1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical. 258 static bool isSplat(ArrayRef<Value *> VL) { 259 for (unsigned i = 1, e = VL.size(); i < e; ++i) 260 if (VL[i] != VL[0]) 261 return false; 262 return true; 263 } 264 265 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 266 static bool isCommutative(Instruction *I) { 267 if (auto *Cmp = dyn_cast<CmpInst>(I)) 268 return Cmp->isCommutative(); 269 if (auto *BO = dyn_cast<BinaryOperator>(I)) 270 return BO->isCommutative(); 271 // TODO: This should check for generic Instruction::isCommutative(), but 272 // we need to confirm that the caller code correctly handles Intrinsics 273 // for example (does not have 2 operands). 274 return false; 275 } 276 277 /// Checks if the vector of instructions can be represented as a shuffle, like: 278 /// %x0 = extractelement <4 x i8> %x, i32 0 279 /// %x3 = extractelement <4 x i8> %x, i32 3 280 /// %y1 = extractelement <4 x i8> %y, i32 1 281 /// %y2 = extractelement <4 x i8> %y, i32 2 282 /// %x0x0 = mul i8 %x0, %x0 283 /// %x3x3 = mul i8 %x3, %x3 284 /// %y1y1 = mul i8 %y1, %y1 285 /// %y2y2 = mul i8 %y2, %y2 286 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 288 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 289 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 290 /// ret <4 x i8> %ins4 291 /// can be transformed into: 292 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 293 /// i32 6> 294 /// %2 = mul <4 x i8> %1, %1 295 /// ret <4 x i8> %2 296 /// We convert this initially to something like: 297 /// %x0 = extractelement <4 x i8> %x, i32 0 298 /// %x3 = extractelement <4 x i8> %x, i32 3 299 /// %y1 = extractelement <4 x i8> %y, i32 1 300 /// %y2 = extractelement <4 x i8> %y, i32 2 301 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 302 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 303 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 304 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 305 /// %5 = mul <4 x i8> %4, %4 306 /// %6 = extractelement <4 x i8> %5, i32 0 307 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 308 /// %7 = extractelement <4 x i8> %5, i32 1 309 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 310 /// %8 = extractelement <4 x i8> %5, i32 2 311 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 312 /// %9 = extractelement <4 x i8> %5, i32 3 313 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 314 /// ret <4 x i8> %ins4 315 /// InstCombiner transforms this into a shuffle and vector mul 316 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 317 /// TODO: Can we split off and reuse the shuffle mask detection from 318 /// TargetTransformInfo::getInstructionThroughput? 319 static Optional<TargetTransformInfo::ShuffleKind> 320 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 321 auto *EI0 = cast<ExtractElementInst>(VL[0]); 322 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 323 return None; 324 unsigned Size = 325 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 326 Value *Vec1 = nullptr; 327 Value *Vec2 = nullptr; 328 enum ShuffleMode { Unknown, Select, Permute }; 329 ShuffleMode CommonShuffleMode = Unknown; 330 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 331 auto *EI = cast<ExtractElementInst>(VL[I]); 332 auto *Vec = EI->getVectorOperand(); 333 // All vector operands must have the same number of vector elements. 334 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 335 return None; 336 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 337 if (!Idx) 338 return None; 339 // Undefined behavior if Idx is negative or >= Size. 340 if (Idx->getValue().uge(Size)) { 341 Mask.push_back(UndefMaskElem); 342 continue; 343 } 344 unsigned IntIdx = Idx->getValue().getZExtValue(); 345 Mask.push_back(IntIdx); 346 // We can extractelement from undef or poison vector. 347 if (isa<UndefValue>(Vec)) 348 continue; 349 // For correct shuffling we have to have at most 2 different vector operands 350 // in all extractelement instructions. 351 if (!Vec1 || Vec1 == Vec) 352 Vec1 = Vec; 353 else if (!Vec2 || Vec2 == Vec) 354 Vec2 = Vec; 355 else 356 return None; 357 if (CommonShuffleMode == Permute) 358 continue; 359 // If the extract index is not the same as the operation number, it is a 360 // permutation. 361 if (IntIdx != I) { 362 CommonShuffleMode = Permute; 363 continue; 364 } 365 CommonShuffleMode = Select; 366 } 367 // If we're not crossing lanes in different vectors, consider it as blending. 368 if (CommonShuffleMode == Select && Vec2) 369 return TargetTransformInfo::SK_Select; 370 // If Vec2 was never used, we have a permutation of a single vector, otherwise 371 // we have permutation of 2 vectors. 372 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 373 : TargetTransformInfo::SK_PermuteSingleSrc; 374 } 375 376 namespace { 377 378 /// Main data required for vectorization of instructions. 379 struct InstructionsState { 380 /// The very first instruction in the list with the main opcode. 381 Value *OpValue = nullptr; 382 383 /// The main/alternate instruction. 384 Instruction *MainOp = nullptr; 385 Instruction *AltOp = nullptr; 386 387 /// The main/alternate opcodes for the list of instructions. 388 unsigned getOpcode() const { 389 return MainOp ? MainOp->getOpcode() : 0; 390 } 391 392 unsigned getAltOpcode() const { 393 return AltOp ? AltOp->getOpcode() : 0; 394 } 395 396 /// Some of the instructions in the list have alternate opcodes. 397 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 398 399 bool isOpcodeOrAlt(Instruction *I) const { 400 unsigned CheckedOpcode = I->getOpcode(); 401 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 402 } 403 404 InstructionsState() = delete; 405 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 406 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 407 }; 408 409 } // end anonymous namespace 410 411 /// Chooses the correct key for scheduling data. If \p Op has the same (or 412 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 413 /// OpValue. 414 static Value *isOneOf(const InstructionsState &S, Value *Op) { 415 auto *I = dyn_cast<Instruction>(Op); 416 if (I && S.isOpcodeOrAlt(I)) 417 return Op; 418 return S.OpValue; 419 } 420 421 /// \returns true if \p Opcode is allowed as part of of the main/alternate 422 /// instruction for SLP vectorization. 423 /// 424 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 425 /// "shuffled out" lane would result in division by zero. 426 static bool isValidForAlternation(unsigned Opcode) { 427 if (Instruction::isIntDivRem(Opcode)) 428 return false; 429 430 return true; 431 } 432 433 /// \returns analysis of the Instructions in \p VL described in 434 /// InstructionsState, the Opcode that we suppose the whole list 435 /// could be vectorized even if its structure is diverse. 436 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 437 unsigned BaseIndex = 0) { 438 // Make sure these are all Instructions. 439 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 442 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 443 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 444 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 445 unsigned AltOpcode = Opcode; 446 unsigned AltIndex = BaseIndex; 447 448 // Check for one alternate opcode from another BinaryOperator. 449 // TODO - generalize to support all operators (types, calls etc.). 450 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 451 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 452 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 453 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 454 continue; 455 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 456 isValidForAlternation(Opcode)) { 457 AltOpcode = InstOpcode; 458 AltIndex = Cnt; 459 continue; 460 } 461 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 462 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 463 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 464 if (Ty0 == Ty1) { 465 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 466 continue; 467 if (Opcode == AltOpcode) { 468 assert(isValidForAlternation(Opcode) && 469 isValidForAlternation(InstOpcode) && 470 "Cast isn't safe for alternation, logic needs to be updated!"); 471 AltOpcode = InstOpcode; 472 AltIndex = Cnt; 473 continue; 474 } 475 } 476 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 477 continue; 478 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 479 } 480 481 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 482 cast<Instruction>(VL[AltIndex])); 483 } 484 485 /// \returns true if all of the values in \p VL have the same type or false 486 /// otherwise. 487 static bool allSameType(ArrayRef<Value *> VL) { 488 Type *Ty = VL[0]->getType(); 489 for (int i = 1, e = VL.size(); i < e; i++) 490 if (VL[i]->getType() != Ty) 491 return false; 492 493 return true; 494 } 495 496 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 497 static Optional<unsigned> getExtractIndex(Instruction *E) { 498 unsigned Opcode = E->getOpcode(); 499 assert((Opcode == Instruction::ExtractElement || 500 Opcode == Instruction::ExtractValue) && 501 "Expected extractelement or extractvalue instruction."); 502 if (Opcode == Instruction::ExtractElement) { 503 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 504 if (!CI) 505 return None; 506 return CI->getZExtValue(); 507 } 508 ExtractValueInst *EI = cast<ExtractValueInst>(E); 509 if (EI->getNumIndices() != 1) 510 return None; 511 return *EI->idx_begin(); 512 } 513 514 /// \returns True if in-tree use also needs extract. This refers to 515 /// possible scalar operand in vectorized instruction. 516 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 517 TargetLibraryInfo *TLI) { 518 unsigned Opcode = UserInst->getOpcode(); 519 switch (Opcode) { 520 case Instruction::Load: { 521 LoadInst *LI = cast<LoadInst>(UserInst); 522 return (LI->getPointerOperand() == Scalar); 523 } 524 case Instruction::Store: { 525 StoreInst *SI = cast<StoreInst>(UserInst); 526 return (SI->getPointerOperand() == Scalar); 527 } 528 case Instruction::Call: { 529 CallInst *CI = cast<CallInst>(UserInst); 530 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 531 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 532 if (hasVectorInstrinsicScalarOpd(ID, i)) 533 return (CI->getArgOperand(i) == Scalar); 534 } 535 LLVM_FALLTHROUGH; 536 } 537 default: 538 return false; 539 } 540 } 541 542 /// \returns the AA location that is being access by the instruction. 543 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 544 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 545 return MemoryLocation::get(SI); 546 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 547 return MemoryLocation::get(LI); 548 return MemoryLocation(); 549 } 550 551 /// \returns True if the instruction is not a volatile or atomic load/store. 552 static bool isSimple(Instruction *I) { 553 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 554 return LI->isSimple(); 555 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 556 return SI->isSimple(); 557 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 558 return !MI->isVolatile(); 559 return true; 560 } 561 562 /// Shuffles \p Mask in accordance with the given \p SubMask. 563 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 564 if (SubMask.empty()) 565 return; 566 if (Mask.empty()) { 567 Mask.append(SubMask.begin(), SubMask.end()); 568 return; 569 } 570 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 571 int TermValue = std::min(Mask.size(), SubMask.size()); 572 for (int I = 0, E = SubMask.size(); I < E; ++I) { 573 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 574 Mask[SubMask[I]] >= TermValue) 575 continue; 576 NewMask[I] = Mask[SubMask[I]]; 577 } 578 Mask.swap(NewMask); 579 } 580 581 /// Order may have elements assigned special value (size) which is out of 582 /// bounds. Such indices only appear on places which correspond to undef values 583 /// (see canReuseExtract for details) and used in order to avoid undef values 584 /// have effect on operands ordering. 585 /// The first loop below simply finds all unused indices and then the next loop 586 /// nest assigns these indices for undef values positions. 587 /// As an example below Order has two undef positions and they have assigned 588 /// values 3 and 7 respectively: 589 /// before: 6 9 5 4 9 2 1 0 590 /// after: 6 3 5 4 7 2 1 0 591 /// \returns Fixed ordering. 592 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 593 const unsigned Sz = Order.size(); 594 SmallBitVector UsedIndices(Sz); 595 SmallVector<int> MaskedIndices; 596 for (unsigned I = 0; I < Sz; ++I) { 597 if (Order[I] < Sz) 598 UsedIndices.set(Order[I]); 599 else 600 MaskedIndices.push_back(I); 601 } 602 if (MaskedIndices.empty()) 603 return; 604 SmallVector<int> AvailableIndices(MaskedIndices.size()); 605 unsigned Cnt = 0; 606 int Idx = UsedIndices.find_first(); 607 do { 608 AvailableIndices[Cnt] = Idx; 609 Idx = UsedIndices.find_next(Idx); 610 ++Cnt; 611 } while (Idx > 0); 612 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 613 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 614 Order[MaskedIndices[I]] = AvailableIndices[I]; 615 } 616 617 namespace llvm { 618 619 static void inversePermutation(ArrayRef<unsigned> Indices, 620 SmallVectorImpl<int> &Mask) { 621 Mask.clear(); 622 const unsigned E = Indices.size(); 623 Mask.resize(E, UndefMaskElem); 624 for (unsigned I = 0; I < E; ++I) 625 Mask[Indices[I]] = I; 626 } 627 628 /// \returns inserting index of InsertElement or InsertValue instruction, 629 /// using Offset as base offset for index. 630 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 631 int Index = Offset; 632 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 633 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 634 auto *VT = cast<FixedVectorType>(IE->getType()); 635 if (CI->getValue().uge(VT->getNumElements())) 636 return UndefMaskElem; 637 Index *= VT->getNumElements(); 638 Index += CI->getZExtValue(); 639 return Index; 640 } 641 if (isa<UndefValue>(IE->getOperand(2))) 642 return UndefMaskElem; 643 return None; 644 } 645 646 auto *IV = cast<InsertValueInst>(InsertInst); 647 Type *CurrentType = IV->getType(); 648 for (unsigned I : IV->indices()) { 649 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 650 Index *= ST->getNumElements(); 651 CurrentType = ST->getElementType(I); 652 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 653 Index *= AT->getNumElements(); 654 CurrentType = AT->getElementType(); 655 } else { 656 return None; 657 } 658 Index += I; 659 } 660 return Index; 661 } 662 663 /// Reorders the list of scalars in accordance with the given \p Order and then 664 /// the \p Mask. \p Order - is the original order of the scalars, need to 665 /// reorder scalars into an unordered state at first according to the given 666 /// order. Then the ordered scalars are shuffled once again in accordance with 667 /// the provided mask. 668 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 669 ArrayRef<int> Mask) { 670 assert(!Mask.empty() && "Expected non-empty mask."); 671 SmallVector<Value *> Prev(Scalars.size(), 672 UndefValue::get(Scalars.front()->getType())); 673 Prev.swap(Scalars); 674 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 675 if (Mask[I] != UndefMaskElem) 676 Scalars[Mask[I]] = Prev[I]; 677 } 678 679 namespace slpvectorizer { 680 681 /// Bottom Up SLP Vectorizer. 682 class BoUpSLP { 683 struct TreeEntry; 684 struct ScheduleData; 685 686 public: 687 using ValueList = SmallVector<Value *, 8>; 688 using InstrList = SmallVector<Instruction *, 16>; 689 using ValueSet = SmallPtrSet<Value *, 16>; 690 using StoreList = SmallVector<StoreInst *, 8>; 691 using ExtraValueToDebugLocsMap = 692 MapVector<Value *, SmallVector<Instruction *, 2>>; 693 using OrdersType = SmallVector<unsigned, 4>; 694 695 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 696 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 697 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 698 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 699 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 700 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 701 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 702 // Use the vector register size specified by the target unless overridden 703 // by a command-line option. 704 // TODO: It would be better to limit the vectorization factor based on 705 // data type rather than just register size. For example, x86 AVX has 706 // 256-bit registers, but it does not support integer operations 707 // at that width (that requires AVX2). 708 if (MaxVectorRegSizeOption.getNumOccurrences()) 709 MaxVecRegSize = MaxVectorRegSizeOption; 710 else 711 MaxVecRegSize = 712 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 713 .getFixedSize(); 714 715 if (MinVectorRegSizeOption.getNumOccurrences()) 716 MinVecRegSize = MinVectorRegSizeOption; 717 else 718 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 719 } 720 721 /// Vectorize the tree that starts with the elements in \p VL. 722 /// Returns the vectorized root. 723 Value *vectorizeTree(); 724 725 /// Vectorize the tree but with the list of externally used values \p 726 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 727 /// generated extractvalue instructions. 728 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 729 730 /// \returns the cost incurred by unwanted spills and fills, caused by 731 /// holding live values over call sites. 732 InstructionCost getSpillCost() const; 733 734 /// \returns the vectorization cost of the subtree that starts at \p VL. 735 /// A negative number means that this is profitable. 736 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 737 738 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 739 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 740 void buildTree(ArrayRef<Value *> Roots, 741 ArrayRef<Value *> UserIgnoreLst = None); 742 743 /// Builds external uses of the vectorized scalars, i.e. the list of 744 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 745 /// ExternallyUsedValues contains additional list of external uses to handle 746 /// vectorization of reductions. 747 void 748 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 749 750 /// Clear the internal data structures that are created by 'buildTree'. 751 void deleteTree() { 752 VectorizableTree.clear(); 753 ScalarToTreeEntry.clear(); 754 MustGather.clear(); 755 ExternalUses.clear(); 756 for (auto &Iter : BlocksSchedules) { 757 BlockScheduling *BS = Iter.second.get(); 758 BS->clear(); 759 } 760 MinBWs.clear(); 761 InstrElementSize.clear(); 762 } 763 764 unsigned getTreeSize() const { return VectorizableTree.size(); } 765 766 /// Perform LICM and CSE on the newly generated gather sequences. 767 void optimizeGatherSequence(); 768 769 /// Checks if the specified gather tree entry \p TE can be represented as a 770 /// shuffled vector entry + (possibly) permutation with other gathers. It 771 /// implements the checks only for possibly ordered scalars (Loads, 772 /// ExtractElement, ExtractValue), which can be part of the graph. 773 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 774 775 /// Reorders the current graph to the most profitable order starting from the 776 /// root node to the leaf nodes. The best order is chosen only from the nodes 777 /// of the same size (vectorization factor). Smaller nodes are considered 778 /// parts of subgraph with smaller VF and they are reordered independently. We 779 /// can make it because we still need to extend smaller nodes to the wider VF 780 /// and we can merge reordering shuffles with the widening shuffles. 781 void reorderTopToBottom(); 782 783 /// Reorders the current graph to the most profitable order starting from 784 /// leaves to the root. It allows to rotate small subgraphs and reduce the 785 /// number of reshuffles if the leaf nodes use the same order. In this case we 786 /// can merge the orders and just shuffle user node instead of shuffling its 787 /// operands. Plus, even the leaf nodes have different orders, it allows to 788 /// sink reordering in the graph closer to the root node and merge it later 789 /// during analysis. 790 void reorderBottomToTop(bool IgnoreReorder = false); 791 792 /// \return The vector element size in bits to use when vectorizing the 793 /// expression tree ending at \p V. If V is a store, the size is the width of 794 /// the stored value. Otherwise, the size is the width of the largest loaded 795 /// value reaching V. This method is used by the vectorizer to calculate 796 /// vectorization factors. 797 unsigned getVectorElementSize(Value *V); 798 799 /// Compute the minimum type sizes required to represent the entries in a 800 /// vectorizable tree. 801 void computeMinimumValueSizes(); 802 803 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 804 unsigned getMaxVecRegSize() const { 805 return MaxVecRegSize; 806 } 807 808 // \returns minimum vector register size as set by cl::opt. 809 unsigned getMinVecRegSize() const { 810 return MinVecRegSize; 811 } 812 813 unsigned getMinVF(unsigned Sz) const { 814 return std::max(2U, getMinVecRegSize() / Sz); 815 } 816 817 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 818 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 819 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 820 return MaxVF ? MaxVF : UINT_MAX; 821 } 822 823 /// Check if homogeneous aggregate is isomorphic to some VectorType. 824 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 825 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 826 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 827 /// 828 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 829 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 830 831 /// \returns True if the VectorizableTree is both tiny and not fully 832 /// vectorizable. We do not vectorize such trees. 833 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 834 835 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 836 /// can be load combined in the backend. Load combining may not be allowed in 837 /// the IR optimizer, so we do not want to alter the pattern. For example, 838 /// partially transforming a scalar bswap() pattern into vector code is 839 /// effectively impossible for the backend to undo. 840 /// TODO: If load combining is allowed in the IR optimizer, this analysis 841 /// may not be necessary. 842 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 843 844 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 845 /// can be load combined in the backend. Load combining may not be allowed in 846 /// the IR optimizer, so we do not want to alter the pattern. For example, 847 /// partially transforming a scalar bswap() pattern into vector code is 848 /// effectively impossible for the backend to undo. 849 /// TODO: If load combining is allowed in the IR optimizer, this analysis 850 /// may not be necessary. 851 bool isLoadCombineCandidate() const; 852 853 OptimizationRemarkEmitter *getORE() { return ORE; } 854 855 /// This structure holds any data we need about the edges being traversed 856 /// during buildTree_rec(). We keep track of: 857 /// (i) the user TreeEntry index, and 858 /// (ii) the index of the edge. 859 struct EdgeInfo { 860 EdgeInfo() = default; 861 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 862 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 863 /// The user TreeEntry. 864 TreeEntry *UserTE = nullptr; 865 /// The operand index of the use. 866 unsigned EdgeIdx = UINT_MAX; 867 #ifndef NDEBUG 868 friend inline raw_ostream &operator<<(raw_ostream &OS, 869 const BoUpSLP::EdgeInfo &EI) { 870 EI.dump(OS); 871 return OS; 872 } 873 /// Debug print. 874 void dump(raw_ostream &OS) const { 875 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 876 << " EdgeIdx:" << EdgeIdx << "}"; 877 } 878 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 879 #endif 880 }; 881 882 /// A helper data structure to hold the operands of a vector of instructions. 883 /// This supports a fixed vector length for all operand vectors. 884 class VLOperands { 885 /// For each operand we need (i) the value, and (ii) the opcode that it 886 /// would be attached to if the expression was in a left-linearized form. 887 /// This is required to avoid illegal operand reordering. 888 /// For example: 889 /// \verbatim 890 /// 0 Op1 891 /// |/ 892 /// Op1 Op2 Linearized + Op2 893 /// \ / ----------> |/ 894 /// - - 895 /// 896 /// Op1 - Op2 (0 + Op1) - Op2 897 /// \endverbatim 898 /// 899 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 900 /// 901 /// Another way to think of this is to track all the operations across the 902 /// path from the operand all the way to the root of the tree and to 903 /// calculate the operation that corresponds to this path. For example, the 904 /// path from Op2 to the root crosses the RHS of the '-', therefore the 905 /// corresponding operation is a '-' (which matches the one in the 906 /// linearized tree, as shown above). 907 /// 908 /// For lack of a better term, we refer to this operation as Accumulated 909 /// Path Operation (APO). 910 struct OperandData { 911 OperandData() = default; 912 OperandData(Value *V, bool APO, bool IsUsed) 913 : V(V), APO(APO), IsUsed(IsUsed) {} 914 /// The operand value. 915 Value *V = nullptr; 916 /// TreeEntries only allow a single opcode, or an alternate sequence of 917 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 918 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 919 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 920 /// (e.g., Add/Mul) 921 bool APO = false; 922 /// Helper data for the reordering function. 923 bool IsUsed = false; 924 }; 925 926 /// During operand reordering, we are trying to select the operand at lane 927 /// that matches best with the operand at the neighboring lane. Our 928 /// selection is based on the type of value we are looking for. For example, 929 /// if the neighboring lane has a load, we need to look for a load that is 930 /// accessing a consecutive address. These strategies are summarized in the 931 /// 'ReorderingMode' enumerator. 932 enum class ReorderingMode { 933 Load, ///< Matching loads to consecutive memory addresses 934 Opcode, ///< Matching instructions based on opcode (same or alternate) 935 Constant, ///< Matching constants 936 Splat, ///< Matching the same instruction multiple times (broadcast) 937 Failed, ///< We failed to create a vectorizable group 938 }; 939 940 using OperandDataVec = SmallVector<OperandData, 2>; 941 942 /// A vector of operand vectors. 943 SmallVector<OperandDataVec, 4> OpsVec; 944 945 const DataLayout &DL; 946 ScalarEvolution &SE; 947 const BoUpSLP &R; 948 949 /// \returns the operand data at \p OpIdx and \p Lane. 950 OperandData &getData(unsigned OpIdx, unsigned Lane) { 951 return OpsVec[OpIdx][Lane]; 952 } 953 954 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 955 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 956 return OpsVec[OpIdx][Lane]; 957 } 958 959 /// Clears the used flag for all entries. 960 void clearUsed() { 961 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 962 OpIdx != NumOperands; ++OpIdx) 963 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 964 ++Lane) 965 OpsVec[OpIdx][Lane].IsUsed = false; 966 } 967 968 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 969 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 970 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 971 } 972 973 // The hard-coded scores listed here are not very important. When computing 974 // the scores of matching one sub-tree with another, we are basically 975 // counting the number of values that are matching. So even if all scores 976 // are set to 1, we would still get a decent matching result. 977 // However, sometimes we have to break ties. For example we may have to 978 // choose between matching loads vs matching opcodes. This is what these 979 // scores are helping us with: they provide the order of preference. 980 981 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 982 static const int ScoreConsecutiveLoads = 3; 983 /// ExtractElementInst from same vector and consecutive indexes. 984 static const int ScoreConsecutiveExtracts = 3; 985 /// Constants. 986 static const int ScoreConstants = 2; 987 /// Instructions with the same opcode. 988 static const int ScoreSameOpcode = 2; 989 /// Instructions with alt opcodes (e.g, add + sub). 990 static const int ScoreAltOpcodes = 1; 991 /// Identical instructions (a.k.a. splat or broadcast). 992 static const int ScoreSplat = 1; 993 /// Matching with an undef is preferable to failing. 994 static const int ScoreUndef = 1; 995 /// Score for failing to find a decent match. 996 static const int ScoreFail = 0; 997 /// User exteranl to the vectorized code. 998 static const int ExternalUseCost = 1; 999 /// The user is internal but in a different lane. 1000 static const int UserInDiffLaneCost = ExternalUseCost; 1001 1002 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1003 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1004 ScalarEvolution &SE) { 1005 auto *LI1 = dyn_cast<LoadInst>(V1); 1006 auto *LI2 = dyn_cast<LoadInst>(V2); 1007 if (LI1 && LI2) { 1008 if (LI1->getParent() != LI2->getParent()) 1009 return VLOperands::ScoreFail; 1010 1011 Optional<int> Dist = getPointersDiff( 1012 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1013 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1014 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1015 : VLOperands::ScoreFail; 1016 } 1017 1018 auto *C1 = dyn_cast<Constant>(V1); 1019 auto *C2 = dyn_cast<Constant>(V2); 1020 if (C1 && C2) 1021 return VLOperands::ScoreConstants; 1022 1023 // Extracts from consecutive indexes of the same vector better score as 1024 // the extracts could be optimized away. 1025 Value *EV; 1026 ConstantInt *Ex1Idx, *Ex2Idx; 1027 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1028 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1029 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1030 return VLOperands::ScoreConsecutiveExtracts; 1031 1032 auto *I1 = dyn_cast<Instruction>(V1); 1033 auto *I2 = dyn_cast<Instruction>(V2); 1034 if (I1 && I2) { 1035 if (I1 == I2) 1036 return VLOperands::ScoreSplat; 1037 InstructionsState S = getSameOpcode({I1, I2}); 1038 // Note: Only consider instructions with <= 2 operands to avoid 1039 // complexity explosion. 1040 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1041 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1042 : VLOperands::ScoreSameOpcode; 1043 } 1044 1045 if (isa<UndefValue>(V2)) 1046 return VLOperands::ScoreUndef; 1047 1048 return VLOperands::ScoreFail; 1049 } 1050 1051 /// Holds the values and their lane that are taking part in the look-ahead 1052 /// score calculation. This is used in the external uses cost calculation. 1053 SmallDenseMap<Value *, int> InLookAheadValues; 1054 1055 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1056 /// either external to the vectorized code, or require shuffling. 1057 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1058 const std::pair<Value *, int> &RHS) { 1059 int Cost = 0; 1060 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1061 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1062 Value *V = Values[Idx].first; 1063 if (isa<Constant>(V)) { 1064 // Since this is a function pass, it doesn't make semantic sense to 1065 // walk the users of a subclass of Constant. The users could be in 1066 // another function, or even another module that happens to be in 1067 // the same LLVMContext. 1068 continue; 1069 } 1070 1071 // Calculate the absolute lane, using the minimum relative lane of LHS 1072 // and RHS as base and Idx as the offset. 1073 int Ln = std::min(LHS.second, RHS.second) + Idx; 1074 assert(Ln >= 0 && "Bad lane calculation"); 1075 unsigned UsersBudget = LookAheadUsersBudget; 1076 for (User *U : V->users()) { 1077 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1078 // The user is in the VectorizableTree. Check if we need to insert. 1079 auto It = llvm::find(UserTE->Scalars, U); 1080 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1081 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1082 assert(UserLn >= 0 && "Bad lane"); 1083 if (UserLn != Ln) 1084 Cost += UserInDiffLaneCost; 1085 } else { 1086 // Check if the user is in the look-ahead code. 1087 auto It2 = InLookAheadValues.find(U); 1088 if (It2 != InLookAheadValues.end()) { 1089 // The user is in the look-ahead code. Check the lane. 1090 if (It2->second != Ln) 1091 Cost += UserInDiffLaneCost; 1092 } else { 1093 // The user is neither in SLP tree nor in the look-ahead code. 1094 Cost += ExternalUseCost; 1095 } 1096 } 1097 // Limit the number of visited uses to cap compilation time. 1098 if (--UsersBudget == 0) 1099 break; 1100 } 1101 } 1102 return Cost; 1103 } 1104 1105 /// Go through the operands of \p LHS and \p RHS recursively until \p 1106 /// MaxLevel, and return the cummulative score. For example: 1107 /// \verbatim 1108 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1109 /// \ / \ / \ / \ / 1110 /// + + + + 1111 /// G1 G2 G3 G4 1112 /// \endverbatim 1113 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1114 /// each level recursively, accumulating the score. It starts from matching 1115 /// the additions at level 0, then moves on to the loads (level 1). The 1116 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1117 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1118 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1119 /// Please note that the order of the operands does not matter, as we 1120 /// evaluate the score of all profitable combinations of operands. In 1121 /// other words the score of G1 and G4 is the same as G1 and G2. This 1122 /// heuristic is based on ideas described in: 1123 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1124 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1125 /// Luís F. W. Góes 1126 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1127 const std::pair<Value *, int> &RHS, int CurrLevel, 1128 int MaxLevel) { 1129 1130 Value *V1 = LHS.first; 1131 Value *V2 = RHS.first; 1132 // Get the shallow score of V1 and V2. 1133 int ShallowScoreAtThisLevel = 1134 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1135 getExternalUsesCost(LHS, RHS)); 1136 int Lane1 = LHS.second; 1137 int Lane2 = RHS.second; 1138 1139 // If reached MaxLevel, 1140 // or if V1 and V2 are not instructions, 1141 // or if they are SPLAT, 1142 // or if they are not consecutive, early return the current cost. 1143 auto *I1 = dyn_cast<Instruction>(V1); 1144 auto *I2 = dyn_cast<Instruction>(V2); 1145 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1146 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1147 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1148 return ShallowScoreAtThisLevel; 1149 assert(I1 && I2 && "Should have early exited."); 1150 1151 // Keep track of in-tree values for determining the external-use cost. 1152 InLookAheadValues[V1] = Lane1; 1153 InLookAheadValues[V2] = Lane2; 1154 1155 // Contains the I2 operand indexes that got matched with I1 operands. 1156 SmallSet<unsigned, 4> Op2Used; 1157 1158 // Recursion towards the operands of I1 and I2. We are trying all possbile 1159 // operand pairs, and keeping track of the best score. 1160 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1161 OpIdx1 != NumOperands1; ++OpIdx1) { 1162 // Try to pair op1I with the best operand of I2. 1163 int MaxTmpScore = 0; 1164 unsigned MaxOpIdx2 = 0; 1165 bool FoundBest = false; 1166 // If I2 is commutative try all combinations. 1167 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1168 unsigned ToIdx = isCommutative(I2) 1169 ? I2->getNumOperands() 1170 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1171 assert(FromIdx <= ToIdx && "Bad index"); 1172 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1173 // Skip operands already paired with OpIdx1. 1174 if (Op2Used.count(OpIdx2)) 1175 continue; 1176 // Recursively calculate the cost at each level 1177 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1178 {I2->getOperand(OpIdx2), Lane2}, 1179 CurrLevel + 1, MaxLevel); 1180 // Look for the best score. 1181 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1182 MaxTmpScore = TmpScore; 1183 MaxOpIdx2 = OpIdx2; 1184 FoundBest = true; 1185 } 1186 } 1187 if (FoundBest) { 1188 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1189 Op2Used.insert(MaxOpIdx2); 1190 ShallowScoreAtThisLevel += MaxTmpScore; 1191 } 1192 } 1193 return ShallowScoreAtThisLevel; 1194 } 1195 1196 /// \Returns the look-ahead score, which tells us how much the sub-trees 1197 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1198 /// score. This helps break ties in an informed way when we cannot decide on 1199 /// the order of the operands by just considering the immediate 1200 /// predecessors. 1201 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1202 const std::pair<Value *, int> &RHS) { 1203 InLookAheadValues.clear(); 1204 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1205 } 1206 1207 // Search all operands in Ops[*][Lane] for the one that matches best 1208 // Ops[OpIdx][LastLane] and return its opreand index. 1209 // If no good match can be found, return None. 1210 Optional<unsigned> 1211 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1212 ArrayRef<ReorderingMode> ReorderingModes) { 1213 unsigned NumOperands = getNumOperands(); 1214 1215 // The operand of the previous lane at OpIdx. 1216 Value *OpLastLane = getData(OpIdx, LastLane).V; 1217 1218 // Our strategy mode for OpIdx. 1219 ReorderingMode RMode = ReorderingModes[OpIdx]; 1220 1221 // The linearized opcode of the operand at OpIdx, Lane. 1222 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1223 1224 // The best operand index and its score. 1225 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1226 // are using the score to differentiate between the two. 1227 struct BestOpData { 1228 Optional<unsigned> Idx = None; 1229 unsigned Score = 0; 1230 } BestOp; 1231 1232 // Iterate through all unused operands and look for the best. 1233 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1234 // Get the operand at Idx and Lane. 1235 OperandData &OpData = getData(Idx, Lane); 1236 Value *Op = OpData.V; 1237 bool OpAPO = OpData.APO; 1238 1239 // Skip already selected operands. 1240 if (OpData.IsUsed) 1241 continue; 1242 1243 // Skip if we are trying to move the operand to a position with a 1244 // different opcode in the linearized tree form. This would break the 1245 // semantics. 1246 if (OpAPO != OpIdxAPO) 1247 continue; 1248 1249 // Look for an operand that matches the current mode. 1250 switch (RMode) { 1251 case ReorderingMode::Load: 1252 case ReorderingMode::Constant: 1253 case ReorderingMode::Opcode: { 1254 bool LeftToRight = Lane > LastLane; 1255 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1256 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1257 unsigned Score = 1258 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1259 if (Score > BestOp.Score) { 1260 BestOp.Idx = Idx; 1261 BestOp.Score = Score; 1262 } 1263 break; 1264 } 1265 case ReorderingMode::Splat: 1266 if (Op == OpLastLane) 1267 BestOp.Idx = Idx; 1268 break; 1269 case ReorderingMode::Failed: 1270 return None; 1271 } 1272 } 1273 1274 if (BestOp.Idx) { 1275 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1276 return BestOp.Idx; 1277 } 1278 // If we could not find a good match return None. 1279 return None; 1280 } 1281 1282 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1283 /// reordering from. This is the one which has the least number of operands 1284 /// that can freely move about. 1285 unsigned getBestLaneToStartReordering() const { 1286 unsigned BestLane = 0; 1287 unsigned Min = UINT_MAX; 1288 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1289 ++Lane) { 1290 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1291 if (NumFreeOps < Min) { 1292 Min = NumFreeOps; 1293 BestLane = Lane; 1294 } 1295 } 1296 return BestLane; 1297 } 1298 1299 /// \Returns the maximum number of operands that are allowed to be reordered 1300 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1301 /// start operand reordering. 1302 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1303 unsigned CntTrue = 0; 1304 unsigned NumOperands = getNumOperands(); 1305 // Operands with the same APO can be reordered. We therefore need to count 1306 // how many of them we have for each APO, like this: Cnt[APO] = x. 1307 // Since we only have two APOs, namely true and false, we can avoid using 1308 // a map. Instead we can simply count the number of operands that 1309 // correspond to one of them (in this case the 'true' APO), and calculate 1310 // the other by subtracting it from the total number of operands. 1311 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1312 if (getData(OpIdx, Lane).APO) 1313 ++CntTrue; 1314 unsigned CntFalse = NumOperands - CntTrue; 1315 return std::max(CntTrue, CntFalse); 1316 } 1317 1318 /// Go through the instructions in VL and append their operands. 1319 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1320 assert(!VL.empty() && "Bad VL"); 1321 assert((empty() || VL.size() == getNumLanes()) && 1322 "Expected same number of lanes"); 1323 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1324 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1325 OpsVec.resize(NumOperands); 1326 unsigned NumLanes = VL.size(); 1327 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1328 OpsVec[OpIdx].resize(NumLanes); 1329 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1330 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1331 // Our tree has just 3 nodes: the root and two operands. 1332 // It is therefore trivial to get the APO. We only need to check the 1333 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1334 // RHS operand. The LHS operand of both add and sub is never attached 1335 // to an inversese operation in the linearized form, therefore its APO 1336 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1337 1338 // Since operand reordering is performed on groups of commutative 1339 // operations or alternating sequences (e.g., +, -), we can safely 1340 // tell the inverse operations by checking commutativity. 1341 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1342 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1343 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1344 APO, false}; 1345 } 1346 } 1347 } 1348 1349 /// \returns the number of operands. 1350 unsigned getNumOperands() const { return OpsVec.size(); } 1351 1352 /// \returns the number of lanes. 1353 unsigned getNumLanes() const { return OpsVec[0].size(); } 1354 1355 /// \returns the operand value at \p OpIdx and \p Lane. 1356 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1357 return getData(OpIdx, Lane).V; 1358 } 1359 1360 /// \returns true if the data structure is empty. 1361 bool empty() const { return OpsVec.empty(); } 1362 1363 /// Clears the data. 1364 void clear() { OpsVec.clear(); } 1365 1366 /// \Returns true if there are enough operands identical to \p Op to fill 1367 /// the whole vector. 1368 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1369 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1370 bool OpAPO = getData(OpIdx, Lane).APO; 1371 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1372 if (Ln == Lane) 1373 continue; 1374 // This is set to true if we found a candidate for broadcast at Lane. 1375 bool FoundCandidate = false; 1376 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1377 OperandData &Data = getData(OpI, Ln); 1378 if (Data.APO != OpAPO || Data.IsUsed) 1379 continue; 1380 if (Data.V == Op) { 1381 FoundCandidate = true; 1382 Data.IsUsed = true; 1383 break; 1384 } 1385 } 1386 if (!FoundCandidate) 1387 return false; 1388 } 1389 return true; 1390 } 1391 1392 public: 1393 /// Initialize with all the operands of the instruction vector \p RootVL. 1394 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1395 ScalarEvolution &SE, const BoUpSLP &R) 1396 : DL(DL), SE(SE), R(R) { 1397 // Append all the operands of RootVL. 1398 appendOperandsOfVL(RootVL); 1399 } 1400 1401 /// \Returns a value vector with the operands across all lanes for the 1402 /// opearnd at \p OpIdx. 1403 ValueList getVL(unsigned OpIdx) const { 1404 ValueList OpVL(OpsVec[OpIdx].size()); 1405 assert(OpsVec[OpIdx].size() == getNumLanes() && 1406 "Expected same num of lanes across all operands"); 1407 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1408 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1409 return OpVL; 1410 } 1411 1412 // Performs operand reordering for 2 or more operands. 1413 // The original operands are in OrigOps[OpIdx][Lane]. 1414 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1415 void reorder() { 1416 unsigned NumOperands = getNumOperands(); 1417 unsigned NumLanes = getNumLanes(); 1418 // Each operand has its own mode. We are using this mode to help us select 1419 // the instructions for each lane, so that they match best with the ones 1420 // we have selected so far. 1421 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1422 1423 // This is a greedy single-pass algorithm. We are going over each lane 1424 // once and deciding on the best order right away with no back-tracking. 1425 // However, in order to increase its effectiveness, we start with the lane 1426 // that has operands that can move the least. For example, given the 1427 // following lanes: 1428 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1429 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1430 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1431 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1432 // we will start at Lane 1, since the operands of the subtraction cannot 1433 // be reordered. Then we will visit the rest of the lanes in a circular 1434 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1435 1436 // Find the first lane that we will start our search from. 1437 unsigned FirstLane = getBestLaneToStartReordering(); 1438 1439 // Initialize the modes. 1440 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1441 Value *OpLane0 = getValue(OpIdx, FirstLane); 1442 // Keep track if we have instructions with all the same opcode on one 1443 // side. 1444 if (isa<LoadInst>(OpLane0)) 1445 ReorderingModes[OpIdx] = ReorderingMode::Load; 1446 else if (isa<Instruction>(OpLane0)) { 1447 // Check if OpLane0 should be broadcast. 1448 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1449 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1450 else 1451 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1452 } 1453 else if (isa<Constant>(OpLane0)) 1454 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1455 else if (isa<Argument>(OpLane0)) 1456 // Our best hope is a Splat. It may save some cost in some cases. 1457 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1458 else 1459 // NOTE: This should be unreachable. 1460 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1461 } 1462 1463 // If the initial strategy fails for any of the operand indexes, then we 1464 // perform reordering again in a second pass. This helps avoid assigning 1465 // high priority to the failed strategy, and should improve reordering for 1466 // the non-failed operand indexes. 1467 for (int Pass = 0; Pass != 2; ++Pass) { 1468 // Skip the second pass if the first pass did not fail. 1469 bool StrategyFailed = false; 1470 // Mark all operand data as free to use. 1471 clearUsed(); 1472 // We keep the original operand order for the FirstLane, so reorder the 1473 // rest of the lanes. We are visiting the nodes in a circular fashion, 1474 // using FirstLane as the center point and increasing the radius 1475 // distance. 1476 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1477 // Visit the lane on the right and then the lane on the left. 1478 for (int Direction : {+1, -1}) { 1479 int Lane = FirstLane + Direction * Distance; 1480 if (Lane < 0 || Lane >= (int)NumLanes) 1481 continue; 1482 int LastLane = Lane - Direction; 1483 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1484 "Out of bounds"); 1485 // Look for a good match for each operand. 1486 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1487 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1488 Optional<unsigned> BestIdx = 1489 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1490 // By not selecting a value, we allow the operands that follow to 1491 // select a better matching value. We will get a non-null value in 1492 // the next run of getBestOperand(). 1493 if (BestIdx) { 1494 // Swap the current operand with the one returned by 1495 // getBestOperand(). 1496 swap(OpIdx, BestIdx.getValue(), Lane); 1497 } else { 1498 // We failed to find a best operand, set mode to 'Failed'. 1499 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1500 // Enable the second pass. 1501 StrategyFailed = true; 1502 } 1503 } 1504 } 1505 } 1506 // Skip second pass if the strategy did not fail. 1507 if (!StrategyFailed) 1508 break; 1509 } 1510 } 1511 1512 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1513 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1514 switch (RMode) { 1515 case ReorderingMode::Load: 1516 return "Load"; 1517 case ReorderingMode::Opcode: 1518 return "Opcode"; 1519 case ReorderingMode::Constant: 1520 return "Constant"; 1521 case ReorderingMode::Splat: 1522 return "Splat"; 1523 case ReorderingMode::Failed: 1524 return "Failed"; 1525 } 1526 llvm_unreachable("Unimplemented Reordering Type"); 1527 } 1528 1529 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1530 raw_ostream &OS) { 1531 return OS << getModeStr(RMode); 1532 } 1533 1534 /// Debug print. 1535 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1536 printMode(RMode, dbgs()); 1537 } 1538 1539 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1540 return printMode(RMode, OS); 1541 } 1542 1543 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1544 const unsigned Indent = 2; 1545 unsigned Cnt = 0; 1546 for (const OperandDataVec &OpDataVec : OpsVec) { 1547 OS << "Operand " << Cnt++ << "\n"; 1548 for (const OperandData &OpData : OpDataVec) { 1549 OS.indent(Indent) << "{"; 1550 if (Value *V = OpData.V) 1551 OS << *V; 1552 else 1553 OS << "null"; 1554 OS << ", APO:" << OpData.APO << "}\n"; 1555 } 1556 OS << "\n"; 1557 } 1558 return OS; 1559 } 1560 1561 /// Debug print. 1562 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1563 #endif 1564 }; 1565 1566 /// Checks if the instruction is marked for deletion. 1567 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1568 1569 /// Marks values operands for later deletion by replacing them with Undefs. 1570 void eraseInstructions(ArrayRef<Value *> AV); 1571 1572 ~BoUpSLP(); 1573 1574 private: 1575 /// Checks if all users of \p I are the part of the vectorization tree. 1576 bool areAllUsersVectorized(Instruction *I, 1577 ArrayRef<Value *> VectorizedVals) const; 1578 1579 /// \returns the cost of the vectorizable entry. 1580 InstructionCost getEntryCost(const TreeEntry *E, 1581 ArrayRef<Value *> VectorizedVals); 1582 1583 /// This is the recursive part of buildTree. 1584 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1585 const EdgeInfo &EI); 1586 1587 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1588 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1589 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1590 /// returns false, setting \p CurrentOrder to either an empty vector or a 1591 /// non-identity permutation that allows to reuse extract instructions. 1592 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1593 SmallVectorImpl<unsigned> &CurrentOrder) const; 1594 1595 /// Vectorize a single entry in the tree. 1596 Value *vectorizeTree(TreeEntry *E); 1597 1598 /// Vectorize a single entry in the tree, starting in \p VL. 1599 Value *vectorizeTree(ArrayRef<Value *> VL); 1600 1601 /// \returns the scalarization cost for this type. Scalarization in this 1602 /// context means the creation of vectors from a group of scalars. 1603 InstructionCost 1604 getGatherCost(FixedVectorType *Ty, 1605 const DenseSet<unsigned> &ShuffledIndices) const; 1606 1607 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1608 /// tree entries. 1609 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1610 /// previous tree entries. \p Mask is filled with the shuffle mask. 1611 Optional<TargetTransformInfo::ShuffleKind> 1612 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1613 SmallVectorImpl<const TreeEntry *> &Entries); 1614 1615 /// \returns the scalarization cost for this list of values. Assuming that 1616 /// this subtree gets vectorized, we may need to extract the values from the 1617 /// roots. This method calculates the cost of extracting the values. 1618 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1619 1620 /// Set the Builder insert point to one after the last instruction in 1621 /// the bundle 1622 void setInsertPointAfterBundle(const TreeEntry *E); 1623 1624 /// \returns a vector from a collection of scalars in \p VL. 1625 Value *gather(ArrayRef<Value *> VL); 1626 1627 /// \returns whether the VectorizableTree is fully vectorizable and will 1628 /// be beneficial even the tree height is tiny. 1629 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1630 1631 /// Reorder commutative or alt operands to get better probability of 1632 /// generating vectorized code. 1633 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1634 SmallVectorImpl<Value *> &Left, 1635 SmallVectorImpl<Value *> &Right, 1636 const DataLayout &DL, 1637 ScalarEvolution &SE, 1638 const BoUpSLP &R); 1639 struct TreeEntry { 1640 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1641 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1642 1643 /// \returns true if the scalars in VL are equal to this entry. 1644 bool isSame(ArrayRef<Value *> VL) const { 1645 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1646 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1647 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1648 return VL.size() == Mask.size() && 1649 std::equal(VL.begin(), VL.end(), Mask.begin(), 1650 [Scalars](Value *V, int Idx) { 1651 return (isa<UndefValue>(V) && 1652 Idx == UndefMaskElem) || 1653 (Idx != UndefMaskElem && V == Scalars[Idx]); 1654 }); 1655 }; 1656 if (!ReorderIndices.empty()) { 1657 // TODO: implement matching if the nodes are just reordered, still can 1658 // treat the vector as the same if the list of scalars matches VL 1659 // directly, without reordering. 1660 SmallVector<int> Mask; 1661 inversePermutation(ReorderIndices, Mask); 1662 if (VL.size() == Scalars.size()) 1663 return IsSame(Scalars, Mask); 1664 if (VL.size() == ReuseShuffleIndices.size()) { 1665 ::addMask(Mask, ReuseShuffleIndices); 1666 return IsSame(Scalars, Mask); 1667 } 1668 return false; 1669 } 1670 return IsSame(Scalars, ReuseShuffleIndices); 1671 } 1672 1673 /// A vector of scalars. 1674 ValueList Scalars; 1675 1676 /// The Scalars are vectorized into this value. It is initialized to Null. 1677 Value *VectorizedValue = nullptr; 1678 1679 /// Do we need to gather this sequence or vectorize it 1680 /// (either with vector instruction or with scatter/gather 1681 /// intrinsics for store/load)? 1682 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1683 EntryState State; 1684 1685 /// Does this sequence require some shuffling? 1686 SmallVector<int, 4> ReuseShuffleIndices; 1687 1688 /// Does this entry require reordering? 1689 SmallVector<unsigned, 4> ReorderIndices; 1690 1691 /// Points back to the VectorizableTree. 1692 /// 1693 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1694 /// to be a pointer and needs to be able to initialize the child iterator. 1695 /// Thus we need a reference back to the container to translate the indices 1696 /// to entries. 1697 VecTreeTy &Container; 1698 1699 /// The TreeEntry index containing the user of this entry. We can actually 1700 /// have multiple users so the data structure is not truly a tree. 1701 SmallVector<EdgeInfo, 1> UserTreeIndices; 1702 1703 /// The index of this treeEntry in VectorizableTree. 1704 int Idx = -1; 1705 1706 private: 1707 /// The operands of each instruction in each lane Operands[op_index][lane]. 1708 /// Note: This helps avoid the replication of the code that performs the 1709 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1710 SmallVector<ValueList, 2> Operands; 1711 1712 /// The main/alternate instruction. 1713 Instruction *MainOp = nullptr; 1714 Instruction *AltOp = nullptr; 1715 1716 public: 1717 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1718 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1719 if (Operands.size() < OpIdx + 1) 1720 Operands.resize(OpIdx + 1); 1721 assert(Operands[OpIdx].empty() && "Already resized?"); 1722 Operands[OpIdx].resize(Scalars.size()); 1723 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1724 Operands[OpIdx][Lane] = OpVL[Lane]; 1725 } 1726 1727 /// Set the operands of this bundle in their original order. 1728 void setOperandsInOrder() { 1729 assert(Operands.empty() && "Already initialized?"); 1730 auto *I0 = cast<Instruction>(Scalars[0]); 1731 Operands.resize(I0->getNumOperands()); 1732 unsigned NumLanes = Scalars.size(); 1733 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1734 OpIdx != NumOperands; ++OpIdx) { 1735 Operands[OpIdx].resize(NumLanes); 1736 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1737 auto *I = cast<Instruction>(Scalars[Lane]); 1738 assert(I->getNumOperands() == NumOperands && 1739 "Expected same number of operands"); 1740 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1741 } 1742 } 1743 } 1744 1745 /// Reorders operands of the node to the given mask \p Mask. 1746 void reorderOperands(ArrayRef<int> Mask) { 1747 for (ValueList &Operand : Operands) 1748 reorderScalars(Operand, Mask); 1749 } 1750 1751 /// \returns the \p OpIdx operand of this TreeEntry. 1752 ValueList &getOperand(unsigned OpIdx) { 1753 assert(OpIdx < Operands.size() && "Off bounds"); 1754 return Operands[OpIdx]; 1755 } 1756 1757 /// \returns the number of operands. 1758 unsigned getNumOperands() const { return Operands.size(); } 1759 1760 /// \return the single \p OpIdx operand. 1761 Value *getSingleOperand(unsigned OpIdx) const { 1762 assert(OpIdx < Operands.size() && "Off bounds"); 1763 assert(!Operands[OpIdx].empty() && "No operand available"); 1764 return Operands[OpIdx][0]; 1765 } 1766 1767 /// Some of the instructions in the list have alternate opcodes. 1768 bool isAltShuffle() const { 1769 return getOpcode() != getAltOpcode(); 1770 } 1771 1772 bool isOpcodeOrAlt(Instruction *I) const { 1773 unsigned CheckedOpcode = I->getOpcode(); 1774 return (getOpcode() == CheckedOpcode || 1775 getAltOpcode() == CheckedOpcode); 1776 } 1777 1778 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1779 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1780 /// \p OpValue. 1781 Value *isOneOf(Value *Op) const { 1782 auto *I = dyn_cast<Instruction>(Op); 1783 if (I && isOpcodeOrAlt(I)) 1784 return Op; 1785 return MainOp; 1786 } 1787 1788 void setOperations(const InstructionsState &S) { 1789 MainOp = S.MainOp; 1790 AltOp = S.AltOp; 1791 } 1792 1793 Instruction *getMainOp() const { 1794 return MainOp; 1795 } 1796 1797 Instruction *getAltOp() const { 1798 return AltOp; 1799 } 1800 1801 /// The main/alternate opcodes for the list of instructions. 1802 unsigned getOpcode() const { 1803 return MainOp ? MainOp->getOpcode() : 0; 1804 } 1805 1806 unsigned getAltOpcode() const { 1807 return AltOp ? AltOp->getOpcode() : 0; 1808 } 1809 1810 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1811 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1812 int findLaneForValue(Value *V) const { 1813 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1814 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1815 if (!ReorderIndices.empty()) 1816 FoundLane = ReorderIndices[FoundLane]; 1817 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1818 if (!ReuseShuffleIndices.empty()) { 1819 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1820 find(ReuseShuffleIndices, FoundLane)); 1821 } 1822 return FoundLane; 1823 } 1824 1825 #ifndef NDEBUG 1826 /// Debug printer. 1827 LLVM_DUMP_METHOD void dump() const { 1828 dbgs() << Idx << ".\n"; 1829 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1830 dbgs() << "Operand " << OpI << ":\n"; 1831 for (const Value *V : Operands[OpI]) 1832 dbgs().indent(2) << *V << "\n"; 1833 } 1834 dbgs() << "Scalars: \n"; 1835 for (Value *V : Scalars) 1836 dbgs().indent(2) << *V << "\n"; 1837 dbgs() << "State: "; 1838 switch (State) { 1839 case Vectorize: 1840 dbgs() << "Vectorize\n"; 1841 break; 1842 case ScatterVectorize: 1843 dbgs() << "ScatterVectorize\n"; 1844 break; 1845 case NeedToGather: 1846 dbgs() << "NeedToGather\n"; 1847 break; 1848 } 1849 dbgs() << "MainOp: "; 1850 if (MainOp) 1851 dbgs() << *MainOp << "\n"; 1852 else 1853 dbgs() << "NULL\n"; 1854 dbgs() << "AltOp: "; 1855 if (AltOp) 1856 dbgs() << *AltOp << "\n"; 1857 else 1858 dbgs() << "NULL\n"; 1859 dbgs() << "VectorizedValue: "; 1860 if (VectorizedValue) 1861 dbgs() << *VectorizedValue << "\n"; 1862 else 1863 dbgs() << "NULL\n"; 1864 dbgs() << "ReuseShuffleIndices: "; 1865 if (ReuseShuffleIndices.empty()) 1866 dbgs() << "Empty"; 1867 else 1868 for (unsigned ReuseIdx : ReuseShuffleIndices) 1869 dbgs() << ReuseIdx << ", "; 1870 dbgs() << "\n"; 1871 dbgs() << "ReorderIndices: "; 1872 for (unsigned ReorderIdx : ReorderIndices) 1873 dbgs() << ReorderIdx << ", "; 1874 dbgs() << "\n"; 1875 dbgs() << "UserTreeIndices: "; 1876 for (const auto &EInfo : UserTreeIndices) 1877 dbgs() << EInfo << ", "; 1878 dbgs() << "\n"; 1879 } 1880 #endif 1881 }; 1882 1883 #ifndef NDEBUG 1884 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1885 InstructionCost VecCost, 1886 InstructionCost ScalarCost) const { 1887 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1888 dbgs() << "SLP: Costs:\n"; 1889 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1890 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1891 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1892 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1893 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1894 } 1895 #endif 1896 1897 /// Create a new VectorizableTree entry. 1898 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1899 const InstructionsState &S, 1900 const EdgeInfo &UserTreeIdx, 1901 ArrayRef<int> ReuseShuffleIndices = None, 1902 ArrayRef<unsigned> ReorderIndices = None) { 1903 TreeEntry::EntryState EntryState = 1904 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1905 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1906 ReuseShuffleIndices, ReorderIndices); 1907 } 1908 1909 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1910 TreeEntry::EntryState EntryState, 1911 Optional<ScheduleData *> Bundle, 1912 const InstructionsState &S, 1913 const EdgeInfo &UserTreeIdx, 1914 ArrayRef<int> ReuseShuffleIndices = None, 1915 ArrayRef<unsigned> ReorderIndices = None) { 1916 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1917 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1918 "Need to vectorize gather entry?"); 1919 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1920 TreeEntry *Last = VectorizableTree.back().get(); 1921 Last->Idx = VectorizableTree.size() - 1; 1922 Last->State = EntryState; 1923 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1924 ReuseShuffleIndices.end()); 1925 if (ReorderIndices.empty()) { 1926 Last->Scalars.assign(VL.begin(), VL.end()); 1927 Last->setOperations(S); 1928 } else { 1929 // Reorder scalars and build final mask. 1930 Last->Scalars.assign(VL.size(), nullptr); 1931 transform(ReorderIndices, Last->Scalars.begin(), 1932 [VL](unsigned Idx) -> Value * { 1933 if (Idx >= VL.size()) 1934 return UndefValue::get(VL.front()->getType()); 1935 return VL[Idx]; 1936 }); 1937 InstructionsState S = getSameOpcode(Last->Scalars); 1938 Last->setOperations(S); 1939 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1940 } 1941 if (Last->State != TreeEntry::NeedToGather) { 1942 for (Value *V : VL) { 1943 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1944 ScalarToTreeEntry[V] = Last; 1945 } 1946 // Update the scheduler bundle to point to this TreeEntry. 1947 unsigned Lane = 0; 1948 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1949 BundleMember = BundleMember->NextInBundle) { 1950 BundleMember->TE = Last; 1951 BundleMember->Lane = Lane; 1952 ++Lane; 1953 } 1954 assert((!Bundle.getValue() || Lane == VL.size()) && 1955 "Bundle and VL out of sync"); 1956 } else { 1957 MustGather.insert(VL.begin(), VL.end()); 1958 } 1959 1960 if (UserTreeIdx.UserTE) 1961 Last->UserTreeIndices.push_back(UserTreeIdx); 1962 1963 return Last; 1964 } 1965 1966 /// -- Vectorization State -- 1967 /// Holds all of the tree entries. 1968 TreeEntry::VecTreeTy VectorizableTree; 1969 1970 #ifndef NDEBUG 1971 /// Debug printer. 1972 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1973 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1974 VectorizableTree[Id]->dump(); 1975 dbgs() << "\n"; 1976 } 1977 } 1978 #endif 1979 1980 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1981 1982 const TreeEntry *getTreeEntry(Value *V) const { 1983 return ScalarToTreeEntry.lookup(V); 1984 } 1985 1986 /// Maps a specific scalar to its tree entry. 1987 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1988 1989 /// Maps a value to the proposed vectorizable size. 1990 SmallDenseMap<Value *, unsigned> InstrElementSize; 1991 1992 /// A list of scalars that we found that we need to keep as scalars. 1993 ValueSet MustGather; 1994 1995 /// This POD struct describes one external user in the vectorized tree. 1996 struct ExternalUser { 1997 ExternalUser(Value *S, llvm::User *U, int L) 1998 : Scalar(S), User(U), Lane(L) {} 1999 2000 // Which scalar in our function. 2001 Value *Scalar; 2002 2003 // Which user that uses the scalar. 2004 llvm::User *User; 2005 2006 // Which lane does the scalar belong to. 2007 int Lane; 2008 }; 2009 using UserList = SmallVector<ExternalUser, 16>; 2010 2011 /// Checks if two instructions may access the same memory. 2012 /// 2013 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2014 /// is invariant in the calling loop. 2015 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2016 Instruction *Inst2) { 2017 // First check if the result is already in the cache. 2018 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2019 Optional<bool> &result = AliasCache[key]; 2020 if (result.hasValue()) { 2021 return result.getValue(); 2022 } 2023 bool aliased = true; 2024 if (Loc1.Ptr && isSimple(Inst1)) 2025 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2026 // Store the result in the cache. 2027 result = aliased; 2028 return aliased; 2029 } 2030 2031 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2032 2033 /// Cache for alias results. 2034 /// TODO: consider moving this to the AliasAnalysis itself. 2035 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2036 2037 /// Removes an instruction from its block and eventually deletes it. 2038 /// It's like Instruction::eraseFromParent() except that the actual deletion 2039 /// is delayed until BoUpSLP is destructed. 2040 /// This is required to ensure that there are no incorrect collisions in the 2041 /// AliasCache, which can happen if a new instruction is allocated at the 2042 /// same address as a previously deleted instruction. 2043 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2044 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2045 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2046 } 2047 2048 /// Temporary store for deleted instructions. Instructions will be deleted 2049 /// eventually when the BoUpSLP is destructed. 2050 DenseMap<Instruction *, bool> DeletedInstructions; 2051 2052 /// A list of values that need to extracted out of the tree. 2053 /// This list holds pairs of (Internal Scalar : External User). External User 2054 /// can be nullptr, it means that this Internal Scalar will be used later, 2055 /// after vectorization. 2056 UserList ExternalUses; 2057 2058 /// Values used only by @llvm.assume calls. 2059 SmallPtrSet<const Value *, 32> EphValues; 2060 2061 /// Holds all of the instructions that we gathered. 2062 SetVector<Instruction *> GatherSeq; 2063 2064 /// A list of blocks that we are going to CSE. 2065 SetVector<BasicBlock *> CSEBlocks; 2066 2067 /// Contains all scheduling relevant data for an instruction. 2068 /// A ScheduleData either represents a single instruction or a member of an 2069 /// instruction bundle (= a group of instructions which is combined into a 2070 /// vector instruction). 2071 struct ScheduleData { 2072 // The initial value for the dependency counters. It means that the 2073 // dependencies are not calculated yet. 2074 enum { InvalidDeps = -1 }; 2075 2076 ScheduleData() = default; 2077 2078 void init(int BlockSchedulingRegionID, Value *OpVal) { 2079 FirstInBundle = this; 2080 NextInBundle = nullptr; 2081 NextLoadStore = nullptr; 2082 IsScheduled = false; 2083 SchedulingRegionID = BlockSchedulingRegionID; 2084 UnscheduledDepsInBundle = UnscheduledDeps; 2085 clearDependencies(); 2086 OpValue = OpVal; 2087 TE = nullptr; 2088 Lane = -1; 2089 } 2090 2091 /// Returns true if the dependency information has been calculated. 2092 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2093 2094 /// Returns true for single instructions and for bundle representatives 2095 /// (= the head of a bundle). 2096 bool isSchedulingEntity() const { return FirstInBundle == this; } 2097 2098 /// Returns true if it represents an instruction bundle and not only a 2099 /// single instruction. 2100 bool isPartOfBundle() const { 2101 return NextInBundle != nullptr || FirstInBundle != this; 2102 } 2103 2104 /// Returns true if it is ready for scheduling, i.e. it has no more 2105 /// unscheduled depending instructions/bundles. 2106 bool isReady() const { 2107 assert(isSchedulingEntity() && 2108 "can't consider non-scheduling entity for ready list"); 2109 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2110 } 2111 2112 /// Modifies the number of unscheduled dependencies, also updating it for 2113 /// the whole bundle. 2114 int incrementUnscheduledDeps(int Incr) { 2115 UnscheduledDeps += Incr; 2116 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2117 } 2118 2119 /// Sets the number of unscheduled dependencies to the number of 2120 /// dependencies. 2121 void resetUnscheduledDeps() { 2122 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2123 } 2124 2125 /// Clears all dependency information. 2126 void clearDependencies() { 2127 Dependencies = InvalidDeps; 2128 resetUnscheduledDeps(); 2129 MemoryDependencies.clear(); 2130 } 2131 2132 void dump(raw_ostream &os) const { 2133 if (!isSchedulingEntity()) { 2134 os << "/ " << *Inst; 2135 } else if (NextInBundle) { 2136 os << '[' << *Inst; 2137 ScheduleData *SD = NextInBundle; 2138 while (SD) { 2139 os << ';' << *SD->Inst; 2140 SD = SD->NextInBundle; 2141 } 2142 os << ']'; 2143 } else { 2144 os << *Inst; 2145 } 2146 } 2147 2148 Instruction *Inst = nullptr; 2149 2150 /// Points to the head in an instruction bundle (and always to this for 2151 /// single instructions). 2152 ScheduleData *FirstInBundle = nullptr; 2153 2154 /// Single linked list of all instructions in a bundle. Null if it is a 2155 /// single instruction. 2156 ScheduleData *NextInBundle = nullptr; 2157 2158 /// Single linked list of all memory instructions (e.g. load, store, call) 2159 /// in the block - until the end of the scheduling region. 2160 ScheduleData *NextLoadStore = nullptr; 2161 2162 /// The dependent memory instructions. 2163 /// This list is derived on demand in calculateDependencies(). 2164 SmallVector<ScheduleData *, 4> MemoryDependencies; 2165 2166 /// This ScheduleData is in the current scheduling region if this matches 2167 /// the current SchedulingRegionID of BlockScheduling. 2168 int SchedulingRegionID = 0; 2169 2170 /// Used for getting a "good" final ordering of instructions. 2171 int SchedulingPriority = 0; 2172 2173 /// The number of dependencies. Constitutes of the number of users of the 2174 /// instruction plus the number of dependent memory instructions (if any). 2175 /// This value is calculated on demand. 2176 /// If InvalidDeps, the number of dependencies is not calculated yet. 2177 int Dependencies = InvalidDeps; 2178 2179 /// The number of dependencies minus the number of dependencies of scheduled 2180 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2181 /// for scheduling. 2182 /// Note that this is negative as long as Dependencies is not calculated. 2183 int UnscheduledDeps = InvalidDeps; 2184 2185 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2186 /// single instructions. 2187 int UnscheduledDepsInBundle = InvalidDeps; 2188 2189 /// True if this instruction is scheduled (or considered as scheduled in the 2190 /// dry-run). 2191 bool IsScheduled = false; 2192 2193 /// Opcode of the current instruction in the schedule data. 2194 Value *OpValue = nullptr; 2195 2196 /// The TreeEntry that this instruction corresponds to. 2197 TreeEntry *TE = nullptr; 2198 2199 /// The lane of this node in the TreeEntry. 2200 int Lane = -1; 2201 }; 2202 2203 #ifndef NDEBUG 2204 friend inline raw_ostream &operator<<(raw_ostream &os, 2205 const BoUpSLP::ScheduleData &SD) { 2206 SD.dump(os); 2207 return os; 2208 } 2209 #endif 2210 2211 friend struct GraphTraits<BoUpSLP *>; 2212 friend struct DOTGraphTraits<BoUpSLP *>; 2213 2214 /// Contains all scheduling data for a basic block. 2215 struct BlockScheduling { 2216 BlockScheduling(BasicBlock *BB) 2217 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2218 2219 void clear() { 2220 ReadyInsts.clear(); 2221 ScheduleStart = nullptr; 2222 ScheduleEnd = nullptr; 2223 FirstLoadStoreInRegion = nullptr; 2224 LastLoadStoreInRegion = nullptr; 2225 2226 // Reduce the maximum schedule region size by the size of the 2227 // previous scheduling run. 2228 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2229 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2230 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2231 ScheduleRegionSize = 0; 2232 2233 // Make a new scheduling region, i.e. all existing ScheduleData is not 2234 // in the new region yet. 2235 ++SchedulingRegionID; 2236 } 2237 2238 ScheduleData *getScheduleData(Value *V) { 2239 ScheduleData *SD = ScheduleDataMap[V]; 2240 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2241 return SD; 2242 return nullptr; 2243 } 2244 2245 ScheduleData *getScheduleData(Value *V, Value *Key) { 2246 if (V == Key) 2247 return getScheduleData(V); 2248 auto I = ExtraScheduleDataMap.find(V); 2249 if (I != ExtraScheduleDataMap.end()) { 2250 ScheduleData *SD = I->second[Key]; 2251 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2252 return SD; 2253 } 2254 return nullptr; 2255 } 2256 2257 bool isInSchedulingRegion(ScheduleData *SD) const { 2258 return SD->SchedulingRegionID == SchedulingRegionID; 2259 } 2260 2261 /// Marks an instruction as scheduled and puts all dependent ready 2262 /// instructions into the ready-list. 2263 template <typename ReadyListType> 2264 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2265 SD->IsScheduled = true; 2266 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2267 2268 ScheduleData *BundleMember = SD; 2269 while (BundleMember) { 2270 if (BundleMember->Inst != BundleMember->OpValue) { 2271 BundleMember = BundleMember->NextInBundle; 2272 continue; 2273 } 2274 // Handle the def-use chain dependencies. 2275 2276 // Decrement the unscheduled counter and insert to ready list if ready. 2277 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2278 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2279 if (OpDef && OpDef->hasValidDependencies() && 2280 OpDef->incrementUnscheduledDeps(-1) == 0) { 2281 // There are no more unscheduled dependencies after 2282 // decrementing, so we can put the dependent instruction 2283 // into the ready list. 2284 ScheduleData *DepBundle = OpDef->FirstInBundle; 2285 assert(!DepBundle->IsScheduled && 2286 "already scheduled bundle gets ready"); 2287 ReadyList.insert(DepBundle); 2288 LLVM_DEBUG(dbgs() 2289 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2290 } 2291 }); 2292 }; 2293 2294 // If BundleMember is a vector bundle, its operands may have been 2295 // reordered duiring buildTree(). We therefore need to get its operands 2296 // through the TreeEntry. 2297 if (TreeEntry *TE = BundleMember->TE) { 2298 int Lane = BundleMember->Lane; 2299 assert(Lane >= 0 && "Lane not set"); 2300 2301 // Since vectorization tree is being built recursively this assertion 2302 // ensures that the tree entry has all operands set before reaching 2303 // this code. Couple of exceptions known at the moment are extracts 2304 // where their second (immediate) operand is not added. Since 2305 // immediates do not affect scheduler behavior this is considered 2306 // okay. 2307 auto *In = TE->getMainOp(); 2308 assert(In && 2309 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2310 In->getNumOperands() == TE->getNumOperands()) && 2311 "Missed TreeEntry operands?"); 2312 (void)In; // fake use to avoid build failure when assertions disabled 2313 2314 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2315 OpIdx != NumOperands; ++OpIdx) 2316 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2317 DecrUnsched(I); 2318 } else { 2319 // If BundleMember is a stand-alone instruction, no operand reordering 2320 // has taken place, so we directly access its operands. 2321 for (Use &U : BundleMember->Inst->operands()) 2322 if (auto *I = dyn_cast<Instruction>(U.get())) 2323 DecrUnsched(I); 2324 } 2325 // Handle the memory dependencies. 2326 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2327 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2328 // There are no more unscheduled dependencies after decrementing, 2329 // so we can put the dependent instruction into the ready list. 2330 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2331 assert(!DepBundle->IsScheduled && 2332 "already scheduled bundle gets ready"); 2333 ReadyList.insert(DepBundle); 2334 LLVM_DEBUG(dbgs() 2335 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2336 } 2337 } 2338 BundleMember = BundleMember->NextInBundle; 2339 } 2340 } 2341 2342 void doForAllOpcodes(Value *V, 2343 function_ref<void(ScheduleData *SD)> Action) { 2344 if (ScheduleData *SD = getScheduleData(V)) 2345 Action(SD); 2346 auto I = ExtraScheduleDataMap.find(V); 2347 if (I != ExtraScheduleDataMap.end()) 2348 for (auto &P : I->second) 2349 if (P.second->SchedulingRegionID == SchedulingRegionID) 2350 Action(P.second); 2351 } 2352 2353 /// Put all instructions into the ReadyList which are ready for scheduling. 2354 template <typename ReadyListType> 2355 void initialFillReadyList(ReadyListType &ReadyList) { 2356 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2357 doForAllOpcodes(I, [&](ScheduleData *SD) { 2358 if (SD->isSchedulingEntity() && SD->isReady()) { 2359 ReadyList.insert(SD); 2360 LLVM_DEBUG(dbgs() 2361 << "SLP: initially in ready list: " << *I << "\n"); 2362 } 2363 }); 2364 } 2365 } 2366 2367 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2368 /// cyclic dependencies. This is only a dry-run, no instructions are 2369 /// actually moved at this stage. 2370 /// \returns the scheduling bundle. The returned Optional value is non-None 2371 /// if \p VL is allowed to be scheduled. 2372 Optional<ScheduleData *> 2373 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2374 const InstructionsState &S); 2375 2376 /// Un-bundles a group of instructions. 2377 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2378 2379 /// Allocates schedule data chunk. 2380 ScheduleData *allocateScheduleDataChunks(); 2381 2382 /// Extends the scheduling region so that V is inside the region. 2383 /// \returns true if the region size is within the limit. 2384 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2385 2386 /// Initialize the ScheduleData structures for new instructions in the 2387 /// scheduling region. 2388 void initScheduleData(Instruction *FromI, Instruction *ToI, 2389 ScheduleData *PrevLoadStore, 2390 ScheduleData *NextLoadStore); 2391 2392 /// Updates the dependency information of a bundle and of all instructions/ 2393 /// bundles which depend on the original bundle. 2394 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2395 BoUpSLP *SLP); 2396 2397 /// Sets all instruction in the scheduling region to un-scheduled. 2398 void resetSchedule(); 2399 2400 BasicBlock *BB; 2401 2402 /// Simple memory allocation for ScheduleData. 2403 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2404 2405 /// The size of a ScheduleData array in ScheduleDataChunks. 2406 int ChunkSize; 2407 2408 /// The allocator position in the current chunk, which is the last entry 2409 /// of ScheduleDataChunks. 2410 int ChunkPos; 2411 2412 /// Attaches ScheduleData to Instruction. 2413 /// Note that the mapping survives during all vectorization iterations, i.e. 2414 /// ScheduleData structures are recycled. 2415 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2416 2417 /// Attaches ScheduleData to Instruction with the leading key. 2418 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2419 ExtraScheduleDataMap; 2420 2421 struct ReadyList : SmallVector<ScheduleData *, 8> { 2422 void insert(ScheduleData *SD) { push_back(SD); } 2423 }; 2424 2425 /// The ready-list for scheduling (only used for the dry-run). 2426 ReadyList ReadyInsts; 2427 2428 /// The first instruction of the scheduling region. 2429 Instruction *ScheduleStart = nullptr; 2430 2431 /// The first instruction _after_ the scheduling region. 2432 Instruction *ScheduleEnd = nullptr; 2433 2434 /// The first memory accessing instruction in the scheduling region 2435 /// (can be null). 2436 ScheduleData *FirstLoadStoreInRegion = nullptr; 2437 2438 /// The last memory accessing instruction in the scheduling region 2439 /// (can be null). 2440 ScheduleData *LastLoadStoreInRegion = nullptr; 2441 2442 /// The current size of the scheduling region. 2443 int ScheduleRegionSize = 0; 2444 2445 /// The maximum size allowed for the scheduling region. 2446 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2447 2448 /// The ID of the scheduling region. For a new vectorization iteration this 2449 /// is incremented which "removes" all ScheduleData from the region. 2450 // Make sure that the initial SchedulingRegionID is greater than the 2451 // initial SchedulingRegionID in ScheduleData (which is 0). 2452 int SchedulingRegionID = 1; 2453 }; 2454 2455 /// Attaches the BlockScheduling structures to basic blocks. 2456 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2457 2458 /// Performs the "real" scheduling. Done before vectorization is actually 2459 /// performed in a basic block. 2460 void scheduleBlock(BlockScheduling *BS); 2461 2462 /// List of users to ignore during scheduling and that don't need extracting. 2463 ArrayRef<Value *> UserIgnoreList; 2464 2465 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2466 /// sorted SmallVectors of unsigned. 2467 struct OrdersTypeDenseMapInfo { 2468 static OrdersType getEmptyKey() { 2469 OrdersType V; 2470 V.push_back(~1U); 2471 return V; 2472 } 2473 2474 static OrdersType getTombstoneKey() { 2475 OrdersType V; 2476 V.push_back(~2U); 2477 return V; 2478 } 2479 2480 static unsigned getHashValue(const OrdersType &V) { 2481 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2482 } 2483 2484 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2485 return LHS == RHS; 2486 } 2487 }; 2488 2489 // Analysis and block reference. 2490 Function *F; 2491 ScalarEvolution *SE; 2492 TargetTransformInfo *TTI; 2493 TargetLibraryInfo *TLI; 2494 AAResults *AA; 2495 LoopInfo *LI; 2496 DominatorTree *DT; 2497 AssumptionCache *AC; 2498 DemandedBits *DB; 2499 const DataLayout *DL; 2500 OptimizationRemarkEmitter *ORE; 2501 2502 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2503 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2504 2505 /// Instruction builder to construct the vectorized tree. 2506 IRBuilder<> Builder; 2507 2508 /// A map of scalar integer values to the smallest bit width with which they 2509 /// can legally be represented. The values map to (width, signed) pairs, 2510 /// where "width" indicates the minimum bit width and "signed" is True if the 2511 /// value must be signed-extended, rather than zero-extended, back to its 2512 /// original width. 2513 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2514 }; 2515 2516 } // end namespace slpvectorizer 2517 2518 template <> struct GraphTraits<BoUpSLP *> { 2519 using TreeEntry = BoUpSLP::TreeEntry; 2520 2521 /// NodeRef has to be a pointer per the GraphWriter. 2522 using NodeRef = TreeEntry *; 2523 2524 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2525 2526 /// Add the VectorizableTree to the index iterator to be able to return 2527 /// TreeEntry pointers. 2528 struct ChildIteratorType 2529 : public iterator_adaptor_base< 2530 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2531 ContainerTy &VectorizableTree; 2532 2533 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2534 ContainerTy &VT) 2535 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2536 2537 NodeRef operator*() { return I->UserTE; } 2538 }; 2539 2540 static NodeRef getEntryNode(BoUpSLP &R) { 2541 return R.VectorizableTree[0].get(); 2542 } 2543 2544 static ChildIteratorType child_begin(NodeRef N) { 2545 return {N->UserTreeIndices.begin(), N->Container}; 2546 } 2547 2548 static ChildIteratorType child_end(NodeRef N) { 2549 return {N->UserTreeIndices.end(), N->Container}; 2550 } 2551 2552 /// For the node iterator we just need to turn the TreeEntry iterator into a 2553 /// TreeEntry* iterator so that it dereferences to NodeRef. 2554 class nodes_iterator { 2555 using ItTy = ContainerTy::iterator; 2556 ItTy It; 2557 2558 public: 2559 nodes_iterator(const ItTy &It2) : It(It2) {} 2560 NodeRef operator*() { return It->get(); } 2561 nodes_iterator operator++() { 2562 ++It; 2563 return *this; 2564 } 2565 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2566 }; 2567 2568 static nodes_iterator nodes_begin(BoUpSLP *R) { 2569 return nodes_iterator(R->VectorizableTree.begin()); 2570 } 2571 2572 static nodes_iterator nodes_end(BoUpSLP *R) { 2573 return nodes_iterator(R->VectorizableTree.end()); 2574 } 2575 2576 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2577 }; 2578 2579 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2580 using TreeEntry = BoUpSLP::TreeEntry; 2581 2582 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2583 2584 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2585 std::string Str; 2586 raw_string_ostream OS(Str); 2587 if (isSplat(Entry->Scalars)) { 2588 OS << "<splat> " << *Entry->Scalars[0]; 2589 return Str; 2590 } 2591 for (auto V : Entry->Scalars) { 2592 OS << *V; 2593 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2594 return EU.Scalar == V; 2595 })) 2596 OS << " <extract>"; 2597 OS << "\n"; 2598 } 2599 return Str; 2600 } 2601 2602 static std::string getNodeAttributes(const TreeEntry *Entry, 2603 const BoUpSLP *) { 2604 if (Entry->State == TreeEntry::NeedToGather) 2605 return "color=red"; 2606 return ""; 2607 } 2608 }; 2609 2610 } // end namespace llvm 2611 2612 BoUpSLP::~BoUpSLP() { 2613 for (const auto &Pair : DeletedInstructions) { 2614 // Replace operands of ignored instructions with Undefs in case if they were 2615 // marked for deletion. 2616 if (Pair.getSecond()) { 2617 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2618 Pair.getFirst()->replaceAllUsesWith(Undef); 2619 } 2620 Pair.getFirst()->dropAllReferences(); 2621 } 2622 for (const auto &Pair : DeletedInstructions) { 2623 assert(Pair.getFirst()->use_empty() && 2624 "trying to erase instruction with users."); 2625 Pair.getFirst()->eraseFromParent(); 2626 } 2627 #ifdef EXPENSIVE_CHECKS 2628 // If we could guarantee that this call is not extremely slow, we could 2629 // remove the ifdef limitation (see PR47712). 2630 assert(!verifyFunction(*F, &dbgs())); 2631 #endif 2632 } 2633 2634 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2635 for (auto *V : AV) { 2636 if (auto *I = dyn_cast<Instruction>(V)) 2637 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2638 }; 2639 } 2640 2641 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2642 /// contains original mask for the scalars reused in the node. Procedure 2643 /// transform this mask in accordance with the given \p Mask. 2644 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2645 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2646 "Expected non-empty mask."); 2647 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2648 Prev.swap(Reuses); 2649 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2650 if (Mask[I] != UndefMaskElem) 2651 Reuses[Mask[I]] = Prev[I]; 2652 } 2653 2654 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2655 /// the original order of the scalars. Procedure transforms the provided order 2656 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2657 /// identity order, \p Order is cleared. 2658 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2659 assert(!Mask.empty() && "Expected non-empty mask."); 2660 SmallVector<int> MaskOrder; 2661 if (Order.empty()) { 2662 MaskOrder.resize(Mask.size()); 2663 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2664 } else { 2665 inversePermutation(Order, MaskOrder); 2666 } 2667 reorderReuses(MaskOrder, Mask); 2668 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2669 Order.clear(); 2670 return; 2671 } 2672 Order.assign(Mask.size(), Mask.size()); 2673 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2674 if (MaskOrder[I] != UndefMaskElem) 2675 Order[MaskOrder[I]] = I; 2676 fixupOrderingIndices(Order); 2677 } 2678 2679 Optional<BoUpSLP::OrdersType> 2680 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2681 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2682 unsigned NumScalars = TE.Scalars.size(); 2683 OrdersType CurrentOrder(NumScalars, NumScalars); 2684 SmallVector<int> Positions; 2685 SmallBitVector UsedPositions(NumScalars); 2686 const TreeEntry *STE = nullptr; 2687 // Try to find all gathered scalars that are gets vectorized in other 2688 // vectorize node. Here we can have only one single tree vector node to 2689 // correctly identify order of the gathered scalars. 2690 for (unsigned I = 0; I < NumScalars; ++I) { 2691 Value *V = TE.Scalars[I]; 2692 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2693 continue; 2694 if (const auto *LocalSTE = getTreeEntry(V)) { 2695 if (!STE) 2696 STE = LocalSTE; 2697 else if (STE != LocalSTE) 2698 // Take the order only from the single vector node. 2699 return None; 2700 unsigned Lane = 2701 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2702 if (Lane >= NumScalars) 2703 return None; 2704 if (CurrentOrder[Lane] != NumScalars) { 2705 if (Lane != I) 2706 continue; 2707 UsedPositions.reset(CurrentOrder[Lane]); 2708 } 2709 // The partial identity (where only some elements of the gather node are 2710 // in the identity order) is good. 2711 CurrentOrder[Lane] = I; 2712 UsedPositions.set(I); 2713 } 2714 } 2715 // Need to keep the order if we have a vector entry and at least 2 scalars or 2716 // the vectorized entry has just 2 scalars. 2717 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2718 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2719 for (unsigned I = 0; I < NumScalars; ++I) 2720 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2721 return false; 2722 return true; 2723 }; 2724 if (IsIdentityOrder(CurrentOrder)) { 2725 CurrentOrder.clear(); 2726 return CurrentOrder; 2727 } 2728 auto *It = CurrentOrder.begin(); 2729 for (unsigned I = 0; I < NumScalars;) { 2730 if (UsedPositions.test(I)) { 2731 ++I; 2732 continue; 2733 } 2734 if (*It == NumScalars) { 2735 *It = I; 2736 ++I; 2737 } 2738 ++It; 2739 } 2740 return CurrentOrder; 2741 } 2742 return None; 2743 } 2744 2745 void BoUpSLP::reorderTopToBottom() { 2746 // Maps VF to the graph nodes. 2747 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2748 // ExtractElement gather nodes which can be vectorized and need to handle 2749 // their ordering. 2750 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2751 // Find all reorderable nodes with the given VF. 2752 // Currently the are vectorized loads,extracts + some gathering of extracts. 2753 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2754 const std::unique_ptr<TreeEntry> &TE) { 2755 // No need to reorder if need to shuffle reuses, still need to shuffle the 2756 // node. 2757 if (!TE->ReuseShuffleIndices.empty()) 2758 return; 2759 if (TE->State == TreeEntry::Vectorize && 2760 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2761 InsertElementInst>(TE->getMainOp()) && 2762 !TE->isAltShuffle()) { 2763 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2764 return; 2765 } 2766 if (TE->State == TreeEntry::NeedToGather) { 2767 if (TE->getOpcode() == Instruction::ExtractElement && 2768 !TE->isAltShuffle() && 2769 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2770 ->getVectorOperandType()) && 2771 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2772 // Check that gather of extractelements can be represented as 2773 // just a shuffle of a single vector. 2774 OrdersType CurrentOrder; 2775 bool Reuse = 2776 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2777 if (Reuse || !CurrentOrder.empty()) { 2778 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2779 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2780 return; 2781 } 2782 } 2783 if (Optional<OrdersType> CurrentOrder = 2784 findReusedOrderedScalars(*TE.get())) { 2785 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2786 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2787 } 2788 } 2789 }); 2790 2791 // Reorder the graph nodes according to their vectorization factor. 2792 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2793 VF /= 2) { 2794 auto It = VFToOrderedEntries.find(VF); 2795 if (It == VFToOrderedEntries.end()) 2796 continue; 2797 // Try to find the most profitable order. We just are looking for the most 2798 // used order and reorder scalar elements in the nodes according to this 2799 // mostly used order. 2800 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2801 // All operands are reordered and used only in this node - propagate the 2802 // most used order to the user node. 2803 MapVector<OrdersType, unsigned, 2804 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 2805 OrdersUses; 2806 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2807 for (const TreeEntry *OpTE : OrderedEntries) { 2808 // No need to reorder this nodes, still need to extend and to use shuffle, 2809 // just need to merge reordering shuffle and the reuse shuffle. 2810 if (!OpTE->ReuseShuffleIndices.empty()) 2811 continue; 2812 // Count number of orders uses. 2813 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2814 if (OpTE->State == TreeEntry::NeedToGather) 2815 return GathersToOrders.find(OpTE)->second; 2816 return OpTE->ReorderIndices; 2817 }(); 2818 // Stores actually store the mask, not the order, need to invert. 2819 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2820 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2821 SmallVector<int> Mask; 2822 inversePermutation(Order, Mask); 2823 unsigned E = Order.size(); 2824 OrdersType CurrentOrder(E, E); 2825 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2826 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2827 }); 2828 fixupOrderingIndices(CurrentOrder); 2829 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 2830 } else { 2831 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 2832 } 2833 } 2834 // Set order of the user node. 2835 if (OrdersUses.empty()) 2836 continue; 2837 // Choose the most used order. 2838 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 2839 unsigned Cnt = OrdersUses.front().second; 2840 for (const auto &Pair : drop_begin(OrdersUses)) { 2841 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2842 BestOrder = Pair.first; 2843 Cnt = Pair.second; 2844 } 2845 } 2846 // Set order of the user node. 2847 if (BestOrder.empty()) 2848 continue; 2849 SmallVector<int> Mask; 2850 inversePermutation(BestOrder, Mask); 2851 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2852 unsigned E = BestOrder.size(); 2853 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2854 return I < E ? static_cast<int>(I) : UndefMaskElem; 2855 }); 2856 // Do an actual reordering, if profitable. 2857 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2858 // Just do the reordering for the nodes with the given VF. 2859 if (TE->Scalars.size() != VF) { 2860 if (TE->ReuseShuffleIndices.size() == VF) { 2861 // Need to reorder the reuses masks of the operands with smaller VF to 2862 // be able to find the match between the graph nodes and scalar 2863 // operands of the given node during vectorization/cost estimation. 2864 assert(all_of(TE->UserTreeIndices, 2865 [VF, &TE](const EdgeInfo &EI) { 2866 return EI.UserTE->Scalars.size() == VF || 2867 EI.UserTE->Scalars.size() == 2868 TE->Scalars.size(); 2869 }) && 2870 "All users must be of VF size."); 2871 // Update ordering of the operands with the smaller VF than the given 2872 // one. 2873 reorderReuses(TE->ReuseShuffleIndices, Mask); 2874 } 2875 continue; 2876 } 2877 if (TE->State == TreeEntry::Vectorize && 2878 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2879 InsertElementInst>(TE->getMainOp()) && 2880 !TE->isAltShuffle()) { 2881 // Build correct orders for extract{element,value}, loads and 2882 // stores. 2883 reorderOrder(TE->ReorderIndices, Mask); 2884 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2885 TE->reorderOperands(Mask); 2886 } else { 2887 // Reorder the node and its operands. 2888 TE->reorderOperands(Mask); 2889 assert(TE->ReorderIndices.empty() && 2890 "Expected empty reorder sequence."); 2891 reorderScalars(TE->Scalars, Mask); 2892 } 2893 if (!TE->ReuseShuffleIndices.empty()) { 2894 // Apply reversed order to keep the original ordering of the reused 2895 // elements to avoid extra reorder indices shuffling. 2896 OrdersType CurrentOrder; 2897 reorderOrder(CurrentOrder, MaskOrder); 2898 SmallVector<int> NewReuses; 2899 inversePermutation(CurrentOrder, NewReuses); 2900 addMask(NewReuses, TE->ReuseShuffleIndices); 2901 TE->ReuseShuffleIndices.swap(NewReuses); 2902 } 2903 } 2904 } 2905 } 2906 2907 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 2908 SetVector<TreeEntry *> OrderedEntries; 2909 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2910 // Find all reorderable leaf nodes with the given VF. 2911 // Currently the are vectorized loads,extracts without alternate operands + 2912 // some gathering of extracts. 2913 SmallVector<TreeEntry *> NonVectorized; 2914 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2915 &NonVectorized]( 2916 const std::unique_ptr<TreeEntry> &TE) { 2917 if (TE->State != TreeEntry::Vectorize) 2918 NonVectorized.push_back(TE.get()); 2919 // No need to reorder if need to shuffle reuses, still need to shuffle the 2920 // node. 2921 if (!TE->ReuseShuffleIndices.empty()) 2922 return; 2923 if (TE->State == TreeEntry::Vectorize && 2924 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 2925 !TE->isAltShuffle()) { 2926 OrderedEntries.insert(TE.get()); 2927 return; 2928 } 2929 if (TE->State == TreeEntry::NeedToGather) { 2930 if (TE->getOpcode() == Instruction::ExtractElement && 2931 !TE->isAltShuffle() && 2932 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2933 ->getVectorOperandType()) && 2934 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2935 // Check that gather of extractelements can be represented as 2936 // just a shuffle of a single vector with a single user only. 2937 OrdersType CurrentOrder; 2938 bool Reuse = 2939 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2940 if ((Reuse || !CurrentOrder.empty()) && 2941 !any_of(VectorizableTree, 2942 [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2943 return Entry->State == TreeEntry::NeedToGather && 2944 Entry.get() != TE.get() && 2945 Entry->isSame(TE->Scalars); 2946 })) { 2947 OrderedEntries.insert(TE.get()); 2948 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2949 return; 2950 } 2951 } 2952 if (Optional<OrdersType> CurrentOrder = 2953 findReusedOrderedScalars(*TE.get())) { 2954 OrderedEntries.insert(TE.get()); 2955 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2956 } 2957 } 2958 }); 2959 2960 // Checks if the operands of the users are reordarable and have only single 2961 // use. 2962 auto &&CheckOperands = 2963 [this, &NonVectorized](const auto &Data, 2964 SmallVectorImpl<TreeEntry *> &GatherOps) { 2965 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 2966 if (any_of(Data.second, 2967 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 2968 return OpData.first == I && 2969 OpData.second->State == TreeEntry::Vectorize; 2970 })) 2971 continue; 2972 ArrayRef<Value *> VL = Data.first->getOperand(I); 2973 const TreeEntry *TE = nullptr; 2974 const auto *It = find_if(VL, [this, &TE](Value *V) { 2975 TE = getTreeEntry(V); 2976 return TE; 2977 }); 2978 if (It != VL.end() && TE->isSame(VL)) 2979 return false; 2980 TreeEntry *Gather = nullptr; 2981 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 2982 assert(TE->State != TreeEntry::Vectorize && 2983 "Only non-vectorized nodes are expected."); 2984 if (TE->isSame(VL)) { 2985 Gather = TE; 2986 return true; 2987 } 2988 return false; 2989 }) > 1) 2990 return false; 2991 if (Gather) 2992 GatherOps.push_back(Gather); 2993 } 2994 return true; 2995 }; 2996 // 1. Propagate order to the graph nodes, which use only reordered nodes. 2997 // I.e., if the node has operands, that are reordered, try to make at least 2998 // one operand order in the natural order and reorder others + reorder the 2999 // user node itself. 3000 SmallPtrSet<const TreeEntry *, 4> Visited; 3001 while (!OrderedEntries.empty()) { 3002 // 1. Filter out only reordered nodes. 3003 // 2. If the entry has multiple uses - skip it and jump to the next node. 3004 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3005 SmallVector<TreeEntry *> Filtered; 3006 for (TreeEntry *TE : OrderedEntries) { 3007 if (!(TE->State == TreeEntry::Vectorize || 3008 (TE->State == TreeEntry::NeedToGather && 3009 GathersToOrders.count(TE))) || 3010 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3011 !all_of(drop_begin(TE->UserTreeIndices), 3012 [TE](const EdgeInfo &EI) { 3013 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3014 }) || 3015 !Visited.insert(TE).second) { 3016 Filtered.push_back(TE); 3017 continue; 3018 } 3019 // Build a map between user nodes and their operands order to speedup 3020 // search. The graph currently does not provide this dependency directly. 3021 for (EdgeInfo &EI : TE->UserTreeIndices) { 3022 TreeEntry *UserTE = EI.UserTE; 3023 auto It = Users.find(UserTE); 3024 if (It == Users.end()) 3025 It = Users.insert({UserTE, {}}).first; 3026 It->second.emplace_back(EI.EdgeIdx, TE); 3027 } 3028 } 3029 // Erase filtered entries. 3030 for_each(Filtered, 3031 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3032 for (const auto &Data : Users) { 3033 // Check that operands are used only in the User node. 3034 SmallVector<TreeEntry *> GatherOps; 3035 if (!CheckOperands(Data, GatherOps)) { 3036 for_each(Data.second, 3037 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3038 OrderedEntries.remove(Op.second); 3039 }); 3040 continue; 3041 } 3042 // All operands are reordered and used only in this node - propagate the 3043 // most used order to the user node. 3044 MapVector<OrdersType, unsigned, 3045 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3046 OrdersUses; 3047 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3048 for (const auto &Op : Data.second) { 3049 TreeEntry *OpTE = Op.second; 3050 if (!OpTE->ReuseShuffleIndices.empty() || 3051 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3052 continue; 3053 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3054 if (OpTE->State == TreeEntry::NeedToGather) 3055 return GathersToOrders.find(OpTE)->second; 3056 return OpTE->ReorderIndices; 3057 }(); 3058 // Stores actually store the mask, not the order, need to invert. 3059 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3060 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3061 SmallVector<int> Mask; 3062 inversePermutation(Order, Mask); 3063 unsigned E = Order.size(); 3064 OrdersType CurrentOrder(E, E); 3065 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3066 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3067 }); 3068 fixupOrderingIndices(CurrentOrder); 3069 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3070 } else { 3071 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3072 } 3073 if (VisitedOps.insert(OpTE).second) 3074 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3075 OpTE->UserTreeIndices.size(); 3076 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3077 --OrdersUses[{}]; 3078 } 3079 // If no orders - skip current nodes and jump to the next one, if any. 3080 if (OrdersUses.empty()) { 3081 for_each(Data.second, 3082 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3083 OrderedEntries.remove(Op.second); 3084 }); 3085 continue; 3086 } 3087 // Choose the best order. 3088 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3089 unsigned Cnt = OrdersUses.front().second; 3090 for (const auto &Pair : drop_begin(OrdersUses)) { 3091 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3092 BestOrder = Pair.first; 3093 Cnt = Pair.second; 3094 } 3095 } 3096 // Set order of the user node (reordering of operands and user nodes). 3097 if (BestOrder.empty()) { 3098 for_each(Data.second, 3099 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3100 OrderedEntries.remove(Op.second); 3101 }); 3102 continue; 3103 } 3104 // Erase operands from OrderedEntries list and adjust their orders. 3105 VisitedOps.clear(); 3106 SmallVector<int> Mask; 3107 inversePermutation(BestOrder, Mask); 3108 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3109 unsigned E = BestOrder.size(); 3110 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3111 return I < E ? static_cast<int>(I) : UndefMaskElem; 3112 }); 3113 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3114 TreeEntry *TE = Op.second; 3115 OrderedEntries.remove(TE); 3116 if (!VisitedOps.insert(TE).second) 3117 continue; 3118 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3119 // Just reorder reuses indices. 3120 reorderReuses(TE->ReuseShuffleIndices, Mask); 3121 continue; 3122 } 3123 // Gathers are processed separately. 3124 if (TE->State != TreeEntry::Vectorize) 3125 continue; 3126 assert((BestOrder.size() == TE->ReorderIndices.size() || 3127 TE->ReorderIndices.empty()) && 3128 "Non-matching sizes of user/operand entries."); 3129 reorderOrder(TE->ReorderIndices, Mask); 3130 } 3131 // For gathers just need to reorder its scalars. 3132 for (TreeEntry *Gather : GatherOps) { 3133 assert(Gather->ReorderIndices.empty() && 3134 "Unexpected reordering of gathers."); 3135 if (!Gather->ReuseShuffleIndices.empty()) { 3136 // Just reorder reuses indices. 3137 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3138 continue; 3139 } 3140 reorderScalars(Gather->Scalars, Mask); 3141 OrderedEntries.remove(Gather); 3142 } 3143 // Reorder operands of the user node and set the ordering for the user 3144 // node itself. 3145 if (Data.first->State != TreeEntry::Vectorize || 3146 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3147 Data.first->getMainOp()) || 3148 Data.first->isAltShuffle()) 3149 Data.first->reorderOperands(Mask); 3150 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3151 Data.first->isAltShuffle()) { 3152 reorderScalars(Data.first->Scalars, Mask); 3153 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3154 if (Data.first->ReuseShuffleIndices.empty() && 3155 !Data.first->ReorderIndices.empty() && 3156 !Data.first->isAltShuffle()) { 3157 // Insert user node to the list to try to sink reordering deeper in 3158 // the graph. 3159 OrderedEntries.insert(Data.first); 3160 } 3161 } else { 3162 reorderOrder(Data.first->ReorderIndices, Mask); 3163 } 3164 } 3165 } 3166 // If the reordering is unnecessary, just remove the reorder. 3167 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3168 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3169 VectorizableTree.front()->ReorderIndices.clear(); 3170 } 3171 3172 void BoUpSLP::buildExternalUses( 3173 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3174 // Collect the values that we need to extract from the tree. 3175 for (auto &TEPtr : VectorizableTree) { 3176 TreeEntry *Entry = TEPtr.get(); 3177 3178 // No need to handle users of gathered values. 3179 if (Entry->State == TreeEntry::NeedToGather) 3180 continue; 3181 3182 // For each lane: 3183 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3184 Value *Scalar = Entry->Scalars[Lane]; 3185 int FoundLane = Entry->findLaneForValue(Scalar); 3186 3187 // Check if the scalar is externally used as an extra arg. 3188 auto ExtI = ExternallyUsedValues.find(Scalar); 3189 if (ExtI != ExternallyUsedValues.end()) { 3190 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3191 << Lane << " from " << *Scalar << ".\n"); 3192 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3193 } 3194 for (User *U : Scalar->users()) { 3195 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3196 3197 Instruction *UserInst = dyn_cast<Instruction>(U); 3198 if (!UserInst) 3199 continue; 3200 3201 if (isDeleted(UserInst)) 3202 continue; 3203 3204 // Skip in-tree scalars that become vectors 3205 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3206 Value *UseScalar = UseEntry->Scalars[0]; 3207 // Some in-tree scalars will remain as scalar in vectorized 3208 // instructions. If that is the case, the one in Lane 0 will 3209 // be used. 3210 if (UseScalar != U || 3211 UseEntry->State == TreeEntry::ScatterVectorize || 3212 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3213 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3214 << ".\n"); 3215 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3216 continue; 3217 } 3218 } 3219 3220 // Ignore users in the user ignore list. 3221 if (is_contained(UserIgnoreList, UserInst)) 3222 continue; 3223 3224 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3225 << Lane << " from " << *Scalar << ".\n"); 3226 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3227 } 3228 } 3229 } 3230 } 3231 3232 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3233 ArrayRef<Value *> UserIgnoreLst) { 3234 deleteTree(); 3235 UserIgnoreList = UserIgnoreLst; 3236 if (!allSameType(Roots)) 3237 return; 3238 buildTree_rec(Roots, 0, EdgeInfo()); 3239 } 3240 3241 namespace { 3242 /// Tracks the state we can represent the loads in the given sequence. 3243 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3244 } // anonymous namespace 3245 3246 /// Checks if the given array of loads can be represented as a vectorized, 3247 /// scatter or just simple gather. 3248 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3249 const TargetTransformInfo &TTI, 3250 const DataLayout &DL, ScalarEvolution &SE, 3251 SmallVectorImpl<unsigned> &Order, 3252 SmallVectorImpl<Value *> &PointerOps) { 3253 // Check that a vectorized load would load the same memory as a scalar 3254 // load. For example, we don't want to vectorize loads that are smaller 3255 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3256 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3257 // from such a struct, we read/write packed bits disagreeing with the 3258 // unvectorized version. 3259 Type *ScalarTy = VL0->getType(); 3260 3261 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3262 return LoadsState::Gather; 3263 3264 // Make sure all loads in the bundle are simple - we can't vectorize 3265 // atomic or volatile loads. 3266 PointerOps.clear(); 3267 PointerOps.resize(VL.size()); 3268 auto *POIter = PointerOps.begin(); 3269 for (Value *V : VL) { 3270 auto *L = cast<LoadInst>(V); 3271 if (!L->isSimple()) 3272 return LoadsState::Gather; 3273 *POIter = L->getPointerOperand(); 3274 ++POIter; 3275 } 3276 3277 Order.clear(); 3278 // Check the order of pointer operands. 3279 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3280 Value *Ptr0; 3281 Value *PtrN; 3282 if (Order.empty()) { 3283 Ptr0 = PointerOps.front(); 3284 PtrN = PointerOps.back(); 3285 } else { 3286 Ptr0 = PointerOps[Order.front()]; 3287 PtrN = PointerOps[Order.back()]; 3288 } 3289 Optional<int> Diff = 3290 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3291 // Check that the sorted loads are consecutive. 3292 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3293 return LoadsState::Vectorize; 3294 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3295 for (Value *V : VL) 3296 CommonAlignment = 3297 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3298 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3299 CommonAlignment)) 3300 return LoadsState::ScatterVectorize; 3301 } 3302 3303 return LoadsState::Gather; 3304 } 3305 3306 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3307 const EdgeInfo &UserTreeIdx) { 3308 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3309 3310 SmallVector<int> ReuseShuffleIndicies; 3311 SmallVector<Value *> UniqueValues; 3312 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3313 &UserTreeIdx, 3314 this](const InstructionsState &S) { 3315 // Check that every instruction appears once in this bundle. 3316 DenseMap<Value *, unsigned> UniquePositions; 3317 for (Value *V : VL) { 3318 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3319 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3320 : Res.first->second); 3321 if (Res.second) 3322 UniqueValues.emplace_back(V); 3323 } 3324 size_t NumUniqueScalarValues = UniqueValues.size(); 3325 if (NumUniqueScalarValues == VL.size()) { 3326 ReuseShuffleIndicies.clear(); 3327 } else { 3328 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3329 if (NumUniqueScalarValues <= 1 || 3330 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3331 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3332 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3333 return false; 3334 } 3335 VL = UniqueValues; 3336 } 3337 return true; 3338 }; 3339 3340 InstructionsState S = getSameOpcode(VL); 3341 if (Depth == RecursionMaxDepth) { 3342 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3343 if (TryToFindDuplicates(S)) 3344 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3345 ReuseShuffleIndicies); 3346 return; 3347 } 3348 3349 // Don't handle scalable vectors 3350 if (S.getOpcode() == Instruction::ExtractElement && 3351 isa<ScalableVectorType>( 3352 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3353 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3354 if (TryToFindDuplicates(S)) 3355 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3356 ReuseShuffleIndicies); 3357 return; 3358 } 3359 3360 // Don't handle vectors. 3361 if (S.OpValue->getType()->isVectorTy() && 3362 !isa<InsertElementInst>(S.OpValue)) { 3363 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3364 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3365 return; 3366 } 3367 3368 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3369 if (SI->getValueOperand()->getType()->isVectorTy()) { 3370 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3371 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3372 return; 3373 } 3374 3375 // If all of the operands are identical or constant we have a simple solution. 3376 // If we deal with insert/extract instructions, they all must have constant 3377 // indices, otherwise we should gather them, not try to vectorize. 3378 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3379 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3380 !all_of(VL, isVectorLikeInstWithConstOps))) { 3381 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3382 if (TryToFindDuplicates(S)) 3383 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3384 ReuseShuffleIndicies); 3385 return; 3386 } 3387 3388 // We now know that this is a vector of instructions of the same type from 3389 // the same block. 3390 3391 // Don't vectorize ephemeral values. 3392 for (Value *V : VL) { 3393 if (EphValues.count(V)) { 3394 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3395 << ") is ephemeral.\n"); 3396 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3397 return; 3398 } 3399 } 3400 3401 // Check if this is a duplicate of another entry. 3402 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3403 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3404 if (!E->isSame(VL)) { 3405 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3406 if (TryToFindDuplicates(S)) 3407 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3408 ReuseShuffleIndicies); 3409 return; 3410 } 3411 // Record the reuse of the tree node. FIXME, currently this is only used to 3412 // properly draw the graph rather than for the actual vectorization. 3413 E->UserTreeIndices.push_back(UserTreeIdx); 3414 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3415 << ".\n"); 3416 return; 3417 } 3418 3419 // Check that none of the instructions in the bundle are already in the tree. 3420 for (Value *V : VL) { 3421 auto *I = dyn_cast<Instruction>(V); 3422 if (!I) 3423 continue; 3424 if (getTreeEntry(I)) { 3425 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3426 << ") is already in tree.\n"); 3427 if (TryToFindDuplicates(S)) 3428 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3429 ReuseShuffleIndicies); 3430 return; 3431 } 3432 } 3433 3434 // If any of the scalars is marked as a value that needs to stay scalar, then 3435 // we need to gather the scalars. 3436 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3437 for (Value *V : VL) { 3438 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3439 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3440 if (TryToFindDuplicates(S)) 3441 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3442 ReuseShuffleIndicies); 3443 return; 3444 } 3445 } 3446 3447 // Check that all of the users of the scalars that we want to vectorize are 3448 // schedulable. 3449 auto *VL0 = cast<Instruction>(S.OpValue); 3450 BasicBlock *BB = VL0->getParent(); 3451 3452 if (!DT->isReachableFromEntry(BB)) { 3453 // Don't go into unreachable blocks. They may contain instructions with 3454 // dependency cycles which confuse the final scheduling. 3455 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3456 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3457 return; 3458 } 3459 3460 // Check that every instruction appears once in this bundle. 3461 if (!TryToFindDuplicates(S)) 3462 return; 3463 3464 auto &BSRef = BlocksSchedules[BB]; 3465 if (!BSRef) 3466 BSRef = std::make_unique<BlockScheduling>(BB); 3467 3468 BlockScheduling &BS = *BSRef.get(); 3469 3470 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3471 if (!Bundle) { 3472 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3473 assert((!BS.getScheduleData(VL0) || 3474 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3475 "tryScheduleBundle should cancelScheduling on failure"); 3476 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3477 ReuseShuffleIndicies); 3478 return; 3479 } 3480 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3481 3482 unsigned ShuffleOrOp = S.isAltShuffle() ? 3483 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3484 switch (ShuffleOrOp) { 3485 case Instruction::PHI: { 3486 auto *PH = cast<PHINode>(VL0); 3487 3488 // Check for terminator values (e.g. invoke). 3489 for (Value *V : VL) 3490 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3491 Instruction *Term = dyn_cast<Instruction>( 3492 cast<PHINode>(V)->getIncomingValueForBlock( 3493 PH->getIncomingBlock(I))); 3494 if (Term && Term->isTerminator()) { 3495 LLVM_DEBUG(dbgs() 3496 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3497 BS.cancelScheduling(VL, VL0); 3498 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3499 ReuseShuffleIndicies); 3500 return; 3501 } 3502 } 3503 3504 TreeEntry *TE = 3505 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3506 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3507 3508 // Keeps the reordered operands to avoid code duplication. 3509 SmallVector<ValueList, 2> OperandsVec; 3510 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3511 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3512 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3513 TE->setOperand(I, Operands); 3514 OperandsVec.push_back(Operands); 3515 continue; 3516 } 3517 ValueList Operands; 3518 // Prepare the operand vector. 3519 for (Value *V : VL) 3520 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3521 PH->getIncomingBlock(I))); 3522 TE->setOperand(I, Operands); 3523 OperandsVec.push_back(Operands); 3524 } 3525 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3526 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3527 return; 3528 } 3529 case Instruction::ExtractValue: 3530 case Instruction::ExtractElement: { 3531 OrdersType CurrentOrder; 3532 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3533 if (Reuse) { 3534 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3535 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3536 ReuseShuffleIndicies); 3537 // This is a special case, as it does not gather, but at the same time 3538 // we are not extending buildTree_rec() towards the operands. 3539 ValueList Op0; 3540 Op0.assign(VL.size(), VL0->getOperand(0)); 3541 VectorizableTree.back()->setOperand(0, Op0); 3542 return; 3543 } 3544 if (!CurrentOrder.empty()) { 3545 LLVM_DEBUG({ 3546 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3547 "with order"; 3548 for (unsigned Idx : CurrentOrder) 3549 dbgs() << " " << Idx; 3550 dbgs() << "\n"; 3551 }); 3552 fixupOrderingIndices(CurrentOrder); 3553 // Insert new order with initial value 0, if it does not exist, 3554 // otherwise return the iterator to the existing one. 3555 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3556 ReuseShuffleIndicies, CurrentOrder); 3557 // This is a special case, as it does not gather, but at the same time 3558 // we are not extending buildTree_rec() towards the operands. 3559 ValueList Op0; 3560 Op0.assign(VL.size(), VL0->getOperand(0)); 3561 VectorizableTree.back()->setOperand(0, Op0); 3562 return; 3563 } 3564 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3565 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3566 ReuseShuffleIndicies); 3567 BS.cancelScheduling(VL, VL0); 3568 return; 3569 } 3570 case Instruction::InsertElement: { 3571 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3572 3573 // Check that we have a buildvector and not a shuffle of 2 or more 3574 // different vectors. 3575 ValueSet SourceVectors; 3576 int MinIdx = std::numeric_limits<int>::max(); 3577 for (Value *V : VL) { 3578 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3579 Optional<int> Idx = *getInsertIndex(V, 0); 3580 if (!Idx || *Idx == UndefMaskElem) 3581 continue; 3582 MinIdx = std::min(MinIdx, *Idx); 3583 } 3584 3585 if (count_if(VL, [&SourceVectors](Value *V) { 3586 return !SourceVectors.contains(V); 3587 }) >= 2) { 3588 // Found 2nd source vector - cancel. 3589 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3590 "different source vectors.\n"); 3591 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3592 BS.cancelScheduling(VL, VL0); 3593 return; 3594 } 3595 3596 auto OrdCompare = [](const std::pair<int, int> &P1, 3597 const std::pair<int, int> &P2) { 3598 return P1.first > P2.first; 3599 }; 3600 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3601 decltype(OrdCompare)> 3602 Indices(OrdCompare); 3603 for (int I = 0, E = VL.size(); I < E; ++I) { 3604 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3605 if (!Idx || *Idx == UndefMaskElem) 3606 continue; 3607 Indices.emplace(*Idx, I); 3608 } 3609 OrdersType CurrentOrder(VL.size(), VL.size()); 3610 bool IsIdentity = true; 3611 for (int I = 0, E = VL.size(); I < E; ++I) { 3612 CurrentOrder[Indices.top().second] = I; 3613 IsIdentity &= Indices.top().second == I; 3614 Indices.pop(); 3615 } 3616 if (IsIdentity) 3617 CurrentOrder.clear(); 3618 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3619 None, CurrentOrder); 3620 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3621 3622 constexpr int NumOps = 2; 3623 ValueList VectorOperands[NumOps]; 3624 for (int I = 0; I < NumOps; ++I) { 3625 for (Value *V : VL) 3626 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3627 3628 TE->setOperand(I, VectorOperands[I]); 3629 } 3630 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3631 return; 3632 } 3633 case Instruction::Load: { 3634 // Check that a vectorized load would load the same memory as a scalar 3635 // load. For example, we don't want to vectorize loads that are smaller 3636 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3637 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3638 // from such a struct, we read/write packed bits disagreeing with the 3639 // unvectorized version. 3640 SmallVector<Value *> PointerOps; 3641 OrdersType CurrentOrder; 3642 TreeEntry *TE = nullptr; 3643 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3644 PointerOps)) { 3645 case LoadsState::Vectorize: 3646 if (CurrentOrder.empty()) { 3647 // Original loads are consecutive and does not require reordering. 3648 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3649 ReuseShuffleIndicies); 3650 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3651 } else { 3652 fixupOrderingIndices(CurrentOrder); 3653 // Need to reorder. 3654 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3655 ReuseShuffleIndicies, CurrentOrder); 3656 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3657 } 3658 TE->setOperandsInOrder(); 3659 break; 3660 case LoadsState::ScatterVectorize: 3661 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3662 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3663 UserTreeIdx, ReuseShuffleIndicies); 3664 TE->setOperandsInOrder(); 3665 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3666 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3667 break; 3668 case LoadsState::Gather: 3669 BS.cancelScheduling(VL, VL0); 3670 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3671 ReuseShuffleIndicies); 3672 #ifndef NDEBUG 3673 Type *ScalarTy = VL0->getType(); 3674 if (DL->getTypeSizeInBits(ScalarTy) != 3675 DL->getTypeAllocSizeInBits(ScalarTy)) 3676 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3677 else if (any_of(VL, [](Value *V) { 3678 return !cast<LoadInst>(V)->isSimple(); 3679 })) 3680 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3681 else 3682 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3683 #endif // NDEBUG 3684 break; 3685 } 3686 return; 3687 } 3688 case Instruction::ZExt: 3689 case Instruction::SExt: 3690 case Instruction::FPToUI: 3691 case Instruction::FPToSI: 3692 case Instruction::FPExt: 3693 case Instruction::PtrToInt: 3694 case Instruction::IntToPtr: 3695 case Instruction::SIToFP: 3696 case Instruction::UIToFP: 3697 case Instruction::Trunc: 3698 case Instruction::FPTrunc: 3699 case Instruction::BitCast: { 3700 Type *SrcTy = VL0->getOperand(0)->getType(); 3701 for (Value *V : VL) { 3702 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3703 if (Ty != SrcTy || !isValidElementType(Ty)) { 3704 BS.cancelScheduling(VL, VL0); 3705 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3706 ReuseShuffleIndicies); 3707 LLVM_DEBUG(dbgs() 3708 << "SLP: Gathering casts with different src types.\n"); 3709 return; 3710 } 3711 } 3712 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3713 ReuseShuffleIndicies); 3714 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3715 3716 TE->setOperandsInOrder(); 3717 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3718 ValueList Operands; 3719 // Prepare the operand vector. 3720 for (Value *V : VL) 3721 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3722 3723 buildTree_rec(Operands, Depth + 1, {TE, i}); 3724 } 3725 return; 3726 } 3727 case Instruction::ICmp: 3728 case Instruction::FCmp: { 3729 // Check that all of the compares have the same predicate. 3730 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3731 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3732 Type *ComparedTy = VL0->getOperand(0)->getType(); 3733 for (Value *V : VL) { 3734 CmpInst *Cmp = cast<CmpInst>(V); 3735 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3736 Cmp->getOperand(0)->getType() != ComparedTy) { 3737 BS.cancelScheduling(VL, VL0); 3738 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3739 ReuseShuffleIndicies); 3740 LLVM_DEBUG(dbgs() 3741 << "SLP: Gathering cmp with different predicate.\n"); 3742 return; 3743 } 3744 } 3745 3746 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3747 ReuseShuffleIndicies); 3748 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3749 3750 ValueList Left, Right; 3751 if (cast<CmpInst>(VL0)->isCommutative()) { 3752 // Commutative predicate - collect + sort operands of the instructions 3753 // so that each side is more likely to have the same opcode. 3754 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3755 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3756 } else { 3757 // Collect operands - commute if it uses the swapped predicate. 3758 for (Value *V : VL) { 3759 auto *Cmp = cast<CmpInst>(V); 3760 Value *LHS = Cmp->getOperand(0); 3761 Value *RHS = Cmp->getOperand(1); 3762 if (Cmp->getPredicate() != P0) 3763 std::swap(LHS, RHS); 3764 Left.push_back(LHS); 3765 Right.push_back(RHS); 3766 } 3767 } 3768 TE->setOperand(0, Left); 3769 TE->setOperand(1, Right); 3770 buildTree_rec(Left, Depth + 1, {TE, 0}); 3771 buildTree_rec(Right, Depth + 1, {TE, 1}); 3772 return; 3773 } 3774 case Instruction::Select: 3775 case Instruction::FNeg: 3776 case Instruction::Add: 3777 case Instruction::FAdd: 3778 case Instruction::Sub: 3779 case Instruction::FSub: 3780 case Instruction::Mul: 3781 case Instruction::FMul: 3782 case Instruction::UDiv: 3783 case Instruction::SDiv: 3784 case Instruction::FDiv: 3785 case Instruction::URem: 3786 case Instruction::SRem: 3787 case Instruction::FRem: 3788 case Instruction::Shl: 3789 case Instruction::LShr: 3790 case Instruction::AShr: 3791 case Instruction::And: 3792 case Instruction::Or: 3793 case Instruction::Xor: { 3794 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3795 ReuseShuffleIndicies); 3796 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3797 3798 // Sort operands of the instructions so that each side is more likely to 3799 // have the same opcode. 3800 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3801 ValueList Left, Right; 3802 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3803 TE->setOperand(0, Left); 3804 TE->setOperand(1, Right); 3805 buildTree_rec(Left, Depth + 1, {TE, 0}); 3806 buildTree_rec(Right, Depth + 1, {TE, 1}); 3807 return; 3808 } 3809 3810 TE->setOperandsInOrder(); 3811 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3812 ValueList Operands; 3813 // Prepare the operand vector. 3814 for (Value *V : VL) 3815 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3816 3817 buildTree_rec(Operands, Depth + 1, {TE, i}); 3818 } 3819 return; 3820 } 3821 case Instruction::GetElementPtr: { 3822 // We don't combine GEPs with complicated (nested) indexing. 3823 for (Value *V : VL) { 3824 if (cast<Instruction>(V)->getNumOperands() != 2) { 3825 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3826 BS.cancelScheduling(VL, VL0); 3827 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3828 ReuseShuffleIndicies); 3829 return; 3830 } 3831 } 3832 3833 // We can't combine several GEPs into one vector if they operate on 3834 // different types. 3835 Type *Ty0 = VL0->getOperand(0)->getType(); 3836 for (Value *V : VL) { 3837 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3838 if (Ty0 != CurTy) { 3839 LLVM_DEBUG(dbgs() 3840 << "SLP: not-vectorizable GEP (different types).\n"); 3841 BS.cancelScheduling(VL, VL0); 3842 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3843 ReuseShuffleIndicies); 3844 return; 3845 } 3846 } 3847 3848 // We don't combine GEPs with non-constant indexes. 3849 Type *Ty1 = VL0->getOperand(1)->getType(); 3850 for (Value *V : VL) { 3851 auto Op = cast<Instruction>(V)->getOperand(1); 3852 if (!isa<ConstantInt>(Op) || 3853 (Op->getType() != Ty1 && 3854 Op->getType()->getScalarSizeInBits() > 3855 DL->getIndexSizeInBits( 3856 V->getType()->getPointerAddressSpace()))) { 3857 LLVM_DEBUG(dbgs() 3858 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3859 BS.cancelScheduling(VL, VL0); 3860 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3861 ReuseShuffleIndicies); 3862 return; 3863 } 3864 } 3865 3866 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3867 ReuseShuffleIndicies); 3868 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3869 TE->setOperandsInOrder(); 3870 for (unsigned i = 0, e = 2; i < e; ++i) { 3871 ValueList Operands; 3872 // Prepare the operand vector. 3873 for (Value *V : VL) 3874 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3875 3876 buildTree_rec(Operands, Depth + 1, {TE, i}); 3877 } 3878 return; 3879 } 3880 case Instruction::Store: { 3881 // Check if the stores are consecutive or if we need to swizzle them. 3882 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3883 // Avoid types that are padded when being allocated as scalars, while 3884 // being packed together in a vector (such as i1). 3885 if (DL->getTypeSizeInBits(ScalarTy) != 3886 DL->getTypeAllocSizeInBits(ScalarTy)) { 3887 BS.cancelScheduling(VL, VL0); 3888 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3889 ReuseShuffleIndicies); 3890 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3891 return; 3892 } 3893 // Make sure all stores in the bundle are simple - we can't vectorize 3894 // atomic or volatile stores. 3895 SmallVector<Value *, 4> PointerOps(VL.size()); 3896 ValueList Operands(VL.size()); 3897 auto POIter = PointerOps.begin(); 3898 auto OIter = Operands.begin(); 3899 for (Value *V : VL) { 3900 auto *SI = cast<StoreInst>(V); 3901 if (!SI->isSimple()) { 3902 BS.cancelScheduling(VL, VL0); 3903 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3904 ReuseShuffleIndicies); 3905 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3906 return; 3907 } 3908 *POIter = SI->getPointerOperand(); 3909 *OIter = SI->getValueOperand(); 3910 ++POIter; 3911 ++OIter; 3912 } 3913 3914 OrdersType CurrentOrder; 3915 // Check the order of pointer operands. 3916 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3917 Value *Ptr0; 3918 Value *PtrN; 3919 if (CurrentOrder.empty()) { 3920 Ptr0 = PointerOps.front(); 3921 PtrN = PointerOps.back(); 3922 } else { 3923 Ptr0 = PointerOps[CurrentOrder.front()]; 3924 PtrN = PointerOps[CurrentOrder.back()]; 3925 } 3926 Optional<int> Dist = 3927 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3928 // Check that the sorted pointer operands are consecutive. 3929 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3930 if (CurrentOrder.empty()) { 3931 // Original stores are consecutive and does not require reordering. 3932 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3933 UserTreeIdx, ReuseShuffleIndicies); 3934 TE->setOperandsInOrder(); 3935 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3936 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3937 } else { 3938 fixupOrderingIndices(CurrentOrder); 3939 TreeEntry *TE = 3940 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3941 ReuseShuffleIndicies, CurrentOrder); 3942 TE->setOperandsInOrder(); 3943 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3944 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3945 } 3946 return; 3947 } 3948 } 3949 3950 BS.cancelScheduling(VL, VL0); 3951 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3952 ReuseShuffleIndicies); 3953 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3954 return; 3955 } 3956 case Instruction::Call: { 3957 // Check if the calls are all to the same vectorizable intrinsic or 3958 // library function. 3959 CallInst *CI = cast<CallInst>(VL0); 3960 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3961 3962 VFShape Shape = VFShape::get( 3963 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3964 false /*HasGlobalPred*/); 3965 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3966 3967 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3968 BS.cancelScheduling(VL, VL0); 3969 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3970 ReuseShuffleIndicies); 3971 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3972 return; 3973 } 3974 Function *F = CI->getCalledFunction(); 3975 unsigned NumArgs = CI->arg_size(); 3976 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3977 for (unsigned j = 0; j != NumArgs; ++j) 3978 if (hasVectorInstrinsicScalarOpd(ID, j)) 3979 ScalarArgs[j] = CI->getArgOperand(j); 3980 for (Value *V : VL) { 3981 CallInst *CI2 = dyn_cast<CallInst>(V); 3982 if (!CI2 || CI2->getCalledFunction() != F || 3983 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3984 (VecFunc && 3985 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3986 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3987 BS.cancelScheduling(VL, VL0); 3988 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3989 ReuseShuffleIndicies); 3990 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3991 << "\n"); 3992 return; 3993 } 3994 // Some intrinsics have scalar arguments and should be same in order for 3995 // them to be vectorized. 3996 for (unsigned j = 0; j != NumArgs; ++j) { 3997 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3998 Value *A1J = CI2->getArgOperand(j); 3999 if (ScalarArgs[j] != A1J) { 4000 BS.cancelScheduling(VL, VL0); 4001 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4002 ReuseShuffleIndicies); 4003 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4004 << " argument " << ScalarArgs[j] << "!=" << A1J 4005 << "\n"); 4006 return; 4007 } 4008 } 4009 } 4010 // Verify that the bundle operands are identical between the two calls. 4011 if (CI->hasOperandBundles() && 4012 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4013 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4014 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4015 BS.cancelScheduling(VL, VL0); 4016 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4017 ReuseShuffleIndicies); 4018 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4019 << *CI << "!=" << *V << '\n'); 4020 return; 4021 } 4022 } 4023 4024 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4025 ReuseShuffleIndicies); 4026 TE->setOperandsInOrder(); 4027 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4028 ValueList Operands; 4029 // Prepare the operand vector. 4030 for (Value *V : VL) { 4031 auto *CI2 = cast<CallInst>(V); 4032 Operands.push_back(CI2->getArgOperand(i)); 4033 } 4034 buildTree_rec(Operands, Depth + 1, {TE, i}); 4035 } 4036 return; 4037 } 4038 case Instruction::ShuffleVector: { 4039 // If this is not an alternate sequence of opcode like add-sub 4040 // then do not vectorize this instruction. 4041 if (!S.isAltShuffle()) { 4042 BS.cancelScheduling(VL, VL0); 4043 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4044 ReuseShuffleIndicies); 4045 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4046 return; 4047 } 4048 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4049 ReuseShuffleIndicies); 4050 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4051 4052 // Reorder operands if reordering would enable vectorization. 4053 if (isa<BinaryOperator>(VL0)) { 4054 ValueList Left, Right; 4055 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4056 TE->setOperand(0, Left); 4057 TE->setOperand(1, Right); 4058 buildTree_rec(Left, Depth + 1, {TE, 0}); 4059 buildTree_rec(Right, Depth + 1, {TE, 1}); 4060 return; 4061 } 4062 4063 TE->setOperandsInOrder(); 4064 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4065 ValueList Operands; 4066 // Prepare the operand vector. 4067 for (Value *V : VL) 4068 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4069 4070 buildTree_rec(Operands, Depth + 1, {TE, i}); 4071 } 4072 return; 4073 } 4074 default: 4075 BS.cancelScheduling(VL, VL0); 4076 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4077 ReuseShuffleIndicies); 4078 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4079 return; 4080 } 4081 } 4082 4083 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4084 unsigned N = 1; 4085 Type *EltTy = T; 4086 4087 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4088 isa<VectorType>(EltTy)) { 4089 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4090 // Check that struct is homogeneous. 4091 for (const auto *Ty : ST->elements()) 4092 if (Ty != *ST->element_begin()) 4093 return 0; 4094 N *= ST->getNumElements(); 4095 EltTy = *ST->element_begin(); 4096 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4097 N *= AT->getNumElements(); 4098 EltTy = AT->getElementType(); 4099 } else { 4100 auto *VT = cast<FixedVectorType>(EltTy); 4101 N *= VT->getNumElements(); 4102 EltTy = VT->getElementType(); 4103 } 4104 } 4105 4106 if (!isValidElementType(EltTy)) 4107 return 0; 4108 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4109 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4110 return 0; 4111 return N; 4112 } 4113 4114 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4115 SmallVectorImpl<unsigned> &CurrentOrder) const { 4116 Instruction *E0 = cast<Instruction>(OpValue); 4117 assert(E0->getOpcode() == Instruction::ExtractElement || 4118 E0->getOpcode() == Instruction::ExtractValue); 4119 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 4120 // Check if all of the extracts come from the same vector and from the 4121 // correct offset. 4122 Value *Vec = E0->getOperand(0); 4123 4124 CurrentOrder.clear(); 4125 4126 // We have to extract from a vector/aggregate with the same number of elements. 4127 unsigned NElts; 4128 if (E0->getOpcode() == Instruction::ExtractValue) { 4129 const DataLayout &DL = E0->getModule()->getDataLayout(); 4130 NElts = canMapToVector(Vec->getType(), DL); 4131 if (!NElts) 4132 return false; 4133 // Check if load can be rewritten as load of vector. 4134 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4135 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4136 return false; 4137 } else { 4138 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4139 } 4140 4141 if (NElts != VL.size()) 4142 return false; 4143 4144 // Check that all of the indices extract from the correct offset. 4145 bool ShouldKeepOrder = true; 4146 unsigned E = VL.size(); 4147 // Assign to all items the initial value E + 1 so we can check if the extract 4148 // instruction index was used already. 4149 // Also, later we can check that all the indices are used and we have a 4150 // consecutive access in the extract instructions, by checking that no 4151 // element of CurrentOrder still has value E + 1. 4152 CurrentOrder.assign(E, E + 1); 4153 unsigned I = 0; 4154 for (; I < E; ++I) { 4155 auto *Inst = cast<Instruction>(VL[I]); 4156 if (Inst->getOperand(0) != Vec) 4157 break; 4158 Optional<unsigned> Idx = getExtractIndex(Inst); 4159 if (!Idx) 4160 break; 4161 const unsigned ExtIdx = *Idx; 4162 if (ExtIdx != I) { 4163 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4164 break; 4165 ShouldKeepOrder = false; 4166 CurrentOrder[ExtIdx] = I; 4167 } else { 4168 if (CurrentOrder[I] != E + 1) 4169 break; 4170 CurrentOrder[I] = I; 4171 } 4172 } 4173 if (I < E) { 4174 CurrentOrder.clear(); 4175 return false; 4176 } 4177 4178 return ShouldKeepOrder; 4179 } 4180 4181 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4182 ArrayRef<Value *> VectorizedVals) const { 4183 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4184 llvm::all_of(I->users(), [this](User *U) { 4185 return ScalarToTreeEntry.count(U) > 0; 4186 }); 4187 } 4188 4189 static std::pair<InstructionCost, InstructionCost> 4190 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4191 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4192 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4193 4194 // Calculate the cost of the scalar and vector calls. 4195 SmallVector<Type *, 4> VecTys; 4196 for (Use &Arg : CI->args()) 4197 VecTys.push_back( 4198 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4199 FastMathFlags FMF; 4200 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4201 FMF = FPCI->getFastMathFlags(); 4202 SmallVector<const Value *> Arguments(CI->args()); 4203 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4204 dyn_cast<IntrinsicInst>(CI)); 4205 auto IntrinsicCost = 4206 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4207 4208 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4209 VecTy->getNumElements())), 4210 false /*HasGlobalPred*/); 4211 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4212 auto LibCost = IntrinsicCost; 4213 if (!CI->isNoBuiltin() && VecFunc) { 4214 // Calculate the cost of the vector library call. 4215 // If the corresponding vector call is cheaper, return its cost. 4216 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4217 TTI::TCK_RecipThroughput); 4218 } 4219 return {IntrinsicCost, LibCost}; 4220 } 4221 4222 /// Compute the cost of creating a vector of type \p VecTy containing the 4223 /// extracted values from \p VL. 4224 static InstructionCost 4225 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4226 TargetTransformInfo::ShuffleKind ShuffleKind, 4227 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4228 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4229 4230 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4231 VecTy->getNumElements() < NumOfParts) 4232 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4233 4234 bool AllConsecutive = true; 4235 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4236 unsigned Idx = -1; 4237 InstructionCost Cost = 0; 4238 4239 // Process extracts in blocks of EltsPerVector to check if the source vector 4240 // operand can be re-used directly. If not, add the cost of creating a shuffle 4241 // to extract the values into a vector register. 4242 for (auto *V : VL) { 4243 ++Idx; 4244 4245 // Reached the start of a new vector registers. 4246 if (Idx % EltsPerVector == 0) { 4247 AllConsecutive = true; 4248 continue; 4249 } 4250 4251 // Check all extracts for a vector register on the target directly 4252 // extract values in order. 4253 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4254 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4255 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4256 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4257 4258 if (AllConsecutive) 4259 continue; 4260 4261 // Skip all indices, except for the last index per vector block. 4262 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4263 continue; 4264 4265 // If we have a series of extracts which are not consecutive and hence 4266 // cannot re-use the source vector register directly, compute the shuffle 4267 // cost to extract the a vector with EltsPerVector elements. 4268 Cost += TTI.getShuffleCost( 4269 TargetTransformInfo::SK_PermuteSingleSrc, 4270 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4271 } 4272 return Cost; 4273 } 4274 4275 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4276 /// operations operands. 4277 static void 4278 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4279 ArrayRef<int> ReusesIndices, 4280 const function_ref<bool(Instruction *)> IsAltOp, 4281 SmallVectorImpl<int> &Mask, 4282 SmallVectorImpl<Value *> *OpScalars = nullptr, 4283 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4284 unsigned Sz = VL.size(); 4285 Mask.assign(Sz, UndefMaskElem); 4286 SmallVector<int> OrderMask; 4287 if (!ReorderIndices.empty()) 4288 inversePermutation(ReorderIndices, OrderMask); 4289 for (unsigned I = 0; I < Sz; ++I) { 4290 unsigned Idx = I; 4291 if (!ReorderIndices.empty()) 4292 Idx = OrderMask[I]; 4293 auto *OpInst = cast<Instruction>(VL[Idx]); 4294 if (IsAltOp(OpInst)) { 4295 Mask[I] = Sz + Idx; 4296 if (AltScalars) 4297 AltScalars->push_back(OpInst); 4298 } else { 4299 Mask[I] = Idx; 4300 if (OpScalars) 4301 OpScalars->push_back(OpInst); 4302 } 4303 } 4304 if (!ReusesIndices.empty()) { 4305 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4306 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4307 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4308 }); 4309 Mask.swap(NewMask); 4310 } 4311 } 4312 4313 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4314 ArrayRef<Value *> VectorizedVals) { 4315 ArrayRef<Value*> VL = E->Scalars; 4316 4317 Type *ScalarTy = VL[0]->getType(); 4318 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4319 ScalarTy = SI->getValueOperand()->getType(); 4320 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4321 ScalarTy = CI->getOperand(0)->getType(); 4322 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4323 ScalarTy = IE->getOperand(1)->getType(); 4324 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4325 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4326 4327 // If we have computed a smaller type for the expression, update VecTy so 4328 // that the costs will be accurate. 4329 if (MinBWs.count(VL[0])) 4330 VecTy = FixedVectorType::get( 4331 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4332 auto *FinalVecTy = VecTy; 4333 4334 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 4335 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4336 if (NeedToShuffleReuses) 4337 FinalVecTy = 4338 FixedVectorType::get(VecTy->getElementType(), ReuseShuffleNumbers); 4339 // FIXME: it tries to fix a problem with MSVC buildbots. 4340 TargetTransformInfo &TTIRef = *TTI; 4341 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4342 VectorizedVals](InstructionCost &Cost, 4343 bool IsGather) { 4344 DenseMap<Value *, int> ExtractVectorsTys; 4345 for (auto *V : VL) { 4346 // If all users of instruction are going to be vectorized and this 4347 // instruction itself is not going to be vectorized, consider this 4348 // instruction as dead and remove its cost from the final cost of the 4349 // vectorized tree. 4350 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4351 (IsGather && ScalarToTreeEntry.count(V))) 4352 continue; 4353 auto *EE = cast<ExtractElementInst>(V); 4354 unsigned Idx = *getExtractIndex(EE); 4355 if (TTIRef.getNumberOfParts(VecTy) != 4356 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4357 auto It = 4358 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4359 It->getSecond() = std::min<int>(It->second, Idx); 4360 } 4361 // Take credit for instruction that will become dead. 4362 if (EE->hasOneUse()) { 4363 Instruction *Ext = EE->user_back(); 4364 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4365 all_of(Ext->users(), 4366 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4367 // Use getExtractWithExtendCost() to calculate the cost of 4368 // extractelement/ext pair. 4369 Cost -= 4370 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4371 EE->getVectorOperandType(), Idx); 4372 // Add back the cost of s|zext which is subtracted separately. 4373 Cost += TTIRef.getCastInstrCost( 4374 Ext->getOpcode(), Ext->getType(), EE->getType(), 4375 TTI::getCastContextHint(Ext), CostKind, Ext); 4376 continue; 4377 } 4378 } 4379 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4380 EE->getVectorOperandType(), Idx); 4381 } 4382 // Add a cost for subvector extracts/inserts if required. 4383 for (const auto &Data : ExtractVectorsTys) { 4384 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4385 unsigned NumElts = VecTy->getNumElements(); 4386 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4387 unsigned Idx = (Data.second / NumElts) * NumElts; 4388 unsigned EENumElts = EEVTy->getNumElements(); 4389 if (Idx + NumElts <= EENumElts) { 4390 Cost += 4391 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4392 EEVTy, None, Idx, VecTy); 4393 } else { 4394 // Need to round up the subvector type vectorization factor to avoid a 4395 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4396 // <= EENumElts. 4397 auto *SubVT = 4398 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4399 Cost += 4400 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4401 EEVTy, None, Idx, SubVT); 4402 } 4403 } else { 4404 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4405 VecTy, None, 0, EEVTy); 4406 } 4407 } 4408 }; 4409 if (E->State == TreeEntry::NeedToGather) { 4410 if (allConstant(VL)) 4411 return 0; 4412 if (isa<InsertElementInst>(VL[0])) 4413 return InstructionCost::getInvalid(); 4414 SmallVector<int> Mask; 4415 SmallVector<const TreeEntry *> Entries; 4416 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4417 isGatherShuffledEntry(E, Mask, Entries); 4418 if (Shuffle.hasValue()) { 4419 InstructionCost GatherCost = 0; 4420 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4421 // Perfect match in the graph, will reuse the previously vectorized 4422 // node. Cost is 0. 4423 LLVM_DEBUG( 4424 dbgs() 4425 << "SLP: perfect diamond match for gather bundle that starts with " 4426 << *VL.front() << ".\n"); 4427 if (NeedToShuffleReuses) 4428 GatherCost = 4429 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4430 FinalVecTy, E->ReuseShuffleIndices); 4431 } else { 4432 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4433 << " entries for bundle that starts with " 4434 << *VL.front() << ".\n"); 4435 // Detected that instead of gather we can emit a shuffle of single/two 4436 // previously vectorized nodes. Add the cost of the permutation rather 4437 // than gather. 4438 ::addMask(Mask, E->ReuseShuffleIndices); 4439 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4440 } 4441 return GatherCost; 4442 } 4443 if (isSplat(VL)) { 4444 // Found the broadcasting of the single scalar, calculate the cost as the 4445 // broadcast. 4446 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4447 } 4448 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4449 allSameBlock(VL) && 4450 !isa<ScalableVectorType>( 4451 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4452 // Check that gather of extractelements can be represented as just a 4453 // shuffle of a single/two vectors the scalars are extracted from. 4454 SmallVector<int> Mask; 4455 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4456 isFixedVectorShuffle(VL, Mask); 4457 if (ShuffleKind.hasValue()) { 4458 // Found the bunch of extractelement instructions that must be gathered 4459 // into a vector and can be represented as a permutation elements in a 4460 // single input vector or of 2 input vectors. 4461 InstructionCost Cost = 4462 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4463 AdjustExtractsCost(Cost, /*IsGather=*/true); 4464 if (NeedToShuffleReuses) 4465 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4466 FinalVecTy, E->ReuseShuffleIndices); 4467 return Cost; 4468 } 4469 } 4470 InstructionCost ReuseShuffleCost = 0; 4471 if (NeedToShuffleReuses) 4472 ReuseShuffleCost = TTI->getShuffleCost( 4473 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4474 // Improve gather cost for gather of loads, if we can group some of the 4475 // loads into vector loads. 4476 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4477 !E->isAltShuffle()) { 4478 BoUpSLP::ValueSet VectorizedLoads; 4479 unsigned StartIdx = 0; 4480 unsigned VF = VL.size() / 2; 4481 unsigned VectorizedCnt = 0; 4482 unsigned ScatterVectorizeCnt = 0; 4483 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4484 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4485 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4486 Cnt += VF) { 4487 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4488 if (!VectorizedLoads.count(Slice.front()) && 4489 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4490 SmallVector<Value *> PointerOps; 4491 OrdersType CurrentOrder; 4492 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4493 *SE, CurrentOrder, PointerOps); 4494 switch (LS) { 4495 case LoadsState::Vectorize: 4496 case LoadsState::ScatterVectorize: 4497 // Mark the vectorized loads so that we don't vectorize them 4498 // again. 4499 if (LS == LoadsState::Vectorize) 4500 ++VectorizedCnt; 4501 else 4502 ++ScatterVectorizeCnt; 4503 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4504 // If we vectorized initial block, no need to try to vectorize it 4505 // again. 4506 if (Cnt == StartIdx) 4507 StartIdx += VF; 4508 break; 4509 case LoadsState::Gather: 4510 break; 4511 } 4512 } 4513 } 4514 // Check if the whole array was vectorized already - exit. 4515 if (StartIdx >= VL.size()) 4516 break; 4517 // Found vectorizable parts - exit. 4518 if (!VectorizedLoads.empty()) 4519 break; 4520 } 4521 if (!VectorizedLoads.empty()) { 4522 InstructionCost GatherCost = 0; 4523 // Get the cost for gathered loads. 4524 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4525 if (VectorizedLoads.contains(VL[I])) 4526 continue; 4527 GatherCost += getGatherCost(VL.slice(I, VF)); 4528 } 4529 // The cost for vectorized loads. 4530 InstructionCost ScalarsCost = 0; 4531 for (Value *V : VectorizedLoads) { 4532 auto *LI = cast<LoadInst>(V); 4533 ScalarsCost += TTI->getMemoryOpCost( 4534 Instruction::Load, LI->getType(), LI->getAlign(), 4535 LI->getPointerAddressSpace(), CostKind, LI); 4536 } 4537 auto *LI = cast<LoadInst>(E->getMainOp()); 4538 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4539 Align Alignment = LI->getAlign(); 4540 GatherCost += 4541 VectorizedCnt * 4542 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4543 LI->getPointerAddressSpace(), CostKind, LI); 4544 GatherCost += ScatterVectorizeCnt * 4545 TTI->getGatherScatterOpCost( 4546 Instruction::Load, LoadTy, LI->getPointerOperand(), 4547 /*VariableMask=*/false, Alignment, CostKind, LI); 4548 // Add the cost for the subvectors shuffling. 4549 GatherCost += ((VL.size() - VF) / VF) * 4550 TTI->getShuffleCost(TTI::SK_Select, VecTy); 4551 return ReuseShuffleCost + GatherCost - ScalarsCost; 4552 } 4553 } 4554 return ReuseShuffleCost + getGatherCost(VL); 4555 } 4556 InstructionCost CommonCost = 0; 4557 SmallVector<int> Mask; 4558 if (!E->ReorderIndices.empty()) { 4559 SmallVector<int> NewMask; 4560 if (E->getOpcode() == Instruction::Store) { 4561 // For stores the order is actually a mask. 4562 NewMask.resize(E->ReorderIndices.size()); 4563 copy(E->ReorderIndices, NewMask.begin()); 4564 } else { 4565 inversePermutation(E->ReorderIndices, NewMask); 4566 } 4567 ::addMask(Mask, NewMask); 4568 } 4569 if (NeedToShuffleReuses) 4570 ::addMask(Mask, E->ReuseShuffleIndices); 4571 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4572 CommonCost = 4573 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4574 assert((E->State == TreeEntry::Vectorize || 4575 E->State == TreeEntry::ScatterVectorize) && 4576 "Unhandled state"); 4577 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4578 Instruction *VL0 = E->getMainOp(); 4579 unsigned ShuffleOrOp = 4580 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4581 switch (ShuffleOrOp) { 4582 case Instruction::PHI: 4583 return 0; 4584 4585 case Instruction::ExtractValue: 4586 case Instruction::ExtractElement: { 4587 // The common cost of removal ExtractElement/ExtractValue instructions + 4588 // the cost of shuffles, if required to resuffle the original vector. 4589 if (NeedToShuffleReuses) { 4590 unsigned Idx = 0; 4591 for (unsigned I : E->ReuseShuffleIndices) { 4592 if (ShuffleOrOp == Instruction::ExtractElement) { 4593 auto *EE = cast<ExtractElementInst>(VL[I]); 4594 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4595 EE->getVectorOperandType(), 4596 *getExtractIndex(EE)); 4597 } else { 4598 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4599 VecTy, Idx); 4600 ++Idx; 4601 } 4602 } 4603 Idx = ReuseShuffleNumbers; 4604 for (Value *V : VL) { 4605 if (ShuffleOrOp == Instruction::ExtractElement) { 4606 auto *EE = cast<ExtractElementInst>(V); 4607 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4608 EE->getVectorOperandType(), 4609 *getExtractIndex(EE)); 4610 } else { 4611 --Idx; 4612 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4613 VecTy, Idx); 4614 } 4615 } 4616 } 4617 if (ShuffleOrOp == Instruction::ExtractValue) { 4618 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4619 auto *EI = cast<Instruction>(VL[I]); 4620 // Take credit for instruction that will become dead. 4621 if (EI->hasOneUse()) { 4622 Instruction *Ext = EI->user_back(); 4623 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4624 all_of(Ext->users(), 4625 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4626 // Use getExtractWithExtendCost() to calculate the cost of 4627 // extractelement/ext pair. 4628 CommonCost -= TTI->getExtractWithExtendCost( 4629 Ext->getOpcode(), Ext->getType(), VecTy, I); 4630 // Add back the cost of s|zext which is subtracted separately. 4631 CommonCost += TTI->getCastInstrCost( 4632 Ext->getOpcode(), Ext->getType(), EI->getType(), 4633 TTI::getCastContextHint(Ext), CostKind, Ext); 4634 continue; 4635 } 4636 } 4637 CommonCost -= 4638 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4639 } 4640 } else { 4641 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4642 } 4643 return CommonCost; 4644 } 4645 case Instruction::InsertElement: { 4646 assert(E->ReuseShuffleIndices.empty() && 4647 "Unique insertelements only are expected."); 4648 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4649 4650 unsigned const NumElts = SrcVecTy->getNumElements(); 4651 unsigned const NumScalars = VL.size(); 4652 APInt DemandedElts = APInt::getZero(NumElts); 4653 // TODO: Add support for Instruction::InsertValue. 4654 SmallVector<int> Mask; 4655 if (!E->ReorderIndices.empty()) { 4656 inversePermutation(E->ReorderIndices, Mask); 4657 Mask.append(NumElts - NumScalars, UndefMaskElem); 4658 } else { 4659 Mask.assign(NumElts, UndefMaskElem); 4660 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4661 } 4662 unsigned Offset = *getInsertIndex(VL0, 0); 4663 bool IsIdentity = true; 4664 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4665 Mask.swap(PrevMask); 4666 for (unsigned I = 0; I < NumScalars; ++I) { 4667 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4668 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4669 continue; 4670 DemandedElts.setBit(*InsertIdx); 4671 IsIdentity &= *InsertIdx - Offset == I; 4672 Mask[*InsertIdx - Offset] = I; 4673 } 4674 assert(Offset < NumElts && "Failed to find vector index offset"); 4675 4676 InstructionCost Cost = 0; 4677 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4678 /*Insert*/ true, /*Extract*/ false); 4679 4680 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4681 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4682 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4683 Cost += TTI->getShuffleCost( 4684 TargetTransformInfo::SK_PermuteSingleSrc, 4685 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4686 } else if (!IsIdentity) { 4687 auto *FirstInsert = 4688 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4689 return !is_contained(E->Scalars, 4690 cast<Instruction>(V)->getOperand(0)); 4691 })); 4692 if (isa<UndefValue>(FirstInsert->getOperand(0))) { 4693 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4694 } else { 4695 SmallVector<int> InsertMask(NumElts); 4696 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4697 for (unsigned I = 0; I < NumElts; I++) { 4698 if (Mask[I] != UndefMaskElem) 4699 InsertMask[Offset + I] = NumElts + I; 4700 } 4701 Cost += 4702 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4703 } 4704 } 4705 4706 return Cost; 4707 } 4708 case Instruction::ZExt: 4709 case Instruction::SExt: 4710 case Instruction::FPToUI: 4711 case Instruction::FPToSI: 4712 case Instruction::FPExt: 4713 case Instruction::PtrToInt: 4714 case Instruction::IntToPtr: 4715 case Instruction::SIToFP: 4716 case Instruction::UIToFP: 4717 case Instruction::Trunc: 4718 case Instruction::FPTrunc: 4719 case Instruction::BitCast: { 4720 Type *SrcTy = VL0->getOperand(0)->getType(); 4721 InstructionCost ScalarEltCost = 4722 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4723 TTI::getCastContextHint(VL0), CostKind, VL0); 4724 if (NeedToShuffleReuses) { 4725 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4726 } 4727 4728 // Calculate the cost of this instruction. 4729 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4730 4731 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4732 InstructionCost VecCost = 0; 4733 // Check if the values are candidates to demote. 4734 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4735 VecCost = CommonCost + TTI->getCastInstrCost( 4736 E->getOpcode(), VecTy, SrcVecTy, 4737 TTI::getCastContextHint(VL0), CostKind, VL0); 4738 } 4739 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4740 return VecCost - ScalarCost; 4741 } 4742 case Instruction::FCmp: 4743 case Instruction::ICmp: 4744 case Instruction::Select: { 4745 // Calculate the cost of this instruction. 4746 InstructionCost ScalarEltCost = 4747 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4748 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4749 if (NeedToShuffleReuses) { 4750 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4751 } 4752 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4753 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4754 4755 // Check if all entries in VL are either compares or selects with compares 4756 // as condition that have the same predicates. 4757 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4758 bool First = true; 4759 for (auto *V : VL) { 4760 CmpInst::Predicate CurrentPred; 4761 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4762 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4763 !match(V, MatchCmp)) || 4764 (!First && VecPred != CurrentPred)) { 4765 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4766 break; 4767 } 4768 First = false; 4769 VecPred = CurrentPred; 4770 } 4771 4772 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4773 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4774 // Check if it is possible and profitable to use min/max for selects in 4775 // VL. 4776 // 4777 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4778 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4779 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4780 {VecTy, VecTy}); 4781 InstructionCost IntrinsicCost = 4782 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4783 // If the selects are the only uses of the compares, they will be dead 4784 // and we can adjust the cost by removing their cost. 4785 if (IntrinsicAndUse.second) 4786 IntrinsicCost -= 4787 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4788 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4789 VecCost = std::min(VecCost, IntrinsicCost); 4790 } 4791 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4792 return CommonCost + VecCost - ScalarCost; 4793 } 4794 case Instruction::FNeg: 4795 case Instruction::Add: 4796 case Instruction::FAdd: 4797 case Instruction::Sub: 4798 case Instruction::FSub: 4799 case Instruction::Mul: 4800 case Instruction::FMul: 4801 case Instruction::UDiv: 4802 case Instruction::SDiv: 4803 case Instruction::FDiv: 4804 case Instruction::URem: 4805 case Instruction::SRem: 4806 case Instruction::FRem: 4807 case Instruction::Shl: 4808 case Instruction::LShr: 4809 case Instruction::AShr: 4810 case Instruction::And: 4811 case Instruction::Or: 4812 case Instruction::Xor: { 4813 // Certain instructions can be cheaper to vectorize if they have a 4814 // constant second vector operand. 4815 TargetTransformInfo::OperandValueKind Op1VK = 4816 TargetTransformInfo::OK_AnyValue; 4817 TargetTransformInfo::OperandValueKind Op2VK = 4818 TargetTransformInfo::OK_UniformConstantValue; 4819 TargetTransformInfo::OperandValueProperties Op1VP = 4820 TargetTransformInfo::OP_None; 4821 TargetTransformInfo::OperandValueProperties Op2VP = 4822 TargetTransformInfo::OP_PowerOf2; 4823 4824 // If all operands are exactly the same ConstantInt then set the 4825 // operand kind to OK_UniformConstantValue. 4826 // If instead not all operands are constants, then set the operand kind 4827 // to OK_AnyValue. If all operands are constants but not the same, 4828 // then set the operand kind to OK_NonUniformConstantValue. 4829 ConstantInt *CInt0 = nullptr; 4830 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4831 const Instruction *I = cast<Instruction>(VL[i]); 4832 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4833 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4834 if (!CInt) { 4835 Op2VK = TargetTransformInfo::OK_AnyValue; 4836 Op2VP = TargetTransformInfo::OP_None; 4837 break; 4838 } 4839 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4840 !CInt->getValue().isPowerOf2()) 4841 Op2VP = TargetTransformInfo::OP_None; 4842 if (i == 0) { 4843 CInt0 = CInt; 4844 continue; 4845 } 4846 if (CInt0 != CInt) 4847 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4848 } 4849 4850 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4851 InstructionCost ScalarEltCost = 4852 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4853 Op2VK, Op1VP, Op2VP, Operands, VL0); 4854 if (NeedToShuffleReuses) { 4855 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4856 } 4857 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4858 InstructionCost VecCost = 4859 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4860 Op2VK, Op1VP, Op2VP, Operands, VL0); 4861 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4862 return CommonCost + VecCost - ScalarCost; 4863 } 4864 case Instruction::GetElementPtr: { 4865 TargetTransformInfo::OperandValueKind Op1VK = 4866 TargetTransformInfo::OK_AnyValue; 4867 TargetTransformInfo::OperandValueKind Op2VK = 4868 TargetTransformInfo::OK_UniformConstantValue; 4869 4870 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4871 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4872 if (NeedToShuffleReuses) { 4873 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4874 } 4875 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4876 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4877 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4878 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4879 return CommonCost + VecCost - ScalarCost; 4880 } 4881 case Instruction::Load: { 4882 // Cost of wide load - cost of scalar loads. 4883 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4884 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4885 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4886 if (NeedToShuffleReuses) { 4887 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4888 } 4889 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4890 InstructionCost VecLdCost; 4891 if (E->State == TreeEntry::Vectorize) { 4892 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4893 CostKind, VL0); 4894 } else { 4895 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4896 Align CommonAlignment = Alignment; 4897 for (Value *V : VL) 4898 CommonAlignment = 4899 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4900 VecLdCost = TTI->getGatherScatterOpCost( 4901 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4902 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4903 } 4904 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4905 return CommonCost + VecLdCost - ScalarLdCost; 4906 } 4907 case Instruction::Store: { 4908 // We know that we can merge the stores. Calculate the cost. 4909 bool IsReorder = !E->ReorderIndices.empty(); 4910 auto *SI = 4911 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4912 Align Alignment = SI->getAlign(); 4913 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4914 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4915 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4916 InstructionCost VecStCost = TTI->getMemoryOpCost( 4917 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4918 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4919 return CommonCost + VecStCost - ScalarStCost; 4920 } 4921 case Instruction::Call: { 4922 CallInst *CI = cast<CallInst>(VL0); 4923 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4924 4925 // Calculate the cost of the scalar and vector calls. 4926 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4927 InstructionCost ScalarEltCost = 4928 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4929 if (NeedToShuffleReuses) { 4930 CommonCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4931 } 4932 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4933 4934 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4935 InstructionCost VecCallCost = 4936 std::min(VecCallCosts.first, VecCallCosts.second); 4937 4938 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4939 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4940 << " for " << *CI << "\n"); 4941 4942 return CommonCost + VecCallCost - ScalarCallCost; 4943 } 4944 case Instruction::ShuffleVector: { 4945 assert(E->isAltShuffle() && 4946 ((Instruction::isBinaryOp(E->getOpcode()) && 4947 Instruction::isBinaryOp(E->getAltOpcode())) || 4948 (Instruction::isCast(E->getOpcode()) && 4949 Instruction::isCast(E->getAltOpcode()))) && 4950 "Invalid Shuffle Vector Operand"); 4951 InstructionCost ScalarCost = 0; 4952 if (NeedToShuffleReuses) { 4953 for (unsigned Idx : E->ReuseShuffleIndices) { 4954 Instruction *I = cast<Instruction>(VL[Idx]); 4955 CommonCost -= TTI->getInstructionCost(I, CostKind); 4956 } 4957 for (Value *V : VL) { 4958 Instruction *I = cast<Instruction>(V); 4959 CommonCost += TTI->getInstructionCost(I, CostKind); 4960 } 4961 } 4962 for (Value *V : VL) { 4963 Instruction *I = cast<Instruction>(V); 4964 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4965 ScalarCost += TTI->getInstructionCost(I, CostKind); 4966 } 4967 // VecCost is equal to sum of the cost of creating 2 vectors 4968 // and the cost of creating shuffle. 4969 InstructionCost VecCost = 0; 4970 if (Instruction::isBinaryOp(E->getOpcode())) { 4971 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4972 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4973 CostKind); 4974 } else { 4975 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4976 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4977 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4978 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4979 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4980 TTI::CastContextHint::None, CostKind); 4981 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4982 TTI::CastContextHint::None, CostKind); 4983 } 4984 4985 SmallVector<int> Mask; 4986 buildSuffleEntryMask( 4987 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 4988 [E](Instruction *I) { 4989 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4990 return I->getOpcode() == E->getAltOpcode(); 4991 }, 4992 Mask); 4993 CommonCost = 4994 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 4995 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4996 return CommonCost + VecCost - ScalarCost; 4997 } 4998 default: 4999 llvm_unreachable("Unknown instruction"); 5000 } 5001 } 5002 5003 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5004 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5005 << VectorizableTree.size() << " is fully vectorizable .\n"); 5006 5007 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5008 SmallVector<int> Mask; 5009 return TE->State == TreeEntry::NeedToGather && 5010 !any_of(TE->Scalars, 5011 [this](Value *V) { return EphValues.contains(V); }) && 5012 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5013 TE->Scalars.size() < Limit || 5014 (TE->getOpcode() == Instruction::ExtractElement && 5015 isFixedVectorShuffle(TE->Scalars, Mask))); 5016 }; 5017 5018 // We only handle trees of heights 1 and 2. 5019 if (VectorizableTree.size() == 1 && 5020 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5021 (ForReduction && 5022 AreVectorizableGathers(VectorizableTree[0].get(), 5023 VectorizableTree[0]->Scalars.size()) && 5024 (VectorizableTree[0]->Scalars.size() > 2 || 5025 VectorizableTree[0]->ReuseShuffleIndices.size() > 2)))) 5026 return true; 5027 5028 if (VectorizableTree.size() != 2) 5029 return false; 5030 5031 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5032 // with the second gather nodes if they have less scalar operands rather than 5033 // the initial tree element (may be profitable to shuffle the second gather) 5034 // or they are extractelements, which form shuffle. 5035 SmallVector<int> Mask; 5036 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5037 AreVectorizableGathers(VectorizableTree[1].get(), 5038 VectorizableTree[0]->Scalars.size())) 5039 return true; 5040 5041 // Gathering cost would be too much for tiny trees. 5042 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5043 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5044 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5045 return false; 5046 5047 return true; 5048 } 5049 5050 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5051 TargetTransformInfo *TTI, 5052 bool MustMatchOrInst) { 5053 // Look past the root to find a source value. Arbitrarily follow the 5054 // path through operand 0 of any 'or'. Also, peek through optional 5055 // shift-left-by-multiple-of-8-bits. 5056 Value *ZextLoad = Root; 5057 const APInt *ShAmtC; 5058 bool FoundOr = false; 5059 while (!isa<ConstantExpr>(ZextLoad) && 5060 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5061 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5062 ShAmtC->urem(8) == 0))) { 5063 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5064 ZextLoad = BinOp->getOperand(0); 5065 if (BinOp->getOpcode() == Instruction::Or) 5066 FoundOr = true; 5067 } 5068 // Check if the input is an extended load of the required or/shift expression. 5069 Value *LoadPtr; 5070 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5071 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 5072 return false; 5073 5074 // Require that the total load bit width is a legal integer type. 5075 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5076 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5077 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 5078 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5079 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5080 return false; 5081 5082 // Everything matched - assume that we can fold the whole sequence using 5083 // load combining. 5084 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5085 << *(cast<Instruction>(Root)) << "\n"); 5086 5087 return true; 5088 } 5089 5090 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5091 if (RdxKind != RecurKind::Or) 5092 return false; 5093 5094 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5095 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5096 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5097 /* MatchOr */ false); 5098 } 5099 5100 bool BoUpSLP::isLoadCombineCandidate() const { 5101 // Peek through a final sequence of stores and check if all operations are 5102 // likely to be load-combined. 5103 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5104 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5105 Value *X; 5106 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5107 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5108 return false; 5109 } 5110 return true; 5111 } 5112 5113 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5114 // No need to vectorize inserts of gathered values. 5115 if (VectorizableTree.size() == 2 && 5116 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5117 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5118 return true; 5119 5120 // We can vectorize the tree if its size is greater than or equal to the 5121 // minimum size specified by the MinTreeSize command line option. 5122 if (VectorizableTree.size() >= MinTreeSize) 5123 return false; 5124 5125 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5126 // can vectorize it if we can prove it fully vectorizable. 5127 if (isFullyVectorizableTinyTree(ForReduction)) 5128 return false; 5129 5130 assert(VectorizableTree.empty() 5131 ? ExternalUses.empty() 5132 : true && "We shouldn't have any external users"); 5133 5134 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5135 // vectorizable. 5136 return true; 5137 } 5138 5139 InstructionCost BoUpSLP::getSpillCost() const { 5140 // Walk from the bottom of the tree to the top, tracking which values are 5141 // live. When we see a call instruction that is not part of our tree, 5142 // query TTI to see if there is a cost to keeping values live over it 5143 // (for example, if spills and fills are required). 5144 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5145 InstructionCost Cost = 0; 5146 5147 SmallPtrSet<Instruction*, 4> LiveValues; 5148 Instruction *PrevInst = nullptr; 5149 5150 // The entries in VectorizableTree are not necessarily ordered by their 5151 // position in basic blocks. Collect them and order them by dominance so later 5152 // instructions are guaranteed to be visited first. For instructions in 5153 // different basic blocks, we only scan to the beginning of the block, so 5154 // their order does not matter, as long as all instructions in a basic block 5155 // are grouped together. Using dominance ensures a deterministic order. 5156 SmallVector<Instruction *, 16> OrderedScalars; 5157 for (const auto &TEPtr : VectorizableTree) { 5158 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5159 if (!Inst) 5160 continue; 5161 OrderedScalars.push_back(Inst); 5162 } 5163 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5164 auto *NodeA = DT->getNode(A->getParent()); 5165 auto *NodeB = DT->getNode(B->getParent()); 5166 assert(NodeA && "Should only process reachable instructions"); 5167 assert(NodeB && "Should only process reachable instructions"); 5168 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5169 "Different nodes should have different DFS numbers"); 5170 if (NodeA != NodeB) 5171 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5172 return B->comesBefore(A); 5173 }); 5174 5175 for (Instruction *Inst : OrderedScalars) { 5176 if (!PrevInst) { 5177 PrevInst = Inst; 5178 continue; 5179 } 5180 5181 // Update LiveValues. 5182 LiveValues.erase(PrevInst); 5183 for (auto &J : PrevInst->operands()) { 5184 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5185 LiveValues.insert(cast<Instruction>(&*J)); 5186 } 5187 5188 LLVM_DEBUG({ 5189 dbgs() << "SLP: #LV: " << LiveValues.size(); 5190 for (auto *X : LiveValues) 5191 dbgs() << " " << X->getName(); 5192 dbgs() << ", Looking at "; 5193 Inst->dump(); 5194 }); 5195 5196 // Now find the sequence of instructions between PrevInst and Inst. 5197 unsigned NumCalls = 0; 5198 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5199 PrevInstIt = 5200 PrevInst->getIterator().getReverse(); 5201 while (InstIt != PrevInstIt) { 5202 if (PrevInstIt == PrevInst->getParent()->rend()) { 5203 PrevInstIt = Inst->getParent()->rbegin(); 5204 continue; 5205 } 5206 5207 // Debug information does not impact spill cost. 5208 if ((isa<CallInst>(&*PrevInstIt) && 5209 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5210 &*PrevInstIt != PrevInst) 5211 NumCalls++; 5212 5213 ++PrevInstIt; 5214 } 5215 5216 if (NumCalls) { 5217 SmallVector<Type*, 4> V; 5218 for (auto *II : LiveValues) { 5219 auto *ScalarTy = II->getType(); 5220 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5221 ScalarTy = VectorTy->getElementType(); 5222 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5223 } 5224 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5225 } 5226 5227 PrevInst = Inst; 5228 } 5229 5230 return Cost; 5231 } 5232 5233 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5234 InstructionCost Cost = 0; 5235 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5236 << VectorizableTree.size() << ".\n"); 5237 5238 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5239 5240 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5241 TreeEntry &TE = *VectorizableTree[I].get(); 5242 5243 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5244 Cost += C; 5245 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5246 << " for bundle that starts with " << *TE.Scalars[0] 5247 << ".\n" 5248 << "SLP: Current total cost = " << Cost << "\n"); 5249 } 5250 5251 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5252 InstructionCost ExtractCost = 0; 5253 SmallVector<unsigned> VF; 5254 SmallVector<SmallVector<int>> ShuffleMask; 5255 SmallVector<Value *> FirstUsers; 5256 SmallVector<APInt> DemandedElts; 5257 for (ExternalUser &EU : ExternalUses) { 5258 // We only add extract cost once for the same scalar. 5259 if (!ExtractCostCalculated.insert(EU.Scalar).second) 5260 continue; 5261 5262 // Uses by ephemeral values are free (because the ephemeral value will be 5263 // removed prior to code generation, and so the extraction will be 5264 // removed as well). 5265 if (EphValues.count(EU.User)) 5266 continue; 5267 5268 // No extract cost for vector "scalar" 5269 if (isa<FixedVectorType>(EU.Scalar->getType())) 5270 continue; 5271 5272 // Already counted the cost for external uses when tried to adjust the cost 5273 // for extractelements, no need to add it again. 5274 if (isa<ExtractElementInst>(EU.Scalar)) 5275 continue; 5276 5277 // If found user is an insertelement, do not calculate extract cost but try 5278 // to detect it as a final shuffled/identity match. 5279 if (EU.User && isa<InsertElementInst>(EU.User)) { 5280 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5281 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5282 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5283 continue; 5284 Value *VU = EU.User; 5285 auto *It = find_if(FirstUsers, [VU](Value *V) { 5286 // Checks if 2 insertelements are from the same buildvector. 5287 if (VU->getType() != V->getType()) 5288 return false; 5289 auto *IE1 = cast<InsertElementInst>(VU); 5290 auto *IE2 = cast<InsertElementInst>(V); 5291 // Go though of insertelement instructions trying to find either VU as 5292 // the original vector for IE2 or V as the original vector for IE1. 5293 do { 5294 if (IE1 == VU || IE2 == V) 5295 return true; 5296 if (IE1) 5297 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5298 if (IE2) 5299 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5300 } while (IE1 || IE2); 5301 return false; 5302 }); 5303 int VecId = -1; 5304 if (It == FirstUsers.end()) { 5305 VF.push_back(FTy->getNumElements()); 5306 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5307 FirstUsers.push_back(EU.User); 5308 DemandedElts.push_back(APInt::getZero(VF.back())); 5309 VecId = FirstUsers.size() - 1; 5310 } else { 5311 VecId = std::distance(FirstUsers.begin(), It); 5312 } 5313 int Idx = *InsertIdx; 5314 ShuffleMask[VecId][Idx] = EU.Lane; 5315 DemandedElts[VecId].setBit(Idx); 5316 } 5317 } 5318 5319 // If we plan to rewrite the tree in a smaller type, we will need to sign 5320 // extend the extracted value back to the original type. Here, we account 5321 // for the extract and the added cost of the sign extend if needed. 5322 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5323 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5324 if (MinBWs.count(ScalarRoot)) { 5325 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5326 auto Extend = 5327 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5328 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5329 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5330 VecTy, EU.Lane); 5331 } else { 5332 ExtractCost += 5333 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5334 } 5335 } 5336 5337 InstructionCost SpillCost = getSpillCost(); 5338 Cost += SpillCost + ExtractCost; 5339 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5340 // For the very first element - simple shuffle of the source vector. 5341 int Limit = ShuffleMask[I].size() * 2; 5342 if (I == 0 && 5343 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5344 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5345 InstructionCost C = TTI->getShuffleCost( 5346 TTI::SK_PermuteSingleSrc, 5347 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5348 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5349 << " for final shuffle of insertelement external users " 5350 << *VectorizableTree.front()->Scalars.front() << ".\n" 5351 << "SLP: Current total cost = " << Cost << "\n"); 5352 Cost += C; 5353 continue; 5354 } 5355 // Other elements - permutation of 2 vectors (the initial one and the next 5356 // Ith incoming vector). 5357 unsigned VF = ShuffleMask[I].size(); 5358 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5359 int &Mask = ShuffleMask[I][Idx]; 5360 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5361 } 5362 InstructionCost C = TTI->getShuffleCost( 5363 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5364 ShuffleMask[I]); 5365 LLVM_DEBUG( 5366 dbgs() 5367 << "SLP: Adding cost " << C 5368 << " for final shuffle of vector node and external insertelement users " 5369 << *VectorizableTree.front()->Scalars.front() << ".\n" 5370 << "SLP: Current total cost = " << Cost << "\n"); 5371 Cost += C; 5372 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5373 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5374 /*Insert*/ true, 5375 /*Extract*/ false); 5376 Cost -= InsertCost; 5377 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5378 << " for insertelements gather.\n" 5379 << "SLP: Current total cost = " << Cost << "\n"); 5380 } 5381 5382 #ifndef NDEBUG 5383 SmallString<256> Str; 5384 { 5385 raw_svector_ostream OS(Str); 5386 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5387 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5388 << "SLP: Total Cost = " << Cost << ".\n"; 5389 } 5390 LLVM_DEBUG(dbgs() << Str); 5391 if (ViewSLPTree) 5392 ViewGraph(this, "SLP" + F->getName(), false, Str); 5393 #endif 5394 5395 return Cost; 5396 } 5397 5398 Optional<TargetTransformInfo::ShuffleKind> 5399 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5400 SmallVectorImpl<const TreeEntry *> &Entries) { 5401 // TODO: currently checking only for Scalars in the tree entry, need to count 5402 // reused elements too for better cost estimation. 5403 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5404 Entries.clear(); 5405 // Build a lists of values to tree entries. 5406 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5407 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5408 if (EntryPtr.get() == TE) 5409 break; 5410 if (EntryPtr->State != TreeEntry::NeedToGather) 5411 continue; 5412 for (Value *V : EntryPtr->Scalars) 5413 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5414 } 5415 // Find all tree entries used by the gathered values. If no common entries 5416 // found - not a shuffle. 5417 // Here we build a set of tree nodes for each gathered value and trying to 5418 // find the intersection between these sets. If we have at least one common 5419 // tree node for each gathered value - we have just a permutation of the 5420 // single vector. If we have 2 different sets, we're in situation where we 5421 // have a permutation of 2 input vectors. 5422 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5423 DenseMap<Value *, int> UsedValuesEntry; 5424 for (Value *V : TE->Scalars) { 5425 if (isa<UndefValue>(V)) 5426 continue; 5427 // Build a list of tree entries where V is used. 5428 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5429 auto It = ValueToTEs.find(V); 5430 if (It != ValueToTEs.end()) 5431 VToTEs = It->second; 5432 if (const TreeEntry *VTE = getTreeEntry(V)) 5433 VToTEs.insert(VTE); 5434 if (VToTEs.empty()) 5435 return None; 5436 if (UsedTEs.empty()) { 5437 // The first iteration, just insert the list of nodes to vector. 5438 UsedTEs.push_back(VToTEs); 5439 } else { 5440 // Need to check if there are any previously used tree nodes which use V. 5441 // If there are no such nodes, consider that we have another one input 5442 // vector. 5443 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5444 unsigned Idx = 0; 5445 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5446 // Do we have a non-empty intersection of previously listed tree entries 5447 // and tree entries using current V? 5448 set_intersect(VToTEs, Set); 5449 if (!VToTEs.empty()) { 5450 // Yes, write the new subset and continue analysis for the next 5451 // scalar. 5452 Set.swap(VToTEs); 5453 break; 5454 } 5455 VToTEs = SavedVToTEs; 5456 ++Idx; 5457 } 5458 // No non-empty intersection found - need to add a second set of possible 5459 // source vectors. 5460 if (Idx == UsedTEs.size()) { 5461 // If the number of input vectors is greater than 2 - not a permutation, 5462 // fallback to the regular gather. 5463 if (UsedTEs.size() == 2) 5464 return None; 5465 UsedTEs.push_back(SavedVToTEs); 5466 Idx = UsedTEs.size() - 1; 5467 } 5468 UsedValuesEntry.try_emplace(V, Idx); 5469 } 5470 } 5471 5472 unsigned VF = 0; 5473 if (UsedTEs.size() == 1) { 5474 // Try to find the perfect match in another gather node at first. 5475 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5476 return EntryPtr->isSame(TE->Scalars); 5477 }); 5478 if (It != UsedTEs.front().end()) { 5479 Entries.push_back(*It); 5480 std::iota(Mask.begin(), Mask.end(), 0); 5481 return TargetTransformInfo::SK_PermuteSingleSrc; 5482 } 5483 // No perfect match, just shuffle, so choose the first tree node. 5484 Entries.push_back(*UsedTEs.front().begin()); 5485 } else { 5486 // Try to find nodes with the same vector factor. 5487 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5488 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 5489 // landed. 5490 auto &&GetVF = [](const TreeEntry *TE) { 5491 if (!TE->ReuseShuffleIndices.empty()) 5492 return TE->ReuseShuffleIndices.size(); 5493 return TE->Scalars.size(); 5494 }; 5495 DenseMap<int, const TreeEntry *> VFToTE; 5496 for (const TreeEntry *TE : UsedTEs.front()) 5497 VFToTE.try_emplace(GetVF(TE), TE); 5498 for (const TreeEntry *TE : UsedTEs.back()) { 5499 auto It = VFToTE.find(GetVF(TE)); 5500 if (It != VFToTE.end()) { 5501 VF = It->first; 5502 Entries.push_back(It->second); 5503 Entries.push_back(TE); 5504 break; 5505 } 5506 } 5507 // No 2 source vectors with the same vector factor - give up and do regular 5508 // gather. 5509 if (Entries.empty()) 5510 return None; 5511 } 5512 5513 // Build a shuffle mask for better cost estimation and vector emission. 5514 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5515 Value *V = TE->Scalars[I]; 5516 if (isa<UndefValue>(V)) 5517 continue; 5518 unsigned Idx = UsedValuesEntry.lookup(V); 5519 const TreeEntry *VTE = Entries[Idx]; 5520 int FoundLane = VTE->findLaneForValue(V); 5521 Mask[I] = Idx * VF + FoundLane; 5522 // Extra check required by isSingleSourceMaskImpl function (called by 5523 // ShuffleVectorInst::isSingleSourceMask). 5524 if (Mask[I] >= 2 * E) 5525 return None; 5526 } 5527 switch (Entries.size()) { 5528 case 1: 5529 return TargetTransformInfo::SK_PermuteSingleSrc; 5530 case 2: 5531 return TargetTransformInfo::SK_PermuteTwoSrc; 5532 default: 5533 break; 5534 } 5535 return None; 5536 } 5537 5538 InstructionCost 5539 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5540 const DenseSet<unsigned> &ShuffledIndices) const { 5541 unsigned NumElts = Ty->getNumElements(); 5542 APInt DemandedElts = APInt::getZero(NumElts); 5543 for (unsigned I = 0; I < NumElts; ++I) 5544 if (!ShuffledIndices.count(I)) 5545 DemandedElts.setBit(I); 5546 InstructionCost Cost = 5547 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5548 /*Extract*/ false); 5549 if (!ShuffledIndices.empty()) 5550 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5551 return Cost; 5552 } 5553 5554 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5555 // Find the type of the operands in VL. 5556 Type *ScalarTy = VL[0]->getType(); 5557 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5558 ScalarTy = SI->getValueOperand()->getType(); 5559 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5560 // Find the cost of inserting/extracting values from the vector. 5561 // Check if the same elements are inserted several times and count them as 5562 // shuffle candidates. 5563 DenseSet<unsigned> ShuffledElements; 5564 DenseSet<Value *> UniqueElements; 5565 // Iterate in reverse order to consider insert elements with the high cost. 5566 for (unsigned I = VL.size(); I > 0; --I) { 5567 unsigned Idx = I - 1; 5568 if (isConstant(VL[Idx])) 5569 continue; 5570 if (!UniqueElements.insert(VL[Idx]).second) 5571 ShuffledElements.insert(Idx); 5572 } 5573 return getGatherCost(VecTy, ShuffledElements); 5574 } 5575 5576 // Perform operand reordering on the instructions in VL and return the reordered 5577 // operands in Left and Right. 5578 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5579 SmallVectorImpl<Value *> &Left, 5580 SmallVectorImpl<Value *> &Right, 5581 const DataLayout &DL, 5582 ScalarEvolution &SE, 5583 const BoUpSLP &R) { 5584 if (VL.empty()) 5585 return; 5586 VLOperands Ops(VL, DL, SE, R); 5587 // Reorder the operands in place. 5588 Ops.reorder(); 5589 Left = Ops.getVL(0); 5590 Right = Ops.getVL(1); 5591 } 5592 5593 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5594 // Get the basic block this bundle is in. All instructions in the bundle 5595 // should be in this block. 5596 auto *Front = E->getMainOp(); 5597 auto *BB = Front->getParent(); 5598 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5599 auto *I = cast<Instruction>(V); 5600 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5601 })); 5602 5603 // The last instruction in the bundle in program order. 5604 Instruction *LastInst = nullptr; 5605 5606 // Find the last instruction. The common case should be that BB has been 5607 // scheduled, and the last instruction is VL.back(). So we start with 5608 // VL.back() and iterate over schedule data until we reach the end of the 5609 // bundle. The end of the bundle is marked by null ScheduleData. 5610 if (BlocksSchedules.count(BB)) { 5611 auto *Bundle = 5612 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5613 if (Bundle && Bundle->isPartOfBundle()) 5614 for (; Bundle; Bundle = Bundle->NextInBundle) 5615 if (Bundle->OpValue == Bundle->Inst) 5616 LastInst = Bundle->Inst; 5617 } 5618 5619 // LastInst can still be null at this point if there's either not an entry 5620 // for BB in BlocksSchedules or there's no ScheduleData available for 5621 // VL.back(). This can be the case if buildTree_rec aborts for various 5622 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5623 // size is reached, etc.). ScheduleData is initialized in the scheduling 5624 // "dry-run". 5625 // 5626 // If this happens, we can still find the last instruction by brute force. We 5627 // iterate forwards from Front (inclusive) until we either see all 5628 // instructions in the bundle or reach the end of the block. If Front is the 5629 // last instruction in program order, LastInst will be set to Front, and we 5630 // will visit all the remaining instructions in the block. 5631 // 5632 // One of the reasons we exit early from buildTree_rec is to place an upper 5633 // bound on compile-time. Thus, taking an additional compile-time hit here is 5634 // not ideal. However, this should be exceedingly rare since it requires that 5635 // we both exit early from buildTree_rec and that the bundle be out-of-order 5636 // (causing us to iterate all the way to the end of the block). 5637 if (!LastInst) { 5638 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5639 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5640 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5641 LastInst = &I; 5642 if (Bundle.empty()) 5643 break; 5644 } 5645 } 5646 assert(LastInst && "Failed to find last instruction in bundle"); 5647 5648 // Set the insertion point after the last instruction in the bundle. Set the 5649 // debug location to Front. 5650 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5651 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5652 } 5653 5654 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5655 // List of instructions/lanes from current block and/or the blocks which are 5656 // part of the current loop. These instructions will be inserted at the end to 5657 // make it possible to optimize loops and hoist invariant instructions out of 5658 // the loops body with better chances for success. 5659 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5660 SmallSet<int, 4> PostponedIndices; 5661 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5662 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5663 SmallPtrSet<BasicBlock *, 4> Visited; 5664 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5665 InsertBB = InsertBB->getSinglePredecessor(); 5666 return InsertBB && InsertBB == InstBB; 5667 }; 5668 for (int I = 0, E = VL.size(); I < E; ++I) { 5669 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5670 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5671 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5672 PostponedIndices.insert(I).second) 5673 PostponedInsts.emplace_back(Inst, I); 5674 } 5675 5676 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5677 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5678 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5679 if (!InsElt) 5680 return Vec; 5681 GatherSeq.insert(InsElt); 5682 CSEBlocks.insert(InsElt->getParent()); 5683 // Add to our 'need-to-extract' list. 5684 if (TreeEntry *Entry = getTreeEntry(V)) { 5685 // Find which lane we need to extract. 5686 unsigned FoundLane = Entry->findLaneForValue(V); 5687 ExternalUses.emplace_back(V, InsElt, FoundLane); 5688 } 5689 return Vec; 5690 }; 5691 Value *Val0 = 5692 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5693 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5694 Value *Vec = PoisonValue::get(VecTy); 5695 SmallVector<int> NonConsts; 5696 // Insert constant values at first. 5697 for (int I = 0, E = VL.size(); I < E; ++I) { 5698 if (PostponedIndices.contains(I)) 5699 continue; 5700 if (!isConstant(VL[I])) { 5701 NonConsts.push_back(I); 5702 continue; 5703 } 5704 Vec = CreateInsertElement(Vec, VL[I], I); 5705 } 5706 // Insert non-constant values. 5707 for (int I : NonConsts) 5708 Vec = CreateInsertElement(Vec, VL[I], I); 5709 // Append instructions, which are/may be part of the loop, in the end to make 5710 // it possible to hoist non-loop-based instructions. 5711 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5712 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5713 5714 return Vec; 5715 } 5716 5717 namespace { 5718 /// Merges shuffle masks and emits final shuffle instruction, if required. 5719 class ShuffleInstructionBuilder { 5720 IRBuilderBase &Builder; 5721 const unsigned VF = 0; 5722 bool IsFinalized = false; 5723 SmallVector<int, 4> Mask; 5724 5725 public: 5726 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5727 : Builder(Builder), VF(VF) {} 5728 5729 /// Adds a mask, inverting it before applying. 5730 void addInversedMask(ArrayRef<unsigned> SubMask) { 5731 if (SubMask.empty()) 5732 return; 5733 SmallVector<int, 4> NewMask; 5734 inversePermutation(SubMask, NewMask); 5735 addMask(NewMask); 5736 } 5737 5738 /// Functions adds masks, merging them into single one. 5739 void addMask(ArrayRef<unsigned> SubMask) { 5740 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5741 addMask(NewMask); 5742 } 5743 5744 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5745 5746 Value *finalize(Value *V) { 5747 IsFinalized = true; 5748 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5749 if (VF == ValueVF && Mask.empty()) 5750 return V; 5751 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5752 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5753 addMask(NormalizedMask); 5754 5755 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5756 return V; 5757 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5758 } 5759 5760 ~ShuffleInstructionBuilder() { 5761 assert((IsFinalized || Mask.empty()) && 5762 "Shuffle construction must be finalized."); 5763 } 5764 }; 5765 } // namespace 5766 5767 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5768 unsigned VF = VL.size(); 5769 InstructionsState S = getSameOpcode(VL); 5770 if (S.getOpcode()) { 5771 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5772 if (E->isSame(VL)) { 5773 Value *V = vectorizeTree(E); 5774 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5775 if (!E->ReuseShuffleIndices.empty()) { 5776 // Reshuffle to get only unique values. 5777 // If some of the scalars are duplicated in the vectorization tree 5778 // entry, we do not vectorize them but instead generate a mask for 5779 // the reuses. But if there are several users of the same entry, 5780 // they may have different vectorization factors. This is especially 5781 // important for PHI nodes. In this case, we need to adapt the 5782 // resulting instruction for the user vectorization factor and have 5783 // to reshuffle it again to take only unique elements of the vector. 5784 // Without this code the function incorrectly returns reduced vector 5785 // instruction with the same elements, not with the unique ones. 5786 5787 // block: 5788 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5789 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 5790 // ... (use %2) 5791 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 5792 // br %block 5793 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 5794 SmallSet<int, 4> UsedIdxs; 5795 int Pos = 0; 5796 int Sz = VL.size(); 5797 for (int Idx : E->ReuseShuffleIndices) { 5798 if (Idx != Sz && Idx != UndefMaskElem && 5799 UsedIdxs.insert(Idx).second) 5800 UniqueIdxs[Idx] = Pos; 5801 ++Pos; 5802 } 5803 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5804 "less than original vector size."); 5805 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5806 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5807 } else { 5808 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5809 "Expected vectorization factor less " 5810 "than original vector size."); 5811 SmallVector<int> UniformMask(VF, 0); 5812 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5813 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5814 } 5815 } 5816 return V; 5817 } 5818 } 5819 5820 // Check that every instruction appears once in this bundle. 5821 SmallVector<int> ReuseShuffleIndicies; 5822 SmallVector<Value *> UniqueValues; 5823 if (VL.size() > 2) { 5824 DenseMap<Value *, unsigned> UniquePositions; 5825 unsigned NumValues = 5826 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5827 return !isa<UndefValue>(V); 5828 }).base()); 5829 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5830 int UniqueVals = 0; 5831 for (Value *V : VL.drop_back(VL.size() - VF)) { 5832 if (isa<UndefValue>(V)) { 5833 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5834 continue; 5835 } 5836 if (isConstant(V)) { 5837 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5838 UniqueValues.emplace_back(V); 5839 continue; 5840 } 5841 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5842 ReuseShuffleIndicies.emplace_back(Res.first->second); 5843 if (Res.second) { 5844 UniqueValues.emplace_back(V); 5845 ++UniqueVals; 5846 } 5847 } 5848 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5849 // Emit pure splat vector. 5850 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5851 UndefMaskElem); 5852 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5853 ReuseShuffleIndicies.clear(); 5854 UniqueValues.clear(); 5855 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5856 } 5857 UniqueValues.append(VF - UniqueValues.size(), 5858 PoisonValue::get(VL[0]->getType())); 5859 VL = UniqueValues; 5860 } 5861 5862 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5863 Value *Vec = gather(VL); 5864 if (!ReuseShuffleIndicies.empty()) { 5865 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5866 Vec = ShuffleBuilder.finalize(Vec); 5867 if (auto *I = dyn_cast<Instruction>(Vec)) { 5868 GatherSeq.insert(I); 5869 CSEBlocks.insert(I->getParent()); 5870 } 5871 } 5872 return Vec; 5873 } 5874 5875 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5876 IRBuilder<>::InsertPointGuard Guard(Builder); 5877 5878 if (E->VectorizedValue) { 5879 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5880 return E->VectorizedValue; 5881 } 5882 5883 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5884 unsigned VF = E->Scalars.size(); 5885 if (NeedToShuffleReuses) 5886 VF = E->ReuseShuffleIndices.size(); 5887 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5888 if (E->State == TreeEntry::NeedToGather) { 5889 if (E->getMainOp()) 5890 setInsertPointAfterBundle(E); 5891 Value *Vec; 5892 SmallVector<int> Mask; 5893 SmallVector<const TreeEntry *> Entries; 5894 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5895 isGatherShuffledEntry(E, Mask, Entries); 5896 if (Shuffle.hasValue()) { 5897 assert((Entries.size() == 1 || Entries.size() == 2) && 5898 "Expected shuffle of 1 or 2 entries."); 5899 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5900 Entries.back()->VectorizedValue, Mask); 5901 } else { 5902 Vec = gather(E->Scalars); 5903 } 5904 if (NeedToShuffleReuses) { 5905 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5906 Vec = ShuffleBuilder.finalize(Vec); 5907 if (auto *I = dyn_cast<Instruction>(Vec)) { 5908 GatherSeq.insert(I); 5909 CSEBlocks.insert(I->getParent()); 5910 } 5911 } 5912 E->VectorizedValue = Vec; 5913 return Vec; 5914 } 5915 5916 assert((E->State == TreeEntry::Vectorize || 5917 E->State == TreeEntry::ScatterVectorize) && 5918 "Unhandled state"); 5919 unsigned ShuffleOrOp = 5920 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5921 Instruction *VL0 = E->getMainOp(); 5922 Type *ScalarTy = VL0->getType(); 5923 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5924 ScalarTy = Store->getValueOperand()->getType(); 5925 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5926 ScalarTy = IE->getOperand(1)->getType(); 5927 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5928 switch (ShuffleOrOp) { 5929 case Instruction::PHI: { 5930 assert( 5931 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 5932 "PHI reordering is free."); 5933 auto *PH = cast<PHINode>(VL0); 5934 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5935 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5936 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5937 Value *V = NewPhi; 5938 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5939 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5940 V = ShuffleBuilder.finalize(V); 5941 5942 E->VectorizedValue = V; 5943 5944 // PHINodes may have multiple entries from the same block. We want to 5945 // visit every block once. 5946 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5947 5948 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5949 ValueList Operands; 5950 BasicBlock *IBB = PH->getIncomingBlock(i); 5951 5952 if (!VisitedBBs.insert(IBB).second) { 5953 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5954 continue; 5955 } 5956 5957 Builder.SetInsertPoint(IBB->getTerminator()); 5958 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5959 Value *Vec = vectorizeTree(E->getOperand(i)); 5960 NewPhi->addIncoming(Vec, IBB); 5961 } 5962 5963 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5964 "Invalid number of incoming values"); 5965 return V; 5966 } 5967 5968 case Instruction::ExtractElement: { 5969 Value *V = E->getSingleOperand(0); 5970 Builder.SetInsertPoint(VL0); 5971 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5972 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5973 V = ShuffleBuilder.finalize(V); 5974 E->VectorizedValue = V; 5975 return V; 5976 } 5977 case Instruction::ExtractValue: { 5978 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5979 Builder.SetInsertPoint(LI); 5980 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5981 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5982 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5983 Value *NewV = propagateMetadata(V, E->Scalars); 5984 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5985 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5986 NewV = ShuffleBuilder.finalize(NewV); 5987 E->VectorizedValue = NewV; 5988 return NewV; 5989 } 5990 case Instruction::InsertElement: { 5991 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 5992 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 5993 Value *V = vectorizeTree(E->getOperand(1)); 5994 5995 // Create InsertVector shuffle if necessary 5996 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5997 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 5998 })); 5999 const unsigned NumElts = 6000 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6001 const unsigned NumScalars = E->Scalars.size(); 6002 6003 unsigned Offset = *getInsertIndex(VL0, 0); 6004 assert(Offset < NumElts && "Failed to find vector index offset"); 6005 6006 // Create shuffle to resize vector 6007 SmallVector<int> Mask; 6008 if (!E->ReorderIndices.empty()) { 6009 inversePermutation(E->ReorderIndices, Mask); 6010 Mask.append(NumElts - NumScalars, UndefMaskElem); 6011 } else { 6012 Mask.assign(NumElts, UndefMaskElem); 6013 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6014 } 6015 // Create InsertVector shuffle if necessary 6016 bool IsIdentity = true; 6017 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6018 Mask.swap(PrevMask); 6019 for (unsigned I = 0; I < NumScalars; ++I) { 6020 Value *Scalar = E->Scalars[PrevMask[I]]; 6021 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6022 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6023 continue; 6024 IsIdentity &= *InsertIdx - Offset == I; 6025 Mask[*InsertIdx - Offset] = I; 6026 } 6027 if (!IsIdentity || NumElts != NumScalars) 6028 V = Builder.CreateShuffleVector(V, Mask); 6029 6030 if ((!IsIdentity || Offset != 0 || 6031 !isa<UndefValue>(FirstInsert->getOperand(0))) && 6032 NumElts != NumScalars) { 6033 SmallVector<int> InsertMask(NumElts); 6034 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6035 for (unsigned I = 0; I < NumElts; I++) { 6036 if (Mask[I] != UndefMaskElem) 6037 InsertMask[Offset + I] = NumElts + I; 6038 } 6039 6040 V = Builder.CreateShuffleVector( 6041 FirstInsert->getOperand(0), V, InsertMask, 6042 cast<Instruction>(E->Scalars.back())->getName()); 6043 } 6044 6045 ++NumVectorInstructions; 6046 E->VectorizedValue = V; 6047 return V; 6048 } 6049 case Instruction::ZExt: 6050 case Instruction::SExt: 6051 case Instruction::FPToUI: 6052 case Instruction::FPToSI: 6053 case Instruction::FPExt: 6054 case Instruction::PtrToInt: 6055 case Instruction::IntToPtr: 6056 case Instruction::SIToFP: 6057 case Instruction::UIToFP: 6058 case Instruction::Trunc: 6059 case Instruction::FPTrunc: 6060 case Instruction::BitCast: { 6061 setInsertPointAfterBundle(E); 6062 6063 Value *InVec = vectorizeTree(E->getOperand(0)); 6064 6065 if (E->VectorizedValue) { 6066 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6067 return E->VectorizedValue; 6068 } 6069 6070 auto *CI = cast<CastInst>(VL0); 6071 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6072 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6073 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6074 V = ShuffleBuilder.finalize(V); 6075 6076 E->VectorizedValue = V; 6077 ++NumVectorInstructions; 6078 return V; 6079 } 6080 case Instruction::FCmp: 6081 case Instruction::ICmp: { 6082 setInsertPointAfterBundle(E); 6083 6084 Value *L = vectorizeTree(E->getOperand(0)); 6085 Value *R = vectorizeTree(E->getOperand(1)); 6086 6087 if (E->VectorizedValue) { 6088 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6089 return E->VectorizedValue; 6090 } 6091 6092 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6093 Value *V = Builder.CreateCmp(P0, L, R); 6094 propagateIRFlags(V, E->Scalars, VL0); 6095 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6096 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6097 V = ShuffleBuilder.finalize(V); 6098 6099 E->VectorizedValue = V; 6100 ++NumVectorInstructions; 6101 return V; 6102 } 6103 case Instruction::Select: { 6104 setInsertPointAfterBundle(E); 6105 6106 Value *Cond = vectorizeTree(E->getOperand(0)); 6107 Value *True = vectorizeTree(E->getOperand(1)); 6108 Value *False = vectorizeTree(E->getOperand(2)); 6109 6110 if (E->VectorizedValue) { 6111 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6112 return E->VectorizedValue; 6113 } 6114 6115 Value *V = Builder.CreateSelect(Cond, True, False); 6116 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6117 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6118 V = ShuffleBuilder.finalize(V); 6119 6120 E->VectorizedValue = V; 6121 ++NumVectorInstructions; 6122 return V; 6123 } 6124 case Instruction::FNeg: { 6125 setInsertPointAfterBundle(E); 6126 6127 Value *Op = vectorizeTree(E->getOperand(0)); 6128 6129 if (E->VectorizedValue) { 6130 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6131 return E->VectorizedValue; 6132 } 6133 6134 Value *V = Builder.CreateUnOp( 6135 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6136 propagateIRFlags(V, E->Scalars, VL0); 6137 if (auto *I = dyn_cast<Instruction>(V)) 6138 V = propagateMetadata(I, E->Scalars); 6139 6140 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6141 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6142 V = ShuffleBuilder.finalize(V); 6143 6144 E->VectorizedValue = V; 6145 ++NumVectorInstructions; 6146 6147 return V; 6148 } 6149 case Instruction::Add: 6150 case Instruction::FAdd: 6151 case Instruction::Sub: 6152 case Instruction::FSub: 6153 case Instruction::Mul: 6154 case Instruction::FMul: 6155 case Instruction::UDiv: 6156 case Instruction::SDiv: 6157 case Instruction::FDiv: 6158 case Instruction::URem: 6159 case Instruction::SRem: 6160 case Instruction::FRem: 6161 case Instruction::Shl: 6162 case Instruction::LShr: 6163 case Instruction::AShr: 6164 case Instruction::And: 6165 case Instruction::Or: 6166 case Instruction::Xor: { 6167 setInsertPointAfterBundle(E); 6168 6169 Value *LHS = vectorizeTree(E->getOperand(0)); 6170 Value *RHS = vectorizeTree(E->getOperand(1)); 6171 6172 if (E->VectorizedValue) { 6173 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6174 return E->VectorizedValue; 6175 } 6176 6177 Value *V = Builder.CreateBinOp( 6178 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6179 RHS); 6180 propagateIRFlags(V, E->Scalars, VL0); 6181 if (auto *I = dyn_cast<Instruction>(V)) 6182 V = propagateMetadata(I, E->Scalars); 6183 6184 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6185 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6186 V = ShuffleBuilder.finalize(V); 6187 6188 E->VectorizedValue = V; 6189 ++NumVectorInstructions; 6190 6191 return V; 6192 } 6193 case Instruction::Load: { 6194 // Loads are inserted at the head of the tree because we don't want to 6195 // sink them all the way down past store instructions. 6196 setInsertPointAfterBundle(E); 6197 6198 LoadInst *LI = cast<LoadInst>(VL0); 6199 Instruction *NewLI; 6200 unsigned AS = LI->getPointerAddressSpace(); 6201 Value *PO = LI->getPointerOperand(); 6202 if (E->State == TreeEntry::Vectorize) { 6203 6204 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6205 6206 // The pointer operand uses an in-tree scalar so we add the new BitCast 6207 // to ExternalUses list to make sure that an extract will be generated 6208 // in the future. 6209 if (TreeEntry *Entry = getTreeEntry(PO)) { 6210 // Find which lane we need to extract. 6211 unsigned FoundLane = Entry->findLaneForValue(PO); 6212 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6213 } 6214 6215 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6216 } else { 6217 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6218 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6219 // Use the minimum alignment of the gathered loads. 6220 Align CommonAlignment = LI->getAlign(); 6221 for (Value *V : E->Scalars) 6222 CommonAlignment = 6223 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6224 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6225 } 6226 Value *V = propagateMetadata(NewLI, E->Scalars); 6227 6228 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6229 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6230 V = ShuffleBuilder.finalize(V); 6231 E->VectorizedValue = V; 6232 ++NumVectorInstructions; 6233 return V; 6234 } 6235 case Instruction::Store: { 6236 auto *SI = cast<StoreInst>(VL0); 6237 unsigned AS = SI->getPointerAddressSpace(); 6238 6239 setInsertPointAfterBundle(E); 6240 6241 Value *VecValue = vectorizeTree(E->getOperand(0)); 6242 ShuffleBuilder.addMask(E->ReorderIndices); 6243 VecValue = ShuffleBuilder.finalize(VecValue); 6244 6245 Value *ScalarPtr = SI->getPointerOperand(); 6246 Value *VecPtr = Builder.CreateBitCast( 6247 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6248 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6249 SI->getAlign()); 6250 6251 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6252 // ExternalUses to make sure that an extract will be generated in the 6253 // future. 6254 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6255 // Find which lane we need to extract. 6256 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6257 ExternalUses.push_back( 6258 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6259 } 6260 6261 Value *V = propagateMetadata(ST, E->Scalars); 6262 6263 E->VectorizedValue = V; 6264 ++NumVectorInstructions; 6265 return V; 6266 } 6267 case Instruction::GetElementPtr: { 6268 setInsertPointAfterBundle(E); 6269 6270 Value *Op0 = vectorizeTree(E->getOperand(0)); 6271 6272 std::vector<Value *> OpVecs; 6273 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 6274 ++j) { 6275 ValueList &VL = E->getOperand(j); 6276 // Need to cast all elements to the same type before vectorization to 6277 // avoid crash. 6278 Type *VL0Ty = VL0->getOperand(j)->getType(); 6279 Type *Ty = llvm::all_of( 6280 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 6281 ? VL0Ty 6282 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 6283 ->getPointerOperandType() 6284 ->getScalarType()); 6285 for (Value *&V : VL) { 6286 auto *CI = cast<ConstantInt>(V); 6287 V = ConstantExpr::getIntegerCast(CI, Ty, 6288 CI->getValue().isSignBitSet()); 6289 } 6290 Value *OpVec = vectorizeTree(VL); 6291 OpVecs.push_back(OpVec); 6292 } 6293 6294 Value *V = Builder.CreateGEP( 6295 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 6296 if (Instruction *I = dyn_cast<Instruction>(V)) 6297 V = propagateMetadata(I, E->Scalars); 6298 6299 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6300 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6301 V = ShuffleBuilder.finalize(V); 6302 6303 E->VectorizedValue = V; 6304 ++NumVectorInstructions; 6305 6306 return V; 6307 } 6308 case Instruction::Call: { 6309 CallInst *CI = cast<CallInst>(VL0); 6310 setInsertPointAfterBundle(E); 6311 6312 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6313 if (Function *FI = CI->getCalledFunction()) 6314 IID = FI->getIntrinsicID(); 6315 6316 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6317 6318 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6319 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6320 VecCallCosts.first <= VecCallCosts.second; 6321 6322 Value *ScalarArg = nullptr; 6323 std::vector<Value *> OpVecs; 6324 SmallVector<Type *, 2> TysForDecl = 6325 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6326 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6327 ValueList OpVL; 6328 // Some intrinsics have scalar arguments. This argument should not be 6329 // vectorized. 6330 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6331 CallInst *CEI = cast<CallInst>(VL0); 6332 ScalarArg = CEI->getArgOperand(j); 6333 OpVecs.push_back(CEI->getArgOperand(j)); 6334 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6335 TysForDecl.push_back(ScalarArg->getType()); 6336 continue; 6337 } 6338 6339 Value *OpVec = vectorizeTree(E->getOperand(j)); 6340 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6341 OpVecs.push_back(OpVec); 6342 } 6343 6344 Function *CF; 6345 if (!UseIntrinsic) { 6346 VFShape Shape = 6347 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6348 VecTy->getNumElements())), 6349 false /*HasGlobalPred*/); 6350 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6351 } else { 6352 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6353 } 6354 6355 SmallVector<OperandBundleDef, 1> OpBundles; 6356 CI->getOperandBundlesAsDefs(OpBundles); 6357 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6358 6359 // The scalar argument uses an in-tree scalar so we add the new vectorized 6360 // call to ExternalUses list to make sure that an extract will be 6361 // generated in the future. 6362 if (ScalarArg) { 6363 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6364 // Find which lane we need to extract. 6365 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6366 ExternalUses.push_back( 6367 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6368 } 6369 } 6370 6371 propagateIRFlags(V, E->Scalars, VL0); 6372 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6373 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6374 V = ShuffleBuilder.finalize(V); 6375 6376 E->VectorizedValue = V; 6377 ++NumVectorInstructions; 6378 return V; 6379 } 6380 case Instruction::ShuffleVector: { 6381 assert(E->isAltShuffle() && 6382 ((Instruction::isBinaryOp(E->getOpcode()) && 6383 Instruction::isBinaryOp(E->getAltOpcode())) || 6384 (Instruction::isCast(E->getOpcode()) && 6385 Instruction::isCast(E->getAltOpcode()))) && 6386 "Invalid Shuffle Vector Operand"); 6387 6388 Value *LHS = nullptr, *RHS = nullptr; 6389 if (Instruction::isBinaryOp(E->getOpcode())) { 6390 setInsertPointAfterBundle(E); 6391 LHS = vectorizeTree(E->getOperand(0)); 6392 RHS = vectorizeTree(E->getOperand(1)); 6393 } else { 6394 setInsertPointAfterBundle(E); 6395 LHS = vectorizeTree(E->getOperand(0)); 6396 } 6397 6398 if (E->VectorizedValue) { 6399 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6400 return E->VectorizedValue; 6401 } 6402 6403 Value *V0, *V1; 6404 if (Instruction::isBinaryOp(E->getOpcode())) { 6405 V0 = Builder.CreateBinOp( 6406 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6407 V1 = Builder.CreateBinOp( 6408 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6409 } else { 6410 V0 = Builder.CreateCast( 6411 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6412 V1 = Builder.CreateCast( 6413 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6414 } 6415 6416 // Create shuffle to take alternate operations from the vector. 6417 // Also, gather up main and alt scalar ops to propagate IR flags to 6418 // each vector operation. 6419 ValueList OpScalars, AltScalars; 6420 SmallVector<int> Mask; 6421 buildSuffleEntryMask( 6422 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6423 [E](Instruction *I) { 6424 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6425 return I->getOpcode() == E->getAltOpcode(); 6426 }, 6427 Mask, &OpScalars, &AltScalars); 6428 6429 propagateIRFlags(V0, OpScalars); 6430 propagateIRFlags(V1, AltScalars); 6431 6432 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6433 if (Instruction *I = dyn_cast<Instruction>(V)) 6434 V = propagateMetadata(I, E->Scalars); 6435 V = ShuffleBuilder.finalize(V); 6436 6437 E->VectorizedValue = V; 6438 ++NumVectorInstructions; 6439 6440 return V; 6441 } 6442 default: 6443 llvm_unreachable("unknown inst"); 6444 } 6445 return nullptr; 6446 } 6447 6448 Value *BoUpSLP::vectorizeTree() { 6449 ExtraValueToDebugLocsMap ExternallyUsedValues; 6450 return vectorizeTree(ExternallyUsedValues); 6451 } 6452 6453 Value * 6454 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6455 // All blocks must be scheduled before any instructions are inserted. 6456 for (auto &BSIter : BlocksSchedules) { 6457 scheduleBlock(BSIter.second.get()); 6458 } 6459 6460 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6461 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6462 6463 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6464 // vectorized root. InstCombine will then rewrite the entire expression. We 6465 // sign extend the extracted values below. 6466 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6467 if (MinBWs.count(ScalarRoot)) { 6468 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6469 // If current instr is a phi and not the last phi, insert it after the 6470 // last phi node. 6471 if (isa<PHINode>(I)) 6472 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6473 else 6474 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6475 } 6476 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6477 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6478 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6479 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6480 VectorizableTree[0]->VectorizedValue = Trunc; 6481 } 6482 6483 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6484 << " values .\n"); 6485 6486 // Extract all of the elements with the external uses. 6487 for (const auto &ExternalUse : ExternalUses) { 6488 Value *Scalar = ExternalUse.Scalar; 6489 llvm::User *User = ExternalUse.User; 6490 6491 // Skip users that we already RAUW. This happens when one instruction 6492 // has multiple uses of the same value. 6493 if (User && !is_contained(Scalar->users(), User)) 6494 continue; 6495 TreeEntry *E = getTreeEntry(Scalar); 6496 assert(E && "Invalid scalar"); 6497 assert(E->State != TreeEntry::NeedToGather && 6498 "Extracting from a gather list"); 6499 6500 Value *Vec = E->VectorizedValue; 6501 assert(Vec && "Can't find vectorizable value"); 6502 6503 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6504 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6505 if (Scalar->getType() != Vec->getType()) { 6506 Value *Ex; 6507 // "Reuse" the existing extract to improve final codegen. 6508 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6509 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6510 ES->getOperand(1)); 6511 } else { 6512 Ex = Builder.CreateExtractElement(Vec, Lane); 6513 } 6514 // If necessary, sign-extend or zero-extend ScalarRoot 6515 // to the larger type. 6516 if (!MinBWs.count(ScalarRoot)) 6517 return Ex; 6518 if (MinBWs[ScalarRoot].second) 6519 return Builder.CreateSExt(Ex, Scalar->getType()); 6520 return Builder.CreateZExt(Ex, Scalar->getType()); 6521 } 6522 assert(isa<FixedVectorType>(Scalar->getType()) && 6523 isa<InsertElementInst>(Scalar) && 6524 "In-tree scalar of vector type is not insertelement?"); 6525 return Vec; 6526 }; 6527 // If User == nullptr, the Scalar is used as extra arg. Generate 6528 // ExtractElement instruction and update the record for this scalar in 6529 // ExternallyUsedValues. 6530 if (!User) { 6531 assert(ExternallyUsedValues.count(Scalar) && 6532 "Scalar with nullptr as an external user must be registered in " 6533 "ExternallyUsedValues map"); 6534 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6535 Builder.SetInsertPoint(VecI->getParent(), 6536 std::next(VecI->getIterator())); 6537 } else { 6538 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6539 } 6540 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6541 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6542 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6543 auto It = ExternallyUsedValues.find(Scalar); 6544 assert(It != ExternallyUsedValues.end() && 6545 "Externally used scalar is not found in ExternallyUsedValues"); 6546 NewInstLocs.append(It->second); 6547 ExternallyUsedValues.erase(Scalar); 6548 // Required to update internally referenced instructions. 6549 Scalar->replaceAllUsesWith(NewInst); 6550 continue; 6551 } 6552 6553 // Generate extracts for out-of-tree users. 6554 // Find the insertion point for the extractelement lane. 6555 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6556 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6557 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6558 if (PH->getIncomingValue(i) == Scalar) { 6559 Instruction *IncomingTerminator = 6560 PH->getIncomingBlock(i)->getTerminator(); 6561 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6562 Builder.SetInsertPoint(VecI->getParent(), 6563 std::next(VecI->getIterator())); 6564 } else { 6565 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6566 } 6567 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6568 CSEBlocks.insert(PH->getIncomingBlock(i)); 6569 PH->setOperand(i, NewInst); 6570 } 6571 } 6572 } else { 6573 Builder.SetInsertPoint(cast<Instruction>(User)); 6574 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6575 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6576 User->replaceUsesOfWith(Scalar, NewInst); 6577 } 6578 } else { 6579 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6580 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6581 CSEBlocks.insert(&F->getEntryBlock()); 6582 User->replaceUsesOfWith(Scalar, NewInst); 6583 } 6584 6585 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6586 } 6587 6588 // For each vectorized value: 6589 for (auto &TEPtr : VectorizableTree) { 6590 TreeEntry *Entry = TEPtr.get(); 6591 6592 // No need to handle users of gathered values. 6593 if (Entry->State == TreeEntry::NeedToGather) 6594 continue; 6595 6596 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6597 6598 // For each lane: 6599 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6600 Value *Scalar = Entry->Scalars[Lane]; 6601 6602 #ifndef NDEBUG 6603 Type *Ty = Scalar->getType(); 6604 if (!Ty->isVoidTy()) { 6605 for (User *U : Scalar->users()) { 6606 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6607 6608 // It is legal to delete users in the ignorelist. 6609 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6610 (isa_and_nonnull<Instruction>(U) && 6611 isDeleted(cast<Instruction>(U)))) && 6612 "Deleting out-of-tree value"); 6613 } 6614 } 6615 #endif 6616 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6617 eraseInstruction(cast<Instruction>(Scalar)); 6618 } 6619 } 6620 6621 Builder.ClearInsertionPoint(); 6622 InstrElementSize.clear(); 6623 6624 return VectorizableTree[0]->VectorizedValue; 6625 } 6626 6627 void BoUpSLP::optimizeGatherSequence() { 6628 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 6629 << " gather sequences instructions.\n"); 6630 // LICM InsertElementInst sequences. 6631 for (Instruction *I : GatherSeq) { 6632 if (isDeleted(I)) 6633 continue; 6634 6635 // Check if this block is inside a loop. 6636 Loop *L = LI->getLoopFor(I->getParent()); 6637 if (!L) 6638 continue; 6639 6640 // Check if it has a preheader. 6641 BasicBlock *PreHeader = L->getLoopPreheader(); 6642 if (!PreHeader) 6643 continue; 6644 6645 // If the vector or the element that we insert into it are 6646 // instructions that are defined in this basic block then we can't 6647 // hoist this instruction. 6648 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6649 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6650 if (Op0 && L->contains(Op0)) 6651 continue; 6652 if (Op1 && L->contains(Op1)) 6653 continue; 6654 6655 // We can hoist this instruction. Move it to the pre-header. 6656 I->moveBefore(PreHeader->getTerminator()); 6657 } 6658 6659 // Make a list of all reachable blocks in our CSE queue. 6660 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6661 CSEWorkList.reserve(CSEBlocks.size()); 6662 for (BasicBlock *BB : CSEBlocks) 6663 if (DomTreeNode *N = DT->getNode(BB)) { 6664 assert(DT->isReachableFromEntry(N)); 6665 CSEWorkList.push_back(N); 6666 } 6667 6668 // Sort blocks by domination. This ensures we visit a block after all blocks 6669 // dominating it are visited. 6670 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6671 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6672 "Different nodes should have different DFS numbers"); 6673 return A->getDFSNumIn() < B->getDFSNumIn(); 6674 }); 6675 6676 // Perform O(N^2) search over the gather sequences and merge identical 6677 // instructions. TODO: We can further optimize this scan if we split the 6678 // instructions into different buckets based on the insert lane. 6679 SmallVector<Instruction *, 16> Visited; 6680 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6681 assert(*I && 6682 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6683 "Worklist not sorted properly!"); 6684 BasicBlock *BB = (*I)->getBlock(); 6685 // For all instructions in blocks containing gather sequences: 6686 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 6687 Instruction *In = &*it++; 6688 if (isDeleted(In)) 6689 continue; 6690 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In) && 6691 !isa<ShuffleVectorInst>(In)) 6692 continue; 6693 6694 // Check if we can replace this instruction with any of the 6695 // visited instructions. 6696 for (Instruction *v : Visited) { 6697 if (In->isIdenticalTo(v) && 6698 DT->dominates(v->getParent(), In->getParent())) { 6699 In->replaceAllUsesWith(v); 6700 eraseInstruction(In); 6701 In = nullptr; 6702 break; 6703 } 6704 } 6705 if (In) { 6706 assert(!is_contained(Visited, In)); 6707 Visited.push_back(In); 6708 } 6709 } 6710 } 6711 CSEBlocks.clear(); 6712 GatherSeq.clear(); 6713 } 6714 6715 // Groups the instructions to a bundle (which is then a single scheduling entity) 6716 // and schedules instructions until the bundle gets ready. 6717 Optional<BoUpSLP::ScheduleData *> 6718 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6719 const InstructionsState &S) { 6720 // No need to schedule PHIs, insertelement, extractelement and extractvalue 6721 // instructions. 6722 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 6723 return nullptr; 6724 6725 // Initialize the instruction bundle. 6726 Instruction *OldScheduleEnd = ScheduleEnd; 6727 ScheduleData *PrevInBundle = nullptr; 6728 ScheduleData *Bundle = nullptr; 6729 bool ReSchedule = false; 6730 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6731 6732 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6733 ScheduleData *Bundle) { 6734 // The scheduling region got new instructions at the lower end (or it is a 6735 // new region for the first bundle). This makes it necessary to 6736 // recalculate all dependencies. 6737 // It is seldom that this needs to be done a second time after adding the 6738 // initial bundle to the region. 6739 if (ScheduleEnd != OldScheduleEnd) { 6740 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6741 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6742 ReSchedule = true; 6743 } 6744 if (ReSchedule) { 6745 resetSchedule(); 6746 initialFillReadyList(ReadyInsts); 6747 } 6748 if (Bundle) { 6749 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6750 << " in block " << BB->getName() << "\n"); 6751 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6752 } 6753 6754 // Now try to schedule the new bundle or (if no bundle) just calculate 6755 // dependencies. As soon as the bundle is "ready" it means that there are no 6756 // cyclic dependencies and we can schedule it. Note that's important that we 6757 // don't "schedule" the bundle yet (see cancelScheduling). 6758 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6759 !ReadyInsts.empty()) { 6760 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6761 if (Picked->isSchedulingEntity() && Picked->isReady()) 6762 schedule(Picked, ReadyInsts); 6763 } 6764 }; 6765 6766 // Make sure that the scheduling region contains all 6767 // instructions of the bundle. 6768 for (Value *V : VL) { 6769 if (!extendSchedulingRegion(V, S)) { 6770 // If the scheduling region got new instructions at the lower end (or it 6771 // is a new region for the first bundle). This makes it necessary to 6772 // recalculate all dependencies. 6773 // Otherwise the compiler may crash trying to incorrectly calculate 6774 // dependencies and emit instruction in the wrong order at the actual 6775 // scheduling. 6776 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6777 return None; 6778 } 6779 } 6780 6781 for (Value *V : VL) { 6782 ScheduleData *BundleMember = getScheduleData(V); 6783 assert(BundleMember && 6784 "no ScheduleData for bundle member (maybe not in same basic block)"); 6785 if (BundleMember->IsScheduled) { 6786 // A bundle member was scheduled as single instruction before and now 6787 // needs to be scheduled as part of the bundle. We just get rid of the 6788 // existing schedule. 6789 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6790 << " was already scheduled\n"); 6791 ReSchedule = true; 6792 } 6793 assert(BundleMember->isSchedulingEntity() && 6794 "bundle member already part of other bundle"); 6795 if (PrevInBundle) { 6796 PrevInBundle->NextInBundle = BundleMember; 6797 } else { 6798 Bundle = BundleMember; 6799 } 6800 BundleMember->UnscheduledDepsInBundle = 0; 6801 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6802 6803 // Group the instructions to a bundle. 6804 BundleMember->FirstInBundle = Bundle; 6805 PrevInBundle = BundleMember; 6806 } 6807 assert(Bundle && "Failed to find schedule bundle"); 6808 TryScheduleBundle(ReSchedule, Bundle); 6809 if (!Bundle->isReady()) { 6810 cancelScheduling(VL, S.OpValue); 6811 return None; 6812 } 6813 return Bundle; 6814 } 6815 6816 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6817 Value *OpValue) { 6818 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 6819 return; 6820 6821 ScheduleData *Bundle = getScheduleData(OpValue); 6822 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6823 assert(!Bundle->IsScheduled && 6824 "Can't cancel bundle which is already scheduled"); 6825 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6826 "tried to unbundle something which is not a bundle"); 6827 6828 // Un-bundle: make single instructions out of the bundle. 6829 ScheduleData *BundleMember = Bundle; 6830 while (BundleMember) { 6831 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6832 BundleMember->FirstInBundle = BundleMember; 6833 ScheduleData *Next = BundleMember->NextInBundle; 6834 BundleMember->NextInBundle = nullptr; 6835 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6836 if (BundleMember->UnscheduledDepsInBundle == 0) { 6837 ReadyInsts.insert(BundleMember); 6838 } 6839 BundleMember = Next; 6840 } 6841 } 6842 6843 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6844 // Allocate a new ScheduleData for the instruction. 6845 if (ChunkPos >= ChunkSize) { 6846 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6847 ChunkPos = 0; 6848 } 6849 return &(ScheduleDataChunks.back()[ChunkPos++]); 6850 } 6851 6852 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6853 const InstructionsState &S) { 6854 if (getScheduleData(V, isOneOf(S, V))) 6855 return true; 6856 Instruction *I = dyn_cast<Instruction>(V); 6857 assert(I && "bundle member must be an instruction"); 6858 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 6859 "phi nodes/insertelements/extractelements/extractvalues don't need to " 6860 "be scheduled"); 6861 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6862 ScheduleData *ISD = getScheduleData(I); 6863 if (!ISD) 6864 return false; 6865 assert(isInSchedulingRegion(ISD) && 6866 "ScheduleData not in scheduling region"); 6867 ScheduleData *SD = allocateScheduleDataChunks(); 6868 SD->Inst = I; 6869 SD->init(SchedulingRegionID, S.OpValue); 6870 ExtraScheduleDataMap[I][S.OpValue] = SD; 6871 return true; 6872 }; 6873 if (CheckSheduleForI(I)) 6874 return true; 6875 if (!ScheduleStart) { 6876 // It's the first instruction in the new region. 6877 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6878 ScheduleStart = I; 6879 ScheduleEnd = I->getNextNode(); 6880 if (isOneOf(S, I) != I) 6881 CheckSheduleForI(I); 6882 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6883 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6884 return true; 6885 } 6886 // Search up and down at the same time, because we don't know if the new 6887 // instruction is above or below the existing scheduling region. 6888 BasicBlock::reverse_iterator UpIter = 6889 ++ScheduleStart->getIterator().getReverse(); 6890 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6891 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6892 BasicBlock::iterator LowerEnd = BB->end(); 6893 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6894 &*DownIter != I) { 6895 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6896 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6897 return false; 6898 } 6899 6900 ++UpIter; 6901 ++DownIter; 6902 } 6903 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6904 assert(I->getParent() == ScheduleStart->getParent() && 6905 "Instruction is in wrong basic block."); 6906 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6907 ScheduleStart = I; 6908 if (isOneOf(S, I) != I) 6909 CheckSheduleForI(I); 6910 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6911 << "\n"); 6912 return true; 6913 } 6914 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6915 "Expected to reach top of the basic block or instruction down the " 6916 "lower end."); 6917 assert(I->getParent() == ScheduleEnd->getParent() && 6918 "Instruction is in wrong basic block."); 6919 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6920 nullptr); 6921 ScheduleEnd = I->getNextNode(); 6922 if (isOneOf(S, I) != I) 6923 CheckSheduleForI(I); 6924 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6925 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6926 return true; 6927 } 6928 6929 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6930 Instruction *ToI, 6931 ScheduleData *PrevLoadStore, 6932 ScheduleData *NextLoadStore) { 6933 ScheduleData *CurrentLoadStore = PrevLoadStore; 6934 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6935 ScheduleData *SD = ScheduleDataMap[I]; 6936 if (!SD) { 6937 SD = allocateScheduleDataChunks(); 6938 ScheduleDataMap[I] = SD; 6939 SD->Inst = I; 6940 } 6941 assert(!isInSchedulingRegion(SD) && 6942 "new ScheduleData already in scheduling region"); 6943 SD->init(SchedulingRegionID, I); 6944 6945 if (I->mayReadOrWriteMemory() && 6946 (!isa<IntrinsicInst>(I) || 6947 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6948 cast<IntrinsicInst>(I)->getIntrinsicID() != 6949 Intrinsic::pseudoprobe))) { 6950 // Update the linked list of memory accessing instructions. 6951 if (CurrentLoadStore) { 6952 CurrentLoadStore->NextLoadStore = SD; 6953 } else { 6954 FirstLoadStoreInRegion = SD; 6955 } 6956 CurrentLoadStore = SD; 6957 } 6958 } 6959 if (NextLoadStore) { 6960 if (CurrentLoadStore) 6961 CurrentLoadStore->NextLoadStore = NextLoadStore; 6962 } else { 6963 LastLoadStoreInRegion = CurrentLoadStore; 6964 } 6965 } 6966 6967 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6968 bool InsertInReadyList, 6969 BoUpSLP *SLP) { 6970 assert(SD->isSchedulingEntity()); 6971 6972 SmallVector<ScheduleData *, 10> WorkList; 6973 WorkList.push_back(SD); 6974 6975 while (!WorkList.empty()) { 6976 ScheduleData *SD = WorkList.pop_back_val(); 6977 6978 ScheduleData *BundleMember = SD; 6979 while (BundleMember) { 6980 assert(isInSchedulingRegion(BundleMember)); 6981 if (!BundleMember->hasValidDependencies()) { 6982 6983 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6984 << "\n"); 6985 BundleMember->Dependencies = 0; 6986 BundleMember->resetUnscheduledDeps(); 6987 6988 // Handle def-use chain dependencies. 6989 if (BundleMember->OpValue != BundleMember->Inst) { 6990 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6991 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6992 BundleMember->Dependencies++; 6993 ScheduleData *DestBundle = UseSD->FirstInBundle; 6994 if (!DestBundle->IsScheduled) 6995 BundleMember->incrementUnscheduledDeps(1); 6996 if (!DestBundle->hasValidDependencies()) 6997 WorkList.push_back(DestBundle); 6998 } 6999 } else { 7000 for (User *U : BundleMember->Inst->users()) { 7001 if (isa<Instruction>(U)) { 7002 ScheduleData *UseSD = getScheduleData(U); 7003 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7004 BundleMember->Dependencies++; 7005 ScheduleData *DestBundle = UseSD->FirstInBundle; 7006 if (!DestBundle->IsScheduled) 7007 BundleMember->incrementUnscheduledDeps(1); 7008 if (!DestBundle->hasValidDependencies()) 7009 WorkList.push_back(DestBundle); 7010 } 7011 } else { 7012 // I'm not sure if this can ever happen. But we need to be safe. 7013 // This lets the instruction/bundle never be scheduled and 7014 // eventually disable vectorization. 7015 BundleMember->Dependencies++; 7016 BundleMember->incrementUnscheduledDeps(1); 7017 } 7018 } 7019 } 7020 7021 // Handle the memory dependencies. 7022 ScheduleData *DepDest = BundleMember->NextLoadStore; 7023 if (DepDest) { 7024 Instruction *SrcInst = BundleMember->Inst; 7025 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7026 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7027 unsigned numAliased = 0; 7028 unsigned DistToSrc = 1; 7029 7030 while (DepDest) { 7031 assert(isInSchedulingRegion(DepDest)); 7032 7033 // We have two limits to reduce the complexity: 7034 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7035 // SLP->isAliased (which is the expensive part in this loop). 7036 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7037 // the whole loop (even if the loop is fast, it's quadratic). 7038 // It's important for the loop break condition (see below) to 7039 // check this limit even between two read-only instructions. 7040 if (DistToSrc >= MaxMemDepDistance || 7041 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7042 (numAliased >= AliasedCheckLimit || 7043 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7044 7045 // We increment the counter only if the locations are aliased 7046 // (instead of counting all alias checks). This gives a better 7047 // balance between reduced runtime and accurate dependencies. 7048 numAliased++; 7049 7050 DepDest->MemoryDependencies.push_back(BundleMember); 7051 BundleMember->Dependencies++; 7052 ScheduleData *DestBundle = DepDest->FirstInBundle; 7053 if (!DestBundle->IsScheduled) { 7054 BundleMember->incrementUnscheduledDeps(1); 7055 } 7056 if (!DestBundle->hasValidDependencies()) { 7057 WorkList.push_back(DestBundle); 7058 } 7059 } 7060 DepDest = DepDest->NextLoadStore; 7061 7062 // Example, explaining the loop break condition: Let's assume our 7063 // starting instruction is i0 and MaxMemDepDistance = 3. 7064 // 7065 // +--------v--v--v 7066 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7067 // +--------^--^--^ 7068 // 7069 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7070 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7071 // Previously we already added dependencies from i3 to i6,i7,i8 7072 // (because of MaxMemDepDistance). As we added a dependency from 7073 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7074 // and we can abort this loop at i6. 7075 if (DistToSrc >= 2 * MaxMemDepDistance) 7076 break; 7077 DistToSrc++; 7078 } 7079 } 7080 } 7081 BundleMember = BundleMember->NextInBundle; 7082 } 7083 if (InsertInReadyList && SD->isReady()) { 7084 ReadyInsts.push_back(SD); 7085 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7086 << "\n"); 7087 } 7088 } 7089 } 7090 7091 void BoUpSLP::BlockScheduling::resetSchedule() { 7092 assert(ScheduleStart && 7093 "tried to reset schedule on block which has not been scheduled"); 7094 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7095 doForAllOpcodes(I, [&](ScheduleData *SD) { 7096 assert(isInSchedulingRegion(SD) && 7097 "ScheduleData not in scheduling region"); 7098 SD->IsScheduled = false; 7099 SD->resetUnscheduledDeps(); 7100 }); 7101 } 7102 ReadyInsts.clear(); 7103 } 7104 7105 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7106 if (!BS->ScheduleStart) 7107 return; 7108 7109 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7110 7111 BS->resetSchedule(); 7112 7113 // For the real scheduling we use a more sophisticated ready-list: it is 7114 // sorted by the original instruction location. This lets the final schedule 7115 // be as close as possible to the original instruction order. 7116 struct ScheduleDataCompare { 7117 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7118 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7119 } 7120 }; 7121 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7122 7123 // Ensure that all dependency data is updated and fill the ready-list with 7124 // initial instructions. 7125 int Idx = 0; 7126 int NumToSchedule = 0; 7127 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7128 I = I->getNextNode()) { 7129 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7130 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7131 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7132 "scheduler and vectorizer bundle mismatch"); 7133 SD->FirstInBundle->SchedulingPriority = Idx++; 7134 if (SD->isSchedulingEntity()) { 7135 BS->calculateDependencies(SD, false, this); 7136 NumToSchedule++; 7137 } 7138 }); 7139 } 7140 BS->initialFillReadyList(ReadyInsts); 7141 7142 Instruction *LastScheduledInst = BS->ScheduleEnd; 7143 7144 // Do the "real" scheduling. 7145 while (!ReadyInsts.empty()) { 7146 ScheduleData *picked = *ReadyInsts.begin(); 7147 ReadyInsts.erase(ReadyInsts.begin()); 7148 7149 // Move the scheduled instruction(s) to their dedicated places, if not 7150 // there yet. 7151 ScheduleData *BundleMember = picked; 7152 while (BundleMember) { 7153 Instruction *pickedInst = BundleMember->Inst; 7154 if (pickedInst->getNextNode() != LastScheduledInst) { 7155 BS->BB->getInstList().remove(pickedInst); 7156 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7157 pickedInst); 7158 } 7159 LastScheduledInst = pickedInst; 7160 BundleMember = BundleMember->NextInBundle; 7161 } 7162 7163 BS->schedule(picked, ReadyInsts); 7164 NumToSchedule--; 7165 } 7166 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7167 7168 // Avoid duplicate scheduling of the block. 7169 BS->ScheduleStart = nullptr; 7170 } 7171 7172 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7173 // If V is a store, just return the width of the stored value (or value 7174 // truncated just before storing) without traversing the expression tree. 7175 // This is the common case. 7176 if (auto *Store = dyn_cast<StoreInst>(V)) { 7177 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7178 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7179 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7180 } 7181 7182 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7183 return getVectorElementSize(IEI->getOperand(1)); 7184 7185 auto E = InstrElementSize.find(V); 7186 if (E != InstrElementSize.end()) 7187 return E->second; 7188 7189 // If V is not a store, we can traverse the expression tree to find loads 7190 // that feed it. The type of the loaded value may indicate a more suitable 7191 // width than V's type. We want to base the vector element size on the width 7192 // of memory operations where possible. 7193 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7194 SmallPtrSet<Instruction *, 16> Visited; 7195 if (auto *I = dyn_cast<Instruction>(V)) { 7196 Worklist.emplace_back(I, I->getParent()); 7197 Visited.insert(I); 7198 } 7199 7200 // Traverse the expression tree in bottom-up order looking for loads. If we 7201 // encounter an instruction we don't yet handle, we give up. 7202 auto Width = 0u; 7203 while (!Worklist.empty()) { 7204 Instruction *I; 7205 BasicBlock *Parent; 7206 std::tie(I, Parent) = Worklist.pop_back_val(); 7207 7208 // We should only be looking at scalar instructions here. If the current 7209 // instruction has a vector type, skip. 7210 auto *Ty = I->getType(); 7211 if (isa<VectorType>(Ty)) 7212 continue; 7213 7214 // If the current instruction is a load, update MaxWidth to reflect the 7215 // width of the loaded value. 7216 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7217 isa<ExtractValueInst>(I)) 7218 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7219 7220 // Otherwise, we need to visit the operands of the instruction. We only 7221 // handle the interesting cases from buildTree here. If an operand is an 7222 // instruction we haven't yet visited and from the same basic block as the 7223 // user or the use is a PHI node, we add it to the worklist. 7224 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7225 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7226 isa<UnaryOperator>(I)) { 7227 for (Use &U : I->operands()) 7228 if (auto *J = dyn_cast<Instruction>(U.get())) 7229 if (Visited.insert(J).second && 7230 (isa<PHINode>(I) || J->getParent() == Parent)) 7231 Worklist.emplace_back(J, J->getParent()); 7232 } else { 7233 break; 7234 } 7235 } 7236 7237 // If we didn't encounter a memory access in the expression tree, or if we 7238 // gave up for some reason, just return the width of V. Otherwise, return the 7239 // maximum width we found. 7240 if (!Width) { 7241 if (auto *CI = dyn_cast<CmpInst>(V)) 7242 V = CI->getOperand(0); 7243 Width = DL->getTypeSizeInBits(V->getType()); 7244 } 7245 7246 for (Instruction *I : Visited) 7247 InstrElementSize[I] = Width; 7248 7249 return Width; 7250 } 7251 7252 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7253 // smaller type with a truncation. We collect the values that will be demoted 7254 // in ToDemote and additional roots that require investigating in Roots. 7255 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7256 SmallVectorImpl<Value *> &ToDemote, 7257 SmallVectorImpl<Value *> &Roots) { 7258 // We can always demote constants. 7259 if (isa<Constant>(V)) { 7260 ToDemote.push_back(V); 7261 return true; 7262 } 7263 7264 // If the value is not an instruction in the expression with only one use, it 7265 // cannot be demoted. 7266 auto *I = dyn_cast<Instruction>(V); 7267 if (!I || !I->hasOneUse() || !Expr.count(I)) 7268 return false; 7269 7270 switch (I->getOpcode()) { 7271 7272 // We can always demote truncations and extensions. Since truncations can 7273 // seed additional demotion, we save the truncated value. 7274 case Instruction::Trunc: 7275 Roots.push_back(I->getOperand(0)); 7276 break; 7277 case Instruction::ZExt: 7278 case Instruction::SExt: 7279 if (isa<ExtractElementInst>(I->getOperand(0)) || 7280 isa<InsertElementInst>(I->getOperand(0))) 7281 return false; 7282 break; 7283 7284 // We can demote certain binary operations if we can demote both of their 7285 // operands. 7286 case Instruction::Add: 7287 case Instruction::Sub: 7288 case Instruction::Mul: 7289 case Instruction::And: 7290 case Instruction::Or: 7291 case Instruction::Xor: 7292 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7293 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7294 return false; 7295 break; 7296 7297 // We can demote selects if we can demote their true and false values. 7298 case Instruction::Select: { 7299 SelectInst *SI = cast<SelectInst>(I); 7300 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7301 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7302 return false; 7303 break; 7304 } 7305 7306 // We can demote phis if we can demote all their incoming operands. Note that 7307 // we don't need to worry about cycles since we ensure single use above. 7308 case Instruction::PHI: { 7309 PHINode *PN = cast<PHINode>(I); 7310 for (Value *IncValue : PN->incoming_values()) 7311 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7312 return false; 7313 break; 7314 } 7315 7316 // Otherwise, conservatively give up. 7317 default: 7318 return false; 7319 } 7320 7321 // Record the value that we can demote. 7322 ToDemote.push_back(V); 7323 return true; 7324 } 7325 7326 void BoUpSLP::computeMinimumValueSizes() { 7327 // If there are no external uses, the expression tree must be rooted by a 7328 // store. We can't demote in-memory values, so there is nothing to do here. 7329 if (ExternalUses.empty()) 7330 return; 7331 7332 // We only attempt to truncate integer expressions. 7333 auto &TreeRoot = VectorizableTree[0]->Scalars; 7334 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7335 if (!TreeRootIT) 7336 return; 7337 7338 // If the expression is not rooted by a store, these roots should have 7339 // external uses. We will rely on InstCombine to rewrite the expression in 7340 // the narrower type. However, InstCombine only rewrites single-use values. 7341 // This means that if a tree entry other than a root is used externally, it 7342 // must have multiple uses and InstCombine will not rewrite it. The code 7343 // below ensures that only the roots are used externally. 7344 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7345 for (auto &EU : ExternalUses) 7346 if (!Expr.erase(EU.Scalar)) 7347 return; 7348 if (!Expr.empty()) 7349 return; 7350 7351 // Collect the scalar values of the vectorizable expression. We will use this 7352 // context to determine which values can be demoted. If we see a truncation, 7353 // we mark it as seeding another demotion. 7354 for (auto &EntryPtr : VectorizableTree) 7355 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7356 7357 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7358 // have a single external user that is not in the vectorizable tree. 7359 for (auto *Root : TreeRoot) 7360 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7361 return; 7362 7363 // Conservatively determine if we can actually truncate the roots of the 7364 // expression. Collect the values that can be demoted in ToDemote and 7365 // additional roots that require investigating in Roots. 7366 SmallVector<Value *, 32> ToDemote; 7367 SmallVector<Value *, 4> Roots; 7368 for (auto *Root : TreeRoot) 7369 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7370 return; 7371 7372 // The maximum bit width required to represent all the values that can be 7373 // demoted without loss of precision. It would be safe to truncate the roots 7374 // of the expression to this width. 7375 auto MaxBitWidth = 8u; 7376 7377 // We first check if all the bits of the roots are demanded. If they're not, 7378 // we can truncate the roots to this narrower type. 7379 for (auto *Root : TreeRoot) { 7380 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7381 MaxBitWidth = std::max<unsigned>( 7382 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7383 } 7384 7385 // True if the roots can be zero-extended back to their original type, rather 7386 // than sign-extended. We know that if the leading bits are not demanded, we 7387 // can safely zero-extend. So we initialize IsKnownPositive to True. 7388 bool IsKnownPositive = true; 7389 7390 // If all the bits of the roots are demanded, we can try a little harder to 7391 // compute a narrower type. This can happen, for example, if the roots are 7392 // getelementptr indices. InstCombine promotes these indices to the pointer 7393 // width. Thus, all their bits are technically demanded even though the 7394 // address computation might be vectorized in a smaller type. 7395 // 7396 // We start by looking at each entry that can be demoted. We compute the 7397 // maximum bit width required to store the scalar by using ValueTracking to 7398 // compute the number of high-order bits we can truncate. 7399 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7400 llvm::all_of(TreeRoot, [](Value *R) { 7401 assert(R->hasOneUse() && "Root should have only one use!"); 7402 return isa<GetElementPtrInst>(R->user_back()); 7403 })) { 7404 MaxBitWidth = 8u; 7405 7406 // Determine if the sign bit of all the roots is known to be zero. If not, 7407 // IsKnownPositive is set to False. 7408 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7409 KnownBits Known = computeKnownBits(R, *DL); 7410 return Known.isNonNegative(); 7411 }); 7412 7413 // Determine the maximum number of bits required to store the scalar 7414 // values. 7415 for (auto *Scalar : ToDemote) { 7416 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7417 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7418 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7419 } 7420 7421 // If we can't prove that the sign bit is zero, we must add one to the 7422 // maximum bit width to account for the unknown sign bit. This preserves 7423 // the existing sign bit so we can safely sign-extend the root back to the 7424 // original type. Otherwise, if we know the sign bit is zero, we will 7425 // zero-extend the root instead. 7426 // 7427 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7428 // one to the maximum bit width will yield a larger-than-necessary 7429 // type. In general, we need to add an extra bit only if we can't 7430 // prove that the upper bit of the original type is equal to the 7431 // upper bit of the proposed smaller type. If these two bits are the 7432 // same (either zero or one) we know that sign-extending from the 7433 // smaller type will result in the same value. Here, since we can't 7434 // yet prove this, we are just making the proposed smaller type 7435 // larger to ensure correctness. 7436 if (!IsKnownPositive) 7437 ++MaxBitWidth; 7438 } 7439 7440 // Round MaxBitWidth up to the next power-of-two. 7441 if (!isPowerOf2_64(MaxBitWidth)) 7442 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7443 7444 // If the maximum bit width we compute is less than the with of the roots' 7445 // type, we can proceed with the narrowing. Otherwise, do nothing. 7446 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7447 return; 7448 7449 // If we can truncate the root, we must collect additional values that might 7450 // be demoted as a result. That is, those seeded by truncations we will 7451 // modify. 7452 while (!Roots.empty()) 7453 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7454 7455 // Finally, map the values we can demote to the maximum bit with we computed. 7456 for (auto *Scalar : ToDemote) 7457 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7458 } 7459 7460 namespace { 7461 7462 /// The SLPVectorizer Pass. 7463 struct SLPVectorizer : public FunctionPass { 7464 SLPVectorizerPass Impl; 7465 7466 /// Pass identification, replacement for typeid 7467 static char ID; 7468 7469 explicit SLPVectorizer() : FunctionPass(ID) { 7470 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7471 } 7472 7473 bool doInitialization(Module &M) override { return false; } 7474 7475 bool runOnFunction(Function &F) override { 7476 if (skipFunction(F)) 7477 return false; 7478 7479 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7480 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7481 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7482 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7483 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7484 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7485 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7486 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7487 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7488 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7489 7490 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7491 } 7492 7493 void getAnalysisUsage(AnalysisUsage &AU) const override { 7494 FunctionPass::getAnalysisUsage(AU); 7495 AU.addRequired<AssumptionCacheTracker>(); 7496 AU.addRequired<ScalarEvolutionWrapperPass>(); 7497 AU.addRequired<AAResultsWrapperPass>(); 7498 AU.addRequired<TargetTransformInfoWrapperPass>(); 7499 AU.addRequired<LoopInfoWrapperPass>(); 7500 AU.addRequired<DominatorTreeWrapperPass>(); 7501 AU.addRequired<DemandedBitsWrapperPass>(); 7502 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7503 AU.addRequired<InjectTLIMappingsLegacy>(); 7504 AU.addPreserved<LoopInfoWrapperPass>(); 7505 AU.addPreserved<DominatorTreeWrapperPass>(); 7506 AU.addPreserved<AAResultsWrapperPass>(); 7507 AU.addPreserved<GlobalsAAWrapperPass>(); 7508 AU.setPreservesCFG(); 7509 } 7510 }; 7511 7512 } // end anonymous namespace 7513 7514 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7515 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7516 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7517 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7518 auto *AA = &AM.getResult<AAManager>(F); 7519 auto *LI = &AM.getResult<LoopAnalysis>(F); 7520 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7521 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7522 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7523 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7524 7525 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7526 if (!Changed) 7527 return PreservedAnalyses::all(); 7528 7529 PreservedAnalyses PA; 7530 PA.preserveSet<CFGAnalyses>(); 7531 return PA; 7532 } 7533 7534 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7535 TargetTransformInfo *TTI_, 7536 TargetLibraryInfo *TLI_, AAResults *AA_, 7537 LoopInfo *LI_, DominatorTree *DT_, 7538 AssumptionCache *AC_, DemandedBits *DB_, 7539 OptimizationRemarkEmitter *ORE_) { 7540 if (!RunSLPVectorization) 7541 return false; 7542 SE = SE_; 7543 TTI = TTI_; 7544 TLI = TLI_; 7545 AA = AA_; 7546 LI = LI_; 7547 DT = DT_; 7548 AC = AC_; 7549 DB = DB_; 7550 DL = &F.getParent()->getDataLayout(); 7551 7552 Stores.clear(); 7553 GEPs.clear(); 7554 bool Changed = false; 7555 7556 // If the target claims to have no vector registers don't attempt 7557 // vectorization. 7558 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7559 return false; 7560 7561 // Don't vectorize when the attribute NoImplicitFloat is used. 7562 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7563 return false; 7564 7565 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7566 7567 // Use the bottom up slp vectorizer to construct chains that start with 7568 // store instructions. 7569 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7570 7571 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7572 // delete instructions. 7573 7574 // Update DFS numbers now so that we can use them for ordering. 7575 DT->updateDFSNumbers(); 7576 7577 // Scan the blocks in the function in post order. 7578 for (auto BB : post_order(&F.getEntryBlock())) { 7579 collectSeedInstructions(BB); 7580 7581 // Vectorize trees that end at stores. 7582 if (!Stores.empty()) { 7583 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7584 << " underlying objects.\n"); 7585 Changed |= vectorizeStoreChains(R); 7586 } 7587 7588 // Vectorize trees that end at reductions. 7589 Changed |= vectorizeChainsInBlock(BB, R); 7590 7591 // Vectorize the index computations of getelementptr instructions. This 7592 // is primarily intended to catch gather-like idioms ending at 7593 // non-consecutive loads. 7594 if (!GEPs.empty()) { 7595 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7596 << " underlying objects.\n"); 7597 Changed |= vectorizeGEPIndices(BB, R); 7598 } 7599 } 7600 7601 if (Changed) { 7602 R.optimizeGatherSequence(); 7603 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7604 } 7605 return Changed; 7606 } 7607 7608 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7609 unsigned Idx) { 7610 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7611 << "\n"); 7612 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7613 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7614 unsigned VF = Chain.size(); 7615 7616 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7617 return false; 7618 7619 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7620 << "\n"); 7621 7622 R.buildTree(Chain); 7623 if (R.isTreeTinyAndNotFullyVectorizable()) 7624 return false; 7625 if (R.isLoadCombineCandidate()) 7626 return false; 7627 R.reorderTopToBottom(); 7628 R.reorderBottomToTop(); 7629 R.buildExternalUses(); 7630 7631 R.computeMinimumValueSizes(); 7632 7633 InstructionCost Cost = R.getTreeCost(); 7634 7635 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7636 if (Cost < -SLPCostThreshold) { 7637 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7638 7639 using namespace ore; 7640 7641 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7642 cast<StoreInst>(Chain[0])) 7643 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7644 << " and with tree size " 7645 << NV("TreeSize", R.getTreeSize())); 7646 7647 R.vectorizeTree(); 7648 return true; 7649 } 7650 7651 return false; 7652 } 7653 7654 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7655 BoUpSLP &R) { 7656 // We may run into multiple chains that merge into a single chain. We mark the 7657 // stores that we vectorized so that we don't visit the same store twice. 7658 BoUpSLP::ValueSet VectorizedStores; 7659 bool Changed = false; 7660 7661 int E = Stores.size(); 7662 SmallBitVector Tails(E, false); 7663 int MaxIter = MaxStoreLookup.getValue(); 7664 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7665 E, std::make_pair(E, INT_MAX)); 7666 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7667 int IterCnt; 7668 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7669 &CheckedPairs, 7670 &ConsecutiveChain](int K, int Idx) { 7671 if (IterCnt >= MaxIter) 7672 return true; 7673 if (CheckedPairs[Idx].test(K)) 7674 return ConsecutiveChain[K].second == 1 && 7675 ConsecutiveChain[K].first == Idx; 7676 ++IterCnt; 7677 CheckedPairs[Idx].set(K); 7678 CheckedPairs[K].set(Idx); 7679 Optional<int> Diff = getPointersDiff( 7680 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7681 Stores[Idx]->getValueOperand()->getType(), 7682 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7683 if (!Diff || *Diff == 0) 7684 return false; 7685 int Val = *Diff; 7686 if (Val < 0) { 7687 if (ConsecutiveChain[Idx].second > -Val) { 7688 Tails.set(K); 7689 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7690 } 7691 return false; 7692 } 7693 if (ConsecutiveChain[K].second <= Val) 7694 return false; 7695 7696 Tails.set(Idx); 7697 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7698 return Val == 1; 7699 }; 7700 // Do a quadratic search on all of the given stores in reverse order and find 7701 // all of the pairs of stores that follow each other. 7702 for (int Idx = E - 1; Idx >= 0; --Idx) { 7703 // If a store has multiple consecutive store candidates, search according 7704 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7705 // This is because usually pairing with immediate succeeding or preceding 7706 // candidate create the best chance to find slp vectorization opportunity. 7707 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7708 IterCnt = 0; 7709 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7710 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7711 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7712 break; 7713 } 7714 7715 // Tracks if we tried to vectorize stores starting from the given tail 7716 // already. 7717 SmallBitVector TriedTails(E, false); 7718 // For stores that start but don't end a link in the chain: 7719 for (int Cnt = E; Cnt > 0; --Cnt) { 7720 int I = Cnt - 1; 7721 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7722 continue; 7723 // We found a store instr that starts a chain. Now follow the chain and try 7724 // to vectorize it. 7725 BoUpSLP::ValueList Operands; 7726 // Collect the chain into a list. 7727 while (I != E && !VectorizedStores.count(Stores[I])) { 7728 Operands.push_back(Stores[I]); 7729 Tails.set(I); 7730 if (ConsecutiveChain[I].second != 1) { 7731 // Mark the new end in the chain and go back, if required. It might be 7732 // required if the original stores come in reversed order, for example. 7733 if (ConsecutiveChain[I].first != E && 7734 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7735 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7736 TriedTails.set(I); 7737 Tails.reset(ConsecutiveChain[I].first); 7738 if (Cnt < ConsecutiveChain[I].first + 2) 7739 Cnt = ConsecutiveChain[I].first + 2; 7740 } 7741 break; 7742 } 7743 // Move to the next value in the chain. 7744 I = ConsecutiveChain[I].first; 7745 } 7746 assert(!Operands.empty() && "Expected non-empty list of stores."); 7747 7748 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7749 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7750 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7751 7752 unsigned MinVF = R.getMinVF(EltSize); 7753 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7754 MaxElts); 7755 7756 // FIXME: Is division-by-2 the correct step? Should we assert that the 7757 // register size is a power-of-2? 7758 unsigned StartIdx = 0; 7759 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7760 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7761 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7762 if (!VectorizedStores.count(Slice.front()) && 7763 !VectorizedStores.count(Slice.back()) && 7764 vectorizeStoreChain(Slice, R, Cnt)) { 7765 // Mark the vectorized stores so that we don't vectorize them again. 7766 VectorizedStores.insert(Slice.begin(), Slice.end()); 7767 Changed = true; 7768 // If we vectorized initial block, no need to try to vectorize it 7769 // again. 7770 if (Cnt == StartIdx) 7771 StartIdx += Size; 7772 Cnt += Size; 7773 continue; 7774 } 7775 ++Cnt; 7776 } 7777 // Check if the whole array was vectorized already - exit. 7778 if (StartIdx >= Operands.size()) 7779 break; 7780 } 7781 } 7782 7783 return Changed; 7784 } 7785 7786 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7787 // Initialize the collections. We will make a single pass over the block. 7788 Stores.clear(); 7789 GEPs.clear(); 7790 7791 // Visit the store and getelementptr instructions in BB and organize them in 7792 // Stores and GEPs according to the underlying objects of their pointer 7793 // operands. 7794 for (Instruction &I : *BB) { 7795 // Ignore store instructions that are volatile or have a pointer operand 7796 // that doesn't point to a scalar type. 7797 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7798 if (!SI->isSimple()) 7799 continue; 7800 if (!isValidElementType(SI->getValueOperand()->getType())) 7801 continue; 7802 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7803 } 7804 7805 // Ignore getelementptr instructions that have more than one index, a 7806 // constant index, or a pointer operand that doesn't point to a scalar 7807 // type. 7808 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7809 auto Idx = GEP->idx_begin()->get(); 7810 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7811 continue; 7812 if (!isValidElementType(Idx->getType())) 7813 continue; 7814 if (GEP->getType()->isVectorTy()) 7815 continue; 7816 GEPs[GEP->getPointerOperand()].push_back(GEP); 7817 } 7818 } 7819 } 7820 7821 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7822 if (!A || !B) 7823 return false; 7824 Value *VL[] = {A, B}; 7825 return tryToVectorizeList(VL, R); 7826 } 7827 7828 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7829 bool LimitForRegisterSize) { 7830 if (VL.size() < 2) 7831 return false; 7832 7833 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7834 << VL.size() << ".\n"); 7835 7836 // Check that all of the parts are instructions of the same type, 7837 // we permit an alternate opcode via InstructionsState. 7838 InstructionsState S = getSameOpcode(VL); 7839 if (!S.getOpcode()) 7840 return false; 7841 7842 Instruction *I0 = cast<Instruction>(S.OpValue); 7843 // Make sure invalid types (including vector type) are rejected before 7844 // determining vectorization factor for scalar instructions. 7845 for (Value *V : VL) { 7846 Type *Ty = V->getType(); 7847 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7848 // NOTE: the following will give user internal llvm type name, which may 7849 // not be useful. 7850 R.getORE()->emit([&]() { 7851 std::string type_str; 7852 llvm::raw_string_ostream rso(type_str); 7853 Ty->print(rso); 7854 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7855 << "Cannot SLP vectorize list: type " 7856 << rso.str() + " is unsupported by vectorizer"; 7857 }); 7858 return false; 7859 } 7860 } 7861 7862 unsigned Sz = R.getVectorElementSize(I0); 7863 unsigned MinVF = R.getMinVF(Sz); 7864 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7865 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7866 if (MaxVF < 2) { 7867 R.getORE()->emit([&]() { 7868 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7869 << "Cannot SLP vectorize list: vectorization factor " 7870 << "less than 2 is not supported"; 7871 }); 7872 return false; 7873 } 7874 7875 bool Changed = false; 7876 bool CandidateFound = false; 7877 InstructionCost MinCost = SLPCostThreshold.getValue(); 7878 Type *ScalarTy = VL[0]->getType(); 7879 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7880 ScalarTy = IE->getOperand(1)->getType(); 7881 7882 unsigned NextInst = 0, MaxInst = VL.size(); 7883 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7884 // No actual vectorization should happen, if number of parts is the same as 7885 // provided vectorization factor (i.e. the scalar type is used for vector 7886 // code during codegen). 7887 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7888 if (TTI->getNumberOfParts(VecTy) == VF) 7889 continue; 7890 for (unsigned I = NextInst; I < MaxInst; ++I) { 7891 unsigned OpsWidth = 0; 7892 7893 if (I + VF > MaxInst) 7894 OpsWidth = MaxInst - I; 7895 else 7896 OpsWidth = VF; 7897 7898 if (!isPowerOf2_32(OpsWidth)) 7899 continue; 7900 7901 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 7902 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7903 break; 7904 7905 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7906 // Check that a previous iteration of this loop did not delete the Value. 7907 if (llvm::any_of(Ops, [&R](Value *V) { 7908 auto *I = dyn_cast<Instruction>(V); 7909 return I && R.isDeleted(I); 7910 })) 7911 continue; 7912 7913 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7914 << "\n"); 7915 7916 R.buildTree(Ops); 7917 if (R.isTreeTinyAndNotFullyVectorizable()) 7918 continue; 7919 R.reorderTopToBottom(); 7920 R.reorderBottomToTop(); 7921 R.buildExternalUses(); 7922 7923 R.computeMinimumValueSizes(); 7924 InstructionCost Cost = R.getTreeCost(); 7925 CandidateFound = true; 7926 MinCost = std::min(MinCost, Cost); 7927 7928 if (Cost < -SLPCostThreshold) { 7929 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7930 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7931 cast<Instruction>(Ops[0])) 7932 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7933 << " and with tree size " 7934 << ore::NV("TreeSize", R.getTreeSize())); 7935 7936 R.vectorizeTree(); 7937 // Move to the next bundle. 7938 I += VF - 1; 7939 NextInst = I + 1; 7940 Changed = true; 7941 } 7942 } 7943 } 7944 7945 if (!Changed && CandidateFound) { 7946 R.getORE()->emit([&]() { 7947 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7948 << "List vectorization was possible but not beneficial with cost " 7949 << ore::NV("Cost", MinCost) << " >= " 7950 << ore::NV("Treshold", -SLPCostThreshold); 7951 }); 7952 } else if (!Changed) { 7953 R.getORE()->emit([&]() { 7954 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7955 << "Cannot SLP vectorize list: vectorization was impossible" 7956 << " with available vectorization factors"; 7957 }); 7958 } 7959 return Changed; 7960 } 7961 7962 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7963 if (!I) 7964 return false; 7965 7966 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7967 return false; 7968 7969 Value *P = I->getParent(); 7970 7971 // Vectorize in current basic block only. 7972 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7973 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7974 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7975 return false; 7976 7977 // Try to vectorize V. 7978 if (tryToVectorizePair(Op0, Op1, R)) 7979 return true; 7980 7981 auto *A = dyn_cast<BinaryOperator>(Op0); 7982 auto *B = dyn_cast<BinaryOperator>(Op1); 7983 // Try to skip B. 7984 if (B && B->hasOneUse()) { 7985 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7986 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7987 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7988 return true; 7989 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7990 return true; 7991 } 7992 7993 // Try to skip A. 7994 if (A && A->hasOneUse()) { 7995 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7996 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7997 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7998 return true; 7999 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8000 return true; 8001 } 8002 return false; 8003 } 8004 8005 namespace { 8006 8007 /// Model horizontal reductions. 8008 /// 8009 /// A horizontal reduction is a tree of reduction instructions that has values 8010 /// that can be put into a vector as its leaves. For example: 8011 /// 8012 /// mul mul mul mul 8013 /// \ / \ / 8014 /// + + 8015 /// \ / 8016 /// + 8017 /// This tree has "mul" as its leaf values and "+" as its reduction 8018 /// instructions. A reduction can feed into a store or a binary operation 8019 /// feeding a phi. 8020 /// ... 8021 /// \ / 8022 /// + 8023 /// | 8024 /// phi += 8025 /// 8026 /// Or: 8027 /// ... 8028 /// \ / 8029 /// + 8030 /// | 8031 /// *p = 8032 /// 8033 class HorizontalReduction { 8034 using ReductionOpsType = SmallVector<Value *, 16>; 8035 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8036 ReductionOpsListType ReductionOps; 8037 SmallVector<Value *, 32> ReducedVals; 8038 // Use map vector to make stable output. 8039 MapVector<Instruction *, Value *> ExtraArgs; 8040 WeakTrackingVH ReductionRoot; 8041 /// The type of reduction operation. 8042 RecurKind RdxKind; 8043 8044 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8045 8046 static bool isCmpSelMinMax(Instruction *I) { 8047 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8048 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8049 } 8050 8051 // And/or are potentially poison-safe logical patterns like: 8052 // select x, y, false 8053 // select x, true, y 8054 static bool isBoolLogicOp(Instruction *I) { 8055 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8056 match(I, m_LogicalOr(m_Value(), m_Value())); 8057 } 8058 8059 /// Checks if instruction is associative and can be vectorized. 8060 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8061 if (Kind == RecurKind::None) 8062 return false; 8063 8064 // Integer ops that map to select instructions or intrinsics are fine. 8065 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8066 isBoolLogicOp(I)) 8067 return true; 8068 8069 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8070 // FP min/max are associative except for NaN and -0.0. We do not 8071 // have to rule out -0.0 here because the intrinsic semantics do not 8072 // specify a fixed result for it. 8073 return I->getFastMathFlags().noNaNs(); 8074 } 8075 8076 return I->isAssociative(); 8077 } 8078 8079 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8080 // Poison-safe 'or' takes the form: select X, true, Y 8081 // To make that work with the normal operand processing, we skip the 8082 // true value operand. 8083 // TODO: Change the code and data structures to handle this without a hack. 8084 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8085 return I->getOperand(2); 8086 return I->getOperand(Index); 8087 } 8088 8089 /// Checks if the ParentStackElem.first should be marked as a reduction 8090 /// operation with an extra argument or as extra argument itself. 8091 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8092 Value *ExtraArg) { 8093 if (ExtraArgs.count(ParentStackElem.first)) { 8094 ExtraArgs[ParentStackElem.first] = nullptr; 8095 // We ran into something like: 8096 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8097 // The whole ParentStackElem.first should be considered as an extra value 8098 // in this case. 8099 // Do not perform analysis of remaining operands of ParentStackElem.first 8100 // instruction, this whole instruction is an extra argument. 8101 ParentStackElem.second = INVALID_OPERAND_INDEX; 8102 } else { 8103 // We ran into something like: 8104 // ParentStackElem.first += ... + ExtraArg + ... 8105 ExtraArgs[ParentStackElem.first] = ExtraArg; 8106 } 8107 } 8108 8109 /// Creates reduction operation with the current opcode. 8110 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8111 Value *RHS, const Twine &Name, bool UseSelect) { 8112 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8113 switch (Kind) { 8114 case RecurKind::Or: 8115 if (UseSelect && 8116 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8117 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8118 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8119 Name); 8120 case RecurKind::And: 8121 if (UseSelect && 8122 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8123 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8124 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8125 Name); 8126 case RecurKind::Add: 8127 case RecurKind::Mul: 8128 case RecurKind::Xor: 8129 case RecurKind::FAdd: 8130 case RecurKind::FMul: 8131 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8132 Name); 8133 case RecurKind::FMax: 8134 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8135 case RecurKind::FMin: 8136 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8137 case RecurKind::SMax: 8138 if (UseSelect) { 8139 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8140 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8141 } 8142 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8143 case RecurKind::SMin: 8144 if (UseSelect) { 8145 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8146 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8147 } 8148 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8149 case RecurKind::UMax: 8150 if (UseSelect) { 8151 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8152 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8153 } 8154 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8155 case RecurKind::UMin: 8156 if (UseSelect) { 8157 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8158 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8159 } 8160 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8161 default: 8162 llvm_unreachable("Unknown reduction operation."); 8163 } 8164 } 8165 8166 /// Creates reduction operation with the current opcode with the IR flags 8167 /// from \p ReductionOps. 8168 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8169 Value *RHS, const Twine &Name, 8170 const ReductionOpsListType &ReductionOps) { 8171 bool UseSelect = ReductionOps.size() == 2 || 8172 // Logical or/and. 8173 (ReductionOps.size() == 1 && 8174 isa<SelectInst>(ReductionOps.front().front())); 8175 assert((!UseSelect || ReductionOps.size() != 2 || 8176 isa<SelectInst>(ReductionOps[1][0])) && 8177 "Expected cmp + select pairs for reduction"); 8178 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8179 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8180 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8181 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8182 propagateIRFlags(Op, ReductionOps[1]); 8183 return Op; 8184 } 8185 } 8186 propagateIRFlags(Op, ReductionOps[0]); 8187 return Op; 8188 } 8189 8190 /// Creates reduction operation with the current opcode with the IR flags 8191 /// from \p I. 8192 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8193 Value *RHS, const Twine &Name, Instruction *I) { 8194 auto *SelI = dyn_cast<SelectInst>(I); 8195 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8196 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8197 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8198 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8199 } 8200 propagateIRFlags(Op, I); 8201 return Op; 8202 } 8203 8204 static RecurKind getRdxKind(Instruction *I) { 8205 assert(I && "Expected instruction for reduction matching"); 8206 TargetTransformInfo::ReductionFlags RdxFlags; 8207 if (match(I, m_Add(m_Value(), m_Value()))) 8208 return RecurKind::Add; 8209 if (match(I, m_Mul(m_Value(), m_Value()))) 8210 return RecurKind::Mul; 8211 if (match(I, m_And(m_Value(), m_Value())) || 8212 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8213 return RecurKind::And; 8214 if (match(I, m_Or(m_Value(), m_Value())) || 8215 match(I, m_LogicalOr(m_Value(), m_Value()))) 8216 return RecurKind::Or; 8217 if (match(I, m_Xor(m_Value(), m_Value()))) 8218 return RecurKind::Xor; 8219 if (match(I, m_FAdd(m_Value(), m_Value()))) 8220 return RecurKind::FAdd; 8221 if (match(I, m_FMul(m_Value(), m_Value()))) 8222 return RecurKind::FMul; 8223 8224 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8225 return RecurKind::FMax; 8226 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8227 return RecurKind::FMin; 8228 8229 // This matches either cmp+select or intrinsics. SLP is expected to handle 8230 // either form. 8231 // TODO: If we are canonicalizing to intrinsics, we can remove several 8232 // special-case paths that deal with selects. 8233 if (match(I, m_SMax(m_Value(), m_Value()))) 8234 return RecurKind::SMax; 8235 if (match(I, m_SMin(m_Value(), m_Value()))) 8236 return RecurKind::SMin; 8237 if (match(I, m_UMax(m_Value(), m_Value()))) 8238 return RecurKind::UMax; 8239 if (match(I, m_UMin(m_Value(), m_Value()))) 8240 return RecurKind::UMin; 8241 8242 if (auto *Select = dyn_cast<SelectInst>(I)) { 8243 // Try harder: look for min/max pattern based on instructions producing 8244 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8245 // During the intermediate stages of SLP, it's very common to have 8246 // pattern like this (since optimizeGatherSequence is run only once 8247 // at the end): 8248 // %1 = extractelement <2 x i32> %a, i32 0 8249 // %2 = extractelement <2 x i32> %a, i32 1 8250 // %cond = icmp sgt i32 %1, %2 8251 // %3 = extractelement <2 x i32> %a, i32 0 8252 // %4 = extractelement <2 x i32> %a, i32 1 8253 // %select = select i1 %cond, i32 %3, i32 %4 8254 CmpInst::Predicate Pred; 8255 Instruction *L1; 8256 Instruction *L2; 8257 8258 Value *LHS = Select->getTrueValue(); 8259 Value *RHS = Select->getFalseValue(); 8260 Value *Cond = Select->getCondition(); 8261 8262 // TODO: Support inverse predicates. 8263 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8264 if (!isa<ExtractElementInst>(RHS) || 8265 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8266 return RecurKind::None; 8267 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8268 if (!isa<ExtractElementInst>(LHS) || 8269 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8270 return RecurKind::None; 8271 } else { 8272 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8273 return RecurKind::None; 8274 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8275 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8276 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8277 return RecurKind::None; 8278 } 8279 8280 TargetTransformInfo::ReductionFlags RdxFlags; 8281 switch (Pred) { 8282 default: 8283 return RecurKind::None; 8284 case CmpInst::ICMP_SGT: 8285 case CmpInst::ICMP_SGE: 8286 return RecurKind::SMax; 8287 case CmpInst::ICMP_SLT: 8288 case CmpInst::ICMP_SLE: 8289 return RecurKind::SMin; 8290 case CmpInst::ICMP_UGT: 8291 case CmpInst::ICMP_UGE: 8292 return RecurKind::UMax; 8293 case CmpInst::ICMP_ULT: 8294 case CmpInst::ICMP_ULE: 8295 return RecurKind::UMin; 8296 } 8297 } 8298 return RecurKind::None; 8299 } 8300 8301 /// Get the index of the first operand. 8302 static unsigned getFirstOperandIndex(Instruction *I) { 8303 return isCmpSelMinMax(I) ? 1 : 0; 8304 } 8305 8306 /// Total number of operands in the reduction operation. 8307 static unsigned getNumberOfOperands(Instruction *I) { 8308 return isCmpSelMinMax(I) ? 3 : 2; 8309 } 8310 8311 /// Checks if the instruction is in basic block \p BB. 8312 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8313 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8314 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8315 auto *Sel = cast<SelectInst>(I); 8316 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8317 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8318 } 8319 return I->getParent() == BB; 8320 } 8321 8322 /// Expected number of uses for reduction operations/reduced values. 8323 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8324 if (IsCmpSelMinMax) { 8325 // SelectInst must be used twice while the condition op must have single 8326 // use only. 8327 if (auto *Sel = dyn_cast<SelectInst>(I)) 8328 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8329 return I->hasNUses(2); 8330 } 8331 8332 // Arithmetic reduction operation must be used once only. 8333 return I->hasOneUse(); 8334 } 8335 8336 /// Initializes the list of reduction operations. 8337 void initReductionOps(Instruction *I) { 8338 if (isCmpSelMinMax(I)) 8339 ReductionOps.assign(2, ReductionOpsType()); 8340 else 8341 ReductionOps.assign(1, ReductionOpsType()); 8342 } 8343 8344 /// Add all reduction operations for the reduction instruction \p I. 8345 void addReductionOps(Instruction *I) { 8346 if (isCmpSelMinMax(I)) { 8347 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8348 ReductionOps[1].emplace_back(I); 8349 } else { 8350 ReductionOps[0].emplace_back(I); 8351 } 8352 } 8353 8354 static Value *getLHS(RecurKind Kind, Instruction *I) { 8355 if (Kind == RecurKind::None) 8356 return nullptr; 8357 return I->getOperand(getFirstOperandIndex(I)); 8358 } 8359 static Value *getRHS(RecurKind Kind, Instruction *I) { 8360 if (Kind == RecurKind::None) 8361 return nullptr; 8362 return I->getOperand(getFirstOperandIndex(I) + 1); 8363 } 8364 8365 public: 8366 HorizontalReduction() = default; 8367 8368 /// Try to find a reduction tree. 8369 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8370 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8371 "Phi needs to use the binary operator"); 8372 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8373 isa<IntrinsicInst>(Inst)) && 8374 "Expected binop, select, or intrinsic for reduction matching"); 8375 RdxKind = getRdxKind(Inst); 8376 8377 // We could have a initial reductions that is not an add. 8378 // r *= v1 + v2 + v3 + v4 8379 // In such a case start looking for a tree rooted in the first '+'. 8380 if (Phi) { 8381 if (getLHS(RdxKind, Inst) == Phi) { 8382 Phi = nullptr; 8383 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8384 if (!Inst) 8385 return false; 8386 RdxKind = getRdxKind(Inst); 8387 } else if (getRHS(RdxKind, Inst) == Phi) { 8388 Phi = nullptr; 8389 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8390 if (!Inst) 8391 return false; 8392 RdxKind = getRdxKind(Inst); 8393 } 8394 } 8395 8396 if (!isVectorizable(RdxKind, Inst)) 8397 return false; 8398 8399 // Analyze "regular" integer/FP types for reductions - no target-specific 8400 // types or pointers. 8401 Type *Ty = Inst->getType(); 8402 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8403 return false; 8404 8405 // Though the ultimate reduction may have multiple uses, its condition must 8406 // have only single use. 8407 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8408 if (!Sel->getCondition()->hasOneUse()) 8409 return false; 8410 8411 ReductionRoot = Inst; 8412 8413 // The opcode for leaf values that we perform a reduction on. 8414 // For example: load(x) + load(y) + load(z) + fptoui(w) 8415 // The leaf opcode for 'w' does not match, so we don't include it as a 8416 // potential candidate for the reduction. 8417 unsigned LeafOpcode = 0; 8418 8419 // Post-order traverse the reduction tree starting at Inst. We only handle 8420 // true trees containing binary operators or selects. 8421 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8422 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8423 initReductionOps(Inst); 8424 while (!Stack.empty()) { 8425 Instruction *TreeN = Stack.back().first; 8426 unsigned EdgeToVisit = Stack.back().second++; 8427 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8428 bool IsReducedValue = TreeRdxKind != RdxKind; 8429 8430 // Postorder visit. 8431 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8432 if (IsReducedValue) 8433 ReducedVals.push_back(TreeN); 8434 else { 8435 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8436 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8437 // Check if TreeN is an extra argument of its parent operation. 8438 if (Stack.size() <= 1) { 8439 // TreeN can't be an extra argument as it is a root reduction 8440 // operation. 8441 return false; 8442 } 8443 // Yes, TreeN is an extra argument, do not add it to a list of 8444 // reduction operations. 8445 // Stack[Stack.size() - 2] always points to the parent operation. 8446 markExtraArg(Stack[Stack.size() - 2], TreeN); 8447 ExtraArgs.erase(TreeN); 8448 } else 8449 addReductionOps(TreeN); 8450 } 8451 // Retract. 8452 Stack.pop_back(); 8453 continue; 8454 } 8455 8456 // Visit operands. 8457 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8458 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8459 if (!EdgeInst) { 8460 // Edge value is not a reduction instruction or a leaf instruction. 8461 // (It may be a constant, function argument, or something else.) 8462 markExtraArg(Stack.back(), EdgeVal); 8463 continue; 8464 } 8465 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8466 // Continue analysis if the next operand is a reduction operation or 8467 // (possibly) a leaf value. If the leaf value opcode is not set, 8468 // the first met operation != reduction operation is considered as the 8469 // leaf opcode. 8470 // Only handle trees in the current basic block. 8471 // Each tree node needs to have minimal number of users except for the 8472 // ultimate reduction. 8473 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8474 if (EdgeInst != Phi && EdgeInst != Inst && 8475 hasSameParent(EdgeInst, Inst->getParent()) && 8476 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8477 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8478 if (IsRdxInst) { 8479 // We need to be able to reassociate the reduction operations. 8480 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8481 // I is an extra argument for TreeN (its parent operation). 8482 markExtraArg(Stack.back(), EdgeInst); 8483 continue; 8484 } 8485 } else if (!LeafOpcode) { 8486 LeafOpcode = EdgeInst->getOpcode(); 8487 } 8488 Stack.push_back( 8489 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8490 continue; 8491 } 8492 // I is an extra argument for TreeN (its parent operation). 8493 markExtraArg(Stack.back(), EdgeInst); 8494 } 8495 return true; 8496 } 8497 8498 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8499 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8500 // If there are a sufficient number of reduction values, reduce 8501 // to a nearby power-of-2. We can safely generate oversized 8502 // vectors and rely on the backend to split them to legal sizes. 8503 unsigned NumReducedVals = ReducedVals.size(); 8504 if (NumReducedVals < 4) 8505 return nullptr; 8506 8507 // Intersect the fast-math-flags from all reduction operations. 8508 FastMathFlags RdxFMF; 8509 RdxFMF.set(); 8510 for (ReductionOpsType &RdxOp : ReductionOps) { 8511 for (Value *RdxVal : RdxOp) { 8512 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8513 RdxFMF &= FPMO->getFastMathFlags(); 8514 } 8515 } 8516 8517 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8518 Builder.setFastMathFlags(RdxFMF); 8519 8520 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8521 // The same extra argument may be used several times, so log each attempt 8522 // to use it. 8523 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8524 assert(Pair.first && "DebugLoc must be set."); 8525 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8526 } 8527 8528 // The compare instruction of a min/max is the insertion point for new 8529 // instructions and may be replaced with a new compare instruction. 8530 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8531 assert(isa<SelectInst>(RdxRootInst) && 8532 "Expected min/max reduction to have select root instruction"); 8533 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8534 assert(isa<Instruction>(ScalarCond) && 8535 "Expected min/max reduction to have compare condition"); 8536 return cast<Instruction>(ScalarCond); 8537 }; 8538 8539 // The reduction root is used as the insertion point for new instructions, 8540 // so set it as externally used to prevent it from being deleted. 8541 ExternallyUsedValues[ReductionRoot]; 8542 SmallVector<Value *, 16> IgnoreList; 8543 for (ReductionOpsType &RdxOp : ReductionOps) 8544 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8545 8546 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8547 if (NumReducedVals > ReduxWidth) { 8548 // In the loop below, we are building a tree based on a window of 8549 // 'ReduxWidth' values. 8550 // If the operands of those values have common traits (compare predicate, 8551 // constant operand, etc), then we want to group those together to 8552 // minimize the cost of the reduction. 8553 8554 // TODO: This should be extended to count common operands for 8555 // compares and binops. 8556 8557 // Step 1: Count the number of times each compare predicate occurs. 8558 SmallDenseMap<unsigned, unsigned> PredCountMap; 8559 for (Value *RdxVal : ReducedVals) { 8560 CmpInst::Predicate Pred; 8561 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8562 ++PredCountMap[Pred]; 8563 } 8564 // Step 2: Sort the values so the most common predicates come first. 8565 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8566 CmpInst::Predicate PredA, PredB; 8567 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8568 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8569 return PredCountMap[PredA] > PredCountMap[PredB]; 8570 } 8571 return false; 8572 }); 8573 } 8574 8575 Value *VectorizedTree = nullptr; 8576 unsigned i = 0; 8577 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8578 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8579 V.buildTree(VL, IgnoreList); 8580 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 8581 break; 8582 if (V.isLoadCombineReductionCandidate(RdxKind)) 8583 break; 8584 V.reorderTopToBottom(); 8585 V.reorderBottomToTop(/*IgnoreReorder=*/true); 8586 V.buildExternalUses(ExternallyUsedValues); 8587 8588 // For a poison-safe boolean logic reduction, do not replace select 8589 // instructions with logic ops. All reduced values will be frozen (see 8590 // below) to prevent leaking poison. 8591 if (isa<SelectInst>(ReductionRoot) && 8592 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8593 NumReducedVals != ReduxWidth) 8594 break; 8595 8596 V.computeMinimumValueSizes(); 8597 8598 // Estimate cost. 8599 InstructionCost TreeCost = 8600 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8601 InstructionCost ReductionCost = 8602 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8603 InstructionCost Cost = TreeCost + ReductionCost; 8604 if (!Cost.isValid()) { 8605 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8606 return nullptr; 8607 } 8608 if (Cost >= -SLPCostThreshold) { 8609 V.getORE()->emit([&]() { 8610 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8611 cast<Instruction>(VL[0])) 8612 << "Vectorizing horizontal reduction is possible" 8613 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8614 << " and threshold " 8615 << ore::NV("Threshold", -SLPCostThreshold); 8616 }); 8617 break; 8618 } 8619 8620 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8621 << Cost << ". (HorRdx)\n"); 8622 V.getORE()->emit([&]() { 8623 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8624 cast<Instruction>(VL[0])) 8625 << "Vectorized horizontal reduction with cost " 8626 << ore::NV("Cost", Cost) << " and with tree size " 8627 << ore::NV("TreeSize", V.getTreeSize()); 8628 }); 8629 8630 // Vectorize a tree. 8631 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8632 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8633 8634 // Emit a reduction. If the root is a select (min/max idiom), the insert 8635 // point is the compare condition of that select. 8636 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8637 if (isCmpSelMinMax(RdxRootInst)) 8638 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8639 else 8640 Builder.SetInsertPoint(RdxRootInst); 8641 8642 // To prevent poison from leaking across what used to be sequential, safe, 8643 // scalar boolean logic operations, the reduction operand must be frozen. 8644 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8645 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8646 8647 Value *ReducedSubTree = 8648 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8649 8650 if (!VectorizedTree) { 8651 // Initialize the final value in the reduction. 8652 VectorizedTree = ReducedSubTree; 8653 } else { 8654 // Update the final value in the reduction. 8655 Builder.SetCurrentDebugLocation(Loc); 8656 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8657 ReducedSubTree, "op.rdx", ReductionOps); 8658 } 8659 i += ReduxWidth; 8660 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8661 } 8662 8663 if (VectorizedTree) { 8664 // Finish the reduction. 8665 for (; i < NumReducedVals; ++i) { 8666 auto *I = cast<Instruction>(ReducedVals[i]); 8667 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8668 VectorizedTree = 8669 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8670 } 8671 for (auto &Pair : ExternallyUsedValues) { 8672 // Add each externally used value to the final reduction. 8673 for (auto *I : Pair.second) { 8674 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8675 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8676 Pair.first, "op.extra", I); 8677 } 8678 } 8679 8680 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8681 8682 // Mark all scalar reduction ops for deletion, they are replaced by the 8683 // vector reductions. 8684 V.eraseInstructions(IgnoreList); 8685 } 8686 return VectorizedTree; 8687 } 8688 8689 unsigned numReductionValues() const { return ReducedVals.size(); } 8690 8691 private: 8692 /// Calculate the cost of a reduction. 8693 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8694 Value *FirstReducedVal, unsigned ReduxWidth, 8695 FastMathFlags FMF) { 8696 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8697 Type *ScalarTy = FirstReducedVal->getType(); 8698 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8699 InstructionCost VectorCost, ScalarCost; 8700 switch (RdxKind) { 8701 case RecurKind::Add: 8702 case RecurKind::Mul: 8703 case RecurKind::Or: 8704 case RecurKind::And: 8705 case RecurKind::Xor: 8706 case RecurKind::FAdd: 8707 case RecurKind::FMul: { 8708 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8709 VectorCost = 8710 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 8711 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 8712 break; 8713 } 8714 case RecurKind::FMax: 8715 case RecurKind::FMin: { 8716 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8717 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8718 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8719 /*unsigned=*/false, CostKind); 8720 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8721 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 8722 SclCondTy, RdxPred, CostKind) + 8723 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8724 SclCondTy, RdxPred, CostKind); 8725 break; 8726 } 8727 case RecurKind::SMax: 8728 case RecurKind::SMin: 8729 case RecurKind::UMax: 8730 case RecurKind::UMin: { 8731 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8732 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8733 bool IsUnsigned = 8734 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8735 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 8736 CostKind); 8737 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8738 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 8739 SclCondTy, RdxPred, CostKind) + 8740 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8741 SclCondTy, RdxPred, CostKind); 8742 break; 8743 } 8744 default: 8745 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8746 } 8747 8748 // Scalar cost is repeated for N-1 elements. 8749 ScalarCost *= (ReduxWidth - 1); 8750 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8751 << " for reduction that starts with " << *FirstReducedVal 8752 << " (It is a splitting reduction)\n"); 8753 return VectorCost - ScalarCost; 8754 } 8755 8756 /// Emit a horizontal reduction of the vectorized value. 8757 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8758 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8759 assert(VectorizedValue && "Need to have a vectorized tree node"); 8760 assert(isPowerOf2_32(ReduxWidth) && 8761 "We only handle power-of-two reductions for now"); 8762 8763 ++NumVectorInstructions; 8764 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8765 ReductionOps.back()); 8766 } 8767 }; 8768 8769 } // end anonymous namespace 8770 8771 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8772 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8773 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8774 8775 unsigned AggregateSize = 1; 8776 auto *IV = cast<InsertValueInst>(InsertInst); 8777 Type *CurrentType = IV->getType(); 8778 do { 8779 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8780 for (auto *Elt : ST->elements()) 8781 if (Elt != ST->getElementType(0)) // check homogeneity 8782 return None; 8783 AggregateSize *= ST->getNumElements(); 8784 CurrentType = ST->getElementType(0); 8785 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8786 AggregateSize *= AT->getNumElements(); 8787 CurrentType = AT->getElementType(); 8788 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8789 AggregateSize *= VT->getNumElements(); 8790 return AggregateSize; 8791 } else if (CurrentType->isSingleValueType()) { 8792 return AggregateSize; 8793 } else { 8794 return None; 8795 } 8796 } while (true); 8797 } 8798 8799 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8800 TargetTransformInfo *TTI, 8801 SmallVectorImpl<Value *> &BuildVectorOpds, 8802 SmallVectorImpl<Value *> &InsertElts, 8803 unsigned OperandOffset) { 8804 do { 8805 Value *InsertedOperand = LastInsertInst->getOperand(1); 8806 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8807 if (!OperandIndex) 8808 return false; 8809 if (isa<InsertElementInst>(InsertedOperand) || 8810 isa<InsertValueInst>(InsertedOperand)) { 8811 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8812 BuildVectorOpds, InsertElts, *OperandIndex)) 8813 return false; 8814 } else { 8815 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8816 InsertElts[*OperandIndex] = LastInsertInst; 8817 } 8818 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8819 } while (LastInsertInst != nullptr && 8820 (isa<InsertValueInst>(LastInsertInst) || 8821 isa<InsertElementInst>(LastInsertInst)) && 8822 LastInsertInst->hasOneUse()); 8823 return true; 8824 } 8825 8826 /// Recognize construction of vectors like 8827 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8828 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8829 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8830 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8831 /// starting from the last insertelement or insertvalue instruction. 8832 /// 8833 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8834 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8835 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8836 /// 8837 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8838 /// 8839 /// \return true if it matches. 8840 static bool findBuildAggregate(Instruction *LastInsertInst, 8841 TargetTransformInfo *TTI, 8842 SmallVectorImpl<Value *> &BuildVectorOpds, 8843 SmallVectorImpl<Value *> &InsertElts) { 8844 8845 assert((isa<InsertElementInst>(LastInsertInst) || 8846 isa<InsertValueInst>(LastInsertInst)) && 8847 "Expected insertelement or insertvalue instruction!"); 8848 8849 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8850 "Expected empty result vectors!"); 8851 8852 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8853 if (!AggregateSize) 8854 return false; 8855 BuildVectorOpds.resize(*AggregateSize); 8856 InsertElts.resize(*AggregateSize); 8857 8858 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8859 0)) { 8860 llvm::erase_value(BuildVectorOpds, nullptr); 8861 llvm::erase_value(InsertElts, nullptr); 8862 if (BuildVectorOpds.size() >= 2) 8863 return true; 8864 } 8865 8866 return false; 8867 } 8868 8869 /// Try and get a reduction value from a phi node. 8870 /// 8871 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8872 /// if they come from either \p ParentBB or a containing loop latch. 8873 /// 8874 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8875 /// if not possible. 8876 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8877 BasicBlock *ParentBB, LoopInfo *LI) { 8878 // There are situations where the reduction value is not dominated by the 8879 // reduction phi. Vectorizing such cases has been reported to cause 8880 // miscompiles. See PR25787. 8881 auto DominatedReduxValue = [&](Value *R) { 8882 return isa<Instruction>(R) && 8883 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8884 }; 8885 8886 Value *Rdx = nullptr; 8887 8888 // Return the incoming value if it comes from the same BB as the phi node. 8889 if (P->getIncomingBlock(0) == ParentBB) { 8890 Rdx = P->getIncomingValue(0); 8891 } else if (P->getIncomingBlock(1) == ParentBB) { 8892 Rdx = P->getIncomingValue(1); 8893 } 8894 8895 if (Rdx && DominatedReduxValue(Rdx)) 8896 return Rdx; 8897 8898 // Otherwise, check whether we have a loop latch to look at. 8899 Loop *BBL = LI->getLoopFor(ParentBB); 8900 if (!BBL) 8901 return nullptr; 8902 BasicBlock *BBLatch = BBL->getLoopLatch(); 8903 if (!BBLatch) 8904 return nullptr; 8905 8906 // There is a loop latch, return the incoming value if it comes from 8907 // that. This reduction pattern occasionally turns up. 8908 if (P->getIncomingBlock(0) == BBLatch) { 8909 Rdx = P->getIncomingValue(0); 8910 } else if (P->getIncomingBlock(1) == BBLatch) { 8911 Rdx = P->getIncomingValue(1); 8912 } 8913 8914 if (Rdx && DominatedReduxValue(Rdx)) 8915 return Rdx; 8916 8917 return nullptr; 8918 } 8919 8920 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8921 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8922 return true; 8923 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8924 return true; 8925 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8926 return true; 8927 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8928 return true; 8929 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8930 return true; 8931 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8932 return true; 8933 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8934 return true; 8935 return false; 8936 } 8937 8938 /// Attempt to reduce a horizontal reduction. 8939 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8940 /// with reduction operators \a Root (or one of its operands) in a basic block 8941 /// \a BB, then check if it can be done. If horizontal reduction is not found 8942 /// and root instruction is a binary operation, vectorization of the operands is 8943 /// attempted. 8944 /// \returns true if a horizontal reduction was matched and reduced or operands 8945 /// of one of the binary instruction were vectorized. 8946 /// \returns false if a horizontal reduction was not matched (or not possible) 8947 /// or no vectorization of any binary operation feeding \a Root instruction was 8948 /// performed. 8949 static bool tryToVectorizeHorReductionOrInstOperands( 8950 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8951 TargetTransformInfo *TTI, 8952 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8953 if (!ShouldVectorizeHor) 8954 return false; 8955 8956 if (!Root) 8957 return false; 8958 8959 if (Root->getParent() != BB || isa<PHINode>(Root)) 8960 return false; 8961 // Start analysis starting from Root instruction. If horizontal reduction is 8962 // found, try to vectorize it. If it is not a horizontal reduction or 8963 // vectorization is not possible or not effective, and currently analyzed 8964 // instruction is a binary operation, try to vectorize the operands, using 8965 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8966 // the same procedure considering each operand as a possible root of the 8967 // horizontal reduction. 8968 // Interrupt the process if the Root instruction itself was vectorized or all 8969 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8970 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8971 // CmpInsts so we can skip extra attempts in 8972 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8973 std::queue<std::pair<Instruction *, unsigned>> Stack; 8974 Stack.emplace(Root, 0); 8975 SmallPtrSet<Value *, 8> VisitedInstrs; 8976 SmallVector<WeakTrackingVH> PostponedInsts; 8977 bool Res = false; 8978 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 8979 Value *&B1) -> Value * { 8980 bool IsBinop = matchRdxBop(Inst, B0, B1); 8981 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8982 if (IsBinop || IsSelect) { 8983 HorizontalReduction HorRdx; 8984 if (HorRdx.matchAssociativeReduction(P, Inst)) 8985 return HorRdx.tryToReduce(R, TTI); 8986 } 8987 return nullptr; 8988 }; 8989 while (!Stack.empty()) { 8990 Instruction *Inst; 8991 unsigned Level; 8992 std::tie(Inst, Level) = Stack.front(); 8993 Stack.pop(); 8994 // Do not try to analyze instruction that has already been vectorized. 8995 // This may happen when we vectorize instruction operands on a previous 8996 // iteration while stack was populated before that happened. 8997 if (R.isDeleted(Inst)) 8998 continue; 8999 Value *B0 = nullptr, *B1 = nullptr; 9000 if (Value *V = TryToReduce(Inst, B0, B1)) { 9001 Res = true; 9002 // Set P to nullptr to avoid re-analysis of phi node in 9003 // matchAssociativeReduction function unless this is the root node. 9004 P = nullptr; 9005 if (auto *I = dyn_cast<Instruction>(V)) { 9006 // Try to find another reduction. 9007 Stack.emplace(I, Level); 9008 continue; 9009 } 9010 } else { 9011 bool IsBinop = B0 && B1; 9012 if (P && IsBinop) { 9013 Inst = dyn_cast<Instruction>(B0); 9014 if (Inst == P) 9015 Inst = dyn_cast<Instruction>(B1); 9016 if (!Inst) { 9017 // Set P to nullptr to avoid re-analysis of phi node in 9018 // matchAssociativeReduction function unless this is the root node. 9019 P = nullptr; 9020 continue; 9021 } 9022 } 9023 // Set P to nullptr to avoid re-analysis of phi node in 9024 // matchAssociativeReduction function unless this is the root node. 9025 P = nullptr; 9026 // Do not try to vectorize CmpInst operands, this is done separately. 9027 // Final attempt for binop args vectorization should happen after the loop 9028 // to try to find reductions. 9029 if (!isa<CmpInst>(Inst)) 9030 PostponedInsts.push_back(Inst); 9031 } 9032 9033 // Try to vectorize operands. 9034 // Continue analysis for the instruction from the same basic block only to 9035 // save compile time. 9036 if (++Level < RecursionMaxDepth) 9037 for (auto *Op : Inst->operand_values()) 9038 if (VisitedInstrs.insert(Op).second) 9039 if (auto *I = dyn_cast<Instruction>(Op)) 9040 // Do not try to vectorize CmpInst operands, this is done 9041 // separately. 9042 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9043 I->getParent() == BB) 9044 Stack.emplace(I, Level); 9045 } 9046 // Try to vectorized binops where reductions were not found. 9047 for (Value *V : PostponedInsts) 9048 if (auto *Inst = dyn_cast<Instruction>(V)) 9049 if (!R.isDeleted(Inst)) 9050 Res |= Vectorize(Inst, R); 9051 return Res; 9052 } 9053 9054 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9055 BasicBlock *BB, BoUpSLP &R, 9056 TargetTransformInfo *TTI) { 9057 auto *I = dyn_cast_or_null<Instruction>(V); 9058 if (!I) 9059 return false; 9060 9061 if (!isa<BinaryOperator>(I)) 9062 P = nullptr; 9063 // Try to match and vectorize a horizontal reduction. 9064 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9065 return tryToVectorize(I, R); 9066 }; 9067 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9068 ExtraVectorization); 9069 } 9070 9071 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9072 BasicBlock *BB, BoUpSLP &R) { 9073 const DataLayout &DL = BB->getModule()->getDataLayout(); 9074 if (!R.canMapToVector(IVI->getType(), DL)) 9075 return false; 9076 9077 SmallVector<Value *, 16> BuildVectorOpds; 9078 SmallVector<Value *, 16> BuildVectorInsts; 9079 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9080 return false; 9081 9082 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9083 // Aggregate value is unlikely to be processed in vector register, we need to 9084 // extract scalars into scalar registers, so NeedExtraction is set true. 9085 return tryToVectorizeList(BuildVectorOpds, R); 9086 } 9087 9088 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9089 BasicBlock *BB, BoUpSLP &R) { 9090 SmallVector<Value *, 16> BuildVectorInsts; 9091 SmallVector<Value *, 16> BuildVectorOpds; 9092 SmallVector<int> Mask; 9093 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9094 (llvm::all_of(BuildVectorOpds, 9095 [](Value *V) { return isa<ExtractElementInst>(V); }) && 9096 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9097 return false; 9098 9099 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9100 return tryToVectorizeList(BuildVectorInsts, R); 9101 } 9102 9103 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9104 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9105 bool AtTerminator) { 9106 bool OpsChanged = false; 9107 SmallVector<Instruction *, 4> PostponedCmps; 9108 for (auto *I : reverse(Instructions)) { 9109 if (R.isDeleted(I)) 9110 continue; 9111 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9112 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9113 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9114 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9115 else if (isa<CmpInst>(I)) 9116 PostponedCmps.push_back(I); 9117 } 9118 if (AtTerminator) { 9119 // Try to find reductions first. 9120 for (Instruction *I : PostponedCmps) { 9121 if (R.isDeleted(I)) 9122 continue; 9123 for (Value *Op : I->operands()) 9124 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9125 } 9126 // Try to vectorize operands as vector bundles. 9127 for (Instruction *I : PostponedCmps) { 9128 if (R.isDeleted(I)) 9129 continue; 9130 OpsChanged |= tryToVectorize(I, R); 9131 } 9132 Instructions.clear(); 9133 } else { 9134 // Insert in reverse order since the PostponedCmps vector was filled in 9135 // reverse order. 9136 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9137 } 9138 return OpsChanged; 9139 } 9140 9141 template <typename T> 9142 static bool 9143 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9144 function_ref<unsigned(T *)> Limit, 9145 function_ref<bool(T *, T *)> Comparator, 9146 function_ref<bool(T *, T *)> AreCompatible, 9147 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9148 bool LimitForRegisterSize) { 9149 bool Changed = false; 9150 // Sort by type, parent, operands. 9151 stable_sort(Incoming, Comparator); 9152 9153 // Try to vectorize elements base on their type. 9154 SmallVector<T *> Candidates; 9155 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9156 // Look for the next elements with the same type, parent and operand 9157 // kinds. 9158 auto *SameTypeIt = IncIt; 9159 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9160 ++SameTypeIt; 9161 9162 // Try to vectorize them. 9163 unsigned NumElts = (SameTypeIt - IncIt); 9164 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9165 << NumElts << ")\n"); 9166 // The vectorization is a 3-state attempt: 9167 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9168 // size of maximal register at first. 9169 // 2. Try to vectorize remaining instructions with the same type, if 9170 // possible. This may result in the better vectorization results rather than 9171 // if we try just to vectorize instructions with the same/alternate opcodes. 9172 // 3. Final attempt to try to vectorize all instructions with the 9173 // same/alternate ops only, this may result in some extra final 9174 // vectorization. 9175 if (NumElts > 1 && 9176 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9177 // Success start over because instructions might have been changed. 9178 Changed = true; 9179 } else if (NumElts < Limit(*IncIt) && 9180 (Candidates.empty() || 9181 Candidates.front()->getType() == (*IncIt)->getType())) { 9182 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9183 } 9184 // Final attempt to vectorize instructions with the same types. 9185 if (Candidates.size() > 1 && 9186 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9187 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9188 // Success start over because instructions might have been changed. 9189 Changed = true; 9190 } else if (LimitForRegisterSize) { 9191 // Try to vectorize using small vectors. 9192 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9193 It != End;) { 9194 auto *SameTypeIt = It; 9195 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9196 ++SameTypeIt; 9197 unsigned NumElts = (SameTypeIt - It); 9198 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9199 /*LimitForRegisterSize=*/false)) 9200 Changed = true; 9201 It = SameTypeIt; 9202 } 9203 } 9204 Candidates.clear(); 9205 } 9206 9207 // Start over at the next instruction of a different type (or the end). 9208 IncIt = SameTypeIt; 9209 } 9210 return Changed; 9211 } 9212 9213 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9214 bool Changed = false; 9215 SmallVector<Value *, 4> Incoming; 9216 SmallPtrSet<Value *, 16> VisitedInstrs; 9217 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9218 // node. Allows better to identify the chains that can be vectorized in the 9219 // better way. 9220 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9221 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9222 assert(isValidElementType(V1->getType()) && 9223 isValidElementType(V2->getType()) && 9224 "Expected vectorizable types only."); 9225 // It is fine to compare type IDs here, since we expect only vectorizable 9226 // types, like ints, floats and pointers, we don't care about other type. 9227 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9228 return true; 9229 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9230 return false; 9231 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9232 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9233 if (Opcodes1.size() < Opcodes2.size()) 9234 return true; 9235 if (Opcodes1.size() > Opcodes2.size()) 9236 return false; 9237 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9238 // Undefs are compatible with any other value. 9239 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9240 continue; 9241 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9242 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9243 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9244 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9245 if (!NodeI1) 9246 return NodeI2 != nullptr; 9247 if (!NodeI2) 9248 return false; 9249 assert((NodeI1 == NodeI2) == 9250 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9251 "Different nodes should have different DFS numbers"); 9252 if (NodeI1 != NodeI2) 9253 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9254 InstructionsState S = getSameOpcode({I1, I2}); 9255 if (S.getOpcode()) 9256 continue; 9257 return I1->getOpcode() < I2->getOpcode(); 9258 } 9259 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9260 continue; 9261 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9262 return true; 9263 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9264 return false; 9265 } 9266 return false; 9267 }; 9268 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9269 if (V1 == V2) 9270 return true; 9271 if (V1->getType() != V2->getType()) 9272 return false; 9273 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9274 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9275 if (Opcodes1.size() != Opcodes2.size()) 9276 return false; 9277 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9278 // Undefs are compatible with any other value. 9279 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9280 continue; 9281 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9282 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9283 if (I1->getParent() != I2->getParent()) 9284 return false; 9285 InstructionsState S = getSameOpcode({I1, I2}); 9286 if (S.getOpcode()) 9287 continue; 9288 return false; 9289 } 9290 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9291 continue; 9292 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9293 return false; 9294 } 9295 return true; 9296 }; 9297 auto Limit = [&R](Value *V) { 9298 unsigned EltSize = R.getVectorElementSize(V); 9299 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9300 }; 9301 9302 bool HaveVectorizedPhiNodes = false; 9303 do { 9304 // Collect the incoming values from the PHIs. 9305 Incoming.clear(); 9306 for (Instruction &I : *BB) { 9307 PHINode *P = dyn_cast<PHINode>(&I); 9308 if (!P) 9309 break; 9310 9311 // No need to analyze deleted, vectorized and non-vectorizable 9312 // instructions. 9313 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9314 isValidElementType(P->getType())) 9315 Incoming.push_back(P); 9316 } 9317 9318 // Find the corresponding non-phi nodes for better matching when trying to 9319 // build the tree. 9320 for (Value *V : Incoming) { 9321 SmallVectorImpl<Value *> &Opcodes = 9322 PHIToOpcodes.try_emplace(V).first->getSecond(); 9323 if (!Opcodes.empty()) 9324 continue; 9325 SmallVector<Value *, 4> Nodes(1, V); 9326 SmallPtrSet<Value *, 4> Visited; 9327 while (!Nodes.empty()) { 9328 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9329 if (!Visited.insert(PHI).second) 9330 continue; 9331 for (Value *V : PHI->incoming_values()) { 9332 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9333 Nodes.push_back(PHI1); 9334 continue; 9335 } 9336 Opcodes.emplace_back(V); 9337 } 9338 } 9339 } 9340 9341 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9342 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9343 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9344 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9345 }, 9346 /*LimitForRegisterSize=*/true); 9347 Changed |= HaveVectorizedPhiNodes; 9348 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9349 } while (HaveVectorizedPhiNodes); 9350 9351 VisitedInstrs.clear(); 9352 9353 SmallVector<Instruction *, 8> PostProcessInstructions; 9354 SmallDenseSet<Instruction *, 4> KeyNodes; 9355 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9356 // Skip instructions with scalable type. The num of elements is unknown at 9357 // compile-time for scalable type. 9358 if (isa<ScalableVectorType>(it->getType())) 9359 continue; 9360 9361 // Skip instructions marked for the deletion. 9362 if (R.isDeleted(&*it)) 9363 continue; 9364 // We may go through BB multiple times so skip the one we have checked. 9365 if (!VisitedInstrs.insert(&*it).second) { 9366 if (it->use_empty() && KeyNodes.contains(&*it) && 9367 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9368 it->isTerminator())) { 9369 // We would like to start over since some instructions are deleted 9370 // and the iterator may become invalid value. 9371 Changed = true; 9372 it = BB->begin(); 9373 e = BB->end(); 9374 } 9375 continue; 9376 } 9377 9378 if (isa<DbgInfoIntrinsic>(it)) 9379 continue; 9380 9381 // Try to vectorize reductions that use PHINodes. 9382 if (PHINode *P = dyn_cast<PHINode>(it)) { 9383 // Check that the PHI is a reduction PHI. 9384 if (P->getNumIncomingValues() == 2) { 9385 // Try to match and vectorize a horizontal reduction. 9386 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9387 TTI)) { 9388 Changed = true; 9389 it = BB->begin(); 9390 e = BB->end(); 9391 continue; 9392 } 9393 } 9394 // Try to vectorize the incoming values of the PHI, to catch reductions 9395 // that feed into PHIs. 9396 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9397 // Skip if the incoming block is the current BB for now. Also, bypass 9398 // unreachable IR for efficiency and to avoid crashing. 9399 // TODO: Collect the skipped incoming values and try to vectorize them 9400 // after processing BB. 9401 if (BB == P->getIncomingBlock(I) || 9402 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9403 continue; 9404 9405 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9406 P->getIncomingBlock(I), R, TTI); 9407 } 9408 continue; 9409 } 9410 9411 // Ran into an instruction without users, like terminator, or function call 9412 // with ignored return value, store. Ignore unused instructions (basing on 9413 // instruction type, except for CallInst and InvokeInst). 9414 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9415 isa<InvokeInst>(it))) { 9416 KeyNodes.insert(&*it); 9417 bool OpsChanged = false; 9418 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9419 for (auto *V : it->operand_values()) { 9420 // Try to match and vectorize a horizontal reduction. 9421 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9422 } 9423 } 9424 // Start vectorization of post-process list of instructions from the 9425 // top-tree instructions to try to vectorize as many instructions as 9426 // possible. 9427 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9428 it->isTerminator()); 9429 if (OpsChanged) { 9430 // We would like to start over since some instructions are deleted 9431 // and the iterator may become invalid value. 9432 Changed = true; 9433 it = BB->begin(); 9434 e = BB->end(); 9435 continue; 9436 } 9437 } 9438 9439 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9440 isa<InsertValueInst>(it)) 9441 PostProcessInstructions.push_back(&*it); 9442 } 9443 9444 return Changed; 9445 } 9446 9447 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9448 auto Changed = false; 9449 for (auto &Entry : GEPs) { 9450 // If the getelementptr list has fewer than two elements, there's nothing 9451 // to do. 9452 if (Entry.second.size() < 2) 9453 continue; 9454 9455 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9456 << Entry.second.size() << ".\n"); 9457 9458 // Process the GEP list in chunks suitable for the target's supported 9459 // vector size. If a vector register can't hold 1 element, we are done. We 9460 // are trying to vectorize the index computations, so the maximum number of 9461 // elements is based on the size of the index expression, rather than the 9462 // size of the GEP itself (the target's pointer size). 9463 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9464 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9465 if (MaxVecRegSize < EltSize) 9466 continue; 9467 9468 unsigned MaxElts = MaxVecRegSize / EltSize; 9469 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9470 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9471 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9472 9473 // Initialize a set a candidate getelementptrs. Note that we use a 9474 // SetVector here to preserve program order. If the index computations 9475 // are vectorizable and begin with loads, we want to minimize the chance 9476 // of having to reorder them later. 9477 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9478 9479 // Some of the candidates may have already been vectorized after we 9480 // initially collected them. If so, they are marked as deleted, so remove 9481 // them from the set of candidates. 9482 Candidates.remove_if( 9483 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9484 9485 // Remove from the set of candidates all pairs of getelementptrs with 9486 // constant differences. Such getelementptrs are likely not good 9487 // candidates for vectorization in a bottom-up phase since one can be 9488 // computed from the other. We also ensure all candidate getelementptr 9489 // indices are unique. 9490 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9491 auto *GEPI = GEPList[I]; 9492 if (!Candidates.count(GEPI)) 9493 continue; 9494 auto *SCEVI = SE->getSCEV(GEPList[I]); 9495 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9496 auto *GEPJ = GEPList[J]; 9497 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9498 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9499 Candidates.remove(GEPI); 9500 Candidates.remove(GEPJ); 9501 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9502 Candidates.remove(GEPJ); 9503 } 9504 } 9505 } 9506 9507 // We break out of the above computation as soon as we know there are 9508 // fewer than two candidates remaining. 9509 if (Candidates.size() < 2) 9510 continue; 9511 9512 // Add the single, non-constant index of each candidate to the bundle. We 9513 // ensured the indices met these constraints when we originally collected 9514 // the getelementptrs. 9515 SmallVector<Value *, 16> Bundle(Candidates.size()); 9516 auto BundleIndex = 0u; 9517 for (auto *V : Candidates) { 9518 auto *GEP = cast<GetElementPtrInst>(V); 9519 auto *GEPIdx = GEP->idx_begin()->get(); 9520 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9521 Bundle[BundleIndex++] = GEPIdx; 9522 } 9523 9524 // Try and vectorize the indices. We are currently only interested in 9525 // gather-like cases of the form: 9526 // 9527 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9528 // 9529 // where the loads of "a", the loads of "b", and the subtractions can be 9530 // performed in parallel. It's likely that detecting this pattern in a 9531 // bottom-up phase will be simpler and less costly than building a 9532 // full-blown top-down phase beginning at the consecutive loads. 9533 Changed |= tryToVectorizeList(Bundle, R); 9534 } 9535 } 9536 return Changed; 9537 } 9538 9539 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9540 bool Changed = false; 9541 // Sort by type, base pointers and values operand. Value operands must be 9542 // compatible (have the same opcode, same parent), otherwise it is 9543 // definitely not profitable to try to vectorize them. 9544 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9545 if (V->getPointerOperandType()->getTypeID() < 9546 V2->getPointerOperandType()->getTypeID()) 9547 return true; 9548 if (V->getPointerOperandType()->getTypeID() > 9549 V2->getPointerOperandType()->getTypeID()) 9550 return false; 9551 // UndefValues are compatible with all other values. 9552 if (isa<UndefValue>(V->getValueOperand()) || 9553 isa<UndefValue>(V2->getValueOperand())) 9554 return false; 9555 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9556 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9557 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9558 DT->getNode(I1->getParent()); 9559 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9560 DT->getNode(I2->getParent()); 9561 assert(NodeI1 && "Should only process reachable instructions"); 9562 assert(NodeI1 && "Should only process reachable instructions"); 9563 assert((NodeI1 == NodeI2) == 9564 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9565 "Different nodes should have different DFS numbers"); 9566 if (NodeI1 != NodeI2) 9567 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9568 InstructionsState S = getSameOpcode({I1, I2}); 9569 if (S.getOpcode()) 9570 return false; 9571 return I1->getOpcode() < I2->getOpcode(); 9572 } 9573 if (isa<Constant>(V->getValueOperand()) && 9574 isa<Constant>(V2->getValueOperand())) 9575 return false; 9576 return V->getValueOperand()->getValueID() < 9577 V2->getValueOperand()->getValueID(); 9578 }; 9579 9580 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9581 if (V1 == V2) 9582 return true; 9583 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9584 return false; 9585 // Undefs are compatible with any other value. 9586 if (isa<UndefValue>(V1->getValueOperand()) || 9587 isa<UndefValue>(V2->getValueOperand())) 9588 return true; 9589 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9590 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9591 if (I1->getParent() != I2->getParent()) 9592 return false; 9593 InstructionsState S = getSameOpcode({I1, I2}); 9594 return S.getOpcode() > 0; 9595 } 9596 if (isa<Constant>(V1->getValueOperand()) && 9597 isa<Constant>(V2->getValueOperand())) 9598 return true; 9599 return V1->getValueOperand()->getValueID() == 9600 V2->getValueOperand()->getValueID(); 9601 }; 9602 auto Limit = [&R, this](StoreInst *SI) { 9603 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 9604 return R.getMinVF(EltSize); 9605 }; 9606 9607 // Attempt to sort and vectorize each of the store-groups. 9608 for (auto &Pair : Stores) { 9609 if (Pair.second.size() < 2) 9610 continue; 9611 9612 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9613 << Pair.second.size() << ".\n"); 9614 9615 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 9616 continue; 9617 9618 Changed |= tryToVectorizeSequence<StoreInst>( 9619 Pair.second, Limit, StoreSorter, AreCompatibleStores, 9620 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 9621 return vectorizeStores(Candidates, R); 9622 }, 9623 /*LimitForRegisterSize=*/false); 9624 } 9625 return Changed; 9626 } 9627 9628 char SLPVectorizer::ID = 0; 9629 9630 static const char lv_name[] = "SLP Vectorizer"; 9631 9632 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9633 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9634 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9635 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9636 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9637 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9638 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9639 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9640 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9641 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9642 9643 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9644