1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/Analysis/AssumptionCache.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PassManager.h" 70 #include "llvm/IR/PatternMatch.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/Verifier.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/DOTGraphTraits.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/GraphWriter.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<int> 134 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 135 cl::desc("Maximum depth of the lookup for consecutive stores.")); 136 137 /// Limits the size of scheduling regions in a block. 138 /// It avoid long compile times for _very_ large blocks where vector 139 /// instructions are spread over a wide range. 140 /// This limit is way higher than needed by real-world functions. 141 static cl::opt<int> 142 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 143 cl::desc("Limit the size of the SLP scheduling region per block")); 144 145 static cl::opt<int> MinVectorRegSizeOption( 146 "slp-min-reg-size", cl::init(128), cl::Hidden, 147 cl::desc("Attempt to vectorize for this register size in bits")); 148 149 static cl::opt<unsigned> RecursionMaxDepth( 150 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 151 cl::desc("Limit the recursion depth when building a vectorizable tree")); 152 153 static cl::opt<unsigned> MinTreeSize( 154 "slp-min-tree-size", cl::init(3), cl::Hidden, 155 cl::desc("Only vectorize small trees if they are fully vectorizable")); 156 157 // The maximum depth that the look-ahead score heuristic will explore. 158 // The higher this value, the higher the compilation time overhead. 159 static cl::opt<int> LookAheadMaxDepth( 160 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 161 cl::desc("The maximum look-ahead depth for operand reordering scores")); 162 163 // The Look-ahead heuristic goes through the users of the bundle to calculate 164 // the users cost in getExternalUsesCost(). To avoid compilation time increase 165 // we limit the number of users visited to this value. 166 static cl::opt<unsigned> LookAheadUsersBudget( 167 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 168 cl::desc("The maximum number of users to visit while visiting the " 169 "predecessors. This prevents compilation time increase.")); 170 171 static cl::opt<bool> 172 ViewSLPTree("view-slp-tree", cl::Hidden, 173 cl::desc("Display the SLP trees with Graphviz")); 174 175 // Limit the number of alias checks. The limit is chosen so that 176 // it has no negative effect on the llvm benchmarks. 177 static const unsigned AliasedCheckLimit = 10; 178 179 // Another limit for the alias checks: The maximum distance between load/store 180 // instructions where alias checks are done. 181 // This limit is useful for very large basic blocks. 182 static const unsigned MaxMemDepDistance = 160; 183 184 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 185 /// regions to be handled. 186 static const int MinScheduleRegionSize = 16; 187 188 /// Predicate for the element types that the SLP vectorizer supports. 189 /// 190 /// The most important thing to filter here are types which are invalid in LLVM 191 /// vectors. We also filter target specific types which have absolutely no 192 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 193 /// avoids spending time checking the cost model and realizing that they will 194 /// be inevitably scalarized. 195 static bool isValidElementType(Type *Ty) { 196 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 197 !Ty->isPPC_FP128Ty(); 198 } 199 200 /// \returns true if all of the instructions in \p VL are in the same block or 201 /// false otherwise. 202 static bool allSameBlock(ArrayRef<Value *> VL) { 203 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 204 if (!I0) 205 return false; 206 BasicBlock *BB = I0->getParent(); 207 for (int i = 1, e = VL.size(); i < e; i++) { 208 Instruction *I = dyn_cast<Instruction>(VL[i]); 209 if (!I) 210 return false; 211 212 if (BB != I->getParent()) 213 return false; 214 } 215 return true; 216 } 217 218 /// \returns True if all of the values in \p VL are constants (but not 219 /// globals/constant expressions). 220 static bool allConstant(ArrayRef<Value *> VL) { 221 // Constant expressions and globals can't be vectorized like normal integer/FP 222 // constants. 223 for (Value *i : VL) 224 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 225 return false; 226 return true; 227 } 228 229 /// \returns True if all of the values in \p VL are identical. 230 static bool isSplat(ArrayRef<Value *> VL) { 231 for (unsigned i = 1, e = VL.size(); i < e; ++i) 232 if (VL[i] != VL[0]) 233 return false; 234 return true; 235 } 236 237 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 238 static bool isCommutative(Instruction *I) { 239 if (auto *IC = dyn_cast<CmpInst>(I)) 240 return IC->isCommutative(); 241 return I->isCommutative(); 242 } 243 244 /// Checks if the vector of instructions can be represented as a shuffle, like: 245 /// %x0 = extractelement <4 x i8> %x, i32 0 246 /// %x3 = extractelement <4 x i8> %x, i32 3 247 /// %y1 = extractelement <4 x i8> %y, i32 1 248 /// %y2 = extractelement <4 x i8> %y, i32 2 249 /// %x0x0 = mul i8 %x0, %x0 250 /// %x3x3 = mul i8 %x3, %x3 251 /// %y1y1 = mul i8 %y1, %y1 252 /// %y2y2 = mul i8 %y2, %y2 253 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 254 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 255 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 256 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 257 /// ret <4 x i8> %ins4 258 /// can be transformed into: 259 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 260 /// i32 6> 261 /// %2 = mul <4 x i8> %1, %1 262 /// ret <4 x i8> %2 263 /// We convert this initially to something like: 264 /// %x0 = extractelement <4 x i8> %x, i32 0 265 /// %x3 = extractelement <4 x i8> %x, i32 3 266 /// %y1 = extractelement <4 x i8> %y, i32 1 267 /// %y2 = extractelement <4 x i8> %y, i32 2 268 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 269 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 270 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 271 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 272 /// %5 = mul <4 x i8> %4, %4 273 /// %6 = extractelement <4 x i8> %5, i32 0 274 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 275 /// %7 = extractelement <4 x i8> %5, i32 1 276 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 277 /// %8 = extractelement <4 x i8> %5, i32 2 278 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 279 /// %9 = extractelement <4 x i8> %5, i32 3 280 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 281 /// ret <4 x i8> %ins4 282 /// InstCombiner transforms this into a shuffle and vector mul 283 /// TODO: Can we split off and reuse the shuffle mask detection from 284 /// TargetTransformInfo::getInstructionThroughput? 285 static Optional<TargetTransformInfo::ShuffleKind> 286 isShuffle(ArrayRef<Value *> VL) { 287 auto *EI0 = cast<ExtractElementInst>(VL[0]); 288 unsigned Size = EI0->getVectorOperandType()->getNumElements(); 289 Value *Vec1 = nullptr; 290 Value *Vec2 = nullptr; 291 enum ShuffleMode { Unknown, Select, Permute }; 292 ShuffleMode CommonShuffleMode = Unknown; 293 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 294 auto *EI = cast<ExtractElementInst>(VL[I]); 295 auto *Vec = EI->getVectorOperand(); 296 // All vector operands must have the same number of vector elements. 297 if (cast<VectorType>(Vec->getType())->getNumElements() != Size) 298 return None; 299 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 300 if (!Idx) 301 return None; 302 // Undefined behavior if Idx is negative or >= Size. 303 if (Idx->getValue().uge(Size)) 304 continue; 305 unsigned IntIdx = Idx->getValue().getZExtValue(); 306 // We can extractelement from undef vector. 307 if (isa<UndefValue>(Vec)) 308 continue; 309 // For correct shuffling we have to have at most 2 different vector operands 310 // in all extractelement instructions. 311 if (!Vec1 || Vec1 == Vec) 312 Vec1 = Vec; 313 else if (!Vec2 || Vec2 == Vec) 314 Vec2 = Vec; 315 else 316 return None; 317 if (CommonShuffleMode == Permute) 318 continue; 319 // If the extract index is not the same as the operation number, it is a 320 // permutation. 321 if (IntIdx != I) { 322 CommonShuffleMode = Permute; 323 continue; 324 } 325 CommonShuffleMode = Select; 326 } 327 // If we're not crossing lanes in different vectors, consider it as blending. 328 if (CommonShuffleMode == Select && Vec2) 329 return TargetTransformInfo::SK_Select; 330 // If Vec2 was never used, we have a permutation of a single vector, otherwise 331 // we have permutation of 2 vectors. 332 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 333 : TargetTransformInfo::SK_PermuteSingleSrc; 334 } 335 336 namespace { 337 338 /// Main data required for vectorization of instructions. 339 struct InstructionsState { 340 /// The very first instruction in the list with the main opcode. 341 Value *OpValue = nullptr; 342 343 /// The main/alternate instruction. 344 Instruction *MainOp = nullptr; 345 Instruction *AltOp = nullptr; 346 347 /// The main/alternate opcodes for the list of instructions. 348 unsigned getOpcode() const { 349 return MainOp ? MainOp->getOpcode() : 0; 350 } 351 352 unsigned getAltOpcode() const { 353 return AltOp ? AltOp->getOpcode() : 0; 354 } 355 356 /// Some of the instructions in the list have alternate opcodes. 357 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 358 359 bool isOpcodeOrAlt(Instruction *I) const { 360 unsigned CheckedOpcode = I->getOpcode(); 361 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 362 } 363 364 InstructionsState() = delete; 365 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 366 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 367 }; 368 369 } // end anonymous namespace 370 371 /// Chooses the correct key for scheduling data. If \p Op has the same (or 372 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 373 /// OpValue. 374 static Value *isOneOf(const InstructionsState &S, Value *Op) { 375 auto *I = dyn_cast<Instruction>(Op); 376 if (I && S.isOpcodeOrAlt(I)) 377 return Op; 378 return S.OpValue; 379 } 380 381 /// \returns true if \p Opcode is allowed as part of of the main/alternate 382 /// instruction for SLP vectorization. 383 /// 384 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 385 /// "shuffled out" lane would result in division by zero. 386 static bool isValidForAlternation(unsigned Opcode) { 387 if (Instruction::isIntDivRem(Opcode)) 388 return false; 389 390 return true; 391 } 392 393 /// \returns analysis of the Instructions in \p VL described in 394 /// InstructionsState, the Opcode that we suppose the whole list 395 /// could be vectorized even if its structure is diverse. 396 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 397 unsigned BaseIndex = 0) { 398 // Make sure these are all Instructions. 399 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 400 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 401 402 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 403 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 404 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 405 unsigned AltOpcode = Opcode; 406 unsigned AltIndex = BaseIndex; 407 408 // Check for one alternate opcode from another BinaryOperator. 409 // TODO - generalize to support all operators (types, calls etc.). 410 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 411 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 412 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 413 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 414 continue; 415 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 416 isValidForAlternation(Opcode)) { 417 AltOpcode = InstOpcode; 418 AltIndex = Cnt; 419 continue; 420 } 421 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 422 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 423 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 424 if (Ty0 == Ty1) { 425 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 426 continue; 427 if (Opcode == AltOpcode) { 428 assert(isValidForAlternation(Opcode) && 429 isValidForAlternation(InstOpcode) && 430 "Cast isn't safe for alternation, logic needs to be updated!"); 431 AltOpcode = InstOpcode; 432 AltIndex = Cnt; 433 continue; 434 } 435 } 436 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 437 continue; 438 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 439 } 440 441 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 442 cast<Instruction>(VL[AltIndex])); 443 } 444 445 /// \returns true if all of the values in \p VL have the same type or false 446 /// otherwise. 447 static bool allSameType(ArrayRef<Value *> VL) { 448 Type *Ty = VL[0]->getType(); 449 for (int i = 1, e = VL.size(); i < e; i++) 450 if (VL[i]->getType() != Ty) 451 return false; 452 453 return true; 454 } 455 456 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 457 static Optional<unsigned> getExtractIndex(Instruction *E) { 458 unsigned Opcode = E->getOpcode(); 459 assert((Opcode == Instruction::ExtractElement || 460 Opcode == Instruction::ExtractValue) && 461 "Expected extractelement or extractvalue instruction."); 462 if (Opcode == Instruction::ExtractElement) { 463 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 464 if (!CI) 465 return None; 466 return CI->getZExtValue(); 467 } 468 ExtractValueInst *EI = cast<ExtractValueInst>(E); 469 if (EI->getNumIndices() != 1) 470 return None; 471 return *EI->idx_begin(); 472 } 473 474 /// \returns True if in-tree use also needs extract. This refers to 475 /// possible scalar operand in vectorized instruction. 476 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 477 TargetLibraryInfo *TLI) { 478 unsigned Opcode = UserInst->getOpcode(); 479 switch (Opcode) { 480 case Instruction::Load: { 481 LoadInst *LI = cast<LoadInst>(UserInst); 482 return (LI->getPointerOperand() == Scalar); 483 } 484 case Instruction::Store: { 485 StoreInst *SI = cast<StoreInst>(UserInst); 486 return (SI->getPointerOperand() == Scalar); 487 } 488 case Instruction::Call: { 489 CallInst *CI = cast<CallInst>(UserInst); 490 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 491 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 492 if (hasVectorInstrinsicScalarOpd(ID, i)) 493 return (CI->getArgOperand(i) == Scalar); 494 } 495 LLVM_FALLTHROUGH; 496 } 497 default: 498 return false; 499 } 500 } 501 502 /// \returns the AA location that is being access by the instruction. 503 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 504 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 505 return MemoryLocation::get(SI); 506 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 507 return MemoryLocation::get(LI); 508 return MemoryLocation(); 509 } 510 511 /// \returns True if the instruction is not a volatile or atomic load/store. 512 static bool isSimple(Instruction *I) { 513 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 514 return LI->isSimple(); 515 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 516 return SI->isSimple(); 517 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 518 return !MI->isVolatile(); 519 return true; 520 } 521 522 namespace llvm { 523 524 namespace slpvectorizer { 525 526 /// Bottom Up SLP Vectorizer. 527 class BoUpSLP { 528 struct TreeEntry; 529 struct ScheduleData; 530 531 public: 532 using ValueList = SmallVector<Value *, 8>; 533 using InstrList = SmallVector<Instruction *, 16>; 534 using ValueSet = SmallPtrSet<Value *, 16>; 535 using StoreList = SmallVector<StoreInst *, 8>; 536 using ExtraValueToDebugLocsMap = 537 MapVector<Value *, SmallVector<Instruction *, 2>>; 538 539 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 540 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 541 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 542 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 543 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 544 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 545 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 546 // Use the vector register size specified by the target unless overridden 547 // by a command-line option. 548 // TODO: It would be better to limit the vectorization factor based on 549 // data type rather than just register size. For example, x86 AVX has 550 // 256-bit registers, but it does not support integer operations 551 // at that width (that requires AVX2). 552 if (MaxVectorRegSizeOption.getNumOccurrences()) 553 MaxVecRegSize = MaxVectorRegSizeOption; 554 else 555 MaxVecRegSize = TTI->getRegisterBitWidth(true); 556 557 if (MinVectorRegSizeOption.getNumOccurrences()) 558 MinVecRegSize = MinVectorRegSizeOption; 559 else 560 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 561 } 562 563 /// Vectorize the tree that starts with the elements in \p VL. 564 /// Returns the vectorized root. 565 Value *vectorizeTree(); 566 567 /// Vectorize the tree but with the list of externally used values \p 568 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 569 /// generated extractvalue instructions. 570 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 571 572 /// \returns the cost incurred by unwanted spills and fills, caused by 573 /// holding live values over call sites. 574 int getSpillCost() const; 575 576 /// \returns the vectorization cost of the subtree that starts at \p VL. 577 /// A negative number means that this is profitable. 578 int getTreeCost(); 579 580 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 581 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 582 void buildTree(ArrayRef<Value *> Roots, 583 ArrayRef<Value *> UserIgnoreLst = None); 584 585 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 586 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 587 /// into account (and updating it, if required) list of externally used 588 /// values stored in \p ExternallyUsedValues. 589 void buildTree(ArrayRef<Value *> Roots, 590 ExtraValueToDebugLocsMap &ExternallyUsedValues, 591 ArrayRef<Value *> UserIgnoreLst = None); 592 593 /// Clear the internal data structures that are created by 'buildTree'. 594 void deleteTree() { 595 VectorizableTree.clear(); 596 ScalarToTreeEntry.clear(); 597 MustGather.clear(); 598 ExternalUses.clear(); 599 NumOpsWantToKeepOrder.clear(); 600 NumOpsWantToKeepOriginalOrder = 0; 601 for (auto &Iter : BlocksSchedules) { 602 BlockScheduling *BS = Iter.second.get(); 603 BS->clear(); 604 } 605 MinBWs.clear(); 606 } 607 608 unsigned getTreeSize() const { return VectorizableTree.size(); } 609 610 /// Perform LICM and CSE on the newly generated gather sequences. 611 void optimizeGatherSequence(); 612 613 /// \returns The best order of instructions for vectorization. 614 Optional<ArrayRef<unsigned>> bestOrder() const { 615 auto I = std::max_element( 616 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 617 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 618 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 619 return D1.second < D2.second; 620 }); 621 if (I == NumOpsWantToKeepOrder.end() || 622 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 623 return None; 624 625 return makeArrayRef(I->getFirst()); 626 } 627 628 /// \return The vector element size in bits to use when vectorizing the 629 /// expression tree ending at \p V. If V is a store, the size is the width of 630 /// the stored value. Otherwise, the size is the width of the largest loaded 631 /// value reaching V. This method is used by the vectorizer to calculate 632 /// vectorization factors. 633 unsigned getVectorElementSize(Value *V); 634 635 /// Compute the minimum type sizes required to represent the entries in a 636 /// vectorizable tree. 637 void computeMinimumValueSizes(); 638 639 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 640 unsigned getMaxVecRegSize() const { 641 return MaxVecRegSize; 642 } 643 644 // \returns minimum vector register size as set by cl::opt. 645 unsigned getMinVecRegSize() const { 646 return MinVecRegSize; 647 } 648 649 /// Check if homogeneous aggregate is isomorphic to some VectorType. 650 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 651 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 652 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 653 /// 654 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 655 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 656 657 /// \returns True if the VectorizableTree is both tiny and not fully 658 /// vectorizable. We do not vectorize such trees. 659 bool isTreeTinyAndNotFullyVectorizable() const; 660 661 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 662 /// can be load combined in the backend. Load combining may not be allowed in 663 /// the IR optimizer, so we do not want to alter the pattern. For example, 664 /// partially transforming a scalar bswap() pattern into vector code is 665 /// effectively impossible for the backend to undo. 666 /// TODO: If load combining is allowed in the IR optimizer, this analysis 667 /// may not be necessary. 668 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 669 670 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 671 /// can be load combined in the backend. Load combining may not be allowed in 672 /// the IR optimizer, so we do not want to alter the pattern. For example, 673 /// partially transforming a scalar bswap() pattern into vector code is 674 /// effectively impossible for the backend to undo. 675 /// TODO: If load combining is allowed in the IR optimizer, this analysis 676 /// may not be necessary. 677 bool isLoadCombineCandidate() const; 678 679 OptimizationRemarkEmitter *getORE() { return ORE; } 680 681 /// This structure holds any data we need about the edges being traversed 682 /// during buildTree_rec(). We keep track of: 683 /// (i) the user TreeEntry index, and 684 /// (ii) the index of the edge. 685 struct EdgeInfo { 686 EdgeInfo() = default; 687 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 688 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 689 /// The user TreeEntry. 690 TreeEntry *UserTE = nullptr; 691 /// The operand index of the use. 692 unsigned EdgeIdx = UINT_MAX; 693 #ifndef NDEBUG 694 friend inline raw_ostream &operator<<(raw_ostream &OS, 695 const BoUpSLP::EdgeInfo &EI) { 696 EI.dump(OS); 697 return OS; 698 } 699 /// Debug print. 700 void dump(raw_ostream &OS) const { 701 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 702 << " EdgeIdx:" << EdgeIdx << "}"; 703 } 704 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 705 #endif 706 }; 707 708 /// A helper data structure to hold the operands of a vector of instructions. 709 /// This supports a fixed vector length for all operand vectors. 710 class VLOperands { 711 /// For each operand we need (i) the value, and (ii) the opcode that it 712 /// would be attached to if the expression was in a left-linearized form. 713 /// This is required to avoid illegal operand reordering. 714 /// For example: 715 /// \verbatim 716 /// 0 Op1 717 /// |/ 718 /// Op1 Op2 Linearized + Op2 719 /// \ / ----------> |/ 720 /// - - 721 /// 722 /// Op1 - Op2 (0 + Op1) - Op2 723 /// \endverbatim 724 /// 725 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 726 /// 727 /// Another way to think of this is to track all the operations across the 728 /// path from the operand all the way to the root of the tree and to 729 /// calculate the operation that corresponds to this path. For example, the 730 /// path from Op2 to the root crosses the RHS of the '-', therefore the 731 /// corresponding operation is a '-' (which matches the one in the 732 /// linearized tree, as shown above). 733 /// 734 /// For lack of a better term, we refer to this operation as Accumulated 735 /// Path Operation (APO). 736 struct OperandData { 737 OperandData() = default; 738 OperandData(Value *V, bool APO, bool IsUsed) 739 : V(V), APO(APO), IsUsed(IsUsed) {} 740 /// The operand value. 741 Value *V = nullptr; 742 /// TreeEntries only allow a single opcode, or an alternate sequence of 743 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 744 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 745 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 746 /// (e.g., Add/Mul) 747 bool APO = false; 748 /// Helper data for the reordering function. 749 bool IsUsed = false; 750 }; 751 752 /// During operand reordering, we are trying to select the operand at lane 753 /// that matches best with the operand at the neighboring lane. Our 754 /// selection is based on the type of value we are looking for. For example, 755 /// if the neighboring lane has a load, we need to look for a load that is 756 /// accessing a consecutive address. These strategies are summarized in the 757 /// 'ReorderingMode' enumerator. 758 enum class ReorderingMode { 759 Load, ///< Matching loads to consecutive memory addresses 760 Opcode, ///< Matching instructions based on opcode (same or alternate) 761 Constant, ///< Matching constants 762 Splat, ///< Matching the same instruction multiple times (broadcast) 763 Failed, ///< We failed to create a vectorizable group 764 }; 765 766 using OperandDataVec = SmallVector<OperandData, 2>; 767 768 /// A vector of operand vectors. 769 SmallVector<OperandDataVec, 4> OpsVec; 770 771 const DataLayout &DL; 772 ScalarEvolution &SE; 773 const BoUpSLP &R; 774 775 /// \returns the operand data at \p OpIdx and \p Lane. 776 OperandData &getData(unsigned OpIdx, unsigned Lane) { 777 return OpsVec[OpIdx][Lane]; 778 } 779 780 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 781 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 782 return OpsVec[OpIdx][Lane]; 783 } 784 785 /// Clears the used flag for all entries. 786 void clearUsed() { 787 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 788 OpIdx != NumOperands; ++OpIdx) 789 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 790 ++Lane) 791 OpsVec[OpIdx][Lane].IsUsed = false; 792 } 793 794 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 795 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 796 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 797 } 798 799 // The hard-coded scores listed here are not very important. When computing 800 // the scores of matching one sub-tree with another, we are basically 801 // counting the number of values that are matching. So even if all scores 802 // are set to 1, we would still get a decent matching result. 803 // However, sometimes we have to break ties. For example we may have to 804 // choose between matching loads vs matching opcodes. This is what these 805 // scores are helping us with: they provide the order of preference. 806 807 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 808 static const int ScoreConsecutiveLoads = 3; 809 /// ExtractElementInst from same vector and consecutive indexes. 810 static const int ScoreConsecutiveExtracts = 3; 811 /// Constants. 812 static const int ScoreConstants = 2; 813 /// Instructions with the same opcode. 814 static const int ScoreSameOpcode = 2; 815 /// Instructions with alt opcodes (e.g, add + sub). 816 static const int ScoreAltOpcodes = 1; 817 /// Identical instructions (a.k.a. splat or broadcast). 818 static const int ScoreSplat = 1; 819 /// Matching with an undef is preferable to failing. 820 static const int ScoreUndef = 1; 821 /// Score for failing to find a decent match. 822 static const int ScoreFail = 0; 823 /// User exteranl to the vectorized code. 824 static const int ExternalUseCost = 1; 825 /// The user is internal but in a different lane. 826 static const int UserInDiffLaneCost = ExternalUseCost; 827 828 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 829 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 830 ScalarEvolution &SE) { 831 auto *LI1 = dyn_cast<LoadInst>(V1); 832 auto *LI2 = dyn_cast<LoadInst>(V2); 833 if (LI1 && LI2) 834 return isConsecutiveAccess(LI1, LI2, DL, SE) 835 ? VLOperands::ScoreConsecutiveLoads 836 : VLOperands::ScoreFail; 837 838 auto *C1 = dyn_cast<Constant>(V1); 839 auto *C2 = dyn_cast<Constant>(V2); 840 if (C1 && C2) 841 return VLOperands::ScoreConstants; 842 843 // Extracts from consecutive indexes of the same vector better score as 844 // the extracts could be optimized away. 845 Value *EV; 846 ConstantInt *Ex1Idx, *Ex2Idx; 847 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 848 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 849 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 850 return VLOperands::ScoreConsecutiveExtracts; 851 852 auto *I1 = dyn_cast<Instruction>(V1); 853 auto *I2 = dyn_cast<Instruction>(V2); 854 if (I1 && I2) { 855 if (I1 == I2) 856 return VLOperands::ScoreSplat; 857 InstructionsState S = getSameOpcode({I1, I2}); 858 // Note: Only consider instructions with <= 2 operands to avoid 859 // complexity explosion. 860 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 861 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 862 : VLOperands::ScoreSameOpcode; 863 } 864 865 if (isa<UndefValue>(V2)) 866 return VLOperands::ScoreUndef; 867 868 return VLOperands::ScoreFail; 869 } 870 871 /// Holds the values and their lane that are taking part in the look-ahead 872 /// score calculation. This is used in the external uses cost calculation. 873 SmallDenseMap<Value *, int> InLookAheadValues; 874 875 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 876 /// either external to the vectorized code, or require shuffling. 877 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 878 const std::pair<Value *, int> &RHS) { 879 int Cost = 0; 880 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 881 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 882 Value *V = Values[Idx].first; 883 // Calculate the absolute lane, using the minimum relative lane of LHS 884 // and RHS as base and Idx as the offset. 885 int Ln = std::min(LHS.second, RHS.second) + Idx; 886 assert(Ln >= 0 && "Bad lane calculation"); 887 unsigned UsersBudget = LookAheadUsersBudget; 888 for (User *U : V->users()) { 889 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 890 // The user is in the VectorizableTree. Check if we need to insert. 891 auto It = llvm::find(UserTE->Scalars, U); 892 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 893 int UserLn = std::distance(UserTE->Scalars.begin(), It); 894 assert(UserLn >= 0 && "Bad lane"); 895 if (UserLn != Ln) 896 Cost += UserInDiffLaneCost; 897 } else { 898 // Check if the user is in the look-ahead code. 899 auto It2 = InLookAheadValues.find(U); 900 if (It2 != InLookAheadValues.end()) { 901 // The user is in the look-ahead code. Check the lane. 902 if (It2->second != Ln) 903 Cost += UserInDiffLaneCost; 904 } else { 905 // The user is neither in SLP tree nor in the look-ahead code. 906 Cost += ExternalUseCost; 907 } 908 } 909 // Limit the number of visited uses to cap compilation time. 910 if (--UsersBudget == 0) 911 break; 912 } 913 } 914 return Cost; 915 } 916 917 /// Go through the operands of \p LHS and \p RHS recursively until \p 918 /// MaxLevel, and return the cummulative score. For example: 919 /// \verbatim 920 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 921 /// \ / \ / \ / \ / 922 /// + + + + 923 /// G1 G2 G3 G4 924 /// \endverbatim 925 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 926 /// each level recursively, accumulating the score. It starts from matching 927 /// the additions at level 0, then moves on to the loads (level 1). The 928 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 929 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 930 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 931 /// Please note that the order of the operands does not matter, as we 932 /// evaluate the score of all profitable combinations of operands. In 933 /// other words the score of G1 and G4 is the same as G1 and G2. This 934 /// heuristic is based on ideas described in: 935 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 936 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 937 /// Luís F. W. Góes 938 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 939 const std::pair<Value *, int> &RHS, int CurrLevel, 940 int MaxLevel) { 941 942 Value *V1 = LHS.first; 943 Value *V2 = RHS.first; 944 // Get the shallow score of V1 and V2. 945 int ShallowScoreAtThisLevel = 946 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 947 getExternalUsesCost(LHS, RHS)); 948 int Lane1 = LHS.second; 949 int Lane2 = RHS.second; 950 951 // If reached MaxLevel, 952 // or if V1 and V2 are not instructions, 953 // or if they are SPLAT, 954 // or if they are not consecutive, early return the current cost. 955 auto *I1 = dyn_cast<Instruction>(V1); 956 auto *I2 = dyn_cast<Instruction>(V2); 957 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 958 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 959 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 960 return ShallowScoreAtThisLevel; 961 assert(I1 && I2 && "Should have early exited."); 962 963 // Keep track of in-tree values for determining the external-use cost. 964 InLookAheadValues[V1] = Lane1; 965 InLookAheadValues[V2] = Lane2; 966 967 // Contains the I2 operand indexes that got matched with I1 operands. 968 SmallSet<unsigned, 4> Op2Used; 969 970 // Recursion towards the operands of I1 and I2. We are trying all possbile 971 // operand pairs, and keeping track of the best score. 972 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 973 OpIdx1 != NumOperands1; ++OpIdx1) { 974 // Try to pair op1I with the best operand of I2. 975 int MaxTmpScore = 0; 976 unsigned MaxOpIdx2 = 0; 977 bool FoundBest = false; 978 // If I2 is commutative try all combinations. 979 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 980 unsigned ToIdx = isCommutative(I2) 981 ? I2->getNumOperands() 982 : std::min(I2->getNumOperands(), OpIdx1 + 1); 983 assert(FromIdx <= ToIdx && "Bad index"); 984 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 985 // Skip operands already paired with OpIdx1. 986 if (Op2Used.count(OpIdx2)) 987 continue; 988 // Recursively calculate the cost at each level 989 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 990 {I2->getOperand(OpIdx2), Lane2}, 991 CurrLevel + 1, MaxLevel); 992 // Look for the best score. 993 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 994 MaxTmpScore = TmpScore; 995 MaxOpIdx2 = OpIdx2; 996 FoundBest = true; 997 } 998 } 999 if (FoundBest) { 1000 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1001 Op2Used.insert(MaxOpIdx2); 1002 ShallowScoreAtThisLevel += MaxTmpScore; 1003 } 1004 } 1005 return ShallowScoreAtThisLevel; 1006 } 1007 1008 /// \Returns the look-ahead score, which tells us how much the sub-trees 1009 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1010 /// score. This helps break ties in an informed way when we cannot decide on 1011 /// the order of the operands by just considering the immediate 1012 /// predecessors. 1013 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1014 const std::pair<Value *, int> &RHS) { 1015 InLookAheadValues.clear(); 1016 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1017 } 1018 1019 // Search all operands in Ops[*][Lane] for the one that matches best 1020 // Ops[OpIdx][LastLane] and return its opreand index. 1021 // If no good match can be found, return None. 1022 Optional<unsigned> 1023 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1024 ArrayRef<ReorderingMode> ReorderingModes) { 1025 unsigned NumOperands = getNumOperands(); 1026 1027 // The operand of the previous lane at OpIdx. 1028 Value *OpLastLane = getData(OpIdx, LastLane).V; 1029 1030 // Our strategy mode for OpIdx. 1031 ReorderingMode RMode = ReorderingModes[OpIdx]; 1032 1033 // The linearized opcode of the operand at OpIdx, Lane. 1034 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1035 1036 // The best operand index and its score. 1037 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1038 // are using the score to differentiate between the two. 1039 struct BestOpData { 1040 Optional<unsigned> Idx = None; 1041 unsigned Score = 0; 1042 } BestOp; 1043 1044 // Iterate through all unused operands and look for the best. 1045 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1046 // Get the operand at Idx and Lane. 1047 OperandData &OpData = getData(Idx, Lane); 1048 Value *Op = OpData.V; 1049 bool OpAPO = OpData.APO; 1050 1051 // Skip already selected operands. 1052 if (OpData.IsUsed) 1053 continue; 1054 1055 // Skip if we are trying to move the operand to a position with a 1056 // different opcode in the linearized tree form. This would break the 1057 // semantics. 1058 if (OpAPO != OpIdxAPO) 1059 continue; 1060 1061 // Look for an operand that matches the current mode. 1062 switch (RMode) { 1063 case ReorderingMode::Load: 1064 case ReorderingMode::Constant: 1065 case ReorderingMode::Opcode: { 1066 bool LeftToRight = Lane > LastLane; 1067 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1068 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1069 unsigned Score = 1070 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1071 if (Score > BestOp.Score) { 1072 BestOp.Idx = Idx; 1073 BestOp.Score = Score; 1074 } 1075 break; 1076 } 1077 case ReorderingMode::Splat: 1078 if (Op == OpLastLane) 1079 BestOp.Idx = Idx; 1080 break; 1081 case ReorderingMode::Failed: 1082 return None; 1083 } 1084 } 1085 1086 if (BestOp.Idx) { 1087 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1088 return BestOp.Idx; 1089 } 1090 // If we could not find a good match return None. 1091 return None; 1092 } 1093 1094 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1095 /// reordering from. This is the one which has the least number of operands 1096 /// that can freely move about. 1097 unsigned getBestLaneToStartReordering() const { 1098 unsigned BestLane = 0; 1099 unsigned Min = UINT_MAX; 1100 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1101 ++Lane) { 1102 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1103 if (NumFreeOps < Min) { 1104 Min = NumFreeOps; 1105 BestLane = Lane; 1106 } 1107 } 1108 return BestLane; 1109 } 1110 1111 /// \Returns the maximum number of operands that are allowed to be reordered 1112 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1113 /// start operand reordering. 1114 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1115 unsigned CntTrue = 0; 1116 unsigned NumOperands = getNumOperands(); 1117 // Operands with the same APO can be reordered. We therefore need to count 1118 // how many of them we have for each APO, like this: Cnt[APO] = x. 1119 // Since we only have two APOs, namely true and false, we can avoid using 1120 // a map. Instead we can simply count the number of operands that 1121 // correspond to one of them (in this case the 'true' APO), and calculate 1122 // the other by subtracting it from the total number of operands. 1123 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1124 if (getData(OpIdx, Lane).APO) 1125 ++CntTrue; 1126 unsigned CntFalse = NumOperands - CntTrue; 1127 return std::max(CntTrue, CntFalse); 1128 } 1129 1130 /// Go through the instructions in VL and append their operands. 1131 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1132 assert(!VL.empty() && "Bad VL"); 1133 assert((empty() || VL.size() == getNumLanes()) && 1134 "Expected same number of lanes"); 1135 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1136 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1137 OpsVec.resize(NumOperands); 1138 unsigned NumLanes = VL.size(); 1139 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1140 OpsVec[OpIdx].resize(NumLanes); 1141 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1142 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1143 // Our tree has just 3 nodes: the root and two operands. 1144 // It is therefore trivial to get the APO. We only need to check the 1145 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1146 // RHS operand. The LHS operand of both add and sub is never attached 1147 // to an inversese operation in the linearized form, therefore its APO 1148 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1149 1150 // Since operand reordering is performed on groups of commutative 1151 // operations or alternating sequences (e.g., +, -), we can safely 1152 // tell the inverse operations by checking commutativity. 1153 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1154 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1155 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1156 APO, false}; 1157 } 1158 } 1159 } 1160 1161 /// \returns the number of operands. 1162 unsigned getNumOperands() const { return OpsVec.size(); } 1163 1164 /// \returns the number of lanes. 1165 unsigned getNumLanes() const { return OpsVec[0].size(); } 1166 1167 /// \returns the operand value at \p OpIdx and \p Lane. 1168 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1169 return getData(OpIdx, Lane).V; 1170 } 1171 1172 /// \returns true if the data structure is empty. 1173 bool empty() const { return OpsVec.empty(); } 1174 1175 /// Clears the data. 1176 void clear() { OpsVec.clear(); } 1177 1178 /// \Returns true if there are enough operands identical to \p Op to fill 1179 /// the whole vector. 1180 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1181 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1182 bool OpAPO = getData(OpIdx, Lane).APO; 1183 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1184 if (Ln == Lane) 1185 continue; 1186 // This is set to true if we found a candidate for broadcast at Lane. 1187 bool FoundCandidate = false; 1188 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1189 OperandData &Data = getData(OpI, Ln); 1190 if (Data.APO != OpAPO || Data.IsUsed) 1191 continue; 1192 if (Data.V == Op) { 1193 FoundCandidate = true; 1194 Data.IsUsed = true; 1195 break; 1196 } 1197 } 1198 if (!FoundCandidate) 1199 return false; 1200 } 1201 return true; 1202 } 1203 1204 public: 1205 /// Initialize with all the operands of the instruction vector \p RootVL. 1206 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1207 ScalarEvolution &SE, const BoUpSLP &R) 1208 : DL(DL), SE(SE), R(R) { 1209 // Append all the operands of RootVL. 1210 appendOperandsOfVL(RootVL); 1211 } 1212 1213 /// \Returns a value vector with the operands across all lanes for the 1214 /// opearnd at \p OpIdx. 1215 ValueList getVL(unsigned OpIdx) const { 1216 ValueList OpVL(OpsVec[OpIdx].size()); 1217 assert(OpsVec[OpIdx].size() == getNumLanes() && 1218 "Expected same num of lanes across all operands"); 1219 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1220 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1221 return OpVL; 1222 } 1223 1224 // Performs operand reordering for 2 or more operands. 1225 // The original operands are in OrigOps[OpIdx][Lane]. 1226 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1227 void reorder() { 1228 unsigned NumOperands = getNumOperands(); 1229 unsigned NumLanes = getNumLanes(); 1230 // Each operand has its own mode. We are using this mode to help us select 1231 // the instructions for each lane, so that they match best with the ones 1232 // we have selected so far. 1233 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1234 1235 // This is a greedy single-pass algorithm. We are going over each lane 1236 // once and deciding on the best order right away with no back-tracking. 1237 // However, in order to increase its effectiveness, we start with the lane 1238 // that has operands that can move the least. For example, given the 1239 // following lanes: 1240 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1241 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1242 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1243 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1244 // we will start at Lane 1, since the operands of the subtraction cannot 1245 // be reordered. Then we will visit the rest of the lanes in a circular 1246 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1247 1248 // Find the first lane that we will start our search from. 1249 unsigned FirstLane = getBestLaneToStartReordering(); 1250 1251 // Initialize the modes. 1252 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1253 Value *OpLane0 = getValue(OpIdx, FirstLane); 1254 // Keep track if we have instructions with all the same opcode on one 1255 // side. 1256 if (isa<LoadInst>(OpLane0)) 1257 ReorderingModes[OpIdx] = ReorderingMode::Load; 1258 else if (isa<Instruction>(OpLane0)) { 1259 // Check if OpLane0 should be broadcast. 1260 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1261 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1262 else 1263 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1264 } 1265 else if (isa<Constant>(OpLane0)) 1266 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1267 else if (isa<Argument>(OpLane0)) 1268 // Our best hope is a Splat. It may save some cost in some cases. 1269 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1270 else 1271 // NOTE: This should be unreachable. 1272 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1273 } 1274 1275 // If the initial strategy fails for any of the operand indexes, then we 1276 // perform reordering again in a second pass. This helps avoid assigning 1277 // high priority to the failed strategy, and should improve reordering for 1278 // the non-failed operand indexes. 1279 for (int Pass = 0; Pass != 2; ++Pass) { 1280 // Skip the second pass if the first pass did not fail. 1281 bool StrategyFailed = false; 1282 // Mark all operand data as free to use. 1283 clearUsed(); 1284 // We keep the original operand order for the FirstLane, so reorder the 1285 // rest of the lanes. We are visiting the nodes in a circular fashion, 1286 // using FirstLane as the center point and increasing the radius 1287 // distance. 1288 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1289 // Visit the lane on the right and then the lane on the left. 1290 for (int Direction : {+1, -1}) { 1291 int Lane = FirstLane + Direction * Distance; 1292 if (Lane < 0 || Lane >= (int)NumLanes) 1293 continue; 1294 int LastLane = Lane - Direction; 1295 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1296 "Out of bounds"); 1297 // Look for a good match for each operand. 1298 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1299 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1300 Optional<unsigned> BestIdx = 1301 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1302 // By not selecting a value, we allow the operands that follow to 1303 // select a better matching value. We will get a non-null value in 1304 // the next run of getBestOperand(). 1305 if (BestIdx) { 1306 // Swap the current operand with the one returned by 1307 // getBestOperand(). 1308 swap(OpIdx, BestIdx.getValue(), Lane); 1309 } else { 1310 // We failed to find a best operand, set mode to 'Failed'. 1311 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1312 // Enable the second pass. 1313 StrategyFailed = true; 1314 } 1315 } 1316 } 1317 } 1318 // Skip second pass if the strategy did not fail. 1319 if (!StrategyFailed) 1320 break; 1321 } 1322 } 1323 1324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1325 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1326 switch (RMode) { 1327 case ReorderingMode::Load: 1328 return "Load"; 1329 case ReorderingMode::Opcode: 1330 return "Opcode"; 1331 case ReorderingMode::Constant: 1332 return "Constant"; 1333 case ReorderingMode::Splat: 1334 return "Splat"; 1335 case ReorderingMode::Failed: 1336 return "Failed"; 1337 } 1338 llvm_unreachable("Unimplemented Reordering Type"); 1339 } 1340 1341 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1342 raw_ostream &OS) { 1343 return OS << getModeStr(RMode); 1344 } 1345 1346 /// Debug print. 1347 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1348 printMode(RMode, dbgs()); 1349 } 1350 1351 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1352 return printMode(RMode, OS); 1353 } 1354 1355 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1356 const unsigned Indent = 2; 1357 unsigned Cnt = 0; 1358 for (const OperandDataVec &OpDataVec : OpsVec) { 1359 OS << "Operand " << Cnt++ << "\n"; 1360 for (const OperandData &OpData : OpDataVec) { 1361 OS.indent(Indent) << "{"; 1362 if (Value *V = OpData.V) 1363 OS << *V; 1364 else 1365 OS << "null"; 1366 OS << ", APO:" << OpData.APO << "}\n"; 1367 } 1368 OS << "\n"; 1369 } 1370 return OS; 1371 } 1372 1373 /// Debug print. 1374 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1375 #endif 1376 }; 1377 1378 /// Checks if the instruction is marked for deletion. 1379 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1380 1381 /// Marks values operands for later deletion by replacing them with Undefs. 1382 void eraseInstructions(ArrayRef<Value *> AV); 1383 1384 ~BoUpSLP(); 1385 1386 private: 1387 /// Checks if all users of \p I are the part of the vectorization tree. 1388 bool areAllUsersVectorized(Instruction *I) const; 1389 1390 /// \returns the cost of the vectorizable entry. 1391 int getEntryCost(TreeEntry *E); 1392 1393 /// This is the recursive part of buildTree. 1394 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1395 const EdgeInfo &EI); 1396 1397 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1398 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1399 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1400 /// returns false, setting \p CurrentOrder to either an empty vector or a 1401 /// non-identity permutation that allows to reuse extract instructions. 1402 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1403 SmallVectorImpl<unsigned> &CurrentOrder) const; 1404 1405 /// Vectorize a single entry in the tree. 1406 Value *vectorizeTree(TreeEntry *E); 1407 1408 /// Vectorize a single entry in the tree, starting in \p VL. 1409 Value *vectorizeTree(ArrayRef<Value *> VL); 1410 1411 /// \returns the scalarization cost for this type. Scalarization in this 1412 /// context means the creation of vectors from a group of scalars. 1413 int getGatherCost(VectorType *Ty, 1414 const DenseSet<unsigned> &ShuffledIndices) const; 1415 1416 /// \returns the scalarization cost for this list of values. Assuming that 1417 /// this subtree gets vectorized, we may need to extract the values from the 1418 /// roots. This method calculates the cost of extracting the values. 1419 int getGatherCost(ArrayRef<Value *> VL) const; 1420 1421 /// Set the Builder insert point to one after the last instruction in 1422 /// the bundle 1423 void setInsertPointAfterBundle(TreeEntry *E); 1424 1425 /// \returns a vector from a collection of scalars in \p VL. 1426 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1427 1428 /// \returns whether the VectorizableTree is fully vectorizable and will 1429 /// be beneficial even the tree height is tiny. 1430 bool isFullyVectorizableTinyTree() const; 1431 1432 /// Reorder commutative or alt operands to get better probability of 1433 /// generating vectorized code. 1434 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1435 SmallVectorImpl<Value *> &Left, 1436 SmallVectorImpl<Value *> &Right, 1437 const DataLayout &DL, 1438 ScalarEvolution &SE, 1439 const BoUpSLP &R); 1440 struct TreeEntry { 1441 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1442 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1443 1444 /// \returns true if the scalars in VL are equal to this entry. 1445 bool isSame(ArrayRef<Value *> VL) const { 1446 if (VL.size() == Scalars.size()) 1447 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1448 return VL.size() == ReuseShuffleIndices.size() && 1449 std::equal( 1450 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1451 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1452 } 1453 1454 /// A vector of scalars. 1455 ValueList Scalars; 1456 1457 /// The Scalars are vectorized into this value. It is initialized to Null. 1458 Value *VectorizedValue = nullptr; 1459 1460 /// Do we need to gather this sequence ? 1461 enum EntryState { Vectorize, NeedToGather }; 1462 EntryState State; 1463 1464 /// Does this sequence require some shuffling? 1465 SmallVector<int, 4> ReuseShuffleIndices; 1466 1467 /// Does this entry require reordering? 1468 ArrayRef<unsigned> ReorderIndices; 1469 1470 /// Points back to the VectorizableTree. 1471 /// 1472 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1473 /// to be a pointer and needs to be able to initialize the child iterator. 1474 /// Thus we need a reference back to the container to translate the indices 1475 /// to entries. 1476 VecTreeTy &Container; 1477 1478 /// The TreeEntry index containing the user of this entry. We can actually 1479 /// have multiple users so the data structure is not truly a tree. 1480 SmallVector<EdgeInfo, 1> UserTreeIndices; 1481 1482 /// The index of this treeEntry in VectorizableTree. 1483 int Idx = -1; 1484 1485 private: 1486 /// The operands of each instruction in each lane Operands[op_index][lane]. 1487 /// Note: This helps avoid the replication of the code that performs the 1488 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1489 SmallVector<ValueList, 2> Operands; 1490 1491 /// The main/alternate instruction. 1492 Instruction *MainOp = nullptr; 1493 Instruction *AltOp = nullptr; 1494 1495 public: 1496 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1497 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1498 if (Operands.size() < OpIdx + 1) 1499 Operands.resize(OpIdx + 1); 1500 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1501 Operands[OpIdx].resize(Scalars.size()); 1502 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1503 Operands[OpIdx][Lane] = OpVL[Lane]; 1504 } 1505 1506 /// Set the operands of this bundle in their original order. 1507 void setOperandsInOrder() { 1508 assert(Operands.empty() && "Already initialized?"); 1509 auto *I0 = cast<Instruction>(Scalars[0]); 1510 Operands.resize(I0->getNumOperands()); 1511 unsigned NumLanes = Scalars.size(); 1512 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1513 OpIdx != NumOperands; ++OpIdx) { 1514 Operands[OpIdx].resize(NumLanes); 1515 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1516 auto *I = cast<Instruction>(Scalars[Lane]); 1517 assert(I->getNumOperands() == NumOperands && 1518 "Expected same number of operands"); 1519 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1520 } 1521 } 1522 } 1523 1524 /// \returns the \p OpIdx operand of this TreeEntry. 1525 ValueList &getOperand(unsigned OpIdx) { 1526 assert(OpIdx < Operands.size() && "Off bounds"); 1527 return Operands[OpIdx]; 1528 } 1529 1530 /// \returns the number of operands. 1531 unsigned getNumOperands() const { return Operands.size(); } 1532 1533 /// \return the single \p OpIdx operand. 1534 Value *getSingleOperand(unsigned OpIdx) const { 1535 assert(OpIdx < Operands.size() && "Off bounds"); 1536 assert(!Operands[OpIdx].empty() && "No operand available"); 1537 return Operands[OpIdx][0]; 1538 } 1539 1540 /// Some of the instructions in the list have alternate opcodes. 1541 bool isAltShuffle() const { 1542 return getOpcode() != getAltOpcode(); 1543 } 1544 1545 bool isOpcodeOrAlt(Instruction *I) const { 1546 unsigned CheckedOpcode = I->getOpcode(); 1547 return (getOpcode() == CheckedOpcode || 1548 getAltOpcode() == CheckedOpcode); 1549 } 1550 1551 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1552 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1553 /// \p OpValue. 1554 Value *isOneOf(Value *Op) const { 1555 auto *I = dyn_cast<Instruction>(Op); 1556 if (I && isOpcodeOrAlt(I)) 1557 return Op; 1558 return MainOp; 1559 } 1560 1561 void setOperations(const InstructionsState &S) { 1562 MainOp = S.MainOp; 1563 AltOp = S.AltOp; 1564 } 1565 1566 Instruction *getMainOp() const { 1567 return MainOp; 1568 } 1569 1570 Instruction *getAltOp() const { 1571 return AltOp; 1572 } 1573 1574 /// The main/alternate opcodes for the list of instructions. 1575 unsigned getOpcode() const { 1576 return MainOp ? MainOp->getOpcode() : 0; 1577 } 1578 1579 unsigned getAltOpcode() const { 1580 return AltOp ? AltOp->getOpcode() : 0; 1581 } 1582 1583 /// Update operations state of this entry if reorder occurred. 1584 bool updateStateIfReorder() { 1585 if (ReorderIndices.empty()) 1586 return false; 1587 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1588 setOperations(S); 1589 return true; 1590 } 1591 1592 #ifndef NDEBUG 1593 /// Debug printer. 1594 LLVM_DUMP_METHOD void dump() const { 1595 dbgs() << Idx << ".\n"; 1596 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1597 dbgs() << "Operand " << OpI << ":\n"; 1598 for (const Value *V : Operands[OpI]) 1599 dbgs().indent(2) << *V << "\n"; 1600 } 1601 dbgs() << "Scalars: \n"; 1602 for (Value *V : Scalars) 1603 dbgs().indent(2) << *V << "\n"; 1604 dbgs() << "State: "; 1605 switch (State) { 1606 case Vectorize: 1607 dbgs() << "Vectorize\n"; 1608 break; 1609 case NeedToGather: 1610 dbgs() << "NeedToGather\n"; 1611 break; 1612 } 1613 dbgs() << "MainOp: "; 1614 if (MainOp) 1615 dbgs() << *MainOp << "\n"; 1616 else 1617 dbgs() << "NULL\n"; 1618 dbgs() << "AltOp: "; 1619 if (AltOp) 1620 dbgs() << *AltOp << "\n"; 1621 else 1622 dbgs() << "NULL\n"; 1623 dbgs() << "VectorizedValue: "; 1624 if (VectorizedValue) 1625 dbgs() << *VectorizedValue << "\n"; 1626 else 1627 dbgs() << "NULL\n"; 1628 dbgs() << "ReuseShuffleIndices: "; 1629 if (ReuseShuffleIndices.empty()) 1630 dbgs() << "Emtpy"; 1631 else 1632 for (unsigned ReuseIdx : ReuseShuffleIndices) 1633 dbgs() << ReuseIdx << ", "; 1634 dbgs() << "\n"; 1635 dbgs() << "ReorderIndices: "; 1636 for (unsigned ReorderIdx : ReorderIndices) 1637 dbgs() << ReorderIdx << ", "; 1638 dbgs() << "\n"; 1639 dbgs() << "UserTreeIndices: "; 1640 for (const auto &EInfo : UserTreeIndices) 1641 dbgs() << EInfo << ", "; 1642 dbgs() << "\n"; 1643 } 1644 #endif 1645 }; 1646 1647 /// Create a new VectorizableTree entry. 1648 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1649 const InstructionsState &S, 1650 const EdgeInfo &UserTreeIdx, 1651 ArrayRef<unsigned> ReuseShuffleIndices = None, 1652 ArrayRef<unsigned> ReorderIndices = None) { 1653 bool Vectorized = (bool)Bundle; 1654 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1655 TreeEntry *Last = VectorizableTree.back().get(); 1656 Last->Idx = VectorizableTree.size() - 1; 1657 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1658 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1659 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1660 ReuseShuffleIndices.end()); 1661 Last->ReorderIndices = ReorderIndices; 1662 Last->setOperations(S); 1663 if (Vectorized) { 1664 for (int i = 0, e = VL.size(); i != e; ++i) { 1665 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1666 ScalarToTreeEntry[VL[i]] = Last; 1667 } 1668 // Update the scheduler bundle to point to this TreeEntry. 1669 unsigned Lane = 0; 1670 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1671 BundleMember = BundleMember->NextInBundle) { 1672 BundleMember->TE = Last; 1673 BundleMember->Lane = Lane; 1674 ++Lane; 1675 } 1676 assert((!Bundle.getValue() || Lane == VL.size()) && 1677 "Bundle and VL out of sync"); 1678 } else { 1679 MustGather.insert(VL.begin(), VL.end()); 1680 } 1681 1682 if (UserTreeIdx.UserTE) 1683 Last->UserTreeIndices.push_back(UserTreeIdx); 1684 1685 return Last; 1686 } 1687 1688 /// -- Vectorization State -- 1689 /// Holds all of the tree entries. 1690 TreeEntry::VecTreeTy VectorizableTree; 1691 1692 #ifndef NDEBUG 1693 /// Debug printer. 1694 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1695 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1696 VectorizableTree[Id]->dump(); 1697 dbgs() << "\n"; 1698 } 1699 } 1700 #endif 1701 1702 TreeEntry *getTreeEntry(Value *V) { 1703 auto I = ScalarToTreeEntry.find(V); 1704 if (I != ScalarToTreeEntry.end()) 1705 return I->second; 1706 return nullptr; 1707 } 1708 1709 const TreeEntry *getTreeEntry(Value *V) const { 1710 auto I = ScalarToTreeEntry.find(V); 1711 if (I != ScalarToTreeEntry.end()) 1712 return I->second; 1713 return nullptr; 1714 } 1715 1716 /// Maps a specific scalar to its tree entry. 1717 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1718 1719 /// Maps a value to the proposed vectorizable size. 1720 SmallDenseMap<Value *, unsigned> InstrElementSize; 1721 1722 /// A list of scalars that we found that we need to keep as scalars. 1723 ValueSet MustGather; 1724 1725 /// This POD struct describes one external user in the vectorized tree. 1726 struct ExternalUser { 1727 ExternalUser(Value *S, llvm::User *U, int L) 1728 : Scalar(S), User(U), Lane(L) {} 1729 1730 // Which scalar in our function. 1731 Value *Scalar; 1732 1733 // Which user that uses the scalar. 1734 llvm::User *User; 1735 1736 // Which lane does the scalar belong to. 1737 int Lane; 1738 }; 1739 using UserList = SmallVector<ExternalUser, 16>; 1740 1741 /// Checks if two instructions may access the same memory. 1742 /// 1743 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1744 /// is invariant in the calling loop. 1745 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1746 Instruction *Inst2) { 1747 // First check if the result is already in the cache. 1748 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1749 Optional<bool> &result = AliasCache[key]; 1750 if (result.hasValue()) { 1751 return result.getValue(); 1752 } 1753 MemoryLocation Loc2 = getLocation(Inst2, AA); 1754 bool aliased = true; 1755 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1756 // Do the alias check. 1757 aliased = AA->alias(Loc1, Loc2); 1758 } 1759 // Store the result in the cache. 1760 result = aliased; 1761 return aliased; 1762 } 1763 1764 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1765 1766 /// Cache for alias results. 1767 /// TODO: consider moving this to the AliasAnalysis itself. 1768 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1769 1770 /// Removes an instruction from its block and eventually deletes it. 1771 /// It's like Instruction::eraseFromParent() except that the actual deletion 1772 /// is delayed until BoUpSLP is destructed. 1773 /// This is required to ensure that there are no incorrect collisions in the 1774 /// AliasCache, which can happen if a new instruction is allocated at the 1775 /// same address as a previously deleted instruction. 1776 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1777 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1778 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1779 } 1780 1781 /// Temporary store for deleted instructions. Instructions will be deleted 1782 /// eventually when the BoUpSLP is destructed. 1783 DenseMap<Instruction *, bool> DeletedInstructions; 1784 1785 /// A list of values that need to extracted out of the tree. 1786 /// This list holds pairs of (Internal Scalar : External User). External User 1787 /// can be nullptr, it means that this Internal Scalar will be used later, 1788 /// after vectorization. 1789 UserList ExternalUses; 1790 1791 /// Values used only by @llvm.assume calls. 1792 SmallPtrSet<const Value *, 32> EphValues; 1793 1794 /// Holds all of the instructions that we gathered. 1795 SetVector<Instruction *> GatherSeq; 1796 1797 /// A list of blocks that we are going to CSE. 1798 SetVector<BasicBlock *> CSEBlocks; 1799 1800 /// Contains all scheduling relevant data for an instruction. 1801 /// A ScheduleData either represents a single instruction or a member of an 1802 /// instruction bundle (= a group of instructions which is combined into a 1803 /// vector instruction). 1804 struct ScheduleData { 1805 // The initial value for the dependency counters. It means that the 1806 // dependencies are not calculated yet. 1807 enum { InvalidDeps = -1 }; 1808 1809 ScheduleData() = default; 1810 1811 void init(int BlockSchedulingRegionID, Value *OpVal) { 1812 FirstInBundle = this; 1813 NextInBundle = nullptr; 1814 NextLoadStore = nullptr; 1815 IsScheduled = false; 1816 SchedulingRegionID = BlockSchedulingRegionID; 1817 UnscheduledDepsInBundle = UnscheduledDeps; 1818 clearDependencies(); 1819 OpValue = OpVal; 1820 TE = nullptr; 1821 Lane = -1; 1822 } 1823 1824 /// Returns true if the dependency information has been calculated. 1825 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1826 1827 /// Returns true for single instructions and for bundle representatives 1828 /// (= the head of a bundle). 1829 bool isSchedulingEntity() const { return FirstInBundle == this; } 1830 1831 /// Returns true if it represents an instruction bundle and not only a 1832 /// single instruction. 1833 bool isPartOfBundle() const { 1834 return NextInBundle != nullptr || FirstInBundle != this; 1835 } 1836 1837 /// Returns true if it is ready for scheduling, i.e. it has no more 1838 /// unscheduled depending instructions/bundles. 1839 bool isReady() const { 1840 assert(isSchedulingEntity() && 1841 "can't consider non-scheduling entity for ready list"); 1842 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1843 } 1844 1845 /// Modifies the number of unscheduled dependencies, also updating it for 1846 /// the whole bundle. 1847 int incrementUnscheduledDeps(int Incr) { 1848 UnscheduledDeps += Incr; 1849 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1850 } 1851 1852 /// Sets the number of unscheduled dependencies to the number of 1853 /// dependencies. 1854 void resetUnscheduledDeps() { 1855 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1856 } 1857 1858 /// Clears all dependency information. 1859 void clearDependencies() { 1860 Dependencies = InvalidDeps; 1861 resetUnscheduledDeps(); 1862 MemoryDependencies.clear(); 1863 } 1864 1865 void dump(raw_ostream &os) const { 1866 if (!isSchedulingEntity()) { 1867 os << "/ " << *Inst; 1868 } else if (NextInBundle) { 1869 os << '[' << *Inst; 1870 ScheduleData *SD = NextInBundle; 1871 while (SD) { 1872 os << ';' << *SD->Inst; 1873 SD = SD->NextInBundle; 1874 } 1875 os << ']'; 1876 } else { 1877 os << *Inst; 1878 } 1879 } 1880 1881 Instruction *Inst = nullptr; 1882 1883 /// Points to the head in an instruction bundle (and always to this for 1884 /// single instructions). 1885 ScheduleData *FirstInBundle = nullptr; 1886 1887 /// Single linked list of all instructions in a bundle. Null if it is a 1888 /// single instruction. 1889 ScheduleData *NextInBundle = nullptr; 1890 1891 /// Single linked list of all memory instructions (e.g. load, store, call) 1892 /// in the block - until the end of the scheduling region. 1893 ScheduleData *NextLoadStore = nullptr; 1894 1895 /// The dependent memory instructions. 1896 /// This list is derived on demand in calculateDependencies(). 1897 SmallVector<ScheduleData *, 4> MemoryDependencies; 1898 1899 /// This ScheduleData is in the current scheduling region if this matches 1900 /// the current SchedulingRegionID of BlockScheduling. 1901 int SchedulingRegionID = 0; 1902 1903 /// Used for getting a "good" final ordering of instructions. 1904 int SchedulingPriority = 0; 1905 1906 /// The number of dependencies. Constitutes of the number of users of the 1907 /// instruction plus the number of dependent memory instructions (if any). 1908 /// This value is calculated on demand. 1909 /// If InvalidDeps, the number of dependencies is not calculated yet. 1910 int Dependencies = InvalidDeps; 1911 1912 /// The number of dependencies minus the number of dependencies of scheduled 1913 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1914 /// for scheduling. 1915 /// Note that this is negative as long as Dependencies is not calculated. 1916 int UnscheduledDeps = InvalidDeps; 1917 1918 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1919 /// single instructions. 1920 int UnscheduledDepsInBundle = InvalidDeps; 1921 1922 /// True if this instruction is scheduled (or considered as scheduled in the 1923 /// dry-run). 1924 bool IsScheduled = false; 1925 1926 /// Opcode of the current instruction in the schedule data. 1927 Value *OpValue = nullptr; 1928 1929 /// The TreeEntry that this instruction corresponds to. 1930 TreeEntry *TE = nullptr; 1931 1932 /// The lane of this node in the TreeEntry. 1933 int Lane = -1; 1934 }; 1935 1936 #ifndef NDEBUG 1937 friend inline raw_ostream &operator<<(raw_ostream &os, 1938 const BoUpSLP::ScheduleData &SD) { 1939 SD.dump(os); 1940 return os; 1941 } 1942 #endif 1943 1944 friend struct GraphTraits<BoUpSLP *>; 1945 friend struct DOTGraphTraits<BoUpSLP *>; 1946 1947 /// Contains all scheduling data for a basic block. 1948 struct BlockScheduling { 1949 BlockScheduling(BasicBlock *BB) 1950 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1951 1952 void clear() { 1953 ReadyInsts.clear(); 1954 ScheduleStart = nullptr; 1955 ScheduleEnd = nullptr; 1956 FirstLoadStoreInRegion = nullptr; 1957 LastLoadStoreInRegion = nullptr; 1958 1959 // Reduce the maximum schedule region size by the size of the 1960 // previous scheduling run. 1961 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1962 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1963 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1964 ScheduleRegionSize = 0; 1965 1966 // Make a new scheduling region, i.e. all existing ScheduleData is not 1967 // in the new region yet. 1968 ++SchedulingRegionID; 1969 } 1970 1971 ScheduleData *getScheduleData(Value *V) { 1972 ScheduleData *SD = ScheduleDataMap[V]; 1973 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1974 return SD; 1975 return nullptr; 1976 } 1977 1978 ScheduleData *getScheduleData(Value *V, Value *Key) { 1979 if (V == Key) 1980 return getScheduleData(V); 1981 auto I = ExtraScheduleDataMap.find(V); 1982 if (I != ExtraScheduleDataMap.end()) { 1983 ScheduleData *SD = I->second[Key]; 1984 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1985 return SD; 1986 } 1987 return nullptr; 1988 } 1989 1990 bool isInSchedulingRegion(ScheduleData *SD) const { 1991 return SD->SchedulingRegionID == SchedulingRegionID; 1992 } 1993 1994 /// Marks an instruction as scheduled and puts all dependent ready 1995 /// instructions into the ready-list. 1996 template <typename ReadyListType> 1997 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1998 SD->IsScheduled = true; 1999 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2000 2001 ScheduleData *BundleMember = SD; 2002 while (BundleMember) { 2003 if (BundleMember->Inst != BundleMember->OpValue) { 2004 BundleMember = BundleMember->NextInBundle; 2005 continue; 2006 } 2007 // Handle the def-use chain dependencies. 2008 2009 // Decrement the unscheduled counter and insert to ready list if ready. 2010 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2011 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2012 if (OpDef && OpDef->hasValidDependencies() && 2013 OpDef->incrementUnscheduledDeps(-1) == 0) { 2014 // There are no more unscheduled dependencies after 2015 // decrementing, so we can put the dependent instruction 2016 // into the ready list. 2017 ScheduleData *DepBundle = OpDef->FirstInBundle; 2018 assert(!DepBundle->IsScheduled && 2019 "already scheduled bundle gets ready"); 2020 ReadyList.insert(DepBundle); 2021 LLVM_DEBUG(dbgs() 2022 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2023 } 2024 }); 2025 }; 2026 2027 // If BundleMember is a vector bundle, its operands may have been 2028 // reordered duiring buildTree(). We therefore need to get its operands 2029 // through the TreeEntry. 2030 if (TreeEntry *TE = BundleMember->TE) { 2031 int Lane = BundleMember->Lane; 2032 assert(Lane >= 0 && "Lane not set"); 2033 2034 // Since vectorization tree is being built recursively this assertion 2035 // ensures that the tree entry has all operands set before reaching 2036 // this code. Couple of exceptions known at the moment are extracts 2037 // where their second (immediate) operand is not added. Since 2038 // immediates do not affect scheduler behavior this is considered 2039 // okay. 2040 auto *In = TE->getMainOp(); 2041 assert(In && 2042 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2043 In->getNumOperands() == TE->getNumOperands()) && 2044 "Missed TreeEntry operands?"); 2045 (void)In; // fake use to avoid build failure when assertions disabled 2046 2047 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2048 OpIdx != NumOperands; ++OpIdx) 2049 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2050 DecrUnsched(I); 2051 } else { 2052 // If BundleMember is a stand-alone instruction, no operand reordering 2053 // has taken place, so we directly access its operands. 2054 for (Use &U : BundleMember->Inst->operands()) 2055 if (auto *I = dyn_cast<Instruction>(U.get())) 2056 DecrUnsched(I); 2057 } 2058 // Handle the memory dependencies. 2059 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2060 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2061 // There are no more unscheduled dependencies after decrementing, 2062 // so we can put the dependent instruction into the ready list. 2063 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2064 assert(!DepBundle->IsScheduled && 2065 "already scheduled bundle gets ready"); 2066 ReadyList.insert(DepBundle); 2067 LLVM_DEBUG(dbgs() 2068 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2069 } 2070 } 2071 BundleMember = BundleMember->NextInBundle; 2072 } 2073 } 2074 2075 void doForAllOpcodes(Value *V, 2076 function_ref<void(ScheduleData *SD)> Action) { 2077 if (ScheduleData *SD = getScheduleData(V)) 2078 Action(SD); 2079 auto I = ExtraScheduleDataMap.find(V); 2080 if (I != ExtraScheduleDataMap.end()) 2081 for (auto &P : I->second) 2082 if (P.second->SchedulingRegionID == SchedulingRegionID) 2083 Action(P.second); 2084 } 2085 2086 /// Put all instructions into the ReadyList which are ready for scheduling. 2087 template <typename ReadyListType> 2088 void initialFillReadyList(ReadyListType &ReadyList) { 2089 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2090 doForAllOpcodes(I, [&](ScheduleData *SD) { 2091 if (SD->isSchedulingEntity() && SD->isReady()) { 2092 ReadyList.insert(SD); 2093 LLVM_DEBUG(dbgs() 2094 << "SLP: initially in ready list: " << *I << "\n"); 2095 } 2096 }); 2097 } 2098 } 2099 2100 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2101 /// cyclic dependencies. This is only a dry-run, no instructions are 2102 /// actually moved at this stage. 2103 /// \returns the scheduling bundle. The returned Optional value is non-None 2104 /// if \p VL is allowed to be scheduled. 2105 Optional<ScheduleData *> 2106 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2107 const InstructionsState &S); 2108 2109 /// Un-bundles a group of instructions. 2110 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2111 2112 /// Allocates schedule data chunk. 2113 ScheduleData *allocateScheduleDataChunks(); 2114 2115 /// Extends the scheduling region so that V is inside the region. 2116 /// \returns true if the region size is within the limit. 2117 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2118 2119 /// Initialize the ScheduleData structures for new instructions in the 2120 /// scheduling region. 2121 void initScheduleData(Instruction *FromI, Instruction *ToI, 2122 ScheduleData *PrevLoadStore, 2123 ScheduleData *NextLoadStore); 2124 2125 /// Updates the dependency information of a bundle and of all instructions/ 2126 /// bundles which depend on the original bundle. 2127 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2128 BoUpSLP *SLP); 2129 2130 /// Sets all instruction in the scheduling region to un-scheduled. 2131 void resetSchedule(); 2132 2133 BasicBlock *BB; 2134 2135 /// Simple memory allocation for ScheduleData. 2136 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2137 2138 /// The size of a ScheduleData array in ScheduleDataChunks. 2139 int ChunkSize; 2140 2141 /// The allocator position in the current chunk, which is the last entry 2142 /// of ScheduleDataChunks. 2143 int ChunkPos; 2144 2145 /// Attaches ScheduleData to Instruction. 2146 /// Note that the mapping survives during all vectorization iterations, i.e. 2147 /// ScheduleData structures are recycled. 2148 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2149 2150 /// Attaches ScheduleData to Instruction with the leading key. 2151 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2152 ExtraScheduleDataMap; 2153 2154 struct ReadyList : SmallVector<ScheduleData *, 8> { 2155 void insert(ScheduleData *SD) { push_back(SD); } 2156 }; 2157 2158 /// The ready-list for scheduling (only used for the dry-run). 2159 ReadyList ReadyInsts; 2160 2161 /// The first instruction of the scheduling region. 2162 Instruction *ScheduleStart = nullptr; 2163 2164 /// The first instruction _after_ the scheduling region. 2165 Instruction *ScheduleEnd = nullptr; 2166 2167 /// The first memory accessing instruction in the scheduling region 2168 /// (can be null). 2169 ScheduleData *FirstLoadStoreInRegion = nullptr; 2170 2171 /// The last memory accessing instruction in the scheduling region 2172 /// (can be null). 2173 ScheduleData *LastLoadStoreInRegion = nullptr; 2174 2175 /// The current size of the scheduling region. 2176 int ScheduleRegionSize = 0; 2177 2178 /// The maximum size allowed for the scheduling region. 2179 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2180 2181 /// The ID of the scheduling region. For a new vectorization iteration this 2182 /// is incremented which "removes" all ScheduleData from the region. 2183 // Make sure that the initial SchedulingRegionID is greater than the 2184 // initial SchedulingRegionID in ScheduleData (which is 0). 2185 int SchedulingRegionID = 1; 2186 }; 2187 2188 /// Attaches the BlockScheduling structures to basic blocks. 2189 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2190 2191 /// Performs the "real" scheduling. Done before vectorization is actually 2192 /// performed in a basic block. 2193 void scheduleBlock(BlockScheduling *BS); 2194 2195 /// List of users to ignore during scheduling and that don't need extracting. 2196 ArrayRef<Value *> UserIgnoreList; 2197 2198 using OrdersType = SmallVector<unsigned, 4>; 2199 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2200 /// sorted SmallVectors of unsigned. 2201 struct OrdersTypeDenseMapInfo { 2202 static OrdersType getEmptyKey() { 2203 OrdersType V; 2204 V.push_back(~1U); 2205 return V; 2206 } 2207 2208 static OrdersType getTombstoneKey() { 2209 OrdersType V; 2210 V.push_back(~2U); 2211 return V; 2212 } 2213 2214 static unsigned getHashValue(const OrdersType &V) { 2215 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2216 } 2217 2218 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2219 return LHS == RHS; 2220 } 2221 }; 2222 2223 /// Contains orders of operations along with the number of bundles that have 2224 /// operations in this order. It stores only those orders that require 2225 /// reordering, if reordering is not required it is counted using \a 2226 /// NumOpsWantToKeepOriginalOrder. 2227 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2228 /// Number of bundles that do not require reordering. 2229 unsigned NumOpsWantToKeepOriginalOrder = 0; 2230 2231 // Analysis and block reference. 2232 Function *F; 2233 ScalarEvolution *SE; 2234 TargetTransformInfo *TTI; 2235 TargetLibraryInfo *TLI; 2236 AliasAnalysis *AA; 2237 LoopInfo *LI; 2238 DominatorTree *DT; 2239 AssumptionCache *AC; 2240 DemandedBits *DB; 2241 const DataLayout *DL; 2242 OptimizationRemarkEmitter *ORE; 2243 2244 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2245 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2246 2247 /// Instruction builder to construct the vectorized tree. 2248 IRBuilder<> Builder; 2249 2250 /// A map of scalar integer values to the smallest bit width with which they 2251 /// can legally be represented. The values map to (width, signed) pairs, 2252 /// where "width" indicates the minimum bit width and "signed" is True if the 2253 /// value must be signed-extended, rather than zero-extended, back to its 2254 /// original width. 2255 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2256 }; 2257 2258 } // end namespace slpvectorizer 2259 2260 template <> struct GraphTraits<BoUpSLP *> { 2261 using TreeEntry = BoUpSLP::TreeEntry; 2262 2263 /// NodeRef has to be a pointer per the GraphWriter. 2264 using NodeRef = TreeEntry *; 2265 2266 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2267 2268 /// Add the VectorizableTree to the index iterator to be able to return 2269 /// TreeEntry pointers. 2270 struct ChildIteratorType 2271 : public iterator_adaptor_base< 2272 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2273 ContainerTy &VectorizableTree; 2274 2275 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2276 ContainerTy &VT) 2277 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2278 2279 NodeRef operator*() { return I->UserTE; } 2280 }; 2281 2282 static NodeRef getEntryNode(BoUpSLP &R) { 2283 return R.VectorizableTree[0].get(); 2284 } 2285 2286 static ChildIteratorType child_begin(NodeRef N) { 2287 return {N->UserTreeIndices.begin(), N->Container}; 2288 } 2289 2290 static ChildIteratorType child_end(NodeRef N) { 2291 return {N->UserTreeIndices.end(), N->Container}; 2292 } 2293 2294 /// For the node iterator we just need to turn the TreeEntry iterator into a 2295 /// TreeEntry* iterator so that it dereferences to NodeRef. 2296 class nodes_iterator { 2297 using ItTy = ContainerTy::iterator; 2298 ItTy It; 2299 2300 public: 2301 nodes_iterator(const ItTy &It2) : It(It2) {} 2302 NodeRef operator*() { return It->get(); } 2303 nodes_iterator operator++() { 2304 ++It; 2305 return *this; 2306 } 2307 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2308 }; 2309 2310 static nodes_iterator nodes_begin(BoUpSLP *R) { 2311 return nodes_iterator(R->VectorizableTree.begin()); 2312 } 2313 2314 static nodes_iterator nodes_end(BoUpSLP *R) { 2315 return nodes_iterator(R->VectorizableTree.end()); 2316 } 2317 2318 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2319 }; 2320 2321 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2322 using TreeEntry = BoUpSLP::TreeEntry; 2323 2324 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2325 2326 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2327 std::string Str; 2328 raw_string_ostream OS(Str); 2329 if (isSplat(Entry->Scalars)) { 2330 OS << "<splat> " << *Entry->Scalars[0]; 2331 return Str; 2332 } 2333 for (auto V : Entry->Scalars) { 2334 OS << *V; 2335 if (std::any_of( 2336 R->ExternalUses.begin(), R->ExternalUses.end(), 2337 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2338 OS << " <extract>"; 2339 OS << "\n"; 2340 } 2341 return Str; 2342 } 2343 2344 static std::string getNodeAttributes(const TreeEntry *Entry, 2345 const BoUpSLP *) { 2346 if (Entry->State == TreeEntry::NeedToGather) 2347 return "color=red"; 2348 return ""; 2349 } 2350 }; 2351 2352 } // end namespace llvm 2353 2354 BoUpSLP::~BoUpSLP() { 2355 for (const auto &Pair : DeletedInstructions) { 2356 // Replace operands of ignored instructions with Undefs in case if they were 2357 // marked for deletion. 2358 if (Pair.getSecond()) { 2359 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2360 Pair.getFirst()->replaceAllUsesWith(Undef); 2361 } 2362 Pair.getFirst()->dropAllReferences(); 2363 } 2364 for (const auto &Pair : DeletedInstructions) { 2365 assert(Pair.getFirst()->use_empty() && 2366 "trying to erase instruction with users."); 2367 Pair.getFirst()->eraseFromParent(); 2368 } 2369 assert(!verifyFunction(*F, &dbgs())); 2370 } 2371 2372 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2373 for (auto *V : AV) { 2374 if (auto *I = dyn_cast<Instruction>(V)) 2375 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2376 }; 2377 } 2378 2379 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2380 ArrayRef<Value *> UserIgnoreLst) { 2381 ExtraValueToDebugLocsMap ExternallyUsedValues; 2382 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2383 } 2384 2385 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2386 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2387 ArrayRef<Value *> UserIgnoreLst) { 2388 deleteTree(); 2389 UserIgnoreList = UserIgnoreLst; 2390 if (!allSameType(Roots)) 2391 return; 2392 buildTree_rec(Roots, 0, EdgeInfo()); 2393 2394 // Collect the values that we need to extract from the tree. 2395 for (auto &TEPtr : VectorizableTree) { 2396 TreeEntry *Entry = TEPtr.get(); 2397 2398 // No need to handle users of gathered values. 2399 if (Entry->State == TreeEntry::NeedToGather) 2400 continue; 2401 2402 // For each lane: 2403 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2404 Value *Scalar = Entry->Scalars[Lane]; 2405 int FoundLane = Lane; 2406 if (!Entry->ReuseShuffleIndices.empty()) { 2407 FoundLane = 2408 std::distance(Entry->ReuseShuffleIndices.begin(), 2409 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2410 } 2411 2412 // Check if the scalar is externally used as an extra arg. 2413 auto ExtI = ExternallyUsedValues.find(Scalar); 2414 if (ExtI != ExternallyUsedValues.end()) { 2415 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2416 << Lane << " from " << *Scalar << ".\n"); 2417 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2418 } 2419 for (User *U : Scalar->users()) { 2420 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2421 2422 Instruction *UserInst = dyn_cast<Instruction>(U); 2423 if (!UserInst) 2424 continue; 2425 2426 // Skip in-tree scalars that become vectors 2427 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2428 Value *UseScalar = UseEntry->Scalars[0]; 2429 // Some in-tree scalars will remain as scalar in vectorized 2430 // instructions. If that is the case, the one in Lane 0 will 2431 // be used. 2432 if (UseScalar != U || 2433 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2434 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2435 << ".\n"); 2436 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2437 continue; 2438 } 2439 } 2440 2441 // Ignore users in the user ignore list. 2442 if (is_contained(UserIgnoreList, UserInst)) 2443 continue; 2444 2445 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2446 << Lane << " from " << *Scalar << ".\n"); 2447 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2448 } 2449 } 2450 } 2451 } 2452 2453 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2454 const EdgeInfo &UserTreeIdx) { 2455 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2456 2457 InstructionsState S = getSameOpcode(VL); 2458 if (Depth == RecursionMaxDepth) { 2459 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2460 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2461 return; 2462 } 2463 2464 // Don't handle vectors. 2465 if (S.OpValue->getType()->isVectorTy()) { 2466 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2467 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2468 return; 2469 } 2470 2471 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2472 if (SI->getValueOperand()->getType()->isVectorTy()) { 2473 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2474 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2475 return; 2476 } 2477 2478 // If all of the operands are identical or constant we have a simple solution. 2479 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2480 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2481 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2482 return; 2483 } 2484 2485 // We now know that this is a vector of instructions of the same type from 2486 // the same block. 2487 2488 // Don't vectorize ephemeral values. 2489 for (Value *V : VL) { 2490 if (EphValues.count(V)) { 2491 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2492 << ") is ephemeral.\n"); 2493 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2494 return; 2495 } 2496 } 2497 2498 // Check if this is a duplicate of another entry. 2499 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2500 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2501 if (!E->isSame(VL)) { 2502 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2503 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2504 return; 2505 } 2506 // Record the reuse of the tree node. FIXME, currently this is only used to 2507 // properly draw the graph rather than for the actual vectorization. 2508 E->UserTreeIndices.push_back(UserTreeIdx); 2509 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2510 << ".\n"); 2511 return; 2512 } 2513 2514 // Check that none of the instructions in the bundle are already in the tree. 2515 for (Value *V : VL) { 2516 auto *I = dyn_cast<Instruction>(V); 2517 if (!I) 2518 continue; 2519 if (getTreeEntry(I)) { 2520 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2521 << ") is already in tree.\n"); 2522 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2523 return; 2524 } 2525 } 2526 2527 // If any of the scalars is marked as a value that needs to stay scalar, then 2528 // we need to gather the scalars. 2529 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2530 for (Value *V : VL) { 2531 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2532 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2533 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2534 return; 2535 } 2536 } 2537 2538 // Check that all of the users of the scalars that we want to vectorize are 2539 // schedulable. 2540 auto *VL0 = cast<Instruction>(S.OpValue); 2541 BasicBlock *BB = VL0->getParent(); 2542 2543 if (!DT->isReachableFromEntry(BB)) { 2544 // Don't go into unreachable blocks. They may contain instructions with 2545 // dependency cycles which confuse the final scheduling. 2546 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2547 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2548 return; 2549 } 2550 2551 // Check that every instruction appears once in this bundle. 2552 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2553 SmallVector<Value *, 4> UniqueValues; 2554 DenseMap<Value *, unsigned> UniquePositions; 2555 for (Value *V : VL) { 2556 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2557 ReuseShuffleIndicies.emplace_back(Res.first->second); 2558 if (Res.second) 2559 UniqueValues.emplace_back(V); 2560 } 2561 size_t NumUniqueScalarValues = UniqueValues.size(); 2562 if (NumUniqueScalarValues == VL.size()) { 2563 ReuseShuffleIndicies.clear(); 2564 } else { 2565 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2566 if (NumUniqueScalarValues <= 1 || 2567 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2568 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2569 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2570 return; 2571 } 2572 VL = UniqueValues; 2573 } 2574 2575 auto &BSRef = BlocksSchedules[BB]; 2576 if (!BSRef) 2577 BSRef = std::make_unique<BlockScheduling>(BB); 2578 2579 BlockScheduling &BS = *BSRef.get(); 2580 2581 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2582 if (!Bundle) { 2583 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2584 assert((!BS.getScheduleData(VL0) || 2585 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2586 "tryScheduleBundle should cancelScheduling on failure"); 2587 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2588 ReuseShuffleIndicies); 2589 return; 2590 } 2591 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2592 2593 unsigned ShuffleOrOp = S.isAltShuffle() ? 2594 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2595 switch (ShuffleOrOp) { 2596 case Instruction::PHI: { 2597 auto *PH = cast<PHINode>(VL0); 2598 2599 // Check for terminator values (e.g. invoke). 2600 for (unsigned j = 0; j < VL.size(); ++j) 2601 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2602 Instruction *Term = dyn_cast<Instruction>( 2603 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2604 PH->getIncomingBlock(i))); 2605 if (Term && Term->isTerminator()) { 2606 LLVM_DEBUG(dbgs() 2607 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2608 BS.cancelScheduling(VL, VL0); 2609 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2610 ReuseShuffleIndicies); 2611 return; 2612 } 2613 } 2614 2615 TreeEntry *TE = 2616 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2617 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2618 2619 // Keeps the reordered operands to avoid code duplication. 2620 SmallVector<ValueList, 2> OperandsVec; 2621 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2622 ValueList Operands; 2623 // Prepare the operand vector. 2624 for (Value *j : VL) 2625 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2626 PH->getIncomingBlock(i))); 2627 TE->setOperand(i, Operands); 2628 OperandsVec.push_back(Operands); 2629 } 2630 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2631 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2632 return; 2633 } 2634 case Instruction::ExtractValue: 2635 case Instruction::ExtractElement: { 2636 OrdersType CurrentOrder; 2637 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2638 if (Reuse) { 2639 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2640 ++NumOpsWantToKeepOriginalOrder; 2641 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2642 ReuseShuffleIndicies); 2643 // This is a special case, as it does not gather, but at the same time 2644 // we are not extending buildTree_rec() towards the operands. 2645 ValueList Op0; 2646 Op0.assign(VL.size(), VL0->getOperand(0)); 2647 VectorizableTree.back()->setOperand(0, Op0); 2648 return; 2649 } 2650 if (!CurrentOrder.empty()) { 2651 LLVM_DEBUG({ 2652 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2653 "with order"; 2654 for (unsigned Idx : CurrentOrder) 2655 dbgs() << " " << Idx; 2656 dbgs() << "\n"; 2657 }); 2658 // Insert new order with initial value 0, if it does not exist, 2659 // otherwise return the iterator to the existing one. 2660 auto StoredCurrentOrderAndNum = 2661 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2662 ++StoredCurrentOrderAndNum->getSecond(); 2663 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2664 ReuseShuffleIndicies, 2665 StoredCurrentOrderAndNum->getFirst()); 2666 // This is a special case, as it does not gather, but at the same time 2667 // we are not extending buildTree_rec() towards the operands. 2668 ValueList Op0; 2669 Op0.assign(VL.size(), VL0->getOperand(0)); 2670 VectorizableTree.back()->setOperand(0, Op0); 2671 return; 2672 } 2673 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2674 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2675 ReuseShuffleIndicies); 2676 BS.cancelScheduling(VL, VL0); 2677 return; 2678 } 2679 case Instruction::Load: { 2680 // Check that a vectorized load would load the same memory as a scalar 2681 // load. For example, we don't want to vectorize loads that are smaller 2682 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2683 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2684 // from such a struct, we read/write packed bits disagreeing with the 2685 // unvectorized version. 2686 Type *ScalarTy = VL0->getType(); 2687 2688 if (DL->getTypeSizeInBits(ScalarTy) != 2689 DL->getTypeAllocSizeInBits(ScalarTy)) { 2690 BS.cancelScheduling(VL, VL0); 2691 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2692 ReuseShuffleIndicies); 2693 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2694 return; 2695 } 2696 2697 // Make sure all loads in the bundle are simple - we can't vectorize 2698 // atomic or volatile loads. 2699 SmallVector<Value *, 4> PointerOps(VL.size()); 2700 auto POIter = PointerOps.begin(); 2701 for (Value *V : VL) { 2702 auto *L = cast<LoadInst>(V); 2703 if (!L->isSimple()) { 2704 BS.cancelScheduling(VL, VL0); 2705 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2706 ReuseShuffleIndicies); 2707 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2708 return; 2709 } 2710 *POIter = L->getPointerOperand(); 2711 ++POIter; 2712 } 2713 2714 OrdersType CurrentOrder; 2715 // Check the order of pointer operands. 2716 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2717 Value *Ptr0; 2718 Value *PtrN; 2719 if (CurrentOrder.empty()) { 2720 Ptr0 = PointerOps.front(); 2721 PtrN = PointerOps.back(); 2722 } else { 2723 Ptr0 = PointerOps[CurrentOrder.front()]; 2724 PtrN = PointerOps[CurrentOrder.back()]; 2725 } 2726 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2727 const SCEV *ScevN = SE->getSCEV(PtrN); 2728 const auto *Diff = 2729 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2730 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2731 // Check that the sorted loads are consecutive. 2732 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2733 if (CurrentOrder.empty()) { 2734 // Original loads are consecutive and does not require reordering. 2735 ++NumOpsWantToKeepOriginalOrder; 2736 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2737 UserTreeIdx, ReuseShuffleIndicies); 2738 TE->setOperandsInOrder(); 2739 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2740 } else { 2741 // Need to reorder. 2742 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2743 ++I->getSecond(); 2744 TreeEntry *TE = 2745 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2746 ReuseShuffleIndicies, I->getFirst()); 2747 TE->setOperandsInOrder(); 2748 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2749 } 2750 return; 2751 } 2752 } 2753 2754 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2755 BS.cancelScheduling(VL, VL0); 2756 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2757 ReuseShuffleIndicies); 2758 return; 2759 } 2760 case Instruction::ZExt: 2761 case Instruction::SExt: 2762 case Instruction::FPToUI: 2763 case Instruction::FPToSI: 2764 case Instruction::FPExt: 2765 case Instruction::PtrToInt: 2766 case Instruction::IntToPtr: 2767 case Instruction::SIToFP: 2768 case Instruction::UIToFP: 2769 case Instruction::Trunc: 2770 case Instruction::FPTrunc: 2771 case Instruction::BitCast: { 2772 Type *SrcTy = VL0->getOperand(0)->getType(); 2773 for (Value *V : VL) { 2774 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2775 if (Ty != SrcTy || !isValidElementType(Ty)) { 2776 BS.cancelScheduling(VL, VL0); 2777 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2778 ReuseShuffleIndicies); 2779 LLVM_DEBUG(dbgs() 2780 << "SLP: Gathering casts with different src types.\n"); 2781 return; 2782 } 2783 } 2784 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2785 ReuseShuffleIndicies); 2786 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2787 2788 TE->setOperandsInOrder(); 2789 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2790 ValueList Operands; 2791 // Prepare the operand vector. 2792 for (Value *V : VL) 2793 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2794 2795 buildTree_rec(Operands, Depth + 1, {TE, i}); 2796 } 2797 return; 2798 } 2799 case Instruction::ICmp: 2800 case Instruction::FCmp: { 2801 // Check that all of the compares have the same predicate. 2802 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2803 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2804 Type *ComparedTy = VL0->getOperand(0)->getType(); 2805 for (Value *V : VL) { 2806 CmpInst *Cmp = cast<CmpInst>(V); 2807 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2808 Cmp->getOperand(0)->getType() != ComparedTy) { 2809 BS.cancelScheduling(VL, VL0); 2810 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2811 ReuseShuffleIndicies); 2812 LLVM_DEBUG(dbgs() 2813 << "SLP: Gathering cmp with different predicate.\n"); 2814 return; 2815 } 2816 } 2817 2818 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2819 ReuseShuffleIndicies); 2820 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2821 2822 ValueList Left, Right; 2823 if (cast<CmpInst>(VL0)->isCommutative()) { 2824 // Commutative predicate - collect + sort operands of the instructions 2825 // so that each side is more likely to have the same opcode. 2826 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2827 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2828 } else { 2829 // Collect operands - commute if it uses the swapped predicate. 2830 for (Value *V : VL) { 2831 auto *Cmp = cast<CmpInst>(V); 2832 Value *LHS = Cmp->getOperand(0); 2833 Value *RHS = Cmp->getOperand(1); 2834 if (Cmp->getPredicate() != P0) 2835 std::swap(LHS, RHS); 2836 Left.push_back(LHS); 2837 Right.push_back(RHS); 2838 } 2839 } 2840 TE->setOperand(0, Left); 2841 TE->setOperand(1, Right); 2842 buildTree_rec(Left, Depth + 1, {TE, 0}); 2843 buildTree_rec(Right, Depth + 1, {TE, 1}); 2844 return; 2845 } 2846 case Instruction::Select: 2847 case Instruction::FNeg: 2848 case Instruction::Add: 2849 case Instruction::FAdd: 2850 case Instruction::Sub: 2851 case Instruction::FSub: 2852 case Instruction::Mul: 2853 case Instruction::FMul: 2854 case Instruction::UDiv: 2855 case Instruction::SDiv: 2856 case Instruction::FDiv: 2857 case Instruction::URem: 2858 case Instruction::SRem: 2859 case Instruction::FRem: 2860 case Instruction::Shl: 2861 case Instruction::LShr: 2862 case Instruction::AShr: 2863 case Instruction::And: 2864 case Instruction::Or: 2865 case Instruction::Xor: { 2866 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2867 ReuseShuffleIndicies); 2868 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2869 2870 // Sort operands of the instructions so that each side is more likely to 2871 // have the same opcode. 2872 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2873 ValueList Left, Right; 2874 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2875 TE->setOperand(0, Left); 2876 TE->setOperand(1, Right); 2877 buildTree_rec(Left, Depth + 1, {TE, 0}); 2878 buildTree_rec(Right, Depth + 1, {TE, 1}); 2879 return; 2880 } 2881 2882 TE->setOperandsInOrder(); 2883 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2884 ValueList Operands; 2885 // Prepare the operand vector. 2886 for (Value *j : VL) 2887 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2888 2889 buildTree_rec(Operands, Depth + 1, {TE, i}); 2890 } 2891 return; 2892 } 2893 case Instruction::GetElementPtr: { 2894 // We don't combine GEPs with complicated (nested) indexing. 2895 for (Value *V : VL) { 2896 if (cast<Instruction>(V)->getNumOperands() != 2) { 2897 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2898 BS.cancelScheduling(VL, VL0); 2899 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2900 ReuseShuffleIndicies); 2901 return; 2902 } 2903 } 2904 2905 // We can't combine several GEPs into one vector if they operate on 2906 // different types. 2907 Type *Ty0 = VL0->getOperand(0)->getType(); 2908 for (Value *V : VL) { 2909 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2910 if (Ty0 != CurTy) { 2911 LLVM_DEBUG(dbgs() 2912 << "SLP: not-vectorizable GEP (different types).\n"); 2913 BS.cancelScheduling(VL, VL0); 2914 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2915 ReuseShuffleIndicies); 2916 return; 2917 } 2918 } 2919 2920 // We don't combine GEPs with non-constant indexes. 2921 Type *Ty1 = VL0->getOperand(1)->getType(); 2922 for (Value *V : VL) { 2923 auto Op = cast<Instruction>(V)->getOperand(1); 2924 if (!isa<ConstantInt>(Op) || 2925 (Op->getType() != Ty1 && 2926 Op->getType()->getScalarSizeInBits() > 2927 DL->getIndexSizeInBits( 2928 V->getType()->getPointerAddressSpace()))) { 2929 LLVM_DEBUG(dbgs() 2930 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2931 BS.cancelScheduling(VL, VL0); 2932 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2933 ReuseShuffleIndicies); 2934 return; 2935 } 2936 } 2937 2938 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2939 ReuseShuffleIndicies); 2940 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2941 TE->setOperandsInOrder(); 2942 for (unsigned i = 0, e = 2; i < e; ++i) { 2943 ValueList Operands; 2944 // Prepare the operand vector. 2945 for (Value *V : VL) 2946 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2947 2948 buildTree_rec(Operands, Depth + 1, {TE, i}); 2949 } 2950 return; 2951 } 2952 case Instruction::Store: { 2953 // Check if the stores are consecutive or if we need to swizzle them. 2954 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2955 // Make sure all stores in the bundle are simple - we can't vectorize 2956 // atomic or volatile stores. 2957 SmallVector<Value *, 4> PointerOps(VL.size()); 2958 ValueList Operands(VL.size()); 2959 auto POIter = PointerOps.begin(); 2960 auto OIter = Operands.begin(); 2961 for (Value *V : VL) { 2962 auto *SI = cast<StoreInst>(V); 2963 if (!SI->isSimple()) { 2964 BS.cancelScheduling(VL, VL0); 2965 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2966 ReuseShuffleIndicies); 2967 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2968 return; 2969 } 2970 *POIter = SI->getPointerOperand(); 2971 *OIter = SI->getValueOperand(); 2972 ++POIter; 2973 ++OIter; 2974 } 2975 2976 OrdersType CurrentOrder; 2977 // Check the order of pointer operands. 2978 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2979 Value *Ptr0; 2980 Value *PtrN; 2981 if (CurrentOrder.empty()) { 2982 Ptr0 = PointerOps.front(); 2983 PtrN = PointerOps.back(); 2984 } else { 2985 Ptr0 = PointerOps[CurrentOrder.front()]; 2986 PtrN = PointerOps[CurrentOrder.back()]; 2987 } 2988 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2989 const SCEV *ScevN = SE->getSCEV(PtrN); 2990 const auto *Diff = 2991 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2992 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2993 // Check that the sorted pointer operands are consecutive. 2994 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2995 if (CurrentOrder.empty()) { 2996 // Original stores are consecutive and does not require reordering. 2997 ++NumOpsWantToKeepOriginalOrder; 2998 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2999 UserTreeIdx, ReuseShuffleIndicies); 3000 TE->setOperandsInOrder(); 3001 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3002 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3003 } else { 3004 // Need to reorder. 3005 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 3006 ++(I->getSecond()); 3007 TreeEntry *TE = 3008 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3009 ReuseShuffleIndicies, I->getFirst()); 3010 TE->setOperandsInOrder(); 3011 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3012 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3013 } 3014 return; 3015 } 3016 } 3017 3018 BS.cancelScheduling(VL, VL0); 3019 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3020 ReuseShuffleIndicies); 3021 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3022 return; 3023 } 3024 case Instruction::Call: { 3025 // Check if the calls are all to the same vectorizable intrinsic or 3026 // library function. 3027 CallInst *CI = cast<CallInst>(VL0); 3028 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3029 3030 VFShape Shape = VFShape::get( 3031 *CI, {static_cast<unsigned int>(VL.size()), false /*Scalable*/}, 3032 false /*HasGlobalPred*/); 3033 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3034 3035 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3036 BS.cancelScheduling(VL, VL0); 3037 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3038 ReuseShuffleIndicies); 3039 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3040 return; 3041 } 3042 Function *F = CI->getCalledFunction(); 3043 unsigned NumArgs = CI->getNumArgOperands(); 3044 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3045 for (unsigned j = 0; j != NumArgs; ++j) 3046 if (hasVectorInstrinsicScalarOpd(ID, j)) 3047 ScalarArgs[j] = CI->getArgOperand(j); 3048 for (Value *V : VL) { 3049 CallInst *CI2 = dyn_cast<CallInst>(V); 3050 if (!CI2 || CI2->getCalledFunction() != F || 3051 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3052 (VecFunc && 3053 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3054 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3055 BS.cancelScheduling(VL, VL0); 3056 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3057 ReuseShuffleIndicies); 3058 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3059 << "\n"); 3060 return; 3061 } 3062 // Some intrinsics have scalar arguments and should be same in order for 3063 // them to be vectorized. 3064 for (unsigned j = 0; j != NumArgs; ++j) { 3065 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3066 Value *A1J = CI2->getArgOperand(j); 3067 if (ScalarArgs[j] != A1J) { 3068 BS.cancelScheduling(VL, VL0); 3069 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3070 ReuseShuffleIndicies); 3071 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3072 << " argument " << ScalarArgs[j] << "!=" << A1J 3073 << "\n"); 3074 return; 3075 } 3076 } 3077 } 3078 // Verify that the bundle operands are identical between the two calls. 3079 if (CI->hasOperandBundles() && 3080 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3081 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3082 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3083 BS.cancelScheduling(VL, VL0); 3084 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3085 ReuseShuffleIndicies); 3086 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3087 << *CI << "!=" << *V << '\n'); 3088 return; 3089 } 3090 } 3091 3092 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3093 ReuseShuffleIndicies); 3094 TE->setOperandsInOrder(); 3095 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3096 ValueList Operands; 3097 // Prepare the operand vector. 3098 for (Value *V : VL) { 3099 auto *CI2 = cast<CallInst>(V); 3100 Operands.push_back(CI2->getArgOperand(i)); 3101 } 3102 buildTree_rec(Operands, Depth + 1, {TE, i}); 3103 } 3104 return; 3105 } 3106 case Instruction::ShuffleVector: { 3107 // If this is not an alternate sequence of opcode like add-sub 3108 // then do not vectorize this instruction. 3109 if (!S.isAltShuffle()) { 3110 BS.cancelScheduling(VL, VL0); 3111 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3112 ReuseShuffleIndicies); 3113 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3114 return; 3115 } 3116 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3117 ReuseShuffleIndicies); 3118 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3119 3120 // Reorder operands if reordering would enable vectorization. 3121 if (isa<BinaryOperator>(VL0)) { 3122 ValueList Left, Right; 3123 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3124 TE->setOperand(0, Left); 3125 TE->setOperand(1, Right); 3126 buildTree_rec(Left, Depth + 1, {TE, 0}); 3127 buildTree_rec(Right, Depth + 1, {TE, 1}); 3128 return; 3129 } 3130 3131 TE->setOperandsInOrder(); 3132 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3133 ValueList Operands; 3134 // Prepare the operand vector. 3135 for (Value *V : VL) 3136 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3137 3138 buildTree_rec(Operands, Depth + 1, {TE, i}); 3139 } 3140 return; 3141 } 3142 default: 3143 BS.cancelScheduling(VL, VL0); 3144 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3145 ReuseShuffleIndicies); 3146 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3147 return; 3148 } 3149 } 3150 3151 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3152 unsigned N = 1; 3153 Type *EltTy = T; 3154 3155 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3156 isa<VectorType>(EltTy)) { 3157 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3158 // Check that struct is homogeneous. 3159 for (const auto *Ty : ST->elements()) 3160 if (Ty != *ST->element_begin()) 3161 return 0; 3162 N *= ST->getNumElements(); 3163 EltTy = *ST->element_begin(); 3164 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3165 N *= AT->getNumElements(); 3166 EltTy = AT->getElementType(); 3167 } else { 3168 auto *VT = cast<VectorType>(EltTy); 3169 N *= VT->getNumElements(); 3170 EltTy = VT->getElementType(); 3171 } 3172 } 3173 3174 if (!isValidElementType(EltTy)) 3175 return 0; 3176 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3177 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3178 return 0; 3179 return N; 3180 } 3181 3182 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3183 SmallVectorImpl<unsigned> &CurrentOrder) const { 3184 Instruction *E0 = cast<Instruction>(OpValue); 3185 assert(E0->getOpcode() == Instruction::ExtractElement || 3186 E0->getOpcode() == Instruction::ExtractValue); 3187 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3188 // Check if all of the extracts come from the same vector and from the 3189 // correct offset. 3190 Value *Vec = E0->getOperand(0); 3191 3192 CurrentOrder.clear(); 3193 3194 // We have to extract from a vector/aggregate with the same number of elements. 3195 unsigned NElts; 3196 if (E0->getOpcode() == Instruction::ExtractValue) { 3197 const DataLayout &DL = E0->getModule()->getDataLayout(); 3198 NElts = canMapToVector(Vec->getType(), DL); 3199 if (!NElts) 3200 return false; 3201 // Check if load can be rewritten as load of vector. 3202 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3203 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3204 return false; 3205 } else { 3206 NElts = cast<VectorType>(Vec->getType())->getNumElements(); 3207 } 3208 3209 if (NElts != VL.size()) 3210 return false; 3211 3212 // Check that all of the indices extract from the correct offset. 3213 bool ShouldKeepOrder = true; 3214 unsigned E = VL.size(); 3215 // Assign to all items the initial value E + 1 so we can check if the extract 3216 // instruction index was used already. 3217 // Also, later we can check that all the indices are used and we have a 3218 // consecutive access in the extract instructions, by checking that no 3219 // element of CurrentOrder still has value E + 1. 3220 CurrentOrder.assign(E, E + 1); 3221 unsigned I = 0; 3222 for (; I < E; ++I) { 3223 auto *Inst = cast<Instruction>(VL[I]); 3224 if (Inst->getOperand(0) != Vec) 3225 break; 3226 Optional<unsigned> Idx = getExtractIndex(Inst); 3227 if (!Idx) 3228 break; 3229 const unsigned ExtIdx = *Idx; 3230 if (ExtIdx != I) { 3231 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3232 break; 3233 ShouldKeepOrder = false; 3234 CurrentOrder[ExtIdx] = I; 3235 } else { 3236 if (CurrentOrder[I] != E + 1) 3237 break; 3238 CurrentOrder[I] = I; 3239 } 3240 } 3241 if (I < E) { 3242 CurrentOrder.clear(); 3243 return false; 3244 } 3245 3246 return ShouldKeepOrder; 3247 } 3248 3249 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3250 return I->hasOneUse() || 3251 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3252 return ScalarToTreeEntry.count(U) > 0; 3253 }); 3254 } 3255 3256 static std::pair<unsigned, unsigned> 3257 getVectorCallCosts(CallInst *CI, VectorType *VecTy, TargetTransformInfo *TTI, 3258 TargetLibraryInfo *TLI) { 3259 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3260 3261 // Calculate the cost of the scalar and vector calls. 3262 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements()); 3263 int IntrinsicCost = 3264 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3265 3266 auto Shape = 3267 VFShape::get(*CI, {static_cast<unsigned>(VecTy->getNumElements()), false}, 3268 false /*HasGlobalPred*/); 3269 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3270 int LibCost = IntrinsicCost; 3271 if (!CI->isNoBuiltin() && VecFunc) { 3272 // Calculate the cost of the vector library call. 3273 SmallVector<Type *, 4> VecTys; 3274 for (Use &Arg : CI->args()) 3275 VecTys.push_back( 3276 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3277 3278 // If the corresponding vector call is cheaper, return its cost. 3279 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3280 TTI::TCK_RecipThroughput); 3281 } 3282 return {IntrinsicCost, LibCost}; 3283 } 3284 3285 int BoUpSLP::getEntryCost(TreeEntry *E) { 3286 ArrayRef<Value*> VL = E->Scalars; 3287 3288 Type *ScalarTy = VL[0]->getType(); 3289 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3290 ScalarTy = SI->getValueOperand()->getType(); 3291 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3292 ScalarTy = CI->getOperand(0)->getType(); 3293 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3294 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3295 3296 // If we have computed a smaller type for the expression, update VecTy so 3297 // that the costs will be accurate. 3298 if (MinBWs.count(VL[0])) 3299 VecTy = FixedVectorType::get( 3300 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3301 3302 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3303 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3304 int ReuseShuffleCost = 0; 3305 if (NeedToShuffleReuses) { 3306 ReuseShuffleCost = 3307 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3308 } 3309 if (E->State == TreeEntry::NeedToGather) { 3310 if (allConstant(VL)) 3311 return 0; 3312 if (isSplat(VL)) { 3313 return ReuseShuffleCost + 3314 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3315 } 3316 if (E->getOpcode() == Instruction::ExtractElement && 3317 allSameType(VL) && allSameBlock(VL)) { 3318 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3319 if (ShuffleKind.hasValue()) { 3320 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3321 for (auto *V : VL) { 3322 // If all users of instruction are going to be vectorized and this 3323 // instruction itself is not going to be vectorized, consider this 3324 // instruction as dead and remove its cost from the final cost of the 3325 // vectorized tree. 3326 if (areAllUsersVectorized(cast<Instruction>(V)) && 3327 !ScalarToTreeEntry.count(V)) { 3328 auto *IO = cast<ConstantInt>( 3329 cast<ExtractElementInst>(V)->getIndexOperand()); 3330 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3331 IO->getZExtValue()); 3332 } 3333 } 3334 return ReuseShuffleCost + Cost; 3335 } 3336 } 3337 return ReuseShuffleCost + getGatherCost(VL); 3338 } 3339 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 3340 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3341 Instruction *VL0 = E->getMainOp(); 3342 unsigned ShuffleOrOp = 3343 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3344 switch (ShuffleOrOp) { 3345 case Instruction::PHI: 3346 return 0; 3347 3348 case Instruction::ExtractValue: 3349 case Instruction::ExtractElement: { 3350 if (NeedToShuffleReuses) { 3351 unsigned Idx = 0; 3352 for (unsigned I : E->ReuseShuffleIndices) { 3353 if (ShuffleOrOp == Instruction::ExtractElement) { 3354 auto *IO = cast<ConstantInt>( 3355 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3356 Idx = IO->getZExtValue(); 3357 ReuseShuffleCost -= TTI->getVectorInstrCost( 3358 Instruction::ExtractElement, VecTy, Idx); 3359 } else { 3360 ReuseShuffleCost -= TTI->getVectorInstrCost( 3361 Instruction::ExtractElement, VecTy, Idx); 3362 ++Idx; 3363 } 3364 } 3365 Idx = ReuseShuffleNumbers; 3366 for (Value *V : VL) { 3367 if (ShuffleOrOp == Instruction::ExtractElement) { 3368 auto *IO = cast<ConstantInt>( 3369 cast<ExtractElementInst>(V)->getIndexOperand()); 3370 Idx = IO->getZExtValue(); 3371 } else { 3372 --Idx; 3373 } 3374 ReuseShuffleCost += 3375 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3376 } 3377 } 3378 int DeadCost = ReuseShuffleCost; 3379 if (!E->ReorderIndices.empty()) { 3380 // TODO: Merge this shuffle with the ReuseShuffleCost. 3381 DeadCost += TTI->getShuffleCost( 3382 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3383 } 3384 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3385 Instruction *E = cast<Instruction>(VL[i]); 3386 // If all users are going to be vectorized, instruction can be 3387 // considered as dead. 3388 // The same, if have only one user, it will be vectorized for sure. 3389 if (areAllUsersVectorized(E)) { 3390 // Take credit for instruction that will become dead. 3391 if (E->hasOneUse()) { 3392 Instruction *Ext = E->user_back(); 3393 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3394 all_of(Ext->users(), 3395 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3396 // Use getExtractWithExtendCost() to calculate the cost of 3397 // extractelement/ext pair. 3398 DeadCost -= TTI->getExtractWithExtendCost( 3399 Ext->getOpcode(), Ext->getType(), VecTy, i); 3400 // Add back the cost of s|zext which is subtracted separately. 3401 DeadCost += TTI->getCastInstrCost( 3402 Ext->getOpcode(), Ext->getType(), E->getType(), 3403 TTI::getCastContextHint(Ext), CostKind, Ext); 3404 continue; 3405 } 3406 } 3407 DeadCost -= 3408 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3409 } 3410 } 3411 return DeadCost; 3412 } 3413 case Instruction::ZExt: 3414 case Instruction::SExt: 3415 case Instruction::FPToUI: 3416 case Instruction::FPToSI: 3417 case Instruction::FPExt: 3418 case Instruction::PtrToInt: 3419 case Instruction::IntToPtr: 3420 case Instruction::SIToFP: 3421 case Instruction::UIToFP: 3422 case Instruction::Trunc: 3423 case Instruction::FPTrunc: 3424 case Instruction::BitCast: { 3425 Type *SrcTy = VL0->getOperand(0)->getType(); 3426 int ScalarEltCost = 3427 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3428 TTI::getCastContextHint(VL0), CostKind, VL0); 3429 if (NeedToShuffleReuses) { 3430 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3431 } 3432 3433 // Calculate the cost of this instruction. 3434 int ScalarCost = VL.size() * ScalarEltCost; 3435 3436 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3437 int VecCost = 0; 3438 // Check if the values are candidates to demote. 3439 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3440 VecCost = 3441 ReuseShuffleCost + 3442 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3443 TTI::getCastContextHint(VL0), CostKind, VL0); 3444 } 3445 return VecCost - ScalarCost; 3446 } 3447 case Instruction::FCmp: 3448 case Instruction::ICmp: 3449 case Instruction::Select: { 3450 // Calculate the cost of this instruction. 3451 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3452 Builder.getInt1Ty(), 3453 CostKind, VL0); 3454 if (NeedToShuffleReuses) { 3455 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3456 } 3457 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3458 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3459 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3460 CostKind, VL0); 3461 return ReuseShuffleCost + VecCost - ScalarCost; 3462 } 3463 case Instruction::FNeg: 3464 case Instruction::Add: 3465 case Instruction::FAdd: 3466 case Instruction::Sub: 3467 case Instruction::FSub: 3468 case Instruction::Mul: 3469 case Instruction::FMul: 3470 case Instruction::UDiv: 3471 case Instruction::SDiv: 3472 case Instruction::FDiv: 3473 case Instruction::URem: 3474 case Instruction::SRem: 3475 case Instruction::FRem: 3476 case Instruction::Shl: 3477 case Instruction::LShr: 3478 case Instruction::AShr: 3479 case Instruction::And: 3480 case Instruction::Or: 3481 case Instruction::Xor: { 3482 // Certain instructions can be cheaper to vectorize if they have a 3483 // constant second vector operand. 3484 TargetTransformInfo::OperandValueKind Op1VK = 3485 TargetTransformInfo::OK_AnyValue; 3486 TargetTransformInfo::OperandValueKind Op2VK = 3487 TargetTransformInfo::OK_UniformConstantValue; 3488 TargetTransformInfo::OperandValueProperties Op1VP = 3489 TargetTransformInfo::OP_None; 3490 TargetTransformInfo::OperandValueProperties Op2VP = 3491 TargetTransformInfo::OP_PowerOf2; 3492 3493 // If all operands are exactly the same ConstantInt then set the 3494 // operand kind to OK_UniformConstantValue. 3495 // If instead not all operands are constants, then set the operand kind 3496 // to OK_AnyValue. If all operands are constants but not the same, 3497 // then set the operand kind to OK_NonUniformConstantValue. 3498 ConstantInt *CInt0 = nullptr; 3499 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3500 const Instruction *I = cast<Instruction>(VL[i]); 3501 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3502 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3503 if (!CInt) { 3504 Op2VK = TargetTransformInfo::OK_AnyValue; 3505 Op2VP = TargetTransformInfo::OP_None; 3506 break; 3507 } 3508 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3509 !CInt->getValue().isPowerOf2()) 3510 Op2VP = TargetTransformInfo::OP_None; 3511 if (i == 0) { 3512 CInt0 = CInt; 3513 continue; 3514 } 3515 if (CInt0 != CInt) 3516 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3517 } 3518 3519 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3520 int ScalarEltCost = TTI->getArithmeticInstrCost( 3521 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3522 Operands, VL0); 3523 if (NeedToShuffleReuses) { 3524 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3525 } 3526 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3527 int VecCost = TTI->getArithmeticInstrCost( 3528 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3529 Operands, VL0); 3530 return ReuseShuffleCost + VecCost - ScalarCost; 3531 } 3532 case Instruction::GetElementPtr: { 3533 TargetTransformInfo::OperandValueKind Op1VK = 3534 TargetTransformInfo::OK_AnyValue; 3535 TargetTransformInfo::OperandValueKind Op2VK = 3536 TargetTransformInfo::OK_UniformConstantValue; 3537 3538 int ScalarEltCost = 3539 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3540 Op1VK, Op2VK); 3541 if (NeedToShuffleReuses) { 3542 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3543 } 3544 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3545 int VecCost = 3546 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3547 Op1VK, Op2VK); 3548 return ReuseShuffleCost + VecCost - ScalarCost; 3549 } 3550 case Instruction::Load: { 3551 // Cost of wide load - cost of scalar loads. 3552 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3553 int ScalarEltCost = 3554 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3555 CostKind, VL0); 3556 if (NeedToShuffleReuses) { 3557 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3558 } 3559 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3560 int VecLdCost = 3561 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3562 CostKind, VL0); 3563 if (!E->ReorderIndices.empty()) { 3564 // TODO: Merge this shuffle with the ReuseShuffleCost. 3565 VecLdCost += TTI->getShuffleCost( 3566 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3567 } 3568 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3569 } 3570 case Instruction::Store: { 3571 // We know that we can merge the stores. Calculate the cost. 3572 bool IsReorder = !E->ReorderIndices.empty(); 3573 auto *SI = 3574 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3575 Align Alignment = SI->getAlign(); 3576 int ScalarEltCost = 3577 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3578 CostKind, VL0); 3579 if (NeedToShuffleReuses) 3580 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3581 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3582 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3583 VecTy, Alignment, 0, CostKind, VL0); 3584 if (IsReorder) { 3585 // TODO: Merge this shuffle with the ReuseShuffleCost. 3586 VecStCost += TTI->getShuffleCost( 3587 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3588 } 3589 return ReuseShuffleCost + VecStCost - ScalarStCost; 3590 } 3591 case Instruction::Call: { 3592 CallInst *CI = cast<CallInst>(VL0); 3593 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3594 3595 // Calculate the cost of the scalar and vector calls. 3596 IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1); 3597 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3598 if (NeedToShuffleReuses) { 3599 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3600 } 3601 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3602 3603 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3604 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3605 3606 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3607 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3608 << " for " << *CI << "\n"); 3609 3610 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3611 } 3612 case Instruction::ShuffleVector: { 3613 assert(E->isAltShuffle() && 3614 ((Instruction::isBinaryOp(E->getOpcode()) && 3615 Instruction::isBinaryOp(E->getAltOpcode())) || 3616 (Instruction::isCast(E->getOpcode()) && 3617 Instruction::isCast(E->getAltOpcode()))) && 3618 "Invalid Shuffle Vector Operand"); 3619 int ScalarCost = 0; 3620 if (NeedToShuffleReuses) { 3621 for (unsigned Idx : E->ReuseShuffleIndices) { 3622 Instruction *I = cast<Instruction>(VL[Idx]); 3623 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3624 } 3625 for (Value *V : VL) { 3626 Instruction *I = cast<Instruction>(V); 3627 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3628 } 3629 } 3630 for (Value *V : VL) { 3631 Instruction *I = cast<Instruction>(V); 3632 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3633 ScalarCost += TTI->getInstructionCost(I, CostKind); 3634 } 3635 // VecCost is equal to sum of the cost of creating 2 vectors 3636 // and the cost of creating shuffle. 3637 int VecCost = 0; 3638 if (Instruction::isBinaryOp(E->getOpcode())) { 3639 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3640 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3641 CostKind); 3642 } else { 3643 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3644 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3645 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3646 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3647 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3648 TTI::CastContextHint::None, CostKind); 3649 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3650 TTI::CastContextHint::None, CostKind); 3651 } 3652 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3653 return ReuseShuffleCost + VecCost - ScalarCost; 3654 } 3655 default: 3656 llvm_unreachable("Unknown instruction"); 3657 } 3658 } 3659 3660 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3661 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3662 << VectorizableTree.size() << " is fully vectorizable .\n"); 3663 3664 // We only handle trees of heights 1 and 2. 3665 if (VectorizableTree.size() == 1 && 3666 VectorizableTree[0]->State == TreeEntry::Vectorize) 3667 return true; 3668 3669 if (VectorizableTree.size() != 2) 3670 return false; 3671 3672 // Handle splat and all-constants stores. 3673 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3674 (allConstant(VectorizableTree[1]->Scalars) || 3675 isSplat(VectorizableTree[1]->Scalars))) 3676 return true; 3677 3678 // Gathering cost would be too much for tiny trees. 3679 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3680 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3681 return false; 3682 3683 return true; 3684 } 3685 3686 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3687 TargetTransformInfo *TTI) { 3688 // Look past the root to find a source value. Arbitrarily follow the 3689 // path through operand 0 of any 'or'. Also, peek through optional 3690 // shift-left-by-constant. 3691 Value *ZextLoad = Root; 3692 while (!isa<ConstantExpr>(ZextLoad) && 3693 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3694 match(ZextLoad, m_Shl(m_Value(), m_Constant())))) 3695 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3696 3697 // Check if the input is an extended load of the required or/shift expression. 3698 Value *LoadPtr; 3699 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3700 return false; 3701 3702 // Require that the total load bit width is a legal integer type. 3703 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3704 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3705 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3706 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3707 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3708 return false; 3709 3710 // Everything matched - assume that we can fold the whole sequence using 3711 // load combining. 3712 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3713 << *(cast<Instruction>(Root)) << "\n"); 3714 3715 return true; 3716 } 3717 3718 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3719 if (RdxOpcode != Instruction::Or) 3720 return false; 3721 3722 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3723 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3724 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3725 } 3726 3727 bool BoUpSLP::isLoadCombineCandidate() const { 3728 // Peek through a final sequence of stores and check if all operations are 3729 // likely to be load-combined. 3730 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3731 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3732 Value *X; 3733 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3734 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3735 return false; 3736 } 3737 return true; 3738 } 3739 3740 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3741 // We can vectorize the tree if its size is greater than or equal to the 3742 // minimum size specified by the MinTreeSize command line option. 3743 if (VectorizableTree.size() >= MinTreeSize) 3744 return false; 3745 3746 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3747 // can vectorize it if we can prove it fully vectorizable. 3748 if (isFullyVectorizableTinyTree()) 3749 return false; 3750 3751 assert(VectorizableTree.empty() 3752 ? ExternalUses.empty() 3753 : true && "We shouldn't have any external users"); 3754 3755 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3756 // vectorizable. 3757 return true; 3758 } 3759 3760 int BoUpSLP::getSpillCost() const { 3761 // Walk from the bottom of the tree to the top, tracking which values are 3762 // live. When we see a call instruction that is not part of our tree, 3763 // query TTI to see if there is a cost to keeping values live over it 3764 // (for example, if spills and fills are required). 3765 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3766 int Cost = 0; 3767 3768 SmallPtrSet<Instruction*, 4> LiveValues; 3769 Instruction *PrevInst = nullptr; 3770 3771 for (const auto &TEPtr : VectorizableTree) { 3772 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3773 if (!Inst) 3774 continue; 3775 3776 if (!PrevInst) { 3777 PrevInst = Inst; 3778 continue; 3779 } 3780 3781 // Update LiveValues. 3782 LiveValues.erase(PrevInst); 3783 for (auto &J : PrevInst->operands()) { 3784 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3785 LiveValues.insert(cast<Instruction>(&*J)); 3786 } 3787 3788 LLVM_DEBUG({ 3789 dbgs() << "SLP: #LV: " << LiveValues.size(); 3790 for (auto *X : LiveValues) 3791 dbgs() << " " << X->getName(); 3792 dbgs() << ", Looking at "; 3793 Inst->dump(); 3794 }); 3795 3796 // Now find the sequence of instructions between PrevInst and Inst. 3797 unsigned NumCalls = 0; 3798 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3799 PrevInstIt = 3800 PrevInst->getIterator().getReverse(); 3801 while (InstIt != PrevInstIt) { 3802 if (PrevInstIt == PrevInst->getParent()->rend()) { 3803 PrevInstIt = Inst->getParent()->rbegin(); 3804 continue; 3805 } 3806 3807 // Debug information does not impact spill cost. 3808 if ((isa<CallInst>(&*PrevInstIt) && 3809 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3810 &*PrevInstIt != PrevInst) 3811 NumCalls++; 3812 3813 ++PrevInstIt; 3814 } 3815 3816 if (NumCalls) { 3817 SmallVector<Type*, 4> V; 3818 for (auto *II : LiveValues) 3819 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 3820 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3821 } 3822 3823 PrevInst = Inst; 3824 } 3825 3826 return Cost; 3827 } 3828 3829 int BoUpSLP::getTreeCost() { 3830 int Cost = 0; 3831 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3832 << VectorizableTree.size() << ".\n"); 3833 3834 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3835 3836 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3837 TreeEntry &TE = *VectorizableTree[I].get(); 3838 3839 // We create duplicate tree entries for gather sequences that have multiple 3840 // uses. However, we should not compute the cost of duplicate sequences. 3841 // For example, if we have a build vector (i.e., insertelement sequence) 3842 // that is used by more than one vector instruction, we only need to 3843 // compute the cost of the insertelement instructions once. The redundant 3844 // instructions will be eliminated by CSE. 3845 // 3846 // We should consider not creating duplicate tree entries for gather 3847 // sequences, and instead add additional edges to the tree representing 3848 // their uses. Since such an approach results in fewer total entries, 3849 // existing heuristics based on tree size may yield different results. 3850 // 3851 if (TE.State == TreeEntry::NeedToGather && 3852 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3853 VectorizableTree.end(), 3854 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3855 return EntryPtr->State == TreeEntry::NeedToGather && 3856 EntryPtr->isSame(TE.Scalars); 3857 })) 3858 continue; 3859 3860 int C = getEntryCost(&TE); 3861 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3862 << " for bundle that starts with " << *TE.Scalars[0] 3863 << ".\n"); 3864 Cost += C; 3865 } 3866 3867 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3868 int ExtractCost = 0; 3869 for (ExternalUser &EU : ExternalUses) { 3870 // We only add extract cost once for the same scalar. 3871 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3872 continue; 3873 3874 // Uses by ephemeral values are free (because the ephemeral value will be 3875 // removed prior to code generation, and so the extraction will be 3876 // removed as well). 3877 if (EphValues.count(EU.User)) 3878 continue; 3879 3880 // If we plan to rewrite the tree in a smaller type, we will need to sign 3881 // extend the extracted value back to the original type. Here, we account 3882 // for the extract and the added cost of the sign extend if needed. 3883 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 3884 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3885 if (MinBWs.count(ScalarRoot)) { 3886 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3887 auto Extend = 3888 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3889 VecTy = FixedVectorType::get(MinTy, BundleWidth); 3890 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3891 VecTy, EU.Lane); 3892 } else { 3893 ExtractCost += 3894 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3895 } 3896 } 3897 3898 int SpillCost = getSpillCost(); 3899 Cost += SpillCost + ExtractCost; 3900 3901 std::string Str; 3902 { 3903 raw_string_ostream OS(Str); 3904 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3905 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3906 << "SLP: Total Cost = " << Cost << ".\n"; 3907 } 3908 LLVM_DEBUG(dbgs() << Str); 3909 3910 if (ViewSLPTree) 3911 ViewGraph(this, "SLP" + F->getName(), false, Str); 3912 3913 return Cost; 3914 } 3915 3916 int BoUpSLP::getGatherCost(VectorType *Ty, 3917 const DenseSet<unsigned> &ShuffledIndices) const { 3918 unsigned NumElts = Ty->getNumElements(); 3919 APInt DemandedElts = APInt::getNullValue(NumElts); 3920 for (unsigned i = 0; i < NumElts; ++i) 3921 if (!ShuffledIndices.count(i)) 3922 DemandedElts.setBit(i); 3923 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 3924 /*Extract*/ false); 3925 if (!ShuffledIndices.empty()) 3926 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3927 return Cost; 3928 } 3929 3930 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3931 // Find the type of the operands in VL. 3932 Type *ScalarTy = VL[0]->getType(); 3933 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3934 ScalarTy = SI->getValueOperand()->getType(); 3935 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3936 // Find the cost of inserting/extracting values from the vector. 3937 // Check if the same elements are inserted several times and count them as 3938 // shuffle candidates. 3939 DenseSet<unsigned> ShuffledElements; 3940 DenseSet<Value *> UniqueElements; 3941 // Iterate in reverse order to consider insert elements with the high cost. 3942 for (unsigned I = VL.size(); I > 0; --I) { 3943 unsigned Idx = I - 1; 3944 if (!UniqueElements.insert(VL[Idx]).second) 3945 ShuffledElements.insert(Idx); 3946 } 3947 return getGatherCost(VecTy, ShuffledElements); 3948 } 3949 3950 // Perform operand reordering on the instructions in VL and return the reordered 3951 // operands in Left and Right. 3952 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 3953 SmallVectorImpl<Value *> &Left, 3954 SmallVectorImpl<Value *> &Right, 3955 const DataLayout &DL, 3956 ScalarEvolution &SE, 3957 const BoUpSLP &R) { 3958 if (VL.empty()) 3959 return; 3960 VLOperands Ops(VL, DL, SE, R); 3961 // Reorder the operands in place. 3962 Ops.reorder(); 3963 Left = Ops.getVL(0); 3964 Right = Ops.getVL(1); 3965 } 3966 3967 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3968 // Get the basic block this bundle is in. All instructions in the bundle 3969 // should be in this block. 3970 auto *Front = E->getMainOp(); 3971 auto *BB = Front->getParent(); 3972 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3973 [=](Value *V) -> bool { 3974 auto *I = cast<Instruction>(V); 3975 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3976 })); 3977 3978 // The last instruction in the bundle in program order. 3979 Instruction *LastInst = nullptr; 3980 3981 // Find the last instruction. The common case should be that BB has been 3982 // scheduled, and the last instruction is VL.back(). So we start with 3983 // VL.back() and iterate over schedule data until we reach the end of the 3984 // bundle. The end of the bundle is marked by null ScheduleData. 3985 if (BlocksSchedules.count(BB)) { 3986 auto *Bundle = 3987 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3988 if (Bundle && Bundle->isPartOfBundle()) 3989 for (; Bundle; Bundle = Bundle->NextInBundle) 3990 if (Bundle->OpValue == Bundle->Inst) 3991 LastInst = Bundle->Inst; 3992 } 3993 3994 // LastInst can still be null at this point if there's either not an entry 3995 // for BB in BlocksSchedules or there's no ScheduleData available for 3996 // VL.back(). This can be the case if buildTree_rec aborts for various 3997 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3998 // size is reached, etc.). ScheduleData is initialized in the scheduling 3999 // "dry-run". 4000 // 4001 // If this happens, we can still find the last instruction by brute force. We 4002 // iterate forwards from Front (inclusive) until we either see all 4003 // instructions in the bundle or reach the end of the block. If Front is the 4004 // last instruction in program order, LastInst will be set to Front, and we 4005 // will visit all the remaining instructions in the block. 4006 // 4007 // One of the reasons we exit early from buildTree_rec is to place an upper 4008 // bound on compile-time. Thus, taking an additional compile-time hit here is 4009 // not ideal. However, this should be exceedingly rare since it requires that 4010 // we both exit early from buildTree_rec and that the bundle be out-of-order 4011 // (causing us to iterate all the way to the end of the block). 4012 if (!LastInst) { 4013 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4014 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4015 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4016 LastInst = &I; 4017 if (Bundle.empty()) 4018 break; 4019 } 4020 } 4021 assert(LastInst && "Failed to find last instruction in bundle"); 4022 4023 // Set the insertion point after the last instruction in the bundle. Set the 4024 // debug location to Front. 4025 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4026 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4027 } 4028 4029 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 4030 Value *Vec = UndefValue::get(Ty); 4031 // Generate the 'InsertElement' instruction. 4032 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 4033 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 4034 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 4035 GatherSeq.insert(Insrt); 4036 CSEBlocks.insert(Insrt->getParent()); 4037 4038 // Add to our 'need-to-extract' list. 4039 if (TreeEntry *E = getTreeEntry(VL[i])) { 4040 // Find which lane we need to extract. 4041 int FoundLane = -1; 4042 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 4043 // Is this the lane of the scalar that we are looking for ? 4044 if (E->Scalars[Lane] == VL[i]) { 4045 FoundLane = Lane; 4046 break; 4047 } 4048 } 4049 assert(FoundLane >= 0 && "Could not find the correct lane"); 4050 if (!E->ReuseShuffleIndices.empty()) { 4051 FoundLane = 4052 std::distance(E->ReuseShuffleIndices.begin(), 4053 llvm::find(E->ReuseShuffleIndices, FoundLane)); 4054 } 4055 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 4056 } 4057 } 4058 } 4059 4060 return Vec; 4061 } 4062 4063 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4064 InstructionsState S = getSameOpcode(VL); 4065 if (S.getOpcode()) { 4066 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4067 if (E->isSame(VL)) { 4068 Value *V = vectorizeTree(E); 4069 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4070 // We need to get the vectorized value but without shuffle. 4071 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4072 V = SV->getOperand(0); 4073 } else { 4074 // Reshuffle to get only unique values. 4075 SmallVector<int, 4> UniqueIdxs; 4076 SmallSet<int, 4> UsedIdxs; 4077 for (int Idx : E->ReuseShuffleIndices) 4078 if (UsedIdxs.insert(Idx).second) 4079 UniqueIdxs.emplace_back(Idx); 4080 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4081 UniqueIdxs); 4082 } 4083 } 4084 return V; 4085 } 4086 } 4087 } 4088 4089 Type *ScalarTy = S.OpValue->getType(); 4090 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4091 ScalarTy = SI->getValueOperand()->getType(); 4092 4093 // Check that every instruction appears once in this bundle. 4094 SmallVector<int, 4> ReuseShuffleIndicies; 4095 SmallVector<Value *, 4> UniqueValues; 4096 if (VL.size() > 2) { 4097 DenseMap<Value *, unsigned> UniquePositions; 4098 for (Value *V : VL) { 4099 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4100 ReuseShuffleIndicies.emplace_back(Res.first->second); 4101 if (Res.second || isa<Constant>(V)) 4102 UniqueValues.emplace_back(V); 4103 } 4104 // Do not shuffle single element or if number of unique values is not power 4105 // of 2. 4106 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4107 !llvm::isPowerOf2_32(UniqueValues.size())) 4108 ReuseShuffleIndicies.clear(); 4109 else 4110 VL = UniqueValues; 4111 } 4112 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4113 4114 Value *V = Gather(VL, VecTy); 4115 if (!ReuseShuffleIndicies.empty()) { 4116 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4117 ReuseShuffleIndicies, "shuffle"); 4118 if (auto *I = dyn_cast<Instruction>(V)) { 4119 GatherSeq.insert(I); 4120 CSEBlocks.insert(I->getParent()); 4121 } 4122 } 4123 return V; 4124 } 4125 4126 static void inversePermutation(ArrayRef<unsigned> Indices, 4127 SmallVectorImpl<int> &Mask) { 4128 Mask.clear(); 4129 const unsigned E = Indices.size(); 4130 Mask.resize(E); 4131 for (unsigned I = 0; I < E; ++I) 4132 Mask[Indices[I]] = I; 4133 } 4134 4135 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4136 IRBuilder<>::InsertPointGuard Guard(Builder); 4137 4138 if (E->VectorizedValue) { 4139 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4140 return E->VectorizedValue; 4141 } 4142 4143 Instruction *VL0 = E->getMainOp(); 4144 Type *ScalarTy = VL0->getType(); 4145 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 4146 ScalarTy = SI->getValueOperand()->getType(); 4147 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4148 4149 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4150 4151 if (E->State == TreeEntry::NeedToGather) { 4152 setInsertPointAfterBundle(E); 4153 auto *V = Gather(E->Scalars, VecTy); 4154 if (NeedToShuffleReuses) { 4155 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4156 E->ReuseShuffleIndices, "shuffle"); 4157 if (auto *I = dyn_cast<Instruction>(V)) { 4158 GatherSeq.insert(I); 4159 CSEBlocks.insert(I->getParent()); 4160 } 4161 } 4162 E->VectorizedValue = V; 4163 return V; 4164 } 4165 4166 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 4167 unsigned ShuffleOrOp = 4168 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4169 switch (ShuffleOrOp) { 4170 case Instruction::PHI: { 4171 auto *PH = cast<PHINode>(VL0); 4172 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4173 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4174 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4175 Value *V = NewPhi; 4176 if (NeedToShuffleReuses) { 4177 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4178 E->ReuseShuffleIndices, "shuffle"); 4179 } 4180 E->VectorizedValue = V; 4181 4182 // PHINodes may have multiple entries from the same block. We want to 4183 // visit every block once. 4184 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4185 4186 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4187 ValueList Operands; 4188 BasicBlock *IBB = PH->getIncomingBlock(i); 4189 4190 if (!VisitedBBs.insert(IBB).second) { 4191 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4192 continue; 4193 } 4194 4195 Builder.SetInsertPoint(IBB->getTerminator()); 4196 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4197 Value *Vec = vectorizeTree(E->getOperand(i)); 4198 NewPhi->addIncoming(Vec, IBB); 4199 } 4200 4201 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4202 "Invalid number of incoming values"); 4203 return V; 4204 } 4205 4206 case Instruction::ExtractElement: { 4207 Value *V = E->getSingleOperand(0); 4208 if (!E->ReorderIndices.empty()) { 4209 SmallVector<int, 4> Mask; 4210 inversePermutation(E->ReorderIndices, Mask); 4211 Builder.SetInsertPoint(VL0); 4212 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 4213 "reorder_shuffle"); 4214 } 4215 if (NeedToShuffleReuses) { 4216 // TODO: Merge this shuffle with the ReorderShuffleMask. 4217 if (E->ReorderIndices.empty()) 4218 Builder.SetInsertPoint(VL0); 4219 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4220 E->ReuseShuffleIndices, "shuffle"); 4221 } 4222 E->VectorizedValue = V; 4223 return V; 4224 } 4225 case Instruction::ExtractValue: { 4226 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4227 Builder.SetInsertPoint(LI); 4228 PointerType *PtrTy = 4229 PointerType::get(VecTy, LI->getPointerAddressSpace()); 4230 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4231 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4232 Value *NewV = propagateMetadata(V, E->Scalars); 4233 if (!E->ReorderIndices.empty()) { 4234 SmallVector<int, 4> Mask; 4235 inversePermutation(E->ReorderIndices, Mask); 4236 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 4237 "reorder_shuffle"); 4238 } 4239 if (NeedToShuffleReuses) { 4240 // TODO: Merge this shuffle with the ReorderShuffleMask. 4241 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), 4242 E->ReuseShuffleIndices, "shuffle"); 4243 } 4244 E->VectorizedValue = NewV; 4245 return NewV; 4246 } 4247 case Instruction::ZExt: 4248 case Instruction::SExt: 4249 case Instruction::FPToUI: 4250 case Instruction::FPToSI: 4251 case Instruction::FPExt: 4252 case Instruction::PtrToInt: 4253 case Instruction::IntToPtr: 4254 case Instruction::SIToFP: 4255 case Instruction::UIToFP: 4256 case Instruction::Trunc: 4257 case Instruction::FPTrunc: 4258 case Instruction::BitCast: { 4259 setInsertPointAfterBundle(E); 4260 4261 Value *InVec = vectorizeTree(E->getOperand(0)); 4262 4263 if (E->VectorizedValue) { 4264 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4265 return E->VectorizedValue; 4266 } 4267 4268 auto *CI = cast<CastInst>(VL0); 4269 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4270 if (NeedToShuffleReuses) { 4271 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4272 E->ReuseShuffleIndices, "shuffle"); 4273 } 4274 E->VectorizedValue = V; 4275 ++NumVectorInstructions; 4276 return V; 4277 } 4278 case Instruction::FCmp: 4279 case Instruction::ICmp: { 4280 setInsertPointAfterBundle(E); 4281 4282 Value *L = vectorizeTree(E->getOperand(0)); 4283 Value *R = vectorizeTree(E->getOperand(1)); 4284 4285 if (E->VectorizedValue) { 4286 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4287 return E->VectorizedValue; 4288 } 4289 4290 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4291 Value *V = Builder.CreateCmp(P0, L, R); 4292 propagateIRFlags(V, E->Scalars, VL0); 4293 if (NeedToShuffleReuses) { 4294 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4295 E->ReuseShuffleIndices, "shuffle"); 4296 } 4297 E->VectorizedValue = V; 4298 ++NumVectorInstructions; 4299 return V; 4300 } 4301 case Instruction::Select: { 4302 setInsertPointAfterBundle(E); 4303 4304 Value *Cond = vectorizeTree(E->getOperand(0)); 4305 Value *True = vectorizeTree(E->getOperand(1)); 4306 Value *False = vectorizeTree(E->getOperand(2)); 4307 4308 if (E->VectorizedValue) { 4309 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4310 return E->VectorizedValue; 4311 } 4312 4313 Value *V = Builder.CreateSelect(Cond, True, False); 4314 if (NeedToShuffleReuses) { 4315 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4316 E->ReuseShuffleIndices, "shuffle"); 4317 } 4318 E->VectorizedValue = V; 4319 ++NumVectorInstructions; 4320 return V; 4321 } 4322 case Instruction::FNeg: { 4323 setInsertPointAfterBundle(E); 4324 4325 Value *Op = vectorizeTree(E->getOperand(0)); 4326 4327 if (E->VectorizedValue) { 4328 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4329 return E->VectorizedValue; 4330 } 4331 4332 Value *V = Builder.CreateUnOp( 4333 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4334 propagateIRFlags(V, E->Scalars, VL0); 4335 if (auto *I = dyn_cast<Instruction>(V)) 4336 V = propagateMetadata(I, E->Scalars); 4337 4338 if (NeedToShuffleReuses) { 4339 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4340 E->ReuseShuffleIndices, "shuffle"); 4341 } 4342 E->VectorizedValue = V; 4343 ++NumVectorInstructions; 4344 4345 return V; 4346 } 4347 case Instruction::Add: 4348 case Instruction::FAdd: 4349 case Instruction::Sub: 4350 case Instruction::FSub: 4351 case Instruction::Mul: 4352 case Instruction::FMul: 4353 case Instruction::UDiv: 4354 case Instruction::SDiv: 4355 case Instruction::FDiv: 4356 case Instruction::URem: 4357 case Instruction::SRem: 4358 case Instruction::FRem: 4359 case Instruction::Shl: 4360 case Instruction::LShr: 4361 case Instruction::AShr: 4362 case Instruction::And: 4363 case Instruction::Or: 4364 case Instruction::Xor: { 4365 setInsertPointAfterBundle(E); 4366 4367 Value *LHS = vectorizeTree(E->getOperand(0)); 4368 Value *RHS = vectorizeTree(E->getOperand(1)); 4369 4370 if (E->VectorizedValue) { 4371 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4372 return E->VectorizedValue; 4373 } 4374 4375 Value *V = Builder.CreateBinOp( 4376 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4377 RHS); 4378 propagateIRFlags(V, E->Scalars, VL0); 4379 if (auto *I = dyn_cast<Instruction>(V)) 4380 V = propagateMetadata(I, E->Scalars); 4381 4382 if (NeedToShuffleReuses) { 4383 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4384 E->ReuseShuffleIndices, "shuffle"); 4385 } 4386 E->VectorizedValue = V; 4387 ++NumVectorInstructions; 4388 4389 return V; 4390 } 4391 case Instruction::Load: { 4392 // Loads are inserted at the head of the tree because we don't want to 4393 // sink them all the way down past store instructions. 4394 bool IsReorder = E->updateStateIfReorder(); 4395 if (IsReorder) 4396 VL0 = E->getMainOp(); 4397 setInsertPointAfterBundle(E); 4398 4399 LoadInst *LI = cast<LoadInst>(VL0); 4400 unsigned AS = LI->getPointerAddressSpace(); 4401 4402 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4403 VecTy->getPointerTo(AS)); 4404 4405 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4406 // ExternalUses list to make sure that an extract will be generated in the 4407 // future. 4408 Value *PO = LI->getPointerOperand(); 4409 if (getTreeEntry(PO)) 4410 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4411 4412 LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4413 Value *V = propagateMetadata(LI, E->Scalars); 4414 if (IsReorder) { 4415 SmallVector<int, 4> Mask; 4416 inversePermutation(E->ReorderIndices, Mask); 4417 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4418 Mask, "reorder_shuffle"); 4419 } 4420 if (NeedToShuffleReuses) { 4421 // TODO: Merge this shuffle with the ReorderShuffleMask. 4422 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4423 E->ReuseShuffleIndices, "shuffle"); 4424 } 4425 E->VectorizedValue = V; 4426 ++NumVectorInstructions; 4427 return V; 4428 } 4429 case Instruction::Store: { 4430 bool IsReorder = !E->ReorderIndices.empty(); 4431 auto *SI = cast<StoreInst>( 4432 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4433 unsigned AS = SI->getPointerAddressSpace(); 4434 4435 setInsertPointAfterBundle(E); 4436 4437 Value *VecValue = vectorizeTree(E->getOperand(0)); 4438 if (IsReorder) { 4439 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4440 E->ReorderIndices.end()); 4441 VecValue = Builder.CreateShuffleVector( 4442 VecValue, UndefValue::get(VecValue->getType()), Mask, 4443 "reorder_shuffle"); 4444 } 4445 Value *ScalarPtr = SI->getPointerOperand(); 4446 Value *VecPtr = Builder.CreateBitCast( 4447 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4448 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4449 SI->getAlign()); 4450 4451 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4452 // ExternalUses to make sure that an extract will be generated in the 4453 // future. 4454 if (getTreeEntry(ScalarPtr)) 4455 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4456 4457 Value *V = propagateMetadata(ST, E->Scalars); 4458 if (NeedToShuffleReuses) { 4459 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4460 E->ReuseShuffleIndices, "shuffle"); 4461 } 4462 E->VectorizedValue = V; 4463 ++NumVectorInstructions; 4464 return V; 4465 } 4466 case Instruction::GetElementPtr: { 4467 setInsertPointAfterBundle(E); 4468 4469 Value *Op0 = vectorizeTree(E->getOperand(0)); 4470 4471 std::vector<Value *> OpVecs; 4472 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4473 ++j) { 4474 ValueList &VL = E->getOperand(j); 4475 // Need to cast all elements to the same type before vectorization to 4476 // avoid crash. 4477 Type *VL0Ty = VL0->getOperand(j)->getType(); 4478 Type *Ty = llvm::all_of( 4479 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4480 ? VL0Ty 4481 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4482 ->getPointerOperandType() 4483 ->getScalarType()); 4484 for (Value *&V : VL) { 4485 auto *CI = cast<ConstantInt>(V); 4486 V = ConstantExpr::getIntegerCast(CI, Ty, 4487 CI->getValue().isSignBitSet()); 4488 } 4489 Value *OpVec = vectorizeTree(VL); 4490 OpVecs.push_back(OpVec); 4491 } 4492 4493 Value *V = Builder.CreateGEP( 4494 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4495 if (Instruction *I = dyn_cast<Instruction>(V)) 4496 V = propagateMetadata(I, E->Scalars); 4497 4498 if (NeedToShuffleReuses) { 4499 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4500 E->ReuseShuffleIndices, "shuffle"); 4501 } 4502 E->VectorizedValue = V; 4503 ++NumVectorInstructions; 4504 4505 return V; 4506 } 4507 case Instruction::Call: { 4508 CallInst *CI = cast<CallInst>(VL0); 4509 setInsertPointAfterBundle(E); 4510 4511 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4512 if (Function *FI = CI->getCalledFunction()) 4513 IID = FI->getIntrinsicID(); 4514 4515 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4516 4517 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4518 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4519 VecCallCosts.first <= VecCallCosts.second; 4520 4521 Value *ScalarArg = nullptr; 4522 std::vector<Value *> OpVecs; 4523 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4524 ValueList OpVL; 4525 // Some intrinsics have scalar arguments. This argument should not be 4526 // vectorized. 4527 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4528 CallInst *CEI = cast<CallInst>(VL0); 4529 ScalarArg = CEI->getArgOperand(j); 4530 OpVecs.push_back(CEI->getArgOperand(j)); 4531 continue; 4532 } 4533 4534 Value *OpVec = vectorizeTree(E->getOperand(j)); 4535 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4536 OpVecs.push_back(OpVec); 4537 } 4538 4539 Function *CF; 4540 if (!UseIntrinsic) { 4541 VFShape Shape = VFShape::get( 4542 *CI, {static_cast<unsigned>(VecTy->getNumElements()), false}, 4543 false /*HasGlobalPred*/); 4544 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4545 } else { 4546 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4547 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4548 } 4549 4550 SmallVector<OperandBundleDef, 1> OpBundles; 4551 CI->getOperandBundlesAsDefs(OpBundles); 4552 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4553 4554 // The scalar argument uses an in-tree scalar so we add the new vectorized 4555 // call to ExternalUses list to make sure that an extract will be 4556 // generated in the future. 4557 if (ScalarArg && getTreeEntry(ScalarArg)) 4558 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4559 4560 propagateIRFlags(V, E->Scalars, VL0); 4561 if (NeedToShuffleReuses) { 4562 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4563 E->ReuseShuffleIndices, "shuffle"); 4564 } 4565 E->VectorizedValue = V; 4566 ++NumVectorInstructions; 4567 return V; 4568 } 4569 case Instruction::ShuffleVector: { 4570 assert(E->isAltShuffle() && 4571 ((Instruction::isBinaryOp(E->getOpcode()) && 4572 Instruction::isBinaryOp(E->getAltOpcode())) || 4573 (Instruction::isCast(E->getOpcode()) && 4574 Instruction::isCast(E->getAltOpcode()))) && 4575 "Invalid Shuffle Vector Operand"); 4576 4577 Value *LHS = nullptr, *RHS = nullptr; 4578 if (Instruction::isBinaryOp(E->getOpcode())) { 4579 setInsertPointAfterBundle(E); 4580 LHS = vectorizeTree(E->getOperand(0)); 4581 RHS = vectorizeTree(E->getOperand(1)); 4582 } else { 4583 setInsertPointAfterBundle(E); 4584 LHS = vectorizeTree(E->getOperand(0)); 4585 } 4586 4587 if (E->VectorizedValue) { 4588 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4589 return E->VectorizedValue; 4590 } 4591 4592 Value *V0, *V1; 4593 if (Instruction::isBinaryOp(E->getOpcode())) { 4594 V0 = Builder.CreateBinOp( 4595 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4596 V1 = Builder.CreateBinOp( 4597 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4598 } else { 4599 V0 = Builder.CreateCast( 4600 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4601 V1 = Builder.CreateCast( 4602 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4603 } 4604 4605 // Create shuffle to take alternate operations from the vector. 4606 // Also, gather up main and alt scalar ops to propagate IR flags to 4607 // each vector operation. 4608 ValueList OpScalars, AltScalars; 4609 unsigned e = E->Scalars.size(); 4610 SmallVector<int, 8> Mask(e); 4611 for (unsigned i = 0; i < e; ++i) { 4612 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4613 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4614 if (OpInst->getOpcode() == E->getAltOpcode()) { 4615 Mask[i] = e + i; 4616 AltScalars.push_back(E->Scalars[i]); 4617 } else { 4618 Mask[i] = i; 4619 OpScalars.push_back(E->Scalars[i]); 4620 } 4621 } 4622 4623 propagateIRFlags(V0, OpScalars); 4624 propagateIRFlags(V1, AltScalars); 4625 4626 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4627 if (Instruction *I = dyn_cast<Instruction>(V)) 4628 V = propagateMetadata(I, E->Scalars); 4629 if (NeedToShuffleReuses) { 4630 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4631 E->ReuseShuffleIndices, "shuffle"); 4632 } 4633 E->VectorizedValue = V; 4634 ++NumVectorInstructions; 4635 4636 return V; 4637 } 4638 default: 4639 llvm_unreachable("unknown inst"); 4640 } 4641 return nullptr; 4642 } 4643 4644 Value *BoUpSLP::vectorizeTree() { 4645 ExtraValueToDebugLocsMap ExternallyUsedValues; 4646 return vectorizeTree(ExternallyUsedValues); 4647 } 4648 4649 Value * 4650 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4651 // All blocks must be scheduled before any instructions are inserted. 4652 for (auto &BSIter : BlocksSchedules) { 4653 scheduleBlock(BSIter.second.get()); 4654 } 4655 4656 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4657 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4658 4659 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4660 // vectorized root. InstCombine will then rewrite the entire expression. We 4661 // sign extend the extracted values below. 4662 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4663 if (MinBWs.count(ScalarRoot)) { 4664 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4665 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4666 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4667 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4668 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4669 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4670 VectorizableTree[0]->VectorizedValue = Trunc; 4671 } 4672 4673 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4674 << " values .\n"); 4675 4676 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4677 // specified by ScalarType. 4678 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4679 if (!MinBWs.count(ScalarRoot)) 4680 return Ex; 4681 if (MinBWs[ScalarRoot].second) 4682 return Builder.CreateSExt(Ex, ScalarType); 4683 return Builder.CreateZExt(Ex, ScalarType); 4684 }; 4685 4686 // Extract all of the elements with the external uses. 4687 for (const auto &ExternalUse : ExternalUses) { 4688 Value *Scalar = ExternalUse.Scalar; 4689 llvm::User *User = ExternalUse.User; 4690 4691 // Skip users that we already RAUW. This happens when one instruction 4692 // has multiple uses of the same value. 4693 if (User && !is_contained(Scalar->users(), User)) 4694 continue; 4695 TreeEntry *E = getTreeEntry(Scalar); 4696 assert(E && "Invalid scalar"); 4697 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4698 4699 Value *Vec = E->VectorizedValue; 4700 assert(Vec && "Can't find vectorizable value"); 4701 4702 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4703 // If User == nullptr, the Scalar is used as extra arg. Generate 4704 // ExtractElement instruction and update the record for this scalar in 4705 // ExternallyUsedValues. 4706 if (!User) { 4707 assert(ExternallyUsedValues.count(Scalar) && 4708 "Scalar with nullptr as an external user must be registered in " 4709 "ExternallyUsedValues map"); 4710 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4711 Builder.SetInsertPoint(VecI->getParent(), 4712 std::next(VecI->getIterator())); 4713 } else { 4714 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4715 } 4716 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4717 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4718 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4719 auto &Locs = ExternallyUsedValues[Scalar]; 4720 ExternallyUsedValues.insert({Ex, Locs}); 4721 ExternallyUsedValues.erase(Scalar); 4722 // Required to update internally referenced instructions. 4723 Scalar->replaceAllUsesWith(Ex); 4724 continue; 4725 } 4726 4727 // Generate extracts for out-of-tree users. 4728 // Find the insertion point for the extractelement lane. 4729 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4730 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4731 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4732 if (PH->getIncomingValue(i) == Scalar) { 4733 Instruction *IncomingTerminator = 4734 PH->getIncomingBlock(i)->getTerminator(); 4735 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4736 Builder.SetInsertPoint(VecI->getParent(), 4737 std::next(VecI->getIterator())); 4738 } else { 4739 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4740 } 4741 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4742 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4743 CSEBlocks.insert(PH->getIncomingBlock(i)); 4744 PH->setOperand(i, Ex); 4745 } 4746 } 4747 } else { 4748 Builder.SetInsertPoint(cast<Instruction>(User)); 4749 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4750 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4751 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4752 User->replaceUsesOfWith(Scalar, Ex); 4753 } 4754 } else { 4755 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4756 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4757 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4758 CSEBlocks.insert(&F->getEntryBlock()); 4759 User->replaceUsesOfWith(Scalar, Ex); 4760 } 4761 4762 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4763 } 4764 4765 // For each vectorized value: 4766 for (auto &TEPtr : VectorizableTree) { 4767 TreeEntry *Entry = TEPtr.get(); 4768 4769 // No need to handle users of gathered values. 4770 if (Entry->State == TreeEntry::NeedToGather) 4771 continue; 4772 4773 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4774 4775 // For each lane: 4776 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4777 Value *Scalar = Entry->Scalars[Lane]; 4778 4779 #ifndef NDEBUG 4780 Type *Ty = Scalar->getType(); 4781 if (!Ty->isVoidTy()) { 4782 for (User *U : Scalar->users()) { 4783 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4784 4785 // It is legal to delete users in the ignorelist. 4786 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4787 "Deleting out-of-tree value"); 4788 } 4789 } 4790 #endif 4791 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4792 eraseInstruction(cast<Instruction>(Scalar)); 4793 } 4794 } 4795 4796 Builder.ClearInsertionPoint(); 4797 InstrElementSize.clear(); 4798 4799 return VectorizableTree[0]->VectorizedValue; 4800 } 4801 4802 void BoUpSLP::optimizeGatherSequence() { 4803 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4804 << " gather sequences instructions.\n"); 4805 // LICM InsertElementInst sequences. 4806 for (Instruction *I : GatherSeq) { 4807 if (isDeleted(I)) 4808 continue; 4809 4810 // Check if this block is inside a loop. 4811 Loop *L = LI->getLoopFor(I->getParent()); 4812 if (!L) 4813 continue; 4814 4815 // Check if it has a preheader. 4816 BasicBlock *PreHeader = L->getLoopPreheader(); 4817 if (!PreHeader) 4818 continue; 4819 4820 // If the vector or the element that we insert into it are 4821 // instructions that are defined in this basic block then we can't 4822 // hoist this instruction. 4823 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4824 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4825 if (Op0 && L->contains(Op0)) 4826 continue; 4827 if (Op1 && L->contains(Op1)) 4828 continue; 4829 4830 // We can hoist this instruction. Move it to the pre-header. 4831 I->moveBefore(PreHeader->getTerminator()); 4832 } 4833 4834 // Make a list of all reachable blocks in our CSE queue. 4835 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4836 CSEWorkList.reserve(CSEBlocks.size()); 4837 for (BasicBlock *BB : CSEBlocks) 4838 if (DomTreeNode *N = DT->getNode(BB)) { 4839 assert(DT->isReachableFromEntry(N)); 4840 CSEWorkList.push_back(N); 4841 } 4842 4843 // Sort blocks by domination. This ensures we visit a block after all blocks 4844 // dominating it are visited. 4845 llvm::stable_sort(CSEWorkList, 4846 [this](const DomTreeNode *A, const DomTreeNode *B) { 4847 return DT->properlyDominates(A, B); 4848 }); 4849 4850 // Perform O(N^2) search over the gather sequences and merge identical 4851 // instructions. TODO: We can further optimize this scan if we split the 4852 // instructions into different buckets based on the insert lane. 4853 SmallVector<Instruction *, 16> Visited; 4854 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4855 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4856 "Worklist not sorted properly!"); 4857 BasicBlock *BB = (*I)->getBlock(); 4858 // For all instructions in blocks containing gather sequences: 4859 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4860 Instruction *In = &*it++; 4861 if (isDeleted(In)) 4862 continue; 4863 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4864 continue; 4865 4866 // Check if we can replace this instruction with any of the 4867 // visited instructions. 4868 for (Instruction *v : Visited) { 4869 if (In->isIdenticalTo(v) && 4870 DT->dominates(v->getParent(), In->getParent())) { 4871 In->replaceAllUsesWith(v); 4872 eraseInstruction(In); 4873 In = nullptr; 4874 break; 4875 } 4876 } 4877 if (In) { 4878 assert(!is_contained(Visited, In)); 4879 Visited.push_back(In); 4880 } 4881 } 4882 } 4883 CSEBlocks.clear(); 4884 GatherSeq.clear(); 4885 } 4886 4887 // Groups the instructions to a bundle (which is then a single scheduling entity) 4888 // and schedules instructions until the bundle gets ready. 4889 Optional<BoUpSLP::ScheduleData *> 4890 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4891 const InstructionsState &S) { 4892 if (isa<PHINode>(S.OpValue)) 4893 return nullptr; 4894 4895 // Initialize the instruction bundle. 4896 Instruction *OldScheduleEnd = ScheduleEnd; 4897 ScheduleData *PrevInBundle = nullptr; 4898 ScheduleData *Bundle = nullptr; 4899 bool ReSchedule = false; 4900 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4901 4902 // Make sure that the scheduling region contains all 4903 // instructions of the bundle. 4904 for (Value *V : VL) { 4905 if (!extendSchedulingRegion(V, S)) 4906 return None; 4907 } 4908 4909 for (Value *V : VL) { 4910 ScheduleData *BundleMember = getScheduleData(V); 4911 assert(BundleMember && 4912 "no ScheduleData for bundle member (maybe not in same basic block)"); 4913 if (BundleMember->IsScheduled) { 4914 // A bundle member was scheduled as single instruction before and now 4915 // needs to be scheduled as part of the bundle. We just get rid of the 4916 // existing schedule. 4917 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4918 << " was already scheduled\n"); 4919 ReSchedule = true; 4920 } 4921 assert(BundleMember->isSchedulingEntity() && 4922 "bundle member already part of other bundle"); 4923 if (PrevInBundle) { 4924 PrevInBundle->NextInBundle = BundleMember; 4925 } else { 4926 Bundle = BundleMember; 4927 } 4928 BundleMember->UnscheduledDepsInBundle = 0; 4929 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4930 4931 // Group the instructions to a bundle. 4932 BundleMember->FirstInBundle = Bundle; 4933 PrevInBundle = BundleMember; 4934 } 4935 if (ScheduleEnd != OldScheduleEnd) { 4936 // The scheduling region got new instructions at the lower end (or it is a 4937 // new region for the first bundle). This makes it necessary to 4938 // recalculate all dependencies. 4939 // It is seldom that this needs to be done a second time after adding the 4940 // initial bundle to the region. 4941 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4942 doForAllOpcodes(I, [](ScheduleData *SD) { 4943 SD->clearDependencies(); 4944 }); 4945 } 4946 ReSchedule = true; 4947 } 4948 if (ReSchedule) { 4949 resetSchedule(); 4950 initialFillReadyList(ReadyInsts); 4951 } 4952 assert(Bundle && "Failed to find schedule bundle"); 4953 4954 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4955 << BB->getName() << "\n"); 4956 4957 calculateDependencies(Bundle, true, SLP); 4958 4959 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4960 // means that there are no cyclic dependencies and we can schedule it. 4961 // Note that's important that we don't "schedule" the bundle yet (see 4962 // cancelScheduling). 4963 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4964 4965 ScheduleData *pickedSD = ReadyInsts.back(); 4966 ReadyInsts.pop_back(); 4967 4968 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4969 schedule(pickedSD, ReadyInsts); 4970 } 4971 } 4972 if (!Bundle->isReady()) { 4973 cancelScheduling(VL, S.OpValue); 4974 return None; 4975 } 4976 return Bundle; 4977 } 4978 4979 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4980 Value *OpValue) { 4981 if (isa<PHINode>(OpValue)) 4982 return; 4983 4984 ScheduleData *Bundle = getScheduleData(OpValue); 4985 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4986 assert(!Bundle->IsScheduled && 4987 "Can't cancel bundle which is already scheduled"); 4988 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4989 "tried to unbundle something which is not a bundle"); 4990 4991 // Un-bundle: make single instructions out of the bundle. 4992 ScheduleData *BundleMember = Bundle; 4993 while (BundleMember) { 4994 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4995 BundleMember->FirstInBundle = BundleMember; 4996 ScheduleData *Next = BundleMember->NextInBundle; 4997 BundleMember->NextInBundle = nullptr; 4998 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4999 if (BundleMember->UnscheduledDepsInBundle == 0) { 5000 ReadyInsts.insert(BundleMember); 5001 } 5002 BundleMember = Next; 5003 } 5004 } 5005 5006 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5007 // Allocate a new ScheduleData for the instruction. 5008 if (ChunkPos >= ChunkSize) { 5009 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5010 ChunkPos = 0; 5011 } 5012 return &(ScheduleDataChunks.back()[ChunkPos++]); 5013 } 5014 5015 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5016 const InstructionsState &S) { 5017 if (getScheduleData(V, isOneOf(S, V))) 5018 return true; 5019 Instruction *I = dyn_cast<Instruction>(V); 5020 assert(I && "bundle member must be an instruction"); 5021 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5022 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5023 ScheduleData *ISD = getScheduleData(I); 5024 if (!ISD) 5025 return false; 5026 assert(isInSchedulingRegion(ISD) && 5027 "ScheduleData not in scheduling region"); 5028 ScheduleData *SD = allocateScheduleDataChunks(); 5029 SD->Inst = I; 5030 SD->init(SchedulingRegionID, S.OpValue); 5031 ExtraScheduleDataMap[I][S.OpValue] = SD; 5032 return true; 5033 }; 5034 if (CheckSheduleForI(I)) 5035 return true; 5036 if (!ScheduleStart) { 5037 // It's the first instruction in the new region. 5038 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5039 ScheduleStart = I; 5040 ScheduleEnd = I->getNextNode(); 5041 if (isOneOf(S, I) != I) 5042 CheckSheduleForI(I); 5043 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5044 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5045 return true; 5046 } 5047 // Search up and down at the same time, because we don't know if the new 5048 // instruction is above or below the existing scheduling region. 5049 BasicBlock::reverse_iterator UpIter = 5050 ++ScheduleStart->getIterator().getReverse(); 5051 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5052 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5053 BasicBlock::iterator LowerEnd = BB->end(); 5054 while (true) { 5055 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5056 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5057 return false; 5058 } 5059 5060 if (UpIter != UpperEnd) { 5061 if (&*UpIter == I) { 5062 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5063 ScheduleStart = I; 5064 if (isOneOf(S, I) != I) 5065 CheckSheduleForI(I); 5066 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5067 << "\n"); 5068 return true; 5069 } 5070 ++UpIter; 5071 } 5072 if (DownIter != LowerEnd) { 5073 if (&*DownIter == I) { 5074 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5075 nullptr); 5076 ScheduleEnd = I->getNextNode(); 5077 if (isOneOf(S, I) != I) 5078 CheckSheduleForI(I); 5079 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5080 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5081 << "\n"); 5082 return true; 5083 } 5084 ++DownIter; 5085 } 5086 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5087 "instruction not found in block"); 5088 } 5089 return true; 5090 } 5091 5092 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5093 Instruction *ToI, 5094 ScheduleData *PrevLoadStore, 5095 ScheduleData *NextLoadStore) { 5096 ScheduleData *CurrentLoadStore = PrevLoadStore; 5097 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5098 ScheduleData *SD = ScheduleDataMap[I]; 5099 if (!SD) { 5100 SD = allocateScheduleDataChunks(); 5101 ScheduleDataMap[I] = SD; 5102 SD->Inst = I; 5103 } 5104 assert(!isInSchedulingRegion(SD) && 5105 "new ScheduleData already in scheduling region"); 5106 SD->init(SchedulingRegionID, I); 5107 5108 if (I->mayReadOrWriteMemory() && 5109 (!isa<IntrinsicInst>(I) || 5110 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5111 // Update the linked list of memory accessing instructions. 5112 if (CurrentLoadStore) { 5113 CurrentLoadStore->NextLoadStore = SD; 5114 } else { 5115 FirstLoadStoreInRegion = SD; 5116 } 5117 CurrentLoadStore = SD; 5118 } 5119 } 5120 if (NextLoadStore) { 5121 if (CurrentLoadStore) 5122 CurrentLoadStore->NextLoadStore = NextLoadStore; 5123 } else { 5124 LastLoadStoreInRegion = CurrentLoadStore; 5125 } 5126 } 5127 5128 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5129 bool InsertInReadyList, 5130 BoUpSLP *SLP) { 5131 assert(SD->isSchedulingEntity()); 5132 5133 SmallVector<ScheduleData *, 10> WorkList; 5134 WorkList.push_back(SD); 5135 5136 while (!WorkList.empty()) { 5137 ScheduleData *SD = WorkList.back(); 5138 WorkList.pop_back(); 5139 5140 ScheduleData *BundleMember = SD; 5141 while (BundleMember) { 5142 assert(isInSchedulingRegion(BundleMember)); 5143 if (!BundleMember->hasValidDependencies()) { 5144 5145 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5146 << "\n"); 5147 BundleMember->Dependencies = 0; 5148 BundleMember->resetUnscheduledDeps(); 5149 5150 // Handle def-use chain dependencies. 5151 if (BundleMember->OpValue != BundleMember->Inst) { 5152 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5153 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5154 BundleMember->Dependencies++; 5155 ScheduleData *DestBundle = UseSD->FirstInBundle; 5156 if (!DestBundle->IsScheduled) 5157 BundleMember->incrementUnscheduledDeps(1); 5158 if (!DestBundle->hasValidDependencies()) 5159 WorkList.push_back(DestBundle); 5160 } 5161 } else { 5162 for (User *U : BundleMember->Inst->users()) { 5163 if (isa<Instruction>(U)) { 5164 ScheduleData *UseSD = getScheduleData(U); 5165 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5166 BundleMember->Dependencies++; 5167 ScheduleData *DestBundle = UseSD->FirstInBundle; 5168 if (!DestBundle->IsScheduled) 5169 BundleMember->incrementUnscheduledDeps(1); 5170 if (!DestBundle->hasValidDependencies()) 5171 WorkList.push_back(DestBundle); 5172 } 5173 } else { 5174 // I'm not sure if this can ever happen. But we need to be safe. 5175 // This lets the instruction/bundle never be scheduled and 5176 // eventually disable vectorization. 5177 BundleMember->Dependencies++; 5178 BundleMember->incrementUnscheduledDeps(1); 5179 } 5180 } 5181 } 5182 5183 // Handle the memory dependencies. 5184 ScheduleData *DepDest = BundleMember->NextLoadStore; 5185 if (DepDest) { 5186 Instruction *SrcInst = BundleMember->Inst; 5187 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5188 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5189 unsigned numAliased = 0; 5190 unsigned DistToSrc = 1; 5191 5192 while (DepDest) { 5193 assert(isInSchedulingRegion(DepDest)); 5194 5195 // We have two limits to reduce the complexity: 5196 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5197 // SLP->isAliased (which is the expensive part in this loop). 5198 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5199 // the whole loop (even if the loop is fast, it's quadratic). 5200 // It's important for the loop break condition (see below) to 5201 // check this limit even between two read-only instructions. 5202 if (DistToSrc >= MaxMemDepDistance || 5203 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5204 (numAliased >= AliasedCheckLimit || 5205 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5206 5207 // We increment the counter only if the locations are aliased 5208 // (instead of counting all alias checks). This gives a better 5209 // balance between reduced runtime and accurate dependencies. 5210 numAliased++; 5211 5212 DepDest->MemoryDependencies.push_back(BundleMember); 5213 BundleMember->Dependencies++; 5214 ScheduleData *DestBundle = DepDest->FirstInBundle; 5215 if (!DestBundle->IsScheduled) { 5216 BundleMember->incrementUnscheduledDeps(1); 5217 } 5218 if (!DestBundle->hasValidDependencies()) { 5219 WorkList.push_back(DestBundle); 5220 } 5221 } 5222 DepDest = DepDest->NextLoadStore; 5223 5224 // Example, explaining the loop break condition: Let's assume our 5225 // starting instruction is i0 and MaxMemDepDistance = 3. 5226 // 5227 // +--------v--v--v 5228 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5229 // +--------^--^--^ 5230 // 5231 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5232 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5233 // Previously we already added dependencies from i3 to i6,i7,i8 5234 // (because of MaxMemDepDistance). As we added a dependency from 5235 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5236 // and we can abort this loop at i6. 5237 if (DistToSrc >= 2 * MaxMemDepDistance) 5238 break; 5239 DistToSrc++; 5240 } 5241 } 5242 } 5243 BundleMember = BundleMember->NextInBundle; 5244 } 5245 if (InsertInReadyList && SD->isReady()) { 5246 ReadyInsts.push_back(SD); 5247 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5248 << "\n"); 5249 } 5250 } 5251 } 5252 5253 void BoUpSLP::BlockScheduling::resetSchedule() { 5254 assert(ScheduleStart && 5255 "tried to reset schedule on block which has not been scheduled"); 5256 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5257 doForAllOpcodes(I, [&](ScheduleData *SD) { 5258 assert(isInSchedulingRegion(SD) && 5259 "ScheduleData not in scheduling region"); 5260 SD->IsScheduled = false; 5261 SD->resetUnscheduledDeps(); 5262 }); 5263 } 5264 ReadyInsts.clear(); 5265 } 5266 5267 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5268 if (!BS->ScheduleStart) 5269 return; 5270 5271 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5272 5273 BS->resetSchedule(); 5274 5275 // For the real scheduling we use a more sophisticated ready-list: it is 5276 // sorted by the original instruction location. This lets the final schedule 5277 // be as close as possible to the original instruction order. 5278 struct ScheduleDataCompare { 5279 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5280 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5281 } 5282 }; 5283 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5284 5285 // Ensure that all dependency data is updated and fill the ready-list with 5286 // initial instructions. 5287 int Idx = 0; 5288 int NumToSchedule = 0; 5289 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5290 I = I->getNextNode()) { 5291 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5292 assert(SD->isPartOfBundle() == 5293 (getTreeEntry(SD->Inst) != nullptr) && 5294 "scheduler and vectorizer bundle mismatch"); 5295 SD->FirstInBundle->SchedulingPriority = Idx++; 5296 if (SD->isSchedulingEntity()) { 5297 BS->calculateDependencies(SD, false, this); 5298 NumToSchedule++; 5299 } 5300 }); 5301 } 5302 BS->initialFillReadyList(ReadyInsts); 5303 5304 Instruction *LastScheduledInst = BS->ScheduleEnd; 5305 5306 // Do the "real" scheduling. 5307 while (!ReadyInsts.empty()) { 5308 ScheduleData *picked = *ReadyInsts.begin(); 5309 ReadyInsts.erase(ReadyInsts.begin()); 5310 5311 // Move the scheduled instruction(s) to their dedicated places, if not 5312 // there yet. 5313 ScheduleData *BundleMember = picked; 5314 while (BundleMember) { 5315 Instruction *pickedInst = BundleMember->Inst; 5316 if (LastScheduledInst->getNextNode() != pickedInst) { 5317 BS->BB->getInstList().remove(pickedInst); 5318 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5319 pickedInst); 5320 } 5321 LastScheduledInst = pickedInst; 5322 BundleMember = BundleMember->NextInBundle; 5323 } 5324 5325 BS->schedule(picked, ReadyInsts); 5326 NumToSchedule--; 5327 } 5328 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5329 5330 // Avoid duplicate scheduling of the block. 5331 BS->ScheduleStart = nullptr; 5332 } 5333 5334 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5335 // If V is a store, just return the width of the stored value without 5336 // traversing the expression tree. This is the common case. 5337 if (auto *Store = dyn_cast<StoreInst>(V)) 5338 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5339 5340 auto E = InstrElementSize.find(V); 5341 if (E != InstrElementSize.end()) 5342 return E->second; 5343 5344 // If V is not a store, we can traverse the expression tree to find loads 5345 // that feed it. The type of the loaded value may indicate a more suitable 5346 // width than V's type. We want to base the vector element size on the width 5347 // of memory operations where possible. 5348 SmallVector<Instruction *, 16> Worklist; 5349 SmallPtrSet<Instruction *, 16> Visited; 5350 if (auto *I = dyn_cast<Instruction>(V)) { 5351 Worklist.push_back(I); 5352 Visited.insert(I); 5353 } 5354 5355 // Traverse the expression tree in bottom-up order looking for loads. If we 5356 // encounter an instruction we don't yet handle, we give up. 5357 auto MaxWidth = 0u; 5358 auto FoundUnknownInst = false; 5359 while (!Worklist.empty() && !FoundUnknownInst) { 5360 auto *I = Worklist.pop_back_val(); 5361 5362 // We should only be looking at scalar instructions here. If the current 5363 // instruction has a vector type, give up. 5364 auto *Ty = I->getType(); 5365 if (isa<VectorType>(Ty)) 5366 FoundUnknownInst = true; 5367 5368 // If the current instruction is a load, update MaxWidth to reflect the 5369 // width of the loaded value. 5370 else if (isa<LoadInst>(I)) 5371 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5372 5373 // Otherwise, we need to visit the operands of the instruction. We only 5374 // handle the interesting cases from buildTree here. If an operand is an 5375 // instruction we haven't yet visited, we add it to the worklist. 5376 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5377 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5378 for (Use &U : I->operands()) 5379 if (auto *J = dyn_cast<Instruction>(U.get())) 5380 if (Visited.insert(J).second) 5381 Worklist.push_back(J); 5382 } 5383 5384 // If we don't yet handle the instruction, give up. 5385 else 5386 FoundUnknownInst = true; 5387 } 5388 5389 int Width = MaxWidth; 5390 // If we didn't encounter a memory access in the expression tree, or if we 5391 // gave up for some reason, just return the width of V. Otherwise, return the 5392 // maximum width we found. 5393 if (!MaxWidth || FoundUnknownInst) 5394 Width = DL->getTypeSizeInBits(V->getType()); 5395 5396 for (Instruction *I : Visited) 5397 InstrElementSize[I] = Width; 5398 5399 return Width; 5400 } 5401 5402 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5403 // smaller type with a truncation. We collect the values that will be demoted 5404 // in ToDemote and additional roots that require investigating in Roots. 5405 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5406 SmallVectorImpl<Value *> &ToDemote, 5407 SmallVectorImpl<Value *> &Roots) { 5408 // We can always demote constants. 5409 if (isa<Constant>(V)) { 5410 ToDemote.push_back(V); 5411 return true; 5412 } 5413 5414 // If the value is not an instruction in the expression with only one use, it 5415 // cannot be demoted. 5416 auto *I = dyn_cast<Instruction>(V); 5417 if (!I || !I->hasOneUse() || !Expr.count(I)) 5418 return false; 5419 5420 switch (I->getOpcode()) { 5421 5422 // We can always demote truncations and extensions. Since truncations can 5423 // seed additional demotion, we save the truncated value. 5424 case Instruction::Trunc: 5425 Roots.push_back(I->getOperand(0)); 5426 break; 5427 case Instruction::ZExt: 5428 case Instruction::SExt: 5429 break; 5430 5431 // We can demote certain binary operations if we can demote both of their 5432 // operands. 5433 case Instruction::Add: 5434 case Instruction::Sub: 5435 case Instruction::Mul: 5436 case Instruction::And: 5437 case Instruction::Or: 5438 case Instruction::Xor: 5439 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5440 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5441 return false; 5442 break; 5443 5444 // We can demote selects if we can demote their true and false values. 5445 case Instruction::Select: { 5446 SelectInst *SI = cast<SelectInst>(I); 5447 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5448 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5449 return false; 5450 break; 5451 } 5452 5453 // We can demote phis if we can demote all their incoming operands. Note that 5454 // we don't need to worry about cycles since we ensure single use above. 5455 case Instruction::PHI: { 5456 PHINode *PN = cast<PHINode>(I); 5457 for (Value *IncValue : PN->incoming_values()) 5458 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5459 return false; 5460 break; 5461 } 5462 5463 // Otherwise, conservatively give up. 5464 default: 5465 return false; 5466 } 5467 5468 // Record the value that we can demote. 5469 ToDemote.push_back(V); 5470 return true; 5471 } 5472 5473 void BoUpSLP::computeMinimumValueSizes() { 5474 // If there are no external uses, the expression tree must be rooted by a 5475 // store. We can't demote in-memory values, so there is nothing to do here. 5476 if (ExternalUses.empty()) 5477 return; 5478 5479 // We only attempt to truncate integer expressions. 5480 auto &TreeRoot = VectorizableTree[0]->Scalars; 5481 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5482 if (!TreeRootIT) 5483 return; 5484 5485 // If the expression is not rooted by a store, these roots should have 5486 // external uses. We will rely on InstCombine to rewrite the expression in 5487 // the narrower type. However, InstCombine only rewrites single-use values. 5488 // This means that if a tree entry other than a root is used externally, it 5489 // must have multiple uses and InstCombine will not rewrite it. The code 5490 // below ensures that only the roots are used externally. 5491 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5492 for (auto &EU : ExternalUses) 5493 if (!Expr.erase(EU.Scalar)) 5494 return; 5495 if (!Expr.empty()) 5496 return; 5497 5498 // Collect the scalar values of the vectorizable expression. We will use this 5499 // context to determine which values can be demoted. If we see a truncation, 5500 // we mark it as seeding another demotion. 5501 for (auto &EntryPtr : VectorizableTree) 5502 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5503 5504 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5505 // have a single external user that is not in the vectorizable tree. 5506 for (auto *Root : TreeRoot) 5507 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5508 return; 5509 5510 // Conservatively determine if we can actually truncate the roots of the 5511 // expression. Collect the values that can be demoted in ToDemote and 5512 // additional roots that require investigating in Roots. 5513 SmallVector<Value *, 32> ToDemote; 5514 SmallVector<Value *, 4> Roots; 5515 for (auto *Root : TreeRoot) 5516 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5517 return; 5518 5519 // The maximum bit width required to represent all the values that can be 5520 // demoted without loss of precision. It would be safe to truncate the roots 5521 // of the expression to this width. 5522 auto MaxBitWidth = 8u; 5523 5524 // We first check if all the bits of the roots are demanded. If they're not, 5525 // we can truncate the roots to this narrower type. 5526 for (auto *Root : TreeRoot) { 5527 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5528 MaxBitWidth = std::max<unsigned>( 5529 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5530 } 5531 5532 // True if the roots can be zero-extended back to their original type, rather 5533 // than sign-extended. We know that if the leading bits are not demanded, we 5534 // can safely zero-extend. So we initialize IsKnownPositive to True. 5535 bool IsKnownPositive = true; 5536 5537 // If all the bits of the roots are demanded, we can try a little harder to 5538 // compute a narrower type. This can happen, for example, if the roots are 5539 // getelementptr indices. InstCombine promotes these indices to the pointer 5540 // width. Thus, all their bits are technically demanded even though the 5541 // address computation might be vectorized in a smaller type. 5542 // 5543 // We start by looking at each entry that can be demoted. We compute the 5544 // maximum bit width required to store the scalar by using ValueTracking to 5545 // compute the number of high-order bits we can truncate. 5546 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5547 llvm::all_of(TreeRoot, [](Value *R) { 5548 assert(R->hasOneUse() && "Root should have only one use!"); 5549 return isa<GetElementPtrInst>(R->user_back()); 5550 })) { 5551 MaxBitWidth = 8u; 5552 5553 // Determine if the sign bit of all the roots is known to be zero. If not, 5554 // IsKnownPositive is set to False. 5555 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5556 KnownBits Known = computeKnownBits(R, *DL); 5557 return Known.isNonNegative(); 5558 }); 5559 5560 // Determine the maximum number of bits required to store the scalar 5561 // values. 5562 for (auto *Scalar : ToDemote) { 5563 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5564 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5565 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5566 } 5567 5568 // If we can't prove that the sign bit is zero, we must add one to the 5569 // maximum bit width to account for the unknown sign bit. This preserves 5570 // the existing sign bit so we can safely sign-extend the root back to the 5571 // original type. Otherwise, if we know the sign bit is zero, we will 5572 // zero-extend the root instead. 5573 // 5574 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5575 // one to the maximum bit width will yield a larger-than-necessary 5576 // type. In general, we need to add an extra bit only if we can't 5577 // prove that the upper bit of the original type is equal to the 5578 // upper bit of the proposed smaller type. If these two bits are the 5579 // same (either zero or one) we know that sign-extending from the 5580 // smaller type will result in the same value. Here, since we can't 5581 // yet prove this, we are just making the proposed smaller type 5582 // larger to ensure correctness. 5583 if (!IsKnownPositive) 5584 ++MaxBitWidth; 5585 } 5586 5587 // Round MaxBitWidth up to the next power-of-two. 5588 if (!isPowerOf2_64(MaxBitWidth)) 5589 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5590 5591 // If the maximum bit width we compute is less than the with of the roots' 5592 // type, we can proceed with the narrowing. Otherwise, do nothing. 5593 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5594 return; 5595 5596 // If we can truncate the root, we must collect additional values that might 5597 // be demoted as a result. That is, those seeded by truncations we will 5598 // modify. 5599 while (!Roots.empty()) 5600 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5601 5602 // Finally, map the values we can demote to the maximum bit with we computed. 5603 for (auto *Scalar : ToDemote) 5604 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5605 } 5606 5607 namespace { 5608 5609 /// The SLPVectorizer Pass. 5610 struct SLPVectorizer : public FunctionPass { 5611 SLPVectorizerPass Impl; 5612 5613 /// Pass identification, replacement for typeid 5614 static char ID; 5615 5616 explicit SLPVectorizer() : FunctionPass(ID) { 5617 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5618 } 5619 5620 bool doInitialization(Module &M) override { 5621 return false; 5622 } 5623 5624 bool runOnFunction(Function &F) override { 5625 if (skipFunction(F)) 5626 return false; 5627 5628 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5629 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5630 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5631 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5632 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5633 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5634 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5635 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5636 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5637 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5638 5639 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5640 } 5641 5642 void getAnalysisUsage(AnalysisUsage &AU) const override { 5643 FunctionPass::getAnalysisUsage(AU); 5644 AU.addRequired<AssumptionCacheTracker>(); 5645 AU.addRequired<ScalarEvolutionWrapperPass>(); 5646 AU.addRequired<AAResultsWrapperPass>(); 5647 AU.addRequired<TargetTransformInfoWrapperPass>(); 5648 AU.addRequired<LoopInfoWrapperPass>(); 5649 AU.addRequired<DominatorTreeWrapperPass>(); 5650 AU.addRequired<DemandedBitsWrapperPass>(); 5651 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5652 AU.addRequired<InjectTLIMappingsLegacy>(); 5653 AU.addPreserved<LoopInfoWrapperPass>(); 5654 AU.addPreserved<DominatorTreeWrapperPass>(); 5655 AU.addPreserved<AAResultsWrapperPass>(); 5656 AU.addPreserved<GlobalsAAWrapperPass>(); 5657 AU.setPreservesCFG(); 5658 } 5659 }; 5660 5661 } // end anonymous namespace 5662 5663 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5664 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5665 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5666 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5667 auto *AA = &AM.getResult<AAManager>(F); 5668 auto *LI = &AM.getResult<LoopAnalysis>(F); 5669 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5670 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5671 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5672 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5673 5674 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5675 if (!Changed) 5676 return PreservedAnalyses::all(); 5677 5678 PreservedAnalyses PA; 5679 PA.preserveSet<CFGAnalyses>(); 5680 PA.preserve<AAManager>(); 5681 PA.preserve<GlobalsAA>(); 5682 return PA; 5683 } 5684 5685 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5686 TargetTransformInfo *TTI_, 5687 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5688 LoopInfo *LI_, DominatorTree *DT_, 5689 AssumptionCache *AC_, DemandedBits *DB_, 5690 OptimizationRemarkEmitter *ORE_) { 5691 if (!RunSLPVectorization) 5692 return false; 5693 SE = SE_; 5694 TTI = TTI_; 5695 TLI = TLI_; 5696 AA = AA_; 5697 LI = LI_; 5698 DT = DT_; 5699 AC = AC_; 5700 DB = DB_; 5701 DL = &F.getParent()->getDataLayout(); 5702 5703 Stores.clear(); 5704 GEPs.clear(); 5705 bool Changed = false; 5706 5707 // If the target claims to have no vector registers don't attempt 5708 // vectorization. 5709 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5710 return false; 5711 5712 // Don't vectorize when the attribute NoImplicitFloat is used. 5713 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5714 return false; 5715 5716 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5717 5718 // Use the bottom up slp vectorizer to construct chains that start with 5719 // store instructions. 5720 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5721 5722 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5723 // delete instructions. 5724 5725 // Scan the blocks in the function in post order. 5726 for (auto BB : post_order(&F.getEntryBlock())) { 5727 collectSeedInstructions(BB); 5728 5729 // Vectorize trees that end at stores. 5730 if (!Stores.empty()) { 5731 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5732 << " underlying objects.\n"); 5733 Changed |= vectorizeStoreChains(R); 5734 } 5735 5736 // Vectorize trees that end at reductions. 5737 Changed |= vectorizeChainsInBlock(BB, R); 5738 5739 // Vectorize the index computations of getelementptr instructions. This 5740 // is primarily intended to catch gather-like idioms ending at 5741 // non-consecutive loads. 5742 if (!GEPs.empty()) { 5743 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5744 << " underlying objects.\n"); 5745 Changed |= vectorizeGEPIndices(BB, R); 5746 } 5747 } 5748 5749 if (Changed) { 5750 R.optimizeGatherSequence(); 5751 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5752 } 5753 return Changed; 5754 } 5755 5756 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5757 unsigned Idx) { 5758 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5759 << "\n"); 5760 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5761 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5762 unsigned VF = Chain.size(); 5763 5764 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5765 return false; 5766 5767 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5768 << "\n"); 5769 5770 R.buildTree(Chain); 5771 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5772 // TODO: Handle orders of size less than number of elements in the vector. 5773 if (Order && Order->size() == Chain.size()) { 5774 // TODO: reorder tree nodes without tree rebuilding. 5775 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5776 llvm::transform(*Order, ReorderedOps.begin(), 5777 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5778 R.buildTree(ReorderedOps); 5779 } 5780 if (R.isTreeTinyAndNotFullyVectorizable()) 5781 return false; 5782 if (R.isLoadCombineCandidate()) 5783 return false; 5784 5785 R.computeMinimumValueSizes(); 5786 5787 int Cost = R.getTreeCost(); 5788 5789 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5790 if (Cost < -SLPCostThreshold) { 5791 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5792 5793 using namespace ore; 5794 5795 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5796 cast<StoreInst>(Chain[0])) 5797 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5798 << " and with tree size " 5799 << NV("TreeSize", R.getTreeSize())); 5800 5801 R.vectorizeTree(); 5802 return true; 5803 } 5804 5805 return false; 5806 } 5807 5808 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5809 BoUpSLP &R) { 5810 // We may run into multiple chains that merge into a single chain. We mark the 5811 // stores that we vectorized so that we don't visit the same store twice. 5812 BoUpSLP::ValueSet VectorizedStores; 5813 bool Changed = false; 5814 5815 int E = Stores.size(); 5816 SmallBitVector Tails(E, false); 5817 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5818 int MaxIter = MaxStoreLookup.getValue(); 5819 int IterCnt; 5820 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5821 &ConsecutiveChain](int K, int Idx) { 5822 if (IterCnt >= MaxIter) 5823 return true; 5824 ++IterCnt; 5825 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5826 return false; 5827 5828 Tails.set(Idx); 5829 ConsecutiveChain[K] = Idx; 5830 return true; 5831 }; 5832 // Do a quadratic search on all of the given stores in reverse order and find 5833 // all of the pairs of stores that follow each other. 5834 for (int Idx = E - 1; Idx >= 0; --Idx) { 5835 // If a store has multiple consecutive store candidates, search according 5836 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5837 // This is because usually pairing with immediate succeeding or preceding 5838 // candidate create the best chance to find slp vectorization opportunity. 5839 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5840 IterCnt = 0; 5841 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5842 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5843 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5844 break; 5845 } 5846 5847 // For stores that start but don't end a link in the chain: 5848 for (int Cnt = E; Cnt > 0; --Cnt) { 5849 int I = Cnt - 1; 5850 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5851 continue; 5852 // We found a store instr that starts a chain. Now follow the chain and try 5853 // to vectorize it. 5854 BoUpSLP::ValueList Operands; 5855 // Collect the chain into a list. 5856 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5857 Operands.push_back(Stores[I]); 5858 // Move to the next value in the chain. 5859 I = ConsecutiveChain[I]; 5860 } 5861 5862 // If a vector register can't hold 1 element, we are done. 5863 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5864 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5865 if (MaxVecRegSize % EltSize != 0) 5866 continue; 5867 5868 unsigned MaxElts = MaxVecRegSize / EltSize; 5869 // FIXME: Is division-by-2 the correct step? Should we assert that the 5870 // register size is a power-of-2? 5871 unsigned StartIdx = 0; 5872 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5873 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5874 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5875 if (!VectorizedStores.count(Slice.front()) && 5876 !VectorizedStores.count(Slice.back()) && 5877 vectorizeStoreChain(Slice, R, Cnt)) { 5878 // Mark the vectorized stores so that we don't vectorize them again. 5879 VectorizedStores.insert(Slice.begin(), Slice.end()); 5880 Changed = true; 5881 // If we vectorized initial block, no need to try to vectorize it 5882 // again. 5883 if (Cnt == StartIdx) 5884 StartIdx += Size; 5885 Cnt += Size; 5886 continue; 5887 } 5888 ++Cnt; 5889 } 5890 // Check if the whole array was vectorized already - exit. 5891 if (StartIdx >= Operands.size()) 5892 break; 5893 } 5894 } 5895 5896 return Changed; 5897 } 5898 5899 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5900 // Initialize the collections. We will make a single pass over the block. 5901 Stores.clear(); 5902 GEPs.clear(); 5903 5904 // Visit the store and getelementptr instructions in BB and organize them in 5905 // Stores and GEPs according to the underlying objects of their pointer 5906 // operands. 5907 for (Instruction &I : *BB) { 5908 // Ignore store instructions that are volatile or have a pointer operand 5909 // that doesn't point to a scalar type. 5910 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5911 if (!SI->isSimple()) 5912 continue; 5913 if (!isValidElementType(SI->getValueOperand()->getType())) 5914 continue; 5915 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5916 } 5917 5918 // Ignore getelementptr instructions that have more than one index, a 5919 // constant index, or a pointer operand that doesn't point to a scalar 5920 // type. 5921 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5922 auto Idx = GEP->idx_begin()->get(); 5923 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5924 continue; 5925 if (!isValidElementType(Idx->getType())) 5926 continue; 5927 if (GEP->getType()->isVectorTy()) 5928 continue; 5929 GEPs[GEP->getPointerOperand()].push_back(GEP); 5930 } 5931 } 5932 } 5933 5934 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5935 if (!A || !B) 5936 return false; 5937 Value *VL[] = {A, B}; 5938 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 5939 } 5940 5941 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5942 bool AllowReorder, 5943 ArrayRef<Value *> InsertUses) { 5944 if (VL.size() < 2) 5945 return false; 5946 5947 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5948 << VL.size() << ".\n"); 5949 5950 // Check that all of the parts are instructions of the same type, 5951 // we permit an alternate opcode via InstructionsState. 5952 InstructionsState S = getSameOpcode(VL); 5953 if (!S.getOpcode()) 5954 return false; 5955 5956 Instruction *I0 = cast<Instruction>(S.OpValue); 5957 // Make sure invalid types (including vector type) are rejected before 5958 // determining vectorization factor for scalar instructions. 5959 for (Value *V : VL) { 5960 Type *Ty = V->getType(); 5961 if (!isValidElementType(Ty)) { 5962 // NOTE: the following will give user internal llvm type name, which may 5963 // not be useful. 5964 R.getORE()->emit([&]() { 5965 std::string type_str; 5966 llvm::raw_string_ostream rso(type_str); 5967 Ty->print(rso); 5968 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5969 << "Cannot SLP vectorize list: type " 5970 << rso.str() + " is unsupported by vectorizer"; 5971 }); 5972 return false; 5973 } 5974 } 5975 5976 unsigned Sz = R.getVectorElementSize(I0); 5977 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5978 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5979 if (MaxVF < 2) { 5980 R.getORE()->emit([&]() { 5981 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5982 << "Cannot SLP vectorize list: vectorization factor " 5983 << "less than 2 is not supported"; 5984 }); 5985 return false; 5986 } 5987 5988 bool Changed = false; 5989 bool CandidateFound = false; 5990 int MinCost = SLPCostThreshold; 5991 5992 bool CompensateUseCost = 5993 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 5994 return V && isa<InsertElementInst>(V); 5995 }); 5996 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 5997 "Each scalar expected to have an associated InsertElement user."); 5998 5999 unsigned NextInst = 0, MaxInst = VL.size(); 6000 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6001 // No actual vectorization should happen, if number of parts is the same as 6002 // provided vectorization factor (i.e. the scalar type is used for vector 6003 // code during codegen). 6004 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6005 if (TTI->getNumberOfParts(VecTy) == VF) 6006 continue; 6007 for (unsigned I = NextInst; I < MaxInst; ++I) { 6008 unsigned OpsWidth = 0; 6009 6010 if (I + VF > MaxInst) 6011 OpsWidth = MaxInst - I; 6012 else 6013 OpsWidth = VF; 6014 6015 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6016 break; 6017 6018 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6019 // Check that a previous iteration of this loop did not delete the Value. 6020 if (llvm::any_of(Ops, [&R](Value *V) { 6021 auto *I = dyn_cast<Instruction>(V); 6022 return I && R.isDeleted(I); 6023 })) 6024 continue; 6025 6026 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6027 << "\n"); 6028 6029 R.buildTree(Ops); 6030 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6031 // TODO: check if we can allow reordering for more cases. 6032 if (AllowReorder && Order) { 6033 // TODO: reorder tree nodes without tree rebuilding. 6034 // Conceptually, there is nothing actually preventing us from trying to 6035 // reorder a larger list. In fact, we do exactly this when vectorizing 6036 // reductions. However, at this point, we only expect to get here when 6037 // there are exactly two operations. 6038 assert(Ops.size() == 2); 6039 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6040 R.buildTree(ReorderedOps, None); 6041 } 6042 if (R.isTreeTinyAndNotFullyVectorizable()) 6043 continue; 6044 6045 R.computeMinimumValueSizes(); 6046 int Cost = R.getTreeCost(); 6047 CandidateFound = true; 6048 if (CompensateUseCost) { 6049 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6050 // rather than sum of single inserts as the latter may overestimate 6051 // cost. This work should imply improving cost estimation for extracts 6052 // that added in for external (for vectorization tree) users,i.e. that 6053 // part should also switch to same interface. 6054 // For example, the following case is projected code after SLP: 6055 // %4 = extractelement <4 x i64> %3, i32 0 6056 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6057 // %5 = extractelement <4 x i64> %3, i32 1 6058 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6059 // %6 = extractelement <4 x i64> %3, i32 2 6060 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6061 // %7 = extractelement <4 x i64> %3, i32 3 6062 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6063 // 6064 // Extracts here added by SLP in order to feed users (the inserts) of 6065 // original scalars and contribute to "ExtractCost" at cost evaluation. 6066 // The inserts in turn form sequence to build an aggregate that 6067 // detected by findBuildAggregate routine. 6068 // SLP makes an assumption that such sequence will be optimized away 6069 // later (instcombine) so it tries to compensate ExctractCost with 6070 // cost of insert sequence. 6071 // Current per element cost calculation approach is not quite accurate 6072 // and tends to create bias toward favoring vectorization. 6073 // Switching to the TTI interface might help a bit. 6074 // Alternative solution could be pattern-match to detect a no-op or 6075 // shuffle. 6076 unsigned UserCost = 0; 6077 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6078 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6079 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6080 UserCost += TTI->getVectorInstrCost( 6081 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6082 } 6083 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6084 << ".\n"); 6085 Cost -= UserCost; 6086 } 6087 6088 MinCost = std::min(MinCost, Cost); 6089 6090 if (Cost < -SLPCostThreshold) { 6091 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6092 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6093 cast<Instruction>(Ops[0])) 6094 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6095 << " and with tree size " 6096 << ore::NV("TreeSize", R.getTreeSize())); 6097 6098 R.vectorizeTree(); 6099 // Move to the next bundle. 6100 I += VF - 1; 6101 NextInst = I + 1; 6102 Changed = true; 6103 } 6104 } 6105 } 6106 6107 if (!Changed && CandidateFound) { 6108 R.getORE()->emit([&]() { 6109 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6110 << "List vectorization was possible but not beneficial with cost " 6111 << ore::NV("Cost", MinCost) << " >= " 6112 << ore::NV("Treshold", -SLPCostThreshold); 6113 }); 6114 } else if (!Changed) { 6115 R.getORE()->emit([&]() { 6116 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6117 << "Cannot SLP vectorize list: vectorization was impossible" 6118 << " with available vectorization factors"; 6119 }); 6120 } 6121 return Changed; 6122 } 6123 6124 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6125 if (!I) 6126 return false; 6127 6128 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6129 return false; 6130 6131 Value *P = I->getParent(); 6132 6133 // Vectorize in current basic block only. 6134 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6135 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6136 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6137 return false; 6138 6139 // Try to vectorize V. 6140 if (tryToVectorizePair(Op0, Op1, R)) 6141 return true; 6142 6143 auto *A = dyn_cast<BinaryOperator>(Op0); 6144 auto *B = dyn_cast<BinaryOperator>(Op1); 6145 // Try to skip B. 6146 if (B && B->hasOneUse()) { 6147 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6148 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6149 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6150 return true; 6151 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6152 return true; 6153 } 6154 6155 // Try to skip A. 6156 if (A && A->hasOneUse()) { 6157 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6158 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6159 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6160 return true; 6161 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6162 return true; 6163 } 6164 return false; 6165 } 6166 6167 /// Generate a shuffle mask to be used in a reduction tree. 6168 /// 6169 /// \param VecLen The length of the vector to be reduced. 6170 /// \param NumEltsToRdx The number of elements that should be reduced in the 6171 /// vector. 6172 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6173 /// reduction. A pairwise reduction will generate a mask of 6174 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6175 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6176 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6177 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6178 unsigned NumEltsToRdx, 6179 bool IsPairwise, bool IsLeft) { 6180 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6181 6182 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6183 6184 if (IsPairwise) 6185 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6186 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6187 ShuffleMask[i] = 2 * i + !IsLeft; 6188 else 6189 // Move the upper half of the vector to the lower half. 6190 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6191 ShuffleMask[i] = NumEltsToRdx + i; 6192 6193 return ShuffleMask; 6194 } 6195 6196 namespace { 6197 6198 /// Model horizontal reductions. 6199 /// 6200 /// A horizontal reduction is a tree of reduction operations (currently add and 6201 /// fadd) that has operations that can be put into a vector as its leaf. 6202 /// For example, this tree: 6203 /// 6204 /// mul mul mul mul 6205 /// \ / \ / 6206 /// + + 6207 /// \ / 6208 /// + 6209 /// This tree has "mul" as its reduced values and "+" as its reduction 6210 /// operations. A reduction might be feeding into a store or a binary operation 6211 /// feeding a phi. 6212 /// ... 6213 /// \ / 6214 /// + 6215 /// | 6216 /// phi += 6217 /// 6218 /// Or: 6219 /// ... 6220 /// \ / 6221 /// + 6222 /// | 6223 /// *p = 6224 /// 6225 class HorizontalReduction { 6226 using ReductionOpsType = SmallVector<Value *, 16>; 6227 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6228 ReductionOpsListType ReductionOps; 6229 SmallVector<Value *, 32> ReducedVals; 6230 // Use map vector to make stable output. 6231 MapVector<Instruction *, Value *> ExtraArgs; 6232 6233 /// Kind of the reduction data. 6234 enum ReductionKind { 6235 RK_None, /// Not a reduction. 6236 RK_Arithmetic, /// Binary reduction data. 6237 RK_Min, /// Minimum reduction data. 6238 RK_UMin, /// Unsigned minimum reduction data. 6239 RK_Max, /// Maximum reduction data. 6240 RK_UMax, /// Unsigned maximum reduction data. 6241 }; 6242 6243 /// Contains info about operation, like its opcode, left and right operands. 6244 class OperationData { 6245 /// Opcode of the instruction. 6246 unsigned Opcode = 0; 6247 6248 /// Left operand of the reduction operation. 6249 Value *LHS = nullptr; 6250 6251 /// Right operand of the reduction operation. 6252 Value *RHS = nullptr; 6253 6254 /// Kind of the reduction operation. 6255 ReductionKind Kind = RK_None; 6256 6257 /// True if float point min/max reduction has no NaNs. 6258 bool NoNaN = false; 6259 6260 /// Checks if the reduction operation can be vectorized. 6261 bool isVectorizable() const { 6262 return LHS && RHS && 6263 // We currently only support add/mul/logical && min/max reductions. 6264 ((Kind == RK_Arithmetic && 6265 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6266 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6267 Opcode == Instruction::And || Opcode == Instruction::Or || 6268 Opcode == Instruction::Xor)) || 6269 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 6270 (Kind == RK_Min || Kind == RK_Max)) || 6271 (Opcode == Instruction::ICmp && 6272 (Kind == RK_UMin || Kind == RK_UMax))); 6273 } 6274 6275 /// Creates reduction operation with the current opcode. 6276 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6277 assert(isVectorizable() && 6278 "Expected add|fadd or min/max reduction operation."); 6279 Value *Cmp = nullptr; 6280 switch (Kind) { 6281 case RK_Arithmetic: 6282 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6283 Name); 6284 case RK_Min: 6285 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 6286 : Builder.CreateFCmpOLT(LHS, RHS); 6287 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6288 case RK_Max: 6289 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 6290 : Builder.CreateFCmpOGT(LHS, RHS); 6291 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6292 case RK_UMin: 6293 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6294 Cmp = Builder.CreateICmpULT(LHS, RHS); 6295 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6296 case RK_UMax: 6297 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6298 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6299 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6300 case RK_None: 6301 break; 6302 } 6303 llvm_unreachable("Unknown reduction operation."); 6304 } 6305 6306 public: 6307 explicit OperationData() = default; 6308 6309 /// Construction for reduced values. They are identified by opcode only and 6310 /// don't have associated LHS/RHS values. 6311 explicit OperationData(Value *V) { 6312 if (auto *I = dyn_cast<Instruction>(V)) 6313 Opcode = I->getOpcode(); 6314 } 6315 6316 /// Constructor for reduction operations with opcode and its left and 6317 /// right operands. 6318 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 6319 bool NoNaN = false) 6320 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 6321 assert(Kind != RK_None && "One of the reduction operations is expected."); 6322 } 6323 6324 explicit operator bool() const { return Opcode; } 6325 6326 /// Return true if this operation is any kind of minimum or maximum. 6327 bool isMinMax() const { 6328 switch (Kind) { 6329 case RK_Arithmetic: 6330 return false; 6331 case RK_Min: 6332 case RK_Max: 6333 case RK_UMin: 6334 case RK_UMax: 6335 return true; 6336 case RK_None: 6337 break; 6338 } 6339 llvm_unreachable("Reduction kind is not set"); 6340 } 6341 6342 /// Get the index of the first operand. 6343 unsigned getFirstOperandIndex() const { 6344 assert(!!*this && "The opcode is not set."); 6345 // We allow calling this before 'Kind' is set, so handle that specially. 6346 if (Kind == RK_None) 6347 return 0; 6348 return isMinMax() ? 1 : 0; 6349 } 6350 6351 /// Total number of operands in the reduction operation. 6352 unsigned getNumberOfOperands() const { 6353 assert(Kind != RK_None && !!*this && LHS && RHS && 6354 "Expected reduction operation."); 6355 return isMinMax() ? 3 : 2; 6356 } 6357 6358 /// Checks if the operation has the same parent as \p P. 6359 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6360 assert(Kind != RK_None && !!*this && LHS && RHS && 6361 "Expected reduction operation."); 6362 if (!IsRedOp) 6363 return I->getParent() == P; 6364 if (isMinMax()) { 6365 // SelectInst must be used twice while the condition op must have single 6366 // use only. 6367 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6368 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6369 } 6370 // Arithmetic reduction operation must be used once only. 6371 return I->getParent() == P; 6372 } 6373 6374 /// Expected number of uses for reduction operations/reduced values. 6375 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6376 assert(Kind != RK_None && !!*this && LHS && RHS && 6377 "Expected reduction operation."); 6378 if (isMinMax()) 6379 return I->hasNUses(2) && 6380 (!IsReductionOp || 6381 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6382 return I->hasOneUse(); 6383 } 6384 6385 /// Initializes the list of reduction operations. 6386 void initReductionOps(ReductionOpsListType &ReductionOps) { 6387 assert(Kind != RK_None && !!*this && LHS && RHS && 6388 "Expected reduction operation."); 6389 if (isMinMax()) 6390 ReductionOps.assign(2, ReductionOpsType()); 6391 else 6392 ReductionOps.assign(1, ReductionOpsType()); 6393 } 6394 6395 /// Add all reduction operations for the reduction instruction \p I. 6396 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6397 assert(Kind != RK_None && !!*this && LHS && RHS && 6398 "Expected reduction operation."); 6399 if (isMinMax()) { 6400 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6401 ReductionOps[1].emplace_back(I); 6402 } else { 6403 ReductionOps[0].emplace_back(I); 6404 } 6405 } 6406 6407 /// Checks if instruction is associative and can be vectorized. 6408 bool isAssociative(Instruction *I) const { 6409 assert(Kind != RK_None && *this && LHS && RHS && 6410 "Expected reduction operation."); 6411 switch (Kind) { 6412 case RK_Arithmetic: 6413 return I->isAssociative(); 6414 case RK_Min: 6415 case RK_Max: 6416 return Opcode == Instruction::ICmp || 6417 cast<Instruction>(I->getOperand(0))->isFast(); 6418 case RK_UMin: 6419 case RK_UMax: 6420 assert(Opcode == Instruction::ICmp && 6421 "Only integer compare operation is expected."); 6422 return true; 6423 case RK_None: 6424 break; 6425 } 6426 llvm_unreachable("Reduction kind is not set"); 6427 } 6428 6429 /// Checks if the reduction operation can be vectorized. 6430 bool isVectorizable(Instruction *I) const { 6431 return isVectorizable() && isAssociative(I); 6432 } 6433 6434 /// Checks if two operation data are both a reduction op or both a reduced 6435 /// value. 6436 bool operator==(const OperationData &OD) const { 6437 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6438 "One of the comparing operations is incorrect."); 6439 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6440 } 6441 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6442 void clear() { 6443 Opcode = 0; 6444 LHS = nullptr; 6445 RHS = nullptr; 6446 Kind = RK_None; 6447 NoNaN = false; 6448 } 6449 6450 /// Get the opcode of the reduction operation. 6451 unsigned getOpcode() const { 6452 assert(isVectorizable() && "Expected vectorizable operation."); 6453 return Opcode; 6454 } 6455 6456 /// Get kind of reduction data. 6457 ReductionKind getKind() const { return Kind; } 6458 Value *getLHS() const { return LHS; } 6459 Value *getRHS() const { return RHS; } 6460 Type *getConditionType() const { 6461 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6462 } 6463 6464 /// Creates reduction operation with the current opcode with the IR flags 6465 /// from \p ReductionOps. 6466 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6467 const ReductionOpsListType &ReductionOps) const { 6468 assert(isVectorizable() && 6469 "Expected add|fadd or min/max reduction operation."); 6470 auto *Op = createOp(Builder, Name); 6471 switch (Kind) { 6472 case RK_Arithmetic: 6473 propagateIRFlags(Op, ReductionOps[0]); 6474 return Op; 6475 case RK_Min: 6476 case RK_Max: 6477 case RK_UMin: 6478 case RK_UMax: 6479 if (auto *SI = dyn_cast<SelectInst>(Op)) 6480 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6481 propagateIRFlags(Op, ReductionOps[1]); 6482 return Op; 6483 case RK_None: 6484 break; 6485 } 6486 llvm_unreachable("Unknown reduction operation."); 6487 } 6488 /// Creates reduction operation with the current opcode with the IR flags 6489 /// from \p I. 6490 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6491 Instruction *I) const { 6492 assert(isVectorizable() && 6493 "Expected add|fadd or min/max reduction operation."); 6494 auto *Op = createOp(Builder, Name); 6495 switch (Kind) { 6496 case RK_Arithmetic: 6497 propagateIRFlags(Op, I); 6498 return Op; 6499 case RK_Min: 6500 case RK_Max: 6501 case RK_UMin: 6502 case RK_UMax: 6503 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6504 propagateIRFlags(SI->getCondition(), 6505 cast<SelectInst>(I)->getCondition()); 6506 } 6507 propagateIRFlags(Op, I); 6508 return Op; 6509 case RK_None: 6510 break; 6511 } 6512 llvm_unreachable("Unknown reduction operation."); 6513 } 6514 6515 TargetTransformInfo::ReductionFlags getFlags() const { 6516 TargetTransformInfo::ReductionFlags Flags; 6517 Flags.NoNaN = NoNaN; 6518 switch (Kind) { 6519 case RK_Arithmetic: 6520 break; 6521 case RK_Min: 6522 Flags.IsSigned = Opcode == Instruction::ICmp; 6523 Flags.IsMaxOp = false; 6524 break; 6525 case RK_Max: 6526 Flags.IsSigned = Opcode == Instruction::ICmp; 6527 Flags.IsMaxOp = true; 6528 break; 6529 case RK_UMin: 6530 Flags.IsSigned = false; 6531 Flags.IsMaxOp = false; 6532 break; 6533 case RK_UMax: 6534 Flags.IsSigned = false; 6535 Flags.IsMaxOp = true; 6536 break; 6537 case RK_None: 6538 llvm_unreachable("Reduction kind is not set"); 6539 } 6540 return Flags; 6541 } 6542 }; 6543 6544 WeakTrackingVH ReductionRoot; 6545 6546 /// The operation data of the reduction operation. 6547 OperationData ReductionData; 6548 6549 /// The operation data of the values we perform a reduction on. 6550 OperationData ReducedValueData; 6551 6552 /// Should we model this reduction as a pairwise reduction tree or a tree that 6553 /// splits the vector in halves and adds those halves. 6554 bool IsPairwiseReduction = false; 6555 6556 /// Checks if the ParentStackElem.first should be marked as a reduction 6557 /// operation with an extra argument or as extra argument itself. 6558 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6559 Value *ExtraArg) { 6560 if (ExtraArgs.count(ParentStackElem.first)) { 6561 ExtraArgs[ParentStackElem.first] = nullptr; 6562 // We ran into something like: 6563 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6564 // The whole ParentStackElem.first should be considered as an extra value 6565 // in this case. 6566 // Do not perform analysis of remaining operands of ParentStackElem.first 6567 // instruction, this whole instruction is an extra argument. 6568 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6569 } else { 6570 // We ran into something like: 6571 // ParentStackElem.first += ... + ExtraArg + ... 6572 ExtraArgs[ParentStackElem.first] = ExtraArg; 6573 } 6574 } 6575 6576 static OperationData getOperationData(Value *V) { 6577 if (!V) 6578 return OperationData(); 6579 6580 Value *LHS; 6581 Value *RHS; 6582 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6583 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6584 RK_Arithmetic); 6585 } 6586 if (auto *Select = dyn_cast<SelectInst>(V)) { 6587 // Look for a min/max pattern. 6588 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6589 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6590 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6591 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6592 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6593 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6594 return OperationData( 6595 Instruction::FCmp, LHS, RHS, RK_Min, 6596 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6597 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6598 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6599 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6600 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6601 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6602 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6603 return OperationData( 6604 Instruction::FCmp, LHS, RHS, RK_Max, 6605 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6606 } else { 6607 // Try harder: look for min/max pattern based on instructions producing 6608 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6609 // During the intermediate stages of SLP, it's very common to have 6610 // pattern like this (since optimizeGatherSequence is run only once 6611 // at the end): 6612 // %1 = extractelement <2 x i32> %a, i32 0 6613 // %2 = extractelement <2 x i32> %a, i32 1 6614 // %cond = icmp sgt i32 %1, %2 6615 // %3 = extractelement <2 x i32> %a, i32 0 6616 // %4 = extractelement <2 x i32> %a, i32 1 6617 // %select = select i1 %cond, i32 %3, i32 %4 6618 CmpInst::Predicate Pred; 6619 Instruction *L1; 6620 Instruction *L2; 6621 6622 LHS = Select->getTrueValue(); 6623 RHS = Select->getFalseValue(); 6624 Value *Cond = Select->getCondition(); 6625 6626 // TODO: Support inverse predicates. 6627 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6628 if (!isa<ExtractElementInst>(RHS) || 6629 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6630 return OperationData(V); 6631 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6632 if (!isa<ExtractElementInst>(LHS) || 6633 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6634 return OperationData(V); 6635 } else { 6636 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6637 return OperationData(V); 6638 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6639 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6640 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6641 return OperationData(V); 6642 } 6643 switch (Pred) { 6644 default: 6645 return OperationData(V); 6646 6647 case CmpInst::ICMP_ULT: 6648 case CmpInst::ICMP_ULE: 6649 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6650 6651 case CmpInst::ICMP_SLT: 6652 case CmpInst::ICMP_SLE: 6653 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6654 6655 case CmpInst::FCMP_OLT: 6656 case CmpInst::FCMP_OLE: 6657 case CmpInst::FCMP_ULT: 6658 case CmpInst::FCMP_ULE: 6659 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6660 cast<Instruction>(Cond)->hasNoNaNs()); 6661 6662 case CmpInst::ICMP_UGT: 6663 case CmpInst::ICMP_UGE: 6664 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6665 6666 case CmpInst::ICMP_SGT: 6667 case CmpInst::ICMP_SGE: 6668 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6669 6670 case CmpInst::FCMP_OGT: 6671 case CmpInst::FCMP_OGE: 6672 case CmpInst::FCMP_UGT: 6673 case CmpInst::FCMP_UGE: 6674 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6675 cast<Instruction>(Cond)->hasNoNaNs()); 6676 } 6677 } 6678 } 6679 return OperationData(V); 6680 } 6681 6682 public: 6683 HorizontalReduction() = default; 6684 6685 /// Try to find a reduction tree. 6686 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6687 assert((!Phi || is_contained(Phi->operands(), B)) && 6688 "Thi phi needs to use the binary operator"); 6689 6690 ReductionData = getOperationData(B); 6691 6692 // We could have a initial reductions that is not an add. 6693 // r *= v1 + v2 + v3 + v4 6694 // In such a case start looking for a tree rooted in the first '+'. 6695 if (Phi) { 6696 if (ReductionData.getLHS() == Phi) { 6697 Phi = nullptr; 6698 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6699 ReductionData = getOperationData(B); 6700 } else if (ReductionData.getRHS() == Phi) { 6701 Phi = nullptr; 6702 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6703 ReductionData = getOperationData(B); 6704 } 6705 } 6706 6707 if (!ReductionData.isVectorizable(B)) 6708 return false; 6709 6710 Type *Ty = B->getType(); 6711 if (!isValidElementType(Ty)) 6712 return false; 6713 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6714 return false; 6715 6716 ReducedValueData.clear(); 6717 ReductionRoot = B; 6718 6719 // Post order traverse the reduction tree starting at B. We only handle true 6720 // trees containing only binary operators. 6721 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6722 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6723 ReductionData.initReductionOps(ReductionOps); 6724 while (!Stack.empty()) { 6725 Instruction *TreeN = Stack.back().first; 6726 unsigned EdgeToVist = Stack.back().second++; 6727 OperationData OpData = getOperationData(TreeN); 6728 bool IsReducedValue = OpData != ReductionData; 6729 6730 // Postorder vist. 6731 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6732 if (IsReducedValue) 6733 ReducedVals.push_back(TreeN); 6734 else { 6735 auto I = ExtraArgs.find(TreeN); 6736 if (I != ExtraArgs.end() && !I->second) { 6737 // Check if TreeN is an extra argument of its parent operation. 6738 if (Stack.size() <= 1) { 6739 // TreeN can't be an extra argument as it is a root reduction 6740 // operation. 6741 return false; 6742 } 6743 // Yes, TreeN is an extra argument, do not add it to a list of 6744 // reduction operations. 6745 // Stack[Stack.size() - 2] always points to the parent operation. 6746 markExtraArg(Stack[Stack.size() - 2], TreeN); 6747 ExtraArgs.erase(TreeN); 6748 } else 6749 ReductionData.addReductionOps(TreeN, ReductionOps); 6750 } 6751 // Retract. 6752 Stack.pop_back(); 6753 continue; 6754 } 6755 6756 // Visit left or right. 6757 Value *NextV = TreeN->getOperand(EdgeToVist); 6758 if (NextV != Phi) { 6759 auto *I = dyn_cast<Instruction>(NextV); 6760 OpData = getOperationData(I); 6761 // Continue analysis if the next operand is a reduction operation or 6762 // (possibly) a reduced value. If the reduced value opcode is not set, 6763 // the first met operation != reduction operation is considered as the 6764 // reduced value class. 6765 if (I && (!ReducedValueData || OpData == ReducedValueData || 6766 OpData == ReductionData)) { 6767 const bool IsReductionOperation = OpData == ReductionData; 6768 // Only handle trees in the current basic block. 6769 if (!ReductionData.hasSameParent(I, B->getParent(), 6770 IsReductionOperation)) { 6771 // I is an extra argument for TreeN (its parent operation). 6772 markExtraArg(Stack.back(), I); 6773 continue; 6774 } 6775 6776 // Each tree node needs to have minimal number of users except for the 6777 // ultimate reduction. 6778 if (!ReductionData.hasRequiredNumberOfUses(I, 6779 OpData == ReductionData) && 6780 I != B) { 6781 // I is an extra argument for TreeN (its parent operation). 6782 markExtraArg(Stack.back(), I); 6783 continue; 6784 } 6785 6786 if (IsReductionOperation) { 6787 // We need to be able to reassociate the reduction operations. 6788 if (!OpData.isAssociative(I)) { 6789 // I is an extra argument for TreeN (its parent operation). 6790 markExtraArg(Stack.back(), I); 6791 continue; 6792 } 6793 } else if (ReducedValueData && 6794 ReducedValueData != OpData) { 6795 // Make sure that the opcodes of the operations that we are going to 6796 // reduce match. 6797 // I is an extra argument for TreeN (its parent operation). 6798 markExtraArg(Stack.back(), I); 6799 continue; 6800 } else if (!ReducedValueData) 6801 ReducedValueData = OpData; 6802 6803 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6804 continue; 6805 } 6806 } 6807 // NextV is an extra argument for TreeN (its parent operation). 6808 markExtraArg(Stack.back(), NextV); 6809 } 6810 return true; 6811 } 6812 6813 /// Attempt to vectorize the tree found by 6814 /// matchAssociativeReduction. 6815 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6816 if (ReducedVals.empty()) 6817 return false; 6818 6819 // If there is a sufficient number of reduction values, reduce 6820 // to a nearby power-of-2. Can safely generate oversized 6821 // vectors and rely on the backend to split them to legal sizes. 6822 unsigned NumReducedVals = ReducedVals.size(); 6823 if (NumReducedVals < 4) 6824 return false; 6825 6826 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6827 6828 Value *VectorizedTree = nullptr; 6829 6830 // FIXME: Fast-math-flags should be set based on the instructions in the 6831 // reduction (not all of 'fast' are required). 6832 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6833 FastMathFlags Unsafe; 6834 Unsafe.setFast(); 6835 Builder.setFastMathFlags(Unsafe); 6836 unsigned i = 0; 6837 6838 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6839 // The same extra argument may be used several time, so log each attempt 6840 // to use it. 6841 for (auto &Pair : ExtraArgs) { 6842 assert(Pair.first && "DebugLoc must be set."); 6843 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6844 } 6845 6846 // The compare instruction of a min/max is the insertion point for new 6847 // instructions and may be replaced with a new compare instruction. 6848 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6849 assert(isa<SelectInst>(RdxRootInst) && 6850 "Expected min/max reduction to have select root instruction"); 6851 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6852 assert(isa<Instruction>(ScalarCond) && 6853 "Expected min/max reduction to have compare condition"); 6854 return cast<Instruction>(ScalarCond); 6855 }; 6856 6857 // The reduction root is used as the insertion point for new instructions, 6858 // so set it as externally used to prevent it from being deleted. 6859 ExternallyUsedValues[ReductionRoot]; 6860 SmallVector<Value *, 16> IgnoreList; 6861 for (auto &V : ReductionOps) 6862 IgnoreList.append(V.begin(), V.end()); 6863 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6864 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6865 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6866 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6867 // TODO: Handle orders of size less than number of elements in the vector. 6868 if (Order && Order->size() == VL.size()) { 6869 // TODO: reorder tree nodes without tree rebuilding. 6870 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6871 llvm::transform(*Order, ReorderedOps.begin(), 6872 [VL](const unsigned Idx) { return VL[Idx]; }); 6873 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6874 } 6875 if (V.isTreeTinyAndNotFullyVectorizable()) 6876 break; 6877 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6878 break; 6879 6880 V.computeMinimumValueSizes(); 6881 6882 // Estimate cost. 6883 int TreeCost = V.getTreeCost(); 6884 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6885 int Cost = TreeCost + ReductionCost; 6886 if (Cost >= -SLPCostThreshold) { 6887 V.getORE()->emit([&]() { 6888 return OptimizationRemarkMissed( 6889 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6890 << "Vectorizing horizontal reduction is possible" 6891 << "but not beneficial with cost " 6892 << ore::NV("Cost", Cost) << " and threshold " 6893 << ore::NV("Threshold", -SLPCostThreshold); 6894 }); 6895 break; 6896 } 6897 6898 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6899 << Cost << ". (HorRdx)\n"); 6900 V.getORE()->emit([&]() { 6901 return OptimizationRemark( 6902 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6903 << "Vectorized horizontal reduction with cost " 6904 << ore::NV("Cost", Cost) << " and with tree size " 6905 << ore::NV("TreeSize", V.getTreeSize()); 6906 }); 6907 6908 // Vectorize a tree. 6909 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6910 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6911 6912 // Emit a reduction. For min/max, the root is a select, but the insertion 6913 // point is the compare condition of that select. 6914 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6915 if (ReductionData.isMinMax()) 6916 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6917 else 6918 Builder.SetInsertPoint(RdxRootInst); 6919 6920 Value *ReducedSubTree = 6921 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6922 if (VectorizedTree) { 6923 Builder.SetCurrentDebugLocation(Loc); 6924 OperationData VectReductionData(ReductionData.getOpcode(), 6925 VectorizedTree, ReducedSubTree, 6926 ReductionData.getKind()); 6927 VectorizedTree = 6928 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6929 } else 6930 VectorizedTree = ReducedSubTree; 6931 i += ReduxWidth; 6932 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6933 } 6934 6935 if (VectorizedTree) { 6936 // Finish the reduction. 6937 for (; i < NumReducedVals; ++i) { 6938 auto *I = cast<Instruction>(ReducedVals[i]); 6939 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6940 OperationData VectReductionData(ReductionData.getOpcode(), 6941 VectorizedTree, I, 6942 ReductionData.getKind()); 6943 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6944 } 6945 for (auto &Pair : ExternallyUsedValues) { 6946 // Add each externally used value to the final reduction. 6947 for (auto *I : Pair.second) { 6948 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6949 OperationData VectReductionData(ReductionData.getOpcode(), 6950 VectorizedTree, Pair.first, 6951 ReductionData.getKind()); 6952 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6953 } 6954 } 6955 6956 // Update users. For a min/max reduction that ends with a compare and 6957 // select, we also have to RAUW for the compare instruction feeding the 6958 // reduction root. That's because the original compare may have extra uses 6959 // besides the final select of the reduction. 6960 if (ReductionData.isMinMax()) { 6961 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6962 Instruction *ScalarCmp = 6963 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6964 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6965 } 6966 } 6967 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6968 6969 // Mark all scalar reduction ops for deletion, they are replaced by the 6970 // vector reductions. 6971 V.eraseInstructions(IgnoreList); 6972 } 6973 return VectorizedTree != nullptr; 6974 } 6975 6976 unsigned numReductionValues() const { 6977 return ReducedVals.size(); 6978 } 6979 6980 private: 6981 /// Calculate the cost of a reduction. 6982 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6983 unsigned ReduxWidth) { 6984 Type *ScalarTy = FirstReducedVal->getType(); 6985 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 6986 6987 int PairwiseRdxCost; 6988 int SplittingRdxCost; 6989 switch (ReductionData.getKind()) { 6990 case RK_Arithmetic: 6991 PairwiseRdxCost = 6992 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6993 /*IsPairwiseForm=*/true); 6994 SplittingRdxCost = 6995 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6996 /*IsPairwiseForm=*/false); 6997 break; 6998 case RK_Min: 6999 case RK_Max: 7000 case RK_UMin: 7001 case RK_UMax: { 7002 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7003 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7004 ReductionData.getKind() == RK_UMax; 7005 PairwiseRdxCost = 7006 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7007 /*IsPairwiseForm=*/true, IsUnsigned); 7008 SplittingRdxCost = 7009 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7010 /*IsPairwiseForm=*/false, IsUnsigned); 7011 break; 7012 } 7013 case RK_None: 7014 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7015 } 7016 7017 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7018 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7019 7020 int ScalarReduxCost = 0; 7021 switch (ReductionData.getKind()) { 7022 case RK_Arithmetic: 7023 ScalarReduxCost = 7024 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7025 break; 7026 case RK_Min: 7027 case RK_Max: 7028 case RK_UMin: 7029 case RK_UMax: 7030 ScalarReduxCost = 7031 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7032 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7033 CmpInst::makeCmpResultType(ScalarTy)); 7034 break; 7035 case RK_None: 7036 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7037 } 7038 ScalarReduxCost *= (ReduxWidth - 1); 7039 7040 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7041 << " for reduction that starts with " << *FirstReducedVal 7042 << " (It is a " 7043 << (IsPairwiseReduction ? "pairwise" : "splitting") 7044 << " reduction)\n"); 7045 7046 return VecReduxCost - ScalarReduxCost; 7047 } 7048 7049 /// Emit a horizontal reduction of the vectorized value. 7050 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7051 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7052 assert(VectorizedValue && "Need to have a vectorized tree node"); 7053 assert(isPowerOf2_32(ReduxWidth) && 7054 "We only handle power-of-two reductions for now"); 7055 7056 if (!IsPairwiseReduction) { 7057 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7058 // to 'fast'. 7059 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7060 return createSimpleTargetReduction( 7061 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7062 ReductionData.getFlags(), ReductionOps.back()); 7063 } 7064 7065 Value *TmpVec = VectorizedValue; 7066 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7067 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7068 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7069 7070 Value *LeftShuf = Builder.CreateShuffleVector( 7071 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 7072 Value *RightShuf = Builder.CreateShuffleVector( 7073 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 7074 "rdx.shuf.r"); 7075 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 7076 RightShuf, ReductionData.getKind()); 7077 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 7078 } 7079 7080 // The result is in the first element of the vector. 7081 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7082 } 7083 }; 7084 7085 } // end anonymous namespace 7086 7087 /// Recognize construction of vectors like 7088 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7089 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7090 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7091 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7092 /// starting from the last insertelement or insertvalue instruction. 7093 /// 7094 /// Also recognize aggregates like {<2 x float>, <2 x float>}, 7095 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7096 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7097 /// 7098 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7099 /// 7100 /// \return true if it matches. 7101 static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI, 7102 SmallVectorImpl<Value *> &BuildVectorOpds, 7103 SmallVectorImpl<Value *> &InsertElts) { 7104 assert((isa<InsertElementInst>(LastInsertInst) || 7105 isa<InsertValueInst>(LastInsertInst)) && 7106 "Expected insertelement or insertvalue instruction!"); 7107 do { 7108 Value *InsertedOperand; 7109 auto *IE = dyn_cast<InsertElementInst>(LastInsertInst); 7110 if (IE) { 7111 InsertedOperand = IE->getOperand(1); 7112 LastInsertInst = IE->getOperand(0); 7113 } else { 7114 auto *IV = cast<InsertValueInst>(LastInsertInst); 7115 InsertedOperand = IV->getInsertedValueOperand(); 7116 LastInsertInst = IV->getAggregateOperand(); 7117 } 7118 if (isa<InsertElementInst>(InsertedOperand) || 7119 isa<InsertValueInst>(InsertedOperand)) { 7120 SmallVector<Value *, 8> TmpBuildVectorOpds; 7121 SmallVector<Value *, 8> TmpInsertElts; 7122 if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds, 7123 TmpInsertElts)) 7124 return false; 7125 BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(), 7126 TmpBuildVectorOpds.rend()); 7127 InsertElts.append(TmpInsertElts.rbegin(), TmpInsertElts.rend()); 7128 } else { 7129 BuildVectorOpds.push_back(InsertedOperand); 7130 InsertElts.push_back(IE); 7131 } 7132 if (isa<UndefValue>(LastInsertInst)) 7133 break; 7134 if ((!isa<InsertValueInst>(LastInsertInst) && 7135 !isa<InsertElementInst>(LastInsertInst)) || 7136 !LastInsertInst->hasOneUse()) 7137 return false; 7138 } while (true); 7139 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 7140 std::reverse(InsertElts.begin(), InsertElts.end()); 7141 return true; 7142 } 7143 7144 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7145 return V->getType() < V2->getType(); 7146 } 7147 7148 /// Try and get a reduction value from a phi node. 7149 /// 7150 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7151 /// if they come from either \p ParentBB or a containing loop latch. 7152 /// 7153 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7154 /// if not possible. 7155 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7156 BasicBlock *ParentBB, LoopInfo *LI) { 7157 // There are situations where the reduction value is not dominated by the 7158 // reduction phi. Vectorizing such cases has been reported to cause 7159 // miscompiles. See PR25787. 7160 auto DominatedReduxValue = [&](Value *R) { 7161 return isa<Instruction>(R) && 7162 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7163 }; 7164 7165 Value *Rdx = nullptr; 7166 7167 // Return the incoming value if it comes from the same BB as the phi node. 7168 if (P->getIncomingBlock(0) == ParentBB) { 7169 Rdx = P->getIncomingValue(0); 7170 } else if (P->getIncomingBlock(1) == ParentBB) { 7171 Rdx = P->getIncomingValue(1); 7172 } 7173 7174 if (Rdx && DominatedReduxValue(Rdx)) 7175 return Rdx; 7176 7177 // Otherwise, check whether we have a loop latch to look at. 7178 Loop *BBL = LI->getLoopFor(ParentBB); 7179 if (!BBL) 7180 return nullptr; 7181 BasicBlock *BBLatch = BBL->getLoopLatch(); 7182 if (!BBLatch) 7183 return nullptr; 7184 7185 // There is a loop latch, return the incoming value if it comes from 7186 // that. This reduction pattern occasionally turns up. 7187 if (P->getIncomingBlock(0) == BBLatch) { 7188 Rdx = P->getIncomingValue(0); 7189 } else if (P->getIncomingBlock(1) == BBLatch) { 7190 Rdx = P->getIncomingValue(1); 7191 } 7192 7193 if (Rdx && DominatedReduxValue(Rdx)) 7194 return Rdx; 7195 7196 return nullptr; 7197 } 7198 7199 /// Attempt to reduce a horizontal reduction. 7200 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7201 /// with reduction operators \a Root (or one of its operands) in a basic block 7202 /// \a BB, then check if it can be done. If horizontal reduction is not found 7203 /// and root instruction is a binary operation, vectorization of the operands is 7204 /// attempted. 7205 /// \returns true if a horizontal reduction was matched and reduced or operands 7206 /// of one of the binary instruction were vectorized. 7207 /// \returns false if a horizontal reduction was not matched (or not possible) 7208 /// or no vectorization of any binary operation feeding \a Root instruction was 7209 /// performed. 7210 static bool tryToVectorizeHorReductionOrInstOperands( 7211 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7212 TargetTransformInfo *TTI, 7213 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7214 if (!ShouldVectorizeHor) 7215 return false; 7216 7217 if (!Root) 7218 return false; 7219 7220 if (Root->getParent() != BB || isa<PHINode>(Root)) 7221 return false; 7222 // Start analysis starting from Root instruction. If horizontal reduction is 7223 // found, try to vectorize it. If it is not a horizontal reduction or 7224 // vectorization is not possible or not effective, and currently analyzed 7225 // instruction is a binary operation, try to vectorize the operands, using 7226 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7227 // the same procedure considering each operand as a possible root of the 7228 // horizontal reduction. 7229 // Interrupt the process if the Root instruction itself was vectorized or all 7230 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7231 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7232 SmallPtrSet<Value *, 8> VisitedInstrs; 7233 bool Res = false; 7234 while (!Stack.empty()) { 7235 Instruction *Inst; 7236 unsigned Level; 7237 std::tie(Inst, Level) = Stack.pop_back_val(); 7238 auto *BI = dyn_cast<BinaryOperator>(Inst); 7239 auto *SI = dyn_cast<SelectInst>(Inst); 7240 if (BI || SI) { 7241 HorizontalReduction HorRdx; 7242 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7243 if (HorRdx.tryToReduce(R, TTI)) { 7244 Res = true; 7245 // Set P to nullptr to avoid re-analysis of phi node in 7246 // matchAssociativeReduction function unless this is the root node. 7247 P = nullptr; 7248 continue; 7249 } 7250 } 7251 if (P && BI) { 7252 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7253 if (Inst == P) 7254 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7255 if (!Inst) { 7256 // Set P to nullptr to avoid re-analysis of phi node in 7257 // matchAssociativeReduction function unless this is the root node. 7258 P = nullptr; 7259 continue; 7260 } 7261 } 7262 } 7263 // Set P to nullptr to avoid re-analysis of phi node in 7264 // matchAssociativeReduction function unless this is the root node. 7265 P = nullptr; 7266 if (Vectorize(Inst, R)) { 7267 Res = true; 7268 continue; 7269 } 7270 7271 // Try to vectorize operands. 7272 // Continue analysis for the instruction from the same basic block only to 7273 // save compile time. 7274 if (++Level < RecursionMaxDepth) 7275 for (auto *Op : Inst->operand_values()) 7276 if (VisitedInstrs.insert(Op).second) 7277 if (auto *I = dyn_cast<Instruction>(Op)) 7278 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7279 Stack.emplace_back(I, Level); 7280 } 7281 return Res; 7282 } 7283 7284 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7285 BasicBlock *BB, BoUpSLP &R, 7286 TargetTransformInfo *TTI) { 7287 if (!V) 7288 return false; 7289 auto *I = dyn_cast<Instruction>(V); 7290 if (!I) 7291 return false; 7292 7293 if (!isa<BinaryOperator>(I)) 7294 P = nullptr; 7295 // Try to match and vectorize a horizontal reduction. 7296 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7297 return tryToVectorize(I, R); 7298 }; 7299 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7300 ExtraVectorization); 7301 } 7302 7303 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7304 BasicBlock *BB, BoUpSLP &R) { 7305 const DataLayout &DL = BB->getModule()->getDataLayout(); 7306 if (!R.canMapToVector(IVI->getType(), DL)) 7307 return false; 7308 7309 SmallVector<Value *, 16> BuildVectorOpds; 7310 SmallVector<Value *, 16> BuildVectorInsts; 7311 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts) || 7312 BuildVectorOpds.size() < 2) 7313 return false; 7314 7315 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7316 // Aggregate value is unlikely to be processed in vector register, we need to 7317 // extract scalars into scalar registers, so NeedExtraction is set true. 7318 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7319 BuildVectorInsts); 7320 } 7321 7322 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7323 BasicBlock *BB, BoUpSLP &R) { 7324 SmallVector<Value *, 16> BuildVectorInsts; 7325 SmallVector<Value *, 16> BuildVectorOpds; 7326 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7327 BuildVectorOpds.size() < 2 || 7328 (llvm::all_of(BuildVectorOpds, 7329 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7330 isShuffle(BuildVectorOpds))) 7331 return false; 7332 7333 // Vectorize starting with the build vector operands ignoring the BuildVector 7334 // instructions for the purpose of scheduling and user extraction. 7335 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7336 BuildVectorInsts); 7337 } 7338 7339 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7340 BoUpSLP &R) { 7341 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7342 return true; 7343 7344 bool OpsChanged = false; 7345 for (int Idx = 0; Idx < 2; ++Idx) { 7346 OpsChanged |= 7347 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7348 } 7349 return OpsChanged; 7350 } 7351 7352 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7353 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7354 bool OpsChanged = false; 7355 for (auto *I : reverse(Instructions)) { 7356 if (R.isDeleted(I)) 7357 continue; 7358 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7359 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7360 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7361 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7362 else if (auto *CI = dyn_cast<CmpInst>(I)) 7363 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7364 } 7365 Instructions.clear(); 7366 return OpsChanged; 7367 } 7368 7369 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7370 bool Changed = false; 7371 SmallVector<Value *, 4> Incoming; 7372 SmallPtrSet<Value *, 16> VisitedInstrs; 7373 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7374 7375 bool HaveVectorizedPhiNodes = true; 7376 while (HaveVectorizedPhiNodes) { 7377 HaveVectorizedPhiNodes = false; 7378 7379 // Collect the incoming values from the PHIs. 7380 Incoming.clear(); 7381 for (Instruction &I : *BB) { 7382 PHINode *P = dyn_cast<PHINode>(&I); 7383 if (!P) 7384 break; 7385 7386 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7387 Incoming.push_back(P); 7388 } 7389 7390 // Sort by type. 7391 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7392 7393 // Try to vectorize elements base on their type. 7394 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7395 E = Incoming.end(); 7396 IncIt != E;) { 7397 7398 // Look for the next elements with the same type. 7399 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7400 Type *EltTy = (*IncIt)->getType(); 7401 7402 assert(EltTy->isSized() && 7403 "Instructions should all be sized at this point"); 7404 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7405 if (EltTS.isScalable()) { 7406 // For now, just ignore vectorizing scalable types. 7407 ++IncIt; 7408 continue; 7409 } 7410 7411 unsigned EltSize = EltTS.getFixedSize(); 7412 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7413 if (MaxNumElts < 2) { 7414 ++IncIt; 7415 continue; 7416 } 7417 7418 while (SameTypeIt != E && 7419 (*SameTypeIt)->getType() == EltTy && 7420 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7421 VisitedInstrs.insert(*SameTypeIt); 7422 ++SameTypeIt; 7423 } 7424 7425 // Try to vectorize them. 7426 unsigned NumElts = (SameTypeIt - IncIt); 7427 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7428 << NumElts << ")\n"); 7429 // The order in which the phi nodes appear in the program does not matter. 7430 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7431 // is done when there are exactly two elements since tryToVectorizeList 7432 // asserts that there are only two values when AllowReorder is true. 7433 bool AllowReorder = NumElts == 2; 7434 if (NumElts > 1 && 7435 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7436 // Success start over because instructions might have been changed. 7437 HaveVectorizedPhiNodes = true; 7438 Changed = true; 7439 break; 7440 } 7441 7442 // Start over at the next instruction of a different type (or the end). 7443 IncIt = SameTypeIt; 7444 } 7445 } 7446 7447 VisitedInstrs.clear(); 7448 7449 SmallVector<Instruction *, 8> PostProcessInstructions; 7450 SmallDenseSet<Instruction *, 4> KeyNodes; 7451 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7452 // Skip instructions marked for the deletion. 7453 if (R.isDeleted(&*it)) 7454 continue; 7455 // We may go through BB multiple times so skip the one we have checked. 7456 if (!VisitedInstrs.insert(&*it).second) { 7457 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7458 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7459 // We would like to start over since some instructions are deleted 7460 // and the iterator may become invalid value. 7461 Changed = true; 7462 it = BB->begin(); 7463 e = BB->end(); 7464 } 7465 continue; 7466 } 7467 7468 if (isa<DbgInfoIntrinsic>(it)) 7469 continue; 7470 7471 // Try to vectorize reductions that use PHINodes. 7472 if (PHINode *P = dyn_cast<PHINode>(it)) { 7473 // Check that the PHI is a reduction PHI. 7474 if (P->getNumIncomingValues() != 2) 7475 return Changed; 7476 7477 // Try to match and vectorize a horizontal reduction. 7478 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7479 TTI)) { 7480 Changed = true; 7481 it = BB->begin(); 7482 e = BB->end(); 7483 continue; 7484 } 7485 continue; 7486 } 7487 7488 // Ran into an instruction without users, like terminator, or function call 7489 // with ignored return value, store. Ignore unused instructions (basing on 7490 // instruction type, except for CallInst and InvokeInst). 7491 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7492 isa<InvokeInst>(it))) { 7493 KeyNodes.insert(&*it); 7494 bool OpsChanged = false; 7495 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7496 for (auto *V : it->operand_values()) { 7497 // Try to match and vectorize a horizontal reduction. 7498 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7499 } 7500 } 7501 // Start vectorization of post-process list of instructions from the 7502 // top-tree instructions to try to vectorize as many instructions as 7503 // possible. 7504 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7505 if (OpsChanged) { 7506 // We would like to start over since some instructions are deleted 7507 // and the iterator may become invalid value. 7508 Changed = true; 7509 it = BB->begin(); 7510 e = BB->end(); 7511 continue; 7512 } 7513 } 7514 7515 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7516 isa<InsertValueInst>(it)) 7517 PostProcessInstructions.push_back(&*it); 7518 } 7519 7520 return Changed; 7521 } 7522 7523 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7524 auto Changed = false; 7525 for (auto &Entry : GEPs) { 7526 // If the getelementptr list has fewer than two elements, there's nothing 7527 // to do. 7528 if (Entry.second.size() < 2) 7529 continue; 7530 7531 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7532 << Entry.second.size() << ".\n"); 7533 7534 // Process the GEP list in chunks suitable for the target's supported 7535 // vector size. If a vector register can't hold 1 element, we are done. We 7536 // are trying to vectorize the index computations, so the maximum number of 7537 // elements is based on the size of the index expression, rather than the 7538 // size of the GEP itself (the target's pointer size). 7539 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7540 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7541 if (MaxVecRegSize < EltSize) 7542 continue; 7543 7544 unsigned MaxElts = MaxVecRegSize / EltSize; 7545 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7546 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7547 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7548 7549 // Initialize a set a candidate getelementptrs. Note that we use a 7550 // SetVector here to preserve program order. If the index computations 7551 // are vectorizable and begin with loads, we want to minimize the chance 7552 // of having to reorder them later. 7553 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7554 7555 // Some of the candidates may have already been vectorized after we 7556 // initially collected them. If so, they are marked as deleted, so remove 7557 // them from the set of candidates. 7558 Candidates.remove_if( 7559 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7560 7561 // Remove from the set of candidates all pairs of getelementptrs with 7562 // constant differences. Such getelementptrs are likely not good 7563 // candidates for vectorization in a bottom-up phase since one can be 7564 // computed from the other. We also ensure all candidate getelementptr 7565 // indices are unique. 7566 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7567 auto *GEPI = GEPList[I]; 7568 if (!Candidates.count(GEPI)) 7569 continue; 7570 auto *SCEVI = SE->getSCEV(GEPList[I]); 7571 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7572 auto *GEPJ = GEPList[J]; 7573 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7574 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7575 Candidates.remove(GEPI); 7576 Candidates.remove(GEPJ); 7577 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7578 Candidates.remove(GEPJ); 7579 } 7580 } 7581 } 7582 7583 // We break out of the above computation as soon as we know there are 7584 // fewer than two candidates remaining. 7585 if (Candidates.size() < 2) 7586 continue; 7587 7588 // Add the single, non-constant index of each candidate to the bundle. We 7589 // ensured the indices met these constraints when we originally collected 7590 // the getelementptrs. 7591 SmallVector<Value *, 16> Bundle(Candidates.size()); 7592 auto BundleIndex = 0u; 7593 for (auto *V : Candidates) { 7594 auto *GEP = cast<GetElementPtrInst>(V); 7595 auto *GEPIdx = GEP->idx_begin()->get(); 7596 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7597 Bundle[BundleIndex++] = GEPIdx; 7598 } 7599 7600 // Try and vectorize the indices. We are currently only interested in 7601 // gather-like cases of the form: 7602 // 7603 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7604 // 7605 // where the loads of "a", the loads of "b", and the subtractions can be 7606 // performed in parallel. It's likely that detecting this pattern in a 7607 // bottom-up phase will be simpler and less costly than building a 7608 // full-blown top-down phase beginning at the consecutive loads. 7609 Changed |= tryToVectorizeList(Bundle, R); 7610 } 7611 } 7612 return Changed; 7613 } 7614 7615 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7616 bool Changed = false; 7617 // Attempt to sort and vectorize each of the store-groups. 7618 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7619 ++it) { 7620 if (it->second.size() < 2) 7621 continue; 7622 7623 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7624 << it->second.size() << ".\n"); 7625 7626 Changed |= vectorizeStores(it->second, R); 7627 } 7628 return Changed; 7629 } 7630 7631 char SLPVectorizer::ID = 0; 7632 7633 static const char lv_name[] = "SLP Vectorizer"; 7634 7635 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7636 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7637 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7638 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7639 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7640 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7641 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7642 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7643 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7644 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7645 7646 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7647