1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 291 /// TODO: Can we split off and reuse the shuffle mask detection from 292 /// TargetTransformInfo::getInstructionThroughput? 293 static Optional<TargetTransformInfo::ShuffleKind> 294 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 295 auto *EI0 = cast<ExtractElementInst>(VL[0]); 296 unsigned Size = 297 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 298 Value *Vec1 = nullptr; 299 Value *Vec2 = nullptr; 300 enum ShuffleMode { Unknown, Select, Permute }; 301 ShuffleMode CommonShuffleMode = Unknown; 302 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 303 auto *EI = cast<ExtractElementInst>(VL[I]); 304 auto *Vec = EI->getVectorOperand(); 305 // All vector operands must have the same number of vector elements. 306 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 307 return None; 308 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 309 if (!Idx) 310 return None; 311 // Undefined behavior if Idx is negative or >= Size. 312 if (Idx->getValue().uge(Size)) { 313 Mask.push_back(UndefMaskElem); 314 continue; 315 } 316 unsigned IntIdx = Idx->getValue().getZExtValue(); 317 Mask.push_back(IntIdx); 318 // We can extractelement from undef or poison vector. 319 if (isa<UndefValue>(Vec)) 320 continue; 321 // For correct shuffling we have to have at most 2 different vector operands 322 // in all extractelement instructions. 323 if (!Vec1 || Vec1 == Vec) 324 Vec1 = Vec; 325 else if (!Vec2 || Vec2 == Vec) 326 Vec2 = Vec; 327 else 328 return None; 329 if (CommonShuffleMode == Permute) 330 continue; 331 // If the extract index is not the same as the operation number, it is a 332 // permutation. 333 if (IntIdx != I) { 334 CommonShuffleMode = Permute; 335 continue; 336 } 337 CommonShuffleMode = Select; 338 } 339 // If we're not crossing lanes in different vectors, consider it as blending. 340 if (CommonShuffleMode == Select && Vec2) 341 return TargetTransformInfo::SK_Select; 342 // If Vec2 was never used, we have a permutation of a single vector, otherwise 343 // we have permutation of 2 vectors. 344 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 345 : TargetTransformInfo::SK_PermuteSingleSrc; 346 } 347 348 namespace { 349 350 /// Main data required for vectorization of instructions. 351 struct InstructionsState { 352 /// The very first instruction in the list with the main opcode. 353 Value *OpValue = nullptr; 354 355 /// The main/alternate instruction. 356 Instruction *MainOp = nullptr; 357 Instruction *AltOp = nullptr; 358 359 /// The main/alternate opcodes for the list of instructions. 360 unsigned getOpcode() const { 361 return MainOp ? MainOp->getOpcode() : 0; 362 } 363 364 unsigned getAltOpcode() const { 365 return AltOp ? AltOp->getOpcode() : 0; 366 } 367 368 /// Some of the instructions in the list have alternate opcodes. 369 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 370 371 bool isOpcodeOrAlt(Instruction *I) const { 372 unsigned CheckedOpcode = I->getOpcode(); 373 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 374 } 375 376 InstructionsState() = delete; 377 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 378 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 379 }; 380 381 } // end anonymous namespace 382 383 /// Chooses the correct key for scheduling data. If \p Op has the same (or 384 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 385 /// OpValue. 386 static Value *isOneOf(const InstructionsState &S, Value *Op) { 387 auto *I = dyn_cast<Instruction>(Op); 388 if (I && S.isOpcodeOrAlt(I)) 389 return Op; 390 return S.OpValue; 391 } 392 393 /// \returns true if \p Opcode is allowed as part of of the main/alternate 394 /// instruction for SLP vectorization. 395 /// 396 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 397 /// "shuffled out" lane would result in division by zero. 398 static bool isValidForAlternation(unsigned Opcode) { 399 if (Instruction::isIntDivRem(Opcode)) 400 return false; 401 402 return true; 403 } 404 405 /// \returns analysis of the Instructions in \p VL described in 406 /// InstructionsState, the Opcode that we suppose the whole list 407 /// could be vectorized even if its structure is diverse. 408 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 409 unsigned BaseIndex = 0) { 410 // Make sure these are all Instructions. 411 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 412 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 413 414 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 415 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 416 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 417 unsigned AltOpcode = Opcode; 418 unsigned AltIndex = BaseIndex; 419 420 // Check for one alternate opcode from another BinaryOperator. 421 // TODO - generalize to support all operators (types, calls etc.). 422 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 423 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 424 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 425 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 426 continue; 427 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 428 isValidForAlternation(Opcode)) { 429 AltOpcode = InstOpcode; 430 AltIndex = Cnt; 431 continue; 432 } 433 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 434 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 435 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 436 if (Ty0 == Ty1) { 437 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 438 continue; 439 if (Opcode == AltOpcode) { 440 assert(isValidForAlternation(Opcode) && 441 isValidForAlternation(InstOpcode) && 442 "Cast isn't safe for alternation, logic needs to be updated!"); 443 AltOpcode = InstOpcode; 444 AltIndex = Cnt; 445 continue; 446 } 447 } 448 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 449 continue; 450 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 451 } 452 453 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 454 cast<Instruction>(VL[AltIndex])); 455 } 456 457 /// \returns true if all of the values in \p VL have the same type or false 458 /// otherwise. 459 static bool allSameType(ArrayRef<Value *> VL) { 460 Type *Ty = VL[0]->getType(); 461 for (int i = 1, e = VL.size(); i < e; i++) 462 if (VL[i]->getType() != Ty) 463 return false; 464 465 return true; 466 } 467 468 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 469 static Optional<unsigned> getExtractIndex(Instruction *E) { 470 unsigned Opcode = E->getOpcode(); 471 assert((Opcode == Instruction::ExtractElement || 472 Opcode == Instruction::ExtractValue) && 473 "Expected extractelement or extractvalue instruction."); 474 if (Opcode == Instruction::ExtractElement) { 475 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 476 if (!CI) 477 return None; 478 return CI->getZExtValue(); 479 } 480 ExtractValueInst *EI = cast<ExtractValueInst>(E); 481 if (EI->getNumIndices() != 1) 482 return None; 483 return *EI->idx_begin(); 484 } 485 486 /// \returns True if in-tree use also needs extract. This refers to 487 /// possible scalar operand in vectorized instruction. 488 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 489 TargetLibraryInfo *TLI) { 490 unsigned Opcode = UserInst->getOpcode(); 491 switch (Opcode) { 492 case Instruction::Load: { 493 LoadInst *LI = cast<LoadInst>(UserInst); 494 return (LI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Store: { 497 StoreInst *SI = cast<StoreInst>(UserInst); 498 return (SI->getPointerOperand() == Scalar); 499 } 500 case Instruction::Call: { 501 CallInst *CI = cast<CallInst>(UserInst); 502 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 503 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 504 if (hasVectorInstrinsicScalarOpd(ID, i)) 505 return (CI->getArgOperand(i) == Scalar); 506 } 507 LLVM_FALLTHROUGH; 508 } 509 default: 510 return false; 511 } 512 } 513 514 /// \returns the AA location that is being access by the instruction. 515 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 516 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 517 return MemoryLocation::get(SI); 518 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 519 return MemoryLocation::get(LI); 520 return MemoryLocation(); 521 } 522 523 /// \returns True if the instruction is not a volatile or atomic load/store. 524 static bool isSimple(Instruction *I) { 525 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 526 return LI->isSimple(); 527 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 528 return SI->isSimple(); 529 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 530 return !MI->isVolatile(); 531 return true; 532 } 533 534 namespace llvm { 535 536 static void inversePermutation(ArrayRef<unsigned> Indices, 537 SmallVectorImpl<int> &Mask) { 538 Mask.clear(); 539 const unsigned E = Indices.size(); 540 Mask.resize(E, E + 1); 541 for (unsigned I = 0; I < E; ++I) 542 Mask[Indices[I]] = I; 543 } 544 545 namespace slpvectorizer { 546 547 /// Bottom Up SLP Vectorizer. 548 class BoUpSLP { 549 struct TreeEntry; 550 struct ScheduleData; 551 552 public: 553 using ValueList = SmallVector<Value *, 8>; 554 using InstrList = SmallVector<Instruction *, 16>; 555 using ValueSet = SmallPtrSet<Value *, 16>; 556 using StoreList = SmallVector<StoreInst *, 8>; 557 using ExtraValueToDebugLocsMap = 558 MapVector<Value *, SmallVector<Instruction *, 2>>; 559 using OrdersType = SmallVector<unsigned, 4>; 560 561 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 562 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 563 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 564 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 565 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 566 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 567 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 568 // Use the vector register size specified by the target unless overridden 569 // by a command-line option. 570 // TODO: It would be better to limit the vectorization factor based on 571 // data type rather than just register size. For example, x86 AVX has 572 // 256-bit registers, but it does not support integer operations 573 // at that width (that requires AVX2). 574 if (MaxVectorRegSizeOption.getNumOccurrences()) 575 MaxVecRegSize = MaxVectorRegSizeOption; 576 else 577 MaxVecRegSize = TTI->getRegisterBitWidth(true); 578 579 if (MinVectorRegSizeOption.getNumOccurrences()) 580 MinVecRegSize = MinVectorRegSizeOption; 581 else 582 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 583 } 584 585 /// Vectorize the tree that starts with the elements in \p VL. 586 /// Returns the vectorized root. 587 Value *vectorizeTree(); 588 589 /// Vectorize the tree but with the list of externally used values \p 590 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 591 /// generated extractvalue instructions. 592 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 593 594 /// \returns the cost incurred by unwanted spills and fills, caused by 595 /// holding live values over call sites. 596 InstructionCost getSpillCost() const; 597 598 /// \returns the vectorization cost of the subtree that starts at \p VL. 599 /// A negative number means that this is profitable. 600 InstructionCost getTreeCost(); 601 602 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 603 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 604 void buildTree(ArrayRef<Value *> Roots, 605 ArrayRef<Value *> UserIgnoreLst = None); 606 607 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 608 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 609 /// into account (and updating it, if required) list of externally used 610 /// values stored in \p ExternallyUsedValues. 611 void buildTree(ArrayRef<Value *> Roots, 612 ExtraValueToDebugLocsMap &ExternallyUsedValues, 613 ArrayRef<Value *> UserIgnoreLst = None); 614 615 /// Clear the internal data structures that are created by 'buildTree'. 616 void deleteTree() { 617 VectorizableTree.clear(); 618 ScalarToTreeEntry.clear(); 619 MustGather.clear(); 620 ExternalUses.clear(); 621 NumOpsWantToKeepOrder.clear(); 622 NumOpsWantToKeepOriginalOrder = 0; 623 for (auto &Iter : BlocksSchedules) { 624 BlockScheduling *BS = Iter.second.get(); 625 BS->clear(); 626 } 627 MinBWs.clear(); 628 } 629 630 unsigned getTreeSize() const { return VectorizableTree.size(); } 631 632 /// Perform LICM and CSE on the newly generated gather sequences. 633 void optimizeGatherSequence(); 634 635 /// \returns The best order of instructions for vectorization. 636 Optional<ArrayRef<unsigned>> bestOrder() const { 637 assert(llvm::all_of( 638 NumOpsWantToKeepOrder, 639 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 640 return D.getFirst().size() == 641 VectorizableTree[0]->Scalars.size(); 642 }) && 643 "All orders must have the same size as number of instructions in " 644 "tree node."); 645 auto I = std::max_element( 646 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 647 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 648 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 649 return D1.second < D2.second; 650 }); 651 if (I == NumOpsWantToKeepOrder.end() || 652 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 653 return None; 654 655 return makeArrayRef(I->getFirst()); 656 } 657 658 /// Builds the correct order for root instructions. 659 /// If some leaves have the same instructions to be vectorized, we may 660 /// incorrectly evaluate the best order for the root node (it is built for the 661 /// vector of instructions without repeated instructions and, thus, has less 662 /// elements than the root node). This function builds the correct order for 663 /// the root node. 664 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 665 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 666 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 667 /// be reordered, the best order will be \<1, 0\>. We need to extend this 668 /// order for the root node. For the root node this order should look like 669 /// \<3, 0, 1, 2\>. This function extends the order for the reused 670 /// instructions. 671 void findRootOrder(OrdersType &Order) { 672 // If the leaf has the same number of instructions to vectorize as the root 673 // - order must be set already. 674 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 675 if (Order.size() == RootSize) 676 return; 677 SmallVector<unsigned, 4> RealOrder(Order.size()); 678 std::swap(Order, RealOrder); 679 SmallVector<int, 4> Mask; 680 inversePermutation(RealOrder, Mask); 681 Order.assign(Mask.begin(), Mask.end()); 682 // The leaf has less number of instructions - need to find the true order of 683 // the root. 684 // Scan the nodes starting from the leaf back to the root. 685 const TreeEntry *PNode = VectorizableTree.back().get(); 686 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 687 SmallPtrSet<const TreeEntry *, 4> Visited; 688 while (!Nodes.empty() && Order.size() != RootSize) { 689 const TreeEntry *PNode = Nodes.pop_back_val(); 690 if (!Visited.insert(PNode).second) 691 continue; 692 const TreeEntry &Node = *PNode; 693 for (const EdgeInfo &EI : Node.UserTreeIndices) 694 if (EI.UserTE) 695 Nodes.push_back(EI.UserTE); 696 if (Node.ReuseShuffleIndices.empty()) 697 continue; 698 // Build the order for the parent node. 699 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 700 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 701 // The algorithm of the order extension is: 702 // 1. Calculate the number of the same instructions for the order. 703 // 2. Calculate the index of the new order: total number of instructions 704 // with order less than the order of the current instruction + reuse 705 // number of the current instruction. 706 // 3. The new order is just the index of the instruction in the original 707 // vector of the instructions. 708 for (unsigned I : Node.ReuseShuffleIndices) 709 ++OrderCounter[Order[I]]; 710 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 711 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 712 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 713 unsigned OrderIdx = Order[ReusedIdx]; 714 unsigned NewIdx = 0; 715 for (unsigned J = 0; J < OrderIdx; ++J) 716 NewIdx += OrderCounter[J]; 717 NewIdx += CurrentCounter[OrderIdx]; 718 ++CurrentCounter[OrderIdx]; 719 assert(NewOrder[NewIdx] == RootSize && 720 "The order index should not be written already."); 721 NewOrder[NewIdx] = I; 722 } 723 std::swap(Order, NewOrder); 724 } 725 assert(Order.size() == RootSize && 726 "Root node is expected or the size of the order must be the same as " 727 "the number of elements in the root node."); 728 assert(llvm::all_of(Order, 729 [RootSize](unsigned Val) { return Val != RootSize; }) && 730 "All indices must be initialized"); 731 } 732 733 /// \return The vector element size in bits to use when vectorizing the 734 /// expression tree ending at \p V. If V is a store, the size is the width of 735 /// the stored value. Otherwise, the size is the width of the largest loaded 736 /// value reaching V. This method is used by the vectorizer to calculate 737 /// vectorization factors. 738 unsigned getVectorElementSize(Value *V); 739 740 /// Compute the minimum type sizes required to represent the entries in a 741 /// vectorizable tree. 742 void computeMinimumValueSizes(); 743 744 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 745 unsigned getMaxVecRegSize() const { 746 return MaxVecRegSize; 747 } 748 749 // \returns minimum vector register size as set by cl::opt. 750 unsigned getMinVecRegSize() const { 751 return MinVecRegSize; 752 } 753 754 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 755 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 756 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 757 return MaxVF ? MaxVF : UINT_MAX; 758 } 759 760 /// Check if homogeneous aggregate is isomorphic to some VectorType. 761 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 762 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 763 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 764 /// 765 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 766 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 767 768 /// \returns True if the VectorizableTree is both tiny and not fully 769 /// vectorizable. We do not vectorize such trees. 770 bool isTreeTinyAndNotFullyVectorizable() const; 771 772 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 773 /// can be load combined in the backend. Load combining may not be allowed in 774 /// the IR optimizer, so we do not want to alter the pattern. For example, 775 /// partially transforming a scalar bswap() pattern into vector code is 776 /// effectively impossible for the backend to undo. 777 /// TODO: If load combining is allowed in the IR optimizer, this analysis 778 /// may not be necessary. 779 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 780 781 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 782 /// can be load combined in the backend. Load combining may not be allowed in 783 /// the IR optimizer, so we do not want to alter the pattern. For example, 784 /// partially transforming a scalar bswap() pattern into vector code is 785 /// effectively impossible for the backend to undo. 786 /// TODO: If load combining is allowed in the IR optimizer, this analysis 787 /// may not be necessary. 788 bool isLoadCombineCandidate() const; 789 790 OptimizationRemarkEmitter *getORE() { return ORE; } 791 792 /// This structure holds any data we need about the edges being traversed 793 /// during buildTree_rec(). We keep track of: 794 /// (i) the user TreeEntry index, and 795 /// (ii) the index of the edge. 796 struct EdgeInfo { 797 EdgeInfo() = default; 798 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 799 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 800 /// The user TreeEntry. 801 TreeEntry *UserTE = nullptr; 802 /// The operand index of the use. 803 unsigned EdgeIdx = UINT_MAX; 804 #ifndef NDEBUG 805 friend inline raw_ostream &operator<<(raw_ostream &OS, 806 const BoUpSLP::EdgeInfo &EI) { 807 EI.dump(OS); 808 return OS; 809 } 810 /// Debug print. 811 void dump(raw_ostream &OS) const { 812 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 813 << " EdgeIdx:" << EdgeIdx << "}"; 814 } 815 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 816 #endif 817 }; 818 819 /// A helper data structure to hold the operands of a vector of instructions. 820 /// This supports a fixed vector length for all operand vectors. 821 class VLOperands { 822 /// For each operand we need (i) the value, and (ii) the opcode that it 823 /// would be attached to if the expression was in a left-linearized form. 824 /// This is required to avoid illegal operand reordering. 825 /// For example: 826 /// \verbatim 827 /// 0 Op1 828 /// |/ 829 /// Op1 Op2 Linearized + Op2 830 /// \ / ----------> |/ 831 /// - - 832 /// 833 /// Op1 - Op2 (0 + Op1) - Op2 834 /// \endverbatim 835 /// 836 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 837 /// 838 /// Another way to think of this is to track all the operations across the 839 /// path from the operand all the way to the root of the tree and to 840 /// calculate the operation that corresponds to this path. For example, the 841 /// path from Op2 to the root crosses the RHS of the '-', therefore the 842 /// corresponding operation is a '-' (which matches the one in the 843 /// linearized tree, as shown above). 844 /// 845 /// For lack of a better term, we refer to this operation as Accumulated 846 /// Path Operation (APO). 847 struct OperandData { 848 OperandData() = default; 849 OperandData(Value *V, bool APO, bool IsUsed) 850 : V(V), APO(APO), IsUsed(IsUsed) {} 851 /// The operand value. 852 Value *V = nullptr; 853 /// TreeEntries only allow a single opcode, or an alternate sequence of 854 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 855 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 856 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 857 /// (e.g., Add/Mul) 858 bool APO = false; 859 /// Helper data for the reordering function. 860 bool IsUsed = false; 861 }; 862 863 /// During operand reordering, we are trying to select the operand at lane 864 /// that matches best with the operand at the neighboring lane. Our 865 /// selection is based on the type of value we are looking for. For example, 866 /// if the neighboring lane has a load, we need to look for a load that is 867 /// accessing a consecutive address. These strategies are summarized in the 868 /// 'ReorderingMode' enumerator. 869 enum class ReorderingMode { 870 Load, ///< Matching loads to consecutive memory addresses 871 Opcode, ///< Matching instructions based on opcode (same or alternate) 872 Constant, ///< Matching constants 873 Splat, ///< Matching the same instruction multiple times (broadcast) 874 Failed, ///< We failed to create a vectorizable group 875 }; 876 877 using OperandDataVec = SmallVector<OperandData, 2>; 878 879 /// A vector of operand vectors. 880 SmallVector<OperandDataVec, 4> OpsVec; 881 882 const DataLayout &DL; 883 ScalarEvolution &SE; 884 const BoUpSLP &R; 885 886 /// \returns the operand data at \p OpIdx and \p Lane. 887 OperandData &getData(unsigned OpIdx, unsigned Lane) { 888 return OpsVec[OpIdx][Lane]; 889 } 890 891 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 892 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 893 return OpsVec[OpIdx][Lane]; 894 } 895 896 /// Clears the used flag for all entries. 897 void clearUsed() { 898 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 899 OpIdx != NumOperands; ++OpIdx) 900 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 901 ++Lane) 902 OpsVec[OpIdx][Lane].IsUsed = false; 903 } 904 905 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 906 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 907 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 908 } 909 910 // The hard-coded scores listed here are not very important. When computing 911 // the scores of matching one sub-tree with another, we are basically 912 // counting the number of values that are matching. So even if all scores 913 // are set to 1, we would still get a decent matching result. 914 // However, sometimes we have to break ties. For example we may have to 915 // choose between matching loads vs matching opcodes. This is what these 916 // scores are helping us with: they provide the order of preference. 917 918 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 919 static const int ScoreConsecutiveLoads = 3; 920 /// ExtractElementInst from same vector and consecutive indexes. 921 static const int ScoreConsecutiveExtracts = 3; 922 /// Constants. 923 static const int ScoreConstants = 2; 924 /// Instructions with the same opcode. 925 static const int ScoreSameOpcode = 2; 926 /// Instructions with alt opcodes (e.g, add + sub). 927 static const int ScoreAltOpcodes = 1; 928 /// Identical instructions (a.k.a. splat or broadcast). 929 static const int ScoreSplat = 1; 930 /// Matching with an undef is preferable to failing. 931 static const int ScoreUndef = 1; 932 /// Score for failing to find a decent match. 933 static const int ScoreFail = 0; 934 /// User exteranl to the vectorized code. 935 static const int ExternalUseCost = 1; 936 /// The user is internal but in a different lane. 937 static const int UserInDiffLaneCost = ExternalUseCost; 938 939 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 940 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 941 ScalarEvolution &SE) { 942 auto *LI1 = dyn_cast<LoadInst>(V1); 943 auto *LI2 = dyn_cast<LoadInst>(V2); 944 if (LI1 && LI2) 945 return isConsecutiveAccess(LI1, LI2, DL, SE) 946 ? VLOperands::ScoreConsecutiveLoads 947 : VLOperands::ScoreFail; 948 949 auto *C1 = dyn_cast<Constant>(V1); 950 auto *C2 = dyn_cast<Constant>(V2); 951 if (C1 && C2) 952 return VLOperands::ScoreConstants; 953 954 // Extracts from consecutive indexes of the same vector better score as 955 // the extracts could be optimized away. 956 Value *EV; 957 ConstantInt *Ex1Idx, *Ex2Idx; 958 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 959 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 960 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 961 return VLOperands::ScoreConsecutiveExtracts; 962 963 auto *I1 = dyn_cast<Instruction>(V1); 964 auto *I2 = dyn_cast<Instruction>(V2); 965 if (I1 && I2) { 966 if (I1 == I2) 967 return VLOperands::ScoreSplat; 968 InstructionsState S = getSameOpcode({I1, I2}); 969 // Note: Only consider instructions with <= 2 operands to avoid 970 // complexity explosion. 971 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 972 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 973 : VLOperands::ScoreSameOpcode; 974 } 975 976 if (isa<UndefValue>(V2)) 977 return VLOperands::ScoreUndef; 978 979 return VLOperands::ScoreFail; 980 } 981 982 /// Holds the values and their lane that are taking part in the look-ahead 983 /// score calculation. This is used in the external uses cost calculation. 984 SmallDenseMap<Value *, int> InLookAheadValues; 985 986 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 987 /// either external to the vectorized code, or require shuffling. 988 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 989 const std::pair<Value *, int> &RHS) { 990 int Cost = 0; 991 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 992 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 993 Value *V = Values[Idx].first; 994 if (isa<Constant>(V)) { 995 // Since this is a function pass, it doesn't make semantic sense to 996 // walk the users of a subclass of Constant. The users could be in 997 // another function, or even another module that happens to be in 998 // the same LLVMContext. 999 continue; 1000 } 1001 1002 // Calculate the absolute lane, using the minimum relative lane of LHS 1003 // and RHS as base and Idx as the offset. 1004 int Ln = std::min(LHS.second, RHS.second) + Idx; 1005 assert(Ln >= 0 && "Bad lane calculation"); 1006 unsigned UsersBudget = LookAheadUsersBudget; 1007 for (User *U : V->users()) { 1008 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1009 // The user is in the VectorizableTree. Check if we need to insert. 1010 auto It = llvm::find(UserTE->Scalars, U); 1011 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1012 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1013 assert(UserLn >= 0 && "Bad lane"); 1014 if (UserLn != Ln) 1015 Cost += UserInDiffLaneCost; 1016 } else { 1017 // Check if the user is in the look-ahead code. 1018 auto It2 = InLookAheadValues.find(U); 1019 if (It2 != InLookAheadValues.end()) { 1020 // The user is in the look-ahead code. Check the lane. 1021 if (It2->second != Ln) 1022 Cost += UserInDiffLaneCost; 1023 } else { 1024 // The user is neither in SLP tree nor in the look-ahead code. 1025 Cost += ExternalUseCost; 1026 } 1027 } 1028 // Limit the number of visited uses to cap compilation time. 1029 if (--UsersBudget == 0) 1030 break; 1031 } 1032 } 1033 return Cost; 1034 } 1035 1036 /// Go through the operands of \p LHS and \p RHS recursively until \p 1037 /// MaxLevel, and return the cummulative score. For example: 1038 /// \verbatim 1039 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1040 /// \ / \ / \ / \ / 1041 /// + + + + 1042 /// G1 G2 G3 G4 1043 /// \endverbatim 1044 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1045 /// each level recursively, accumulating the score. It starts from matching 1046 /// the additions at level 0, then moves on to the loads (level 1). The 1047 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1048 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1049 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1050 /// Please note that the order of the operands does not matter, as we 1051 /// evaluate the score of all profitable combinations of operands. In 1052 /// other words the score of G1 and G4 is the same as G1 and G2. This 1053 /// heuristic is based on ideas described in: 1054 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1055 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1056 /// Luís F. W. Góes 1057 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1058 const std::pair<Value *, int> &RHS, int CurrLevel, 1059 int MaxLevel) { 1060 1061 Value *V1 = LHS.first; 1062 Value *V2 = RHS.first; 1063 // Get the shallow score of V1 and V2. 1064 int ShallowScoreAtThisLevel = 1065 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1066 getExternalUsesCost(LHS, RHS)); 1067 int Lane1 = LHS.second; 1068 int Lane2 = RHS.second; 1069 1070 // If reached MaxLevel, 1071 // or if V1 and V2 are not instructions, 1072 // or if they are SPLAT, 1073 // or if they are not consecutive, early return the current cost. 1074 auto *I1 = dyn_cast<Instruction>(V1); 1075 auto *I2 = dyn_cast<Instruction>(V2); 1076 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1077 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1078 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1079 return ShallowScoreAtThisLevel; 1080 assert(I1 && I2 && "Should have early exited."); 1081 1082 // Keep track of in-tree values for determining the external-use cost. 1083 InLookAheadValues[V1] = Lane1; 1084 InLookAheadValues[V2] = Lane2; 1085 1086 // Contains the I2 operand indexes that got matched with I1 operands. 1087 SmallSet<unsigned, 4> Op2Used; 1088 1089 // Recursion towards the operands of I1 and I2. We are trying all possbile 1090 // operand pairs, and keeping track of the best score. 1091 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1092 OpIdx1 != NumOperands1; ++OpIdx1) { 1093 // Try to pair op1I with the best operand of I2. 1094 int MaxTmpScore = 0; 1095 unsigned MaxOpIdx2 = 0; 1096 bool FoundBest = false; 1097 // If I2 is commutative try all combinations. 1098 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1099 unsigned ToIdx = isCommutative(I2) 1100 ? I2->getNumOperands() 1101 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1102 assert(FromIdx <= ToIdx && "Bad index"); 1103 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1104 // Skip operands already paired with OpIdx1. 1105 if (Op2Used.count(OpIdx2)) 1106 continue; 1107 // Recursively calculate the cost at each level 1108 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1109 {I2->getOperand(OpIdx2), Lane2}, 1110 CurrLevel + 1, MaxLevel); 1111 // Look for the best score. 1112 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1113 MaxTmpScore = TmpScore; 1114 MaxOpIdx2 = OpIdx2; 1115 FoundBest = true; 1116 } 1117 } 1118 if (FoundBest) { 1119 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1120 Op2Used.insert(MaxOpIdx2); 1121 ShallowScoreAtThisLevel += MaxTmpScore; 1122 } 1123 } 1124 return ShallowScoreAtThisLevel; 1125 } 1126 1127 /// \Returns the look-ahead score, which tells us how much the sub-trees 1128 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1129 /// score. This helps break ties in an informed way when we cannot decide on 1130 /// the order of the operands by just considering the immediate 1131 /// predecessors. 1132 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1133 const std::pair<Value *, int> &RHS) { 1134 InLookAheadValues.clear(); 1135 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1136 } 1137 1138 // Search all operands in Ops[*][Lane] for the one that matches best 1139 // Ops[OpIdx][LastLane] and return its opreand index. 1140 // If no good match can be found, return None. 1141 Optional<unsigned> 1142 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1143 ArrayRef<ReorderingMode> ReorderingModes) { 1144 unsigned NumOperands = getNumOperands(); 1145 1146 // The operand of the previous lane at OpIdx. 1147 Value *OpLastLane = getData(OpIdx, LastLane).V; 1148 1149 // Our strategy mode for OpIdx. 1150 ReorderingMode RMode = ReorderingModes[OpIdx]; 1151 1152 // The linearized opcode of the operand at OpIdx, Lane. 1153 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1154 1155 // The best operand index and its score. 1156 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1157 // are using the score to differentiate between the two. 1158 struct BestOpData { 1159 Optional<unsigned> Idx = None; 1160 unsigned Score = 0; 1161 } BestOp; 1162 1163 // Iterate through all unused operands and look for the best. 1164 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1165 // Get the operand at Idx and Lane. 1166 OperandData &OpData = getData(Idx, Lane); 1167 Value *Op = OpData.V; 1168 bool OpAPO = OpData.APO; 1169 1170 // Skip already selected operands. 1171 if (OpData.IsUsed) 1172 continue; 1173 1174 // Skip if we are trying to move the operand to a position with a 1175 // different opcode in the linearized tree form. This would break the 1176 // semantics. 1177 if (OpAPO != OpIdxAPO) 1178 continue; 1179 1180 // Look for an operand that matches the current mode. 1181 switch (RMode) { 1182 case ReorderingMode::Load: 1183 case ReorderingMode::Constant: 1184 case ReorderingMode::Opcode: { 1185 bool LeftToRight = Lane > LastLane; 1186 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1187 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1188 unsigned Score = 1189 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1190 if (Score > BestOp.Score) { 1191 BestOp.Idx = Idx; 1192 BestOp.Score = Score; 1193 } 1194 break; 1195 } 1196 case ReorderingMode::Splat: 1197 if (Op == OpLastLane) 1198 BestOp.Idx = Idx; 1199 break; 1200 case ReorderingMode::Failed: 1201 return None; 1202 } 1203 } 1204 1205 if (BestOp.Idx) { 1206 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1207 return BestOp.Idx; 1208 } 1209 // If we could not find a good match return None. 1210 return None; 1211 } 1212 1213 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1214 /// reordering from. This is the one which has the least number of operands 1215 /// that can freely move about. 1216 unsigned getBestLaneToStartReordering() const { 1217 unsigned BestLane = 0; 1218 unsigned Min = UINT_MAX; 1219 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1220 ++Lane) { 1221 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1222 if (NumFreeOps < Min) { 1223 Min = NumFreeOps; 1224 BestLane = Lane; 1225 } 1226 } 1227 return BestLane; 1228 } 1229 1230 /// \Returns the maximum number of operands that are allowed to be reordered 1231 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1232 /// start operand reordering. 1233 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1234 unsigned CntTrue = 0; 1235 unsigned NumOperands = getNumOperands(); 1236 // Operands with the same APO can be reordered. We therefore need to count 1237 // how many of them we have for each APO, like this: Cnt[APO] = x. 1238 // Since we only have two APOs, namely true and false, we can avoid using 1239 // a map. Instead we can simply count the number of operands that 1240 // correspond to one of them (in this case the 'true' APO), and calculate 1241 // the other by subtracting it from the total number of operands. 1242 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1243 if (getData(OpIdx, Lane).APO) 1244 ++CntTrue; 1245 unsigned CntFalse = NumOperands - CntTrue; 1246 return std::max(CntTrue, CntFalse); 1247 } 1248 1249 /// Go through the instructions in VL and append their operands. 1250 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1251 assert(!VL.empty() && "Bad VL"); 1252 assert((empty() || VL.size() == getNumLanes()) && 1253 "Expected same number of lanes"); 1254 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1255 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1256 OpsVec.resize(NumOperands); 1257 unsigned NumLanes = VL.size(); 1258 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1259 OpsVec[OpIdx].resize(NumLanes); 1260 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1261 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1262 // Our tree has just 3 nodes: the root and two operands. 1263 // It is therefore trivial to get the APO. We only need to check the 1264 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1265 // RHS operand. The LHS operand of both add and sub is never attached 1266 // to an inversese operation in the linearized form, therefore its APO 1267 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1268 1269 // Since operand reordering is performed on groups of commutative 1270 // operations or alternating sequences (e.g., +, -), we can safely 1271 // tell the inverse operations by checking commutativity. 1272 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1273 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1274 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1275 APO, false}; 1276 } 1277 } 1278 } 1279 1280 /// \returns the number of operands. 1281 unsigned getNumOperands() const { return OpsVec.size(); } 1282 1283 /// \returns the number of lanes. 1284 unsigned getNumLanes() const { return OpsVec[0].size(); } 1285 1286 /// \returns the operand value at \p OpIdx and \p Lane. 1287 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1288 return getData(OpIdx, Lane).V; 1289 } 1290 1291 /// \returns true if the data structure is empty. 1292 bool empty() const { return OpsVec.empty(); } 1293 1294 /// Clears the data. 1295 void clear() { OpsVec.clear(); } 1296 1297 /// \Returns true if there are enough operands identical to \p Op to fill 1298 /// the whole vector. 1299 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1300 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1301 bool OpAPO = getData(OpIdx, Lane).APO; 1302 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1303 if (Ln == Lane) 1304 continue; 1305 // This is set to true if we found a candidate for broadcast at Lane. 1306 bool FoundCandidate = false; 1307 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1308 OperandData &Data = getData(OpI, Ln); 1309 if (Data.APO != OpAPO || Data.IsUsed) 1310 continue; 1311 if (Data.V == Op) { 1312 FoundCandidate = true; 1313 Data.IsUsed = true; 1314 break; 1315 } 1316 } 1317 if (!FoundCandidate) 1318 return false; 1319 } 1320 return true; 1321 } 1322 1323 public: 1324 /// Initialize with all the operands of the instruction vector \p RootVL. 1325 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1326 ScalarEvolution &SE, const BoUpSLP &R) 1327 : DL(DL), SE(SE), R(R) { 1328 // Append all the operands of RootVL. 1329 appendOperandsOfVL(RootVL); 1330 } 1331 1332 /// \Returns a value vector with the operands across all lanes for the 1333 /// opearnd at \p OpIdx. 1334 ValueList getVL(unsigned OpIdx) const { 1335 ValueList OpVL(OpsVec[OpIdx].size()); 1336 assert(OpsVec[OpIdx].size() == getNumLanes() && 1337 "Expected same num of lanes across all operands"); 1338 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1339 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1340 return OpVL; 1341 } 1342 1343 // Performs operand reordering for 2 or more operands. 1344 // The original operands are in OrigOps[OpIdx][Lane]. 1345 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1346 void reorder() { 1347 unsigned NumOperands = getNumOperands(); 1348 unsigned NumLanes = getNumLanes(); 1349 // Each operand has its own mode. We are using this mode to help us select 1350 // the instructions for each lane, so that they match best with the ones 1351 // we have selected so far. 1352 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1353 1354 // This is a greedy single-pass algorithm. We are going over each lane 1355 // once and deciding on the best order right away with no back-tracking. 1356 // However, in order to increase its effectiveness, we start with the lane 1357 // that has operands that can move the least. For example, given the 1358 // following lanes: 1359 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1360 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1361 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1362 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1363 // we will start at Lane 1, since the operands of the subtraction cannot 1364 // be reordered. Then we will visit the rest of the lanes in a circular 1365 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1366 1367 // Find the first lane that we will start our search from. 1368 unsigned FirstLane = getBestLaneToStartReordering(); 1369 1370 // Initialize the modes. 1371 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1372 Value *OpLane0 = getValue(OpIdx, FirstLane); 1373 // Keep track if we have instructions with all the same opcode on one 1374 // side. 1375 if (isa<LoadInst>(OpLane0)) 1376 ReorderingModes[OpIdx] = ReorderingMode::Load; 1377 else if (isa<Instruction>(OpLane0)) { 1378 // Check if OpLane0 should be broadcast. 1379 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1380 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1381 else 1382 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1383 } 1384 else if (isa<Constant>(OpLane0)) 1385 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1386 else if (isa<Argument>(OpLane0)) 1387 // Our best hope is a Splat. It may save some cost in some cases. 1388 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1389 else 1390 // NOTE: This should be unreachable. 1391 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1392 } 1393 1394 // If the initial strategy fails for any of the operand indexes, then we 1395 // perform reordering again in a second pass. This helps avoid assigning 1396 // high priority to the failed strategy, and should improve reordering for 1397 // the non-failed operand indexes. 1398 for (int Pass = 0; Pass != 2; ++Pass) { 1399 // Skip the second pass if the first pass did not fail. 1400 bool StrategyFailed = false; 1401 // Mark all operand data as free to use. 1402 clearUsed(); 1403 // We keep the original operand order for the FirstLane, so reorder the 1404 // rest of the lanes. We are visiting the nodes in a circular fashion, 1405 // using FirstLane as the center point and increasing the radius 1406 // distance. 1407 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1408 // Visit the lane on the right and then the lane on the left. 1409 for (int Direction : {+1, -1}) { 1410 int Lane = FirstLane + Direction * Distance; 1411 if (Lane < 0 || Lane >= (int)NumLanes) 1412 continue; 1413 int LastLane = Lane - Direction; 1414 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1415 "Out of bounds"); 1416 // Look for a good match for each operand. 1417 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1418 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1419 Optional<unsigned> BestIdx = 1420 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1421 // By not selecting a value, we allow the operands that follow to 1422 // select a better matching value. We will get a non-null value in 1423 // the next run of getBestOperand(). 1424 if (BestIdx) { 1425 // Swap the current operand with the one returned by 1426 // getBestOperand(). 1427 swap(OpIdx, BestIdx.getValue(), Lane); 1428 } else { 1429 // We failed to find a best operand, set mode to 'Failed'. 1430 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1431 // Enable the second pass. 1432 StrategyFailed = true; 1433 } 1434 } 1435 } 1436 } 1437 // Skip second pass if the strategy did not fail. 1438 if (!StrategyFailed) 1439 break; 1440 } 1441 } 1442 1443 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1444 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1445 switch (RMode) { 1446 case ReorderingMode::Load: 1447 return "Load"; 1448 case ReorderingMode::Opcode: 1449 return "Opcode"; 1450 case ReorderingMode::Constant: 1451 return "Constant"; 1452 case ReorderingMode::Splat: 1453 return "Splat"; 1454 case ReorderingMode::Failed: 1455 return "Failed"; 1456 } 1457 llvm_unreachable("Unimplemented Reordering Type"); 1458 } 1459 1460 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1461 raw_ostream &OS) { 1462 return OS << getModeStr(RMode); 1463 } 1464 1465 /// Debug print. 1466 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1467 printMode(RMode, dbgs()); 1468 } 1469 1470 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1471 return printMode(RMode, OS); 1472 } 1473 1474 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1475 const unsigned Indent = 2; 1476 unsigned Cnt = 0; 1477 for (const OperandDataVec &OpDataVec : OpsVec) { 1478 OS << "Operand " << Cnt++ << "\n"; 1479 for (const OperandData &OpData : OpDataVec) { 1480 OS.indent(Indent) << "{"; 1481 if (Value *V = OpData.V) 1482 OS << *V; 1483 else 1484 OS << "null"; 1485 OS << ", APO:" << OpData.APO << "}\n"; 1486 } 1487 OS << "\n"; 1488 } 1489 return OS; 1490 } 1491 1492 /// Debug print. 1493 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1494 #endif 1495 }; 1496 1497 /// Checks if the instruction is marked for deletion. 1498 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1499 1500 /// Marks values operands for later deletion by replacing them with Undefs. 1501 void eraseInstructions(ArrayRef<Value *> AV); 1502 1503 ~BoUpSLP(); 1504 1505 private: 1506 /// Checks if all users of \p I are the part of the vectorization tree. 1507 bool areAllUsersVectorized(Instruction *I) const; 1508 1509 /// \returns the cost of the vectorizable entry. 1510 InstructionCost getEntryCost(TreeEntry *E); 1511 1512 /// This is the recursive part of buildTree. 1513 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1514 const EdgeInfo &EI); 1515 1516 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1517 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1518 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1519 /// returns false, setting \p CurrentOrder to either an empty vector or a 1520 /// non-identity permutation that allows to reuse extract instructions. 1521 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1522 SmallVectorImpl<unsigned> &CurrentOrder) const; 1523 1524 /// Vectorize a single entry in the tree. 1525 Value *vectorizeTree(TreeEntry *E); 1526 1527 /// Vectorize a single entry in the tree, starting in \p VL. 1528 Value *vectorizeTree(ArrayRef<Value *> VL); 1529 1530 /// \returns the scalarization cost for this type. Scalarization in this 1531 /// context means the creation of vectors from a group of scalars. 1532 InstructionCost 1533 getGatherCost(FixedVectorType *Ty, 1534 const DenseSet<unsigned> &ShuffledIndices) const; 1535 1536 /// \returns the scalarization cost for this list of values. Assuming that 1537 /// this subtree gets vectorized, we may need to extract the values from the 1538 /// roots. This method calculates the cost of extracting the values. 1539 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1540 1541 /// Set the Builder insert point to one after the last instruction in 1542 /// the bundle 1543 void setInsertPointAfterBundle(TreeEntry *E); 1544 1545 /// \returns a vector from a collection of scalars in \p VL. 1546 Value *gather(ArrayRef<Value *> VL); 1547 1548 /// \returns whether the VectorizableTree is fully vectorizable and will 1549 /// be beneficial even the tree height is tiny. 1550 bool isFullyVectorizableTinyTree() const; 1551 1552 /// Reorder commutative or alt operands to get better probability of 1553 /// generating vectorized code. 1554 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1555 SmallVectorImpl<Value *> &Left, 1556 SmallVectorImpl<Value *> &Right, 1557 const DataLayout &DL, 1558 ScalarEvolution &SE, 1559 const BoUpSLP &R); 1560 struct TreeEntry { 1561 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1562 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1563 1564 /// \returns true if the scalars in VL are equal to this entry. 1565 bool isSame(ArrayRef<Value *> VL) const { 1566 if (VL.size() == Scalars.size()) 1567 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1568 return VL.size() == ReuseShuffleIndices.size() && 1569 std::equal( 1570 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1571 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1572 } 1573 1574 /// A vector of scalars. 1575 ValueList Scalars; 1576 1577 /// The Scalars are vectorized into this value. It is initialized to Null. 1578 Value *VectorizedValue = nullptr; 1579 1580 /// Do we need to gather this sequence or vectorize it 1581 /// (either with vector instruction or with scatter/gather 1582 /// intrinsics for store/load)? 1583 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1584 EntryState State; 1585 1586 /// Does this sequence require some shuffling? 1587 SmallVector<int, 4> ReuseShuffleIndices; 1588 1589 /// Does this entry require reordering? 1590 SmallVector<unsigned, 4> ReorderIndices; 1591 1592 /// Points back to the VectorizableTree. 1593 /// 1594 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1595 /// to be a pointer and needs to be able to initialize the child iterator. 1596 /// Thus we need a reference back to the container to translate the indices 1597 /// to entries. 1598 VecTreeTy &Container; 1599 1600 /// The TreeEntry index containing the user of this entry. We can actually 1601 /// have multiple users so the data structure is not truly a tree. 1602 SmallVector<EdgeInfo, 1> UserTreeIndices; 1603 1604 /// The index of this treeEntry in VectorizableTree. 1605 int Idx = -1; 1606 1607 private: 1608 /// The operands of each instruction in each lane Operands[op_index][lane]. 1609 /// Note: This helps avoid the replication of the code that performs the 1610 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1611 SmallVector<ValueList, 2> Operands; 1612 1613 /// The main/alternate instruction. 1614 Instruction *MainOp = nullptr; 1615 Instruction *AltOp = nullptr; 1616 1617 public: 1618 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1619 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1620 if (Operands.size() < OpIdx + 1) 1621 Operands.resize(OpIdx + 1); 1622 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1623 Operands[OpIdx].resize(Scalars.size()); 1624 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1625 Operands[OpIdx][Lane] = OpVL[Lane]; 1626 } 1627 1628 /// Set the operands of this bundle in their original order. 1629 void setOperandsInOrder() { 1630 assert(Operands.empty() && "Already initialized?"); 1631 auto *I0 = cast<Instruction>(Scalars[0]); 1632 Operands.resize(I0->getNumOperands()); 1633 unsigned NumLanes = Scalars.size(); 1634 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1635 OpIdx != NumOperands; ++OpIdx) { 1636 Operands[OpIdx].resize(NumLanes); 1637 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1638 auto *I = cast<Instruction>(Scalars[Lane]); 1639 assert(I->getNumOperands() == NumOperands && 1640 "Expected same number of operands"); 1641 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1642 } 1643 } 1644 } 1645 1646 /// \returns the \p OpIdx operand of this TreeEntry. 1647 ValueList &getOperand(unsigned OpIdx) { 1648 assert(OpIdx < Operands.size() && "Off bounds"); 1649 return Operands[OpIdx]; 1650 } 1651 1652 /// \returns the number of operands. 1653 unsigned getNumOperands() const { return Operands.size(); } 1654 1655 /// \return the single \p OpIdx operand. 1656 Value *getSingleOperand(unsigned OpIdx) const { 1657 assert(OpIdx < Operands.size() && "Off bounds"); 1658 assert(!Operands[OpIdx].empty() && "No operand available"); 1659 return Operands[OpIdx][0]; 1660 } 1661 1662 /// Some of the instructions in the list have alternate opcodes. 1663 bool isAltShuffle() const { 1664 return getOpcode() != getAltOpcode(); 1665 } 1666 1667 bool isOpcodeOrAlt(Instruction *I) const { 1668 unsigned CheckedOpcode = I->getOpcode(); 1669 return (getOpcode() == CheckedOpcode || 1670 getAltOpcode() == CheckedOpcode); 1671 } 1672 1673 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1674 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1675 /// \p OpValue. 1676 Value *isOneOf(Value *Op) const { 1677 auto *I = dyn_cast<Instruction>(Op); 1678 if (I && isOpcodeOrAlt(I)) 1679 return Op; 1680 return MainOp; 1681 } 1682 1683 void setOperations(const InstructionsState &S) { 1684 MainOp = S.MainOp; 1685 AltOp = S.AltOp; 1686 } 1687 1688 Instruction *getMainOp() const { 1689 return MainOp; 1690 } 1691 1692 Instruction *getAltOp() const { 1693 return AltOp; 1694 } 1695 1696 /// The main/alternate opcodes for the list of instructions. 1697 unsigned getOpcode() const { 1698 return MainOp ? MainOp->getOpcode() : 0; 1699 } 1700 1701 unsigned getAltOpcode() const { 1702 return AltOp ? AltOp->getOpcode() : 0; 1703 } 1704 1705 /// Update operations state of this entry if reorder occurred. 1706 bool updateStateIfReorder() { 1707 if (ReorderIndices.empty()) 1708 return false; 1709 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1710 setOperations(S); 1711 return true; 1712 } 1713 1714 #ifndef NDEBUG 1715 /// Debug printer. 1716 LLVM_DUMP_METHOD void dump() const { 1717 dbgs() << Idx << ".\n"; 1718 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1719 dbgs() << "Operand " << OpI << ":\n"; 1720 for (const Value *V : Operands[OpI]) 1721 dbgs().indent(2) << *V << "\n"; 1722 } 1723 dbgs() << "Scalars: \n"; 1724 for (Value *V : Scalars) 1725 dbgs().indent(2) << *V << "\n"; 1726 dbgs() << "State: "; 1727 switch (State) { 1728 case Vectorize: 1729 dbgs() << "Vectorize\n"; 1730 break; 1731 case ScatterVectorize: 1732 dbgs() << "ScatterVectorize\n"; 1733 break; 1734 case NeedToGather: 1735 dbgs() << "NeedToGather\n"; 1736 break; 1737 } 1738 dbgs() << "MainOp: "; 1739 if (MainOp) 1740 dbgs() << *MainOp << "\n"; 1741 else 1742 dbgs() << "NULL\n"; 1743 dbgs() << "AltOp: "; 1744 if (AltOp) 1745 dbgs() << *AltOp << "\n"; 1746 else 1747 dbgs() << "NULL\n"; 1748 dbgs() << "VectorizedValue: "; 1749 if (VectorizedValue) 1750 dbgs() << *VectorizedValue << "\n"; 1751 else 1752 dbgs() << "NULL\n"; 1753 dbgs() << "ReuseShuffleIndices: "; 1754 if (ReuseShuffleIndices.empty()) 1755 dbgs() << "Empty"; 1756 else 1757 for (unsigned ReuseIdx : ReuseShuffleIndices) 1758 dbgs() << ReuseIdx << ", "; 1759 dbgs() << "\n"; 1760 dbgs() << "ReorderIndices: "; 1761 for (unsigned ReorderIdx : ReorderIndices) 1762 dbgs() << ReorderIdx << ", "; 1763 dbgs() << "\n"; 1764 dbgs() << "UserTreeIndices: "; 1765 for (const auto &EInfo : UserTreeIndices) 1766 dbgs() << EInfo << ", "; 1767 dbgs() << "\n"; 1768 } 1769 #endif 1770 }; 1771 1772 #ifndef NDEBUG 1773 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1774 InstructionCost VecCost, 1775 InstructionCost ScalarCost) const { 1776 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1777 dbgs() << "SLP: Costs:\n"; 1778 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1779 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1780 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1781 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1782 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1783 } 1784 #endif 1785 1786 /// Create a new VectorizableTree entry. 1787 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1788 const InstructionsState &S, 1789 const EdgeInfo &UserTreeIdx, 1790 ArrayRef<unsigned> ReuseShuffleIndices = None, 1791 ArrayRef<unsigned> ReorderIndices = None) { 1792 TreeEntry::EntryState EntryState = 1793 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1794 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1795 ReuseShuffleIndices, ReorderIndices); 1796 } 1797 1798 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1799 TreeEntry::EntryState EntryState, 1800 Optional<ScheduleData *> Bundle, 1801 const InstructionsState &S, 1802 const EdgeInfo &UserTreeIdx, 1803 ArrayRef<unsigned> ReuseShuffleIndices = None, 1804 ArrayRef<unsigned> ReorderIndices = None) { 1805 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1806 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1807 "Need to vectorize gather entry?"); 1808 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1809 TreeEntry *Last = VectorizableTree.back().get(); 1810 Last->Idx = VectorizableTree.size() - 1; 1811 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1812 Last->State = EntryState; 1813 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1814 ReuseShuffleIndices.end()); 1815 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1816 Last->setOperations(S); 1817 if (Last->State != TreeEntry::NeedToGather) { 1818 for (Value *V : VL) { 1819 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1820 ScalarToTreeEntry[V] = Last; 1821 } 1822 // Update the scheduler bundle to point to this TreeEntry. 1823 unsigned Lane = 0; 1824 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1825 BundleMember = BundleMember->NextInBundle) { 1826 BundleMember->TE = Last; 1827 BundleMember->Lane = Lane; 1828 ++Lane; 1829 } 1830 assert((!Bundle.getValue() || Lane == VL.size()) && 1831 "Bundle and VL out of sync"); 1832 } else { 1833 MustGather.insert(VL.begin(), VL.end()); 1834 } 1835 1836 if (UserTreeIdx.UserTE) 1837 Last->UserTreeIndices.push_back(UserTreeIdx); 1838 1839 return Last; 1840 } 1841 1842 /// -- Vectorization State -- 1843 /// Holds all of the tree entries. 1844 TreeEntry::VecTreeTy VectorizableTree; 1845 1846 #ifndef NDEBUG 1847 /// Debug printer. 1848 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1849 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1850 VectorizableTree[Id]->dump(); 1851 dbgs() << "\n"; 1852 } 1853 } 1854 #endif 1855 1856 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1857 1858 const TreeEntry *getTreeEntry(Value *V) const { 1859 return ScalarToTreeEntry.lookup(V); 1860 } 1861 1862 /// Maps a specific scalar to its tree entry. 1863 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1864 1865 /// Maps a value to the proposed vectorizable size. 1866 SmallDenseMap<Value *, unsigned> InstrElementSize; 1867 1868 /// A list of scalars that we found that we need to keep as scalars. 1869 ValueSet MustGather; 1870 1871 /// This POD struct describes one external user in the vectorized tree. 1872 struct ExternalUser { 1873 ExternalUser(Value *S, llvm::User *U, int L) 1874 : Scalar(S), User(U), Lane(L) {} 1875 1876 // Which scalar in our function. 1877 Value *Scalar; 1878 1879 // Which user that uses the scalar. 1880 llvm::User *User; 1881 1882 // Which lane does the scalar belong to. 1883 int Lane; 1884 }; 1885 using UserList = SmallVector<ExternalUser, 16>; 1886 1887 /// Checks if two instructions may access the same memory. 1888 /// 1889 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1890 /// is invariant in the calling loop. 1891 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1892 Instruction *Inst2) { 1893 // First check if the result is already in the cache. 1894 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1895 Optional<bool> &result = AliasCache[key]; 1896 if (result.hasValue()) { 1897 return result.getValue(); 1898 } 1899 MemoryLocation Loc2 = getLocation(Inst2, AA); 1900 bool aliased = true; 1901 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1902 // Do the alias check. 1903 aliased = AA->alias(Loc1, Loc2); 1904 } 1905 // Store the result in the cache. 1906 result = aliased; 1907 return aliased; 1908 } 1909 1910 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1911 1912 /// Cache for alias results. 1913 /// TODO: consider moving this to the AliasAnalysis itself. 1914 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1915 1916 /// Removes an instruction from its block and eventually deletes it. 1917 /// It's like Instruction::eraseFromParent() except that the actual deletion 1918 /// is delayed until BoUpSLP is destructed. 1919 /// This is required to ensure that there are no incorrect collisions in the 1920 /// AliasCache, which can happen if a new instruction is allocated at the 1921 /// same address as a previously deleted instruction. 1922 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1923 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1924 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1925 } 1926 1927 /// Temporary store for deleted instructions. Instructions will be deleted 1928 /// eventually when the BoUpSLP is destructed. 1929 DenseMap<Instruction *, bool> DeletedInstructions; 1930 1931 /// A list of values that need to extracted out of the tree. 1932 /// This list holds pairs of (Internal Scalar : External User). External User 1933 /// can be nullptr, it means that this Internal Scalar will be used later, 1934 /// after vectorization. 1935 UserList ExternalUses; 1936 1937 /// Values used only by @llvm.assume calls. 1938 SmallPtrSet<const Value *, 32> EphValues; 1939 1940 /// Holds all of the instructions that we gathered. 1941 SetVector<Instruction *> GatherSeq; 1942 1943 /// A list of blocks that we are going to CSE. 1944 SetVector<BasicBlock *> CSEBlocks; 1945 1946 /// Contains all scheduling relevant data for an instruction. 1947 /// A ScheduleData either represents a single instruction or a member of an 1948 /// instruction bundle (= a group of instructions which is combined into a 1949 /// vector instruction). 1950 struct ScheduleData { 1951 // The initial value for the dependency counters. It means that the 1952 // dependencies are not calculated yet. 1953 enum { InvalidDeps = -1 }; 1954 1955 ScheduleData() = default; 1956 1957 void init(int BlockSchedulingRegionID, Value *OpVal) { 1958 FirstInBundle = this; 1959 NextInBundle = nullptr; 1960 NextLoadStore = nullptr; 1961 IsScheduled = false; 1962 SchedulingRegionID = BlockSchedulingRegionID; 1963 UnscheduledDepsInBundle = UnscheduledDeps; 1964 clearDependencies(); 1965 OpValue = OpVal; 1966 TE = nullptr; 1967 Lane = -1; 1968 } 1969 1970 /// Returns true if the dependency information has been calculated. 1971 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1972 1973 /// Returns true for single instructions and for bundle representatives 1974 /// (= the head of a bundle). 1975 bool isSchedulingEntity() const { return FirstInBundle == this; } 1976 1977 /// Returns true if it represents an instruction bundle and not only a 1978 /// single instruction. 1979 bool isPartOfBundle() const { 1980 return NextInBundle != nullptr || FirstInBundle != this; 1981 } 1982 1983 /// Returns true if it is ready for scheduling, i.e. it has no more 1984 /// unscheduled depending instructions/bundles. 1985 bool isReady() const { 1986 assert(isSchedulingEntity() && 1987 "can't consider non-scheduling entity for ready list"); 1988 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1989 } 1990 1991 /// Modifies the number of unscheduled dependencies, also updating it for 1992 /// the whole bundle. 1993 int incrementUnscheduledDeps(int Incr) { 1994 UnscheduledDeps += Incr; 1995 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1996 } 1997 1998 /// Sets the number of unscheduled dependencies to the number of 1999 /// dependencies. 2000 void resetUnscheduledDeps() { 2001 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2002 } 2003 2004 /// Clears all dependency information. 2005 void clearDependencies() { 2006 Dependencies = InvalidDeps; 2007 resetUnscheduledDeps(); 2008 MemoryDependencies.clear(); 2009 } 2010 2011 void dump(raw_ostream &os) const { 2012 if (!isSchedulingEntity()) { 2013 os << "/ " << *Inst; 2014 } else if (NextInBundle) { 2015 os << '[' << *Inst; 2016 ScheduleData *SD = NextInBundle; 2017 while (SD) { 2018 os << ';' << *SD->Inst; 2019 SD = SD->NextInBundle; 2020 } 2021 os << ']'; 2022 } else { 2023 os << *Inst; 2024 } 2025 } 2026 2027 Instruction *Inst = nullptr; 2028 2029 /// Points to the head in an instruction bundle (and always to this for 2030 /// single instructions). 2031 ScheduleData *FirstInBundle = nullptr; 2032 2033 /// Single linked list of all instructions in a bundle. Null if it is a 2034 /// single instruction. 2035 ScheduleData *NextInBundle = nullptr; 2036 2037 /// Single linked list of all memory instructions (e.g. load, store, call) 2038 /// in the block - until the end of the scheduling region. 2039 ScheduleData *NextLoadStore = nullptr; 2040 2041 /// The dependent memory instructions. 2042 /// This list is derived on demand in calculateDependencies(). 2043 SmallVector<ScheduleData *, 4> MemoryDependencies; 2044 2045 /// This ScheduleData is in the current scheduling region if this matches 2046 /// the current SchedulingRegionID of BlockScheduling. 2047 int SchedulingRegionID = 0; 2048 2049 /// Used for getting a "good" final ordering of instructions. 2050 int SchedulingPriority = 0; 2051 2052 /// The number of dependencies. Constitutes of the number of users of the 2053 /// instruction plus the number of dependent memory instructions (if any). 2054 /// This value is calculated on demand. 2055 /// If InvalidDeps, the number of dependencies is not calculated yet. 2056 int Dependencies = InvalidDeps; 2057 2058 /// The number of dependencies minus the number of dependencies of scheduled 2059 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2060 /// for scheduling. 2061 /// Note that this is negative as long as Dependencies is not calculated. 2062 int UnscheduledDeps = InvalidDeps; 2063 2064 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2065 /// single instructions. 2066 int UnscheduledDepsInBundle = InvalidDeps; 2067 2068 /// True if this instruction is scheduled (or considered as scheduled in the 2069 /// dry-run). 2070 bool IsScheduled = false; 2071 2072 /// Opcode of the current instruction in the schedule data. 2073 Value *OpValue = nullptr; 2074 2075 /// The TreeEntry that this instruction corresponds to. 2076 TreeEntry *TE = nullptr; 2077 2078 /// The lane of this node in the TreeEntry. 2079 int Lane = -1; 2080 }; 2081 2082 #ifndef NDEBUG 2083 friend inline raw_ostream &operator<<(raw_ostream &os, 2084 const BoUpSLP::ScheduleData &SD) { 2085 SD.dump(os); 2086 return os; 2087 } 2088 #endif 2089 2090 friend struct GraphTraits<BoUpSLP *>; 2091 friend struct DOTGraphTraits<BoUpSLP *>; 2092 2093 /// Contains all scheduling data for a basic block. 2094 struct BlockScheduling { 2095 BlockScheduling(BasicBlock *BB) 2096 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2097 2098 void clear() { 2099 ReadyInsts.clear(); 2100 ScheduleStart = nullptr; 2101 ScheduleEnd = nullptr; 2102 FirstLoadStoreInRegion = nullptr; 2103 LastLoadStoreInRegion = nullptr; 2104 2105 // Reduce the maximum schedule region size by the size of the 2106 // previous scheduling run. 2107 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2108 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2109 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2110 ScheduleRegionSize = 0; 2111 2112 // Make a new scheduling region, i.e. all existing ScheduleData is not 2113 // in the new region yet. 2114 ++SchedulingRegionID; 2115 } 2116 2117 ScheduleData *getScheduleData(Value *V) { 2118 ScheduleData *SD = ScheduleDataMap[V]; 2119 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2120 return SD; 2121 return nullptr; 2122 } 2123 2124 ScheduleData *getScheduleData(Value *V, Value *Key) { 2125 if (V == Key) 2126 return getScheduleData(V); 2127 auto I = ExtraScheduleDataMap.find(V); 2128 if (I != ExtraScheduleDataMap.end()) { 2129 ScheduleData *SD = I->second[Key]; 2130 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2131 return SD; 2132 } 2133 return nullptr; 2134 } 2135 2136 bool isInSchedulingRegion(ScheduleData *SD) const { 2137 return SD->SchedulingRegionID == SchedulingRegionID; 2138 } 2139 2140 /// Marks an instruction as scheduled and puts all dependent ready 2141 /// instructions into the ready-list. 2142 template <typename ReadyListType> 2143 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2144 SD->IsScheduled = true; 2145 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2146 2147 ScheduleData *BundleMember = SD; 2148 while (BundleMember) { 2149 if (BundleMember->Inst != BundleMember->OpValue) { 2150 BundleMember = BundleMember->NextInBundle; 2151 continue; 2152 } 2153 // Handle the def-use chain dependencies. 2154 2155 // Decrement the unscheduled counter and insert to ready list if ready. 2156 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2157 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2158 if (OpDef && OpDef->hasValidDependencies() && 2159 OpDef->incrementUnscheduledDeps(-1) == 0) { 2160 // There are no more unscheduled dependencies after 2161 // decrementing, so we can put the dependent instruction 2162 // into the ready list. 2163 ScheduleData *DepBundle = OpDef->FirstInBundle; 2164 assert(!DepBundle->IsScheduled && 2165 "already scheduled bundle gets ready"); 2166 ReadyList.insert(DepBundle); 2167 LLVM_DEBUG(dbgs() 2168 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2169 } 2170 }); 2171 }; 2172 2173 // If BundleMember is a vector bundle, its operands may have been 2174 // reordered duiring buildTree(). We therefore need to get its operands 2175 // through the TreeEntry. 2176 if (TreeEntry *TE = BundleMember->TE) { 2177 int Lane = BundleMember->Lane; 2178 assert(Lane >= 0 && "Lane not set"); 2179 2180 // Since vectorization tree is being built recursively this assertion 2181 // ensures that the tree entry has all operands set before reaching 2182 // this code. Couple of exceptions known at the moment are extracts 2183 // where their second (immediate) operand is not added. Since 2184 // immediates do not affect scheduler behavior this is considered 2185 // okay. 2186 auto *In = TE->getMainOp(); 2187 assert(In && 2188 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2189 In->getNumOperands() == TE->getNumOperands()) && 2190 "Missed TreeEntry operands?"); 2191 (void)In; // fake use to avoid build failure when assertions disabled 2192 2193 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2194 OpIdx != NumOperands; ++OpIdx) 2195 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2196 DecrUnsched(I); 2197 } else { 2198 // If BundleMember is a stand-alone instruction, no operand reordering 2199 // has taken place, so we directly access its operands. 2200 for (Use &U : BundleMember->Inst->operands()) 2201 if (auto *I = dyn_cast<Instruction>(U.get())) 2202 DecrUnsched(I); 2203 } 2204 // Handle the memory dependencies. 2205 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2206 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2207 // There are no more unscheduled dependencies after decrementing, 2208 // so we can put the dependent instruction into the ready list. 2209 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2210 assert(!DepBundle->IsScheduled && 2211 "already scheduled bundle gets ready"); 2212 ReadyList.insert(DepBundle); 2213 LLVM_DEBUG(dbgs() 2214 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2215 } 2216 } 2217 BundleMember = BundleMember->NextInBundle; 2218 } 2219 } 2220 2221 void doForAllOpcodes(Value *V, 2222 function_ref<void(ScheduleData *SD)> Action) { 2223 if (ScheduleData *SD = getScheduleData(V)) 2224 Action(SD); 2225 auto I = ExtraScheduleDataMap.find(V); 2226 if (I != ExtraScheduleDataMap.end()) 2227 for (auto &P : I->second) 2228 if (P.second->SchedulingRegionID == SchedulingRegionID) 2229 Action(P.second); 2230 } 2231 2232 /// Put all instructions into the ReadyList which are ready for scheduling. 2233 template <typename ReadyListType> 2234 void initialFillReadyList(ReadyListType &ReadyList) { 2235 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2236 doForAllOpcodes(I, [&](ScheduleData *SD) { 2237 if (SD->isSchedulingEntity() && SD->isReady()) { 2238 ReadyList.insert(SD); 2239 LLVM_DEBUG(dbgs() 2240 << "SLP: initially in ready list: " << *I << "\n"); 2241 } 2242 }); 2243 } 2244 } 2245 2246 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2247 /// cyclic dependencies. This is only a dry-run, no instructions are 2248 /// actually moved at this stage. 2249 /// \returns the scheduling bundle. The returned Optional value is non-None 2250 /// if \p VL is allowed to be scheduled. 2251 Optional<ScheduleData *> 2252 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2253 const InstructionsState &S); 2254 2255 /// Un-bundles a group of instructions. 2256 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2257 2258 /// Allocates schedule data chunk. 2259 ScheduleData *allocateScheduleDataChunks(); 2260 2261 /// Extends the scheduling region so that V is inside the region. 2262 /// \returns true if the region size is within the limit. 2263 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2264 2265 /// Initialize the ScheduleData structures for new instructions in the 2266 /// scheduling region. 2267 void initScheduleData(Instruction *FromI, Instruction *ToI, 2268 ScheduleData *PrevLoadStore, 2269 ScheduleData *NextLoadStore); 2270 2271 /// Updates the dependency information of a bundle and of all instructions/ 2272 /// bundles which depend on the original bundle. 2273 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2274 BoUpSLP *SLP); 2275 2276 /// Sets all instruction in the scheduling region to un-scheduled. 2277 void resetSchedule(); 2278 2279 BasicBlock *BB; 2280 2281 /// Simple memory allocation for ScheduleData. 2282 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2283 2284 /// The size of a ScheduleData array in ScheduleDataChunks. 2285 int ChunkSize; 2286 2287 /// The allocator position in the current chunk, which is the last entry 2288 /// of ScheduleDataChunks. 2289 int ChunkPos; 2290 2291 /// Attaches ScheduleData to Instruction. 2292 /// Note that the mapping survives during all vectorization iterations, i.e. 2293 /// ScheduleData structures are recycled. 2294 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2295 2296 /// Attaches ScheduleData to Instruction with the leading key. 2297 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2298 ExtraScheduleDataMap; 2299 2300 struct ReadyList : SmallVector<ScheduleData *, 8> { 2301 void insert(ScheduleData *SD) { push_back(SD); } 2302 }; 2303 2304 /// The ready-list for scheduling (only used for the dry-run). 2305 ReadyList ReadyInsts; 2306 2307 /// The first instruction of the scheduling region. 2308 Instruction *ScheduleStart = nullptr; 2309 2310 /// The first instruction _after_ the scheduling region. 2311 Instruction *ScheduleEnd = nullptr; 2312 2313 /// The first memory accessing instruction in the scheduling region 2314 /// (can be null). 2315 ScheduleData *FirstLoadStoreInRegion = nullptr; 2316 2317 /// The last memory accessing instruction in the scheduling region 2318 /// (can be null). 2319 ScheduleData *LastLoadStoreInRegion = nullptr; 2320 2321 /// The current size of the scheduling region. 2322 int ScheduleRegionSize = 0; 2323 2324 /// The maximum size allowed for the scheduling region. 2325 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2326 2327 /// The ID of the scheduling region. For a new vectorization iteration this 2328 /// is incremented which "removes" all ScheduleData from the region. 2329 // Make sure that the initial SchedulingRegionID is greater than the 2330 // initial SchedulingRegionID in ScheduleData (which is 0). 2331 int SchedulingRegionID = 1; 2332 }; 2333 2334 /// Attaches the BlockScheduling structures to basic blocks. 2335 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2336 2337 /// Performs the "real" scheduling. Done before vectorization is actually 2338 /// performed in a basic block. 2339 void scheduleBlock(BlockScheduling *BS); 2340 2341 /// List of users to ignore during scheduling and that don't need extracting. 2342 ArrayRef<Value *> UserIgnoreList; 2343 2344 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2345 /// sorted SmallVectors of unsigned. 2346 struct OrdersTypeDenseMapInfo { 2347 static OrdersType getEmptyKey() { 2348 OrdersType V; 2349 V.push_back(~1U); 2350 return V; 2351 } 2352 2353 static OrdersType getTombstoneKey() { 2354 OrdersType V; 2355 V.push_back(~2U); 2356 return V; 2357 } 2358 2359 static unsigned getHashValue(const OrdersType &V) { 2360 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2361 } 2362 2363 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2364 return LHS == RHS; 2365 } 2366 }; 2367 2368 /// Contains orders of operations along with the number of bundles that have 2369 /// operations in this order. It stores only those orders that require 2370 /// reordering, if reordering is not required it is counted using \a 2371 /// NumOpsWantToKeepOriginalOrder. 2372 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2373 /// Number of bundles that do not require reordering. 2374 unsigned NumOpsWantToKeepOriginalOrder = 0; 2375 2376 // Analysis and block reference. 2377 Function *F; 2378 ScalarEvolution *SE; 2379 TargetTransformInfo *TTI; 2380 TargetLibraryInfo *TLI; 2381 AAResults *AA; 2382 LoopInfo *LI; 2383 DominatorTree *DT; 2384 AssumptionCache *AC; 2385 DemandedBits *DB; 2386 const DataLayout *DL; 2387 OptimizationRemarkEmitter *ORE; 2388 2389 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2390 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2391 2392 /// Instruction builder to construct the vectorized tree. 2393 IRBuilder<> Builder; 2394 2395 /// A map of scalar integer values to the smallest bit width with which they 2396 /// can legally be represented. The values map to (width, signed) pairs, 2397 /// where "width" indicates the minimum bit width and "signed" is True if the 2398 /// value must be signed-extended, rather than zero-extended, back to its 2399 /// original width. 2400 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2401 }; 2402 2403 } // end namespace slpvectorizer 2404 2405 template <> struct GraphTraits<BoUpSLP *> { 2406 using TreeEntry = BoUpSLP::TreeEntry; 2407 2408 /// NodeRef has to be a pointer per the GraphWriter. 2409 using NodeRef = TreeEntry *; 2410 2411 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2412 2413 /// Add the VectorizableTree to the index iterator to be able to return 2414 /// TreeEntry pointers. 2415 struct ChildIteratorType 2416 : public iterator_adaptor_base< 2417 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2418 ContainerTy &VectorizableTree; 2419 2420 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2421 ContainerTy &VT) 2422 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2423 2424 NodeRef operator*() { return I->UserTE; } 2425 }; 2426 2427 static NodeRef getEntryNode(BoUpSLP &R) { 2428 return R.VectorizableTree[0].get(); 2429 } 2430 2431 static ChildIteratorType child_begin(NodeRef N) { 2432 return {N->UserTreeIndices.begin(), N->Container}; 2433 } 2434 2435 static ChildIteratorType child_end(NodeRef N) { 2436 return {N->UserTreeIndices.end(), N->Container}; 2437 } 2438 2439 /// For the node iterator we just need to turn the TreeEntry iterator into a 2440 /// TreeEntry* iterator so that it dereferences to NodeRef. 2441 class nodes_iterator { 2442 using ItTy = ContainerTy::iterator; 2443 ItTy It; 2444 2445 public: 2446 nodes_iterator(const ItTy &It2) : It(It2) {} 2447 NodeRef operator*() { return It->get(); } 2448 nodes_iterator operator++() { 2449 ++It; 2450 return *this; 2451 } 2452 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2453 }; 2454 2455 static nodes_iterator nodes_begin(BoUpSLP *R) { 2456 return nodes_iterator(R->VectorizableTree.begin()); 2457 } 2458 2459 static nodes_iterator nodes_end(BoUpSLP *R) { 2460 return nodes_iterator(R->VectorizableTree.end()); 2461 } 2462 2463 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2464 }; 2465 2466 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2467 using TreeEntry = BoUpSLP::TreeEntry; 2468 2469 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2470 2471 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2472 std::string Str; 2473 raw_string_ostream OS(Str); 2474 if (isSplat(Entry->Scalars)) { 2475 OS << "<splat> " << *Entry->Scalars[0]; 2476 return Str; 2477 } 2478 for (auto V : Entry->Scalars) { 2479 OS << *V; 2480 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2481 return EU.Scalar == V; 2482 })) 2483 OS << " <extract>"; 2484 OS << "\n"; 2485 } 2486 return Str; 2487 } 2488 2489 static std::string getNodeAttributes(const TreeEntry *Entry, 2490 const BoUpSLP *) { 2491 if (Entry->State == TreeEntry::NeedToGather) 2492 return "color=red"; 2493 return ""; 2494 } 2495 }; 2496 2497 } // end namespace llvm 2498 2499 BoUpSLP::~BoUpSLP() { 2500 for (const auto &Pair : DeletedInstructions) { 2501 // Replace operands of ignored instructions with Undefs in case if they were 2502 // marked for deletion. 2503 if (Pair.getSecond()) { 2504 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2505 Pair.getFirst()->replaceAllUsesWith(Undef); 2506 } 2507 Pair.getFirst()->dropAllReferences(); 2508 } 2509 for (const auto &Pair : DeletedInstructions) { 2510 assert(Pair.getFirst()->use_empty() && 2511 "trying to erase instruction with users."); 2512 Pair.getFirst()->eraseFromParent(); 2513 } 2514 #ifdef EXPENSIVE_CHECKS 2515 // If we could guarantee that this call is not extremely slow, we could 2516 // remove the ifdef limitation (see PR47712). 2517 assert(!verifyFunction(*F, &dbgs())); 2518 #endif 2519 } 2520 2521 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2522 for (auto *V : AV) { 2523 if (auto *I = dyn_cast<Instruction>(V)) 2524 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2525 }; 2526 } 2527 2528 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2529 ArrayRef<Value *> UserIgnoreLst) { 2530 ExtraValueToDebugLocsMap ExternallyUsedValues; 2531 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2532 } 2533 2534 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2535 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2536 ArrayRef<Value *> UserIgnoreLst) { 2537 deleteTree(); 2538 UserIgnoreList = UserIgnoreLst; 2539 if (!allSameType(Roots)) 2540 return; 2541 buildTree_rec(Roots, 0, EdgeInfo()); 2542 2543 // Collect the values that we need to extract from the tree. 2544 for (auto &TEPtr : VectorizableTree) { 2545 TreeEntry *Entry = TEPtr.get(); 2546 2547 // No need to handle users of gathered values. 2548 if (Entry->State == TreeEntry::NeedToGather) 2549 continue; 2550 2551 // For each lane: 2552 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2553 Value *Scalar = Entry->Scalars[Lane]; 2554 int FoundLane = Lane; 2555 if (!Entry->ReuseShuffleIndices.empty()) { 2556 FoundLane = 2557 std::distance(Entry->ReuseShuffleIndices.begin(), 2558 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2559 } 2560 2561 // Check if the scalar is externally used as an extra arg. 2562 auto ExtI = ExternallyUsedValues.find(Scalar); 2563 if (ExtI != ExternallyUsedValues.end()) { 2564 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2565 << Lane << " from " << *Scalar << ".\n"); 2566 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2567 } 2568 for (User *U : Scalar->users()) { 2569 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2570 2571 Instruction *UserInst = dyn_cast<Instruction>(U); 2572 if (!UserInst) 2573 continue; 2574 2575 // Skip in-tree scalars that become vectors 2576 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2577 Value *UseScalar = UseEntry->Scalars[0]; 2578 // Some in-tree scalars will remain as scalar in vectorized 2579 // instructions. If that is the case, the one in Lane 0 will 2580 // be used. 2581 if (UseScalar != U || 2582 UseEntry->State == TreeEntry::ScatterVectorize || 2583 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2584 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2585 << ".\n"); 2586 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2587 continue; 2588 } 2589 } 2590 2591 // Ignore users in the user ignore list. 2592 if (is_contained(UserIgnoreList, UserInst)) 2593 continue; 2594 2595 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2596 << Lane << " from " << *Scalar << ".\n"); 2597 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2598 } 2599 } 2600 } 2601 } 2602 2603 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2604 const EdgeInfo &UserTreeIdx) { 2605 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2606 2607 InstructionsState S = getSameOpcode(VL); 2608 if (Depth == RecursionMaxDepth) { 2609 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2610 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2611 return; 2612 } 2613 2614 // Don't handle vectors. 2615 if (S.OpValue->getType()->isVectorTy()) { 2616 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2617 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2618 return; 2619 } 2620 2621 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2622 if (SI->getValueOperand()->getType()->isVectorTy()) { 2623 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2624 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2625 return; 2626 } 2627 2628 // If all of the operands are identical or constant we have a simple solution. 2629 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2630 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2631 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2632 return; 2633 } 2634 2635 // We now know that this is a vector of instructions of the same type from 2636 // the same block. 2637 2638 // Don't vectorize ephemeral values. 2639 for (Value *V : VL) { 2640 if (EphValues.count(V)) { 2641 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2642 << ") is ephemeral.\n"); 2643 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2644 return; 2645 } 2646 } 2647 2648 // Check if this is a duplicate of another entry. 2649 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2650 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2651 if (!E->isSame(VL)) { 2652 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2653 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2654 return; 2655 } 2656 // Record the reuse of the tree node. FIXME, currently this is only used to 2657 // properly draw the graph rather than for the actual vectorization. 2658 E->UserTreeIndices.push_back(UserTreeIdx); 2659 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2660 << ".\n"); 2661 return; 2662 } 2663 2664 // Check that none of the instructions in the bundle are already in the tree. 2665 for (Value *V : VL) { 2666 auto *I = dyn_cast<Instruction>(V); 2667 if (!I) 2668 continue; 2669 if (getTreeEntry(I)) { 2670 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2671 << ") is already in tree.\n"); 2672 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2673 return; 2674 } 2675 } 2676 2677 // If any of the scalars is marked as a value that needs to stay scalar, then 2678 // we need to gather the scalars. 2679 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2680 for (Value *V : VL) { 2681 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2682 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2683 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2684 return; 2685 } 2686 } 2687 2688 // Check that all of the users of the scalars that we want to vectorize are 2689 // schedulable. 2690 auto *VL0 = cast<Instruction>(S.OpValue); 2691 BasicBlock *BB = VL0->getParent(); 2692 2693 if (!DT->isReachableFromEntry(BB)) { 2694 // Don't go into unreachable blocks. They may contain instructions with 2695 // dependency cycles which confuse the final scheduling. 2696 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2697 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2698 return; 2699 } 2700 2701 // Check that every instruction appears once in this bundle. 2702 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2703 SmallVector<Value *, 4> UniqueValues; 2704 DenseMap<Value *, unsigned> UniquePositions; 2705 for (Value *V : VL) { 2706 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2707 ReuseShuffleIndicies.emplace_back(Res.first->second); 2708 if (Res.second) 2709 UniqueValues.emplace_back(V); 2710 } 2711 size_t NumUniqueScalarValues = UniqueValues.size(); 2712 if (NumUniqueScalarValues == VL.size()) { 2713 ReuseShuffleIndicies.clear(); 2714 } else { 2715 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2716 if (NumUniqueScalarValues <= 1 || 2717 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2718 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2719 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2720 return; 2721 } 2722 VL = UniqueValues; 2723 } 2724 2725 auto &BSRef = BlocksSchedules[BB]; 2726 if (!BSRef) 2727 BSRef = std::make_unique<BlockScheduling>(BB); 2728 2729 BlockScheduling &BS = *BSRef.get(); 2730 2731 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2732 if (!Bundle) { 2733 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2734 assert((!BS.getScheduleData(VL0) || 2735 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2736 "tryScheduleBundle should cancelScheduling on failure"); 2737 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2738 ReuseShuffleIndicies); 2739 return; 2740 } 2741 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2742 2743 unsigned ShuffleOrOp = S.isAltShuffle() ? 2744 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2745 switch (ShuffleOrOp) { 2746 case Instruction::PHI: { 2747 auto *PH = cast<PHINode>(VL0); 2748 2749 // Check for terminator values (e.g. invoke). 2750 for (Value *V : VL) 2751 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2752 Instruction *Term = dyn_cast<Instruction>( 2753 cast<PHINode>(V)->getIncomingValueForBlock( 2754 PH->getIncomingBlock(I))); 2755 if (Term && Term->isTerminator()) { 2756 LLVM_DEBUG(dbgs() 2757 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2758 BS.cancelScheduling(VL, VL0); 2759 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2760 ReuseShuffleIndicies); 2761 return; 2762 } 2763 } 2764 2765 TreeEntry *TE = 2766 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2767 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2768 2769 // Keeps the reordered operands to avoid code duplication. 2770 SmallVector<ValueList, 2> OperandsVec; 2771 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2772 ValueList Operands; 2773 // Prepare the operand vector. 2774 for (Value *V : VL) 2775 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2776 PH->getIncomingBlock(I))); 2777 TE->setOperand(I, Operands); 2778 OperandsVec.push_back(Operands); 2779 } 2780 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2781 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2782 return; 2783 } 2784 case Instruction::ExtractValue: 2785 case Instruction::ExtractElement: { 2786 OrdersType CurrentOrder; 2787 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2788 if (Reuse) { 2789 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2790 ++NumOpsWantToKeepOriginalOrder; 2791 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2792 ReuseShuffleIndicies); 2793 // This is a special case, as it does not gather, but at the same time 2794 // we are not extending buildTree_rec() towards the operands. 2795 ValueList Op0; 2796 Op0.assign(VL.size(), VL0->getOperand(0)); 2797 VectorizableTree.back()->setOperand(0, Op0); 2798 return; 2799 } 2800 if (!CurrentOrder.empty()) { 2801 LLVM_DEBUG({ 2802 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2803 "with order"; 2804 for (unsigned Idx : CurrentOrder) 2805 dbgs() << " " << Idx; 2806 dbgs() << "\n"; 2807 }); 2808 // Insert new order with initial value 0, if it does not exist, 2809 // otherwise return the iterator to the existing one. 2810 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2811 ReuseShuffleIndicies, CurrentOrder); 2812 findRootOrder(CurrentOrder); 2813 ++NumOpsWantToKeepOrder[CurrentOrder]; 2814 // This is a special case, as it does not gather, but at the same time 2815 // we are not extending buildTree_rec() towards the operands. 2816 ValueList Op0; 2817 Op0.assign(VL.size(), VL0->getOperand(0)); 2818 VectorizableTree.back()->setOperand(0, Op0); 2819 return; 2820 } 2821 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2822 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2823 ReuseShuffleIndicies); 2824 BS.cancelScheduling(VL, VL0); 2825 return; 2826 } 2827 case Instruction::Load: { 2828 // Check that a vectorized load would load the same memory as a scalar 2829 // load. For example, we don't want to vectorize loads that are smaller 2830 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2831 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2832 // from such a struct, we read/write packed bits disagreeing with the 2833 // unvectorized version. 2834 Type *ScalarTy = VL0->getType(); 2835 2836 if (DL->getTypeSizeInBits(ScalarTy) != 2837 DL->getTypeAllocSizeInBits(ScalarTy)) { 2838 BS.cancelScheduling(VL, VL0); 2839 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2840 ReuseShuffleIndicies); 2841 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2842 return; 2843 } 2844 2845 // Make sure all loads in the bundle are simple - we can't vectorize 2846 // atomic or volatile loads. 2847 SmallVector<Value *, 4> PointerOps(VL.size()); 2848 auto POIter = PointerOps.begin(); 2849 for (Value *V : VL) { 2850 auto *L = cast<LoadInst>(V); 2851 if (!L->isSimple()) { 2852 BS.cancelScheduling(VL, VL0); 2853 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2854 ReuseShuffleIndicies); 2855 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2856 return; 2857 } 2858 *POIter = L->getPointerOperand(); 2859 ++POIter; 2860 } 2861 2862 OrdersType CurrentOrder; 2863 // Check the order of pointer operands. 2864 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2865 Value *Ptr0; 2866 Value *PtrN; 2867 if (CurrentOrder.empty()) { 2868 Ptr0 = PointerOps.front(); 2869 PtrN = PointerOps.back(); 2870 } else { 2871 Ptr0 = PointerOps[CurrentOrder.front()]; 2872 PtrN = PointerOps[CurrentOrder.back()]; 2873 } 2874 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2875 const SCEV *ScevN = SE->getSCEV(PtrN); 2876 const auto *Diff = 2877 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2878 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2879 // Check that the sorted loads are consecutive. 2880 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2881 if (CurrentOrder.empty()) { 2882 // Original loads are consecutive and does not require reordering. 2883 ++NumOpsWantToKeepOriginalOrder; 2884 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2885 UserTreeIdx, ReuseShuffleIndicies); 2886 TE->setOperandsInOrder(); 2887 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2888 } else { 2889 // Need to reorder. 2890 TreeEntry *TE = 2891 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2892 ReuseShuffleIndicies, CurrentOrder); 2893 TE->setOperandsInOrder(); 2894 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2895 findRootOrder(CurrentOrder); 2896 ++NumOpsWantToKeepOrder[CurrentOrder]; 2897 } 2898 return; 2899 } 2900 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2901 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2902 UserTreeIdx, ReuseShuffleIndicies); 2903 TE->setOperandsInOrder(); 2904 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2905 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2906 return; 2907 } 2908 2909 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2910 BS.cancelScheduling(VL, VL0); 2911 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2912 ReuseShuffleIndicies); 2913 return; 2914 } 2915 case Instruction::ZExt: 2916 case Instruction::SExt: 2917 case Instruction::FPToUI: 2918 case Instruction::FPToSI: 2919 case Instruction::FPExt: 2920 case Instruction::PtrToInt: 2921 case Instruction::IntToPtr: 2922 case Instruction::SIToFP: 2923 case Instruction::UIToFP: 2924 case Instruction::Trunc: 2925 case Instruction::FPTrunc: 2926 case Instruction::BitCast: { 2927 Type *SrcTy = VL0->getOperand(0)->getType(); 2928 for (Value *V : VL) { 2929 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2930 if (Ty != SrcTy || !isValidElementType(Ty)) { 2931 BS.cancelScheduling(VL, VL0); 2932 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2933 ReuseShuffleIndicies); 2934 LLVM_DEBUG(dbgs() 2935 << "SLP: Gathering casts with different src types.\n"); 2936 return; 2937 } 2938 } 2939 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2940 ReuseShuffleIndicies); 2941 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2942 2943 TE->setOperandsInOrder(); 2944 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2945 ValueList Operands; 2946 // Prepare the operand vector. 2947 for (Value *V : VL) 2948 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2949 2950 buildTree_rec(Operands, Depth + 1, {TE, i}); 2951 } 2952 return; 2953 } 2954 case Instruction::ICmp: 2955 case Instruction::FCmp: { 2956 // Check that all of the compares have the same predicate. 2957 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2958 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2959 Type *ComparedTy = VL0->getOperand(0)->getType(); 2960 for (Value *V : VL) { 2961 CmpInst *Cmp = cast<CmpInst>(V); 2962 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2963 Cmp->getOperand(0)->getType() != ComparedTy) { 2964 BS.cancelScheduling(VL, VL0); 2965 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2966 ReuseShuffleIndicies); 2967 LLVM_DEBUG(dbgs() 2968 << "SLP: Gathering cmp with different predicate.\n"); 2969 return; 2970 } 2971 } 2972 2973 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2974 ReuseShuffleIndicies); 2975 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2976 2977 ValueList Left, Right; 2978 if (cast<CmpInst>(VL0)->isCommutative()) { 2979 // Commutative predicate - collect + sort operands of the instructions 2980 // so that each side is more likely to have the same opcode. 2981 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2982 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2983 } else { 2984 // Collect operands - commute if it uses the swapped predicate. 2985 for (Value *V : VL) { 2986 auto *Cmp = cast<CmpInst>(V); 2987 Value *LHS = Cmp->getOperand(0); 2988 Value *RHS = Cmp->getOperand(1); 2989 if (Cmp->getPredicate() != P0) 2990 std::swap(LHS, RHS); 2991 Left.push_back(LHS); 2992 Right.push_back(RHS); 2993 } 2994 } 2995 TE->setOperand(0, Left); 2996 TE->setOperand(1, Right); 2997 buildTree_rec(Left, Depth + 1, {TE, 0}); 2998 buildTree_rec(Right, Depth + 1, {TE, 1}); 2999 return; 3000 } 3001 case Instruction::Select: 3002 case Instruction::FNeg: 3003 case Instruction::Add: 3004 case Instruction::FAdd: 3005 case Instruction::Sub: 3006 case Instruction::FSub: 3007 case Instruction::Mul: 3008 case Instruction::FMul: 3009 case Instruction::UDiv: 3010 case Instruction::SDiv: 3011 case Instruction::FDiv: 3012 case Instruction::URem: 3013 case Instruction::SRem: 3014 case Instruction::FRem: 3015 case Instruction::Shl: 3016 case Instruction::LShr: 3017 case Instruction::AShr: 3018 case Instruction::And: 3019 case Instruction::Or: 3020 case Instruction::Xor: { 3021 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3022 ReuseShuffleIndicies); 3023 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3024 3025 // Sort operands of the instructions so that each side is more likely to 3026 // have the same opcode. 3027 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3028 ValueList Left, Right; 3029 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3030 TE->setOperand(0, Left); 3031 TE->setOperand(1, Right); 3032 buildTree_rec(Left, Depth + 1, {TE, 0}); 3033 buildTree_rec(Right, Depth + 1, {TE, 1}); 3034 return; 3035 } 3036 3037 TE->setOperandsInOrder(); 3038 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3039 ValueList Operands; 3040 // Prepare the operand vector. 3041 for (Value *V : VL) 3042 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3043 3044 buildTree_rec(Operands, Depth + 1, {TE, i}); 3045 } 3046 return; 3047 } 3048 case Instruction::GetElementPtr: { 3049 // We don't combine GEPs with complicated (nested) indexing. 3050 for (Value *V : VL) { 3051 if (cast<Instruction>(V)->getNumOperands() != 2) { 3052 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3053 BS.cancelScheduling(VL, VL0); 3054 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3055 ReuseShuffleIndicies); 3056 return; 3057 } 3058 } 3059 3060 // We can't combine several GEPs into one vector if they operate on 3061 // different types. 3062 Type *Ty0 = VL0->getOperand(0)->getType(); 3063 for (Value *V : VL) { 3064 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3065 if (Ty0 != CurTy) { 3066 LLVM_DEBUG(dbgs() 3067 << "SLP: not-vectorizable GEP (different types).\n"); 3068 BS.cancelScheduling(VL, VL0); 3069 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3070 ReuseShuffleIndicies); 3071 return; 3072 } 3073 } 3074 3075 // We don't combine GEPs with non-constant indexes. 3076 Type *Ty1 = VL0->getOperand(1)->getType(); 3077 for (Value *V : VL) { 3078 auto Op = cast<Instruction>(V)->getOperand(1); 3079 if (!isa<ConstantInt>(Op) || 3080 (Op->getType() != Ty1 && 3081 Op->getType()->getScalarSizeInBits() > 3082 DL->getIndexSizeInBits( 3083 V->getType()->getPointerAddressSpace()))) { 3084 LLVM_DEBUG(dbgs() 3085 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3086 BS.cancelScheduling(VL, VL0); 3087 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3088 ReuseShuffleIndicies); 3089 return; 3090 } 3091 } 3092 3093 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3094 ReuseShuffleIndicies); 3095 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3096 TE->setOperandsInOrder(); 3097 for (unsigned i = 0, e = 2; i < e; ++i) { 3098 ValueList Operands; 3099 // Prepare the operand vector. 3100 for (Value *V : VL) 3101 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3102 3103 buildTree_rec(Operands, Depth + 1, {TE, i}); 3104 } 3105 return; 3106 } 3107 case Instruction::Store: { 3108 // Check if the stores are consecutive or if we need to swizzle them. 3109 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3110 // Avoid types that are padded when being allocated as scalars, while 3111 // being packed together in a vector (such as i1). 3112 if (DL->getTypeSizeInBits(ScalarTy) != 3113 DL->getTypeAllocSizeInBits(ScalarTy)) { 3114 BS.cancelScheduling(VL, VL0); 3115 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3116 ReuseShuffleIndicies); 3117 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3118 return; 3119 } 3120 // Make sure all stores in the bundle are simple - we can't vectorize 3121 // atomic or volatile stores. 3122 SmallVector<Value *, 4> PointerOps(VL.size()); 3123 ValueList Operands(VL.size()); 3124 auto POIter = PointerOps.begin(); 3125 auto OIter = Operands.begin(); 3126 for (Value *V : VL) { 3127 auto *SI = cast<StoreInst>(V); 3128 if (!SI->isSimple()) { 3129 BS.cancelScheduling(VL, VL0); 3130 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3131 ReuseShuffleIndicies); 3132 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3133 return; 3134 } 3135 *POIter = SI->getPointerOperand(); 3136 *OIter = SI->getValueOperand(); 3137 ++POIter; 3138 ++OIter; 3139 } 3140 3141 OrdersType CurrentOrder; 3142 // Check the order of pointer operands. 3143 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3144 Value *Ptr0; 3145 Value *PtrN; 3146 if (CurrentOrder.empty()) { 3147 Ptr0 = PointerOps.front(); 3148 PtrN = PointerOps.back(); 3149 } else { 3150 Ptr0 = PointerOps[CurrentOrder.front()]; 3151 PtrN = PointerOps[CurrentOrder.back()]; 3152 } 3153 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3154 const SCEV *ScevN = SE->getSCEV(PtrN); 3155 const auto *Diff = 3156 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3157 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3158 // Check that the sorted pointer operands are consecutive. 3159 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3160 if (CurrentOrder.empty()) { 3161 // Original stores are consecutive and does not require reordering. 3162 ++NumOpsWantToKeepOriginalOrder; 3163 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3164 UserTreeIdx, ReuseShuffleIndicies); 3165 TE->setOperandsInOrder(); 3166 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3167 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3168 } else { 3169 TreeEntry *TE = 3170 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3171 ReuseShuffleIndicies, CurrentOrder); 3172 TE->setOperandsInOrder(); 3173 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3174 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3175 findRootOrder(CurrentOrder); 3176 ++NumOpsWantToKeepOrder[CurrentOrder]; 3177 } 3178 return; 3179 } 3180 } 3181 3182 BS.cancelScheduling(VL, VL0); 3183 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3184 ReuseShuffleIndicies); 3185 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3186 return; 3187 } 3188 case Instruction::Call: { 3189 // Check if the calls are all to the same vectorizable intrinsic or 3190 // library function. 3191 CallInst *CI = cast<CallInst>(VL0); 3192 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3193 3194 VFShape Shape = VFShape::get( 3195 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3196 false /*HasGlobalPred*/); 3197 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3198 3199 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3200 BS.cancelScheduling(VL, VL0); 3201 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3202 ReuseShuffleIndicies); 3203 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3204 return; 3205 } 3206 Function *F = CI->getCalledFunction(); 3207 unsigned NumArgs = CI->getNumArgOperands(); 3208 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3209 for (unsigned j = 0; j != NumArgs; ++j) 3210 if (hasVectorInstrinsicScalarOpd(ID, j)) 3211 ScalarArgs[j] = CI->getArgOperand(j); 3212 for (Value *V : VL) { 3213 CallInst *CI2 = dyn_cast<CallInst>(V); 3214 if (!CI2 || CI2->getCalledFunction() != F || 3215 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3216 (VecFunc && 3217 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3218 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3219 BS.cancelScheduling(VL, VL0); 3220 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3221 ReuseShuffleIndicies); 3222 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3223 << "\n"); 3224 return; 3225 } 3226 // Some intrinsics have scalar arguments and should be same in order for 3227 // them to be vectorized. 3228 for (unsigned j = 0; j != NumArgs; ++j) { 3229 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3230 Value *A1J = CI2->getArgOperand(j); 3231 if (ScalarArgs[j] != A1J) { 3232 BS.cancelScheduling(VL, VL0); 3233 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3234 ReuseShuffleIndicies); 3235 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3236 << " argument " << ScalarArgs[j] << "!=" << A1J 3237 << "\n"); 3238 return; 3239 } 3240 } 3241 } 3242 // Verify that the bundle operands are identical between the two calls. 3243 if (CI->hasOperandBundles() && 3244 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3245 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3246 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3247 BS.cancelScheduling(VL, VL0); 3248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3249 ReuseShuffleIndicies); 3250 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3251 << *CI << "!=" << *V << '\n'); 3252 return; 3253 } 3254 } 3255 3256 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3257 ReuseShuffleIndicies); 3258 TE->setOperandsInOrder(); 3259 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3260 ValueList Operands; 3261 // Prepare the operand vector. 3262 for (Value *V : VL) { 3263 auto *CI2 = cast<CallInst>(V); 3264 Operands.push_back(CI2->getArgOperand(i)); 3265 } 3266 buildTree_rec(Operands, Depth + 1, {TE, i}); 3267 } 3268 return; 3269 } 3270 case Instruction::ShuffleVector: { 3271 // If this is not an alternate sequence of opcode like add-sub 3272 // then do not vectorize this instruction. 3273 if (!S.isAltShuffle()) { 3274 BS.cancelScheduling(VL, VL0); 3275 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3276 ReuseShuffleIndicies); 3277 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3278 return; 3279 } 3280 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3281 ReuseShuffleIndicies); 3282 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3283 3284 // Reorder operands if reordering would enable vectorization. 3285 if (isa<BinaryOperator>(VL0)) { 3286 ValueList Left, Right; 3287 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3288 TE->setOperand(0, Left); 3289 TE->setOperand(1, Right); 3290 buildTree_rec(Left, Depth + 1, {TE, 0}); 3291 buildTree_rec(Right, Depth + 1, {TE, 1}); 3292 return; 3293 } 3294 3295 TE->setOperandsInOrder(); 3296 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3297 ValueList Operands; 3298 // Prepare the operand vector. 3299 for (Value *V : VL) 3300 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3301 3302 buildTree_rec(Operands, Depth + 1, {TE, i}); 3303 } 3304 return; 3305 } 3306 default: 3307 BS.cancelScheduling(VL, VL0); 3308 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3309 ReuseShuffleIndicies); 3310 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3311 return; 3312 } 3313 } 3314 3315 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3316 unsigned N = 1; 3317 Type *EltTy = T; 3318 3319 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3320 isa<VectorType>(EltTy)) { 3321 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3322 // Check that struct is homogeneous. 3323 for (const auto *Ty : ST->elements()) 3324 if (Ty != *ST->element_begin()) 3325 return 0; 3326 N *= ST->getNumElements(); 3327 EltTy = *ST->element_begin(); 3328 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3329 N *= AT->getNumElements(); 3330 EltTy = AT->getElementType(); 3331 } else { 3332 auto *VT = cast<FixedVectorType>(EltTy); 3333 N *= VT->getNumElements(); 3334 EltTy = VT->getElementType(); 3335 } 3336 } 3337 3338 if (!isValidElementType(EltTy)) 3339 return 0; 3340 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3341 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3342 return 0; 3343 return N; 3344 } 3345 3346 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3347 SmallVectorImpl<unsigned> &CurrentOrder) const { 3348 Instruction *E0 = cast<Instruction>(OpValue); 3349 assert(E0->getOpcode() == Instruction::ExtractElement || 3350 E0->getOpcode() == Instruction::ExtractValue); 3351 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3352 // Check if all of the extracts come from the same vector and from the 3353 // correct offset. 3354 Value *Vec = E0->getOperand(0); 3355 3356 CurrentOrder.clear(); 3357 3358 // We have to extract from a vector/aggregate with the same number of elements. 3359 unsigned NElts; 3360 if (E0->getOpcode() == Instruction::ExtractValue) { 3361 const DataLayout &DL = E0->getModule()->getDataLayout(); 3362 NElts = canMapToVector(Vec->getType(), DL); 3363 if (!NElts) 3364 return false; 3365 // Check if load can be rewritten as load of vector. 3366 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3367 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3368 return false; 3369 } else { 3370 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3371 } 3372 3373 if (NElts != VL.size()) 3374 return false; 3375 3376 // Check that all of the indices extract from the correct offset. 3377 bool ShouldKeepOrder = true; 3378 unsigned E = VL.size(); 3379 // Assign to all items the initial value E + 1 so we can check if the extract 3380 // instruction index was used already. 3381 // Also, later we can check that all the indices are used and we have a 3382 // consecutive access in the extract instructions, by checking that no 3383 // element of CurrentOrder still has value E + 1. 3384 CurrentOrder.assign(E, E + 1); 3385 unsigned I = 0; 3386 for (; I < E; ++I) { 3387 auto *Inst = cast<Instruction>(VL[I]); 3388 if (Inst->getOperand(0) != Vec) 3389 break; 3390 Optional<unsigned> Idx = getExtractIndex(Inst); 3391 if (!Idx) 3392 break; 3393 const unsigned ExtIdx = *Idx; 3394 if (ExtIdx != I) { 3395 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3396 break; 3397 ShouldKeepOrder = false; 3398 CurrentOrder[ExtIdx] = I; 3399 } else { 3400 if (CurrentOrder[I] != E + 1) 3401 break; 3402 CurrentOrder[I] = I; 3403 } 3404 } 3405 if (I < E) { 3406 CurrentOrder.clear(); 3407 return false; 3408 } 3409 3410 return ShouldKeepOrder; 3411 } 3412 3413 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3414 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3415 return ScalarToTreeEntry.count(U) > 0; 3416 }); 3417 } 3418 3419 static std::pair<InstructionCost, InstructionCost> 3420 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3421 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3422 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3423 3424 // Calculate the cost of the scalar and vector calls. 3425 SmallVector<Type *, 4> VecTys; 3426 for (Use &Arg : CI->args()) 3427 VecTys.push_back( 3428 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3429 FastMathFlags FMF; 3430 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3431 FMF = FPCI->getFastMathFlags(); 3432 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3433 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3434 dyn_cast<IntrinsicInst>(CI)); 3435 auto IntrinsicCost = 3436 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3437 3438 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3439 VecTy->getNumElements())), 3440 false /*HasGlobalPred*/); 3441 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3442 auto LibCost = IntrinsicCost; 3443 if (!CI->isNoBuiltin() && VecFunc) { 3444 // Calculate the cost of the vector library call. 3445 // If the corresponding vector call is cheaper, return its cost. 3446 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3447 TTI::TCK_RecipThroughput); 3448 } 3449 return {IntrinsicCost, LibCost}; 3450 } 3451 3452 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3453 ArrayRef<Value*> VL = E->Scalars; 3454 3455 Type *ScalarTy = VL[0]->getType(); 3456 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3457 ScalarTy = SI->getValueOperand()->getType(); 3458 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3459 ScalarTy = CI->getOperand(0)->getType(); 3460 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3461 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3462 3463 // If we have computed a smaller type for the expression, update VecTy so 3464 // that the costs will be accurate. 3465 if (MinBWs.count(VL[0])) 3466 VecTy = FixedVectorType::get( 3467 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3468 3469 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3470 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3471 InstructionCost ReuseShuffleCost = 0; 3472 if (NeedToShuffleReuses) { 3473 ReuseShuffleCost = 3474 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 3475 E->ReuseShuffleIndices); 3476 } 3477 if (E->State == TreeEntry::NeedToGather) { 3478 if (allConstant(VL)) 3479 return 0; 3480 if (isSplat(VL)) { 3481 return ReuseShuffleCost + 3482 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None, 3483 0); 3484 } 3485 if (E->getOpcode() == Instruction::ExtractElement && 3486 allSameType(VL) && allSameBlock(VL)) { 3487 SmallVector<int> Mask; 3488 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3489 isShuffle(VL, Mask); 3490 if (ShuffleKind.hasValue()) { 3491 InstructionCost Cost = 3492 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy, Mask); 3493 for (auto *V : VL) { 3494 // If all users of instruction are going to be vectorized and this 3495 // instruction itself is not going to be vectorized, consider this 3496 // instruction as dead and remove its cost from the final cost of the 3497 // vectorized tree. 3498 if (areAllUsersVectorized(cast<Instruction>(V)) && 3499 !ScalarToTreeEntry.count(V)) { 3500 auto *IO = cast<ConstantInt>( 3501 cast<ExtractElementInst>(V)->getIndexOperand()); 3502 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3503 IO->getZExtValue()); 3504 } 3505 } 3506 return ReuseShuffleCost + Cost; 3507 } 3508 } 3509 return ReuseShuffleCost + getGatherCost(VL); 3510 } 3511 assert((E->State == TreeEntry::Vectorize || 3512 E->State == TreeEntry::ScatterVectorize) && 3513 "Unhandled state"); 3514 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3515 Instruction *VL0 = E->getMainOp(); 3516 unsigned ShuffleOrOp = 3517 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3518 switch (ShuffleOrOp) { 3519 case Instruction::PHI: 3520 return 0; 3521 3522 case Instruction::ExtractValue: 3523 case Instruction::ExtractElement: { 3524 // The common cost of removal ExtractElement/ExtractValue instructions + 3525 // the cost of shuffles, if required to resuffle the original vector. 3526 InstructionCost CommonCost = 0; 3527 if (NeedToShuffleReuses) { 3528 unsigned Idx = 0; 3529 for (unsigned I : E->ReuseShuffleIndices) { 3530 if (ShuffleOrOp == Instruction::ExtractElement) { 3531 auto *IO = cast<ConstantInt>( 3532 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3533 Idx = IO->getZExtValue(); 3534 ReuseShuffleCost -= TTI->getVectorInstrCost( 3535 Instruction::ExtractElement, VecTy, Idx); 3536 } else { 3537 ReuseShuffleCost -= TTI->getVectorInstrCost( 3538 Instruction::ExtractElement, VecTy, Idx); 3539 ++Idx; 3540 } 3541 } 3542 Idx = ReuseShuffleNumbers; 3543 for (Value *V : VL) { 3544 if (ShuffleOrOp == Instruction::ExtractElement) { 3545 auto *IO = cast<ConstantInt>( 3546 cast<ExtractElementInst>(V)->getIndexOperand()); 3547 Idx = IO->getZExtValue(); 3548 } else { 3549 --Idx; 3550 } 3551 ReuseShuffleCost += 3552 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3553 } 3554 CommonCost = ReuseShuffleCost; 3555 } else if (!E->ReorderIndices.empty()) { 3556 SmallVector<int> NewMask; 3557 inversePermutation(E->ReorderIndices, NewMask); 3558 CommonCost = TTI->getShuffleCost( 3559 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3560 } 3561 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3562 Instruction *EI = cast<Instruction>(VL[I]); 3563 // If all users are going to be vectorized, instruction can be 3564 // considered as dead. 3565 // The same, if have only one user, it will be vectorized for sure. 3566 if (areAllUsersVectorized(EI)) { 3567 // Take credit for instruction that will become dead. 3568 if (EI->hasOneUse()) { 3569 Instruction *Ext = EI->user_back(); 3570 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3571 all_of(Ext->users(), 3572 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3573 // Use getExtractWithExtendCost() to calculate the cost of 3574 // extractelement/ext pair. 3575 CommonCost -= TTI->getExtractWithExtendCost( 3576 Ext->getOpcode(), Ext->getType(), VecTy, I); 3577 // Add back the cost of s|zext which is subtracted separately. 3578 CommonCost += TTI->getCastInstrCost( 3579 Ext->getOpcode(), Ext->getType(), EI->getType(), 3580 TTI::getCastContextHint(Ext), CostKind, Ext); 3581 continue; 3582 } 3583 } 3584 CommonCost -= 3585 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3586 } 3587 } 3588 return CommonCost; 3589 } 3590 case Instruction::ZExt: 3591 case Instruction::SExt: 3592 case Instruction::FPToUI: 3593 case Instruction::FPToSI: 3594 case Instruction::FPExt: 3595 case Instruction::PtrToInt: 3596 case Instruction::IntToPtr: 3597 case Instruction::SIToFP: 3598 case Instruction::UIToFP: 3599 case Instruction::Trunc: 3600 case Instruction::FPTrunc: 3601 case Instruction::BitCast: { 3602 Type *SrcTy = VL0->getOperand(0)->getType(); 3603 InstructionCost ScalarEltCost = 3604 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3605 TTI::getCastContextHint(VL0), CostKind, VL0); 3606 if (NeedToShuffleReuses) { 3607 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3608 } 3609 3610 // Calculate the cost of this instruction. 3611 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3612 3613 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3614 InstructionCost VecCost = 0; 3615 // Check if the values are candidates to demote. 3616 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3617 VecCost = 3618 ReuseShuffleCost + 3619 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3620 TTI::getCastContextHint(VL0), CostKind, VL0); 3621 } 3622 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3623 return VecCost - ScalarCost; 3624 } 3625 case Instruction::FCmp: 3626 case Instruction::ICmp: 3627 case Instruction::Select: { 3628 // Calculate the cost of this instruction. 3629 InstructionCost ScalarEltCost = 3630 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3631 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3632 if (NeedToShuffleReuses) { 3633 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3634 } 3635 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3636 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3637 3638 // Check if all entries in VL are either compares or selects with compares 3639 // as condition that have the same predicates. 3640 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3641 bool First = true; 3642 for (auto *V : VL) { 3643 CmpInst::Predicate CurrentPred; 3644 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3645 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3646 !match(V, MatchCmp)) || 3647 (!First && VecPred != CurrentPred)) { 3648 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3649 break; 3650 } 3651 First = false; 3652 VecPred = CurrentPred; 3653 } 3654 3655 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3656 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3657 // Check if it is possible and profitable to use min/max for selects in 3658 // VL. 3659 // 3660 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3661 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3662 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3663 {VecTy, VecTy}); 3664 InstructionCost IntrinsicCost = 3665 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3666 // If the selects are the only uses of the compares, they will be dead 3667 // and we can adjust the cost by removing their cost. 3668 if (IntrinsicAndUse.second) 3669 IntrinsicCost -= 3670 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3671 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3672 VecCost = std::min(VecCost, IntrinsicCost); 3673 } 3674 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3675 return ReuseShuffleCost + VecCost - ScalarCost; 3676 } 3677 case Instruction::FNeg: 3678 case Instruction::Add: 3679 case Instruction::FAdd: 3680 case Instruction::Sub: 3681 case Instruction::FSub: 3682 case Instruction::Mul: 3683 case Instruction::FMul: 3684 case Instruction::UDiv: 3685 case Instruction::SDiv: 3686 case Instruction::FDiv: 3687 case Instruction::URem: 3688 case Instruction::SRem: 3689 case Instruction::FRem: 3690 case Instruction::Shl: 3691 case Instruction::LShr: 3692 case Instruction::AShr: 3693 case Instruction::And: 3694 case Instruction::Or: 3695 case Instruction::Xor: { 3696 // Certain instructions can be cheaper to vectorize if they have a 3697 // constant second vector operand. 3698 TargetTransformInfo::OperandValueKind Op1VK = 3699 TargetTransformInfo::OK_AnyValue; 3700 TargetTransformInfo::OperandValueKind Op2VK = 3701 TargetTransformInfo::OK_UniformConstantValue; 3702 TargetTransformInfo::OperandValueProperties Op1VP = 3703 TargetTransformInfo::OP_None; 3704 TargetTransformInfo::OperandValueProperties Op2VP = 3705 TargetTransformInfo::OP_PowerOf2; 3706 3707 // If all operands are exactly the same ConstantInt then set the 3708 // operand kind to OK_UniformConstantValue. 3709 // If instead not all operands are constants, then set the operand kind 3710 // to OK_AnyValue. If all operands are constants but not the same, 3711 // then set the operand kind to OK_NonUniformConstantValue. 3712 ConstantInt *CInt0 = nullptr; 3713 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3714 const Instruction *I = cast<Instruction>(VL[i]); 3715 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3716 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3717 if (!CInt) { 3718 Op2VK = TargetTransformInfo::OK_AnyValue; 3719 Op2VP = TargetTransformInfo::OP_None; 3720 break; 3721 } 3722 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3723 !CInt->getValue().isPowerOf2()) 3724 Op2VP = TargetTransformInfo::OP_None; 3725 if (i == 0) { 3726 CInt0 = CInt; 3727 continue; 3728 } 3729 if (CInt0 != CInt) 3730 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3731 } 3732 3733 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3734 InstructionCost ScalarEltCost = 3735 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3736 Op2VK, Op1VP, Op2VP, Operands, VL0); 3737 if (NeedToShuffleReuses) { 3738 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3739 } 3740 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3741 InstructionCost VecCost = 3742 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3743 Op2VK, Op1VP, Op2VP, Operands, VL0); 3744 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3745 return ReuseShuffleCost + VecCost - ScalarCost; 3746 } 3747 case Instruction::GetElementPtr: { 3748 TargetTransformInfo::OperandValueKind Op1VK = 3749 TargetTransformInfo::OK_AnyValue; 3750 TargetTransformInfo::OperandValueKind Op2VK = 3751 TargetTransformInfo::OK_UniformConstantValue; 3752 3753 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3754 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3755 if (NeedToShuffleReuses) { 3756 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3757 } 3758 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3759 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3760 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3761 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3762 return ReuseShuffleCost + VecCost - ScalarCost; 3763 } 3764 case Instruction::Load: { 3765 // Cost of wide load - cost of scalar loads. 3766 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3767 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3768 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3769 if (NeedToShuffleReuses) { 3770 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3771 } 3772 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3773 InstructionCost VecLdCost; 3774 if (E->State == TreeEntry::Vectorize) { 3775 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3776 CostKind, VL0); 3777 } else { 3778 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3779 VecLdCost = TTI->getGatherScatterOpCost( 3780 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3781 /*VariableMask=*/false, alignment, CostKind, VL0); 3782 } 3783 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) { 3784 SmallVector<int> NewMask; 3785 inversePermutation(E->ReorderIndices, NewMask); 3786 VecLdCost += TTI->getShuffleCost( 3787 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3788 } 3789 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3790 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3791 } 3792 case Instruction::Store: { 3793 // We know that we can merge the stores. Calculate the cost. 3794 bool IsReorder = !E->ReorderIndices.empty(); 3795 auto *SI = 3796 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3797 Align Alignment = SI->getAlign(); 3798 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3799 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3800 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3801 InstructionCost VecStCost = TTI->getMemoryOpCost( 3802 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3803 if (IsReorder) { 3804 SmallVector<int> NewMask; 3805 inversePermutation(E->ReorderIndices, NewMask); 3806 VecStCost += TTI->getShuffleCost( 3807 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3808 } 3809 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3810 return VecStCost - ScalarStCost; 3811 } 3812 case Instruction::Call: { 3813 CallInst *CI = cast<CallInst>(VL0); 3814 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3815 3816 // Calculate the cost of the scalar and vector calls. 3817 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 3818 InstructionCost ScalarEltCost = 3819 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3820 if (NeedToShuffleReuses) { 3821 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3822 } 3823 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3824 3825 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3826 InstructionCost VecCallCost = 3827 std::min(VecCallCosts.first, VecCallCosts.second); 3828 3829 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3830 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3831 << " for " << *CI << "\n"); 3832 3833 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3834 } 3835 case Instruction::ShuffleVector: { 3836 assert(E->isAltShuffle() && 3837 ((Instruction::isBinaryOp(E->getOpcode()) && 3838 Instruction::isBinaryOp(E->getAltOpcode())) || 3839 (Instruction::isCast(E->getOpcode()) && 3840 Instruction::isCast(E->getAltOpcode()))) && 3841 "Invalid Shuffle Vector Operand"); 3842 InstructionCost ScalarCost = 0; 3843 if (NeedToShuffleReuses) { 3844 for (unsigned Idx : E->ReuseShuffleIndices) { 3845 Instruction *I = cast<Instruction>(VL[Idx]); 3846 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3847 } 3848 for (Value *V : VL) { 3849 Instruction *I = cast<Instruction>(V); 3850 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3851 } 3852 } 3853 for (Value *V : VL) { 3854 Instruction *I = cast<Instruction>(V); 3855 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3856 ScalarCost += TTI->getInstructionCost(I, CostKind); 3857 } 3858 // VecCost is equal to sum of the cost of creating 2 vectors 3859 // and the cost of creating shuffle. 3860 InstructionCost VecCost = 0; 3861 if (Instruction::isBinaryOp(E->getOpcode())) { 3862 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3863 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3864 CostKind); 3865 } else { 3866 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3867 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3868 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3869 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3870 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3871 TTI::CastContextHint::None, CostKind); 3872 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3873 TTI::CastContextHint::None, CostKind); 3874 } 3875 3876 SmallVector<int> Mask(E->Scalars.size()); 3877 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 3878 auto *OpInst = cast<Instruction>(E->Scalars[I]); 3879 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3880 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 3881 } 3882 VecCost += 3883 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 3884 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3885 return ReuseShuffleCost + VecCost - ScalarCost; 3886 } 3887 default: 3888 llvm_unreachable("Unknown instruction"); 3889 } 3890 } 3891 3892 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3893 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3894 << VectorizableTree.size() << " is fully vectorizable .\n"); 3895 3896 // We only handle trees of heights 1 and 2. 3897 if (VectorizableTree.size() == 1 && 3898 VectorizableTree[0]->State == TreeEntry::Vectorize) 3899 return true; 3900 3901 if (VectorizableTree.size() != 2) 3902 return false; 3903 3904 // Handle splat and all-constants stores. 3905 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3906 (allConstant(VectorizableTree[1]->Scalars) || 3907 isSplat(VectorizableTree[1]->Scalars))) 3908 return true; 3909 3910 // Gathering cost would be too much for tiny trees. 3911 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3912 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3913 return false; 3914 3915 return true; 3916 } 3917 3918 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3919 TargetTransformInfo *TTI) { 3920 // Look past the root to find a source value. Arbitrarily follow the 3921 // path through operand 0 of any 'or'. Also, peek through optional 3922 // shift-left-by-multiple-of-8-bits. 3923 Value *ZextLoad = Root; 3924 const APInt *ShAmtC; 3925 while (!isa<ConstantExpr>(ZextLoad) && 3926 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3927 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3928 ShAmtC->urem(8) == 0))) 3929 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3930 3931 // Check if the input is an extended load of the required or/shift expression. 3932 Value *LoadPtr; 3933 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3934 return false; 3935 3936 // Require that the total load bit width is a legal integer type. 3937 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3938 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3939 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3940 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3941 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3942 return false; 3943 3944 // Everything matched - assume that we can fold the whole sequence using 3945 // load combining. 3946 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3947 << *(cast<Instruction>(Root)) << "\n"); 3948 3949 return true; 3950 } 3951 3952 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 3953 if (RdxKind != RecurKind::Or) 3954 return false; 3955 3956 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3957 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3958 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3959 } 3960 3961 bool BoUpSLP::isLoadCombineCandidate() const { 3962 // Peek through a final sequence of stores and check if all operations are 3963 // likely to be load-combined. 3964 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3965 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3966 Value *X; 3967 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3968 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3969 return false; 3970 } 3971 return true; 3972 } 3973 3974 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3975 // We can vectorize the tree if its size is greater than or equal to the 3976 // minimum size specified by the MinTreeSize command line option. 3977 if (VectorizableTree.size() >= MinTreeSize) 3978 return false; 3979 3980 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3981 // can vectorize it if we can prove it fully vectorizable. 3982 if (isFullyVectorizableTinyTree()) 3983 return false; 3984 3985 assert(VectorizableTree.empty() 3986 ? ExternalUses.empty() 3987 : true && "We shouldn't have any external users"); 3988 3989 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3990 // vectorizable. 3991 return true; 3992 } 3993 3994 InstructionCost BoUpSLP::getSpillCost() const { 3995 // Walk from the bottom of the tree to the top, tracking which values are 3996 // live. When we see a call instruction that is not part of our tree, 3997 // query TTI to see if there is a cost to keeping values live over it 3998 // (for example, if spills and fills are required). 3999 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4000 InstructionCost Cost = 0; 4001 4002 SmallPtrSet<Instruction*, 4> LiveValues; 4003 Instruction *PrevInst = nullptr; 4004 4005 // The entries in VectorizableTree are not necessarily ordered by their 4006 // position in basic blocks. Collect them and order them by dominance so later 4007 // instructions are guaranteed to be visited first. For instructions in 4008 // different basic blocks, we only scan to the beginning of the block, so 4009 // their order does not matter, as long as all instructions in a basic block 4010 // are grouped together. Using dominance ensures a deterministic order. 4011 SmallVector<Instruction *, 16> OrderedScalars; 4012 for (const auto &TEPtr : VectorizableTree) { 4013 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4014 if (!Inst) 4015 continue; 4016 OrderedScalars.push_back(Inst); 4017 } 4018 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 4019 return DT->dominates(B, A); 4020 }); 4021 4022 for (Instruction *Inst : OrderedScalars) { 4023 if (!PrevInst) { 4024 PrevInst = Inst; 4025 continue; 4026 } 4027 4028 // Update LiveValues. 4029 LiveValues.erase(PrevInst); 4030 for (auto &J : PrevInst->operands()) { 4031 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4032 LiveValues.insert(cast<Instruction>(&*J)); 4033 } 4034 4035 LLVM_DEBUG({ 4036 dbgs() << "SLP: #LV: " << LiveValues.size(); 4037 for (auto *X : LiveValues) 4038 dbgs() << " " << X->getName(); 4039 dbgs() << ", Looking at "; 4040 Inst->dump(); 4041 }); 4042 4043 // Now find the sequence of instructions between PrevInst and Inst. 4044 unsigned NumCalls = 0; 4045 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4046 PrevInstIt = 4047 PrevInst->getIterator().getReverse(); 4048 while (InstIt != PrevInstIt) { 4049 if (PrevInstIt == PrevInst->getParent()->rend()) { 4050 PrevInstIt = Inst->getParent()->rbegin(); 4051 continue; 4052 } 4053 4054 // Debug information does not impact spill cost. 4055 if ((isa<CallInst>(&*PrevInstIt) && 4056 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4057 &*PrevInstIt != PrevInst) 4058 NumCalls++; 4059 4060 ++PrevInstIt; 4061 } 4062 4063 if (NumCalls) { 4064 SmallVector<Type*, 4> V; 4065 for (auto *II : LiveValues) 4066 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4067 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4068 } 4069 4070 PrevInst = Inst; 4071 } 4072 4073 return Cost; 4074 } 4075 4076 InstructionCost BoUpSLP::getTreeCost() { 4077 InstructionCost Cost = 0; 4078 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4079 << VectorizableTree.size() << ".\n"); 4080 4081 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4082 4083 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4084 TreeEntry &TE = *VectorizableTree[I].get(); 4085 4086 // We create duplicate tree entries for gather sequences that have multiple 4087 // uses. However, we should not compute the cost of duplicate sequences. 4088 // For example, if we have a build vector (i.e., insertelement sequence) 4089 // that is used by more than one vector instruction, we only need to 4090 // compute the cost of the insertelement instructions once. The redundant 4091 // instructions will be eliminated by CSE. 4092 // 4093 // We should consider not creating duplicate tree entries for gather 4094 // sequences, and instead add additional edges to the tree representing 4095 // their uses. Since such an approach results in fewer total entries, 4096 // existing heuristics based on tree size may yield different results. 4097 // 4098 if (TE.State == TreeEntry::NeedToGather && 4099 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4100 VectorizableTree.end(), 4101 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4102 return EntryPtr->State == TreeEntry::NeedToGather && 4103 EntryPtr->isSame(TE.Scalars); 4104 })) 4105 continue; 4106 4107 InstructionCost C = getEntryCost(&TE); 4108 Cost += C; 4109 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4110 << " for bundle that starts with " << *TE.Scalars[0] 4111 << ".\n" 4112 << "SLP: Current total cost = " << Cost << "\n"); 4113 } 4114 4115 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4116 InstructionCost ExtractCost = 0; 4117 for (ExternalUser &EU : ExternalUses) { 4118 // We only add extract cost once for the same scalar. 4119 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4120 continue; 4121 4122 // Uses by ephemeral values are free (because the ephemeral value will be 4123 // removed prior to code generation, and so the extraction will be 4124 // removed as well). 4125 if (EphValues.count(EU.User)) 4126 continue; 4127 4128 // If we plan to rewrite the tree in a smaller type, we will need to sign 4129 // extend the extracted value back to the original type. Here, we account 4130 // for the extract and the added cost of the sign extend if needed. 4131 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4132 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4133 if (MinBWs.count(ScalarRoot)) { 4134 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4135 auto Extend = 4136 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4137 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4138 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4139 VecTy, EU.Lane); 4140 } else { 4141 ExtractCost += 4142 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4143 } 4144 } 4145 4146 InstructionCost SpillCost = getSpillCost(); 4147 Cost += SpillCost + ExtractCost; 4148 4149 #ifndef NDEBUG 4150 SmallString<256> Str; 4151 { 4152 raw_svector_ostream OS(Str); 4153 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4154 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4155 << "SLP: Total Cost = " << Cost << ".\n"; 4156 } 4157 LLVM_DEBUG(dbgs() << Str); 4158 if (ViewSLPTree) 4159 ViewGraph(this, "SLP" + F->getName(), false, Str); 4160 #endif 4161 4162 return Cost; 4163 } 4164 4165 InstructionCost 4166 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4167 const DenseSet<unsigned> &ShuffledIndices) const { 4168 unsigned NumElts = Ty->getNumElements(); 4169 APInt DemandedElts = APInt::getNullValue(NumElts); 4170 for (unsigned I = 0; I < NumElts; ++I) 4171 if (!ShuffledIndices.count(I)) 4172 DemandedElts.setBit(I); 4173 InstructionCost Cost = 4174 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4175 /*Extract*/ false); 4176 if (!ShuffledIndices.empty()) 4177 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4178 return Cost; 4179 } 4180 4181 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4182 // Find the type of the operands in VL. 4183 Type *ScalarTy = VL[0]->getType(); 4184 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4185 ScalarTy = SI->getValueOperand()->getType(); 4186 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4187 // Find the cost of inserting/extracting values from the vector. 4188 // Check if the same elements are inserted several times and count them as 4189 // shuffle candidates. 4190 DenseSet<unsigned> ShuffledElements; 4191 DenseSet<Value *> UniqueElements; 4192 // Iterate in reverse order to consider insert elements with the high cost. 4193 for (unsigned I = VL.size(); I > 0; --I) { 4194 unsigned Idx = I - 1; 4195 if (!UniqueElements.insert(VL[Idx]).second) 4196 ShuffledElements.insert(Idx); 4197 } 4198 return getGatherCost(VecTy, ShuffledElements); 4199 } 4200 4201 // Perform operand reordering on the instructions in VL and return the reordered 4202 // operands in Left and Right. 4203 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4204 SmallVectorImpl<Value *> &Left, 4205 SmallVectorImpl<Value *> &Right, 4206 const DataLayout &DL, 4207 ScalarEvolution &SE, 4208 const BoUpSLP &R) { 4209 if (VL.empty()) 4210 return; 4211 VLOperands Ops(VL, DL, SE, R); 4212 // Reorder the operands in place. 4213 Ops.reorder(); 4214 Left = Ops.getVL(0); 4215 Right = Ops.getVL(1); 4216 } 4217 4218 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4219 // Get the basic block this bundle is in. All instructions in the bundle 4220 // should be in this block. 4221 auto *Front = E->getMainOp(); 4222 auto *BB = Front->getParent(); 4223 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4224 auto *I = cast<Instruction>(V); 4225 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4226 })); 4227 4228 // The last instruction in the bundle in program order. 4229 Instruction *LastInst = nullptr; 4230 4231 // Find the last instruction. The common case should be that BB has been 4232 // scheduled, and the last instruction is VL.back(). So we start with 4233 // VL.back() and iterate over schedule data until we reach the end of the 4234 // bundle. The end of the bundle is marked by null ScheduleData. 4235 if (BlocksSchedules.count(BB)) { 4236 auto *Bundle = 4237 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4238 if (Bundle && Bundle->isPartOfBundle()) 4239 for (; Bundle; Bundle = Bundle->NextInBundle) 4240 if (Bundle->OpValue == Bundle->Inst) 4241 LastInst = Bundle->Inst; 4242 } 4243 4244 // LastInst can still be null at this point if there's either not an entry 4245 // for BB in BlocksSchedules or there's no ScheduleData available for 4246 // VL.back(). This can be the case if buildTree_rec aborts for various 4247 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4248 // size is reached, etc.). ScheduleData is initialized in the scheduling 4249 // "dry-run". 4250 // 4251 // If this happens, we can still find the last instruction by brute force. We 4252 // iterate forwards from Front (inclusive) until we either see all 4253 // instructions in the bundle or reach the end of the block. If Front is the 4254 // last instruction in program order, LastInst will be set to Front, and we 4255 // will visit all the remaining instructions in the block. 4256 // 4257 // One of the reasons we exit early from buildTree_rec is to place an upper 4258 // bound on compile-time. Thus, taking an additional compile-time hit here is 4259 // not ideal. However, this should be exceedingly rare since it requires that 4260 // we both exit early from buildTree_rec and that the bundle be out-of-order 4261 // (causing us to iterate all the way to the end of the block). 4262 if (!LastInst) { 4263 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4264 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4265 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4266 LastInst = &I; 4267 if (Bundle.empty()) 4268 break; 4269 } 4270 } 4271 assert(LastInst && "Failed to find last instruction in bundle"); 4272 4273 // Set the insertion point after the last instruction in the bundle. Set the 4274 // debug location to Front. 4275 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4276 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4277 } 4278 4279 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4280 Value *Val0 = 4281 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4282 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4283 Value *Vec = PoisonValue::get(VecTy); 4284 unsigned InsIndex = 0; 4285 for (Value *Val : VL) { 4286 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4287 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4288 if (!InsElt) 4289 continue; 4290 GatherSeq.insert(InsElt); 4291 CSEBlocks.insert(InsElt->getParent()); 4292 // Add to our 'need-to-extract' list. 4293 if (TreeEntry *Entry = getTreeEntry(Val)) { 4294 // Find which lane we need to extract. 4295 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4296 find(Entry->Scalars, Val)); 4297 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4298 if (!Entry->ReuseShuffleIndices.empty()) { 4299 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4300 find(Entry->ReuseShuffleIndices, FoundLane)); 4301 } 4302 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4303 } 4304 } 4305 4306 return Vec; 4307 } 4308 4309 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4310 InstructionsState S = getSameOpcode(VL); 4311 if (S.getOpcode()) { 4312 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4313 if (E->isSame(VL)) { 4314 Value *V = vectorizeTree(E); 4315 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4316 // Reshuffle to get only unique values. 4317 // If some of the scalars are duplicated in the vectorization tree 4318 // entry, we do not vectorize them but instead generate a mask for the 4319 // reuses. But if there are several users of the same entry, they may 4320 // have different vectorization factors. This is especially important 4321 // for PHI nodes. In this case, we need to adapt the resulting 4322 // instruction for the user vectorization factor and have to reshuffle 4323 // it again to take only unique elements of the vector. Without this 4324 // code the function incorrectly returns reduced vector instruction 4325 // with the same elements, not with the unique ones. 4326 // block: 4327 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4328 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4329 // ... (use %2) 4330 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4331 // br %block 4332 SmallVector<int, 4> UniqueIdxs; 4333 SmallSet<int, 4> UsedIdxs; 4334 int Pos = 0; 4335 for (int Idx : E->ReuseShuffleIndices) { 4336 if (UsedIdxs.insert(Idx).second) 4337 UniqueIdxs.emplace_back(Pos); 4338 ++Pos; 4339 } 4340 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4341 } 4342 return V; 4343 } 4344 } 4345 } 4346 4347 // Check that every instruction appears once in this bundle. 4348 SmallVector<int, 4> ReuseShuffleIndicies; 4349 SmallVector<Value *, 4> UniqueValues; 4350 if (VL.size() > 2) { 4351 DenseMap<Value *, unsigned> UniquePositions; 4352 for (Value *V : VL) { 4353 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4354 ReuseShuffleIndicies.emplace_back(Res.first->second); 4355 if (Res.second || isa<Constant>(V)) 4356 UniqueValues.emplace_back(V); 4357 } 4358 // Do not shuffle single element or if number of unique values is not power 4359 // of 2. 4360 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4361 !llvm::isPowerOf2_32(UniqueValues.size())) 4362 ReuseShuffleIndicies.clear(); 4363 else 4364 VL = UniqueValues; 4365 } 4366 4367 Value *Vec = gather(VL); 4368 if (!ReuseShuffleIndicies.empty()) { 4369 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4370 if (auto *I = dyn_cast<Instruction>(Vec)) { 4371 GatherSeq.insert(I); 4372 CSEBlocks.insert(I->getParent()); 4373 } 4374 } 4375 return Vec; 4376 } 4377 4378 namespace { 4379 /// Merges shuffle masks and emits final shuffle instruction, if required. 4380 class ShuffleInstructionBuilder { 4381 IRBuilderBase &Builder; 4382 bool IsFinalized = false; 4383 SmallVector<int, 4> Mask; 4384 4385 public: 4386 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4387 4388 /// Adds a mask, inverting it before applying. 4389 void addInversedMask(ArrayRef<unsigned> SubMask) { 4390 if (SubMask.empty()) 4391 return; 4392 SmallVector<int, 4> NewMask; 4393 inversePermutation(SubMask, NewMask); 4394 addMask(NewMask); 4395 } 4396 4397 /// Functions adds masks, merging them into single one. 4398 void addMask(ArrayRef<unsigned> SubMask) { 4399 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4400 addMask(NewMask); 4401 } 4402 4403 void addMask(ArrayRef<int> SubMask) { 4404 if (SubMask.empty()) 4405 return; 4406 if (Mask.empty()) { 4407 Mask.append(SubMask.begin(), SubMask.end()); 4408 return; 4409 } 4410 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4411 int TermValue = std::min(Mask.size(), SubMask.size()); 4412 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4413 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4414 NewMask[I] = E; 4415 continue; 4416 } 4417 NewMask[I] = Mask[SubMask[I]]; 4418 } 4419 Mask.swap(NewMask); 4420 } 4421 4422 Value *finalize(Value *V) { 4423 IsFinalized = true; 4424 if (Mask.empty()) 4425 return V; 4426 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4427 } 4428 4429 ~ShuffleInstructionBuilder() { 4430 assert((IsFinalized || Mask.empty()) && 4431 "Shuffle construction must be finalized."); 4432 } 4433 }; 4434 } // namespace 4435 4436 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4437 IRBuilder<>::InsertPointGuard Guard(Builder); 4438 4439 if (E->VectorizedValue) { 4440 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4441 return E->VectorizedValue; 4442 } 4443 4444 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4445 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4446 if (E->State == TreeEntry::NeedToGather) { 4447 setInsertPointAfterBundle(E); 4448 Value *Vec = gather(E->Scalars); 4449 if (NeedToShuffleReuses) { 4450 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4451 Vec = ShuffleBuilder.finalize(Vec); 4452 if (auto *I = dyn_cast<Instruction>(Vec)) { 4453 GatherSeq.insert(I); 4454 CSEBlocks.insert(I->getParent()); 4455 } 4456 } 4457 E->VectorizedValue = Vec; 4458 return Vec; 4459 } 4460 4461 assert((E->State == TreeEntry::Vectorize || 4462 E->State == TreeEntry::ScatterVectorize) && 4463 "Unhandled state"); 4464 unsigned ShuffleOrOp = 4465 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4466 Instruction *VL0 = E->getMainOp(); 4467 Type *ScalarTy = VL0->getType(); 4468 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4469 ScalarTy = Store->getValueOperand()->getType(); 4470 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4471 switch (ShuffleOrOp) { 4472 case Instruction::PHI: { 4473 auto *PH = cast<PHINode>(VL0); 4474 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4475 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4476 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4477 Value *V = NewPhi; 4478 if (NeedToShuffleReuses) 4479 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4480 4481 E->VectorizedValue = V; 4482 4483 // PHINodes may have multiple entries from the same block. We want to 4484 // visit every block once. 4485 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4486 4487 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4488 ValueList Operands; 4489 BasicBlock *IBB = PH->getIncomingBlock(i); 4490 4491 if (!VisitedBBs.insert(IBB).second) { 4492 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4493 continue; 4494 } 4495 4496 Builder.SetInsertPoint(IBB->getTerminator()); 4497 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4498 Value *Vec = vectorizeTree(E->getOperand(i)); 4499 NewPhi->addIncoming(Vec, IBB); 4500 } 4501 4502 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4503 "Invalid number of incoming values"); 4504 return V; 4505 } 4506 4507 case Instruction::ExtractElement: { 4508 Value *V = E->getSingleOperand(0); 4509 Builder.SetInsertPoint(VL0); 4510 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4511 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4512 V = ShuffleBuilder.finalize(V); 4513 E->VectorizedValue = V; 4514 return V; 4515 } 4516 case Instruction::ExtractValue: { 4517 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4518 Builder.SetInsertPoint(LI); 4519 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4520 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4521 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4522 Value *NewV = propagateMetadata(V, E->Scalars); 4523 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4524 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4525 NewV = ShuffleBuilder.finalize(NewV); 4526 E->VectorizedValue = NewV; 4527 return NewV; 4528 } 4529 case Instruction::ZExt: 4530 case Instruction::SExt: 4531 case Instruction::FPToUI: 4532 case Instruction::FPToSI: 4533 case Instruction::FPExt: 4534 case Instruction::PtrToInt: 4535 case Instruction::IntToPtr: 4536 case Instruction::SIToFP: 4537 case Instruction::UIToFP: 4538 case Instruction::Trunc: 4539 case Instruction::FPTrunc: 4540 case Instruction::BitCast: { 4541 setInsertPointAfterBundle(E); 4542 4543 Value *InVec = vectorizeTree(E->getOperand(0)); 4544 4545 if (E->VectorizedValue) { 4546 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4547 return E->VectorizedValue; 4548 } 4549 4550 auto *CI = cast<CastInst>(VL0); 4551 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4552 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4553 V = ShuffleBuilder.finalize(V); 4554 4555 E->VectorizedValue = V; 4556 ++NumVectorInstructions; 4557 return V; 4558 } 4559 case Instruction::FCmp: 4560 case Instruction::ICmp: { 4561 setInsertPointAfterBundle(E); 4562 4563 Value *L = vectorizeTree(E->getOperand(0)); 4564 Value *R = vectorizeTree(E->getOperand(1)); 4565 4566 if (E->VectorizedValue) { 4567 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4568 return E->VectorizedValue; 4569 } 4570 4571 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4572 Value *V = Builder.CreateCmp(P0, L, R); 4573 propagateIRFlags(V, E->Scalars, VL0); 4574 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4575 V = ShuffleBuilder.finalize(V); 4576 4577 E->VectorizedValue = V; 4578 ++NumVectorInstructions; 4579 return V; 4580 } 4581 case Instruction::Select: { 4582 setInsertPointAfterBundle(E); 4583 4584 Value *Cond = vectorizeTree(E->getOperand(0)); 4585 Value *True = vectorizeTree(E->getOperand(1)); 4586 Value *False = vectorizeTree(E->getOperand(2)); 4587 4588 if (E->VectorizedValue) { 4589 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4590 return E->VectorizedValue; 4591 } 4592 4593 Value *V = Builder.CreateSelect(Cond, True, False); 4594 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4595 V = ShuffleBuilder.finalize(V); 4596 4597 E->VectorizedValue = V; 4598 ++NumVectorInstructions; 4599 return V; 4600 } 4601 case Instruction::FNeg: { 4602 setInsertPointAfterBundle(E); 4603 4604 Value *Op = vectorizeTree(E->getOperand(0)); 4605 4606 if (E->VectorizedValue) { 4607 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4608 return E->VectorizedValue; 4609 } 4610 4611 Value *V = Builder.CreateUnOp( 4612 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4613 propagateIRFlags(V, E->Scalars, VL0); 4614 if (auto *I = dyn_cast<Instruction>(V)) 4615 V = propagateMetadata(I, E->Scalars); 4616 4617 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4618 V = ShuffleBuilder.finalize(V); 4619 4620 E->VectorizedValue = V; 4621 ++NumVectorInstructions; 4622 4623 return V; 4624 } 4625 case Instruction::Add: 4626 case Instruction::FAdd: 4627 case Instruction::Sub: 4628 case Instruction::FSub: 4629 case Instruction::Mul: 4630 case Instruction::FMul: 4631 case Instruction::UDiv: 4632 case Instruction::SDiv: 4633 case Instruction::FDiv: 4634 case Instruction::URem: 4635 case Instruction::SRem: 4636 case Instruction::FRem: 4637 case Instruction::Shl: 4638 case Instruction::LShr: 4639 case Instruction::AShr: 4640 case Instruction::And: 4641 case Instruction::Or: 4642 case Instruction::Xor: { 4643 setInsertPointAfterBundle(E); 4644 4645 Value *LHS = vectorizeTree(E->getOperand(0)); 4646 Value *RHS = vectorizeTree(E->getOperand(1)); 4647 4648 if (E->VectorizedValue) { 4649 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4650 return E->VectorizedValue; 4651 } 4652 4653 Value *V = Builder.CreateBinOp( 4654 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4655 RHS); 4656 propagateIRFlags(V, E->Scalars, VL0); 4657 if (auto *I = dyn_cast<Instruction>(V)) 4658 V = propagateMetadata(I, E->Scalars); 4659 4660 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4661 V = ShuffleBuilder.finalize(V); 4662 4663 E->VectorizedValue = V; 4664 ++NumVectorInstructions; 4665 4666 return V; 4667 } 4668 case Instruction::Load: { 4669 // Loads are inserted at the head of the tree because we don't want to 4670 // sink them all the way down past store instructions. 4671 bool IsReorder = E->updateStateIfReorder(); 4672 if (IsReorder) 4673 VL0 = E->getMainOp(); 4674 setInsertPointAfterBundle(E); 4675 4676 LoadInst *LI = cast<LoadInst>(VL0); 4677 Instruction *NewLI; 4678 unsigned AS = LI->getPointerAddressSpace(); 4679 Value *PO = LI->getPointerOperand(); 4680 if (E->State == TreeEntry::Vectorize) { 4681 4682 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4683 4684 // The pointer operand uses an in-tree scalar so we add the new BitCast 4685 // to ExternalUses list to make sure that an extract will be generated 4686 // in the future. 4687 if (getTreeEntry(PO)) 4688 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4689 4690 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4691 } else { 4692 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4693 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4694 // Use the minimum alignment of the gathered loads. 4695 Align CommonAlignment = LI->getAlign(); 4696 for (Value *V : E->Scalars) 4697 CommonAlignment = 4698 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4699 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4700 } 4701 Value *V = propagateMetadata(NewLI, E->Scalars); 4702 4703 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4704 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4705 V = ShuffleBuilder.finalize(V); 4706 E->VectorizedValue = V; 4707 ++NumVectorInstructions; 4708 return V; 4709 } 4710 case Instruction::Store: { 4711 bool IsReorder = !E->ReorderIndices.empty(); 4712 auto *SI = cast<StoreInst>( 4713 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4714 unsigned AS = SI->getPointerAddressSpace(); 4715 4716 setInsertPointAfterBundle(E); 4717 4718 Value *VecValue = vectorizeTree(E->getOperand(0)); 4719 ShuffleBuilder.addMask(E->ReorderIndices); 4720 VecValue = ShuffleBuilder.finalize(VecValue); 4721 4722 Value *ScalarPtr = SI->getPointerOperand(); 4723 Value *VecPtr = Builder.CreateBitCast( 4724 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4725 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4726 SI->getAlign()); 4727 4728 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4729 // ExternalUses to make sure that an extract will be generated in the 4730 // future. 4731 if (getTreeEntry(ScalarPtr)) 4732 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4733 4734 Value *V = propagateMetadata(ST, E->Scalars); 4735 4736 E->VectorizedValue = V; 4737 ++NumVectorInstructions; 4738 return V; 4739 } 4740 case Instruction::GetElementPtr: { 4741 setInsertPointAfterBundle(E); 4742 4743 Value *Op0 = vectorizeTree(E->getOperand(0)); 4744 4745 std::vector<Value *> OpVecs; 4746 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4747 ++j) { 4748 ValueList &VL = E->getOperand(j); 4749 // Need to cast all elements to the same type before vectorization to 4750 // avoid crash. 4751 Type *VL0Ty = VL0->getOperand(j)->getType(); 4752 Type *Ty = llvm::all_of( 4753 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4754 ? VL0Ty 4755 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4756 ->getPointerOperandType() 4757 ->getScalarType()); 4758 for (Value *&V : VL) { 4759 auto *CI = cast<ConstantInt>(V); 4760 V = ConstantExpr::getIntegerCast(CI, Ty, 4761 CI->getValue().isSignBitSet()); 4762 } 4763 Value *OpVec = vectorizeTree(VL); 4764 OpVecs.push_back(OpVec); 4765 } 4766 4767 Value *V = Builder.CreateGEP( 4768 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4769 if (Instruction *I = dyn_cast<Instruction>(V)) 4770 V = propagateMetadata(I, E->Scalars); 4771 4772 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4773 V = ShuffleBuilder.finalize(V); 4774 4775 E->VectorizedValue = V; 4776 ++NumVectorInstructions; 4777 4778 return V; 4779 } 4780 case Instruction::Call: { 4781 CallInst *CI = cast<CallInst>(VL0); 4782 setInsertPointAfterBundle(E); 4783 4784 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4785 if (Function *FI = CI->getCalledFunction()) 4786 IID = FI->getIntrinsicID(); 4787 4788 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4789 4790 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4791 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4792 VecCallCosts.first <= VecCallCosts.second; 4793 4794 Value *ScalarArg = nullptr; 4795 std::vector<Value *> OpVecs; 4796 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4797 ValueList OpVL; 4798 // Some intrinsics have scalar arguments. This argument should not be 4799 // vectorized. 4800 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4801 CallInst *CEI = cast<CallInst>(VL0); 4802 ScalarArg = CEI->getArgOperand(j); 4803 OpVecs.push_back(CEI->getArgOperand(j)); 4804 continue; 4805 } 4806 4807 Value *OpVec = vectorizeTree(E->getOperand(j)); 4808 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4809 OpVecs.push_back(OpVec); 4810 } 4811 4812 Function *CF; 4813 if (!UseIntrinsic) { 4814 VFShape Shape = 4815 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4816 VecTy->getNumElements())), 4817 false /*HasGlobalPred*/); 4818 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4819 } else { 4820 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4821 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4822 } 4823 4824 SmallVector<OperandBundleDef, 1> OpBundles; 4825 CI->getOperandBundlesAsDefs(OpBundles); 4826 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4827 4828 // The scalar argument uses an in-tree scalar so we add the new vectorized 4829 // call to ExternalUses list to make sure that an extract will be 4830 // generated in the future. 4831 if (ScalarArg && getTreeEntry(ScalarArg)) 4832 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4833 4834 propagateIRFlags(V, E->Scalars, VL0); 4835 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4836 V = ShuffleBuilder.finalize(V); 4837 4838 E->VectorizedValue = V; 4839 ++NumVectorInstructions; 4840 return V; 4841 } 4842 case Instruction::ShuffleVector: { 4843 assert(E->isAltShuffle() && 4844 ((Instruction::isBinaryOp(E->getOpcode()) && 4845 Instruction::isBinaryOp(E->getAltOpcode())) || 4846 (Instruction::isCast(E->getOpcode()) && 4847 Instruction::isCast(E->getAltOpcode()))) && 4848 "Invalid Shuffle Vector Operand"); 4849 4850 Value *LHS = nullptr, *RHS = nullptr; 4851 if (Instruction::isBinaryOp(E->getOpcode())) { 4852 setInsertPointAfterBundle(E); 4853 LHS = vectorizeTree(E->getOperand(0)); 4854 RHS = vectorizeTree(E->getOperand(1)); 4855 } else { 4856 setInsertPointAfterBundle(E); 4857 LHS = vectorizeTree(E->getOperand(0)); 4858 } 4859 4860 if (E->VectorizedValue) { 4861 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4862 return E->VectorizedValue; 4863 } 4864 4865 Value *V0, *V1; 4866 if (Instruction::isBinaryOp(E->getOpcode())) { 4867 V0 = Builder.CreateBinOp( 4868 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4869 V1 = Builder.CreateBinOp( 4870 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4871 } else { 4872 V0 = Builder.CreateCast( 4873 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4874 V1 = Builder.CreateCast( 4875 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4876 } 4877 4878 // Create shuffle to take alternate operations from the vector. 4879 // Also, gather up main and alt scalar ops to propagate IR flags to 4880 // each vector operation. 4881 ValueList OpScalars, AltScalars; 4882 unsigned e = E->Scalars.size(); 4883 SmallVector<int, 8> Mask(e); 4884 for (unsigned i = 0; i < e; ++i) { 4885 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4886 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4887 if (OpInst->getOpcode() == E->getAltOpcode()) { 4888 Mask[i] = e + i; 4889 AltScalars.push_back(E->Scalars[i]); 4890 } else { 4891 Mask[i] = i; 4892 OpScalars.push_back(E->Scalars[i]); 4893 } 4894 } 4895 4896 propagateIRFlags(V0, OpScalars); 4897 propagateIRFlags(V1, AltScalars); 4898 4899 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4900 if (Instruction *I = dyn_cast<Instruction>(V)) 4901 V = propagateMetadata(I, E->Scalars); 4902 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4903 V = ShuffleBuilder.finalize(V); 4904 4905 E->VectorizedValue = V; 4906 ++NumVectorInstructions; 4907 4908 return V; 4909 } 4910 default: 4911 llvm_unreachable("unknown inst"); 4912 } 4913 return nullptr; 4914 } 4915 4916 Value *BoUpSLP::vectorizeTree() { 4917 ExtraValueToDebugLocsMap ExternallyUsedValues; 4918 return vectorizeTree(ExternallyUsedValues); 4919 } 4920 4921 Value * 4922 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4923 // All blocks must be scheduled before any instructions are inserted. 4924 for (auto &BSIter : BlocksSchedules) { 4925 scheduleBlock(BSIter.second.get()); 4926 } 4927 4928 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4929 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4930 4931 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4932 // vectorized root. InstCombine will then rewrite the entire expression. We 4933 // sign extend the extracted values below. 4934 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4935 if (MinBWs.count(ScalarRoot)) { 4936 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 4937 // If current instr is a phi and not the last phi, insert it after the 4938 // last phi node. 4939 if (isa<PHINode>(I)) 4940 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 4941 else 4942 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4943 } 4944 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4945 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4946 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4947 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4948 VectorizableTree[0]->VectorizedValue = Trunc; 4949 } 4950 4951 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4952 << " values .\n"); 4953 4954 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4955 // specified by ScalarType. 4956 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4957 if (!MinBWs.count(ScalarRoot)) 4958 return Ex; 4959 if (MinBWs[ScalarRoot].second) 4960 return Builder.CreateSExt(Ex, ScalarType); 4961 return Builder.CreateZExt(Ex, ScalarType); 4962 }; 4963 4964 // Extract all of the elements with the external uses. 4965 for (const auto &ExternalUse : ExternalUses) { 4966 Value *Scalar = ExternalUse.Scalar; 4967 llvm::User *User = ExternalUse.User; 4968 4969 // Skip users that we already RAUW. This happens when one instruction 4970 // has multiple uses of the same value. 4971 if (User && !is_contained(Scalar->users(), User)) 4972 continue; 4973 TreeEntry *E = getTreeEntry(Scalar); 4974 assert(E && "Invalid scalar"); 4975 assert(E->State != TreeEntry::NeedToGather && 4976 "Extracting from a gather list"); 4977 4978 Value *Vec = E->VectorizedValue; 4979 assert(Vec && "Can't find vectorizable value"); 4980 4981 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4982 // If User == nullptr, the Scalar is used as extra arg. Generate 4983 // ExtractElement instruction and update the record for this scalar in 4984 // ExternallyUsedValues. 4985 if (!User) { 4986 assert(ExternallyUsedValues.count(Scalar) && 4987 "Scalar with nullptr as an external user must be registered in " 4988 "ExternallyUsedValues map"); 4989 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4990 Builder.SetInsertPoint(VecI->getParent(), 4991 std::next(VecI->getIterator())); 4992 } else { 4993 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4994 } 4995 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4996 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4997 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4998 auto &Locs = ExternallyUsedValues[Scalar]; 4999 ExternallyUsedValues.insert({Ex, Locs}); 5000 ExternallyUsedValues.erase(Scalar); 5001 // Required to update internally referenced instructions. 5002 Scalar->replaceAllUsesWith(Ex); 5003 continue; 5004 } 5005 5006 // Generate extracts for out-of-tree users. 5007 // Find the insertion point for the extractelement lane. 5008 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5009 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5010 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5011 if (PH->getIncomingValue(i) == Scalar) { 5012 Instruction *IncomingTerminator = 5013 PH->getIncomingBlock(i)->getTerminator(); 5014 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5015 Builder.SetInsertPoint(VecI->getParent(), 5016 std::next(VecI->getIterator())); 5017 } else { 5018 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5019 } 5020 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5021 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5022 CSEBlocks.insert(PH->getIncomingBlock(i)); 5023 PH->setOperand(i, Ex); 5024 } 5025 } 5026 } else { 5027 Builder.SetInsertPoint(cast<Instruction>(User)); 5028 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5029 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5030 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5031 User->replaceUsesOfWith(Scalar, Ex); 5032 } 5033 } else { 5034 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5035 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5036 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5037 CSEBlocks.insert(&F->getEntryBlock()); 5038 User->replaceUsesOfWith(Scalar, Ex); 5039 } 5040 5041 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5042 } 5043 5044 // For each vectorized value: 5045 for (auto &TEPtr : VectorizableTree) { 5046 TreeEntry *Entry = TEPtr.get(); 5047 5048 // No need to handle users of gathered values. 5049 if (Entry->State == TreeEntry::NeedToGather) 5050 continue; 5051 5052 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5053 5054 // For each lane: 5055 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5056 Value *Scalar = Entry->Scalars[Lane]; 5057 5058 #ifndef NDEBUG 5059 Type *Ty = Scalar->getType(); 5060 if (!Ty->isVoidTy()) { 5061 for (User *U : Scalar->users()) { 5062 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5063 5064 // It is legal to delete users in the ignorelist. 5065 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5066 "Deleting out-of-tree value"); 5067 } 5068 } 5069 #endif 5070 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5071 eraseInstruction(cast<Instruction>(Scalar)); 5072 } 5073 } 5074 5075 Builder.ClearInsertionPoint(); 5076 InstrElementSize.clear(); 5077 5078 return VectorizableTree[0]->VectorizedValue; 5079 } 5080 5081 void BoUpSLP::optimizeGatherSequence() { 5082 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5083 << " gather sequences instructions.\n"); 5084 // LICM InsertElementInst sequences. 5085 for (Instruction *I : GatherSeq) { 5086 if (isDeleted(I)) 5087 continue; 5088 5089 // Check if this block is inside a loop. 5090 Loop *L = LI->getLoopFor(I->getParent()); 5091 if (!L) 5092 continue; 5093 5094 // Check if it has a preheader. 5095 BasicBlock *PreHeader = L->getLoopPreheader(); 5096 if (!PreHeader) 5097 continue; 5098 5099 // If the vector or the element that we insert into it are 5100 // instructions that are defined in this basic block then we can't 5101 // hoist this instruction. 5102 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5103 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5104 if (Op0 && L->contains(Op0)) 5105 continue; 5106 if (Op1 && L->contains(Op1)) 5107 continue; 5108 5109 // We can hoist this instruction. Move it to the pre-header. 5110 I->moveBefore(PreHeader->getTerminator()); 5111 } 5112 5113 // Make a list of all reachable blocks in our CSE queue. 5114 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5115 CSEWorkList.reserve(CSEBlocks.size()); 5116 for (BasicBlock *BB : CSEBlocks) 5117 if (DomTreeNode *N = DT->getNode(BB)) { 5118 assert(DT->isReachableFromEntry(N)); 5119 CSEWorkList.push_back(N); 5120 } 5121 5122 // Sort blocks by domination. This ensures we visit a block after all blocks 5123 // dominating it are visited. 5124 llvm::stable_sort(CSEWorkList, 5125 [this](const DomTreeNode *A, const DomTreeNode *B) { 5126 return DT->properlyDominates(A, B); 5127 }); 5128 5129 // Perform O(N^2) search over the gather sequences and merge identical 5130 // instructions. TODO: We can further optimize this scan if we split the 5131 // instructions into different buckets based on the insert lane. 5132 SmallVector<Instruction *, 16> Visited; 5133 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5134 assert(*I && 5135 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5136 "Worklist not sorted properly!"); 5137 BasicBlock *BB = (*I)->getBlock(); 5138 // For all instructions in blocks containing gather sequences: 5139 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5140 Instruction *In = &*it++; 5141 if (isDeleted(In)) 5142 continue; 5143 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5144 continue; 5145 5146 // Check if we can replace this instruction with any of the 5147 // visited instructions. 5148 for (Instruction *v : Visited) { 5149 if (In->isIdenticalTo(v) && 5150 DT->dominates(v->getParent(), In->getParent())) { 5151 In->replaceAllUsesWith(v); 5152 eraseInstruction(In); 5153 In = nullptr; 5154 break; 5155 } 5156 } 5157 if (In) { 5158 assert(!is_contained(Visited, In)); 5159 Visited.push_back(In); 5160 } 5161 } 5162 } 5163 CSEBlocks.clear(); 5164 GatherSeq.clear(); 5165 } 5166 5167 // Groups the instructions to a bundle (which is then a single scheduling entity) 5168 // and schedules instructions until the bundle gets ready. 5169 Optional<BoUpSLP::ScheduleData *> 5170 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5171 const InstructionsState &S) { 5172 if (isa<PHINode>(S.OpValue)) 5173 return nullptr; 5174 5175 // Initialize the instruction bundle. 5176 Instruction *OldScheduleEnd = ScheduleEnd; 5177 ScheduleData *PrevInBundle = nullptr; 5178 ScheduleData *Bundle = nullptr; 5179 bool ReSchedule = false; 5180 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5181 5182 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5183 ScheduleData *Bundle) { 5184 // The scheduling region got new instructions at the lower end (or it is a 5185 // new region for the first bundle). This makes it necessary to 5186 // recalculate all dependencies. 5187 // It is seldom that this needs to be done a second time after adding the 5188 // initial bundle to the region. 5189 if (ScheduleEnd != OldScheduleEnd) { 5190 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5191 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5192 ReSchedule = true; 5193 } 5194 if (ReSchedule) { 5195 resetSchedule(); 5196 initialFillReadyList(ReadyInsts); 5197 } 5198 if (Bundle) { 5199 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5200 << " in block " << BB->getName() << "\n"); 5201 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5202 } 5203 5204 // Now try to schedule the new bundle or (if no bundle) just calculate 5205 // dependencies. As soon as the bundle is "ready" it means that there are no 5206 // cyclic dependencies and we can schedule it. Note that's important that we 5207 // don't "schedule" the bundle yet (see cancelScheduling). 5208 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5209 !ReadyInsts.empty()) { 5210 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5211 if (Picked->isSchedulingEntity() && Picked->isReady()) 5212 schedule(Picked, ReadyInsts); 5213 } 5214 }; 5215 5216 // Make sure that the scheduling region contains all 5217 // instructions of the bundle. 5218 for (Value *V : VL) { 5219 if (!extendSchedulingRegion(V, S)) { 5220 // If the scheduling region got new instructions at the lower end (or it 5221 // is a new region for the first bundle). This makes it necessary to 5222 // recalculate all dependencies. 5223 // Otherwise the compiler may crash trying to incorrectly calculate 5224 // dependencies and emit instruction in the wrong order at the actual 5225 // scheduling. 5226 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 5227 return None; 5228 } 5229 } 5230 5231 for (Value *V : VL) { 5232 ScheduleData *BundleMember = getScheduleData(V); 5233 assert(BundleMember && 5234 "no ScheduleData for bundle member (maybe not in same basic block)"); 5235 if (BundleMember->IsScheduled) { 5236 // A bundle member was scheduled as single instruction before and now 5237 // needs to be scheduled as part of the bundle. We just get rid of the 5238 // existing schedule. 5239 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5240 << " was already scheduled\n"); 5241 ReSchedule = true; 5242 } 5243 assert(BundleMember->isSchedulingEntity() && 5244 "bundle member already part of other bundle"); 5245 if (PrevInBundle) { 5246 PrevInBundle->NextInBundle = BundleMember; 5247 } else { 5248 Bundle = BundleMember; 5249 } 5250 BundleMember->UnscheduledDepsInBundle = 0; 5251 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5252 5253 // Group the instructions to a bundle. 5254 BundleMember->FirstInBundle = Bundle; 5255 PrevInBundle = BundleMember; 5256 } 5257 assert(Bundle && "Failed to find schedule bundle"); 5258 TryScheduleBundle(ReSchedule, Bundle); 5259 if (!Bundle->isReady()) { 5260 cancelScheduling(VL, S.OpValue); 5261 return None; 5262 } 5263 return Bundle; 5264 } 5265 5266 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5267 Value *OpValue) { 5268 if (isa<PHINode>(OpValue)) 5269 return; 5270 5271 ScheduleData *Bundle = getScheduleData(OpValue); 5272 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5273 assert(!Bundle->IsScheduled && 5274 "Can't cancel bundle which is already scheduled"); 5275 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5276 "tried to unbundle something which is not a bundle"); 5277 5278 // Un-bundle: make single instructions out of the bundle. 5279 ScheduleData *BundleMember = Bundle; 5280 while (BundleMember) { 5281 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5282 BundleMember->FirstInBundle = BundleMember; 5283 ScheduleData *Next = BundleMember->NextInBundle; 5284 BundleMember->NextInBundle = nullptr; 5285 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5286 if (BundleMember->UnscheduledDepsInBundle == 0) { 5287 ReadyInsts.insert(BundleMember); 5288 } 5289 BundleMember = Next; 5290 } 5291 } 5292 5293 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5294 // Allocate a new ScheduleData for the instruction. 5295 if (ChunkPos >= ChunkSize) { 5296 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5297 ChunkPos = 0; 5298 } 5299 return &(ScheduleDataChunks.back()[ChunkPos++]); 5300 } 5301 5302 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5303 const InstructionsState &S) { 5304 if (getScheduleData(V, isOneOf(S, V))) 5305 return true; 5306 Instruction *I = dyn_cast<Instruction>(V); 5307 assert(I && "bundle member must be an instruction"); 5308 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5309 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5310 ScheduleData *ISD = getScheduleData(I); 5311 if (!ISD) 5312 return false; 5313 assert(isInSchedulingRegion(ISD) && 5314 "ScheduleData not in scheduling region"); 5315 ScheduleData *SD = allocateScheduleDataChunks(); 5316 SD->Inst = I; 5317 SD->init(SchedulingRegionID, S.OpValue); 5318 ExtraScheduleDataMap[I][S.OpValue] = SD; 5319 return true; 5320 }; 5321 if (CheckSheduleForI(I)) 5322 return true; 5323 if (!ScheduleStart) { 5324 // It's the first instruction in the new region. 5325 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5326 ScheduleStart = I; 5327 ScheduleEnd = I->getNextNode(); 5328 if (isOneOf(S, I) != I) 5329 CheckSheduleForI(I); 5330 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5331 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5332 return true; 5333 } 5334 // Search up and down at the same time, because we don't know if the new 5335 // instruction is above or below the existing scheduling region. 5336 BasicBlock::reverse_iterator UpIter = 5337 ++ScheduleStart->getIterator().getReverse(); 5338 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5339 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5340 BasicBlock::iterator LowerEnd = BB->end(); 5341 while (true) { 5342 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5343 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5344 return false; 5345 } 5346 5347 if (UpIter != UpperEnd) { 5348 if (&*UpIter == I) { 5349 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5350 ScheduleStart = I; 5351 if (isOneOf(S, I) != I) 5352 CheckSheduleForI(I); 5353 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5354 << "\n"); 5355 return true; 5356 } 5357 ++UpIter; 5358 } 5359 if (DownIter != LowerEnd) { 5360 if (&*DownIter == I) { 5361 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5362 nullptr); 5363 ScheduleEnd = I->getNextNode(); 5364 if (isOneOf(S, I) != I) 5365 CheckSheduleForI(I); 5366 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5367 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5368 << "\n"); 5369 return true; 5370 } 5371 ++DownIter; 5372 } 5373 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5374 "instruction not found in block"); 5375 } 5376 return true; 5377 } 5378 5379 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5380 Instruction *ToI, 5381 ScheduleData *PrevLoadStore, 5382 ScheduleData *NextLoadStore) { 5383 ScheduleData *CurrentLoadStore = PrevLoadStore; 5384 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5385 ScheduleData *SD = ScheduleDataMap[I]; 5386 if (!SD) { 5387 SD = allocateScheduleDataChunks(); 5388 ScheduleDataMap[I] = SD; 5389 SD->Inst = I; 5390 } 5391 assert(!isInSchedulingRegion(SD) && 5392 "new ScheduleData already in scheduling region"); 5393 SD->init(SchedulingRegionID, I); 5394 5395 if (I->mayReadOrWriteMemory() && 5396 (!isa<IntrinsicInst>(I) || 5397 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5398 cast<IntrinsicInst>(I)->getIntrinsicID() != 5399 Intrinsic::pseudoprobe))) { 5400 // Update the linked list of memory accessing instructions. 5401 if (CurrentLoadStore) { 5402 CurrentLoadStore->NextLoadStore = SD; 5403 } else { 5404 FirstLoadStoreInRegion = SD; 5405 } 5406 CurrentLoadStore = SD; 5407 } 5408 } 5409 if (NextLoadStore) { 5410 if (CurrentLoadStore) 5411 CurrentLoadStore->NextLoadStore = NextLoadStore; 5412 } else { 5413 LastLoadStoreInRegion = CurrentLoadStore; 5414 } 5415 } 5416 5417 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5418 bool InsertInReadyList, 5419 BoUpSLP *SLP) { 5420 assert(SD->isSchedulingEntity()); 5421 5422 SmallVector<ScheduleData *, 10> WorkList; 5423 WorkList.push_back(SD); 5424 5425 while (!WorkList.empty()) { 5426 ScheduleData *SD = WorkList.pop_back_val(); 5427 5428 ScheduleData *BundleMember = SD; 5429 while (BundleMember) { 5430 assert(isInSchedulingRegion(BundleMember)); 5431 if (!BundleMember->hasValidDependencies()) { 5432 5433 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5434 << "\n"); 5435 BundleMember->Dependencies = 0; 5436 BundleMember->resetUnscheduledDeps(); 5437 5438 // Handle def-use chain dependencies. 5439 if (BundleMember->OpValue != BundleMember->Inst) { 5440 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5441 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5442 BundleMember->Dependencies++; 5443 ScheduleData *DestBundle = UseSD->FirstInBundle; 5444 if (!DestBundle->IsScheduled) 5445 BundleMember->incrementUnscheduledDeps(1); 5446 if (!DestBundle->hasValidDependencies()) 5447 WorkList.push_back(DestBundle); 5448 } 5449 } else { 5450 for (User *U : BundleMember->Inst->users()) { 5451 if (isa<Instruction>(U)) { 5452 ScheduleData *UseSD = getScheduleData(U); 5453 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5454 BundleMember->Dependencies++; 5455 ScheduleData *DestBundle = UseSD->FirstInBundle; 5456 if (!DestBundle->IsScheduled) 5457 BundleMember->incrementUnscheduledDeps(1); 5458 if (!DestBundle->hasValidDependencies()) 5459 WorkList.push_back(DestBundle); 5460 } 5461 } else { 5462 // I'm not sure if this can ever happen. But we need to be safe. 5463 // This lets the instruction/bundle never be scheduled and 5464 // eventually disable vectorization. 5465 BundleMember->Dependencies++; 5466 BundleMember->incrementUnscheduledDeps(1); 5467 } 5468 } 5469 } 5470 5471 // Handle the memory dependencies. 5472 ScheduleData *DepDest = BundleMember->NextLoadStore; 5473 if (DepDest) { 5474 Instruction *SrcInst = BundleMember->Inst; 5475 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5476 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5477 unsigned numAliased = 0; 5478 unsigned DistToSrc = 1; 5479 5480 while (DepDest) { 5481 assert(isInSchedulingRegion(DepDest)); 5482 5483 // We have two limits to reduce the complexity: 5484 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5485 // SLP->isAliased (which is the expensive part in this loop). 5486 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5487 // the whole loop (even if the loop is fast, it's quadratic). 5488 // It's important for the loop break condition (see below) to 5489 // check this limit even between two read-only instructions. 5490 if (DistToSrc >= MaxMemDepDistance || 5491 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5492 (numAliased >= AliasedCheckLimit || 5493 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5494 5495 // We increment the counter only if the locations are aliased 5496 // (instead of counting all alias checks). This gives a better 5497 // balance between reduced runtime and accurate dependencies. 5498 numAliased++; 5499 5500 DepDest->MemoryDependencies.push_back(BundleMember); 5501 BundleMember->Dependencies++; 5502 ScheduleData *DestBundle = DepDest->FirstInBundle; 5503 if (!DestBundle->IsScheduled) { 5504 BundleMember->incrementUnscheduledDeps(1); 5505 } 5506 if (!DestBundle->hasValidDependencies()) { 5507 WorkList.push_back(DestBundle); 5508 } 5509 } 5510 DepDest = DepDest->NextLoadStore; 5511 5512 // Example, explaining the loop break condition: Let's assume our 5513 // starting instruction is i0 and MaxMemDepDistance = 3. 5514 // 5515 // +--------v--v--v 5516 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5517 // +--------^--^--^ 5518 // 5519 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5520 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5521 // Previously we already added dependencies from i3 to i6,i7,i8 5522 // (because of MaxMemDepDistance). As we added a dependency from 5523 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5524 // and we can abort this loop at i6. 5525 if (DistToSrc >= 2 * MaxMemDepDistance) 5526 break; 5527 DistToSrc++; 5528 } 5529 } 5530 } 5531 BundleMember = BundleMember->NextInBundle; 5532 } 5533 if (InsertInReadyList && SD->isReady()) { 5534 ReadyInsts.push_back(SD); 5535 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5536 << "\n"); 5537 } 5538 } 5539 } 5540 5541 void BoUpSLP::BlockScheduling::resetSchedule() { 5542 assert(ScheduleStart && 5543 "tried to reset schedule on block which has not been scheduled"); 5544 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5545 doForAllOpcodes(I, [&](ScheduleData *SD) { 5546 assert(isInSchedulingRegion(SD) && 5547 "ScheduleData not in scheduling region"); 5548 SD->IsScheduled = false; 5549 SD->resetUnscheduledDeps(); 5550 }); 5551 } 5552 ReadyInsts.clear(); 5553 } 5554 5555 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5556 if (!BS->ScheduleStart) 5557 return; 5558 5559 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5560 5561 BS->resetSchedule(); 5562 5563 // For the real scheduling we use a more sophisticated ready-list: it is 5564 // sorted by the original instruction location. This lets the final schedule 5565 // be as close as possible to the original instruction order. 5566 struct ScheduleDataCompare { 5567 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5568 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5569 } 5570 }; 5571 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5572 5573 // Ensure that all dependency data is updated and fill the ready-list with 5574 // initial instructions. 5575 int Idx = 0; 5576 int NumToSchedule = 0; 5577 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5578 I = I->getNextNode()) { 5579 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5580 assert(SD->isPartOfBundle() == 5581 (getTreeEntry(SD->Inst) != nullptr) && 5582 "scheduler and vectorizer bundle mismatch"); 5583 SD->FirstInBundle->SchedulingPriority = Idx++; 5584 if (SD->isSchedulingEntity()) { 5585 BS->calculateDependencies(SD, false, this); 5586 NumToSchedule++; 5587 } 5588 }); 5589 } 5590 BS->initialFillReadyList(ReadyInsts); 5591 5592 Instruction *LastScheduledInst = BS->ScheduleEnd; 5593 5594 // Do the "real" scheduling. 5595 while (!ReadyInsts.empty()) { 5596 ScheduleData *picked = *ReadyInsts.begin(); 5597 ReadyInsts.erase(ReadyInsts.begin()); 5598 5599 // Move the scheduled instruction(s) to their dedicated places, if not 5600 // there yet. 5601 ScheduleData *BundleMember = picked; 5602 while (BundleMember) { 5603 Instruction *pickedInst = BundleMember->Inst; 5604 if (LastScheduledInst->getNextNode() != pickedInst) { 5605 BS->BB->getInstList().remove(pickedInst); 5606 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5607 pickedInst); 5608 } 5609 LastScheduledInst = pickedInst; 5610 BundleMember = BundleMember->NextInBundle; 5611 } 5612 5613 BS->schedule(picked, ReadyInsts); 5614 NumToSchedule--; 5615 } 5616 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5617 5618 // Avoid duplicate scheduling of the block. 5619 BS->ScheduleStart = nullptr; 5620 } 5621 5622 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5623 // If V is a store, just return the width of the stored value (or value 5624 // truncated just before storing) without traversing the expression tree. 5625 // This is the common case. 5626 if (auto *Store = dyn_cast<StoreInst>(V)) { 5627 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5628 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5629 else 5630 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5631 } 5632 5633 auto E = InstrElementSize.find(V); 5634 if (E != InstrElementSize.end()) 5635 return E->second; 5636 5637 // If V is not a store, we can traverse the expression tree to find loads 5638 // that feed it. The type of the loaded value may indicate a more suitable 5639 // width than V's type. We want to base the vector element size on the width 5640 // of memory operations where possible. 5641 SmallVector<Instruction *, 16> Worklist; 5642 SmallPtrSet<Instruction *, 16> Visited; 5643 if (auto *I = dyn_cast<Instruction>(V)) { 5644 Worklist.push_back(I); 5645 Visited.insert(I); 5646 } 5647 5648 // Traverse the expression tree in bottom-up order looking for loads. If we 5649 // encounter an instruction we don't yet handle, we give up. 5650 auto MaxWidth = 0u; 5651 auto FoundUnknownInst = false; 5652 while (!Worklist.empty() && !FoundUnknownInst) { 5653 auto *I = Worklist.pop_back_val(); 5654 5655 // We should only be looking at scalar instructions here. If the current 5656 // instruction has a vector type, give up. 5657 auto *Ty = I->getType(); 5658 if (isa<VectorType>(Ty)) 5659 FoundUnknownInst = true; 5660 5661 // If the current instruction is a load, update MaxWidth to reflect the 5662 // width of the loaded value. 5663 else if (isa<LoadInst>(I)) 5664 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5665 5666 // Otherwise, we need to visit the operands of the instruction. We only 5667 // handle the interesting cases from buildTree here. If an operand is an 5668 // instruction we haven't yet visited, we add it to the worklist. 5669 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5670 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5671 for (Use &U : I->operands()) 5672 if (auto *J = dyn_cast<Instruction>(U.get())) 5673 if (Visited.insert(J).second) 5674 Worklist.push_back(J); 5675 } 5676 5677 // If we don't yet handle the instruction, give up. 5678 else 5679 FoundUnknownInst = true; 5680 } 5681 5682 int Width = MaxWidth; 5683 // If we didn't encounter a memory access in the expression tree, or if we 5684 // gave up for some reason, just return the width of V. Otherwise, return the 5685 // maximum width we found. 5686 if (!MaxWidth || FoundUnknownInst) 5687 Width = DL->getTypeSizeInBits(V->getType()); 5688 5689 for (Instruction *I : Visited) 5690 InstrElementSize[I] = Width; 5691 5692 return Width; 5693 } 5694 5695 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5696 // smaller type with a truncation. We collect the values that will be demoted 5697 // in ToDemote and additional roots that require investigating in Roots. 5698 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5699 SmallVectorImpl<Value *> &ToDemote, 5700 SmallVectorImpl<Value *> &Roots) { 5701 // We can always demote constants. 5702 if (isa<Constant>(V)) { 5703 ToDemote.push_back(V); 5704 return true; 5705 } 5706 5707 // If the value is not an instruction in the expression with only one use, it 5708 // cannot be demoted. 5709 auto *I = dyn_cast<Instruction>(V); 5710 if (!I || !I->hasOneUse() || !Expr.count(I)) 5711 return false; 5712 5713 switch (I->getOpcode()) { 5714 5715 // We can always demote truncations and extensions. Since truncations can 5716 // seed additional demotion, we save the truncated value. 5717 case Instruction::Trunc: 5718 Roots.push_back(I->getOperand(0)); 5719 break; 5720 case Instruction::ZExt: 5721 case Instruction::SExt: 5722 break; 5723 5724 // We can demote certain binary operations if we can demote both of their 5725 // operands. 5726 case Instruction::Add: 5727 case Instruction::Sub: 5728 case Instruction::Mul: 5729 case Instruction::And: 5730 case Instruction::Or: 5731 case Instruction::Xor: 5732 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5733 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5734 return false; 5735 break; 5736 5737 // We can demote selects if we can demote their true and false values. 5738 case Instruction::Select: { 5739 SelectInst *SI = cast<SelectInst>(I); 5740 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5741 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5742 return false; 5743 break; 5744 } 5745 5746 // We can demote phis if we can demote all their incoming operands. Note that 5747 // we don't need to worry about cycles since we ensure single use above. 5748 case Instruction::PHI: { 5749 PHINode *PN = cast<PHINode>(I); 5750 for (Value *IncValue : PN->incoming_values()) 5751 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5752 return false; 5753 break; 5754 } 5755 5756 // Otherwise, conservatively give up. 5757 default: 5758 return false; 5759 } 5760 5761 // Record the value that we can demote. 5762 ToDemote.push_back(V); 5763 return true; 5764 } 5765 5766 void BoUpSLP::computeMinimumValueSizes() { 5767 // If there are no external uses, the expression tree must be rooted by a 5768 // store. We can't demote in-memory values, so there is nothing to do here. 5769 if (ExternalUses.empty()) 5770 return; 5771 5772 // We only attempt to truncate integer expressions. 5773 auto &TreeRoot = VectorizableTree[0]->Scalars; 5774 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5775 if (!TreeRootIT) 5776 return; 5777 5778 // If the expression is not rooted by a store, these roots should have 5779 // external uses. We will rely on InstCombine to rewrite the expression in 5780 // the narrower type. However, InstCombine only rewrites single-use values. 5781 // This means that if a tree entry other than a root is used externally, it 5782 // must have multiple uses and InstCombine will not rewrite it. The code 5783 // below ensures that only the roots are used externally. 5784 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5785 for (auto &EU : ExternalUses) 5786 if (!Expr.erase(EU.Scalar)) 5787 return; 5788 if (!Expr.empty()) 5789 return; 5790 5791 // Collect the scalar values of the vectorizable expression. We will use this 5792 // context to determine which values can be demoted. If we see a truncation, 5793 // we mark it as seeding another demotion. 5794 for (auto &EntryPtr : VectorizableTree) 5795 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5796 5797 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5798 // have a single external user that is not in the vectorizable tree. 5799 for (auto *Root : TreeRoot) 5800 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5801 return; 5802 5803 // Conservatively determine if we can actually truncate the roots of the 5804 // expression. Collect the values that can be demoted in ToDemote and 5805 // additional roots that require investigating in Roots. 5806 SmallVector<Value *, 32> ToDemote; 5807 SmallVector<Value *, 4> Roots; 5808 for (auto *Root : TreeRoot) 5809 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5810 return; 5811 5812 // The maximum bit width required to represent all the values that can be 5813 // demoted without loss of precision. It would be safe to truncate the roots 5814 // of the expression to this width. 5815 auto MaxBitWidth = 8u; 5816 5817 // We first check if all the bits of the roots are demanded. If they're not, 5818 // we can truncate the roots to this narrower type. 5819 for (auto *Root : TreeRoot) { 5820 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5821 MaxBitWidth = std::max<unsigned>( 5822 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5823 } 5824 5825 // True if the roots can be zero-extended back to their original type, rather 5826 // than sign-extended. We know that if the leading bits are not demanded, we 5827 // can safely zero-extend. So we initialize IsKnownPositive to True. 5828 bool IsKnownPositive = true; 5829 5830 // If all the bits of the roots are demanded, we can try a little harder to 5831 // compute a narrower type. This can happen, for example, if the roots are 5832 // getelementptr indices. InstCombine promotes these indices to the pointer 5833 // width. Thus, all their bits are technically demanded even though the 5834 // address computation might be vectorized in a smaller type. 5835 // 5836 // We start by looking at each entry that can be demoted. We compute the 5837 // maximum bit width required to store the scalar by using ValueTracking to 5838 // compute the number of high-order bits we can truncate. 5839 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5840 llvm::all_of(TreeRoot, [](Value *R) { 5841 assert(R->hasOneUse() && "Root should have only one use!"); 5842 return isa<GetElementPtrInst>(R->user_back()); 5843 })) { 5844 MaxBitWidth = 8u; 5845 5846 // Determine if the sign bit of all the roots is known to be zero. If not, 5847 // IsKnownPositive is set to False. 5848 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5849 KnownBits Known = computeKnownBits(R, *DL); 5850 return Known.isNonNegative(); 5851 }); 5852 5853 // Determine the maximum number of bits required to store the scalar 5854 // values. 5855 for (auto *Scalar : ToDemote) { 5856 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5857 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5858 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5859 } 5860 5861 // If we can't prove that the sign bit is zero, we must add one to the 5862 // maximum bit width to account for the unknown sign bit. This preserves 5863 // the existing sign bit so we can safely sign-extend the root back to the 5864 // original type. Otherwise, if we know the sign bit is zero, we will 5865 // zero-extend the root instead. 5866 // 5867 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5868 // one to the maximum bit width will yield a larger-than-necessary 5869 // type. In general, we need to add an extra bit only if we can't 5870 // prove that the upper bit of the original type is equal to the 5871 // upper bit of the proposed smaller type. If these two bits are the 5872 // same (either zero or one) we know that sign-extending from the 5873 // smaller type will result in the same value. Here, since we can't 5874 // yet prove this, we are just making the proposed smaller type 5875 // larger to ensure correctness. 5876 if (!IsKnownPositive) 5877 ++MaxBitWidth; 5878 } 5879 5880 // Round MaxBitWidth up to the next power-of-two. 5881 if (!isPowerOf2_64(MaxBitWidth)) 5882 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5883 5884 // If the maximum bit width we compute is less than the with of the roots' 5885 // type, we can proceed with the narrowing. Otherwise, do nothing. 5886 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5887 return; 5888 5889 // If we can truncate the root, we must collect additional values that might 5890 // be demoted as a result. That is, those seeded by truncations we will 5891 // modify. 5892 while (!Roots.empty()) 5893 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5894 5895 // Finally, map the values we can demote to the maximum bit with we computed. 5896 for (auto *Scalar : ToDemote) 5897 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5898 } 5899 5900 namespace { 5901 5902 /// The SLPVectorizer Pass. 5903 struct SLPVectorizer : public FunctionPass { 5904 SLPVectorizerPass Impl; 5905 5906 /// Pass identification, replacement for typeid 5907 static char ID; 5908 5909 explicit SLPVectorizer() : FunctionPass(ID) { 5910 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5911 } 5912 5913 bool doInitialization(Module &M) override { 5914 return false; 5915 } 5916 5917 bool runOnFunction(Function &F) override { 5918 if (skipFunction(F)) 5919 return false; 5920 5921 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5922 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5923 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5924 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5925 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5926 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5927 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5928 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5929 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5930 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5931 5932 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5933 } 5934 5935 void getAnalysisUsage(AnalysisUsage &AU) const override { 5936 FunctionPass::getAnalysisUsage(AU); 5937 AU.addRequired<AssumptionCacheTracker>(); 5938 AU.addRequired<ScalarEvolutionWrapperPass>(); 5939 AU.addRequired<AAResultsWrapperPass>(); 5940 AU.addRequired<TargetTransformInfoWrapperPass>(); 5941 AU.addRequired<LoopInfoWrapperPass>(); 5942 AU.addRequired<DominatorTreeWrapperPass>(); 5943 AU.addRequired<DemandedBitsWrapperPass>(); 5944 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5945 AU.addRequired<InjectTLIMappingsLegacy>(); 5946 AU.addPreserved<LoopInfoWrapperPass>(); 5947 AU.addPreserved<DominatorTreeWrapperPass>(); 5948 AU.addPreserved<AAResultsWrapperPass>(); 5949 AU.addPreserved<GlobalsAAWrapperPass>(); 5950 AU.setPreservesCFG(); 5951 } 5952 }; 5953 5954 } // end anonymous namespace 5955 5956 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5957 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5958 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5959 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5960 auto *AA = &AM.getResult<AAManager>(F); 5961 auto *LI = &AM.getResult<LoopAnalysis>(F); 5962 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5963 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5964 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5965 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5966 5967 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5968 if (!Changed) 5969 return PreservedAnalyses::all(); 5970 5971 PreservedAnalyses PA; 5972 PA.preserveSet<CFGAnalyses>(); 5973 PA.preserve<AAManager>(); 5974 PA.preserve<GlobalsAA>(); 5975 return PA; 5976 } 5977 5978 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5979 TargetTransformInfo *TTI_, 5980 TargetLibraryInfo *TLI_, AAResults *AA_, 5981 LoopInfo *LI_, DominatorTree *DT_, 5982 AssumptionCache *AC_, DemandedBits *DB_, 5983 OptimizationRemarkEmitter *ORE_) { 5984 if (!RunSLPVectorization) 5985 return false; 5986 SE = SE_; 5987 TTI = TTI_; 5988 TLI = TLI_; 5989 AA = AA_; 5990 LI = LI_; 5991 DT = DT_; 5992 AC = AC_; 5993 DB = DB_; 5994 DL = &F.getParent()->getDataLayout(); 5995 5996 Stores.clear(); 5997 GEPs.clear(); 5998 bool Changed = false; 5999 6000 // If the target claims to have no vector registers don't attempt 6001 // vectorization. 6002 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6003 return false; 6004 6005 // Don't vectorize when the attribute NoImplicitFloat is used. 6006 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6007 return false; 6008 6009 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6010 6011 // Use the bottom up slp vectorizer to construct chains that start with 6012 // store instructions. 6013 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6014 6015 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6016 // delete instructions. 6017 6018 // Scan the blocks in the function in post order. 6019 for (auto BB : post_order(&F.getEntryBlock())) { 6020 collectSeedInstructions(BB); 6021 6022 // Vectorize trees that end at stores. 6023 if (!Stores.empty()) { 6024 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6025 << " underlying objects.\n"); 6026 Changed |= vectorizeStoreChains(R); 6027 } 6028 6029 // Vectorize trees that end at reductions. 6030 Changed |= vectorizeChainsInBlock(BB, R); 6031 6032 // Vectorize the index computations of getelementptr instructions. This 6033 // is primarily intended to catch gather-like idioms ending at 6034 // non-consecutive loads. 6035 if (!GEPs.empty()) { 6036 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6037 << " underlying objects.\n"); 6038 Changed |= vectorizeGEPIndices(BB, R); 6039 } 6040 } 6041 6042 if (Changed) { 6043 R.optimizeGatherSequence(); 6044 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6045 } 6046 return Changed; 6047 } 6048 6049 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6050 unsigned Idx) { 6051 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6052 << "\n"); 6053 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6054 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6055 unsigned VF = Chain.size(); 6056 6057 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6058 return false; 6059 6060 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6061 << "\n"); 6062 6063 R.buildTree(Chain); 6064 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6065 // TODO: Handle orders of size less than number of elements in the vector. 6066 if (Order && Order->size() == Chain.size()) { 6067 // TODO: reorder tree nodes without tree rebuilding. 6068 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6069 llvm::transform(*Order, ReorderedOps.begin(), 6070 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6071 R.buildTree(ReorderedOps); 6072 } 6073 if (R.isTreeTinyAndNotFullyVectorizable()) 6074 return false; 6075 if (R.isLoadCombineCandidate()) 6076 return false; 6077 6078 R.computeMinimumValueSizes(); 6079 6080 InstructionCost Cost = R.getTreeCost(); 6081 6082 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6083 if (Cost < -SLPCostThreshold) { 6084 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6085 6086 using namespace ore; 6087 6088 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6089 cast<StoreInst>(Chain[0])) 6090 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6091 << " and with tree size " 6092 << NV("TreeSize", R.getTreeSize())); 6093 6094 R.vectorizeTree(); 6095 return true; 6096 } 6097 6098 return false; 6099 } 6100 6101 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6102 BoUpSLP &R) { 6103 // We may run into multiple chains that merge into a single chain. We mark the 6104 // stores that we vectorized so that we don't visit the same store twice. 6105 BoUpSLP::ValueSet VectorizedStores; 6106 bool Changed = false; 6107 6108 int E = Stores.size(); 6109 SmallBitVector Tails(E, false); 6110 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6111 int MaxIter = MaxStoreLookup.getValue(); 6112 int IterCnt; 6113 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6114 &ConsecutiveChain](int K, int Idx) { 6115 if (IterCnt >= MaxIter) 6116 return true; 6117 ++IterCnt; 6118 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6119 return false; 6120 6121 Tails.set(Idx); 6122 ConsecutiveChain[K] = Idx; 6123 return true; 6124 }; 6125 // Do a quadratic search on all of the given stores in reverse order and find 6126 // all of the pairs of stores that follow each other. 6127 for (int Idx = E - 1; Idx >= 0; --Idx) { 6128 // If a store has multiple consecutive store candidates, search according 6129 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6130 // This is because usually pairing with immediate succeeding or preceding 6131 // candidate create the best chance to find slp vectorization opportunity. 6132 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6133 IterCnt = 0; 6134 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6135 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6136 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6137 break; 6138 } 6139 6140 // For stores that start but don't end a link in the chain: 6141 for (int Cnt = E; Cnt > 0; --Cnt) { 6142 int I = Cnt - 1; 6143 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6144 continue; 6145 // We found a store instr that starts a chain. Now follow the chain and try 6146 // to vectorize it. 6147 BoUpSLP::ValueList Operands; 6148 // Collect the chain into a list. 6149 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6150 Operands.push_back(Stores[I]); 6151 // Move to the next value in the chain. 6152 I = ConsecutiveChain[I]; 6153 } 6154 6155 // If a vector register can't hold 1 element, we are done. 6156 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6157 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6158 if (MaxVecRegSize % EltSize != 0) 6159 continue; 6160 6161 unsigned MaxElts = MaxVecRegSize / EltSize; 6162 // FIXME: Is division-by-2 the correct step? Should we assert that the 6163 // register size is a power-of-2? 6164 unsigned StartIdx = 0; 6165 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6166 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6167 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6168 if (!VectorizedStores.count(Slice.front()) && 6169 !VectorizedStores.count(Slice.back()) && 6170 vectorizeStoreChain(Slice, R, Cnt)) { 6171 // Mark the vectorized stores so that we don't vectorize them again. 6172 VectorizedStores.insert(Slice.begin(), Slice.end()); 6173 Changed = true; 6174 // If we vectorized initial block, no need to try to vectorize it 6175 // again. 6176 if (Cnt == StartIdx) 6177 StartIdx += Size; 6178 Cnt += Size; 6179 continue; 6180 } 6181 ++Cnt; 6182 } 6183 // Check if the whole array was vectorized already - exit. 6184 if (StartIdx >= Operands.size()) 6185 break; 6186 } 6187 } 6188 6189 return Changed; 6190 } 6191 6192 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6193 // Initialize the collections. We will make a single pass over the block. 6194 Stores.clear(); 6195 GEPs.clear(); 6196 6197 // Visit the store and getelementptr instructions in BB and organize them in 6198 // Stores and GEPs according to the underlying objects of their pointer 6199 // operands. 6200 for (Instruction &I : *BB) { 6201 // Ignore store instructions that are volatile or have a pointer operand 6202 // that doesn't point to a scalar type. 6203 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6204 if (!SI->isSimple()) 6205 continue; 6206 if (!isValidElementType(SI->getValueOperand()->getType())) 6207 continue; 6208 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6209 } 6210 6211 // Ignore getelementptr instructions that have more than one index, a 6212 // constant index, or a pointer operand that doesn't point to a scalar 6213 // type. 6214 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6215 auto Idx = GEP->idx_begin()->get(); 6216 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6217 continue; 6218 if (!isValidElementType(Idx->getType())) 6219 continue; 6220 if (GEP->getType()->isVectorTy()) 6221 continue; 6222 GEPs[GEP->getPointerOperand()].push_back(GEP); 6223 } 6224 } 6225 } 6226 6227 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6228 if (!A || !B) 6229 return false; 6230 Value *VL[] = {A, B}; 6231 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6232 } 6233 6234 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6235 bool AllowReorder, 6236 ArrayRef<Value *> InsertUses) { 6237 if (VL.size() < 2) 6238 return false; 6239 6240 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6241 << VL.size() << ".\n"); 6242 6243 // Check that all of the parts are instructions of the same type, 6244 // we permit an alternate opcode via InstructionsState. 6245 InstructionsState S = getSameOpcode(VL); 6246 if (!S.getOpcode()) 6247 return false; 6248 6249 Instruction *I0 = cast<Instruction>(S.OpValue); 6250 // Make sure invalid types (including vector type) are rejected before 6251 // determining vectorization factor for scalar instructions. 6252 for (Value *V : VL) { 6253 Type *Ty = V->getType(); 6254 if (!isValidElementType(Ty)) { 6255 // NOTE: the following will give user internal llvm type name, which may 6256 // not be useful. 6257 R.getORE()->emit([&]() { 6258 std::string type_str; 6259 llvm::raw_string_ostream rso(type_str); 6260 Ty->print(rso); 6261 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6262 << "Cannot SLP vectorize list: type " 6263 << rso.str() + " is unsupported by vectorizer"; 6264 }); 6265 return false; 6266 } 6267 } 6268 6269 unsigned Sz = R.getVectorElementSize(I0); 6270 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6271 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6272 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6273 if (MaxVF < 2) { 6274 R.getORE()->emit([&]() { 6275 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6276 << "Cannot SLP vectorize list: vectorization factor " 6277 << "less than 2 is not supported"; 6278 }); 6279 return false; 6280 } 6281 6282 bool Changed = false; 6283 bool CandidateFound = false; 6284 InstructionCost MinCost = SLPCostThreshold.getValue(); 6285 6286 bool CompensateUseCost = 6287 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6288 return V && isa<InsertElementInst>(V); 6289 }); 6290 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6291 "Each scalar expected to have an associated InsertElement user."); 6292 6293 unsigned NextInst = 0, MaxInst = VL.size(); 6294 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6295 // No actual vectorization should happen, if number of parts is the same as 6296 // provided vectorization factor (i.e. the scalar type is used for vector 6297 // code during codegen). 6298 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6299 if (TTI->getNumberOfParts(VecTy) == VF) 6300 continue; 6301 for (unsigned I = NextInst; I < MaxInst; ++I) { 6302 unsigned OpsWidth = 0; 6303 6304 if (I + VF > MaxInst) 6305 OpsWidth = MaxInst - I; 6306 else 6307 OpsWidth = VF; 6308 6309 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6310 break; 6311 6312 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6313 // Check that a previous iteration of this loop did not delete the Value. 6314 if (llvm::any_of(Ops, [&R](Value *V) { 6315 auto *I = dyn_cast<Instruction>(V); 6316 return I && R.isDeleted(I); 6317 })) 6318 continue; 6319 6320 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6321 << "\n"); 6322 6323 R.buildTree(Ops); 6324 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6325 // TODO: check if we can allow reordering for more cases. 6326 if (AllowReorder && Order) { 6327 // TODO: reorder tree nodes without tree rebuilding. 6328 // Conceptually, there is nothing actually preventing us from trying to 6329 // reorder a larger list. In fact, we do exactly this when vectorizing 6330 // reductions. However, at this point, we only expect to get here when 6331 // there are exactly two operations. 6332 assert(Ops.size() == 2); 6333 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6334 R.buildTree(ReorderedOps, None); 6335 } 6336 if (R.isTreeTinyAndNotFullyVectorizable()) 6337 continue; 6338 6339 R.computeMinimumValueSizes(); 6340 InstructionCost Cost = R.getTreeCost(); 6341 CandidateFound = true; 6342 if (CompensateUseCost) { 6343 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6344 // rather than sum of single inserts as the latter may overestimate 6345 // cost. This work should imply improving cost estimation for extracts 6346 // that added in for external (for vectorization tree) users,i.e. that 6347 // part should also switch to same interface. 6348 // For example, the following case is projected code after SLP: 6349 // %4 = extractelement <4 x i64> %3, i32 0 6350 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6351 // %5 = extractelement <4 x i64> %3, i32 1 6352 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6353 // %6 = extractelement <4 x i64> %3, i32 2 6354 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6355 // %7 = extractelement <4 x i64> %3, i32 3 6356 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6357 // 6358 // Extracts here added by SLP in order to feed users (the inserts) of 6359 // original scalars and contribute to "ExtractCost" at cost evaluation. 6360 // The inserts in turn form sequence to build an aggregate that 6361 // detected by findBuildAggregate routine. 6362 // SLP makes an assumption that such sequence will be optimized away 6363 // later (instcombine) so it tries to compensate ExctractCost with 6364 // cost of insert sequence. 6365 // Current per element cost calculation approach is not quite accurate 6366 // and tends to create bias toward favoring vectorization. 6367 // Switching to the TTI interface might help a bit. 6368 // Alternative solution could be pattern-match to detect a no-op or 6369 // shuffle. 6370 InstructionCost UserCost = 0; 6371 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6372 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6373 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6374 UserCost += TTI->getVectorInstrCost( 6375 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6376 } 6377 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6378 << ".\n"); 6379 Cost -= UserCost; 6380 } 6381 6382 MinCost = std::min(MinCost, Cost); 6383 6384 if (Cost < -SLPCostThreshold) { 6385 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6386 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6387 cast<Instruction>(Ops[0])) 6388 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6389 << " and with tree size " 6390 << ore::NV("TreeSize", R.getTreeSize())); 6391 6392 R.vectorizeTree(); 6393 // Move to the next bundle. 6394 I += VF - 1; 6395 NextInst = I + 1; 6396 Changed = true; 6397 } 6398 } 6399 } 6400 6401 if (!Changed && CandidateFound) { 6402 R.getORE()->emit([&]() { 6403 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6404 << "List vectorization was possible but not beneficial with cost " 6405 << ore::NV("Cost", MinCost) << " >= " 6406 << ore::NV("Treshold", -SLPCostThreshold); 6407 }); 6408 } else if (!Changed) { 6409 R.getORE()->emit([&]() { 6410 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6411 << "Cannot SLP vectorize list: vectorization was impossible" 6412 << " with available vectorization factors"; 6413 }); 6414 } 6415 return Changed; 6416 } 6417 6418 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6419 if (!I) 6420 return false; 6421 6422 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6423 return false; 6424 6425 Value *P = I->getParent(); 6426 6427 // Vectorize in current basic block only. 6428 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6429 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6430 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6431 return false; 6432 6433 // Try to vectorize V. 6434 if (tryToVectorizePair(Op0, Op1, R)) 6435 return true; 6436 6437 auto *A = dyn_cast<BinaryOperator>(Op0); 6438 auto *B = dyn_cast<BinaryOperator>(Op1); 6439 // Try to skip B. 6440 if (B && B->hasOneUse()) { 6441 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6442 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6443 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6444 return true; 6445 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6446 return true; 6447 } 6448 6449 // Try to skip A. 6450 if (A && A->hasOneUse()) { 6451 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6452 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6453 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6454 return true; 6455 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6456 return true; 6457 } 6458 return false; 6459 } 6460 6461 namespace { 6462 6463 /// Model horizontal reductions. 6464 /// 6465 /// A horizontal reduction is a tree of reduction instructions that has values 6466 /// that can be put into a vector as its leaves. For example: 6467 /// 6468 /// mul mul mul mul 6469 /// \ / \ / 6470 /// + + 6471 /// \ / 6472 /// + 6473 /// This tree has "mul" as its leaf values and "+" as its reduction 6474 /// instructions. A reduction can feed into a store or a binary operation 6475 /// feeding a phi. 6476 /// ... 6477 /// \ / 6478 /// + 6479 /// | 6480 /// phi += 6481 /// 6482 /// Or: 6483 /// ... 6484 /// \ / 6485 /// + 6486 /// | 6487 /// *p = 6488 /// 6489 class HorizontalReduction { 6490 using ReductionOpsType = SmallVector<Value *, 16>; 6491 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6492 ReductionOpsListType ReductionOps; 6493 SmallVector<Value *, 32> ReducedVals; 6494 // Use map vector to make stable output. 6495 MapVector<Instruction *, Value *> ExtraArgs; 6496 WeakTrackingVH ReductionRoot; 6497 /// The type of reduction operation. 6498 RecurKind RdxKind; 6499 6500 /// Checks if instruction is associative and can be vectorized. 6501 static bool isVectorizable(RecurKind Kind, Instruction *I) { 6502 if (Kind == RecurKind::None) 6503 return false; 6504 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 6505 return true; 6506 6507 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 6508 // FP min/max are associative except for NaN and -0.0. We do not 6509 // have to rule out -0.0 here because the intrinsic semantics do not 6510 // specify a fixed result for it. 6511 return I->getFastMathFlags().noNaNs(); 6512 } 6513 6514 return I->isAssociative(); 6515 } 6516 6517 /// Checks if the ParentStackElem.first should be marked as a reduction 6518 /// operation with an extra argument or as extra argument itself. 6519 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6520 Value *ExtraArg) { 6521 if (ExtraArgs.count(ParentStackElem.first)) { 6522 ExtraArgs[ParentStackElem.first] = nullptr; 6523 // We ran into something like: 6524 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6525 // The whole ParentStackElem.first should be considered as an extra value 6526 // in this case. 6527 // Do not perform analysis of remaining operands of ParentStackElem.first 6528 // instruction, this whole instruction is an extra argument. 6529 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first); 6530 } else { 6531 // We ran into something like: 6532 // ParentStackElem.first += ... + ExtraArg + ... 6533 ExtraArgs[ParentStackElem.first] = ExtraArg; 6534 } 6535 } 6536 6537 /// Creates reduction operation with the current opcode. 6538 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 6539 Value *RHS, const Twine &Name) { 6540 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6541 switch (Kind) { 6542 case RecurKind::Add: 6543 case RecurKind::Mul: 6544 case RecurKind::Or: 6545 case RecurKind::And: 6546 case RecurKind::Xor: 6547 case RecurKind::FAdd: 6548 case RecurKind::FMul: 6549 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6550 Name); 6551 case RecurKind::FMax: 6552 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 6553 case RecurKind::FMin: 6554 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 6555 6556 case RecurKind::SMax: { 6557 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6558 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6559 } 6560 case RecurKind::SMin: { 6561 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6562 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6563 } 6564 case RecurKind::UMax: { 6565 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6566 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6567 } 6568 case RecurKind::UMin: { 6569 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6570 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6571 } 6572 default: 6573 llvm_unreachable("Unknown reduction operation."); 6574 } 6575 } 6576 6577 /// Creates reduction operation with the current opcode with the IR flags 6578 /// from \p ReductionOps. 6579 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6580 Value *RHS, const Twine &Name, 6581 const ReductionOpsListType &ReductionOps) { 6582 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); 6583 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6584 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6585 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6586 propagateIRFlags(Op, ReductionOps[1]); 6587 return Op; 6588 } 6589 propagateIRFlags(Op, ReductionOps[0]); 6590 return Op; 6591 } 6592 /// Creates reduction operation with the current opcode with the IR flags 6593 /// from \p I. 6594 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6595 Value *RHS, const Twine &Name, Instruction *I) { 6596 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name); 6597 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6598 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6599 propagateIRFlags(Sel->getCondition(), 6600 cast<SelectInst>(I)->getCondition()); 6601 } 6602 } 6603 propagateIRFlags(Op, I); 6604 return Op; 6605 } 6606 6607 static RecurKind getRdxKind(Instruction *I) { 6608 assert(I && "Expected instruction for reduction matching"); 6609 TargetTransformInfo::ReductionFlags RdxFlags; 6610 if (match(I, m_Add(m_Value(), m_Value()))) 6611 return RecurKind::Add; 6612 if (match(I, m_Mul(m_Value(), m_Value()))) 6613 return RecurKind::Mul; 6614 if (match(I, m_And(m_Value(), m_Value()))) 6615 return RecurKind::And; 6616 if (match(I, m_Or(m_Value(), m_Value()))) 6617 return RecurKind::Or; 6618 if (match(I, m_Xor(m_Value(), m_Value()))) 6619 return RecurKind::Xor; 6620 if (match(I, m_FAdd(m_Value(), m_Value()))) 6621 return RecurKind::FAdd; 6622 if (match(I, m_FMul(m_Value(), m_Value()))) 6623 return RecurKind::FMul; 6624 6625 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 6626 return RecurKind::FMax; 6627 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 6628 return RecurKind::FMin; 6629 6630 if (auto *Select = dyn_cast<SelectInst>(I)) { 6631 // These would also match llvm.{u,s}{min,max} intrinsic call 6632 // if were not guarded by the SelectInst check above. 6633 if (match(I, m_SMax(m_Value(), m_Value()))) 6634 return RecurKind::SMax; 6635 if (match(I, m_SMin(m_Value(), m_Value()))) 6636 return RecurKind::SMin; 6637 if (match(I, m_UMax(m_Value(), m_Value()))) 6638 return RecurKind::UMax; 6639 if (match(I, m_UMin(m_Value(), m_Value()))) 6640 return RecurKind::UMin; 6641 // Try harder: look for min/max pattern based on instructions producing 6642 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6643 // During the intermediate stages of SLP, it's very common to have 6644 // pattern like this (since optimizeGatherSequence is run only once 6645 // at the end): 6646 // %1 = extractelement <2 x i32> %a, i32 0 6647 // %2 = extractelement <2 x i32> %a, i32 1 6648 // %cond = icmp sgt i32 %1, %2 6649 // %3 = extractelement <2 x i32> %a, i32 0 6650 // %4 = extractelement <2 x i32> %a, i32 1 6651 // %select = select i1 %cond, i32 %3, i32 %4 6652 CmpInst::Predicate Pred; 6653 Instruction *L1; 6654 Instruction *L2; 6655 6656 Value *LHS = Select->getTrueValue(); 6657 Value *RHS = Select->getFalseValue(); 6658 Value *Cond = Select->getCondition(); 6659 6660 // TODO: Support inverse predicates. 6661 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6662 if (!isa<ExtractElementInst>(RHS) || 6663 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6664 return RecurKind::None; 6665 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6666 if (!isa<ExtractElementInst>(LHS) || 6667 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6668 return RecurKind::None; 6669 } else { 6670 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6671 return RecurKind::None; 6672 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6673 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6674 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6675 return RecurKind::None; 6676 } 6677 6678 TargetTransformInfo::ReductionFlags RdxFlags; 6679 switch (Pred) { 6680 default: 6681 return RecurKind::None; 6682 case CmpInst::ICMP_SGT: 6683 case CmpInst::ICMP_SGE: 6684 return RecurKind::SMax; 6685 case CmpInst::ICMP_SLT: 6686 case CmpInst::ICMP_SLE: 6687 return RecurKind::SMin; 6688 case CmpInst::ICMP_UGT: 6689 case CmpInst::ICMP_UGE: 6690 return RecurKind::UMax; 6691 case CmpInst::ICMP_ULT: 6692 case CmpInst::ICMP_ULE: 6693 return RecurKind::UMin; 6694 } 6695 } 6696 return RecurKind::None; 6697 } 6698 6699 /// Get the index of the first operand. 6700 static unsigned getFirstOperandIndex(Instruction *I) { 6701 return isa<SelectInst>(I) ? 1 : 0; 6702 } 6703 6704 /// Total number of operands in the reduction operation. 6705 static unsigned getNumberOfOperands(Instruction *I) { 6706 return isa<SelectInst>(I) ? 3 : 2; 6707 } 6708 6709 /// Checks if the instruction is in basic block \p BB. 6710 /// For a min/max reduction check that both compare and select are in \p BB. 6711 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) { 6712 auto *Sel = dyn_cast<SelectInst>(I); 6713 if (IsRedOp && Sel) { 6714 auto *Cmp = cast<Instruction>(Sel->getCondition()); 6715 return Sel->getParent() == BB && Cmp->getParent() == BB; 6716 } 6717 return I->getParent() == BB; 6718 } 6719 6720 /// Expected number of uses for reduction operations/reduced values. 6721 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) { 6722 // SelectInst must be used twice while the condition op must have single 6723 // use only. 6724 if (MatchCmpSel) { 6725 if (auto *Sel = dyn_cast<SelectInst>(I)) 6726 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 6727 return I->hasNUses(2); 6728 } 6729 6730 // Arithmetic reduction operation must be used once only. 6731 return I->hasOneUse(); 6732 } 6733 6734 /// Initializes the list of reduction operations. 6735 void initReductionOps(Instruction *I) { 6736 if (isa<SelectInst>(I)) 6737 ReductionOps.assign(2, ReductionOpsType()); 6738 else 6739 ReductionOps.assign(1, ReductionOpsType()); 6740 } 6741 6742 /// Add all reduction operations for the reduction instruction \p I. 6743 void addReductionOps(Instruction *I) { 6744 if (auto *Sel = dyn_cast<SelectInst>(I)) { 6745 ReductionOps[0].emplace_back(Sel->getCondition()); 6746 ReductionOps[1].emplace_back(Sel); 6747 } else { 6748 ReductionOps[0].emplace_back(I); 6749 } 6750 } 6751 6752 static Value *getLHS(RecurKind Kind, Instruction *I) { 6753 if (Kind == RecurKind::None) 6754 return nullptr; 6755 return I->getOperand(getFirstOperandIndex(I)); 6756 } 6757 static Value *getRHS(RecurKind Kind, Instruction *I) { 6758 if (Kind == RecurKind::None) 6759 return nullptr; 6760 return I->getOperand(getFirstOperandIndex(I) + 1); 6761 } 6762 6763 public: 6764 HorizontalReduction() = default; 6765 6766 /// Try to find a reduction tree. 6767 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6768 assert((!Phi || is_contained(Phi->operands(), B)) && 6769 "Phi needs to use the binary operator"); 6770 6771 RdxKind = getRdxKind(B); 6772 6773 // We could have a initial reductions that is not an add. 6774 // r *= v1 + v2 + v3 + v4 6775 // In such a case start looking for a tree rooted in the first '+'. 6776 if (Phi) { 6777 if (getLHS(RdxKind, B) == Phi) { 6778 Phi = nullptr; 6779 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 6780 if (!B) 6781 return false; 6782 RdxKind = getRdxKind(B); 6783 } else if (getRHS(RdxKind, B) == Phi) { 6784 Phi = nullptr; 6785 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 6786 if (!B) 6787 return false; 6788 RdxKind = getRdxKind(B); 6789 } 6790 } 6791 6792 if (!isVectorizable(RdxKind, B)) 6793 return false; 6794 6795 // Analyze "regular" integer/FP types for reductions - no target-specific 6796 // types or pointers. 6797 Type *Ty = B->getType(); 6798 if (!isValidElementType(Ty) || Ty->isPointerTy()) 6799 return false; 6800 6801 ReductionRoot = B; 6802 6803 // The opcode for leaf values that we perform a reduction on. 6804 // For example: load(x) + load(y) + load(z) + fptoui(w) 6805 // The leaf opcode for 'w' does not match, so we don't include it as a 6806 // potential candidate for the reduction. 6807 unsigned LeafOpcode = 0; 6808 6809 // Post order traverse the reduction tree starting at B. We only handle true 6810 // trees containing only binary operators. 6811 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6812 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B))); 6813 initReductionOps(B); 6814 while (!Stack.empty()) { 6815 Instruction *TreeN = Stack.back().first; 6816 unsigned EdgeToVisit = Stack.back().second++; 6817 const RecurKind TreeRdxKind = getRdxKind(TreeN); 6818 bool IsReducedValue = TreeRdxKind != RdxKind; 6819 6820 // Postorder visit. 6821 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) { 6822 if (IsReducedValue) 6823 ReducedVals.push_back(TreeN); 6824 else { 6825 auto ExtraArgsIter = ExtraArgs.find(TreeN); 6826 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 6827 // Check if TreeN is an extra argument of its parent operation. 6828 if (Stack.size() <= 1) { 6829 // TreeN can't be an extra argument as it is a root reduction 6830 // operation. 6831 return false; 6832 } 6833 // Yes, TreeN is an extra argument, do not add it to a list of 6834 // reduction operations. 6835 // Stack[Stack.size() - 2] always points to the parent operation. 6836 markExtraArg(Stack[Stack.size() - 2], TreeN); 6837 ExtraArgs.erase(TreeN); 6838 } else 6839 addReductionOps(TreeN); 6840 } 6841 // Retract. 6842 Stack.pop_back(); 6843 continue; 6844 } 6845 6846 // Visit left or right. 6847 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 6848 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 6849 if (!EdgeInst) { 6850 // Edge value is not a reduction instruction or a leaf instruction. 6851 // (It may be a constant, function argument, or something else.) 6852 markExtraArg(Stack.back(), EdgeVal); 6853 continue; 6854 } 6855 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 6856 // Continue analysis if the next operand is a reduction operation or 6857 // (possibly) a leaf value. If the leaf value opcode is not set, 6858 // the first met operation != reduction operation is considered as the 6859 // leaf opcode. 6860 // Only handle trees in the current basic block. 6861 // Each tree node needs to have minimal number of users except for the 6862 // ultimate reduction. 6863 const bool IsRdxInst = EdgeRdxKind == RdxKind; 6864 if (EdgeInst != Phi && EdgeInst != B && 6865 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) && 6866 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) && 6867 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 6868 if (IsRdxInst) { 6869 // We need to be able to reassociate the reduction operations. 6870 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 6871 // I is an extra argument for TreeN (its parent operation). 6872 markExtraArg(Stack.back(), EdgeInst); 6873 continue; 6874 } 6875 } else if (!LeafOpcode) { 6876 LeafOpcode = EdgeInst->getOpcode(); 6877 } 6878 Stack.push_back( 6879 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 6880 continue; 6881 } 6882 // I is an extra argument for TreeN (its parent operation). 6883 markExtraArg(Stack.back(), EdgeInst); 6884 } 6885 return true; 6886 } 6887 6888 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6889 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6890 // If there are a sufficient number of reduction values, reduce 6891 // to a nearby power-of-2. We can safely generate oversized 6892 // vectors and rely on the backend to split them to legal sizes. 6893 unsigned NumReducedVals = ReducedVals.size(); 6894 if (NumReducedVals < 4) 6895 return false; 6896 6897 // Intersect the fast-math-flags from all reduction operations. 6898 FastMathFlags RdxFMF; 6899 RdxFMF.set(); 6900 for (ReductionOpsType &RdxOp : ReductionOps) { 6901 for (Value *RdxVal : RdxOp) { 6902 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 6903 RdxFMF &= FPMO->getFastMathFlags(); 6904 } 6905 } 6906 6907 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6908 Builder.setFastMathFlags(RdxFMF); 6909 6910 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6911 // The same extra argument may be used several times, so log each attempt 6912 // to use it. 6913 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6914 assert(Pair.first && "DebugLoc must be set."); 6915 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6916 } 6917 6918 // The compare instruction of a min/max is the insertion point for new 6919 // instructions and may be replaced with a new compare instruction. 6920 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6921 assert(isa<SelectInst>(RdxRootInst) && 6922 "Expected min/max reduction to have select root instruction"); 6923 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6924 assert(isa<Instruction>(ScalarCond) && 6925 "Expected min/max reduction to have compare condition"); 6926 return cast<Instruction>(ScalarCond); 6927 }; 6928 6929 // The reduction root is used as the insertion point for new instructions, 6930 // so set it as externally used to prevent it from being deleted. 6931 ExternallyUsedValues[ReductionRoot]; 6932 SmallVector<Value *, 16> IgnoreList; 6933 for (ReductionOpsType &RdxOp : ReductionOps) 6934 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 6935 6936 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6937 if (NumReducedVals > ReduxWidth) { 6938 // In the loop below, we are building a tree based on a window of 6939 // 'ReduxWidth' values. 6940 // If the operands of those values have common traits (compare predicate, 6941 // constant operand, etc), then we want to group those together to 6942 // minimize the cost of the reduction. 6943 6944 // TODO: This should be extended to count common operands for 6945 // compares and binops. 6946 6947 // Step 1: Count the number of times each compare predicate occurs. 6948 SmallDenseMap<unsigned, unsigned> PredCountMap; 6949 for (Value *RdxVal : ReducedVals) { 6950 CmpInst::Predicate Pred; 6951 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 6952 ++PredCountMap[Pred]; 6953 } 6954 // Step 2: Sort the values so the most common predicates come first. 6955 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 6956 CmpInst::Predicate PredA, PredB; 6957 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 6958 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 6959 return PredCountMap[PredA] > PredCountMap[PredB]; 6960 } 6961 return false; 6962 }); 6963 } 6964 6965 Value *VectorizedTree = nullptr; 6966 unsigned i = 0; 6967 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6968 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 6969 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6970 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6971 if (Order) { 6972 assert(Order->size() == VL.size() && 6973 "Order size must be the same as number of vectorized " 6974 "instructions."); 6975 // TODO: reorder tree nodes without tree rebuilding. 6976 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6977 llvm::transform(*Order, ReorderedOps.begin(), 6978 [VL](const unsigned Idx) { return VL[Idx]; }); 6979 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6980 } 6981 if (V.isTreeTinyAndNotFullyVectorizable()) 6982 break; 6983 if (V.isLoadCombineReductionCandidate(RdxKind)) 6984 break; 6985 6986 V.computeMinimumValueSizes(); 6987 6988 // Estimate cost. 6989 InstructionCost TreeCost = V.getTreeCost(); 6990 InstructionCost ReductionCost = 6991 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6992 InstructionCost Cost = TreeCost + ReductionCost; 6993 if (!Cost.isValid()) { 6994 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 6995 return false; 6996 } 6997 if (Cost >= -SLPCostThreshold) { 6998 V.getORE()->emit([&]() { 6999 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7000 cast<Instruction>(VL[0])) 7001 << "Vectorizing horizontal reduction is possible" 7002 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7003 << " and threshold " 7004 << ore::NV("Threshold", -SLPCostThreshold); 7005 }); 7006 break; 7007 } 7008 7009 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7010 << Cost << ". (HorRdx)\n"); 7011 V.getORE()->emit([&]() { 7012 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7013 cast<Instruction>(VL[0])) 7014 << "Vectorized horizontal reduction with cost " 7015 << ore::NV("Cost", Cost) << " and with tree size " 7016 << ore::NV("TreeSize", V.getTreeSize()); 7017 }); 7018 7019 // Vectorize a tree. 7020 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7021 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7022 7023 // Emit a reduction. If the root is a select (min/max idiom), the insert 7024 // point is the compare condition of that select. 7025 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7026 if (isa<SelectInst>(RdxRootInst)) 7027 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7028 else 7029 Builder.SetInsertPoint(RdxRootInst); 7030 7031 Value *ReducedSubTree = 7032 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7033 7034 if (!VectorizedTree) { 7035 // Initialize the final value in the reduction. 7036 VectorizedTree = ReducedSubTree; 7037 } else { 7038 // Update the final value in the reduction. 7039 Builder.SetCurrentDebugLocation(Loc); 7040 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7041 ReducedSubTree, "op.rdx", ReductionOps); 7042 } 7043 i += ReduxWidth; 7044 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7045 } 7046 7047 if (VectorizedTree) { 7048 // Finish the reduction. 7049 for (; i < NumReducedVals; ++i) { 7050 auto *I = cast<Instruction>(ReducedVals[i]); 7051 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7052 VectorizedTree = 7053 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7054 } 7055 for (auto &Pair : ExternallyUsedValues) { 7056 // Add each externally used value to the final reduction. 7057 for (auto *I : Pair.second) { 7058 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7059 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7060 Pair.first, "op.extra", I); 7061 } 7062 } 7063 7064 // Update users. For a min/max reduction that ends with a compare and 7065 // select, we also have to RAUW for the compare instruction feeding the 7066 // reduction root. That's because the original compare may have extra uses 7067 // besides the final select of the reduction. 7068 if (isa<SelectInst>(ReductionRoot)) { 7069 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7070 Instruction *ScalarCmp = 7071 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7072 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7073 } 7074 } 7075 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7076 7077 // Mark all scalar reduction ops for deletion, they are replaced by the 7078 // vector reductions. 7079 V.eraseInstructions(IgnoreList); 7080 } 7081 return VectorizedTree != nullptr; 7082 } 7083 7084 unsigned numReductionValues() const { return ReducedVals.size(); } 7085 7086 private: 7087 /// Calculate the cost of a reduction. 7088 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7089 Value *FirstReducedVal, 7090 unsigned ReduxWidth) { 7091 Type *ScalarTy = FirstReducedVal->getType(); 7092 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7093 InstructionCost VectorCost, ScalarCost; 7094 switch (RdxKind) { 7095 case RecurKind::Add: 7096 case RecurKind::Mul: 7097 case RecurKind::Or: 7098 case RecurKind::And: 7099 case RecurKind::Xor: 7100 case RecurKind::FAdd: 7101 case RecurKind::FMul: { 7102 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7103 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7104 /*IsPairwiseForm=*/false); 7105 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7106 break; 7107 } 7108 case RecurKind::FMax: 7109 case RecurKind::FMin: { 7110 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7111 VectorCost = 7112 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7113 /*pairwise=*/false, /*unsigned=*/false); 7114 ScalarCost = 7115 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7116 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7117 CmpInst::makeCmpResultType(ScalarTy)); 7118 break; 7119 } 7120 case RecurKind::SMax: 7121 case RecurKind::SMin: 7122 case RecurKind::UMax: 7123 case RecurKind::UMin: { 7124 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7125 bool IsUnsigned = 7126 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7127 VectorCost = 7128 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7129 /*IsPairwiseForm=*/false, IsUnsigned); 7130 ScalarCost = 7131 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7132 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7133 CmpInst::makeCmpResultType(ScalarTy)); 7134 break; 7135 } 7136 default: 7137 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7138 } 7139 7140 // Scalar cost is repeated for N-1 elements. 7141 ScalarCost *= (ReduxWidth - 1); 7142 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7143 << " for reduction that starts with " << *FirstReducedVal 7144 << " (It is a splitting reduction)\n"); 7145 return VectorCost - ScalarCost; 7146 } 7147 7148 /// Emit a horizontal reduction of the vectorized value. 7149 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7150 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7151 assert(VectorizedValue && "Need to have a vectorized tree node"); 7152 assert(isPowerOf2_32(ReduxWidth) && 7153 "We only handle power-of-two reductions for now"); 7154 7155 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7156 ReductionOps.back()); 7157 } 7158 }; 7159 7160 } // end anonymous namespace 7161 7162 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7163 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7164 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7165 7166 unsigned AggregateSize = 1; 7167 auto *IV = cast<InsertValueInst>(InsertInst); 7168 Type *CurrentType = IV->getType(); 7169 do { 7170 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7171 for (auto *Elt : ST->elements()) 7172 if (Elt != ST->getElementType(0)) // check homogeneity 7173 return None; 7174 AggregateSize *= ST->getNumElements(); 7175 CurrentType = ST->getElementType(0); 7176 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7177 AggregateSize *= AT->getNumElements(); 7178 CurrentType = AT->getElementType(); 7179 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7180 AggregateSize *= VT->getNumElements(); 7181 return AggregateSize; 7182 } else if (CurrentType->isSingleValueType()) { 7183 return AggregateSize; 7184 } else { 7185 return None; 7186 } 7187 } while (true); 7188 } 7189 7190 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7191 unsigned OperandOffset) { 7192 unsigned OperandIndex = OperandOffset; 7193 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7194 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7195 auto *VT = cast<FixedVectorType>(IE->getType()); 7196 OperandIndex *= VT->getNumElements(); 7197 OperandIndex += CI->getZExtValue(); 7198 return OperandIndex; 7199 } 7200 return None; 7201 } 7202 7203 auto *IV = cast<InsertValueInst>(InsertInst); 7204 Type *CurrentType = IV->getType(); 7205 for (unsigned int Index : IV->indices()) { 7206 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7207 OperandIndex *= ST->getNumElements(); 7208 CurrentType = ST->getElementType(Index); 7209 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7210 OperandIndex *= AT->getNumElements(); 7211 CurrentType = AT->getElementType(); 7212 } else { 7213 return None; 7214 } 7215 OperandIndex += Index; 7216 } 7217 return OperandIndex; 7218 } 7219 7220 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7221 TargetTransformInfo *TTI, 7222 SmallVectorImpl<Value *> &BuildVectorOpds, 7223 SmallVectorImpl<Value *> &InsertElts, 7224 unsigned OperandOffset) { 7225 do { 7226 Value *InsertedOperand = LastInsertInst->getOperand(1); 7227 Optional<unsigned> OperandIndex = 7228 getOperandIndex(LastInsertInst, OperandOffset); 7229 if (!OperandIndex) 7230 return false; 7231 if (isa<InsertElementInst>(InsertedOperand) || 7232 isa<InsertValueInst>(InsertedOperand)) { 7233 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7234 BuildVectorOpds, InsertElts, *OperandIndex)) 7235 return false; 7236 } else { 7237 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7238 InsertElts[*OperandIndex] = LastInsertInst; 7239 } 7240 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7241 return true; 7242 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7243 } while (LastInsertInst != nullptr && 7244 (isa<InsertValueInst>(LastInsertInst) || 7245 isa<InsertElementInst>(LastInsertInst)) && 7246 LastInsertInst->hasOneUse()); 7247 return false; 7248 } 7249 7250 /// Recognize construction of vectors like 7251 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7252 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7253 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7254 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7255 /// starting from the last insertelement or insertvalue instruction. 7256 /// 7257 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7258 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7259 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7260 /// 7261 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7262 /// 7263 /// \return true if it matches. 7264 static bool findBuildAggregate(Instruction *LastInsertInst, 7265 TargetTransformInfo *TTI, 7266 SmallVectorImpl<Value *> &BuildVectorOpds, 7267 SmallVectorImpl<Value *> &InsertElts) { 7268 7269 assert((isa<InsertElementInst>(LastInsertInst) || 7270 isa<InsertValueInst>(LastInsertInst)) && 7271 "Expected insertelement or insertvalue instruction!"); 7272 7273 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7274 "Expected empty result vectors!"); 7275 7276 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7277 if (!AggregateSize) 7278 return false; 7279 BuildVectorOpds.resize(*AggregateSize); 7280 InsertElts.resize(*AggregateSize); 7281 7282 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7283 0)) { 7284 llvm::erase_value(BuildVectorOpds, nullptr); 7285 llvm::erase_value(InsertElts, nullptr); 7286 if (BuildVectorOpds.size() >= 2) 7287 return true; 7288 } 7289 7290 return false; 7291 } 7292 7293 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7294 return V->getType() < V2->getType(); 7295 } 7296 7297 /// Try and get a reduction value from a phi node. 7298 /// 7299 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7300 /// if they come from either \p ParentBB or a containing loop latch. 7301 /// 7302 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7303 /// if not possible. 7304 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7305 BasicBlock *ParentBB, LoopInfo *LI) { 7306 // There are situations where the reduction value is not dominated by the 7307 // reduction phi. Vectorizing such cases has been reported to cause 7308 // miscompiles. See PR25787. 7309 auto DominatedReduxValue = [&](Value *R) { 7310 return isa<Instruction>(R) && 7311 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7312 }; 7313 7314 Value *Rdx = nullptr; 7315 7316 // Return the incoming value if it comes from the same BB as the phi node. 7317 if (P->getIncomingBlock(0) == ParentBB) { 7318 Rdx = P->getIncomingValue(0); 7319 } else if (P->getIncomingBlock(1) == ParentBB) { 7320 Rdx = P->getIncomingValue(1); 7321 } 7322 7323 if (Rdx && DominatedReduxValue(Rdx)) 7324 return Rdx; 7325 7326 // Otherwise, check whether we have a loop latch to look at. 7327 Loop *BBL = LI->getLoopFor(ParentBB); 7328 if (!BBL) 7329 return nullptr; 7330 BasicBlock *BBLatch = BBL->getLoopLatch(); 7331 if (!BBLatch) 7332 return nullptr; 7333 7334 // There is a loop latch, return the incoming value if it comes from 7335 // that. This reduction pattern occasionally turns up. 7336 if (P->getIncomingBlock(0) == BBLatch) { 7337 Rdx = P->getIncomingValue(0); 7338 } else if (P->getIncomingBlock(1) == BBLatch) { 7339 Rdx = P->getIncomingValue(1); 7340 } 7341 7342 if (Rdx && DominatedReduxValue(Rdx)) 7343 return Rdx; 7344 7345 return nullptr; 7346 } 7347 7348 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7349 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7350 return true; 7351 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7352 return true; 7353 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7354 return true; 7355 return false; 7356 } 7357 7358 /// Attempt to reduce a horizontal reduction. 7359 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7360 /// with reduction operators \a Root (or one of its operands) in a basic block 7361 /// \a BB, then check if it can be done. If horizontal reduction is not found 7362 /// and root instruction is a binary operation, vectorization of the operands is 7363 /// attempted. 7364 /// \returns true if a horizontal reduction was matched and reduced or operands 7365 /// of one of the binary instruction were vectorized. 7366 /// \returns false if a horizontal reduction was not matched (or not possible) 7367 /// or no vectorization of any binary operation feeding \a Root instruction was 7368 /// performed. 7369 static bool tryToVectorizeHorReductionOrInstOperands( 7370 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7371 TargetTransformInfo *TTI, 7372 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7373 if (!ShouldVectorizeHor) 7374 return false; 7375 7376 if (!Root) 7377 return false; 7378 7379 if (Root->getParent() != BB || isa<PHINode>(Root)) 7380 return false; 7381 // Start analysis starting from Root instruction. If horizontal reduction is 7382 // found, try to vectorize it. If it is not a horizontal reduction or 7383 // vectorization is not possible or not effective, and currently analyzed 7384 // instruction is a binary operation, try to vectorize the operands, using 7385 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7386 // the same procedure considering each operand as a possible root of the 7387 // horizontal reduction. 7388 // Interrupt the process if the Root instruction itself was vectorized or all 7389 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7390 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7391 SmallPtrSet<Value *, 8> VisitedInstrs; 7392 bool Res = false; 7393 while (!Stack.empty()) { 7394 Instruction *Inst; 7395 unsigned Level; 7396 std::tie(Inst, Level) = Stack.pop_back_val(); 7397 Value *B0, *B1; 7398 bool IsBinop = matchRdxBop(Inst, B0, B1); 7399 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7400 if (IsBinop || IsSelect) { 7401 HorizontalReduction HorRdx; 7402 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7403 if (HorRdx.tryToReduce(R, TTI)) { 7404 Res = true; 7405 // Set P to nullptr to avoid re-analysis of phi node in 7406 // matchAssociativeReduction function unless this is the root node. 7407 P = nullptr; 7408 continue; 7409 } 7410 } 7411 if (P && IsBinop) { 7412 Inst = dyn_cast<Instruction>(B0); 7413 if (Inst == P) 7414 Inst = dyn_cast<Instruction>(B1); 7415 if (!Inst) { 7416 // Set P to nullptr to avoid re-analysis of phi node in 7417 // matchAssociativeReduction function unless this is the root node. 7418 P = nullptr; 7419 continue; 7420 } 7421 } 7422 } 7423 // Set P to nullptr to avoid re-analysis of phi node in 7424 // matchAssociativeReduction function unless this is the root node. 7425 P = nullptr; 7426 if (Vectorize(Inst, R)) { 7427 Res = true; 7428 continue; 7429 } 7430 7431 // Try to vectorize operands. 7432 // Continue analysis for the instruction from the same basic block only to 7433 // save compile time. 7434 if (++Level < RecursionMaxDepth) 7435 for (auto *Op : Inst->operand_values()) 7436 if (VisitedInstrs.insert(Op).second) 7437 if (auto *I = dyn_cast<Instruction>(Op)) 7438 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7439 Stack.emplace_back(I, Level); 7440 } 7441 return Res; 7442 } 7443 7444 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7445 BasicBlock *BB, BoUpSLP &R, 7446 TargetTransformInfo *TTI) { 7447 auto *I = dyn_cast_or_null<Instruction>(V); 7448 if (!I) 7449 return false; 7450 7451 if (!isa<BinaryOperator>(I)) 7452 P = nullptr; 7453 // Try to match and vectorize a horizontal reduction. 7454 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7455 return tryToVectorize(I, R); 7456 }; 7457 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7458 ExtraVectorization); 7459 } 7460 7461 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7462 BasicBlock *BB, BoUpSLP &R) { 7463 const DataLayout &DL = BB->getModule()->getDataLayout(); 7464 if (!R.canMapToVector(IVI->getType(), DL)) 7465 return false; 7466 7467 SmallVector<Value *, 16> BuildVectorOpds; 7468 SmallVector<Value *, 16> BuildVectorInsts; 7469 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7470 return false; 7471 7472 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7473 // Aggregate value is unlikely to be processed in vector register, we need to 7474 // extract scalars into scalar registers, so NeedExtraction is set true. 7475 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7476 BuildVectorInsts); 7477 } 7478 7479 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7480 BasicBlock *BB, BoUpSLP &R) { 7481 SmallVector<Value *, 16> BuildVectorInsts; 7482 SmallVector<Value *, 16> BuildVectorOpds; 7483 SmallVector<int> Mask; 7484 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7485 (llvm::all_of(BuildVectorOpds, 7486 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7487 isShuffle(BuildVectorOpds, Mask))) 7488 return false; 7489 7490 // Vectorize starting with the build vector operands ignoring the BuildVector 7491 // instructions for the purpose of scheduling and user extraction. 7492 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7493 BuildVectorInsts); 7494 } 7495 7496 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7497 BoUpSLP &R) { 7498 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7499 return true; 7500 7501 bool OpsChanged = false; 7502 for (int Idx = 0; Idx < 2; ++Idx) { 7503 OpsChanged |= 7504 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7505 } 7506 return OpsChanged; 7507 } 7508 7509 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7510 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7511 bool OpsChanged = false; 7512 for (auto *I : reverse(Instructions)) { 7513 if (R.isDeleted(I)) 7514 continue; 7515 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7516 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7517 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7518 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7519 else if (auto *CI = dyn_cast<CmpInst>(I)) 7520 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7521 } 7522 Instructions.clear(); 7523 return OpsChanged; 7524 } 7525 7526 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7527 bool Changed = false; 7528 SmallVector<Value *, 4> Incoming; 7529 SmallPtrSet<Value *, 16> VisitedInstrs; 7530 7531 bool HaveVectorizedPhiNodes = true; 7532 while (HaveVectorizedPhiNodes) { 7533 HaveVectorizedPhiNodes = false; 7534 7535 // Collect the incoming values from the PHIs. 7536 Incoming.clear(); 7537 for (Instruction &I : *BB) { 7538 PHINode *P = dyn_cast<PHINode>(&I); 7539 if (!P) 7540 break; 7541 7542 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7543 Incoming.push_back(P); 7544 } 7545 7546 // Sort by type. 7547 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7548 7549 // Try to vectorize elements base on their type. 7550 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7551 E = Incoming.end(); 7552 IncIt != E;) { 7553 7554 // Look for the next elements with the same type. 7555 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7556 while (SameTypeIt != E && 7557 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7558 VisitedInstrs.insert(*SameTypeIt); 7559 ++SameTypeIt; 7560 } 7561 7562 // Try to vectorize them. 7563 unsigned NumElts = (SameTypeIt - IncIt); 7564 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7565 << NumElts << ")\n"); 7566 // The order in which the phi nodes appear in the program does not matter. 7567 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7568 // is done when there are exactly two elements since tryToVectorizeList 7569 // asserts that there are only two values when AllowReorder is true. 7570 bool AllowReorder = NumElts == 2; 7571 if (NumElts > 1 && 7572 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7573 // Success start over because instructions might have been changed. 7574 HaveVectorizedPhiNodes = true; 7575 Changed = true; 7576 break; 7577 } 7578 7579 // Start over at the next instruction of a different type (or the end). 7580 IncIt = SameTypeIt; 7581 } 7582 } 7583 7584 VisitedInstrs.clear(); 7585 7586 SmallVector<Instruction *, 8> PostProcessInstructions; 7587 SmallDenseSet<Instruction *, 4> KeyNodes; 7588 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7589 // Skip instructions with scalable type. The num of elements is unknown at 7590 // compile-time for scalable type. 7591 if (isa<ScalableVectorType>(it->getType())) 7592 continue; 7593 7594 // Skip instructions marked for the deletion. 7595 if (R.isDeleted(&*it)) 7596 continue; 7597 // We may go through BB multiple times so skip the one we have checked. 7598 if (!VisitedInstrs.insert(&*it).second) { 7599 if (it->use_empty() && KeyNodes.contains(&*it) && 7600 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7601 // We would like to start over since some instructions are deleted 7602 // and the iterator may become invalid value. 7603 Changed = true; 7604 it = BB->begin(); 7605 e = BB->end(); 7606 } 7607 continue; 7608 } 7609 7610 if (isa<DbgInfoIntrinsic>(it)) 7611 continue; 7612 7613 // Try to vectorize reductions that use PHINodes. 7614 if (PHINode *P = dyn_cast<PHINode>(it)) { 7615 // Check that the PHI is a reduction PHI. 7616 if (P->getNumIncomingValues() == 2) { 7617 // Try to match and vectorize a horizontal reduction. 7618 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7619 TTI)) { 7620 Changed = true; 7621 it = BB->begin(); 7622 e = BB->end(); 7623 continue; 7624 } 7625 } 7626 // Try to vectorize the incoming values of the PHI, to catch reductions 7627 // that feed into PHIs. 7628 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7629 // Skip if the incoming block is the current BB for now. Also, bypass 7630 // unreachable IR for efficiency and to avoid crashing. 7631 // TODO: Collect the skipped incoming values and try to vectorize them 7632 // after processing BB. 7633 if (BB == P->getIncomingBlock(I) || 7634 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7635 continue; 7636 7637 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7638 P->getIncomingBlock(I), R, TTI); 7639 } 7640 continue; 7641 } 7642 7643 // Ran into an instruction without users, like terminator, or function call 7644 // with ignored return value, store. Ignore unused instructions (basing on 7645 // instruction type, except for CallInst and InvokeInst). 7646 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7647 isa<InvokeInst>(it))) { 7648 KeyNodes.insert(&*it); 7649 bool OpsChanged = false; 7650 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7651 for (auto *V : it->operand_values()) { 7652 // Try to match and vectorize a horizontal reduction. 7653 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7654 } 7655 } 7656 // Start vectorization of post-process list of instructions from the 7657 // top-tree instructions to try to vectorize as many instructions as 7658 // possible. 7659 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7660 if (OpsChanged) { 7661 // We would like to start over since some instructions are deleted 7662 // and the iterator may become invalid value. 7663 Changed = true; 7664 it = BB->begin(); 7665 e = BB->end(); 7666 continue; 7667 } 7668 } 7669 7670 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7671 isa<InsertValueInst>(it)) 7672 PostProcessInstructions.push_back(&*it); 7673 } 7674 7675 return Changed; 7676 } 7677 7678 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7679 auto Changed = false; 7680 for (auto &Entry : GEPs) { 7681 // If the getelementptr list has fewer than two elements, there's nothing 7682 // to do. 7683 if (Entry.second.size() < 2) 7684 continue; 7685 7686 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7687 << Entry.second.size() << ".\n"); 7688 7689 // Process the GEP list in chunks suitable for the target's supported 7690 // vector size. If a vector register can't hold 1 element, we are done. We 7691 // are trying to vectorize the index computations, so the maximum number of 7692 // elements is based on the size of the index expression, rather than the 7693 // size of the GEP itself (the target's pointer size). 7694 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7695 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7696 if (MaxVecRegSize < EltSize) 7697 continue; 7698 7699 unsigned MaxElts = MaxVecRegSize / EltSize; 7700 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7701 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7702 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7703 7704 // Initialize a set a candidate getelementptrs. Note that we use a 7705 // SetVector here to preserve program order. If the index computations 7706 // are vectorizable and begin with loads, we want to minimize the chance 7707 // of having to reorder them later. 7708 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7709 7710 // Some of the candidates may have already been vectorized after we 7711 // initially collected them. If so, they are marked as deleted, so remove 7712 // them from the set of candidates. 7713 Candidates.remove_if( 7714 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7715 7716 // Remove from the set of candidates all pairs of getelementptrs with 7717 // constant differences. Such getelementptrs are likely not good 7718 // candidates for vectorization in a bottom-up phase since one can be 7719 // computed from the other. We also ensure all candidate getelementptr 7720 // indices are unique. 7721 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7722 auto *GEPI = GEPList[I]; 7723 if (!Candidates.count(GEPI)) 7724 continue; 7725 auto *SCEVI = SE->getSCEV(GEPList[I]); 7726 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7727 auto *GEPJ = GEPList[J]; 7728 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7729 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7730 Candidates.remove(GEPI); 7731 Candidates.remove(GEPJ); 7732 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7733 Candidates.remove(GEPJ); 7734 } 7735 } 7736 } 7737 7738 // We break out of the above computation as soon as we know there are 7739 // fewer than two candidates remaining. 7740 if (Candidates.size() < 2) 7741 continue; 7742 7743 // Add the single, non-constant index of each candidate to the bundle. We 7744 // ensured the indices met these constraints when we originally collected 7745 // the getelementptrs. 7746 SmallVector<Value *, 16> Bundle(Candidates.size()); 7747 auto BundleIndex = 0u; 7748 for (auto *V : Candidates) { 7749 auto *GEP = cast<GetElementPtrInst>(V); 7750 auto *GEPIdx = GEP->idx_begin()->get(); 7751 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7752 Bundle[BundleIndex++] = GEPIdx; 7753 } 7754 7755 // Try and vectorize the indices. We are currently only interested in 7756 // gather-like cases of the form: 7757 // 7758 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7759 // 7760 // where the loads of "a", the loads of "b", and the subtractions can be 7761 // performed in parallel. It's likely that detecting this pattern in a 7762 // bottom-up phase will be simpler and less costly than building a 7763 // full-blown top-down phase beginning at the consecutive loads. 7764 Changed |= tryToVectorizeList(Bundle, R); 7765 } 7766 } 7767 return Changed; 7768 } 7769 7770 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7771 bool Changed = false; 7772 // Attempt to sort and vectorize each of the store-groups. 7773 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7774 ++it) { 7775 if (it->second.size() < 2) 7776 continue; 7777 7778 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7779 << it->second.size() << ".\n"); 7780 7781 Changed |= vectorizeStores(it->second, R); 7782 } 7783 return Changed; 7784 } 7785 7786 char SLPVectorizer::ID = 0; 7787 7788 static const char lv_name[] = "SLP Vectorizer"; 7789 7790 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7791 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7792 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7793 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7794 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7795 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7796 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7797 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7798 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7799 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7800 7801 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7802