
8338         return true;
8339       if (V1->getType() > V2->getType())
8340         return false;
8341       ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
8342       ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
8343       if (Opcodes1.size() < Opcodes2.size())
8344         return true;
8345       if (Opcodes1.size() > Opcodes2.size())
8346         return false;
8347       for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
8348         // Undefs are compatible with any other value.
8349         if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
8350           continue;
8351         if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
8352           if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
8353             if (I1->getParent() < I2->getParent())
8354               return true;
8355             if (I1->getParent() > I2->getParent())
8356               return false;
8357             InstructionsState S = getSameOpcode({I1, I2});
8358             if (S.getOpcode())
8359               continue;
8360             return I1->getOpcode() < I2->getOpcode();
8361           }
8362         if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
8363           continue;
8364         if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
8365           return true;
8366         if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
8367           return false;
8368       }
8369       return false;
8370     });
8371 
8372     auto &&AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
8373       if (V1 == V2)
8374         return true;
8375       if (V1->getType() != V2->getType())
8376         return false;
8377       ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
8378       ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
8379       if (Opcodes1.size() != Opcodes2.size())
8380         return false;
8381       for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
8382         // Undefs are compatible with any other value.
8383         if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
8384           continue;
8385         if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
8386           if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
8387             if (I1->getParent() != I2->getParent())
8388               return false;
8389             InstructionsState S = getSameOpcode({I1, I2});
8390             if (S.getOpcode())
8391               continue;
8392             return false;
8393           }
8394         if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
8395           continue;
8396         if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
8397           return false;
8398       }
8399       return true;
8400     };
8401 
8402     // Try to vectorize elements base on their type.
8403     SmallVector<Value *, 4> Candidates;
8404     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
8405                                            E = Incoming.end();
8406          IncIt != E;) {
8407 
8408       // Look for the next elements with the same type, parent and operand
8409       // kinds.
8410       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
8411       while (SameTypeIt != E && AreCompatiblePHIs(*SameTypeIt, *IncIt)) {
8412         VisitedInstrs.insert(*SameTypeIt);
8413         ++SameTypeIt;
8414       }
8415 
8416       // Try to vectorize them.
8417       unsigned NumElts = (SameTypeIt - IncIt);
8418       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
8419                         << NumElts << ")\n");
8420       // The order in which the phi nodes appear in the program does not matter.
8421       // So allow tryToVectorizeList to reorder them if it is beneficial. This
8422       // is done when there are exactly two elements since tryToVectorizeList
8423       // asserts that there are only two values when AllowReorder is true.
8424       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
8425                                             /*AllowReorder=*/true)) {
8426         // Success start over because instructions might have been changed.
8427         HaveVectorizedPhiNodes = true;
8428         Changed = true;
8429       } else if (NumElts < 4 &&
8430                  (Candidates.empty() ||
8431                   Candidates.front()->getType() == (*IncIt)->getType())) {
8432         Candidates.append(IncIt, std::next(IncIt, NumElts));
8433       }
8434       // Final attempt to vectorize phis with the same types.
8435       if (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType()) {
8436         if (Candidates.size() > 1 &&
8437             tryToVectorizeList(Candidates, R, /*AllowReorder=*/true)) {
8438           // Success start over because instructions might have been changed.
8439           HaveVectorizedPhiNodes = true;
8440           Changed = true;
8441         }
8442         Candidates.clear();
8443       }
8444 
8445       // Start over at the next instruction of a different type (or the end).
8446       IncIt = SameTypeIt;
8447     }
8448   }
8449 
8450   VisitedInstrs.clear();
8451 
8452   SmallVector<Instruction *, 8> PostProcessInstructions;
8453   SmallDenseSet<Instruction *, 4> KeyNodes;
8454   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
8455     // Skip instructions with scalable type. The num of elements is unknown at
8456     // compile-time for scalable type.
8457     if (isa<ScalableVectorType>(it->getType()))
8458       continue;
8459 
8460     // Skip instructions marked for the deletion.
8461     if (R.isDeleted(&*it))
8462       continue;
8463     // We may go through BB multiple times so skip the one we have checked.
8464     if (!VisitedInstrs.insert(&*it).second) {
8465       if (it->use_empty() && KeyNodes.contains(&*it) &&
8466           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8467                                       it->isTerminator())) {
8468         // We would like to start over since some instructions are deleted
8469         // and the iterator may become invalid value.
8470         Changed = true;
8471         it = BB->begin();
8472         e = BB->end();
8473       }
8474       continue;
8475     }
8476 
8477     if (isa<DbgInfoIntrinsic>(it))
8478       continue;
8479 
8480     // Try to vectorize reductions that use PHINodes.
8481     if (PHINode *P = dyn_cast<PHINode>(it)) {
8482       // Check that the PHI is a reduction PHI.
8483       if (P->getNumIncomingValues() == 2) {
8484         // Try to match and vectorize a horizontal reduction.
8485         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
8486                                      TTI)) {
8487           Changed = true;
8488           it = BB->begin();
8489           e = BB->end();
8490           continue;
8491         }
8492       }
8493       // Try to vectorize the incoming values of the PHI, to catch reductions
8494       // that feed into PHIs.
8495       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
8496         // Skip if the incoming block is the current BB for now. Also, bypass
8497         // unreachable IR for efficiency and to avoid crashing.
8498         // TODO: Collect the skipped incoming values and try to vectorize them
8499         // after processing BB.
8500         if (BB == P->getIncomingBlock(I) ||
8501             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
8502           continue;
8503 
8504         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
8505                                             P->getIncomingBlock(I), R, TTI);
8506       }
8507       continue;
8508     }
8509 
8510     // Ran into an instruction without users, like terminator, or function call
8511     // with ignored return value, store. Ignore unused instructions (basing on
8512     // instruction type, except for CallInst and InvokeInst).
8513     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
8514                             isa<InvokeInst>(it))) {
8515       KeyNodes.insert(&*it);
8516       bool OpsChanged = false;
8517       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
8518         for (auto *V : it->operand_values()) {
8519           // Try to match and vectorize a horizontal reduction.
8520           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
8521         }
8522       }
8523       // Start vectorization of post-process list of instructions from the
8524       // top-tree instructions to try to vectorize as many instructions as
8525       // possible.
8526       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8527                                                 it->isTerminator());
8528       if (OpsChanged) {
8529         // We would like to start over since some instructions are deleted
8530         // and the iterator may become invalid value.
8531         Changed = true;
8532         it = BB->begin();
8533         e = BB->end();
8534         continue;
8535       }
8536     }
8537 
8538     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
8539         isa<InsertValueInst>(it))
8540       PostProcessInstructions.push_back(&*it);
8541   }
8542 
8543   return Changed;
8544 }
8545 
8546 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
8547   auto Changed = false;
8548   for (auto &Entry : GEPs) {
8549     // If the getelementptr list has fewer than two elements, there's nothing
8550     // to do.
8551     if (Entry.second.size() < 2)
8552       continue;
8553 
8554     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
8555                       << Entry.second.size() << ".\n");
8556 
8557     // Process the GEP list in chunks suitable for the target's supported
8558     // vector size. If a vector register can't hold 1 element, we are done. We
8559     // are trying to vectorize the index computations, so the maximum number of
8560     // elements is based on the size of the index expression, rather than the
8561     // size of the GEP itself (the target's pointer size).
8562     unsigned MaxVecRegSize = R.getMaxVecRegSize();
8563     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
8564     if (MaxVecRegSize < EltSize)
8565       continue;
8566 
8567     unsigned MaxElts = MaxVecRegSize / EltSize;
8568     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
8569       auto Len = std::min<unsigned>(BE - BI, MaxElts);
8570       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
8571 
8572       // Initialize a set a candidate getelementptrs. Note that we use a
8573       // SetVector here to preserve program order. If the index computations
8574       // are vectorizable and begin with loads, we want to minimize the chance
8575       // of having to reorder them later.
8576       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
8577 
8578       // Some of the candidates may have already been vectorized after we
8579       // initially collected them. If so, they are marked as deleted, so remove
8580       // them from the set of candidates.
8581       Candidates.remove_if(
8582           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
8583 
8584       // Remove from the set of candidates all pairs of getelementptrs with
8585       // constant differences. Such getelementptrs are likely not good
8586       // candidates for vectorization in a bottom-up phase since one can be
8587       // computed from the other. We also ensure all candidate getelementptr
8588       // indices are unique.
8589       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
8590         auto *GEPI = GEPList[I];
8591         if (!Candidates.count(GEPI))
8592           continue;
8593         auto *SCEVI = SE->getSCEV(GEPList[I]);
8594         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
8595           auto *GEPJ = GEPList[J];
8596           auto *SCEVJ = SE->getSCEV(GEPList[J]);
8597           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
8598             Candidates.remove(GEPI);
8599             Candidates.remove(GEPJ);
8600           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
8601             Candidates.remove(GEPJ);
8602           }
8603         }
8604       }
8605 
8606       // We break out of the above computation as soon as we know there are
8607       // fewer than two candidates remaining.
8608       if (Candidates.size() < 2)
8609         continue;
8610 
8611       // Add the single, non-constant index of each candidate to the bundle. We
8612       // ensured the indices met these constraints when we originally collected
8613       // the getelementptrs.
8614       SmallVector<Value *, 16> Bundle(Candidates.size());
8615       auto BundleIndex = 0u;
8616       for (auto *V : Candidates) {
8617         auto *GEP = cast<GetElementPtrInst>(V);
8618         auto *GEPIdx = GEP->idx_begin()->get();
8619         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
8620         Bundle[BundleIndex++] = GEPIdx;
8621       }
8622 
8623       // Try and vectorize the indices. We are currently only interested in
8624       // gather-like cases of the form:
8625       //
8626       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8627       //
8628       // where the loads of "a", the loads of "b", and the subtractions can be
8629       // performed in parallel. It's likely that detecting this pattern in a
8630       // bottom-up phase will be simpler and less costly than building a
8631       // full-blown top-down phase beginning at the consecutive loads.
8632       Changed |= tryToVectorizeList(Bundle, R);
8633     }
8634   }
8635   return Changed;
8636 }
8637 
8638 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
8639   bool Changed = false;
8640   // Attempt to sort and vectorize each of the store-groups.
8641   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
8642        ++it) {
8643     if (it->second.size() < 2)
8644       continue;
8645 
8646     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
8647                       << it->second.size() << ".\n");
8648 
8649     Changed |= vectorizeStores(it->second, R);
8650   }
8651   return Changed;
8652 }
8653 
8654 char SLPVectorizer::ID = 0;
8655 
8656 static const char lv_name[] = "SLP Vectorizer";
8657 
8658 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
8659 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
8660 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
8661 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8662 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8663 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
8664 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8665 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8666 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8667 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
8668 
8669 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
8670