1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 static cl::opt<int> 109 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 110 cl::desc("Only vectorize if you gain more than this " 111 "number ")); 112 113 static cl::opt<bool> 114 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 115 cl::desc("Attempt to vectorize horizontal reductions")); 116 117 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 118 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 119 cl::desc( 120 "Attempt to vectorize horizontal reductions feeding into a store")); 121 122 static cl::opt<int> 123 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 124 cl::desc("Attempt to vectorize for this register size in bits")); 125 126 /// Limits the size of scheduling regions in a block. 127 /// It avoid long compile times for _very_ large blocks where vector 128 /// instructions are spread over a wide range. 129 /// This limit is way higher than needed by real-world functions. 130 static cl::opt<int> 131 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 132 cl::desc("Limit the size of the SLP scheduling region per block")); 133 134 static cl::opt<int> MinVectorRegSizeOption( 135 "slp-min-reg-size", cl::init(128), cl::Hidden, 136 cl::desc("Attempt to vectorize for this register size in bits")); 137 138 static cl::opt<unsigned> RecursionMaxDepth( 139 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 140 cl::desc("Limit the recursion depth when building a vectorizable tree")); 141 142 static cl::opt<unsigned> MinTreeSize( 143 "slp-min-tree-size", cl::init(3), cl::Hidden, 144 cl::desc("Only vectorize small trees if they are fully vectorizable")); 145 146 static cl::opt<bool> 147 ViewSLPTree("view-slp-tree", cl::Hidden, 148 cl::desc("Display the SLP trees with Graphviz")); 149 150 // Limit the number of alias checks. The limit is chosen so that 151 // it has no negative effect on the llvm benchmarks. 152 static const unsigned AliasedCheckLimit = 10; 153 154 // Another limit for the alias checks: The maximum distance between load/store 155 // instructions where alias checks are done. 156 // This limit is useful for very large basic blocks. 157 static const unsigned MaxMemDepDistance = 160; 158 159 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 160 /// regions to be handled. 161 static const int MinScheduleRegionSize = 16; 162 163 /// \brief Predicate for the element types that the SLP vectorizer supports. 164 /// 165 /// The most important thing to filter here are types which are invalid in LLVM 166 /// vectors. We also filter target specific types which have absolutely no 167 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 168 /// avoids spending time checking the cost model and realizing that they will 169 /// be inevitably scalarized. 170 static bool isValidElementType(Type *Ty) { 171 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 172 !Ty->isPPC_FP128Ty(); 173 } 174 175 /// \returns true if all of the instructions in \p VL are in the same block or 176 /// false otherwise. 177 static bool allSameBlock(ArrayRef<Value *> VL) { 178 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 179 if (!I0) 180 return false; 181 BasicBlock *BB = I0->getParent(); 182 for (int i = 1, e = VL.size(); i < e; i++) { 183 Instruction *I = dyn_cast<Instruction>(VL[i]); 184 if (!I) 185 return false; 186 187 if (BB != I->getParent()) 188 return false; 189 } 190 return true; 191 } 192 193 /// \returns True if all of the values in \p VL are constants. 194 static bool allConstant(ArrayRef<Value *> VL) { 195 for (Value *i : VL) 196 if (!isa<Constant>(i)) 197 return false; 198 return true; 199 } 200 201 /// \returns True if all of the values in \p VL are identical. 202 static bool isSplat(ArrayRef<Value *> VL) { 203 for (unsigned i = 1, e = VL.size(); i < e; ++i) 204 if (VL[i] != VL[0]) 205 return false; 206 return true; 207 } 208 209 /// Checks if the vector of instructions can be represented as a shuffle, like: 210 /// %x0 = extractelement <4 x i8> %x, i32 0 211 /// %x3 = extractelement <4 x i8> %x, i32 3 212 /// %y1 = extractelement <4 x i8> %y, i32 1 213 /// %y2 = extractelement <4 x i8> %y, i32 2 214 /// %x0x0 = mul i8 %x0, %x0 215 /// %x3x3 = mul i8 %x3, %x3 216 /// %y1y1 = mul i8 %y1, %y1 217 /// %y2y2 = mul i8 %y2, %y2 218 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 219 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 220 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 221 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 222 /// ret <4 x i8> %ins4 223 /// can be transformed into: 224 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 225 /// i32 6> 226 /// %2 = mul <4 x i8> %1, %1 227 /// ret <4 x i8> %2 228 /// We convert this initially to something like: 229 /// %x0 = extractelement <4 x i8> %x, i32 0 230 /// %x3 = extractelement <4 x i8> %x, i32 3 231 /// %y1 = extractelement <4 x i8> %y, i32 1 232 /// %y2 = extractelement <4 x i8> %y, i32 2 233 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 234 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 235 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 236 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 237 /// %5 = mul <4 x i8> %4, %4 238 /// %6 = extractelement <4 x i8> %5, i32 0 239 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 240 /// %7 = extractelement <4 x i8> %5, i32 1 241 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 242 /// %8 = extractelement <4 x i8> %5, i32 2 243 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 244 /// %9 = extractelement <4 x i8> %5, i32 3 245 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 246 /// ret <4 x i8> %ins4 247 /// InstCombiner transforms this into a shuffle and vector mul 248 static Optional<TargetTransformInfo::ShuffleKind> 249 isShuffle(ArrayRef<Value *> VL) { 250 auto *EI0 = cast<ExtractElementInst>(VL[0]); 251 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 252 Value *Vec1 = nullptr; 253 Value *Vec2 = nullptr; 254 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 255 ShuffleMode CommonShuffleMode = Unknown; 256 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 257 auto *EI = cast<ExtractElementInst>(VL[I]); 258 auto *Vec = EI->getVectorOperand(); 259 // All vector operands must have the same number of vector elements. 260 if (Vec->getType()->getVectorNumElements() != Size) 261 return None; 262 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 263 if (!Idx) 264 return None; 265 // Undefined behavior if Idx is negative or >= Size. 266 if (Idx->getValue().uge(Size)) 267 continue; 268 unsigned IntIdx = Idx->getValue().getZExtValue(); 269 // We can extractelement from undef vector. 270 if (isa<UndefValue>(Vec)) 271 continue; 272 // For correct shuffling we have to have at most 2 different vector operands 273 // in all extractelement instructions. 274 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 275 return None; 276 if (CommonShuffleMode == Permute) 277 continue; 278 // If the extract index is not the same as the operation number, it is a 279 // permutation. 280 if (IntIdx != I) { 281 CommonShuffleMode = Permute; 282 continue; 283 } 284 // Check the shuffle mode for the current operation. 285 if (!Vec1) 286 Vec1 = Vec; 287 else if (Vec != Vec1) 288 Vec2 = Vec; 289 // Example: shufflevector A, B, <0,5,2,7> 290 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 291 // I is even and IntIdx for B == I - FirstAlternate shuffle. 292 // Example: shufflevector A, B, <4,1,6,3> 293 // I is even and IntIdx for A == I - SecondAlternate shuffle. 294 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 295 const bool IIsEven = I & 1; 296 const bool CurrVecIsA = Vec == Vec1; 297 const bool IIsOdd = !IIsEven; 298 const bool CurrVecIsB = !CurrVecIsA; 299 ShuffleMode CurrentShuffleMode = 300 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 301 : SecondAlternate; 302 // Common mode is not set or the same as the shuffle mode of the current 303 // operation - alternate. 304 if (CommonShuffleMode == Unknown) 305 CommonShuffleMode = CurrentShuffleMode; 306 // Common shuffle mode is not the same as the shuffle mode of the current 307 // operation - permutation. 308 if (CommonShuffleMode != CurrentShuffleMode) 309 CommonShuffleMode = Permute; 310 } 311 // If we're not crossing lanes in different vectors, consider it as blending. 312 if ((CommonShuffleMode == FirstAlternate || 313 CommonShuffleMode == SecondAlternate) && 314 Vec2) 315 return TargetTransformInfo::SK_Alternate; 316 // If Vec2 was never used, we have a permutation of a single vector, otherwise 317 // we have permutation of 2 vectors. 318 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 319 : TargetTransformInfo::SK_PermuteSingleSrc; 320 } 321 322 ///\returns Opcode that can be clubbed with \p Op to create an alternate 323 /// sequence which can later be merged as a ShuffleVector instruction. 324 static unsigned getAltOpcode(unsigned Op) { 325 switch (Op) { 326 case Instruction::FAdd: 327 return Instruction::FSub; 328 case Instruction::FSub: 329 return Instruction::FAdd; 330 case Instruction::Add: 331 return Instruction::Sub; 332 case Instruction::Sub: 333 return Instruction::Add; 334 default: 335 return 0; 336 } 337 } 338 339 static bool isOdd(unsigned Value) { 340 return Value & 1; 341 } 342 343 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 344 unsigned CheckedOpcode) { 345 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 346 } 347 348 /// Chooses the correct key for scheduling data. If \p Op has the same (or 349 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 350 /// OpValue. 351 static Value *isOneOf(Value *OpValue, Value *Op) { 352 auto *I = dyn_cast<Instruction>(Op); 353 if (!I) 354 return OpValue; 355 auto *OpInst = cast<Instruction>(OpValue); 356 unsigned OpInstOpcode = OpInst->getOpcode(); 357 unsigned IOpcode = I->getOpcode(); 358 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 359 return Op; 360 return OpValue; 361 } 362 363 namespace { 364 /// Contains data for the instructions going to be vectorized. 365 struct RawInstructionsData { 366 /// Main Opcode of the instructions going to be vectorized. 367 unsigned Opcode = 0; 368 /// The list of instructions have some instructions with alternate opcodes. 369 bool HasAltOpcodes = false; 370 }; 371 } // namespace 372 373 /// Checks the list of the vectorized instructions \p VL and returns info about 374 /// this list. 375 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 376 auto *I0 = dyn_cast<Instruction>(VL[0]); 377 if (!I0) 378 return {}; 379 RawInstructionsData Res; 380 unsigned Opcode = I0->getOpcode(); 381 // Walk through the list of the vectorized instructions 382 // in order to check its structure described by RawInstructionsData. 383 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 384 auto *I = dyn_cast<Instruction>(VL[Cnt]); 385 if (!I) 386 return {}; 387 if (Opcode != I->getOpcode()) 388 Res.HasAltOpcodes = true; 389 } 390 Res.Opcode = Opcode; 391 return Res; 392 } 393 394 namespace { 395 /// Main data required for vectorization of instructions. 396 struct InstructionsState { 397 /// The very first instruction in the list with the main opcode. 398 Value *OpValue = nullptr; 399 /// The main opcode for the list of instructions. 400 unsigned Opcode = 0; 401 /// Some of the instructions in the list have alternate opcodes. 402 bool IsAltShuffle = false; 403 InstructionsState() = default; 404 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 405 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 406 }; 407 } // namespace 408 409 /// \returns analysis of the Instructions in \p VL described in 410 /// InstructionsState, the Opcode that we suppose the whole list 411 /// could be vectorized even if its structure is diverse. 412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 413 auto Res = getMainOpcode(VL); 414 unsigned Opcode = Res.Opcode; 415 if (!Res.HasAltOpcodes) 416 return InstructionsState(VL[0], Opcode, false); 417 auto *OpInst = cast<Instruction>(VL[0]); 418 unsigned AltOpcode = getAltOpcode(Opcode); 419 // Examine each element in the list instructions VL to determine 420 // if some operations there could be considered as an alternative 421 // (for example as subtraction relates to addition operation). 422 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 423 auto *I = cast<Instruction>(VL[Cnt]); 424 unsigned InstOpcode = I->getOpcode(); 425 if ((Res.HasAltOpcodes && 426 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 427 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 428 return InstructionsState(OpInst, 0, false); 429 } 430 } 431 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 432 } 433 434 /// \returns true if all of the values in \p VL have the same type or false 435 /// otherwise. 436 static bool allSameType(ArrayRef<Value *> VL) { 437 Type *Ty = VL[0]->getType(); 438 for (int i = 1, e = VL.size(); i < e; i++) 439 if (VL[i]->getType() != Ty) 440 return false; 441 442 return true; 443 } 444 445 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 446 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 447 assert(Opcode == Instruction::ExtractElement || 448 Opcode == Instruction::ExtractValue); 449 if (Opcode == Instruction::ExtractElement) { 450 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 451 return CI && CI->getZExtValue() == Idx; 452 } else { 453 ExtractValueInst *EI = cast<ExtractValueInst>(E); 454 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 455 } 456 } 457 458 /// \returns True if in-tree use also needs extract. This refers to 459 /// possible scalar operand in vectorized instruction. 460 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 461 TargetLibraryInfo *TLI) { 462 unsigned Opcode = UserInst->getOpcode(); 463 switch (Opcode) { 464 case Instruction::Load: { 465 LoadInst *LI = cast<LoadInst>(UserInst); 466 return (LI->getPointerOperand() == Scalar); 467 } 468 case Instruction::Store: { 469 StoreInst *SI = cast<StoreInst>(UserInst); 470 return (SI->getPointerOperand() == Scalar); 471 } 472 case Instruction::Call: { 473 CallInst *CI = cast<CallInst>(UserInst); 474 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 475 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 476 return (CI->getArgOperand(1) == Scalar); 477 } 478 LLVM_FALLTHROUGH; 479 } 480 default: 481 return false; 482 } 483 } 484 485 /// \returns the AA location that is being access by the instruction. 486 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 487 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 488 return MemoryLocation::get(SI); 489 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 490 return MemoryLocation::get(LI); 491 return MemoryLocation(); 492 } 493 494 /// \returns True if the instruction is not a volatile or atomic load/store. 495 static bool isSimple(Instruction *I) { 496 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 497 return LI->isSimple(); 498 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 499 return SI->isSimple(); 500 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 501 return !MI->isVolatile(); 502 return true; 503 } 504 505 namespace llvm { 506 507 namespace slpvectorizer { 508 509 /// Bottom Up SLP Vectorizer. 510 class BoUpSLP { 511 public: 512 using ValueList = SmallVector<Value *, 8>; 513 using InstrList = SmallVector<Instruction *, 16>; 514 using ValueSet = SmallPtrSet<Value *, 16>; 515 using StoreList = SmallVector<StoreInst *, 8>; 516 using ExtraValueToDebugLocsMap = 517 MapVector<Value *, SmallVector<Instruction *, 2>>; 518 519 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 520 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 521 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 522 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 523 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 524 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 525 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 526 // Use the vector register size specified by the target unless overridden 527 // by a command-line option. 528 // TODO: It would be better to limit the vectorization factor based on 529 // data type rather than just register size. For example, x86 AVX has 530 // 256-bit registers, but it does not support integer operations 531 // at that width (that requires AVX2). 532 if (MaxVectorRegSizeOption.getNumOccurrences()) 533 MaxVecRegSize = MaxVectorRegSizeOption; 534 else 535 MaxVecRegSize = TTI->getRegisterBitWidth(true); 536 537 if (MinVectorRegSizeOption.getNumOccurrences()) 538 MinVecRegSize = MinVectorRegSizeOption; 539 else 540 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 541 } 542 543 /// \brief Vectorize the tree that starts with the elements in \p VL. 544 /// Returns the vectorized root. 545 Value *vectorizeTree(); 546 547 /// Vectorize the tree but with the list of externally used values \p 548 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 549 /// generated extractvalue instructions. 550 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 551 552 /// \returns the cost incurred by unwanted spills and fills, caused by 553 /// holding live values over call sites. 554 int getSpillCost(); 555 556 /// \returns the vectorization cost of the subtree that starts at \p VL. 557 /// A negative number means that this is profitable. 558 int getTreeCost(); 559 560 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 561 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 562 void buildTree(ArrayRef<Value *> Roots, 563 ArrayRef<Value *> UserIgnoreLst = None); 564 565 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 566 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 567 /// into account (anf updating it, if required) list of externally used 568 /// values stored in \p ExternallyUsedValues. 569 void buildTree(ArrayRef<Value *> Roots, 570 ExtraValueToDebugLocsMap &ExternallyUsedValues, 571 ArrayRef<Value *> UserIgnoreLst = None); 572 573 /// Clear the internal data structures that are created by 'buildTree'. 574 void deleteTree() { 575 VectorizableTree.clear(); 576 ScalarToTreeEntry.clear(); 577 MustGather.clear(); 578 ExternalUses.clear(); 579 NumLoadsWantToKeepOrder = 0; 580 NumLoadsWantToChangeOrder = 0; 581 for (auto &Iter : BlocksSchedules) { 582 BlockScheduling *BS = Iter.second.get(); 583 BS->clear(); 584 } 585 MinBWs.clear(); 586 } 587 588 unsigned getTreeSize() const { return VectorizableTree.size(); } 589 590 /// \brief Perform LICM and CSE on the newly generated gather sequences. 591 void optimizeGatherSequence(); 592 593 /// \returns true if it is beneficial to reverse the vector order. 594 bool shouldReorder() const { 595 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 596 } 597 598 /// \return The vector element size in bits to use when vectorizing the 599 /// expression tree ending at \p V. If V is a store, the size is the width of 600 /// the stored value. Otherwise, the size is the width of the largest loaded 601 /// value reaching V. This method is used by the vectorizer to calculate 602 /// vectorization factors. 603 unsigned getVectorElementSize(Value *V); 604 605 /// Compute the minimum type sizes required to represent the entries in a 606 /// vectorizable tree. 607 void computeMinimumValueSizes(); 608 609 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 610 unsigned getMaxVecRegSize() const { 611 return MaxVecRegSize; 612 } 613 614 // \returns minimum vector register size as set by cl::opt. 615 unsigned getMinVecRegSize() const { 616 return MinVecRegSize; 617 } 618 619 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 620 /// 621 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 622 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 623 624 /// \returns True if the VectorizableTree is both tiny and not fully 625 /// vectorizable. We do not vectorize such trees. 626 bool isTreeTinyAndNotFullyVectorizable(); 627 628 OptimizationRemarkEmitter *getORE() { return ORE; } 629 630 private: 631 struct TreeEntry; 632 633 /// Checks if all users of \p I are the part of the vectorization tree. 634 bool areAllUsersVectorized(Instruction *I) const; 635 636 /// \returns the cost of the vectorizable entry. 637 int getEntryCost(TreeEntry *E); 638 639 /// This is the recursive part of buildTree. 640 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 641 642 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 643 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 644 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const; 645 646 /// Vectorize a single entry in the tree. 647 Value *vectorizeTree(TreeEntry *E); 648 649 /// Vectorize a single entry in the tree, starting in \p VL. 650 Value *vectorizeTree(ArrayRef<Value *> VL); 651 652 /// \returns the pointer to the vectorized value if \p VL is already 653 /// vectorized, or NULL. They may happen in cycles. 654 Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const; 655 656 /// \returns the scalarization cost for this type. Scalarization in this 657 /// context means the creation of vectors from a group of scalars. 658 int getGatherCost(Type *Ty); 659 660 /// \returns the scalarization cost for this list of values. Assuming that 661 /// this subtree gets vectorized, we may need to extract the values from the 662 /// roots. This method calculates the cost of extracting the values. 663 int getGatherCost(ArrayRef<Value *> VL); 664 665 /// \brief Set the Builder insert point to one after the last instruction in 666 /// the bundle 667 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 668 669 /// \returns a vector from a collection of scalars in \p VL. 670 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 671 672 /// \returns whether the VectorizableTree is fully vectorizable and will 673 /// be beneficial even the tree height is tiny. 674 bool isFullyVectorizableTinyTree(); 675 676 /// \reorder commutative operands in alt shuffle if they result in 677 /// vectorized code. 678 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 679 SmallVectorImpl<Value *> &Left, 680 SmallVectorImpl<Value *> &Right); 681 682 /// \reorder commutative operands to get better probability of 683 /// generating vectorized code. 684 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 685 SmallVectorImpl<Value *> &Left, 686 SmallVectorImpl<Value *> &Right); 687 struct TreeEntry { 688 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 689 690 /// \returns true if the scalars in VL are equal to this entry. 691 bool isSame(ArrayRef<Value *> VL) const { 692 assert(VL.size() == Scalars.size() && "Invalid size"); 693 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 694 } 695 696 /// A vector of scalars. 697 ValueList Scalars; 698 699 /// The Scalars are vectorized into this value. It is initialized to Null. 700 Value *VectorizedValue = nullptr; 701 702 /// Do we need to gather this sequence ? 703 bool NeedToGather = false; 704 705 /// Points back to the VectorizableTree. 706 /// 707 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 708 /// to be a pointer and needs to be able to initialize the child iterator. 709 /// Thus we need a reference back to the container to translate the indices 710 /// to entries. 711 std::vector<TreeEntry> &Container; 712 713 /// The TreeEntry index containing the user of this entry. We can actually 714 /// have multiple users so the data structure is not truly a tree. 715 SmallVector<int, 1> UserTreeIndices; 716 }; 717 718 /// Create a new VectorizableTree entry. 719 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 720 int &UserTreeIdx) { 721 VectorizableTree.emplace_back(VectorizableTree); 722 int idx = VectorizableTree.size() - 1; 723 TreeEntry *Last = &VectorizableTree[idx]; 724 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 725 Last->NeedToGather = !Vectorized; 726 if (Vectorized) { 727 for (int i = 0, e = VL.size(); i != e; ++i) { 728 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 729 ScalarToTreeEntry[VL[i]] = idx; 730 } 731 } else { 732 MustGather.insert(VL.begin(), VL.end()); 733 } 734 735 if (UserTreeIdx >= 0) 736 Last->UserTreeIndices.push_back(UserTreeIdx); 737 UserTreeIdx = idx; 738 return Last; 739 } 740 741 /// -- Vectorization State -- 742 /// Holds all of the tree entries. 743 std::vector<TreeEntry> VectorizableTree; 744 745 TreeEntry *getTreeEntry(Value *V) { 746 auto I = ScalarToTreeEntry.find(V); 747 if (I != ScalarToTreeEntry.end()) 748 return &VectorizableTree[I->second]; 749 return nullptr; 750 } 751 752 const TreeEntry *getTreeEntry(Value *V) const { 753 auto I = ScalarToTreeEntry.find(V); 754 if (I != ScalarToTreeEntry.end()) 755 return &VectorizableTree[I->second]; 756 return nullptr; 757 } 758 759 /// Maps a specific scalar to its tree entry. 760 SmallDenseMap<Value*, int> ScalarToTreeEntry; 761 762 /// A list of scalars that we found that we need to keep as scalars. 763 ValueSet MustGather; 764 765 /// This POD struct describes one external user in the vectorized tree. 766 struct ExternalUser { 767 ExternalUser(Value *S, llvm::User *U, int L) 768 : Scalar(S), User(U), Lane(L) {} 769 770 // Which scalar in our function. 771 Value *Scalar; 772 773 // Which user that uses the scalar. 774 llvm::User *User; 775 776 // Which lane does the scalar belong to. 777 int Lane; 778 }; 779 using UserList = SmallVector<ExternalUser, 16>; 780 781 /// Checks if two instructions may access the same memory. 782 /// 783 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 784 /// is invariant in the calling loop. 785 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 786 Instruction *Inst2) { 787 // First check if the result is already in the cache. 788 AliasCacheKey key = std::make_pair(Inst1, Inst2); 789 Optional<bool> &result = AliasCache[key]; 790 if (result.hasValue()) { 791 return result.getValue(); 792 } 793 MemoryLocation Loc2 = getLocation(Inst2, AA); 794 bool aliased = true; 795 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 796 // Do the alias check. 797 aliased = AA->alias(Loc1, Loc2); 798 } 799 // Store the result in the cache. 800 result = aliased; 801 return aliased; 802 } 803 804 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 805 806 /// Cache for alias results. 807 /// TODO: consider moving this to the AliasAnalysis itself. 808 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 809 810 /// Removes an instruction from its block and eventually deletes it. 811 /// It's like Instruction::eraseFromParent() except that the actual deletion 812 /// is delayed until BoUpSLP is destructed. 813 /// This is required to ensure that there are no incorrect collisions in the 814 /// AliasCache, which can happen if a new instruction is allocated at the 815 /// same address as a previously deleted instruction. 816 void eraseInstruction(Instruction *I) { 817 I->removeFromParent(); 818 I->dropAllReferences(); 819 DeletedInstructions.emplace_back(I); 820 } 821 822 /// Temporary store for deleted instructions. Instructions will be deleted 823 /// eventually when the BoUpSLP is destructed. 824 SmallVector<unique_value, 8> DeletedInstructions; 825 826 /// A list of values that need to extracted out of the tree. 827 /// This list holds pairs of (Internal Scalar : External User). External User 828 /// can be nullptr, it means that this Internal Scalar will be used later, 829 /// after vectorization. 830 UserList ExternalUses; 831 832 /// Values used only by @llvm.assume calls. 833 SmallPtrSet<const Value *, 32> EphValues; 834 835 /// Holds all of the instructions that we gathered. 836 SetVector<Instruction *> GatherSeq; 837 838 /// A list of blocks that we are going to CSE. 839 SetVector<BasicBlock *> CSEBlocks; 840 841 /// Contains all scheduling relevant data for an instruction. 842 /// A ScheduleData either represents a single instruction or a member of an 843 /// instruction bundle (= a group of instructions which is combined into a 844 /// vector instruction). 845 struct ScheduleData { 846 // The initial value for the dependency counters. It means that the 847 // dependencies are not calculated yet. 848 enum { InvalidDeps = -1 }; 849 850 ScheduleData() = default; 851 852 void init(int BlockSchedulingRegionID, Value *OpVal) { 853 FirstInBundle = this; 854 NextInBundle = nullptr; 855 NextLoadStore = nullptr; 856 IsScheduled = false; 857 SchedulingRegionID = BlockSchedulingRegionID; 858 UnscheduledDepsInBundle = UnscheduledDeps; 859 clearDependencies(); 860 OpValue = OpVal; 861 } 862 863 /// Returns true if the dependency information has been calculated. 864 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 865 866 /// Returns true for single instructions and for bundle representatives 867 /// (= the head of a bundle). 868 bool isSchedulingEntity() const { return FirstInBundle == this; } 869 870 /// Returns true if it represents an instruction bundle and not only a 871 /// single instruction. 872 bool isPartOfBundle() const { 873 return NextInBundle != nullptr || FirstInBundle != this; 874 } 875 876 /// Returns true if it is ready for scheduling, i.e. it has no more 877 /// unscheduled depending instructions/bundles. 878 bool isReady() const { 879 assert(isSchedulingEntity() && 880 "can't consider non-scheduling entity for ready list"); 881 return UnscheduledDepsInBundle == 0 && !IsScheduled; 882 } 883 884 /// Modifies the number of unscheduled dependencies, also updating it for 885 /// the whole bundle. 886 int incrementUnscheduledDeps(int Incr) { 887 UnscheduledDeps += Incr; 888 return FirstInBundle->UnscheduledDepsInBundle += Incr; 889 } 890 891 /// Sets the number of unscheduled dependencies to the number of 892 /// dependencies. 893 void resetUnscheduledDeps() { 894 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 895 } 896 897 /// Clears all dependency information. 898 void clearDependencies() { 899 Dependencies = InvalidDeps; 900 resetUnscheduledDeps(); 901 MemoryDependencies.clear(); 902 } 903 904 void dump(raw_ostream &os) const { 905 if (!isSchedulingEntity()) { 906 os << "/ " << *Inst; 907 } else if (NextInBundle) { 908 os << '[' << *Inst; 909 ScheduleData *SD = NextInBundle; 910 while (SD) { 911 os << ';' << *SD->Inst; 912 SD = SD->NextInBundle; 913 } 914 os << ']'; 915 } else { 916 os << *Inst; 917 } 918 } 919 920 Instruction *Inst = nullptr; 921 922 /// Points to the head in an instruction bundle (and always to this for 923 /// single instructions). 924 ScheduleData *FirstInBundle = nullptr; 925 926 /// Single linked list of all instructions in a bundle. Null if it is a 927 /// single instruction. 928 ScheduleData *NextInBundle = nullptr; 929 930 /// Single linked list of all memory instructions (e.g. load, store, call) 931 /// in the block - until the end of the scheduling region. 932 ScheduleData *NextLoadStore = nullptr; 933 934 /// The dependent memory instructions. 935 /// This list is derived on demand in calculateDependencies(). 936 SmallVector<ScheduleData *, 4> MemoryDependencies; 937 938 /// This ScheduleData is in the current scheduling region if this matches 939 /// the current SchedulingRegionID of BlockScheduling. 940 int SchedulingRegionID = 0; 941 942 /// Used for getting a "good" final ordering of instructions. 943 int SchedulingPriority = 0; 944 945 /// The number of dependencies. Constitutes of the number of users of the 946 /// instruction plus the number of dependent memory instructions (if any). 947 /// This value is calculated on demand. 948 /// If InvalidDeps, the number of dependencies is not calculated yet. 949 int Dependencies = InvalidDeps; 950 951 /// The number of dependencies minus the number of dependencies of scheduled 952 /// instructions. As soon as this is zero, the instruction/bundle gets ready 953 /// for scheduling. 954 /// Note that this is negative as long as Dependencies is not calculated. 955 int UnscheduledDeps = InvalidDeps; 956 957 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 958 /// single instructions. 959 int UnscheduledDepsInBundle = InvalidDeps; 960 961 /// True if this instruction is scheduled (or considered as scheduled in the 962 /// dry-run). 963 bool IsScheduled = false; 964 965 /// Opcode of the current instruction in the schedule data. 966 Value *OpValue = nullptr; 967 }; 968 969 #ifndef NDEBUG 970 friend inline raw_ostream &operator<<(raw_ostream &os, 971 const BoUpSLP::ScheduleData &SD) { 972 SD.dump(os); 973 return os; 974 } 975 #endif 976 friend struct GraphTraits<BoUpSLP *>; 977 friend struct DOTGraphTraits<BoUpSLP *>; 978 979 /// Contains all scheduling data for a basic block. 980 struct BlockScheduling { 981 BlockScheduling(BasicBlock *BB) 982 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 983 984 void clear() { 985 ReadyInsts.clear(); 986 ScheduleStart = nullptr; 987 ScheduleEnd = nullptr; 988 FirstLoadStoreInRegion = nullptr; 989 LastLoadStoreInRegion = nullptr; 990 991 // Reduce the maximum schedule region size by the size of the 992 // previous scheduling run. 993 ScheduleRegionSizeLimit -= ScheduleRegionSize; 994 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 995 ScheduleRegionSizeLimit = MinScheduleRegionSize; 996 ScheduleRegionSize = 0; 997 998 // Make a new scheduling region, i.e. all existing ScheduleData is not 999 // in the new region yet. 1000 ++SchedulingRegionID; 1001 } 1002 1003 ScheduleData *getScheduleData(Value *V) { 1004 ScheduleData *SD = ScheduleDataMap[V]; 1005 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1006 return SD; 1007 return nullptr; 1008 } 1009 1010 ScheduleData *getScheduleData(Value *V, Value *Key) { 1011 if (V == Key) 1012 return getScheduleData(V); 1013 auto I = ExtraScheduleDataMap.find(V); 1014 if (I != ExtraScheduleDataMap.end()) { 1015 ScheduleData *SD = I->second[Key]; 1016 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1017 return SD; 1018 } 1019 return nullptr; 1020 } 1021 1022 bool isInSchedulingRegion(ScheduleData *SD) { 1023 return SD->SchedulingRegionID == SchedulingRegionID; 1024 } 1025 1026 /// Marks an instruction as scheduled and puts all dependent ready 1027 /// instructions into the ready-list. 1028 template <typename ReadyListType> 1029 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1030 SD->IsScheduled = true; 1031 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1032 1033 ScheduleData *BundleMember = SD; 1034 while (BundleMember) { 1035 if (BundleMember->Inst != BundleMember->OpValue) { 1036 BundleMember = BundleMember->NextInBundle; 1037 continue; 1038 } 1039 // Handle the def-use chain dependencies. 1040 for (Use &U : BundleMember->Inst->operands()) { 1041 auto *I = dyn_cast<Instruction>(U.get()); 1042 if (!I) 1043 continue; 1044 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1045 if (OpDef && OpDef->hasValidDependencies() && 1046 OpDef->incrementUnscheduledDeps(-1) == 0) { 1047 // There are no more unscheduled dependencies after 1048 // decrementing, so we can put the dependent instruction 1049 // into the ready list. 1050 ScheduleData *DepBundle = OpDef->FirstInBundle; 1051 assert(!DepBundle->IsScheduled && 1052 "already scheduled bundle gets ready"); 1053 ReadyList.insert(DepBundle); 1054 DEBUG(dbgs() 1055 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1056 } 1057 }); 1058 } 1059 // Handle the memory dependencies. 1060 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1061 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1062 // There are no more unscheduled dependencies after decrementing, 1063 // so we can put the dependent instruction into the ready list. 1064 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1065 assert(!DepBundle->IsScheduled && 1066 "already scheduled bundle gets ready"); 1067 ReadyList.insert(DepBundle); 1068 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1069 << "\n"); 1070 } 1071 } 1072 BundleMember = BundleMember->NextInBundle; 1073 } 1074 } 1075 1076 void doForAllOpcodes(Value *V, 1077 function_ref<void(ScheduleData *SD)> Action) { 1078 if (ScheduleData *SD = getScheduleData(V)) 1079 Action(SD); 1080 auto I = ExtraScheduleDataMap.find(V); 1081 if (I != ExtraScheduleDataMap.end()) 1082 for (auto &P : I->second) 1083 if (P.second->SchedulingRegionID == SchedulingRegionID) 1084 Action(P.second); 1085 } 1086 1087 /// Put all instructions into the ReadyList which are ready for scheduling. 1088 template <typename ReadyListType> 1089 void initialFillReadyList(ReadyListType &ReadyList) { 1090 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1091 doForAllOpcodes(I, [&](ScheduleData *SD) { 1092 if (SD->isSchedulingEntity() && SD->isReady()) { 1093 ReadyList.insert(SD); 1094 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1095 } 1096 }); 1097 } 1098 } 1099 1100 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1101 /// cyclic dependencies. This is only a dry-run, no instructions are 1102 /// actually moved at this stage. 1103 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1104 1105 /// Un-bundles a group of instructions. 1106 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1107 1108 /// Allocates schedule data chunk. 1109 ScheduleData *allocateScheduleDataChunks(); 1110 1111 /// Extends the scheduling region so that V is inside the region. 1112 /// \returns true if the region size is within the limit. 1113 bool extendSchedulingRegion(Value *V, Value *OpValue); 1114 1115 /// Initialize the ScheduleData structures for new instructions in the 1116 /// scheduling region. 1117 void initScheduleData(Instruction *FromI, Instruction *ToI, 1118 ScheduleData *PrevLoadStore, 1119 ScheduleData *NextLoadStore); 1120 1121 /// Updates the dependency information of a bundle and of all instructions/ 1122 /// bundles which depend on the original bundle. 1123 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1124 BoUpSLP *SLP); 1125 1126 /// Sets all instruction in the scheduling region to un-scheduled. 1127 void resetSchedule(); 1128 1129 BasicBlock *BB; 1130 1131 /// Simple memory allocation for ScheduleData. 1132 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1133 1134 /// The size of a ScheduleData array in ScheduleDataChunks. 1135 int ChunkSize; 1136 1137 /// The allocator position in the current chunk, which is the last entry 1138 /// of ScheduleDataChunks. 1139 int ChunkPos; 1140 1141 /// Attaches ScheduleData to Instruction. 1142 /// Note that the mapping survives during all vectorization iterations, i.e. 1143 /// ScheduleData structures are recycled. 1144 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1145 1146 /// Attaches ScheduleData to Instruction with the leading key. 1147 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1148 ExtraScheduleDataMap; 1149 1150 struct ReadyList : SmallVector<ScheduleData *, 8> { 1151 void insert(ScheduleData *SD) { push_back(SD); } 1152 }; 1153 1154 /// The ready-list for scheduling (only used for the dry-run). 1155 ReadyList ReadyInsts; 1156 1157 /// The first instruction of the scheduling region. 1158 Instruction *ScheduleStart = nullptr; 1159 1160 /// The first instruction _after_ the scheduling region. 1161 Instruction *ScheduleEnd = nullptr; 1162 1163 /// The first memory accessing instruction in the scheduling region 1164 /// (can be null). 1165 ScheduleData *FirstLoadStoreInRegion = nullptr; 1166 1167 /// The last memory accessing instruction in the scheduling region 1168 /// (can be null). 1169 ScheduleData *LastLoadStoreInRegion = nullptr; 1170 1171 /// The current size of the scheduling region. 1172 int ScheduleRegionSize = 0; 1173 1174 /// The maximum size allowed for the scheduling region. 1175 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1176 1177 /// The ID of the scheduling region. For a new vectorization iteration this 1178 /// is incremented which "removes" all ScheduleData from the region. 1179 int SchedulingRegionID = 1; 1180 // Make sure that the initial SchedulingRegionID is greater than the 1181 // initial SchedulingRegionID in ScheduleData (which is 0). 1182 }; 1183 1184 /// Attaches the BlockScheduling structures to basic blocks. 1185 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1186 1187 /// Performs the "real" scheduling. Done before vectorization is actually 1188 /// performed in a basic block. 1189 void scheduleBlock(BlockScheduling *BS); 1190 1191 /// List of users to ignore during scheduling and that don't need extracting. 1192 ArrayRef<Value *> UserIgnoreList; 1193 1194 // Number of load bundles that contain consecutive loads. 1195 int NumLoadsWantToKeepOrder = 0; 1196 1197 // Number of load bundles that contain consecutive loads in reversed order. 1198 int NumLoadsWantToChangeOrder = 0; 1199 1200 // Analysis and block reference. 1201 Function *F; 1202 ScalarEvolution *SE; 1203 TargetTransformInfo *TTI; 1204 TargetLibraryInfo *TLI; 1205 AliasAnalysis *AA; 1206 LoopInfo *LI; 1207 DominatorTree *DT; 1208 AssumptionCache *AC; 1209 DemandedBits *DB; 1210 const DataLayout *DL; 1211 OptimizationRemarkEmitter *ORE; 1212 1213 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1214 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1215 /// Instruction builder to construct the vectorized tree. 1216 IRBuilder<> Builder; 1217 1218 /// A map of scalar integer values to the smallest bit width with which they 1219 /// can legally be represented. The values map to (width, signed) pairs, 1220 /// where "width" indicates the minimum bit width and "signed" is True if the 1221 /// value must be signed-extended, rather than zero-extended, back to its 1222 /// original width. 1223 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1224 }; 1225 1226 } // end namespace slpvectorizer 1227 1228 template <> struct GraphTraits<BoUpSLP *> { 1229 using TreeEntry = BoUpSLP::TreeEntry; 1230 1231 /// NodeRef has to be a pointer per the GraphWriter. 1232 using NodeRef = TreeEntry *; 1233 1234 /// \brief Add the VectorizableTree to the index iterator to be able to return 1235 /// TreeEntry pointers. 1236 struct ChildIteratorType 1237 : public iterator_adaptor_base<ChildIteratorType, 1238 SmallVector<int, 1>::iterator> { 1239 std::vector<TreeEntry> &VectorizableTree; 1240 1241 ChildIteratorType(SmallVector<int, 1>::iterator W, 1242 std::vector<TreeEntry> &VT) 1243 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1244 1245 NodeRef operator*() { return &VectorizableTree[*I]; } 1246 }; 1247 1248 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1249 1250 static ChildIteratorType child_begin(NodeRef N) { 1251 return {N->UserTreeIndices.begin(), N->Container}; 1252 } 1253 1254 static ChildIteratorType child_end(NodeRef N) { 1255 return {N->UserTreeIndices.end(), N->Container}; 1256 } 1257 1258 /// For the node iterator we just need to turn the TreeEntry iterator into a 1259 /// TreeEntry* iterator so that it dereferences to NodeRef. 1260 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1261 1262 static nodes_iterator nodes_begin(BoUpSLP *R) { 1263 return nodes_iterator(R->VectorizableTree.begin()); 1264 } 1265 1266 static nodes_iterator nodes_end(BoUpSLP *R) { 1267 return nodes_iterator(R->VectorizableTree.end()); 1268 } 1269 1270 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1271 }; 1272 1273 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1274 using TreeEntry = BoUpSLP::TreeEntry; 1275 1276 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1277 1278 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1279 std::string Str; 1280 raw_string_ostream OS(Str); 1281 if (isSplat(Entry->Scalars)) { 1282 OS << "<splat> " << *Entry->Scalars[0]; 1283 return Str; 1284 } 1285 for (auto V : Entry->Scalars) { 1286 OS << *V; 1287 if (std::any_of( 1288 R->ExternalUses.begin(), R->ExternalUses.end(), 1289 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1290 OS << " <extract>"; 1291 OS << "\n"; 1292 } 1293 return Str; 1294 } 1295 1296 static std::string getNodeAttributes(const TreeEntry *Entry, 1297 const BoUpSLP *) { 1298 if (Entry->NeedToGather) 1299 return "color=red"; 1300 return ""; 1301 } 1302 }; 1303 1304 } // end namespace llvm 1305 1306 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1307 ArrayRef<Value *> UserIgnoreLst) { 1308 ExtraValueToDebugLocsMap ExternallyUsedValues; 1309 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1310 } 1311 1312 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1313 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1314 ArrayRef<Value *> UserIgnoreLst) { 1315 deleteTree(); 1316 UserIgnoreList = UserIgnoreLst; 1317 if (!allSameType(Roots)) 1318 return; 1319 buildTree_rec(Roots, 0, -1); 1320 1321 // Collect the values that we need to extract from the tree. 1322 for (TreeEntry &EIdx : VectorizableTree) { 1323 TreeEntry *Entry = &EIdx; 1324 1325 // No need to handle users of gathered values. 1326 if (Entry->NeedToGather) 1327 continue; 1328 1329 // For each lane: 1330 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1331 Value *Scalar = Entry->Scalars[Lane]; 1332 1333 // Check if the scalar is externally used as an extra arg. 1334 auto ExtI = ExternallyUsedValues.find(Scalar); 1335 if (ExtI != ExternallyUsedValues.end()) { 1336 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1337 Lane << " from " << *Scalar << ".\n"); 1338 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1339 continue; 1340 } 1341 for (User *U : Scalar->users()) { 1342 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1343 1344 Instruction *UserInst = dyn_cast<Instruction>(U); 1345 if (!UserInst) 1346 continue; 1347 1348 // Skip in-tree scalars that become vectors 1349 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1350 Value *UseScalar = UseEntry->Scalars[0]; 1351 // Some in-tree scalars will remain as scalar in vectorized 1352 // instructions. If that is the case, the one in Lane 0 will 1353 // be used. 1354 if (UseScalar != U || 1355 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1356 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1357 << ".\n"); 1358 assert(!UseEntry->NeedToGather && "Bad state"); 1359 continue; 1360 } 1361 } 1362 1363 // Ignore users in the user ignore list. 1364 if (is_contained(UserIgnoreList, UserInst)) 1365 continue; 1366 1367 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1368 Lane << " from " << *Scalar << ".\n"); 1369 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1370 } 1371 } 1372 } 1373 } 1374 1375 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1376 int UserTreeIdx) { 1377 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1378 1379 InstructionsState S = getSameOpcode(VL); 1380 if (Depth == RecursionMaxDepth) { 1381 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1382 newTreeEntry(VL, false, UserTreeIdx); 1383 return; 1384 } 1385 1386 // Don't handle vectors. 1387 if (S.OpValue->getType()->isVectorTy()) { 1388 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1389 newTreeEntry(VL, false, UserTreeIdx); 1390 return; 1391 } 1392 1393 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1394 if (SI->getValueOperand()->getType()->isVectorTy()) { 1395 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1396 newTreeEntry(VL, false, UserTreeIdx); 1397 return; 1398 } 1399 1400 // If all of the operands are identical or constant we have a simple solution. 1401 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1402 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1403 newTreeEntry(VL, false, UserTreeIdx); 1404 return; 1405 } 1406 1407 // We now know that this is a vector of instructions of the same type from 1408 // the same block. 1409 1410 // Don't vectorize ephemeral values. 1411 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1412 if (EphValues.count(VL[i])) { 1413 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1414 ") is ephemeral.\n"); 1415 newTreeEntry(VL, false, UserTreeIdx); 1416 return; 1417 } 1418 } 1419 1420 // Check if this is a duplicate of another entry. 1421 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1422 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1423 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1424 if (E->Scalars[i] != VL[i]) { 1425 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1426 newTreeEntry(VL, false, UserTreeIdx); 1427 return; 1428 } 1429 } 1430 // Record the reuse of the tree node. FIXME, currently this is only used to 1431 // properly draw the graph rather than for the actual vectorization. 1432 E->UserTreeIndices.push_back(UserTreeIdx); 1433 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); 1434 return; 1435 } 1436 1437 // Check that none of the instructions in the bundle are already in the tree. 1438 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1439 auto *I = dyn_cast<Instruction>(VL[i]); 1440 if (!I) 1441 continue; 1442 if (getTreeEntry(I)) { 1443 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1444 ") is already in tree.\n"); 1445 newTreeEntry(VL, false, UserTreeIdx); 1446 return; 1447 } 1448 } 1449 1450 // If any of the scalars is marked as a value that needs to stay scalar then 1451 // we need to gather the scalars. 1452 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1453 if (MustGather.count(VL[i])) { 1454 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1455 newTreeEntry(VL, false, UserTreeIdx); 1456 return; 1457 } 1458 } 1459 1460 // Check that all of the users of the scalars that we want to vectorize are 1461 // schedulable. 1462 auto *VL0 = cast<Instruction>(S.OpValue); 1463 BasicBlock *BB = VL0->getParent(); 1464 1465 if (!DT->isReachableFromEntry(BB)) { 1466 // Don't go into unreachable blocks. They may contain instructions with 1467 // dependency cycles which confuse the final scheduling. 1468 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1469 newTreeEntry(VL, false, UserTreeIdx); 1470 return; 1471 } 1472 1473 // Check that every instructions appears once in this bundle. 1474 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1475 for (unsigned j = i+1; j < e; ++j) 1476 if (VL[i] == VL[j]) { 1477 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1478 newTreeEntry(VL, false, UserTreeIdx); 1479 return; 1480 } 1481 1482 auto &BSRef = BlocksSchedules[BB]; 1483 if (!BSRef) { 1484 BSRef = llvm::make_unique<BlockScheduling>(BB); 1485 } 1486 BlockScheduling &BS = *BSRef.get(); 1487 1488 if (!BS.tryScheduleBundle(VL, this, S.OpValue)) { 1489 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1490 assert((!BS.getScheduleData(VL0) || 1491 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1492 "tryScheduleBundle should cancelScheduling on failure"); 1493 newTreeEntry(VL, false, UserTreeIdx); 1494 return; 1495 } 1496 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1497 1498 unsigned ShuffleOrOp = S.IsAltShuffle ? 1499 (unsigned) Instruction::ShuffleVector : S.Opcode; 1500 switch (ShuffleOrOp) { 1501 case Instruction::PHI: { 1502 PHINode *PH = dyn_cast<PHINode>(VL0); 1503 1504 // Check for terminator values (e.g. invoke). 1505 for (unsigned j = 0; j < VL.size(); ++j) 1506 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1507 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1508 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1509 if (Term) { 1510 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1511 BS.cancelScheduling(VL, VL0); 1512 newTreeEntry(VL, false, UserTreeIdx); 1513 return; 1514 } 1515 } 1516 1517 newTreeEntry(VL, true, UserTreeIdx); 1518 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1519 1520 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1521 ValueList Operands; 1522 // Prepare the operand vector. 1523 for (Value *j : VL) 1524 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1525 PH->getIncomingBlock(i))); 1526 1527 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1528 } 1529 return; 1530 } 1531 case Instruction::ExtractValue: 1532 case Instruction::ExtractElement: { 1533 bool Reuse = canReuseExtract(VL, VL0); 1534 if (Reuse) { 1535 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1536 } else { 1537 BS.cancelScheduling(VL, VL0); 1538 } 1539 newTreeEntry(VL, Reuse, UserTreeIdx); 1540 return; 1541 } 1542 case Instruction::Load: { 1543 // Check that a vectorized load would load the same memory as a scalar 1544 // load. 1545 // For example we don't want vectorize loads that are smaller than 8 bit. 1546 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1547 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1548 // such a struct we read/write packed bits disagreeing with the 1549 // unvectorized version. 1550 Type *ScalarTy = VL0->getType(); 1551 1552 if (DL->getTypeSizeInBits(ScalarTy) != 1553 DL->getTypeAllocSizeInBits(ScalarTy)) { 1554 BS.cancelScheduling(VL, VL0); 1555 newTreeEntry(VL, false, UserTreeIdx); 1556 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1557 return; 1558 } 1559 1560 // Make sure all loads in the bundle are simple - we can't vectorize 1561 // atomic or volatile loads. 1562 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1563 LoadInst *L = cast<LoadInst>(VL[i]); 1564 if (!L->isSimple()) { 1565 BS.cancelScheduling(VL, VL0); 1566 newTreeEntry(VL, false, UserTreeIdx); 1567 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1568 return; 1569 } 1570 } 1571 1572 // Check if the loads are consecutive, reversed, or neither. 1573 // TODO: What we really want is to sort the loads, but for now, check 1574 // the two likely directions. 1575 bool Consecutive = true; 1576 bool ReverseConsecutive = true; 1577 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1578 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1579 Consecutive = false; 1580 break; 1581 } else { 1582 ReverseConsecutive = false; 1583 } 1584 } 1585 1586 if (Consecutive) { 1587 ++NumLoadsWantToKeepOrder; 1588 newTreeEntry(VL, true, UserTreeIdx); 1589 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1590 return; 1591 } 1592 1593 // If none of the load pairs were consecutive when checked in order, 1594 // check the reverse order. 1595 if (ReverseConsecutive) 1596 for (unsigned i = VL.size() - 1; i > 0; --i) 1597 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1598 ReverseConsecutive = false; 1599 break; 1600 } 1601 1602 BS.cancelScheduling(VL, VL0); 1603 newTreeEntry(VL, false, UserTreeIdx); 1604 1605 if (ReverseConsecutive) { 1606 ++NumLoadsWantToChangeOrder; 1607 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1608 } else { 1609 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1610 } 1611 return; 1612 } 1613 case Instruction::ZExt: 1614 case Instruction::SExt: 1615 case Instruction::FPToUI: 1616 case Instruction::FPToSI: 1617 case Instruction::FPExt: 1618 case Instruction::PtrToInt: 1619 case Instruction::IntToPtr: 1620 case Instruction::SIToFP: 1621 case Instruction::UIToFP: 1622 case Instruction::Trunc: 1623 case Instruction::FPTrunc: 1624 case Instruction::BitCast: { 1625 Type *SrcTy = VL0->getOperand(0)->getType(); 1626 for (unsigned i = 0; i < VL.size(); ++i) { 1627 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1628 if (Ty != SrcTy || !isValidElementType(Ty)) { 1629 BS.cancelScheduling(VL, VL0); 1630 newTreeEntry(VL, false, UserTreeIdx); 1631 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1632 return; 1633 } 1634 } 1635 newTreeEntry(VL, true, UserTreeIdx); 1636 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1637 1638 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1639 ValueList Operands; 1640 // Prepare the operand vector. 1641 for (Value *j : VL) 1642 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1643 1644 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1645 } 1646 return; 1647 } 1648 case Instruction::ICmp: 1649 case Instruction::FCmp: { 1650 // Check that all of the compares have the same predicate. 1651 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1652 Type *ComparedTy = VL0->getOperand(0)->getType(); 1653 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1654 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1655 if (Cmp->getPredicate() != P0 || 1656 Cmp->getOperand(0)->getType() != ComparedTy) { 1657 BS.cancelScheduling(VL, VL0); 1658 newTreeEntry(VL, false, UserTreeIdx); 1659 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1660 return; 1661 } 1662 } 1663 1664 newTreeEntry(VL, true, UserTreeIdx); 1665 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1666 1667 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1668 ValueList Operands; 1669 // Prepare the operand vector. 1670 for (Value *j : VL) 1671 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1672 1673 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1674 } 1675 return; 1676 } 1677 case Instruction::Select: 1678 case Instruction::Add: 1679 case Instruction::FAdd: 1680 case Instruction::Sub: 1681 case Instruction::FSub: 1682 case Instruction::Mul: 1683 case Instruction::FMul: 1684 case Instruction::UDiv: 1685 case Instruction::SDiv: 1686 case Instruction::FDiv: 1687 case Instruction::URem: 1688 case Instruction::SRem: 1689 case Instruction::FRem: 1690 case Instruction::Shl: 1691 case Instruction::LShr: 1692 case Instruction::AShr: 1693 case Instruction::And: 1694 case Instruction::Or: 1695 case Instruction::Xor: 1696 newTreeEntry(VL, true, UserTreeIdx); 1697 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1698 1699 // Sort operands of the instructions so that each side is more likely to 1700 // have the same opcode. 1701 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1702 ValueList Left, Right; 1703 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1704 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1705 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1706 return; 1707 } 1708 1709 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1710 ValueList Operands; 1711 // Prepare the operand vector. 1712 for (Value *j : VL) 1713 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1714 1715 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1716 } 1717 return; 1718 1719 case Instruction::GetElementPtr: { 1720 // We don't combine GEPs with complicated (nested) indexing. 1721 for (unsigned j = 0; j < VL.size(); ++j) { 1722 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1723 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1724 BS.cancelScheduling(VL, VL0); 1725 newTreeEntry(VL, false, UserTreeIdx); 1726 return; 1727 } 1728 } 1729 1730 // We can't combine several GEPs into one vector if they operate on 1731 // different types. 1732 Type *Ty0 = VL0->getOperand(0)->getType(); 1733 for (unsigned j = 0; j < VL.size(); ++j) { 1734 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1735 if (Ty0 != CurTy) { 1736 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1737 BS.cancelScheduling(VL, VL0); 1738 newTreeEntry(VL, false, UserTreeIdx); 1739 return; 1740 } 1741 } 1742 1743 // We don't combine GEPs with non-constant indexes. 1744 for (unsigned j = 0; j < VL.size(); ++j) { 1745 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1746 if (!isa<ConstantInt>(Op)) { 1747 DEBUG( 1748 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1749 BS.cancelScheduling(VL, VL0); 1750 newTreeEntry(VL, false, UserTreeIdx); 1751 return; 1752 } 1753 } 1754 1755 newTreeEntry(VL, true, UserTreeIdx); 1756 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1757 for (unsigned i = 0, e = 2; i < e; ++i) { 1758 ValueList Operands; 1759 // Prepare the operand vector. 1760 for (Value *j : VL) 1761 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1762 1763 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1764 } 1765 return; 1766 } 1767 case Instruction::Store: { 1768 // Check if the stores are consecutive or of we need to swizzle them. 1769 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1770 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1771 BS.cancelScheduling(VL, VL0); 1772 newTreeEntry(VL, false, UserTreeIdx); 1773 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1774 return; 1775 } 1776 1777 newTreeEntry(VL, true, UserTreeIdx); 1778 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1779 1780 ValueList Operands; 1781 for (Value *j : VL) 1782 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1783 1784 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1785 return; 1786 } 1787 case Instruction::Call: { 1788 // Check if the calls are all to the same vectorizable intrinsic. 1789 CallInst *CI = cast<CallInst>(VL0); 1790 // Check if this is an Intrinsic call or something that can be 1791 // represented by an intrinsic call 1792 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1793 if (!isTriviallyVectorizable(ID)) { 1794 BS.cancelScheduling(VL, VL0); 1795 newTreeEntry(VL, false, UserTreeIdx); 1796 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1797 return; 1798 } 1799 Function *Int = CI->getCalledFunction(); 1800 Value *A1I = nullptr; 1801 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1802 A1I = CI->getArgOperand(1); 1803 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1804 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1805 if (!CI2 || CI2->getCalledFunction() != Int || 1806 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1807 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1808 BS.cancelScheduling(VL, VL0); 1809 newTreeEntry(VL, false, UserTreeIdx); 1810 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1811 << "\n"); 1812 return; 1813 } 1814 // ctlz,cttz and powi are special intrinsics whose second argument 1815 // should be same in order for them to be vectorized. 1816 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1817 Value *A1J = CI2->getArgOperand(1); 1818 if (A1I != A1J) { 1819 BS.cancelScheduling(VL, VL0); 1820 newTreeEntry(VL, false, UserTreeIdx); 1821 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1822 << " argument "<< A1I<<"!=" << A1J 1823 << "\n"); 1824 return; 1825 } 1826 } 1827 // Verify that the bundle operands are identical between the two calls. 1828 if (CI->hasOperandBundles() && 1829 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1830 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1831 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1832 BS.cancelScheduling(VL, VL0); 1833 newTreeEntry(VL, false, UserTreeIdx); 1834 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1835 << *VL[i] << '\n'); 1836 return; 1837 } 1838 } 1839 1840 newTreeEntry(VL, true, UserTreeIdx); 1841 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1842 ValueList Operands; 1843 // Prepare the operand vector. 1844 for (Value *j : VL) { 1845 CallInst *CI2 = dyn_cast<CallInst>(j); 1846 Operands.push_back(CI2->getArgOperand(i)); 1847 } 1848 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1849 } 1850 return; 1851 } 1852 case Instruction::ShuffleVector: 1853 // If this is not an alternate sequence of opcode like add-sub 1854 // then do not vectorize this instruction. 1855 if (!S.IsAltShuffle) { 1856 BS.cancelScheduling(VL, VL0); 1857 newTreeEntry(VL, false, UserTreeIdx); 1858 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1859 return; 1860 } 1861 newTreeEntry(VL, true, UserTreeIdx); 1862 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1863 1864 // Reorder operands if reordering would enable vectorization. 1865 if (isa<BinaryOperator>(VL0)) { 1866 ValueList Left, Right; 1867 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1868 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1869 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1870 return; 1871 } 1872 1873 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1874 ValueList Operands; 1875 // Prepare the operand vector. 1876 for (Value *j : VL) 1877 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1878 1879 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1880 } 1881 return; 1882 1883 default: 1884 BS.cancelScheduling(VL, VL0); 1885 newTreeEntry(VL, false, UserTreeIdx); 1886 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1887 return; 1888 } 1889 } 1890 1891 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1892 unsigned N; 1893 Type *EltTy; 1894 auto *ST = dyn_cast<StructType>(T); 1895 if (ST) { 1896 N = ST->getNumElements(); 1897 EltTy = *ST->element_begin(); 1898 } else { 1899 N = cast<ArrayType>(T)->getNumElements(); 1900 EltTy = cast<ArrayType>(T)->getElementType(); 1901 } 1902 if (!isValidElementType(EltTy)) 1903 return 0; 1904 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1905 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1906 return 0; 1907 if (ST) { 1908 // Check that struct is homogeneous. 1909 for (const auto *Ty : ST->elements()) 1910 if (Ty != EltTy) 1911 return 0; 1912 } 1913 return N; 1914 } 1915 1916 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const { 1917 Instruction *E0 = cast<Instruction>(OpValue); 1918 assert(E0->getOpcode() == Instruction::ExtractElement || 1919 E0->getOpcode() == Instruction::ExtractValue); 1920 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 1921 // Check if all of the extracts come from the same vector and from the 1922 // correct offset. 1923 Value *Vec = E0->getOperand(0); 1924 1925 // We have to extract from a vector/aggregate with the same number of elements. 1926 unsigned NElts; 1927 if (E0->getOpcode() == Instruction::ExtractValue) { 1928 const DataLayout &DL = E0->getModule()->getDataLayout(); 1929 NElts = canMapToVector(Vec->getType(), DL); 1930 if (!NElts) 1931 return false; 1932 // Check if load can be rewritten as load of vector. 1933 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1934 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1935 return false; 1936 } else { 1937 NElts = Vec->getType()->getVectorNumElements(); 1938 } 1939 1940 if (NElts != VL.size()) 1941 return false; 1942 1943 // Check that all of the indices extract from the correct offset. 1944 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 1945 Instruction *Inst = cast<Instruction>(VL[I]); 1946 if (!matchExtractIndex(Inst, I, Inst->getOpcode())) 1947 return false; 1948 if (Inst->getOperand(0) != Vec) 1949 return false; 1950 } 1951 1952 return true; 1953 } 1954 1955 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 1956 return I->hasOneUse() || 1957 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 1958 return ScalarToTreeEntry.count(U) > 0; 1959 }); 1960 } 1961 1962 int BoUpSLP::getEntryCost(TreeEntry *E) { 1963 ArrayRef<Value*> VL = E->Scalars; 1964 1965 Type *ScalarTy = VL[0]->getType(); 1966 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1967 ScalarTy = SI->getValueOperand()->getType(); 1968 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1969 ScalarTy = CI->getOperand(0)->getType(); 1970 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1971 1972 // If we have computed a smaller type for the expression, update VecTy so 1973 // that the costs will be accurate. 1974 if (MinBWs.count(VL[0])) 1975 VecTy = VectorType::get( 1976 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1977 1978 if (E->NeedToGather) { 1979 if (allConstant(VL)) 1980 return 0; 1981 if (isSplat(VL)) { 1982 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1983 } 1984 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement) { 1985 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 1986 if (ShuffleKind.hasValue()) { 1987 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 1988 for (auto *V : VL) { 1989 // If all users of instruction are going to be vectorized and this 1990 // instruction itself is not going to be vectorized, consider this 1991 // instruction as dead and remove its cost from the final cost of the 1992 // vectorized tree. 1993 if (areAllUsersVectorized(cast<Instruction>(V)) && 1994 !ScalarToTreeEntry.count(V)) { 1995 auto *IO = cast<ConstantInt>( 1996 cast<ExtractElementInst>(V)->getIndexOperand()); 1997 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1998 IO->getZExtValue()); 1999 } 2000 } 2001 return Cost; 2002 } 2003 } 2004 return getGatherCost(E->Scalars); 2005 } 2006 InstructionsState S = getSameOpcode(VL); 2007 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2008 Instruction *VL0 = cast<Instruction>(S.OpValue); 2009 unsigned ShuffleOrOp = S.IsAltShuffle ? 2010 (unsigned) Instruction::ShuffleVector : S.Opcode; 2011 switch (ShuffleOrOp) { 2012 case Instruction::PHI: 2013 return 0; 2014 2015 case Instruction::ExtractValue: 2016 case Instruction::ExtractElement: 2017 if (canReuseExtract(VL, S.OpValue)) { 2018 int DeadCost = 0; 2019 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2020 Instruction *E = cast<Instruction>(VL[i]); 2021 // If all users are going to be vectorized, instruction can be 2022 // considered as dead. 2023 // The same, if have only one user, it will be vectorized for sure. 2024 if (areAllUsersVectorized(E)) 2025 // Take credit for instruction that will become dead. 2026 DeadCost += 2027 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2028 } 2029 return -DeadCost; 2030 } 2031 return getGatherCost(VecTy); 2032 2033 case Instruction::ZExt: 2034 case Instruction::SExt: 2035 case Instruction::FPToUI: 2036 case Instruction::FPToSI: 2037 case Instruction::FPExt: 2038 case Instruction::PtrToInt: 2039 case Instruction::IntToPtr: 2040 case Instruction::SIToFP: 2041 case Instruction::UIToFP: 2042 case Instruction::Trunc: 2043 case Instruction::FPTrunc: 2044 case Instruction::BitCast: { 2045 Type *SrcTy = VL0->getOperand(0)->getType(); 2046 2047 // Calculate the cost of this instruction. 2048 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2049 VL0->getType(), SrcTy, VL0); 2050 2051 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2052 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2053 return VecCost - ScalarCost; 2054 } 2055 case Instruction::FCmp: 2056 case Instruction::ICmp: 2057 case Instruction::Select: { 2058 // Calculate the cost of this instruction. 2059 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2060 int ScalarCost = VecTy->getNumElements() * 2061 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2062 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2063 return VecCost - ScalarCost; 2064 } 2065 case Instruction::Add: 2066 case Instruction::FAdd: 2067 case Instruction::Sub: 2068 case Instruction::FSub: 2069 case Instruction::Mul: 2070 case Instruction::FMul: 2071 case Instruction::UDiv: 2072 case Instruction::SDiv: 2073 case Instruction::FDiv: 2074 case Instruction::URem: 2075 case Instruction::SRem: 2076 case Instruction::FRem: 2077 case Instruction::Shl: 2078 case Instruction::LShr: 2079 case Instruction::AShr: 2080 case Instruction::And: 2081 case Instruction::Or: 2082 case Instruction::Xor: { 2083 // Certain instructions can be cheaper to vectorize if they have a 2084 // constant second vector operand. 2085 TargetTransformInfo::OperandValueKind Op1VK = 2086 TargetTransformInfo::OK_AnyValue; 2087 TargetTransformInfo::OperandValueKind Op2VK = 2088 TargetTransformInfo::OK_UniformConstantValue; 2089 TargetTransformInfo::OperandValueProperties Op1VP = 2090 TargetTransformInfo::OP_None; 2091 TargetTransformInfo::OperandValueProperties Op2VP = 2092 TargetTransformInfo::OP_None; 2093 2094 // If all operands are exactly the same ConstantInt then set the 2095 // operand kind to OK_UniformConstantValue. 2096 // If instead not all operands are constants, then set the operand kind 2097 // to OK_AnyValue. If all operands are constants but not the same, 2098 // then set the operand kind to OK_NonUniformConstantValue. 2099 ConstantInt *CInt = nullptr; 2100 for (unsigned i = 0; i < VL.size(); ++i) { 2101 const Instruction *I = cast<Instruction>(VL[i]); 2102 if (!isa<ConstantInt>(I->getOperand(1))) { 2103 Op2VK = TargetTransformInfo::OK_AnyValue; 2104 break; 2105 } 2106 if (i == 0) { 2107 CInt = cast<ConstantInt>(I->getOperand(1)); 2108 continue; 2109 } 2110 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2111 CInt != cast<ConstantInt>(I->getOperand(1))) 2112 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2113 } 2114 // FIXME: Currently cost of model modification for division by power of 2115 // 2 is handled for X86 and AArch64. Add support for other targets. 2116 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2117 CInt->getValue().isPowerOf2()) 2118 Op2VP = TargetTransformInfo::OP_PowerOf2; 2119 2120 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2121 int ScalarCost = 2122 VecTy->getNumElements() * 2123 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2124 Op2VP, Operands); 2125 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2126 Op1VP, Op2VP, Operands); 2127 return VecCost - ScalarCost; 2128 } 2129 case Instruction::GetElementPtr: { 2130 TargetTransformInfo::OperandValueKind Op1VK = 2131 TargetTransformInfo::OK_AnyValue; 2132 TargetTransformInfo::OperandValueKind Op2VK = 2133 TargetTransformInfo::OK_UniformConstantValue; 2134 2135 int ScalarCost = 2136 VecTy->getNumElements() * 2137 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2138 int VecCost = 2139 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2140 2141 return VecCost - ScalarCost; 2142 } 2143 case Instruction::Load: { 2144 // Cost of wide load - cost of scalar loads. 2145 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2146 int ScalarLdCost = VecTy->getNumElements() * 2147 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2148 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2149 VecTy, alignment, 0, VL0); 2150 return VecLdCost - ScalarLdCost; 2151 } 2152 case Instruction::Store: { 2153 // We know that we can merge the stores. Calculate the cost. 2154 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2155 int ScalarStCost = VecTy->getNumElements() * 2156 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2157 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2158 VecTy, alignment, 0, VL0); 2159 return VecStCost - ScalarStCost; 2160 } 2161 case Instruction::Call: { 2162 CallInst *CI = cast<CallInst>(VL0); 2163 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2164 2165 // Calculate the cost of the scalar and vector calls. 2166 SmallVector<Type*, 4> ScalarTys; 2167 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2168 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2169 2170 FastMathFlags FMF; 2171 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2172 FMF = FPMO->getFastMathFlags(); 2173 2174 int ScalarCallCost = VecTy->getNumElements() * 2175 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2176 2177 SmallVector<Value *, 4> Args(CI->arg_operands()); 2178 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2179 VecTy->getNumElements()); 2180 2181 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2182 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2183 << " for " << *CI << "\n"); 2184 2185 return VecCallCost - ScalarCallCost; 2186 } 2187 case Instruction::ShuffleVector: { 2188 TargetTransformInfo::OperandValueKind Op1VK = 2189 TargetTransformInfo::OK_AnyValue; 2190 TargetTransformInfo::OperandValueKind Op2VK = 2191 TargetTransformInfo::OK_AnyValue; 2192 int ScalarCost = 0; 2193 int VecCost = 0; 2194 for (Value *i : VL) { 2195 Instruction *I = cast<Instruction>(i); 2196 if (!I) 2197 break; 2198 ScalarCost += 2199 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2200 } 2201 // VecCost is equal to sum of the cost of creating 2 vectors 2202 // and the cost of creating shuffle. 2203 Instruction *I0 = cast<Instruction>(VL[0]); 2204 VecCost = 2205 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2206 Instruction *I1 = cast<Instruction>(VL[1]); 2207 VecCost += 2208 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2209 VecCost += 2210 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2211 return VecCost - ScalarCost; 2212 } 2213 default: 2214 llvm_unreachable("Unknown instruction"); 2215 } 2216 } 2217 2218 bool BoUpSLP::isFullyVectorizableTinyTree() { 2219 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2220 VectorizableTree.size() << " is fully vectorizable .\n"); 2221 2222 // We only handle trees of heights 1 and 2. 2223 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2224 return true; 2225 2226 if (VectorizableTree.size() != 2) 2227 return false; 2228 2229 // Handle splat and all-constants stores. 2230 if (!VectorizableTree[0].NeedToGather && 2231 (allConstant(VectorizableTree[1].Scalars) || 2232 isSplat(VectorizableTree[1].Scalars))) 2233 return true; 2234 2235 // Gathering cost would be too much for tiny trees. 2236 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2237 return false; 2238 2239 return true; 2240 } 2241 2242 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2243 // We can vectorize the tree if its size is greater than or equal to the 2244 // minimum size specified by the MinTreeSize command line option. 2245 if (VectorizableTree.size() >= MinTreeSize) 2246 return false; 2247 2248 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2249 // can vectorize it if we can prove it fully vectorizable. 2250 if (isFullyVectorizableTinyTree()) 2251 return false; 2252 2253 assert(VectorizableTree.empty() 2254 ? ExternalUses.empty() 2255 : true && "We shouldn't have any external users"); 2256 2257 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2258 // vectorizable. 2259 return true; 2260 } 2261 2262 int BoUpSLP::getSpillCost() { 2263 // Walk from the bottom of the tree to the top, tracking which values are 2264 // live. When we see a call instruction that is not part of our tree, 2265 // query TTI to see if there is a cost to keeping values live over it 2266 // (for example, if spills and fills are required). 2267 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2268 int Cost = 0; 2269 2270 SmallPtrSet<Instruction*, 4> LiveValues; 2271 Instruction *PrevInst = nullptr; 2272 2273 for (const auto &N : VectorizableTree) { 2274 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2275 if (!Inst) 2276 continue; 2277 2278 if (!PrevInst) { 2279 PrevInst = Inst; 2280 continue; 2281 } 2282 2283 // Update LiveValues. 2284 LiveValues.erase(PrevInst); 2285 for (auto &J : PrevInst->operands()) { 2286 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2287 LiveValues.insert(cast<Instruction>(&*J)); 2288 } 2289 2290 DEBUG( 2291 dbgs() << "SLP: #LV: " << LiveValues.size(); 2292 for (auto *X : LiveValues) 2293 dbgs() << " " << X->getName(); 2294 dbgs() << ", Looking at "; 2295 Inst->dump(); 2296 ); 2297 2298 // Now find the sequence of instructions between PrevInst and Inst. 2299 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2300 PrevInstIt = 2301 PrevInst->getIterator().getReverse(); 2302 while (InstIt != PrevInstIt) { 2303 if (PrevInstIt == PrevInst->getParent()->rend()) { 2304 PrevInstIt = Inst->getParent()->rbegin(); 2305 continue; 2306 } 2307 2308 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2309 SmallVector<Type*, 4> V; 2310 for (auto *II : LiveValues) 2311 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2312 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2313 } 2314 2315 ++PrevInstIt; 2316 } 2317 2318 PrevInst = Inst; 2319 } 2320 2321 return Cost; 2322 } 2323 2324 int BoUpSLP::getTreeCost() { 2325 int Cost = 0; 2326 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2327 VectorizableTree.size() << ".\n"); 2328 2329 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2330 2331 for (TreeEntry &TE : VectorizableTree) { 2332 int C = getEntryCost(&TE); 2333 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2334 << *TE.Scalars[0] << ".\n"); 2335 Cost += C; 2336 } 2337 2338 SmallSet<Value *, 16> ExtractCostCalculated; 2339 int ExtractCost = 0; 2340 for (ExternalUser &EU : ExternalUses) { 2341 // We only add extract cost once for the same scalar. 2342 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2343 continue; 2344 2345 // Uses by ephemeral values are free (because the ephemeral value will be 2346 // removed prior to code generation, and so the extraction will be 2347 // removed as well). 2348 if (EphValues.count(EU.User)) 2349 continue; 2350 2351 // If we plan to rewrite the tree in a smaller type, we will need to sign 2352 // extend the extracted value back to the original type. Here, we account 2353 // for the extract and the added cost of the sign extend if needed. 2354 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2355 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2356 if (MinBWs.count(ScalarRoot)) { 2357 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2358 auto Extend = 2359 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2360 VecTy = VectorType::get(MinTy, BundleWidth); 2361 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2362 VecTy, EU.Lane); 2363 } else { 2364 ExtractCost += 2365 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2366 } 2367 } 2368 2369 int SpillCost = getSpillCost(); 2370 Cost += SpillCost + ExtractCost; 2371 2372 std::string Str; 2373 { 2374 raw_string_ostream OS(Str); 2375 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2376 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2377 << "SLP: Total Cost = " << Cost << ".\n"; 2378 } 2379 DEBUG(dbgs() << Str); 2380 2381 if (ViewSLPTree) 2382 ViewGraph(this, "SLP" + F->getName(), false, Str); 2383 2384 return Cost; 2385 } 2386 2387 int BoUpSLP::getGatherCost(Type *Ty) { 2388 int Cost = 0; 2389 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2390 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2391 return Cost; 2392 } 2393 2394 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2395 // Find the type of the operands in VL. 2396 Type *ScalarTy = VL[0]->getType(); 2397 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2398 ScalarTy = SI->getValueOperand()->getType(); 2399 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2400 // Find the cost of inserting/extracting values from the vector. 2401 return getGatherCost(VecTy); 2402 } 2403 2404 // Reorder commutative operations in alternate shuffle if the resulting vectors 2405 // are consecutive loads. This would allow us to vectorize the tree. 2406 // If we have something like- 2407 // load a[0] - load b[0] 2408 // load b[1] + load a[1] 2409 // load a[2] - load b[2] 2410 // load a[3] + load b[3] 2411 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2412 // code. 2413 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2414 SmallVectorImpl<Value *> &Left, 2415 SmallVectorImpl<Value *> &Right) { 2416 // Push left and right operands of binary operation into Left and Right 2417 unsigned AltOpcode = getAltOpcode(Opcode); 2418 (void)AltOpcode; 2419 for (Value *V : VL) { 2420 auto *I = cast<Instruction>(V); 2421 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2422 "Incorrect instruction in vector"); 2423 Left.push_back(I->getOperand(0)); 2424 Right.push_back(I->getOperand(1)); 2425 } 2426 2427 // Reorder if we have a commutative operation and consecutive access 2428 // are on either side of the alternate instructions. 2429 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2430 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2431 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2432 Instruction *VL1 = cast<Instruction>(VL[j]); 2433 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2434 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2435 std::swap(Left[j], Right[j]); 2436 continue; 2437 } else if (VL2->isCommutative() && 2438 isConsecutiveAccess(L, L1, *DL, *SE)) { 2439 std::swap(Left[j + 1], Right[j + 1]); 2440 continue; 2441 } 2442 // else unchanged 2443 } 2444 } 2445 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2446 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2447 Instruction *VL1 = cast<Instruction>(VL[j]); 2448 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2449 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2450 std::swap(Left[j], Right[j]); 2451 continue; 2452 } else if (VL2->isCommutative() && 2453 isConsecutiveAccess(L, L1, *DL, *SE)) { 2454 std::swap(Left[j + 1], Right[j + 1]); 2455 continue; 2456 } 2457 // else unchanged 2458 } 2459 } 2460 } 2461 } 2462 2463 // Return true if I should be commuted before adding it's left and right 2464 // operands to the arrays Left and Right. 2465 // 2466 // The vectorizer is trying to either have all elements one side being 2467 // instruction with the same opcode to enable further vectorization, or having 2468 // a splat to lower the vectorizing cost. 2469 static bool shouldReorderOperands( 2470 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2471 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2472 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2473 VLeft = I.getOperand(0); 2474 VRight = I.getOperand(1); 2475 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2476 if (SplatRight) { 2477 if (VRight == Right[i - 1]) 2478 // Preserve SplatRight 2479 return false; 2480 if (VLeft == Right[i - 1]) { 2481 // Commuting would preserve SplatRight, but we don't want to break 2482 // SplatLeft either, i.e. preserve the original order if possible. 2483 // (FIXME: why do we care?) 2484 if (SplatLeft && VLeft == Left[i - 1]) 2485 return false; 2486 return true; 2487 } 2488 } 2489 // Symmetrically handle Right side. 2490 if (SplatLeft) { 2491 if (VLeft == Left[i - 1]) 2492 // Preserve SplatLeft 2493 return false; 2494 if (VRight == Left[i - 1]) 2495 return true; 2496 } 2497 2498 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2499 Instruction *IRight = dyn_cast<Instruction>(VRight); 2500 2501 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2502 // it and not the right, in this case we want to commute. 2503 if (AllSameOpcodeRight) { 2504 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2505 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2506 // Do not commute, a match on the right preserves AllSameOpcodeRight 2507 return false; 2508 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2509 // We have a match and may want to commute, but first check if there is 2510 // not also a match on the existing operands on the Left to preserve 2511 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2512 // (FIXME: why do we care?) 2513 if (AllSameOpcodeLeft && ILeft && 2514 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2515 return false; 2516 return true; 2517 } 2518 } 2519 // Symmetrically handle Left side. 2520 if (AllSameOpcodeLeft) { 2521 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2522 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2523 return false; 2524 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2525 return true; 2526 } 2527 return false; 2528 } 2529 2530 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2531 ArrayRef<Value *> VL, 2532 SmallVectorImpl<Value *> &Left, 2533 SmallVectorImpl<Value *> &Right) { 2534 if (!VL.empty()) { 2535 // Peel the first iteration out of the loop since there's nothing 2536 // interesting to do anyway and it simplifies the checks in the loop. 2537 auto *I = cast<Instruction>(VL[0]); 2538 Value *VLeft = I->getOperand(0); 2539 Value *VRight = I->getOperand(1); 2540 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2541 // Favor having instruction to the right. FIXME: why? 2542 std::swap(VLeft, VRight); 2543 Left.push_back(VLeft); 2544 Right.push_back(VRight); 2545 } 2546 2547 // Keep track if we have instructions with all the same opcode on one side. 2548 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2549 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2550 // Keep track if we have one side with all the same value (broadcast). 2551 bool SplatLeft = true; 2552 bool SplatRight = true; 2553 2554 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2555 Instruction *I = cast<Instruction>(VL[i]); 2556 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2557 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2558 "Can only process commutative instruction"); 2559 // Commute to favor either a splat or maximizing having the same opcodes on 2560 // one side. 2561 Value *VLeft; 2562 Value *VRight; 2563 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2564 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2565 VRight)) { 2566 Left.push_back(VRight); 2567 Right.push_back(VLeft); 2568 } else { 2569 Left.push_back(VLeft); 2570 Right.push_back(VRight); 2571 } 2572 // Update Splat* and AllSameOpcode* after the insertion. 2573 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2574 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2575 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2576 (cast<Instruction>(Left[i - 1])->getOpcode() == 2577 cast<Instruction>(Left[i])->getOpcode()); 2578 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2579 (cast<Instruction>(Right[i - 1])->getOpcode() == 2580 cast<Instruction>(Right[i])->getOpcode()); 2581 } 2582 2583 // If one operand end up being broadcast, return this operand order. 2584 if (SplatRight || SplatLeft) 2585 return; 2586 2587 // Finally check if we can get longer vectorizable chain by reordering 2588 // without breaking the good operand order detected above. 2589 // E.g. If we have something like- 2590 // load a[0] load b[0] 2591 // load b[1] load a[1] 2592 // load a[2] load b[2] 2593 // load a[3] load b[3] 2594 // Reordering the second load b[1] load a[1] would allow us to vectorize 2595 // this code and we still retain AllSameOpcode property. 2596 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2597 // such as- 2598 // add a[0],c[0] load b[0] 2599 // add a[1],c[2] load b[1] 2600 // b[2] load b[2] 2601 // add a[3],c[3] load b[3] 2602 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2603 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2604 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2605 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2606 std::swap(Left[j + 1], Right[j + 1]); 2607 continue; 2608 } 2609 } 2610 } 2611 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2612 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2613 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2614 std::swap(Left[j + 1], Right[j + 1]); 2615 continue; 2616 } 2617 } 2618 } 2619 // else unchanged 2620 } 2621 } 2622 2623 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2624 // Get the basic block this bundle is in. All instructions in the bundle 2625 // should be in this block. 2626 auto *Front = cast<Instruction>(OpValue); 2627 auto *BB = Front->getParent(); 2628 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2629 const unsigned AltOpcode = getAltOpcode(Opcode); 2630 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2631 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2632 cast<Instruction>(V)->getOpcode()) || 2633 cast<Instruction>(V)->getParent() == BB; 2634 })); 2635 2636 // The last instruction in the bundle in program order. 2637 Instruction *LastInst = nullptr; 2638 2639 // Find the last instruction. The common case should be that BB has been 2640 // scheduled, and the last instruction is VL.back(). So we start with 2641 // VL.back() and iterate over schedule data until we reach the end of the 2642 // bundle. The end of the bundle is marked by null ScheduleData. 2643 if (BlocksSchedules.count(BB)) { 2644 auto *Bundle = 2645 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2646 if (Bundle && Bundle->isPartOfBundle()) 2647 for (; Bundle; Bundle = Bundle->NextInBundle) 2648 if (Bundle->OpValue == Bundle->Inst) 2649 LastInst = Bundle->Inst; 2650 } 2651 2652 // LastInst can still be null at this point if there's either not an entry 2653 // for BB in BlocksSchedules or there's no ScheduleData available for 2654 // VL.back(). This can be the case if buildTree_rec aborts for various 2655 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2656 // size is reached, etc.). ScheduleData is initialized in the scheduling 2657 // "dry-run". 2658 // 2659 // If this happens, we can still find the last instruction by brute force. We 2660 // iterate forwards from Front (inclusive) until we either see all 2661 // instructions in the bundle or reach the end of the block. If Front is the 2662 // last instruction in program order, LastInst will be set to Front, and we 2663 // will visit all the remaining instructions in the block. 2664 // 2665 // One of the reasons we exit early from buildTree_rec is to place an upper 2666 // bound on compile-time. Thus, taking an additional compile-time hit here is 2667 // not ideal. However, this should be exceedingly rare since it requires that 2668 // we both exit early from buildTree_rec and that the bundle be out-of-order 2669 // (causing us to iterate all the way to the end of the block). 2670 if (!LastInst) { 2671 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2672 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2673 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2674 LastInst = &I; 2675 if (Bundle.empty()) 2676 break; 2677 } 2678 } 2679 2680 // Set the insertion point after the last instruction in the bundle. Set the 2681 // debug location to Front. 2682 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2683 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2684 } 2685 2686 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2687 Value *Vec = UndefValue::get(Ty); 2688 // Generate the 'InsertElement' instruction. 2689 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2690 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2691 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2692 GatherSeq.insert(Insrt); 2693 CSEBlocks.insert(Insrt->getParent()); 2694 2695 // Add to our 'need-to-extract' list. 2696 if (TreeEntry *E = getTreeEntry(VL[i])) { 2697 // Find which lane we need to extract. 2698 int FoundLane = -1; 2699 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2700 // Is this the lane of the scalar that we are looking for ? 2701 if (E->Scalars[Lane] == VL[i]) { 2702 FoundLane = Lane; 2703 break; 2704 } 2705 } 2706 assert(FoundLane >= 0 && "Could not find the correct lane"); 2707 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2708 } 2709 } 2710 } 2711 2712 return Vec; 2713 } 2714 2715 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const { 2716 if (const TreeEntry *En = getTreeEntry(OpValue)) { 2717 if (En->isSame(VL) && En->VectorizedValue) 2718 return En->VectorizedValue; 2719 } 2720 return nullptr; 2721 } 2722 2723 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2724 InstructionsState S = getSameOpcode(VL); 2725 if (S.Opcode) { 2726 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2727 if (E->isSame(VL)) 2728 return vectorizeTree(E); 2729 } 2730 } 2731 2732 Type *ScalarTy = S.OpValue->getType(); 2733 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2734 ScalarTy = SI->getValueOperand()->getType(); 2735 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2736 2737 return Gather(VL, VecTy); 2738 } 2739 2740 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2741 IRBuilder<>::InsertPointGuard Guard(Builder); 2742 2743 if (E->VectorizedValue) { 2744 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2745 return E->VectorizedValue; 2746 } 2747 2748 InstructionsState S = getSameOpcode(E->Scalars); 2749 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2750 Type *ScalarTy = VL0->getType(); 2751 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2752 ScalarTy = SI->getValueOperand()->getType(); 2753 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2754 2755 if (E->NeedToGather) { 2756 setInsertPointAfterBundle(E->Scalars, VL0); 2757 auto *V = Gather(E->Scalars, VecTy); 2758 E->VectorizedValue = V; 2759 return V; 2760 } 2761 2762 unsigned ShuffleOrOp = S.IsAltShuffle ? 2763 (unsigned) Instruction::ShuffleVector : S.Opcode; 2764 switch (ShuffleOrOp) { 2765 case Instruction::PHI: { 2766 PHINode *PH = dyn_cast<PHINode>(VL0); 2767 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2768 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2769 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2770 E->VectorizedValue = NewPhi; 2771 2772 // PHINodes may have multiple entries from the same block. We want to 2773 // visit every block once. 2774 SmallSet<BasicBlock*, 4> VisitedBBs; 2775 2776 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2777 ValueList Operands; 2778 BasicBlock *IBB = PH->getIncomingBlock(i); 2779 2780 if (!VisitedBBs.insert(IBB).second) { 2781 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2782 continue; 2783 } 2784 2785 // Prepare the operand vector. 2786 for (Value *V : E->Scalars) 2787 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2788 2789 Builder.SetInsertPoint(IBB->getTerminator()); 2790 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2791 Value *Vec = vectorizeTree(Operands); 2792 NewPhi->addIncoming(Vec, IBB); 2793 } 2794 2795 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2796 "Invalid number of incoming values"); 2797 return NewPhi; 2798 } 2799 2800 case Instruction::ExtractElement: { 2801 if (canReuseExtract(E->Scalars, VL0)) { 2802 Value *V = VL0->getOperand(0); 2803 E->VectorizedValue = V; 2804 return V; 2805 } 2806 setInsertPointAfterBundle(E->Scalars, VL0); 2807 auto *V = Gather(E->Scalars, VecTy); 2808 E->VectorizedValue = V; 2809 return V; 2810 } 2811 case Instruction::ExtractValue: { 2812 if (canReuseExtract(E->Scalars, VL0)) { 2813 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2814 Builder.SetInsertPoint(LI); 2815 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2816 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2817 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2818 E->VectorizedValue = V; 2819 return propagateMetadata(V, E->Scalars); 2820 } 2821 setInsertPointAfterBundle(E->Scalars, VL0); 2822 auto *V = Gather(E->Scalars, VecTy); 2823 E->VectorizedValue = V; 2824 return V; 2825 } 2826 case Instruction::ZExt: 2827 case Instruction::SExt: 2828 case Instruction::FPToUI: 2829 case Instruction::FPToSI: 2830 case Instruction::FPExt: 2831 case Instruction::PtrToInt: 2832 case Instruction::IntToPtr: 2833 case Instruction::SIToFP: 2834 case Instruction::UIToFP: 2835 case Instruction::Trunc: 2836 case Instruction::FPTrunc: 2837 case Instruction::BitCast: { 2838 ValueList INVL; 2839 for (Value *V : E->Scalars) 2840 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2841 2842 setInsertPointAfterBundle(E->Scalars, VL0); 2843 2844 Value *InVec = vectorizeTree(INVL); 2845 2846 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2847 return V; 2848 2849 CastInst *CI = dyn_cast<CastInst>(VL0); 2850 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2851 E->VectorizedValue = V; 2852 ++NumVectorInstructions; 2853 return V; 2854 } 2855 case Instruction::FCmp: 2856 case Instruction::ICmp: { 2857 ValueList LHSV, RHSV; 2858 for (Value *V : E->Scalars) { 2859 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2860 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2861 } 2862 2863 setInsertPointAfterBundle(E->Scalars, VL0); 2864 2865 Value *L = vectorizeTree(LHSV); 2866 Value *R = vectorizeTree(RHSV); 2867 2868 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2869 return V; 2870 2871 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2872 Value *V; 2873 if (S.Opcode == Instruction::FCmp) 2874 V = Builder.CreateFCmp(P0, L, R); 2875 else 2876 V = Builder.CreateICmp(P0, L, R); 2877 2878 E->VectorizedValue = V; 2879 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2880 ++NumVectorInstructions; 2881 return V; 2882 } 2883 case Instruction::Select: { 2884 ValueList TrueVec, FalseVec, CondVec; 2885 for (Value *V : E->Scalars) { 2886 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2887 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2888 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2889 } 2890 2891 setInsertPointAfterBundle(E->Scalars, VL0); 2892 2893 Value *Cond = vectorizeTree(CondVec); 2894 Value *True = vectorizeTree(TrueVec); 2895 Value *False = vectorizeTree(FalseVec); 2896 2897 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2898 return V; 2899 2900 Value *V = Builder.CreateSelect(Cond, True, False); 2901 E->VectorizedValue = V; 2902 ++NumVectorInstructions; 2903 return V; 2904 } 2905 case Instruction::Add: 2906 case Instruction::FAdd: 2907 case Instruction::Sub: 2908 case Instruction::FSub: 2909 case Instruction::Mul: 2910 case Instruction::FMul: 2911 case Instruction::UDiv: 2912 case Instruction::SDiv: 2913 case Instruction::FDiv: 2914 case Instruction::URem: 2915 case Instruction::SRem: 2916 case Instruction::FRem: 2917 case Instruction::Shl: 2918 case Instruction::LShr: 2919 case Instruction::AShr: 2920 case Instruction::And: 2921 case Instruction::Or: 2922 case Instruction::Xor: { 2923 ValueList LHSVL, RHSVL; 2924 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2925 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 2926 RHSVL); 2927 else 2928 for (Value *V : E->Scalars) { 2929 auto *I = cast<Instruction>(V); 2930 LHSVL.push_back(I->getOperand(0)); 2931 RHSVL.push_back(I->getOperand(1)); 2932 } 2933 2934 setInsertPointAfterBundle(E->Scalars, VL0); 2935 2936 Value *LHS = vectorizeTree(LHSVL); 2937 Value *RHS = vectorizeTree(RHSVL); 2938 2939 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2940 return V; 2941 2942 Value *V = Builder.CreateBinOp( 2943 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 2944 E->VectorizedValue = V; 2945 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2946 ++NumVectorInstructions; 2947 2948 if (Instruction *I = dyn_cast<Instruction>(V)) 2949 return propagateMetadata(I, E->Scalars); 2950 2951 return V; 2952 } 2953 case Instruction::Load: { 2954 // Loads are inserted at the head of the tree because we don't want to 2955 // sink them all the way down past store instructions. 2956 setInsertPointAfterBundle(E->Scalars, VL0); 2957 2958 LoadInst *LI = cast<LoadInst>(VL0); 2959 Type *ScalarLoadTy = LI->getType(); 2960 unsigned AS = LI->getPointerAddressSpace(); 2961 2962 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2963 VecTy->getPointerTo(AS)); 2964 2965 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2966 // ExternalUses list to make sure that an extract will be generated in the 2967 // future. 2968 Value *PO = LI->getPointerOperand(); 2969 if (getTreeEntry(PO)) 2970 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 2971 2972 unsigned Alignment = LI->getAlignment(); 2973 LI = Builder.CreateLoad(VecPtr); 2974 if (!Alignment) { 2975 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2976 } 2977 LI->setAlignment(Alignment); 2978 E->VectorizedValue = LI; 2979 ++NumVectorInstructions; 2980 return propagateMetadata(LI, E->Scalars); 2981 } 2982 case Instruction::Store: { 2983 StoreInst *SI = cast<StoreInst>(VL0); 2984 unsigned Alignment = SI->getAlignment(); 2985 unsigned AS = SI->getPointerAddressSpace(); 2986 2987 ValueList ScalarStoreValues; 2988 for (Value *V : E->Scalars) 2989 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 2990 2991 setInsertPointAfterBundle(E->Scalars, VL0); 2992 2993 Value *VecValue = vectorizeTree(ScalarStoreValues); 2994 Value *ScalarPtr = SI->getPointerOperand(); 2995 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 2996 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2997 2998 // The pointer operand uses an in-tree scalar, so add the new BitCast to 2999 // ExternalUses to make sure that an extract will be generated in the 3000 // future. 3001 if (getTreeEntry(ScalarPtr)) 3002 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3003 3004 if (!Alignment) 3005 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3006 3007 S->setAlignment(Alignment); 3008 E->VectorizedValue = S; 3009 ++NumVectorInstructions; 3010 return propagateMetadata(S, E->Scalars); 3011 } 3012 case Instruction::GetElementPtr: { 3013 setInsertPointAfterBundle(E->Scalars, VL0); 3014 3015 ValueList Op0VL; 3016 for (Value *V : E->Scalars) 3017 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3018 3019 Value *Op0 = vectorizeTree(Op0VL); 3020 3021 std::vector<Value *> OpVecs; 3022 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3023 ++j) { 3024 ValueList OpVL; 3025 for (Value *V : E->Scalars) 3026 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3027 3028 Value *OpVec = vectorizeTree(OpVL); 3029 OpVecs.push_back(OpVec); 3030 } 3031 3032 Value *V = Builder.CreateGEP( 3033 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3034 E->VectorizedValue = V; 3035 ++NumVectorInstructions; 3036 3037 if (Instruction *I = dyn_cast<Instruction>(V)) 3038 return propagateMetadata(I, E->Scalars); 3039 3040 return V; 3041 } 3042 case Instruction::Call: { 3043 CallInst *CI = cast<CallInst>(VL0); 3044 setInsertPointAfterBundle(E->Scalars, VL0); 3045 Function *FI; 3046 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3047 Value *ScalarArg = nullptr; 3048 if (CI && (FI = CI->getCalledFunction())) { 3049 IID = FI->getIntrinsicID(); 3050 } 3051 std::vector<Value *> OpVecs; 3052 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3053 ValueList OpVL; 3054 // ctlz,cttz and powi are special intrinsics whose second argument is 3055 // a scalar. This argument should not be vectorized. 3056 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3057 CallInst *CEI = cast<CallInst>(VL0); 3058 ScalarArg = CEI->getArgOperand(j); 3059 OpVecs.push_back(CEI->getArgOperand(j)); 3060 continue; 3061 } 3062 for (Value *V : E->Scalars) { 3063 CallInst *CEI = cast<CallInst>(V); 3064 OpVL.push_back(CEI->getArgOperand(j)); 3065 } 3066 3067 Value *OpVec = vectorizeTree(OpVL); 3068 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3069 OpVecs.push_back(OpVec); 3070 } 3071 3072 Module *M = F->getParent(); 3073 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3074 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3075 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3076 SmallVector<OperandBundleDef, 1> OpBundles; 3077 CI->getOperandBundlesAsDefs(OpBundles); 3078 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3079 3080 // The scalar argument uses an in-tree scalar so we add the new vectorized 3081 // call to ExternalUses list to make sure that an extract will be 3082 // generated in the future. 3083 if (ScalarArg && getTreeEntry(ScalarArg)) 3084 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3085 3086 E->VectorizedValue = V; 3087 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 3088 ++NumVectorInstructions; 3089 return V; 3090 } 3091 case Instruction::ShuffleVector: { 3092 ValueList LHSVL, RHSVL; 3093 assert(Instruction::isBinaryOp(S.Opcode) && 3094 "Invalid Shuffle Vector Operand"); 3095 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3096 setInsertPointAfterBundle(E->Scalars, VL0); 3097 3098 Value *LHS = vectorizeTree(LHSVL); 3099 Value *RHS = vectorizeTree(RHSVL); 3100 3101 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 3102 return V; 3103 3104 // Create a vector of LHS op1 RHS 3105 Value *V0 = Builder.CreateBinOp( 3106 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3107 3108 unsigned AltOpcode = getAltOpcode(S.Opcode); 3109 // Create a vector of LHS op2 RHS 3110 Value *V1 = Builder.CreateBinOp( 3111 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3112 3113 // Create shuffle to take alternate operations from the vector. 3114 // Also, gather up odd and even scalar ops to propagate IR flags to 3115 // each vector operation. 3116 ValueList OddScalars, EvenScalars; 3117 unsigned e = E->Scalars.size(); 3118 SmallVector<Constant *, 8> Mask(e); 3119 for (unsigned i = 0; i < e; ++i) { 3120 if (isOdd(i)) { 3121 Mask[i] = Builder.getInt32(e + i); 3122 OddScalars.push_back(E->Scalars[i]); 3123 } else { 3124 Mask[i] = Builder.getInt32(i); 3125 EvenScalars.push_back(E->Scalars[i]); 3126 } 3127 } 3128 3129 Value *ShuffleMask = ConstantVector::get(Mask); 3130 propagateIRFlags(V0, EvenScalars); 3131 propagateIRFlags(V1, OddScalars); 3132 3133 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3134 E->VectorizedValue = V; 3135 ++NumVectorInstructions; 3136 if (Instruction *I = dyn_cast<Instruction>(V)) 3137 return propagateMetadata(I, E->Scalars); 3138 3139 return V; 3140 } 3141 default: 3142 llvm_unreachable("unknown inst"); 3143 } 3144 return nullptr; 3145 } 3146 3147 Value *BoUpSLP::vectorizeTree() { 3148 ExtraValueToDebugLocsMap ExternallyUsedValues; 3149 return vectorizeTree(ExternallyUsedValues); 3150 } 3151 3152 Value * 3153 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3154 // All blocks must be scheduled before any instructions are inserted. 3155 for (auto &BSIter : BlocksSchedules) { 3156 scheduleBlock(BSIter.second.get()); 3157 } 3158 3159 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3160 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3161 3162 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3163 // vectorized root. InstCombine will then rewrite the entire expression. We 3164 // sign extend the extracted values below. 3165 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3166 if (MinBWs.count(ScalarRoot)) { 3167 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3168 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3169 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3170 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3171 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3172 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3173 VectorizableTree[0].VectorizedValue = Trunc; 3174 } 3175 3176 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3177 3178 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3179 // specified by ScalarType. 3180 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3181 if (!MinBWs.count(ScalarRoot)) 3182 return Ex; 3183 if (MinBWs[ScalarRoot].second) 3184 return Builder.CreateSExt(Ex, ScalarType); 3185 return Builder.CreateZExt(Ex, ScalarType); 3186 }; 3187 3188 // Extract all of the elements with the external uses. 3189 for (const auto &ExternalUse : ExternalUses) { 3190 Value *Scalar = ExternalUse.Scalar; 3191 llvm::User *User = ExternalUse.User; 3192 3193 // Skip users that we already RAUW. This happens when one instruction 3194 // has multiple uses of the same value. 3195 if (User && !is_contained(Scalar->users(), User)) 3196 continue; 3197 TreeEntry *E = getTreeEntry(Scalar); 3198 assert(E && "Invalid scalar"); 3199 assert(!E->NeedToGather && "Extracting from a gather list"); 3200 3201 Value *Vec = E->VectorizedValue; 3202 assert(Vec && "Can't find vectorizable value"); 3203 3204 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3205 // If User == nullptr, the Scalar is used as extra arg. Generate 3206 // ExtractElement instruction and update the record for this scalar in 3207 // ExternallyUsedValues. 3208 if (!User) { 3209 assert(ExternallyUsedValues.count(Scalar) && 3210 "Scalar with nullptr as an external user must be registered in " 3211 "ExternallyUsedValues map"); 3212 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3213 Builder.SetInsertPoint(VecI->getParent(), 3214 std::next(VecI->getIterator())); 3215 } else { 3216 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3217 } 3218 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3219 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3220 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3221 auto &Locs = ExternallyUsedValues[Scalar]; 3222 ExternallyUsedValues.insert({Ex, Locs}); 3223 ExternallyUsedValues.erase(Scalar); 3224 continue; 3225 } 3226 3227 // Generate extracts for out-of-tree users. 3228 // Find the insertion point for the extractelement lane. 3229 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3230 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3231 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3232 if (PH->getIncomingValue(i) == Scalar) { 3233 TerminatorInst *IncomingTerminator = 3234 PH->getIncomingBlock(i)->getTerminator(); 3235 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3236 Builder.SetInsertPoint(VecI->getParent(), 3237 std::next(VecI->getIterator())); 3238 } else { 3239 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3240 } 3241 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3242 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3243 CSEBlocks.insert(PH->getIncomingBlock(i)); 3244 PH->setOperand(i, Ex); 3245 } 3246 } 3247 } else { 3248 Builder.SetInsertPoint(cast<Instruction>(User)); 3249 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3250 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3251 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3252 User->replaceUsesOfWith(Scalar, Ex); 3253 } 3254 } else { 3255 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3256 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3257 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3258 CSEBlocks.insert(&F->getEntryBlock()); 3259 User->replaceUsesOfWith(Scalar, Ex); 3260 } 3261 3262 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3263 } 3264 3265 // For each vectorized value: 3266 for (TreeEntry &EIdx : VectorizableTree) { 3267 TreeEntry *Entry = &EIdx; 3268 3269 // No need to handle users of gathered values. 3270 if (Entry->NeedToGather) 3271 continue; 3272 3273 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3274 3275 // For each lane: 3276 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3277 Value *Scalar = Entry->Scalars[Lane]; 3278 3279 Type *Ty = Scalar->getType(); 3280 if (!Ty->isVoidTy()) { 3281 #ifndef NDEBUG 3282 for (User *U : Scalar->users()) { 3283 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3284 3285 // It is legal to replace users in the ignorelist by undef. 3286 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3287 "Replacing out-of-tree value with undef"); 3288 } 3289 #endif 3290 Value *Undef = UndefValue::get(Ty); 3291 Scalar->replaceAllUsesWith(Undef); 3292 } 3293 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3294 eraseInstruction(cast<Instruction>(Scalar)); 3295 } 3296 } 3297 3298 Builder.ClearInsertionPoint(); 3299 3300 return VectorizableTree[0].VectorizedValue; 3301 } 3302 3303 void BoUpSLP::optimizeGatherSequence() { 3304 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3305 << " gather sequences instructions.\n"); 3306 // LICM InsertElementInst sequences. 3307 for (Instruction *it : GatherSeq) { 3308 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3309 3310 if (!Insert) 3311 continue; 3312 3313 // Check if this block is inside a loop. 3314 Loop *L = LI->getLoopFor(Insert->getParent()); 3315 if (!L) 3316 continue; 3317 3318 // Check if it has a preheader. 3319 BasicBlock *PreHeader = L->getLoopPreheader(); 3320 if (!PreHeader) 3321 continue; 3322 3323 // If the vector or the element that we insert into it are 3324 // instructions that are defined in this basic block then we can't 3325 // hoist this instruction. 3326 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3327 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3328 if (CurrVec && L->contains(CurrVec)) 3329 continue; 3330 if (NewElem && L->contains(NewElem)) 3331 continue; 3332 3333 // We can hoist this instruction. Move it to the pre-header. 3334 Insert->moveBefore(PreHeader->getTerminator()); 3335 } 3336 3337 // Make a list of all reachable blocks in our CSE queue. 3338 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3339 CSEWorkList.reserve(CSEBlocks.size()); 3340 for (BasicBlock *BB : CSEBlocks) 3341 if (DomTreeNode *N = DT->getNode(BB)) { 3342 assert(DT->isReachableFromEntry(N)); 3343 CSEWorkList.push_back(N); 3344 } 3345 3346 // Sort blocks by domination. This ensures we visit a block after all blocks 3347 // dominating it are visited. 3348 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3349 [this](const DomTreeNode *A, const DomTreeNode *B) { 3350 return DT->properlyDominates(A, B); 3351 }); 3352 3353 // Perform O(N^2) search over the gather sequences and merge identical 3354 // instructions. TODO: We can further optimize this scan if we split the 3355 // instructions into different buckets based on the insert lane. 3356 SmallVector<Instruction *, 16> Visited; 3357 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3358 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3359 "Worklist not sorted properly!"); 3360 BasicBlock *BB = (*I)->getBlock(); 3361 // For all instructions in blocks containing gather sequences: 3362 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3363 Instruction *In = &*it++; 3364 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3365 continue; 3366 3367 // Check if we can replace this instruction with any of the 3368 // visited instructions. 3369 for (Instruction *v : Visited) { 3370 if (In->isIdenticalTo(v) && 3371 DT->dominates(v->getParent(), In->getParent())) { 3372 In->replaceAllUsesWith(v); 3373 eraseInstruction(In); 3374 In = nullptr; 3375 break; 3376 } 3377 } 3378 if (In) { 3379 assert(!is_contained(Visited, In)); 3380 Visited.push_back(In); 3381 } 3382 } 3383 } 3384 CSEBlocks.clear(); 3385 GatherSeq.clear(); 3386 } 3387 3388 // Groups the instructions to a bundle (which is then a single scheduling entity) 3389 // and schedules instructions until the bundle gets ready. 3390 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3391 BoUpSLP *SLP, Value *OpValue) { 3392 if (isa<PHINode>(OpValue)) 3393 return true; 3394 3395 // Initialize the instruction bundle. 3396 Instruction *OldScheduleEnd = ScheduleEnd; 3397 ScheduleData *PrevInBundle = nullptr; 3398 ScheduleData *Bundle = nullptr; 3399 bool ReSchedule = false; 3400 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3401 3402 // Make sure that the scheduling region contains all 3403 // instructions of the bundle. 3404 for (Value *V : VL) { 3405 if (!extendSchedulingRegion(V, OpValue)) 3406 return false; 3407 } 3408 3409 for (Value *V : VL) { 3410 ScheduleData *BundleMember = getScheduleData(V); 3411 assert(BundleMember && 3412 "no ScheduleData for bundle member (maybe not in same basic block)"); 3413 if (BundleMember->IsScheduled) { 3414 // A bundle member was scheduled as single instruction before and now 3415 // needs to be scheduled as part of the bundle. We just get rid of the 3416 // existing schedule. 3417 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3418 << " was already scheduled\n"); 3419 ReSchedule = true; 3420 } 3421 assert(BundleMember->isSchedulingEntity() && 3422 "bundle member already part of other bundle"); 3423 if (PrevInBundle) { 3424 PrevInBundle->NextInBundle = BundleMember; 3425 } else { 3426 Bundle = BundleMember; 3427 } 3428 BundleMember->UnscheduledDepsInBundle = 0; 3429 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3430 3431 // Group the instructions to a bundle. 3432 BundleMember->FirstInBundle = Bundle; 3433 PrevInBundle = BundleMember; 3434 } 3435 if (ScheduleEnd != OldScheduleEnd) { 3436 // The scheduling region got new instructions at the lower end (or it is a 3437 // new region for the first bundle). This makes it necessary to 3438 // recalculate all dependencies. 3439 // It is seldom that this needs to be done a second time after adding the 3440 // initial bundle to the region. 3441 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3442 doForAllOpcodes(I, [](ScheduleData *SD) { 3443 SD->clearDependencies(); 3444 }); 3445 } 3446 ReSchedule = true; 3447 } 3448 if (ReSchedule) { 3449 resetSchedule(); 3450 initialFillReadyList(ReadyInsts); 3451 } 3452 3453 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3454 << BB->getName() << "\n"); 3455 3456 calculateDependencies(Bundle, true, SLP); 3457 3458 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3459 // means that there are no cyclic dependencies and we can schedule it. 3460 // Note that's important that we don't "schedule" the bundle yet (see 3461 // cancelScheduling). 3462 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3463 3464 ScheduleData *pickedSD = ReadyInsts.back(); 3465 ReadyInsts.pop_back(); 3466 3467 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3468 schedule(pickedSD, ReadyInsts); 3469 } 3470 } 3471 if (!Bundle->isReady()) { 3472 cancelScheduling(VL, OpValue); 3473 return false; 3474 } 3475 return true; 3476 } 3477 3478 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3479 Value *OpValue) { 3480 if (isa<PHINode>(OpValue)) 3481 return; 3482 3483 ScheduleData *Bundle = getScheduleData(OpValue); 3484 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3485 assert(!Bundle->IsScheduled && 3486 "Can't cancel bundle which is already scheduled"); 3487 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3488 "tried to unbundle something which is not a bundle"); 3489 3490 // Un-bundle: make single instructions out of the bundle. 3491 ScheduleData *BundleMember = Bundle; 3492 while (BundleMember) { 3493 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3494 BundleMember->FirstInBundle = BundleMember; 3495 ScheduleData *Next = BundleMember->NextInBundle; 3496 BundleMember->NextInBundle = nullptr; 3497 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3498 if (BundleMember->UnscheduledDepsInBundle == 0) { 3499 ReadyInsts.insert(BundleMember); 3500 } 3501 BundleMember = Next; 3502 } 3503 } 3504 3505 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3506 // Allocate a new ScheduleData for the instruction. 3507 if (ChunkPos >= ChunkSize) { 3508 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3509 ChunkPos = 0; 3510 } 3511 return &(ScheduleDataChunks.back()[ChunkPos++]); 3512 } 3513 3514 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3515 Value *OpValue) { 3516 if (getScheduleData(V, isOneOf(OpValue, V))) 3517 return true; 3518 Instruction *I = dyn_cast<Instruction>(V); 3519 assert(I && "bundle member must be an instruction"); 3520 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3521 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3522 ScheduleData *ISD = getScheduleData(I); 3523 if (!ISD) 3524 return false; 3525 assert(isInSchedulingRegion(ISD) && 3526 "ScheduleData not in scheduling region"); 3527 ScheduleData *SD = allocateScheduleDataChunks(); 3528 SD->Inst = I; 3529 SD->init(SchedulingRegionID, OpValue); 3530 ExtraScheduleDataMap[I][OpValue] = SD; 3531 return true; 3532 }; 3533 if (CheckSheduleForI(I)) 3534 return true; 3535 if (!ScheduleStart) { 3536 // It's the first instruction in the new region. 3537 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3538 ScheduleStart = I; 3539 ScheduleEnd = I->getNextNode(); 3540 if (isOneOf(OpValue, I) != I) 3541 CheckSheduleForI(I); 3542 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3543 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3544 return true; 3545 } 3546 // Search up and down at the same time, because we don't know if the new 3547 // instruction is above or below the existing scheduling region. 3548 BasicBlock::reverse_iterator UpIter = 3549 ++ScheduleStart->getIterator().getReverse(); 3550 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3551 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3552 BasicBlock::iterator LowerEnd = BB->end(); 3553 while (true) { 3554 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3555 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3556 return false; 3557 } 3558 3559 if (UpIter != UpperEnd) { 3560 if (&*UpIter == I) { 3561 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3562 ScheduleStart = I; 3563 if (isOneOf(OpValue, I) != I) 3564 CheckSheduleForI(I); 3565 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3566 return true; 3567 } 3568 UpIter++; 3569 } 3570 if (DownIter != LowerEnd) { 3571 if (&*DownIter == I) { 3572 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3573 nullptr); 3574 ScheduleEnd = I->getNextNode(); 3575 if (isOneOf(OpValue, I) != I) 3576 CheckSheduleForI(I); 3577 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3578 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3579 return true; 3580 } 3581 DownIter++; 3582 } 3583 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3584 "instruction not found in block"); 3585 } 3586 return true; 3587 } 3588 3589 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3590 Instruction *ToI, 3591 ScheduleData *PrevLoadStore, 3592 ScheduleData *NextLoadStore) { 3593 ScheduleData *CurrentLoadStore = PrevLoadStore; 3594 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3595 ScheduleData *SD = ScheduleDataMap[I]; 3596 if (!SD) { 3597 SD = allocateScheduleDataChunks(); 3598 ScheduleDataMap[I] = SD; 3599 SD->Inst = I; 3600 } 3601 assert(!isInSchedulingRegion(SD) && 3602 "new ScheduleData already in scheduling region"); 3603 SD->init(SchedulingRegionID, I); 3604 3605 if (I->mayReadOrWriteMemory()) { 3606 // Update the linked list of memory accessing instructions. 3607 if (CurrentLoadStore) { 3608 CurrentLoadStore->NextLoadStore = SD; 3609 } else { 3610 FirstLoadStoreInRegion = SD; 3611 } 3612 CurrentLoadStore = SD; 3613 } 3614 } 3615 if (NextLoadStore) { 3616 if (CurrentLoadStore) 3617 CurrentLoadStore->NextLoadStore = NextLoadStore; 3618 } else { 3619 LastLoadStoreInRegion = CurrentLoadStore; 3620 } 3621 } 3622 3623 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3624 bool InsertInReadyList, 3625 BoUpSLP *SLP) { 3626 assert(SD->isSchedulingEntity()); 3627 3628 SmallVector<ScheduleData *, 10> WorkList; 3629 WorkList.push_back(SD); 3630 3631 while (!WorkList.empty()) { 3632 ScheduleData *SD = WorkList.back(); 3633 WorkList.pop_back(); 3634 3635 ScheduleData *BundleMember = SD; 3636 while (BundleMember) { 3637 assert(isInSchedulingRegion(BundleMember)); 3638 if (!BundleMember->hasValidDependencies()) { 3639 3640 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3641 BundleMember->Dependencies = 0; 3642 BundleMember->resetUnscheduledDeps(); 3643 3644 // Handle def-use chain dependencies. 3645 if (BundleMember->OpValue != BundleMember->Inst) { 3646 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 3647 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3648 BundleMember->Dependencies++; 3649 ScheduleData *DestBundle = UseSD->FirstInBundle; 3650 if (!DestBundle->IsScheduled) 3651 BundleMember->incrementUnscheduledDeps(1); 3652 if (!DestBundle->hasValidDependencies()) 3653 WorkList.push_back(DestBundle); 3654 } 3655 } else { 3656 for (User *U : BundleMember->Inst->users()) { 3657 if (isa<Instruction>(U)) { 3658 ScheduleData *UseSD = getScheduleData(U); 3659 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3660 BundleMember->Dependencies++; 3661 ScheduleData *DestBundle = UseSD->FirstInBundle; 3662 if (!DestBundle->IsScheduled) 3663 BundleMember->incrementUnscheduledDeps(1); 3664 if (!DestBundle->hasValidDependencies()) 3665 WorkList.push_back(DestBundle); 3666 } 3667 } else { 3668 // I'm not sure if this can ever happen. But we need to be safe. 3669 // This lets the instruction/bundle never be scheduled and 3670 // eventually disable vectorization. 3671 BundleMember->Dependencies++; 3672 BundleMember->incrementUnscheduledDeps(1); 3673 } 3674 } 3675 } 3676 3677 // Handle the memory dependencies. 3678 ScheduleData *DepDest = BundleMember->NextLoadStore; 3679 if (DepDest) { 3680 Instruction *SrcInst = BundleMember->Inst; 3681 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3682 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3683 unsigned numAliased = 0; 3684 unsigned DistToSrc = 1; 3685 3686 while (DepDest) { 3687 assert(isInSchedulingRegion(DepDest)); 3688 3689 // We have two limits to reduce the complexity: 3690 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3691 // SLP->isAliased (which is the expensive part in this loop). 3692 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3693 // the whole loop (even if the loop is fast, it's quadratic). 3694 // It's important for the loop break condition (see below) to 3695 // check this limit even between two read-only instructions. 3696 if (DistToSrc >= MaxMemDepDistance || 3697 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3698 (numAliased >= AliasedCheckLimit || 3699 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3700 3701 // We increment the counter only if the locations are aliased 3702 // (instead of counting all alias checks). This gives a better 3703 // balance between reduced runtime and accurate dependencies. 3704 numAliased++; 3705 3706 DepDest->MemoryDependencies.push_back(BundleMember); 3707 BundleMember->Dependencies++; 3708 ScheduleData *DestBundle = DepDest->FirstInBundle; 3709 if (!DestBundle->IsScheduled) { 3710 BundleMember->incrementUnscheduledDeps(1); 3711 } 3712 if (!DestBundle->hasValidDependencies()) { 3713 WorkList.push_back(DestBundle); 3714 } 3715 } 3716 DepDest = DepDest->NextLoadStore; 3717 3718 // Example, explaining the loop break condition: Let's assume our 3719 // starting instruction is i0 and MaxMemDepDistance = 3. 3720 // 3721 // +--------v--v--v 3722 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3723 // +--------^--^--^ 3724 // 3725 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3726 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3727 // Previously we already added dependencies from i3 to i6,i7,i8 3728 // (because of MaxMemDepDistance). As we added a dependency from 3729 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3730 // and we can abort this loop at i6. 3731 if (DistToSrc >= 2 * MaxMemDepDistance) 3732 break; 3733 DistToSrc++; 3734 } 3735 } 3736 } 3737 BundleMember = BundleMember->NextInBundle; 3738 } 3739 if (InsertInReadyList && SD->isReady()) { 3740 ReadyInsts.push_back(SD); 3741 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3742 } 3743 } 3744 } 3745 3746 void BoUpSLP::BlockScheduling::resetSchedule() { 3747 assert(ScheduleStart && 3748 "tried to reset schedule on block which has not been scheduled"); 3749 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3750 doForAllOpcodes(I, [&](ScheduleData *SD) { 3751 assert(isInSchedulingRegion(SD) && 3752 "ScheduleData not in scheduling region"); 3753 SD->IsScheduled = false; 3754 SD->resetUnscheduledDeps(); 3755 }); 3756 } 3757 ReadyInsts.clear(); 3758 } 3759 3760 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3761 if (!BS->ScheduleStart) 3762 return; 3763 3764 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3765 3766 BS->resetSchedule(); 3767 3768 // For the real scheduling we use a more sophisticated ready-list: it is 3769 // sorted by the original instruction location. This lets the final schedule 3770 // be as close as possible to the original instruction order. 3771 struct ScheduleDataCompare { 3772 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3773 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3774 } 3775 }; 3776 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3777 3778 // Ensure that all dependency data is updated and fill the ready-list with 3779 // initial instructions. 3780 int Idx = 0; 3781 int NumToSchedule = 0; 3782 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3783 I = I->getNextNode()) { 3784 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 3785 assert(SD->isPartOfBundle() == 3786 (getTreeEntry(SD->Inst) != nullptr) && 3787 "scheduler and vectorizer bundle mismatch"); 3788 SD->FirstInBundle->SchedulingPriority = Idx++; 3789 if (SD->isSchedulingEntity()) { 3790 BS->calculateDependencies(SD, false, this); 3791 NumToSchedule++; 3792 } 3793 }); 3794 } 3795 BS->initialFillReadyList(ReadyInsts); 3796 3797 Instruction *LastScheduledInst = BS->ScheduleEnd; 3798 3799 // Do the "real" scheduling. 3800 while (!ReadyInsts.empty()) { 3801 ScheduleData *picked = *ReadyInsts.begin(); 3802 ReadyInsts.erase(ReadyInsts.begin()); 3803 3804 // Move the scheduled instruction(s) to their dedicated places, if not 3805 // there yet. 3806 ScheduleData *BundleMember = picked; 3807 while (BundleMember) { 3808 Instruction *pickedInst = BundleMember->Inst; 3809 if (LastScheduledInst->getNextNode() != pickedInst) { 3810 BS->BB->getInstList().remove(pickedInst); 3811 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3812 pickedInst); 3813 } 3814 LastScheduledInst = pickedInst; 3815 BundleMember = BundleMember->NextInBundle; 3816 } 3817 3818 BS->schedule(picked, ReadyInsts); 3819 NumToSchedule--; 3820 } 3821 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3822 3823 // Avoid duplicate scheduling of the block. 3824 BS->ScheduleStart = nullptr; 3825 } 3826 3827 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3828 // If V is a store, just return the width of the stored value without 3829 // traversing the expression tree. This is the common case. 3830 if (auto *Store = dyn_cast<StoreInst>(V)) 3831 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3832 3833 // If V is not a store, we can traverse the expression tree to find loads 3834 // that feed it. The type of the loaded value may indicate a more suitable 3835 // width than V's type. We want to base the vector element size on the width 3836 // of memory operations where possible. 3837 SmallVector<Instruction *, 16> Worklist; 3838 SmallPtrSet<Instruction *, 16> Visited; 3839 if (auto *I = dyn_cast<Instruction>(V)) 3840 Worklist.push_back(I); 3841 3842 // Traverse the expression tree in bottom-up order looking for loads. If we 3843 // encounter an instruciton we don't yet handle, we give up. 3844 auto MaxWidth = 0u; 3845 auto FoundUnknownInst = false; 3846 while (!Worklist.empty() && !FoundUnknownInst) { 3847 auto *I = Worklist.pop_back_val(); 3848 Visited.insert(I); 3849 3850 // We should only be looking at scalar instructions here. If the current 3851 // instruction has a vector type, give up. 3852 auto *Ty = I->getType(); 3853 if (isa<VectorType>(Ty)) 3854 FoundUnknownInst = true; 3855 3856 // If the current instruction is a load, update MaxWidth to reflect the 3857 // width of the loaded value. 3858 else if (isa<LoadInst>(I)) 3859 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3860 3861 // Otherwise, we need to visit the operands of the instruction. We only 3862 // handle the interesting cases from buildTree here. If an operand is an 3863 // instruction we haven't yet visited, we add it to the worklist. 3864 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3865 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3866 for (Use &U : I->operands()) 3867 if (auto *J = dyn_cast<Instruction>(U.get())) 3868 if (!Visited.count(J)) 3869 Worklist.push_back(J); 3870 } 3871 3872 // If we don't yet handle the instruction, give up. 3873 else 3874 FoundUnknownInst = true; 3875 } 3876 3877 // If we didn't encounter a memory access in the expression tree, or if we 3878 // gave up for some reason, just return the width of V. 3879 if (!MaxWidth || FoundUnknownInst) 3880 return DL->getTypeSizeInBits(V->getType()); 3881 3882 // Otherwise, return the maximum width we found. 3883 return MaxWidth; 3884 } 3885 3886 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3887 // smaller type with a truncation. We collect the values that will be demoted 3888 // in ToDemote and additional roots that require investigating in Roots. 3889 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3890 SmallVectorImpl<Value *> &ToDemote, 3891 SmallVectorImpl<Value *> &Roots) { 3892 // We can always demote constants. 3893 if (isa<Constant>(V)) { 3894 ToDemote.push_back(V); 3895 return true; 3896 } 3897 3898 // If the value is not an instruction in the expression with only one use, it 3899 // cannot be demoted. 3900 auto *I = dyn_cast<Instruction>(V); 3901 if (!I || !I->hasOneUse() || !Expr.count(I)) 3902 return false; 3903 3904 switch (I->getOpcode()) { 3905 3906 // We can always demote truncations and extensions. Since truncations can 3907 // seed additional demotion, we save the truncated value. 3908 case Instruction::Trunc: 3909 Roots.push_back(I->getOperand(0)); 3910 case Instruction::ZExt: 3911 case Instruction::SExt: 3912 break; 3913 3914 // We can demote certain binary operations if we can demote both of their 3915 // operands. 3916 case Instruction::Add: 3917 case Instruction::Sub: 3918 case Instruction::Mul: 3919 case Instruction::And: 3920 case Instruction::Or: 3921 case Instruction::Xor: 3922 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3923 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3924 return false; 3925 break; 3926 3927 // We can demote selects if we can demote their true and false values. 3928 case Instruction::Select: { 3929 SelectInst *SI = cast<SelectInst>(I); 3930 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3931 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3932 return false; 3933 break; 3934 } 3935 3936 // We can demote phis if we can demote all their incoming operands. Note that 3937 // we don't need to worry about cycles since we ensure single use above. 3938 case Instruction::PHI: { 3939 PHINode *PN = cast<PHINode>(I); 3940 for (Value *IncValue : PN->incoming_values()) 3941 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3942 return false; 3943 break; 3944 } 3945 3946 // Otherwise, conservatively give up. 3947 default: 3948 return false; 3949 } 3950 3951 // Record the value that we can demote. 3952 ToDemote.push_back(V); 3953 return true; 3954 } 3955 3956 void BoUpSLP::computeMinimumValueSizes() { 3957 // If there are no external uses, the expression tree must be rooted by a 3958 // store. We can't demote in-memory values, so there is nothing to do here. 3959 if (ExternalUses.empty()) 3960 return; 3961 3962 // We only attempt to truncate integer expressions. 3963 auto &TreeRoot = VectorizableTree[0].Scalars; 3964 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3965 if (!TreeRootIT) 3966 return; 3967 3968 // If the expression is not rooted by a store, these roots should have 3969 // external uses. We will rely on InstCombine to rewrite the expression in 3970 // the narrower type. However, InstCombine only rewrites single-use values. 3971 // This means that if a tree entry other than a root is used externally, it 3972 // must have multiple uses and InstCombine will not rewrite it. The code 3973 // below ensures that only the roots are used externally. 3974 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3975 for (auto &EU : ExternalUses) 3976 if (!Expr.erase(EU.Scalar)) 3977 return; 3978 if (!Expr.empty()) 3979 return; 3980 3981 // Collect the scalar values of the vectorizable expression. We will use this 3982 // context to determine which values can be demoted. If we see a truncation, 3983 // we mark it as seeding another demotion. 3984 for (auto &Entry : VectorizableTree) 3985 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3986 3987 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3988 // have a single external user that is not in the vectorizable tree. 3989 for (auto *Root : TreeRoot) 3990 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3991 return; 3992 3993 // Conservatively determine if we can actually truncate the roots of the 3994 // expression. Collect the values that can be demoted in ToDemote and 3995 // additional roots that require investigating in Roots. 3996 SmallVector<Value *, 32> ToDemote; 3997 SmallVector<Value *, 4> Roots; 3998 for (auto *Root : TreeRoot) 3999 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4000 return; 4001 4002 // The maximum bit width required to represent all the values that can be 4003 // demoted without loss of precision. It would be safe to truncate the roots 4004 // of the expression to this width. 4005 auto MaxBitWidth = 8u; 4006 4007 // We first check if all the bits of the roots are demanded. If they're not, 4008 // we can truncate the roots to this narrower type. 4009 for (auto *Root : TreeRoot) { 4010 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4011 MaxBitWidth = std::max<unsigned>( 4012 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4013 } 4014 4015 // True if the roots can be zero-extended back to their original type, rather 4016 // than sign-extended. We know that if the leading bits are not demanded, we 4017 // can safely zero-extend. So we initialize IsKnownPositive to True. 4018 bool IsKnownPositive = true; 4019 4020 // If all the bits of the roots are demanded, we can try a little harder to 4021 // compute a narrower type. This can happen, for example, if the roots are 4022 // getelementptr indices. InstCombine promotes these indices to the pointer 4023 // width. Thus, all their bits are technically demanded even though the 4024 // address computation might be vectorized in a smaller type. 4025 // 4026 // We start by looking at each entry that can be demoted. We compute the 4027 // maximum bit width required to store the scalar by using ValueTracking to 4028 // compute the number of high-order bits we can truncate. 4029 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 4030 MaxBitWidth = 8u; 4031 4032 // Determine if the sign bit of all the roots is known to be zero. If not, 4033 // IsKnownPositive is set to False. 4034 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4035 KnownBits Known = computeKnownBits(R, *DL); 4036 return Known.isNonNegative(); 4037 }); 4038 4039 // Determine the maximum number of bits required to store the scalar 4040 // values. 4041 for (auto *Scalar : ToDemote) { 4042 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4043 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4044 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4045 } 4046 4047 // If we can't prove that the sign bit is zero, we must add one to the 4048 // maximum bit width to account for the unknown sign bit. This preserves 4049 // the existing sign bit so we can safely sign-extend the root back to the 4050 // original type. Otherwise, if we know the sign bit is zero, we will 4051 // zero-extend the root instead. 4052 // 4053 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4054 // one to the maximum bit width will yield a larger-than-necessary 4055 // type. In general, we need to add an extra bit only if we can't 4056 // prove that the upper bit of the original type is equal to the 4057 // upper bit of the proposed smaller type. If these two bits are the 4058 // same (either zero or one) we know that sign-extending from the 4059 // smaller type will result in the same value. Here, since we can't 4060 // yet prove this, we are just making the proposed smaller type 4061 // larger to ensure correctness. 4062 if (!IsKnownPositive) 4063 ++MaxBitWidth; 4064 } 4065 4066 // Round MaxBitWidth up to the next power-of-two. 4067 if (!isPowerOf2_64(MaxBitWidth)) 4068 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4069 4070 // If the maximum bit width we compute is less than the with of the roots' 4071 // type, we can proceed with the narrowing. Otherwise, do nothing. 4072 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4073 return; 4074 4075 // If we can truncate the root, we must collect additional values that might 4076 // be demoted as a result. That is, those seeded by truncations we will 4077 // modify. 4078 while (!Roots.empty()) 4079 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4080 4081 // Finally, map the values we can demote to the maximum bit with we computed. 4082 for (auto *Scalar : ToDemote) 4083 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4084 } 4085 4086 namespace { 4087 4088 /// The SLPVectorizer Pass. 4089 struct SLPVectorizer : public FunctionPass { 4090 SLPVectorizerPass Impl; 4091 4092 /// Pass identification, replacement for typeid 4093 static char ID; 4094 4095 explicit SLPVectorizer() : FunctionPass(ID) { 4096 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4097 } 4098 4099 bool doInitialization(Module &M) override { 4100 return false; 4101 } 4102 4103 bool runOnFunction(Function &F) override { 4104 if (skipFunction(F)) 4105 return false; 4106 4107 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4108 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4109 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4110 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4111 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4112 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4113 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4114 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4115 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4116 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4117 4118 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4119 } 4120 4121 void getAnalysisUsage(AnalysisUsage &AU) const override { 4122 FunctionPass::getAnalysisUsage(AU); 4123 AU.addRequired<AssumptionCacheTracker>(); 4124 AU.addRequired<ScalarEvolutionWrapperPass>(); 4125 AU.addRequired<AAResultsWrapperPass>(); 4126 AU.addRequired<TargetTransformInfoWrapperPass>(); 4127 AU.addRequired<LoopInfoWrapperPass>(); 4128 AU.addRequired<DominatorTreeWrapperPass>(); 4129 AU.addRequired<DemandedBitsWrapperPass>(); 4130 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4131 AU.addPreserved<LoopInfoWrapperPass>(); 4132 AU.addPreserved<DominatorTreeWrapperPass>(); 4133 AU.addPreserved<AAResultsWrapperPass>(); 4134 AU.addPreserved<GlobalsAAWrapperPass>(); 4135 AU.setPreservesCFG(); 4136 } 4137 }; 4138 4139 } // end anonymous namespace 4140 4141 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4142 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4143 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4144 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4145 auto *AA = &AM.getResult<AAManager>(F); 4146 auto *LI = &AM.getResult<LoopAnalysis>(F); 4147 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4148 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4149 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4150 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4151 4152 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4153 if (!Changed) 4154 return PreservedAnalyses::all(); 4155 4156 PreservedAnalyses PA; 4157 PA.preserveSet<CFGAnalyses>(); 4158 PA.preserve<AAManager>(); 4159 PA.preserve<GlobalsAA>(); 4160 return PA; 4161 } 4162 4163 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4164 TargetTransformInfo *TTI_, 4165 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4166 LoopInfo *LI_, DominatorTree *DT_, 4167 AssumptionCache *AC_, DemandedBits *DB_, 4168 OptimizationRemarkEmitter *ORE_) { 4169 SE = SE_; 4170 TTI = TTI_; 4171 TLI = TLI_; 4172 AA = AA_; 4173 LI = LI_; 4174 DT = DT_; 4175 AC = AC_; 4176 DB = DB_; 4177 DL = &F.getParent()->getDataLayout(); 4178 4179 Stores.clear(); 4180 GEPs.clear(); 4181 bool Changed = false; 4182 4183 // If the target claims to have no vector registers don't attempt 4184 // vectorization. 4185 if (!TTI->getNumberOfRegisters(true)) 4186 return false; 4187 4188 // Don't vectorize when the attribute NoImplicitFloat is used. 4189 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4190 return false; 4191 4192 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4193 4194 // Use the bottom up slp vectorizer to construct chains that start with 4195 // store instructions. 4196 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4197 4198 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4199 // delete instructions. 4200 4201 // Scan the blocks in the function in post order. 4202 for (auto BB : post_order(&F.getEntryBlock())) { 4203 collectSeedInstructions(BB); 4204 4205 // Vectorize trees that end at stores. 4206 if (!Stores.empty()) { 4207 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4208 << " underlying objects.\n"); 4209 Changed |= vectorizeStoreChains(R); 4210 } 4211 4212 // Vectorize trees that end at reductions. 4213 Changed |= vectorizeChainsInBlock(BB, R); 4214 4215 // Vectorize the index computations of getelementptr instructions. This 4216 // is primarily intended to catch gather-like idioms ending at 4217 // non-consecutive loads. 4218 if (!GEPs.empty()) { 4219 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4220 << " underlying objects.\n"); 4221 Changed |= vectorizeGEPIndices(BB, R); 4222 } 4223 } 4224 4225 if (Changed) { 4226 R.optimizeGatherSequence(); 4227 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4228 DEBUG(verifyFunction(F)); 4229 } 4230 return Changed; 4231 } 4232 4233 /// \brief Check that the Values in the slice in VL array are still existent in 4234 /// the WeakTrackingVH array. 4235 /// Vectorization of part of the VL array may cause later values in the VL array 4236 /// to become invalid. We track when this has happened in the WeakTrackingVH 4237 /// array. 4238 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4239 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4240 unsigned SliceSize) { 4241 VL = VL.slice(SliceBegin, SliceSize); 4242 VH = VH.slice(SliceBegin, SliceSize); 4243 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4244 } 4245 4246 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4247 unsigned VecRegSize) { 4248 unsigned ChainLen = Chain.size(); 4249 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4250 << "\n"); 4251 unsigned Sz = R.getVectorElementSize(Chain[0]); 4252 unsigned VF = VecRegSize / Sz; 4253 4254 if (!isPowerOf2_32(Sz) || VF < 2) 4255 return false; 4256 4257 // Keep track of values that were deleted by vectorizing in the loop below. 4258 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4259 4260 bool Changed = false; 4261 // Look for profitable vectorizable trees at all offsets, starting at zero. 4262 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 4263 if (i + VF > e) 4264 break; 4265 4266 // Check that a previous iteration of this loop did not delete the Value. 4267 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4268 continue; 4269 4270 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4271 << "\n"); 4272 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4273 4274 R.buildTree(Operands); 4275 if (R.isTreeTinyAndNotFullyVectorizable()) 4276 continue; 4277 4278 R.computeMinimumValueSizes(); 4279 4280 int Cost = R.getTreeCost(); 4281 4282 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4283 if (Cost < -SLPCostThreshold) { 4284 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4285 4286 using namespace ore; 4287 4288 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4289 cast<StoreInst>(Chain[i])) 4290 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4291 << " and with tree size " 4292 << NV("TreeSize", R.getTreeSize())); 4293 4294 R.vectorizeTree(); 4295 4296 // Move to the next bundle. 4297 i += VF - 1; 4298 Changed = true; 4299 } 4300 } 4301 4302 return Changed; 4303 } 4304 4305 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4306 BoUpSLP &R) { 4307 SetVector<StoreInst *> Heads, Tails; 4308 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4309 4310 // We may run into multiple chains that merge into a single chain. We mark the 4311 // stores that we vectorized so that we don't visit the same store twice. 4312 BoUpSLP::ValueSet VectorizedStores; 4313 bool Changed = false; 4314 4315 // Do a quadratic search on all of the given stores and find 4316 // all of the pairs of stores that follow each other. 4317 SmallVector<unsigned, 16> IndexQueue; 4318 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 4319 IndexQueue.clear(); 4320 // If a store has multiple consecutive store candidates, search Stores 4321 // array according to the sequence: from i+1 to e, then from i-1 to 0. 4322 // This is because usually pairing with immediate succeeding or preceding 4323 // candidate create the best chance to find slp vectorization opportunity. 4324 unsigned j = 0; 4325 for (j = i + 1; j < e; ++j) 4326 IndexQueue.push_back(j); 4327 for (j = i; j > 0; --j) 4328 IndexQueue.push_back(j - 1); 4329 4330 for (auto &k : IndexQueue) { 4331 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 4332 Tails.insert(Stores[k]); 4333 Heads.insert(Stores[i]); 4334 ConsecutiveChain[Stores[i]] = Stores[k]; 4335 break; 4336 } 4337 } 4338 } 4339 4340 // For stores that start but don't end a link in the chain: 4341 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 4342 it != e; ++it) { 4343 if (Tails.count(*it)) 4344 continue; 4345 4346 // We found a store instr that starts a chain. Now follow the chain and try 4347 // to vectorize it. 4348 BoUpSLP::ValueList Operands; 4349 StoreInst *I = *it; 4350 // Collect the chain into a list. 4351 while (Tails.count(I) || Heads.count(I)) { 4352 if (VectorizedStores.count(I)) 4353 break; 4354 Operands.push_back(I); 4355 // Move to the next value in the chain. 4356 I = ConsecutiveChain[I]; 4357 } 4358 4359 // FIXME: Is division-by-2 the correct step? Should we assert that the 4360 // register size is a power-of-2? 4361 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4362 Size /= 2) { 4363 if (vectorizeStoreChain(Operands, R, Size)) { 4364 // Mark the vectorized stores so that we don't vectorize them again. 4365 VectorizedStores.insert(Operands.begin(), Operands.end()); 4366 Changed = true; 4367 break; 4368 } 4369 } 4370 } 4371 4372 return Changed; 4373 } 4374 4375 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4376 // Initialize the collections. We will make a single pass over the block. 4377 Stores.clear(); 4378 GEPs.clear(); 4379 4380 // Visit the store and getelementptr instructions in BB and organize them in 4381 // Stores and GEPs according to the underlying objects of their pointer 4382 // operands. 4383 for (Instruction &I : *BB) { 4384 // Ignore store instructions that are volatile or have a pointer operand 4385 // that doesn't point to a scalar type. 4386 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4387 if (!SI->isSimple()) 4388 continue; 4389 if (!isValidElementType(SI->getValueOperand()->getType())) 4390 continue; 4391 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4392 } 4393 4394 // Ignore getelementptr instructions that have more than one index, a 4395 // constant index, or a pointer operand that doesn't point to a scalar 4396 // type. 4397 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4398 auto Idx = GEP->idx_begin()->get(); 4399 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4400 continue; 4401 if (!isValidElementType(Idx->getType())) 4402 continue; 4403 if (GEP->getType()->isVectorTy()) 4404 continue; 4405 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4406 } 4407 } 4408 } 4409 4410 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4411 if (!A || !B) 4412 return false; 4413 Value *VL[] = { A, B }; 4414 return tryToVectorizeList(VL, R, None, true); 4415 } 4416 4417 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4418 ArrayRef<Value *> BuildVector, 4419 bool AllowReorder) { 4420 if (VL.size() < 2) 4421 return false; 4422 4423 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4424 << ".\n"); 4425 4426 // Check that all of the parts are scalar instructions of the same type. 4427 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4428 if (!I0) 4429 return false; 4430 4431 unsigned Opcode0 = I0->getOpcode(); 4432 4433 unsigned Sz = R.getVectorElementSize(I0); 4434 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4435 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4436 if (MaxVF < 2) 4437 return false; 4438 4439 for (Value *V : VL) { 4440 Type *Ty = V->getType(); 4441 if (!isValidElementType(Ty)) 4442 return false; 4443 Instruction *Inst = dyn_cast<Instruction>(V); 4444 if (!Inst || Inst->getOpcode() != Opcode0) 4445 return false; 4446 } 4447 4448 bool Changed = false; 4449 4450 // Keep track of values that were deleted by vectorizing in the loop below. 4451 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4452 4453 unsigned NextInst = 0, MaxInst = VL.size(); 4454 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4455 VF /= 2) { 4456 // No actual vectorization should happen, if number of parts is the same as 4457 // provided vectorization factor (i.e. the scalar type is used for vector 4458 // code during codegen). 4459 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4460 if (TTI->getNumberOfParts(VecTy) == VF) 4461 continue; 4462 for (unsigned I = NextInst; I < MaxInst; ++I) { 4463 unsigned OpsWidth = 0; 4464 4465 if (I + VF > MaxInst) 4466 OpsWidth = MaxInst - I; 4467 else 4468 OpsWidth = VF; 4469 4470 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4471 break; 4472 4473 // Check that a previous iteration of this loop did not delete the Value. 4474 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4475 continue; 4476 4477 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4478 << "\n"); 4479 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4480 4481 ArrayRef<Value *> BuildVectorSlice; 4482 if (!BuildVector.empty()) 4483 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4484 4485 R.buildTree(Ops, BuildVectorSlice); 4486 // TODO: check if we can allow reordering for more cases. 4487 if (AllowReorder && R.shouldReorder()) { 4488 // Conceptually, there is nothing actually preventing us from trying to 4489 // reorder a larger list. In fact, we do exactly this when vectorizing 4490 // reductions. However, at this point, we only expect to get here when 4491 // there are exactly two operations. 4492 assert(Ops.size() == 2); 4493 assert(BuildVectorSlice.empty()); 4494 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4495 R.buildTree(ReorderedOps, None); 4496 } 4497 if (R.isTreeTinyAndNotFullyVectorizable()) 4498 continue; 4499 4500 R.computeMinimumValueSizes(); 4501 int Cost = R.getTreeCost(); 4502 4503 if (Cost < -SLPCostThreshold) { 4504 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4505 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4506 cast<Instruction>(Ops[0])) 4507 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4508 << " and with tree size " 4509 << ore::NV("TreeSize", R.getTreeSize())); 4510 4511 Value *VectorizedRoot = R.vectorizeTree(); 4512 4513 // Reconstruct the build vector by extracting the vectorized root. This 4514 // way we handle the case where some elements of the vector are 4515 // undefined. 4516 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4517 if (!BuildVectorSlice.empty()) { 4518 // The insert point is the last build vector instruction. The 4519 // vectorized root will precede it. This guarantees that we get an 4520 // instruction. The vectorized tree could have been constant folded. 4521 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4522 unsigned VecIdx = 0; 4523 for (auto &V : BuildVectorSlice) { 4524 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4525 ++BasicBlock::iterator(InsertAfter)); 4526 Instruction *I = cast<Instruction>(V); 4527 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4528 Instruction *Extract = 4529 cast<Instruction>(Builder.CreateExtractElement( 4530 VectorizedRoot, Builder.getInt32(VecIdx++))); 4531 I->setOperand(1, Extract); 4532 I->moveAfter(Extract); 4533 InsertAfter = I; 4534 } 4535 } 4536 // Move to the next bundle. 4537 I += VF - 1; 4538 NextInst = I + 1; 4539 Changed = true; 4540 } 4541 } 4542 } 4543 4544 return Changed; 4545 } 4546 4547 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4548 if (!I) 4549 return false; 4550 4551 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4552 return false; 4553 4554 Value *P = I->getParent(); 4555 4556 // Vectorize in current basic block only. 4557 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4558 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4559 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4560 return false; 4561 4562 // Try to vectorize V. 4563 if (tryToVectorizePair(Op0, Op1, R)) 4564 return true; 4565 4566 auto *A = dyn_cast<BinaryOperator>(Op0); 4567 auto *B = dyn_cast<BinaryOperator>(Op1); 4568 // Try to skip B. 4569 if (B && B->hasOneUse()) { 4570 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4571 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4572 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4573 return true; 4574 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4575 return true; 4576 } 4577 4578 // Try to skip A. 4579 if (A && A->hasOneUse()) { 4580 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4581 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4582 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4583 return true; 4584 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4585 return true; 4586 } 4587 return false; 4588 } 4589 4590 /// \brief Generate a shuffle mask to be used in a reduction tree. 4591 /// 4592 /// \param VecLen The length of the vector to be reduced. 4593 /// \param NumEltsToRdx The number of elements that should be reduced in the 4594 /// vector. 4595 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4596 /// reduction. A pairwise reduction will generate a mask of 4597 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4598 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4599 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4600 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4601 bool IsPairwise, bool IsLeft, 4602 IRBuilder<> &Builder) { 4603 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4604 4605 SmallVector<Constant *, 32> ShuffleMask( 4606 VecLen, UndefValue::get(Builder.getInt32Ty())); 4607 4608 if (IsPairwise) 4609 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4610 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4611 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4612 else 4613 // Move the upper half of the vector to the lower half. 4614 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4615 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4616 4617 return ConstantVector::get(ShuffleMask); 4618 } 4619 4620 namespace { 4621 4622 /// Model horizontal reductions. 4623 /// 4624 /// A horizontal reduction is a tree of reduction operations (currently add and 4625 /// fadd) that has operations that can be put into a vector as its leaf. 4626 /// For example, this tree: 4627 /// 4628 /// mul mul mul mul 4629 /// \ / \ / 4630 /// + + 4631 /// \ / 4632 /// + 4633 /// This tree has "mul" as its reduced values and "+" as its reduction 4634 /// operations. A reduction might be feeding into a store or a binary operation 4635 /// feeding a phi. 4636 /// ... 4637 /// \ / 4638 /// + 4639 /// | 4640 /// phi += 4641 /// 4642 /// Or: 4643 /// ... 4644 /// \ / 4645 /// + 4646 /// | 4647 /// *p = 4648 /// 4649 class HorizontalReduction { 4650 using ReductionOpsType = SmallVector<Value *, 16>; 4651 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 4652 ReductionOpsListType ReductionOps; 4653 SmallVector<Value *, 32> ReducedVals; 4654 // Use map vector to make stable output. 4655 MapVector<Instruction *, Value *> ExtraArgs; 4656 4657 /// Kind of the reduction data. 4658 enum ReductionKind { 4659 RK_None, /// Not a reduction. 4660 RK_Arithmetic, /// Binary reduction data. 4661 RK_Min, /// Minimum reduction data. 4662 RK_UMin, /// Unsigned minimum reduction data. 4663 RK_Max, /// Maximum reduction data. 4664 RK_UMax, /// Unsigned maximum reduction data. 4665 }; 4666 /// Contains info about operation, like its opcode, left and right operands. 4667 class OperationData { 4668 /// Opcode of the instruction. 4669 unsigned Opcode = 0; 4670 4671 /// Left operand of the reduction operation. 4672 Value *LHS = nullptr; 4673 4674 /// Right operand of the reduction operation. 4675 Value *RHS = nullptr; 4676 /// Kind of the reduction operation. 4677 ReductionKind Kind = RK_None; 4678 /// True if float point min/max reduction has no NaNs. 4679 bool NoNaN = false; 4680 4681 /// Checks if the reduction operation can be vectorized. 4682 bool isVectorizable() const { 4683 return LHS && RHS && 4684 // We currently only support adds && min/max reductions. 4685 ((Kind == RK_Arithmetic && 4686 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 4687 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 4688 (Kind == RK_Min || Kind == RK_Max)) || 4689 (Opcode == Instruction::ICmp && 4690 (Kind == RK_UMin || Kind == RK_UMax))); 4691 } 4692 4693 /// Creates reduction operation with the current opcode. 4694 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 4695 assert(isVectorizable() && 4696 "Expected add|fadd or min/max reduction operation."); 4697 Value *Cmp; 4698 switch (Kind) { 4699 case RK_Arithmetic: 4700 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 4701 Name); 4702 case RK_Min: 4703 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 4704 : Builder.CreateFCmpOLT(LHS, RHS); 4705 break; 4706 case RK_Max: 4707 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 4708 : Builder.CreateFCmpOGT(LHS, RHS); 4709 break; 4710 case RK_UMin: 4711 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4712 Cmp = Builder.CreateICmpULT(LHS, RHS); 4713 break; 4714 case RK_UMax: 4715 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4716 Cmp = Builder.CreateICmpUGT(LHS, RHS); 4717 break; 4718 case RK_None: 4719 llvm_unreachable("Unknown reduction operation."); 4720 } 4721 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 4722 } 4723 4724 public: 4725 explicit OperationData() = default; 4726 4727 /// Construction for reduced values. They are identified by opcode only and 4728 /// don't have associated LHS/RHS values. 4729 explicit OperationData(Value *V) : Kind(RK_None) { 4730 if (auto *I = dyn_cast<Instruction>(V)) 4731 Opcode = I->getOpcode(); 4732 } 4733 4734 /// Constructor for reduction operations with opcode and its left and 4735 /// right operands. 4736 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 4737 bool NoNaN = false) 4738 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 4739 assert(Kind != RK_None && "One of the reduction operations is expected."); 4740 } 4741 explicit operator bool() const { return Opcode; } 4742 4743 /// Get the index of the first operand. 4744 unsigned getFirstOperandIndex() const { 4745 assert(!!*this && "The opcode is not set."); 4746 switch (Kind) { 4747 case RK_Min: 4748 case RK_UMin: 4749 case RK_Max: 4750 case RK_UMax: 4751 return 1; 4752 case RK_Arithmetic: 4753 case RK_None: 4754 break; 4755 } 4756 return 0; 4757 } 4758 4759 /// Total number of operands in the reduction operation. 4760 unsigned getNumberOfOperands() const { 4761 assert(Kind != RK_None && !!*this && LHS && RHS && 4762 "Expected reduction operation."); 4763 switch (Kind) { 4764 case RK_Arithmetic: 4765 return 2; 4766 case RK_Min: 4767 case RK_UMin: 4768 case RK_Max: 4769 case RK_UMax: 4770 return 3; 4771 case RK_None: 4772 break; 4773 } 4774 llvm_unreachable("Reduction kind is not set"); 4775 } 4776 4777 /// Checks if the operation has the same parent as \p P. 4778 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 4779 assert(Kind != RK_None && !!*this && LHS && RHS && 4780 "Expected reduction operation."); 4781 if (!IsRedOp) 4782 return I->getParent() == P; 4783 switch (Kind) { 4784 case RK_Arithmetic: 4785 // Arithmetic reduction operation must be used once only. 4786 return I->getParent() == P; 4787 case RK_Min: 4788 case RK_UMin: 4789 case RK_Max: 4790 case RK_UMax: { 4791 // SelectInst must be used twice while the condition op must have single 4792 // use only. 4793 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 4794 return I->getParent() == P && Cmp && Cmp->getParent() == P; 4795 } 4796 case RK_None: 4797 break; 4798 } 4799 llvm_unreachable("Reduction kind is not set"); 4800 } 4801 /// Expected number of uses for reduction operations/reduced values. 4802 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 4803 assert(Kind != RK_None && !!*this && LHS && RHS && 4804 "Expected reduction operation."); 4805 switch (Kind) { 4806 case RK_Arithmetic: 4807 return I->hasOneUse(); 4808 case RK_Min: 4809 case RK_UMin: 4810 case RK_Max: 4811 case RK_UMax: 4812 return I->hasNUses(2) && 4813 (!IsReductionOp || 4814 cast<SelectInst>(I)->getCondition()->hasOneUse()); 4815 case RK_None: 4816 break; 4817 } 4818 llvm_unreachable("Reduction kind is not set"); 4819 } 4820 4821 /// Initializes the list of reduction operations. 4822 void initReductionOps(ReductionOpsListType &ReductionOps) { 4823 assert(Kind != RK_None && !!*this && LHS && RHS && 4824 "Expected reduction operation."); 4825 switch (Kind) { 4826 case RK_Arithmetic: 4827 ReductionOps.assign(1, ReductionOpsType()); 4828 break; 4829 case RK_Min: 4830 case RK_UMin: 4831 case RK_Max: 4832 case RK_UMax: 4833 ReductionOps.assign(2, ReductionOpsType()); 4834 break; 4835 case RK_None: 4836 llvm_unreachable("Reduction kind is not set"); 4837 } 4838 } 4839 /// Add all reduction operations for the reduction instruction \p I. 4840 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 4841 assert(Kind != RK_None && !!*this && LHS && RHS && 4842 "Expected reduction operation."); 4843 switch (Kind) { 4844 case RK_Arithmetic: 4845 ReductionOps[0].emplace_back(I); 4846 break; 4847 case RK_Min: 4848 case RK_UMin: 4849 case RK_Max: 4850 case RK_UMax: 4851 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 4852 ReductionOps[1].emplace_back(I); 4853 break; 4854 case RK_None: 4855 llvm_unreachable("Reduction kind is not set"); 4856 } 4857 } 4858 4859 /// Checks if instruction is associative and can be vectorized. 4860 bool isAssociative(Instruction *I) const { 4861 assert(Kind != RK_None && *this && LHS && RHS && 4862 "Expected reduction operation."); 4863 switch (Kind) { 4864 case RK_Arithmetic: 4865 return I->isAssociative(); 4866 case RK_Min: 4867 case RK_Max: 4868 return Opcode == Instruction::ICmp || 4869 cast<Instruction>(I->getOperand(0))->hasUnsafeAlgebra(); 4870 case RK_UMin: 4871 case RK_UMax: 4872 assert(Opcode == Instruction::ICmp && 4873 "Only integer compare operation is expected."); 4874 return true; 4875 case RK_None: 4876 break; 4877 } 4878 llvm_unreachable("Reduction kind is not set"); 4879 } 4880 4881 /// Checks if the reduction operation can be vectorized. 4882 bool isVectorizable(Instruction *I) const { 4883 return isVectorizable() && isAssociative(I); 4884 } 4885 4886 /// Checks if two operation data are both a reduction op or both a reduced 4887 /// value. 4888 bool operator==(const OperationData &OD) { 4889 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 4890 "One of the comparing operations is incorrect."); 4891 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 4892 } 4893 bool operator!=(const OperationData &OD) { return !(*this == OD); } 4894 void clear() { 4895 Opcode = 0; 4896 LHS = nullptr; 4897 RHS = nullptr; 4898 Kind = RK_None; 4899 NoNaN = false; 4900 } 4901 4902 /// Get the opcode of the reduction operation. 4903 unsigned getOpcode() const { 4904 assert(isVectorizable() && "Expected vectorizable operation."); 4905 return Opcode; 4906 } 4907 4908 /// Get kind of reduction data. 4909 ReductionKind getKind() const { return Kind; } 4910 Value *getLHS() const { return LHS; } 4911 Value *getRHS() const { return RHS; } 4912 Type *getConditionType() const { 4913 switch (Kind) { 4914 case RK_Arithmetic: 4915 return nullptr; 4916 case RK_Min: 4917 case RK_Max: 4918 case RK_UMin: 4919 case RK_UMax: 4920 return CmpInst::makeCmpResultType(LHS->getType()); 4921 case RK_None: 4922 break; 4923 } 4924 llvm_unreachable("Reduction kind is not set"); 4925 } 4926 4927 /// Creates reduction operation with the current opcode with the IR flags 4928 /// from \p ReductionOps. 4929 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 4930 const ReductionOpsListType &ReductionOps) const { 4931 assert(isVectorizable() && 4932 "Expected add|fadd or min/max reduction operation."); 4933 auto *Op = createOp(Builder, Name); 4934 switch (Kind) { 4935 case RK_Arithmetic: 4936 propagateIRFlags(Op, ReductionOps[0]); 4937 return Op; 4938 case RK_Min: 4939 case RK_Max: 4940 case RK_UMin: 4941 case RK_UMax: 4942 propagateIRFlags(cast<SelectInst>(Op)->getCondition(), ReductionOps[0]); 4943 propagateIRFlags(Op, ReductionOps[1]); 4944 return Op; 4945 case RK_None: 4946 break; 4947 } 4948 llvm_unreachable("Unknown reduction operation."); 4949 } 4950 /// Creates reduction operation with the current opcode with the IR flags 4951 /// from \p I. 4952 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 4953 Instruction *I) const { 4954 assert(isVectorizable() && 4955 "Expected add|fadd or min/max reduction operation."); 4956 auto *Op = createOp(Builder, Name); 4957 switch (Kind) { 4958 case RK_Arithmetic: 4959 propagateIRFlags(Op, I); 4960 return Op; 4961 case RK_Min: 4962 case RK_Max: 4963 case RK_UMin: 4964 case RK_UMax: 4965 propagateIRFlags(cast<SelectInst>(Op)->getCondition(), 4966 cast<SelectInst>(I)->getCondition()); 4967 propagateIRFlags(Op, I); 4968 return Op; 4969 case RK_None: 4970 break; 4971 } 4972 llvm_unreachable("Unknown reduction operation."); 4973 } 4974 4975 TargetTransformInfo::ReductionFlags getFlags() const { 4976 TargetTransformInfo::ReductionFlags Flags; 4977 Flags.NoNaN = NoNaN; 4978 switch (Kind) { 4979 case RK_Arithmetic: 4980 break; 4981 case RK_Min: 4982 Flags.IsSigned = Opcode == Instruction::ICmp; 4983 Flags.IsMaxOp = false; 4984 break; 4985 case RK_Max: 4986 Flags.IsSigned = Opcode == Instruction::ICmp; 4987 Flags.IsMaxOp = true; 4988 break; 4989 case RK_UMin: 4990 Flags.IsSigned = false; 4991 Flags.IsMaxOp = false; 4992 break; 4993 case RK_UMax: 4994 Flags.IsSigned = false; 4995 Flags.IsMaxOp = true; 4996 break; 4997 case RK_None: 4998 llvm_unreachable("Reduction kind is not set"); 4999 } 5000 return Flags; 5001 } 5002 }; 5003 5004 Instruction *ReductionRoot = nullptr; 5005 5006 /// The operation data of the reduction operation. 5007 OperationData ReductionData; 5008 5009 /// The operation data of the values we perform a reduction on. 5010 OperationData ReducedValueData; 5011 5012 /// Should we model this reduction as a pairwise reduction tree or a tree that 5013 /// splits the vector in halves and adds those halves. 5014 bool IsPairwiseReduction = false; 5015 5016 /// Checks if the ParentStackElem.first should be marked as a reduction 5017 /// operation with an extra argument or as extra argument itself. 5018 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5019 Value *ExtraArg) { 5020 if (ExtraArgs.count(ParentStackElem.first)) { 5021 ExtraArgs[ParentStackElem.first] = nullptr; 5022 // We ran into something like: 5023 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5024 // The whole ParentStackElem.first should be considered as an extra value 5025 // in this case. 5026 // Do not perform analysis of remaining operands of ParentStackElem.first 5027 // instruction, this whole instruction is an extra argument. 5028 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5029 } else { 5030 // We ran into something like: 5031 // ParentStackElem.first += ... + ExtraArg + ... 5032 ExtraArgs[ParentStackElem.first] = ExtraArg; 5033 } 5034 } 5035 5036 static OperationData getOperationData(Value *V) { 5037 if (!V) 5038 return OperationData(); 5039 5040 Value *LHS; 5041 Value *RHS; 5042 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5043 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5044 RK_Arithmetic); 5045 } 5046 if (auto *Select = dyn_cast<SelectInst>(V)) { 5047 // Look for a min/max pattern. 5048 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5049 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5050 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5051 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5052 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5053 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5054 return OperationData( 5055 Instruction::FCmp, LHS, RHS, RK_Min, 5056 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5057 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5058 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5059 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5060 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5061 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5062 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5063 return OperationData( 5064 Instruction::FCmp, LHS, RHS, RK_Max, 5065 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5066 } 5067 } 5068 return OperationData(V); 5069 } 5070 5071 public: 5072 HorizontalReduction() = default; 5073 5074 /// \brief Try to find a reduction tree. 5075 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5076 assert((!Phi || is_contained(Phi->operands(), B)) && 5077 "Thi phi needs to use the binary operator"); 5078 5079 ReductionData = getOperationData(B); 5080 5081 // We could have a initial reductions that is not an add. 5082 // r *= v1 + v2 + v3 + v4 5083 // In such a case start looking for a tree rooted in the first '+'. 5084 if (Phi) { 5085 if (ReductionData.getLHS() == Phi) { 5086 Phi = nullptr; 5087 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5088 ReductionData = getOperationData(B); 5089 } else if (ReductionData.getRHS() == Phi) { 5090 Phi = nullptr; 5091 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5092 ReductionData = getOperationData(B); 5093 } 5094 } 5095 5096 if (!ReductionData.isVectorizable(B)) 5097 return false; 5098 5099 Type *Ty = B->getType(); 5100 if (!isValidElementType(Ty)) 5101 return false; 5102 5103 ReducedValueData.clear(); 5104 ReductionRoot = B; 5105 5106 // Post order traverse the reduction tree starting at B. We only handle true 5107 // trees containing only binary operators. 5108 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5109 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5110 ReductionData.initReductionOps(ReductionOps); 5111 while (!Stack.empty()) { 5112 Instruction *TreeN = Stack.back().first; 5113 unsigned EdgeToVist = Stack.back().second++; 5114 OperationData OpData = getOperationData(TreeN); 5115 bool IsReducedValue = OpData != ReductionData; 5116 5117 // Postorder vist. 5118 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5119 if (IsReducedValue) 5120 ReducedVals.push_back(TreeN); 5121 else { 5122 auto I = ExtraArgs.find(TreeN); 5123 if (I != ExtraArgs.end() && !I->second) { 5124 // Check if TreeN is an extra argument of its parent operation. 5125 if (Stack.size() <= 1) { 5126 // TreeN can't be an extra argument as it is a root reduction 5127 // operation. 5128 return false; 5129 } 5130 // Yes, TreeN is an extra argument, do not add it to a list of 5131 // reduction operations. 5132 // Stack[Stack.size() - 2] always points to the parent operation. 5133 markExtraArg(Stack[Stack.size() - 2], TreeN); 5134 ExtraArgs.erase(TreeN); 5135 } else 5136 ReductionData.addReductionOps(TreeN, ReductionOps); 5137 } 5138 // Retract. 5139 Stack.pop_back(); 5140 continue; 5141 } 5142 5143 // Visit left or right. 5144 Value *NextV = TreeN->getOperand(EdgeToVist); 5145 if (NextV != Phi) { 5146 auto *I = dyn_cast<Instruction>(NextV); 5147 OpData = getOperationData(I); 5148 // Continue analysis if the next operand is a reduction operation or 5149 // (possibly) a reduced value. If the reduced value opcode is not set, 5150 // the first met operation != reduction operation is considered as the 5151 // reduced value class. 5152 if (I && (!ReducedValueData || OpData == ReducedValueData || 5153 OpData == ReductionData)) { 5154 const bool IsReductionOperation = OpData == ReductionData; 5155 // Only handle trees in the current basic block. 5156 if (!ReductionData.hasSameParent(I, B->getParent(), 5157 IsReductionOperation)) { 5158 // I is an extra argument for TreeN (its parent operation). 5159 markExtraArg(Stack.back(), I); 5160 continue; 5161 } 5162 5163 // Each tree node needs to have minimal number of users except for the 5164 // ultimate reduction. 5165 if (!ReductionData.hasRequiredNumberOfUses(I, 5166 OpData == ReductionData) && 5167 I != B) { 5168 // I is an extra argument for TreeN (its parent operation). 5169 markExtraArg(Stack.back(), I); 5170 continue; 5171 } 5172 5173 if (IsReductionOperation) { 5174 // We need to be able to reassociate the reduction operations. 5175 if (!OpData.isAssociative(I)) { 5176 // I is an extra argument for TreeN (its parent operation). 5177 markExtraArg(Stack.back(), I); 5178 continue; 5179 } 5180 } else if (ReducedValueData && 5181 ReducedValueData != OpData) { 5182 // Make sure that the opcodes of the operations that we are going to 5183 // reduce match. 5184 // I is an extra argument for TreeN (its parent operation). 5185 markExtraArg(Stack.back(), I); 5186 continue; 5187 } else if (!ReducedValueData) 5188 ReducedValueData = OpData; 5189 5190 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5191 continue; 5192 } 5193 } 5194 // NextV is an extra argument for TreeN (its parent operation). 5195 markExtraArg(Stack.back(), NextV); 5196 } 5197 return true; 5198 } 5199 5200 /// \brief Attempt to vectorize the tree found by 5201 /// matchAssociativeReduction. 5202 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5203 if (ReducedVals.empty()) 5204 return false; 5205 5206 // If there is a sufficient number of reduction values, reduce 5207 // to a nearby power-of-2. Can safely generate oversized 5208 // vectors and rely on the backend to split them to legal sizes. 5209 unsigned NumReducedVals = ReducedVals.size(); 5210 if (NumReducedVals < 4) 5211 return false; 5212 5213 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5214 5215 Value *VectorizedTree = nullptr; 5216 IRBuilder<> Builder(ReductionRoot); 5217 FastMathFlags Unsafe; 5218 Unsafe.setUnsafeAlgebra(); 5219 Builder.setFastMathFlags(Unsafe); 5220 unsigned i = 0; 5221 5222 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5223 // The same extra argument may be used several time, so log each attempt 5224 // to use it. 5225 for (auto &Pair : ExtraArgs) 5226 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5227 SmallVector<Value *, 16> IgnoreList; 5228 for (auto &V : ReductionOps) 5229 IgnoreList.append(V.begin(), V.end()); 5230 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5231 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5232 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5233 if (V.shouldReorder()) { 5234 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 5235 V.buildTree(Reversed, ExternallyUsedValues, IgnoreList); 5236 } 5237 if (V.isTreeTinyAndNotFullyVectorizable()) 5238 break; 5239 5240 V.computeMinimumValueSizes(); 5241 5242 // Estimate cost. 5243 int Cost = 5244 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5245 if (Cost >= -SLPCostThreshold) 5246 break; 5247 5248 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 5249 << ". (HorRdx)\n"); 5250 auto *I0 = cast<Instruction>(VL[0]); 5251 V.getORE()->emit( 5252 OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", I0) 5253 << "Vectorized horizontal reduction with cost " 5254 << ore::NV("Cost", Cost) << " and with tree size " 5255 << ore::NV("TreeSize", V.getTreeSize())); 5256 5257 // Vectorize a tree. 5258 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5259 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5260 5261 // Emit a reduction. 5262 Value *ReducedSubTree = 5263 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5264 if (VectorizedTree) { 5265 Builder.SetCurrentDebugLocation(Loc); 5266 OperationData VectReductionData(ReductionData.getOpcode(), 5267 VectorizedTree, ReducedSubTree, 5268 ReductionData.getKind()); 5269 VectorizedTree = 5270 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5271 } else 5272 VectorizedTree = ReducedSubTree; 5273 i += ReduxWidth; 5274 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5275 } 5276 5277 if (VectorizedTree) { 5278 // Finish the reduction. 5279 for (; i < NumReducedVals; ++i) { 5280 auto *I = cast<Instruction>(ReducedVals[i]); 5281 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5282 OperationData VectReductionData(ReductionData.getOpcode(), 5283 VectorizedTree, I, 5284 ReductionData.getKind()); 5285 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5286 } 5287 for (auto &Pair : ExternallyUsedValues) { 5288 assert(!Pair.second.empty() && 5289 "At least one DebugLoc must be inserted"); 5290 // Add each externally used value to the final reduction. 5291 for (auto *I : Pair.second) { 5292 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5293 OperationData VectReductionData(ReductionData.getOpcode(), 5294 VectorizedTree, Pair.first, 5295 ReductionData.getKind()); 5296 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5297 } 5298 } 5299 // Update users. 5300 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5301 } 5302 return VectorizedTree != nullptr; 5303 } 5304 5305 unsigned numReductionValues() const { 5306 return ReducedVals.size(); 5307 } 5308 5309 private: 5310 /// \brief Calculate the cost of a reduction. 5311 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5312 unsigned ReduxWidth) { 5313 Type *ScalarTy = FirstReducedVal->getType(); 5314 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5315 5316 int PairwiseRdxCost; 5317 int SplittingRdxCost; 5318 switch (ReductionData.getKind()) { 5319 case RK_Arithmetic: 5320 PairwiseRdxCost = 5321 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5322 /*IsPairwiseForm=*/true); 5323 SplittingRdxCost = 5324 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5325 /*IsPairwiseForm=*/false); 5326 break; 5327 case RK_Min: 5328 case RK_Max: 5329 case RK_UMin: 5330 case RK_UMax: { 5331 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5332 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5333 ReductionData.getKind() == RK_UMax; 5334 PairwiseRdxCost = 5335 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5336 /*IsPairwiseForm=*/true, IsUnsigned); 5337 SplittingRdxCost = 5338 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5339 /*IsPairwiseForm=*/false, IsUnsigned); 5340 break; 5341 } 5342 case RK_None: 5343 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5344 } 5345 5346 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5347 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5348 5349 int ScalarReduxCost; 5350 switch (ReductionData.getKind()) { 5351 case RK_Arithmetic: 5352 ScalarReduxCost = 5353 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5354 break; 5355 case RK_Min: 5356 case RK_Max: 5357 case RK_UMin: 5358 case RK_UMax: 5359 ScalarReduxCost = 5360 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5361 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5362 CmpInst::makeCmpResultType(ScalarTy)); 5363 break; 5364 case RK_None: 5365 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5366 } 5367 ScalarReduxCost *= (ReduxWidth - 1); 5368 5369 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5370 << " for reduction that starts with " << *FirstReducedVal 5371 << " (It is a " 5372 << (IsPairwiseReduction ? "pairwise" : "splitting") 5373 << " reduction)\n"); 5374 5375 return VecReduxCost - ScalarReduxCost; 5376 } 5377 5378 /// \brief Emit a horizontal reduction of the vectorized value. 5379 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5380 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5381 assert(VectorizedValue && "Need to have a vectorized tree node"); 5382 assert(isPowerOf2_32(ReduxWidth) && 5383 "We only handle power-of-two reductions for now"); 5384 5385 if (!IsPairwiseReduction) 5386 return createSimpleTargetReduction( 5387 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5388 ReductionData.getFlags(), ReductionOps.back()); 5389 5390 Value *TmpVec = VectorizedValue; 5391 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5392 Value *LeftMask = 5393 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5394 Value *RightMask = 5395 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5396 5397 Value *LeftShuf = Builder.CreateShuffleVector( 5398 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5399 Value *RightShuf = Builder.CreateShuffleVector( 5400 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5401 "rdx.shuf.r"); 5402 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5403 RightShuf, ReductionData.getKind()); 5404 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5405 } 5406 5407 // The result is in the first element of the vector. 5408 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5409 } 5410 }; 5411 5412 } // end anonymous namespace 5413 5414 /// \brief Recognize construction of vectors like 5415 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5416 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5417 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5418 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5419 /// starting from the last insertelement instruction. 5420 /// 5421 /// Returns true if it matches 5422 /// 5423 static bool findBuildVector(InsertElementInst *LastInsertElem, 5424 SmallVectorImpl<Value *> &BuildVector, 5425 SmallVectorImpl<Value *> &BuildVectorOpds) { 5426 Value *V = nullptr; 5427 do { 5428 BuildVector.push_back(LastInsertElem); 5429 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5430 V = LastInsertElem->getOperand(0); 5431 if (isa<UndefValue>(V)) 5432 break; 5433 LastInsertElem = dyn_cast<InsertElementInst>(V); 5434 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5435 return false; 5436 } while (true); 5437 std::reverse(BuildVector.begin(), BuildVector.end()); 5438 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5439 return true; 5440 } 5441 5442 /// \brief Like findBuildVector, but looks for construction of aggregate. 5443 /// 5444 /// \return true if it matches. 5445 static bool findBuildAggregate(InsertValueInst *IV, 5446 SmallVectorImpl<Value *> &BuildVector, 5447 SmallVectorImpl<Value *> &BuildVectorOpds) { 5448 Value *V; 5449 do { 5450 BuildVector.push_back(IV); 5451 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5452 V = IV->getAggregateOperand(); 5453 if (isa<UndefValue>(V)) 5454 break; 5455 IV = dyn_cast<InsertValueInst>(V); 5456 if (!IV || !IV->hasOneUse()) 5457 return false; 5458 } while (true); 5459 std::reverse(BuildVector.begin(), BuildVector.end()); 5460 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5461 return true; 5462 } 5463 5464 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5465 return V->getType() < V2->getType(); 5466 } 5467 5468 /// \brief Try and get a reduction value from a phi node. 5469 /// 5470 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5471 /// if they come from either \p ParentBB or a containing loop latch. 5472 /// 5473 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5474 /// if not possible. 5475 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5476 BasicBlock *ParentBB, LoopInfo *LI) { 5477 // There are situations where the reduction value is not dominated by the 5478 // reduction phi. Vectorizing such cases has been reported to cause 5479 // miscompiles. See PR25787. 5480 auto DominatedReduxValue = [&](Value *R) { 5481 return ( 5482 dyn_cast<Instruction>(R) && 5483 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5484 }; 5485 5486 Value *Rdx = nullptr; 5487 5488 // Return the incoming value if it comes from the same BB as the phi node. 5489 if (P->getIncomingBlock(0) == ParentBB) { 5490 Rdx = P->getIncomingValue(0); 5491 } else if (P->getIncomingBlock(1) == ParentBB) { 5492 Rdx = P->getIncomingValue(1); 5493 } 5494 5495 if (Rdx && DominatedReduxValue(Rdx)) 5496 return Rdx; 5497 5498 // Otherwise, check whether we have a loop latch to look at. 5499 Loop *BBL = LI->getLoopFor(ParentBB); 5500 if (!BBL) 5501 return nullptr; 5502 BasicBlock *BBLatch = BBL->getLoopLatch(); 5503 if (!BBLatch) 5504 return nullptr; 5505 5506 // There is a loop latch, return the incoming value if it comes from 5507 // that. This reduction pattern occasionally turns up. 5508 if (P->getIncomingBlock(0) == BBLatch) { 5509 Rdx = P->getIncomingValue(0); 5510 } else if (P->getIncomingBlock(1) == BBLatch) { 5511 Rdx = P->getIncomingValue(1); 5512 } 5513 5514 if (Rdx && DominatedReduxValue(Rdx)) 5515 return Rdx; 5516 5517 return nullptr; 5518 } 5519 5520 /// Attempt to reduce a horizontal reduction. 5521 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5522 /// with reduction operators \a Root (or one of its operands) in a basic block 5523 /// \a BB, then check if it can be done. If horizontal reduction is not found 5524 /// and root instruction is a binary operation, vectorization of the operands is 5525 /// attempted. 5526 /// \returns true if a horizontal reduction was matched and reduced or operands 5527 /// of one of the binary instruction were vectorized. 5528 /// \returns false if a horizontal reduction was not matched (or not possible) 5529 /// or no vectorization of any binary operation feeding \a Root instruction was 5530 /// performed. 5531 static bool tryToVectorizeHorReductionOrInstOperands( 5532 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5533 TargetTransformInfo *TTI, 5534 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5535 if (!ShouldVectorizeHor) 5536 return false; 5537 5538 if (!Root) 5539 return false; 5540 5541 if (Root->getParent() != BB || isa<PHINode>(Root)) 5542 return false; 5543 // Start analysis starting from Root instruction. If horizontal reduction is 5544 // found, try to vectorize it. If it is not a horizontal reduction or 5545 // vectorization is not possible or not effective, and currently analyzed 5546 // instruction is a binary operation, try to vectorize the operands, using 5547 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5548 // the same procedure considering each operand as a possible root of the 5549 // horizontal reduction. 5550 // Interrupt the process if the Root instruction itself was vectorized or all 5551 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5552 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5553 SmallSet<Value *, 8> VisitedInstrs; 5554 bool Res = false; 5555 while (!Stack.empty()) { 5556 Value *V; 5557 unsigned Level; 5558 std::tie(V, Level) = Stack.pop_back_val(); 5559 if (!V) 5560 continue; 5561 auto *Inst = dyn_cast<Instruction>(V); 5562 if (!Inst) 5563 continue; 5564 auto *BI = dyn_cast<BinaryOperator>(Inst); 5565 auto *SI = dyn_cast<SelectInst>(Inst); 5566 if (BI || SI) { 5567 HorizontalReduction HorRdx; 5568 if (HorRdx.matchAssociativeReduction(P, Inst)) { 5569 if (HorRdx.tryToReduce(R, TTI)) { 5570 Res = true; 5571 // Set P to nullptr to avoid re-analysis of phi node in 5572 // matchAssociativeReduction function unless this is the root node. 5573 P = nullptr; 5574 continue; 5575 } 5576 } 5577 if (P && BI) { 5578 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 5579 if (Inst == P) 5580 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 5581 if (!Inst) { 5582 // Set P to nullptr to avoid re-analysis of phi node in 5583 // matchAssociativeReduction function unless this is the root node. 5584 P = nullptr; 5585 continue; 5586 } 5587 } 5588 } 5589 // Set P to nullptr to avoid re-analysis of phi node in 5590 // matchAssociativeReduction function unless this is the root node. 5591 P = nullptr; 5592 if (Vectorize(Inst, R)) { 5593 Res = true; 5594 continue; 5595 } 5596 5597 // Try to vectorize operands. 5598 // Continue analysis for the instruction from the same basic block only to 5599 // save compile time. 5600 if (++Level < RecursionMaxDepth) 5601 for (auto *Op : Inst->operand_values()) 5602 if (VisitedInstrs.insert(Op).second) 5603 if (auto *I = dyn_cast<Instruction>(Op)) 5604 if (!isa<PHINode>(I) && I->getParent() == BB) 5605 Stack.emplace_back(Op, Level); 5606 } 5607 return Res; 5608 } 5609 5610 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 5611 BasicBlock *BB, BoUpSLP &R, 5612 TargetTransformInfo *TTI) { 5613 if (!V) 5614 return false; 5615 auto *I = dyn_cast<Instruction>(V); 5616 if (!I) 5617 return false; 5618 5619 if (!isa<BinaryOperator>(I)) 5620 P = nullptr; 5621 // Try to match and vectorize a horizontal reduction. 5622 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 5623 return tryToVectorize(I, R); 5624 }; 5625 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 5626 ExtraVectorization); 5627 } 5628 5629 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 5630 BasicBlock *BB, BoUpSLP &R) { 5631 const DataLayout &DL = BB->getModule()->getDataLayout(); 5632 if (!R.canMapToVector(IVI->getType(), DL)) 5633 return false; 5634 5635 SmallVector<Value *, 16> BuildVector; 5636 SmallVector<Value *, 16> BuildVectorOpds; 5637 if (!findBuildAggregate(IVI, BuildVector, BuildVectorOpds)) 5638 return false; 5639 5640 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 5641 return tryToVectorizeList(BuildVectorOpds, R, BuildVector, false); 5642 } 5643 5644 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 5645 BasicBlock *BB, BoUpSLP &R) { 5646 SmallVector<Value *, 16> BuildVector; 5647 SmallVector<Value *, 16> BuildVectorOpds; 5648 if (!findBuildVector(IEI, BuildVector, BuildVectorOpds)) 5649 return false; 5650 5651 // Vectorize starting with the build vector operands ignoring the BuildVector 5652 // instructions for the purpose of scheduling and user extraction. 5653 return tryToVectorizeList(BuildVectorOpds, R, BuildVector); 5654 } 5655 5656 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 5657 BoUpSLP &R) { 5658 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 5659 return true; 5660 5661 bool OpsChanged = false; 5662 for (int Idx = 0; Idx < 2; ++Idx) { 5663 OpsChanged |= 5664 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 5665 } 5666 return OpsChanged; 5667 } 5668 5669 bool SLPVectorizerPass::vectorizeSimpleInstructions( 5670 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 5671 bool OpsChanged = false; 5672 for (auto &VH : reverse(Instructions)) { 5673 auto *I = dyn_cast_or_null<Instruction>(VH); 5674 if (!I) 5675 continue; 5676 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 5677 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 5678 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 5679 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 5680 else if (auto *CI = dyn_cast<CmpInst>(I)) 5681 OpsChanged |= vectorizeCmpInst(CI, BB, R); 5682 } 5683 Instructions.clear(); 5684 return OpsChanged; 5685 } 5686 5687 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 5688 bool Changed = false; 5689 SmallVector<Value *, 4> Incoming; 5690 SmallSet<Value *, 16> VisitedInstrs; 5691 5692 bool HaveVectorizedPhiNodes = true; 5693 while (HaveVectorizedPhiNodes) { 5694 HaveVectorizedPhiNodes = false; 5695 5696 // Collect the incoming values from the PHIs. 5697 Incoming.clear(); 5698 for (Instruction &I : *BB) { 5699 PHINode *P = dyn_cast<PHINode>(&I); 5700 if (!P) 5701 break; 5702 5703 if (!VisitedInstrs.count(P)) 5704 Incoming.push_back(P); 5705 } 5706 5707 // Sort by type. 5708 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 5709 5710 // Try to vectorize elements base on their type. 5711 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 5712 E = Incoming.end(); 5713 IncIt != E;) { 5714 5715 // Look for the next elements with the same type. 5716 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 5717 while (SameTypeIt != E && 5718 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 5719 VisitedInstrs.insert(*SameTypeIt); 5720 ++SameTypeIt; 5721 } 5722 5723 // Try to vectorize them. 5724 unsigned NumElts = (SameTypeIt - IncIt); 5725 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 5726 // The order in which the phi nodes appear in the program does not matter. 5727 // So allow tryToVectorizeList to reorder them if it is beneficial. This 5728 // is done when there are exactly two elements since tryToVectorizeList 5729 // asserts that there are only two values when AllowReorder is true. 5730 bool AllowReorder = NumElts == 2; 5731 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 5732 None, AllowReorder)) { 5733 // Success start over because instructions might have been changed. 5734 HaveVectorizedPhiNodes = true; 5735 Changed = true; 5736 break; 5737 } 5738 5739 // Start over at the next instruction of a different type (or the end). 5740 IncIt = SameTypeIt; 5741 } 5742 } 5743 5744 VisitedInstrs.clear(); 5745 5746 SmallVector<WeakVH, 8> PostProcessInstructions; 5747 SmallDenseSet<Instruction *, 4> KeyNodes; 5748 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 5749 // We may go through BB multiple times so skip the one we have checked. 5750 if (!VisitedInstrs.insert(&*it).second) { 5751 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 5752 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 5753 // We would like to start over since some instructions are deleted 5754 // and the iterator may become invalid value. 5755 Changed = true; 5756 it = BB->begin(); 5757 e = BB->end(); 5758 } 5759 continue; 5760 } 5761 5762 if (isa<DbgInfoIntrinsic>(it)) 5763 continue; 5764 5765 // Try to vectorize reductions that use PHINodes. 5766 if (PHINode *P = dyn_cast<PHINode>(it)) { 5767 // Check that the PHI is a reduction PHI. 5768 if (P->getNumIncomingValues() != 2) 5769 return Changed; 5770 5771 // Try to match and vectorize a horizontal reduction. 5772 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 5773 TTI)) { 5774 Changed = true; 5775 it = BB->begin(); 5776 e = BB->end(); 5777 continue; 5778 } 5779 continue; 5780 } 5781 5782 // Ran into an instruction without users, like terminator, or function call 5783 // with ignored return value, store. Ignore unused instructions (basing on 5784 // instruction type, except for CallInst and InvokeInst). 5785 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 5786 isa<InvokeInst>(it))) { 5787 KeyNodes.insert(&*it); 5788 bool OpsChanged = false; 5789 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 5790 for (auto *V : it->operand_values()) { 5791 // Try to match and vectorize a horizontal reduction. 5792 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 5793 } 5794 } 5795 // Start vectorization of post-process list of instructions from the 5796 // top-tree instructions to try to vectorize as many instructions as 5797 // possible. 5798 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 5799 if (OpsChanged) { 5800 // We would like to start over since some instructions are deleted 5801 // and the iterator may become invalid value. 5802 Changed = true; 5803 it = BB->begin(); 5804 e = BB->end(); 5805 continue; 5806 } 5807 } 5808 5809 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 5810 isa<InsertValueInst>(it)) 5811 PostProcessInstructions.push_back(&*it); 5812 5813 } 5814 5815 return Changed; 5816 } 5817 5818 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 5819 auto Changed = false; 5820 for (auto &Entry : GEPs) { 5821 // If the getelementptr list has fewer than two elements, there's nothing 5822 // to do. 5823 if (Entry.second.size() < 2) 5824 continue; 5825 5826 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5827 << Entry.second.size() << ".\n"); 5828 5829 // We process the getelementptr list in chunks of 16 (like we do for 5830 // stores) to minimize compile-time. 5831 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5832 auto Len = std::min<unsigned>(BE - BI, 16); 5833 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5834 5835 // Initialize a set a candidate getelementptrs. Note that we use a 5836 // SetVector here to preserve program order. If the index computations 5837 // are vectorizable and begin with loads, we want to minimize the chance 5838 // of having to reorder them later. 5839 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5840 5841 // Some of the candidates may have already been vectorized after we 5842 // initially collected them. If so, the WeakTrackingVHs will have 5843 // nullified the 5844 // values, so remove them from the set of candidates. 5845 Candidates.remove(nullptr); 5846 5847 // Remove from the set of candidates all pairs of getelementptrs with 5848 // constant differences. Such getelementptrs are likely not good 5849 // candidates for vectorization in a bottom-up phase since one can be 5850 // computed from the other. We also ensure all candidate getelementptr 5851 // indices are unique. 5852 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5853 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5854 if (!Candidates.count(GEPI)) 5855 continue; 5856 auto *SCEVI = SE->getSCEV(GEPList[I]); 5857 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5858 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5859 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5860 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5861 Candidates.remove(GEPList[I]); 5862 Candidates.remove(GEPList[J]); 5863 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5864 Candidates.remove(GEPList[J]); 5865 } 5866 } 5867 } 5868 5869 // We break out of the above computation as soon as we know there are 5870 // fewer than two candidates remaining. 5871 if (Candidates.size() < 2) 5872 continue; 5873 5874 // Add the single, non-constant index of each candidate to the bundle. We 5875 // ensured the indices met these constraints when we originally collected 5876 // the getelementptrs. 5877 SmallVector<Value *, 16> Bundle(Candidates.size()); 5878 auto BundleIndex = 0u; 5879 for (auto *V : Candidates) { 5880 auto *GEP = cast<GetElementPtrInst>(V); 5881 auto *GEPIdx = GEP->idx_begin()->get(); 5882 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5883 Bundle[BundleIndex++] = GEPIdx; 5884 } 5885 5886 // Try and vectorize the indices. We are currently only interested in 5887 // gather-like cases of the form: 5888 // 5889 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5890 // 5891 // where the loads of "a", the loads of "b", and the subtractions can be 5892 // performed in parallel. It's likely that detecting this pattern in a 5893 // bottom-up phase will be simpler and less costly than building a 5894 // full-blown top-down phase beginning at the consecutive loads. 5895 Changed |= tryToVectorizeList(Bundle, R); 5896 } 5897 } 5898 return Changed; 5899 } 5900 5901 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5902 bool Changed = false; 5903 // Attempt to sort and vectorize each of the store-groups. 5904 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5905 ++it) { 5906 if (it->second.size() < 2) 5907 continue; 5908 5909 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5910 << it->second.size() << ".\n"); 5911 5912 // Process the stores in chunks of 16. 5913 // TODO: The limit of 16 inhibits greater vectorization factors. 5914 // For example, AVX2 supports v32i8. Increasing this limit, however, 5915 // may cause a significant compile-time increase. 5916 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5917 unsigned Len = std::min<unsigned>(CE - CI, 16); 5918 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5919 } 5920 } 5921 return Changed; 5922 } 5923 5924 char SLPVectorizer::ID = 0; 5925 5926 static const char lv_name[] = "SLP Vectorizer"; 5927 5928 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5929 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5930 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5931 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5932 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5933 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5934 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5935 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5936 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5937 5938 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 5939