1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 ArrayRef<Value *> UserIgnoreLst = None); 899 900 /// Builds external uses of the vectorized scalars, i.e. the list of 901 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 902 /// ExternallyUsedValues contains additional list of external uses to handle 903 /// vectorization of reductions. 904 void 905 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 906 907 /// Clear the internal data structures that are created by 'buildTree'. 908 void deleteTree() { 909 VectorizableTree.clear(); 910 ScalarToTreeEntry.clear(); 911 MustGather.clear(); 912 ExternalUses.clear(); 913 for (auto &Iter : BlocksSchedules) { 914 BlockScheduling *BS = Iter.second.get(); 915 BS->clear(); 916 } 917 MinBWs.clear(); 918 InstrElementSize.clear(); 919 } 920 921 unsigned getTreeSize() const { return VectorizableTree.size(); } 922 923 /// Perform LICM and CSE on the newly generated gather sequences. 924 void optimizeGatherSequence(); 925 926 /// Checks if the specified gather tree entry \p TE can be represented as a 927 /// shuffled vector entry + (possibly) permutation with other gathers. It 928 /// implements the checks only for possibly ordered scalars (Loads, 929 /// ExtractElement, ExtractValue), which can be part of the graph. 930 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 931 932 /// Gets reordering data for the given tree entry. If the entry is vectorized 933 /// - just return ReorderIndices, otherwise check if the scalars can be 934 /// reordered and return the most optimal order. 935 /// \param TopToBottom If true, include the order of vectorized stores and 936 /// insertelement nodes, otherwise skip them. 937 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 938 939 /// Reorders the current graph to the most profitable order starting from the 940 /// root node to the leaf nodes. The best order is chosen only from the nodes 941 /// of the same size (vectorization factor). Smaller nodes are considered 942 /// parts of subgraph with smaller VF and they are reordered independently. We 943 /// can make it because we still need to extend smaller nodes to the wider VF 944 /// and we can merge reordering shuffles with the widening shuffles. 945 void reorderTopToBottom(); 946 947 /// Reorders the current graph to the most profitable order starting from 948 /// leaves to the root. It allows to rotate small subgraphs and reduce the 949 /// number of reshuffles if the leaf nodes use the same order. In this case we 950 /// can merge the orders and just shuffle user node instead of shuffling its 951 /// operands. Plus, even the leaf nodes have different orders, it allows to 952 /// sink reordering in the graph closer to the root node and merge it later 953 /// during analysis. 954 void reorderBottomToTop(bool IgnoreReorder = false); 955 956 /// \return The vector element size in bits to use when vectorizing the 957 /// expression tree ending at \p V. If V is a store, the size is the width of 958 /// the stored value. Otherwise, the size is the width of the largest loaded 959 /// value reaching V. This method is used by the vectorizer to calculate 960 /// vectorization factors. 961 unsigned getVectorElementSize(Value *V); 962 963 /// Compute the minimum type sizes required to represent the entries in a 964 /// vectorizable tree. 965 void computeMinimumValueSizes(); 966 967 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 968 unsigned getMaxVecRegSize() const { 969 return MaxVecRegSize; 970 } 971 972 // \returns minimum vector register size as set by cl::opt. 973 unsigned getMinVecRegSize() const { 974 return MinVecRegSize; 975 } 976 977 unsigned getMinVF(unsigned Sz) const { 978 return std::max(2U, getMinVecRegSize() / Sz); 979 } 980 981 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 982 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 983 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 984 return MaxVF ? MaxVF : UINT_MAX; 985 } 986 987 /// Check if homogeneous aggregate is isomorphic to some VectorType. 988 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 989 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 990 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 991 /// 992 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 993 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 994 995 /// \returns True if the VectorizableTree is both tiny and not fully 996 /// vectorizable. We do not vectorize such trees. 997 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 998 999 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1007 1008 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1009 /// can be load combined in the backend. Load combining may not be allowed in 1010 /// the IR optimizer, so we do not want to alter the pattern. For example, 1011 /// partially transforming a scalar bswap() pattern into vector code is 1012 /// effectively impossible for the backend to undo. 1013 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1014 /// may not be necessary. 1015 bool isLoadCombineCandidate() const; 1016 1017 OptimizationRemarkEmitter *getORE() { return ORE; } 1018 1019 /// This structure holds any data we need about the edges being traversed 1020 /// during buildTree_rec(). We keep track of: 1021 /// (i) the user TreeEntry index, and 1022 /// (ii) the index of the edge. 1023 struct EdgeInfo { 1024 EdgeInfo() = default; 1025 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1026 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1027 /// The user TreeEntry. 1028 TreeEntry *UserTE = nullptr; 1029 /// The operand index of the use. 1030 unsigned EdgeIdx = UINT_MAX; 1031 #ifndef NDEBUG 1032 friend inline raw_ostream &operator<<(raw_ostream &OS, 1033 const BoUpSLP::EdgeInfo &EI) { 1034 EI.dump(OS); 1035 return OS; 1036 } 1037 /// Debug print. 1038 void dump(raw_ostream &OS) const { 1039 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1040 << " EdgeIdx:" << EdgeIdx << "}"; 1041 } 1042 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1043 #endif 1044 }; 1045 1046 /// A helper class used for scoring candidates for two consecutive lanes. 1047 class LookAheadHeuristics { 1048 const DataLayout &DL; 1049 ScalarEvolution &SE; 1050 const BoUpSLP &R; 1051 int NumLanes; // Total number of lanes (aka vectorization factor). 1052 int MaxLevel; // The maximum recursion depth for accumulating score. 1053 1054 public: 1055 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1056 const BoUpSLP &R, int NumLanes, int MaxLevel) 1057 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1058 1059 // The hard-coded scores listed here are not very important, though it shall 1060 // be higher for better matches to improve the resulting cost. When 1061 // computing the scores of matching one sub-tree with another, we are 1062 // basically counting the number of values that are matching. So even if all 1063 // scores are set to 1, we would still get a decent matching result. 1064 // However, sometimes we have to break ties. For example we may have to 1065 // choose between matching loads vs matching opcodes. This is what these 1066 // scores are helping us with: they provide the order of preference. Also, 1067 // this is important if the scalar is externally used or used in another 1068 // tree entry node in the different lane. 1069 1070 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1071 static const int ScoreConsecutiveLoads = 4; 1072 /// The same load multiple times. This should have a better score than 1073 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1074 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1075 /// a vector load and 1.0 for a broadcast. 1076 static const int ScoreSplatLoads = 3; 1077 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1078 static const int ScoreReversedLoads = 3; 1079 /// ExtractElementInst from same vector and consecutive indexes. 1080 static const int ScoreConsecutiveExtracts = 4; 1081 /// ExtractElementInst from same vector and reversed indices. 1082 static const int ScoreReversedExtracts = 3; 1083 /// Constants. 1084 static const int ScoreConstants = 2; 1085 /// Instructions with the same opcode. 1086 static const int ScoreSameOpcode = 2; 1087 /// Instructions with alt opcodes (e.g, add + sub). 1088 static const int ScoreAltOpcodes = 1; 1089 /// Identical instructions (a.k.a. splat or broadcast). 1090 static const int ScoreSplat = 1; 1091 /// Matching with an undef is preferable to failing. 1092 static const int ScoreUndef = 1; 1093 /// Score for failing to find a decent match. 1094 static const int ScoreFail = 0; 1095 /// Score if all users are vectorized. 1096 static const int ScoreAllUserVectorized = 1; 1097 1098 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1099 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1100 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1101 /// MainAltOps. 1102 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1103 ArrayRef<Value *> MainAltOps) const { 1104 if (V1 == V2) { 1105 if (isa<LoadInst>(V1)) { 1106 // Retruns true if the users of V1 and V2 won't need to be extracted. 1107 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1108 // Bail out if we have too many uses to save compilation time. 1109 static constexpr unsigned Limit = 8; 1110 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1111 return false; 1112 1113 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1114 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1115 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1116 }); 1117 }; 1118 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1119 }; 1120 // A broadcast of a load can be cheaper on some targets. 1121 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1122 ElementCount::getFixed(NumLanes)) && 1123 ((int)V1->getNumUses() == NumLanes || 1124 AllUsersAreInternal(V1, V2))) 1125 return LookAheadHeuristics::ScoreSplatLoads; 1126 } 1127 return LookAheadHeuristics::ScoreSplat; 1128 } 1129 1130 auto *LI1 = dyn_cast<LoadInst>(V1); 1131 auto *LI2 = dyn_cast<LoadInst>(V2); 1132 if (LI1 && LI2) { 1133 if (LI1->getParent() != LI2->getParent()) 1134 return LookAheadHeuristics::ScoreFail; 1135 1136 Optional<int> Dist = getPointersDiff( 1137 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1138 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1139 if (!Dist || *Dist == 0) 1140 return LookAheadHeuristics::ScoreFail; 1141 // The distance is too large - still may be profitable to use masked 1142 // loads/gathers. 1143 if (std::abs(*Dist) > NumLanes / 2) 1144 return LookAheadHeuristics::ScoreAltOpcodes; 1145 // This still will detect consecutive loads, but we might have "holes" 1146 // in some cases. It is ok for non-power-2 vectorization and may produce 1147 // better results. It should not affect current vectorization. 1148 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1149 : LookAheadHeuristics::ScoreReversedLoads; 1150 } 1151 1152 auto *C1 = dyn_cast<Constant>(V1); 1153 auto *C2 = dyn_cast<Constant>(V2); 1154 if (C1 && C2) 1155 return LookAheadHeuristics::ScoreConstants; 1156 1157 // Extracts from consecutive indexes of the same vector better score as 1158 // the extracts could be optimized away. 1159 Value *EV1; 1160 ConstantInt *Ex1Idx; 1161 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1162 // Undefs are always profitable for extractelements. 1163 if (isa<UndefValue>(V2)) 1164 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1165 Value *EV2 = nullptr; 1166 ConstantInt *Ex2Idx = nullptr; 1167 if (match(V2, 1168 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1169 m_Undef())))) { 1170 // Undefs are always profitable for extractelements. 1171 if (!Ex2Idx) 1172 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1173 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1174 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1175 if (EV2 == EV1) { 1176 int Idx1 = Ex1Idx->getZExtValue(); 1177 int Idx2 = Ex2Idx->getZExtValue(); 1178 int Dist = Idx2 - Idx1; 1179 // The distance is too large - still may be profitable to use 1180 // shuffles. 1181 if (std::abs(Dist) == 0) 1182 return LookAheadHeuristics::ScoreSplat; 1183 if (std::abs(Dist) > NumLanes / 2) 1184 return LookAheadHeuristics::ScoreSameOpcode; 1185 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1186 : LookAheadHeuristics::ScoreReversedExtracts; 1187 } 1188 return LookAheadHeuristics::ScoreAltOpcodes; 1189 } 1190 return LookAheadHeuristics::ScoreFail; 1191 } 1192 1193 auto *I1 = dyn_cast<Instruction>(V1); 1194 auto *I2 = dyn_cast<Instruction>(V2); 1195 if (I1 && I2) { 1196 if (I1->getParent() != I2->getParent()) 1197 return LookAheadHeuristics::ScoreFail; 1198 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1199 Ops.push_back(I1); 1200 Ops.push_back(I2); 1201 InstructionsState S = getSameOpcode(Ops); 1202 // Note: Only consider instructions with <= 2 operands to avoid 1203 // complexity explosion. 1204 if (S.getOpcode() && 1205 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1206 !S.isAltShuffle()) && 1207 all_of(Ops, [&S](Value *V) { 1208 return cast<Instruction>(V)->getNumOperands() == 1209 S.MainOp->getNumOperands(); 1210 })) 1211 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1212 : LookAheadHeuristics::ScoreSameOpcode; 1213 } 1214 1215 if (isa<UndefValue>(V2)) 1216 return LookAheadHeuristics::ScoreUndef; 1217 1218 return LookAheadHeuristics::ScoreFail; 1219 } 1220 1221 /// Go through the operands of \p LHS and \p RHS recursively until 1222 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1223 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1224 /// of \p U1 and \p U2), except at the beginning of the recursion where 1225 /// these are set to nullptr. 1226 /// 1227 /// For example: 1228 /// \verbatim 1229 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1230 /// \ / \ / \ / \ / 1231 /// + + + + 1232 /// G1 G2 G3 G4 1233 /// \endverbatim 1234 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1235 /// each level recursively, accumulating the score. It starts from matching 1236 /// the additions at level 0, then moves on to the loads (level 1). The 1237 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1238 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1239 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1240 /// Please note that the order of the operands does not matter, as we 1241 /// evaluate the score of all profitable combinations of operands. In 1242 /// other words the score of G1 and G4 is the same as G1 and G2. This 1243 /// heuristic is based on ideas described in: 1244 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1245 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1246 /// Luís F. W. Góes 1247 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1248 Instruction *U2, int CurrLevel, 1249 ArrayRef<Value *> MainAltOps) const { 1250 1251 // Get the shallow score of V1 and V2. 1252 int ShallowScoreAtThisLevel = 1253 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1254 1255 // If reached MaxLevel, 1256 // or if V1 and V2 are not instructions, 1257 // or if they are SPLAT, 1258 // or if they are not consecutive, 1259 // or if profitable to vectorize loads or extractelements, early return 1260 // the current cost. 1261 auto *I1 = dyn_cast<Instruction>(LHS); 1262 auto *I2 = dyn_cast<Instruction>(RHS); 1263 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1264 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1265 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1266 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1267 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1268 ShallowScoreAtThisLevel)) 1269 return ShallowScoreAtThisLevel; 1270 assert(I1 && I2 && "Should have early exited."); 1271 1272 // Contains the I2 operand indexes that got matched with I1 operands. 1273 SmallSet<unsigned, 4> Op2Used; 1274 1275 // Recursion towards the operands of I1 and I2. We are trying all possible 1276 // operand pairs, and keeping track of the best score. 1277 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1278 OpIdx1 != NumOperands1; ++OpIdx1) { 1279 // Try to pair op1I with the best operand of I2. 1280 int MaxTmpScore = 0; 1281 unsigned MaxOpIdx2 = 0; 1282 bool FoundBest = false; 1283 // If I2 is commutative try all combinations. 1284 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1285 unsigned ToIdx = isCommutative(I2) 1286 ? I2->getNumOperands() 1287 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1288 assert(FromIdx <= ToIdx && "Bad index"); 1289 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1290 // Skip operands already paired with OpIdx1. 1291 if (Op2Used.count(OpIdx2)) 1292 continue; 1293 // Recursively calculate the cost at each level 1294 int TmpScore = 1295 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1296 I1, I2, CurrLevel + 1, None); 1297 // Look for the best score. 1298 if (TmpScore > LookAheadHeuristics::ScoreFail && 1299 TmpScore > MaxTmpScore) { 1300 MaxTmpScore = TmpScore; 1301 MaxOpIdx2 = OpIdx2; 1302 FoundBest = true; 1303 } 1304 } 1305 if (FoundBest) { 1306 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1307 Op2Used.insert(MaxOpIdx2); 1308 ShallowScoreAtThisLevel += MaxTmpScore; 1309 } 1310 } 1311 return ShallowScoreAtThisLevel; 1312 } 1313 }; 1314 /// A helper data structure to hold the operands of a vector of instructions. 1315 /// This supports a fixed vector length for all operand vectors. 1316 class VLOperands { 1317 /// For each operand we need (i) the value, and (ii) the opcode that it 1318 /// would be attached to if the expression was in a left-linearized form. 1319 /// This is required to avoid illegal operand reordering. 1320 /// For example: 1321 /// \verbatim 1322 /// 0 Op1 1323 /// |/ 1324 /// Op1 Op2 Linearized + Op2 1325 /// \ / ----------> |/ 1326 /// - - 1327 /// 1328 /// Op1 - Op2 (0 + Op1) - Op2 1329 /// \endverbatim 1330 /// 1331 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1332 /// 1333 /// Another way to think of this is to track all the operations across the 1334 /// path from the operand all the way to the root of the tree and to 1335 /// calculate the operation that corresponds to this path. For example, the 1336 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1337 /// corresponding operation is a '-' (which matches the one in the 1338 /// linearized tree, as shown above). 1339 /// 1340 /// For lack of a better term, we refer to this operation as Accumulated 1341 /// Path Operation (APO). 1342 struct OperandData { 1343 OperandData() = default; 1344 OperandData(Value *V, bool APO, bool IsUsed) 1345 : V(V), APO(APO), IsUsed(IsUsed) {} 1346 /// The operand value. 1347 Value *V = nullptr; 1348 /// TreeEntries only allow a single opcode, or an alternate sequence of 1349 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1350 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1351 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1352 /// (e.g., Add/Mul) 1353 bool APO = false; 1354 /// Helper data for the reordering function. 1355 bool IsUsed = false; 1356 }; 1357 1358 /// During operand reordering, we are trying to select the operand at lane 1359 /// that matches best with the operand at the neighboring lane. Our 1360 /// selection is based on the type of value we are looking for. For example, 1361 /// if the neighboring lane has a load, we need to look for a load that is 1362 /// accessing a consecutive address. These strategies are summarized in the 1363 /// 'ReorderingMode' enumerator. 1364 enum class ReorderingMode { 1365 Load, ///< Matching loads to consecutive memory addresses 1366 Opcode, ///< Matching instructions based on opcode (same or alternate) 1367 Constant, ///< Matching constants 1368 Splat, ///< Matching the same instruction multiple times (broadcast) 1369 Failed, ///< We failed to create a vectorizable group 1370 }; 1371 1372 using OperandDataVec = SmallVector<OperandData, 2>; 1373 1374 /// A vector of operand vectors. 1375 SmallVector<OperandDataVec, 4> OpsVec; 1376 1377 const DataLayout &DL; 1378 ScalarEvolution &SE; 1379 const BoUpSLP &R; 1380 1381 /// \returns the operand data at \p OpIdx and \p Lane. 1382 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1383 return OpsVec[OpIdx][Lane]; 1384 } 1385 1386 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1387 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1388 return OpsVec[OpIdx][Lane]; 1389 } 1390 1391 /// Clears the used flag for all entries. 1392 void clearUsed() { 1393 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1394 OpIdx != NumOperands; ++OpIdx) 1395 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1396 ++Lane) 1397 OpsVec[OpIdx][Lane].IsUsed = false; 1398 } 1399 1400 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1401 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1402 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1403 } 1404 1405 /// \param Lane lane of the operands under analysis. 1406 /// \param OpIdx operand index in \p Lane lane we're looking the best 1407 /// candidate for. 1408 /// \param Idx operand index of the current candidate value. 1409 /// \returns The additional score due to possible broadcasting of the 1410 /// elements in the lane. It is more profitable to have power-of-2 unique 1411 /// elements in the lane, it will be vectorized with higher probability 1412 /// after removing duplicates. Currently the SLP vectorizer supports only 1413 /// vectorization of the power-of-2 number of unique scalars. 1414 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1415 Value *IdxLaneV = getData(Idx, Lane).V; 1416 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1417 return 0; 1418 SmallPtrSet<Value *, 4> Uniques; 1419 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1420 if (Ln == Lane) 1421 continue; 1422 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1423 if (!isa<Instruction>(OpIdxLnV)) 1424 return 0; 1425 Uniques.insert(OpIdxLnV); 1426 } 1427 int UniquesCount = Uniques.size(); 1428 int UniquesCntWithIdxLaneV = 1429 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1430 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1431 int UniquesCntWithOpIdxLaneV = 1432 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1433 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1434 return 0; 1435 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1436 UniquesCntWithOpIdxLaneV) - 1437 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1438 } 1439 1440 /// \param Lane lane of the operands under analysis. 1441 /// \param OpIdx operand index in \p Lane lane we're looking the best 1442 /// candidate for. 1443 /// \param Idx operand index of the current candidate value. 1444 /// \returns The additional score for the scalar which users are all 1445 /// vectorized. 1446 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1447 Value *IdxLaneV = getData(Idx, Lane).V; 1448 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1449 // Do not care about number of uses for vector-like instructions 1450 // (extractelement/extractvalue with constant indices), they are extracts 1451 // themselves and already externally used. Vectorization of such 1452 // instructions does not add extra extractelement instruction, just may 1453 // remove it. 1454 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1455 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1456 return LookAheadHeuristics::ScoreAllUserVectorized; 1457 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1458 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1459 return 0; 1460 return R.areAllUsersVectorized(IdxLaneI, None) 1461 ? LookAheadHeuristics::ScoreAllUserVectorized 1462 : 0; 1463 } 1464 1465 /// Score scaling factor for fully compatible instructions but with 1466 /// different number of external uses. Allows better selection of the 1467 /// instructions with less external uses. 1468 static const int ScoreScaleFactor = 10; 1469 1470 /// \Returns the look-ahead score, which tells us how much the sub-trees 1471 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1472 /// score. This helps break ties in an informed way when we cannot decide on 1473 /// the order of the operands by just considering the immediate 1474 /// predecessors. 1475 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1476 int Lane, unsigned OpIdx, unsigned Idx, 1477 bool &IsUsed) { 1478 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1479 LookAheadMaxDepth); 1480 // Keep track of the instruction stack as we recurse into the operands 1481 // during the look-ahead score exploration. 1482 int Score = 1483 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1484 /*CurrLevel=*/1, MainAltOps); 1485 if (Score) { 1486 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1487 if (Score <= -SplatScore) { 1488 // Set the minimum score for splat-like sequence to avoid setting 1489 // failed state. 1490 Score = 1; 1491 } else { 1492 Score += SplatScore; 1493 // Scale score to see the difference between different operands 1494 // and similar operands but all vectorized/not all vectorized 1495 // uses. It does not affect actual selection of the best 1496 // compatible operand in general, just allows to select the 1497 // operand with all vectorized uses. 1498 Score *= ScoreScaleFactor; 1499 Score += getExternalUseScore(Lane, OpIdx, Idx); 1500 IsUsed = true; 1501 } 1502 } 1503 return Score; 1504 } 1505 1506 /// Best defined scores per lanes between the passes. Used to choose the 1507 /// best operand (with the highest score) between the passes. 1508 /// The key - {Operand Index, Lane}. 1509 /// The value - the best score between the passes for the lane and the 1510 /// operand. 1511 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1512 BestScoresPerLanes; 1513 1514 // Search all operands in Ops[*][Lane] for the one that matches best 1515 // Ops[OpIdx][LastLane] and return its opreand index. 1516 // If no good match can be found, return None. 1517 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1518 ArrayRef<ReorderingMode> ReorderingModes, 1519 ArrayRef<Value *> MainAltOps) { 1520 unsigned NumOperands = getNumOperands(); 1521 1522 // The operand of the previous lane at OpIdx. 1523 Value *OpLastLane = getData(OpIdx, LastLane).V; 1524 1525 // Our strategy mode for OpIdx. 1526 ReorderingMode RMode = ReorderingModes[OpIdx]; 1527 if (RMode == ReorderingMode::Failed) 1528 return None; 1529 1530 // The linearized opcode of the operand at OpIdx, Lane. 1531 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1532 1533 // The best operand index and its score. 1534 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1535 // are using the score to differentiate between the two. 1536 struct BestOpData { 1537 Optional<unsigned> Idx = None; 1538 unsigned Score = 0; 1539 } BestOp; 1540 BestOp.Score = 1541 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1542 .first->second; 1543 1544 // Track if the operand must be marked as used. If the operand is set to 1545 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1546 // want to reestimate the operands again on the following iterations). 1547 bool IsUsed = 1548 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1549 // Iterate through all unused operands and look for the best. 1550 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1551 // Get the operand at Idx and Lane. 1552 OperandData &OpData = getData(Idx, Lane); 1553 Value *Op = OpData.V; 1554 bool OpAPO = OpData.APO; 1555 1556 // Skip already selected operands. 1557 if (OpData.IsUsed) 1558 continue; 1559 1560 // Skip if we are trying to move the operand to a position with a 1561 // different opcode in the linearized tree form. This would break the 1562 // semantics. 1563 if (OpAPO != OpIdxAPO) 1564 continue; 1565 1566 // Look for an operand that matches the current mode. 1567 switch (RMode) { 1568 case ReorderingMode::Load: 1569 case ReorderingMode::Constant: 1570 case ReorderingMode::Opcode: { 1571 bool LeftToRight = Lane > LastLane; 1572 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1573 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1574 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1575 OpIdx, Idx, IsUsed); 1576 if (Score > static_cast<int>(BestOp.Score)) { 1577 BestOp.Idx = Idx; 1578 BestOp.Score = Score; 1579 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1580 } 1581 break; 1582 } 1583 case ReorderingMode::Splat: 1584 if (Op == OpLastLane) 1585 BestOp.Idx = Idx; 1586 break; 1587 case ReorderingMode::Failed: 1588 llvm_unreachable("Not expected Failed reordering mode."); 1589 } 1590 } 1591 1592 if (BestOp.Idx) { 1593 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1594 return BestOp.Idx; 1595 } 1596 // If we could not find a good match return None. 1597 return None; 1598 } 1599 1600 /// Helper for reorderOperandVecs. 1601 /// \returns the lane that we should start reordering from. This is the one 1602 /// which has the least number of operands that can freely move about or 1603 /// less profitable because it already has the most optimal set of operands. 1604 unsigned getBestLaneToStartReordering() const { 1605 unsigned Min = UINT_MAX; 1606 unsigned SameOpNumber = 0; 1607 // std::pair<unsigned, unsigned> is used to implement a simple voting 1608 // algorithm and choose the lane with the least number of operands that 1609 // can freely move about or less profitable because it already has the 1610 // most optimal set of operands. The first unsigned is a counter for 1611 // voting, the second unsigned is the counter of lanes with instructions 1612 // with same/alternate opcodes and same parent basic block. 1613 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1614 // Try to be closer to the original results, if we have multiple lanes 1615 // with same cost. If 2 lanes have the same cost, use the one with the 1616 // lowest index. 1617 for (int I = getNumLanes(); I > 0; --I) { 1618 unsigned Lane = I - 1; 1619 OperandsOrderData NumFreeOpsHash = 1620 getMaxNumOperandsThatCanBeReordered(Lane); 1621 // Compare the number of operands that can move and choose the one with 1622 // the least number. 1623 if (NumFreeOpsHash.NumOfAPOs < Min) { 1624 Min = NumFreeOpsHash.NumOfAPOs; 1625 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1626 HashMap.clear(); 1627 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1628 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1629 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1630 // Select the most optimal lane in terms of number of operands that 1631 // should be moved around. 1632 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1633 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1634 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1635 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1636 auto It = HashMap.find(NumFreeOpsHash.Hash); 1637 if (It == HashMap.end()) 1638 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1639 else 1640 ++It->second.first; 1641 } 1642 } 1643 // Select the lane with the minimum counter. 1644 unsigned BestLane = 0; 1645 unsigned CntMin = UINT_MAX; 1646 for (const auto &Data : reverse(HashMap)) { 1647 if (Data.second.first < CntMin) { 1648 CntMin = Data.second.first; 1649 BestLane = Data.second.second; 1650 } 1651 } 1652 return BestLane; 1653 } 1654 1655 /// Data structure that helps to reorder operands. 1656 struct OperandsOrderData { 1657 /// The best number of operands with the same APOs, which can be 1658 /// reordered. 1659 unsigned NumOfAPOs = UINT_MAX; 1660 /// Number of operands with the same/alternate instruction opcode and 1661 /// parent. 1662 unsigned NumOpsWithSameOpcodeParent = 0; 1663 /// Hash for the actual operands ordering. 1664 /// Used to count operands, actually their position id and opcode 1665 /// value. It is used in the voting mechanism to find the lane with the 1666 /// least number of operands that can freely move about or less profitable 1667 /// because it already has the most optimal set of operands. Can be 1668 /// replaced with SmallVector<unsigned> instead but hash code is faster 1669 /// and requires less memory. 1670 unsigned Hash = 0; 1671 }; 1672 /// \returns the maximum number of operands that are allowed to be reordered 1673 /// for \p Lane and the number of compatible instructions(with the same 1674 /// parent/opcode). This is used as a heuristic for selecting the first lane 1675 /// to start operand reordering. 1676 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1677 unsigned CntTrue = 0; 1678 unsigned NumOperands = getNumOperands(); 1679 // Operands with the same APO can be reordered. We therefore need to count 1680 // how many of them we have for each APO, like this: Cnt[APO] = x. 1681 // Since we only have two APOs, namely true and false, we can avoid using 1682 // a map. Instead we can simply count the number of operands that 1683 // correspond to one of them (in this case the 'true' APO), and calculate 1684 // the other by subtracting it from the total number of operands. 1685 // Operands with the same instruction opcode and parent are more 1686 // profitable since we don't need to move them in many cases, with a high 1687 // probability such lane already can be vectorized effectively. 1688 bool AllUndefs = true; 1689 unsigned NumOpsWithSameOpcodeParent = 0; 1690 Instruction *OpcodeI = nullptr; 1691 BasicBlock *Parent = nullptr; 1692 unsigned Hash = 0; 1693 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1694 const OperandData &OpData = getData(OpIdx, Lane); 1695 if (OpData.APO) 1696 ++CntTrue; 1697 // Use Boyer-Moore majority voting for finding the majority opcode and 1698 // the number of times it occurs. 1699 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1700 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1701 I->getParent() != Parent) { 1702 if (NumOpsWithSameOpcodeParent == 0) { 1703 NumOpsWithSameOpcodeParent = 1; 1704 OpcodeI = I; 1705 Parent = I->getParent(); 1706 } else { 1707 --NumOpsWithSameOpcodeParent; 1708 } 1709 } else { 1710 ++NumOpsWithSameOpcodeParent; 1711 } 1712 } 1713 Hash = hash_combine( 1714 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1715 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1716 } 1717 if (AllUndefs) 1718 return {}; 1719 OperandsOrderData Data; 1720 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1721 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1722 Data.Hash = Hash; 1723 return Data; 1724 } 1725 1726 /// Go through the instructions in VL and append their operands. 1727 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1728 assert(!VL.empty() && "Bad VL"); 1729 assert((empty() || VL.size() == getNumLanes()) && 1730 "Expected same number of lanes"); 1731 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1732 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1733 OpsVec.resize(NumOperands); 1734 unsigned NumLanes = VL.size(); 1735 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1736 OpsVec[OpIdx].resize(NumLanes); 1737 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1738 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1739 // Our tree has just 3 nodes: the root and two operands. 1740 // It is therefore trivial to get the APO. We only need to check the 1741 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1742 // RHS operand. The LHS operand of both add and sub is never attached 1743 // to an inversese operation in the linearized form, therefore its APO 1744 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1745 1746 // Since operand reordering is performed on groups of commutative 1747 // operations or alternating sequences (e.g., +, -), we can safely 1748 // tell the inverse operations by checking commutativity. 1749 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1750 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1751 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1752 APO, false}; 1753 } 1754 } 1755 } 1756 1757 /// \returns the number of operands. 1758 unsigned getNumOperands() const { return OpsVec.size(); } 1759 1760 /// \returns the number of lanes. 1761 unsigned getNumLanes() const { return OpsVec[0].size(); } 1762 1763 /// \returns the operand value at \p OpIdx and \p Lane. 1764 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1765 return getData(OpIdx, Lane).V; 1766 } 1767 1768 /// \returns true if the data structure is empty. 1769 bool empty() const { return OpsVec.empty(); } 1770 1771 /// Clears the data. 1772 void clear() { OpsVec.clear(); } 1773 1774 /// \Returns true if there are enough operands identical to \p Op to fill 1775 /// the whole vector. 1776 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1777 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1778 bool OpAPO = getData(OpIdx, Lane).APO; 1779 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1780 if (Ln == Lane) 1781 continue; 1782 // This is set to true if we found a candidate for broadcast at Lane. 1783 bool FoundCandidate = false; 1784 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1785 OperandData &Data = getData(OpI, Ln); 1786 if (Data.APO != OpAPO || Data.IsUsed) 1787 continue; 1788 if (Data.V == Op) { 1789 FoundCandidate = true; 1790 Data.IsUsed = true; 1791 break; 1792 } 1793 } 1794 if (!FoundCandidate) 1795 return false; 1796 } 1797 return true; 1798 } 1799 1800 public: 1801 /// Initialize with all the operands of the instruction vector \p RootVL. 1802 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1803 ScalarEvolution &SE, const BoUpSLP &R) 1804 : DL(DL), SE(SE), R(R) { 1805 // Append all the operands of RootVL. 1806 appendOperandsOfVL(RootVL); 1807 } 1808 1809 /// \Returns a value vector with the operands across all lanes for the 1810 /// opearnd at \p OpIdx. 1811 ValueList getVL(unsigned OpIdx) const { 1812 ValueList OpVL(OpsVec[OpIdx].size()); 1813 assert(OpsVec[OpIdx].size() == getNumLanes() && 1814 "Expected same num of lanes across all operands"); 1815 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1816 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1817 return OpVL; 1818 } 1819 1820 // Performs operand reordering for 2 or more operands. 1821 // The original operands are in OrigOps[OpIdx][Lane]. 1822 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1823 void reorder() { 1824 unsigned NumOperands = getNumOperands(); 1825 unsigned NumLanes = getNumLanes(); 1826 // Each operand has its own mode. We are using this mode to help us select 1827 // the instructions for each lane, so that they match best with the ones 1828 // we have selected so far. 1829 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1830 1831 // This is a greedy single-pass algorithm. We are going over each lane 1832 // once and deciding on the best order right away with no back-tracking. 1833 // However, in order to increase its effectiveness, we start with the lane 1834 // that has operands that can move the least. For example, given the 1835 // following lanes: 1836 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1837 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1838 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1839 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1840 // we will start at Lane 1, since the operands of the subtraction cannot 1841 // be reordered. Then we will visit the rest of the lanes in a circular 1842 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1843 1844 // Find the first lane that we will start our search from. 1845 unsigned FirstLane = getBestLaneToStartReordering(); 1846 1847 // Initialize the modes. 1848 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1849 Value *OpLane0 = getValue(OpIdx, FirstLane); 1850 // Keep track if we have instructions with all the same opcode on one 1851 // side. 1852 if (isa<LoadInst>(OpLane0)) 1853 ReorderingModes[OpIdx] = ReorderingMode::Load; 1854 else if (isa<Instruction>(OpLane0)) { 1855 // Check if OpLane0 should be broadcast. 1856 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1857 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1858 else 1859 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1860 } 1861 else if (isa<Constant>(OpLane0)) 1862 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1863 else if (isa<Argument>(OpLane0)) 1864 // Our best hope is a Splat. It may save some cost in some cases. 1865 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1866 else 1867 // NOTE: This should be unreachable. 1868 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1869 } 1870 1871 // Check that we don't have same operands. No need to reorder if operands 1872 // are just perfect diamond or shuffled diamond match. Do not do it only 1873 // for possible broadcasts or non-power of 2 number of scalars (just for 1874 // now). 1875 auto &&SkipReordering = [this]() { 1876 SmallPtrSet<Value *, 4> UniqueValues; 1877 ArrayRef<OperandData> Op0 = OpsVec.front(); 1878 for (const OperandData &Data : Op0) 1879 UniqueValues.insert(Data.V); 1880 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1881 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1882 return !UniqueValues.contains(Data.V); 1883 })) 1884 return false; 1885 } 1886 // TODO: Check if we can remove a check for non-power-2 number of 1887 // scalars after full support of non-power-2 vectorization. 1888 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1889 }; 1890 1891 // If the initial strategy fails for any of the operand indexes, then we 1892 // perform reordering again in a second pass. This helps avoid assigning 1893 // high priority to the failed strategy, and should improve reordering for 1894 // the non-failed operand indexes. 1895 for (int Pass = 0; Pass != 2; ++Pass) { 1896 // Check if no need to reorder operands since they're are perfect or 1897 // shuffled diamond match. 1898 // Need to to do it to avoid extra external use cost counting for 1899 // shuffled matches, which may cause regressions. 1900 if (SkipReordering()) 1901 break; 1902 // Skip the second pass if the first pass did not fail. 1903 bool StrategyFailed = false; 1904 // Mark all operand data as free to use. 1905 clearUsed(); 1906 // We keep the original operand order for the FirstLane, so reorder the 1907 // rest of the lanes. We are visiting the nodes in a circular fashion, 1908 // using FirstLane as the center point and increasing the radius 1909 // distance. 1910 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1911 for (unsigned I = 0; I < NumOperands; ++I) 1912 MainAltOps[I].push_back(getData(I, FirstLane).V); 1913 1914 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1915 // Visit the lane on the right and then the lane on the left. 1916 for (int Direction : {+1, -1}) { 1917 int Lane = FirstLane + Direction * Distance; 1918 if (Lane < 0 || Lane >= (int)NumLanes) 1919 continue; 1920 int LastLane = Lane - Direction; 1921 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1922 "Out of bounds"); 1923 // Look for a good match for each operand. 1924 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1925 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1926 Optional<unsigned> BestIdx = getBestOperand( 1927 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1928 // By not selecting a value, we allow the operands that follow to 1929 // select a better matching value. We will get a non-null value in 1930 // the next run of getBestOperand(). 1931 if (BestIdx) { 1932 // Swap the current operand with the one returned by 1933 // getBestOperand(). 1934 swap(OpIdx, BestIdx.getValue(), Lane); 1935 } else { 1936 // We failed to find a best operand, set mode to 'Failed'. 1937 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1938 // Enable the second pass. 1939 StrategyFailed = true; 1940 } 1941 // Try to get the alternate opcode and follow it during analysis. 1942 if (MainAltOps[OpIdx].size() != 2) { 1943 OperandData &AltOp = getData(OpIdx, Lane); 1944 InstructionsState OpS = 1945 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1946 if (OpS.getOpcode() && OpS.isAltShuffle()) 1947 MainAltOps[OpIdx].push_back(AltOp.V); 1948 } 1949 } 1950 } 1951 } 1952 // Skip second pass if the strategy did not fail. 1953 if (!StrategyFailed) 1954 break; 1955 } 1956 } 1957 1958 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1959 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1960 switch (RMode) { 1961 case ReorderingMode::Load: 1962 return "Load"; 1963 case ReorderingMode::Opcode: 1964 return "Opcode"; 1965 case ReorderingMode::Constant: 1966 return "Constant"; 1967 case ReorderingMode::Splat: 1968 return "Splat"; 1969 case ReorderingMode::Failed: 1970 return "Failed"; 1971 } 1972 llvm_unreachable("Unimplemented Reordering Type"); 1973 } 1974 1975 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1976 raw_ostream &OS) { 1977 return OS << getModeStr(RMode); 1978 } 1979 1980 /// Debug print. 1981 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1982 printMode(RMode, dbgs()); 1983 } 1984 1985 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1986 return printMode(RMode, OS); 1987 } 1988 1989 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1990 const unsigned Indent = 2; 1991 unsigned Cnt = 0; 1992 for (const OperandDataVec &OpDataVec : OpsVec) { 1993 OS << "Operand " << Cnt++ << "\n"; 1994 for (const OperandData &OpData : OpDataVec) { 1995 OS.indent(Indent) << "{"; 1996 if (Value *V = OpData.V) 1997 OS << *V; 1998 else 1999 OS << "null"; 2000 OS << ", APO:" << OpData.APO << "}\n"; 2001 } 2002 OS << "\n"; 2003 } 2004 return OS; 2005 } 2006 2007 /// Debug print. 2008 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2009 #endif 2010 }; 2011 2012 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2013 /// for a pair which have highest score deemed to have best chance to form 2014 /// root of profitable tree to vectorize. Return None if no candidate scored 2015 /// above the LookAheadHeuristics::ScoreFail. 2016 Optional<int> 2017 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates) { 2018 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2019 RootLookAheadMaxDepth); 2020 int BestScore = LookAheadHeuristics::ScoreFail; 2021 Optional<int> Index = None; 2022 for (int I : seq<int>(0, Candidates.size())) { 2023 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2024 Candidates[I].second, 2025 /*U1=*/nullptr, /*U2=*/nullptr, 2026 /*Level=*/1, None); 2027 if (Score > BestScore) { 2028 BestScore = Score; 2029 Index = I; 2030 } 2031 } 2032 return Index; 2033 } 2034 2035 /// Checks if the instruction is marked for deletion. 2036 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2037 2038 /// Removes an instruction from its block and eventually deletes it. 2039 /// It's like Instruction::eraseFromParent() except that the actual deletion 2040 /// is delayed until BoUpSLP is destructed. 2041 void eraseInstruction(Instruction *I) { 2042 DeletedInstructions.insert(I); 2043 } 2044 2045 /// Checks if the instruction was already analyzed for being possible 2046 /// reduction root. 2047 bool isAnalizedReductionRoot(Instruction *I) const { 2048 return AnalizedReductionsRoots.count(I); 2049 } 2050 /// Register given instruction as already analyzed for being possible 2051 /// reduction root. 2052 void analyzedReductionRoot(Instruction *I) { 2053 AnalizedReductionsRoots.insert(I); 2054 } 2055 /// Checks if the provided list of reduced values was checked already for 2056 /// vectorization. 2057 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) { 2058 return AnalyzedReductionVals.contains(hash_value(VL)); 2059 } 2060 /// Adds the list of reduced values to list of already checked values for the 2061 /// vectorization. 2062 void analyzedReductionVals(ArrayRef<Value *> VL) { 2063 AnalyzedReductionVals.insert(hash_value(VL)); 2064 } 2065 /// Clear the list of the analyzed reduction root instructions. 2066 void clearReductionData() { 2067 AnalizedReductionsRoots.clear(); 2068 AnalyzedReductionVals.clear(); 2069 } 2070 /// Checks if the given value is gathered in one of the nodes. 2071 bool isGathered(Value *V) const { 2072 return MustGather.contains(V); 2073 } 2074 2075 ~BoUpSLP(); 2076 2077 private: 2078 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2079 /// reordering (i.e. the operands can be reordered because they have only one 2080 /// user and reordarable). 2081 /// \param ReorderableGathers List of all gather nodes that require reordering 2082 /// (e.g., gather of extractlements or partially vectorizable loads). 2083 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2084 /// reordering, subset of \p NonVectorized. 2085 bool 2086 canReorderOperands(TreeEntry *UserTE, 2087 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2088 ArrayRef<TreeEntry *> ReorderableGathers, 2089 SmallVectorImpl<TreeEntry *> &GatherOps); 2090 2091 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2092 /// if any. If it is not vectorized (gather node), returns nullptr. 2093 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2094 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2095 TreeEntry *TE = nullptr; 2096 const auto *It = find_if(VL, [this, &TE](Value *V) { 2097 TE = getTreeEntry(V); 2098 return TE; 2099 }); 2100 if (It != VL.end() && TE->isSame(VL)) 2101 return TE; 2102 return nullptr; 2103 } 2104 2105 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2106 /// if any. If it is not vectorized (gather node), returns nullptr. 2107 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2108 unsigned OpIdx) const { 2109 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2110 const_cast<TreeEntry *>(UserTE), OpIdx); 2111 } 2112 2113 /// Checks if all users of \p I are the part of the vectorization tree. 2114 bool areAllUsersVectorized(Instruction *I, 2115 ArrayRef<Value *> VectorizedVals) const; 2116 2117 /// \returns the cost of the vectorizable entry. 2118 InstructionCost getEntryCost(const TreeEntry *E, 2119 ArrayRef<Value *> VectorizedVals); 2120 2121 /// This is the recursive part of buildTree. 2122 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2123 const EdgeInfo &EI); 2124 2125 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2126 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2127 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2128 /// returns false, setting \p CurrentOrder to either an empty vector or a 2129 /// non-identity permutation that allows to reuse extract instructions. 2130 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2131 SmallVectorImpl<unsigned> &CurrentOrder) const; 2132 2133 /// Vectorize a single entry in the tree. 2134 Value *vectorizeTree(TreeEntry *E); 2135 2136 /// Vectorize a single entry in the tree, starting in \p VL. 2137 Value *vectorizeTree(ArrayRef<Value *> VL); 2138 2139 /// Create a new vector from a list of scalar values. Produces a sequence 2140 /// which exploits values reused across lanes, and arranges the inserts 2141 /// for ease of later optimization. 2142 Value *createBuildVector(ArrayRef<Value *> VL); 2143 2144 /// \returns the scalarization cost for this type. Scalarization in this 2145 /// context means the creation of vectors from a group of scalars. If \p 2146 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2147 /// vector elements. 2148 InstructionCost getGatherCost(FixedVectorType *Ty, 2149 const APInt &ShuffledIndices, 2150 bool NeedToShuffle) const; 2151 2152 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2153 /// tree entries. 2154 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2155 /// previous tree entries. \p Mask is filled with the shuffle mask. 2156 Optional<TargetTransformInfo::ShuffleKind> 2157 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2158 SmallVectorImpl<const TreeEntry *> &Entries); 2159 2160 /// \returns the scalarization cost for this list of values. Assuming that 2161 /// this subtree gets vectorized, we may need to extract the values from the 2162 /// roots. This method calculates the cost of extracting the values. 2163 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2164 2165 /// Set the Builder insert point to one after the last instruction in 2166 /// the bundle 2167 void setInsertPointAfterBundle(const TreeEntry *E); 2168 2169 /// \returns a vector from a collection of scalars in \p VL. 2170 Value *gather(ArrayRef<Value *> VL); 2171 2172 /// \returns whether the VectorizableTree is fully vectorizable and will 2173 /// be beneficial even the tree height is tiny. 2174 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2175 2176 /// Reorder commutative or alt operands to get better probability of 2177 /// generating vectorized code. 2178 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2179 SmallVectorImpl<Value *> &Left, 2180 SmallVectorImpl<Value *> &Right, 2181 const DataLayout &DL, 2182 ScalarEvolution &SE, 2183 const BoUpSLP &R); 2184 struct TreeEntry { 2185 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2186 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2187 2188 /// \returns true if the scalars in VL are equal to this entry. 2189 bool isSame(ArrayRef<Value *> VL) const { 2190 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2191 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2192 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2193 return VL.size() == Mask.size() && 2194 std::equal(VL.begin(), VL.end(), Mask.begin(), 2195 [Scalars](Value *V, int Idx) { 2196 return (isa<UndefValue>(V) && 2197 Idx == UndefMaskElem) || 2198 (Idx != UndefMaskElem && V == Scalars[Idx]); 2199 }); 2200 }; 2201 if (!ReorderIndices.empty()) { 2202 // TODO: implement matching if the nodes are just reordered, still can 2203 // treat the vector as the same if the list of scalars matches VL 2204 // directly, without reordering. 2205 SmallVector<int> Mask; 2206 inversePermutation(ReorderIndices, Mask); 2207 if (VL.size() == Scalars.size()) 2208 return IsSame(Scalars, Mask); 2209 if (VL.size() == ReuseShuffleIndices.size()) { 2210 ::addMask(Mask, ReuseShuffleIndices); 2211 return IsSame(Scalars, Mask); 2212 } 2213 return false; 2214 } 2215 return IsSame(Scalars, ReuseShuffleIndices); 2216 } 2217 2218 /// \returns true if current entry has same operands as \p TE. 2219 bool hasEqualOperands(const TreeEntry &TE) const { 2220 if (TE.getNumOperands() != getNumOperands()) 2221 return false; 2222 SmallBitVector Used(getNumOperands()); 2223 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2224 unsigned PrevCount = Used.count(); 2225 for (unsigned K = 0; K < E; ++K) { 2226 if (Used.test(K)) 2227 continue; 2228 if (getOperand(K) == TE.getOperand(I)) { 2229 Used.set(K); 2230 break; 2231 } 2232 } 2233 // Check if we actually found the matching operand. 2234 if (PrevCount == Used.count()) 2235 return false; 2236 } 2237 return true; 2238 } 2239 2240 /// \return Final vectorization factor for the node. Defined by the total 2241 /// number of vectorized scalars, including those, used several times in the 2242 /// entry and counted in the \a ReuseShuffleIndices, if any. 2243 unsigned getVectorFactor() const { 2244 if (!ReuseShuffleIndices.empty()) 2245 return ReuseShuffleIndices.size(); 2246 return Scalars.size(); 2247 }; 2248 2249 /// A vector of scalars. 2250 ValueList Scalars; 2251 2252 /// The Scalars are vectorized into this value. It is initialized to Null. 2253 Value *VectorizedValue = nullptr; 2254 2255 /// Do we need to gather this sequence or vectorize it 2256 /// (either with vector instruction or with scatter/gather 2257 /// intrinsics for store/load)? 2258 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2259 EntryState State; 2260 2261 /// Does this sequence require some shuffling? 2262 SmallVector<int, 4> ReuseShuffleIndices; 2263 2264 /// Does this entry require reordering? 2265 SmallVector<unsigned, 4> ReorderIndices; 2266 2267 /// Points back to the VectorizableTree. 2268 /// 2269 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2270 /// to be a pointer and needs to be able to initialize the child iterator. 2271 /// Thus we need a reference back to the container to translate the indices 2272 /// to entries. 2273 VecTreeTy &Container; 2274 2275 /// The TreeEntry index containing the user of this entry. We can actually 2276 /// have multiple users so the data structure is not truly a tree. 2277 SmallVector<EdgeInfo, 1> UserTreeIndices; 2278 2279 /// The index of this treeEntry in VectorizableTree. 2280 int Idx = -1; 2281 2282 private: 2283 /// The operands of each instruction in each lane Operands[op_index][lane]. 2284 /// Note: This helps avoid the replication of the code that performs the 2285 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2286 SmallVector<ValueList, 2> Operands; 2287 2288 /// The main/alternate instruction. 2289 Instruction *MainOp = nullptr; 2290 Instruction *AltOp = nullptr; 2291 2292 public: 2293 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2294 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2295 if (Operands.size() < OpIdx + 1) 2296 Operands.resize(OpIdx + 1); 2297 assert(Operands[OpIdx].empty() && "Already resized?"); 2298 assert(OpVL.size() <= Scalars.size() && 2299 "Number of operands is greater than the number of scalars."); 2300 Operands[OpIdx].resize(OpVL.size()); 2301 copy(OpVL, Operands[OpIdx].begin()); 2302 } 2303 2304 /// Set the operands of this bundle in their original order. 2305 void setOperandsInOrder() { 2306 assert(Operands.empty() && "Already initialized?"); 2307 auto *I0 = cast<Instruction>(Scalars[0]); 2308 Operands.resize(I0->getNumOperands()); 2309 unsigned NumLanes = Scalars.size(); 2310 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2311 OpIdx != NumOperands; ++OpIdx) { 2312 Operands[OpIdx].resize(NumLanes); 2313 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2314 auto *I = cast<Instruction>(Scalars[Lane]); 2315 assert(I->getNumOperands() == NumOperands && 2316 "Expected same number of operands"); 2317 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2318 } 2319 } 2320 } 2321 2322 /// Reorders operands of the node to the given mask \p Mask. 2323 void reorderOperands(ArrayRef<int> Mask) { 2324 for (ValueList &Operand : Operands) 2325 reorderScalars(Operand, Mask); 2326 } 2327 2328 /// \returns the \p OpIdx operand of this TreeEntry. 2329 ValueList &getOperand(unsigned OpIdx) { 2330 assert(OpIdx < Operands.size() && "Off bounds"); 2331 return Operands[OpIdx]; 2332 } 2333 2334 /// \returns the \p OpIdx operand of this TreeEntry. 2335 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2336 assert(OpIdx < Operands.size() && "Off bounds"); 2337 return Operands[OpIdx]; 2338 } 2339 2340 /// \returns the number of operands. 2341 unsigned getNumOperands() const { return Operands.size(); } 2342 2343 /// \return the single \p OpIdx operand. 2344 Value *getSingleOperand(unsigned OpIdx) const { 2345 assert(OpIdx < Operands.size() && "Off bounds"); 2346 assert(!Operands[OpIdx].empty() && "No operand available"); 2347 return Operands[OpIdx][0]; 2348 } 2349 2350 /// Some of the instructions in the list have alternate opcodes. 2351 bool isAltShuffle() const { return MainOp != AltOp; } 2352 2353 bool isOpcodeOrAlt(Instruction *I) const { 2354 unsigned CheckedOpcode = I->getOpcode(); 2355 return (getOpcode() == CheckedOpcode || 2356 getAltOpcode() == CheckedOpcode); 2357 } 2358 2359 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2360 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2361 /// \p OpValue. 2362 Value *isOneOf(Value *Op) const { 2363 auto *I = dyn_cast<Instruction>(Op); 2364 if (I && isOpcodeOrAlt(I)) 2365 return Op; 2366 return MainOp; 2367 } 2368 2369 void setOperations(const InstructionsState &S) { 2370 MainOp = S.MainOp; 2371 AltOp = S.AltOp; 2372 } 2373 2374 Instruction *getMainOp() const { 2375 return MainOp; 2376 } 2377 2378 Instruction *getAltOp() const { 2379 return AltOp; 2380 } 2381 2382 /// The main/alternate opcodes for the list of instructions. 2383 unsigned getOpcode() const { 2384 return MainOp ? MainOp->getOpcode() : 0; 2385 } 2386 2387 unsigned getAltOpcode() const { 2388 return AltOp ? AltOp->getOpcode() : 0; 2389 } 2390 2391 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2392 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2393 int findLaneForValue(Value *V) const { 2394 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2395 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2396 if (!ReorderIndices.empty()) 2397 FoundLane = ReorderIndices[FoundLane]; 2398 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2399 if (!ReuseShuffleIndices.empty()) { 2400 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2401 find(ReuseShuffleIndices, FoundLane)); 2402 } 2403 return FoundLane; 2404 } 2405 2406 #ifndef NDEBUG 2407 /// Debug printer. 2408 LLVM_DUMP_METHOD void dump() const { 2409 dbgs() << Idx << ".\n"; 2410 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2411 dbgs() << "Operand " << OpI << ":\n"; 2412 for (const Value *V : Operands[OpI]) 2413 dbgs().indent(2) << *V << "\n"; 2414 } 2415 dbgs() << "Scalars: \n"; 2416 for (Value *V : Scalars) 2417 dbgs().indent(2) << *V << "\n"; 2418 dbgs() << "State: "; 2419 switch (State) { 2420 case Vectorize: 2421 dbgs() << "Vectorize\n"; 2422 break; 2423 case ScatterVectorize: 2424 dbgs() << "ScatterVectorize\n"; 2425 break; 2426 case NeedToGather: 2427 dbgs() << "NeedToGather\n"; 2428 break; 2429 } 2430 dbgs() << "MainOp: "; 2431 if (MainOp) 2432 dbgs() << *MainOp << "\n"; 2433 else 2434 dbgs() << "NULL\n"; 2435 dbgs() << "AltOp: "; 2436 if (AltOp) 2437 dbgs() << *AltOp << "\n"; 2438 else 2439 dbgs() << "NULL\n"; 2440 dbgs() << "VectorizedValue: "; 2441 if (VectorizedValue) 2442 dbgs() << *VectorizedValue << "\n"; 2443 else 2444 dbgs() << "NULL\n"; 2445 dbgs() << "ReuseShuffleIndices: "; 2446 if (ReuseShuffleIndices.empty()) 2447 dbgs() << "Empty"; 2448 else 2449 for (int ReuseIdx : ReuseShuffleIndices) 2450 dbgs() << ReuseIdx << ", "; 2451 dbgs() << "\n"; 2452 dbgs() << "ReorderIndices: "; 2453 for (unsigned ReorderIdx : ReorderIndices) 2454 dbgs() << ReorderIdx << ", "; 2455 dbgs() << "\n"; 2456 dbgs() << "UserTreeIndices: "; 2457 for (const auto &EInfo : UserTreeIndices) 2458 dbgs() << EInfo << ", "; 2459 dbgs() << "\n"; 2460 } 2461 #endif 2462 }; 2463 2464 #ifndef NDEBUG 2465 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2466 InstructionCost VecCost, 2467 InstructionCost ScalarCost) const { 2468 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2469 dbgs() << "SLP: Costs:\n"; 2470 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2471 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2472 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2473 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2474 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2475 } 2476 #endif 2477 2478 /// Create a new VectorizableTree entry. 2479 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2480 const InstructionsState &S, 2481 const EdgeInfo &UserTreeIdx, 2482 ArrayRef<int> ReuseShuffleIndices = None, 2483 ArrayRef<unsigned> ReorderIndices = None) { 2484 TreeEntry::EntryState EntryState = 2485 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2486 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2487 ReuseShuffleIndices, ReorderIndices); 2488 } 2489 2490 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2491 TreeEntry::EntryState EntryState, 2492 Optional<ScheduleData *> Bundle, 2493 const InstructionsState &S, 2494 const EdgeInfo &UserTreeIdx, 2495 ArrayRef<int> ReuseShuffleIndices = None, 2496 ArrayRef<unsigned> ReorderIndices = None) { 2497 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2498 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2499 "Need to vectorize gather entry?"); 2500 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2501 TreeEntry *Last = VectorizableTree.back().get(); 2502 Last->Idx = VectorizableTree.size() - 1; 2503 Last->State = EntryState; 2504 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2505 ReuseShuffleIndices.end()); 2506 if (ReorderIndices.empty()) { 2507 Last->Scalars.assign(VL.begin(), VL.end()); 2508 Last->setOperations(S); 2509 } else { 2510 // Reorder scalars and build final mask. 2511 Last->Scalars.assign(VL.size(), nullptr); 2512 transform(ReorderIndices, Last->Scalars.begin(), 2513 [VL](unsigned Idx) -> Value * { 2514 if (Idx >= VL.size()) 2515 return UndefValue::get(VL.front()->getType()); 2516 return VL[Idx]; 2517 }); 2518 InstructionsState S = getSameOpcode(Last->Scalars); 2519 Last->setOperations(S); 2520 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2521 } 2522 if (Last->State != TreeEntry::NeedToGather) { 2523 for (Value *V : VL) { 2524 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2525 ScalarToTreeEntry[V] = Last; 2526 } 2527 // Update the scheduler bundle to point to this TreeEntry. 2528 ScheduleData *BundleMember = Bundle.getValue(); 2529 assert((BundleMember || isa<PHINode>(S.MainOp) || 2530 isVectorLikeInstWithConstOps(S.MainOp) || 2531 doesNotNeedToSchedule(VL)) && 2532 "Bundle and VL out of sync"); 2533 if (BundleMember) { 2534 for (Value *V : VL) { 2535 if (doesNotNeedToBeScheduled(V)) 2536 continue; 2537 assert(BundleMember && "Unexpected end of bundle."); 2538 BundleMember->TE = Last; 2539 BundleMember = BundleMember->NextInBundle; 2540 } 2541 } 2542 assert(!BundleMember && "Bundle and VL out of sync"); 2543 } else { 2544 MustGather.insert(VL.begin(), VL.end()); 2545 } 2546 2547 if (UserTreeIdx.UserTE) 2548 Last->UserTreeIndices.push_back(UserTreeIdx); 2549 2550 return Last; 2551 } 2552 2553 /// -- Vectorization State -- 2554 /// Holds all of the tree entries. 2555 TreeEntry::VecTreeTy VectorizableTree; 2556 2557 #ifndef NDEBUG 2558 /// Debug printer. 2559 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2560 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2561 VectorizableTree[Id]->dump(); 2562 dbgs() << "\n"; 2563 } 2564 } 2565 #endif 2566 2567 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2568 2569 const TreeEntry *getTreeEntry(Value *V) const { 2570 return ScalarToTreeEntry.lookup(V); 2571 } 2572 2573 /// Maps a specific scalar to its tree entry. 2574 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2575 2576 /// Maps a value to the proposed vectorizable size. 2577 SmallDenseMap<Value *, unsigned> InstrElementSize; 2578 2579 /// A list of scalars that we found that we need to keep as scalars. 2580 ValueSet MustGather; 2581 2582 /// This POD struct describes one external user in the vectorized tree. 2583 struct ExternalUser { 2584 ExternalUser(Value *S, llvm::User *U, int L) 2585 : Scalar(S), User(U), Lane(L) {} 2586 2587 // Which scalar in our function. 2588 Value *Scalar; 2589 2590 // Which user that uses the scalar. 2591 llvm::User *User; 2592 2593 // Which lane does the scalar belong to. 2594 int Lane; 2595 }; 2596 using UserList = SmallVector<ExternalUser, 16>; 2597 2598 /// Checks if two instructions may access the same memory. 2599 /// 2600 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2601 /// is invariant in the calling loop. 2602 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2603 Instruction *Inst2) { 2604 // First check if the result is already in the cache. 2605 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2606 Optional<bool> &result = AliasCache[key]; 2607 if (result.hasValue()) { 2608 return result.getValue(); 2609 } 2610 bool aliased = true; 2611 if (Loc1.Ptr && isSimple(Inst1)) 2612 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2613 // Store the result in the cache. 2614 result = aliased; 2615 return aliased; 2616 } 2617 2618 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2619 2620 /// Cache for alias results. 2621 /// TODO: consider moving this to the AliasAnalysis itself. 2622 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2623 2624 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2625 // globally through SLP because we don't perform any action which 2626 // invalidates capture results. 2627 BatchAAResults BatchAA; 2628 2629 /// Temporary store for deleted instructions. Instructions will be deleted 2630 /// eventually when the BoUpSLP is destructed. The deferral is required to 2631 /// ensure that there are no incorrect collisions in the AliasCache, which 2632 /// can happen if a new instruction is allocated at the same address as a 2633 /// previously deleted instruction. 2634 DenseSet<Instruction *> DeletedInstructions; 2635 2636 /// Set of the instruction, being analyzed already for reductions. 2637 SmallPtrSet<Instruction *, 16> AnalizedReductionsRoots; 2638 2639 /// Set of hashes for the list of reduction values already being analyzed. 2640 DenseSet<size_t> AnalyzedReductionVals; 2641 2642 /// A list of values that need to extracted out of the tree. 2643 /// This list holds pairs of (Internal Scalar : External User). External User 2644 /// can be nullptr, it means that this Internal Scalar will be used later, 2645 /// after vectorization. 2646 UserList ExternalUses; 2647 2648 /// Values used only by @llvm.assume calls. 2649 SmallPtrSet<const Value *, 32> EphValues; 2650 2651 /// Holds all of the instructions that we gathered. 2652 SetVector<Instruction *> GatherShuffleSeq; 2653 2654 /// A list of blocks that we are going to CSE. 2655 SetVector<BasicBlock *> CSEBlocks; 2656 2657 /// Contains all scheduling relevant data for an instruction. 2658 /// A ScheduleData either represents a single instruction or a member of an 2659 /// instruction bundle (= a group of instructions which is combined into a 2660 /// vector instruction). 2661 struct ScheduleData { 2662 // The initial value for the dependency counters. It means that the 2663 // dependencies are not calculated yet. 2664 enum { InvalidDeps = -1 }; 2665 2666 ScheduleData() = default; 2667 2668 void init(int BlockSchedulingRegionID, Value *OpVal) { 2669 FirstInBundle = this; 2670 NextInBundle = nullptr; 2671 NextLoadStore = nullptr; 2672 IsScheduled = false; 2673 SchedulingRegionID = BlockSchedulingRegionID; 2674 clearDependencies(); 2675 OpValue = OpVal; 2676 TE = nullptr; 2677 } 2678 2679 /// Verify basic self consistency properties 2680 void verify() { 2681 if (hasValidDependencies()) { 2682 assert(UnscheduledDeps <= Dependencies && "invariant"); 2683 } else { 2684 assert(UnscheduledDeps == Dependencies && "invariant"); 2685 } 2686 2687 if (IsScheduled) { 2688 assert(isSchedulingEntity() && 2689 "unexpected scheduled state"); 2690 for (const ScheduleData *BundleMember = this; BundleMember; 2691 BundleMember = BundleMember->NextInBundle) { 2692 assert(BundleMember->hasValidDependencies() && 2693 BundleMember->UnscheduledDeps == 0 && 2694 "unexpected scheduled state"); 2695 assert((BundleMember == this || !BundleMember->IsScheduled) && 2696 "only bundle is marked scheduled"); 2697 } 2698 } 2699 2700 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2701 "all bundle members must be in same basic block"); 2702 } 2703 2704 /// Returns true if the dependency information has been calculated. 2705 /// Note that depenendency validity can vary between instructions within 2706 /// a single bundle. 2707 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2708 2709 /// Returns true for single instructions and for bundle representatives 2710 /// (= the head of a bundle). 2711 bool isSchedulingEntity() const { return FirstInBundle == this; } 2712 2713 /// Returns true if it represents an instruction bundle and not only a 2714 /// single instruction. 2715 bool isPartOfBundle() const { 2716 return NextInBundle != nullptr || FirstInBundle != this || TE; 2717 } 2718 2719 /// Returns true if it is ready for scheduling, i.e. it has no more 2720 /// unscheduled depending instructions/bundles. 2721 bool isReady() const { 2722 assert(isSchedulingEntity() && 2723 "can't consider non-scheduling entity for ready list"); 2724 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2725 } 2726 2727 /// Modifies the number of unscheduled dependencies for this instruction, 2728 /// and returns the number of remaining dependencies for the containing 2729 /// bundle. 2730 int incrementUnscheduledDeps(int Incr) { 2731 assert(hasValidDependencies() && 2732 "increment of unscheduled deps would be meaningless"); 2733 UnscheduledDeps += Incr; 2734 return FirstInBundle->unscheduledDepsInBundle(); 2735 } 2736 2737 /// Sets the number of unscheduled dependencies to the number of 2738 /// dependencies. 2739 void resetUnscheduledDeps() { 2740 UnscheduledDeps = Dependencies; 2741 } 2742 2743 /// Clears all dependency information. 2744 void clearDependencies() { 2745 Dependencies = InvalidDeps; 2746 resetUnscheduledDeps(); 2747 MemoryDependencies.clear(); 2748 ControlDependencies.clear(); 2749 } 2750 2751 int unscheduledDepsInBundle() const { 2752 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2753 int Sum = 0; 2754 for (const ScheduleData *BundleMember = this; BundleMember; 2755 BundleMember = BundleMember->NextInBundle) { 2756 if (BundleMember->UnscheduledDeps == InvalidDeps) 2757 return InvalidDeps; 2758 Sum += BundleMember->UnscheduledDeps; 2759 } 2760 return Sum; 2761 } 2762 2763 void dump(raw_ostream &os) const { 2764 if (!isSchedulingEntity()) { 2765 os << "/ " << *Inst; 2766 } else if (NextInBundle) { 2767 os << '[' << *Inst; 2768 ScheduleData *SD = NextInBundle; 2769 while (SD) { 2770 os << ';' << *SD->Inst; 2771 SD = SD->NextInBundle; 2772 } 2773 os << ']'; 2774 } else { 2775 os << *Inst; 2776 } 2777 } 2778 2779 Instruction *Inst = nullptr; 2780 2781 /// Opcode of the current instruction in the schedule data. 2782 Value *OpValue = nullptr; 2783 2784 /// The TreeEntry that this instruction corresponds to. 2785 TreeEntry *TE = nullptr; 2786 2787 /// Points to the head in an instruction bundle (and always to this for 2788 /// single instructions). 2789 ScheduleData *FirstInBundle = nullptr; 2790 2791 /// Single linked list of all instructions in a bundle. Null if it is a 2792 /// single instruction. 2793 ScheduleData *NextInBundle = nullptr; 2794 2795 /// Single linked list of all memory instructions (e.g. load, store, call) 2796 /// in the block - until the end of the scheduling region. 2797 ScheduleData *NextLoadStore = nullptr; 2798 2799 /// The dependent memory instructions. 2800 /// This list is derived on demand in calculateDependencies(). 2801 SmallVector<ScheduleData *, 4> MemoryDependencies; 2802 2803 /// List of instructions which this instruction could be control dependent 2804 /// on. Allowing such nodes to be scheduled below this one could introduce 2805 /// a runtime fault which didn't exist in the original program. 2806 /// ex: this is a load or udiv following a readonly call which inf loops 2807 SmallVector<ScheduleData *, 4> ControlDependencies; 2808 2809 /// This ScheduleData is in the current scheduling region if this matches 2810 /// the current SchedulingRegionID of BlockScheduling. 2811 int SchedulingRegionID = 0; 2812 2813 /// Used for getting a "good" final ordering of instructions. 2814 int SchedulingPriority = 0; 2815 2816 /// The number of dependencies. Constitutes of the number of users of the 2817 /// instruction plus the number of dependent memory instructions (if any). 2818 /// This value is calculated on demand. 2819 /// If InvalidDeps, the number of dependencies is not calculated yet. 2820 int Dependencies = InvalidDeps; 2821 2822 /// The number of dependencies minus the number of dependencies of scheduled 2823 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2824 /// for scheduling. 2825 /// Note that this is negative as long as Dependencies is not calculated. 2826 int UnscheduledDeps = InvalidDeps; 2827 2828 /// True if this instruction is scheduled (or considered as scheduled in the 2829 /// dry-run). 2830 bool IsScheduled = false; 2831 }; 2832 2833 #ifndef NDEBUG 2834 friend inline raw_ostream &operator<<(raw_ostream &os, 2835 const BoUpSLP::ScheduleData &SD) { 2836 SD.dump(os); 2837 return os; 2838 } 2839 #endif 2840 2841 friend struct GraphTraits<BoUpSLP *>; 2842 friend struct DOTGraphTraits<BoUpSLP *>; 2843 2844 /// Contains all scheduling data for a basic block. 2845 /// It does not schedules instructions, which are not memory read/write 2846 /// instructions and their operands are either constants, or arguments, or 2847 /// phis, or instructions from others blocks, or their users are phis or from 2848 /// the other blocks. The resulting vector instructions can be placed at the 2849 /// beginning of the basic block without scheduling (if operands does not need 2850 /// to be scheduled) or at the end of the block (if users are outside of the 2851 /// block). It allows to save some compile time and memory used by the 2852 /// compiler. 2853 /// ScheduleData is assigned for each instruction in between the boundaries of 2854 /// the tree entry, even for those, which are not part of the graph. It is 2855 /// required to correctly follow the dependencies between the instructions and 2856 /// their correct scheduling. The ScheduleData is not allocated for the 2857 /// instructions, which do not require scheduling, like phis, nodes with 2858 /// extractelements/insertelements only or nodes with instructions, with 2859 /// uses/operands outside of the block. 2860 struct BlockScheduling { 2861 BlockScheduling(BasicBlock *BB) 2862 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2863 2864 void clear() { 2865 ReadyInsts.clear(); 2866 ScheduleStart = nullptr; 2867 ScheduleEnd = nullptr; 2868 FirstLoadStoreInRegion = nullptr; 2869 LastLoadStoreInRegion = nullptr; 2870 RegionHasStackSave = false; 2871 2872 // Reduce the maximum schedule region size by the size of the 2873 // previous scheduling run. 2874 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2875 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2876 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2877 ScheduleRegionSize = 0; 2878 2879 // Make a new scheduling region, i.e. all existing ScheduleData is not 2880 // in the new region yet. 2881 ++SchedulingRegionID; 2882 } 2883 2884 ScheduleData *getScheduleData(Instruction *I) { 2885 if (BB != I->getParent()) 2886 // Avoid lookup if can't possibly be in map. 2887 return nullptr; 2888 ScheduleData *SD = ScheduleDataMap.lookup(I); 2889 if (SD && isInSchedulingRegion(SD)) 2890 return SD; 2891 return nullptr; 2892 } 2893 2894 ScheduleData *getScheduleData(Value *V) { 2895 if (auto *I = dyn_cast<Instruction>(V)) 2896 return getScheduleData(I); 2897 return nullptr; 2898 } 2899 2900 ScheduleData *getScheduleData(Value *V, Value *Key) { 2901 if (V == Key) 2902 return getScheduleData(V); 2903 auto I = ExtraScheduleDataMap.find(V); 2904 if (I != ExtraScheduleDataMap.end()) { 2905 ScheduleData *SD = I->second.lookup(Key); 2906 if (SD && isInSchedulingRegion(SD)) 2907 return SD; 2908 } 2909 return nullptr; 2910 } 2911 2912 bool isInSchedulingRegion(ScheduleData *SD) const { 2913 return SD->SchedulingRegionID == SchedulingRegionID; 2914 } 2915 2916 /// Marks an instruction as scheduled and puts all dependent ready 2917 /// instructions into the ready-list. 2918 template <typename ReadyListType> 2919 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2920 SD->IsScheduled = true; 2921 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2922 2923 for (ScheduleData *BundleMember = SD; BundleMember; 2924 BundleMember = BundleMember->NextInBundle) { 2925 if (BundleMember->Inst != BundleMember->OpValue) 2926 continue; 2927 2928 // Handle the def-use chain dependencies. 2929 2930 // Decrement the unscheduled counter and insert to ready list if ready. 2931 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2932 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2933 if (OpDef && OpDef->hasValidDependencies() && 2934 OpDef->incrementUnscheduledDeps(-1) == 0) { 2935 // There are no more unscheduled dependencies after 2936 // decrementing, so we can put the dependent instruction 2937 // into the ready list. 2938 ScheduleData *DepBundle = OpDef->FirstInBundle; 2939 assert(!DepBundle->IsScheduled && 2940 "already scheduled bundle gets ready"); 2941 ReadyList.insert(DepBundle); 2942 LLVM_DEBUG(dbgs() 2943 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2944 } 2945 }); 2946 }; 2947 2948 // If BundleMember is a vector bundle, its operands may have been 2949 // reordered during buildTree(). We therefore need to get its operands 2950 // through the TreeEntry. 2951 if (TreeEntry *TE = BundleMember->TE) { 2952 // Need to search for the lane since the tree entry can be reordered. 2953 int Lane = std::distance(TE->Scalars.begin(), 2954 find(TE->Scalars, BundleMember->Inst)); 2955 assert(Lane >= 0 && "Lane not set"); 2956 2957 // Since vectorization tree is being built recursively this assertion 2958 // ensures that the tree entry has all operands set before reaching 2959 // this code. Couple of exceptions known at the moment are extracts 2960 // where their second (immediate) operand is not added. Since 2961 // immediates do not affect scheduler behavior this is considered 2962 // okay. 2963 auto *In = BundleMember->Inst; 2964 assert(In && 2965 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2966 In->getNumOperands() == TE->getNumOperands()) && 2967 "Missed TreeEntry operands?"); 2968 (void)In; // fake use to avoid build failure when assertions disabled 2969 2970 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2971 OpIdx != NumOperands; ++OpIdx) 2972 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2973 DecrUnsched(I); 2974 } else { 2975 // If BundleMember is a stand-alone instruction, no operand reordering 2976 // has taken place, so we directly access its operands. 2977 for (Use &U : BundleMember->Inst->operands()) 2978 if (auto *I = dyn_cast<Instruction>(U.get())) 2979 DecrUnsched(I); 2980 } 2981 // Handle the memory dependencies. 2982 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2983 if (MemoryDepSD->hasValidDependencies() && 2984 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2985 // There are no more unscheduled dependencies after decrementing, 2986 // so we can put the dependent instruction into the ready list. 2987 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2988 assert(!DepBundle->IsScheduled && 2989 "already scheduled bundle gets ready"); 2990 ReadyList.insert(DepBundle); 2991 LLVM_DEBUG(dbgs() 2992 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2993 } 2994 } 2995 // Handle the control dependencies. 2996 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2997 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2998 // There are no more unscheduled dependencies after decrementing, 2999 // so we can put the dependent instruction into the ready list. 3000 ScheduleData *DepBundle = DepSD->FirstInBundle; 3001 assert(!DepBundle->IsScheduled && 3002 "already scheduled bundle gets ready"); 3003 ReadyList.insert(DepBundle); 3004 LLVM_DEBUG(dbgs() 3005 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3006 } 3007 } 3008 3009 } 3010 } 3011 3012 /// Verify basic self consistency properties of the data structure. 3013 void verify() { 3014 if (!ScheduleStart) 3015 return; 3016 3017 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3018 ScheduleStart->comesBefore(ScheduleEnd) && 3019 "Not a valid scheduling region?"); 3020 3021 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3022 auto *SD = getScheduleData(I); 3023 if (!SD) 3024 continue; 3025 assert(isInSchedulingRegion(SD) && 3026 "primary schedule data not in window?"); 3027 assert(isInSchedulingRegion(SD->FirstInBundle) && 3028 "entire bundle in window!"); 3029 (void)SD; 3030 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3031 } 3032 3033 for (auto *SD : ReadyInsts) { 3034 assert(SD->isSchedulingEntity() && SD->isReady() && 3035 "item in ready list not ready?"); 3036 (void)SD; 3037 } 3038 } 3039 3040 void doForAllOpcodes(Value *V, 3041 function_ref<void(ScheduleData *SD)> Action) { 3042 if (ScheduleData *SD = getScheduleData(V)) 3043 Action(SD); 3044 auto I = ExtraScheduleDataMap.find(V); 3045 if (I != ExtraScheduleDataMap.end()) 3046 for (auto &P : I->second) 3047 if (isInSchedulingRegion(P.second)) 3048 Action(P.second); 3049 } 3050 3051 /// Put all instructions into the ReadyList which are ready for scheduling. 3052 template <typename ReadyListType> 3053 void initialFillReadyList(ReadyListType &ReadyList) { 3054 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3055 doForAllOpcodes(I, [&](ScheduleData *SD) { 3056 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3057 SD->isReady()) { 3058 ReadyList.insert(SD); 3059 LLVM_DEBUG(dbgs() 3060 << "SLP: initially in ready list: " << *SD << "\n"); 3061 } 3062 }); 3063 } 3064 } 3065 3066 /// Build a bundle from the ScheduleData nodes corresponding to the 3067 /// scalar instruction for each lane. 3068 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3069 3070 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3071 /// cyclic dependencies. This is only a dry-run, no instructions are 3072 /// actually moved at this stage. 3073 /// \returns the scheduling bundle. The returned Optional value is non-None 3074 /// if \p VL is allowed to be scheduled. 3075 Optional<ScheduleData *> 3076 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3077 const InstructionsState &S); 3078 3079 /// Un-bundles a group of instructions. 3080 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3081 3082 /// Allocates schedule data chunk. 3083 ScheduleData *allocateScheduleDataChunks(); 3084 3085 /// Extends the scheduling region so that V is inside the region. 3086 /// \returns true if the region size is within the limit. 3087 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3088 3089 /// Initialize the ScheduleData structures for new instructions in the 3090 /// scheduling region. 3091 void initScheduleData(Instruction *FromI, Instruction *ToI, 3092 ScheduleData *PrevLoadStore, 3093 ScheduleData *NextLoadStore); 3094 3095 /// Updates the dependency information of a bundle and of all instructions/ 3096 /// bundles which depend on the original bundle. 3097 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3098 BoUpSLP *SLP); 3099 3100 /// Sets all instruction in the scheduling region to un-scheduled. 3101 void resetSchedule(); 3102 3103 BasicBlock *BB; 3104 3105 /// Simple memory allocation for ScheduleData. 3106 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3107 3108 /// The size of a ScheduleData array in ScheduleDataChunks. 3109 int ChunkSize; 3110 3111 /// The allocator position in the current chunk, which is the last entry 3112 /// of ScheduleDataChunks. 3113 int ChunkPos; 3114 3115 /// Attaches ScheduleData to Instruction. 3116 /// Note that the mapping survives during all vectorization iterations, i.e. 3117 /// ScheduleData structures are recycled. 3118 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3119 3120 /// Attaches ScheduleData to Instruction with the leading key. 3121 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3122 ExtraScheduleDataMap; 3123 3124 /// The ready-list for scheduling (only used for the dry-run). 3125 SetVector<ScheduleData *> ReadyInsts; 3126 3127 /// The first instruction of the scheduling region. 3128 Instruction *ScheduleStart = nullptr; 3129 3130 /// The first instruction _after_ the scheduling region. 3131 Instruction *ScheduleEnd = nullptr; 3132 3133 /// The first memory accessing instruction in the scheduling region 3134 /// (can be null). 3135 ScheduleData *FirstLoadStoreInRegion = nullptr; 3136 3137 /// The last memory accessing instruction in the scheduling region 3138 /// (can be null). 3139 ScheduleData *LastLoadStoreInRegion = nullptr; 3140 3141 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3142 /// region? Used to optimize the dependence calculation for the 3143 /// common case where there isn't. 3144 bool RegionHasStackSave = false; 3145 3146 /// The current size of the scheduling region. 3147 int ScheduleRegionSize = 0; 3148 3149 /// The maximum size allowed for the scheduling region. 3150 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3151 3152 /// The ID of the scheduling region. For a new vectorization iteration this 3153 /// is incremented which "removes" all ScheduleData from the region. 3154 /// Make sure that the initial SchedulingRegionID is greater than the 3155 /// initial SchedulingRegionID in ScheduleData (which is 0). 3156 int SchedulingRegionID = 1; 3157 }; 3158 3159 /// Attaches the BlockScheduling structures to basic blocks. 3160 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3161 3162 /// Performs the "real" scheduling. Done before vectorization is actually 3163 /// performed in a basic block. 3164 void scheduleBlock(BlockScheduling *BS); 3165 3166 /// List of users to ignore during scheduling and that don't need extracting. 3167 ArrayRef<Value *> UserIgnoreList; 3168 3169 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3170 /// sorted SmallVectors of unsigned. 3171 struct OrdersTypeDenseMapInfo { 3172 static OrdersType getEmptyKey() { 3173 OrdersType V; 3174 V.push_back(~1U); 3175 return V; 3176 } 3177 3178 static OrdersType getTombstoneKey() { 3179 OrdersType V; 3180 V.push_back(~2U); 3181 return V; 3182 } 3183 3184 static unsigned getHashValue(const OrdersType &V) { 3185 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3186 } 3187 3188 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3189 return LHS == RHS; 3190 } 3191 }; 3192 3193 // Analysis and block reference. 3194 Function *F; 3195 ScalarEvolution *SE; 3196 TargetTransformInfo *TTI; 3197 TargetLibraryInfo *TLI; 3198 LoopInfo *LI; 3199 DominatorTree *DT; 3200 AssumptionCache *AC; 3201 DemandedBits *DB; 3202 const DataLayout *DL; 3203 OptimizationRemarkEmitter *ORE; 3204 3205 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3206 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3207 3208 /// Instruction builder to construct the vectorized tree. 3209 IRBuilder<> Builder; 3210 3211 /// A map of scalar integer values to the smallest bit width with which they 3212 /// can legally be represented. The values map to (width, signed) pairs, 3213 /// where "width" indicates the minimum bit width and "signed" is True if the 3214 /// value must be signed-extended, rather than zero-extended, back to its 3215 /// original width. 3216 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3217 }; 3218 3219 } // end namespace slpvectorizer 3220 3221 template <> struct GraphTraits<BoUpSLP *> { 3222 using TreeEntry = BoUpSLP::TreeEntry; 3223 3224 /// NodeRef has to be a pointer per the GraphWriter. 3225 using NodeRef = TreeEntry *; 3226 3227 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3228 3229 /// Add the VectorizableTree to the index iterator to be able to return 3230 /// TreeEntry pointers. 3231 struct ChildIteratorType 3232 : public iterator_adaptor_base< 3233 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3234 ContainerTy &VectorizableTree; 3235 3236 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3237 ContainerTy &VT) 3238 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3239 3240 NodeRef operator*() { return I->UserTE; } 3241 }; 3242 3243 static NodeRef getEntryNode(BoUpSLP &R) { 3244 return R.VectorizableTree[0].get(); 3245 } 3246 3247 static ChildIteratorType child_begin(NodeRef N) { 3248 return {N->UserTreeIndices.begin(), N->Container}; 3249 } 3250 3251 static ChildIteratorType child_end(NodeRef N) { 3252 return {N->UserTreeIndices.end(), N->Container}; 3253 } 3254 3255 /// For the node iterator we just need to turn the TreeEntry iterator into a 3256 /// TreeEntry* iterator so that it dereferences to NodeRef. 3257 class nodes_iterator { 3258 using ItTy = ContainerTy::iterator; 3259 ItTy It; 3260 3261 public: 3262 nodes_iterator(const ItTy &It2) : It(It2) {} 3263 NodeRef operator*() { return It->get(); } 3264 nodes_iterator operator++() { 3265 ++It; 3266 return *this; 3267 } 3268 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3269 }; 3270 3271 static nodes_iterator nodes_begin(BoUpSLP *R) { 3272 return nodes_iterator(R->VectorizableTree.begin()); 3273 } 3274 3275 static nodes_iterator nodes_end(BoUpSLP *R) { 3276 return nodes_iterator(R->VectorizableTree.end()); 3277 } 3278 3279 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3280 }; 3281 3282 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3283 using TreeEntry = BoUpSLP::TreeEntry; 3284 3285 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3286 3287 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3288 std::string Str; 3289 raw_string_ostream OS(Str); 3290 if (isSplat(Entry->Scalars)) 3291 OS << "<splat> "; 3292 for (auto V : Entry->Scalars) { 3293 OS << *V; 3294 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3295 return EU.Scalar == V; 3296 })) 3297 OS << " <extract>"; 3298 OS << "\n"; 3299 } 3300 return Str; 3301 } 3302 3303 static std::string getNodeAttributes(const TreeEntry *Entry, 3304 const BoUpSLP *) { 3305 if (Entry->State == TreeEntry::NeedToGather) 3306 return "color=red"; 3307 return ""; 3308 } 3309 }; 3310 3311 } // end namespace llvm 3312 3313 BoUpSLP::~BoUpSLP() { 3314 SmallVector<WeakTrackingVH> DeadInsts; 3315 for (auto *I : DeletedInstructions) { 3316 for (Use &U : I->operands()) { 3317 auto *Op = dyn_cast<Instruction>(U.get()); 3318 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3319 wouldInstructionBeTriviallyDead(Op, TLI)) 3320 DeadInsts.emplace_back(Op); 3321 } 3322 I->dropAllReferences(); 3323 } 3324 for (auto *I : DeletedInstructions) { 3325 assert(I->use_empty() && 3326 "trying to erase instruction with users."); 3327 I->eraseFromParent(); 3328 } 3329 3330 // Cleanup any dead scalar code feeding the vectorized instructions 3331 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3332 3333 #ifdef EXPENSIVE_CHECKS 3334 // If we could guarantee that this call is not extremely slow, we could 3335 // remove the ifdef limitation (see PR47712). 3336 assert(!verifyFunction(*F, &dbgs())); 3337 #endif 3338 } 3339 3340 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3341 /// contains original mask for the scalars reused in the node. Procedure 3342 /// transform this mask in accordance with the given \p Mask. 3343 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3344 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3345 "Expected non-empty mask."); 3346 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3347 Prev.swap(Reuses); 3348 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3349 if (Mask[I] != UndefMaskElem) 3350 Reuses[Mask[I]] = Prev[I]; 3351 } 3352 3353 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3354 /// the original order of the scalars. Procedure transforms the provided order 3355 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3356 /// identity order, \p Order is cleared. 3357 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3358 assert(!Mask.empty() && "Expected non-empty mask."); 3359 SmallVector<int> MaskOrder; 3360 if (Order.empty()) { 3361 MaskOrder.resize(Mask.size()); 3362 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3363 } else { 3364 inversePermutation(Order, MaskOrder); 3365 } 3366 reorderReuses(MaskOrder, Mask); 3367 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3368 Order.clear(); 3369 return; 3370 } 3371 Order.assign(Mask.size(), Mask.size()); 3372 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3373 if (MaskOrder[I] != UndefMaskElem) 3374 Order[MaskOrder[I]] = I; 3375 fixupOrderingIndices(Order); 3376 } 3377 3378 Optional<BoUpSLP::OrdersType> 3379 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3380 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3381 unsigned NumScalars = TE.Scalars.size(); 3382 OrdersType CurrentOrder(NumScalars, NumScalars); 3383 SmallVector<int> Positions; 3384 SmallBitVector UsedPositions(NumScalars); 3385 const TreeEntry *STE = nullptr; 3386 // Try to find all gathered scalars that are gets vectorized in other 3387 // vectorize node. Here we can have only one single tree vector node to 3388 // correctly identify order of the gathered scalars. 3389 for (unsigned I = 0; I < NumScalars; ++I) { 3390 Value *V = TE.Scalars[I]; 3391 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3392 continue; 3393 if (const auto *LocalSTE = getTreeEntry(V)) { 3394 if (!STE) 3395 STE = LocalSTE; 3396 else if (STE != LocalSTE) 3397 // Take the order only from the single vector node. 3398 return None; 3399 unsigned Lane = 3400 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3401 if (Lane >= NumScalars) 3402 return None; 3403 if (CurrentOrder[Lane] != NumScalars) { 3404 if (Lane != I) 3405 continue; 3406 UsedPositions.reset(CurrentOrder[Lane]); 3407 } 3408 // The partial identity (where only some elements of the gather node are 3409 // in the identity order) is good. 3410 CurrentOrder[Lane] = I; 3411 UsedPositions.set(I); 3412 } 3413 } 3414 // Need to keep the order if we have a vector entry and at least 2 scalars or 3415 // the vectorized entry has just 2 scalars. 3416 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3417 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3418 for (unsigned I = 0; I < NumScalars; ++I) 3419 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3420 return false; 3421 return true; 3422 }; 3423 if (IsIdentityOrder(CurrentOrder)) { 3424 CurrentOrder.clear(); 3425 return CurrentOrder; 3426 } 3427 auto *It = CurrentOrder.begin(); 3428 for (unsigned I = 0; I < NumScalars;) { 3429 if (UsedPositions.test(I)) { 3430 ++I; 3431 continue; 3432 } 3433 if (*It == NumScalars) { 3434 *It = I; 3435 ++I; 3436 } 3437 ++It; 3438 } 3439 return CurrentOrder; 3440 } 3441 return None; 3442 } 3443 3444 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3445 bool TopToBottom) { 3446 // No need to reorder if need to shuffle reuses, still need to shuffle the 3447 // node. 3448 if (!TE.ReuseShuffleIndices.empty()) 3449 return None; 3450 if (TE.State == TreeEntry::Vectorize && 3451 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3452 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3453 !TE.isAltShuffle()) 3454 return TE.ReorderIndices; 3455 if (TE.State == TreeEntry::NeedToGather) { 3456 // TODO: add analysis of other gather nodes with extractelement 3457 // instructions and other values/instructions, not only undefs. 3458 if (((TE.getOpcode() == Instruction::ExtractElement && 3459 !TE.isAltShuffle()) || 3460 (all_of(TE.Scalars, 3461 [](Value *V) { 3462 return isa<UndefValue, ExtractElementInst>(V); 3463 }) && 3464 any_of(TE.Scalars, 3465 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3466 all_of(TE.Scalars, 3467 [](Value *V) { 3468 auto *EE = dyn_cast<ExtractElementInst>(V); 3469 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3470 }) && 3471 allSameType(TE.Scalars)) { 3472 // Check that gather of extractelements can be represented as 3473 // just a shuffle of a single vector. 3474 OrdersType CurrentOrder; 3475 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3476 if (Reuse || !CurrentOrder.empty()) { 3477 if (!CurrentOrder.empty()) 3478 fixupOrderingIndices(CurrentOrder); 3479 return CurrentOrder; 3480 } 3481 } 3482 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3483 return CurrentOrder; 3484 } 3485 return None; 3486 } 3487 3488 void BoUpSLP::reorderTopToBottom() { 3489 // Maps VF to the graph nodes. 3490 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3491 // ExtractElement gather nodes which can be vectorized and need to handle 3492 // their ordering. 3493 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3494 // Find all reorderable nodes with the given VF. 3495 // Currently the are vectorized stores,loads,extracts + some gathering of 3496 // extracts. 3497 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3498 const std::unique_ptr<TreeEntry> &TE) { 3499 if (Optional<OrdersType> CurrentOrder = 3500 getReorderingData(*TE, /*TopToBottom=*/true)) { 3501 // Do not include ordering for nodes used in the alt opcode vectorization, 3502 // better to reorder them during bottom-to-top stage. If follow the order 3503 // here, it causes reordering of the whole graph though actually it is 3504 // profitable just to reorder the subgraph that starts from the alternate 3505 // opcode vectorization node. Such nodes already end-up with the shuffle 3506 // instruction and it is just enough to change this shuffle rather than 3507 // rotate the scalars for the whole graph. 3508 unsigned Cnt = 0; 3509 const TreeEntry *UserTE = TE.get(); 3510 while (UserTE && Cnt < RecursionMaxDepth) { 3511 if (UserTE->UserTreeIndices.size() != 1) 3512 break; 3513 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3514 return EI.UserTE->State == TreeEntry::Vectorize && 3515 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3516 })) 3517 return; 3518 if (UserTE->UserTreeIndices.empty()) 3519 UserTE = nullptr; 3520 else 3521 UserTE = UserTE->UserTreeIndices.back().UserTE; 3522 ++Cnt; 3523 } 3524 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3525 if (TE->State != TreeEntry::Vectorize) 3526 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3527 } 3528 }); 3529 3530 // Reorder the graph nodes according to their vectorization factor. 3531 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3532 VF /= 2) { 3533 auto It = VFToOrderedEntries.find(VF); 3534 if (It == VFToOrderedEntries.end()) 3535 continue; 3536 // Try to find the most profitable order. We just are looking for the most 3537 // used order and reorder scalar elements in the nodes according to this 3538 // mostly used order. 3539 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3540 // All operands are reordered and used only in this node - propagate the 3541 // most used order to the user node. 3542 MapVector<OrdersType, unsigned, 3543 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3544 OrdersUses; 3545 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3546 for (const TreeEntry *OpTE : OrderedEntries) { 3547 // No need to reorder this nodes, still need to extend and to use shuffle, 3548 // just need to merge reordering shuffle and the reuse shuffle. 3549 if (!OpTE->ReuseShuffleIndices.empty()) 3550 continue; 3551 // Count number of orders uses. 3552 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3553 if (OpTE->State == TreeEntry::NeedToGather) 3554 return GathersToOrders.find(OpTE)->second; 3555 return OpTE->ReorderIndices; 3556 }(); 3557 // Stores actually store the mask, not the order, need to invert. 3558 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3559 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3560 SmallVector<int> Mask; 3561 inversePermutation(Order, Mask); 3562 unsigned E = Order.size(); 3563 OrdersType CurrentOrder(E, E); 3564 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3565 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3566 }); 3567 fixupOrderingIndices(CurrentOrder); 3568 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3569 } else { 3570 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3571 } 3572 } 3573 // Set order of the user node. 3574 if (OrdersUses.empty()) 3575 continue; 3576 // Choose the most used order. 3577 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3578 unsigned Cnt = OrdersUses.front().second; 3579 for (const auto &Pair : drop_begin(OrdersUses)) { 3580 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3581 BestOrder = Pair.first; 3582 Cnt = Pair.second; 3583 } 3584 } 3585 // Set order of the user node. 3586 if (BestOrder.empty()) 3587 continue; 3588 SmallVector<int> Mask; 3589 inversePermutation(BestOrder, Mask); 3590 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3591 unsigned E = BestOrder.size(); 3592 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3593 return I < E ? static_cast<int>(I) : UndefMaskElem; 3594 }); 3595 // Do an actual reordering, if profitable. 3596 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3597 // Just do the reordering for the nodes with the given VF. 3598 if (TE->Scalars.size() != VF) { 3599 if (TE->ReuseShuffleIndices.size() == VF) { 3600 // Need to reorder the reuses masks of the operands with smaller VF to 3601 // be able to find the match between the graph nodes and scalar 3602 // operands of the given node during vectorization/cost estimation. 3603 assert(all_of(TE->UserTreeIndices, 3604 [VF, &TE](const EdgeInfo &EI) { 3605 return EI.UserTE->Scalars.size() == VF || 3606 EI.UserTE->Scalars.size() == 3607 TE->Scalars.size(); 3608 }) && 3609 "All users must be of VF size."); 3610 // Update ordering of the operands with the smaller VF than the given 3611 // one. 3612 reorderReuses(TE->ReuseShuffleIndices, Mask); 3613 } 3614 continue; 3615 } 3616 if (TE->State == TreeEntry::Vectorize && 3617 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3618 InsertElementInst>(TE->getMainOp()) && 3619 !TE->isAltShuffle()) { 3620 // Build correct orders for extract{element,value}, loads and 3621 // stores. 3622 reorderOrder(TE->ReorderIndices, Mask); 3623 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3624 TE->reorderOperands(Mask); 3625 } else { 3626 // Reorder the node and its operands. 3627 TE->reorderOperands(Mask); 3628 assert(TE->ReorderIndices.empty() && 3629 "Expected empty reorder sequence."); 3630 reorderScalars(TE->Scalars, Mask); 3631 } 3632 if (!TE->ReuseShuffleIndices.empty()) { 3633 // Apply reversed order to keep the original ordering of the reused 3634 // elements to avoid extra reorder indices shuffling. 3635 OrdersType CurrentOrder; 3636 reorderOrder(CurrentOrder, MaskOrder); 3637 SmallVector<int> NewReuses; 3638 inversePermutation(CurrentOrder, NewReuses); 3639 addMask(NewReuses, TE->ReuseShuffleIndices); 3640 TE->ReuseShuffleIndices.swap(NewReuses); 3641 } 3642 } 3643 } 3644 } 3645 3646 bool BoUpSLP::canReorderOperands( 3647 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3648 ArrayRef<TreeEntry *> ReorderableGathers, 3649 SmallVectorImpl<TreeEntry *> &GatherOps) { 3650 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3651 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3652 return OpData.first == I && 3653 OpData.second->State == TreeEntry::Vectorize; 3654 })) 3655 continue; 3656 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3657 // Do not reorder if operand node is used by many user nodes. 3658 if (any_of(TE->UserTreeIndices, 3659 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3660 return false; 3661 // Add the node to the list of the ordered nodes with the identity 3662 // order. 3663 Edges.emplace_back(I, TE); 3664 continue; 3665 } 3666 ArrayRef<Value *> VL = UserTE->getOperand(I); 3667 TreeEntry *Gather = nullptr; 3668 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3669 assert(TE->State != TreeEntry::Vectorize && 3670 "Only non-vectorized nodes are expected."); 3671 if (TE->isSame(VL)) { 3672 Gather = TE; 3673 return true; 3674 } 3675 return false; 3676 }) > 1) 3677 return false; 3678 if (Gather) 3679 GatherOps.push_back(Gather); 3680 } 3681 return true; 3682 } 3683 3684 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3685 SetVector<TreeEntry *> OrderedEntries; 3686 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3687 // Find all reorderable leaf nodes with the given VF. 3688 // Currently the are vectorized loads,extracts without alternate operands + 3689 // some gathering of extracts. 3690 SmallVector<TreeEntry *> NonVectorized; 3691 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3692 &NonVectorized]( 3693 const std::unique_ptr<TreeEntry> &TE) { 3694 if (TE->State != TreeEntry::Vectorize) 3695 NonVectorized.push_back(TE.get()); 3696 if (Optional<OrdersType> CurrentOrder = 3697 getReorderingData(*TE, /*TopToBottom=*/false)) { 3698 OrderedEntries.insert(TE.get()); 3699 if (TE->State != TreeEntry::Vectorize) 3700 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3701 } 3702 }); 3703 3704 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3705 // I.e., if the node has operands, that are reordered, try to make at least 3706 // one operand order in the natural order and reorder others + reorder the 3707 // user node itself. 3708 SmallPtrSet<const TreeEntry *, 4> Visited; 3709 while (!OrderedEntries.empty()) { 3710 // 1. Filter out only reordered nodes. 3711 // 2. If the entry has multiple uses - skip it and jump to the next node. 3712 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3713 SmallVector<TreeEntry *> Filtered; 3714 for (TreeEntry *TE : OrderedEntries) { 3715 if (!(TE->State == TreeEntry::Vectorize || 3716 (TE->State == TreeEntry::NeedToGather && 3717 GathersToOrders.count(TE))) || 3718 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3719 !all_of(drop_begin(TE->UserTreeIndices), 3720 [TE](const EdgeInfo &EI) { 3721 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3722 }) || 3723 !Visited.insert(TE).second) { 3724 Filtered.push_back(TE); 3725 continue; 3726 } 3727 // Build a map between user nodes and their operands order to speedup 3728 // search. The graph currently does not provide this dependency directly. 3729 for (EdgeInfo &EI : TE->UserTreeIndices) { 3730 TreeEntry *UserTE = EI.UserTE; 3731 auto It = Users.find(UserTE); 3732 if (It == Users.end()) 3733 It = Users.insert({UserTE, {}}).first; 3734 It->second.emplace_back(EI.EdgeIdx, TE); 3735 } 3736 } 3737 // Erase filtered entries. 3738 for_each(Filtered, 3739 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3740 for (auto &Data : Users) { 3741 // Check that operands are used only in the User node. 3742 SmallVector<TreeEntry *> GatherOps; 3743 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3744 GatherOps)) { 3745 for_each(Data.second, 3746 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3747 OrderedEntries.remove(Op.second); 3748 }); 3749 continue; 3750 } 3751 // All operands are reordered and used only in this node - propagate the 3752 // most used order to the user node. 3753 MapVector<OrdersType, unsigned, 3754 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3755 OrdersUses; 3756 // Do the analysis for each tree entry only once, otherwise the order of 3757 // the same node my be considered several times, though might be not 3758 // profitable. 3759 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3760 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3761 for (const auto &Op : Data.second) { 3762 TreeEntry *OpTE = Op.second; 3763 if (!VisitedOps.insert(OpTE).second) 3764 continue; 3765 if (!OpTE->ReuseShuffleIndices.empty() || 3766 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3767 continue; 3768 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3769 if (OpTE->State == TreeEntry::NeedToGather) 3770 return GathersToOrders.find(OpTE)->second; 3771 return OpTE->ReorderIndices; 3772 }(); 3773 unsigned NumOps = count_if( 3774 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3775 return P.second == OpTE; 3776 }); 3777 // Stores actually store the mask, not the order, need to invert. 3778 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3779 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3780 SmallVector<int> Mask; 3781 inversePermutation(Order, Mask); 3782 unsigned E = Order.size(); 3783 OrdersType CurrentOrder(E, E); 3784 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3785 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3786 }); 3787 fixupOrderingIndices(CurrentOrder); 3788 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3789 NumOps; 3790 } else { 3791 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3792 } 3793 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3794 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3795 const TreeEntry *TE) { 3796 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3797 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3798 (IgnoreReorder && TE->Idx == 0)) 3799 return true; 3800 if (TE->State == TreeEntry::NeedToGather) { 3801 auto It = GathersToOrders.find(TE); 3802 if (It != GathersToOrders.end()) 3803 return !It->second.empty(); 3804 return true; 3805 } 3806 return false; 3807 }; 3808 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3809 TreeEntry *UserTE = EI.UserTE; 3810 if (!VisitedUsers.insert(UserTE).second) 3811 continue; 3812 // May reorder user node if it requires reordering, has reused 3813 // scalars, is an alternate op vectorize node or its op nodes require 3814 // reordering. 3815 if (AllowsReordering(UserTE)) 3816 continue; 3817 // Check if users allow reordering. 3818 // Currently look up just 1 level of operands to avoid increase of 3819 // the compile time. 3820 // Profitable to reorder if definitely more operands allow 3821 // reordering rather than those with natural order. 3822 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3823 if (static_cast<unsigned>(count_if( 3824 Ops, [UserTE, &AllowsReordering]( 3825 const std::pair<unsigned, TreeEntry *> &Op) { 3826 return AllowsReordering(Op.second) && 3827 all_of(Op.second->UserTreeIndices, 3828 [UserTE](const EdgeInfo &EI) { 3829 return EI.UserTE == UserTE; 3830 }); 3831 })) <= Ops.size() / 2) 3832 ++Res.first->second; 3833 } 3834 } 3835 // If no orders - skip current nodes and jump to the next one, if any. 3836 if (OrdersUses.empty()) { 3837 for_each(Data.second, 3838 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3839 OrderedEntries.remove(Op.second); 3840 }); 3841 continue; 3842 } 3843 // Choose the best order. 3844 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3845 unsigned Cnt = OrdersUses.front().second; 3846 for (const auto &Pair : drop_begin(OrdersUses)) { 3847 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3848 BestOrder = Pair.first; 3849 Cnt = Pair.second; 3850 } 3851 } 3852 // Set order of the user node (reordering of operands and user nodes). 3853 if (BestOrder.empty()) { 3854 for_each(Data.second, 3855 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3856 OrderedEntries.remove(Op.second); 3857 }); 3858 continue; 3859 } 3860 // Erase operands from OrderedEntries list and adjust their orders. 3861 VisitedOps.clear(); 3862 SmallVector<int> Mask; 3863 inversePermutation(BestOrder, Mask); 3864 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3865 unsigned E = BestOrder.size(); 3866 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3867 return I < E ? static_cast<int>(I) : UndefMaskElem; 3868 }); 3869 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3870 TreeEntry *TE = Op.second; 3871 OrderedEntries.remove(TE); 3872 if (!VisitedOps.insert(TE).second) 3873 continue; 3874 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3875 // Just reorder reuses indices. 3876 reorderReuses(TE->ReuseShuffleIndices, Mask); 3877 continue; 3878 } 3879 // Gathers are processed separately. 3880 if (TE->State != TreeEntry::Vectorize) 3881 continue; 3882 assert((BestOrder.size() == TE->ReorderIndices.size() || 3883 TE->ReorderIndices.empty()) && 3884 "Non-matching sizes of user/operand entries."); 3885 reorderOrder(TE->ReorderIndices, Mask); 3886 } 3887 // For gathers just need to reorder its scalars. 3888 for (TreeEntry *Gather : GatherOps) { 3889 assert(Gather->ReorderIndices.empty() && 3890 "Unexpected reordering of gathers."); 3891 if (!Gather->ReuseShuffleIndices.empty()) { 3892 // Just reorder reuses indices. 3893 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3894 continue; 3895 } 3896 reorderScalars(Gather->Scalars, Mask); 3897 OrderedEntries.remove(Gather); 3898 } 3899 // Reorder operands of the user node and set the ordering for the user 3900 // node itself. 3901 if (Data.first->State != TreeEntry::Vectorize || 3902 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3903 Data.first->getMainOp()) || 3904 Data.first->isAltShuffle()) 3905 Data.first->reorderOperands(Mask); 3906 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3907 Data.first->isAltShuffle()) { 3908 reorderScalars(Data.first->Scalars, Mask); 3909 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3910 if (Data.first->ReuseShuffleIndices.empty() && 3911 !Data.first->ReorderIndices.empty() && 3912 !Data.first->isAltShuffle()) { 3913 // Insert user node to the list to try to sink reordering deeper in 3914 // the graph. 3915 OrderedEntries.insert(Data.first); 3916 } 3917 } else { 3918 reorderOrder(Data.first->ReorderIndices, Mask); 3919 } 3920 } 3921 } 3922 // If the reordering is unnecessary, just remove the reorder. 3923 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3924 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3925 VectorizableTree.front()->ReorderIndices.clear(); 3926 } 3927 3928 void BoUpSLP::buildExternalUses( 3929 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3930 // Collect the values that we need to extract from the tree. 3931 for (auto &TEPtr : VectorizableTree) { 3932 TreeEntry *Entry = TEPtr.get(); 3933 3934 // No need to handle users of gathered values. 3935 if (Entry->State == TreeEntry::NeedToGather) 3936 continue; 3937 3938 // For each lane: 3939 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3940 Value *Scalar = Entry->Scalars[Lane]; 3941 int FoundLane = Entry->findLaneForValue(Scalar); 3942 3943 // Check if the scalar is externally used as an extra arg. 3944 auto ExtI = ExternallyUsedValues.find(Scalar); 3945 if (ExtI != ExternallyUsedValues.end()) { 3946 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3947 << Lane << " from " << *Scalar << ".\n"); 3948 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3949 } 3950 for (User *U : Scalar->users()) { 3951 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3952 3953 Instruction *UserInst = dyn_cast<Instruction>(U); 3954 if (!UserInst) 3955 continue; 3956 3957 if (isDeleted(UserInst)) 3958 continue; 3959 3960 // Skip in-tree scalars that become vectors 3961 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3962 Value *UseScalar = UseEntry->Scalars[0]; 3963 // Some in-tree scalars will remain as scalar in vectorized 3964 // instructions. If that is the case, the one in Lane 0 will 3965 // be used. 3966 if (UseScalar != U || 3967 UseEntry->State == TreeEntry::ScatterVectorize || 3968 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3969 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3970 << ".\n"); 3971 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3972 continue; 3973 } 3974 } 3975 3976 // Ignore users in the user ignore list. 3977 if (is_contained(UserIgnoreList, UserInst)) 3978 continue; 3979 3980 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3981 << Lane << " from " << *Scalar << ".\n"); 3982 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3983 } 3984 } 3985 } 3986 } 3987 3988 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3989 ArrayRef<Value *> UserIgnoreLst) { 3990 deleteTree(); 3991 UserIgnoreList = UserIgnoreLst; 3992 if (!allSameType(Roots)) 3993 return; 3994 buildTree_rec(Roots, 0, EdgeInfo()); 3995 } 3996 3997 namespace { 3998 /// Tracks the state we can represent the loads in the given sequence. 3999 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 4000 } // anonymous namespace 4001 4002 /// Checks if the given array of loads can be represented as a vectorized, 4003 /// scatter or just simple gather. 4004 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 4005 const TargetTransformInfo &TTI, 4006 const DataLayout &DL, ScalarEvolution &SE, 4007 SmallVectorImpl<unsigned> &Order, 4008 SmallVectorImpl<Value *> &PointerOps) { 4009 // Check that a vectorized load would load the same memory as a scalar 4010 // load. For example, we don't want to vectorize loads that are smaller 4011 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4012 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4013 // from such a struct, we read/write packed bits disagreeing with the 4014 // unvectorized version. 4015 Type *ScalarTy = VL0->getType(); 4016 4017 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 4018 return LoadsState::Gather; 4019 4020 // Make sure all loads in the bundle are simple - we can't vectorize 4021 // atomic or volatile loads. 4022 PointerOps.clear(); 4023 PointerOps.resize(VL.size()); 4024 auto *POIter = PointerOps.begin(); 4025 for (Value *V : VL) { 4026 auto *L = cast<LoadInst>(V); 4027 if (!L->isSimple()) 4028 return LoadsState::Gather; 4029 *POIter = L->getPointerOperand(); 4030 ++POIter; 4031 } 4032 4033 Order.clear(); 4034 // Check the order of pointer operands. 4035 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 4036 Value *Ptr0; 4037 Value *PtrN; 4038 if (Order.empty()) { 4039 Ptr0 = PointerOps.front(); 4040 PtrN = PointerOps.back(); 4041 } else { 4042 Ptr0 = PointerOps[Order.front()]; 4043 PtrN = PointerOps[Order.back()]; 4044 } 4045 Optional<int> Diff = 4046 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 4047 // Check that the sorted loads are consecutive. 4048 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 4049 return LoadsState::Vectorize; 4050 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 4051 for (Value *V : VL) 4052 CommonAlignment = 4053 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4054 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 4055 CommonAlignment)) 4056 return LoadsState::ScatterVectorize; 4057 } 4058 4059 return LoadsState::Gather; 4060 } 4061 4062 /// \return true if the specified list of values has only one instruction that 4063 /// requires scheduling, false otherwise. 4064 #ifndef NDEBUG 4065 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4066 Value *NeedsScheduling = nullptr; 4067 for (Value *V : VL) { 4068 if (doesNotNeedToBeScheduled(V)) 4069 continue; 4070 if (!NeedsScheduling) { 4071 NeedsScheduling = V; 4072 continue; 4073 } 4074 return false; 4075 } 4076 return NeedsScheduling; 4077 } 4078 #endif 4079 4080 /// Generates key/subkey pair for the given value to provide effective sorting 4081 /// of the values and better detection of the vectorizable values sequences. The 4082 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4083 /// and in values subgroups (subkeys). 4084 static std::pair<size_t, size_t> generateKeySubkey( 4085 Value *V, const TargetLibraryInfo *TLI, 4086 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4087 bool AllowAlternate) { 4088 hash_code Key = hash_value(V->getValueID() + 2); 4089 hash_code SubKey = hash_value(0); 4090 // Sort the loads by the distance between the pointers. 4091 if (auto *LI = dyn_cast<LoadInst>(V)) { 4092 Key = hash_combine(hash_value(Instruction::Load), Key); 4093 if (LI->isSimple()) 4094 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4095 else 4096 SubKey = hash_value(LI); 4097 } else if (isVectorLikeInstWithConstOps(V)) { 4098 // Sort extracts by the vector operands. 4099 if (isa<ExtractElementInst, UndefValue>(V)) 4100 Key = hash_value(Value::UndefValueVal + 1); 4101 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4102 if (!isUndefVector(EI->getVectorOperand()) && 4103 !isa<UndefValue>(EI->getIndexOperand())) 4104 SubKey = hash_value(EI->getVectorOperand()); 4105 } 4106 } else if (auto *I = dyn_cast<Instruction>(V)) { 4107 // Sort other instructions just by the opcodes except for CMPInst. 4108 // For CMP also sort by the predicate kind. 4109 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4110 isValidForAlternation(I->getOpcode())) { 4111 if (AllowAlternate) 4112 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4113 else 4114 Key = hash_combine(hash_value(I->getOpcode()), Key); 4115 SubKey = hash_combine( 4116 hash_value(I->getOpcode()), hash_value(I->getType()), 4117 hash_value(isa<BinaryOperator>(I) 4118 ? I->getType() 4119 : cast<CastInst>(I)->getOperand(0)->getType())); 4120 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4121 CmpInst::Predicate Pred = CI->getPredicate(); 4122 if (CI->isCommutative()) 4123 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4124 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4125 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4126 hash_value(SwapPred), 4127 hash_value(CI->getOperand(0)->getType())); 4128 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4129 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4130 if (isTriviallyVectorizable(ID)) 4131 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4132 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4133 SubKey = hash_combine(hash_value(I->getOpcode()), 4134 hash_value(Call->getCalledFunction())); 4135 else 4136 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4137 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4138 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4139 hash_value(Op.Tag), SubKey); 4140 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4141 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4142 SubKey = hash_value(Gep->getPointerOperand()); 4143 else 4144 SubKey = hash_value(Gep); 4145 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4146 !isa<ConstantInt>(I->getOperand(1))) { 4147 // Do not try to vectorize instructions with potentially high cost. 4148 SubKey = hash_value(I); 4149 } else { 4150 SubKey = hash_value(I->getOpcode()); 4151 } 4152 Key = hash_combine(hash_value(I->getParent()), Key); 4153 } 4154 return std::make_pair(Key, SubKey); 4155 } 4156 4157 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4158 const EdgeInfo &UserTreeIdx) { 4159 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4160 4161 SmallVector<int> ReuseShuffleIndicies; 4162 SmallVector<Value *> UniqueValues; 4163 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4164 &UserTreeIdx, 4165 this](const InstructionsState &S) { 4166 // Check that every instruction appears once in this bundle. 4167 DenseMap<Value *, unsigned> UniquePositions; 4168 for (Value *V : VL) { 4169 if (isConstant(V)) { 4170 ReuseShuffleIndicies.emplace_back( 4171 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4172 UniqueValues.emplace_back(V); 4173 continue; 4174 } 4175 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4176 ReuseShuffleIndicies.emplace_back(Res.first->second); 4177 if (Res.second) 4178 UniqueValues.emplace_back(V); 4179 } 4180 size_t NumUniqueScalarValues = UniqueValues.size(); 4181 if (NumUniqueScalarValues == VL.size()) { 4182 ReuseShuffleIndicies.clear(); 4183 } else { 4184 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4185 if (NumUniqueScalarValues <= 1 || 4186 (UniquePositions.size() == 1 && all_of(UniqueValues, 4187 [](Value *V) { 4188 return isa<UndefValue>(V) || 4189 !isConstant(V); 4190 })) || 4191 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4192 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4193 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4194 return false; 4195 } 4196 VL = UniqueValues; 4197 } 4198 return true; 4199 }; 4200 4201 InstructionsState S = getSameOpcode(VL); 4202 if (Depth == RecursionMaxDepth) { 4203 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4204 if (TryToFindDuplicates(S)) 4205 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4206 ReuseShuffleIndicies); 4207 return; 4208 } 4209 4210 // Don't handle scalable vectors 4211 if (S.getOpcode() == Instruction::ExtractElement && 4212 isa<ScalableVectorType>( 4213 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4214 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4215 if (TryToFindDuplicates(S)) 4216 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4217 ReuseShuffleIndicies); 4218 return; 4219 } 4220 4221 // Don't handle vectors. 4222 if (S.OpValue->getType()->isVectorTy() && 4223 !isa<InsertElementInst>(S.OpValue)) { 4224 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4225 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4226 return; 4227 } 4228 4229 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4230 if (SI->getValueOperand()->getType()->isVectorTy()) { 4231 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4232 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4233 return; 4234 } 4235 4236 // If all of the operands are identical or constant we have a simple solution. 4237 // If we deal with insert/extract instructions, they all must have constant 4238 // indices, otherwise we should gather them, not try to vectorize. 4239 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4240 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4241 !all_of(VL, isVectorLikeInstWithConstOps))) { 4242 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4243 if (TryToFindDuplicates(S)) 4244 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4245 ReuseShuffleIndicies); 4246 return; 4247 } 4248 4249 // We now know that this is a vector of instructions of the same type from 4250 // the same block. 4251 4252 // Don't vectorize ephemeral values. 4253 for (Value *V : VL) { 4254 if (EphValues.count(V)) { 4255 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4256 << ") is ephemeral.\n"); 4257 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4258 return; 4259 } 4260 } 4261 4262 // Check if this is a duplicate of another entry. 4263 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4264 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4265 if (!E->isSame(VL)) { 4266 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4267 if (TryToFindDuplicates(S)) 4268 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4269 ReuseShuffleIndicies); 4270 return; 4271 } 4272 // Record the reuse of the tree node. FIXME, currently this is only used to 4273 // properly draw the graph rather than for the actual vectorization. 4274 E->UserTreeIndices.push_back(UserTreeIdx); 4275 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4276 << ".\n"); 4277 return; 4278 } 4279 4280 // Check that none of the instructions in the bundle are already in the tree. 4281 for (Value *V : VL) { 4282 auto *I = dyn_cast<Instruction>(V); 4283 if (!I) 4284 continue; 4285 if (getTreeEntry(I)) { 4286 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4287 << ") is already in tree.\n"); 4288 if (TryToFindDuplicates(S)) 4289 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4290 ReuseShuffleIndicies); 4291 return; 4292 } 4293 } 4294 4295 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4296 for (Value *V : VL) { 4297 if (is_contained(UserIgnoreList, V)) { 4298 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4299 if (TryToFindDuplicates(S)) 4300 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4301 ReuseShuffleIndicies); 4302 return; 4303 } 4304 } 4305 4306 // Check that all of the users of the scalars that we want to vectorize are 4307 // schedulable. 4308 auto *VL0 = cast<Instruction>(S.OpValue); 4309 BasicBlock *BB = VL0->getParent(); 4310 4311 if (!DT->isReachableFromEntry(BB)) { 4312 // Don't go into unreachable blocks. They may contain instructions with 4313 // dependency cycles which confuse the final scheduling. 4314 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4315 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4316 return; 4317 } 4318 4319 // Check that every instruction appears once in this bundle. 4320 if (!TryToFindDuplicates(S)) 4321 return; 4322 4323 auto &BSRef = BlocksSchedules[BB]; 4324 if (!BSRef) 4325 BSRef = std::make_unique<BlockScheduling>(BB); 4326 4327 BlockScheduling &BS = *BSRef; 4328 4329 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4330 #ifdef EXPENSIVE_CHECKS 4331 // Make sure we didn't break any internal invariants 4332 BS.verify(); 4333 #endif 4334 if (!Bundle) { 4335 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4336 assert((!BS.getScheduleData(VL0) || 4337 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4338 "tryScheduleBundle should cancelScheduling on failure"); 4339 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4340 ReuseShuffleIndicies); 4341 return; 4342 } 4343 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4344 4345 unsigned ShuffleOrOp = S.isAltShuffle() ? 4346 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4347 switch (ShuffleOrOp) { 4348 case Instruction::PHI: { 4349 auto *PH = cast<PHINode>(VL0); 4350 4351 // Check for terminator values (e.g. invoke). 4352 for (Value *V : VL) 4353 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4354 Instruction *Term = dyn_cast<Instruction>(Incoming); 4355 if (Term && Term->isTerminator()) { 4356 LLVM_DEBUG(dbgs() 4357 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4358 BS.cancelScheduling(VL, VL0); 4359 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4360 ReuseShuffleIndicies); 4361 return; 4362 } 4363 } 4364 4365 TreeEntry *TE = 4366 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4367 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4368 4369 // Keeps the reordered operands to avoid code duplication. 4370 SmallVector<ValueList, 2> OperandsVec; 4371 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4372 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4373 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4374 TE->setOperand(I, Operands); 4375 OperandsVec.push_back(Operands); 4376 continue; 4377 } 4378 ValueList Operands; 4379 // Prepare the operand vector. 4380 for (Value *V : VL) 4381 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4382 PH->getIncomingBlock(I))); 4383 TE->setOperand(I, Operands); 4384 OperandsVec.push_back(Operands); 4385 } 4386 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4387 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4388 return; 4389 } 4390 case Instruction::ExtractValue: 4391 case Instruction::ExtractElement: { 4392 OrdersType CurrentOrder; 4393 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4394 if (Reuse) { 4395 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4396 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4397 ReuseShuffleIndicies); 4398 // This is a special case, as it does not gather, but at the same time 4399 // we are not extending buildTree_rec() towards the operands. 4400 ValueList Op0; 4401 Op0.assign(VL.size(), VL0->getOperand(0)); 4402 VectorizableTree.back()->setOperand(0, Op0); 4403 return; 4404 } 4405 if (!CurrentOrder.empty()) { 4406 LLVM_DEBUG({ 4407 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4408 "with order"; 4409 for (unsigned Idx : CurrentOrder) 4410 dbgs() << " " << Idx; 4411 dbgs() << "\n"; 4412 }); 4413 fixupOrderingIndices(CurrentOrder); 4414 // Insert new order with initial value 0, if it does not exist, 4415 // otherwise return the iterator to the existing one. 4416 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4417 ReuseShuffleIndicies, CurrentOrder); 4418 // This is a special case, as it does not gather, but at the same time 4419 // we are not extending buildTree_rec() towards the operands. 4420 ValueList Op0; 4421 Op0.assign(VL.size(), VL0->getOperand(0)); 4422 VectorizableTree.back()->setOperand(0, Op0); 4423 return; 4424 } 4425 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4426 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4427 ReuseShuffleIndicies); 4428 BS.cancelScheduling(VL, VL0); 4429 return; 4430 } 4431 case Instruction::InsertElement: { 4432 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4433 4434 // Check that we have a buildvector and not a shuffle of 2 or more 4435 // different vectors. 4436 ValueSet SourceVectors; 4437 for (Value *V : VL) { 4438 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4439 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4440 } 4441 4442 if (count_if(VL, [&SourceVectors](Value *V) { 4443 return !SourceVectors.contains(V); 4444 }) >= 2) { 4445 // Found 2nd source vector - cancel. 4446 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4447 "different source vectors.\n"); 4448 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4449 BS.cancelScheduling(VL, VL0); 4450 return; 4451 } 4452 4453 auto OrdCompare = [](const std::pair<int, int> &P1, 4454 const std::pair<int, int> &P2) { 4455 return P1.first > P2.first; 4456 }; 4457 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4458 decltype(OrdCompare)> 4459 Indices(OrdCompare); 4460 for (int I = 0, E = VL.size(); I < E; ++I) { 4461 unsigned Idx = *getInsertIndex(VL[I]); 4462 Indices.emplace(Idx, I); 4463 } 4464 OrdersType CurrentOrder(VL.size(), VL.size()); 4465 bool IsIdentity = true; 4466 for (int I = 0, E = VL.size(); I < E; ++I) { 4467 CurrentOrder[Indices.top().second] = I; 4468 IsIdentity &= Indices.top().second == I; 4469 Indices.pop(); 4470 } 4471 if (IsIdentity) 4472 CurrentOrder.clear(); 4473 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4474 None, CurrentOrder); 4475 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4476 4477 constexpr int NumOps = 2; 4478 ValueList VectorOperands[NumOps]; 4479 for (int I = 0; I < NumOps; ++I) { 4480 for (Value *V : VL) 4481 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4482 4483 TE->setOperand(I, VectorOperands[I]); 4484 } 4485 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4486 return; 4487 } 4488 case Instruction::Load: { 4489 // Check that a vectorized load would load the same memory as a scalar 4490 // load. For example, we don't want to vectorize loads that are smaller 4491 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4492 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4493 // from such a struct, we read/write packed bits disagreeing with the 4494 // unvectorized version. 4495 SmallVector<Value *> PointerOps; 4496 OrdersType CurrentOrder; 4497 TreeEntry *TE = nullptr; 4498 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4499 PointerOps)) { 4500 case LoadsState::Vectorize: 4501 if (CurrentOrder.empty()) { 4502 // Original loads are consecutive and does not require reordering. 4503 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4504 ReuseShuffleIndicies); 4505 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4506 } else { 4507 fixupOrderingIndices(CurrentOrder); 4508 // Need to reorder. 4509 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4510 ReuseShuffleIndicies, CurrentOrder); 4511 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4512 } 4513 TE->setOperandsInOrder(); 4514 break; 4515 case LoadsState::ScatterVectorize: 4516 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4517 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4518 UserTreeIdx, ReuseShuffleIndicies); 4519 TE->setOperandsInOrder(); 4520 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4521 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4522 break; 4523 case LoadsState::Gather: 4524 BS.cancelScheduling(VL, VL0); 4525 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4526 ReuseShuffleIndicies); 4527 #ifndef NDEBUG 4528 Type *ScalarTy = VL0->getType(); 4529 if (DL->getTypeSizeInBits(ScalarTy) != 4530 DL->getTypeAllocSizeInBits(ScalarTy)) 4531 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4532 else if (any_of(VL, [](Value *V) { 4533 return !cast<LoadInst>(V)->isSimple(); 4534 })) 4535 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4536 else 4537 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4538 #endif // NDEBUG 4539 break; 4540 } 4541 return; 4542 } 4543 case Instruction::ZExt: 4544 case Instruction::SExt: 4545 case Instruction::FPToUI: 4546 case Instruction::FPToSI: 4547 case Instruction::FPExt: 4548 case Instruction::PtrToInt: 4549 case Instruction::IntToPtr: 4550 case Instruction::SIToFP: 4551 case Instruction::UIToFP: 4552 case Instruction::Trunc: 4553 case Instruction::FPTrunc: 4554 case Instruction::BitCast: { 4555 Type *SrcTy = VL0->getOperand(0)->getType(); 4556 for (Value *V : VL) { 4557 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4558 if (Ty != SrcTy || !isValidElementType(Ty)) { 4559 BS.cancelScheduling(VL, VL0); 4560 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4561 ReuseShuffleIndicies); 4562 LLVM_DEBUG(dbgs() 4563 << "SLP: Gathering casts with different src types.\n"); 4564 return; 4565 } 4566 } 4567 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4568 ReuseShuffleIndicies); 4569 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4570 4571 TE->setOperandsInOrder(); 4572 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4573 ValueList Operands; 4574 // Prepare the operand vector. 4575 for (Value *V : VL) 4576 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4577 4578 buildTree_rec(Operands, Depth + 1, {TE, i}); 4579 } 4580 return; 4581 } 4582 case Instruction::ICmp: 4583 case Instruction::FCmp: { 4584 // Check that all of the compares have the same predicate. 4585 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4586 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4587 Type *ComparedTy = VL0->getOperand(0)->getType(); 4588 for (Value *V : VL) { 4589 CmpInst *Cmp = cast<CmpInst>(V); 4590 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4591 Cmp->getOperand(0)->getType() != ComparedTy) { 4592 BS.cancelScheduling(VL, VL0); 4593 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4594 ReuseShuffleIndicies); 4595 LLVM_DEBUG(dbgs() 4596 << "SLP: Gathering cmp with different predicate.\n"); 4597 return; 4598 } 4599 } 4600 4601 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4602 ReuseShuffleIndicies); 4603 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4604 4605 ValueList Left, Right; 4606 if (cast<CmpInst>(VL0)->isCommutative()) { 4607 // Commutative predicate - collect + sort operands of the instructions 4608 // so that each side is more likely to have the same opcode. 4609 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4610 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4611 } else { 4612 // Collect operands - commute if it uses the swapped predicate. 4613 for (Value *V : VL) { 4614 auto *Cmp = cast<CmpInst>(V); 4615 Value *LHS = Cmp->getOperand(0); 4616 Value *RHS = Cmp->getOperand(1); 4617 if (Cmp->getPredicate() != P0) 4618 std::swap(LHS, RHS); 4619 Left.push_back(LHS); 4620 Right.push_back(RHS); 4621 } 4622 } 4623 TE->setOperand(0, Left); 4624 TE->setOperand(1, Right); 4625 buildTree_rec(Left, Depth + 1, {TE, 0}); 4626 buildTree_rec(Right, Depth + 1, {TE, 1}); 4627 return; 4628 } 4629 case Instruction::Select: 4630 case Instruction::FNeg: 4631 case Instruction::Add: 4632 case Instruction::FAdd: 4633 case Instruction::Sub: 4634 case Instruction::FSub: 4635 case Instruction::Mul: 4636 case Instruction::FMul: 4637 case Instruction::UDiv: 4638 case Instruction::SDiv: 4639 case Instruction::FDiv: 4640 case Instruction::URem: 4641 case Instruction::SRem: 4642 case Instruction::FRem: 4643 case Instruction::Shl: 4644 case Instruction::LShr: 4645 case Instruction::AShr: 4646 case Instruction::And: 4647 case Instruction::Or: 4648 case Instruction::Xor: { 4649 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4650 ReuseShuffleIndicies); 4651 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4652 4653 // Sort operands of the instructions so that each side is more likely to 4654 // have the same opcode. 4655 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4656 ValueList Left, Right; 4657 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4658 TE->setOperand(0, Left); 4659 TE->setOperand(1, Right); 4660 buildTree_rec(Left, Depth + 1, {TE, 0}); 4661 buildTree_rec(Right, Depth + 1, {TE, 1}); 4662 return; 4663 } 4664 4665 TE->setOperandsInOrder(); 4666 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4667 ValueList Operands; 4668 // Prepare the operand vector. 4669 for (Value *V : VL) 4670 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4671 4672 buildTree_rec(Operands, Depth + 1, {TE, i}); 4673 } 4674 return; 4675 } 4676 case Instruction::GetElementPtr: { 4677 // We don't combine GEPs with complicated (nested) indexing. 4678 for (Value *V : VL) { 4679 if (cast<Instruction>(V)->getNumOperands() != 2) { 4680 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4681 BS.cancelScheduling(VL, VL0); 4682 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4683 ReuseShuffleIndicies); 4684 return; 4685 } 4686 } 4687 4688 // We can't combine several GEPs into one vector if they operate on 4689 // different types. 4690 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4691 for (Value *V : VL) { 4692 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4693 if (Ty0 != CurTy) { 4694 LLVM_DEBUG(dbgs() 4695 << "SLP: not-vectorizable GEP (different types).\n"); 4696 BS.cancelScheduling(VL, VL0); 4697 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4698 ReuseShuffleIndicies); 4699 return; 4700 } 4701 } 4702 4703 // We don't combine GEPs with non-constant indexes. 4704 Type *Ty1 = VL0->getOperand(1)->getType(); 4705 for (Value *V : VL) { 4706 auto Op = cast<Instruction>(V)->getOperand(1); 4707 if (!isa<ConstantInt>(Op) || 4708 (Op->getType() != Ty1 && 4709 Op->getType()->getScalarSizeInBits() > 4710 DL->getIndexSizeInBits( 4711 V->getType()->getPointerAddressSpace()))) { 4712 LLVM_DEBUG(dbgs() 4713 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4714 BS.cancelScheduling(VL, VL0); 4715 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4716 ReuseShuffleIndicies); 4717 return; 4718 } 4719 } 4720 4721 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4722 ReuseShuffleIndicies); 4723 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4724 SmallVector<ValueList, 2> Operands(2); 4725 // Prepare the operand vector for pointer operands. 4726 for (Value *V : VL) 4727 Operands.front().push_back( 4728 cast<GetElementPtrInst>(V)->getPointerOperand()); 4729 TE->setOperand(0, Operands.front()); 4730 // Need to cast all indices to the same type before vectorization to 4731 // avoid crash. 4732 // Required to be able to find correct matches between different gather 4733 // nodes and reuse the vectorized values rather than trying to gather them 4734 // again. 4735 int IndexIdx = 1; 4736 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4737 Type *Ty = all_of(VL, 4738 [VL0Ty, IndexIdx](Value *V) { 4739 return VL0Ty == cast<GetElementPtrInst>(V) 4740 ->getOperand(IndexIdx) 4741 ->getType(); 4742 }) 4743 ? VL0Ty 4744 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4745 ->getPointerOperandType() 4746 ->getScalarType()); 4747 // Prepare the operand vector. 4748 for (Value *V : VL) { 4749 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4750 auto *CI = cast<ConstantInt>(Op); 4751 Operands.back().push_back(ConstantExpr::getIntegerCast( 4752 CI, Ty, CI->getValue().isSignBitSet())); 4753 } 4754 TE->setOperand(IndexIdx, Operands.back()); 4755 4756 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4757 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4758 return; 4759 } 4760 case Instruction::Store: { 4761 // Check if the stores are consecutive or if we need to swizzle them. 4762 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4763 // Avoid types that are padded when being allocated as scalars, while 4764 // being packed together in a vector (such as i1). 4765 if (DL->getTypeSizeInBits(ScalarTy) != 4766 DL->getTypeAllocSizeInBits(ScalarTy)) { 4767 BS.cancelScheduling(VL, VL0); 4768 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4769 ReuseShuffleIndicies); 4770 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4771 return; 4772 } 4773 // Make sure all stores in the bundle are simple - we can't vectorize 4774 // atomic or volatile stores. 4775 SmallVector<Value *, 4> PointerOps(VL.size()); 4776 ValueList Operands(VL.size()); 4777 auto POIter = PointerOps.begin(); 4778 auto OIter = Operands.begin(); 4779 for (Value *V : VL) { 4780 auto *SI = cast<StoreInst>(V); 4781 if (!SI->isSimple()) { 4782 BS.cancelScheduling(VL, VL0); 4783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4784 ReuseShuffleIndicies); 4785 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4786 return; 4787 } 4788 *POIter = SI->getPointerOperand(); 4789 *OIter = SI->getValueOperand(); 4790 ++POIter; 4791 ++OIter; 4792 } 4793 4794 OrdersType CurrentOrder; 4795 // Check the order of pointer operands. 4796 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4797 Value *Ptr0; 4798 Value *PtrN; 4799 if (CurrentOrder.empty()) { 4800 Ptr0 = PointerOps.front(); 4801 PtrN = PointerOps.back(); 4802 } else { 4803 Ptr0 = PointerOps[CurrentOrder.front()]; 4804 PtrN = PointerOps[CurrentOrder.back()]; 4805 } 4806 Optional<int> Dist = 4807 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4808 // Check that the sorted pointer operands are consecutive. 4809 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4810 if (CurrentOrder.empty()) { 4811 // Original stores are consecutive and does not require reordering. 4812 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4813 UserTreeIdx, ReuseShuffleIndicies); 4814 TE->setOperandsInOrder(); 4815 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4816 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4817 } else { 4818 fixupOrderingIndices(CurrentOrder); 4819 TreeEntry *TE = 4820 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4821 ReuseShuffleIndicies, CurrentOrder); 4822 TE->setOperandsInOrder(); 4823 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4824 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4825 } 4826 return; 4827 } 4828 } 4829 4830 BS.cancelScheduling(VL, VL0); 4831 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4832 ReuseShuffleIndicies); 4833 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4834 return; 4835 } 4836 case Instruction::Call: { 4837 // Check if the calls are all to the same vectorizable intrinsic or 4838 // library function. 4839 CallInst *CI = cast<CallInst>(VL0); 4840 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4841 4842 VFShape Shape = VFShape::get( 4843 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4844 false /*HasGlobalPred*/); 4845 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4846 4847 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4848 BS.cancelScheduling(VL, VL0); 4849 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4850 ReuseShuffleIndicies); 4851 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4852 return; 4853 } 4854 Function *F = CI->getCalledFunction(); 4855 unsigned NumArgs = CI->arg_size(); 4856 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4857 for (unsigned j = 0; j != NumArgs; ++j) 4858 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 4859 ScalarArgs[j] = CI->getArgOperand(j); 4860 for (Value *V : VL) { 4861 CallInst *CI2 = dyn_cast<CallInst>(V); 4862 if (!CI2 || CI2->getCalledFunction() != F || 4863 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4864 (VecFunc && 4865 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4866 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4867 BS.cancelScheduling(VL, VL0); 4868 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4869 ReuseShuffleIndicies); 4870 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4871 << "\n"); 4872 return; 4873 } 4874 // Some intrinsics have scalar arguments and should be same in order for 4875 // them to be vectorized. 4876 for (unsigned j = 0; j != NumArgs; ++j) { 4877 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 4878 Value *A1J = CI2->getArgOperand(j); 4879 if (ScalarArgs[j] != A1J) { 4880 BS.cancelScheduling(VL, VL0); 4881 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4882 ReuseShuffleIndicies); 4883 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4884 << " argument " << ScalarArgs[j] << "!=" << A1J 4885 << "\n"); 4886 return; 4887 } 4888 } 4889 } 4890 // Verify that the bundle operands are identical between the two calls. 4891 if (CI->hasOperandBundles() && 4892 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4893 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4894 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4895 BS.cancelScheduling(VL, VL0); 4896 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4897 ReuseShuffleIndicies); 4898 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4899 << *CI << "!=" << *V << '\n'); 4900 return; 4901 } 4902 } 4903 4904 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4905 ReuseShuffleIndicies); 4906 TE->setOperandsInOrder(); 4907 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4908 // For scalar operands no need to to create an entry since no need to 4909 // vectorize it. 4910 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 4911 continue; 4912 ValueList Operands; 4913 // Prepare the operand vector. 4914 for (Value *V : VL) { 4915 auto *CI2 = cast<CallInst>(V); 4916 Operands.push_back(CI2->getArgOperand(i)); 4917 } 4918 buildTree_rec(Operands, Depth + 1, {TE, i}); 4919 } 4920 return; 4921 } 4922 case Instruction::ShuffleVector: { 4923 // If this is not an alternate sequence of opcode like add-sub 4924 // then do not vectorize this instruction. 4925 if (!S.isAltShuffle()) { 4926 BS.cancelScheduling(VL, VL0); 4927 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4928 ReuseShuffleIndicies); 4929 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4930 return; 4931 } 4932 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4933 ReuseShuffleIndicies); 4934 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4935 4936 // Reorder operands if reordering would enable vectorization. 4937 auto *CI = dyn_cast<CmpInst>(VL0); 4938 if (isa<BinaryOperator>(VL0) || CI) { 4939 ValueList Left, Right; 4940 if (!CI || all_of(VL, [](Value *V) { 4941 return cast<CmpInst>(V)->isCommutative(); 4942 })) { 4943 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4944 } else { 4945 CmpInst::Predicate P0 = CI->getPredicate(); 4946 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4947 assert(P0 != AltP0 && 4948 "Expected different main/alternate predicates."); 4949 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4950 Value *BaseOp0 = VL0->getOperand(0); 4951 Value *BaseOp1 = VL0->getOperand(1); 4952 // Collect operands - commute if it uses the swapped predicate or 4953 // alternate operation. 4954 for (Value *V : VL) { 4955 auto *Cmp = cast<CmpInst>(V); 4956 Value *LHS = Cmp->getOperand(0); 4957 Value *RHS = Cmp->getOperand(1); 4958 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4959 if (P0 == AltP0Swapped) { 4960 if (CI != Cmp && S.AltOp != Cmp && 4961 ((P0 == CurrentPred && 4962 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4963 (AltP0 == CurrentPred && 4964 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4965 std::swap(LHS, RHS); 4966 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4967 std::swap(LHS, RHS); 4968 } 4969 Left.push_back(LHS); 4970 Right.push_back(RHS); 4971 } 4972 } 4973 TE->setOperand(0, Left); 4974 TE->setOperand(1, Right); 4975 buildTree_rec(Left, Depth + 1, {TE, 0}); 4976 buildTree_rec(Right, Depth + 1, {TE, 1}); 4977 return; 4978 } 4979 4980 TE->setOperandsInOrder(); 4981 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4982 ValueList Operands; 4983 // Prepare the operand vector. 4984 for (Value *V : VL) 4985 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4986 4987 buildTree_rec(Operands, Depth + 1, {TE, i}); 4988 } 4989 return; 4990 } 4991 default: 4992 BS.cancelScheduling(VL, VL0); 4993 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4994 ReuseShuffleIndicies); 4995 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4996 return; 4997 } 4998 } 4999 5000 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5001 unsigned N = 1; 5002 Type *EltTy = T; 5003 5004 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 5005 isa<VectorType>(EltTy)) { 5006 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5007 // Check that struct is homogeneous. 5008 for (const auto *Ty : ST->elements()) 5009 if (Ty != *ST->element_begin()) 5010 return 0; 5011 N *= ST->getNumElements(); 5012 EltTy = *ST->element_begin(); 5013 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5014 N *= AT->getNumElements(); 5015 EltTy = AT->getElementType(); 5016 } else { 5017 auto *VT = cast<FixedVectorType>(EltTy); 5018 N *= VT->getNumElements(); 5019 EltTy = VT->getElementType(); 5020 } 5021 } 5022 5023 if (!isValidElementType(EltTy)) 5024 return 0; 5025 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5026 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5027 return 0; 5028 return N; 5029 } 5030 5031 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5032 SmallVectorImpl<unsigned> &CurrentOrder) const { 5033 const auto *It = find_if(VL, [](Value *V) { 5034 return isa<ExtractElementInst, ExtractValueInst>(V); 5035 }); 5036 assert(It != VL.end() && "Expected at least one extract instruction."); 5037 auto *E0 = cast<Instruction>(*It); 5038 assert(all_of(VL, 5039 [](Value *V) { 5040 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 5041 V); 5042 }) && 5043 "Invalid opcode"); 5044 // Check if all of the extracts come from the same vector and from the 5045 // correct offset. 5046 Value *Vec = E0->getOperand(0); 5047 5048 CurrentOrder.clear(); 5049 5050 // We have to extract from a vector/aggregate with the same number of elements. 5051 unsigned NElts; 5052 if (E0->getOpcode() == Instruction::ExtractValue) { 5053 const DataLayout &DL = E0->getModule()->getDataLayout(); 5054 NElts = canMapToVector(Vec->getType(), DL); 5055 if (!NElts) 5056 return false; 5057 // Check if load can be rewritten as load of vector. 5058 LoadInst *LI = dyn_cast<LoadInst>(Vec); 5059 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 5060 return false; 5061 } else { 5062 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 5063 } 5064 5065 if (NElts != VL.size()) 5066 return false; 5067 5068 // Check that all of the indices extract from the correct offset. 5069 bool ShouldKeepOrder = true; 5070 unsigned E = VL.size(); 5071 // Assign to all items the initial value E + 1 so we can check if the extract 5072 // instruction index was used already. 5073 // Also, later we can check that all the indices are used and we have a 5074 // consecutive access in the extract instructions, by checking that no 5075 // element of CurrentOrder still has value E + 1. 5076 CurrentOrder.assign(E, E); 5077 unsigned I = 0; 5078 for (; I < E; ++I) { 5079 auto *Inst = dyn_cast<Instruction>(VL[I]); 5080 if (!Inst) 5081 continue; 5082 if (Inst->getOperand(0) != Vec) 5083 break; 5084 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 5085 if (isa<UndefValue>(EE->getIndexOperand())) 5086 continue; 5087 Optional<unsigned> Idx = getExtractIndex(Inst); 5088 if (!Idx) 5089 break; 5090 const unsigned ExtIdx = *Idx; 5091 if (ExtIdx != I) { 5092 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5093 break; 5094 ShouldKeepOrder = false; 5095 CurrentOrder[ExtIdx] = I; 5096 } else { 5097 if (CurrentOrder[I] != E) 5098 break; 5099 CurrentOrder[I] = I; 5100 } 5101 } 5102 if (I < E) { 5103 CurrentOrder.clear(); 5104 return false; 5105 } 5106 if (ShouldKeepOrder) 5107 CurrentOrder.clear(); 5108 5109 return ShouldKeepOrder; 5110 } 5111 5112 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5113 ArrayRef<Value *> VectorizedVals) const { 5114 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5115 all_of(I->users(), [this](User *U) { 5116 return ScalarToTreeEntry.count(U) > 0 || 5117 isVectorLikeInstWithConstOps(U) || 5118 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5119 }); 5120 } 5121 5122 static std::pair<InstructionCost, InstructionCost> 5123 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5124 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5125 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5126 5127 // Calculate the cost of the scalar and vector calls. 5128 SmallVector<Type *, 4> VecTys; 5129 for (Use &Arg : CI->args()) 5130 VecTys.push_back( 5131 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5132 FastMathFlags FMF; 5133 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5134 FMF = FPCI->getFastMathFlags(); 5135 SmallVector<const Value *> Arguments(CI->args()); 5136 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5137 dyn_cast<IntrinsicInst>(CI)); 5138 auto IntrinsicCost = 5139 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5140 5141 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5142 VecTy->getNumElements())), 5143 false /*HasGlobalPred*/); 5144 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5145 auto LibCost = IntrinsicCost; 5146 if (!CI->isNoBuiltin() && VecFunc) { 5147 // Calculate the cost of the vector library call. 5148 // If the corresponding vector call is cheaper, return its cost. 5149 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5150 TTI::TCK_RecipThroughput); 5151 } 5152 return {IntrinsicCost, LibCost}; 5153 } 5154 5155 /// Compute the cost of creating a vector of type \p VecTy containing the 5156 /// extracted values from \p VL. 5157 static InstructionCost 5158 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5159 TargetTransformInfo::ShuffleKind ShuffleKind, 5160 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5161 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5162 5163 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5164 VecTy->getNumElements() < NumOfParts) 5165 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5166 5167 bool AllConsecutive = true; 5168 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5169 unsigned Idx = -1; 5170 InstructionCost Cost = 0; 5171 5172 // Process extracts in blocks of EltsPerVector to check if the source vector 5173 // operand can be re-used directly. If not, add the cost of creating a shuffle 5174 // to extract the values into a vector register. 5175 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 5176 for (auto *V : VL) { 5177 ++Idx; 5178 5179 // Need to exclude undefs from analysis. 5180 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5181 continue; 5182 5183 // Reached the start of a new vector registers. 5184 if (Idx % EltsPerVector == 0) { 5185 RegMask.assign(EltsPerVector, UndefMaskElem); 5186 AllConsecutive = true; 5187 continue; 5188 } 5189 5190 // Check all extracts for a vector register on the target directly 5191 // extract values in order. 5192 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5193 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5194 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5195 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5196 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5197 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 5198 } 5199 5200 if (AllConsecutive) 5201 continue; 5202 5203 // Skip all indices, except for the last index per vector block. 5204 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5205 continue; 5206 5207 // If we have a series of extracts which are not consecutive and hence 5208 // cannot re-use the source vector register directly, compute the shuffle 5209 // cost to extract the vector with EltsPerVector elements. 5210 Cost += TTI.getShuffleCost( 5211 TargetTransformInfo::SK_PermuteSingleSrc, 5212 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 5213 } 5214 return Cost; 5215 } 5216 5217 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5218 /// operations operands. 5219 static void 5220 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5221 ArrayRef<int> ReusesIndices, 5222 const function_ref<bool(Instruction *)> IsAltOp, 5223 SmallVectorImpl<int> &Mask, 5224 SmallVectorImpl<Value *> *OpScalars = nullptr, 5225 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5226 unsigned Sz = VL.size(); 5227 Mask.assign(Sz, UndefMaskElem); 5228 SmallVector<int> OrderMask; 5229 if (!ReorderIndices.empty()) 5230 inversePermutation(ReorderIndices, OrderMask); 5231 for (unsigned I = 0; I < Sz; ++I) { 5232 unsigned Idx = I; 5233 if (!ReorderIndices.empty()) 5234 Idx = OrderMask[I]; 5235 auto *OpInst = cast<Instruction>(VL[Idx]); 5236 if (IsAltOp(OpInst)) { 5237 Mask[I] = Sz + Idx; 5238 if (AltScalars) 5239 AltScalars->push_back(OpInst); 5240 } else { 5241 Mask[I] = Idx; 5242 if (OpScalars) 5243 OpScalars->push_back(OpInst); 5244 } 5245 } 5246 if (!ReusesIndices.empty()) { 5247 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5248 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5249 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5250 }); 5251 Mask.swap(NewMask); 5252 } 5253 } 5254 5255 /// Checks if the specified instruction \p I is an alternate operation for the 5256 /// given \p MainOp and \p AltOp instructions. 5257 static bool isAlternateInstruction(const Instruction *I, 5258 const Instruction *MainOp, 5259 const Instruction *AltOp) { 5260 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5261 auto *AltCI0 = cast<CmpInst>(AltOp); 5262 auto *CI = cast<CmpInst>(I); 5263 CmpInst::Predicate P0 = CI0->getPredicate(); 5264 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5265 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5266 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5267 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5268 if (P0 == AltP0Swapped) 5269 return I == AltCI0 || 5270 (I != MainOp && 5271 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5272 CI->getOperand(0), CI->getOperand(1))); 5273 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5274 } 5275 return I->getOpcode() == AltOp->getOpcode(); 5276 } 5277 5278 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5279 ArrayRef<Value *> VectorizedVals) { 5280 ArrayRef<Value*> VL = E->Scalars; 5281 5282 Type *ScalarTy = VL[0]->getType(); 5283 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5284 ScalarTy = SI->getValueOperand()->getType(); 5285 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5286 ScalarTy = CI->getOperand(0)->getType(); 5287 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5288 ScalarTy = IE->getOperand(1)->getType(); 5289 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5290 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5291 5292 // If we have computed a smaller type for the expression, update VecTy so 5293 // that the costs will be accurate. 5294 if (MinBWs.count(VL[0])) 5295 VecTy = FixedVectorType::get( 5296 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5297 unsigned EntryVF = E->getVectorFactor(); 5298 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5299 5300 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5301 // FIXME: it tries to fix a problem with MSVC buildbots. 5302 TargetTransformInfo &TTIRef = *TTI; 5303 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5304 VectorizedVals, E](InstructionCost &Cost) { 5305 DenseMap<Value *, int> ExtractVectorsTys; 5306 SmallPtrSet<Value *, 4> CheckedExtracts; 5307 for (auto *V : VL) { 5308 if (isa<UndefValue>(V)) 5309 continue; 5310 // If all users of instruction are going to be vectorized and this 5311 // instruction itself is not going to be vectorized, consider this 5312 // instruction as dead and remove its cost from the final cost of the 5313 // vectorized tree. 5314 // Also, avoid adjusting the cost for extractelements with multiple uses 5315 // in different graph entries. 5316 const TreeEntry *VE = getTreeEntry(V); 5317 if (!CheckedExtracts.insert(V).second || 5318 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5319 (VE && VE != E)) 5320 continue; 5321 auto *EE = cast<ExtractElementInst>(V); 5322 Optional<unsigned> EEIdx = getExtractIndex(EE); 5323 if (!EEIdx) 5324 continue; 5325 unsigned Idx = *EEIdx; 5326 if (TTIRef.getNumberOfParts(VecTy) != 5327 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5328 auto It = 5329 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5330 It->getSecond() = std::min<int>(It->second, Idx); 5331 } 5332 // Take credit for instruction that will become dead. 5333 if (EE->hasOneUse()) { 5334 Instruction *Ext = EE->user_back(); 5335 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5336 all_of(Ext->users(), 5337 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5338 // Use getExtractWithExtendCost() to calculate the cost of 5339 // extractelement/ext pair. 5340 Cost -= 5341 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5342 EE->getVectorOperandType(), Idx); 5343 // Add back the cost of s|zext which is subtracted separately. 5344 Cost += TTIRef.getCastInstrCost( 5345 Ext->getOpcode(), Ext->getType(), EE->getType(), 5346 TTI::getCastContextHint(Ext), CostKind, Ext); 5347 continue; 5348 } 5349 } 5350 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5351 EE->getVectorOperandType(), Idx); 5352 } 5353 // Add a cost for subvector extracts/inserts if required. 5354 for (const auto &Data : ExtractVectorsTys) { 5355 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5356 unsigned NumElts = VecTy->getNumElements(); 5357 if (Data.second % NumElts == 0) 5358 continue; 5359 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5360 unsigned Idx = (Data.second / NumElts) * NumElts; 5361 unsigned EENumElts = EEVTy->getNumElements(); 5362 if (Idx + NumElts <= EENumElts) { 5363 Cost += 5364 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5365 EEVTy, None, Idx, VecTy); 5366 } else { 5367 // Need to round up the subvector type vectorization factor to avoid a 5368 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5369 // <= EENumElts. 5370 auto *SubVT = 5371 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5372 Cost += 5373 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5374 EEVTy, None, Idx, SubVT); 5375 } 5376 } else { 5377 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5378 VecTy, None, 0, EEVTy); 5379 } 5380 } 5381 }; 5382 if (E->State == TreeEntry::NeedToGather) { 5383 if (allConstant(VL)) 5384 return 0; 5385 if (isa<InsertElementInst>(VL[0])) 5386 return InstructionCost::getInvalid(); 5387 SmallVector<int> Mask; 5388 SmallVector<const TreeEntry *> Entries; 5389 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5390 isGatherShuffledEntry(E, Mask, Entries); 5391 if (Shuffle.hasValue()) { 5392 InstructionCost GatherCost = 0; 5393 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5394 // Perfect match in the graph, will reuse the previously vectorized 5395 // node. Cost is 0. 5396 LLVM_DEBUG( 5397 dbgs() 5398 << "SLP: perfect diamond match for gather bundle that starts with " 5399 << *VL.front() << ".\n"); 5400 if (NeedToShuffleReuses) 5401 GatherCost = 5402 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5403 FinalVecTy, E->ReuseShuffleIndices); 5404 } else { 5405 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5406 << " entries for bundle that starts with " 5407 << *VL.front() << ".\n"); 5408 // Detected that instead of gather we can emit a shuffle of single/two 5409 // previously vectorized nodes. Add the cost of the permutation rather 5410 // than gather. 5411 ::addMask(Mask, E->ReuseShuffleIndices); 5412 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5413 } 5414 return GatherCost; 5415 } 5416 if ((E->getOpcode() == Instruction::ExtractElement || 5417 all_of(E->Scalars, 5418 [](Value *V) { 5419 return isa<ExtractElementInst, UndefValue>(V); 5420 })) && 5421 allSameType(VL)) { 5422 // Check that gather of extractelements can be represented as just a 5423 // shuffle of a single/two vectors the scalars are extracted from. 5424 SmallVector<int> Mask; 5425 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5426 isFixedVectorShuffle(VL, Mask); 5427 if (ShuffleKind.hasValue()) { 5428 // Found the bunch of extractelement instructions that must be gathered 5429 // into a vector and can be represented as a permutation elements in a 5430 // single input vector or of 2 input vectors. 5431 InstructionCost Cost = 5432 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5433 AdjustExtractsCost(Cost); 5434 if (NeedToShuffleReuses) 5435 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5436 FinalVecTy, E->ReuseShuffleIndices); 5437 return Cost; 5438 } 5439 } 5440 if (isSplat(VL)) { 5441 // Found the broadcasting of the single scalar, calculate the cost as the 5442 // broadcast. 5443 assert(VecTy == FinalVecTy && 5444 "No reused scalars expected for broadcast."); 5445 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5446 /*Mask=*/None, /*Index=*/0, 5447 /*SubTp=*/nullptr, /*Args=*/VL[0]); 5448 } 5449 InstructionCost ReuseShuffleCost = 0; 5450 if (NeedToShuffleReuses) 5451 ReuseShuffleCost = TTI->getShuffleCost( 5452 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5453 // Improve gather cost for gather of loads, if we can group some of the 5454 // loads into vector loads. 5455 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5456 !E->isAltShuffle()) { 5457 BoUpSLP::ValueSet VectorizedLoads; 5458 unsigned StartIdx = 0; 5459 unsigned VF = VL.size() / 2; 5460 unsigned VectorizedCnt = 0; 5461 unsigned ScatterVectorizeCnt = 0; 5462 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5463 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5464 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5465 Cnt += VF) { 5466 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5467 if (!VectorizedLoads.count(Slice.front()) && 5468 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5469 SmallVector<Value *> PointerOps; 5470 OrdersType CurrentOrder; 5471 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5472 *SE, CurrentOrder, PointerOps); 5473 switch (LS) { 5474 case LoadsState::Vectorize: 5475 case LoadsState::ScatterVectorize: 5476 // Mark the vectorized loads so that we don't vectorize them 5477 // again. 5478 if (LS == LoadsState::Vectorize) 5479 ++VectorizedCnt; 5480 else 5481 ++ScatterVectorizeCnt; 5482 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5483 // If we vectorized initial block, no need to try to vectorize it 5484 // again. 5485 if (Cnt == StartIdx) 5486 StartIdx += VF; 5487 break; 5488 case LoadsState::Gather: 5489 break; 5490 } 5491 } 5492 } 5493 // Check if the whole array was vectorized already - exit. 5494 if (StartIdx >= VL.size()) 5495 break; 5496 // Found vectorizable parts - exit. 5497 if (!VectorizedLoads.empty()) 5498 break; 5499 } 5500 if (!VectorizedLoads.empty()) { 5501 InstructionCost GatherCost = 0; 5502 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5503 bool NeedInsertSubvectorAnalysis = 5504 !NumParts || (VL.size() / VF) > NumParts; 5505 // Get the cost for gathered loads. 5506 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5507 if (VectorizedLoads.contains(VL[I])) 5508 continue; 5509 GatherCost += getGatherCost(VL.slice(I, VF)); 5510 } 5511 // The cost for vectorized loads. 5512 InstructionCost ScalarsCost = 0; 5513 for (Value *V : VectorizedLoads) { 5514 auto *LI = cast<LoadInst>(V); 5515 ScalarsCost += TTI->getMemoryOpCost( 5516 Instruction::Load, LI->getType(), LI->getAlign(), 5517 LI->getPointerAddressSpace(), CostKind, LI); 5518 } 5519 auto *LI = cast<LoadInst>(E->getMainOp()); 5520 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5521 Align Alignment = LI->getAlign(); 5522 GatherCost += 5523 VectorizedCnt * 5524 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5525 LI->getPointerAddressSpace(), CostKind, LI); 5526 GatherCost += ScatterVectorizeCnt * 5527 TTI->getGatherScatterOpCost( 5528 Instruction::Load, LoadTy, LI->getPointerOperand(), 5529 /*VariableMask=*/false, Alignment, CostKind, LI); 5530 if (NeedInsertSubvectorAnalysis) { 5531 // Add the cost for the subvectors insert. 5532 for (int I = VF, E = VL.size(); I < E; I += VF) 5533 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5534 None, I, LoadTy); 5535 } 5536 return ReuseShuffleCost + GatherCost - ScalarsCost; 5537 } 5538 } 5539 return ReuseShuffleCost + getGatherCost(VL); 5540 } 5541 InstructionCost CommonCost = 0; 5542 SmallVector<int> Mask; 5543 if (!E->ReorderIndices.empty()) { 5544 SmallVector<int> NewMask; 5545 if (E->getOpcode() == Instruction::Store) { 5546 // For stores the order is actually a mask. 5547 NewMask.resize(E->ReorderIndices.size()); 5548 copy(E->ReorderIndices, NewMask.begin()); 5549 } else { 5550 inversePermutation(E->ReorderIndices, NewMask); 5551 } 5552 ::addMask(Mask, NewMask); 5553 } 5554 if (NeedToShuffleReuses) 5555 ::addMask(Mask, E->ReuseShuffleIndices); 5556 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5557 CommonCost = 5558 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5559 assert((E->State == TreeEntry::Vectorize || 5560 E->State == TreeEntry::ScatterVectorize) && 5561 "Unhandled state"); 5562 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5563 Instruction *VL0 = E->getMainOp(); 5564 unsigned ShuffleOrOp = 5565 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5566 switch (ShuffleOrOp) { 5567 case Instruction::PHI: 5568 return 0; 5569 5570 case Instruction::ExtractValue: 5571 case Instruction::ExtractElement: { 5572 // The common cost of removal ExtractElement/ExtractValue instructions + 5573 // the cost of shuffles, if required to resuffle the original vector. 5574 if (NeedToShuffleReuses) { 5575 unsigned Idx = 0; 5576 for (unsigned I : E->ReuseShuffleIndices) { 5577 if (ShuffleOrOp == Instruction::ExtractElement) { 5578 auto *EE = cast<ExtractElementInst>(VL[I]); 5579 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5580 EE->getVectorOperandType(), 5581 *getExtractIndex(EE)); 5582 } else { 5583 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5584 VecTy, Idx); 5585 ++Idx; 5586 } 5587 } 5588 Idx = EntryVF; 5589 for (Value *V : VL) { 5590 if (ShuffleOrOp == Instruction::ExtractElement) { 5591 auto *EE = cast<ExtractElementInst>(V); 5592 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5593 EE->getVectorOperandType(), 5594 *getExtractIndex(EE)); 5595 } else { 5596 --Idx; 5597 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5598 VecTy, Idx); 5599 } 5600 } 5601 } 5602 if (ShuffleOrOp == Instruction::ExtractValue) { 5603 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5604 auto *EI = cast<Instruction>(VL[I]); 5605 // Take credit for instruction that will become dead. 5606 if (EI->hasOneUse()) { 5607 Instruction *Ext = EI->user_back(); 5608 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5609 all_of(Ext->users(), 5610 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5611 // Use getExtractWithExtendCost() to calculate the cost of 5612 // extractelement/ext pair. 5613 CommonCost -= TTI->getExtractWithExtendCost( 5614 Ext->getOpcode(), Ext->getType(), VecTy, I); 5615 // Add back the cost of s|zext which is subtracted separately. 5616 CommonCost += TTI->getCastInstrCost( 5617 Ext->getOpcode(), Ext->getType(), EI->getType(), 5618 TTI::getCastContextHint(Ext), CostKind, Ext); 5619 continue; 5620 } 5621 } 5622 CommonCost -= 5623 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5624 } 5625 } else { 5626 AdjustExtractsCost(CommonCost); 5627 } 5628 return CommonCost; 5629 } 5630 case Instruction::InsertElement: { 5631 assert(E->ReuseShuffleIndices.empty() && 5632 "Unique insertelements only are expected."); 5633 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5634 5635 unsigned const NumElts = SrcVecTy->getNumElements(); 5636 unsigned const NumScalars = VL.size(); 5637 APInt DemandedElts = APInt::getZero(NumElts); 5638 // TODO: Add support for Instruction::InsertValue. 5639 SmallVector<int> Mask; 5640 if (!E->ReorderIndices.empty()) { 5641 inversePermutation(E->ReorderIndices, Mask); 5642 Mask.append(NumElts - NumScalars, UndefMaskElem); 5643 } else { 5644 Mask.assign(NumElts, UndefMaskElem); 5645 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5646 } 5647 unsigned Offset = *getInsertIndex(VL0); 5648 bool IsIdentity = true; 5649 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5650 Mask.swap(PrevMask); 5651 for (unsigned I = 0; I < NumScalars; ++I) { 5652 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5653 DemandedElts.setBit(InsertIdx); 5654 IsIdentity &= InsertIdx - Offset == I; 5655 Mask[InsertIdx - Offset] = I; 5656 } 5657 assert(Offset < NumElts && "Failed to find vector index offset"); 5658 5659 InstructionCost Cost = 0; 5660 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5661 /*Insert*/ true, /*Extract*/ false); 5662 5663 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5664 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5665 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5666 Cost += TTI->getShuffleCost( 5667 TargetTransformInfo::SK_PermuteSingleSrc, 5668 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5669 } else if (!IsIdentity) { 5670 auto *FirstInsert = 5671 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5672 return !is_contained(E->Scalars, 5673 cast<Instruction>(V)->getOperand(0)); 5674 })); 5675 if (isUndefVector(FirstInsert->getOperand(0))) { 5676 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5677 } else { 5678 SmallVector<int> InsertMask(NumElts); 5679 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5680 for (unsigned I = 0; I < NumElts; I++) { 5681 if (Mask[I] != UndefMaskElem) 5682 InsertMask[Offset + I] = NumElts + I; 5683 } 5684 Cost += 5685 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5686 } 5687 } 5688 5689 return Cost; 5690 } 5691 case Instruction::ZExt: 5692 case Instruction::SExt: 5693 case Instruction::FPToUI: 5694 case Instruction::FPToSI: 5695 case Instruction::FPExt: 5696 case Instruction::PtrToInt: 5697 case Instruction::IntToPtr: 5698 case Instruction::SIToFP: 5699 case Instruction::UIToFP: 5700 case Instruction::Trunc: 5701 case Instruction::FPTrunc: 5702 case Instruction::BitCast: { 5703 Type *SrcTy = VL0->getOperand(0)->getType(); 5704 InstructionCost ScalarEltCost = 5705 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5706 TTI::getCastContextHint(VL0), CostKind, VL0); 5707 if (NeedToShuffleReuses) { 5708 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5709 } 5710 5711 // Calculate the cost of this instruction. 5712 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5713 5714 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5715 InstructionCost VecCost = 0; 5716 // Check if the values are candidates to demote. 5717 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5718 VecCost = CommonCost + TTI->getCastInstrCost( 5719 E->getOpcode(), VecTy, SrcVecTy, 5720 TTI::getCastContextHint(VL0), CostKind, VL0); 5721 } 5722 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5723 return VecCost - ScalarCost; 5724 } 5725 case Instruction::FCmp: 5726 case Instruction::ICmp: 5727 case Instruction::Select: { 5728 // Calculate the cost of this instruction. 5729 InstructionCost ScalarEltCost = 5730 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5731 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5732 if (NeedToShuffleReuses) { 5733 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5734 } 5735 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5736 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5737 5738 // Check if all entries in VL are either compares or selects with compares 5739 // as condition that have the same predicates. 5740 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5741 bool First = true; 5742 for (auto *V : VL) { 5743 CmpInst::Predicate CurrentPred; 5744 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5745 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5746 !match(V, MatchCmp)) || 5747 (!First && VecPred != CurrentPred)) { 5748 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5749 break; 5750 } 5751 First = false; 5752 VecPred = CurrentPred; 5753 } 5754 5755 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5756 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5757 // Check if it is possible and profitable to use min/max for selects in 5758 // VL. 5759 // 5760 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5761 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5762 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5763 {VecTy, VecTy}); 5764 InstructionCost IntrinsicCost = 5765 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5766 // If the selects are the only uses of the compares, they will be dead 5767 // and we can adjust the cost by removing their cost. 5768 if (IntrinsicAndUse.second) 5769 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5770 MaskTy, VecPred, CostKind); 5771 VecCost = std::min(VecCost, IntrinsicCost); 5772 } 5773 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5774 return CommonCost + VecCost - ScalarCost; 5775 } 5776 case Instruction::FNeg: 5777 case Instruction::Add: 5778 case Instruction::FAdd: 5779 case Instruction::Sub: 5780 case Instruction::FSub: 5781 case Instruction::Mul: 5782 case Instruction::FMul: 5783 case Instruction::UDiv: 5784 case Instruction::SDiv: 5785 case Instruction::FDiv: 5786 case Instruction::URem: 5787 case Instruction::SRem: 5788 case Instruction::FRem: 5789 case Instruction::Shl: 5790 case Instruction::LShr: 5791 case Instruction::AShr: 5792 case Instruction::And: 5793 case Instruction::Or: 5794 case Instruction::Xor: { 5795 // Certain instructions can be cheaper to vectorize if they have a 5796 // constant second vector operand. 5797 TargetTransformInfo::OperandValueKind Op1VK = 5798 TargetTransformInfo::OK_AnyValue; 5799 TargetTransformInfo::OperandValueKind Op2VK = 5800 TargetTransformInfo::OK_UniformConstantValue; 5801 TargetTransformInfo::OperandValueProperties Op1VP = 5802 TargetTransformInfo::OP_None; 5803 TargetTransformInfo::OperandValueProperties Op2VP = 5804 TargetTransformInfo::OP_PowerOf2; 5805 5806 // If all operands are exactly the same ConstantInt then set the 5807 // operand kind to OK_UniformConstantValue. 5808 // If instead not all operands are constants, then set the operand kind 5809 // to OK_AnyValue. If all operands are constants but not the same, 5810 // then set the operand kind to OK_NonUniformConstantValue. 5811 ConstantInt *CInt0 = nullptr; 5812 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5813 const Instruction *I = cast<Instruction>(VL[i]); 5814 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5815 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5816 if (!CInt) { 5817 Op2VK = TargetTransformInfo::OK_AnyValue; 5818 Op2VP = TargetTransformInfo::OP_None; 5819 break; 5820 } 5821 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5822 !CInt->getValue().isPowerOf2()) 5823 Op2VP = TargetTransformInfo::OP_None; 5824 if (i == 0) { 5825 CInt0 = CInt; 5826 continue; 5827 } 5828 if (CInt0 != CInt) 5829 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5830 } 5831 5832 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5833 InstructionCost ScalarEltCost = 5834 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5835 Op2VK, Op1VP, Op2VP, Operands, VL0); 5836 if (NeedToShuffleReuses) { 5837 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5838 } 5839 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5840 InstructionCost VecCost = 5841 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5842 Op2VK, Op1VP, Op2VP, Operands, VL0); 5843 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5844 return CommonCost + VecCost - ScalarCost; 5845 } 5846 case Instruction::GetElementPtr: { 5847 TargetTransformInfo::OperandValueKind Op1VK = 5848 TargetTransformInfo::OK_AnyValue; 5849 TargetTransformInfo::OperandValueKind Op2VK = 5850 TargetTransformInfo::OK_UniformConstantValue; 5851 5852 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5853 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5854 if (NeedToShuffleReuses) { 5855 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5856 } 5857 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5858 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5859 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5860 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5861 return CommonCost + VecCost - ScalarCost; 5862 } 5863 case Instruction::Load: { 5864 // Cost of wide load - cost of scalar loads. 5865 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5866 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5867 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5868 if (NeedToShuffleReuses) { 5869 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5870 } 5871 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5872 InstructionCost VecLdCost; 5873 if (E->State == TreeEntry::Vectorize) { 5874 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5875 CostKind, VL0); 5876 } else { 5877 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5878 Align CommonAlignment = Alignment; 5879 for (Value *V : VL) 5880 CommonAlignment = 5881 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5882 VecLdCost = TTI->getGatherScatterOpCost( 5883 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5884 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5885 } 5886 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5887 return CommonCost + VecLdCost - ScalarLdCost; 5888 } 5889 case Instruction::Store: { 5890 // We know that we can merge the stores. Calculate the cost. 5891 bool IsReorder = !E->ReorderIndices.empty(); 5892 auto *SI = 5893 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5894 Align Alignment = SI->getAlign(); 5895 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5896 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5897 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5898 InstructionCost VecStCost = TTI->getMemoryOpCost( 5899 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5900 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5901 return CommonCost + VecStCost - ScalarStCost; 5902 } 5903 case Instruction::Call: { 5904 CallInst *CI = cast<CallInst>(VL0); 5905 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5906 5907 // Calculate the cost of the scalar and vector calls. 5908 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5909 InstructionCost ScalarEltCost = 5910 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5911 if (NeedToShuffleReuses) { 5912 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5913 } 5914 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5915 5916 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5917 InstructionCost VecCallCost = 5918 std::min(VecCallCosts.first, VecCallCosts.second); 5919 5920 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5921 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5922 << " for " << *CI << "\n"); 5923 5924 return CommonCost + VecCallCost - ScalarCallCost; 5925 } 5926 case Instruction::ShuffleVector: { 5927 assert(E->isAltShuffle() && 5928 ((Instruction::isBinaryOp(E->getOpcode()) && 5929 Instruction::isBinaryOp(E->getAltOpcode())) || 5930 (Instruction::isCast(E->getOpcode()) && 5931 Instruction::isCast(E->getAltOpcode())) || 5932 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5933 "Invalid Shuffle Vector Operand"); 5934 InstructionCost ScalarCost = 0; 5935 if (NeedToShuffleReuses) { 5936 for (unsigned Idx : E->ReuseShuffleIndices) { 5937 Instruction *I = cast<Instruction>(VL[Idx]); 5938 CommonCost -= TTI->getInstructionCost(I, CostKind); 5939 } 5940 for (Value *V : VL) { 5941 Instruction *I = cast<Instruction>(V); 5942 CommonCost += TTI->getInstructionCost(I, CostKind); 5943 } 5944 } 5945 for (Value *V : VL) { 5946 Instruction *I = cast<Instruction>(V); 5947 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5948 ScalarCost += TTI->getInstructionCost(I, CostKind); 5949 } 5950 // VecCost is equal to sum of the cost of creating 2 vectors 5951 // and the cost of creating shuffle. 5952 InstructionCost VecCost = 0; 5953 // Try to find the previous shuffle node with the same operands and same 5954 // main/alternate ops. 5955 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5956 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5957 if (TE.get() == E) 5958 break; 5959 if (TE->isAltShuffle() && 5960 ((TE->getOpcode() == E->getOpcode() && 5961 TE->getAltOpcode() == E->getAltOpcode()) || 5962 (TE->getOpcode() == E->getAltOpcode() && 5963 TE->getAltOpcode() == E->getOpcode())) && 5964 TE->hasEqualOperands(*E)) 5965 return true; 5966 } 5967 return false; 5968 }; 5969 if (TryFindNodeWithEqualOperands()) { 5970 LLVM_DEBUG({ 5971 dbgs() << "SLP: diamond match for alternate node found.\n"; 5972 E->dump(); 5973 }); 5974 // No need to add new vector costs here since we're going to reuse 5975 // same main/alternate vector ops, just do different shuffling. 5976 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5977 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5978 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5979 CostKind); 5980 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5981 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5982 Builder.getInt1Ty(), 5983 CI0->getPredicate(), CostKind, VL0); 5984 VecCost += TTI->getCmpSelInstrCost( 5985 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5986 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5987 E->getAltOp()); 5988 } else { 5989 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5990 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5991 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5992 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5993 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5994 TTI::CastContextHint::None, CostKind); 5995 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5996 TTI::CastContextHint::None, CostKind); 5997 } 5998 5999 if (E->ReuseShuffleIndices.empty()) { 6000 CommonCost = 6001 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 6002 } else { 6003 SmallVector<int> Mask; 6004 buildShuffleEntryMask( 6005 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6006 [E](Instruction *I) { 6007 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6008 return I->getOpcode() == E->getAltOpcode(); 6009 }, 6010 Mask); 6011 CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 6012 FinalVecTy, Mask); 6013 } 6014 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6015 return CommonCost + VecCost - ScalarCost; 6016 } 6017 default: 6018 llvm_unreachable("Unknown instruction"); 6019 } 6020 } 6021 6022 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 6023 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 6024 << VectorizableTree.size() << " is fully vectorizable .\n"); 6025 6026 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 6027 SmallVector<int> Mask; 6028 return TE->State == TreeEntry::NeedToGather && 6029 !any_of(TE->Scalars, 6030 [this](Value *V) { return EphValues.contains(V); }) && 6031 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 6032 TE->Scalars.size() < Limit || 6033 ((TE->getOpcode() == Instruction::ExtractElement || 6034 all_of(TE->Scalars, 6035 [](Value *V) { 6036 return isa<ExtractElementInst, UndefValue>(V); 6037 })) && 6038 isFixedVectorShuffle(TE->Scalars, Mask)) || 6039 (TE->State == TreeEntry::NeedToGather && 6040 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 6041 }; 6042 6043 // We only handle trees of heights 1 and 2. 6044 if (VectorizableTree.size() == 1 && 6045 (VectorizableTree[0]->State == TreeEntry::Vectorize || 6046 (ForReduction && 6047 AreVectorizableGathers(VectorizableTree[0].get(), 6048 VectorizableTree[0]->Scalars.size()) && 6049 VectorizableTree[0]->getVectorFactor() > 2))) 6050 return true; 6051 6052 if (VectorizableTree.size() != 2) 6053 return false; 6054 6055 // Handle splat and all-constants stores. Also try to vectorize tiny trees 6056 // with the second gather nodes if they have less scalar operands rather than 6057 // the initial tree element (may be profitable to shuffle the second gather) 6058 // or they are extractelements, which form shuffle. 6059 SmallVector<int> Mask; 6060 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 6061 AreVectorizableGathers(VectorizableTree[1].get(), 6062 VectorizableTree[0]->Scalars.size())) 6063 return true; 6064 6065 // Gathering cost would be too much for tiny trees. 6066 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 6067 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 6068 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 6069 return false; 6070 6071 return true; 6072 } 6073 6074 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 6075 TargetTransformInfo *TTI, 6076 bool MustMatchOrInst) { 6077 // Look past the root to find a source value. Arbitrarily follow the 6078 // path through operand 0 of any 'or'. Also, peek through optional 6079 // shift-left-by-multiple-of-8-bits. 6080 Value *ZextLoad = Root; 6081 const APInt *ShAmtC; 6082 bool FoundOr = false; 6083 while (!isa<ConstantExpr>(ZextLoad) && 6084 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 6085 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 6086 ShAmtC->urem(8) == 0))) { 6087 auto *BinOp = cast<BinaryOperator>(ZextLoad); 6088 ZextLoad = BinOp->getOperand(0); 6089 if (BinOp->getOpcode() == Instruction::Or) 6090 FoundOr = true; 6091 } 6092 // Check if the input is an extended load of the required or/shift expression. 6093 Value *Load; 6094 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 6095 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 6096 return false; 6097 6098 // Require that the total load bit width is a legal integer type. 6099 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6100 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6101 Type *SrcTy = Load->getType(); 6102 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6103 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6104 return false; 6105 6106 // Everything matched - assume that we can fold the whole sequence using 6107 // load combining. 6108 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6109 << *(cast<Instruction>(Root)) << "\n"); 6110 6111 return true; 6112 } 6113 6114 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6115 if (RdxKind != RecurKind::Or) 6116 return false; 6117 6118 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6119 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6120 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6121 /* MatchOr */ false); 6122 } 6123 6124 bool BoUpSLP::isLoadCombineCandidate() const { 6125 // Peek through a final sequence of stores and check if all operations are 6126 // likely to be load-combined. 6127 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6128 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6129 Value *X; 6130 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6131 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6132 return false; 6133 } 6134 return true; 6135 } 6136 6137 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6138 // No need to vectorize inserts of gathered values. 6139 if (VectorizableTree.size() == 2 && 6140 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6141 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6142 return true; 6143 6144 // We can vectorize the tree if its size is greater than or equal to the 6145 // minimum size specified by the MinTreeSize command line option. 6146 if (VectorizableTree.size() >= MinTreeSize) 6147 return false; 6148 6149 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6150 // can vectorize it if we can prove it fully vectorizable. 6151 if (isFullyVectorizableTinyTree(ForReduction)) 6152 return false; 6153 6154 assert(VectorizableTree.empty() 6155 ? ExternalUses.empty() 6156 : true && "We shouldn't have any external users"); 6157 6158 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6159 // vectorizable. 6160 return true; 6161 } 6162 6163 InstructionCost BoUpSLP::getSpillCost() const { 6164 // Walk from the bottom of the tree to the top, tracking which values are 6165 // live. When we see a call instruction that is not part of our tree, 6166 // query TTI to see if there is a cost to keeping values live over it 6167 // (for example, if spills and fills are required). 6168 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6169 InstructionCost Cost = 0; 6170 6171 SmallPtrSet<Instruction*, 4> LiveValues; 6172 Instruction *PrevInst = nullptr; 6173 6174 // The entries in VectorizableTree are not necessarily ordered by their 6175 // position in basic blocks. Collect them and order them by dominance so later 6176 // instructions are guaranteed to be visited first. For instructions in 6177 // different basic blocks, we only scan to the beginning of the block, so 6178 // their order does not matter, as long as all instructions in a basic block 6179 // are grouped together. Using dominance ensures a deterministic order. 6180 SmallVector<Instruction *, 16> OrderedScalars; 6181 for (const auto &TEPtr : VectorizableTree) { 6182 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6183 if (!Inst) 6184 continue; 6185 OrderedScalars.push_back(Inst); 6186 } 6187 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6188 auto *NodeA = DT->getNode(A->getParent()); 6189 auto *NodeB = DT->getNode(B->getParent()); 6190 assert(NodeA && "Should only process reachable instructions"); 6191 assert(NodeB && "Should only process reachable instructions"); 6192 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6193 "Different nodes should have different DFS numbers"); 6194 if (NodeA != NodeB) 6195 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6196 return B->comesBefore(A); 6197 }); 6198 6199 for (Instruction *Inst : OrderedScalars) { 6200 if (!PrevInst) { 6201 PrevInst = Inst; 6202 continue; 6203 } 6204 6205 // Update LiveValues. 6206 LiveValues.erase(PrevInst); 6207 for (auto &J : PrevInst->operands()) { 6208 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6209 LiveValues.insert(cast<Instruction>(&*J)); 6210 } 6211 6212 LLVM_DEBUG({ 6213 dbgs() << "SLP: #LV: " << LiveValues.size(); 6214 for (auto *X : LiveValues) 6215 dbgs() << " " << X->getName(); 6216 dbgs() << ", Looking at "; 6217 Inst->dump(); 6218 }); 6219 6220 // Now find the sequence of instructions between PrevInst and Inst. 6221 unsigned NumCalls = 0; 6222 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6223 PrevInstIt = 6224 PrevInst->getIterator().getReverse(); 6225 while (InstIt != PrevInstIt) { 6226 if (PrevInstIt == PrevInst->getParent()->rend()) { 6227 PrevInstIt = Inst->getParent()->rbegin(); 6228 continue; 6229 } 6230 6231 // Debug information does not impact spill cost. 6232 if ((isa<CallInst>(&*PrevInstIt) && 6233 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6234 &*PrevInstIt != PrevInst) 6235 NumCalls++; 6236 6237 ++PrevInstIt; 6238 } 6239 6240 if (NumCalls) { 6241 SmallVector<Type*, 4> V; 6242 for (auto *II : LiveValues) { 6243 auto *ScalarTy = II->getType(); 6244 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6245 ScalarTy = VectorTy->getElementType(); 6246 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6247 } 6248 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6249 } 6250 6251 PrevInst = Inst; 6252 } 6253 6254 return Cost; 6255 } 6256 6257 /// Check if two insertelement instructions are from the same buildvector. 6258 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6259 InsertElementInst *V) { 6260 // Instructions must be from the same basic blocks. 6261 if (VU->getParent() != V->getParent()) 6262 return false; 6263 // Checks if 2 insertelements are from the same buildvector. 6264 if (VU->getType() != V->getType()) 6265 return false; 6266 // Multiple used inserts are separate nodes. 6267 if (!VU->hasOneUse() && !V->hasOneUse()) 6268 return false; 6269 auto *IE1 = VU; 6270 auto *IE2 = V; 6271 // Go through the vector operand of insertelement instructions trying to find 6272 // either VU as the original vector for IE2 or V as the original vector for 6273 // IE1. 6274 do { 6275 if (IE2 == VU || IE1 == V) 6276 return true; 6277 if (IE1) { 6278 if (IE1 != VU && !IE1->hasOneUse()) 6279 IE1 = nullptr; 6280 else 6281 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6282 } 6283 if (IE2) { 6284 if (IE2 != V && !IE2->hasOneUse()) 6285 IE2 = nullptr; 6286 else 6287 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6288 } 6289 } while (IE1 || IE2); 6290 return false; 6291 } 6292 6293 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6294 InstructionCost Cost = 0; 6295 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6296 << VectorizableTree.size() << ".\n"); 6297 6298 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6299 6300 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6301 TreeEntry &TE = *VectorizableTree[I]; 6302 6303 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6304 Cost += C; 6305 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6306 << " for bundle that starts with " << *TE.Scalars[0] 6307 << ".\n" 6308 << "SLP: Current total cost = " << Cost << "\n"); 6309 } 6310 6311 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6312 InstructionCost ExtractCost = 0; 6313 SmallVector<unsigned> VF; 6314 SmallVector<SmallVector<int>> ShuffleMask; 6315 SmallVector<Value *> FirstUsers; 6316 SmallVector<APInt> DemandedElts; 6317 for (ExternalUser &EU : ExternalUses) { 6318 // We only add extract cost once for the same scalar. 6319 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6320 !ExtractCostCalculated.insert(EU.Scalar).second) 6321 continue; 6322 6323 // Uses by ephemeral values are free (because the ephemeral value will be 6324 // removed prior to code generation, and so the extraction will be 6325 // removed as well). 6326 if (EphValues.count(EU.User)) 6327 continue; 6328 6329 // No extract cost for vector "scalar" 6330 if (isa<FixedVectorType>(EU.Scalar->getType())) 6331 continue; 6332 6333 // Already counted the cost for external uses when tried to adjust the cost 6334 // for extractelements, no need to add it again. 6335 if (isa<ExtractElementInst>(EU.Scalar)) 6336 continue; 6337 6338 // If found user is an insertelement, do not calculate extract cost but try 6339 // to detect it as a final shuffled/identity match. 6340 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6341 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6342 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6343 if (InsertIdx) { 6344 auto *It = find_if(FirstUsers, [VU](Value *V) { 6345 return areTwoInsertFromSameBuildVector(VU, 6346 cast<InsertElementInst>(V)); 6347 }); 6348 int VecId = -1; 6349 if (It == FirstUsers.end()) { 6350 VF.push_back(FTy->getNumElements()); 6351 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6352 // Find the insertvector, vectorized in tree, if any. 6353 Value *Base = VU; 6354 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 6355 // Build the mask for the vectorized insertelement instructions. 6356 if (const TreeEntry *E = getTreeEntry(IEBase)) { 6357 VU = IEBase; 6358 do { 6359 int Idx = E->findLaneForValue(Base); 6360 ShuffleMask.back()[Idx] = Idx; 6361 Base = cast<InsertElementInst>(Base)->getOperand(0); 6362 } while (E == getTreeEntry(Base)); 6363 break; 6364 } 6365 Base = cast<InsertElementInst>(Base)->getOperand(0); 6366 } 6367 FirstUsers.push_back(VU); 6368 DemandedElts.push_back(APInt::getZero(VF.back())); 6369 VecId = FirstUsers.size() - 1; 6370 } else { 6371 VecId = std::distance(FirstUsers.begin(), It); 6372 } 6373 int InIdx = *InsertIdx; 6374 ShuffleMask[VecId][InIdx] = EU.Lane; 6375 DemandedElts[VecId].setBit(InIdx); 6376 continue; 6377 } 6378 } 6379 } 6380 6381 // If we plan to rewrite the tree in a smaller type, we will need to sign 6382 // extend the extracted value back to the original type. Here, we account 6383 // for the extract and the added cost of the sign extend if needed. 6384 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6385 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6386 if (MinBWs.count(ScalarRoot)) { 6387 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6388 auto Extend = 6389 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6390 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6391 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6392 VecTy, EU.Lane); 6393 } else { 6394 ExtractCost += 6395 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6396 } 6397 } 6398 6399 InstructionCost SpillCost = getSpillCost(); 6400 Cost += SpillCost + ExtractCost; 6401 if (FirstUsers.size() == 1) { 6402 int Limit = ShuffleMask.front().size() * 2; 6403 if (!all_of(ShuffleMask.front(), 6404 [Limit](int Idx) { return Idx < Limit; }) || 6405 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6406 InstructionCost C = TTI->getShuffleCost( 6407 TTI::SK_PermuteSingleSrc, 6408 cast<FixedVectorType>(FirstUsers.front()->getType()), 6409 ShuffleMask.front()); 6410 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6411 << " for final shuffle of insertelement external users " 6412 << *VectorizableTree.front()->Scalars.front() << ".\n" 6413 << "SLP: Current total cost = " << Cost << "\n"); 6414 Cost += C; 6415 } 6416 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6417 cast<FixedVectorType>(FirstUsers.front()->getType()), 6418 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6419 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6420 << " for insertelements gather.\n" 6421 << "SLP: Current total cost = " << Cost << "\n"); 6422 Cost -= InsertCost; 6423 } else if (FirstUsers.size() >= 2) { 6424 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6425 // Combined masks of the first 2 vectors. 6426 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6427 copy(ShuffleMask.front(), CombinedMask.begin()); 6428 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6429 auto *VecTy = FixedVectorType::get( 6430 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6431 MaxVF); 6432 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6433 if (ShuffleMask[1][I] != UndefMaskElem) { 6434 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6435 CombinedDemandedElts.setBit(I); 6436 } 6437 } 6438 InstructionCost C = 6439 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6440 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6441 << " for final shuffle of vector node and external " 6442 "insertelement users " 6443 << *VectorizableTree.front()->Scalars.front() << ".\n" 6444 << "SLP: Current total cost = " << Cost << "\n"); 6445 Cost += C; 6446 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6447 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6448 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6449 << " for insertelements gather.\n" 6450 << "SLP: Current total cost = " << Cost << "\n"); 6451 Cost -= InsertCost; 6452 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6453 if (ShuffleMask[I].empty()) 6454 continue; 6455 // Other elements - permutation of 2 vectors (the initial one and the 6456 // next Ith incoming vector). 6457 unsigned VF = ShuffleMask[I].size(); 6458 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6459 int Mask = ShuffleMask[I][Idx]; 6460 if (Mask != UndefMaskElem) 6461 CombinedMask[Idx] = MaxVF + Mask; 6462 else if (CombinedMask[Idx] != UndefMaskElem) 6463 CombinedMask[Idx] = Idx; 6464 } 6465 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6466 if (CombinedMask[Idx] != UndefMaskElem) 6467 CombinedMask[Idx] = Idx; 6468 InstructionCost C = 6469 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6470 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6471 << " for final shuffle of vector node and external " 6472 "insertelement users " 6473 << *VectorizableTree.front()->Scalars.front() << ".\n" 6474 << "SLP: Current total cost = " << Cost << "\n"); 6475 Cost += C; 6476 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6477 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6478 /*Insert*/ true, /*Extract*/ false); 6479 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6480 << " for insertelements gather.\n" 6481 << "SLP: Current total cost = " << Cost << "\n"); 6482 Cost -= InsertCost; 6483 } 6484 } 6485 6486 #ifndef NDEBUG 6487 SmallString<256> Str; 6488 { 6489 raw_svector_ostream OS(Str); 6490 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6491 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6492 << "SLP: Total Cost = " << Cost << ".\n"; 6493 } 6494 LLVM_DEBUG(dbgs() << Str); 6495 if (ViewSLPTree) 6496 ViewGraph(this, "SLP" + F->getName(), false, Str); 6497 #endif 6498 6499 return Cost; 6500 } 6501 6502 Optional<TargetTransformInfo::ShuffleKind> 6503 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6504 SmallVectorImpl<const TreeEntry *> &Entries) { 6505 // TODO: currently checking only for Scalars in the tree entry, need to count 6506 // reused elements too for better cost estimation. 6507 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6508 Entries.clear(); 6509 // Build a lists of values to tree entries. 6510 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6511 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6512 if (EntryPtr.get() == TE) 6513 break; 6514 if (EntryPtr->State != TreeEntry::NeedToGather) 6515 continue; 6516 for (Value *V : EntryPtr->Scalars) 6517 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6518 } 6519 // Find all tree entries used by the gathered values. If no common entries 6520 // found - not a shuffle. 6521 // Here we build a set of tree nodes for each gathered value and trying to 6522 // find the intersection between these sets. If we have at least one common 6523 // tree node for each gathered value - we have just a permutation of the 6524 // single vector. If we have 2 different sets, we're in situation where we 6525 // have a permutation of 2 input vectors. 6526 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6527 DenseMap<Value *, int> UsedValuesEntry; 6528 for (Value *V : TE->Scalars) { 6529 if (isa<UndefValue>(V)) 6530 continue; 6531 // Build a list of tree entries where V is used. 6532 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6533 auto It = ValueToTEs.find(V); 6534 if (It != ValueToTEs.end()) 6535 VToTEs = It->second; 6536 if (const TreeEntry *VTE = getTreeEntry(V)) 6537 VToTEs.insert(VTE); 6538 if (VToTEs.empty()) 6539 return None; 6540 if (UsedTEs.empty()) { 6541 // The first iteration, just insert the list of nodes to vector. 6542 UsedTEs.push_back(VToTEs); 6543 } else { 6544 // Need to check if there are any previously used tree nodes which use V. 6545 // If there are no such nodes, consider that we have another one input 6546 // vector. 6547 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6548 unsigned Idx = 0; 6549 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6550 // Do we have a non-empty intersection of previously listed tree entries 6551 // and tree entries using current V? 6552 set_intersect(VToTEs, Set); 6553 if (!VToTEs.empty()) { 6554 // Yes, write the new subset and continue analysis for the next 6555 // scalar. 6556 Set.swap(VToTEs); 6557 break; 6558 } 6559 VToTEs = SavedVToTEs; 6560 ++Idx; 6561 } 6562 // No non-empty intersection found - need to add a second set of possible 6563 // source vectors. 6564 if (Idx == UsedTEs.size()) { 6565 // If the number of input vectors is greater than 2 - not a permutation, 6566 // fallback to the regular gather. 6567 if (UsedTEs.size() == 2) 6568 return None; 6569 UsedTEs.push_back(SavedVToTEs); 6570 Idx = UsedTEs.size() - 1; 6571 } 6572 UsedValuesEntry.try_emplace(V, Idx); 6573 } 6574 } 6575 6576 if (UsedTEs.empty()) { 6577 assert(all_of(TE->Scalars, UndefValue::classof) && 6578 "Expected vector of undefs only."); 6579 return None; 6580 } 6581 6582 unsigned VF = 0; 6583 if (UsedTEs.size() == 1) { 6584 // Try to find the perfect match in another gather node at first. 6585 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6586 return EntryPtr->isSame(TE->Scalars); 6587 }); 6588 if (It != UsedTEs.front().end()) { 6589 Entries.push_back(*It); 6590 std::iota(Mask.begin(), Mask.end(), 0); 6591 return TargetTransformInfo::SK_PermuteSingleSrc; 6592 } 6593 // No perfect match, just shuffle, so choose the first tree node. 6594 Entries.push_back(*UsedTEs.front().begin()); 6595 } else { 6596 // Try to find nodes with the same vector factor. 6597 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6598 DenseMap<int, const TreeEntry *> VFToTE; 6599 for (const TreeEntry *TE : UsedTEs.front()) 6600 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6601 for (const TreeEntry *TE : UsedTEs.back()) { 6602 auto It = VFToTE.find(TE->getVectorFactor()); 6603 if (It != VFToTE.end()) { 6604 VF = It->first; 6605 Entries.push_back(It->second); 6606 Entries.push_back(TE); 6607 break; 6608 } 6609 } 6610 // No 2 source vectors with the same vector factor - give up and do regular 6611 // gather. 6612 if (Entries.empty()) 6613 return None; 6614 } 6615 6616 // Build a shuffle mask for better cost estimation and vector emission. 6617 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6618 Value *V = TE->Scalars[I]; 6619 if (isa<UndefValue>(V)) 6620 continue; 6621 unsigned Idx = UsedValuesEntry.lookup(V); 6622 const TreeEntry *VTE = Entries[Idx]; 6623 int FoundLane = VTE->findLaneForValue(V); 6624 Mask[I] = Idx * VF + FoundLane; 6625 // Extra check required by isSingleSourceMaskImpl function (called by 6626 // ShuffleVectorInst::isSingleSourceMask). 6627 if (Mask[I] >= 2 * E) 6628 return None; 6629 } 6630 switch (Entries.size()) { 6631 case 1: 6632 return TargetTransformInfo::SK_PermuteSingleSrc; 6633 case 2: 6634 return TargetTransformInfo::SK_PermuteTwoSrc; 6635 default: 6636 break; 6637 } 6638 return None; 6639 } 6640 6641 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6642 const APInt &ShuffledIndices, 6643 bool NeedToShuffle) const { 6644 InstructionCost Cost = 6645 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6646 /*Extract*/ false); 6647 if (NeedToShuffle) 6648 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6649 return Cost; 6650 } 6651 6652 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6653 // Find the type of the operands in VL. 6654 Type *ScalarTy = VL[0]->getType(); 6655 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6656 ScalarTy = SI->getValueOperand()->getType(); 6657 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6658 bool DuplicateNonConst = false; 6659 // Find the cost of inserting/extracting values from the vector. 6660 // Check if the same elements are inserted several times and count them as 6661 // shuffle candidates. 6662 APInt ShuffledElements = APInt::getZero(VL.size()); 6663 DenseSet<Value *> UniqueElements; 6664 // Iterate in reverse order to consider insert elements with the high cost. 6665 for (unsigned I = VL.size(); I > 0; --I) { 6666 unsigned Idx = I - 1; 6667 // No need to shuffle duplicates for constants. 6668 if (isConstant(VL[Idx])) { 6669 ShuffledElements.setBit(Idx); 6670 continue; 6671 } 6672 if (!UniqueElements.insert(VL[Idx]).second) { 6673 DuplicateNonConst = true; 6674 ShuffledElements.setBit(Idx); 6675 } 6676 } 6677 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6678 } 6679 6680 // Perform operand reordering on the instructions in VL and return the reordered 6681 // operands in Left and Right. 6682 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6683 SmallVectorImpl<Value *> &Left, 6684 SmallVectorImpl<Value *> &Right, 6685 const DataLayout &DL, 6686 ScalarEvolution &SE, 6687 const BoUpSLP &R) { 6688 if (VL.empty()) 6689 return; 6690 VLOperands Ops(VL, DL, SE, R); 6691 // Reorder the operands in place. 6692 Ops.reorder(); 6693 Left = Ops.getVL(0); 6694 Right = Ops.getVL(1); 6695 } 6696 6697 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6698 // Get the basic block this bundle is in. All instructions in the bundle 6699 // should be in this block. 6700 auto *Front = E->getMainOp(); 6701 auto *BB = Front->getParent(); 6702 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6703 auto *I = cast<Instruction>(V); 6704 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6705 })); 6706 6707 auto &&FindLastInst = [E, Front]() { 6708 Instruction *LastInst = Front; 6709 for (Value *V : E->Scalars) { 6710 auto *I = dyn_cast<Instruction>(V); 6711 if (!I) 6712 continue; 6713 if (LastInst->comesBefore(I)) 6714 LastInst = I; 6715 } 6716 return LastInst; 6717 }; 6718 6719 auto &&FindFirstInst = [E, Front]() { 6720 Instruction *FirstInst = Front; 6721 for (Value *V : E->Scalars) { 6722 auto *I = dyn_cast<Instruction>(V); 6723 if (!I) 6724 continue; 6725 if (I->comesBefore(FirstInst)) 6726 FirstInst = I; 6727 } 6728 return FirstInst; 6729 }; 6730 6731 // Set the insert point to the beginning of the basic block if the entry 6732 // should not be scheduled. 6733 if (E->State != TreeEntry::NeedToGather && 6734 doesNotNeedToSchedule(E->Scalars)) { 6735 Instruction *InsertInst; 6736 if (all_of(E->Scalars, isUsedOutsideBlock)) 6737 InsertInst = FindLastInst(); 6738 else 6739 InsertInst = FindFirstInst(); 6740 // If the instruction is PHI, set the insert point after all the PHIs. 6741 if (isa<PHINode>(InsertInst)) 6742 InsertInst = BB->getFirstNonPHI(); 6743 BasicBlock::iterator InsertPt = InsertInst->getIterator(); 6744 Builder.SetInsertPoint(BB, InsertPt); 6745 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6746 return; 6747 } 6748 6749 // The last instruction in the bundle in program order. 6750 Instruction *LastInst = nullptr; 6751 6752 // Find the last instruction. The common case should be that BB has been 6753 // scheduled, and the last instruction is VL.back(). So we start with 6754 // VL.back() and iterate over schedule data until we reach the end of the 6755 // bundle. The end of the bundle is marked by null ScheduleData. 6756 if (BlocksSchedules.count(BB)) { 6757 Value *V = E->isOneOf(E->Scalars.back()); 6758 if (doesNotNeedToBeScheduled(V)) 6759 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6760 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6761 if (Bundle && Bundle->isPartOfBundle()) 6762 for (; Bundle; Bundle = Bundle->NextInBundle) 6763 if (Bundle->OpValue == Bundle->Inst) 6764 LastInst = Bundle->Inst; 6765 } 6766 6767 // LastInst can still be null at this point if there's either not an entry 6768 // for BB in BlocksSchedules or there's no ScheduleData available for 6769 // VL.back(). This can be the case if buildTree_rec aborts for various 6770 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6771 // size is reached, etc.). ScheduleData is initialized in the scheduling 6772 // "dry-run". 6773 // 6774 // If this happens, we can still find the last instruction by brute force. We 6775 // iterate forwards from Front (inclusive) until we either see all 6776 // instructions in the bundle or reach the end of the block. If Front is the 6777 // last instruction in program order, LastInst will be set to Front, and we 6778 // will visit all the remaining instructions in the block. 6779 // 6780 // One of the reasons we exit early from buildTree_rec is to place an upper 6781 // bound on compile-time. Thus, taking an additional compile-time hit here is 6782 // not ideal. However, this should be exceedingly rare since it requires that 6783 // we both exit early from buildTree_rec and that the bundle be out-of-order 6784 // (causing us to iterate all the way to the end of the block). 6785 if (!LastInst) { 6786 LastInst = FindLastInst(); 6787 // If the instruction is PHI, set the insert point after all the PHIs. 6788 if (isa<PHINode>(LastInst)) 6789 LastInst = BB->getFirstNonPHI()->getPrevNode(); 6790 } 6791 assert(LastInst && "Failed to find last instruction in bundle"); 6792 6793 // Set the insertion point after the last instruction in the bundle. Set the 6794 // debug location to Front. 6795 Builder.SetInsertPoint(BB, std::next(LastInst->getIterator())); 6796 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6797 } 6798 6799 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6800 // List of instructions/lanes from current block and/or the blocks which are 6801 // part of the current loop. These instructions will be inserted at the end to 6802 // make it possible to optimize loops and hoist invariant instructions out of 6803 // the loops body with better chances for success. 6804 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6805 SmallSet<int, 4> PostponedIndices; 6806 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6807 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6808 SmallPtrSet<BasicBlock *, 4> Visited; 6809 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6810 InsertBB = InsertBB->getSinglePredecessor(); 6811 return InsertBB && InsertBB == InstBB; 6812 }; 6813 for (int I = 0, E = VL.size(); I < E; ++I) { 6814 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6815 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6816 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6817 PostponedIndices.insert(I).second) 6818 PostponedInsts.emplace_back(Inst, I); 6819 } 6820 6821 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6822 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6823 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6824 if (!InsElt) 6825 return Vec; 6826 GatherShuffleSeq.insert(InsElt); 6827 CSEBlocks.insert(InsElt->getParent()); 6828 // Add to our 'need-to-extract' list. 6829 if (TreeEntry *Entry = getTreeEntry(V)) { 6830 // Find which lane we need to extract. 6831 unsigned FoundLane = Entry->findLaneForValue(V); 6832 ExternalUses.emplace_back(V, InsElt, FoundLane); 6833 } 6834 return Vec; 6835 }; 6836 Value *Val0 = 6837 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6838 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6839 Value *Vec = PoisonValue::get(VecTy); 6840 SmallVector<int> NonConsts; 6841 // Insert constant values at first. 6842 for (int I = 0, E = VL.size(); I < E; ++I) { 6843 if (PostponedIndices.contains(I)) 6844 continue; 6845 if (!isConstant(VL[I])) { 6846 NonConsts.push_back(I); 6847 continue; 6848 } 6849 Vec = CreateInsertElement(Vec, VL[I], I); 6850 } 6851 // Insert non-constant values. 6852 for (int I : NonConsts) 6853 Vec = CreateInsertElement(Vec, VL[I], I); 6854 // Append instructions, which are/may be part of the loop, in the end to make 6855 // it possible to hoist non-loop-based instructions. 6856 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6857 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6858 6859 return Vec; 6860 } 6861 6862 namespace { 6863 /// Merges shuffle masks and emits final shuffle instruction, if required. 6864 class ShuffleInstructionBuilder { 6865 IRBuilderBase &Builder; 6866 const unsigned VF = 0; 6867 bool IsFinalized = false; 6868 SmallVector<int, 4> Mask; 6869 /// Holds all of the instructions that we gathered. 6870 SetVector<Instruction *> &GatherShuffleSeq; 6871 /// A list of blocks that we are going to CSE. 6872 SetVector<BasicBlock *> &CSEBlocks; 6873 6874 public: 6875 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6876 SetVector<Instruction *> &GatherShuffleSeq, 6877 SetVector<BasicBlock *> &CSEBlocks) 6878 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6879 CSEBlocks(CSEBlocks) {} 6880 6881 /// Adds a mask, inverting it before applying. 6882 void addInversedMask(ArrayRef<unsigned> SubMask) { 6883 if (SubMask.empty()) 6884 return; 6885 SmallVector<int, 4> NewMask; 6886 inversePermutation(SubMask, NewMask); 6887 addMask(NewMask); 6888 } 6889 6890 /// Functions adds masks, merging them into single one. 6891 void addMask(ArrayRef<unsigned> SubMask) { 6892 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6893 addMask(NewMask); 6894 } 6895 6896 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6897 6898 Value *finalize(Value *V) { 6899 IsFinalized = true; 6900 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6901 if (VF == ValueVF && Mask.empty()) 6902 return V; 6903 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6904 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6905 addMask(NormalizedMask); 6906 6907 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6908 return V; 6909 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6910 if (auto *I = dyn_cast<Instruction>(Vec)) { 6911 GatherShuffleSeq.insert(I); 6912 CSEBlocks.insert(I->getParent()); 6913 } 6914 return Vec; 6915 } 6916 6917 ~ShuffleInstructionBuilder() { 6918 assert((IsFinalized || Mask.empty()) && 6919 "Shuffle construction must be finalized."); 6920 } 6921 }; 6922 } // namespace 6923 6924 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6925 const unsigned VF = VL.size(); 6926 InstructionsState S = getSameOpcode(VL); 6927 if (S.getOpcode()) { 6928 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6929 if (E->isSame(VL)) { 6930 Value *V = vectorizeTree(E); 6931 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6932 if (!E->ReuseShuffleIndices.empty()) { 6933 // Reshuffle to get only unique values. 6934 // If some of the scalars are duplicated in the vectorization tree 6935 // entry, we do not vectorize them but instead generate a mask for 6936 // the reuses. But if there are several users of the same entry, 6937 // they may have different vectorization factors. This is especially 6938 // important for PHI nodes. In this case, we need to adapt the 6939 // resulting instruction for the user vectorization factor and have 6940 // to reshuffle it again to take only unique elements of the vector. 6941 // Without this code the function incorrectly returns reduced vector 6942 // instruction with the same elements, not with the unique ones. 6943 6944 // block: 6945 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6946 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6947 // ... (use %2) 6948 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6949 // br %block 6950 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6951 SmallSet<int, 4> UsedIdxs; 6952 int Pos = 0; 6953 int Sz = VL.size(); 6954 for (int Idx : E->ReuseShuffleIndices) { 6955 if (Idx != Sz && Idx != UndefMaskElem && 6956 UsedIdxs.insert(Idx).second) 6957 UniqueIdxs[Idx] = Pos; 6958 ++Pos; 6959 } 6960 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6961 "less than original vector size."); 6962 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6963 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6964 } else { 6965 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6966 "Expected vectorization factor less " 6967 "than original vector size."); 6968 SmallVector<int> UniformMask(VF, 0); 6969 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6970 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6971 } 6972 if (auto *I = dyn_cast<Instruction>(V)) { 6973 GatherShuffleSeq.insert(I); 6974 CSEBlocks.insert(I->getParent()); 6975 } 6976 } 6977 return V; 6978 } 6979 } 6980 6981 // Can't vectorize this, so simply build a new vector with each lane 6982 // corresponding to the requested value. 6983 return createBuildVector(VL); 6984 } 6985 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6986 unsigned VF = VL.size(); 6987 // Exploit possible reuse of values across lanes. 6988 SmallVector<int> ReuseShuffleIndicies; 6989 SmallVector<Value *> UniqueValues; 6990 if (VL.size() > 2) { 6991 DenseMap<Value *, unsigned> UniquePositions; 6992 unsigned NumValues = 6993 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6994 return !isa<UndefValue>(V); 6995 }).base()); 6996 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6997 int UniqueVals = 0; 6998 for (Value *V : VL.drop_back(VL.size() - VF)) { 6999 if (isa<UndefValue>(V)) { 7000 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 7001 continue; 7002 } 7003 if (isConstant(V)) { 7004 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 7005 UniqueValues.emplace_back(V); 7006 continue; 7007 } 7008 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 7009 ReuseShuffleIndicies.emplace_back(Res.first->second); 7010 if (Res.second) { 7011 UniqueValues.emplace_back(V); 7012 ++UniqueVals; 7013 } 7014 } 7015 if (UniqueVals == 1 && UniqueValues.size() == 1) { 7016 // Emit pure splat vector. 7017 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 7018 UndefMaskElem); 7019 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 7020 ReuseShuffleIndicies.clear(); 7021 UniqueValues.clear(); 7022 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 7023 } 7024 UniqueValues.append(VF - UniqueValues.size(), 7025 PoisonValue::get(VL[0]->getType())); 7026 VL = UniqueValues; 7027 } 7028 7029 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7030 CSEBlocks); 7031 Value *Vec = gather(VL); 7032 if (!ReuseShuffleIndicies.empty()) { 7033 ShuffleBuilder.addMask(ReuseShuffleIndicies); 7034 Vec = ShuffleBuilder.finalize(Vec); 7035 } 7036 return Vec; 7037 } 7038 7039 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 7040 IRBuilder<>::InsertPointGuard Guard(Builder); 7041 7042 if (E->VectorizedValue) { 7043 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 7044 return E->VectorizedValue; 7045 } 7046 7047 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 7048 unsigned VF = E->getVectorFactor(); 7049 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7050 CSEBlocks); 7051 if (E->State == TreeEntry::NeedToGather) { 7052 if (E->getMainOp()) 7053 setInsertPointAfterBundle(E); 7054 Value *Vec; 7055 SmallVector<int> Mask; 7056 SmallVector<const TreeEntry *> Entries; 7057 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 7058 isGatherShuffledEntry(E, Mask, Entries); 7059 if (Shuffle.hasValue()) { 7060 assert((Entries.size() == 1 || Entries.size() == 2) && 7061 "Expected shuffle of 1 or 2 entries."); 7062 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 7063 Entries.back()->VectorizedValue, Mask); 7064 if (auto *I = dyn_cast<Instruction>(Vec)) { 7065 GatherShuffleSeq.insert(I); 7066 CSEBlocks.insert(I->getParent()); 7067 } 7068 } else { 7069 Vec = gather(E->Scalars); 7070 } 7071 if (NeedToShuffleReuses) { 7072 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7073 Vec = ShuffleBuilder.finalize(Vec); 7074 } 7075 E->VectorizedValue = Vec; 7076 return Vec; 7077 } 7078 7079 assert((E->State == TreeEntry::Vectorize || 7080 E->State == TreeEntry::ScatterVectorize) && 7081 "Unhandled state"); 7082 unsigned ShuffleOrOp = 7083 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 7084 Instruction *VL0 = E->getMainOp(); 7085 Type *ScalarTy = VL0->getType(); 7086 if (auto *Store = dyn_cast<StoreInst>(VL0)) 7087 ScalarTy = Store->getValueOperand()->getType(); 7088 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 7089 ScalarTy = IE->getOperand(1)->getType(); 7090 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 7091 switch (ShuffleOrOp) { 7092 case Instruction::PHI: { 7093 assert( 7094 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 7095 "PHI reordering is free."); 7096 auto *PH = cast<PHINode>(VL0); 7097 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 7098 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7099 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 7100 Value *V = NewPhi; 7101 7102 // Adjust insertion point once all PHI's have been generated. 7103 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 7104 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7105 7106 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7107 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7108 V = ShuffleBuilder.finalize(V); 7109 7110 E->VectorizedValue = V; 7111 7112 // PHINodes may have multiple entries from the same block. We want to 7113 // visit every block once. 7114 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7115 7116 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7117 ValueList Operands; 7118 BasicBlock *IBB = PH->getIncomingBlock(i); 7119 7120 if (!VisitedBBs.insert(IBB).second) { 7121 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7122 continue; 7123 } 7124 7125 Builder.SetInsertPoint(IBB->getTerminator()); 7126 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7127 Value *Vec = vectorizeTree(E->getOperand(i)); 7128 NewPhi->addIncoming(Vec, IBB); 7129 } 7130 7131 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7132 "Invalid number of incoming values"); 7133 return V; 7134 } 7135 7136 case Instruction::ExtractElement: { 7137 Value *V = E->getSingleOperand(0); 7138 Builder.SetInsertPoint(VL0); 7139 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7140 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7141 V = ShuffleBuilder.finalize(V); 7142 E->VectorizedValue = V; 7143 return V; 7144 } 7145 case Instruction::ExtractValue: { 7146 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7147 Builder.SetInsertPoint(LI); 7148 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7149 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7150 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7151 Value *NewV = propagateMetadata(V, E->Scalars); 7152 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7153 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7154 NewV = ShuffleBuilder.finalize(NewV); 7155 E->VectorizedValue = NewV; 7156 return NewV; 7157 } 7158 case Instruction::InsertElement: { 7159 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7160 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7161 Value *V = vectorizeTree(E->getOperand(1)); 7162 7163 // Create InsertVector shuffle if necessary 7164 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7165 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7166 })); 7167 const unsigned NumElts = 7168 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7169 const unsigned NumScalars = E->Scalars.size(); 7170 7171 unsigned Offset = *getInsertIndex(VL0); 7172 assert(Offset < NumElts && "Failed to find vector index offset"); 7173 7174 // Create shuffle to resize vector 7175 SmallVector<int> Mask; 7176 if (!E->ReorderIndices.empty()) { 7177 inversePermutation(E->ReorderIndices, Mask); 7178 Mask.append(NumElts - NumScalars, UndefMaskElem); 7179 } else { 7180 Mask.assign(NumElts, UndefMaskElem); 7181 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7182 } 7183 // Create InsertVector shuffle if necessary 7184 bool IsIdentity = true; 7185 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7186 Mask.swap(PrevMask); 7187 for (unsigned I = 0; I < NumScalars; ++I) { 7188 Value *Scalar = E->Scalars[PrevMask[I]]; 7189 unsigned InsertIdx = *getInsertIndex(Scalar); 7190 IsIdentity &= InsertIdx - Offset == I; 7191 Mask[InsertIdx - Offset] = I; 7192 } 7193 if (!IsIdentity || NumElts != NumScalars) { 7194 V = Builder.CreateShuffleVector(V, Mask); 7195 if (auto *I = dyn_cast<Instruction>(V)) { 7196 GatherShuffleSeq.insert(I); 7197 CSEBlocks.insert(I->getParent()); 7198 } 7199 } 7200 7201 if ((!IsIdentity || Offset != 0 || 7202 !isUndefVector(FirstInsert->getOperand(0))) && 7203 NumElts != NumScalars) { 7204 SmallVector<int> InsertMask(NumElts); 7205 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7206 for (unsigned I = 0; I < NumElts; I++) { 7207 if (Mask[I] != UndefMaskElem) 7208 InsertMask[Offset + I] = NumElts + I; 7209 } 7210 7211 V = Builder.CreateShuffleVector( 7212 FirstInsert->getOperand(0), V, InsertMask, 7213 cast<Instruction>(E->Scalars.back())->getName()); 7214 if (auto *I = dyn_cast<Instruction>(V)) { 7215 GatherShuffleSeq.insert(I); 7216 CSEBlocks.insert(I->getParent()); 7217 } 7218 } 7219 7220 ++NumVectorInstructions; 7221 E->VectorizedValue = V; 7222 return V; 7223 } 7224 case Instruction::ZExt: 7225 case Instruction::SExt: 7226 case Instruction::FPToUI: 7227 case Instruction::FPToSI: 7228 case Instruction::FPExt: 7229 case Instruction::PtrToInt: 7230 case Instruction::IntToPtr: 7231 case Instruction::SIToFP: 7232 case Instruction::UIToFP: 7233 case Instruction::Trunc: 7234 case Instruction::FPTrunc: 7235 case Instruction::BitCast: { 7236 setInsertPointAfterBundle(E); 7237 7238 Value *InVec = vectorizeTree(E->getOperand(0)); 7239 7240 if (E->VectorizedValue) { 7241 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7242 return E->VectorizedValue; 7243 } 7244 7245 auto *CI = cast<CastInst>(VL0); 7246 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7247 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7248 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7249 V = ShuffleBuilder.finalize(V); 7250 7251 E->VectorizedValue = V; 7252 ++NumVectorInstructions; 7253 return V; 7254 } 7255 case Instruction::FCmp: 7256 case Instruction::ICmp: { 7257 setInsertPointAfterBundle(E); 7258 7259 Value *L = vectorizeTree(E->getOperand(0)); 7260 Value *R = vectorizeTree(E->getOperand(1)); 7261 7262 if (E->VectorizedValue) { 7263 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7264 return E->VectorizedValue; 7265 } 7266 7267 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7268 Value *V = Builder.CreateCmp(P0, L, R); 7269 propagateIRFlags(V, E->Scalars, VL0); 7270 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7271 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7272 V = ShuffleBuilder.finalize(V); 7273 7274 E->VectorizedValue = V; 7275 ++NumVectorInstructions; 7276 return V; 7277 } 7278 case Instruction::Select: { 7279 setInsertPointAfterBundle(E); 7280 7281 Value *Cond = vectorizeTree(E->getOperand(0)); 7282 Value *True = vectorizeTree(E->getOperand(1)); 7283 Value *False = vectorizeTree(E->getOperand(2)); 7284 7285 if (E->VectorizedValue) { 7286 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7287 return E->VectorizedValue; 7288 } 7289 7290 Value *V = Builder.CreateSelect(Cond, True, False); 7291 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7292 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7293 V = ShuffleBuilder.finalize(V); 7294 7295 E->VectorizedValue = V; 7296 ++NumVectorInstructions; 7297 return V; 7298 } 7299 case Instruction::FNeg: { 7300 setInsertPointAfterBundle(E); 7301 7302 Value *Op = vectorizeTree(E->getOperand(0)); 7303 7304 if (E->VectorizedValue) { 7305 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7306 return E->VectorizedValue; 7307 } 7308 7309 Value *V = Builder.CreateUnOp( 7310 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7311 propagateIRFlags(V, E->Scalars, VL0); 7312 if (auto *I = dyn_cast<Instruction>(V)) 7313 V = propagateMetadata(I, E->Scalars); 7314 7315 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7316 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7317 V = ShuffleBuilder.finalize(V); 7318 7319 E->VectorizedValue = V; 7320 ++NumVectorInstructions; 7321 7322 return V; 7323 } 7324 case Instruction::Add: 7325 case Instruction::FAdd: 7326 case Instruction::Sub: 7327 case Instruction::FSub: 7328 case Instruction::Mul: 7329 case Instruction::FMul: 7330 case Instruction::UDiv: 7331 case Instruction::SDiv: 7332 case Instruction::FDiv: 7333 case Instruction::URem: 7334 case Instruction::SRem: 7335 case Instruction::FRem: 7336 case Instruction::Shl: 7337 case Instruction::LShr: 7338 case Instruction::AShr: 7339 case Instruction::And: 7340 case Instruction::Or: 7341 case Instruction::Xor: { 7342 setInsertPointAfterBundle(E); 7343 7344 Value *LHS = vectorizeTree(E->getOperand(0)); 7345 Value *RHS = vectorizeTree(E->getOperand(1)); 7346 7347 if (E->VectorizedValue) { 7348 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7349 return E->VectorizedValue; 7350 } 7351 7352 Value *V = Builder.CreateBinOp( 7353 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7354 RHS); 7355 propagateIRFlags(V, E->Scalars, VL0); 7356 if (auto *I = dyn_cast<Instruction>(V)) 7357 V = propagateMetadata(I, E->Scalars); 7358 7359 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7360 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7361 V = ShuffleBuilder.finalize(V); 7362 7363 E->VectorizedValue = V; 7364 ++NumVectorInstructions; 7365 7366 return V; 7367 } 7368 case Instruction::Load: { 7369 // Loads are inserted at the head of the tree because we don't want to 7370 // sink them all the way down past store instructions. 7371 setInsertPointAfterBundle(E); 7372 7373 LoadInst *LI = cast<LoadInst>(VL0); 7374 Instruction *NewLI; 7375 unsigned AS = LI->getPointerAddressSpace(); 7376 Value *PO = LI->getPointerOperand(); 7377 if (E->State == TreeEntry::Vectorize) { 7378 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7379 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7380 7381 // The pointer operand uses an in-tree scalar so we add the new BitCast 7382 // or LoadInst to ExternalUses list to make sure that an extract will 7383 // be generated in the future. 7384 if (TreeEntry *Entry = getTreeEntry(PO)) { 7385 // Find which lane we need to extract. 7386 unsigned FoundLane = Entry->findLaneForValue(PO); 7387 ExternalUses.emplace_back( 7388 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7389 } 7390 } else { 7391 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7392 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7393 // Use the minimum alignment of the gathered loads. 7394 Align CommonAlignment = LI->getAlign(); 7395 for (Value *V : E->Scalars) 7396 CommonAlignment = 7397 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7398 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7399 } 7400 Value *V = propagateMetadata(NewLI, E->Scalars); 7401 7402 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7403 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7404 V = ShuffleBuilder.finalize(V); 7405 E->VectorizedValue = V; 7406 ++NumVectorInstructions; 7407 return V; 7408 } 7409 case Instruction::Store: { 7410 auto *SI = cast<StoreInst>(VL0); 7411 unsigned AS = SI->getPointerAddressSpace(); 7412 7413 setInsertPointAfterBundle(E); 7414 7415 Value *VecValue = vectorizeTree(E->getOperand(0)); 7416 ShuffleBuilder.addMask(E->ReorderIndices); 7417 VecValue = ShuffleBuilder.finalize(VecValue); 7418 7419 Value *ScalarPtr = SI->getPointerOperand(); 7420 Value *VecPtr = Builder.CreateBitCast( 7421 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7422 StoreInst *ST = 7423 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7424 7425 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7426 // StoreInst to ExternalUses to make sure that an extract will be 7427 // generated in the future. 7428 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7429 // Find which lane we need to extract. 7430 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7431 ExternalUses.push_back(ExternalUser( 7432 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7433 FoundLane)); 7434 } 7435 7436 Value *V = propagateMetadata(ST, E->Scalars); 7437 7438 E->VectorizedValue = V; 7439 ++NumVectorInstructions; 7440 return V; 7441 } 7442 case Instruction::GetElementPtr: { 7443 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7444 setInsertPointAfterBundle(E); 7445 7446 Value *Op0 = vectorizeTree(E->getOperand(0)); 7447 7448 SmallVector<Value *> OpVecs; 7449 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7450 Value *OpVec = vectorizeTree(E->getOperand(J)); 7451 OpVecs.push_back(OpVec); 7452 } 7453 7454 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7455 if (Instruction *I = dyn_cast<Instruction>(V)) 7456 V = propagateMetadata(I, E->Scalars); 7457 7458 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7459 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7460 V = ShuffleBuilder.finalize(V); 7461 7462 E->VectorizedValue = V; 7463 ++NumVectorInstructions; 7464 7465 return V; 7466 } 7467 case Instruction::Call: { 7468 CallInst *CI = cast<CallInst>(VL0); 7469 setInsertPointAfterBundle(E); 7470 7471 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7472 if (Function *FI = CI->getCalledFunction()) 7473 IID = FI->getIntrinsicID(); 7474 7475 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7476 7477 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7478 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7479 VecCallCosts.first <= VecCallCosts.second; 7480 7481 Value *ScalarArg = nullptr; 7482 std::vector<Value *> OpVecs; 7483 SmallVector<Type *, 2> TysForDecl = 7484 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7485 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7486 ValueList OpVL; 7487 // Some intrinsics have scalar arguments. This argument should not be 7488 // vectorized. 7489 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 7490 CallInst *CEI = cast<CallInst>(VL0); 7491 ScalarArg = CEI->getArgOperand(j); 7492 OpVecs.push_back(CEI->getArgOperand(j)); 7493 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 7494 TysForDecl.push_back(ScalarArg->getType()); 7495 continue; 7496 } 7497 7498 Value *OpVec = vectorizeTree(E->getOperand(j)); 7499 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7500 OpVecs.push_back(OpVec); 7501 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 7502 TysForDecl.push_back(OpVec->getType()); 7503 } 7504 7505 Function *CF; 7506 if (!UseIntrinsic) { 7507 VFShape Shape = 7508 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7509 VecTy->getNumElements())), 7510 false /*HasGlobalPred*/); 7511 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7512 } else { 7513 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7514 } 7515 7516 SmallVector<OperandBundleDef, 1> OpBundles; 7517 CI->getOperandBundlesAsDefs(OpBundles); 7518 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7519 7520 // The scalar argument uses an in-tree scalar so we add the new vectorized 7521 // call to ExternalUses list to make sure that an extract will be 7522 // generated in the future. 7523 if (ScalarArg) { 7524 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7525 // Find which lane we need to extract. 7526 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7527 ExternalUses.push_back( 7528 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7529 } 7530 } 7531 7532 propagateIRFlags(V, E->Scalars, VL0); 7533 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7534 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7535 V = ShuffleBuilder.finalize(V); 7536 7537 E->VectorizedValue = V; 7538 ++NumVectorInstructions; 7539 return V; 7540 } 7541 case Instruction::ShuffleVector: { 7542 assert(E->isAltShuffle() && 7543 ((Instruction::isBinaryOp(E->getOpcode()) && 7544 Instruction::isBinaryOp(E->getAltOpcode())) || 7545 (Instruction::isCast(E->getOpcode()) && 7546 Instruction::isCast(E->getAltOpcode())) || 7547 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7548 "Invalid Shuffle Vector Operand"); 7549 7550 Value *LHS = nullptr, *RHS = nullptr; 7551 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7552 setInsertPointAfterBundle(E); 7553 LHS = vectorizeTree(E->getOperand(0)); 7554 RHS = vectorizeTree(E->getOperand(1)); 7555 } else { 7556 setInsertPointAfterBundle(E); 7557 LHS = vectorizeTree(E->getOperand(0)); 7558 } 7559 7560 if (E->VectorizedValue) { 7561 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7562 return E->VectorizedValue; 7563 } 7564 7565 Value *V0, *V1; 7566 if (Instruction::isBinaryOp(E->getOpcode())) { 7567 V0 = Builder.CreateBinOp( 7568 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7569 V1 = Builder.CreateBinOp( 7570 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7571 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7572 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7573 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7574 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7575 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7576 } else { 7577 V0 = Builder.CreateCast( 7578 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7579 V1 = Builder.CreateCast( 7580 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7581 } 7582 // Add V0 and V1 to later analysis to try to find and remove matching 7583 // instruction, if any. 7584 for (Value *V : {V0, V1}) { 7585 if (auto *I = dyn_cast<Instruction>(V)) { 7586 GatherShuffleSeq.insert(I); 7587 CSEBlocks.insert(I->getParent()); 7588 } 7589 } 7590 7591 // Create shuffle to take alternate operations from the vector. 7592 // Also, gather up main and alt scalar ops to propagate IR flags to 7593 // each vector operation. 7594 ValueList OpScalars, AltScalars; 7595 SmallVector<int> Mask; 7596 buildShuffleEntryMask( 7597 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7598 [E](Instruction *I) { 7599 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7600 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7601 }, 7602 Mask, &OpScalars, &AltScalars); 7603 7604 propagateIRFlags(V0, OpScalars); 7605 propagateIRFlags(V1, AltScalars); 7606 7607 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7608 if (auto *I = dyn_cast<Instruction>(V)) { 7609 V = propagateMetadata(I, E->Scalars); 7610 GatherShuffleSeq.insert(I); 7611 CSEBlocks.insert(I->getParent()); 7612 } 7613 V = ShuffleBuilder.finalize(V); 7614 7615 E->VectorizedValue = V; 7616 ++NumVectorInstructions; 7617 7618 return V; 7619 } 7620 default: 7621 llvm_unreachable("unknown inst"); 7622 } 7623 return nullptr; 7624 } 7625 7626 Value *BoUpSLP::vectorizeTree() { 7627 ExtraValueToDebugLocsMap ExternallyUsedValues; 7628 return vectorizeTree(ExternallyUsedValues); 7629 } 7630 7631 Value * 7632 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7633 // All blocks must be scheduled before any instructions are inserted. 7634 for (auto &BSIter : BlocksSchedules) { 7635 scheduleBlock(BSIter.second.get()); 7636 } 7637 7638 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7639 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7640 7641 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7642 // vectorized root. InstCombine will then rewrite the entire expression. We 7643 // sign extend the extracted values below. 7644 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7645 if (MinBWs.count(ScalarRoot)) { 7646 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7647 // If current instr is a phi and not the last phi, insert it after the 7648 // last phi node. 7649 if (isa<PHINode>(I)) 7650 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7651 else 7652 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7653 } 7654 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7655 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7656 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7657 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7658 VectorizableTree[0]->VectorizedValue = Trunc; 7659 } 7660 7661 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7662 << " values .\n"); 7663 7664 // Extract all of the elements with the external uses. 7665 for (const auto &ExternalUse : ExternalUses) { 7666 Value *Scalar = ExternalUse.Scalar; 7667 llvm::User *User = ExternalUse.User; 7668 7669 // Skip users that we already RAUW. This happens when one instruction 7670 // has multiple uses of the same value. 7671 if (User && !is_contained(Scalar->users(), User)) 7672 continue; 7673 TreeEntry *E = getTreeEntry(Scalar); 7674 assert(E && "Invalid scalar"); 7675 assert(E->State != TreeEntry::NeedToGather && 7676 "Extracting from a gather list"); 7677 7678 Value *Vec = E->VectorizedValue; 7679 assert(Vec && "Can't find vectorizable value"); 7680 7681 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7682 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7683 if (Scalar->getType() != Vec->getType()) { 7684 Value *Ex; 7685 // "Reuse" the existing extract to improve final codegen. 7686 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7687 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7688 ES->getOperand(1)); 7689 } else { 7690 Ex = Builder.CreateExtractElement(Vec, Lane); 7691 } 7692 // If necessary, sign-extend or zero-extend ScalarRoot 7693 // to the larger type. 7694 if (!MinBWs.count(ScalarRoot)) 7695 return Ex; 7696 if (MinBWs[ScalarRoot].second) 7697 return Builder.CreateSExt(Ex, Scalar->getType()); 7698 return Builder.CreateZExt(Ex, Scalar->getType()); 7699 } 7700 assert(isa<FixedVectorType>(Scalar->getType()) && 7701 isa<InsertElementInst>(Scalar) && 7702 "In-tree scalar of vector type is not insertelement?"); 7703 return Vec; 7704 }; 7705 // If User == nullptr, the Scalar is used as extra arg. Generate 7706 // ExtractElement instruction and update the record for this scalar in 7707 // ExternallyUsedValues. 7708 if (!User) { 7709 assert(ExternallyUsedValues.count(Scalar) && 7710 "Scalar with nullptr as an external user must be registered in " 7711 "ExternallyUsedValues map"); 7712 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7713 Builder.SetInsertPoint(VecI->getParent(), 7714 std::next(VecI->getIterator())); 7715 } else { 7716 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7717 } 7718 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7719 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7720 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7721 auto It = ExternallyUsedValues.find(Scalar); 7722 assert(It != ExternallyUsedValues.end() && 7723 "Externally used scalar is not found in ExternallyUsedValues"); 7724 NewInstLocs.append(It->second); 7725 ExternallyUsedValues.erase(Scalar); 7726 // Required to update internally referenced instructions. 7727 Scalar->replaceAllUsesWith(NewInst); 7728 continue; 7729 } 7730 7731 // Generate extracts for out-of-tree users. 7732 // Find the insertion point for the extractelement lane. 7733 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7734 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7735 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7736 if (PH->getIncomingValue(i) == Scalar) { 7737 Instruction *IncomingTerminator = 7738 PH->getIncomingBlock(i)->getTerminator(); 7739 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7740 Builder.SetInsertPoint(VecI->getParent(), 7741 std::next(VecI->getIterator())); 7742 } else { 7743 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7744 } 7745 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7746 CSEBlocks.insert(PH->getIncomingBlock(i)); 7747 PH->setOperand(i, NewInst); 7748 } 7749 } 7750 } else { 7751 Builder.SetInsertPoint(cast<Instruction>(User)); 7752 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7753 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7754 User->replaceUsesOfWith(Scalar, NewInst); 7755 } 7756 } else { 7757 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7758 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7759 CSEBlocks.insert(&F->getEntryBlock()); 7760 User->replaceUsesOfWith(Scalar, NewInst); 7761 } 7762 7763 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7764 } 7765 7766 // For each vectorized value: 7767 for (auto &TEPtr : VectorizableTree) { 7768 TreeEntry *Entry = TEPtr.get(); 7769 7770 // No need to handle users of gathered values. 7771 if (Entry->State == TreeEntry::NeedToGather) 7772 continue; 7773 7774 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7775 7776 // For each lane: 7777 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7778 Value *Scalar = Entry->Scalars[Lane]; 7779 7780 #ifndef NDEBUG 7781 Type *Ty = Scalar->getType(); 7782 if (!Ty->isVoidTy()) { 7783 for (User *U : Scalar->users()) { 7784 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7785 7786 // It is legal to delete users in the ignorelist. 7787 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7788 (isa_and_nonnull<Instruction>(U) && 7789 isDeleted(cast<Instruction>(U)))) && 7790 "Deleting out-of-tree value"); 7791 } 7792 } 7793 #endif 7794 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7795 eraseInstruction(cast<Instruction>(Scalar)); 7796 } 7797 } 7798 7799 Builder.ClearInsertionPoint(); 7800 InstrElementSize.clear(); 7801 7802 return VectorizableTree[0]->VectorizedValue; 7803 } 7804 7805 void BoUpSLP::optimizeGatherSequence() { 7806 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7807 << " gather sequences instructions.\n"); 7808 // LICM InsertElementInst sequences. 7809 for (Instruction *I : GatherShuffleSeq) { 7810 if (isDeleted(I)) 7811 continue; 7812 7813 // Check if this block is inside a loop. 7814 Loop *L = LI->getLoopFor(I->getParent()); 7815 if (!L) 7816 continue; 7817 7818 // Check if it has a preheader. 7819 BasicBlock *PreHeader = L->getLoopPreheader(); 7820 if (!PreHeader) 7821 continue; 7822 7823 // If the vector or the element that we insert into it are 7824 // instructions that are defined in this basic block then we can't 7825 // hoist this instruction. 7826 if (any_of(I->operands(), [L](Value *V) { 7827 auto *OpI = dyn_cast<Instruction>(V); 7828 return OpI && L->contains(OpI); 7829 })) 7830 continue; 7831 7832 // We can hoist this instruction. Move it to the pre-header. 7833 I->moveBefore(PreHeader->getTerminator()); 7834 } 7835 7836 // Make a list of all reachable blocks in our CSE queue. 7837 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7838 CSEWorkList.reserve(CSEBlocks.size()); 7839 for (BasicBlock *BB : CSEBlocks) 7840 if (DomTreeNode *N = DT->getNode(BB)) { 7841 assert(DT->isReachableFromEntry(N)); 7842 CSEWorkList.push_back(N); 7843 } 7844 7845 // Sort blocks by domination. This ensures we visit a block after all blocks 7846 // dominating it are visited. 7847 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7848 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7849 "Different nodes should have different DFS numbers"); 7850 return A->getDFSNumIn() < B->getDFSNumIn(); 7851 }); 7852 7853 // Less defined shuffles can be replaced by the more defined copies. 7854 // Between two shuffles one is less defined if it has the same vector operands 7855 // and its mask indeces are the same as in the first one or undefs. E.g. 7856 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7857 // poison, <0, 0, 0, 0>. 7858 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7859 SmallVectorImpl<int> &NewMask) { 7860 if (I1->getType() != I2->getType()) 7861 return false; 7862 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7863 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7864 if (!SI1 || !SI2) 7865 return I1->isIdenticalTo(I2); 7866 if (SI1->isIdenticalTo(SI2)) 7867 return true; 7868 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7869 if (SI1->getOperand(I) != SI2->getOperand(I)) 7870 return false; 7871 // Check if the second instruction is more defined than the first one. 7872 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7873 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7874 // Count trailing undefs in the mask to check the final number of used 7875 // registers. 7876 unsigned LastUndefsCnt = 0; 7877 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7878 if (SM1[I] == UndefMaskElem) 7879 ++LastUndefsCnt; 7880 else 7881 LastUndefsCnt = 0; 7882 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7883 NewMask[I] != SM1[I]) 7884 return false; 7885 if (NewMask[I] == UndefMaskElem) 7886 NewMask[I] = SM1[I]; 7887 } 7888 // Check if the last undefs actually change the final number of used vector 7889 // registers. 7890 return SM1.size() - LastUndefsCnt > 1 && 7891 TTI->getNumberOfParts(SI1->getType()) == 7892 TTI->getNumberOfParts( 7893 FixedVectorType::get(SI1->getType()->getElementType(), 7894 SM1.size() - LastUndefsCnt)); 7895 }; 7896 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7897 // instructions. TODO: We can further optimize this scan if we split the 7898 // instructions into different buckets based on the insert lane. 7899 SmallVector<Instruction *, 16> Visited; 7900 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7901 assert(*I && 7902 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7903 "Worklist not sorted properly!"); 7904 BasicBlock *BB = (*I)->getBlock(); 7905 // For all instructions in blocks containing gather sequences: 7906 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7907 if (isDeleted(&In)) 7908 continue; 7909 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7910 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7911 continue; 7912 7913 // Check if we can replace this instruction with any of the 7914 // visited instructions. 7915 bool Replaced = false; 7916 for (Instruction *&V : Visited) { 7917 SmallVector<int> NewMask; 7918 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7919 DT->dominates(V->getParent(), In.getParent())) { 7920 In.replaceAllUsesWith(V); 7921 eraseInstruction(&In); 7922 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7923 if (!NewMask.empty()) 7924 SI->setShuffleMask(NewMask); 7925 Replaced = true; 7926 break; 7927 } 7928 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7929 GatherShuffleSeq.contains(V) && 7930 IsIdenticalOrLessDefined(V, &In, NewMask) && 7931 DT->dominates(In.getParent(), V->getParent())) { 7932 In.moveAfter(V); 7933 V->replaceAllUsesWith(&In); 7934 eraseInstruction(V); 7935 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7936 if (!NewMask.empty()) 7937 SI->setShuffleMask(NewMask); 7938 V = &In; 7939 Replaced = true; 7940 break; 7941 } 7942 } 7943 if (!Replaced) { 7944 assert(!is_contained(Visited, &In)); 7945 Visited.push_back(&In); 7946 } 7947 } 7948 } 7949 CSEBlocks.clear(); 7950 GatherShuffleSeq.clear(); 7951 } 7952 7953 BoUpSLP::ScheduleData * 7954 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7955 ScheduleData *Bundle = nullptr; 7956 ScheduleData *PrevInBundle = nullptr; 7957 for (Value *V : VL) { 7958 if (doesNotNeedToBeScheduled(V)) 7959 continue; 7960 ScheduleData *BundleMember = getScheduleData(V); 7961 assert(BundleMember && 7962 "no ScheduleData for bundle member " 7963 "(maybe not in same basic block)"); 7964 assert(BundleMember->isSchedulingEntity() && 7965 "bundle member already part of other bundle"); 7966 if (PrevInBundle) { 7967 PrevInBundle->NextInBundle = BundleMember; 7968 } else { 7969 Bundle = BundleMember; 7970 } 7971 7972 // Group the instructions to a bundle. 7973 BundleMember->FirstInBundle = Bundle; 7974 PrevInBundle = BundleMember; 7975 } 7976 assert(Bundle && "Failed to find schedule bundle"); 7977 return Bundle; 7978 } 7979 7980 // Groups the instructions to a bundle (which is then a single scheduling entity) 7981 // and schedules instructions until the bundle gets ready. 7982 Optional<BoUpSLP::ScheduleData *> 7983 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7984 const InstructionsState &S) { 7985 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7986 // instructions. 7987 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7988 doesNotNeedToSchedule(VL)) 7989 return nullptr; 7990 7991 // Initialize the instruction bundle. 7992 Instruction *OldScheduleEnd = ScheduleEnd; 7993 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7994 7995 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7996 ScheduleData *Bundle) { 7997 // The scheduling region got new instructions at the lower end (or it is a 7998 // new region for the first bundle). This makes it necessary to 7999 // recalculate all dependencies. 8000 // It is seldom that this needs to be done a second time after adding the 8001 // initial bundle to the region. 8002 if (ScheduleEnd != OldScheduleEnd) { 8003 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 8004 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 8005 ReSchedule = true; 8006 } 8007 if (Bundle) { 8008 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 8009 << " in block " << BB->getName() << "\n"); 8010 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 8011 } 8012 8013 if (ReSchedule) { 8014 resetSchedule(); 8015 initialFillReadyList(ReadyInsts); 8016 } 8017 8018 // Now try to schedule the new bundle or (if no bundle) just calculate 8019 // dependencies. As soon as the bundle is "ready" it means that there are no 8020 // cyclic dependencies and we can schedule it. Note that's important that we 8021 // don't "schedule" the bundle yet (see cancelScheduling). 8022 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 8023 !ReadyInsts.empty()) { 8024 ScheduleData *Picked = ReadyInsts.pop_back_val(); 8025 assert(Picked->isSchedulingEntity() && Picked->isReady() && 8026 "must be ready to schedule"); 8027 schedule(Picked, ReadyInsts); 8028 } 8029 }; 8030 8031 // Make sure that the scheduling region contains all 8032 // instructions of the bundle. 8033 for (Value *V : VL) { 8034 if (doesNotNeedToBeScheduled(V)) 8035 continue; 8036 if (!extendSchedulingRegion(V, S)) { 8037 // If the scheduling region got new instructions at the lower end (or it 8038 // is a new region for the first bundle). This makes it necessary to 8039 // recalculate all dependencies. 8040 // Otherwise the compiler may crash trying to incorrectly calculate 8041 // dependencies and emit instruction in the wrong order at the actual 8042 // scheduling. 8043 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 8044 return None; 8045 } 8046 } 8047 8048 bool ReSchedule = false; 8049 for (Value *V : VL) { 8050 if (doesNotNeedToBeScheduled(V)) 8051 continue; 8052 ScheduleData *BundleMember = getScheduleData(V); 8053 assert(BundleMember && 8054 "no ScheduleData for bundle member (maybe not in same basic block)"); 8055 8056 // Make sure we don't leave the pieces of the bundle in the ready list when 8057 // whole bundle might not be ready. 8058 ReadyInsts.remove(BundleMember); 8059 8060 if (!BundleMember->IsScheduled) 8061 continue; 8062 // A bundle member was scheduled as single instruction before and now 8063 // needs to be scheduled as part of the bundle. We just get rid of the 8064 // existing schedule. 8065 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 8066 << " was already scheduled\n"); 8067 ReSchedule = true; 8068 } 8069 8070 auto *Bundle = buildBundle(VL); 8071 TryScheduleBundleImpl(ReSchedule, Bundle); 8072 if (!Bundle->isReady()) { 8073 cancelScheduling(VL, S.OpValue); 8074 return None; 8075 } 8076 return Bundle; 8077 } 8078 8079 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 8080 Value *OpValue) { 8081 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 8082 doesNotNeedToSchedule(VL)) 8083 return; 8084 8085 if (doesNotNeedToBeScheduled(OpValue)) 8086 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 8087 ScheduleData *Bundle = getScheduleData(OpValue); 8088 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 8089 assert(!Bundle->IsScheduled && 8090 "Can't cancel bundle which is already scheduled"); 8091 assert(Bundle->isSchedulingEntity() && 8092 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 8093 "tried to unbundle something which is not a bundle"); 8094 8095 // Remove the bundle from the ready list. 8096 if (Bundle->isReady()) 8097 ReadyInsts.remove(Bundle); 8098 8099 // Un-bundle: make single instructions out of the bundle. 8100 ScheduleData *BundleMember = Bundle; 8101 while (BundleMember) { 8102 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 8103 BundleMember->FirstInBundle = BundleMember; 8104 ScheduleData *Next = BundleMember->NextInBundle; 8105 BundleMember->NextInBundle = nullptr; 8106 BundleMember->TE = nullptr; 8107 if (BundleMember->unscheduledDepsInBundle() == 0) { 8108 ReadyInsts.insert(BundleMember); 8109 } 8110 BundleMember = Next; 8111 } 8112 } 8113 8114 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 8115 // Allocate a new ScheduleData for the instruction. 8116 if (ChunkPos >= ChunkSize) { 8117 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 8118 ChunkPos = 0; 8119 } 8120 return &(ScheduleDataChunks.back()[ChunkPos++]); 8121 } 8122 8123 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 8124 const InstructionsState &S) { 8125 if (getScheduleData(V, isOneOf(S, V))) 8126 return true; 8127 Instruction *I = dyn_cast<Instruction>(V); 8128 assert(I && "bundle member must be an instruction"); 8129 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8130 !doesNotNeedToBeScheduled(I) && 8131 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8132 "be scheduled"); 8133 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8134 ScheduleData *ISD = getScheduleData(I); 8135 if (!ISD) 8136 return false; 8137 assert(isInSchedulingRegion(ISD) && 8138 "ScheduleData not in scheduling region"); 8139 ScheduleData *SD = allocateScheduleDataChunks(); 8140 SD->Inst = I; 8141 SD->init(SchedulingRegionID, S.OpValue); 8142 ExtraScheduleDataMap[I][S.OpValue] = SD; 8143 return true; 8144 }; 8145 if (CheckScheduleForI(I)) 8146 return true; 8147 if (!ScheduleStart) { 8148 // It's the first instruction in the new region. 8149 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8150 ScheduleStart = I; 8151 ScheduleEnd = I->getNextNode(); 8152 if (isOneOf(S, I) != I) 8153 CheckScheduleForI(I); 8154 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8155 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8156 return true; 8157 } 8158 // Search up and down at the same time, because we don't know if the new 8159 // instruction is above or below the existing scheduling region. 8160 BasicBlock::reverse_iterator UpIter = 8161 ++ScheduleStart->getIterator().getReverse(); 8162 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8163 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8164 BasicBlock::iterator LowerEnd = BB->end(); 8165 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8166 &*DownIter != I) { 8167 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8168 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8169 return false; 8170 } 8171 8172 ++UpIter; 8173 ++DownIter; 8174 } 8175 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8176 assert(I->getParent() == ScheduleStart->getParent() && 8177 "Instruction is in wrong basic block."); 8178 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8179 ScheduleStart = I; 8180 if (isOneOf(S, I) != I) 8181 CheckScheduleForI(I); 8182 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8183 << "\n"); 8184 return true; 8185 } 8186 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8187 "Expected to reach top of the basic block or instruction down the " 8188 "lower end."); 8189 assert(I->getParent() == ScheduleEnd->getParent() && 8190 "Instruction is in wrong basic block."); 8191 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8192 nullptr); 8193 ScheduleEnd = I->getNextNode(); 8194 if (isOneOf(S, I) != I) 8195 CheckScheduleForI(I); 8196 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8197 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8198 return true; 8199 } 8200 8201 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8202 Instruction *ToI, 8203 ScheduleData *PrevLoadStore, 8204 ScheduleData *NextLoadStore) { 8205 ScheduleData *CurrentLoadStore = PrevLoadStore; 8206 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8207 // No need to allocate data for non-schedulable instructions. 8208 if (doesNotNeedToBeScheduled(I)) 8209 continue; 8210 ScheduleData *SD = ScheduleDataMap.lookup(I); 8211 if (!SD) { 8212 SD = allocateScheduleDataChunks(); 8213 ScheduleDataMap[I] = SD; 8214 SD->Inst = I; 8215 } 8216 assert(!isInSchedulingRegion(SD) && 8217 "new ScheduleData already in scheduling region"); 8218 SD->init(SchedulingRegionID, I); 8219 8220 if (I->mayReadOrWriteMemory() && 8221 (!isa<IntrinsicInst>(I) || 8222 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8223 cast<IntrinsicInst>(I)->getIntrinsicID() != 8224 Intrinsic::pseudoprobe))) { 8225 // Update the linked list of memory accessing instructions. 8226 if (CurrentLoadStore) { 8227 CurrentLoadStore->NextLoadStore = SD; 8228 } else { 8229 FirstLoadStoreInRegion = SD; 8230 } 8231 CurrentLoadStore = SD; 8232 } 8233 8234 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8235 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8236 RegionHasStackSave = true; 8237 } 8238 if (NextLoadStore) { 8239 if (CurrentLoadStore) 8240 CurrentLoadStore->NextLoadStore = NextLoadStore; 8241 } else { 8242 LastLoadStoreInRegion = CurrentLoadStore; 8243 } 8244 } 8245 8246 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8247 bool InsertInReadyList, 8248 BoUpSLP *SLP) { 8249 assert(SD->isSchedulingEntity()); 8250 8251 SmallVector<ScheduleData *, 10> WorkList; 8252 WorkList.push_back(SD); 8253 8254 while (!WorkList.empty()) { 8255 ScheduleData *SD = WorkList.pop_back_val(); 8256 for (ScheduleData *BundleMember = SD; BundleMember; 8257 BundleMember = BundleMember->NextInBundle) { 8258 assert(isInSchedulingRegion(BundleMember)); 8259 if (BundleMember->hasValidDependencies()) 8260 continue; 8261 8262 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8263 << "\n"); 8264 BundleMember->Dependencies = 0; 8265 BundleMember->resetUnscheduledDeps(); 8266 8267 // Handle def-use chain dependencies. 8268 if (BundleMember->OpValue != BundleMember->Inst) { 8269 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8270 BundleMember->Dependencies++; 8271 ScheduleData *DestBundle = UseSD->FirstInBundle; 8272 if (!DestBundle->IsScheduled) 8273 BundleMember->incrementUnscheduledDeps(1); 8274 if (!DestBundle->hasValidDependencies()) 8275 WorkList.push_back(DestBundle); 8276 } 8277 } else { 8278 for (User *U : BundleMember->Inst->users()) { 8279 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8280 BundleMember->Dependencies++; 8281 ScheduleData *DestBundle = UseSD->FirstInBundle; 8282 if (!DestBundle->IsScheduled) 8283 BundleMember->incrementUnscheduledDeps(1); 8284 if (!DestBundle->hasValidDependencies()) 8285 WorkList.push_back(DestBundle); 8286 } 8287 } 8288 } 8289 8290 auto makeControlDependent = [&](Instruction *I) { 8291 auto *DepDest = getScheduleData(I); 8292 assert(DepDest && "must be in schedule window"); 8293 DepDest->ControlDependencies.push_back(BundleMember); 8294 BundleMember->Dependencies++; 8295 ScheduleData *DestBundle = DepDest->FirstInBundle; 8296 if (!DestBundle->IsScheduled) 8297 BundleMember->incrementUnscheduledDeps(1); 8298 if (!DestBundle->hasValidDependencies()) 8299 WorkList.push_back(DestBundle); 8300 }; 8301 8302 // Any instruction which isn't safe to speculate at the begining of the 8303 // block is control dependend on any early exit or non-willreturn call 8304 // which proceeds it. 8305 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8306 for (Instruction *I = BundleMember->Inst->getNextNode(); 8307 I != ScheduleEnd; I = I->getNextNode()) { 8308 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8309 continue; 8310 8311 // Add the dependency 8312 makeControlDependent(I); 8313 8314 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8315 // Everything past here must be control dependent on I. 8316 break; 8317 } 8318 } 8319 8320 if (RegionHasStackSave) { 8321 // If we have an inalloc alloca instruction, it needs to be scheduled 8322 // after any preceeding stacksave. We also need to prevent any alloca 8323 // from reordering above a preceeding stackrestore. 8324 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8325 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8326 for (Instruction *I = BundleMember->Inst->getNextNode(); 8327 I != ScheduleEnd; I = I->getNextNode()) { 8328 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8329 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8330 // Any allocas past here must be control dependent on I, and I 8331 // must be memory dependend on BundleMember->Inst. 8332 break; 8333 8334 if (!isa<AllocaInst>(I)) 8335 continue; 8336 8337 // Add the dependency 8338 makeControlDependent(I); 8339 } 8340 } 8341 8342 // In addition to the cases handle just above, we need to prevent 8343 // allocas from moving below a stacksave. The stackrestore case 8344 // is currently thought to be conservatism. 8345 if (isa<AllocaInst>(BundleMember->Inst)) { 8346 for (Instruction *I = BundleMember->Inst->getNextNode(); 8347 I != ScheduleEnd; I = I->getNextNode()) { 8348 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8349 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8350 continue; 8351 8352 // Add the dependency 8353 makeControlDependent(I); 8354 break; 8355 } 8356 } 8357 } 8358 8359 // Handle the memory dependencies (if any). 8360 ScheduleData *DepDest = BundleMember->NextLoadStore; 8361 if (!DepDest) 8362 continue; 8363 Instruction *SrcInst = BundleMember->Inst; 8364 assert(SrcInst->mayReadOrWriteMemory() && 8365 "NextLoadStore list for non memory effecting bundle?"); 8366 MemoryLocation SrcLoc = getLocation(SrcInst); 8367 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8368 unsigned numAliased = 0; 8369 unsigned DistToSrc = 1; 8370 8371 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8372 assert(isInSchedulingRegion(DepDest)); 8373 8374 // We have two limits to reduce the complexity: 8375 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8376 // SLP->isAliased (which is the expensive part in this loop). 8377 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8378 // the whole loop (even if the loop is fast, it's quadratic). 8379 // It's important for the loop break condition (see below) to 8380 // check this limit even between two read-only instructions. 8381 if (DistToSrc >= MaxMemDepDistance || 8382 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8383 (numAliased >= AliasedCheckLimit || 8384 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8385 8386 // We increment the counter only if the locations are aliased 8387 // (instead of counting all alias checks). This gives a better 8388 // balance between reduced runtime and accurate dependencies. 8389 numAliased++; 8390 8391 DepDest->MemoryDependencies.push_back(BundleMember); 8392 BundleMember->Dependencies++; 8393 ScheduleData *DestBundle = DepDest->FirstInBundle; 8394 if (!DestBundle->IsScheduled) { 8395 BundleMember->incrementUnscheduledDeps(1); 8396 } 8397 if (!DestBundle->hasValidDependencies()) { 8398 WorkList.push_back(DestBundle); 8399 } 8400 } 8401 8402 // Example, explaining the loop break condition: Let's assume our 8403 // starting instruction is i0 and MaxMemDepDistance = 3. 8404 // 8405 // +--------v--v--v 8406 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8407 // +--------^--^--^ 8408 // 8409 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8410 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8411 // Previously we already added dependencies from i3 to i6,i7,i8 8412 // (because of MaxMemDepDistance). As we added a dependency from 8413 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8414 // and we can abort this loop at i6. 8415 if (DistToSrc >= 2 * MaxMemDepDistance) 8416 break; 8417 DistToSrc++; 8418 } 8419 } 8420 if (InsertInReadyList && SD->isReady()) { 8421 ReadyInsts.insert(SD); 8422 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8423 << "\n"); 8424 } 8425 } 8426 } 8427 8428 void BoUpSLP::BlockScheduling::resetSchedule() { 8429 assert(ScheduleStart && 8430 "tried to reset schedule on block which has not been scheduled"); 8431 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8432 doForAllOpcodes(I, [&](ScheduleData *SD) { 8433 assert(isInSchedulingRegion(SD) && 8434 "ScheduleData not in scheduling region"); 8435 SD->IsScheduled = false; 8436 SD->resetUnscheduledDeps(); 8437 }); 8438 } 8439 ReadyInsts.clear(); 8440 } 8441 8442 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8443 if (!BS->ScheduleStart) 8444 return; 8445 8446 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8447 8448 // A key point - if we got here, pre-scheduling was able to find a valid 8449 // scheduling of the sub-graph of the scheduling window which consists 8450 // of all vector bundles and their transitive users. As such, we do not 8451 // need to reschedule anything *outside of* that subgraph. 8452 8453 BS->resetSchedule(); 8454 8455 // For the real scheduling we use a more sophisticated ready-list: it is 8456 // sorted by the original instruction location. This lets the final schedule 8457 // be as close as possible to the original instruction order. 8458 // WARNING: If changing this order causes a correctness issue, that means 8459 // there is some missing dependence edge in the schedule data graph. 8460 struct ScheduleDataCompare { 8461 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8462 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8463 } 8464 }; 8465 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8466 8467 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8468 // and fill the ready-list with initial instructions. 8469 int Idx = 0; 8470 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8471 I = I->getNextNode()) { 8472 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8473 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8474 (void)SDTE; 8475 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8476 SD->isPartOfBundle() == 8477 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8478 "scheduler and vectorizer bundle mismatch"); 8479 SD->FirstInBundle->SchedulingPriority = Idx++; 8480 8481 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8482 BS->calculateDependencies(SD, false, this); 8483 }); 8484 } 8485 BS->initialFillReadyList(ReadyInsts); 8486 8487 Instruction *LastScheduledInst = BS->ScheduleEnd; 8488 8489 // Do the "real" scheduling. 8490 while (!ReadyInsts.empty()) { 8491 ScheduleData *picked = *ReadyInsts.begin(); 8492 ReadyInsts.erase(ReadyInsts.begin()); 8493 8494 // Move the scheduled instruction(s) to their dedicated places, if not 8495 // there yet. 8496 for (ScheduleData *BundleMember = picked; BundleMember; 8497 BundleMember = BundleMember->NextInBundle) { 8498 Instruction *pickedInst = BundleMember->Inst; 8499 if (pickedInst->getNextNode() != LastScheduledInst) 8500 pickedInst->moveBefore(LastScheduledInst); 8501 LastScheduledInst = pickedInst; 8502 } 8503 8504 BS->schedule(picked, ReadyInsts); 8505 } 8506 8507 // Check that we didn't break any of our invariants. 8508 #ifdef EXPENSIVE_CHECKS 8509 BS->verify(); 8510 #endif 8511 8512 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8513 // Check that all schedulable entities got scheduled 8514 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8515 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8516 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8517 assert(SD->IsScheduled && "must be scheduled at this point"); 8518 } 8519 }); 8520 } 8521 #endif 8522 8523 // Avoid duplicate scheduling of the block. 8524 BS->ScheduleStart = nullptr; 8525 } 8526 8527 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8528 // If V is a store, just return the width of the stored value (or value 8529 // truncated just before storing) without traversing the expression tree. 8530 // This is the common case. 8531 if (auto *Store = dyn_cast<StoreInst>(V)) { 8532 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8533 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8534 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8535 } 8536 8537 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8538 return getVectorElementSize(IEI->getOperand(1)); 8539 8540 auto E = InstrElementSize.find(V); 8541 if (E != InstrElementSize.end()) 8542 return E->second; 8543 8544 // If V is not a store, we can traverse the expression tree to find loads 8545 // that feed it. The type of the loaded value may indicate a more suitable 8546 // width than V's type. We want to base the vector element size on the width 8547 // of memory operations where possible. 8548 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8549 SmallPtrSet<Instruction *, 16> Visited; 8550 if (auto *I = dyn_cast<Instruction>(V)) { 8551 Worklist.emplace_back(I, I->getParent()); 8552 Visited.insert(I); 8553 } 8554 8555 // Traverse the expression tree in bottom-up order looking for loads. If we 8556 // encounter an instruction we don't yet handle, we give up. 8557 auto Width = 0u; 8558 while (!Worklist.empty()) { 8559 Instruction *I; 8560 BasicBlock *Parent; 8561 std::tie(I, Parent) = Worklist.pop_back_val(); 8562 8563 // We should only be looking at scalar instructions here. If the current 8564 // instruction has a vector type, skip. 8565 auto *Ty = I->getType(); 8566 if (isa<VectorType>(Ty)) 8567 continue; 8568 8569 // If the current instruction is a load, update MaxWidth to reflect the 8570 // width of the loaded value. 8571 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8572 isa<ExtractValueInst>(I)) 8573 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8574 8575 // Otherwise, we need to visit the operands of the instruction. We only 8576 // handle the interesting cases from buildTree here. If an operand is an 8577 // instruction we haven't yet visited and from the same basic block as the 8578 // user or the use is a PHI node, we add it to the worklist. 8579 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8580 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8581 isa<UnaryOperator>(I)) { 8582 for (Use &U : I->operands()) 8583 if (auto *J = dyn_cast<Instruction>(U.get())) 8584 if (Visited.insert(J).second && 8585 (isa<PHINode>(I) || J->getParent() == Parent)) 8586 Worklist.emplace_back(J, J->getParent()); 8587 } else { 8588 break; 8589 } 8590 } 8591 8592 // If we didn't encounter a memory access in the expression tree, or if we 8593 // gave up for some reason, just return the width of V. Otherwise, return the 8594 // maximum width we found. 8595 if (!Width) { 8596 if (auto *CI = dyn_cast<CmpInst>(V)) 8597 V = CI->getOperand(0); 8598 Width = DL->getTypeSizeInBits(V->getType()); 8599 } 8600 8601 for (Instruction *I : Visited) 8602 InstrElementSize[I] = Width; 8603 8604 return Width; 8605 } 8606 8607 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8608 // smaller type with a truncation. We collect the values that will be demoted 8609 // in ToDemote and additional roots that require investigating in Roots. 8610 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8611 SmallVectorImpl<Value *> &ToDemote, 8612 SmallVectorImpl<Value *> &Roots) { 8613 // We can always demote constants. 8614 if (isa<Constant>(V)) { 8615 ToDemote.push_back(V); 8616 return true; 8617 } 8618 8619 // If the value is not an instruction in the expression with only one use, it 8620 // cannot be demoted. 8621 auto *I = dyn_cast<Instruction>(V); 8622 if (!I || !I->hasOneUse() || !Expr.count(I)) 8623 return false; 8624 8625 switch (I->getOpcode()) { 8626 8627 // We can always demote truncations and extensions. Since truncations can 8628 // seed additional demotion, we save the truncated value. 8629 case Instruction::Trunc: 8630 Roots.push_back(I->getOperand(0)); 8631 break; 8632 case Instruction::ZExt: 8633 case Instruction::SExt: 8634 if (isa<ExtractElementInst>(I->getOperand(0)) || 8635 isa<InsertElementInst>(I->getOperand(0))) 8636 return false; 8637 break; 8638 8639 // We can demote certain binary operations if we can demote both of their 8640 // operands. 8641 case Instruction::Add: 8642 case Instruction::Sub: 8643 case Instruction::Mul: 8644 case Instruction::And: 8645 case Instruction::Or: 8646 case Instruction::Xor: 8647 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8648 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8649 return false; 8650 break; 8651 8652 // We can demote selects if we can demote their true and false values. 8653 case Instruction::Select: { 8654 SelectInst *SI = cast<SelectInst>(I); 8655 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8656 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8657 return false; 8658 break; 8659 } 8660 8661 // We can demote phis if we can demote all their incoming operands. Note that 8662 // we don't need to worry about cycles since we ensure single use above. 8663 case Instruction::PHI: { 8664 PHINode *PN = cast<PHINode>(I); 8665 for (Value *IncValue : PN->incoming_values()) 8666 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8667 return false; 8668 break; 8669 } 8670 8671 // Otherwise, conservatively give up. 8672 default: 8673 return false; 8674 } 8675 8676 // Record the value that we can demote. 8677 ToDemote.push_back(V); 8678 return true; 8679 } 8680 8681 void BoUpSLP::computeMinimumValueSizes() { 8682 // If there are no external uses, the expression tree must be rooted by a 8683 // store. We can't demote in-memory values, so there is nothing to do here. 8684 if (ExternalUses.empty()) 8685 return; 8686 8687 // We only attempt to truncate integer expressions. 8688 auto &TreeRoot = VectorizableTree[0]->Scalars; 8689 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8690 if (!TreeRootIT) 8691 return; 8692 8693 // If the expression is not rooted by a store, these roots should have 8694 // external uses. We will rely on InstCombine to rewrite the expression in 8695 // the narrower type. However, InstCombine only rewrites single-use values. 8696 // This means that if a tree entry other than a root is used externally, it 8697 // must have multiple uses and InstCombine will not rewrite it. The code 8698 // below ensures that only the roots are used externally. 8699 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8700 for (auto &EU : ExternalUses) 8701 if (!Expr.erase(EU.Scalar)) 8702 return; 8703 if (!Expr.empty()) 8704 return; 8705 8706 // Collect the scalar values of the vectorizable expression. We will use this 8707 // context to determine which values can be demoted. If we see a truncation, 8708 // we mark it as seeding another demotion. 8709 for (auto &EntryPtr : VectorizableTree) 8710 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8711 8712 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8713 // have a single external user that is not in the vectorizable tree. 8714 for (auto *Root : TreeRoot) 8715 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8716 return; 8717 8718 // Conservatively determine if we can actually truncate the roots of the 8719 // expression. Collect the values that can be demoted in ToDemote and 8720 // additional roots that require investigating in Roots. 8721 SmallVector<Value *, 32> ToDemote; 8722 SmallVector<Value *, 4> Roots; 8723 for (auto *Root : TreeRoot) 8724 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8725 return; 8726 8727 // The maximum bit width required to represent all the values that can be 8728 // demoted without loss of precision. It would be safe to truncate the roots 8729 // of the expression to this width. 8730 auto MaxBitWidth = 8u; 8731 8732 // We first check if all the bits of the roots are demanded. If they're not, 8733 // we can truncate the roots to this narrower type. 8734 for (auto *Root : TreeRoot) { 8735 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8736 MaxBitWidth = std::max<unsigned>( 8737 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8738 } 8739 8740 // True if the roots can be zero-extended back to their original type, rather 8741 // than sign-extended. We know that if the leading bits are not demanded, we 8742 // can safely zero-extend. So we initialize IsKnownPositive to True. 8743 bool IsKnownPositive = true; 8744 8745 // If all the bits of the roots are demanded, we can try a little harder to 8746 // compute a narrower type. This can happen, for example, if the roots are 8747 // getelementptr indices. InstCombine promotes these indices to the pointer 8748 // width. Thus, all their bits are technically demanded even though the 8749 // address computation might be vectorized in a smaller type. 8750 // 8751 // We start by looking at each entry that can be demoted. We compute the 8752 // maximum bit width required to store the scalar by using ValueTracking to 8753 // compute the number of high-order bits we can truncate. 8754 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8755 llvm::all_of(TreeRoot, [](Value *R) { 8756 assert(R->hasOneUse() && "Root should have only one use!"); 8757 return isa<GetElementPtrInst>(R->user_back()); 8758 })) { 8759 MaxBitWidth = 8u; 8760 8761 // Determine if the sign bit of all the roots is known to be zero. If not, 8762 // IsKnownPositive is set to False. 8763 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8764 KnownBits Known = computeKnownBits(R, *DL); 8765 return Known.isNonNegative(); 8766 }); 8767 8768 // Determine the maximum number of bits required to store the scalar 8769 // values. 8770 for (auto *Scalar : ToDemote) { 8771 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8772 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8773 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8774 } 8775 8776 // If we can't prove that the sign bit is zero, we must add one to the 8777 // maximum bit width to account for the unknown sign bit. This preserves 8778 // the existing sign bit so we can safely sign-extend the root back to the 8779 // original type. Otherwise, if we know the sign bit is zero, we will 8780 // zero-extend the root instead. 8781 // 8782 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8783 // one to the maximum bit width will yield a larger-than-necessary 8784 // type. In general, we need to add an extra bit only if we can't 8785 // prove that the upper bit of the original type is equal to the 8786 // upper bit of the proposed smaller type. If these two bits are the 8787 // same (either zero or one) we know that sign-extending from the 8788 // smaller type will result in the same value. Here, since we can't 8789 // yet prove this, we are just making the proposed smaller type 8790 // larger to ensure correctness. 8791 if (!IsKnownPositive) 8792 ++MaxBitWidth; 8793 } 8794 8795 // Round MaxBitWidth up to the next power-of-two. 8796 if (!isPowerOf2_64(MaxBitWidth)) 8797 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8798 8799 // If the maximum bit width we compute is less than the with of the roots' 8800 // type, we can proceed with the narrowing. Otherwise, do nothing. 8801 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8802 return; 8803 8804 // If we can truncate the root, we must collect additional values that might 8805 // be demoted as a result. That is, those seeded by truncations we will 8806 // modify. 8807 while (!Roots.empty()) 8808 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8809 8810 // Finally, map the values we can demote to the maximum bit with we computed. 8811 for (auto *Scalar : ToDemote) 8812 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8813 } 8814 8815 namespace { 8816 8817 /// The SLPVectorizer Pass. 8818 struct SLPVectorizer : public FunctionPass { 8819 SLPVectorizerPass Impl; 8820 8821 /// Pass identification, replacement for typeid 8822 static char ID; 8823 8824 explicit SLPVectorizer() : FunctionPass(ID) { 8825 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8826 } 8827 8828 bool doInitialization(Module &M) override { return false; } 8829 8830 bool runOnFunction(Function &F) override { 8831 if (skipFunction(F)) 8832 return false; 8833 8834 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8835 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8836 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8837 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8838 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8839 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8840 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8841 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8842 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8843 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8844 8845 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8846 } 8847 8848 void getAnalysisUsage(AnalysisUsage &AU) const override { 8849 FunctionPass::getAnalysisUsage(AU); 8850 AU.addRequired<AssumptionCacheTracker>(); 8851 AU.addRequired<ScalarEvolutionWrapperPass>(); 8852 AU.addRequired<AAResultsWrapperPass>(); 8853 AU.addRequired<TargetTransformInfoWrapperPass>(); 8854 AU.addRequired<LoopInfoWrapperPass>(); 8855 AU.addRequired<DominatorTreeWrapperPass>(); 8856 AU.addRequired<DemandedBitsWrapperPass>(); 8857 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8858 AU.addRequired<InjectTLIMappingsLegacy>(); 8859 AU.addPreserved<LoopInfoWrapperPass>(); 8860 AU.addPreserved<DominatorTreeWrapperPass>(); 8861 AU.addPreserved<AAResultsWrapperPass>(); 8862 AU.addPreserved<GlobalsAAWrapperPass>(); 8863 AU.setPreservesCFG(); 8864 } 8865 }; 8866 8867 } // end anonymous namespace 8868 8869 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8870 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8871 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8872 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8873 auto *AA = &AM.getResult<AAManager>(F); 8874 auto *LI = &AM.getResult<LoopAnalysis>(F); 8875 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8876 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8877 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8878 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8879 8880 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8881 if (!Changed) 8882 return PreservedAnalyses::all(); 8883 8884 PreservedAnalyses PA; 8885 PA.preserveSet<CFGAnalyses>(); 8886 return PA; 8887 } 8888 8889 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8890 TargetTransformInfo *TTI_, 8891 TargetLibraryInfo *TLI_, AAResults *AA_, 8892 LoopInfo *LI_, DominatorTree *DT_, 8893 AssumptionCache *AC_, DemandedBits *DB_, 8894 OptimizationRemarkEmitter *ORE_) { 8895 if (!RunSLPVectorization) 8896 return false; 8897 SE = SE_; 8898 TTI = TTI_; 8899 TLI = TLI_; 8900 AA = AA_; 8901 LI = LI_; 8902 DT = DT_; 8903 AC = AC_; 8904 DB = DB_; 8905 DL = &F.getParent()->getDataLayout(); 8906 8907 Stores.clear(); 8908 GEPs.clear(); 8909 bool Changed = false; 8910 8911 // If the target claims to have no vector registers don't attempt 8912 // vectorization. 8913 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8914 LLVM_DEBUG( 8915 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8916 return false; 8917 } 8918 8919 // Don't vectorize when the attribute NoImplicitFloat is used. 8920 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8921 return false; 8922 8923 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8924 8925 // Use the bottom up slp vectorizer to construct chains that start with 8926 // store instructions. 8927 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8928 8929 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8930 // delete instructions. 8931 8932 // Update DFS numbers now so that we can use them for ordering. 8933 DT->updateDFSNumbers(); 8934 8935 // Scan the blocks in the function in post order. 8936 for (auto BB : post_order(&F.getEntryBlock())) { 8937 // Start new block - clear the list of reduction roots. 8938 R.clearReductionData(); 8939 collectSeedInstructions(BB); 8940 8941 // Vectorize trees that end at stores. 8942 if (!Stores.empty()) { 8943 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8944 << " underlying objects.\n"); 8945 Changed |= vectorizeStoreChains(R); 8946 } 8947 8948 // Vectorize trees that end at reductions. 8949 Changed |= vectorizeChainsInBlock(BB, R); 8950 8951 // Vectorize the index computations of getelementptr instructions. This 8952 // is primarily intended to catch gather-like idioms ending at 8953 // non-consecutive loads. 8954 if (!GEPs.empty()) { 8955 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8956 << " underlying objects.\n"); 8957 Changed |= vectorizeGEPIndices(BB, R); 8958 } 8959 } 8960 8961 if (Changed) { 8962 R.optimizeGatherSequence(); 8963 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8964 } 8965 return Changed; 8966 } 8967 8968 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8969 unsigned Idx) { 8970 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8971 << "\n"); 8972 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8973 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8974 unsigned VF = Chain.size(); 8975 8976 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8977 return false; 8978 8979 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8980 << "\n"); 8981 8982 R.buildTree(Chain); 8983 if (R.isTreeTinyAndNotFullyVectorizable()) 8984 return false; 8985 if (R.isLoadCombineCandidate()) 8986 return false; 8987 R.reorderTopToBottom(); 8988 R.reorderBottomToTop(); 8989 R.buildExternalUses(); 8990 8991 R.computeMinimumValueSizes(); 8992 8993 InstructionCost Cost = R.getTreeCost(); 8994 8995 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8996 if (Cost < -SLPCostThreshold) { 8997 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8998 8999 using namespace ore; 9000 9001 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 9002 cast<StoreInst>(Chain[0])) 9003 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 9004 << " and with tree size " 9005 << NV("TreeSize", R.getTreeSize())); 9006 9007 R.vectorizeTree(); 9008 return true; 9009 } 9010 9011 return false; 9012 } 9013 9014 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 9015 BoUpSLP &R) { 9016 // We may run into multiple chains that merge into a single chain. We mark the 9017 // stores that we vectorized so that we don't visit the same store twice. 9018 BoUpSLP::ValueSet VectorizedStores; 9019 bool Changed = false; 9020 9021 int E = Stores.size(); 9022 SmallBitVector Tails(E, false); 9023 int MaxIter = MaxStoreLookup.getValue(); 9024 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 9025 E, std::make_pair(E, INT_MAX)); 9026 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 9027 int IterCnt; 9028 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 9029 &CheckedPairs, 9030 &ConsecutiveChain](int K, int Idx) { 9031 if (IterCnt >= MaxIter) 9032 return true; 9033 if (CheckedPairs[Idx].test(K)) 9034 return ConsecutiveChain[K].second == 1 && 9035 ConsecutiveChain[K].first == Idx; 9036 ++IterCnt; 9037 CheckedPairs[Idx].set(K); 9038 CheckedPairs[K].set(Idx); 9039 Optional<int> Diff = getPointersDiff( 9040 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 9041 Stores[Idx]->getValueOperand()->getType(), 9042 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 9043 if (!Diff || *Diff == 0) 9044 return false; 9045 int Val = *Diff; 9046 if (Val < 0) { 9047 if (ConsecutiveChain[Idx].second > -Val) { 9048 Tails.set(K); 9049 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 9050 } 9051 return false; 9052 } 9053 if (ConsecutiveChain[K].second <= Val) 9054 return false; 9055 9056 Tails.set(Idx); 9057 ConsecutiveChain[K] = std::make_pair(Idx, Val); 9058 return Val == 1; 9059 }; 9060 // Do a quadratic search on all of the given stores in reverse order and find 9061 // all of the pairs of stores that follow each other. 9062 for (int Idx = E - 1; Idx >= 0; --Idx) { 9063 // If a store has multiple consecutive store candidates, search according 9064 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 9065 // This is because usually pairing with immediate succeeding or preceding 9066 // candidate create the best chance to find slp vectorization opportunity. 9067 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 9068 IterCnt = 0; 9069 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 9070 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 9071 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 9072 break; 9073 } 9074 9075 // Tracks if we tried to vectorize stores starting from the given tail 9076 // already. 9077 SmallBitVector TriedTails(E, false); 9078 // For stores that start but don't end a link in the chain: 9079 for (int Cnt = E; Cnt > 0; --Cnt) { 9080 int I = Cnt - 1; 9081 if (ConsecutiveChain[I].first == E || Tails.test(I)) 9082 continue; 9083 // We found a store instr that starts a chain. Now follow the chain and try 9084 // to vectorize it. 9085 BoUpSLP::ValueList Operands; 9086 // Collect the chain into a list. 9087 while (I != E && !VectorizedStores.count(Stores[I])) { 9088 Operands.push_back(Stores[I]); 9089 Tails.set(I); 9090 if (ConsecutiveChain[I].second != 1) { 9091 // Mark the new end in the chain and go back, if required. It might be 9092 // required if the original stores come in reversed order, for example. 9093 if (ConsecutiveChain[I].first != E && 9094 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 9095 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 9096 TriedTails.set(I); 9097 Tails.reset(ConsecutiveChain[I].first); 9098 if (Cnt < ConsecutiveChain[I].first + 2) 9099 Cnt = ConsecutiveChain[I].first + 2; 9100 } 9101 break; 9102 } 9103 // Move to the next value in the chain. 9104 I = ConsecutiveChain[I].first; 9105 } 9106 assert(!Operands.empty() && "Expected non-empty list of stores."); 9107 9108 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9109 unsigned EltSize = R.getVectorElementSize(Operands[0]); 9110 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 9111 9112 unsigned MinVF = R.getMinVF(EltSize); 9113 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 9114 MaxElts); 9115 9116 // FIXME: Is division-by-2 the correct step? Should we assert that the 9117 // register size is a power-of-2? 9118 unsigned StartIdx = 0; 9119 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 9120 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 9121 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 9122 if (!VectorizedStores.count(Slice.front()) && 9123 !VectorizedStores.count(Slice.back()) && 9124 vectorizeStoreChain(Slice, R, Cnt)) { 9125 // Mark the vectorized stores so that we don't vectorize them again. 9126 VectorizedStores.insert(Slice.begin(), Slice.end()); 9127 Changed = true; 9128 // If we vectorized initial block, no need to try to vectorize it 9129 // again. 9130 if (Cnt == StartIdx) 9131 StartIdx += Size; 9132 Cnt += Size; 9133 continue; 9134 } 9135 ++Cnt; 9136 } 9137 // Check if the whole array was vectorized already - exit. 9138 if (StartIdx >= Operands.size()) 9139 break; 9140 } 9141 } 9142 9143 return Changed; 9144 } 9145 9146 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9147 // Initialize the collections. We will make a single pass over the block. 9148 Stores.clear(); 9149 GEPs.clear(); 9150 9151 // Visit the store and getelementptr instructions in BB and organize them in 9152 // Stores and GEPs according to the underlying objects of their pointer 9153 // operands. 9154 for (Instruction &I : *BB) { 9155 // Ignore store instructions that are volatile or have a pointer operand 9156 // that doesn't point to a scalar type. 9157 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9158 if (!SI->isSimple()) 9159 continue; 9160 if (!isValidElementType(SI->getValueOperand()->getType())) 9161 continue; 9162 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9163 } 9164 9165 // Ignore getelementptr instructions that have more than one index, a 9166 // constant index, or a pointer operand that doesn't point to a scalar 9167 // type. 9168 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9169 auto Idx = GEP->idx_begin()->get(); 9170 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9171 continue; 9172 if (!isValidElementType(Idx->getType())) 9173 continue; 9174 if (GEP->getType()->isVectorTy()) 9175 continue; 9176 GEPs[GEP->getPointerOperand()].push_back(GEP); 9177 } 9178 } 9179 } 9180 9181 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9182 if (!A || !B) 9183 return false; 9184 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9185 return false; 9186 Value *VL[] = {A, B}; 9187 return tryToVectorizeList(VL, R); 9188 } 9189 9190 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9191 bool LimitForRegisterSize) { 9192 if (VL.size() < 2) 9193 return false; 9194 9195 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9196 << VL.size() << ".\n"); 9197 9198 // Check that all of the parts are instructions of the same type, 9199 // we permit an alternate opcode via InstructionsState. 9200 InstructionsState S = getSameOpcode(VL); 9201 if (!S.getOpcode()) 9202 return false; 9203 9204 Instruction *I0 = cast<Instruction>(S.OpValue); 9205 // Make sure invalid types (including vector type) are rejected before 9206 // determining vectorization factor for scalar instructions. 9207 for (Value *V : VL) { 9208 Type *Ty = V->getType(); 9209 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9210 // NOTE: the following will give user internal llvm type name, which may 9211 // not be useful. 9212 R.getORE()->emit([&]() { 9213 std::string type_str; 9214 llvm::raw_string_ostream rso(type_str); 9215 Ty->print(rso); 9216 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9217 << "Cannot SLP vectorize list: type " 9218 << rso.str() + " is unsupported by vectorizer"; 9219 }); 9220 return false; 9221 } 9222 } 9223 9224 unsigned Sz = R.getVectorElementSize(I0); 9225 unsigned MinVF = R.getMinVF(Sz); 9226 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9227 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9228 if (MaxVF < 2) { 9229 R.getORE()->emit([&]() { 9230 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9231 << "Cannot SLP vectorize list: vectorization factor " 9232 << "less than 2 is not supported"; 9233 }); 9234 return false; 9235 } 9236 9237 bool Changed = false; 9238 bool CandidateFound = false; 9239 InstructionCost MinCost = SLPCostThreshold.getValue(); 9240 Type *ScalarTy = VL[0]->getType(); 9241 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9242 ScalarTy = IE->getOperand(1)->getType(); 9243 9244 unsigned NextInst = 0, MaxInst = VL.size(); 9245 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9246 // No actual vectorization should happen, if number of parts is the same as 9247 // provided vectorization factor (i.e. the scalar type is used for vector 9248 // code during codegen). 9249 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9250 if (TTI->getNumberOfParts(VecTy) == VF) 9251 continue; 9252 for (unsigned I = NextInst; I < MaxInst; ++I) { 9253 unsigned OpsWidth = 0; 9254 9255 if (I + VF > MaxInst) 9256 OpsWidth = MaxInst - I; 9257 else 9258 OpsWidth = VF; 9259 9260 if (!isPowerOf2_32(OpsWidth)) 9261 continue; 9262 9263 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9264 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9265 break; 9266 9267 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9268 // Check that a previous iteration of this loop did not delete the Value. 9269 if (llvm::any_of(Ops, [&R](Value *V) { 9270 auto *I = dyn_cast<Instruction>(V); 9271 return I && R.isDeleted(I); 9272 })) 9273 continue; 9274 9275 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9276 << "\n"); 9277 9278 R.buildTree(Ops); 9279 if (R.isTreeTinyAndNotFullyVectorizable()) 9280 continue; 9281 R.reorderTopToBottom(); 9282 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9283 R.buildExternalUses(); 9284 9285 R.computeMinimumValueSizes(); 9286 InstructionCost Cost = R.getTreeCost(); 9287 CandidateFound = true; 9288 MinCost = std::min(MinCost, Cost); 9289 9290 if (Cost < -SLPCostThreshold) { 9291 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9292 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9293 cast<Instruction>(Ops[0])) 9294 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9295 << " and with tree size " 9296 << ore::NV("TreeSize", R.getTreeSize())); 9297 9298 R.vectorizeTree(); 9299 // Move to the next bundle. 9300 I += VF - 1; 9301 NextInst = I + 1; 9302 Changed = true; 9303 } 9304 } 9305 } 9306 9307 if (!Changed && CandidateFound) { 9308 R.getORE()->emit([&]() { 9309 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9310 << "List vectorization was possible but not beneficial with cost " 9311 << ore::NV("Cost", MinCost) << " >= " 9312 << ore::NV("Treshold", -SLPCostThreshold); 9313 }); 9314 } else if (!Changed) { 9315 R.getORE()->emit([&]() { 9316 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9317 << "Cannot SLP vectorize list: vectorization was impossible" 9318 << " with available vectorization factors"; 9319 }); 9320 } 9321 return Changed; 9322 } 9323 9324 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9325 if (!I) 9326 return false; 9327 9328 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 9329 isa<VectorType>(I->getType())) 9330 return false; 9331 9332 Value *P = I->getParent(); 9333 9334 // Vectorize in current basic block only. 9335 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9336 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9337 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9338 return false; 9339 9340 // First collect all possible candidates 9341 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 9342 Candidates.emplace_back(Op0, Op1); 9343 9344 auto *A = dyn_cast<BinaryOperator>(Op0); 9345 auto *B = dyn_cast<BinaryOperator>(Op1); 9346 // Try to skip B. 9347 if (A && B && B->hasOneUse()) { 9348 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9349 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9350 if (B0 && B0->getParent() == P) 9351 Candidates.emplace_back(A, B0); 9352 if (B1 && B1->getParent() == P) 9353 Candidates.emplace_back(A, B1); 9354 } 9355 // Try to skip A. 9356 if (B && A && A->hasOneUse()) { 9357 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9358 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9359 if (A0 && A0->getParent() == P) 9360 Candidates.emplace_back(A0, B); 9361 if (A1 && A1->getParent() == P) 9362 Candidates.emplace_back(A1, B); 9363 } 9364 9365 if (Candidates.size() == 1) 9366 return tryToVectorizePair(Op0, Op1, R); 9367 9368 // We have multiple options. Try to pick the single best. 9369 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 9370 if (!BestCandidate) 9371 return false; 9372 return tryToVectorizePair(Candidates[*BestCandidate].first, 9373 Candidates[*BestCandidate].second, R); 9374 } 9375 9376 namespace { 9377 9378 /// Model horizontal reductions. 9379 /// 9380 /// A horizontal reduction is a tree of reduction instructions that has values 9381 /// that can be put into a vector as its leaves. For example: 9382 /// 9383 /// mul mul mul mul 9384 /// \ / \ / 9385 /// + + 9386 /// \ / 9387 /// + 9388 /// This tree has "mul" as its leaf values and "+" as its reduction 9389 /// instructions. A reduction can feed into a store or a binary operation 9390 /// feeding a phi. 9391 /// ... 9392 /// \ / 9393 /// + 9394 /// | 9395 /// phi += 9396 /// 9397 /// Or: 9398 /// ... 9399 /// \ / 9400 /// + 9401 /// | 9402 /// *p = 9403 /// 9404 class HorizontalReduction { 9405 using ReductionOpsType = SmallVector<Value *, 16>; 9406 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9407 ReductionOpsListType ReductionOps; 9408 /// List of possibly reduced values. 9409 SmallVector<SmallVector<Value *>> ReducedVals; 9410 /// Maps reduced value to the corresponding reduction operation. 9411 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 9412 // Use map vector to make stable output. 9413 MapVector<Instruction *, Value *> ExtraArgs; 9414 WeakTrackingVH ReductionRoot; 9415 /// The type of reduction operation. 9416 RecurKind RdxKind; 9417 9418 static bool isCmpSelMinMax(Instruction *I) { 9419 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9420 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9421 } 9422 9423 // And/or are potentially poison-safe logical patterns like: 9424 // select x, y, false 9425 // select x, true, y 9426 static bool isBoolLogicOp(Instruction *I) { 9427 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9428 match(I, m_LogicalOr(m_Value(), m_Value())); 9429 } 9430 9431 /// Checks if instruction is associative and can be vectorized. 9432 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9433 if (Kind == RecurKind::None) 9434 return false; 9435 9436 // Integer ops that map to select instructions or intrinsics are fine. 9437 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9438 isBoolLogicOp(I)) 9439 return true; 9440 9441 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9442 // FP min/max are associative except for NaN and -0.0. We do not 9443 // have to rule out -0.0 here because the intrinsic semantics do not 9444 // specify a fixed result for it. 9445 return I->getFastMathFlags().noNaNs(); 9446 } 9447 9448 return I->isAssociative(); 9449 } 9450 9451 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9452 // Poison-safe 'or' takes the form: select X, true, Y 9453 // To make that work with the normal operand processing, we skip the 9454 // true value operand. 9455 // TODO: Change the code and data structures to handle this without a hack. 9456 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9457 return I->getOperand(2); 9458 return I->getOperand(Index); 9459 } 9460 9461 /// Creates reduction operation with the current opcode. 9462 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9463 Value *RHS, const Twine &Name, bool UseSelect) { 9464 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9465 switch (Kind) { 9466 case RecurKind::Or: 9467 if (UseSelect && 9468 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9469 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9470 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9471 Name); 9472 case RecurKind::And: 9473 if (UseSelect && 9474 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9475 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9476 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9477 Name); 9478 case RecurKind::Add: 9479 case RecurKind::Mul: 9480 case RecurKind::Xor: 9481 case RecurKind::FAdd: 9482 case RecurKind::FMul: 9483 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9484 Name); 9485 case RecurKind::FMax: 9486 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9487 case RecurKind::FMin: 9488 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9489 case RecurKind::SMax: 9490 if (UseSelect) { 9491 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9492 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9493 } 9494 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9495 case RecurKind::SMin: 9496 if (UseSelect) { 9497 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9498 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9499 } 9500 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9501 case RecurKind::UMax: 9502 if (UseSelect) { 9503 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9504 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9505 } 9506 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9507 case RecurKind::UMin: 9508 if (UseSelect) { 9509 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9510 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9511 } 9512 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9513 default: 9514 llvm_unreachable("Unknown reduction operation."); 9515 } 9516 } 9517 9518 /// Creates reduction operation with the current opcode with the IR flags 9519 /// from \p ReductionOps. 9520 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9521 Value *RHS, const Twine &Name, 9522 const ReductionOpsListType &ReductionOps) { 9523 bool UseSelect = ReductionOps.size() == 2 || 9524 // Logical or/and. 9525 (ReductionOps.size() == 1 && 9526 isa<SelectInst>(ReductionOps.front().front())); 9527 assert((!UseSelect || ReductionOps.size() != 2 || 9528 isa<SelectInst>(ReductionOps[1][0])) && 9529 "Expected cmp + select pairs for reduction"); 9530 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9531 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9532 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9533 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9534 propagateIRFlags(Op, ReductionOps[1]); 9535 return Op; 9536 } 9537 } 9538 propagateIRFlags(Op, ReductionOps[0]); 9539 return Op; 9540 } 9541 9542 /// Creates reduction operation with the current opcode with the IR flags 9543 /// from \p I. 9544 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9545 Value *RHS, const Twine &Name, Value *I) { 9546 auto *SelI = dyn_cast<SelectInst>(I); 9547 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9548 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9549 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9550 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9551 } 9552 propagateIRFlags(Op, I); 9553 return Op; 9554 } 9555 9556 static RecurKind getRdxKind(Value *V) { 9557 auto *I = dyn_cast<Instruction>(V); 9558 if (!I) 9559 return RecurKind::None; 9560 if (match(I, m_Add(m_Value(), m_Value()))) 9561 return RecurKind::Add; 9562 if (match(I, m_Mul(m_Value(), m_Value()))) 9563 return RecurKind::Mul; 9564 if (match(I, m_And(m_Value(), m_Value())) || 9565 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9566 return RecurKind::And; 9567 if (match(I, m_Or(m_Value(), m_Value())) || 9568 match(I, m_LogicalOr(m_Value(), m_Value()))) 9569 return RecurKind::Or; 9570 if (match(I, m_Xor(m_Value(), m_Value()))) 9571 return RecurKind::Xor; 9572 if (match(I, m_FAdd(m_Value(), m_Value()))) 9573 return RecurKind::FAdd; 9574 if (match(I, m_FMul(m_Value(), m_Value()))) 9575 return RecurKind::FMul; 9576 9577 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9578 return RecurKind::FMax; 9579 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9580 return RecurKind::FMin; 9581 9582 // This matches either cmp+select or intrinsics. SLP is expected to handle 9583 // either form. 9584 // TODO: If we are canonicalizing to intrinsics, we can remove several 9585 // special-case paths that deal with selects. 9586 if (match(I, m_SMax(m_Value(), m_Value()))) 9587 return RecurKind::SMax; 9588 if (match(I, m_SMin(m_Value(), m_Value()))) 9589 return RecurKind::SMin; 9590 if (match(I, m_UMax(m_Value(), m_Value()))) 9591 return RecurKind::UMax; 9592 if (match(I, m_UMin(m_Value(), m_Value()))) 9593 return RecurKind::UMin; 9594 9595 if (auto *Select = dyn_cast<SelectInst>(I)) { 9596 // Try harder: look for min/max pattern based on instructions producing 9597 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9598 // During the intermediate stages of SLP, it's very common to have 9599 // pattern like this (since optimizeGatherSequence is run only once 9600 // at the end): 9601 // %1 = extractelement <2 x i32> %a, i32 0 9602 // %2 = extractelement <2 x i32> %a, i32 1 9603 // %cond = icmp sgt i32 %1, %2 9604 // %3 = extractelement <2 x i32> %a, i32 0 9605 // %4 = extractelement <2 x i32> %a, i32 1 9606 // %select = select i1 %cond, i32 %3, i32 %4 9607 CmpInst::Predicate Pred; 9608 Instruction *L1; 9609 Instruction *L2; 9610 9611 Value *LHS = Select->getTrueValue(); 9612 Value *RHS = Select->getFalseValue(); 9613 Value *Cond = Select->getCondition(); 9614 9615 // TODO: Support inverse predicates. 9616 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9617 if (!isa<ExtractElementInst>(RHS) || 9618 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9619 return RecurKind::None; 9620 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9621 if (!isa<ExtractElementInst>(LHS) || 9622 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9623 return RecurKind::None; 9624 } else { 9625 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9626 return RecurKind::None; 9627 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9628 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9629 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9630 return RecurKind::None; 9631 } 9632 9633 switch (Pred) { 9634 default: 9635 return RecurKind::None; 9636 case CmpInst::ICMP_SGT: 9637 case CmpInst::ICMP_SGE: 9638 return RecurKind::SMax; 9639 case CmpInst::ICMP_SLT: 9640 case CmpInst::ICMP_SLE: 9641 return RecurKind::SMin; 9642 case CmpInst::ICMP_UGT: 9643 case CmpInst::ICMP_UGE: 9644 return RecurKind::UMax; 9645 case CmpInst::ICMP_ULT: 9646 case CmpInst::ICMP_ULE: 9647 return RecurKind::UMin; 9648 } 9649 } 9650 return RecurKind::None; 9651 } 9652 9653 /// Get the index of the first operand. 9654 static unsigned getFirstOperandIndex(Instruction *I) { 9655 return isCmpSelMinMax(I) ? 1 : 0; 9656 } 9657 9658 /// Total number of operands in the reduction operation. 9659 static unsigned getNumberOfOperands(Instruction *I) { 9660 return isCmpSelMinMax(I) ? 3 : 2; 9661 } 9662 9663 /// Checks if the instruction is in basic block \p BB. 9664 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9665 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9666 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9667 auto *Sel = cast<SelectInst>(I); 9668 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9669 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9670 } 9671 return I->getParent() == BB; 9672 } 9673 9674 /// Expected number of uses for reduction operations/reduced values. 9675 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9676 if (IsCmpSelMinMax) { 9677 // SelectInst must be used twice while the condition op must have single 9678 // use only. 9679 if (auto *Sel = dyn_cast<SelectInst>(I)) 9680 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9681 return I->hasNUses(2); 9682 } 9683 9684 // Arithmetic reduction operation must be used once only. 9685 return I->hasOneUse(); 9686 } 9687 9688 /// Initializes the list of reduction operations. 9689 void initReductionOps(Instruction *I) { 9690 if (isCmpSelMinMax(I)) 9691 ReductionOps.assign(2, ReductionOpsType()); 9692 else 9693 ReductionOps.assign(1, ReductionOpsType()); 9694 } 9695 9696 /// Add all reduction operations for the reduction instruction \p I. 9697 void addReductionOps(Instruction *I) { 9698 if (isCmpSelMinMax(I)) { 9699 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9700 ReductionOps[1].emplace_back(I); 9701 } else { 9702 ReductionOps[0].emplace_back(I); 9703 } 9704 } 9705 9706 static Value *getLHS(RecurKind Kind, Instruction *I) { 9707 if (Kind == RecurKind::None) 9708 return nullptr; 9709 return I->getOperand(getFirstOperandIndex(I)); 9710 } 9711 static Value *getRHS(RecurKind Kind, Instruction *I) { 9712 if (Kind == RecurKind::None) 9713 return nullptr; 9714 return I->getOperand(getFirstOperandIndex(I) + 1); 9715 } 9716 9717 public: 9718 HorizontalReduction() = default; 9719 9720 /// Try to find a reduction tree. 9721 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 9722 ScalarEvolution &SE, const DataLayout &DL, 9723 const TargetLibraryInfo &TLI) { 9724 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9725 "Phi needs to use the binary operator"); 9726 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9727 isa<IntrinsicInst>(Inst)) && 9728 "Expected binop, select, or intrinsic for reduction matching"); 9729 RdxKind = getRdxKind(Inst); 9730 9731 // We could have a initial reductions that is not an add. 9732 // r *= v1 + v2 + v3 + v4 9733 // In such a case start looking for a tree rooted in the first '+'. 9734 if (Phi) { 9735 if (getLHS(RdxKind, Inst) == Phi) { 9736 Phi = nullptr; 9737 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9738 if (!Inst) 9739 return false; 9740 RdxKind = getRdxKind(Inst); 9741 } else if (getRHS(RdxKind, Inst) == Phi) { 9742 Phi = nullptr; 9743 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9744 if (!Inst) 9745 return false; 9746 RdxKind = getRdxKind(Inst); 9747 } 9748 } 9749 9750 if (!isVectorizable(RdxKind, Inst)) 9751 return false; 9752 9753 // Analyze "regular" integer/FP types for reductions - no target-specific 9754 // types or pointers. 9755 Type *Ty = Inst->getType(); 9756 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9757 return false; 9758 9759 // Though the ultimate reduction may have multiple uses, its condition must 9760 // have only single use. 9761 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9762 if (!Sel->getCondition()->hasOneUse()) 9763 return false; 9764 9765 ReductionRoot = Inst; 9766 9767 // Iterate through all the operands of the possible reduction tree and 9768 // gather all the reduced values, sorting them by their value id. 9769 BasicBlock *BB = Inst->getParent(); 9770 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 9771 SmallVector<Instruction *> Worklist(1, Inst); 9772 // Checks if the operands of the \p TreeN instruction are also reduction 9773 // operations or should be treated as reduced values or an extra argument, 9774 // which is not part of the reduction. 9775 auto &&CheckOperands = [this, IsCmpSelMinMax, 9776 BB](Instruction *TreeN, 9777 SmallVectorImpl<Value *> &ExtraArgs, 9778 SmallVectorImpl<Value *> &PossibleReducedVals, 9779 SmallVectorImpl<Instruction *> &ReductionOps) { 9780 for (int I = getFirstOperandIndex(TreeN), 9781 End = getNumberOfOperands(TreeN); 9782 I < End; ++I) { 9783 Value *EdgeVal = getRdxOperand(TreeN, I); 9784 ReducedValsToOps[EdgeVal].push_back(TreeN); 9785 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9786 // Edge has wrong parent - mark as an extra argument. 9787 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 9788 !hasSameParent(EdgeInst, BB)) { 9789 ExtraArgs.push_back(EdgeVal); 9790 continue; 9791 } 9792 // If the edge is not an instruction, or it is different from the main 9793 // reduction opcode or has too many uses - possible reduced value. 9794 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 9795 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 9796 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 9797 PossibleReducedVals.push_back(EdgeVal); 9798 continue; 9799 } 9800 ReductionOps.push_back(EdgeInst); 9801 } 9802 }; 9803 // Try to regroup reduced values so that it gets more profitable to try to 9804 // reduce them. Values are grouped by their value ids, instructions - by 9805 // instruction op id and/or alternate op id, plus do extra analysis for 9806 // loads (grouping them by the distabce between pointers) and cmp 9807 // instructions (grouping them by the predicate). 9808 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 9809 PossibleReducedVals; 9810 initReductionOps(Inst); 9811 while (!Worklist.empty()) { 9812 Instruction *TreeN = Worklist.pop_back_val(); 9813 SmallVector<Value *> Args; 9814 SmallVector<Value *> PossibleRedVals; 9815 SmallVector<Instruction *> PossibleReductionOps; 9816 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 9817 // If too many extra args - mark the instruction itself as a reduction 9818 // value, not a reduction operation. 9819 if (Args.size() < 2) { 9820 addReductionOps(TreeN); 9821 // Add extra args. 9822 if (!Args.empty()) { 9823 assert(Args.size() == 1 && "Expected only single argument."); 9824 ExtraArgs[TreeN] = Args.front(); 9825 } 9826 // Add reduction values. The values are sorted for better vectorization 9827 // results. 9828 for (Value *V : PossibleRedVals) { 9829 size_t Key, Idx; 9830 std::tie(Key, Idx) = generateKeySubkey( 9831 V, &TLI, 9832 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9833 for (const auto &LoadData : PossibleReducedVals[Key]) { 9834 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 9835 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9836 LI->getType(), LI->getPointerOperand(), 9837 DL, SE, /*StrictCheck=*/true)) 9838 return hash_value(RLI->getPointerOperand()); 9839 } 9840 return hash_value(LI->getPointerOperand()); 9841 }, 9842 /*AllowAlternate=*/false); 9843 ++PossibleReducedVals[Key][Idx] 9844 .insert(std::make_pair(V, 0)) 9845 .first->second; 9846 } 9847 Worklist.append(PossibleReductionOps.rbegin(), 9848 PossibleReductionOps.rend()); 9849 } else { 9850 size_t Key, Idx; 9851 std::tie(Key, Idx) = generateKeySubkey( 9852 TreeN, &TLI, 9853 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9854 for (const auto &LoadData : PossibleReducedVals[Key]) { 9855 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 9856 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9857 LI->getType(), LI->getPointerOperand(), DL, 9858 SE, /*StrictCheck=*/true)) 9859 return hash_value(RLI->getPointerOperand()); 9860 } 9861 return hash_value(LI->getPointerOperand()); 9862 }, 9863 /*AllowAlternate=*/false); 9864 ++PossibleReducedVals[Key][Idx] 9865 .insert(std::make_pair(TreeN, 0)) 9866 .first->second; 9867 } 9868 } 9869 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 9870 // Sort values by the total number of values kinds to start the reduction 9871 // from the longest possible reduced values sequences. 9872 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 9873 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 9874 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 9875 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 9876 It != E; ++It) { 9877 PossibleRedValsVect.emplace_back(); 9878 auto RedValsVect = It->second.takeVector(); 9879 stable_sort(RedValsVect, [](const auto &P1, const auto &P2) { 9880 return P1.second < P2.second; 9881 }); 9882 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 9883 PossibleRedValsVect.back().append(Data.second, Data.first); 9884 } 9885 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 9886 return P1.size() > P2.size(); 9887 }); 9888 ReducedVals.emplace_back(); 9889 for (ArrayRef<Value *> Data : PossibleRedValsVect) 9890 ReducedVals.back().append(Data.rbegin(), Data.rend()); 9891 } 9892 // Sort the reduced values by number of same/alternate opcode and/or pointer 9893 // operand. 9894 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 9895 return P1.size() > P2.size(); 9896 }); 9897 return true; 9898 } 9899 9900 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9901 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9902 constexpr int ReductionLimit = 4; 9903 // If there are a sufficient number of reduction values, reduce 9904 // to a nearby power-of-2. We can safely generate oversized 9905 // vectors and rely on the backend to split them to legal sizes. 9906 unsigned NumReducedVals = std::accumulate( 9907 ReducedVals.begin(), ReducedVals.end(), 0, 9908 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 9909 if (NumReducedVals < ReductionLimit) 9910 return nullptr; 9911 9912 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9913 9914 // Track the reduced values in case if they are replaced by extractelement 9915 // because of the vectorization. 9916 DenseMap<Value *, WeakTrackingVH> TrackedVals; 9917 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9918 // The same extra argument may be used several times, so log each attempt 9919 // to use it. 9920 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9921 assert(Pair.first && "DebugLoc must be set."); 9922 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9923 TrackedVals.try_emplace(Pair.second, Pair.second); 9924 } 9925 9926 // The compare instruction of a min/max is the insertion point for new 9927 // instructions and may be replaced with a new compare instruction. 9928 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9929 assert(isa<SelectInst>(RdxRootInst) && 9930 "Expected min/max reduction to have select root instruction"); 9931 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9932 assert(isa<Instruction>(ScalarCond) && 9933 "Expected min/max reduction to have compare condition"); 9934 return cast<Instruction>(ScalarCond); 9935 }; 9936 9937 // The reduction root is used as the insertion point for new instructions, 9938 // so set it as externally used to prevent it from being deleted. 9939 ExternallyUsedValues[ReductionRoot]; 9940 SmallVector<Value *> IgnoreList; 9941 for (ReductionOpsType &RdxOps : ReductionOps) 9942 for (Value *RdxOp : RdxOps) { 9943 if (!RdxOp) 9944 continue; 9945 IgnoreList.push_back(RdxOp); 9946 } 9947 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 9948 9949 // Need to track reduced vals, they may be changed during vectorization of 9950 // subvectors. 9951 for (ArrayRef<Value *> Candidates : ReducedVals) 9952 for (Value *V : Candidates) 9953 TrackedVals.try_emplace(V, V); 9954 9955 DenseMap<Value *, unsigned> VectorizedVals; 9956 Value *VectorizedTree = nullptr; 9957 bool CheckForReusedReductionOps = false; 9958 // Try to vectorize elements based on their type. 9959 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 9960 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 9961 InstructionsState S = getSameOpcode(OrigReducedVals); 9962 SmallVector<Value *> Candidates; 9963 DenseMap<Value *, Value *> TrackedToOrig; 9964 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 9965 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 9966 // Check if the reduction value was not overriden by the extractelement 9967 // instruction because of the vectorization and exclude it, if it is not 9968 // compatible with other values. 9969 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9970 if (isVectorLikeInstWithConstOps(Inst) && 9971 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 9972 continue; 9973 Candidates.push_back(RdxVal); 9974 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 9975 } 9976 bool ShuffledExtracts = false; 9977 // Try to handle shuffled extractelements. 9978 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 9979 I + 1 < E) { 9980 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 9981 if (NextS.getOpcode() == Instruction::ExtractElement && 9982 !NextS.isAltShuffle()) { 9983 SmallVector<Value *> CommonCandidates(Candidates); 9984 for (Value *RV : ReducedVals[I + 1]) { 9985 Value *RdxVal = TrackedVals.find(RV)->second; 9986 // Check if the reduction value was not overriden by the 9987 // extractelement instruction because of the vectorization and 9988 // exclude it, if it is not compatible with other values. 9989 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9990 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 9991 continue; 9992 CommonCandidates.push_back(RdxVal); 9993 TrackedToOrig.try_emplace(RdxVal, RV); 9994 } 9995 SmallVector<int> Mask; 9996 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 9997 ++I; 9998 Candidates.swap(CommonCandidates); 9999 ShuffledExtracts = true; 10000 } 10001 } 10002 } 10003 unsigned NumReducedVals = Candidates.size(); 10004 if (NumReducedVals < ReductionLimit) 10005 continue; 10006 10007 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 10008 unsigned Start = 0; 10009 unsigned Pos = Start; 10010 // Restarts vectorization attempt with lower vector factor. 10011 unsigned PrevReduxWidth = ReduxWidth; 10012 bool CheckForReusedReductionOpsLocal = false; 10013 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 10014 &CheckForReusedReductionOpsLocal, 10015 &PrevReduxWidth, &V, 10016 &IgnoreList](bool IgnoreVL = false) { 10017 bool IsAnyRedOpGathered = 10018 !IgnoreVL && any_of(IgnoreList, [&V](Value *RedOp) { 10019 return V.isGathered(RedOp); 10020 }); 10021 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 10022 // Check if any of the reduction ops are gathered. If so, worth 10023 // trying again with less number of reduction ops. 10024 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 10025 } 10026 ++Pos; 10027 if (Pos < NumReducedVals - ReduxWidth + 1) 10028 return IsAnyRedOpGathered; 10029 Pos = Start; 10030 ReduxWidth /= 2; 10031 return IsAnyRedOpGathered; 10032 }; 10033 while (Pos < NumReducedVals - ReduxWidth + 1 && 10034 ReduxWidth >= ReductionLimit) { 10035 // Dependency in tree of the reduction ops - drop this attempt, try 10036 // later. 10037 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 10038 Start == 0) { 10039 CheckForReusedReductionOps = true; 10040 break; 10041 } 10042 PrevReduxWidth = ReduxWidth; 10043 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 10044 // Beeing analyzed already - skip. 10045 if (V.areAnalyzedReductionVals(VL)) { 10046 (void)AdjustReducedVals(/*IgnoreVL=*/true); 10047 continue; 10048 } 10049 // Early exit if any of the reduction values were deleted during 10050 // previous vectorization attempts. 10051 if (any_of(VL, [&V](Value *RedVal) { 10052 auto *RedValI = dyn_cast<Instruction>(RedVal); 10053 if (!RedValI) 10054 return false; 10055 return V.isDeleted(RedValI); 10056 })) 10057 break; 10058 V.buildTree(VL, IgnoreList); 10059 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 10060 if (!AdjustReducedVals()) 10061 V.analyzedReductionVals(VL); 10062 continue; 10063 } 10064 if (V.isLoadCombineReductionCandidate(RdxKind)) { 10065 if (!AdjustReducedVals()) 10066 V.analyzedReductionVals(VL); 10067 continue; 10068 } 10069 V.reorderTopToBottom(); 10070 // No need to reorder the root node at all. 10071 V.reorderBottomToTop(/*IgnoreReorder=*/true); 10072 // Keep extracted other reduction values, if they are used in the 10073 // vectorization trees. 10074 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 10075 ExternallyUsedValues); 10076 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 10077 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 10078 continue; 10079 for_each(ReducedVals[Cnt], 10080 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 10081 if (isa<Instruction>(V)) 10082 LocalExternallyUsedValues[TrackedVals[V]]; 10083 }); 10084 } 10085 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { 10086 if (Cnt >= Pos && Cnt < Pos + ReduxWidth) 10087 continue; 10088 if (VectorizedVals.count(Candidates[Cnt])) 10089 continue; 10090 LocalExternallyUsedValues[Candidates[Cnt]]; 10091 } 10092 V.buildExternalUses(LocalExternallyUsedValues); 10093 10094 V.computeMinimumValueSizes(); 10095 10096 // Intersect the fast-math-flags from all reduction operations. 10097 FastMathFlags RdxFMF; 10098 RdxFMF.set(); 10099 for (Value *U : IgnoreList) 10100 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 10101 RdxFMF &= FPMO->getFastMathFlags(); 10102 // Estimate cost. 10103 InstructionCost TreeCost = V.getTreeCost(VL); 10104 InstructionCost ReductionCost = 10105 getReductionCost(TTI, VL[0], ReduxWidth, RdxFMF); 10106 InstructionCost Cost = TreeCost + ReductionCost; 10107 if (!Cost.isValid()) { 10108 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 10109 return nullptr; 10110 } 10111 if (Cost >= -SLPCostThreshold) { 10112 V.getORE()->emit([&]() { 10113 return OptimizationRemarkMissed( 10114 SV_NAME, "HorSLPNotBeneficial", 10115 ReducedValsToOps.find(VL[0])->second.front()) 10116 << "Vectorizing horizontal reduction is possible" 10117 << "but not beneficial with cost " << ore::NV("Cost", Cost) 10118 << " and threshold " 10119 << ore::NV("Threshold", -SLPCostThreshold); 10120 }); 10121 if (!AdjustReducedVals()) 10122 V.analyzedReductionVals(VL); 10123 continue; 10124 } 10125 10126 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 10127 << Cost << ". (HorRdx)\n"); 10128 V.getORE()->emit([&]() { 10129 return OptimizationRemark( 10130 SV_NAME, "VectorizedHorizontalReduction", 10131 ReducedValsToOps.find(VL[0])->second.front()) 10132 << "Vectorized horizontal reduction with cost " 10133 << ore::NV("Cost", Cost) << " and with tree size " 10134 << ore::NV("TreeSize", V.getTreeSize()); 10135 }); 10136 10137 Builder.setFastMathFlags(RdxFMF); 10138 10139 // Vectorize a tree. 10140 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 10141 10142 // Emit a reduction. If the root is a select (min/max idiom), the insert 10143 // point is the compare condition of that select. 10144 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 10145 if (IsCmpSelMinMax) 10146 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 10147 else 10148 Builder.SetInsertPoint(RdxRootInst); 10149 10150 // To prevent poison from leaking across what used to be sequential, 10151 // safe, scalar boolean logic operations, the reduction operand must be 10152 // frozen. 10153 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 10154 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 10155 10156 Value *ReducedSubTree = 10157 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 10158 10159 if (!VectorizedTree) { 10160 // Initialize the final value in the reduction. 10161 VectorizedTree = ReducedSubTree; 10162 } else { 10163 // Update the final value in the reduction. 10164 Builder.SetCurrentDebugLocation( 10165 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 10166 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10167 ReducedSubTree, "op.rdx", ReductionOps); 10168 } 10169 // Count vectorized reduced values to exclude them from final reduction. 10170 for (Value *V : VL) 10171 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 10172 .first->getSecond(); 10173 Pos += ReduxWidth; 10174 Start = Pos; 10175 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 10176 } 10177 } 10178 if (VectorizedTree) { 10179 // Finish the reduction. 10180 // Need to add extra arguments and not vectorized possible reduction 10181 // values. 10182 SmallPtrSet<Value *, 8> Visited; 10183 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10184 ArrayRef<Value *> Candidates = ReducedVals[I]; 10185 for (Value *RdxVal : Candidates) { 10186 if (!Visited.insert(RdxVal).second) 10187 continue; 10188 Value *StableRdxVal = RdxVal; 10189 auto TVIt = TrackedVals.find(RdxVal); 10190 if (TVIt != TrackedVals.end()) 10191 StableRdxVal = TVIt->second; 10192 unsigned NumOps = 0; 10193 auto It = VectorizedVals.find(RdxVal); 10194 if (It != VectorizedVals.end()) 10195 NumOps = It->second; 10196 for (Instruction *RedOp : 10197 makeArrayRef(ReducedValsToOps.find(RdxVal)->second) 10198 .drop_back(NumOps)) { 10199 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 10200 ReductionOpsListType Ops; 10201 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 10202 Ops.emplace_back().push_back(Sel->getCondition()); 10203 Ops.emplace_back().push_back(RedOp); 10204 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10205 StableRdxVal, "op.rdx", Ops); 10206 } 10207 } 10208 } 10209 for (auto &Pair : ExternallyUsedValues) { 10210 // Add each externally used value to the final reduction. 10211 for (auto *I : Pair.second) { 10212 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 10213 ReductionOpsListType Ops; 10214 if (auto *Sel = dyn_cast<SelectInst>(I)) 10215 Ops.emplace_back().push_back(Sel->getCondition()); 10216 Ops.emplace_back().push_back(I); 10217 Value *StableRdxVal = Pair.first; 10218 auto TVIt = TrackedVals.find(Pair.first); 10219 if (TVIt != TrackedVals.end()) 10220 StableRdxVal = TVIt->second; 10221 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10222 StableRdxVal, "op.rdx", Ops); 10223 } 10224 } 10225 10226 ReductionRoot->replaceAllUsesWith(VectorizedTree); 10227 10228 // The original scalar reduction is expected to have no remaining 10229 // uses outside the reduction tree itself. Assert that we got this 10230 // correct, replace internal uses with undef, and mark for eventual 10231 // deletion. 10232 #ifndef NDEBUG 10233 SmallSet<Value *, 4> IgnoreSet; 10234 for (ArrayRef<Value *> RdxOps : ReductionOps) 10235 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 10236 #endif 10237 for (ArrayRef<Value *> RdxOps : ReductionOps) { 10238 for (Value *Ignore : RdxOps) { 10239 if (!Ignore) 10240 continue; 10241 #ifndef NDEBUG 10242 for (auto *U : Ignore->users()) { 10243 assert(IgnoreSet.count(U) && 10244 "All users must be either in the reduction ops list."); 10245 } 10246 #endif 10247 if (!Ignore->use_empty()) { 10248 Value *Undef = UndefValue::get(Ignore->getType()); 10249 Ignore->replaceAllUsesWith(Undef); 10250 } 10251 V.eraseInstruction(cast<Instruction>(Ignore)); 10252 } 10253 } 10254 } else if (!CheckForReusedReductionOps) { 10255 for (ReductionOpsType &RdxOps : ReductionOps) 10256 for (Value *RdxOp : RdxOps) 10257 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 10258 } 10259 return VectorizedTree; 10260 } 10261 10262 unsigned numReductionValues() const { return ReducedVals.size(); } 10263 10264 private: 10265 /// Calculate the cost of a reduction. 10266 InstructionCost getReductionCost(TargetTransformInfo *TTI, 10267 Value *FirstReducedVal, unsigned ReduxWidth, 10268 FastMathFlags FMF) { 10269 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 10270 Type *ScalarTy = FirstReducedVal->getType(); 10271 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 10272 InstructionCost VectorCost, ScalarCost; 10273 switch (RdxKind) { 10274 case RecurKind::Add: 10275 case RecurKind::Mul: 10276 case RecurKind::Or: 10277 case RecurKind::And: 10278 case RecurKind::Xor: 10279 case RecurKind::FAdd: 10280 case RecurKind::FMul: { 10281 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 10282 VectorCost = 10283 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 10284 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 10285 break; 10286 } 10287 case RecurKind::FMax: 10288 case RecurKind::FMin: { 10289 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10290 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10291 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 10292 /*IsUnsigned=*/false, CostKind); 10293 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10294 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 10295 SclCondTy, RdxPred, CostKind) + 10296 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10297 SclCondTy, RdxPred, CostKind); 10298 break; 10299 } 10300 case RecurKind::SMax: 10301 case RecurKind::SMin: 10302 case RecurKind::UMax: 10303 case RecurKind::UMin: { 10304 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10305 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10306 bool IsUnsigned = 10307 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 10308 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 10309 CostKind); 10310 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10311 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 10312 SclCondTy, RdxPred, CostKind) + 10313 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10314 SclCondTy, RdxPred, CostKind); 10315 break; 10316 } 10317 default: 10318 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 10319 } 10320 10321 // Scalar cost is repeated for N-1 elements. 10322 ScalarCost *= (ReduxWidth - 1); 10323 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 10324 << " for reduction that starts with " << *FirstReducedVal 10325 << " (It is a splitting reduction)\n"); 10326 return VectorCost - ScalarCost; 10327 } 10328 10329 /// Emit a horizontal reduction of the vectorized value. 10330 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 10331 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 10332 assert(VectorizedValue && "Need to have a vectorized tree node"); 10333 assert(isPowerOf2_32(ReduxWidth) && 10334 "We only handle power-of-two reductions for now"); 10335 assert(RdxKind != RecurKind::FMulAdd && 10336 "A call to the llvm.fmuladd intrinsic is not handled yet"); 10337 10338 ++NumVectorInstructions; 10339 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 10340 } 10341 }; 10342 10343 } // end anonymous namespace 10344 10345 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 10346 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 10347 return cast<FixedVectorType>(IE->getType())->getNumElements(); 10348 10349 unsigned AggregateSize = 1; 10350 auto *IV = cast<InsertValueInst>(InsertInst); 10351 Type *CurrentType = IV->getType(); 10352 do { 10353 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 10354 for (auto *Elt : ST->elements()) 10355 if (Elt != ST->getElementType(0)) // check homogeneity 10356 return None; 10357 AggregateSize *= ST->getNumElements(); 10358 CurrentType = ST->getElementType(0); 10359 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 10360 AggregateSize *= AT->getNumElements(); 10361 CurrentType = AT->getElementType(); 10362 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 10363 AggregateSize *= VT->getNumElements(); 10364 return AggregateSize; 10365 } else if (CurrentType->isSingleValueType()) { 10366 return AggregateSize; 10367 } else { 10368 return None; 10369 } 10370 } while (true); 10371 } 10372 10373 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10374 TargetTransformInfo *TTI, 10375 SmallVectorImpl<Value *> &BuildVectorOpds, 10376 SmallVectorImpl<Value *> &InsertElts, 10377 unsigned OperandOffset) { 10378 do { 10379 Value *InsertedOperand = LastInsertInst->getOperand(1); 10380 Optional<unsigned> OperandIndex = 10381 getInsertIndex(LastInsertInst, OperandOffset); 10382 if (!OperandIndex) 10383 return; 10384 if (isa<InsertElementInst>(InsertedOperand) || 10385 isa<InsertValueInst>(InsertedOperand)) { 10386 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10387 BuildVectorOpds, InsertElts, *OperandIndex); 10388 10389 } else { 10390 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10391 InsertElts[*OperandIndex] = LastInsertInst; 10392 } 10393 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10394 } while (LastInsertInst != nullptr && 10395 (isa<InsertValueInst>(LastInsertInst) || 10396 isa<InsertElementInst>(LastInsertInst)) && 10397 LastInsertInst->hasOneUse()); 10398 } 10399 10400 /// Recognize construction of vectors like 10401 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10402 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10403 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10404 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10405 /// starting from the last insertelement or insertvalue instruction. 10406 /// 10407 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10408 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10409 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10410 /// 10411 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10412 /// 10413 /// \return true if it matches. 10414 static bool findBuildAggregate(Instruction *LastInsertInst, 10415 TargetTransformInfo *TTI, 10416 SmallVectorImpl<Value *> &BuildVectorOpds, 10417 SmallVectorImpl<Value *> &InsertElts) { 10418 10419 assert((isa<InsertElementInst>(LastInsertInst) || 10420 isa<InsertValueInst>(LastInsertInst)) && 10421 "Expected insertelement or insertvalue instruction!"); 10422 10423 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10424 "Expected empty result vectors!"); 10425 10426 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10427 if (!AggregateSize) 10428 return false; 10429 BuildVectorOpds.resize(*AggregateSize); 10430 InsertElts.resize(*AggregateSize); 10431 10432 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10433 llvm::erase_value(BuildVectorOpds, nullptr); 10434 llvm::erase_value(InsertElts, nullptr); 10435 if (BuildVectorOpds.size() >= 2) 10436 return true; 10437 10438 return false; 10439 } 10440 10441 /// Try and get a reduction value from a phi node. 10442 /// 10443 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10444 /// if they come from either \p ParentBB or a containing loop latch. 10445 /// 10446 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10447 /// if not possible. 10448 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10449 BasicBlock *ParentBB, LoopInfo *LI) { 10450 // There are situations where the reduction value is not dominated by the 10451 // reduction phi. Vectorizing such cases has been reported to cause 10452 // miscompiles. See PR25787. 10453 auto DominatedReduxValue = [&](Value *R) { 10454 return isa<Instruction>(R) && 10455 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10456 }; 10457 10458 Value *Rdx = nullptr; 10459 10460 // Return the incoming value if it comes from the same BB as the phi node. 10461 if (P->getIncomingBlock(0) == ParentBB) { 10462 Rdx = P->getIncomingValue(0); 10463 } else if (P->getIncomingBlock(1) == ParentBB) { 10464 Rdx = P->getIncomingValue(1); 10465 } 10466 10467 if (Rdx && DominatedReduxValue(Rdx)) 10468 return Rdx; 10469 10470 // Otherwise, check whether we have a loop latch to look at. 10471 Loop *BBL = LI->getLoopFor(ParentBB); 10472 if (!BBL) 10473 return nullptr; 10474 BasicBlock *BBLatch = BBL->getLoopLatch(); 10475 if (!BBLatch) 10476 return nullptr; 10477 10478 // There is a loop latch, return the incoming value if it comes from 10479 // that. This reduction pattern occasionally turns up. 10480 if (P->getIncomingBlock(0) == BBLatch) { 10481 Rdx = P->getIncomingValue(0); 10482 } else if (P->getIncomingBlock(1) == BBLatch) { 10483 Rdx = P->getIncomingValue(1); 10484 } 10485 10486 if (Rdx && DominatedReduxValue(Rdx)) 10487 return Rdx; 10488 10489 return nullptr; 10490 } 10491 10492 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10493 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10494 return true; 10495 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10496 return true; 10497 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10498 return true; 10499 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10500 return true; 10501 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10502 return true; 10503 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10504 return true; 10505 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10506 return true; 10507 return false; 10508 } 10509 10510 /// Attempt to reduce a horizontal reduction. 10511 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10512 /// with reduction operators \a Root (or one of its operands) in a basic block 10513 /// \a BB, then check if it can be done. If horizontal reduction is not found 10514 /// and root instruction is a binary operation, vectorization of the operands is 10515 /// attempted. 10516 /// \returns true if a horizontal reduction was matched and reduced or operands 10517 /// of one of the binary instruction were vectorized. 10518 /// \returns false if a horizontal reduction was not matched (or not possible) 10519 /// or no vectorization of any binary operation feeding \a Root instruction was 10520 /// performed. 10521 static bool tryToVectorizeHorReductionOrInstOperands( 10522 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10523 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 10524 const TargetLibraryInfo &TLI, 10525 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10526 if (!ShouldVectorizeHor) 10527 return false; 10528 10529 if (!Root) 10530 return false; 10531 10532 if (Root->getParent() != BB || isa<PHINode>(Root)) 10533 return false; 10534 // Start analysis starting from Root instruction. If horizontal reduction is 10535 // found, try to vectorize it. If it is not a horizontal reduction or 10536 // vectorization is not possible or not effective, and currently analyzed 10537 // instruction is a binary operation, try to vectorize the operands, using 10538 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10539 // the same procedure considering each operand as a possible root of the 10540 // horizontal reduction. 10541 // Interrupt the process if the Root instruction itself was vectorized or all 10542 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10543 // Skip the analysis of CmpInsts. Compiler implements postanalysis of the 10544 // CmpInsts so we can skip extra attempts in 10545 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10546 std::queue<std::pair<Instruction *, unsigned>> Stack; 10547 Stack.emplace(Root, 0); 10548 SmallPtrSet<Value *, 8> VisitedInstrs; 10549 SmallVector<WeakTrackingVH> PostponedInsts; 10550 bool Res = false; 10551 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 10552 Value *&B0, 10553 Value *&B1) -> Value * { 10554 if (R.isAnalizedReductionRoot(Inst)) 10555 return nullptr; 10556 bool IsBinop = matchRdxBop(Inst, B0, B1); 10557 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10558 if (IsBinop || IsSelect) { 10559 HorizontalReduction HorRdx; 10560 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 10561 return HorRdx.tryToReduce(R, TTI); 10562 } 10563 return nullptr; 10564 }; 10565 while (!Stack.empty()) { 10566 Instruction *Inst; 10567 unsigned Level; 10568 std::tie(Inst, Level) = Stack.front(); 10569 Stack.pop(); 10570 // Do not try to analyze instruction that has already been vectorized. 10571 // This may happen when we vectorize instruction operands on a previous 10572 // iteration while stack was populated before that happened. 10573 if (R.isDeleted(Inst)) 10574 continue; 10575 Value *B0 = nullptr, *B1 = nullptr; 10576 if (Value *V = TryToReduce(Inst, B0, B1)) { 10577 Res = true; 10578 // Set P to nullptr to avoid re-analysis of phi node in 10579 // matchAssociativeReduction function unless this is the root node. 10580 P = nullptr; 10581 if (auto *I = dyn_cast<Instruction>(V)) { 10582 // Try to find another reduction. 10583 Stack.emplace(I, Level); 10584 continue; 10585 } 10586 } else { 10587 bool IsBinop = B0 && B1; 10588 if (P && IsBinop) { 10589 Inst = dyn_cast<Instruction>(B0); 10590 if (Inst == P) 10591 Inst = dyn_cast<Instruction>(B1); 10592 if (!Inst) { 10593 // Set P to nullptr to avoid re-analysis of phi node in 10594 // matchAssociativeReduction function unless this is the root node. 10595 P = nullptr; 10596 continue; 10597 } 10598 } 10599 // Set P to nullptr to avoid re-analysis of phi node in 10600 // matchAssociativeReduction function unless this is the root node. 10601 P = nullptr; 10602 // Do not try to vectorize CmpInst operands, this is done separately. 10603 // Final attempt for binop args vectorization should happen after the loop 10604 // to try to find reductions. 10605 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 10606 PostponedInsts.push_back(Inst); 10607 } 10608 10609 // Try to vectorize operands. 10610 // Continue analysis for the instruction from the same basic block only to 10611 // save compile time. 10612 if (++Level < RecursionMaxDepth) 10613 for (auto *Op : Inst->operand_values()) 10614 if (VisitedInstrs.insert(Op).second) 10615 if (auto *I = dyn_cast<Instruction>(Op)) 10616 // Do not try to vectorize CmpInst operands, this is done 10617 // separately. 10618 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 10619 !R.isDeleted(I) && I->getParent() == BB) 10620 Stack.emplace(I, Level); 10621 } 10622 // Try to vectorized binops where reductions were not found. 10623 for (Value *V : PostponedInsts) 10624 if (auto *Inst = dyn_cast<Instruction>(V)) 10625 if (!R.isDeleted(Inst)) 10626 Res |= Vectorize(Inst, R); 10627 return Res; 10628 } 10629 10630 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10631 BasicBlock *BB, BoUpSLP &R, 10632 TargetTransformInfo *TTI) { 10633 auto *I = dyn_cast_or_null<Instruction>(V); 10634 if (!I) 10635 return false; 10636 10637 if (!isa<BinaryOperator>(I)) 10638 P = nullptr; 10639 // Try to match and vectorize a horizontal reduction. 10640 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10641 return tryToVectorize(I, R); 10642 }; 10643 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 10644 *TLI, ExtraVectorization); 10645 } 10646 10647 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10648 BasicBlock *BB, BoUpSLP &R) { 10649 const DataLayout &DL = BB->getModule()->getDataLayout(); 10650 if (!R.canMapToVector(IVI->getType(), DL)) 10651 return false; 10652 10653 SmallVector<Value *, 16> BuildVectorOpds; 10654 SmallVector<Value *, 16> BuildVectorInsts; 10655 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10656 return false; 10657 10658 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10659 // Aggregate value is unlikely to be processed in vector register. 10660 return tryToVectorizeList(BuildVectorOpds, R); 10661 } 10662 10663 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10664 BasicBlock *BB, BoUpSLP &R) { 10665 SmallVector<Value *, 16> BuildVectorInsts; 10666 SmallVector<Value *, 16> BuildVectorOpds; 10667 SmallVector<int> Mask; 10668 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10669 (llvm::all_of( 10670 BuildVectorOpds, 10671 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10672 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10673 return false; 10674 10675 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10676 return tryToVectorizeList(BuildVectorInsts, R); 10677 } 10678 10679 template <typename T> 10680 static bool 10681 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10682 function_ref<unsigned(T *)> Limit, 10683 function_ref<bool(T *, T *)> Comparator, 10684 function_ref<bool(T *, T *)> AreCompatible, 10685 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10686 bool LimitForRegisterSize) { 10687 bool Changed = false; 10688 // Sort by type, parent, operands. 10689 stable_sort(Incoming, Comparator); 10690 10691 // Try to vectorize elements base on their type. 10692 SmallVector<T *> Candidates; 10693 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10694 // Look for the next elements with the same type, parent and operand 10695 // kinds. 10696 auto *SameTypeIt = IncIt; 10697 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10698 ++SameTypeIt; 10699 10700 // Try to vectorize them. 10701 unsigned NumElts = (SameTypeIt - IncIt); 10702 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10703 << NumElts << ")\n"); 10704 // The vectorization is a 3-state attempt: 10705 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10706 // size of maximal register at first. 10707 // 2. Try to vectorize remaining instructions with the same type, if 10708 // possible. This may result in the better vectorization results rather than 10709 // if we try just to vectorize instructions with the same/alternate opcodes. 10710 // 3. Final attempt to try to vectorize all instructions with the 10711 // same/alternate ops only, this may result in some extra final 10712 // vectorization. 10713 if (NumElts > 1 && 10714 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10715 // Success start over because instructions might have been changed. 10716 Changed = true; 10717 } else if (NumElts < Limit(*IncIt) && 10718 (Candidates.empty() || 10719 Candidates.front()->getType() == (*IncIt)->getType())) { 10720 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10721 } 10722 // Final attempt to vectorize instructions with the same types. 10723 if (Candidates.size() > 1 && 10724 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10725 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10726 // Success start over because instructions might have been changed. 10727 Changed = true; 10728 } else if (LimitForRegisterSize) { 10729 // Try to vectorize using small vectors. 10730 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10731 It != End;) { 10732 auto *SameTypeIt = It; 10733 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10734 ++SameTypeIt; 10735 unsigned NumElts = (SameTypeIt - It); 10736 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10737 /*LimitForRegisterSize=*/false)) 10738 Changed = true; 10739 It = SameTypeIt; 10740 } 10741 } 10742 Candidates.clear(); 10743 } 10744 10745 // Start over at the next instruction of a different type (or the end). 10746 IncIt = SameTypeIt; 10747 } 10748 return Changed; 10749 } 10750 10751 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10752 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10753 /// operands. If IsCompatibility is false, function implements strict weak 10754 /// ordering relation between two cmp instructions, returning true if the first 10755 /// instruction is "less" than the second, i.e. its predicate is less than the 10756 /// predicate of the second or the operands IDs are less than the operands IDs 10757 /// of the second cmp instruction. 10758 template <bool IsCompatibility> 10759 static bool compareCmp(Value *V, Value *V2, 10760 function_ref<bool(Instruction *)> IsDeleted) { 10761 auto *CI1 = cast<CmpInst>(V); 10762 auto *CI2 = cast<CmpInst>(V2); 10763 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10764 return false; 10765 if (CI1->getOperand(0)->getType()->getTypeID() < 10766 CI2->getOperand(0)->getType()->getTypeID()) 10767 return !IsCompatibility; 10768 if (CI1->getOperand(0)->getType()->getTypeID() > 10769 CI2->getOperand(0)->getType()->getTypeID()) 10770 return false; 10771 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10772 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10773 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10774 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10775 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10776 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10777 if (BasePred1 < BasePred2) 10778 return !IsCompatibility; 10779 if (BasePred1 > BasePred2) 10780 return false; 10781 // Compare operands. 10782 bool LEPreds = Pred1 <= Pred2; 10783 bool GEPreds = Pred1 >= Pred2; 10784 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10785 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10786 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10787 if (Op1->getValueID() < Op2->getValueID()) 10788 return !IsCompatibility; 10789 if (Op1->getValueID() > Op2->getValueID()) 10790 return false; 10791 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10792 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10793 if (I1->getParent() != I2->getParent()) 10794 return false; 10795 InstructionsState S = getSameOpcode({I1, I2}); 10796 if (S.getOpcode()) 10797 continue; 10798 return false; 10799 } 10800 } 10801 return IsCompatibility; 10802 } 10803 10804 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10805 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10806 bool AtTerminator) { 10807 bool OpsChanged = false; 10808 SmallVector<Instruction *, 4> PostponedCmps; 10809 for (auto *I : reverse(Instructions)) { 10810 if (R.isDeleted(I)) 10811 continue; 10812 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 10813 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10814 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 10815 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10816 } else if (isa<CmpInst>(I)) { 10817 PostponedCmps.push_back(I); 10818 continue; 10819 } 10820 // Try to find reductions in buildvector sequnces. 10821 OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI); 10822 } 10823 if (AtTerminator) { 10824 // Try to find reductions first. 10825 for (Instruction *I : PostponedCmps) { 10826 if (R.isDeleted(I)) 10827 continue; 10828 for (Value *Op : I->operands()) 10829 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10830 } 10831 // Try to vectorize operands as vector bundles. 10832 for (Instruction *I : PostponedCmps) { 10833 if (R.isDeleted(I)) 10834 continue; 10835 OpsChanged |= tryToVectorize(I, R); 10836 } 10837 // Try to vectorize list of compares. 10838 // Sort by type, compare predicate, etc. 10839 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10840 return compareCmp<false>(V, V2, 10841 [&R](Instruction *I) { return R.isDeleted(I); }); 10842 }; 10843 10844 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10845 if (V1 == V2) 10846 return true; 10847 return compareCmp<true>(V1, V2, 10848 [&R](Instruction *I) { return R.isDeleted(I); }); 10849 }; 10850 auto Limit = [&R](Value *V) { 10851 unsigned EltSize = R.getVectorElementSize(V); 10852 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10853 }; 10854 10855 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10856 OpsChanged |= tryToVectorizeSequence<Value>( 10857 Vals, Limit, CompareSorter, AreCompatibleCompares, 10858 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10859 // Exclude possible reductions from other blocks. 10860 bool ArePossiblyReducedInOtherBlock = 10861 any_of(Candidates, [](Value *V) { 10862 return any_of(V->users(), [V](User *U) { 10863 return isa<SelectInst>(U) && 10864 cast<SelectInst>(U)->getParent() != 10865 cast<Instruction>(V)->getParent(); 10866 }); 10867 }); 10868 if (ArePossiblyReducedInOtherBlock) 10869 return false; 10870 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10871 }, 10872 /*LimitForRegisterSize=*/true); 10873 Instructions.clear(); 10874 } else { 10875 // Insert in reverse order since the PostponedCmps vector was filled in 10876 // reverse order. 10877 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10878 } 10879 return OpsChanged; 10880 } 10881 10882 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10883 bool Changed = false; 10884 SmallVector<Value *, 4> Incoming; 10885 SmallPtrSet<Value *, 16> VisitedInstrs; 10886 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10887 // node. Allows better to identify the chains that can be vectorized in the 10888 // better way. 10889 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10890 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10891 assert(isValidElementType(V1->getType()) && 10892 isValidElementType(V2->getType()) && 10893 "Expected vectorizable types only."); 10894 // It is fine to compare type IDs here, since we expect only vectorizable 10895 // types, like ints, floats and pointers, we don't care about other type. 10896 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10897 return true; 10898 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10899 return false; 10900 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10901 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10902 if (Opcodes1.size() < Opcodes2.size()) 10903 return true; 10904 if (Opcodes1.size() > Opcodes2.size()) 10905 return false; 10906 Optional<bool> ConstOrder; 10907 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10908 // Undefs are compatible with any other value. 10909 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10910 if (!ConstOrder) 10911 ConstOrder = 10912 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10913 continue; 10914 } 10915 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10916 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10917 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10918 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10919 if (!NodeI1) 10920 return NodeI2 != nullptr; 10921 if (!NodeI2) 10922 return false; 10923 assert((NodeI1 == NodeI2) == 10924 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10925 "Different nodes should have different DFS numbers"); 10926 if (NodeI1 != NodeI2) 10927 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10928 InstructionsState S = getSameOpcode({I1, I2}); 10929 if (S.getOpcode()) 10930 continue; 10931 return I1->getOpcode() < I2->getOpcode(); 10932 } 10933 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10934 if (!ConstOrder) 10935 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10936 continue; 10937 } 10938 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10939 return true; 10940 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10941 return false; 10942 } 10943 return ConstOrder && *ConstOrder; 10944 }; 10945 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10946 if (V1 == V2) 10947 return true; 10948 if (V1->getType() != V2->getType()) 10949 return false; 10950 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10951 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10952 if (Opcodes1.size() != Opcodes2.size()) 10953 return false; 10954 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10955 // Undefs are compatible with any other value. 10956 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10957 continue; 10958 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10959 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10960 if (I1->getParent() != I2->getParent()) 10961 return false; 10962 InstructionsState S = getSameOpcode({I1, I2}); 10963 if (S.getOpcode()) 10964 continue; 10965 return false; 10966 } 10967 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10968 continue; 10969 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10970 return false; 10971 } 10972 return true; 10973 }; 10974 auto Limit = [&R](Value *V) { 10975 unsigned EltSize = R.getVectorElementSize(V); 10976 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10977 }; 10978 10979 bool HaveVectorizedPhiNodes = false; 10980 do { 10981 // Collect the incoming values from the PHIs. 10982 Incoming.clear(); 10983 for (Instruction &I : *BB) { 10984 PHINode *P = dyn_cast<PHINode>(&I); 10985 if (!P) 10986 break; 10987 10988 // No need to analyze deleted, vectorized and non-vectorizable 10989 // instructions. 10990 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10991 isValidElementType(P->getType())) 10992 Incoming.push_back(P); 10993 } 10994 10995 // Find the corresponding non-phi nodes for better matching when trying to 10996 // build the tree. 10997 for (Value *V : Incoming) { 10998 SmallVectorImpl<Value *> &Opcodes = 10999 PHIToOpcodes.try_emplace(V).first->getSecond(); 11000 if (!Opcodes.empty()) 11001 continue; 11002 SmallVector<Value *, 4> Nodes(1, V); 11003 SmallPtrSet<Value *, 4> Visited; 11004 while (!Nodes.empty()) { 11005 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 11006 if (!Visited.insert(PHI).second) 11007 continue; 11008 for (Value *V : PHI->incoming_values()) { 11009 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 11010 Nodes.push_back(PHI1); 11011 continue; 11012 } 11013 Opcodes.emplace_back(V); 11014 } 11015 } 11016 } 11017 11018 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 11019 Incoming, Limit, PHICompare, AreCompatiblePHIs, 11020 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11021 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11022 }, 11023 /*LimitForRegisterSize=*/true); 11024 Changed |= HaveVectorizedPhiNodes; 11025 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 11026 } while (HaveVectorizedPhiNodes); 11027 11028 VisitedInstrs.clear(); 11029 11030 SmallVector<Instruction *, 8> PostProcessInstructions; 11031 SmallDenseSet<Instruction *, 4> KeyNodes; 11032 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 11033 // Skip instructions with scalable type. The num of elements is unknown at 11034 // compile-time for scalable type. 11035 if (isa<ScalableVectorType>(it->getType())) 11036 continue; 11037 11038 // Skip instructions marked for the deletion. 11039 if (R.isDeleted(&*it)) 11040 continue; 11041 // We may go through BB multiple times so skip the one we have checked. 11042 if (!VisitedInstrs.insert(&*it).second) { 11043 if (it->use_empty() && KeyNodes.contains(&*it) && 11044 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11045 it->isTerminator())) { 11046 // We would like to start over since some instructions are deleted 11047 // and the iterator may become invalid value. 11048 Changed = true; 11049 it = BB->begin(); 11050 e = BB->end(); 11051 } 11052 continue; 11053 } 11054 11055 if (isa<DbgInfoIntrinsic>(it)) 11056 continue; 11057 11058 // Try to vectorize reductions that use PHINodes. 11059 if (PHINode *P = dyn_cast<PHINode>(it)) { 11060 // Check that the PHI is a reduction PHI. 11061 if (P->getNumIncomingValues() == 2) { 11062 // Try to match and vectorize a horizontal reduction. 11063 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 11064 TTI)) { 11065 Changed = true; 11066 it = BB->begin(); 11067 e = BB->end(); 11068 continue; 11069 } 11070 } 11071 // Try to vectorize the incoming values of the PHI, to catch reductions 11072 // that feed into PHIs. 11073 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 11074 // Skip if the incoming block is the current BB for now. Also, bypass 11075 // unreachable IR for efficiency and to avoid crashing. 11076 // TODO: Collect the skipped incoming values and try to vectorize them 11077 // after processing BB. 11078 if (BB == P->getIncomingBlock(I) || 11079 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 11080 continue; 11081 11082 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 11083 P->getIncomingBlock(I), R, TTI); 11084 } 11085 continue; 11086 } 11087 11088 // Ran into an instruction without users, like terminator, or function call 11089 // with ignored return value, store. Ignore unused instructions (basing on 11090 // instruction type, except for CallInst and InvokeInst). 11091 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 11092 isa<InvokeInst>(it))) { 11093 KeyNodes.insert(&*it); 11094 bool OpsChanged = false; 11095 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 11096 for (auto *V : it->operand_values()) { 11097 // Try to match and vectorize a horizontal reduction. 11098 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 11099 } 11100 } 11101 // Start vectorization of post-process list of instructions from the 11102 // top-tree instructions to try to vectorize as many instructions as 11103 // possible. 11104 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11105 it->isTerminator()); 11106 if (OpsChanged) { 11107 // We would like to start over since some instructions are deleted 11108 // and the iterator may become invalid value. 11109 Changed = true; 11110 it = BB->begin(); 11111 e = BB->end(); 11112 continue; 11113 } 11114 } 11115 11116 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 11117 isa<InsertValueInst>(it)) 11118 PostProcessInstructions.push_back(&*it); 11119 } 11120 11121 return Changed; 11122 } 11123 11124 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 11125 auto Changed = false; 11126 for (auto &Entry : GEPs) { 11127 // If the getelementptr list has fewer than two elements, there's nothing 11128 // to do. 11129 if (Entry.second.size() < 2) 11130 continue; 11131 11132 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 11133 << Entry.second.size() << ".\n"); 11134 11135 // Process the GEP list in chunks suitable for the target's supported 11136 // vector size. If a vector register can't hold 1 element, we are done. We 11137 // are trying to vectorize the index computations, so the maximum number of 11138 // elements is based on the size of the index expression, rather than the 11139 // size of the GEP itself (the target's pointer size). 11140 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 11141 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 11142 if (MaxVecRegSize < EltSize) 11143 continue; 11144 11145 unsigned MaxElts = MaxVecRegSize / EltSize; 11146 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 11147 auto Len = std::min<unsigned>(BE - BI, MaxElts); 11148 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 11149 11150 // Initialize a set a candidate getelementptrs. Note that we use a 11151 // SetVector here to preserve program order. If the index computations 11152 // are vectorizable and begin with loads, we want to minimize the chance 11153 // of having to reorder them later. 11154 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 11155 11156 // Some of the candidates may have already been vectorized after we 11157 // initially collected them. If so, they are marked as deleted, so remove 11158 // them from the set of candidates. 11159 Candidates.remove_if( 11160 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 11161 11162 // Remove from the set of candidates all pairs of getelementptrs with 11163 // constant differences. Such getelementptrs are likely not good 11164 // candidates for vectorization in a bottom-up phase since one can be 11165 // computed from the other. We also ensure all candidate getelementptr 11166 // indices are unique. 11167 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 11168 auto *GEPI = GEPList[I]; 11169 if (!Candidates.count(GEPI)) 11170 continue; 11171 auto *SCEVI = SE->getSCEV(GEPList[I]); 11172 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 11173 auto *GEPJ = GEPList[J]; 11174 auto *SCEVJ = SE->getSCEV(GEPList[J]); 11175 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 11176 Candidates.remove(GEPI); 11177 Candidates.remove(GEPJ); 11178 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 11179 Candidates.remove(GEPJ); 11180 } 11181 } 11182 } 11183 11184 // We break out of the above computation as soon as we know there are 11185 // fewer than two candidates remaining. 11186 if (Candidates.size() < 2) 11187 continue; 11188 11189 // Add the single, non-constant index of each candidate to the bundle. We 11190 // ensured the indices met these constraints when we originally collected 11191 // the getelementptrs. 11192 SmallVector<Value *, 16> Bundle(Candidates.size()); 11193 auto BundleIndex = 0u; 11194 for (auto *V : Candidates) { 11195 auto *GEP = cast<GetElementPtrInst>(V); 11196 auto *GEPIdx = GEP->idx_begin()->get(); 11197 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 11198 Bundle[BundleIndex++] = GEPIdx; 11199 } 11200 11201 // Try and vectorize the indices. We are currently only interested in 11202 // gather-like cases of the form: 11203 // 11204 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 11205 // 11206 // where the loads of "a", the loads of "b", and the subtractions can be 11207 // performed in parallel. It's likely that detecting this pattern in a 11208 // bottom-up phase will be simpler and less costly than building a 11209 // full-blown top-down phase beginning at the consecutive loads. 11210 Changed |= tryToVectorizeList(Bundle, R); 11211 } 11212 } 11213 return Changed; 11214 } 11215 11216 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 11217 bool Changed = false; 11218 // Sort by type, base pointers and values operand. Value operands must be 11219 // compatible (have the same opcode, same parent), otherwise it is 11220 // definitely not profitable to try to vectorize them. 11221 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 11222 if (V->getPointerOperandType()->getTypeID() < 11223 V2->getPointerOperandType()->getTypeID()) 11224 return true; 11225 if (V->getPointerOperandType()->getTypeID() > 11226 V2->getPointerOperandType()->getTypeID()) 11227 return false; 11228 // UndefValues are compatible with all other values. 11229 if (isa<UndefValue>(V->getValueOperand()) || 11230 isa<UndefValue>(V2->getValueOperand())) 11231 return false; 11232 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 11233 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11234 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 11235 DT->getNode(I1->getParent()); 11236 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 11237 DT->getNode(I2->getParent()); 11238 assert(NodeI1 && "Should only process reachable instructions"); 11239 assert(NodeI2 && "Should only process reachable instructions"); 11240 assert((NodeI1 == NodeI2) == 11241 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11242 "Different nodes should have different DFS numbers"); 11243 if (NodeI1 != NodeI2) 11244 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11245 InstructionsState S = getSameOpcode({I1, I2}); 11246 if (S.getOpcode()) 11247 return false; 11248 return I1->getOpcode() < I2->getOpcode(); 11249 } 11250 if (isa<Constant>(V->getValueOperand()) && 11251 isa<Constant>(V2->getValueOperand())) 11252 return false; 11253 return V->getValueOperand()->getValueID() < 11254 V2->getValueOperand()->getValueID(); 11255 }; 11256 11257 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 11258 if (V1 == V2) 11259 return true; 11260 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 11261 return false; 11262 // Undefs are compatible with any other value. 11263 if (isa<UndefValue>(V1->getValueOperand()) || 11264 isa<UndefValue>(V2->getValueOperand())) 11265 return true; 11266 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 11267 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11268 if (I1->getParent() != I2->getParent()) 11269 return false; 11270 InstructionsState S = getSameOpcode({I1, I2}); 11271 return S.getOpcode() > 0; 11272 } 11273 if (isa<Constant>(V1->getValueOperand()) && 11274 isa<Constant>(V2->getValueOperand())) 11275 return true; 11276 return V1->getValueOperand()->getValueID() == 11277 V2->getValueOperand()->getValueID(); 11278 }; 11279 auto Limit = [&R, this](StoreInst *SI) { 11280 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 11281 return R.getMinVF(EltSize); 11282 }; 11283 11284 // Attempt to sort and vectorize each of the store-groups. 11285 for (auto &Pair : Stores) { 11286 if (Pair.second.size() < 2) 11287 continue; 11288 11289 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 11290 << Pair.second.size() << ".\n"); 11291 11292 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 11293 continue; 11294 11295 Changed |= tryToVectorizeSequence<StoreInst>( 11296 Pair.second, Limit, StoreSorter, AreCompatibleStores, 11297 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 11298 return vectorizeStores(Candidates, R); 11299 }, 11300 /*LimitForRegisterSize=*/false); 11301 } 11302 return Changed; 11303 } 11304 11305 char SLPVectorizer::ID = 0; 11306 11307 static const char lv_name[] = "SLP Vectorizer"; 11308 11309 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 11310 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 11311 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 11312 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11313 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 11314 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 11315 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 11316 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 11317 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 11318 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 11319 11320 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 11321