1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/KnownBits.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 109 cl::desc("Run the SLP vectorization passes")); 110 111 static cl::opt<int> 112 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 113 cl::desc("Only vectorize if you gain more than this " 114 "number ")); 115 116 static cl::opt<bool> 117 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 118 cl::desc("Attempt to vectorize horizontal reductions")); 119 120 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 121 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 122 cl::desc( 123 "Attempt to vectorize horizontal reductions feeding into a store")); 124 125 static cl::opt<int> 126 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 127 cl::desc("Attempt to vectorize for this register size in bits")); 128 129 static cl::opt<int> 130 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 131 cl::desc("Maximum depth of the lookup for consecutive stores.")); 132 133 /// Limits the size of scheduling regions in a block. 134 /// It avoid long compile times for _very_ large blocks where vector 135 /// instructions are spread over a wide range. 136 /// This limit is way higher than needed by real-world functions. 137 static cl::opt<int> 138 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 139 cl::desc("Limit the size of the SLP scheduling region per block")); 140 141 static cl::opt<int> MinVectorRegSizeOption( 142 "slp-min-reg-size", cl::init(128), cl::Hidden, 143 cl::desc("Attempt to vectorize for this register size in bits")); 144 145 static cl::opt<unsigned> RecursionMaxDepth( 146 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 147 cl::desc("Limit the recursion depth when building a vectorizable tree")); 148 149 static cl::opt<unsigned> MinTreeSize( 150 "slp-min-tree-size", cl::init(3), cl::Hidden, 151 cl::desc("Only vectorize small trees if they are fully vectorizable")); 152 153 // The maximum depth that the look-ahead score heuristic will explore. 154 // The higher this value, the higher the compilation time overhead. 155 static cl::opt<int> LookAheadMaxDepth( 156 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 157 cl::desc("The maximum look-ahead depth for operand reordering scores")); 158 159 // The Look-ahead heuristic goes through the users of the bundle to calculate 160 // the users cost in getExternalUsesCost(). To avoid compilation time increase 161 // we limit the number of users visited to this value. 162 static cl::opt<unsigned> LookAheadUsersBudget( 163 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 164 cl::desc("The maximum number of users to visit while visiting the " 165 "predecessors. This prevents compilation time increase.")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns true if all of the instructions in \p VL are in the same block or 197 /// false otherwise. 198 static bool allSameBlock(ArrayRef<Value *> VL) { 199 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 200 if (!I0) 201 return false; 202 BasicBlock *BB = I0->getParent(); 203 for (int I = 1, E = VL.size(); I < E; I++) { 204 auto *II = dyn_cast<Instruction>(VL[I]); 205 if (!II) 206 return false; 207 208 if (BB != II->getParent()) 209 return false; 210 } 211 return true; 212 } 213 214 /// \returns True if all of the values in \p VL are constants (but not 215 /// globals/constant expressions). 216 static bool allConstant(ArrayRef<Value *> VL) { 217 // Constant expressions and globals can't be vectorized like normal integer/FP 218 // constants. 219 for (Value *i : VL) 220 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 221 return false; 222 return true; 223 } 224 225 /// \returns True if all of the values in \p VL are identical. 226 static bool isSplat(ArrayRef<Value *> VL) { 227 for (unsigned i = 1, e = VL.size(); i < e; ++i) 228 if (VL[i] != VL[0]) 229 return false; 230 return true; 231 } 232 233 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 234 static bool isCommutative(Instruction *I) { 235 if (auto *Cmp = dyn_cast<CmpInst>(I)) 236 return Cmp->isCommutative(); 237 if (auto *BO = dyn_cast<BinaryOperator>(I)) 238 return BO->isCommutative(); 239 // TODO: This should check for generic Instruction::isCommutative(), but 240 // we need to confirm that the caller code correctly handles Intrinsics 241 // for example (does not have 2 operands). 242 return false; 243 } 244 245 /// Checks if the vector of instructions can be represented as a shuffle, like: 246 /// %x0 = extractelement <4 x i8> %x, i32 0 247 /// %x3 = extractelement <4 x i8> %x, i32 3 248 /// %y1 = extractelement <4 x i8> %y, i32 1 249 /// %y2 = extractelement <4 x i8> %y, i32 2 250 /// %x0x0 = mul i8 %x0, %x0 251 /// %x3x3 = mul i8 %x3, %x3 252 /// %y1y1 = mul i8 %y1, %y1 253 /// %y2y2 = mul i8 %y2, %y2 254 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 256 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 257 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 258 /// ret <4 x i8> %ins4 259 /// can be transformed into: 260 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 261 /// i32 6> 262 /// %2 = mul <4 x i8> %1, %1 263 /// ret <4 x i8> %2 264 /// We convert this initially to something like: 265 /// %x0 = extractelement <4 x i8> %x, i32 0 266 /// %x3 = extractelement <4 x i8> %x, i32 3 267 /// %y1 = extractelement <4 x i8> %y, i32 1 268 /// %y2 = extractelement <4 x i8> %y, i32 2 269 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 270 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 271 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 272 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 273 /// %5 = mul <4 x i8> %4, %4 274 /// %6 = extractelement <4 x i8> %5, i32 0 275 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 276 /// %7 = extractelement <4 x i8> %5, i32 1 277 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 278 /// %8 = extractelement <4 x i8> %5, i32 2 279 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 280 /// %9 = extractelement <4 x i8> %5, i32 3 281 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 282 /// ret <4 x i8> %ins4 283 /// InstCombiner transforms this into a shuffle and vector mul 284 /// TODO: Can we split off and reuse the shuffle mask detection from 285 /// TargetTransformInfo::getInstructionThroughput? 286 static Optional<TargetTransformInfo::ShuffleKind> 287 isShuffle(ArrayRef<Value *> VL) { 288 auto *EI0 = cast<ExtractElementInst>(VL[0]); 289 unsigned Size = 290 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 291 Value *Vec1 = nullptr; 292 Value *Vec2 = nullptr; 293 enum ShuffleMode { Unknown, Select, Permute }; 294 ShuffleMode CommonShuffleMode = Unknown; 295 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 296 auto *EI = cast<ExtractElementInst>(VL[I]); 297 auto *Vec = EI->getVectorOperand(); 298 // All vector operands must have the same number of vector elements. 299 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 300 return None; 301 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 302 if (!Idx) 303 return None; 304 // Undefined behavior if Idx is negative or >= Size. 305 if (Idx->getValue().uge(Size)) 306 continue; 307 unsigned IntIdx = Idx->getValue().getZExtValue(); 308 // We can extractelement from undef vector. 309 if (isa<UndefValue>(Vec)) 310 continue; 311 // For correct shuffling we have to have at most 2 different vector operands 312 // in all extractelement instructions. 313 if (!Vec1 || Vec1 == Vec) 314 Vec1 = Vec; 315 else if (!Vec2 || Vec2 == Vec) 316 Vec2 = Vec; 317 else 318 return None; 319 if (CommonShuffleMode == Permute) 320 continue; 321 // If the extract index is not the same as the operation number, it is a 322 // permutation. 323 if (IntIdx != I) { 324 CommonShuffleMode = Permute; 325 continue; 326 } 327 CommonShuffleMode = Select; 328 } 329 // If we're not crossing lanes in different vectors, consider it as blending. 330 if (CommonShuffleMode == Select && Vec2) 331 return TargetTransformInfo::SK_Select; 332 // If Vec2 was never used, we have a permutation of a single vector, otherwise 333 // we have permutation of 2 vectors. 334 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 335 : TargetTransformInfo::SK_PermuteSingleSrc; 336 } 337 338 namespace { 339 340 /// Main data required for vectorization of instructions. 341 struct InstructionsState { 342 /// The very first instruction in the list with the main opcode. 343 Value *OpValue = nullptr; 344 345 /// The main/alternate instruction. 346 Instruction *MainOp = nullptr; 347 Instruction *AltOp = nullptr; 348 349 /// The main/alternate opcodes for the list of instructions. 350 unsigned getOpcode() const { 351 return MainOp ? MainOp->getOpcode() : 0; 352 } 353 354 unsigned getAltOpcode() const { 355 return AltOp ? AltOp->getOpcode() : 0; 356 } 357 358 /// Some of the instructions in the list have alternate opcodes. 359 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 360 361 bool isOpcodeOrAlt(Instruction *I) const { 362 unsigned CheckedOpcode = I->getOpcode(); 363 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 364 } 365 366 InstructionsState() = delete; 367 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 368 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 369 }; 370 371 } // end anonymous namespace 372 373 /// Chooses the correct key for scheduling data. If \p Op has the same (or 374 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 375 /// OpValue. 376 static Value *isOneOf(const InstructionsState &S, Value *Op) { 377 auto *I = dyn_cast<Instruction>(Op); 378 if (I && S.isOpcodeOrAlt(I)) 379 return Op; 380 return S.OpValue; 381 } 382 383 /// \returns true if \p Opcode is allowed as part of of the main/alternate 384 /// instruction for SLP vectorization. 385 /// 386 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 387 /// "shuffled out" lane would result in division by zero. 388 static bool isValidForAlternation(unsigned Opcode) { 389 if (Instruction::isIntDivRem(Opcode)) 390 return false; 391 392 return true; 393 } 394 395 /// \returns analysis of the Instructions in \p VL described in 396 /// InstructionsState, the Opcode that we suppose the whole list 397 /// could be vectorized even if its structure is diverse. 398 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 399 unsigned BaseIndex = 0) { 400 // Make sure these are all Instructions. 401 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 402 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 403 404 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 405 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 406 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 407 unsigned AltOpcode = Opcode; 408 unsigned AltIndex = BaseIndex; 409 410 // Check for one alternate opcode from another BinaryOperator. 411 // TODO - generalize to support all operators (types, calls etc.). 412 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 413 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 414 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 415 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 416 continue; 417 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 418 isValidForAlternation(Opcode)) { 419 AltOpcode = InstOpcode; 420 AltIndex = Cnt; 421 continue; 422 } 423 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 424 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 425 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 426 if (Ty0 == Ty1) { 427 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 428 continue; 429 if (Opcode == AltOpcode) { 430 assert(isValidForAlternation(Opcode) && 431 isValidForAlternation(InstOpcode) && 432 "Cast isn't safe for alternation, logic needs to be updated!"); 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } 438 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 } 442 443 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 444 cast<Instruction>(VL[AltIndex])); 445 } 446 447 /// \returns true if all of the values in \p VL have the same type or false 448 /// otherwise. 449 static bool allSameType(ArrayRef<Value *> VL) { 450 Type *Ty = VL[0]->getType(); 451 for (int i = 1, e = VL.size(); i < e; i++) 452 if (VL[i]->getType() != Ty) 453 return false; 454 455 return true; 456 } 457 458 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 459 static Optional<unsigned> getExtractIndex(Instruction *E) { 460 unsigned Opcode = E->getOpcode(); 461 assert((Opcode == Instruction::ExtractElement || 462 Opcode == Instruction::ExtractValue) && 463 "Expected extractelement or extractvalue instruction."); 464 if (Opcode == Instruction::ExtractElement) { 465 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 466 if (!CI) 467 return None; 468 return CI->getZExtValue(); 469 } 470 ExtractValueInst *EI = cast<ExtractValueInst>(E); 471 if (EI->getNumIndices() != 1) 472 return None; 473 return *EI->idx_begin(); 474 } 475 476 /// \returns True if in-tree use also needs extract. This refers to 477 /// possible scalar operand in vectorized instruction. 478 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 479 TargetLibraryInfo *TLI) { 480 unsigned Opcode = UserInst->getOpcode(); 481 switch (Opcode) { 482 case Instruction::Load: { 483 LoadInst *LI = cast<LoadInst>(UserInst); 484 return (LI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Store: { 487 StoreInst *SI = cast<StoreInst>(UserInst); 488 return (SI->getPointerOperand() == Scalar); 489 } 490 case Instruction::Call: { 491 CallInst *CI = cast<CallInst>(UserInst); 492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 493 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 494 if (hasVectorInstrinsicScalarOpd(ID, i)) 495 return (CI->getArgOperand(i) == Scalar); 496 } 497 LLVM_FALLTHROUGH; 498 } 499 default: 500 return false; 501 } 502 } 503 504 /// \returns the AA location that is being access by the instruction. 505 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 506 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 507 return MemoryLocation::get(SI); 508 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 509 return MemoryLocation::get(LI); 510 return MemoryLocation(); 511 } 512 513 /// \returns True if the instruction is not a volatile or atomic load/store. 514 static bool isSimple(Instruction *I) { 515 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 516 return LI->isSimple(); 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return SI->isSimple(); 519 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 520 return !MI->isVolatile(); 521 return true; 522 } 523 524 namespace llvm { 525 526 static void inversePermutation(ArrayRef<unsigned> Indices, 527 SmallVectorImpl<int> &Mask) { 528 Mask.clear(); 529 const unsigned E = Indices.size(); 530 Mask.resize(E, E + 1); 531 for (unsigned I = 0; I < E; ++I) 532 Mask[Indices[I]] = I; 533 } 534 535 namespace slpvectorizer { 536 537 /// Bottom Up SLP Vectorizer. 538 class BoUpSLP { 539 struct TreeEntry; 540 struct ScheduleData; 541 542 public: 543 using ValueList = SmallVector<Value *, 8>; 544 using InstrList = SmallVector<Instruction *, 16>; 545 using ValueSet = SmallPtrSet<Value *, 16>; 546 using StoreList = SmallVector<StoreInst *, 8>; 547 using ExtraValueToDebugLocsMap = 548 MapVector<Value *, SmallVector<Instruction *, 2>>; 549 using OrdersType = SmallVector<unsigned, 4>; 550 551 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 552 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 553 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 554 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 555 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 556 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 557 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 558 // Use the vector register size specified by the target unless overridden 559 // by a command-line option. 560 // TODO: It would be better to limit the vectorization factor based on 561 // data type rather than just register size. For example, x86 AVX has 562 // 256-bit registers, but it does not support integer operations 563 // at that width (that requires AVX2). 564 if (MaxVectorRegSizeOption.getNumOccurrences()) 565 MaxVecRegSize = MaxVectorRegSizeOption; 566 else 567 MaxVecRegSize = TTI->getRegisterBitWidth(true); 568 569 if (MinVectorRegSizeOption.getNumOccurrences()) 570 MinVecRegSize = MinVectorRegSizeOption; 571 else 572 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 573 } 574 575 /// Vectorize the tree that starts with the elements in \p VL. 576 /// Returns the vectorized root. 577 Value *vectorizeTree(); 578 579 /// Vectorize the tree but with the list of externally used values \p 580 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 581 /// generated extractvalue instructions. 582 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 583 584 /// \returns the cost incurred by unwanted spills and fills, caused by 585 /// holding live values over call sites. 586 int getSpillCost() const; 587 588 /// \returns the vectorization cost of the subtree that starts at \p VL. 589 /// A negative number means that this is profitable. 590 int getTreeCost(); 591 592 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 593 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 594 void buildTree(ArrayRef<Value *> Roots, 595 ArrayRef<Value *> UserIgnoreLst = None); 596 597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 599 /// into account (and updating it, if required) list of externally used 600 /// values stored in \p ExternallyUsedValues. 601 void buildTree(ArrayRef<Value *> Roots, 602 ExtraValueToDebugLocsMap &ExternallyUsedValues, 603 ArrayRef<Value *> UserIgnoreLst = None); 604 605 /// Clear the internal data structures that are created by 'buildTree'. 606 void deleteTree() { 607 VectorizableTree.clear(); 608 ScalarToTreeEntry.clear(); 609 MustGather.clear(); 610 ExternalUses.clear(); 611 NumOpsWantToKeepOrder.clear(); 612 NumOpsWantToKeepOriginalOrder = 0; 613 for (auto &Iter : BlocksSchedules) { 614 BlockScheduling *BS = Iter.second.get(); 615 BS->clear(); 616 } 617 MinBWs.clear(); 618 } 619 620 unsigned getTreeSize() const { return VectorizableTree.size(); } 621 622 /// Perform LICM and CSE on the newly generated gather sequences. 623 void optimizeGatherSequence(); 624 625 /// \returns The best order of instructions for vectorization. 626 Optional<ArrayRef<unsigned>> bestOrder() const { 627 assert(llvm::all_of( 628 NumOpsWantToKeepOrder, 629 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 630 return D.getFirst().size() == 631 VectorizableTree[0]->Scalars.size(); 632 }) && 633 "All orders must have the same size as number of instructions in " 634 "tree node."); 635 auto I = std::max_element( 636 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 637 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 638 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 639 return D1.second < D2.second; 640 }); 641 if (I == NumOpsWantToKeepOrder.end() || 642 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 643 return None; 644 645 return makeArrayRef(I->getFirst()); 646 } 647 648 /// Builds the correct order for root instructions. 649 /// If some leaves have the same instructions to be vectorized, we may 650 /// incorrectly evaluate the best order for the root node (it is built for the 651 /// vector of instructions without repeated instructions and, thus, has less 652 /// elements than the root node). This function builds the correct order for 653 /// the root node. 654 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 655 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 656 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 657 /// be reordered, the best order will be \<1, 0\>. We need to extend this 658 /// order for the root node. For the root node this order should look like 659 /// \<3, 0, 1, 2\>. This function extends the order for the reused 660 /// instructions. 661 void findRootOrder(OrdersType &Order) { 662 // If the leaf has the same number of instructions to vectorize as the root 663 // - order must be set already. 664 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 665 if (Order.size() == RootSize) 666 return; 667 SmallVector<unsigned, 4> RealOrder(Order.size()); 668 std::swap(Order, RealOrder); 669 SmallVector<int, 4> Mask; 670 inversePermutation(RealOrder, Mask); 671 Order.assign(Mask.begin(), Mask.end()); 672 // The leaf has less number of instructions - need to find the true order of 673 // the root. 674 // Scan the nodes starting from the leaf back to the root. 675 const TreeEntry *PNode = VectorizableTree.back().get(); 676 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 677 SmallPtrSet<const TreeEntry *, 4> Visited; 678 while (!Nodes.empty() && Order.size() != RootSize) { 679 const TreeEntry *PNode = Nodes.pop_back_val(); 680 if (!Visited.insert(PNode).second) 681 continue; 682 const TreeEntry &Node = *PNode; 683 for (const EdgeInfo &EI : Node.UserTreeIndices) 684 if (EI.UserTE) 685 Nodes.push_back(EI.UserTE); 686 if (Node.ReuseShuffleIndices.empty()) 687 continue; 688 // Build the order for the parent node. 689 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 690 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 691 // The algorithm of the order extension is: 692 // 1. Calculate the number of the same instructions for the order. 693 // 2. Calculate the index of the new order: total number of instructions 694 // with order less than the order of the current instruction + reuse 695 // number of the current instruction. 696 // 3. The new order is just the index of the instruction in the original 697 // vector of the instructions. 698 for (unsigned I : Node.ReuseShuffleIndices) 699 ++OrderCounter[Order[I]]; 700 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 701 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 702 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 703 unsigned OrderIdx = Order[ReusedIdx]; 704 unsigned NewIdx = 0; 705 for (unsigned J = 0; J < OrderIdx; ++J) 706 NewIdx += OrderCounter[J]; 707 NewIdx += CurrentCounter[OrderIdx]; 708 ++CurrentCounter[OrderIdx]; 709 assert(NewOrder[NewIdx] == RootSize && 710 "The order index should not be written already."); 711 NewOrder[NewIdx] = I; 712 } 713 std::swap(Order, NewOrder); 714 } 715 assert(Order.size() == RootSize && 716 "Root node is expected or the size of the order must be the same as " 717 "the number of elements in the root node."); 718 assert(llvm::all_of(Order, 719 [RootSize](unsigned Val) { return Val != RootSize; }) && 720 "All indices must be initialized"); 721 } 722 723 /// \return The vector element size in bits to use when vectorizing the 724 /// expression tree ending at \p V. If V is a store, the size is the width of 725 /// the stored value. Otherwise, the size is the width of the largest loaded 726 /// value reaching V. This method is used by the vectorizer to calculate 727 /// vectorization factors. 728 unsigned getVectorElementSize(Value *V); 729 730 /// Compute the minimum type sizes required to represent the entries in a 731 /// vectorizable tree. 732 void computeMinimumValueSizes(); 733 734 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 735 unsigned getMaxVecRegSize() const { 736 return MaxVecRegSize; 737 } 738 739 // \returns minimum vector register size as set by cl::opt. 740 unsigned getMinVecRegSize() const { 741 return MinVecRegSize; 742 } 743 744 /// Check if homogeneous aggregate is isomorphic to some VectorType. 745 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 746 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 747 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 748 /// 749 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 750 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 751 752 /// \returns True if the VectorizableTree is both tiny and not fully 753 /// vectorizable. We do not vectorize such trees. 754 bool isTreeTinyAndNotFullyVectorizable() const; 755 756 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 757 /// can be load combined in the backend. Load combining may not be allowed in 758 /// the IR optimizer, so we do not want to alter the pattern. For example, 759 /// partially transforming a scalar bswap() pattern into vector code is 760 /// effectively impossible for the backend to undo. 761 /// TODO: If load combining is allowed in the IR optimizer, this analysis 762 /// may not be necessary. 763 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 764 765 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 766 /// can be load combined in the backend. Load combining may not be allowed in 767 /// the IR optimizer, so we do not want to alter the pattern. For example, 768 /// partially transforming a scalar bswap() pattern into vector code is 769 /// effectively impossible for the backend to undo. 770 /// TODO: If load combining is allowed in the IR optimizer, this analysis 771 /// may not be necessary. 772 bool isLoadCombineCandidate() const; 773 774 OptimizationRemarkEmitter *getORE() { return ORE; } 775 776 /// This structure holds any data we need about the edges being traversed 777 /// during buildTree_rec(). We keep track of: 778 /// (i) the user TreeEntry index, and 779 /// (ii) the index of the edge. 780 struct EdgeInfo { 781 EdgeInfo() = default; 782 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 783 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 784 /// The user TreeEntry. 785 TreeEntry *UserTE = nullptr; 786 /// The operand index of the use. 787 unsigned EdgeIdx = UINT_MAX; 788 #ifndef NDEBUG 789 friend inline raw_ostream &operator<<(raw_ostream &OS, 790 const BoUpSLP::EdgeInfo &EI) { 791 EI.dump(OS); 792 return OS; 793 } 794 /// Debug print. 795 void dump(raw_ostream &OS) const { 796 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 797 << " EdgeIdx:" << EdgeIdx << "}"; 798 } 799 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 800 #endif 801 }; 802 803 /// A helper data structure to hold the operands of a vector of instructions. 804 /// This supports a fixed vector length for all operand vectors. 805 class VLOperands { 806 /// For each operand we need (i) the value, and (ii) the opcode that it 807 /// would be attached to if the expression was in a left-linearized form. 808 /// This is required to avoid illegal operand reordering. 809 /// For example: 810 /// \verbatim 811 /// 0 Op1 812 /// |/ 813 /// Op1 Op2 Linearized + Op2 814 /// \ / ----------> |/ 815 /// - - 816 /// 817 /// Op1 - Op2 (0 + Op1) - Op2 818 /// \endverbatim 819 /// 820 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 821 /// 822 /// Another way to think of this is to track all the operations across the 823 /// path from the operand all the way to the root of the tree and to 824 /// calculate the operation that corresponds to this path. For example, the 825 /// path from Op2 to the root crosses the RHS of the '-', therefore the 826 /// corresponding operation is a '-' (which matches the one in the 827 /// linearized tree, as shown above). 828 /// 829 /// For lack of a better term, we refer to this operation as Accumulated 830 /// Path Operation (APO). 831 struct OperandData { 832 OperandData() = default; 833 OperandData(Value *V, bool APO, bool IsUsed) 834 : V(V), APO(APO), IsUsed(IsUsed) {} 835 /// The operand value. 836 Value *V = nullptr; 837 /// TreeEntries only allow a single opcode, or an alternate sequence of 838 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 839 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 840 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 841 /// (e.g., Add/Mul) 842 bool APO = false; 843 /// Helper data for the reordering function. 844 bool IsUsed = false; 845 }; 846 847 /// During operand reordering, we are trying to select the operand at lane 848 /// that matches best with the operand at the neighboring lane. Our 849 /// selection is based on the type of value we are looking for. For example, 850 /// if the neighboring lane has a load, we need to look for a load that is 851 /// accessing a consecutive address. These strategies are summarized in the 852 /// 'ReorderingMode' enumerator. 853 enum class ReorderingMode { 854 Load, ///< Matching loads to consecutive memory addresses 855 Opcode, ///< Matching instructions based on opcode (same or alternate) 856 Constant, ///< Matching constants 857 Splat, ///< Matching the same instruction multiple times (broadcast) 858 Failed, ///< We failed to create a vectorizable group 859 }; 860 861 using OperandDataVec = SmallVector<OperandData, 2>; 862 863 /// A vector of operand vectors. 864 SmallVector<OperandDataVec, 4> OpsVec; 865 866 const DataLayout &DL; 867 ScalarEvolution &SE; 868 const BoUpSLP &R; 869 870 /// \returns the operand data at \p OpIdx and \p Lane. 871 OperandData &getData(unsigned OpIdx, unsigned Lane) { 872 return OpsVec[OpIdx][Lane]; 873 } 874 875 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 876 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 877 return OpsVec[OpIdx][Lane]; 878 } 879 880 /// Clears the used flag for all entries. 881 void clearUsed() { 882 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 883 OpIdx != NumOperands; ++OpIdx) 884 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 885 ++Lane) 886 OpsVec[OpIdx][Lane].IsUsed = false; 887 } 888 889 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 890 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 891 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 892 } 893 894 // The hard-coded scores listed here are not very important. When computing 895 // the scores of matching one sub-tree with another, we are basically 896 // counting the number of values that are matching. So even if all scores 897 // are set to 1, we would still get a decent matching result. 898 // However, sometimes we have to break ties. For example we may have to 899 // choose between matching loads vs matching opcodes. This is what these 900 // scores are helping us with: they provide the order of preference. 901 902 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 903 static const int ScoreConsecutiveLoads = 3; 904 /// ExtractElementInst from same vector and consecutive indexes. 905 static const int ScoreConsecutiveExtracts = 3; 906 /// Constants. 907 static const int ScoreConstants = 2; 908 /// Instructions with the same opcode. 909 static const int ScoreSameOpcode = 2; 910 /// Instructions with alt opcodes (e.g, add + sub). 911 static const int ScoreAltOpcodes = 1; 912 /// Identical instructions (a.k.a. splat or broadcast). 913 static const int ScoreSplat = 1; 914 /// Matching with an undef is preferable to failing. 915 static const int ScoreUndef = 1; 916 /// Score for failing to find a decent match. 917 static const int ScoreFail = 0; 918 /// User exteranl to the vectorized code. 919 static const int ExternalUseCost = 1; 920 /// The user is internal but in a different lane. 921 static const int UserInDiffLaneCost = ExternalUseCost; 922 923 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 924 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 925 ScalarEvolution &SE) { 926 auto *LI1 = dyn_cast<LoadInst>(V1); 927 auto *LI2 = dyn_cast<LoadInst>(V2); 928 if (LI1 && LI2) 929 return isConsecutiveAccess(LI1, LI2, DL, SE) 930 ? VLOperands::ScoreConsecutiveLoads 931 : VLOperands::ScoreFail; 932 933 auto *C1 = dyn_cast<Constant>(V1); 934 auto *C2 = dyn_cast<Constant>(V2); 935 if (C1 && C2) 936 return VLOperands::ScoreConstants; 937 938 // Extracts from consecutive indexes of the same vector better score as 939 // the extracts could be optimized away. 940 Value *EV; 941 ConstantInt *Ex1Idx, *Ex2Idx; 942 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 943 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 944 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 945 return VLOperands::ScoreConsecutiveExtracts; 946 947 auto *I1 = dyn_cast<Instruction>(V1); 948 auto *I2 = dyn_cast<Instruction>(V2); 949 if (I1 && I2) { 950 if (I1 == I2) 951 return VLOperands::ScoreSplat; 952 InstructionsState S = getSameOpcode({I1, I2}); 953 // Note: Only consider instructions with <= 2 operands to avoid 954 // complexity explosion. 955 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 956 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 957 : VLOperands::ScoreSameOpcode; 958 } 959 960 if (isa<UndefValue>(V2)) 961 return VLOperands::ScoreUndef; 962 963 return VLOperands::ScoreFail; 964 } 965 966 /// Holds the values and their lane that are taking part in the look-ahead 967 /// score calculation. This is used in the external uses cost calculation. 968 SmallDenseMap<Value *, int> InLookAheadValues; 969 970 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 971 /// either external to the vectorized code, or require shuffling. 972 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 973 const std::pair<Value *, int> &RHS) { 974 int Cost = 0; 975 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 976 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 977 Value *V = Values[Idx].first; 978 // Calculate the absolute lane, using the minimum relative lane of LHS 979 // and RHS as base and Idx as the offset. 980 int Ln = std::min(LHS.second, RHS.second) + Idx; 981 assert(Ln >= 0 && "Bad lane calculation"); 982 unsigned UsersBudget = LookAheadUsersBudget; 983 for (User *U : V->users()) { 984 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 985 // The user is in the VectorizableTree. Check if we need to insert. 986 auto It = llvm::find(UserTE->Scalars, U); 987 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 988 int UserLn = std::distance(UserTE->Scalars.begin(), It); 989 assert(UserLn >= 0 && "Bad lane"); 990 if (UserLn != Ln) 991 Cost += UserInDiffLaneCost; 992 } else { 993 // Check if the user is in the look-ahead code. 994 auto It2 = InLookAheadValues.find(U); 995 if (It2 != InLookAheadValues.end()) { 996 // The user is in the look-ahead code. Check the lane. 997 if (It2->second != Ln) 998 Cost += UserInDiffLaneCost; 999 } else { 1000 // The user is neither in SLP tree nor in the look-ahead code. 1001 Cost += ExternalUseCost; 1002 } 1003 } 1004 // Limit the number of visited uses to cap compilation time. 1005 if (--UsersBudget == 0) 1006 break; 1007 } 1008 } 1009 return Cost; 1010 } 1011 1012 /// Go through the operands of \p LHS and \p RHS recursively until \p 1013 /// MaxLevel, and return the cummulative score. For example: 1014 /// \verbatim 1015 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1016 /// \ / \ / \ / \ / 1017 /// + + + + 1018 /// G1 G2 G3 G4 1019 /// \endverbatim 1020 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1021 /// each level recursively, accumulating the score. It starts from matching 1022 /// the additions at level 0, then moves on to the loads (level 1). The 1023 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1024 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1025 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1026 /// Please note that the order of the operands does not matter, as we 1027 /// evaluate the score of all profitable combinations of operands. In 1028 /// other words the score of G1 and G4 is the same as G1 and G2. This 1029 /// heuristic is based on ideas described in: 1030 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1031 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1032 /// Luís F. W. Góes 1033 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1034 const std::pair<Value *, int> &RHS, int CurrLevel, 1035 int MaxLevel) { 1036 1037 Value *V1 = LHS.first; 1038 Value *V2 = RHS.first; 1039 // Get the shallow score of V1 and V2. 1040 int ShallowScoreAtThisLevel = 1041 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1042 getExternalUsesCost(LHS, RHS)); 1043 int Lane1 = LHS.second; 1044 int Lane2 = RHS.second; 1045 1046 // If reached MaxLevel, 1047 // or if V1 and V2 are not instructions, 1048 // or if they are SPLAT, 1049 // or if they are not consecutive, early return the current cost. 1050 auto *I1 = dyn_cast<Instruction>(V1); 1051 auto *I2 = dyn_cast<Instruction>(V2); 1052 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1053 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1054 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1055 return ShallowScoreAtThisLevel; 1056 assert(I1 && I2 && "Should have early exited."); 1057 1058 // Keep track of in-tree values for determining the external-use cost. 1059 InLookAheadValues[V1] = Lane1; 1060 InLookAheadValues[V2] = Lane2; 1061 1062 // Contains the I2 operand indexes that got matched with I1 operands. 1063 SmallSet<unsigned, 4> Op2Used; 1064 1065 // Recursion towards the operands of I1 and I2. We are trying all possbile 1066 // operand pairs, and keeping track of the best score. 1067 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1068 OpIdx1 != NumOperands1; ++OpIdx1) { 1069 // Try to pair op1I with the best operand of I2. 1070 int MaxTmpScore = 0; 1071 unsigned MaxOpIdx2 = 0; 1072 bool FoundBest = false; 1073 // If I2 is commutative try all combinations. 1074 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1075 unsigned ToIdx = isCommutative(I2) 1076 ? I2->getNumOperands() 1077 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1078 assert(FromIdx <= ToIdx && "Bad index"); 1079 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1080 // Skip operands already paired with OpIdx1. 1081 if (Op2Used.count(OpIdx2)) 1082 continue; 1083 // Recursively calculate the cost at each level 1084 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1085 {I2->getOperand(OpIdx2), Lane2}, 1086 CurrLevel + 1, MaxLevel); 1087 // Look for the best score. 1088 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1089 MaxTmpScore = TmpScore; 1090 MaxOpIdx2 = OpIdx2; 1091 FoundBest = true; 1092 } 1093 } 1094 if (FoundBest) { 1095 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1096 Op2Used.insert(MaxOpIdx2); 1097 ShallowScoreAtThisLevel += MaxTmpScore; 1098 } 1099 } 1100 return ShallowScoreAtThisLevel; 1101 } 1102 1103 /// \Returns the look-ahead score, which tells us how much the sub-trees 1104 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1105 /// score. This helps break ties in an informed way when we cannot decide on 1106 /// the order of the operands by just considering the immediate 1107 /// predecessors. 1108 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1109 const std::pair<Value *, int> &RHS) { 1110 InLookAheadValues.clear(); 1111 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1112 } 1113 1114 // Search all operands in Ops[*][Lane] for the one that matches best 1115 // Ops[OpIdx][LastLane] and return its opreand index. 1116 // If no good match can be found, return None. 1117 Optional<unsigned> 1118 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1119 ArrayRef<ReorderingMode> ReorderingModes) { 1120 unsigned NumOperands = getNumOperands(); 1121 1122 // The operand of the previous lane at OpIdx. 1123 Value *OpLastLane = getData(OpIdx, LastLane).V; 1124 1125 // Our strategy mode for OpIdx. 1126 ReorderingMode RMode = ReorderingModes[OpIdx]; 1127 1128 // The linearized opcode of the operand at OpIdx, Lane. 1129 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1130 1131 // The best operand index and its score. 1132 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1133 // are using the score to differentiate between the two. 1134 struct BestOpData { 1135 Optional<unsigned> Idx = None; 1136 unsigned Score = 0; 1137 } BestOp; 1138 1139 // Iterate through all unused operands and look for the best. 1140 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1141 // Get the operand at Idx and Lane. 1142 OperandData &OpData = getData(Idx, Lane); 1143 Value *Op = OpData.V; 1144 bool OpAPO = OpData.APO; 1145 1146 // Skip already selected operands. 1147 if (OpData.IsUsed) 1148 continue; 1149 1150 // Skip if we are trying to move the operand to a position with a 1151 // different opcode in the linearized tree form. This would break the 1152 // semantics. 1153 if (OpAPO != OpIdxAPO) 1154 continue; 1155 1156 // Look for an operand that matches the current mode. 1157 switch (RMode) { 1158 case ReorderingMode::Load: 1159 case ReorderingMode::Constant: 1160 case ReorderingMode::Opcode: { 1161 bool LeftToRight = Lane > LastLane; 1162 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1163 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1164 unsigned Score = 1165 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1166 if (Score > BestOp.Score) { 1167 BestOp.Idx = Idx; 1168 BestOp.Score = Score; 1169 } 1170 break; 1171 } 1172 case ReorderingMode::Splat: 1173 if (Op == OpLastLane) 1174 BestOp.Idx = Idx; 1175 break; 1176 case ReorderingMode::Failed: 1177 return None; 1178 } 1179 } 1180 1181 if (BestOp.Idx) { 1182 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1183 return BestOp.Idx; 1184 } 1185 // If we could not find a good match return None. 1186 return None; 1187 } 1188 1189 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1190 /// reordering from. This is the one which has the least number of operands 1191 /// that can freely move about. 1192 unsigned getBestLaneToStartReordering() const { 1193 unsigned BestLane = 0; 1194 unsigned Min = UINT_MAX; 1195 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1196 ++Lane) { 1197 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1198 if (NumFreeOps < Min) { 1199 Min = NumFreeOps; 1200 BestLane = Lane; 1201 } 1202 } 1203 return BestLane; 1204 } 1205 1206 /// \Returns the maximum number of operands that are allowed to be reordered 1207 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1208 /// start operand reordering. 1209 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1210 unsigned CntTrue = 0; 1211 unsigned NumOperands = getNumOperands(); 1212 // Operands with the same APO can be reordered. We therefore need to count 1213 // how many of them we have for each APO, like this: Cnt[APO] = x. 1214 // Since we only have two APOs, namely true and false, we can avoid using 1215 // a map. Instead we can simply count the number of operands that 1216 // correspond to one of them (in this case the 'true' APO), and calculate 1217 // the other by subtracting it from the total number of operands. 1218 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1219 if (getData(OpIdx, Lane).APO) 1220 ++CntTrue; 1221 unsigned CntFalse = NumOperands - CntTrue; 1222 return std::max(CntTrue, CntFalse); 1223 } 1224 1225 /// Go through the instructions in VL and append their operands. 1226 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1227 assert(!VL.empty() && "Bad VL"); 1228 assert((empty() || VL.size() == getNumLanes()) && 1229 "Expected same number of lanes"); 1230 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1231 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1232 OpsVec.resize(NumOperands); 1233 unsigned NumLanes = VL.size(); 1234 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1235 OpsVec[OpIdx].resize(NumLanes); 1236 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1237 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1238 // Our tree has just 3 nodes: the root and two operands. 1239 // It is therefore trivial to get the APO. We only need to check the 1240 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1241 // RHS operand. The LHS operand of both add and sub is never attached 1242 // to an inversese operation in the linearized form, therefore its APO 1243 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1244 1245 // Since operand reordering is performed on groups of commutative 1246 // operations or alternating sequences (e.g., +, -), we can safely 1247 // tell the inverse operations by checking commutativity. 1248 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1249 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1250 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1251 APO, false}; 1252 } 1253 } 1254 } 1255 1256 /// \returns the number of operands. 1257 unsigned getNumOperands() const { return OpsVec.size(); } 1258 1259 /// \returns the number of lanes. 1260 unsigned getNumLanes() const { return OpsVec[0].size(); } 1261 1262 /// \returns the operand value at \p OpIdx and \p Lane. 1263 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1264 return getData(OpIdx, Lane).V; 1265 } 1266 1267 /// \returns true if the data structure is empty. 1268 bool empty() const { return OpsVec.empty(); } 1269 1270 /// Clears the data. 1271 void clear() { OpsVec.clear(); } 1272 1273 /// \Returns true if there are enough operands identical to \p Op to fill 1274 /// the whole vector. 1275 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1276 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1277 bool OpAPO = getData(OpIdx, Lane).APO; 1278 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1279 if (Ln == Lane) 1280 continue; 1281 // This is set to true if we found a candidate for broadcast at Lane. 1282 bool FoundCandidate = false; 1283 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1284 OperandData &Data = getData(OpI, Ln); 1285 if (Data.APO != OpAPO || Data.IsUsed) 1286 continue; 1287 if (Data.V == Op) { 1288 FoundCandidate = true; 1289 Data.IsUsed = true; 1290 break; 1291 } 1292 } 1293 if (!FoundCandidate) 1294 return false; 1295 } 1296 return true; 1297 } 1298 1299 public: 1300 /// Initialize with all the operands of the instruction vector \p RootVL. 1301 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1302 ScalarEvolution &SE, const BoUpSLP &R) 1303 : DL(DL), SE(SE), R(R) { 1304 // Append all the operands of RootVL. 1305 appendOperandsOfVL(RootVL); 1306 } 1307 1308 /// \Returns a value vector with the operands across all lanes for the 1309 /// opearnd at \p OpIdx. 1310 ValueList getVL(unsigned OpIdx) const { 1311 ValueList OpVL(OpsVec[OpIdx].size()); 1312 assert(OpsVec[OpIdx].size() == getNumLanes() && 1313 "Expected same num of lanes across all operands"); 1314 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1315 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1316 return OpVL; 1317 } 1318 1319 // Performs operand reordering for 2 or more operands. 1320 // The original operands are in OrigOps[OpIdx][Lane]. 1321 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1322 void reorder() { 1323 unsigned NumOperands = getNumOperands(); 1324 unsigned NumLanes = getNumLanes(); 1325 // Each operand has its own mode. We are using this mode to help us select 1326 // the instructions for each lane, so that they match best with the ones 1327 // we have selected so far. 1328 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1329 1330 // This is a greedy single-pass algorithm. We are going over each lane 1331 // once and deciding on the best order right away with no back-tracking. 1332 // However, in order to increase its effectiveness, we start with the lane 1333 // that has operands that can move the least. For example, given the 1334 // following lanes: 1335 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1336 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1337 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1338 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1339 // we will start at Lane 1, since the operands of the subtraction cannot 1340 // be reordered. Then we will visit the rest of the lanes in a circular 1341 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1342 1343 // Find the first lane that we will start our search from. 1344 unsigned FirstLane = getBestLaneToStartReordering(); 1345 1346 // Initialize the modes. 1347 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1348 Value *OpLane0 = getValue(OpIdx, FirstLane); 1349 // Keep track if we have instructions with all the same opcode on one 1350 // side. 1351 if (isa<LoadInst>(OpLane0)) 1352 ReorderingModes[OpIdx] = ReorderingMode::Load; 1353 else if (isa<Instruction>(OpLane0)) { 1354 // Check if OpLane0 should be broadcast. 1355 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1356 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1357 else 1358 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1359 } 1360 else if (isa<Constant>(OpLane0)) 1361 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1362 else if (isa<Argument>(OpLane0)) 1363 // Our best hope is a Splat. It may save some cost in some cases. 1364 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1365 else 1366 // NOTE: This should be unreachable. 1367 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1368 } 1369 1370 // If the initial strategy fails for any of the operand indexes, then we 1371 // perform reordering again in a second pass. This helps avoid assigning 1372 // high priority to the failed strategy, and should improve reordering for 1373 // the non-failed operand indexes. 1374 for (int Pass = 0; Pass != 2; ++Pass) { 1375 // Skip the second pass if the first pass did not fail. 1376 bool StrategyFailed = false; 1377 // Mark all operand data as free to use. 1378 clearUsed(); 1379 // We keep the original operand order for the FirstLane, so reorder the 1380 // rest of the lanes. We are visiting the nodes in a circular fashion, 1381 // using FirstLane as the center point and increasing the radius 1382 // distance. 1383 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1384 // Visit the lane on the right and then the lane on the left. 1385 for (int Direction : {+1, -1}) { 1386 int Lane = FirstLane + Direction * Distance; 1387 if (Lane < 0 || Lane >= (int)NumLanes) 1388 continue; 1389 int LastLane = Lane - Direction; 1390 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1391 "Out of bounds"); 1392 // Look for a good match for each operand. 1393 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1394 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1395 Optional<unsigned> BestIdx = 1396 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1397 // By not selecting a value, we allow the operands that follow to 1398 // select a better matching value. We will get a non-null value in 1399 // the next run of getBestOperand(). 1400 if (BestIdx) { 1401 // Swap the current operand with the one returned by 1402 // getBestOperand(). 1403 swap(OpIdx, BestIdx.getValue(), Lane); 1404 } else { 1405 // We failed to find a best operand, set mode to 'Failed'. 1406 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1407 // Enable the second pass. 1408 StrategyFailed = true; 1409 } 1410 } 1411 } 1412 } 1413 // Skip second pass if the strategy did not fail. 1414 if (!StrategyFailed) 1415 break; 1416 } 1417 } 1418 1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1420 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1421 switch (RMode) { 1422 case ReorderingMode::Load: 1423 return "Load"; 1424 case ReorderingMode::Opcode: 1425 return "Opcode"; 1426 case ReorderingMode::Constant: 1427 return "Constant"; 1428 case ReorderingMode::Splat: 1429 return "Splat"; 1430 case ReorderingMode::Failed: 1431 return "Failed"; 1432 } 1433 llvm_unreachable("Unimplemented Reordering Type"); 1434 } 1435 1436 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1437 raw_ostream &OS) { 1438 return OS << getModeStr(RMode); 1439 } 1440 1441 /// Debug print. 1442 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1443 printMode(RMode, dbgs()); 1444 } 1445 1446 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1447 return printMode(RMode, OS); 1448 } 1449 1450 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1451 const unsigned Indent = 2; 1452 unsigned Cnt = 0; 1453 for (const OperandDataVec &OpDataVec : OpsVec) { 1454 OS << "Operand " << Cnt++ << "\n"; 1455 for (const OperandData &OpData : OpDataVec) { 1456 OS.indent(Indent) << "{"; 1457 if (Value *V = OpData.V) 1458 OS << *V; 1459 else 1460 OS << "null"; 1461 OS << ", APO:" << OpData.APO << "}\n"; 1462 } 1463 OS << "\n"; 1464 } 1465 return OS; 1466 } 1467 1468 /// Debug print. 1469 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1470 #endif 1471 }; 1472 1473 /// Checks if the instruction is marked for deletion. 1474 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1475 1476 /// Marks values operands for later deletion by replacing them with Undefs. 1477 void eraseInstructions(ArrayRef<Value *> AV); 1478 1479 ~BoUpSLP(); 1480 1481 private: 1482 /// Checks if all users of \p I are the part of the vectorization tree. 1483 bool areAllUsersVectorized(Instruction *I) const; 1484 1485 /// \returns the cost of the vectorizable entry. 1486 int getEntryCost(TreeEntry *E); 1487 1488 /// This is the recursive part of buildTree. 1489 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1490 const EdgeInfo &EI); 1491 1492 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1493 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1494 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1495 /// returns false, setting \p CurrentOrder to either an empty vector or a 1496 /// non-identity permutation that allows to reuse extract instructions. 1497 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1498 SmallVectorImpl<unsigned> &CurrentOrder) const; 1499 1500 /// Vectorize a single entry in the tree. 1501 Value *vectorizeTree(TreeEntry *E); 1502 1503 /// Vectorize a single entry in the tree, starting in \p VL. 1504 Value *vectorizeTree(ArrayRef<Value *> VL); 1505 1506 /// \returns the scalarization cost for this type. Scalarization in this 1507 /// context means the creation of vectors from a group of scalars. 1508 int getGatherCost(FixedVectorType *Ty, 1509 const DenseSet<unsigned> &ShuffledIndices) const; 1510 1511 /// \returns the scalarization cost for this list of values. Assuming that 1512 /// this subtree gets vectorized, we may need to extract the values from the 1513 /// roots. This method calculates the cost of extracting the values. 1514 int getGatherCost(ArrayRef<Value *> VL) const; 1515 1516 /// Set the Builder insert point to one after the last instruction in 1517 /// the bundle 1518 void setInsertPointAfterBundle(TreeEntry *E); 1519 1520 /// \returns a vector from a collection of scalars in \p VL. 1521 Value *gather(ArrayRef<Value *> VL); 1522 1523 /// \returns whether the VectorizableTree is fully vectorizable and will 1524 /// be beneficial even the tree height is tiny. 1525 bool isFullyVectorizableTinyTree() const; 1526 1527 /// Reorder commutative or alt operands to get better probability of 1528 /// generating vectorized code. 1529 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1530 SmallVectorImpl<Value *> &Left, 1531 SmallVectorImpl<Value *> &Right, 1532 const DataLayout &DL, 1533 ScalarEvolution &SE, 1534 const BoUpSLP &R); 1535 struct TreeEntry { 1536 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1537 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1538 1539 /// \returns true if the scalars in VL are equal to this entry. 1540 bool isSame(ArrayRef<Value *> VL) const { 1541 if (VL.size() == Scalars.size()) 1542 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1543 return VL.size() == ReuseShuffleIndices.size() && 1544 std::equal( 1545 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1546 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1547 } 1548 1549 /// A vector of scalars. 1550 ValueList Scalars; 1551 1552 /// The Scalars are vectorized into this value. It is initialized to Null. 1553 Value *VectorizedValue = nullptr; 1554 1555 /// Do we need to gather this sequence or vectorize it 1556 /// (either with vector instruction or with scatter/gather 1557 /// intrinsics for store/load)? 1558 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1559 EntryState State; 1560 1561 /// Does this sequence require some shuffling? 1562 SmallVector<int, 4> ReuseShuffleIndices; 1563 1564 /// Does this entry require reordering? 1565 SmallVector<unsigned, 4> ReorderIndices; 1566 1567 /// Points back to the VectorizableTree. 1568 /// 1569 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1570 /// to be a pointer and needs to be able to initialize the child iterator. 1571 /// Thus we need a reference back to the container to translate the indices 1572 /// to entries. 1573 VecTreeTy &Container; 1574 1575 /// The TreeEntry index containing the user of this entry. We can actually 1576 /// have multiple users so the data structure is not truly a tree. 1577 SmallVector<EdgeInfo, 1> UserTreeIndices; 1578 1579 /// The index of this treeEntry in VectorizableTree. 1580 int Idx = -1; 1581 1582 private: 1583 /// The operands of each instruction in each lane Operands[op_index][lane]. 1584 /// Note: This helps avoid the replication of the code that performs the 1585 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1586 SmallVector<ValueList, 2> Operands; 1587 1588 /// The main/alternate instruction. 1589 Instruction *MainOp = nullptr; 1590 Instruction *AltOp = nullptr; 1591 1592 public: 1593 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1594 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1595 if (Operands.size() < OpIdx + 1) 1596 Operands.resize(OpIdx + 1); 1597 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1598 Operands[OpIdx].resize(Scalars.size()); 1599 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1600 Operands[OpIdx][Lane] = OpVL[Lane]; 1601 } 1602 1603 /// Set the operands of this bundle in their original order. 1604 void setOperandsInOrder() { 1605 assert(Operands.empty() && "Already initialized?"); 1606 auto *I0 = cast<Instruction>(Scalars[0]); 1607 Operands.resize(I0->getNumOperands()); 1608 unsigned NumLanes = Scalars.size(); 1609 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1610 OpIdx != NumOperands; ++OpIdx) { 1611 Operands[OpIdx].resize(NumLanes); 1612 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1613 auto *I = cast<Instruction>(Scalars[Lane]); 1614 assert(I->getNumOperands() == NumOperands && 1615 "Expected same number of operands"); 1616 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1617 } 1618 } 1619 } 1620 1621 /// \returns the \p OpIdx operand of this TreeEntry. 1622 ValueList &getOperand(unsigned OpIdx) { 1623 assert(OpIdx < Operands.size() && "Off bounds"); 1624 return Operands[OpIdx]; 1625 } 1626 1627 /// \returns the number of operands. 1628 unsigned getNumOperands() const { return Operands.size(); } 1629 1630 /// \return the single \p OpIdx operand. 1631 Value *getSingleOperand(unsigned OpIdx) const { 1632 assert(OpIdx < Operands.size() && "Off bounds"); 1633 assert(!Operands[OpIdx].empty() && "No operand available"); 1634 return Operands[OpIdx][0]; 1635 } 1636 1637 /// Some of the instructions in the list have alternate opcodes. 1638 bool isAltShuffle() const { 1639 return getOpcode() != getAltOpcode(); 1640 } 1641 1642 bool isOpcodeOrAlt(Instruction *I) const { 1643 unsigned CheckedOpcode = I->getOpcode(); 1644 return (getOpcode() == CheckedOpcode || 1645 getAltOpcode() == CheckedOpcode); 1646 } 1647 1648 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1649 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1650 /// \p OpValue. 1651 Value *isOneOf(Value *Op) const { 1652 auto *I = dyn_cast<Instruction>(Op); 1653 if (I && isOpcodeOrAlt(I)) 1654 return Op; 1655 return MainOp; 1656 } 1657 1658 void setOperations(const InstructionsState &S) { 1659 MainOp = S.MainOp; 1660 AltOp = S.AltOp; 1661 } 1662 1663 Instruction *getMainOp() const { 1664 return MainOp; 1665 } 1666 1667 Instruction *getAltOp() const { 1668 return AltOp; 1669 } 1670 1671 /// The main/alternate opcodes for the list of instructions. 1672 unsigned getOpcode() const { 1673 return MainOp ? MainOp->getOpcode() : 0; 1674 } 1675 1676 unsigned getAltOpcode() const { 1677 return AltOp ? AltOp->getOpcode() : 0; 1678 } 1679 1680 /// Update operations state of this entry if reorder occurred. 1681 bool updateStateIfReorder() { 1682 if (ReorderIndices.empty()) 1683 return false; 1684 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1685 setOperations(S); 1686 return true; 1687 } 1688 1689 #ifndef NDEBUG 1690 /// Debug printer. 1691 LLVM_DUMP_METHOD void dump() const { 1692 dbgs() << Idx << ".\n"; 1693 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1694 dbgs() << "Operand " << OpI << ":\n"; 1695 for (const Value *V : Operands[OpI]) 1696 dbgs().indent(2) << *V << "\n"; 1697 } 1698 dbgs() << "Scalars: \n"; 1699 for (Value *V : Scalars) 1700 dbgs().indent(2) << *V << "\n"; 1701 dbgs() << "State: "; 1702 switch (State) { 1703 case Vectorize: 1704 dbgs() << "Vectorize\n"; 1705 break; 1706 case ScatterVectorize: 1707 dbgs() << "ScatterVectorize\n"; 1708 break; 1709 case NeedToGather: 1710 dbgs() << "NeedToGather\n"; 1711 break; 1712 } 1713 dbgs() << "MainOp: "; 1714 if (MainOp) 1715 dbgs() << *MainOp << "\n"; 1716 else 1717 dbgs() << "NULL\n"; 1718 dbgs() << "AltOp: "; 1719 if (AltOp) 1720 dbgs() << *AltOp << "\n"; 1721 else 1722 dbgs() << "NULL\n"; 1723 dbgs() << "VectorizedValue: "; 1724 if (VectorizedValue) 1725 dbgs() << *VectorizedValue << "\n"; 1726 else 1727 dbgs() << "NULL\n"; 1728 dbgs() << "ReuseShuffleIndices: "; 1729 if (ReuseShuffleIndices.empty()) 1730 dbgs() << "Emtpy"; 1731 else 1732 for (unsigned ReuseIdx : ReuseShuffleIndices) 1733 dbgs() << ReuseIdx << ", "; 1734 dbgs() << "\n"; 1735 dbgs() << "ReorderIndices: "; 1736 for (unsigned ReorderIdx : ReorderIndices) 1737 dbgs() << ReorderIdx << ", "; 1738 dbgs() << "\n"; 1739 dbgs() << "UserTreeIndices: "; 1740 for (const auto &EInfo : UserTreeIndices) 1741 dbgs() << EInfo << ", "; 1742 dbgs() << "\n"; 1743 } 1744 #endif 1745 }; 1746 1747 #ifndef NDEBUG 1748 void dumpTreeCosts(TreeEntry *E, int ReuseShuffleCost, int VecCost, 1749 int ScalarCost) const { 1750 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1751 dbgs() << "SLP: Costs:\n"; 1752 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1753 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1754 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1755 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1756 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1757 } 1758 #endif 1759 1760 /// Create a new VectorizableTree entry. 1761 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1762 const InstructionsState &S, 1763 const EdgeInfo &UserTreeIdx, 1764 ArrayRef<unsigned> ReuseShuffleIndices = None, 1765 ArrayRef<unsigned> ReorderIndices = None) { 1766 TreeEntry::EntryState EntryState = 1767 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1768 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1769 ReuseShuffleIndices, ReorderIndices); 1770 } 1771 1772 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1773 TreeEntry::EntryState EntryState, 1774 Optional<ScheduleData *> Bundle, 1775 const InstructionsState &S, 1776 const EdgeInfo &UserTreeIdx, 1777 ArrayRef<unsigned> ReuseShuffleIndices = None, 1778 ArrayRef<unsigned> ReorderIndices = None) { 1779 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1780 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1781 "Need to vectorize gather entry?"); 1782 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1783 TreeEntry *Last = VectorizableTree.back().get(); 1784 Last->Idx = VectorizableTree.size() - 1; 1785 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1786 Last->State = EntryState; 1787 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1788 ReuseShuffleIndices.end()); 1789 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1790 Last->setOperations(S); 1791 if (Last->State != TreeEntry::NeedToGather) { 1792 for (Value *V : VL) { 1793 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1794 ScalarToTreeEntry[V] = Last; 1795 } 1796 // Update the scheduler bundle to point to this TreeEntry. 1797 unsigned Lane = 0; 1798 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1799 BundleMember = BundleMember->NextInBundle) { 1800 BundleMember->TE = Last; 1801 BundleMember->Lane = Lane; 1802 ++Lane; 1803 } 1804 assert((!Bundle.getValue() || Lane == VL.size()) && 1805 "Bundle and VL out of sync"); 1806 } else { 1807 MustGather.insert(VL.begin(), VL.end()); 1808 } 1809 1810 if (UserTreeIdx.UserTE) 1811 Last->UserTreeIndices.push_back(UserTreeIdx); 1812 1813 return Last; 1814 } 1815 1816 /// -- Vectorization State -- 1817 /// Holds all of the tree entries. 1818 TreeEntry::VecTreeTy VectorizableTree; 1819 1820 #ifndef NDEBUG 1821 /// Debug printer. 1822 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1823 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1824 VectorizableTree[Id]->dump(); 1825 dbgs() << "\n"; 1826 } 1827 } 1828 #endif 1829 1830 TreeEntry *getTreeEntry(Value *V) { 1831 auto I = ScalarToTreeEntry.find(V); 1832 if (I != ScalarToTreeEntry.end()) 1833 return I->second; 1834 return nullptr; 1835 } 1836 1837 const TreeEntry *getTreeEntry(Value *V) const { 1838 auto I = ScalarToTreeEntry.find(V); 1839 if (I != ScalarToTreeEntry.end()) 1840 return I->second; 1841 return nullptr; 1842 } 1843 1844 /// Maps a specific scalar to its tree entry. 1845 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1846 1847 /// Maps a value to the proposed vectorizable size. 1848 SmallDenseMap<Value *, unsigned> InstrElementSize; 1849 1850 /// A list of scalars that we found that we need to keep as scalars. 1851 ValueSet MustGather; 1852 1853 /// This POD struct describes one external user in the vectorized tree. 1854 struct ExternalUser { 1855 ExternalUser(Value *S, llvm::User *U, int L) 1856 : Scalar(S), User(U), Lane(L) {} 1857 1858 // Which scalar in our function. 1859 Value *Scalar; 1860 1861 // Which user that uses the scalar. 1862 llvm::User *User; 1863 1864 // Which lane does the scalar belong to. 1865 int Lane; 1866 }; 1867 using UserList = SmallVector<ExternalUser, 16>; 1868 1869 /// Checks if two instructions may access the same memory. 1870 /// 1871 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1872 /// is invariant in the calling loop. 1873 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1874 Instruction *Inst2) { 1875 // First check if the result is already in the cache. 1876 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1877 Optional<bool> &result = AliasCache[key]; 1878 if (result.hasValue()) { 1879 return result.getValue(); 1880 } 1881 MemoryLocation Loc2 = getLocation(Inst2, AA); 1882 bool aliased = true; 1883 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1884 // Do the alias check. 1885 aliased = AA->alias(Loc1, Loc2); 1886 } 1887 // Store the result in the cache. 1888 result = aliased; 1889 return aliased; 1890 } 1891 1892 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1893 1894 /// Cache for alias results. 1895 /// TODO: consider moving this to the AliasAnalysis itself. 1896 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1897 1898 /// Removes an instruction from its block and eventually deletes it. 1899 /// It's like Instruction::eraseFromParent() except that the actual deletion 1900 /// is delayed until BoUpSLP is destructed. 1901 /// This is required to ensure that there are no incorrect collisions in the 1902 /// AliasCache, which can happen if a new instruction is allocated at the 1903 /// same address as a previously deleted instruction. 1904 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1905 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1906 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1907 } 1908 1909 /// Temporary store for deleted instructions. Instructions will be deleted 1910 /// eventually when the BoUpSLP is destructed. 1911 DenseMap<Instruction *, bool> DeletedInstructions; 1912 1913 /// A list of values that need to extracted out of the tree. 1914 /// This list holds pairs of (Internal Scalar : External User). External User 1915 /// can be nullptr, it means that this Internal Scalar will be used later, 1916 /// after vectorization. 1917 UserList ExternalUses; 1918 1919 /// Values used only by @llvm.assume calls. 1920 SmallPtrSet<const Value *, 32> EphValues; 1921 1922 /// Holds all of the instructions that we gathered. 1923 SetVector<Instruction *> GatherSeq; 1924 1925 /// A list of blocks that we are going to CSE. 1926 SetVector<BasicBlock *> CSEBlocks; 1927 1928 /// Contains all scheduling relevant data for an instruction. 1929 /// A ScheduleData either represents a single instruction or a member of an 1930 /// instruction bundle (= a group of instructions which is combined into a 1931 /// vector instruction). 1932 struct ScheduleData { 1933 // The initial value for the dependency counters. It means that the 1934 // dependencies are not calculated yet. 1935 enum { InvalidDeps = -1 }; 1936 1937 ScheduleData() = default; 1938 1939 void init(int BlockSchedulingRegionID, Value *OpVal) { 1940 FirstInBundle = this; 1941 NextInBundle = nullptr; 1942 NextLoadStore = nullptr; 1943 IsScheduled = false; 1944 SchedulingRegionID = BlockSchedulingRegionID; 1945 UnscheduledDepsInBundle = UnscheduledDeps; 1946 clearDependencies(); 1947 OpValue = OpVal; 1948 TE = nullptr; 1949 Lane = -1; 1950 } 1951 1952 /// Returns true if the dependency information has been calculated. 1953 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1954 1955 /// Returns true for single instructions and for bundle representatives 1956 /// (= the head of a bundle). 1957 bool isSchedulingEntity() const { return FirstInBundle == this; } 1958 1959 /// Returns true if it represents an instruction bundle and not only a 1960 /// single instruction. 1961 bool isPartOfBundle() const { 1962 return NextInBundle != nullptr || FirstInBundle != this; 1963 } 1964 1965 /// Returns true if it is ready for scheduling, i.e. it has no more 1966 /// unscheduled depending instructions/bundles. 1967 bool isReady() const { 1968 assert(isSchedulingEntity() && 1969 "can't consider non-scheduling entity for ready list"); 1970 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1971 } 1972 1973 /// Modifies the number of unscheduled dependencies, also updating it for 1974 /// the whole bundle. 1975 int incrementUnscheduledDeps(int Incr) { 1976 UnscheduledDeps += Incr; 1977 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1978 } 1979 1980 /// Sets the number of unscheduled dependencies to the number of 1981 /// dependencies. 1982 void resetUnscheduledDeps() { 1983 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1984 } 1985 1986 /// Clears all dependency information. 1987 void clearDependencies() { 1988 Dependencies = InvalidDeps; 1989 resetUnscheduledDeps(); 1990 MemoryDependencies.clear(); 1991 } 1992 1993 void dump(raw_ostream &os) const { 1994 if (!isSchedulingEntity()) { 1995 os << "/ " << *Inst; 1996 } else if (NextInBundle) { 1997 os << '[' << *Inst; 1998 ScheduleData *SD = NextInBundle; 1999 while (SD) { 2000 os << ';' << *SD->Inst; 2001 SD = SD->NextInBundle; 2002 } 2003 os << ']'; 2004 } else { 2005 os << *Inst; 2006 } 2007 } 2008 2009 Instruction *Inst = nullptr; 2010 2011 /// Points to the head in an instruction bundle (and always to this for 2012 /// single instructions). 2013 ScheduleData *FirstInBundle = nullptr; 2014 2015 /// Single linked list of all instructions in a bundle. Null if it is a 2016 /// single instruction. 2017 ScheduleData *NextInBundle = nullptr; 2018 2019 /// Single linked list of all memory instructions (e.g. load, store, call) 2020 /// in the block - until the end of the scheduling region. 2021 ScheduleData *NextLoadStore = nullptr; 2022 2023 /// The dependent memory instructions. 2024 /// This list is derived on demand in calculateDependencies(). 2025 SmallVector<ScheduleData *, 4> MemoryDependencies; 2026 2027 /// This ScheduleData is in the current scheduling region if this matches 2028 /// the current SchedulingRegionID of BlockScheduling. 2029 int SchedulingRegionID = 0; 2030 2031 /// Used for getting a "good" final ordering of instructions. 2032 int SchedulingPriority = 0; 2033 2034 /// The number of dependencies. Constitutes of the number of users of the 2035 /// instruction plus the number of dependent memory instructions (if any). 2036 /// This value is calculated on demand. 2037 /// If InvalidDeps, the number of dependencies is not calculated yet. 2038 int Dependencies = InvalidDeps; 2039 2040 /// The number of dependencies minus the number of dependencies of scheduled 2041 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2042 /// for scheduling. 2043 /// Note that this is negative as long as Dependencies is not calculated. 2044 int UnscheduledDeps = InvalidDeps; 2045 2046 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2047 /// single instructions. 2048 int UnscheduledDepsInBundle = InvalidDeps; 2049 2050 /// True if this instruction is scheduled (or considered as scheduled in the 2051 /// dry-run). 2052 bool IsScheduled = false; 2053 2054 /// Opcode of the current instruction in the schedule data. 2055 Value *OpValue = nullptr; 2056 2057 /// The TreeEntry that this instruction corresponds to. 2058 TreeEntry *TE = nullptr; 2059 2060 /// The lane of this node in the TreeEntry. 2061 int Lane = -1; 2062 }; 2063 2064 #ifndef NDEBUG 2065 friend inline raw_ostream &operator<<(raw_ostream &os, 2066 const BoUpSLP::ScheduleData &SD) { 2067 SD.dump(os); 2068 return os; 2069 } 2070 #endif 2071 2072 friend struct GraphTraits<BoUpSLP *>; 2073 friend struct DOTGraphTraits<BoUpSLP *>; 2074 2075 /// Contains all scheduling data for a basic block. 2076 struct BlockScheduling { 2077 BlockScheduling(BasicBlock *BB) 2078 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2079 2080 void clear() { 2081 ReadyInsts.clear(); 2082 ScheduleStart = nullptr; 2083 ScheduleEnd = nullptr; 2084 FirstLoadStoreInRegion = nullptr; 2085 LastLoadStoreInRegion = nullptr; 2086 2087 // Reduce the maximum schedule region size by the size of the 2088 // previous scheduling run. 2089 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2090 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2091 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2092 ScheduleRegionSize = 0; 2093 2094 // Make a new scheduling region, i.e. all existing ScheduleData is not 2095 // in the new region yet. 2096 ++SchedulingRegionID; 2097 } 2098 2099 ScheduleData *getScheduleData(Value *V) { 2100 ScheduleData *SD = ScheduleDataMap[V]; 2101 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2102 return SD; 2103 return nullptr; 2104 } 2105 2106 ScheduleData *getScheduleData(Value *V, Value *Key) { 2107 if (V == Key) 2108 return getScheduleData(V); 2109 auto I = ExtraScheduleDataMap.find(V); 2110 if (I != ExtraScheduleDataMap.end()) { 2111 ScheduleData *SD = I->second[Key]; 2112 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2113 return SD; 2114 } 2115 return nullptr; 2116 } 2117 2118 bool isInSchedulingRegion(ScheduleData *SD) const { 2119 return SD->SchedulingRegionID == SchedulingRegionID; 2120 } 2121 2122 /// Marks an instruction as scheduled and puts all dependent ready 2123 /// instructions into the ready-list. 2124 template <typename ReadyListType> 2125 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2126 SD->IsScheduled = true; 2127 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2128 2129 ScheduleData *BundleMember = SD; 2130 while (BundleMember) { 2131 if (BundleMember->Inst != BundleMember->OpValue) { 2132 BundleMember = BundleMember->NextInBundle; 2133 continue; 2134 } 2135 // Handle the def-use chain dependencies. 2136 2137 // Decrement the unscheduled counter and insert to ready list if ready. 2138 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2139 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2140 if (OpDef && OpDef->hasValidDependencies() && 2141 OpDef->incrementUnscheduledDeps(-1) == 0) { 2142 // There are no more unscheduled dependencies after 2143 // decrementing, so we can put the dependent instruction 2144 // into the ready list. 2145 ScheduleData *DepBundle = OpDef->FirstInBundle; 2146 assert(!DepBundle->IsScheduled && 2147 "already scheduled bundle gets ready"); 2148 ReadyList.insert(DepBundle); 2149 LLVM_DEBUG(dbgs() 2150 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2151 } 2152 }); 2153 }; 2154 2155 // If BundleMember is a vector bundle, its operands may have been 2156 // reordered duiring buildTree(). We therefore need to get its operands 2157 // through the TreeEntry. 2158 if (TreeEntry *TE = BundleMember->TE) { 2159 int Lane = BundleMember->Lane; 2160 assert(Lane >= 0 && "Lane not set"); 2161 2162 // Since vectorization tree is being built recursively this assertion 2163 // ensures that the tree entry has all operands set before reaching 2164 // this code. Couple of exceptions known at the moment are extracts 2165 // where their second (immediate) operand is not added. Since 2166 // immediates do not affect scheduler behavior this is considered 2167 // okay. 2168 auto *In = TE->getMainOp(); 2169 assert(In && 2170 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2171 In->getNumOperands() == TE->getNumOperands()) && 2172 "Missed TreeEntry operands?"); 2173 (void)In; // fake use to avoid build failure when assertions disabled 2174 2175 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2176 OpIdx != NumOperands; ++OpIdx) 2177 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2178 DecrUnsched(I); 2179 } else { 2180 // If BundleMember is a stand-alone instruction, no operand reordering 2181 // has taken place, so we directly access its operands. 2182 for (Use &U : BundleMember->Inst->operands()) 2183 if (auto *I = dyn_cast<Instruction>(U.get())) 2184 DecrUnsched(I); 2185 } 2186 // Handle the memory dependencies. 2187 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2188 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2189 // There are no more unscheduled dependencies after decrementing, 2190 // so we can put the dependent instruction into the ready list. 2191 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2192 assert(!DepBundle->IsScheduled && 2193 "already scheduled bundle gets ready"); 2194 ReadyList.insert(DepBundle); 2195 LLVM_DEBUG(dbgs() 2196 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2197 } 2198 } 2199 BundleMember = BundleMember->NextInBundle; 2200 } 2201 } 2202 2203 void doForAllOpcodes(Value *V, 2204 function_ref<void(ScheduleData *SD)> Action) { 2205 if (ScheduleData *SD = getScheduleData(V)) 2206 Action(SD); 2207 auto I = ExtraScheduleDataMap.find(V); 2208 if (I != ExtraScheduleDataMap.end()) 2209 for (auto &P : I->second) 2210 if (P.second->SchedulingRegionID == SchedulingRegionID) 2211 Action(P.second); 2212 } 2213 2214 /// Put all instructions into the ReadyList which are ready for scheduling. 2215 template <typename ReadyListType> 2216 void initialFillReadyList(ReadyListType &ReadyList) { 2217 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2218 doForAllOpcodes(I, [&](ScheduleData *SD) { 2219 if (SD->isSchedulingEntity() && SD->isReady()) { 2220 ReadyList.insert(SD); 2221 LLVM_DEBUG(dbgs() 2222 << "SLP: initially in ready list: " << *I << "\n"); 2223 } 2224 }); 2225 } 2226 } 2227 2228 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2229 /// cyclic dependencies. This is only a dry-run, no instructions are 2230 /// actually moved at this stage. 2231 /// \returns the scheduling bundle. The returned Optional value is non-None 2232 /// if \p VL is allowed to be scheduled. 2233 Optional<ScheduleData *> 2234 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2235 const InstructionsState &S); 2236 2237 /// Un-bundles a group of instructions. 2238 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2239 2240 /// Allocates schedule data chunk. 2241 ScheduleData *allocateScheduleDataChunks(); 2242 2243 /// Extends the scheduling region so that V is inside the region. 2244 /// \returns true if the region size is within the limit. 2245 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2246 2247 /// Initialize the ScheduleData structures for new instructions in the 2248 /// scheduling region. 2249 void initScheduleData(Instruction *FromI, Instruction *ToI, 2250 ScheduleData *PrevLoadStore, 2251 ScheduleData *NextLoadStore); 2252 2253 /// Updates the dependency information of a bundle and of all instructions/ 2254 /// bundles which depend on the original bundle. 2255 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2256 BoUpSLP *SLP); 2257 2258 /// Sets all instruction in the scheduling region to un-scheduled. 2259 void resetSchedule(); 2260 2261 BasicBlock *BB; 2262 2263 /// Simple memory allocation for ScheduleData. 2264 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2265 2266 /// The size of a ScheduleData array in ScheduleDataChunks. 2267 int ChunkSize; 2268 2269 /// The allocator position in the current chunk, which is the last entry 2270 /// of ScheduleDataChunks. 2271 int ChunkPos; 2272 2273 /// Attaches ScheduleData to Instruction. 2274 /// Note that the mapping survives during all vectorization iterations, i.e. 2275 /// ScheduleData structures are recycled. 2276 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2277 2278 /// Attaches ScheduleData to Instruction with the leading key. 2279 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2280 ExtraScheduleDataMap; 2281 2282 struct ReadyList : SmallVector<ScheduleData *, 8> { 2283 void insert(ScheduleData *SD) { push_back(SD); } 2284 }; 2285 2286 /// The ready-list for scheduling (only used for the dry-run). 2287 ReadyList ReadyInsts; 2288 2289 /// The first instruction of the scheduling region. 2290 Instruction *ScheduleStart = nullptr; 2291 2292 /// The first instruction _after_ the scheduling region. 2293 Instruction *ScheduleEnd = nullptr; 2294 2295 /// The first memory accessing instruction in the scheduling region 2296 /// (can be null). 2297 ScheduleData *FirstLoadStoreInRegion = nullptr; 2298 2299 /// The last memory accessing instruction in the scheduling region 2300 /// (can be null). 2301 ScheduleData *LastLoadStoreInRegion = nullptr; 2302 2303 /// The current size of the scheduling region. 2304 int ScheduleRegionSize = 0; 2305 2306 /// The maximum size allowed for the scheduling region. 2307 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2308 2309 /// The ID of the scheduling region. For a new vectorization iteration this 2310 /// is incremented which "removes" all ScheduleData from the region. 2311 // Make sure that the initial SchedulingRegionID is greater than the 2312 // initial SchedulingRegionID in ScheduleData (which is 0). 2313 int SchedulingRegionID = 1; 2314 }; 2315 2316 /// Attaches the BlockScheduling structures to basic blocks. 2317 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2318 2319 /// Performs the "real" scheduling. Done before vectorization is actually 2320 /// performed in a basic block. 2321 void scheduleBlock(BlockScheduling *BS); 2322 2323 /// List of users to ignore during scheduling and that don't need extracting. 2324 ArrayRef<Value *> UserIgnoreList; 2325 2326 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2327 /// sorted SmallVectors of unsigned. 2328 struct OrdersTypeDenseMapInfo { 2329 static OrdersType getEmptyKey() { 2330 OrdersType V; 2331 V.push_back(~1U); 2332 return V; 2333 } 2334 2335 static OrdersType getTombstoneKey() { 2336 OrdersType V; 2337 V.push_back(~2U); 2338 return V; 2339 } 2340 2341 static unsigned getHashValue(const OrdersType &V) { 2342 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2343 } 2344 2345 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2346 return LHS == RHS; 2347 } 2348 }; 2349 2350 /// Contains orders of operations along with the number of bundles that have 2351 /// operations in this order. It stores only those orders that require 2352 /// reordering, if reordering is not required it is counted using \a 2353 /// NumOpsWantToKeepOriginalOrder. 2354 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2355 /// Number of bundles that do not require reordering. 2356 unsigned NumOpsWantToKeepOriginalOrder = 0; 2357 2358 // Analysis and block reference. 2359 Function *F; 2360 ScalarEvolution *SE; 2361 TargetTransformInfo *TTI; 2362 TargetLibraryInfo *TLI; 2363 AAResults *AA; 2364 LoopInfo *LI; 2365 DominatorTree *DT; 2366 AssumptionCache *AC; 2367 DemandedBits *DB; 2368 const DataLayout *DL; 2369 OptimizationRemarkEmitter *ORE; 2370 2371 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2372 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2373 2374 /// Instruction builder to construct the vectorized tree. 2375 IRBuilder<> Builder; 2376 2377 /// A map of scalar integer values to the smallest bit width with which they 2378 /// can legally be represented. The values map to (width, signed) pairs, 2379 /// where "width" indicates the minimum bit width and "signed" is True if the 2380 /// value must be signed-extended, rather than zero-extended, back to its 2381 /// original width. 2382 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2383 }; 2384 2385 } // end namespace slpvectorizer 2386 2387 template <> struct GraphTraits<BoUpSLP *> { 2388 using TreeEntry = BoUpSLP::TreeEntry; 2389 2390 /// NodeRef has to be a pointer per the GraphWriter. 2391 using NodeRef = TreeEntry *; 2392 2393 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2394 2395 /// Add the VectorizableTree to the index iterator to be able to return 2396 /// TreeEntry pointers. 2397 struct ChildIteratorType 2398 : public iterator_adaptor_base< 2399 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2400 ContainerTy &VectorizableTree; 2401 2402 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2403 ContainerTy &VT) 2404 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2405 2406 NodeRef operator*() { return I->UserTE; } 2407 }; 2408 2409 static NodeRef getEntryNode(BoUpSLP &R) { 2410 return R.VectorizableTree[0].get(); 2411 } 2412 2413 static ChildIteratorType child_begin(NodeRef N) { 2414 return {N->UserTreeIndices.begin(), N->Container}; 2415 } 2416 2417 static ChildIteratorType child_end(NodeRef N) { 2418 return {N->UserTreeIndices.end(), N->Container}; 2419 } 2420 2421 /// For the node iterator we just need to turn the TreeEntry iterator into a 2422 /// TreeEntry* iterator so that it dereferences to NodeRef. 2423 class nodes_iterator { 2424 using ItTy = ContainerTy::iterator; 2425 ItTy It; 2426 2427 public: 2428 nodes_iterator(const ItTy &It2) : It(It2) {} 2429 NodeRef operator*() { return It->get(); } 2430 nodes_iterator operator++() { 2431 ++It; 2432 return *this; 2433 } 2434 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2435 }; 2436 2437 static nodes_iterator nodes_begin(BoUpSLP *R) { 2438 return nodes_iterator(R->VectorizableTree.begin()); 2439 } 2440 2441 static nodes_iterator nodes_end(BoUpSLP *R) { 2442 return nodes_iterator(R->VectorizableTree.end()); 2443 } 2444 2445 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2446 }; 2447 2448 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2449 using TreeEntry = BoUpSLP::TreeEntry; 2450 2451 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2452 2453 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2454 std::string Str; 2455 raw_string_ostream OS(Str); 2456 if (isSplat(Entry->Scalars)) { 2457 OS << "<splat> " << *Entry->Scalars[0]; 2458 return Str; 2459 } 2460 for (auto V : Entry->Scalars) { 2461 OS << *V; 2462 if (std::any_of( 2463 R->ExternalUses.begin(), R->ExternalUses.end(), 2464 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2465 OS << " <extract>"; 2466 OS << "\n"; 2467 } 2468 return Str; 2469 } 2470 2471 static std::string getNodeAttributes(const TreeEntry *Entry, 2472 const BoUpSLP *) { 2473 if (Entry->State == TreeEntry::NeedToGather) 2474 return "color=red"; 2475 return ""; 2476 } 2477 }; 2478 2479 } // end namespace llvm 2480 2481 BoUpSLP::~BoUpSLP() { 2482 for (const auto &Pair : DeletedInstructions) { 2483 // Replace operands of ignored instructions with Undefs in case if they were 2484 // marked for deletion. 2485 if (Pair.getSecond()) { 2486 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2487 Pair.getFirst()->replaceAllUsesWith(Undef); 2488 } 2489 Pair.getFirst()->dropAllReferences(); 2490 } 2491 for (const auto &Pair : DeletedInstructions) { 2492 assert(Pair.getFirst()->use_empty() && 2493 "trying to erase instruction with users."); 2494 Pair.getFirst()->eraseFromParent(); 2495 } 2496 assert(!verifyFunction(*F, &dbgs())); 2497 } 2498 2499 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2500 for (auto *V : AV) { 2501 if (auto *I = dyn_cast<Instruction>(V)) 2502 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2503 }; 2504 } 2505 2506 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2507 ArrayRef<Value *> UserIgnoreLst) { 2508 ExtraValueToDebugLocsMap ExternallyUsedValues; 2509 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2510 } 2511 2512 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2513 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2514 ArrayRef<Value *> UserIgnoreLst) { 2515 deleteTree(); 2516 UserIgnoreList = UserIgnoreLst; 2517 if (!allSameType(Roots)) 2518 return; 2519 buildTree_rec(Roots, 0, EdgeInfo()); 2520 2521 // Collect the values that we need to extract from the tree. 2522 for (auto &TEPtr : VectorizableTree) { 2523 TreeEntry *Entry = TEPtr.get(); 2524 2525 // No need to handle users of gathered values. 2526 if (Entry->State == TreeEntry::NeedToGather) 2527 continue; 2528 2529 // For each lane: 2530 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2531 Value *Scalar = Entry->Scalars[Lane]; 2532 int FoundLane = Lane; 2533 if (!Entry->ReuseShuffleIndices.empty()) { 2534 FoundLane = 2535 std::distance(Entry->ReuseShuffleIndices.begin(), 2536 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2537 } 2538 2539 // Check if the scalar is externally used as an extra arg. 2540 auto ExtI = ExternallyUsedValues.find(Scalar); 2541 if (ExtI != ExternallyUsedValues.end()) { 2542 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2543 << Lane << " from " << *Scalar << ".\n"); 2544 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2545 } 2546 for (User *U : Scalar->users()) { 2547 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2548 2549 Instruction *UserInst = dyn_cast<Instruction>(U); 2550 if (!UserInst) 2551 continue; 2552 2553 // Skip in-tree scalars that become vectors 2554 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2555 Value *UseScalar = UseEntry->Scalars[0]; 2556 // Some in-tree scalars will remain as scalar in vectorized 2557 // instructions. If that is the case, the one in Lane 0 will 2558 // be used. 2559 if (UseScalar != U || 2560 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2561 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2562 << ".\n"); 2563 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2564 continue; 2565 } 2566 } 2567 2568 // Ignore users in the user ignore list. 2569 if (is_contained(UserIgnoreList, UserInst)) 2570 continue; 2571 2572 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2573 << Lane << " from " << *Scalar << ".\n"); 2574 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2575 } 2576 } 2577 } 2578 } 2579 2580 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2581 const EdgeInfo &UserTreeIdx) { 2582 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2583 2584 InstructionsState S = getSameOpcode(VL); 2585 if (Depth == RecursionMaxDepth) { 2586 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2587 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2588 return; 2589 } 2590 2591 // Don't handle vectors. 2592 if (S.OpValue->getType()->isVectorTy()) { 2593 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2594 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2595 return; 2596 } 2597 2598 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2599 if (SI->getValueOperand()->getType()->isVectorTy()) { 2600 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2601 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2602 return; 2603 } 2604 2605 // If all of the operands are identical or constant we have a simple solution. 2606 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2607 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2608 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2609 return; 2610 } 2611 2612 // We now know that this is a vector of instructions of the same type from 2613 // the same block. 2614 2615 // Don't vectorize ephemeral values. 2616 for (Value *V : VL) { 2617 if (EphValues.count(V)) { 2618 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2619 << ") is ephemeral.\n"); 2620 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2621 return; 2622 } 2623 } 2624 2625 // Check if this is a duplicate of another entry. 2626 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2627 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2628 if (!E->isSame(VL)) { 2629 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2630 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2631 return; 2632 } 2633 // Record the reuse of the tree node. FIXME, currently this is only used to 2634 // properly draw the graph rather than for the actual vectorization. 2635 E->UserTreeIndices.push_back(UserTreeIdx); 2636 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2637 << ".\n"); 2638 return; 2639 } 2640 2641 // Check that none of the instructions in the bundle are already in the tree. 2642 for (Value *V : VL) { 2643 auto *I = dyn_cast<Instruction>(V); 2644 if (!I) 2645 continue; 2646 if (getTreeEntry(I)) { 2647 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2648 << ") is already in tree.\n"); 2649 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2650 return; 2651 } 2652 } 2653 2654 // If any of the scalars is marked as a value that needs to stay scalar, then 2655 // we need to gather the scalars. 2656 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2657 for (Value *V : VL) { 2658 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2659 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2660 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2661 return; 2662 } 2663 } 2664 2665 // Check that all of the users of the scalars that we want to vectorize are 2666 // schedulable. 2667 auto *VL0 = cast<Instruction>(S.OpValue); 2668 BasicBlock *BB = VL0->getParent(); 2669 2670 if (!DT->isReachableFromEntry(BB)) { 2671 // Don't go into unreachable blocks. They may contain instructions with 2672 // dependency cycles which confuse the final scheduling. 2673 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2674 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2675 return; 2676 } 2677 2678 // Check that every instruction appears once in this bundle. 2679 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2680 SmallVector<Value *, 4> UniqueValues; 2681 DenseMap<Value *, unsigned> UniquePositions; 2682 for (Value *V : VL) { 2683 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2684 ReuseShuffleIndicies.emplace_back(Res.first->second); 2685 if (Res.second) 2686 UniqueValues.emplace_back(V); 2687 } 2688 size_t NumUniqueScalarValues = UniqueValues.size(); 2689 if (NumUniqueScalarValues == VL.size()) { 2690 ReuseShuffleIndicies.clear(); 2691 } else { 2692 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2693 if (NumUniqueScalarValues <= 1 || 2694 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2695 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2697 return; 2698 } 2699 VL = UniqueValues; 2700 } 2701 2702 auto &BSRef = BlocksSchedules[BB]; 2703 if (!BSRef) 2704 BSRef = std::make_unique<BlockScheduling>(BB); 2705 2706 BlockScheduling &BS = *BSRef.get(); 2707 2708 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2709 if (!Bundle) { 2710 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2711 assert((!BS.getScheduleData(VL0) || 2712 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2713 "tryScheduleBundle should cancelScheduling on failure"); 2714 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2715 ReuseShuffleIndicies); 2716 return; 2717 } 2718 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2719 2720 unsigned ShuffleOrOp = S.isAltShuffle() ? 2721 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2722 switch (ShuffleOrOp) { 2723 case Instruction::PHI: { 2724 auto *PH = cast<PHINode>(VL0); 2725 2726 // Check for terminator values (e.g. invoke). 2727 for (Value *V : VL) 2728 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2729 Instruction *Term = dyn_cast<Instruction>( 2730 cast<PHINode>(V)->getIncomingValueForBlock( 2731 PH->getIncomingBlock(I))); 2732 if (Term && Term->isTerminator()) { 2733 LLVM_DEBUG(dbgs() 2734 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2735 BS.cancelScheduling(VL, VL0); 2736 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2737 ReuseShuffleIndicies); 2738 return; 2739 } 2740 } 2741 2742 TreeEntry *TE = 2743 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2744 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2745 2746 // Keeps the reordered operands to avoid code duplication. 2747 SmallVector<ValueList, 2> OperandsVec; 2748 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2749 ValueList Operands; 2750 // Prepare the operand vector. 2751 for (Value *V : VL) 2752 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2753 PH->getIncomingBlock(I))); 2754 TE->setOperand(I, Operands); 2755 OperandsVec.push_back(Operands); 2756 } 2757 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2758 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2759 return; 2760 } 2761 case Instruction::ExtractValue: 2762 case Instruction::ExtractElement: { 2763 OrdersType CurrentOrder; 2764 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2765 if (Reuse) { 2766 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2767 ++NumOpsWantToKeepOriginalOrder; 2768 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2769 ReuseShuffleIndicies); 2770 // This is a special case, as it does not gather, but at the same time 2771 // we are not extending buildTree_rec() towards the operands. 2772 ValueList Op0; 2773 Op0.assign(VL.size(), VL0->getOperand(0)); 2774 VectorizableTree.back()->setOperand(0, Op0); 2775 return; 2776 } 2777 if (!CurrentOrder.empty()) { 2778 LLVM_DEBUG({ 2779 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2780 "with order"; 2781 for (unsigned Idx : CurrentOrder) 2782 dbgs() << " " << Idx; 2783 dbgs() << "\n"; 2784 }); 2785 // Insert new order with initial value 0, if it does not exist, 2786 // otherwise return the iterator to the existing one. 2787 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2788 ReuseShuffleIndicies, CurrentOrder); 2789 findRootOrder(CurrentOrder); 2790 ++NumOpsWantToKeepOrder[CurrentOrder]; 2791 // This is a special case, as it does not gather, but at the same time 2792 // we are not extending buildTree_rec() towards the operands. 2793 ValueList Op0; 2794 Op0.assign(VL.size(), VL0->getOperand(0)); 2795 VectorizableTree.back()->setOperand(0, Op0); 2796 return; 2797 } 2798 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2799 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2800 ReuseShuffleIndicies); 2801 BS.cancelScheduling(VL, VL0); 2802 return; 2803 } 2804 case Instruction::Load: { 2805 // Check that a vectorized load would load the same memory as a scalar 2806 // load. For example, we don't want to vectorize loads that are smaller 2807 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2808 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2809 // from such a struct, we read/write packed bits disagreeing with the 2810 // unvectorized version. 2811 Type *ScalarTy = VL0->getType(); 2812 2813 if (DL->getTypeSizeInBits(ScalarTy) != 2814 DL->getTypeAllocSizeInBits(ScalarTy)) { 2815 BS.cancelScheduling(VL, VL0); 2816 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2817 ReuseShuffleIndicies); 2818 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2819 return; 2820 } 2821 2822 // Make sure all loads in the bundle are simple - we can't vectorize 2823 // atomic or volatile loads. 2824 SmallVector<Value *, 4> PointerOps(VL.size()); 2825 auto POIter = PointerOps.begin(); 2826 for (Value *V : VL) { 2827 auto *L = cast<LoadInst>(V); 2828 if (!L->isSimple()) { 2829 BS.cancelScheduling(VL, VL0); 2830 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2831 ReuseShuffleIndicies); 2832 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2833 return; 2834 } 2835 *POIter = L->getPointerOperand(); 2836 ++POIter; 2837 } 2838 2839 OrdersType CurrentOrder; 2840 // Check the order of pointer operands. 2841 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2842 Value *Ptr0; 2843 Value *PtrN; 2844 if (CurrentOrder.empty()) { 2845 Ptr0 = PointerOps.front(); 2846 PtrN = PointerOps.back(); 2847 } else { 2848 Ptr0 = PointerOps[CurrentOrder.front()]; 2849 PtrN = PointerOps[CurrentOrder.back()]; 2850 } 2851 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2852 const SCEV *ScevN = SE->getSCEV(PtrN); 2853 const auto *Diff = 2854 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2855 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2856 // Check that the sorted loads are consecutive. 2857 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2858 if (CurrentOrder.empty()) { 2859 // Original loads are consecutive and does not require reordering. 2860 ++NumOpsWantToKeepOriginalOrder; 2861 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2862 UserTreeIdx, ReuseShuffleIndicies); 2863 TE->setOperandsInOrder(); 2864 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2865 } else { 2866 // Need to reorder. 2867 TreeEntry *TE = 2868 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2869 ReuseShuffleIndicies, CurrentOrder); 2870 TE->setOperandsInOrder(); 2871 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2872 findRootOrder(CurrentOrder); 2873 ++NumOpsWantToKeepOrder[CurrentOrder]; 2874 } 2875 return; 2876 } 2877 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2878 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2879 UserTreeIdx, ReuseShuffleIndicies); 2880 TE->setOperandsInOrder(); 2881 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2882 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2883 return; 2884 } 2885 2886 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2887 BS.cancelScheduling(VL, VL0); 2888 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2889 ReuseShuffleIndicies); 2890 return; 2891 } 2892 case Instruction::ZExt: 2893 case Instruction::SExt: 2894 case Instruction::FPToUI: 2895 case Instruction::FPToSI: 2896 case Instruction::FPExt: 2897 case Instruction::PtrToInt: 2898 case Instruction::IntToPtr: 2899 case Instruction::SIToFP: 2900 case Instruction::UIToFP: 2901 case Instruction::Trunc: 2902 case Instruction::FPTrunc: 2903 case Instruction::BitCast: { 2904 Type *SrcTy = VL0->getOperand(0)->getType(); 2905 for (Value *V : VL) { 2906 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2907 if (Ty != SrcTy || !isValidElementType(Ty)) { 2908 BS.cancelScheduling(VL, VL0); 2909 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2910 ReuseShuffleIndicies); 2911 LLVM_DEBUG(dbgs() 2912 << "SLP: Gathering casts with different src types.\n"); 2913 return; 2914 } 2915 } 2916 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2917 ReuseShuffleIndicies); 2918 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2919 2920 TE->setOperandsInOrder(); 2921 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2922 ValueList Operands; 2923 // Prepare the operand vector. 2924 for (Value *V : VL) 2925 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2926 2927 buildTree_rec(Operands, Depth + 1, {TE, i}); 2928 } 2929 return; 2930 } 2931 case Instruction::ICmp: 2932 case Instruction::FCmp: { 2933 // Check that all of the compares have the same predicate. 2934 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2935 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2936 Type *ComparedTy = VL0->getOperand(0)->getType(); 2937 for (Value *V : VL) { 2938 CmpInst *Cmp = cast<CmpInst>(V); 2939 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2940 Cmp->getOperand(0)->getType() != ComparedTy) { 2941 BS.cancelScheduling(VL, VL0); 2942 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2943 ReuseShuffleIndicies); 2944 LLVM_DEBUG(dbgs() 2945 << "SLP: Gathering cmp with different predicate.\n"); 2946 return; 2947 } 2948 } 2949 2950 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2951 ReuseShuffleIndicies); 2952 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2953 2954 ValueList Left, Right; 2955 if (cast<CmpInst>(VL0)->isCommutative()) { 2956 // Commutative predicate - collect + sort operands of the instructions 2957 // so that each side is more likely to have the same opcode. 2958 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2959 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2960 } else { 2961 // Collect operands - commute if it uses the swapped predicate. 2962 for (Value *V : VL) { 2963 auto *Cmp = cast<CmpInst>(V); 2964 Value *LHS = Cmp->getOperand(0); 2965 Value *RHS = Cmp->getOperand(1); 2966 if (Cmp->getPredicate() != P0) 2967 std::swap(LHS, RHS); 2968 Left.push_back(LHS); 2969 Right.push_back(RHS); 2970 } 2971 } 2972 TE->setOperand(0, Left); 2973 TE->setOperand(1, Right); 2974 buildTree_rec(Left, Depth + 1, {TE, 0}); 2975 buildTree_rec(Right, Depth + 1, {TE, 1}); 2976 return; 2977 } 2978 case Instruction::Select: 2979 case Instruction::FNeg: 2980 case Instruction::Add: 2981 case Instruction::FAdd: 2982 case Instruction::Sub: 2983 case Instruction::FSub: 2984 case Instruction::Mul: 2985 case Instruction::FMul: 2986 case Instruction::UDiv: 2987 case Instruction::SDiv: 2988 case Instruction::FDiv: 2989 case Instruction::URem: 2990 case Instruction::SRem: 2991 case Instruction::FRem: 2992 case Instruction::Shl: 2993 case Instruction::LShr: 2994 case Instruction::AShr: 2995 case Instruction::And: 2996 case Instruction::Or: 2997 case Instruction::Xor: { 2998 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2999 ReuseShuffleIndicies); 3000 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3001 3002 // Sort operands of the instructions so that each side is more likely to 3003 // have the same opcode. 3004 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3005 ValueList Left, Right; 3006 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3007 TE->setOperand(0, Left); 3008 TE->setOperand(1, Right); 3009 buildTree_rec(Left, Depth + 1, {TE, 0}); 3010 buildTree_rec(Right, Depth + 1, {TE, 1}); 3011 return; 3012 } 3013 3014 TE->setOperandsInOrder(); 3015 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3016 ValueList Operands; 3017 // Prepare the operand vector. 3018 for (Value *V : VL) 3019 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3020 3021 buildTree_rec(Operands, Depth + 1, {TE, i}); 3022 } 3023 return; 3024 } 3025 case Instruction::GetElementPtr: { 3026 // We don't combine GEPs with complicated (nested) indexing. 3027 for (Value *V : VL) { 3028 if (cast<Instruction>(V)->getNumOperands() != 2) { 3029 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3030 BS.cancelScheduling(VL, VL0); 3031 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3032 ReuseShuffleIndicies); 3033 return; 3034 } 3035 } 3036 3037 // We can't combine several GEPs into one vector if they operate on 3038 // different types. 3039 Type *Ty0 = VL0->getOperand(0)->getType(); 3040 for (Value *V : VL) { 3041 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3042 if (Ty0 != CurTy) { 3043 LLVM_DEBUG(dbgs() 3044 << "SLP: not-vectorizable GEP (different types).\n"); 3045 BS.cancelScheduling(VL, VL0); 3046 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3047 ReuseShuffleIndicies); 3048 return; 3049 } 3050 } 3051 3052 // We don't combine GEPs with non-constant indexes. 3053 Type *Ty1 = VL0->getOperand(1)->getType(); 3054 for (Value *V : VL) { 3055 auto Op = cast<Instruction>(V)->getOperand(1); 3056 if (!isa<ConstantInt>(Op) || 3057 (Op->getType() != Ty1 && 3058 Op->getType()->getScalarSizeInBits() > 3059 DL->getIndexSizeInBits( 3060 V->getType()->getPointerAddressSpace()))) { 3061 LLVM_DEBUG(dbgs() 3062 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3063 BS.cancelScheduling(VL, VL0); 3064 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3065 ReuseShuffleIndicies); 3066 return; 3067 } 3068 } 3069 3070 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3071 ReuseShuffleIndicies); 3072 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3073 TE->setOperandsInOrder(); 3074 for (unsigned i = 0, e = 2; i < e; ++i) { 3075 ValueList Operands; 3076 // Prepare the operand vector. 3077 for (Value *V : VL) 3078 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3079 3080 buildTree_rec(Operands, Depth + 1, {TE, i}); 3081 } 3082 return; 3083 } 3084 case Instruction::Store: { 3085 // Check if the stores are consecutive or if we need to swizzle them. 3086 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3087 // Make sure all stores in the bundle are simple - we can't vectorize 3088 // atomic or volatile stores. 3089 SmallVector<Value *, 4> PointerOps(VL.size()); 3090 ValueList Operands(VL.size()); 3091 auto POIter = PointerOps.begin(); 3092 auto OIter = Operands.begin(); 3093 for (Value *V : VL) { 3094 auto *SI = cast<StoreInst>(V); 3095 if (!SI->isSimple()) { 3096 BS.cancelScheduling(VL, VL0); 3097 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3098 ReuseShuffleIndicies); 3099 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3100 return; 3101 } 3102 *POIter = SI->getPointerOperand(); 3103 *OIter = SI->getValueOperand(); 3104 ++POIter; 3105 ++OIter; 3106 } 3107 3108 OrdersType CurrentOrder; 3109 // Check the order of pointer operands. 3110 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3111 Value *Ptr0; 3112 Value *PtrN; 3113 if (CurrentOrder.empty()) { 3114 Ptr0 = PointerOps.front(); 3115 PtrN = PointerOps.back(); 3116 } else { 3117 Ptr0 = PointerOps[CurrentOrder.front()]; 3118 PtrN = PointerOps[CurrentOrder.back()]; 3119 } 3120 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3121 const SCEV *ScevN = SE->getSCEV(PtrN); 3122 const auto *Diff = 3123 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3124 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3125 // Check that the sorted pointer operands are consecutive. 3126 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3127 if (CurrentOrder.empty()) { 3128 // Original stores are consecutive and does not require reordering. 3129 ++NumOpsWantToKeepOriginalOrder; 3130 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3131 UserTreeIdx, ReuseShuffleIndicies); 3132 TE->setOperandsInOrder(); 3133 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3134 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3135 } else { 3136 TreeEntry *TE = 3137 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3138 ReuseShuffleIndicies, CurrentOrder); 3139 TE->setOperandsInOrder(); 3140 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3141 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3142 findRootOrder(CurrentOrder); 3143 ++NumOpsWantToKeepOrder[CurrentOrder]; 3144 } 3145 return; 3146 } 3147 } 3148 3149 BS.cancelScheduling(VL, VL0); 3150 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3151 ReuseShuffleIndicies); 3152 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3153 return; 3154 } 3155 case Instruction::Call: { 3156 // Check if the calls are all to the same vectorizable intrinsic or 3157 // library function. 3158 CallInst *CI = cast<CallInst>(VL0); 3159 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3160 3161 VFShape Shape = VFShape::get( 3162 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3163 false /*HasGlobalPred*/); 3164 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3165 3166 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3167 BS.cancelScheduling(VL, VL0); 3168 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3169 ReuseShuffleIndicies); 3170 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3171 return; 3172 } 3173 Function *F = CI->getCalledFunction(); 3174 unsigned NumArgs = CI->getNumArgOperands(); 3175 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3176 for (unsigned j = 0; j != NumArgs; ++j) 3177 if (hasVectorInstrinsicScalarOpd(ID, j)) 3178 ScalarArgs[j] = CI->getArgOperand(j); 3179 for (Value *V : VL) { 3180 CallInst *CI2 = dyn_cast<CallInst>(V); 3181 if (!CI2 || CI2->getCalledFunction() != F || 3182 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3183 (VecFunc && 3184 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3185 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3186 BS.cancelScheduling(VL, VL0); 3187 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3188 ReuseShuffleIndicies); 3189 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3190 << "\n"); 3191 return; 3192 } 3193 // Some intrinsics have scalar arguments and should be same in order for 3194 // them to be vectorized. 3195 for (unsigned j = 0; j != NumArgs; ++j) { 3196 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3197 Value *A1J = CI2->getArgOperand(j); 3198 if (ScalarArgs[j] != A1J) { 3199 BS.cancelScheduling(VL, VL0); 3200 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3201 ReuseShuffleIndicies); 3202 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3203 << " argument " << ScalarArgs[j] << "!=" << A1J 3204 << "\n"); 3205 return; 3206 } 3207 } 3208 } 3209 // Verify that the bundle operands are identical between the two calls. 3210 if (CI->hasOperandBundles() && 3211 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3212 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3213 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3214 BS.cancelScheduling(VL, VL0); 3215 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3216 ReuseShuffleIndicies); 3217 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3218 << *CI << "!=" << *V << '\n'); 3219 return; 3220 } 3221 } 3222 3223 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3224 ReuseShuffleIndicies); 3225 TE->setOperandsInOrder(); 3226 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3227 ValueList Operands; 3228 // Prepare the operand vector. 3229 for (Value *V : VL) { 3230 auto *CI2 = cast<CallInst>(V); 3231 Operands.push_back(CI2->getArgOperand(i)); 3232 } 3233 buildTree_rec(Operands, Depth + 1, {TE, i}); 3234 } 3235 return; 3236 } 3237 case Instruction::ShuffleVector: { 3238 // If this is not an alternate sequence of opcode like add-sub 3239 // then do not vectorize this instruction. 3240 if (!S.isAltShuffle()) { 3241 BS.cancelScheduling(VL, VL0); 3242 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3243 ReuseShuffleIndicies); 3244 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3245 return; 3246 } 3247 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3248 ReuseShuffleIndicies); 3249 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3250 3251 // Reorder operands if reordering would enable vectorization. 3252 if (isa<BinaryOperator>(VL0)) { 3253 ValueList Left, Right; 3254 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3255 TE->setOperand(0, Left); 3256 TE->setOperand(1, Right); 3257 buildTree_rec(Left, Depth + 1, {TE, 0}); 3258 buildTree_rec(Right, Depth + 1, {TE, 1}); 3259 return; 3260 } 3261 3262 TE->setOperandsInOrder(); 3263 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3264 ValueList Operands; 3265 // Prepare the operand vector. 3266 for (Value *V : VL) 3267 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3268 3269 buildTree_rec(Operands, Depth + 1, {TE, i}); 3270 } 3271 return; 3272 } 3273 default: 3274 BS.cancelScheduling(VL, VL0); 3275 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3276 ReuseShuffleIndicies); 3277 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3278 return; 3279 } 3280 } 3281 3282 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3283 unsigned N = 1; 3284 Type *EltTy = T; 3285 3286 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3287 isa<VectorType>(EltTy)) { 3288 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3289 // Check that struct is homogeneous. 3290 for (const auto *Ty : ST->elements()) 3291 if (Ty != *ST->element_begin()) 3292 return 0; 3293 N *= ST->getNumElements(); 3294 EltTy = *ST->element_begin(); 3295 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3296 N *= AT->getNumElements(); 3297 EltTy = AT->getElementType(); 3298 } else { 3299 auto *VT = cast<FixedVectorType>(EltTy); 3300 N *= VT->getNumElements(); 3301 EltTy = VT->getElementType(); 3302 } 3303 } 3304 3305 if (!isValidElementType(EltTy)) 3306 return 0; 3307 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3308 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3309 return 0; 3310 return N; 3311 } 3312 3313 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3314 SmallVectorImpl<unsigned> &CurrentOrder) const { 3315 Instruction *E0 = cast<Instruction>(OpValue); 3316 assert(E0->getOpcode() == Instruction::ExtractElement || 3317 E0->getOpcode() == Instruction::ExtractValue); 3318 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3319 // Check if all of the extracts come from the same vector and from the 3320 // correct offset. 3321 Value *Vec = E0->getOperand(0); 3322 3323 CurrentOrder.clear(); 3324 3325 // We have to extract from a vector/aggregate with the same number of elements. 3326 unsigned NElts; 3327 if (E0->getOpcode() == Instruction::ExtractValue) { 3328 const DataLayout &DL = E0->getModule()->getDataLayout(); 3329 NElts = canMapToVector(Vec->getType(), DL); 3330 if (!NElts) 3331 return false; 3332 // Check if load can be rewritten as load of vector. 3333 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3334 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3335 return false; 3336 } else { 3337 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3338 } 3339 3340 if (NElts != VL.size()) 3341 return false; 3342 3343 // Check that all of the indices extract from the correct offset. 3344 bool ShouldKeepOrder = true; 3345 unsigned E = VL.size(); 3346 // Assign to all items the initial value E + 1 so we can check if the extract 3347 // instruction index was used already. 3348 // Also, later we can check that all the indices are used and we have a 3349 // consecutive access in the extract instructions, by checking that no 3350 // element of CurrentOrder still has value E + 1. 3351 CurrentOrder.assign(E, E + 1); 3352 unsigned I = 0; 3353 for (; I < E; ++I) { 3354 auto *Inst = cast<Instruction>(VL[I]); 3355 if (Inst->getOperand(0) != Vec) 3356 break; 3357 Optional<unsigned> Idx = getExtractIndex(Inst); 3358 if (!Idx) 3359 break; 3360 const unsigned ExtIdx = *Idx; 3361 if (ExtIdx != I) { 3362 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3363 break; 3364 ShouldKeepOrder = false; 3365 CurrentOrder[ExtIdx] = I; 3366 } else { 3367 if (CurrentOrder[I] != E + 1) 3368 break; 3369 CurrentOrder[I] = I; 3370 } 3371 } 3372 if (I < E) { 3373 CurrentOrder.clear(); 3374 return false; 3375 } 3376 3377 return ShouldKeepOrder; 3378 } 3379 3380 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3381 return I->hasOneUse() || 3382 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3383 return ScalarToTreeEntry.count(U) > 0; 3384 }); 3385 } 3386 3387 static std::pair<unsigned, unsigned> 3388 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3389 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3390 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3391 3392 // Calculate the cost of the scalar and vector calls. 3393 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3394 int IntrinsicCost = 3395 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3396 3397 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3398 VecTy->getNumElements())), 3399 false /*HasGlobalPred*/); 3400 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3401 int LibCost = IntrinsicCost; 3402 if (!CI->isNoBuiltin() && VecFunc) { 3403 // Calculate the cost of the vector library call. 3404 SmallVector<Type *, 4> VecTys; 3405 for (Use &Arg : CI->args()) 3406 VecTys.push_back( 3407 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3408 3409 // If the corresponding vector call is cheaper, return its cost. 3410 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3411 TTI::TCK_RecipThroughput); 3412 } 3413 return {IntrinsicCost, LibCost}; 3414 } 3415 3416 int BoUpSLP::getEntryCost(TreeEntry *E) { 3417 ArrayRef<Value*> VL = E->Scalars; 3418 3419 Type *ScalarTy = VL[0]->getType(); 3420 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3421 ScalarTy = SI->getValueOperand()->getType(); 3422 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3423 ScalarTy = CI->getOperand(0)->getType(); 3424 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3425 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3426 3427 // If we have computed a smaller type for the expression, update VecTy so 3428 // that the costs will be accurate. 3429 if (MinBWs.count(VL[0])) 3430 VecTy = FixedVectorType::get( 3431 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3432 3433 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3434 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3435 int ReuseShuffleCost = 0; 3436 if (NeedToShuffleReuses) { 3437 ReuseShuffleCost = 3438 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3439 } 3440 if (E->State == TreeEntry::NeedToGather) { 3441 if (allConstant(VL)) 3442 return 0; 3443 if (isSplat(VL)) { 3444 return ReuseShuffleCost + 3445 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3446 } 3447 if (E->getOpcode() == Instruction::ExtractElement && 3448 allSameType(VL) && allSameBlock(VL)) { 3449 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3450 if (ShuffleKind.hasValue()) { 3451 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3452 for (auto *V : VL) { 3453 // If all users of instruction are going to be vectorized and this 3454 // instruction itself is not going to be vectorized, consider this 3455 // instruction as dead and remove its cost from the final cost of the 3456 // vectorized tree. 3457 if (areAllUsersVectorized(cast<Instruction>(V)) && 3458 !ScalarToTreeEntry.count(V)) { 3459 auto *IO = cast<ConstantInt>( 3460 cast<ExtractElementInst>(V)->getIndexOperand()); 3461 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3462 IO->getZExtValue()); 3463 } 3464 } 3465 return ReuseShuffleCost + Cost; 3466 } 3467 } 3468 return ReuseShuffleCost + getGatherCost(VL); 3469 } 3470 assert((E->State == TreeEntry::Vectorize || 3471 E->State == TreeEntry::ScatterVectorize) && 3472 "Unhandled state"); 3473 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3474 Instruction *VL0 = E->getMainOp(); 3475 unsigned ShuffleOrOp = 3476 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3477 switch (ShuffleOrOp) { 3478 case Instruction::PHI: 3479 return 0; 3480 3481 case Instruction::ExtractValue: 3482 case Instruction::ExtractElement: { 3483 if (NeedToShuffleReuses) { 3484 unsigned Idx = 0; 3485 for (unsigned I : E->ReuseShuffleIndices) { 3486 if (ShuffleOrOp == Instruction::ExtractElement) { 3487 auto *IO = cast<ConstantInt>( 3488 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3489 Idx = IO->getZExtValue(); 3490 ReuseShuffleCost -= TTI->getVectorInstrCost( 3491 Instruction::ExtractElement, VecTy, Idx); 3492 } else { 3493 ReuseShuffleCost -= TTI->getVectorInstrCost( 3494 Instruction::ExtractElement, VecTy, Idx); 3495 ++Idx; 3496 } 3497 } 3498 Idx = ReuseShuffleNumbers; 3499 for (Value *V : VL) { 3500 if (ShuffleOrOp == Instruction::ExtractElement) { 3501 auto *IO = cast<ConstantInt>( 3502 cast<ExtractElementInst>(V)->getIndexOperand()); 3503 Idx = IO->getZExtValue(); 3504 } else { 3505 --Idx; 3506 } 3507 ReuseShuffleCost += 3508 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3509 } 3510 } 3511 int DeadCost = ReuseShuffleCost; 3512 if (!E->ReorderIndices.empty()) { 3513 // TODO: Merge this shuffle with the ReuseShuffleCost. 3514 DeadCost += TTI->getShuffleCost( 3515 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3516 } 3517 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3518 Instruction *EI = cast<Instruction>(VL[I]); 3519 // If all users are going to be vectorized, instruction can be 3520 // considered as dead. 3521 // The same, if have only one user, it will be vectorized for sure. 3522 if (areAllUsersVectorized(EI)) { 3523 // Take credit for instruction that will become dead. 3524 if (EI->hasOneUse()) { 3525 Instruction *Ext = EI->user_back(); 3526 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3527 all_of(Ext->users(), 3528 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3529 // Use getExtractWithExtendCost() to calculate the cost of 3530 // extractelement/ext pair. 3531 DeadCost -= TTI->getExtractWithExtendCost( 3532 Ext->getOpcode(), Ext->getType(), VecTy, I); 3533 // Add back the cost of s|zext which is subtracted separately. 3534 DeadCost += TTI->getCastInstrCost( 3535 Ext->getOpcode(), Ext->getType(), EI->getType(), 3536 TTI::getCastContextHint(Ext), CostKind, Ext); 3537 continue; 3538 } 3539 } 3540 DeadCost -= 3541 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3542 } 3543 } 3544 return DeadCost; 3545 } 3546 case Instruction::ZExt: 3547 case Instruction::SExt: 3548 case Instruction::FPToUI: 3549 case Instruction::FPToSI: 3550 case Instruction::FPExt: 3551 case Instruction::PtrToInt: 3552 case Instruction::IntToPtr: 3553 case Instruction::SIToFP: 3554 case Instruction::UIToFP: 3555 case Instruction::Trunc: 3556 case Instruction::FPTrunc: 3557 case Instruction::BitCast: { 3558 Type *SrcTy = VL0->getOperand(0)->getType(); 3559 int ScalarEltCost = 3560 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3561 TTI::getCastContextHint(VL0), CostKind, VL0); 3562 if (NeedToShuffleReuses) { 3563 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3564 } 3565 3566 // Calculate the cost of this instruction. 3567 int ScalarCost = VL.size() * ScalarEltCost; 3568 3569 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3570 int VecCost = 0; 3571 // Check if the values are candidates to demote. 3572 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3573 VecCost = 3574 ReuseShuffleCost + 3575 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3576 TTI::getCastContextHint(VL0), CostKind, VL0); 3577 } 3578 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3579 return VecCost - ScalarCost; 3580 } 3581 case Instruction::FCmp: 3582 case Instruction::ICmp: 3583 case Instruction::Select: { 3584 // Calculate the cost of this instruction. 3585 int ScalarEltCost = 3586 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3587 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3588 if (NeedToShuffleReuses) { 3589 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3590 } 3591 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3592 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3593 3594 // Check if all entries in VL are either compares or selects with compares 3595 // as condition that have the same predicates. 3596 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3597 bool First = true; 3598 for (auto *V : VL) { 3599 CmpInst::Predicate CurrentPred; 3600 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3601 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3602 !match(V, MatchCmp)) || 3603 (!First && VecPred != CurrentPred)) { 3604 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3605 break; 3606 } 3607 First = false; 3608 VecPred = CurrentPred; 3609 } 3610 3611 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3612 VecPred, CostKind, VL0); 3613 // Check if it is possible and profitable to use min/max for selects in 3614 // VL. 3615 // 3616 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3617 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3618 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3619 {VecTy, VecTy}); 3620 int IntrinsicCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3621 // If the selects are the only uses of the compares, they will be dead 3622 // and we can adjust the cost by removing their cost. 3623 if (IntrinsicAndUse.second) 3624 IntrinsicCost -= 3625 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3626 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3627 VecCost = std::min(VecCost, IntrinsicCost); 3628 } 3629 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3630 return ReuseShuffleCost + VecCost - ScalarCost; 3631 } 3632 case Instruction::FNeg: 3633 case Instruction::Add: 3634 case Instruction::FAdd: 3635 case Instruction::Sub: 3636 case Instruction::FSub: 3637 case Instruction::Mul: 3638 case Instruction::FMul: 3639 case Instruction::UDiv: 3640 case Instruction::SDiv: 3641 case Instruction::FDiv: 3642 case Instruction::URem: 3643 case Instruction::SRem: 3644 case Instruction::FRem: 3645 case Instruction::Shl: 3646 case Instruction::LShr: 3647 case Instruction::AShr: 3648 case Instruction::And: 3649 case Instruction::Or: 3650 case Instruction::Xor: { 3651 // Certain instructions can be cheaper to vectorize if they have a 3652 // constant second vector operand. 3653 TargetTransformInfo::OperandValueKind Op1VK = 3654 TargetTransformInfo::OK_AnyValue; 3655 TargetTransformInfo::OperandValueKind Op2VK = 3656 TargetTransformInfo::OK_UniformConstantValue; 3657 TargetTransformInfo::OperandValueProperties Op1VP = 3658 TargetTransformInfo::OP_None; 3659 TargetTransformInfo::OperandValueProperties Op2VP = 3660 TargetTransformInfo::OP_PowerOf2; 3661 3662 // If all operands are exactly the same ConstantInt then set the 3663 // operand kind to OK_UniformConstantValue. 3664 // If instead not all operands are constants, then set the operand kind 3665 // to OK_AnyValue. If all operands are constants but not the same, 3666 // then set the operand kind to OK_NonUniformConstantValue. 3667 ConstantInt *CInt0 = nullptr; 3668 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3669 const Instruction *I = cast<Instruction>(VL[i]); 3670 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3671 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3672 if (!CInt) { 3673 Op2VK = TargetTransformInfo::OK_AnyValue; 3674 Op2VP = TargetTransformInfo::OP_None; 3675 break; 3676 } 3677 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3678 !CInt->getValue().isPowerOf2()) 3679 Op2VP = TargetTransformInfo::OP_None; 3680 if (i == 0) { 3681 CInt0 = CInt; 3682 continue; 3683 } 3684 if (CInt0 != CInt) 3685 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3686 } 3687 3688 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3689 int ScalarEltCost = TTI->getArithmeticInstrCost( 3690 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3691 Operands, VL0); 3692 if (NeedToShuffleReuses) { 3693 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3694 } 3695 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3696 int VecCost = TTI->getArithmeticInstrCost( 3697 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3698 Operands, VL0); 3699 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3700 return ReuseShuffleCost + VecCost - ScalarCost; 3701 } 3702 case Instruction::GetElementPtr: { 3703 TargetTransformInfo::OperandValueKind Op1VK = 3704 TargetTransformInfo::OK_AnyValue; 3705 TargetTransformInfo::OperandValueKind Op2VK = 3706 TargetTransformInfo::OK_UniformConstantValue; 3707 3708 int ScalarEltCost = 3709 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3710 Op1VK, Op2VK); 3711 if (NeedToShuffleReuses) { 3712 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3713 } 3714 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3715 int VecCost = 3716 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3717 Op1VK, Op2VK); 3718 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3719 return ReuseShuffleCost + VecCost - ScalarCost; 3720 } 3721 case Instruction::Load: { 3722 // Cost of wide load - cost of scalar loads. 3723 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3724 int ScalarEltCost = 3725 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3726 CostKind, VL0); 3727 if (NeedToShuffleReuses) { 3728 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3729 } 3730 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3731 int VecLdCost; 3732 if (E->State == TreeEntry::Vectorize) { 3733 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3734 CostKind, VL0); 3735 } else { 3736 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3737 VecLdCost = TTI->getGatherScatterOpCost( 3738 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3739 /*VariableMask=*/false, alignment, CostKind, VL0); 3740 } 3741 if (!E->ReorderIndices.empty()) { 3742 // TODO: Merge this shuffle with the ReuseShuffleCost. 3743 VecLdCost += TTI->getShuffleCost( 3744 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3745 } 3746 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3747 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3748 } 3749 case Instruction::Store: { 3750 // We know that we can merge the stores. Calculate the cost. 3751 bool IsReorder = !E->ReorderIndices.empty(); 3752 auto *SI = 3753 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3754 Align Alignment = SI->getAlign(); 3755 int ScalarEltCost = 3756 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3757 CostKind, VL0); 3758 if (NeedToShuffleReuses) 3759 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3760 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3761 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3762 VecTy, Alignment, 0, CostKind, VL0); 3763 if (IsReorder) { 3764 // TODO: Merge this shuffle with the ReuseShuffleCost. 3765 VecStCost += TTI->getShuffleCost( 3766 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3767 } 3768 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3769 return ReuseShuffleCost + VecStCost - ScalarStCost; 3770 } 3771 case Instruction::Call: { 3772 CallInst *CI = cast<CallInst>(VL0); 3773 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3774 3775 // Calculate the cost of the scalar and vector calls. 3776 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3777 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3778 if (NeedToShuffleReuses) { 3779 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3780 } 3781 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3782 3783 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3784 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3785 3786 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3787 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3788 << " for " << *CI << "\n"); 3789 3790 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3791 } 3792 case Instruction::ShuffleVector: { 3793 assert(E->isAltShuffle() && 3794 ((Instruction::isBinaryOp(E->getOpcode()) && 3795 Instruction::isBinaryOp(E->getAltOpcode())) || 3796 (Instruction::isCast(E->getOpcode()) && 3797 Instruction::isCast(E->getAltOpcode()))) && 3798 "Invalid Shuffle Vector Operand"); 3799 int ScalarCost = 0; 3800 if (NeedToShuffleReuses) { 3801 for (unsigned Idx : E->ReuseShuffleIndices) { 3802 Instruction *I = cast<Instruction>(VL[Idx]); 3803 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3804 } 3805 for (Value *V : VL) { 3806 Instruction *I = cast<Instruction>(V); 3807 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3808 } 3809 } 3810 for (Value *V : VL) { 3811 Instruction *I = cast<Instruction>(V); 3812 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3813 ScalarCost += TTI->getInstructionCost(I, CostKind); 3814 } 3815 // VecCost is equal to sum of the cost of creating 2 vectors 3816 // and the cost of creating shuffle. 3817 int VecCost = 0; 3818 if (Instruction::isBinaryOp(E->getOpcode())) { 3819 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3820 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3821 CostKind); 3822 } else { 3823 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3824 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3825 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3826 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3827 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3828 TTI::CastContextHint::None, CostKind); 3829 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3830 TTI::CastContextHint::None, CostKind); 3831 } 3832 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3833 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3834 return ReuseShuffleCost + VecCost - ScalarCost; 3835 } 3836 default: 3837 llvm_unreachable("Unknown instruction"); 3838 } 3839 } 3840 3841 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3842 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3843 << VectorizableTree.size() << " is fully vectorizable .\n"); 3844 3845 // We only handle trees of heights 1 and 2. 3846 if (VectorizableTree.size() == 1 && 3847 VectorizableTree[0]->State == TreeEntry::Vectorize) 3848 return true; 3849 3850 if (VectorizableTree.size() != 2) 3851 return false; 3852 3853 // Handle splat and all-constants stores. 3854 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3855 (allConstant(VectorizableTree[1]->Scalars) || 3856 isSplat(VectorizableTree[1]->Scalars))) 3857 return true; 3858 3859 // Gathering cost would be too much for tiny trees. 3860 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3861 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3862 return false; 3863 3864 return true; 3865 } 3866 3867 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3868 TargetTransformInfo *TTI) { 3869 // Look past the root to find a source value. Arbitrarily follow the 3870 // path through operand 0 of any 'or'. Also, peek through optional 3871 // shift-left-by-multiple-of-8-bits. 3872 Value *ZextLoad = Root; 3873 const APInt *ShAmtC; 3874 while (!isa<ConstantExpr>(ZextLoad) && 3875 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3876 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3877 ShAmtC->urem(8) == 0))) 3878 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3879 3880 // Check if the input is an extended load of the required or/shift expression. 3881 Value *LoadPtr; 3882 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3883 return false; 3884 3885 // Require that the total load bit width is a legal integer type. 3886 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3887 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3888 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3889 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3890 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3891 return false; 3892 3893 // Everything matched - assume that we can fold the whole sequence using 3894 // load combining. 3895 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3896 << *(cast<Instruction>(Root)) << "\n"); 3897 3898 return true; 3899 } 3900 3901 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3902 if (RdxOpcode != Instruction::Or) 3903 return false; 3904 3905 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3906 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3907 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3908 } 3909 3910 bool BoUpSLP::isLoadCombineCandidate() const { 3911 // Peek through a final sequence of stores and check if all operations are 3912 // likely to be load-combined. 3913 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3914 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3915 Value *X; 3916 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3917 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3918 return false; 3919 } 3920 return true; 3921 } 3922 3923 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3924 // We can vectorize the tree if its size is greater than or equal to the 3925 // minimum size specified by the MinTreeSize command line option. 3926 if (VectorizableTree.size() >= MinTreeSize) 3927 return false; 3928 3929 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3930 // can vectorize it if we can prove it fully vectorizable. 3931 if (isFullyVectorizableTinyTree()) 3932 return false; 3933 3934 assert(VectorizableTree.empty() 3935 ? ExternalUses.empty() 3936 : true && "We shouldn't have any external users"); 3937 3938 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3939 // vectorizable. 3940 return true; 3941 } 3942 3943 int BoUpSLP::getSpillCost() const { 3944 // Walk from the bottom of the tree to the top, tracking which values are 3945 // live. When we see a call instruction that is not part of our tree, 3946 // query TTI to see if there is a cost to keeping values live over it 3947 // (for example, if spills and fills are required). 3948 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3949 int Cost = 0; 3950 3951 SmallPtrSet<Instruction*, 4> LiveValues; 3952 Instruction *PrevInst = nullptr; 3953 3954 // The entries in VectorizableTree are not necessarily ordered by their 3955 // position in basic blocks. Collect them and order them by dominance so later 3956 // instructions are guaranteed to be visited first. For instructions in 3957 // different basic blocks, we only scan to the beginning of the block, so 3958 // their order does not matter, as long as all instructions in a basic block 3959 // are grouped together. Using dominance ensures a deterministic order. 3960 SmallVector<Instruction *, 16> OrderedScalars; 3961 for (const auto &TEPtr : VectorizableTree) { 3962 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3963 if (!Inst) 3964 continue; 3965 OrderedScalars.push_back(Inst); 3966 } 3967 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3968 return DT->dominates(B, A); 3969 }); 3970 3971 for (Instruction *Inst : OrderedScalars) { 3972 if (!PrevInst) { 3973 PrevInst = Inst; 3974 continue; 3975 } 3976 3977 // Update LiveValues. 3978 LiveValues.erase(PrevInst); 3979 for (auto &J : PrevInst->operands()) { 3980 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3981 LiveValues.insert(cast<Instruction>(&*J)); 3982 } 3983 3984 LLVM_DEBUG({ 3985 dbgs() << "SLP: #LV: " << LiveValues.size(); 3986 for (auto *X : LiveValues) 3987 dbgs() << " " << X->getName(); 3988 dbgs() << ", Looking at "; 3989 Inst->dump(); 3990 }); 3991 3992 // Now find the sequence of instructions between PrevInst and Inst. 3993 unsigned NumCalls = 0; 3994 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3995 PrevInstIt = 3996 PrevInst->getIterator().getReverse(); 3997 while (InstIt != PrevInstIt) { 3998 if (PrevInstIt == PrevInst->getParent()->rend()) { 3999 PrevInstIt = Inst->getParent()->rbegin(); 4000 continue; 4001 } 4002 4003 // Debug information does not impact spill cost. 4004 if ((isa<CallInst>(&*PrevInstIt) && 4005 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4006 &*PrevInstIt != PrevInst) 4007 NumCalls++; 4008 4009 ++PrevInstIt; 4010 } 4011 4012 if (NumCalls) { 4013 SmallVector<Type*, 4> V; 4014 for (auto *II : LiveValues) 4015 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4016 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4017 } 4018 4019 PrevInst = Inst; 4020 } 4021 4022 return Cost; 4023 } 4024 4025 int BoUpSLP::getTreeCost() { 4026 int Cost = 0; 4027 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4028 << VectorizableTree.size() << ".\n"); 4029 4030 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4031 4032 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4033 TreeEntry &TE = *VectorizableTree[I].get(); 4034 4035 // We create duplicate tree entries for gather sequences that have multiple 4036 // uses. However, we should not compute the cost of duplicate sequences. 4037 // For example, if we have a build vector (i.e., insertelement sequence) 4038 // that is used by more than one vector instruction, we only need to 4039 // compute the cost of the insertelement instructions once. The redundant 4040 // instructions will be eliminated by CSE. 4041 // 4042 // We should consider not creating duplicate tree entries for gather 4043 // sequences, and instead add additional edges to the tree representing 4044 // their uses. Since such an approach results in fewer total entries, 4045 // existing heuristics based on tree size may yield different results. 4046 // 4047 if (TE.State == TreeEntry::NeedToGather && 4048 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4049 VectorizableTree.end(), 4050 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4051 return EntryPtr->State == TreeEntry::NeedToGather && 4052 EntryPtr->isSame(TE.Scalars); 4053 })) 4054 continue; 4055 4056 int C = getEntryCost(&TE); 4057 Cost += C; 4058 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4059 << " for bundle that starts with " << *TE.Scalars[0] 4060 << ".\n" 4061 << "SLP: Current total cost = " << Cost << "\n"); 4062 } 4063 4064 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4065 int ExtractCost = 0; 4066 for (ExternalUser &EU : ExternalUses) { 4067 // We only add extract cost once for the same scalar. 4068 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4069 continue; 4070 4071 // Uses by ephemeral values are free (because the ephemeral value will be 4072 // removed prior to code generation, and so the extraction will be 4073 // removed as well). 4074 if (EphValues.count(EU.User)) 4075 continue; 4076 4077 // If we plan to rewrite the tree in a smaller type, we will need to sign 4078 // extend the extracted value back to the original type. Here, we account 4079 // for the extract and the added cost of the sign extend if needed. 4080 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4081 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4082 if (MinBWs.count(ScalarRoot)) { 4083 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4084 auto Extend = 4085 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4086 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4087 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4088 VecTy, EU.Lane); 4089 } else { 4090 ExtractCost += 4091 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4092 } 4093 } 4094 4095 int SpillCost = getSpillCost(); 4096 Cost += SpillCost + ExtractCost; 4097 4098 #ifndef NDEBUG 4099 SmallString<256> Str; 4100 { 4101 raw_svector_ostream OS(Str); 4102 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4103 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4104 << "SLP: Total Cost = " << Cost << ".\n"; 4105 } 4106 LLVM_DEBUG(dbgs() << Str); 4107 if (ViewSLPTree) 4108 ViewGraph(this, "SLP" + F->getName(), false, Str); 4109 #endif 4110 4111 return Cost; 4112 } 4113 4114 int BoUpSLP::getGatherCost(FixedVectorType *Ty, 4115 const DenseSet<unsigned> &ShuffledIndices) const { 4116 unsigned NumElts = Ty->getNumElements(); 4117 APInt DemandedElts = APInt::getNullValue(NumElts); 4118 for (unsigned I = 0; I < NumElts; ++I) 4119 if (!ShuffledIndices.count(I)) 4120 DemandedElts.setBit(I); 4121 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4122 /*Extract*/ false); 4123 if (!ShuffledIndices.empty()) 4124 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4125 return Cost; 4126 } 4127 4128 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4129 // Find the type of the operands in VL. 4130 Type *ScalarTy = VL[0]->getType(); 4131 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4132 ScalarTy = SI->getValueOperand()->getType(); 4133 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4134 // Find the cost of inserting/extracting values from the vector. 4135 // Check if the same elements are inserted several times and count them as 4136 // shuffle candidates. 4137 DenseSet<unsigned> ShuffledElements; 4138 DenseSet<Value *> UniqueElements; 4139 // Iterate in reverse order to consider insert elements with the high cost. 4140 for (unsigned I = VL.size(); I > 0; --I) { 4141 unsigned Idx = I - 1; 4142 if (!UniqueElements.insert(VL[Idx]).second) 4143 ShuffledElements.insert(Idx); 4144 } 4145 return getGatherCost(VecTy, ShuffledElements); 4146 } 4147 4148 // Perform operand reordering on the instructions in VL and return the reordered 4149 // operands in Left and Right. 4150 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4151 SmallVectorImpl<Value *> &Left, 4152 SmallVectorImpl<Value *> &Right, 4153 const DataLayout &DL, 4154 ScalarEvolution &SE, 4155 const BoUpSLP &R) { 4156 if (VL.empty()) 4157 return; 4158 VLOperands Ops(VL, DL, SE, R); 4159 // Reorder the operands in place. 4160 Ops.reorder(); 4161 Left = Ops.getVL(0); 4162 Right = Ops.getVL(1); 4163 } 4164 4165 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4166 // Get the basic block this bundle is in. All instructions in the bundle 4167 // should be in this block. 4168 auto *Front = E->getMainOp(); 4169 auto *BB = Front->getParent(); 4170 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4171 [=](Value *V) -> bool { 4172 auto *I = cast<Instruction>(V); 4173 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4174 })); 4175 4176 // The last instruction in the bundle in program order. 4177 Instruction *LastInst = nullptr; 4178 4179 // Find the last instruction. The common case should be that BB has been 4180 // scheduled, and the last instruction is VL.back(). So we start with 4181 // VL.back() and iterate over schedule data until we reach the end of the 4182 // bundle. The end of the bundle is marked by null ScheduleData. 4183 if (BlocksSchedules.count(BB)) { 4184 auto *Bundle = 4185 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4186 if (Bundle && Bundle->isPartOfBundle()) 4187 for (; Bundle; Bundle = Bundle->NextInBundle) 4188 if (Bundle->OpValue == Bundle->Inst) 4189 LastInst = Bundle->Inst; 4190 } 4191 4192 // LastInst can still be null at this point if there's either not an entry 4193 // for BB in BlocksSchedules or there's no ScheduleData available for 4194 // VL.back(). This can be the case if buildTree_rec aborts for various 4195 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4196 // size is reached, etc.). ScheduleData is initialized in the scheduling 4197 // "dry-run". 4198 // 4199 // If this happens, we can still find the last instruction by brute force. We 4200 // iterate forwards from Front (inclusive) until we either see all 4201 // instructions in the bundle or reach the end of the block. If Front is the 4202 // last instruction in program order, LastInst will be set to Front, and we 4203 // will visit all the remaining instructions in the block. 4204 // 4205 // One of the reasons we exit early from buildTree_rec is to place an upper 4206 // bound on compile-time. Thus, taking an additional compile-time hit here is 4207 // not ideal. However, this should be exceedingly rare since it requires that 4208 // we both exit early from buildTree_rec and that the bundle be out-of-order 4209 // (causing us to iterate all the way to the end of the block). 4210 if (!LastInst) { 4211 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4212 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4213 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4214 LastInst = &I; 4215 if (Bundle.empty()) 4216 break; 4217 } 4218 } 4219 assert(LastInst && "Failed to find last instruction in bundle"); 4220 4221 // Set the insertion point after the last instruction in the bundle. Set the 4222 // debug location to Front. 4223 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4224 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4225 } 4226 4227 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4228 Value *Val0 = 4229 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4230 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4231 Value *Vec = UndefValue::get(VecTy); 4232 unsigned InsIndex = 0; 4233 for (Value *Val : VL) { 4234 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4235 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4236 if (!InsElt) 4237 continue; 4238 GatherSeq.insert(InsElt); 4239 CSEBlocks.insert(InsElt->getParent()); 4240 // Add to our 'need-to-extract' list. 4241 if (TreeEntry *Entry = getTreeEntry(Val)) { 4242 // Find which lane we need to extract. 4243 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4244 find(Entry->Scalars, Val)); 4245 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4246 if (!Entry->ReuseShuffleIndices.empty()) { 4247 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4248 find(Entry->ReuseShuffleIndices, FoundLane)); 4249 } 4250 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4251 } 4252 } 4253 4254 return Vec; 4255 } 4256 4257 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4258 InstructionsState S = getSameOpcode(VL); 4259 if (S.getOpcode()) { 4260 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4261 if (E->isSame(VL)) { 4262 Value *V = vectorizeTree(E); 4263 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4264 // We need to get the vectorized value but without shuffle. 4265 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4266 V = SV->getOperand(0); 4267 } else { 4268 // Reshuffle to get only unique values. 4269 SmallVector<int, 4> UniqueIdxs; 4270 SmallSet<int, 4> UsedIdxs; 4271 for (int Idx : E->ReuseShuffleIndices) 4272 if (UsedIdxs.insert(Idx).second) 4273 UniqueIdxs.emplace_back(Idx); 4274 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4275 } 4276 } 4277 return V; 4278 } 4279 } 4280 } 4281 4282 // Check that every instruction appears once in this bundle. 4283 SmallVector<int, 4> ReuseShuffleIndicies; 4284 SmallVector<Value *, 4> UniqueValues; 4285 if (VL.size() > 2) { 4286 DenseMap<Value *, unsigned> UniquePositions; 4287 for (Value *V : VL) { 4288 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4289 ReuseShuffleIndicies.emplace_back(Res.first->second); 4290 if (Res.second || isa<Constant>(V)) 4291 UniqueValues.emplace_back(V); 4292 } 4293 // Do not shuffle single element or if number of unique values is not power 4294 // of 2. 4295 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4296 !llvm::isPowerOf2_32(UniqueValues.size())) 4297 ReuseShuffleIndicies.clear(); 4298 else 4299 VL = UniqueValues; 4300 } 4301 4302 Value *Vec = gather(VL); 4303 if (!ReuseShuffleIndicies.empty()) { 4304 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4305 if (auto *I = dyn_cast<Instruction>(Vec)) { 4306 GatherSeq.insert(I); 4307 CSEBlocks.insert(I->getParent()); 4308 } 4309 } 4310 return Vec; 4311 } 4312 4313 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4314 IRBuilder<>::InsertPointGuard Guard(Builder); 4315 4316 if (E->VectorizedValue) { 4317 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4318 return E->VectorizedValue; 4319 } 4320 4321 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4322 if (E->State == TreeEntry::NeedToGather) { 4323 setInsertPointAfterBundle(E); 4324 Value *Vec = gather(E->Scalars); 4325 if (NeedToShuffleReuses) { 4326 Vec = Builder.CreateShuffleVector(Vec, E->ReuseShuffleIndices, "shuffle"); 4327 if (auto *I = dyn_cast<Instruction>(Vec)) { 4328 GatherSeq.insert(I); 4329 CSEBlocks.insert(I->getParent()); 4330 } 4331 } 4332 E->VectorizedValue = Vec; 4333 return Vec; 4334 } 4335 4336 assert((E->State == TreeEntry::Vectorize || 4337 E->State == TreeEntry::ScatterVectorize) && 4338 "Unhandled state"); 4339 unsigned ShuffleOrOp = 4340 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4341 Instruction *VL0 = E->getMainOp(); 4342 Type *ScalarTy = VL0->getType(); 4343 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4344 ScalarTy = Store->getValueOperand()->getType(); 4345 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4346 switch (ShuffleOrOp) { 4347 case Instruction::PHI: { 4348 auto *PH = cast<PHINode>(VL0); 4349 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4350 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4351 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4352 Value *V = NewPhi; 4353 if (NeedToShuffleReuses) 4354 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4355 4356 E->VectorizedValue = V; 4357 4358 // PHINodes may have multiple entries from the same block. We want to 4359 // visit every block once. 4360 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4361 4362 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4363 ValueList Operands; 4364 BasicBlock *IBB = PH->getIncomingBlock(i); 4365 4366 if (!VisitedBBs.insert(IBB).second) { 4367 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4368 continue; 4369 } 4370 4371 Builder.SetInsertPoint(IBB->getTerminator()); 4372 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4373 Value *Vec = vectorizeTree(E->getOperand(i)); 4374 NewPhi->addIncoming(Vec, IBB); 4375 } 4376 4377 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4378 "Invalid number of incoming values"); 4379 return V; 4380 } 4381 4382 case Instruction::ExtractElement: { 4383 Value *V = E->getSingleOperand(0); 4384 if (!E->ReorderIndices.empty()) { 4385 SmallVector<int, 4> Mask; 4386 inversePermutation(E->ReorderIndices, Mask); 4387 Builder.SetInsertPoint(VL0); 4388 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4389 } 4390 if (NeedToShuffleReuses) { 4391 // TODO: Merge this shuffle with the ReorderShuffleMask. 4392 if (E->ReorderIndices.empty()) 4393 Builder.SetInsertPoint(VL0); 4394 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4395 } 4396 E->VectorizedValue = V; 4397 return V; 4398 } 4399 case Instruction::ExtractValue: { 4400 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4401 Builder.SetInsertPoint(LI); 4402 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4403 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4404 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4405 Value *NewV = propagateMetadata(V, E->Scalars); 4406 if (!E->ReorderIndices.empty()) { 4407 SmallVector<int, 4> Mask; 4408 inversePermutation(E->ReorderIndices, Mask); 4409 NewV = Builder.CreateShuffleVector(NewV, Mask, "reorder_shuffle"); 4410 } 4411 if (NeedToShuffleReuses) { 4412 // TODO: Merge this shuffle with the ReorderShuffleMask. 4413 NewV = Builder.CreateShuffleVector(NewV, E->ReuseShuffleIndices, 4414 "shuffle"); 4415 } 4416 E->VectorizedValue = NewV; 4417 return NewV; 4418 } 4419 case Instruction::ZExt: 4420 case Instruction::SExt: 4421 case Instruction::FPToUI: 4422 case Instruction::FPToSI: 4423 case Instruction::FPExt: 4424 case Instruction::PtrToInt: 4425 case Instruction::IntToPtr: 4426 case Instruction::SIToFP: 4427 case Instruction::UIToFP: 4428 case Instruction::Trunc: 4429 case Instruction::FPTrunc: 4430 case Instruction::BitCast: { 4431 setInsertPointAfterBundle(E); 4432 4433 Value *InVec = vectorizeTree(E->getOperand(0)); 4434 4435 if (E->VectorizedValue) { 4436 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4437 return E->VectorizedValue; 4438 } 4439 4440 auto *CI = cast<CastInst>(VL0); 4441 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4442 if (NeedToShuffleReuses) 4443 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4444 4445 E->VectorizedValue = V; 4446 ++NumVectorInstructions; 4447 return V; 4448 } 4449 case Instruction::FCmp: 4450 case Instruction::ICmp: { 4451 setInsertPointAfterBundle(E); 4452 4453 Value *L = vectorizeTree(E->getOperand(0)); 4454 Value *R = vectorizeTree(E->getOperand(1)); 4455 4456 if (E->VectorizedValue) { 4457 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4458 return E->VectorizedValue; 4459 } 4460 4461 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4462 Value *V = Builder.CreateCmp(P0, L, R); 4463 propagateIRFlags(V, E->Scalars, VL0); 4464 if (NeedToShuffleReuses) 4465 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4466 4467 E->VectorizedValue = V; 4468 ++NumVectorInstructions; 4469 return V; 4470 } 4471 case Instruction::Select: { 4472 setInsertPointAfterBundle(E); 4473 4474 Value *Cond = vectorizeTree(E->getOperand(0)); 4475 Value *True = vectorizeTree(E->getOperand(1)); 4476 Value *False = vectorizeTree(E->getOperand(2)); 4477 4478 if (E->VectorizedValue) { 4479 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4480 return E->VectorizedValue; 4481 } 4482 4483 Value *V = Builder.CreateSelect(Cond, True, False); 4484 if (NeedToShuffleReuses) 4485 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4486 4487 E->VectorizedValue = V; 4488 ++NumVectorInstructions; 4489 return V; 4490 } 4491 case Instruction::FNeg: { 4492 setInsertPointAfterBundle(E); 4493 4494 Value *Op = vectorizeTree(E->getOperand(0)); 4495 4496 if (E->VectorizedValue) { 4497 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4498 return E->VectorizedValue; 4499 } 4500 4501 Value *V = Builder.CreateUnOp( 4502 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4503 propagateIRFlags(V, E->Scalars, VL0); 4504 if (auto *I = dyn_cast<Instruction>(V)) 4505 V = propagateMetadata(I, E->Scalars); 4506 4507 if (NeedToShuffleReuses) 4508 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4509 4510 E->VectorizedValue = V; 4511 ++NumVectorInstructions; 4512 4513 return V; 4514 } 4515 case Instruction::Add: 4516 case Instruction::FAdd: 4517 case Instruction::Sub: 4518 case Instruction::FSub: 4519 case Instruction::Mul: 4520 case Instruction::FMul: 4521 case Instruction::UDiv: 4522 case Instruction::SDiv: 4523 case Instruction::FDiv: 4524 case Instruction::URem: 4525 case Instruction::SRem: 4526 case Instruction::FRem: 4527 case Instruction::Shl: 4528 case Instruction::LShr: 4529 case Instruction::AShr: 4530 case Instruction::And: 4531 case Instruction::Or: 4532 case Instruction::Xor: { 4533 setInsertPointAfterBundle(E); 4534 4535 Value *LHS = vectorizeTree(E->getOperand(0)); 4536 Value *RHS = vectorizeTree(E->getOperand(1)); 4537 4538 if (E->VectorizedValue) { 4539 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4540 return E->VectorizedValue; 4541 } 4542 4543 Value *V = Builder.CreateBinOp( 4544 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4545 RHS); 4546 propagateIRFlags(V, E->Scalars, VL0); 4547 if (auto *I = dyn_cast<Instruction>(V)) 4548 V = propagateMetadata(I, E->Scalars); 4549 4550 if (NeedToShuffleReuses) 4551 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4552 4553 E->VectorizedValue = V; 4554 ++NumVectorInstructions; 4555 4556 return V; 4557 } 4558 case Instruction::Load: { 4559 // Loads are inserted at the head of the tree because we don't want to 4560 // sink them all the way down past store instructions. 4561 bool IsReorder = E->updateStateIfReorder(); 4562 if (IsReorder) 4563 VL0 = E->getMainOp(); 4564 setInsertPointAfterBundle(E); 4565 4566 LoadInst *LI = cast<LoadInst>(VL0); 4567 Instruction *NewLI; 4568 unsigned AS = LI->getPointerAddressSpace(); 4569 Value *PO = LI->getPointerOperand(); 4570 if (E->State == TreeEntry::Vectorize) { 4571 4572 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4573 4574 // The pointer operand uses an in-tree scalar so we add the new BitCast 4575 // to ExternalUses list to make sure that an extract will be generated 4576 // in the future. 4577 if (getTreeEntry(PO)) 4578 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4579 4580 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4581 } else { 4582 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4583 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4584 // Use the minimum alignment of the gathered loads. 4585 Align CommonAlignment = LI->getAlign(); 4586 for (Value *V : E->Scalars) 4587 CommonAlignment = 4588 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4589 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4590 } 4591 Value *V = propagateMetadata(NewLI, E->Scalars); 4592 4593 if (IsReorder) { 4594 SmallVector<int, 4> Mask; 4595 inversePermutation(E->ReorderIndices, Mask); 4596 V = Builder.CreateShuffleVector(V, Mask, "reorder_shuffle"); 4597 } 4598 if (NeedToShuffleReuses) { 4599 // TODO: Merge this shuffle with the ReorderShuffleMask. 4600 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4601 } 4602 E->VectorizedValue = V; 4603 ++NumVectorInstructions; 4604 return V; 4605 } 4606 case Instruction::Store: { 4607 bool IsReorder = !E->ReorderIndices.empty(); 4608 auto *SI = cast<StoreInst>( 4609 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4610 unsigned AS = SI->getPointerAddressSpace(); 4611 4612 setInsertPointAfterBundle(E); 4613 4614 Value *VecValue = vectorizeTree(E->getOperand(0)); 4615 if (IsReorder) { 4616 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4617 E->ReorderIndices.end()); 4618 VecValue = Builder.CreateShuffleVector(VecValue, Mask, "reorder_shuf"); 4619 } 4620 Value *ScalarPtr = SI->getPointerOperand(); 4621 Value *VecPtr = Builder.CreateBitCast( 4622 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4623 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4624 SI->getAlign()); 4625 4626 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4627 // ExternalUses to make sure that an extract will be generated in the 4628 // future. 4629 if (getTreeEntry(ScalarPtr)) 4630 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4631 4632 Value *V = propagateMetadata(ST, E->Scalars); 4633 if (NeedToShuffleReuses) 4634 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4635 4636 E->VectorizedValue = V; 4637 ++NumVectorInstructions; 4638 return V; 4639 } 4640 case Instruction::GetElementPtr: { 4641 setInsertPointAfterBundle(E); 4642 4643 Value *Op0 = vectorizeTree(E->getOperand(0)); 4644 4645 std::vector<Value *> OpVecs; 4646 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4647 ++j) { 4648 ValueList &VL = E->getOperand(j); 4649 // Need to cast all elements to the same type before vectorization to 4650 // avoid crash. 4651 Type *VL0Ty = VL0->getOperand(j)->getType(); 4652 Type *Ty = llvm::all_of( 4653 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4654 ? VL0Ty 4655 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4656 ->getPointerOperandType() 4657 ->getScalarType()); 4658 for (Value *&V : VL) { 4659 auto *CI = cast<ConstantInt>(V); 4660 V = ConstantExpr::getIntegerCast(CI, Ty, 4661 CI->getValue().isSignBitSet()); 4662 } 4663 Value *OpVec = vectorizeTree(VL); 4664 OpVecs.push_back(OpVec); 4665 } 4666 4667 Value *V = Builder.CreateGEP( 4668 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4669 if (Instruction *I = dyn_cast<Instruction>(V)) 4670 V = propagateMetadata(I, E->Scalars); 4671 4672 if (NeedToShuffleReuses) 4673 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4674 4675 E->VectorizedValue = V; 4676 ++NumVectorInstructions; 4677 4678 return V; 4679 } 4680 case Instruction::Call: { 4681 CallInst *CI = cast<CallInst>(VL0); 4682 setInsertPointAfterBundle(E); 4683 4684 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4685 if (Function *FI = CI->getCalledFunction()) 4686 IID = FI->getIntrinsicID(); 4687 4688 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4689 4690 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4691 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4692 VecCallCosts.first <= VecCallCosts.second; 4693 4694 Value *ScalarArg = nullptr; 4695 std::vector<Value *> OpVecs; 4696 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4697 ValueList OpVL; 4698 // Some intrinsics have scalar arguments. This argument should not be 4699 // vectorized. 4700 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4701 CallInst *CEI = cast<CallInst>(VL0); 4702 ScalarArg = CEI->getArgOperand(j); 4703 OpVecs.push_back(CEI->getArgOperand(j)); 4704 continue; 4705 } 4706 4707 Value *OpVec = vectorizeTree(E->getOperand(j)); 4708 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4709 OpVecs.push_back(OpVec); 4710 } 4711 4712 Function *CF; 4713 if (!UseIntrinsic) { 4714 VFShape Shape = 4715 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4716 VecTy->getNumElements())), 4717 false /*HasGlobalPred*/); 4718 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4719 } else { 4720 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4721 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4722 } 4723 4724 SmallVector<OperandBundleDef, 1> OpBundles; 4725 CI->getOperandBundlesAsDefs(OpBundles); 4726 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4727 4728 // The scalar argument uses an in-tree scalar so we add the new vectorized 4729 // call to ExternalUses list to make sure that an extract will be 4730 // generated in the future. 4731 if (ScalarArg && getTreeEntry(ScalarArg)) 4732 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4733 4734 propagateIRFlags(V, E->Scalars, VL0); 4735 if (NeedToShuffleReuses) 4736 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4737 4738 E->VectorizedValue = V; 4739 ++NumVectorInstructions; 4740 return V; 4741 } 4742 case Instruction::ShuffleVector: { 4743 assert(E->isAltShuffle() && 4744 ((Instruction::isBinaryOp(E->getOpcode()) && 4745 Instruction::isBinaryOp(E->getAltOpcode())) || 4746 (Instruction::isCast(E->getOpcode()) && 4747 Instruction::isCast(E->getAltOpcode()))) && 4748 "Invalid Shuffle Vector Operand"); 4749 4750 Value *LHS = nullptr, *RHS = nullptr; 4751 if (Instruction::isBinaryOp(E->getOpcode())) { 4752 setInsertPointAfterBundle(E); 4753 LHS = vectorizeTree(E->getOperand(0)); 4754 RHS = vectorizeTree(E->getOperand(1)); 4755 } else { 4756 setInsertPointAfterBundle(E); 4757 LHS = vectorizeTree(E->getOperand(0)); 4758 } 4759 4760 if (E->VectorizedValue) { 4761 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4762 return E->VectorizedValue; 4763 } 4764 4765 Value *V0, *V1; 4766 if (Instruction::isBinaryOp(E->getOpcode())) { 4767 V0 = Builder.CreateBinOp( 4768 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4769 V1 = Builder.CreateBinOp( 4770 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4771 } else { 4772 V0 = Builder.CreateCast( 4773 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4774 V1 = Builder.CreateCast( 4775 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4776 } 4777 4778 // Create shuffle to take alternate operations from the vector. 4779 // Also, gather up main and alt scalar ops to propagate IR flags to 4780 // each vector operation. 4781 ValueList OpScalars, AltScalars; 4782 unsigned e = E->Scalars.size(); 4783 SmallVector<int, 8> Mask(e); 4784 for (unsigned i = 0; i < e; ++i) { 4785 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4786 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4787 if (OpInst->getOpcode() == E->getAltOpcode()) { 4788 Mask[i] = e + i; 4789 AltScalars.push_back(E->Scalars[i]); 4790 } else { 4791 Mask[i] = i; 4792 OpScalars.push_back(E->Scalars[i]); 4793 } 4794 } 4795 4796 propagateIRFlags(V0, OpScalars); 4797 propagateIRFlags(V1, AltScalars); 4798 4799 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4800 if (Instruction *I = dyn_cast<Instruction>(V)) 4801 V = propagateMetadata(I, E->Scalars); 4802 if (NeedToShuffleReuses) 4803 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4804 4805 E->VectorizedValue = V; 4806 ++NumVectorInstructions; 4807 4808 return V; 4809 } 4810 default: 4811 llvm_unreachable("unknown inst"); 4812 } 4813 return nullptr; 4814 } 4815 4816 Value *BoUpSLP::vectorizeTree() { 4817 ExtraValueToDebugLocsMap ExternallyUsedValues; 4818 return vectorizeTree(ExternallyUsedValues); 4819 } 4820 4821 Value * 4822 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4823 // All blocks must be scheduled before any instructions are inserted. 4824 for (auto &BSIter : BlocksSchedules) { 4825 scheduleBlock(BSIter.second.get()); 4826 } 4827 4828 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4829 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4830 4831 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4832 // vectorized root. InstCombine will then rewrite the entire expression. We 4833 // sign extend the extracted values below. 4834 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4835 if (MinBWs.count(ScalarRoot)) { 4836 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4837 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4838 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4839 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4840 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4841 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4842 VectorizableTree[0]->VectorizedValue = Trunc; 4843 } 4844 4845 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4846 << " values .\n"); 4847 4848 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4849 // specified by ScalarType. 4850 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4851 if (!MinBWs.count(ScalarRoot)) 4852 return Ex; 4853 if (MinBWs[ScalarRoot].second) 4854 return Builder.CreateSExt(Ex, ScalarType); 4855 return Builder.CreateZExt(Ex, ScalarType); 4856 }; 4857 4858 // Extract all of the elements with the external uses. 4859 for (const auto &ExternalUse : ExternalUses) { 4860 Value *Scalar = ExternalUse.Scalar; 4861 llvm::User *User = ExternalUse.User; 4862 4863 // Skip users that we already RAUW. This happens when one instruction 4864 // has multiple uses of the same value. 4865 if (User && !is_contained(Scalar->users(), User)) 4866 continue; 4867 TreeEntry *E = getTreeEntry(Scalar); 4868 assert(E && "Invalid scalar"); 4869 assert(E->State != TreeEntry::NeedToGather && 4870 "Extracting from a gather list"); 4871 4872 Value *Vec = E->VectorizedValue; 4873 assert(Vec && "Can't find vectorizable value"); 4874 4875 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4876 // If User == nullptr, the Scalar is used as extra arg. Generate 4877 // ExtractElement instruction and update the record for this scalar in 4878 // ExternallyUsedValues. 4879 if (!User) { 4880 assert(ExternallyUsedValues.count(Scalar) && 4881 "Scalar with nullptr as an external user must be registered in " 4882 "ExternallyUsedValues map"); 4883 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4884 Builder.SetInsertPoint(VecI->getParent(), 4885 std::next(VecI->getIterator())); 4886 } else { 4887 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4888 } 4889 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4890 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4891 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4892 auto &Locs = ExternallyUsedValues[Scalar]; 4893 ExternallyUsedValues.insert({Ex, Locs}); 4894 ExternallyUsedValues.erase(Scalar); 4895 // Required to update internally referenced instructions. 4896 Scalar->replaceAllUsesWith(Ex); 4897 continue; 4898 } 4899 4900 // Generate extracts for out-of-tree users. 4901 // Find the insertion point for the extractelement lane. 4902 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4903 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4904 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4905 if (PH->getIncomingValue(i) == Scalar) { 4906 Instruction *IncomingTerminator = 4907 PH->getIncomingBlock(i)->getTerminator(); 4908 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4909 Builder.SetInsertPoint(VecI->getParent(), 4910 std::next(VecI->getIterator())); 4911 } else { 4912 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4913 } 4914 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4915 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4916 CSEBlocks.insert(PH->getIncomingBlock(i)); 4917 PH->setOperand(i, Ex); 4918 } 4919 } 4920 } else { 4921 Builder.SetInsertPoint(cast<Instruction>(User)); 4922 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4923 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4924 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4925 User->replaceUsesOfWith(Scalar, Ex); 4926 } 4927 } else { 4928 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4929 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4930 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4931 CSEBlocks.insert(&F->getEntryBlock()); 4932 User->replaceUsesOfWith(Scalar, Ex); 4933 } 4934 4935 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4936 } 4937 4938 // For each vectorized value: 4939 for (auto &TEPtr : VectorizableTree) { 4940 TreeEntry *Entry = TEPtr.get(); 4941 4942 // No need to handle users of gathered values. 4943 if (Entry->State == TreeEntry::NeedToGather) 4944 continue; 4945 4946 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4947 4948 // For each lane: 4949 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4950 Value *Scalar = Entry->Scalars[Lane]; 4951 4952 #ifndef NDEBUG 4953 Type *Ty = Scalar->getType(); 4954 if (!Ty->isVoidTy()) { 4955 for (User *U : Scalar->users()) { 4956 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4957 4958 // It is legal to delete users in the ignorelist. 4959 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4960 "Deleting out-of-tree value"); 4961 } 4962 } 4963 #endif 4964 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4965 eraseInstruction(cast<Instruction>(Scalar)); 4966 } 4967 } 4968 4969 Builder.ClearInsertionPoint(); 4970 InstrElementSize.clear(); 4971 4972 return VectorizableTree[0]->VectorizedValue; 4973 } 4974 4975 void BoUpSLP::optimizeGatherSequence() { 4976 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4977 << " gather sequences instructions.\n"); 4978 // LICM InsertElementInst sequences. 4979 for (Instruction *I : GatherSeq) { 4980 if (isDeleted(I)) 4981 continue; 4982 4983 // Check if this block is inside a loop. 4984 Loop *L = LI->getLoopFor(I->getParent()); 4985 if (!L) 4986 continue; 4987 4988 // Check if it has a preheader. 4989 BasicBlock *PreHeader = L->getLoopPreheader(); 4990 if (!PreHeader) 4991 continue; 4992 4993 // If the vector or the element that we insert into it are 4994 // instructions that are defined in this basic block then we can't 4995 // hoist this instruction. 4996 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4997 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4998 if (Op0 && L->contains(Op0)) 4999 continue; 5000 if (Op1 && L->contains(Op1)) 5001 continue; 5002 5003 // We can hoist this instruction. Move it to the pre-header. 5004 I->moveBefore(PreHeader->getTerminator()); 5005 } 5006 5007 // Make a list of all reachable blocks in our CSE queue. 5008 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5009 CSEWorkList.reserve(CSEBlocks.size()); 5010 for (BasicBlock *BB : CSEBlocks) 5011 if (DomTreeNode *N = DT->getNode(BB)) { 5012 assert(DT->isReachableFromEntry(N)); 5013 CSEWorkList.push_back(N); 5014 } 5015 5016 // Sort blocks by domination. This ensures we visit a block after all blocks 5017 // dominating it are visited. 5018 llvm::stable_sort(CSEWorkList, 5019 [this](const DomTreeNode *A, const DomTreeNode *B) { 5020 return DT->properlyDominates(A, B); 5021 }); 5022 5023 // Perform O(N^2) search over the gather sequences and merge identical 5024 // instructions. TODO: We can further optimize this scan if we split the 5025 // instructions into different buckets based on the insert lane. 5026 SmallVector<Instruction *, 16> Visited; 5027 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5028 assert(*I && 5029 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5030 "Worklist not sorted properly!"); 5031 BasicBlock *BB = (*I)->getBlock(); 5032 // For all instructions in blocks containing gather sequences: 5033 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5034 Instruction *In = &*it++; 5035 if (isDeleted(In)) 5036 continue; 5037 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5038 continue; 5039 5040 // Check if we can replace this instruction with any of the 5041 // visited instructions. 5042 for (Instruction *v : Visited) { 5043 if (In->isIdenticalTo(v) && 5044 DT->dominates(v->getParent(), In->getParent())) { 5045 In->replaceAllUsesWith(v); 5046 eraseInstruction(In); 5047 In = nullptr; 5048 break; 5049 } 5050 } 5051 if (In) { 5052 assert(!is_contained(Visited, In)); 5053 Visited.push_back(In); 5054 } 5055 } 5056 } 5057 CSEBlocks.clear(); 5058 GatherSeq.clear(); 5059 } 5060 5061 // Groups the instructions to a bundle (which is then a single scheduling entity) 5062 // and schedules instructions until the bundle gets ready. 5063 Optional<BoUpSLP::ScheduleData *> 5064 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5065 const InstructionsState &S) { 5066 if (isa<PHINode>(S.OpValue)) 5067 return nullptr; 5068 5069 // Initialize the instruction bundle. 5070 Instruction *OldScheduleEnd = ScheduleEnd; 5071 ScheduleData *PrevInBundle = nullptr; 5072 ScheduleData *Bundle = nullptr; 5073 bool ReSchedule = false; 5074 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5075 5076 // Make sure that the scheduling region contains all 5077 // instructions of the bundle. 5078 for (Value *V : VL) { 5079 if (!extendSchedulingRegion(V, S)) 5080 return None; 5081 } 5082 5083 for (Value *V : VL) { 5084 ScheduleData *BundleMember = getScheduleData(V); 5085 assert(BundleMember && 5086 "no ScheduleData for bundle member (maybe not in same basic block)"); 5087 if (BundleMember->IsScheduled) { 5088 // A bundle member was scheduled as single instruction before and now 5089 // needs to be scheduled as part of the bundle. We just get rid of the 5090 // existing schedule. 5091 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5092 << " was already scheduled\n"); 5093 ReSchedule = true; 5094 } 5095 assert(BundleMember->isSchedulingEntity() && 5096 "bundle member already part of other bundle"); 5097 if (PrevInBundle) { 5098 PrevInBundle->NextInBundle = BundleMember; 5099 } else { 5100 Bundle = BundleMember; 5101 } 5102 BundleMember->UnscheduledDepsInBundle = 0; 5103 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5104 5105 // Group the instructions to a bundle. 5106 BundleMember->FirstInBundle = Bundle; 5107 PrevInBundle = BundleMember; 5108 } 5109 if (ScheduleEnd != OldScheduleEnd) { 5110 // The scheduling region got new instructions at the lower end (or it is a 5111 // new region for the first bundle). This makes it necessary to 5112 // recalculate all dependencies. 5113 // It is seldom that this needs to be done a second time after adding the 5114 // initial bundle to the region. 5115 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5116 doForAllOpcodes(I, [](ScheduleData *SD) { 5117 SD->clearDependencies(); 5118 }); 5119 } 5120 ReSchedule = true; 5121 } 5122 if (ReSchedule) { 5123 resetSchedule(); 5124 initialFillReadyList(ReadyInsts); 5125 } 5126 assert(Bundle && "Failed to find schedule bundle"); 5127 5128 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5129 << BB->getName() << "\n"); 5130 5131 calculateDependencies(Bundle, true, SLP); 5132 5133 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5134 // means that there are no cyclic dependencies and we can schedule it. 5135 // Note that's important that we don't "schedule" the bundle yet (see 5136 // cancelScheduling). 5137 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5138 5139 ScheduleData *pickedSD = ReadyInsts.back(); 5140 ReadyInsts.pop_back(); 5141 5142 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5143 schedule(pickedSD, ReadyInsts); 5144 } 5145 } 5146 if (!Bundle->isReady()) { 5147 cancelScheduling(VL, S.OpValue); 5148 return None; 5149 } 5150 return Bundle; 5151 } 5152 5153 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5154 Value *OpValue) { 5155 if (isa<PHINode>(OpValue)) 5156 return; 5157 5158 ScheduleData *Bundle = getScheduleData(OpValue); 5159 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5160 assert(!Bundle->IsScheduled && 5161 "Can't cancel bundle which is already scheduled"); 5162 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5163 "tried to unbundle something which is not a bundle"); 5164 5165 // Un-bundle: make single instructions out of the bundle. 5166 ScheduleData *BundleMember = Bundle; 5167 while (BundleMember) { 5168 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5169 BundleMember->FirstInBundle = BundleMember; 5170 ScheduleData *Next = BundleMember->NextInBundle; 5171 BundleMember->NextInBundle = nullptr; 5172 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5173 if (BundleMember->UnscheduledDepsInBundle == 0) { 5174 ReadyInsts.insert(BundleMember); 5175 } 5176 BundleMember = Next; 5177 } 5178 } 5179 5180 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5181 // Allocate a new ScheduleData for the instruction. 5182 if (ChunkPos >= ChunkSize) { 5183 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5184 ChunkPos = 0; 5185 } 5186 return &(ScheduleDataChunks.back()[ChunkPos++]); 5187 } 5188 5189 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5190 const InstructionsState &S) { 5191 if (getScheduleData(V, isOneOf(S, V))) 5192 return true; 5193 Instruction *I = dyn_cast<Instruction>(V); 5194 assert(I && "bundle member must be an instruction"); 5195 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5196 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5197 ScheduleData *ISD = getScheduleData(I); 5198 if (!ISD) 5199 return false; 5200 assert(isInSchedulingRegion(ISD) && 5201 "ScheduleData not in scheduling region"); 5202 ScheduleData *SD = allocateScheduleDataChunks(); 5203 SD->Inst = I; 5204 SD->init(SchedulingRegionID, S.OpValue); 5205 ExtraScheduleDataMap[I][S.OpValue] = SD; 5206 return true; 5207 }; 5208 if (CheckSheduleForI(I)) 5209 return true; 5210 if (!ScheduleStart) { 5211 // It's the first instruction in the new region. 5212 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5213 ScheduleStart = I; 5214 ScheduleEnd = I->getNextNode(); 5215 if (isOneOf(S, I) != I) 5216 CheckSheduleForI(I); 5217 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5218 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5219 return true; 5220 } 5221 // Search up and down at the same time, because we don't know if the new 5222 // instruction is above or below the existing scheduling region. 5223 BasicBlock::reverse_iterator UpIter = 5224 ++ScheduleStart->getIterator().getReverse(); 5225 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5226 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5227 BasicBlock::iterator LowerEnd = BB->end(); 5228 while (true) { 5229 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5230 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5231 return false; 5232 } 5233 5234 if (UpIter != UpperEnd) { 5235 if (&*UpIter == I) { 5236 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5237 ScheduleStart = I; 5238 if (isOneOf(S, I) != I) 5239 CheckSheduleForI(I); 5240 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5241 << "\n"); 5242 return true; 5243 } 5244 ++UpIter; 5245 } 5246 if (DownIter != LowerEnd) { 5247 if (&*DownIter == I) { 5248 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5249 nullptr); 5250 ScheduleEnd = I->getNextNode(); 5251 if (isOneOf(S, I) != I) 5252 CheckSheduleForI(I); 5253 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5254 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5255 << "\n"); 5256 return true; 5257 } 5258 ++DownIter; 5259 } 5260 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5261 "instruction not found in block"); 5262 } 5263 return true; 5264 } 5265 5266 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5267 Instruction *ToI, 5268 ScheduleData *PrevLoadStore, 5269 ScheduleData *NextLoadStore) { 5270 ScheduleData *CurrentLoadStore = PrevLoadStore; 5271 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5272 ScheduleData *SD = ScheduleDataMap[I]; 5273 if (!SD) { 5274 SD = allocateScheduleDataChunks(); 5275 ScheduleDataMap[I] = SD; 5276 SD->Inst = I; 5277 } 5278 assert(!isInSchedulingRegion(SD) && 5279 "new ScheduleData already in scheduling region"); 5280 SD->init(SchedulingRegionID, I); 5281 5282 if (I->mayReadOrWriteMemory() && 5283 (!isa<IntrinsicInst>(I) || 5284 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5285 cast<IntrinsicInst>(I)->getIntrinsicID() != 5286 Intrinsic::pseudoprobe))) { 5287 // Update the linked list of memory accessing instructions. 5288 if (CurrentLoadStore) { 5289 CurrentLoadStore->NextLoadStore = SD; 5290 } else { 5291 FirstLoadStoreInRegion = SD; 5292 } 5293 CurrentLoadStore = SD; 5294 } 5295 } 5296 if (NextLoadStore) { 5297 if (CurrentLoadStore) 5298 CurrentLoadStore->NextLoadStore = NextLoadStore; 5299 } else { 5300 LastLoadStoreInRegion = CurrentLoadStore; 5301 } 5302 } 5303 5304 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5305 bool InsertInReadyList, 5306 BoUpSLP *SLP) { 5307 assert(SD->isSchedulingEntity()); 5308 5309 SmallVector<ScheduleData *, 10> WorkList; 5310 WorkList.push_back(SD); 5311 5312 while (!WorkList.empty()) { 5313 ScheduleData *SD = WorkList.back(); 5314 WorkList.pop_back(); 5315 5316 ScheduleData *BundleMember = SD; 5317 while (BundleMember) { 5318 assert(isInSchedulingRegion(BundleMember)); 5319 if (!BundleMember->hasValidDependencies()) { 5320 5321 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5322 << "\n"); 5323 BundleMember->Dependencies = 0; 5324 BundleMember->resetUnscheduledDeps(); 5325 5326 // Handle def-use chain dependencies. 5327 if (BundleMember->OpValue != BundleMember->Inst) { 5328 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5329 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5330 BundleMember->Dependencies++; 5331 ScheduleData *DestBundle = UseSD->FirstInBundle; 5332 if (!DestBundle->IsScheduled) 5333 BundleMember->incrementUnscheduledDeps(1); 5334 if (!DestBundle->hasValidDependencies()) 5335 WorkList.push_back(DestBundle); 5336 } 5337 } else { 5338 for (User *U : BundleMember->Inst->users()) { 5339 if (isa<Instruction>(U)) { 5340 ScheduleData *UseSD = getScheduleData(U); 5341 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5342 BundleMember->Dependencies++; 5343 ScheduleData *DestBundle = UseSD->FirstInBundle; 5344 if (!DestBundle->IsScheduled) 5345 BundleMember->incrementUnscheduledDeps(1); 5346 if (!DestBundle->hasValidDependencies()) 5347 WorkList.push_back(DestBundle); 5348 } 5349 } else { 5350 // I'm not sure if this can ever happen. But we need to be safe. 5351 // This lets the instruction/bundle never be scheduled and 5352 // eventually disable vectorization. 5353 BundleMember->Dependencies++; 5354 BundleMember->incrementUnscheduledDeps(1); 5355 } 5356 } 5357 } 5358 5359 // Handle the memory dependencies. 5360 ScheduleData *DepDest = BundleMember->NextLoadStore; 5361 if (DepDest) { 5362 Instruction *SrcInst = BundleMember->Inst; 5363 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5364 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5365 unsigned numAliased = 0; 5366 unsigned DistToSrc = 1; 5367 5368 while (DepDest) { 5369 assert(isInSchedulingRegion(DepDest)); 5370 5371 // We have two limits to reduce the complexity: 5372 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5373 // SLP->isAliased (which is the expensive part in this loop). 5374 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5375 // the whole loop (even if the loop is fast, it's quadratic). 5376 // It's important for the loop break condition (see below) to 5377 // check this limit even between two read-only instructions. 5378 if (DistToSrc >= MaxMemDepDistance || 5379 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5380 (numAliased >= AliasedCheckLimit || 5381 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5382 5383 // We increment the counter only if the locations are aliased 5384 // (instead of counting all alias checks). This gives a better 5385 // balance between reduced runtime and accurate dependencies. 5386 numAliased++; 5387 5388 DepDest->MemoryDependencies.push_back(BundleMember); 5389 BundleMember->Dependencies++; 5390 ScheduleData *DestBundle = DepDest->FirstInBundle; 5391 if (!DestBundle->IsScheduled) { 5392 BundleMember->incrementUnscheduledDeps(1); 5393 } 5394 if (!DestBundle->hasValidDependencies()) { 5395 WorkList.push_back(DestBundle); 5396 } 5397 } 5398 DepDest = DepDest->NextLoadStore; 5399 5400 // Example, explaining the loop break condition: Let's assume our 5401 // starting instruction is i0 and MaxMemDepDistance = 3. 5402 // 5403 // +--------v--v--v 5404 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5405 // +--------^--^--^ 5406 // 5407 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5408 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5409 // Previously we already added dependencies from i3 to i6,i7,i8 5410 // (because of MaxMemDepDistance). As we added a dependency from 5411 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5412 // and we can abort this loop at i6. 5413 if (DistToSrc >= 2 * MaxMemDepDistance) 5414 break; 5415 DistToSrc++; 5416 } 5417 } 5418 } 5419 BundleMember = BundleMember->NextInBundle; 5420 } 5421 if (InsertInReadyList && SD->isReady()) { 5422 ReadyInsts.push_back(SD); 5423 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5424 << "\n"); 5425 } 5426 } 5427 } 5428 5429 void BoUpSLP::BlockScheduling::resetSchedule() { 5430 assert(ScheduleStart && 5431 "tried to reset schedule on block which has not been scheduled"); 5432 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5433 doForAllOpcodes(I, [&](ScheduleData *SD) { 5434 assert(isInSchedulingRegion(SD) && 5435 "ScheduleData not in scheduling region"); 5436 SD->IsScheduled = false; 5437 SD->resetUnscheduledDeps(); 5438 }); 5439 } 5440 ReadyInsts.clear(); 5441 } 5442 5443 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5444 if (!BS->ScheduleStart) 5445 return; 5446 5447 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5448 5449 BS->resetSchedule(); 5450 5451 // For the real scheduling we use a more sophisticated ready-list: it is 5452 // sorted by the original instruction location. This lets the final schedule 5453 // be as close as possible to the original instruction order. 5454 struct ScheduleDataCompare { 5455 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5456 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5457 } 5458 }; 5459 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5460 5461 // Ensure that all dependency data is updated and fill the ready-list with 5462 // initial instructions. 5463 int Idx = 0; 5464 int NumToSchedule = 0; 5465 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5466 I = I->getNextNode()) { 5467 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5468 assert(SD->isPartOfBundle() == 5469 (getTreeEntry(SD->Inst) != nullptr) && 5470 "scheduler and vectorizer bundle mismatch"); 5471 SD->FirstInBundle->SchedulingPriority = Idx++; 5472 if (SD->isSchedulingEntity()) { 5473 BS->calculateDependencies(SD, false, this); 5474 NumToSchedule++; 5475 } 5476 }); 5477 } 5478 BS->initialFillReadyList(ReadyInsts); 5479 5480 Instruction *LastScheduledInst = BS->ScheduleEnd; 5481 5482 // Do the "real" scheduling. 5483 while (!ReadyInsts.empty()) { 5484 ScheduleData *picked = *ReadyInsts.begin(); 5485 ReadyInsts.erase(ReadyInsts.begin()); 5486 5487 // Move the scheduled instruction(s) to their dedicated places, if not 5488 // there yet. 5489 ScheduleData *BundleMember = picked; 5490 while (BundleMember) { 5491 Instruction *pickedInst = BundleMember->Inst; 5492 if (LastScheduledInst->getNextNode() != pickedInst) { 5493 BS->BB->getInstList().remove(pickedInst); 5494 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5495 pickedInst); 5496 } 5497 LastScheduledInst = pickedInst; 5498 BundleMember = BundleMember->NextInBundle; 5499 } 5500 5501 BS->schedule(picked, ReadyInsts); 5502 NumToSchedule--; 5503 } 5504 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5505 5506 // Avoid duplicate scheduling of the block. 5507 BS->ScheduleStart = nullptr; 5508 } 5509 5510 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5511 // If V is a store, just return the width of the stored value without 5512 // traversing the expression tree. This is the common case. 5513 if (auto *Store = dyn_cast<StoreInst>(V)) 5514 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5515 5516 auto E = InstrElementSize.find(V); 5517 if (E != InstrElementSize.end()) 5518 return E->second; 5519 5520 // If V is not a store, we can traverse the expression tree to find loads 5521 // that feed it. The type of the loaded value may indicate a more suitable 5522 // width than V's type. We want to base the vector element size on the width 5523 // of memory operations where possible. 5524 SmallVector<Instruction *, 16> Worklist; 5525 SmallPtrSet<Instruction *, 16> Visited; 5526 if (auto *I = dyn_cast<Instruction>(V)) { 5527 Worklist.push_back(I); 5528 Visited.insert(I); 5529 } 5530 5531 // Traverse the expression tree in bottom-up order looking for loads. If we 5532 // encounter an instruction we don't yet handle, we give up. 5533 auto MaxWidth = 0u; 5534 auto FoundUnknownInst = false; 5535 while (!Worklist.empty() && !FoundUnknownInst) { 5536 auto *I = Worklist.pop_back_val(); 5537 5538 // We should only be looking at scalar instructions here. If the current 5539 // instruction has a vector type, give up. 5540 auto *Ty = I->getType(); 5541 if (isa<VectorType>(Ty)) 5542 FoundUnknownInst = true; 5543 5544 // If the current instruction is a load, update MaxWidth to reflect the 5545 // width of the loaded value. 5546 else if (isa<LoadInst>(I)) 5547 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5548 5549 // Otherwise, we need to visit the operands of the instruction. We only 5550 // handle the interesting cases from buildTree here. If an operand is an 5551 // instruction we haven't yet visited, we add it to the worklist. 5552 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5553 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5554 for (Use &U : I->operands()) 5555 if (auto *J = dyn_cast<Instruction>(U.get())) 5556 if (Visited.insert(J).second) 5557 Worklist.push_back(J); 5558 } 5559 5560 // If we don't yet handle the instruction, give up. 5561 else 5562 FoundUnknownInst = true; 5563 } 5564 5565 int Width = MaxWidth; 5566 // If we didn't encounter a memory access in the expression tree, or if we 5567 // gave up for some reason, just return the width of V. Otherwise, return the 5568 // maximum width we found. 5569 if (!MaxWidth || FoundUnknownInst) 5570 Width = DL->getTypeSizeInBits(V->getType()); 5571 5572 for (Instruction *I : Visited) 5573 InstrElementSize[I] = Width; 5574 5575 return Width; 5576 } 5577 5578 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5579 // smaller type with a truncation. We collect the values that will be demoted 5580 // in ToDemote and additional roots that require investigating in Roots. 5581 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5582 SmallVectorImpl<Value *> &ToDemote, 5583 SmallVectorImpl<Value *> &Roots) { 5584 // We can always demote constants. 5585 if (isa<Constant>(V)) { 5586 ToDemote.push_back(V); 5587 return true; 5588 } 5589 5590 // If the value is not an instruction in the expression with only one use, it 5591 // cannot be demoted. 5592 auto *I = dyn_cast<Instruction>(V); 5593 if (!I || !I->hasOneUse() || !Expr.count(I)) 5594 return false; 5595 5596 switch (I->getOpcode()) { 5597 5598 // We can always demote truncations and extensions. Since truncations can 5599 // seed additional demotion, we save the truncated value. 5600 case Instruction::Trunc: 5601 Roots.push_back(I->getOperand(0)); 5602 break; 5603 case Instruction::ZExt: 5604 case Instruction::SExt: 5605 break; 5606 5607 // We can demote certain binary operations if we can demote both of their 5608 // operands. 5609 case Instruction::Add: 5610 case Instruction::Sub: 5611 case Instruction::Mul: 5612 case Instruction::And: 5613 case Instruction::Or: 5614 case Instruction::Xor: 5615 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5616 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5617 return false; 5618 break; 5619 5620 // We can demote selects if we can demote their true and false values. 5621 case Instruction::Select: { 5622 SelectInst *SI = cast<SelectInst>(I); 5623 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5624 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5625 return false; 5626 break; 5627 } 5628 5629 // We can demote phis if we can demote all their incoming operands. Note that 5630 // we don't need to worry about cycles since we ensure single use above. 5631 case Instruction::PHI: { 5632 PHINode *PN = cast<PHINode>(I); 5633 for (Value *IncValue : PN->incoming_values()) 5634 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5635 return false; 5636 break; 5637 } 5638 5639 // Otherwise, conservatively give up. 5640 default: 5641 return false; 5642 } 5643 5644 // Record the value that we can demote. 5645 ToDemote.push_back(V); 5646 return true; 5647 } 5648 5649 void BoUpSLP::computeMinimumValueSizes() { 5650 // If there are no external uses, the expression tree must be rooted by a 5651 // store. We can't demote in-memory values, so there is nothing to do here. 5652 if (ExternalUses.empty()) 5653 return; 5654 5655 // We only attempt to truncate integer expressions. 5656 auto &TreeRoot = VectorizableTree[0]->Scalars; 5657 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5658 if (!TreeRootIT) 5659 return; 5660 5661 // If the expression is not rooted by a store, these roots should have 5662 // external uses. We will rely on InstCombine to rewrite the expression in 5663 // the narrower type. However, InstCombine only rewrites single-use values. 5664 // This means that if a tree entry other than a root is used externally, it 5665 // must have multiple uses and InstCombine will not rewrite it. The code 5666 // below ensures that only the roots are used externally. 5667 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5668 for (auto &EU : ExternalUses) 5669 if (!Expr.erase(EU.Scalar)) 5670 return; 5671 if (!Expr.empty()) 5672 return; 5673 5674 // Collect the scalar values of the vectorizable expression. We will use this 5675 // context to determine which values can be demoted. If we see a truncation, 5676 // we mark it as seeding another demotion. 5677 for (auto &EntryPtr : VectorizableTree) 5678 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5679 5680 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5681 // have a single external user that is not in the vectorizable tree. 5682 for (auto *Root : TreeRoot) 5683 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5684 return; 5685 5686 // Conservatively determine if we can actually truncate the roots of the 5687 // expression. Collect the values that can be demoted in ToDemote and 5688 // additional roots that require investigating in Roots. 5689 SmallVector<Value *, 32> ToDemote; 5690 SmallVector<Value *, 4> Roots; 5691 for (auto *Root : TreeRoot) 5692 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5693 return; 5694 5695 // The maximum bit width required to represent all the values that can be 5696 // demoted without loss of precision. It would be safe to truncate the roots 5697 // of the expression to this width. 5698 auto MaxBitWidth = 8u; 5699 5700 // We first check if all the bits of the roots are demanded. If they're not, 5701 // we can truncate the roots to this narrower type. 5702 for (auto *Root : TreeRoot) { 5703 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5704 MaxBitWidth = std::max<unsigned>( 5705 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5706 } 5707 5708 // True if the roots can be zero-extended back to their original type, rather 5709 // than sign-extended. We know that if the leading bits are not demanded, we 5710 // can safely zero-extend. So we initialize IsKnownPositive to True. 5711 bool IsKnownPositive = true; 5712 5713 // If all the bits of the roots are demanded, we can try a little harder to 5714 // compute a narrower type. This can happen, for example, if the roots are 5715 // getelementptr indices. InstCombine promotes these indices to the pointer 5716 // width. Thus, all their bits are technically demanded even though the 5717 // address computation might be vectorized in a smaller type. 5718 // 5719 // We start by looking at each entry that can be demoted. We compute the 5720 // maximum bit width required to store the scalar by using ValueTracking to 5721 // compute the number of high-order bits we can truncate. 5722 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5723 llvm::all_of(TreeRoot, [](Value *R) { 5724 assert(R->hasOneUse() && "Root should have only one use!"); 5725 return isa<GetElementPtrInst>(R->user_back()); 5726 })) { 5727 MaxBitWidth = 8u; 5728 5729 // Determine if the sign bit of all the roots is known to be zero. If not, 5730 // IsKnownPositive is set to False. 5731 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5732 KnownBits Known = computeKnownBits(R, *DL); 5733 return Known.isNonNegative(); 5734 }); 5735 5736 // Determine the maximum number of bits required to store the scalar 5737 // values. 5738 for (auto *Scalar : ToDemote) { 5739 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5740 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5741 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5742 } 5743 5744 // If we can't prove that the sign bit is zero, we must add one to the 5745 // maximum bit width to account for the unknown sign bit. This preserves 5746 // the existing sign bit so we can safely sign-extend the root back to the 5747 // original type. Otherwise, if we know the sign bit is zero, we will 5748 // zero-extend the root instead. 5749 // 5750 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5751 // one to the maximum bit width will yield a larger-than-necessary 5752 // type. In general, we need to add an extra bit only if we can't 5753 // prove that the upper bit of the original type is equal to the 5754 // upper bit of the proposed smaller type. If these two bits are the 5755 // same (either zero or one) we know that sign-extending from the 5756 // smaller type will result in the same value. Here, since we can't 5757 // yet prove this, we are just making the proposed smaller type 5758 // larger to ensure correctness. 5759 if (!IsKnownPositive) 5760 ++MaxBitWidth; 5761 } 5762 5763 // Round MaxBitWidth up to the next power-of-two. 5764 if (!isPowerOf2_64(MaxBitWidth)) 5765 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5766 5767 // If the maximum bit width we compute is less than the with of the roots' 5768 // type, we can proceed with the narrowing. Otherwise, do nothing. 5769 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5770 return; 5771 5772 // If we can truncate the root, we must collect additional values that might 5773 // be demoted as a result. That is, those seeded by truncations we will 5774 // modify. 5775 while (!Roots.empty()) 5776 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5777 5778 // Finally, map the values we can demote to the maximum bit with we computed. 5779 for (auto *Scalar : ToDemote) 5780 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5781 } 5782 5783 namespace { 5784 5785 /// The SLPVectorizer Pass. 5786 struct SLPVectorizer : public FunctionPass { 5787 SLPVectorizerPass Impl; 5788 5789 /// Pass identification, replacement for typeid 5790 static char ID; 5791 5792 explicit SLPVectorizer() : FunctionPass(ID) { 5793 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5794 } 5795 5796 bool doInitialization(Module &M) override { 5797 return false; 5798 } 5799 5800 bool runOnFunction(Function &F) override { 5801 if (skipFunction(F)) 5802 return false; 5803 5804 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5805 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5806 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5807 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5808 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5809 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5810 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5811 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5812 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5813 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5814 5815 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5816 } 5817 5818 void getAnalysisUsage(AnalysisUsage &AU) const override { 5819 FunctionPass::getAnalysisUsage(AU); 5820 AU.addRequired<AssumptionCacheTracker>(); 5821 AU.addRequired<ScalarEvolutionWrapperPass>(); 5822 AU.addRequired<AAResultsWrapperPass>(); 5823 AU.addRequired<TargetTransformInfoWrapperPass>(); 5824 AU.addRequired<LoopInfoWrapperPass>(); 5825 AU.addRequired<DominatorTreeWrapperPass>(); 5826 AU.addRequired<DemandedBitsWrapperPass>(); 5827 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5828 AU.addRequired<InjectTLIMappingsLegacy>(); 5829 AU.addPreserved<LoopInfoWrapperPass>(); 5830 AU.addPreserved<DominatorTreeWrapperPass>(); 5831 AU.addPreserved<AAResultsWrapperPass>(); 5832 AU.addPreserved<GlobalsAAWrapperPass>(); 5833 AU.setPreservesCFG(); 5834 } 5835 }; 5836 5837 } // end anonymous namespace 5838 5839 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5840 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5841 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5842 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5843 auto *AA = &AM.getResult<AAManager>(F); 5844 auto *LI = &AM.getResult<LoopAnalysis>(F); 5845 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5846 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5847 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5848 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5849 5850 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5851 if (!Changed) 5852 return PreservedAnalyses::all(); 5853 5854 PreservedAnalyses PA; 5855 PA.preserveSet<CFGAnalyses>(); 5856 PA.preserve<AAManager>(); 5857 PA.preserve<GlobalsAA>(); 5858 return PA; 5859 } 5860 5861 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5862 TargetTransformInfo *TTI_, 5863 TargetLibraryInfo *TLI_, AAResults *AA_, 5864 LoopInfo *LI_, DominatorTree *DT_, 5865 AssumptionCache *AC_, DemandedBits *DB_, 5866 OptimizationRemarkEmitter *ORE_) { 5867 if (!RunSLPVectorization) 5868 return false; 5869 SE = SE_; 5870 TTI = TTI_; 5871 TLI = TLI_; 5872 AA = AA_; 5873 LI = LI_; 5874 DT = DT_; 5875 AC = AC_; 5876 DB = DB_; 5877 DL = &F.getParent()->getDataLayout(); 5878 5879 Stores.clear(); 5880 GEPs.clear(); 5881 bool Changed = false; 5882 5883 // If the target claims to have no vector registers don't attempt 5884 // vectorization. 5885 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5886 return false; 5887 5888 // Don't vectorize when the attribute NoImplicitFloat is used. 5889 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5890 return false; 5891 5892 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5893 5894 // Use the bottom up slp vectorizer to construct chains that start with 5895 // store instructions. 5896 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5897 5898 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5899 // delete instructions. 5900 5901 // Scan the blocks in the function in post order. 5902 for (auto BB : post_order(&F.getEntryBlock())) { 5903 collectSeedInstructions(BB); 5904 5905 // Vectorize trees that end at stores. 5906 if (!Stores.empty()) { 5907 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5908 << " underlying objects.\n"); 5909 Changed |= vectorizeStoreChains(R); 5910 } 5911 5912 // Vectorize trees that end at reductions. 5913 Changed |= vectorizeChainsInBlock(BB, R); 5914 5915 // Vectorize the index computations of getelementptr instructions. This 5916 // is primarily intended to catch gather-like idioms ending at 5917 // non-consecutive loads. 5918 if (!GEPs.empty()) { 5919 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5920 << " underlying objects.\n"); 5921 Changed |= vectorizeGEPIndices(BB, R); 5922 } 5923 } 5924 5925 if (Changed) { 5926 R.optimizeGatherSequence(); 5927 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5928 } 5929 return Changed; 5930 } 5931 5932 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5933 unsigned Idx) { 5934 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5935 << "\n"); 5936 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5937 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5938 unsigned VF = Chain.size(); 5939 5940 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5941 return false; 5942 5943 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5944 << "\n"); 5945 5946 R.buildTree(Chain); 5947 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5948 // TODO: Handle orders of size less than number of elements in the vector. 5949 if (Order && Order->size() == Chain.size()) { 5950 // TODO: reorder tree nodes without tree rebuilding. 5951 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5952 llvm::transform(*Order, ReorderedOps.begin(), 5953 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5954 R.buildTree(ReorderedOps); 5955 } 5956 if (R.isTreeTinyAndNotFullyVectorizable()) 5957 return false; 5958 if (R.isLoadCombineCandidate()) 5959 return false; 5960 5961 R.computeMinimumValueSizes(); 5962 5963 int Cost = R.getTreeCost(); 5964 5965 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 5966 if (Cost < -SLPCostThreshold) { 5967 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 5968 5969 using namespace ore; 5970 5971 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5972 cast<StoreInst>(Chain[0])) 5973 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5974 << " and with tree size " 5975 << NV("TreeSize", R.getTreeSize())); 5976 5977 R.vectorizeTree(); 5978 return true; 5979 } 5980 5981 return false; 5982 } 5983 5984 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5985 BoUpSLP &R) { 5986 // We may run into multiple chains that merge into a single chain. We mark the 5987 // stores that we vectorized so that we don't visit the same store twice. 5988 BoUpSLP::ValueSet VectorizedStores; 5989 bool Changed = false; 5990 5991 int E = Stores.size(); 5992 SmallBitVector Tails(E, false); 5993 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5994 int MaxIter = MaxStoreLookup.getValue(); 5995 int IterCnt; 5996 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5997 &ConsecutiveChain](int K, int Idx) { 5998 if (IterCnt >= MaxIter) 5999 return true; 6000 ++IterCnt; 6001 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6002 return false; 6003 6004 Tails.set(Idx); 6005 ConsecutiveChain[K] = Idx; 6006 return true; 6007 }; 6008 // Do a quadratic search on all of the given stores in reverse order and find 6009 // all of the pairs of stores that follow each other. 6010 for (int Idx = E - 1; Idx >= 0; --Idx) { 6011 // If a store has multiple consecutive store candidates, search according 6012 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6013 // This is because usually pairing with immediate succeeding or preceding 6014 // candidate create the best chance to find slp vectorization opportunity. 6015 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6016 IterCnt = 0; 6017 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6018 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6019 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6020 break; 6021 } 6022 6023 // For stores that start but don't end a link in the chain: 6024 for (int Cnt = E; Cnt > 0; --Cnt) { 6025 int I = Cnt - 1; 6026 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6027 continue; 6028 // We found a store instr that starts a chain. Now follow the chain and try 6029 // to vectorize it. 6030 BoUpSLP::ValueList Operands; 6031 // Collect the chain into a list. 6032 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6033 Operands.push_back(Stores[I]); 6034 // Move to the next value in the chain. 6035 I = ConsecutiveChain[I]; 6036 } 6037 6038 // If a vector register can't hold 1 element, we are done. 6039 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6040 unsigned EltSize = R.getVectorElementSize(Stores[0]); 6041 if (MaxVecRegSize % EltSize != 0) 6042 continue; 6043 6044 unsigned MaxElts = MaxVecRegSize / EltSize; 6045 // FIXME: Is division-by-2 the correct step? Should we assert that the 6046 // register size is a power-of-2? 6047 unsigned StartIdx = 0; 6048 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6049 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6050 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6051 if (!VectorizedStores.count(Slice.front()) && 6052 !VectorizedStores.count(Slice.back()) && 6053 vectorizeStoreChain(Slice, R, Cnt)) { 6054 // Mark the vectorized stores so that we don't vectorize them again. 6055 VectorizedStores.insert(Slice.begin(), Slice.end()); 6056 Changed = true; 6057 // If we vectorized initial block, no need to try to vectorize it 6058 // again. 6059 if (Cnt == StartIdx) 6060 StartIdx += Size; 6061 Cnt += Size; 6062 continue; 6063 } 6064 ++Cnt; 6065 } 6066 // Check if the whole array was vectorized already - exit. 6067 if (StartIdx >= Operands.size()) 6068 break; 6069 } 6070 } 6071 6072 return Changed; 6073 } 6074 6075 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6076 // Initialize the collections. We will make a single pass over the block. 6077 Stores.clear(); 6078 GEPs.clear(); 6079 6080 // Visit the store and getelementptr instructions in BB and organize them in 6081 // Stores and GEPs according to the underlying objects of their pointer 6082 // operands. 6083 for (Instruction &I : *BB) { 6084 // Ignore store instructions that are volatile or have a pointer operand 6085 // that doesn't point to a scalar type. 6086 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6087 if (!SI->isSimple()) 6088 continue; 6089 if (!isValidElementType(SI->getValueOperand()->getType())) 6090 continue; 6091 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6092 } 6093 6094 // Ignore getelementptr instructions that have more than one index, a 6095 // constant index, or a pointer operand that doesn't point to a scalar 6096 // type. 6097 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6098 auto Idx = GEP->idx_begin()->get(); 6099 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6100 continue; 6101 if (!isValidElementType(Idx->getType())) 6102 continue; 6103 if (GEP->getType()->isVectorTy()) 6104 continue; 6105 GEPs[GEP->getPointerOperand()].push_back(GEP); 6106 } 6107 } 6108 } 6109 6110 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6111 if (!A || !B) 6112 return false; 6113 Value *VL[] = {A, B}; 6114 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6115 } 6116 6117 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6118 bool AllowReorder, 6119 ArrayRef<Value *> InsertUses) { 6120 if (VL.size() < 2) 6121 return false; 6122 6123 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6124 << VL.size() << ".\n"); 6125 6126 // Check that all of the parts are instructions of the same type, 6127 // we permit an alternate opcode via InstructionsState. 6128 InstructionsState S = getSameOpcode(VL); 6129 if (!S.getOpcode()) 6130 return false; 6131 6132 Instruction *I0 = cast<Instruction>(S.OpValue); 6133 // Make sure invalid types (including vector type) are rejected before 6134 // determining vectorization factor for scalar instructions. 6135 for (Value *V : VL) { 6136 Type *Ty = V->getType(); 6137 if (!isValidElementType(Ty)) { 6138 // NOTE: the following will give user internal llvm type name, which may 6139 // not be useful. 6140 R.getORE()->emit([&]() { 6141 std::string type_str; 6142 llvm::raw_string_ostream rso(type_str); 6143 Ty->print(rso); 6144 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6145 << "Cannot SLP vectorize list: type " 6146 << rso.str() + " is unsupported by vectorizer"; 6147 }); 6148 return false; 6149 } 6150 } 6151 6152 unsigned Sz = R.getVectorElementSize(I0); 6153 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6154 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6155 if (MaxVF < 2) { 6156 R.getORE()->emit([&]() { 6157 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6158 << "Cannot SLP vectorize list: vectorization factor " 6159 << "less than 2 is not supported"; 6160 }); 6161 return false; 6162 } 6163 6164 bool Changed = false; 6165 bool CandidateFound = false; 6166 int MinCost = SLPCostThreshold; 6167 6168 bool CompensateUseCost = 6169 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6170 return V && isa<InsertElementInst>(V); 6171 }); 6172 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6173 "Each scalar expected to have an associated InsertElement user."); 6174 6175 unsigned NextInst = 0, MaxInst = VL.size(); 6176 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6177 // No actual vectorization should happen, if number of parts is the same as 6178 // provided vectorization factor (i.e. the scalar type is used for vector 6179 // code during codegen). 6180 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6181 if (TTI->getNumberOfParts(VecTy) == VF) 6182 continue; 6183 for (unsigned I = NextInst; I < MaxInst; ++I) { 6184 unsigned OpsWidth = 0; 6185 6186 if (I + VF > MaxInst) 6187 OpsWidth = MaxInst - I; 6188 else 6189 OpsWidth = VF; 6190 6191 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6192 break; 6193 6194 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6195 // Check that a previous iteration of this loop did not delete the Value. 6196 if (llvm::any_of(Ops, [&R](Value *V) { 6197 auto *I = dyn_cast<Instruction>(V); 6198 return I && R.isDeleted(I); 6199 })) 6200 continue; 6201 6202 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6203 << "\n"); 6204 6205 R.buildTree(Ops); 6206 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6207 // TODO: check if we can allow reordering for more cases. 6208 if (AllowReorder && Order) { 6209 // TODO: reorder tree nodes without tree rebuilding. 6210 // Conceptually, there is nothing actually preventing us from trying to 6211 // reorder a larger list. In fact, we do exactly this when vectorizing 6212 // reductions. However, at this point, we only expect to get here when 6213 // there are exactly two operations. 6214 assert(Ops.size() == 2); 6215 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6216 R.buildTree(ReorderedOps, None); 6217 } 6218 if (R.isTreeTinyAndNotFullyVectorizable()) 6219 continue; 6220 6221 R.computeMinimumValueSizes(); 6222 int Cost = R.getTreeCost(); 6223 CandidateFound = true; 6224 if (CompensateUseCost) { 6225 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6226 // rather than sum of single inserts as the latter may overestimate 6227 // cost. This work should imply improving cost estimation for extracts 6228 // that added in for external (for vectorization tree) users,i.e. that 6229 // part should also switch to same interface. 6230 // For example, the following case is projected code after SLP: 6231 // %4 = extractelement <4 x i64> %3, i32 0 6232 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6233 // %5 = extractelement <4 x i64> %3, i32 1 6234 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6235 // %6 = extractelement <4 x i64> %3, i32 2 6236 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6237 // %7 = extractelement <4 x i64> %3, i32 3 6238 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6239 // 6240 // Extracts here added by SLP in order to feed users (the inserts) of 6241 // original scalars and contribute to "ExtractCost" at cost evaluation. 6242 // The inserts in turn form sequence to build an aggregate that 6243 // detected by findBuildAggregate routine. 6244 // SLP makes an assumption that such sequence will be optimized away 6245 // later (instcombine) so it tries to compensate ExctractCost with 6246 // cost of insert sequence. 6247 // Current per element cost calculation approach is not quite accurate 6248 // and tends to create bias toward favoring vectorization. 6249 // Switching to the TTI interface might help a bit. 6250 // Alternative solution could be pattern-match to detect a no-op or 6251 // shuffle. 6252 unsigned UserCost = 0; 6253 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6254 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6255 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6256 UserCost += TTI->getVectorInstrCost( 6257 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6258 } 6259 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6260 << ".\n"); 6261 Cost -= UserCost; 6262 } 6263 6264 MinCost = std::min(MinCost, Cost); 6265 6266 if (Cost < -SLPCostThreshold) { 6267 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6268 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6269 cast<Instruction>(Ops[0])) 6270 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6271 << " and with tree size " 6272 << ore::NV("TreeSize", R.getTreeSize())); 6273 6274 R.vectorizeTree(); 6275 // Move to the next bundle. 6276 I += VF - 1; 6277 NextInst = I + 1; 6278 Changed = true; 6279 } 6280 } 6281 } 6282 6283 if (!Changed && CandidateFound) { 6284 R.getORE()->emit([&]() { 6285 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6286 << "List vectorization was possible but not beneficial with cost " 6287 << ore::NV("Cost", MinCost) << " >= " 6288 << ore::NV("Treshold", -SLPCostThreshold); 6289 }); 6290 } else if (!Changed) { 6291 R.getORE()->emit([&]() { 6292 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6293 << "Cannot SLP vectorize list: vectorization was impossible" 6294 << " with available vectorization factors"; 6295 }); 6296 } 6297 return Changed; 6298 } 6299 6300 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6301 if (!I) 6302 return false; 6303 6304 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6305 return false; 6306 6307 Value *P = I->getParent(); 6308 6309 // Vectorize in current basic block only. 6310 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6311 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6312 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6313 return false; 6314 6315 // Try to vectorize V. 6316 if (tryToVectorizePair(Op0, Op1, R)) 6317 return true; 6318 6319 auto *A = dyn_cast<BinaryOperator>(Op0); 6320 auto *B = dyn_cast<BinaryOperator>(Op1); 6321 // Try to skip B. 6322 if (B && B->hasOneUse()) { 6323 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6324 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6325 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6326 return true; 6327 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6328 return true; 6329 } 6330 6331 // Try to skip A. 6332 if (A && A->hasOneUse()) { 6333 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6334 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6335 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6336 return true; 6337 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6338 return true; 6339 } 6340 return false; 6341 } 6342 6343 /// Generate a shuffle mask to be used in a reduction tree. 6344 /// 6345 /// \param VecLen The length of the vector to be reduced. 6346 /// \param NumEltsToRdx The number of elements that should be reduced in the 6347 /// vector. 6348 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6349 /// reduction. A pairwise reduction will generate a mask of 6350 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6351 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6352 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6353 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6354 unsigned NumEltsToRdx, 6355 bool IsPairwise, bool IsLeft) { 6356 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6357 6358 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6359 6360 if (IsPairwise) 6361 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6362 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6363 ShuffleMask[i] = 2 * i + !IsLeft; 6364 else 6365 // Move the upper half of the vector to the lower half. 6366 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6367 ShuffleMask[i] = NumEltsToRdx + i; 6368 6369 return ShuffleMask; 6370 } 6371 6372 namespace { 6373 6374 /// Model horizontal reductions. 6375 /// 6376 /// A horizontal reduction is a tree of reduction operations (currently add and 6377 /// fadd) that has operations that can be put into a vector as its leaf. 6378 /// For example, this tree: 6379 /// 6380 /// mul mul mul mul 6381 /// \ / \ / 6382 /// + + 6383 /// \ / 6384 /// + 6385 /// This tree has "mul" as its reduced values and "+" as its reduction 6386 /// operations. A reduction might be feeding into a store or a binary operation 6387 /// feeding a phi. 6388 /// ... 6389 /// \ / 6390 /// + 6391 /// | 6392 /// phi += 6393 /// 6394 /// Or: 6395 /// ... 6396 /// \ / 6397 /// + 6398 /// | 6399 /// *p = 6400 /// 6401 class HorizontalReduction { 6402 using ReductionOpsType = SmallVector<Value *, 16>; 6403 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6404 ReductionOpsListType ReductionOps; 6405 SmallVector<Value *, 32> ReducedVals; 6406 // Use map vector to make stable output. 6407 MapVector<Instruction *, Value *> ExtraArgs; 6408 6409 /// Kind of the reduction data. 6410 enum ReductionKind { 6411 RK_None, /// Not a reduction. 6412 RK_Arithmetic, /// Binary reduction data. 6413 RK_SMin, /// Signed minimum reduction data. 6414 RK_UMin, /// Unsigned minimum reduction data. 6415 RK_SMax, /// Signed maximum reduction data. 6416 RK_UMax, /// Unsigned maximum reduction data. 6417 }; 6418 6419 /// Contains info about operation, like its opcode, left and right operands. 6420 class OperationData { 6421 /// Opcode of the instruction. 6422 unsigned Opcode = 0; 6423 6424 /// Kind of the reduction operation. 6425 ReductionKind Kind = RK_None; 6426 6427 /// Checks if the reduction operation can be vectorized. 6428 bool isVectorizable() const { 6429 // We currently only support add/mul/logical && min/max reductions. 6430 return ((Kind == RK_Arithmetic && 6431 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6432 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6433 Opcode == Instruction::And || Opcode == Instruction::Or || 6434 Opcode == Instruction::Xor)) || 6435 (Opcode == Instruction::ICmp && 6436 (Kind == RK_SMin || Kind == RK_SMax || 6437 Kind == RK_UMin || Kind == RK_UMax))); 6438 } 6439 6440 /// Creates reduction operation with the current opcode. 6441 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6442 const Twine &Name) const { 6443 assert(isVectorizable() && 6444 "Expected add|fadd or min/max reduction operation."); 6445 Value *Cmp = nullptr; 6446 switch (Kind) { 6447 case RK_Arithmetic: 6448 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6449 Name); 6450 case RK_SMin: 6451 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6452 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6453 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6454 case RK_SMax: 6455 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6456 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6457 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6458 case RK_UMin: 6459 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6460 Cmp = Builder.CreateICmpULT(LHS, RHS); 6461 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6462 case RK_UMax: 6463 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6464 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6465 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6466 case RK_None: 6467 break; 6468 } 6469 llvm_unreachable("Unknown reduction operation."); 6470 } 6471 6472 public: 6473 explicit OperationData() = default; 6474 6475 /// Construction for reduced values. They are identified by opcode only and 6476 /// don't have associated LHS/RHS values. 6477 explicit OperationData(Instruction &I) { 6478 Opcode = I.getOpcode(); 6479 } 6480 6481 /// Constructor for reduction operations with opcode and its left and 6482 /// right operands. 6483 OperationData(unsigned Opcode, ReductionKind Kind) 6484 : Opcode(Opcode), Kind(Kind) { 6485 assert(Kind != RK_None && "One of the reduction operations is expected."); 6486 } 6487 6488 explicit operator bool() const { return Opcode; } 6489 6490 /// Return true if this operation is any kind of minimum or maximum. 6491 bool isMinMax() const { 6492 switch (Kind) { 6493 case RK_Arithmetic: 6494 return false; 6495 case RK_SMin: 6496 case RK_SMax: 6497 case RK_UMin: 6498 case RK_UMax: 6499 return true; 6500 case RK_None: 6501 break; 6502 } 6503 llvm_unreachable("Reduction kind is not set"); 6504 } 6505 6506 /// Get the index of the first operand. 6507 unsigned getFirstOperandIndex() const { 6508 assert(!!*this && "The opcode is not set."); 6509 // We allow calling this before 'Kind' is set, so handle that specially. 6510 if (Kind == RK_None) 6511 return 0; 6512 return isMinMax() ? 1 : 0; 6513 } 6514 6515 /// Total number of operands in the reduction operation. 6516 unsigned getNumberOfOperands() const { 6517 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6518 return isMinMax() ? 3 : 2; 6519 } 6520 6521 /// Checks if the instruction is in basic block \p BB. 6522 /// For a min/max reduction check that both compare and select are in \p BB. 6523 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6524 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6525 if (IsRedOp && isMinMax()) { 6526 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6527 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6528 } 6529 return I->getParent() == BB; 6530 } 6531 6532 /// Expected number of uses for reduction operations/reduced values. 6533 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6534 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6535 // SelectInst must be used twice while the condition op must have single 6536 // use only. 6537 if (isMinMax()) 6538 return I->hasNUses(2) && 6539 (!IsReductionOp || 6540 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6541 6542 // Arithmetic reduction operation must be used once only. 6543 return I->hasOneUse(); 6544 } 6545 6546 /// Initializes the list of reduction operations. 6547 void initReductionOps(ReductionOpsListType &ReductionOps) { 6548 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6549 if (isMinMax()) 6550 ReductionOps.assign(2, ReductionOpsType()); 6551 else 6552 ReductionOps.assign(1, ReductionOpsType()); 6553 } 6554 6555 /// Add all reduction operations for the reduction instruction \p I. 6556 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6557 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6558 if (isMinMax()) { 6559 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6560 ReductionOps[1].emplace_back(I); 6561 } else { 6562 ReductionOps[0].emplace_back(I); 6563 } 6564 } 6565 6566 /// Checks if instruction is associative and can be vectorized. 6567 bool isAssociative(Instruction *I) const { 6568 assert(Kind != RK_None && *this && "Expected reduction operation."); 6569 switch (Kind) { 6570 case RK_Arithmetic: 6571 return I->isAssociative(); 6572 case RK_SMin: 6573 case RK_SMax: 6574 case RK_UMin: 6575 case RK_UMax: 6576 assert(Opcode == Instruction::ICmp && 6577 "Only integer compare operation is expected."); 6578 return true; 6579 case RK_None: 6580 break; 6581 } 6582 llvm_unreachable("Reduction kind is not set"); 6583 } 6584 6585 /// Checks if the reduction operation can be vectorized. 6586 bool isVectorizable(Instruction *I) const { 6587 return isVectorizable() && isAssociative(I); 6588 } 6589 6590 /// Checks if two operation data are both a reduction op or both a reduced 6591 /// value. 6592 bool operator==(const OperationData &OD) const { 6593 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6594 "One of the comparing operations is incorrect."); 6595 return Kind == OD.Kind && Opcode == OD.Opcode; 6596 } 6597 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6598 void clear() { 6599 Opcode = 0; 6600 Kind = RK_None; 6601 } 6602 6603 /// Get the opcode of the reduction operation. 6604 unsigned getOpcode() const { 6605 assert(isVectorizable() && "Expected vectorizable operation."); 6606 return Opcode; 6607 } 6608 6609 /// Get kind of reduction data. 6610 ReductionKind getKind() const { return Kind; } 6611 Value *getLHS(Instruction *I) const { 6612 if (Kind == RK_None) 6613 return nullptr; 6614 return I->getOperand(getFirstOperandIndex()); 6615 } 6616 Value *getRHS(Instruction *I) const { 6617 if (Kind == RK_None) 6618 return nullptr; 6619 return I->getOperand(getFirstOperandIndex() + 1); 6620 } 6621 6622 /// Creates reduction operation with the current opcode with the IR flags 6623 /// from \p ReductionOps. 6624 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6625 const Twine &Name, 6626 const ReductionOpsListType &ReductionOps) const { 6627 assert(isVectorizable() && 6628 "Expected add|fadd or min/max reduction operation."); 6629 auto *Op = createOp(Builder, LHS, RHS, Name); 6630 switch (Kind) { 6631 case RK_Arithmetic: 6632 propagateIRFlags(Op, ReductionOps[0]); 6633 return Op; 6634 case RK_SMin: 6635 case RK_SMax: 6636 case RK_UMin: 6637 case RK_UMax: 6638 if (auto *SI = dyn_cast<SelectInst>(Op)) 6639 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6640 propagateIRFlags(Op, ReductionOps[1]); 6641 return Op; 6642 case RK_None: 6643 break; 6644 } 6645 llvm_unreachable("Unknown reduction operation."); 6646 } 6647 /// Creates reduction operation with the current opcode with the IR flags 6648 /// from \p I. 6649 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6650 const Twine &Name, Instruction *I) const { 6651 assert(isVectorizable() && 6652 "Expected add|fadd or min/max reduction operation."); 6653 auto *Op = createOp(Builder, LHS, RHS, Name); 6654 switch (Kind) { 6655 case RK_Arithmetic: 6656 propagateIRFlags(Op, I); 6657 return Op; 6658 case RK_SMin: 6659 case RK_SMax: 6660 case RK_UMin: 6661 case RK_UMax: 6662 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6663 propagateIRFlags(SI->getCondition(), 6664 cast<SelectInst>(I)->getCondition()); 6665 } 6666 propagateIRFlags(Op, I); 6667 return Op; 6668 case RK_None: 6669 break; 6670 } 6671 llvm_unreachable("Unknown reduction operation."); 6672 } 6673 6674 TargetTransformInfo::ReductionFlags getFlags() const { 6675 TargetTransformInfo::ReductionFlags Flags; 6676 switch (Kind) { 6677 case RK_Arithmetic: 6678 break; 6679 case RK_SMin: 6680 Flags.IsSigned = true; 6681 Flags.IsMaxOp = false; 6682 break; 6683 case RK_SMax: 6684 Flags.IsSigned = true; 6685 Flags.IsMaxOp = true; 6686 break; 6687 case RK_UMin: 6688 Flags.IsSigned = false; 6689 Flags.IsMaxOp = false; 6690 break; 6691 case RK_UMax: 6692 Flags.IsSigned = false; 6693 Flags.IsMaxOp = true; 6694 break; 6695 case RK_None: 6696 llvm_unreachable("Reduction kind is not set"); 6697 } 6698 return Flags; 6699 } 6700 }; 6701 6702 WeakTrackingVH ReductionRoot; 6703 6704 /// The operation data of the reduction operation. 6705 OperationData ReductionData; 6706 6707 /// The operation data of the values we perform a reduction on. 6708 OperationData ReducedValueData; 6709 6710 /// Should we model this reduction as a pairwise reduction tree or a tree that 6711 /// splits the vector in halves and adds those halves. 6712 bool IsPairwiseReduction = false; 6713 6714 /// Checks if the ParentStackElem.first should be marked as a reduction 6715 /// operation with an extra argument or as extra argument itself. 6716 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6717 Value *ExtraArg) { 6718 if (ExtraArgs.count(ParentStackElem.first)) { 6719 ExtraArgs[ParentStackElem.first] = nullptr; 6720 // We ran into something like: 6721 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6722 // The whole ParentStackElem.first should be considered as an extra value 6723 // in this case. 6724 // Do not perform analysis of remaining operands of ParentStackElem.first 6725 // instruction, this whole instruction is an extra argument. 6726 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6727 } else { 6728 // We ran into something like: 6729 // ParentStackElem.first += ... + ExtraArg + ... 6730 ExtraArgs[ParentStackElem.first] = ExtraArg; 6731 } 6732 } 6733 6734 static OperationData getOperationData(Instruction *I) { 6735 if (!I) 6736 return OperationData(); 6737 6738 Value *LHS; 6739 Value *RHS; 6740 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) { 6741 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic); 6742 } 6743 if (auto *Select = dyn_cast<SelectInst>(I)) { 6744 // Look for a min/max pattern. 6745 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6746 return OperationData(Instruction::ICmp, RK_UMin); 6747 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6748 return OperationData(Instruction::ICmp, RK_SMin); 6749 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6750 return OperationData(Instruction::ICmp, RK_UMax); 6751 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6752 return OperationData(Instruction::ICmp, RK_SMax); 6753 } else { 6754 // Try harder: look for min/max pattern based on instructions producing 6755 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6756 // During the intermediate stages of SLP, it's very common to have 6757 // pattern like this (since optimizeGatherSequence is run only once 6758 // at the end): 6759 // %1 = extractelement <2 x i32> %a, i32 0 6760 // %2 = extractelement <2 x i32> %a, i32 1 6761 // %cond = icmp sgt i32 %1, %2 6762 // %3 = extractelement <2 x i32> %a, i32 0 6763 // %4 = extractelement <2 x i32> %a, i32 1 6764 // %select = select i1 %cond, i32 %3, i32 %4 6765 CmpInst::Predicate Pred; 6766 Instruction *L1; 6767 Instruction *L2; 6768 6769 LHS = Select->getTrueValue(); 6770 RHS = Select->getFalseValue(); 6771 Value *Cond = Select->getCondition(); 6772 6773 // TODO: Support inverse predicates. 6774 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6775 if (!isa<ExtractElementInst>(RHS) || 6776 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6777 return OperationData(*I); 6778 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6779 if (!isa<ExtractElementInst>(LHS) || 6780 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6781 return OperationData(*I); 6782 } else { 6783 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6784 return OperationData(*I); 6785 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6786 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6787 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6788 return OperationData(*I); 6789 } 6790 switch (Pred) { 6791 default: 6792 return OperationData(*I); 6793 6794 case CmpInst::ICMP_ULT: 6795 case CmpInst::ICMP_ULE: 6796 return OperationData(Instruction::ICmp, RK_UMin); 6797 6798 case CmpInst::ICMP_SLT: 6799 case CmpInst::ICMP_SLE: 6800 return OperationData(Instruction::ICmp, RK_SMin); 6801 6802 case CmpInst::ICMP_UGT: 6803 case CmpInst::ICMP_UGE: 6804 return OperationData(Instruction::ICmp, RK_UMax); 6805 6806 case CmpInst::ICMP_SGT: 6807 case CmpInst::ICMP_SGE: 6808 return OperationData(Instruction::ICmp, RK_SMax); 6809 } 6810 } 6811 } 6812 return OperationData(*I); 6813 } 6814 6815 public: 6816 HorizontalReduction() = default; 6817 6818 /// Try to find a reduction tree. 6819 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6820 assert((!Phi || is_contained(Phi->operands(), B)) && 6821 "Thi phi needs to use the binary operator"); 6822 6823 ReductionData = getOperationData(B); 6824 6825 // We could have a initial reductions that is not an add. 6826 // r *= v1 + v2 + v3 + v4 6827 // In such a case start looking for a tree rooted in the first '+'. 6828 if (Phi) { 6829 if (ReductionData.getLHS(B) == Phi) { 6830 Phi = nullptr; 6831 B = dyn_cast<Instruction>(ReductionData.getRHS(B)); 6832 ReductionData = getOperationData(B); 6833 } else if (ReductionData.getRHS(B) == Phi) { 6834 Phi = nullptr; 6835 B = dyn_cast<Instruction>(ReductionData.getLHS(B)); 6836 ReductionData = getOperationData(B); 6837 } 6838 } 6839 6840 if (!ReductionData.isVectorizable(B)) 6841 return false; 6842 6843 Type *Ty = B->getType(); 6844 if (!isValidElementType(Ty)) 6845 return false; 6846 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6847 return false; 6848 6849 ReducedValueData.clear(); 6850 ReductionRoot = B; 6851 6852 // Post order traverse the reduction tree starting at B. We only handle true 6853 // trees containing only binary operators. 6854 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6855 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6856 ReductionData.initReductionOps(ReductionOps); 6857 while (!Stack.empty()) { 6858 Instruction *TreeN = Stack.back().first; 6859 unsigned EdgeToVist = Stack.back().second++; 6860 OperationData OpData = getOperationData(TreeN); 6861 bool IsReducedValue = OpData != ReductionData; 6862 6863 // Postorder vist. 6864 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6865 if (IsReducedValue) 6866 ReducedVals.push_back(TreeN); 6867 else { 6868 auto I = ExtraArgs.find(TreeN); 6869 if (I != ExtraArgs.end() && !I->second) { 6870 // Check if TreeN is an extra argument of its parent operation. 6871 if (Stack.size() <= 1) { 6872 // TreeN can't be an extra argument as it is a root reduction 6873 // operation. 6874 return false; 6875 } 6876 // Yes, TreeN is an extra argument, do not add it to a list of 6877 // reduction operations. 6878 // Stack[Stack.size() - 2] always points to the parent operation. 6879 markExtraArg(Stack[Stack.size() - 2], TreeN); 6880 ExtraArgs.erase(TreeN); 6881 } else 6882 ReductionData.addReductionOps(TreeN, ReductionOps); 6883 } 6884 // Retract. 6885 Stack.pop_back(); 6886 continue; 6887 } 6888 6889 // Visit left or right. 6890 Value *NextV = TreeN->getOperand(EdgeToVist); 6891 if (NextV != Phi) { 6892 auto *I = dyn_cast<Instruction>(NextV); 6893 OpData = getOperationData(I); 6894 // Continue analysis if the next operand is a reduction operation or 6895 // (possibly) a reduced value. If the reduced value opcode is not set, 6896 // the first met operation != reduction operation is considered as the 6897 // reduced value class. 6898 if (I && (!ReducedValueData || OpData == ReducedValueData || 6899 OpData == ReductionData)) { 6900 const bool IsReductionOperation = OpData == ReductionData; 6901 // Only handle trees in the current basic block. 6902 if (!ReductionData.hasSameParent(I, B->getParent(), 6903 IsReductionOperation)) { 6904 // I is an extra argument for TreeN (its parent operation). 6905 markExtraArg(Stack.back(), I); 6906 continue; 6907 } 6908 6909 // Each tree node needs to have minimal number of users except for the 6910 // ultimate reduction. 6911 if (!ReductionData.hasRequiredNumberOfUses(I, 6912 OpData == ReductionData) && 6913 I != B) { 6914 // I is an extra argument for TreeN (its parent operation). 6915 markExtraArg(Stack.back(), I); 6916 continue; 6917 } 6918 6919 if (IsReductionOperation) { 6920 // We need to be able to reassociate the reduction operations. 6921 if (!OpData.isAssociative(I)) { 6922 // I is an extra argument for TreeN (its parent operation). 6923 markExtraArg(Stack.back(), I); 6924 continue; 6925 } 6926 } else if (ReducedValueData && 6927 ReducedValueData != OpData) { 6928 // Make sure that the opcodes of the operations that we are going to 6929 // reduce match. 6930 // I is an extra argument for TreeN (its parent operation). 6931 markExtraArg(Stack.back(), I); 6932 continue; 6933 } else if (!ReducedValueData) 6934 ReducedValueData = OpData; 6935 6936 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6937 continue; 6938 } 6939 } 6940 // NextV is an extra argument for TreeN (its parent operation). 6941 markExtraArg(Stack.back(), NextV); 6942 } 6943 return true; 6944 } 6945 6946 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6947 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6948 // If there are a sufficient number of reduction values, reduce 6949 // to a nearby power-of-2. We can safely generate oversized 6950 // vectors and rely on the backend to split them to legal sizes. 6951 unsigned NumReducedVals = ReducedVals.size(); 6952 if (NumReducedVals < 4) 6953 return false; 6954 6955 // FIXME: Fast-math-flags should be set based on the instructions in the 6956 // reduction (not all of 'fast' are required). 6957 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6958 FastMathFlags Unsafe; 6959 Unsafe.setFast(); 6960 Builder.setFastMathFlags(Unsafe); 6961 6962 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6963 // The same extra argument may be used several times, so log each attempt 6964 // to use it. 6965 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6966 assert(Pair.first && "DebugLoc must be set."); 6967 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6968 } 6969 6970 // The compare instruction of a min/max is the insertion point for new 6971 // instructions and may be replaced with a new compare instruction. 6972 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6973 assert(isa<SelectInst>(RdxRootInst) && 6974 "Expected min/max reduction to have select root instruction"); 6975 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6976 assert(isa<Instruction>(ScalarCond) && 6977 "Expected min/max reduction to have compare condition"); 6978 return cast<Instruction>(ScalarCond); 6979 }; 6980 6981 // The reduction root is used as the insertion point for new instructions, 6982 // so set it as externally used to prevent it from being deleted. 6983 ExternallyUsedValues[ReductionRoot]; 6984 SmallVector<Value *, 16> IgnoreList; 6985 for (ReductionOpsType &RdxOp : ReductionOps) 6986 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6987 6988 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6989 if (NumReducedVals > ReduxWidth) { 6990 // In the loop below, we are building a tree based on a window of 6991 // 'ReduxWidth' values. 6992 // If the operands of those values have common traits (compare predicate, 6993 // constant operand, etc), then we want to group those together to 6994 // minimize the cost of the reduction. 6995 6996 // TODO: This should be extended to count common operands for 6997 // compares and binops. 6998 6999 // Step 1: Count the number of times each compare predicate occurs. 7000 SmallDenseMap<unsigned, unsigned> PredCountMap; 7001 for (Value *RdxVal : ReducedVals) { 7002 CmpInst::Predicate Pred; 7003 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7004 ++PredCountMap[Pred]; 7005 } 7006 // Step 2: Sort the values so the most common predicates come first. 7007 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7008 CmpInst::Predicate PredA, PredB; 7009 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7010 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7011 return PredCountMap[PredA] > PredCountMap[PredB]; 7012 } 7013 return false; 7014 }); 7015 } 7016 7017 Value *VectorizedTree = nullptr; 7018 unsigned i = 0; 7019 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7020 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7021 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7022 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7023 if (Order) { 7024 assert(Order->size() == VL.size() && 7025 "Order size must be the same as number of vectorized " 7026 "instructions."); 7027 // TODO: reorder tree nodes without tree rebuilding. 7028 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7029 llvm::transform(*Order, ReorderedOps.begin(), 7030 [VL](const unsigned Idx) { return VL[Idx]; }); 7031 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7032 } 7033 if (V.isTreeTinyAndNotFullyVectorizable()) 7034 break; 7035 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 7036 break; 7037 7038 V.computeMinimumValueSizes(); 7039 7040 // Estimate cost. 7041 int TreeCost = V.getTreeCost(); 7042 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7043 int Cost = TreeCost + ReductionCost; 7044 if (Cost >= -SLPCostThreshold) { 7045 V.getORE()->emit([&]() { 7046 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7047 cast<Instruction>(VL[0])) 7048 << "Vectorizing horizontal reduction is possible" 7049 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7050 << " and threshold " 7051 << ore::NV("Threshold", -SLPCostThreshold); 7052 }); 7053 break; 7054 } 7055 7056 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7057 << Cost << ". (HorRdx)\n"); 7058 V.getORE()->emit([&]() { 7059 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7060 cast<Instruction>(VL[0])) 7061 << "Vectorized horizontal reduction with cost " 7062 << ore::NV("Cost", Cost) << " and with tree size " 7063 << ore::NV("TreeSize", V.getTreeSize()); 7064 }); 7065 7066 // Vectorize a tree. 7067 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7068 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7069 7070 // Emit a reduction. For min/max, the root is a select, but the insertion 7071 // point is the compare condition of that select. 7072 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7073 if (ReductionData.isMinMax()) 7074 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7075 else 7076 Builder.SetInsertPoint(RdxRootInst); 7077 7078 Value *ReducedSubTree = 7079 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7080 7081 if (!VectorizedTree) { 7082 // Initialize the final value in the reduction. 7083 VectorizedTree = ReducedSubTree; 7084 } else { 7085 // Update the final value in the reduction. 7086 Builder.SetCurrentDebugLocation(Loc); 7087 VectorizedTree = ReductionData.createOp( 7088 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7089 } 7090 i += ReduxWidth; 7091 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7092 } 7093 7094 if (VectorizedTree) { 7095 // Finish the reduction. 7096 for (; i < NumReducedVals; ++i) { 7097 auto *I = cast<Instruction>(ReducedVals[i]); 7098 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7099 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "", 7100 ReductionOps); 7101 } 7102 for (auto &Pair : ExternallyUsedValues) { 7103 // Add each externally used value to the final reduction. 7104 for (auto *I : Pair.second) { 7105 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7106 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, 7107 Pair.first, "op.extra", I); 7108 } 7109 } 7110 7111 // Update users. For a min/max reduction that ends with a compare and 7112 // select, we also have to RAUW for the compare instruction feeding the 7113 // reduction root. That's because the original compare may have extra uses 7114 // besides the final select of the reduction. 7115 if (ReductionData.isMinMax()) { 7116 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7117 Instruction *ScalarCmp = 7118 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7119 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7120 } 7121 } 7122 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7123 7124 // Mark all scalar reduction ops for deletion, they are replaced by the 7125 // vector reductions. 7126 V.eraseInstructions(IgnoreList); 7127 } 7128 return VectorizedTree != nullptr; 7129 } 7130 7131 unsigned numReductionValues() const { 7132 return ReducedVals.size(); 7133 } 7134 7135 private: 7136 /// Calculate the cost of a reduction. 7137 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7138 unsigned ReduxWidth) { 7139 Type *ScalarTy = FirstReducedVal->getType(); 7140 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7141 7142 int PairwiseRdxCost; 7143 int SplittingRdxCost; 7144 switch (ReductionData.getKind()) { 7145 case RK_Arithmetic: 7146 PairwiseRdxCost = 7147 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7148 /*IsPairwiseForm=*/true); 7149 SplittingRdxCost = 7150 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7151 /*IsPairwiseForm=*/false); 7152 break; 7153 case RK_SMin: 7154 case RK_SMax: 7155 case RK_UMin: 7156 case RK_UMax: { 7157 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7158 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7159 ReductionData.getKind() == RK_UMax; 7160 PairwiseRdxCost = 7161 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7162 /*IsPairwiseForm=*/true, IsUnsigned); 7163 SplittingRdxCost = 7164 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7165 /*IsPairwiseForm=*/false, IsUnsigned); 7166 break; 7167 } 7168 case RK_None: 7169 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7170 } 7171 7172 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7173 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7174 7175 int ScalarReduxCost = 0; 7176 switch (ReductionData.getKind()) { 7177 case RK_Arithmetic: 7178 ScalarReduxCost = 7179 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7180 break; 7181 case RK_SMin: 7182 case RK_SMax: 7183 case RK_UMin: 7184 case RK_UMax: 7185 ScalarReduxCost = 7186 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7187 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7188 CmpInst::makeCmpResultType(ScalarTy)); 7189 break; 7190 case RK_None: 7191 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7192 } 7193 ScalarReduxCost *= (ReduxWidth - 1); 7194 7195 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7196 << " for reduction that starts with " << *FirstReducedVal 7197 << " (It is a " 7198 << (IsPairwiseReduction ? "pairwise" : "splitting") 7199 << " reduction)\n"); 7200 7201 return VecReduxCost - ScalarReduxCost; 7202 } 7203 7204 /// Emit a horizontal reduction of the vectorized value. 7205 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7206 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7207 assert(VectorizedValue && "Need to have a vectorized tree node"); 7208 assert(isPowerOf2_32(ReduxWidth) && 7209 "We only handle power-of-two reductions for now"); 7210 7211 if (!IsPairwiseReduction) { 7212 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7213 // to 'fast'. 7214 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7215 return createSimpleTargetReduction( 7216 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7217 ReductionData.getFlags(), ReductionOps.back()); 7218 } 7219 7220 Value *TmpVec = VectorizedValue; 7221 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7222 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7223 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7224 7225 Value *LeftShuf = 7226 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7227 Value *RightShuf = 7228 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7229 TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7230 ReductionOps); 7231 } 7232 7233 // The result is in the first element of the vector. 7234 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7235 } 7236 }; 7237 7238 } // end anonymous namespace 7239 7240 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7241 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7242 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7243 7244 unsigned AggregateSize = 1; 7245 auto *IV = cast<InsertValueInst>(InsertInst); 7246 Type *CurrentType = IV->getType(); 7247 do { 7248 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7249 for (auto *Elt : ST->elements()) 7250 if (Elt != ST->getElementType(0)) // check homogeneity 7251 return None; 7252 AggregateSize *= ST->getNumElements(); 7253 CurrentType = ST->getElementType(0); 7254 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7255 AggregateSize *= AT->getNumElements(); 7256 CurrentType = AT->getElementType(); 7257 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7258 AggregateSize *= VT->getNumElements(); 7259 return AggregateSize; 7260 } else if (CurrentType->isSingleValueType()) { 7261 return AggregateSize; 7262 } else { 7263 return None; 7264 } 7265 } while (true); 7266 } 7267 7268 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7269 unsigned OperandOffset) { 7270 unsigned OperandIndex = OperandOffset; 7271 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7272 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7273 auto *VT = cast<FixedVectorType>(IE->getType()); 7274 OperandIndex *= VT->getNumElements(); 7275 OperandIndex += CI->getZExtValue(); 7276 return OperandIndex; 7277 } 7278 return None; 7279 } 7280 7281 auto *IV = cast<InsertValueInst>(InsertInst); 7282 Type *CurrentType = IV->getType(); 7283 for (unsigned int Index : IV->indices()) { 7284 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7285 OperandIndex *= ST->getNumElements(); 7286 CurrentType = ST->getElementType(Index); 7287 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7288 OperandIndex *= AT->getNumElements(); 7289 CurrentType = AT->getElementType(); 7290 } else { 7291 return None; 7292 } 7293 OperandIndex += Index; 7294 } 7295 return OperandIndex; 7296 } 7297 7298 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7299 TargetTransformInfo *TTI, 7300 SmallVectorImpl<Value *> &BuildVectorOpds, 7301 SmallVectorImpl<Value *> &InsertElts, 7302 unsigned OperandOffset) { 7303 do { 7304 Value *InsertedOperand = LastInsertInst->getOperand(1); 7305 Optional<unsigned> OperandIndex = 7306 getOperandIndex(LastInsertInst, OperandOffset); 7307 if (!OperandIndex) 7308 return false; 7309 if (isa<InsertElementInst>(InsertedOperand) || 7310 isa<InsertValueInst>(InsertedOperand)) { 7311 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7312 BuildVectorOpds, InsertElts, *OperandIndex)) 7313 return false; 7314 } else { 7315 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7316 InsertElts[*OperandIndex] = LastInsertInst; 7317 } 7318 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7319 return true; 7320 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7321 } while (LastInsertInst != nullptr && 7322 (isa<InsertValueInst>(LastInsertInst) || 7323 isa<InsertElementInst>(LastInsertInst)) && 7324 LastInsertInst->hasOneUse()); 7325 return false; 7326 } 7327 7328 /// Recognize construction of vectors like 7329 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7330 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7331 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7332 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7333 /// starting from the last insertelement or insertvalue instruction. 7334 /// 7335 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7336 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7337 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7338 /// 7339 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7340 /// 7341 /// \return true if it matches. 7342 static bool findBuildAggregate(Instruction *LastInsertInst, 7343 TargetTransformInfo *TTI, 7344 SmallVectorImpl<Value *> &BuildVectorOpds, 7345 SmallVectorImpl<Value *> &InsertElts) { 7346 7347 assert((isa<InsertElementInst>(LastInsertInst) || 7348 isa<InsertValueInst>(LastInsertInst)) && 7349 "Expected insertelement or insertvalue instruction!"); 7350 7351 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7352 "Expected empty result vectors!"); 7353 7354 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7355 if (!AggregateSize) 7356 return false; 7357 BuildVectorOpds.resize(*AggregateSize); 7358 InsertElts.resize(*AggregateSize); 7359 7360 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7361 0)) { 7362 llvm::erase_if(BuildVectorOpds, 7363 [](const Value *V) { return V == nullptr; }); 7364 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; }); 7365 if (BuildVectorOpds.size() >= 2) 7366 return true; 7367 } 7368 7369 return false; 7370 } 7371 7372 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7373 return V->getType() < V2->getType(); 7374 } 7375 7376 /// Try and get a reduction value from a phi node. 7377 /// 7378 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7379 /// if they come from either \p ParentBB or a containing loop latch. 7380 /// 7381 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7382 /// if not possible. 7383 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7384 BasicBlock *ParentBB, LoopInfo *LI) { 7385 // There are situations where the reduction value is not dominated by the 7386 // reduction phi. Vectorizing such cases has been reported to cause 7387 // miscompiles. See PR25787. 7388 auto DominatedReduxValue = [&](Value *R) { 7389 return isa<Instruction>(R) && 7390 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7391 }; 7392 7393 Value *Rdx = nullptr; 7394 7395 // Return the incoming value if it comes from the same BB as the phi node. 7396 if (P->getIncomingBlock(0) == ParentBB) { 7397 Rdx = P->getIncomingValue(0); 7398 } else if (P->getIncomingBlock(1) == ParentBB) { 7399 Rdx = P->getIncomingValue(1); 7400 } 7401 7402 if (Rdx && DominatedReduxValue(Rdx)) 7403 return Rdx; 7404 7405 // Otherwise, check whether we have a loop latch to look at. 7406 Loop *BBL = LI->getLoopFor(ParentBB); 7407 if (!BBL) 7408 return nullptr; 7409 BasicBlock *BBLatch = BBL->getLoopLatch(); 7410 if (!BBLatch) 7411 return nullptr; 7412 7413 // There is a loop latch, return the incoming value if it comes from 7414 // that. This reduction pattern occasionally turns up. 7415 if (P->getIncomingBlock(0) == BBLatch) { 7416 Rdx = P->getIncomingValue(0); 7417 } else if (P->getIncomingBlock(1) == BBLatch) { 7418 Rdx = P->getIncomingValue(1); 7419 } 7420 7421 if (Rdx && DominatedReduxValue(Rdx)) 7422 return Rdx; 7423 7424 return nullptr; 7425 } 7426 7427 /// Attempt to reduce a horizontal reduction. 7428 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7429 /// with reduction operators \a Root (or one of its operands) in a basic block 7430 /// \a BB, then check if it can be done. If horizontal reduction is not found 7431 /// and root instruction is a binary operation, vectorization of the operands is 7432 /// attempted. 7433 /// \returns true if a horizontal reduction was matched and reduced or operands 7434 /// of one of the binary instruction were vectorized. 7435 /// \returns false if a horizontal reduction was not matched (or not possible) 7436 /// or no vectorization of any binary operation feeding \a Root instruction was 7437 /// performed. 7438 static bool tryToVectorizeHorReductionOrInstOperands( 7439 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7440 TargetTransformInfo *TTI, 7441 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7442 if (!ShouldVectorizeHor) 7443 return false; 7444 7445 if (!Root) 7446 return false; 7447 7448 if (Root->getParent() != BB || isa<PHINode>(Root)) 7449 return false; 7450 // Start analysis starting from Root instruction. If horizontal reduction is 7451 // found, try to vectorize it. If it is not a horizontal reduction or 7452 // vectorization is not possible or not effective, and currently analyzed 7453 // instruction is a binary operation, try to vectorize the operands, using 7454 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7455 // the same procedure considering each operand as a possible root of the 7456 // horizontal reduction. 7457 // Interrupt the process if the Root instruction itself was vectorized or all 7458 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7459 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7460 SmallPtrSet<Value *, 8> VisitedInstrs; 7461 bool Res = false; 7462 while (!Stack.empty()) { 7463 Instruction *Inst; 7464 unsigned Level; 7465 std::tie(Inst, Level) = Stack.pop_back_val(); 7466 auto *BI = dyn_cast<BinaryOperator>(Inst); 7467 auto *SI = dyn_cast<SelectInst>(Inst); 7468 if (BI || SI) { 7469 HorizontalReduction HorRdx; 7470 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7471 if (HorRdx.tryToReduce(R, TTI)) { 7472 Res = true; 7473 // Set P to nullptr to avoid re-analysis of phi node in 7474 // matchAssociativeReduction function unless this is the root node. 7475 P = nullptr; 7476 continue; 7477 } 7478 } 7479 if (P && BI) { 7480 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7481 if (Inst == P) 7482 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7483 if (!Inst) { 7484 // Set P to nullptr to avoid re-analysis of phi node in 7485 // matchAssociativeReduction function unless this is the root node. 7486 P = nullptr; 7487 continue; 7488 } 7489 } 7490 } 7491 // Set P to nullptr to avoid re-analysis of phi node in 7492 // matchAssociativeReduction function unless this is the root node. 7493 P = nullptr; 7494 if (Vectorize(Inst, R)) { 7495 Res = true; 7496 continue; 7497 } 7498 7499 // Try to vectorize operands. 7500 // Continue analysis for the instruction from the same basic block only to 7501 // save compile time. 7502 if (++Level < RecursionMaxDepth) 7503 for (auto *Op : Inst->operand_values()) 7504 if (VisitedInstrs.insert(Op).second) 7505 if (auto *I = dyn_cast<Instruction>(Op)) 7506 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7507 Stack.emplace_back(I, Level); 7508 } 7509 return Res; 7510 } 7511 7512 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7513 BasicBlock *BB, BoUpSLP &R, 7514 TargetTransformInfo *TTI) { 7515 auto *I = dyn_cast_or_null<Instruction>(V); 7516 if (!I) 7517 return false; 7518 7519 if (!isa<BinaryOperator>(I)) 7520 P = nullptr; 7521 // Try to match and vectorize a horizontal reduction. 7522 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7523 return tryToVectorize(I, R); 7524 }; 7525 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7526 ExtraVectorization); 7527 } 7528 7529 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7530 BasicBlock *BB, BoUpSLP &R) { 7531 const DataLayout &DL = BB->getModule()->getDataLayout(); 7532 if (!R.canMapToVector(IVI->getType(), DL)) 7533 return false; 7534 7535 SmallVector<Value *, 16> BuildVectorOpds; 7536 SmallVector<Value *, 16> BuildVectorInsts; 7537 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7538 return false; 7539 7540 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7541 // Aggregate value is unlikely to be processed in vector register, we need to 7542 // extract scalars into scalar registers, so NeedExtraction is set true. 7543 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7544 BuildVectorInsts); 7545 } 7546 7547 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7548 BasicBlock *BB, BoUpSLP &R) { 7549 SmallVector<Value *, 16> BuildVectorInsts; 7550 SmallVector<Value *, 16> BuildVectorOpds; 7551 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7552 (llvm::all_of(BuildVectorOpds, 7553 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7554 isShuffle(BuildVectorOpds))) 7555 return false; 7556 7557 // Vectorize starting with the build vector operands ignoring the BuildVector 7558 // instructions for the purpose of scheduling and user extraction. 7559 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7560 BuildVectorInsts); 7561 } 7562 7563 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7564 BoUpSLP &R) { 7565 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7566 return true; 7567 7568 bool OpsChanged = false; 7569 for (int Idx = 0; Idx < 2; ++Idx) { 7570 OpsChanged |= 7571 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7572 } 7573 return OpsChanged; 7574 } 7575 7576 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7577 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7578 bool OpsChanged = false; 7579 for (auto *I : reverse(Instructions)) { 7580 if (R.isDeleted(I)) 7581 continue; 7582 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7583 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7584 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7585 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7586 else if (auto *CI = dyn_cast<CmpInst>(I)) 7587 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7588 } 7589 Instructions.clear(); 7590 return OpsChanged; 7591 } 7592 7593 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7594 bool Changed = false; 7595 SmallVector<Value *, 4> Incoming; 7596 SmallPtrSet<Value *, 16> VisitedInstrs; 7597 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7598 7599 bool HaveVectorizedPhiNodes = true; 7600 while (HaveVectorizedPhiNodes) { 7601 HaveVectorizedPhiNodes = false; 7602 7603 // Collect the incoming values from the PHIs. 7604 Incoming.clear(); 7605 for (Instruction &I : *BB) { 7606 PHINode *P = dyn_cast<PHINode>(&I); 7607 if (!P) 7608 break; 7609 7610 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7611 Incoming.push_back(P); 7612 } 7613 7614 // Sort by type. 7615 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7616 7617 // Try to vectorize elements base on their type. 7618 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7619 E = Incoming.end(); 7620 IncIt != E;) { 7621 7622 // Look for the next elements with the same type. 7623 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7624 Type *EltTy = (*IncIt)->getType(); 7625 7626 assert(EltTy->isSized() && 7627 "Instructions should all be sized at this point"); 7628 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7629 if (EltTS.isScalable()) { 7630 // For now, just ignore vectorizing scalable types. 7631 ++IncIt; 7632 continue; 7633 } 7634 7635 unsigned EltSize = EltTS.getFixedSize(); 7636 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7637 if (MaxNumElts < 2) { 7638 ++IncIt; 7639 continue; 7640 } 7641 7642 while (SameTypeIt != E && 7643 (*SameTypeIt)->getType() == EltTy && 7644 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7645 VisitedInstrs.insert(*SameTypeIt); 7646 ++SameTypeIt; 7647 } 7648 7649 // Try to vectorize them. 7650 unsigned NumElts = (SameTypeIt - IncIt); 7651 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7652 << NumElts << ")\n"); 7653 // The order in which the phi nodes appear in the program does not matter. 7654 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7655 // is done when there are exactly two elements since tryToVectorizeList 7656 // asserts that there are only two values when AllowReorder is true. 7657 bool AllowReorder = NumElts == 2; 7658 if (NumElts > 1 && 7659 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7660 // Success start over because instructions might have been changed. 7661 HaveVectorizedPhiNodes = true; 7662 Changed = true; 7663 break; 7664 } 7665 7666 // Start over at the next instruction of a different type (or the end). 7667 IncIt = SameTypeIt; 7668 } 7669 } 7670 7671 VisitedInstrs.clear(); 7672 7673 SmallVector<Instruction *, 8> PostProcessInstructions; 7674 SmallDenseSet<Instruction *, 4> KeyNodes; 7675 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7676 // Skip instructions with scalable type. The num of elements is unknown at 7677 // compile-time for scalable type. 7678 if (isa<ScalableVectorType>(it->getType())) 7679 continue; 7680 7681 // Skip instructions marked for the deletion. 7682 if (R.isDeleted(&*it)) 7683 continue; 7684 // We may go through BB multiple times so skip the one we have checked. 7685 if (!VisitedInstrs.insert(&*it).second) { 7686 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7687 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7688 // We would like to start over since some instructions are deleted 7689 // and the iterator may become invalid value. 7690 Changed = true; 7691 it = BB->begin(); 7692 e = BB->end(); 7693 } 7694 continue; 7695 } 7696 7697 if (isa<DbgInfoIntrinsic>(it)) 7698 continue; 7699 7700 // Try to vectorize reductions that use PHINodes. 7701 if (PHINode *P = dyn_cast<PHINode>(it)) { 7702 // Check that the PHI is a reduction PHI. 7703 if (P->getNumIncomingValues() == 2) { 7704 // Try to match and vectorize a horizontal reduction. 7705 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7706 TTI)) { 7707 Changed = true; 7708 it = BB->begin(); 7709 e = BB->end(); 7710 continue; 7711 } 7712 } 7713 // Try to vectorize the incoming values of the PHI, to catch reductions 7714 // that feed into PHIs. 7715 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7716 // Skip if the incoming block is the current BB for now. Also, bypass 7717 // unreachable IR for efficiency and to avoid crashing. 7718 // TODO: Collect the skipped incoming values and try to vectorize them 7719 // after processing BB. 7720 if (BB == P->getIncomingBlock(I) || 7721 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7722 continue; 7723 7724 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7725 P->getIncomingBlock(I), R, TTI); 7726 } 7727 continue; 7728 } 7729 7730 // Ran into an instruction without users, like terminator, or function call 7731 // with ignored return value, store. Ignore unused instructions (basing on 7732 // instruction type, except for CallInst and InvokeInst). 7733 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7734 isa<InvokeInst>(it))) { 7735 KeyNodes.insert(&*it); 7736 bool OpsChanged = false; 7737 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7738 for (auto *V : it->operand_values()) { 7739 // Try to match and vectorize a horizontal reduction. 7740 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7741 } 7742 } 7743 // Start vectorization of post-process list of instructions from the 7744 // top-tree instructions to try to vectorize as many instructions as 7745 // possible. 7746 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7747 if (OpsChanged) { 7748 // We would like to start over since some instructions are deleted 7749 // and the iterator may become invalid value. 7750 Changed = true; 7751 it = BB->begin(); 7752 e = BB->end(); 7753 continue; 7754 } 7755 } 7756 7757 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7758 isa<InsertValueInst>(it)) 7759 PostProcessInstructions.push_back(&*it); 7760 } 7761 7762 return Changed; 7763 } 7764 7765 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7766 auto Changed = false; 7767 for (auto &Entry : GEPs) { 7768 // If the getelementptr list has fewer than two elements, there's nothing 7769 // to do. 7770 if (Entry.second.size() < 2) 7771 continue; 7772 7773 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7774 << Entry.second.size() << ".\n"); 7775 7776 // Process the GEP list in chunks suitable for the target's supported 7777 // vector size. If a vector register can't hold 1 element, we are done. We 7778 // are trying to vectorize the index computations, so the maximum number of 7779 // elements is based on the size of the index expression, rather than the 7780 // size of the GEP itself (the target's pointer size). 7781 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7782 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7783 if (MaxVecRegSize < EltSize) 7784 continue; 7785 7786 unsigned MaxElts = MaxVecRegSize / EltSize; 7787 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7788 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7789 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7790 7791 // Initialize a set a candidate getelementptrs. Note that we use a 7792 // SetVector here to preserve program order. If the index computations 7793 // are vectorizable and begin with loads, we want to minimize the chance 7794 // of having to reorder them later. 7795 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7796 7797 // Some of the candidates may have already been vectorized after we 7798 // initially collected them. If so, they are marked as deleted, so remove 7799 // them from the set of candidates. 7800 Candidates.remove_if( 7801 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7802 7803 // Remove from the set of candidates all pairs of getelementptrs with 7804 // constant differences. Such getelementptrs are likely not good 7805 // candidates for vectorization in a bottom-up phase since one can be 7806 // computed from the other. We also ensure all candidate getelementptr 7807 // indices are unique. 7808 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7809 auto *GEPI = GEPList[I]; 7810 if (!Candidates.count(GEPI)) 7811 continue; 7812 auto *SCEVI = SE->getSCEV(GEPList[I]); 7813 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7814 auto *GEPJ = GEPList[J]; 7815 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7816 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7817 Candidates.remove(GEPI); 7818 Candidates.remove(GEPJ); 7819 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7820 Candidates.remove(GEPJ); 7821 } 7822 } 7823 } 7824 7825 // We break out of the above computation as soon as we know there are 7826 // fewer than two candidates remaining. 7827 if (Candidates.size() < 2) 7828 continue; 7829 7830 // Add the single, non-constant index of each candidate to the bundle. We 7831 // ensured the indices met these constraints when we originally collected 7832 // the getelementptrs. 7833 SmallVector<Value *, 16> Bundle(Candidates.size()); 7834 auto BundleIndex = 0u; 7835 for (auto *V : Candidates) { 7836 auto *GEP = cast<GetElementPtrInst>(V); 7837 auto *GEPIdx = GEP->idx_begin()->get(); 7838 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7839 Bundle[BundleIndex++] = GEPIdx; 7840 } 7841 7842 // Try and vectorize the indices. We are currently only interested in 7843 // gather-like cases of the form: 7844 // 7845 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7846 // 7847 // where the loads of "a", the loads of "b", and the subtractions can be 7848 // performed in parallel. It's likely that detecting this pattern in a 7849 // bottom-up phase will be simpler and less costly than building a 7850 // full-blown top-down phase beginning at the consecutive loads. 7851 Changed |= tryToVectorizeList(Bundle, R); 7852 } 7853 } 7854 return Changed; 7855 } 7856 7857 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7858 bool Changed = false; 7859 // Attempt to sort and vectorize each of the store-groups. 7860 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7861 ++it) { 7862 if (it->second.size() < 2) 7863 continue; 7864 7865 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7866 << it->second.size() << ".\n"); 7867 7868 Changed |= vectorizeStores(it->second, R); 7869 } 7870 return Changed; 7871 } 7872 7873 char SLPVectorizer::ID = 0; 7874 7875 static const char lv_name[] = "SLP Vectorizer"; 7876 7877 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7878 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7879 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7880 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7881 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7882 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7883 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7884 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7885 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7886 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7887 7888 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7889