1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 /// \returns analysis of the Instructions in \p VL described in 475 /// InstructionsState, the Opcode that we suppose the whole list 476 /// could be vectorized even if its structure is diverse. 477 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 478 unsigned BaseIndex = 0) { 479 // Make sure these are all Instructions. 480 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 481 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 482 483 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 484 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 485 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 486 unsigned AltOpcode = Opcode; 487 unsigned AltIndex = BaseIndex; 488 489 // Check for one alternate opcode from another BinaryOperator. 490 // TODO - generalize to support all operators (types, calls etc.). 491 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 492 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 493 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 494 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 495 continue; 496 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 497 isValidForAlternation(Opcode)) { 498 AltOpcode = InstOpcode; 499 AltIndex = Cnt; 500 continue; 501 } 502 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 503 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 504 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 505 if (Ty0 == Ty1) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode) { 509 assert(isValidForAlternation(Opcode) && 510 isValidForAlternation(InstOpcode) && 511 "Cast isn't safe for alternation, logic needs to be updated!"); 512 AltOpcode = InstOpcode; 513 AltIndex = Cnt; 514 continue; 515 } 516 } 517 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 520 } 521 522 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 523 cast<Instruction>(VL[AltIndex])); 524 } 525 526 /// \returns true if all of the values in \p VL have the same type or false 527 /// otherwise. 528 static bool allSameType(ArrayRef<Value *> VL) { 529 Type *Ty = VL[0]->getType(); 530 for (int i = 1, e = VL.size(); i < e; i++) 531 if (VL[i]->getType() != Ty) 532 return false; 533 534 return true; 535 } 536 537 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 538 static Optional<unsigned> getExtractIndex(Instruction *E) { 539 unsigned Opcode = E->getOpcode(); 540 assert((Opcode == Instruction::ExtractElement || 541 Opcode == Instruction::ExtractValue) && 542 "Expected extractelement or extractvalue instruction."); 543 if (Opcode == Instruction::ExtractElement) { 544 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 545 if (!CI) 546 return None; 547 return CI->getZExtValue(); 548 } 549 ExtractValueInst *EI = cast<ExtractValueInst>(E); 550 if (EI->getNumIndices() != 1) 551 return None; 552 return *EI->idx_begin(); 553 } 554 555 /// \returns True if in-tree use also needs extract. This refers to 556 /// possible scalar operand in vectorized instruction. 557 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 558 TargetLibraryInfo *TLI) { 559 unsigned Opcode = UserInst->getOpcode(); 560 switch (Opcode) { 561 case Instruction::Load: { 562 LoadInst *LI = cast<LoadInst>(UserInst); 563 return (LI->getPointerOperand() == Scalar); 564 } 565 case Instruction::Store: { 566 StoreInst *SI = cast<StoreInst>(UserInst); 567 return (SI->getPointerOperand() == Scalar); 568 } 569 case Instruction::Call: { 570 CallInst *CI = cast<CallInst>(UserInst); 571 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 572 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 573 if (hasVectorInstrinsicScalarOpd(ID, i)) 574 return (CI->getArgOperand(i) == Scalar); 575 } 576 LLVM_FALLTHROUGH; 577 } 578 default: 579 return false; 580 } 581 } 582 583 /// \returns the AA location that is being access by the instruction. 584 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 586 return MemoryLocation::get(SI); 587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 588 return MemoryLocation::get(LI); 589 return MemoryLocation(); 590 } 591 592 /// \returns True if the instruction is not a volatile or atomic load/store. 593 static bool isSimple(Instruction *I) { 594 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 595 return LI->isSimple(); 596 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 597 return SI->isSimple(); 598 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 599 return !MI->isVolatile(); 600 return true; 601 } 602 603 /// Shuffles \p Mask in accordance with the given \p SubMask. 604 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 605 if (SubMask.empty()) 606 return; 607 if (Mask.empty()) { 608 Mask.append(SubMask.begin(), SubMask.end()); 609 return; 610 } 611 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 612 int TermValue = std::min(Mask.size(), SubMask.size()); 613 for (int I = 0, E = SubMask.size(); I < E; ++I) { 614 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 615 Mask[SubMask[I]] >= TermValue) 616 continue; 617 NewMask[I] = Mask[SubMask[I]]; 618 } 619 Mask.swap(NewMask); 620 } 621 622 /// Order may have elements assigned special value (size) which is out of 623 /// bounds. Such indices only appear on places which correspond to undef values 624 /// (see canReuseExtract for details) and used in order to avoid undef values 625 /// have effect on operands ordering. 626 /// The first loop below simply finds all unused indices and then the next loop 627 /// nest assigns these indices for undef values positions. 628 /// As an example below Order has two undef positions and they have assigned 629 /// values 3 and 7 respectively: 630 /// before: 6 9 5 4 9 2 1 0 631 /// after: 6 3 5 4 7 2 1 0 632 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 633 const unsigned Sz = Order.size(); 634 SmallBitVector UnusedIndices(Sz, /*t=*/true); 635 SmallBitVector MaskedIndices(Sz); 636 for (unsigned I = 0; I < Sz; ++I) { 637 if (Order[I] < Sz) 638 UnusedIndices.reset(Order[I]); 639 else 640 MaskedIndices.set(I); 641 } 642 if (MaskedIndices.none()) 643 return; 644 assert(UnusedIndices.count() == MaskedIndices.count() && 645 "Non-synced masked/available indices."); 646 int Idx = UnusedIndices.find_first(); 647 int MIdx = MaskedIndices.find_first(); 648 while (MIdx >= 0) { 649 assert(Idx >= 0 && "Indices must be synced."); 650 Order[MIdx] = Idx; 651 Idx = UnusedIndices.find_next(Idx); 652 MIdx = MaskedIndices.find_next(MIdx); 653 } 654 } 655 656 namespace llvm { 657 658 static void inversePermutation(ArrayRef<unsigned> Indices, 659 SmallVectorImpl<int> &Mask) { 660 Mask.clear(); 661 const unsigned E = Indices.size(); 662 Mask.resize(E, UndefMaskElem); 663 for (unsigned I = 0; I < E; ++I) 664 Mask[Indices[I]] = I; 665 } 666 667 /// \returns inserting index of InsertElement or InsertValue instruction, 668 /// using Offset as base offset for index. 669 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 670 int Index = Offset; 671 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 672 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 673 auto *VT = cast<FixedVectorType>(IE->getType()); 674 if (CI->getValue().uge(VT->getNumElements())) 675 return UndefMaskElem; 676 Index *= VT->getNumElements(); 677 Index += CI->getZExtValue(); 678 return Index; 679 } 680 if (isa<UndefValue>(IE->getOperand(2))) 681 return UndefMaskElem; 682 return None; 683 } 684 685 auto *IV = cast<InsertValueInst>(InsertInst); 686 Type *CurrentType = IV->getType(); 687 for (unsigned I : IV->indices()) { 688 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 689 Index *= ST->getNumElements(); 690 CurrentType = ST->getElementType(I); 691 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 692 Index *= AT->getNumElements(); 693 CurrentType = AT->getElementType(); 694 } else { 695 return None; 696 } 697 Index += I; 698 } 699 return Index; 700 } 701 702 /// Reorders the list of scalars in accordance with the given \p Order and then 703 /// the \p Mask. \p Order - is the original order of the scalars, need to 704 /// reorder scalars into an unordered state at first according to the given 705 /// order. Then the ordered scalars are shuffled once again in accordance with 706 /// the provided mask. 707 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 708 ArrayRef<int> Mask) { 709 assert(!Mask.empty() && "Expected non-empty mask."); 710 SmallVector<Value *> Prev(Scalars.size(), 711 UndefValue::get(Scalars.front()->getType())); 712 Prev.swap(Scalars); 713 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 714 if (Mask[I] != UndefMaskElem) 715 Scalars[Mask[I]] = Prev[I]; 716 } 717 718 namespace slpvectorizer { 719 720 /// Bottom Up SLP Vectorizer. 721 class BoUpSLP { 722 struct TreeEntry; 723 struct ScheduleData; 724 725 public: 726 using ValueList = SmallVector<Value *, 8>; 727 using InstrList = SmallVector<Instruction *, 16>; 728 using ValueSet = SmallPtrSet<Value *, 16>; 729 using StoreList = SmallVector<StoreInst *, 8>; 730 using ExtraValueToDebugLocsMap = 731 MapVector<Value *, SmallVector<Instruction *, 2>>; 732 using OrdersType = SmallVector<unsigned, 4>; 733 734 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 735 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 736 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 737 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 738 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 739 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 740 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 741 // Use the vector register size specified by the target unless overridden 742 // by a command-line option. 743 // TODO: It would be better to limit the vectorization factor based on 744 // data type rather than just register size. For example, x86 AVX has 745 // 256-bit registers, but it does not support integer operations 746 // at that width (that requires AVX2). 747 if (MaxVectorRegSizeOption.getNumOccurrences()) 748 MaxVecRegSize = MaxVectorRegSizeOption; 749 else 750 MaxVecRegSize = 751 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 752 .getFixedSize(); 753 754 if (MinVectorRegSizeOption.getNumOccurrences()) 755 MinVecRegSize = MinVectorRegSizeOption; 756 else 757 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 758 } 759 760 /// Vectorize the tree that starts with the elements in \p VL. 761 /// Returns the vectorized root. 762 Value *vectorizeTree(); 763 764 /// Vectorize the tree but with the list of externally used values \p 765 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 766 /// generated extractvalue instructions. 767 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 768 769 /// \returns the cost incurred by unwanted spills and fills, caused by 770 /// holding live values over call sites. 771 InstructionCost getSpillCost() const; 772 773 /// \returns the vectorization cost of the subtree that starts at \p VL. 774 /// A negative number means that this is profitable. 775 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 776 777 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 778 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 779 void buildTree(ArrayRef<Value *> Roots, 780 ArrayRef<Value *> UserIgnoreLst = None); 781 782 /// Builds external uses of the vectorized scalars, i.e. the list of 783 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 784 /// ExternallyUsedValues contains additional list of external uses to handle 785 /// vectorization of reductions. 786 void 787 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 788 789 /// Clear the internal data structures that are created by 'buildTree'. 790 void deleteTree() { 791 VectorizableTree.clear(); 792 ScalarToTreeEntry.clear(); 793 MustGather.clear(); 794 ExternalUses.clear(); 795 for (auto &Iter : BlocksSchedules) { 796 BlockScheduling *BS = Iter.second.get(); 797 BS->clear(); 798 } 799 MinBWs.clear(); 800 InstrElementSize.clear(); 801 } 802 803 unsigned getTreeSize() const { return VectorizableTree.size(); } 804 805 /// Perform LICM and CSE on the newly generated gather sequences. 806 void optimizeGatherSequence(); 807 808 /// Checks if the specified gather tree entry \p TE can be represented as a 809 /// shuffled vector entry + (possibly) permutation with other gathers. It 810 /// implements the checks only for possibly ordered scalars (Loads, 811 /// ExtractElement, ExtractValue), which can be part of the graph. 812 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 813 814 /// Gets reordering data for the given tree entry. If the entry is vectorized 815 /// - just return ReorderIndices, otherwise check if the scalars can be 816 /// reordered and return the most optimal order. 817 /// \param TopToBottom If true, include the order of vectorized stores and 818 /// insertelement nodes, otherwise skip them. 819 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 820 821 /// Reorders the current graph to the most profitable order starting from the 822 /// root node to the leaf nodes. The best order is chosen only from the nodes 823 /// of the same size (vectorization factor). Smaller nodes are considered 824 /// parts of subgraph with smaller VF and they are reordered independently. We 825 /// can make it because we still need to extend smaller nodes to the wider VF 826 /// and we can merge reordering shuffles with the widening shuffles. 827 void reorderTopToBottom(); 828 829 /// Reorders the current graph to the most profitable order starting from 830 /// leaves to the root. It allows to rotate small subgraphs and reduce the 831 /// number of reshuffles if the leaf nodes use the same order. In this case we 832 /// can merge the orders and just shuffle user node instead of shuffling its 833 /// operands. Plus, even the leaf nodes have different orders, it allows to 834 /// sink reordering in the graph closer to the root node and merge it later 835 /// during analysis. 836 void reorderBottomToTop(bool IgnoreReorder = false); 837 838 /// \return The vector element size in bits to use when vectorizing the 839 /// expression tree ending at \p V. If V is a store, the size is the width of 840 /// the stored value. Otherwise, the size is the width of the largest loaded 841 /// value reaching V. This method is used by the vectorizer to calculate 842 /// vectorization factors. 843 unsigned getVectorElementSize(Value *V); 844 845 /// Compute the minimum type sizes required to represent the entries in a 846 /// vectorizable tree. 847 void computeMinimumValueSizes(); 848 849 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 850 unsigned getMaxVecRegSize() const { 851 return MaxVecRegSize; 852 } 853 854 // \returns minimum vector register size as set by cl::opt. 855 unsigned getMinVecRegSize() const { 856 return MinVecRegSize; 857 } 858 859 unsigned getMinVF(unsigned Sz) const { 860 return std::max(2U, getMinVecRegSize() / Sz); 861 } 862 863 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 864 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 865 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 866 return MaxVF ? MaxVF : UINT_MAX; 867 } 868 869 /// Check if homogeneous aggregate is isomorphic to some VectorType. 870 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 871 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 872 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 873 /// 874 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 875 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 876 877 /// \returns True if the VectorizableTree is both tiny and not fully 878 /// vectorizable. We do not vectorize such trees. 879 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 880 881 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 882 /// can be load combined in the backend. Load combining may not be allowed in 883 /// the IR optimizer, so we do not want to alter the pattern. For example, 884 /// partially transforming a scalar bswap() pattern into vector code is 885 /// effectively impossible for the backend to undo. 886 /// TODO: If load combining is allowed in the IR optimizer, this analysis 887 /// may not be necessary. 888 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 889 890 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 891 /// can be load combined in the backend. Load combining may not be allowed in 892 /// the IR optimizer, so we do not want to alter the pattern. For example, 893 /// partially transforming a scalar bswap() pattern into vector code is 894 /// effectively impossible for the backend to undo. 895 /// TODO: If load combining is allowed in the IR optimizer, this analysis 896 /// may not be necessary. 897 bool isLoadCombineCandidate() const; 898 899 OptimizationRemarkEmitter *getORE() { return ORE; } 900 901 /// This structure holds any data we need about the edges being traversed 902 /// during buildTree_rec(). We keep track of: 903 /// (i) the user TreeEntry index, and 904 /// (ii) the index of the edge. 905 struct EdgeInfo { 906 EdgeInfo() = default; 907 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 908 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 909 /// The user TreeEntry. 910 TreeEntry *UserTE = nullptr; 911 /// The operand index of the use. 912 unsigned EdgeIdx = UINT_MAX; 913 #ifndef NDEBUG 914 friend inline raw_ostream &operator<<(raw_ostream &OS, 915 const BoUpSLP::EdgeInfo &EI) { 916 EI.dump(OS); 917 return OS; 918 } 919 /// Debug print. 920 void dump(raw_ostream &OS) const { 921 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 922 << " EdgeIdx:" << EdgeIdx << "}"; 923 } 924 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 925 #endif 926 }; 927 928 /// A helper data structure to hold the operands of a vector of instructions. 929 /// This supports a fixed vector length for all operand vectors. 930 class VLOperands { 931 /// For each operand we need (i) the value, and (ii) the opcode that it 932 /// would be attached to if the expression was in a left-linearized form. 933 /// This is required to avoid illegal operand reordering. 934 /// For example: 935 /// \verbatim 936 /// 0 Op1 937 /// |/ 938 /// Op1 Op2 Linearized + Op2 939 /// \ / ----------> |/ 940 /// - - 941 /// 942 /// Op1 - Op2 (0 + Op1) - Op2 943 /// \endverbatim 944 /// 945 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 946 /// 947 /// Another way to think of this is to track all the operations across the 948 /// path from the operand all the way to the root of the tree and to 949 /// calculate the operation that corresponds to this path. For example, the 950 /// path from Op2 to the root crosses the RHS of the '-', therefore the 951 /// corresponding operation is a '-' (which matches the one in the 952 /// linearized tree, as shown above). 953 /// 954 /// For lack of a better term, we refer to this operation as Accumulated 955 /// Path Operation (APO). 956 struct OperandData { 957 OperandData() = default; 958 OperandData(Value *V, bool APO, bool IsUsed) 959 : V(V), APO(APO), IsUsed(IsUsed) {} 960 /// The operand value. 961 Value *V = nullptr; 962 /// TreeEntries only allow a single opcode, or an alternate sequence of 963 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 964 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 965 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 966 /// (e.g., Add/Mul) 967 bool APO = false; 968 /// Helper data for the reordering function. 969 bool IsUsed = false; 970 }; 971 972 /// During operand reordering, we are trying to select the operand at lane 973 /// that matches best with the operand at the neighboring lane. Our 974 /// selection is based on the type of value we are looking for. For example, 975 /// if the neighboring lane has a load, we need to look for a load that is 976 /// accessing a consecutive address. These strategies are summarized in the 977 /// 'ReorderingMode' enumerator. 978 enum class ReorderingMode { 979 Load, ///< Matching loads to consecutive memory addresses 980 Opcode, ///< Matching instructions based on opcode (same or alternate) 981 Constant, ///< Matching constants 982 Splat, ///< Matching the same instruction multiple times (broadcast) 983 Failed, ///< We failed to create a vectorizable group 984 }; 985 986 using OperandDataVec = SmallVector<OperandData, 2>; 987 988 /// A vector of operand vectors. 989 SmallVector<OperandDataVec, 4> OpsVec; 990 991 const DataLayout &DL; 992 ScalarEvolution &SE; 993 const BoUpSLP &R; 994 995 /// \returns the operand data at \p OpIdx and \p Lane. 996 OperandData &getData(unsigned OpIdx, unsigned Lane) { 997 return OpsVec[OpIdx][Lane]; 998 } 999 1000 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1001 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1002 return OpsVec[OpIdx][Lane]; 1003 } 1004 1005 /// Clears the used flag for all entries. 1006 void clearUsed() { 1007 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1008 OpIdx != NumOperands; ++OpIdx) 1009 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1010 ++Lane) 1011 OpsVec[OpIdx][Lane].IsUsed = false; 1012 } 1013 1014 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1015 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1016 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1017 } 1018 1019 // The hard-coded scores listed here are not very important, though it shall 1020 // be higher for better matches to improve the resulting cost. When 1021 // computing the scores of matching one sub-tree with another, we are 1022 // basically counting the number of values that are matching. So even if all 1023 // scores are set to 1, we would still get a decent matching result. 1024 // However, sometimes we have to break ties. For example we may have to 1025 // choose between matching loads vs matching opcodes. This is what these 1026 // scores are helping us with: they provide the order of preference. Also, 1027 // this is important if the scalar is externally used or used in another 1028 // tree entry node in the different lane. 1029 1030 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1031 static const int ScoreConsecutiveLoads = 4; 1032 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1033 static const int ScoreReversedLoads = 3; 1034 /// ExtractElementInst from same vector and consecutive indexes. 1035 static const int ScoreConsecutiveExtracts = 4; 1036 /// ExtractElementInst from same vector and reversed indices. 1037 static const int ScoreReversedExtracts = 3; 1038 /// Constants. 1039 static const int ScoreConstants = 2; 1040 /// Instructions with the same opcode. 1041 static const int ScoreSameOpcode = 2; 1042 /// Instructions with alt opcodes (e.g, add + sub). 1043 static const int ScoreAltOpcodes = 1; 1044 /// Identical instructions (a.k.a. splat or broadcast). 1045 static const int ScoreSplat = 1; 1046 /// Matching with an undef is preferable to failing. 1047 static const int ScoreUndef = 1; 1048 /// Score for failing to find a decent match. 1049 static const int ScoreFail = 0; 1050 /// User exteranl to the vectorized code. 1051 static const int ExternalUseCost = 1; 1052 /// The user is internal but in a different lane. 1053 static const int UserInDiffLaneCost = ExternalUseCost; 1054 1055 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1056 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1057 ScalarEvolution &SE, int NumLanes) { 1058 if (V1 == V2) 1059 return VLOperands::ScoreSplat; 1060 1061 auto *LI1 = dyn_cast<LoadInst>(V1); 1062 auto *LI2 = dyn_cast<LoadInst>(V2); 1063 if (LI1 && LI2) { 1064 if (LI1->getParent() != LI2->getParent()) 1065 return VLOperands::ScoreFail; 1066 1067 Optional<int> Dist = getPointersDiff( 1068 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1069 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1070 if (!Dist) 1071 return VLOperands::ScoreFail; 1072 // The distance is too large - still may be profitable to use masked 1073 // loads/gathers. 1074 if (std::abs(*Dist) > NumLanes / 2) 1075 return VLOperands::ScoreAltOpcodes; 1076 // This still will detect consecutive loads, but we might have "holes" 1077 // in some cases. It is ok for non-power-2 vectorization and may produce 1078 // better results. It should not affect current vectorization. 1079 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1080 : VLOperands::ScoreReversedLoads; 1081 } 1082 1083 auto *C1 = dyn_cast<Constant>(V1); 1084 auto *C2 = dyn_cast<Constant>(V2); 1085 if (C1 && C2) 1086 return VLOperands::ScoreConstants; 1087 1088 // Extracts from consecutive indexes of the same vector better score as 1089 // the extracts could be optimized away. 1090 Value *EV1; 1091 ConstantInt *Ex1Idx; 1092 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1093 // Undefs are always profitable for extractelements. 1094 if (isa<UndefValue>(V2)) 1095 return VLOperands::ScoreConsecutiveExtracts; 1096 Value *EV2 = nullptr; 1097 ConstantInt *Ex2Idx = nullptr; 1098 if (match(V2, 1099 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1100 m_Undef())))) { 1101 // Undefs are always profitable for extractelements. 1102 if (!Ex2Idx) 1103 return VLOperands::ScoreConsecutiveExtracts; 1104 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1105 return VLOperands::ScoreConsecutiveExtracts; 1106 if (EV2 == EV1) { 1107 int Idx1 = Ex1Idx->getZExtValue(); 1108 int Idx2 = Ex2Idx->getZExtValue(); 1109 int Dist = Idx2 - Idx1; 1110 // The distance is too large - still may be profitable to use 1111 // shuffles. 1112 if (std::abs(Dist) > NumLanes / 2) 1113 return VLOperands::ScoreAltOpcodes; 1114 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1115 : VLOperands::ScoreReversedExtracts; 1116 } 1117 } 1118 } 1119 1120 auto *I1 = dyn_cast<Instruction>(V1); 1121 auto *I2 = dyn_cast<Instruction>(V2); 1122 if (I1 && I2) { 1123 if (I1->getParent() != I2->getParent()) 1124 return VLOperands::ScoreFail; 1125 InstructionsState S = getSameOpcode({I1, I2}); 1126 // Note: Only consider instructions with <= 2 operands to avoid 1127 // complexity explosion. 1128 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1129 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1130 : VLOperands::ScoreSameOpcode; 1131 } 1132 1133 if (isa<UndefValue>(V2)) 1134 return VLOperands::ScoreUndef; 1135 1136 return VLOperands::ScoreFail; 1137 } 1138 1139 /// Holds the values and their lanes that are taking part in the look-ahead 1140 /// score calculation. This is used in the external uses cost calculation. 1141 /// Need to hold all the lanes in case of splat/broadcast at least to 1142 /// correctly check for the use in the different lane. 1143 SmallDenseMap<Value *, SmallSet<int, 4>> InLookAheadValues; 1144 1145 /// \returns the additional cost due to uses of \p LHS and \p RHS that are 1146 /// either external to the vectorized code, or require shuffling. 1147 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1148 const std::pair<Value *, int> &RHS) { 1149 int Cost = 0; 1150 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1151 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1152 Value *V = Values[Idx].first; 1153 if (isa<Constant>(V)) { 1154 // Since this is a function pass, it doesn't make semantic sense to 1155 // walk the users of a subclass of Constant. The users could be in 1156 // another function, or even another module that happens to be in 1157 // the same LLVMContext. 1158 continue; 1159 } 1160 1161 // Calculate the absolute lane, using the minimum relative lane of LHS 1162 // and RHS as base and Idx as the offset. 1163 int Ln = std::min(LHS.second, RHS.second) + Idx; 1164 assert(Ln >= 0 && "Bad lane calculation"); 1165 unsigned UsersBudget = LookAheadUsersBudget; 1166 for (User *U : V->users()) { 1167 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1168 // The user is in the VectorizableTree. Check if we need to insert. 1169 int UserLn = UserTE->findLaneForValue(U); 1170 assert(UserLn >= 0 && "Bad lane"); 1171 // If the values are different, check just the line of the current 1172 // value. If the values are the same, need to add UserInDiffLaneCost 1173 // only if UserLn does not match both line numbers. 1174 if ((LHS.first != RHS.first && UserLn != Ln) || 1175 (LHS.first == RHS.first && UserLn != LHS.second && 1176 UserLn != RHS.second)) { 1177 Cost += UserInDiffLaneCost; 1178 break; 1179 } 1180 } else { 1181 // Check if the user is in the look-ahead code. 1182 auto It2 = InLookAheadValues.find(U); 1183 if (It2 != InLookAheadValues.end()) { 1184 // The user is in the look-ahead code. Check the lane. 1185 if (!It2->getSecond().contains(Ln)) { 1186 Cost += UserInDiffLaneCost; 1187 break; 1188 } 1189 } else { 1190 // The user is neither in SLP tree nor in the look-ahead code. 1191 Cost += ExternalUseCost; 1192 break; 1193 } 1194 } 1195 // Limit the number of visited uses to cap compilation time. 1196 if (--UsersBudget == 0) 1197 break; 1198 } 1199 } 1200 return Cost; 1201 } 1202 1203 /// Go through the operands of \p LHS and \p RHS recursively until \p 1204 /// MaxLevel, and return the cummulative score. For example: 1205 /// \verbatim 1206 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1207 /// \ / \ / \ / \ / 1208 /// + + + + 1209 /// G1 G2 G3 G4 1210 /// \endverbatim 1211 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1212 /// each level recursively, accumulating the score. It starts from matching 1213 /// the additions at level 0, then moves on to the loads (level 1). The 1214 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1215 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1216 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1217 /// Please note that the order of the operands does not matter, as we 1218 /// evaluate the score of all profitable combinations of operands. In 1219 /// other words the score of G1 and G4 is the same as G1 and G2. This 1220 /// heuristic is based on ideas described in: 1221 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1222 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1223 /// Luís F. W. Góes 1224 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1225 const std::pair<Value *, int> &RHS, int CurrLevel, 1226 int MaxLevel) { 1227 1228 Value *V1 = LHS.first; 1229 Value *V2 = RHS.first; 1230 // Get the shallow score of V1 and V2. 1231 int ShallowScoreAtThisLevel = std::max( 1232 (int)ScoreFail, getShallowScore(V1, V2, DL, SE, getNumLanes()) - 1233 getExternalUsesCost(LHS, RHS)); 1234 int Lane1 = LHS.second; 1235 int Lane2 = RHS.second; 1236 1237 // If reached MaxLevel, 1238 // or if V1 and V2 are not instructions, 1239 // or if they are SPLAT, 1240 // or if they are not consecutive, 1241 // or if profitable to vectorize loads or extractelements, early return 1242 // the current cost. 1243 auto *I1 = dyn_cast<Instruction>(V1); 1244 auto *I2 = dyn_cast<Instruction>(V2); 1245 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1246 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1247 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1248 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1249 ShallowScoreAtThisLevel)) 1250 return ShallowScoreAtThisLevel; 1251 assert(I1 && I2 && "Should have early exited."); 1252 1253 // Keep track of in-tree values for determining the external-use cost. 1254 InLookAheadValues[V1].insert(Lane1); 1255 InLookAheadValues[V2].insert(Lane2); 1256 1257 // Contains the I2 operand indexes that got matched with I1 operands. 1258 SmallSet<unsigned, 4> Op2Used; 1259 1260 // Recursion towards the operands of I1 and I2. We are trying all possible 1261 // operand pairs, and keeping track of the best score. 1262 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1263 OpIdx1 != NumOperands1; ++OpIdx1) { 1264 // Try to pair op1I with the best operand of I2. 1265 int MaxTmpScore = 0; 1266 unsigned MaxOpIdx2 = 0; 1267 bool FoundBest = false; 1268 // If I2 is commutative try all combinations. 1269 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1270 unsigned ToIdx = isCommutative(I2) 1271 ? I2->getNumOperands() 1272 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1273 assert(FromIdx <= ToIdx && "Bad index"); 1274 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1275 // Skip operands already paired with OpIdx1. 1276 if (Op2Used.count(OpIdx2)) 1277 continue; 1278 // Recursively calculate the cost at each level 1279 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1280 {I2->getOperand(OpIdx2), Lane2}, 1281 CurrLevel + 1, MaxLevel); 1282 // Look for the best score. 1283 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1284 MaxTmpScore = TmpScore; 1285 MaxOpIdx2 = OpIdx2; 1286 FoundBest = true; 1287 } 1288 } 1289 if (FoundBest) { 1290 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1291 Op2Used.insert(MaxOpIdx2); 1292 ShallowScoreAtThisLevel += MaxTmpScore; 1293 } 1294 } 1295 return ShallowScoreAtThisLevel; 1296 } 1297 1298 /// \Returns the look-ahead score, which tells us how much the sub-trees 1299 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1300 /// score. This helps break ties in an informed way when we cannot decide on 1301 /// the order of the operands by just considering the immediate 1302 /// predecessors. 1303 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1304 const std::pair<Value *, int> &RHS) { 1305 InLookAheadValues.clear(); 1306 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1307 } 1308 1309 // Search all operands in Ops[*][Lane] for the one that matches best 1310 // Ops[OpIdx][LastLane] and return its opreand index. 1311 // If no good match can be found, return None. 1312 Optional<unsigned> 1313 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1314 ArrayRef<ReorderingMode> ReorderingModes) { 1315 unsigned NumOperands = getNumOperands(); 1316 1317 // The operand of the previous lane at OpIdx. 1318 Value *OpLastLane = getData(OpIdx, LastLane).V; 1319 1320 // Our strategy mode for OpIdx. 1321 ReorderingMode RMode = ReorderingModes[OpIdx]; 1322 1323 // The linearized opcode of the operand at OpIdx, Lane. 1324 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1325 1326 // The best operand index and its score. 1327 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1328 // are using the score to differentiate between the two. 1329 struct BestOpData { 1330 Optional<unsigned> Idx = None; 1331 unsigned Score = 0; 1332 } BestOp; 1333 1334 // Iterate through all unused operands and look for the best. 1335 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1336 // Get the operand at Idx and Lane. 1337 OperandData &OpData = getData(Idx, Lane); 1338 Value *Op = OpData.V; 1339 bool OpAPO = OpData.APO; 1340 1341 // Skip already selected operands. 1342 if (OpData.IsUsed) 1343 continue; 1344 1345 // Skip if we are trying to move the operand to a position with a 1346 // different opcode in the linearized tree form. This would break the 1347 // semantics. 1348 if (OpAPO != OpIdxAPO) 1349 continue; 1350 1351 // Look for an operand that matches the current mode. 1352 switch (RMode) { 1353 case ReorderingMode::Load: 1354 case ReorderingMode::Constant: 1355 case ReorderingMode::Opcode: { 1356 bool LeftToRight = Lane > LastLane; 1357 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1358 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1359 unsigned Score = 1360 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1361 if (Score > BestOp.Score) { 1362 BestOp.Idx = Idx; 1363 BestOp.Score = Score; 1364 } 1365 break; 1366 } 1367 case ReorderingMode::Splat: 1368 if (Op == OpLastLane) 1369 BestOp.Idx = Idx; 1370 break; 1371 case ReorderingMode::Failed: 1372 return None; 1373 } 1374 } 1375 1376 if (BestOp.Idx) { 1377 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1378 return BestOp.Idx; 1379 } 1380 // If we could not find a good match return None. 1381 return None; 1382 } 1383 1384 /// Helper for reorderOperandVecs. 1385 /// \returns the lane that we should start reordering from. This is the one 1386 /// which has the least number of operands that can freely move about or 1387 /// less profitable because it already has the most optimal set of operands. 1388 unsigned getBestLaneToStartReordering() const { 1389 unsigned Min = UINT_MAX; 1390 unsigned SameOpNumber = 0; 1391 // std::pair<unsigned, unsigned> is used to implement a simple voting 1392 // algorithm and choose the lane with the least number of operands that 1393 // can freely move about or less profitable because it already has the 1394 // most optimal set of operands. The first unsigned is a counter for 1395 // voting, the second unsigned is the counter of lanes with instructions 1396 // with same/alternate opcodes and same parent basic block. 1397 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1398 // Try to be closer to the original results, if we have multiple lanes 1399 // with same cost. If 2 lanes have the same cost, use the one with the 1400 // lowest index. 1401 for (int I = getNumLanes(); I > 0; --I) { 1402 unsigned Lane = I - 1; 1403 OperandsOrderData NumFreeOpsHash = 1404 getMaxNumOperandsThatCanBeReordered(Lane); 1405 // Compare the number of operands that can move and choose the one with 1406 // the least number. 1407 if (NumFreeOpsHash.NumOfAPOs < Min) { 1408 Min = NumFreeOpsHash.NumOfAPOs; 1409 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1410 HashMap.clear(); 1411 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1412 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1413 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1414 // Select the most optimal lane in terms of number of operands that 1415 // should be moved around. 1416 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1417 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1418 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1419 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1420 ++HashMap[NumFreeOpsHash.Hash].first; 1421 } 1422 } 1423 // Select the lane with the minimum counter. 1424 unsigned BestLane = 0; 1425 unsigned CntMin = UINT_MAX; 1426 for (const auto &Data : reverse(HashMap)) { 1427 if (Data.second.first < CntMin) { 1428 CntMin = Data.second.first; 1429 BestLane = Data.second.second; 1430 } 1431 } 1432 return BestLane; 1433 } 1434 1435 /// Data structure that helps to reorder operands. 1436 struct OperandsOrderData { 1437 /// The best number of operands with the same APOs, which can be 1438 /// reordered. 1439 unsigned NumOfAPOs = UINT_MAX; 1440 /// Number of operands with the same/alternate instruction opcode and 1441 /// parent. 1442 unsigned NumOpsWithSameOpcodeParent = 0; 1443 /// Hash for the actual operands ordering. 1444 /// Used to count operands, actually their position id and opcode 1445 /// value. It is used in the voting mechanism to find the lane with the 1446 /// least number of operands that can freely move about or less profitable 1447 /// because it already has the most optimal set of operands. Can be 1448 /// replaced with SmallVector<unsigned> instead but hash code is faster 1449 /// and requires less memory. 1450 unsigned Hash = 0; 1451 }; 1452 /// \returns the maximum number of operands that are allowed to be reordered 1453 /// for \p Lane and the number of compatible instructions(with the same 1454 /// parent/opcode). This is used as a heuristic for selecting the first lane 1455 /// to start operand reordering. 1456 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1457 unsigned CntTrue = 0; 1458 unsigned NumOperands = getNumOperands(); 1459 // Operands with the same APO can be reordered. We therefore need to count 1460 // how many of them we have for each APO, like this: Cnt[APO] = x. 1461 // Since we only have two APOs, namely true and false, we can avoid using 1462 // a map. Instead we can simply count the number of operands that 1463 // correspond to one of them (in this case the 'true' APO), and calculate 1464 // the other by subtracting it from the total number of operands. 1465 // Operands with the same instruction opcode and parent are more 1466 // profitable since we don't need to move them in many cases, with a high 1467 // probability such lane already can be vectorized effectively. 1468 bool AllUndefs = true; 1469 unsigned NumOpsWithSameOpcodeParent = 0; 1470 Instruction *OpcodeI = nullptr; 1471 BasicBlock *Parent = nullptr; 1472 unsigned Hash = 0; 1473 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1474 const OperandData &OpData = getData(OpIdx, Lane); 1475 if (OpData.APO) 1476 ++CntTrue; 1477 // Use Boyer-Moore majority voting for finding the majority opcode and 1478 // the number of times it occurs. 1479 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1480 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1481 I->getParent() != Parent) { 1482 if (NumOpsWithSameOpcodeParent == 0) { 1483 NumOpsWithSameOpcodeParent = 1; 1484 OpcodeI = I; 1485 Parent = I->getParent(); 1486 } else { 1487 --NumOpsWithSameOpcodeParent; 1488 } 1489 } else { 1490 ++NumOpsWithSameOpcodeParent; 1491 } 1492 } 1493 Hash = hash_combine( 1494 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1495 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1496 } 1497 if (AllUndefs) 1498 return {}; 1499 OperandsOrderData Data; 1500 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1501 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1502 Data.Hash = Hash; 1503 return Data; 1504 } 1505 1506 /// Go through the instructions in VL and append their operands. 1507 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1508 assert(!VL.empty() && "Bad VL"); 1509 assert((empty() || VL.size() == getNumLanes()) && 1510 "Expected same number of lanes"); 1511 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1512 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1513 OpsVec.resize(NumOperands); 1514 unsigned NumLanes = VL.size(); 1515 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1516 OpsVec[OpIdx].resize(NumLanes); 1517 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1518 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1519 // Our tree has just 3 nodes: the root and two operands. 1520 // It is therefore trivial to get the APO. We only need to check the 1521 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1522 // RHS operand. The LHS operand of both add and sub is never attached 1523 // to an inversese operation in the linearized form, therefore its APO 1524 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1525 1526 // Since operand reordering is performed on groups of commutative 1527 // operations or alternating sequences (e.g., +, -), we can safely 1528 // tell the inverse operations by checking commutativity. 1529 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1530 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1531 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1532 APO, false}; 1533 } 1534 } 1535 } 1536 1537 /// \returns the number of operands. 1538 unsigned getNumOperands() const { return OpsVec.size(); } 1539 1540 /// \returns the number of lanes. 1541 unsigned getNumLanes() const { return OpsVec[0].size(); } 1542 1543 /// \returns the operand value at \p OpIdx and \p Lane. 1544 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1545 return getData(OpIdx, Lane).V; 1546 } 1547 1548 /// \returns true if the data structure is empty. 1549 bool empty() const { return OpsVec.empty(); } 1550 1551 /// Clears the data. 1552 void clear() { OpsVec.clear(); } 1553 1554 /// \Returns true if there are enough operands identical to \p Op to fill 1555 /// the whole vector. 1556 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1557 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1558 bool OpAPO = getData(OpIdx, Lane).APO; 1559 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1560 if (Ln == Lane) 1561 continue; 1562 // This is set to true if we found a candidate for broadcast at Lane. 1563 bool FoundCandidate = false; 1564 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1565 OperandData &Data = getData(OpI, Ln); 1566 if (Data.APO != OpAPO || Data.IsUsed) 1567 continue; 1568 if (Data.V == Op) { 1569 FoundCandidate = true; 1570 Data.IsUsed = true; 1571 break; 1572 } 1573 } 1574 if (!FoundCandidate) 1575 return false; 1576 } 1577 return true; 1578 } 1579 1580 public: 1581 /// Initialize with all the operands of the instruction vector \p RootVL. 1582 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1583 ScalarEvolution &SE, const BoUpSLP &R) 1584 : DL(DL), SE(SE), R(R) { 1585 // Append all the operands of RootVL. 1586 appendOperandsOfVL(RootVL); 1587 } 1588 1589 /// \Returns a value vector with the operands across all lanes for the 1590 /// opearnd at \p OpIdx. 1591 ValueList getVL(unsigned OpIdx) const { 1592 ValueList OpVL(OpsVec[OpIdx].size()); 1593 assert(OpsVec[OpIdx].size() == getNumLanes() && 1594 "Expected same num of lanes across all operands"); 1595 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1596 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1597 return OpVL; 1598 } 1599 1600 // Performs operand reordering for 2 or more operands. 1601 // The original operands are in OrigOps[OpIdx][Lane]. 1602 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1603 void reorder() { 1604 unsigned NumOperands = getNumOperands(); 1605 unsigned NumLanes = getNumLanes(); 1606 // Each operand has its own mode. We are using this mode to help us select 1607 // the instructions for each lane, so that they match best with the ones 1608 // we have selected so far. 1609 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1610 1611 // This is a greedy single-pass algorithm. We are going over each lane 1612 // once and deciding on the best order right away with no back-tracking. 1613 // However, in order to increase its effectiveness, we start with the lane 1614 // that has operands that can move the least. For example, given the 1615 // following lanes: 1616 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1617 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1618 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1619 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1620 // we will start at Lane 1, since the operands of the subtraction cannot 1621 // be reordered. Then we will visit the rest of the lanes in a circular 1622 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1623 1624 // Find the first lane that we will start our search from. 1625 unsigned FirstLane = getBestLaneToStartReordering(); 1626 1627 // Initialize the modes. 1628 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1629 Value *OpLane0 = getValue(OpIdx, FirstLane); 1630 // Keep track if we have instructions with all the same opcode on one 1631 // side. 1632 if (isa<LoadInst>(OpLane0)) 1633 ReorderingModes[OpIdx] = ReorderingMode::Load; 1634 else if (isa<Instruction>(OpLane0)) { 1635 // Check if OpLane0 should be broadcast. 1636 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1637 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1638 else 1639 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1640 } 1641 else if (isa<Constant>(OpLane0)) 1642 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1643 else if (isa<Argument>(OpLane0)) 1644 // Our best hope is a Splat. It may save some cost in some cases. 1645 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1646 else 1647 // NOTE: This should be unreachable. 1648 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1649 } 1650 1651 // If the initial strategy fails for any of the operand indexes, then we 1652 // perform reordering again in a second pass. This helps avoid assigning 1653 // high priority to the failed strategy, and should improve reordering for 1654 // the non-failed operand indexes. 1655 for (int Pass = 0; Pass != 2; ++Pass) { 1656 // Skip the second pass if the first pass did not fail. 1657 bool StrategyFailed = false; 1658 // Mark all operand data as free to use. 1659 clearUsed(); 1660 // We keep the original operand order for the FirstLane, so reorder the 1661 // rest of the lanes. We are visiting the nodes in a circular fashion, 1662 // using FirstLane as the center point and increasing the radius 1663 // distance. 1664 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1665 // Visit the lane on the right and then the lane on the left. 1666 for (int Direction : {+1, -1}) { 1667 int Lane = FirstLane + Direction * Distance; 1668 if (Lane < 0 || Lane >= (int)NumLanes) 1669 continue; 1670 int LastLane = Lane - Direction; 1671 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1672 "Out of bounds"); 1673 // Look for a good match for each operand. 1674 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1675 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1676 Optional<unsigned> BestIdx = 1677 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1678 // By not selecting a value, we allow the operands that follow to 1679 // select a better matching value. We will get a non-null value in 1680 // the next run of getBestOperand(). 1681 if (BestIdx) { 1682 // Swap the current operand with the one returned by 1683 // getBestOperand(). 1684 swap(OpIdx, BestIdx.getValue(), Lane); 1685 } else { 1686 // We failed to find a best operand, set mode to 'Failed'. 1687 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1688 // Enable the second pass. 1689 StrategyFailed = true; 1690 } 1691 } 1692 } 1693 } 1694 // Skip second pass if the strategy did not fail. 1695 if (!StrategyFailed) 1696 break; 1697 } 1698 } 1699 1700 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1701 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1702 switch (RMode) { 1703 case ReorderingMode::Load: 1704 return "Load"; 1705 case ReorderingMode::Opcode: 1706 return "Opcode"; 1707 case ReorderingMode::Constant: 1708 return "Constant"; 1709 case ReorderingMode::Splat: 1710 return "Splat"; 1711 case ReorderingMode::Failed: 1712 return "Failed"; 1713 } 1714 llvm_unreachable("Unimplemented Reordering Type"); 1715 } 1716 1717 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1718 raw_ostream &OS) { 1719 return OS << getModeStr(RMode); 1720 } 1721 1722 /// Debug print. 1723 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1724 printMode(RMode, dbgs()); 1725 } 1726 1727 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1728 return printMode(RMode, OS); 1729 } 1730 1731 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1732 const unsigned Indent = 2; 1733 unsigned Cnt = 0; 1734 for (const OperandDataVec &OpDataVec : OpsVec) { 1735 OS << "Operand " << Cnt++ << "\n"; 1736 for (const OperandData &OpData : OpDataVec) { 1737 OS.indent(Indent) << "{"; 1738 if (Value *V = OpData.V) 1739 OS << *V; 1740 else 1741 OS << "null"; 1742 OS << ", APO:" << OpData.APO << "}\n"; 1743 } 1744 OS << "\n"; 1745 } 1746 return OS; 1747 } 1748 1749 /// Debug print. 1750 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1751 #endif 1752 }; 1753 1754 /// Checks if the instruction is marked for deletion. 1755 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1756 1757 /// Marks values operands for later deletion by replacing them with Undefs. 1758 void eraseInstructions(ArrayRef<Value *> AV); 1759 1760 ~BoUpSLP(); 1761 1762 private: 1763 /// Checks if all users of \p I are the part of the vectorization tree. 1764 bool areAllUsersVectorized(Instruction *I, 1765 ArrayRef<Value *> VectorizedVals) const; 1766 1767 /// \returns the cost of the vectorizable entry. 1768 InstructionCost getEntryCost(const TreeEntry *E, 1769 ArrayRef<Value *> VectorizedVals); 1770 1771 /// This is the recursive part of buildTree. 1772 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1773 const EdgeInfo &EI); 1774 1775 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1776 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1777 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1778 /// returns false, setting \p CurrentOrder to either an empty vector or a 1779 /// non-identity permutation that allows to reuse extract instructions. 1780 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1781 SmallVectorImpl<unsigned> &CurrentOrder) const; 1782 1783 /// Vectorize a single entry in the tree. 1784 Value *vectorizeTree(TreeEntry *E); 1785 1786 /// Vectorize a single entry in the tree, starting in \p VL. 1787 Value *vectorizeTree(ArrayRef<Value *> VL); 1788 1789 /// \returns the scalarization cost for this type. Scalarization in this 1790 /// context means the creation of vectors from a group of scalars. If \p 1791 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1792 /// vector elements. 1793 InstructionCost getGatherCost(FixedVectorType *Ty, 1794 const DenseSet<unsigned> &ShuffledIndices, 1795 bool NeedToShuffle) const; 1796 1797 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1798 /// tree entries. 1799 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1800 /// previous tree entries. \p Mask is filled with the shuffle mask. 1801 Optional<TargetTransformInfo::ShuffleKind> 1802 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1803 SmallVectorImpl<const TreeEntry *> &Entries); 1804 1805 /// \returns the scalarization cost for this list of values. Assuming that 1806 /// this subtree gets vectorized, we may need to extract the values from the 1807 /// roots. This method calculates the cost of extracting the values. 1808 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1809 1810 /// Set the Builder insert point to one after the last instruction in 1811 /// the bundle 1812 void setInsertPointAfterBundle(const TreeEntry *E); 1813 1814 /// \returns a vector from a collection of scalars in \p VL. 1815 Value *gather(ArrayRef<Value *> VL); 1816 1817 /// \returns whether the VectorizableTree is fully vectorizable and will 1818 /// be beneficial even the tree height is tiny. 1819 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1820 1821 /// Reorder commutative or alt operands to get better probability of 1822 /// generating vectorized code. 1823 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1824 SmallVectorImpl<Value *> &Left, 1825 SmallVectorImpl<Value *> &Right, 1826 const DataLayout &DL, 1827 ScalarEvolution &SE, 1828 const BoUpSLP &R); 1829 struct TreeEntry { 1830 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1831 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1832 1833 /// \returns true if the scalars in VL are equal to this entry. 1834 bool isSame(ArrayRef<Value *> VL) const { 1835 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1836 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1837 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1838 return VL.size() == Mask.size() && 1839 std::equal(VL.begin(), VL.end(), Mask.begin(), 1840 [Scalars](Value *V, int Idx) { 1841 return (isa<UndefValue>(V) && 1842 Idx == UndefMaskElem) || 1843 (Idx != UndefMaskElem && V == Scalars[Idx]); 1844 }); 1845 }; 1846 if (!ReorderIndices.empty()) { 1847 // TODO: implement matching if the nodes are just reordered, still can 1848 // treat the vector as the same if the list of scalars matches VL 1849 // directly, without reordering. 1850 SmallVector<int> Mask; 1851 inversePermutation(ReorderIndices, Mask); 1852 if (VL.size() == Scalars.size()) 1853 return IsSame(Scalars, Mask); 1854 if (VL.size() == ReuseShuffleIndices.size()) { 1855 ::addMask(Mask, ReuseShuffleIndices); 1856 return IsSame(Scalars, Mask); 1857 } 1858 return false; 1859 } 1860 return IsSame(Scalars, ReuseShuffleIndices); 1861 } 1862 1863 /// \returns true if current entry has same operands as \p TE. 1864 bool hasEqualOperands(const TreeEntry &TE) const { 1865 if (TE.getNumOperands() != getNumOperands()) 1866 return false; 1867 SmallBitVector Used(getNumOperands()); 1868 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1869 unsigned PrevCount = Used.count(); 1870 for (unsigned K = 0; K < E; ++K) { 1871 if (Used.test(K)) 1872 continue; 1873 if (getOperand(K) == TE.getOperand(I)) { 1874 Used.set(K); 1875 break; 1876 } 1877 } 1878 // Check if we actually found the matching operand. 1879 if (PrevCount == Used.count()) 1880 return false; 1881 } 1882 return true; 1883 } 1884 1885 /// \return Final vectorization factor for the node. Defined by the total 1886 /// number of vectorized scalars, including those, used several times in the 1887 /// entry and counted in the \a ReuseShuffleIndices, if any. 1888 unsigned getVectorFactor() const { 1889 if (!ReuseShuffleIndices.empty()) 1890 return ReuseShuffleIndices.size(); 1891 return Scalars.size(); 1892 }; 1893 1894 /// A vector of scalars. 1895 ValueList Scalars; 1896 1897 /// The Scalars are vectorized into this value. It is initialized to Null. 1898 Value *VectorizedValue = nullptr; 1899 1900 /// Do we need to gather this sequence or vectorize it 1901 /// (either with vector instruction or with scatter/gather 1902 /// intrinsics for store/load)? 1903 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1904 EntryState State; 1905 1906 /// Does this sequence require some shuffling? 1907 SmallVector<int, 4> ReuseShuffleIndices; 1908 1909 /// Does this entry require reordering? 1910 SmallVector<unsigned, 4> ReorderIndices; 1911 1912 /// Points back to the VectorizableTree. 1913 /// 1914 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1915 /// to be a pointer and needs to be able to initialize the child iterator. 1916 /// Thus we need a reference back to the container to translate the indices 1917 /// to entries. 1918 VecTreeTy &Container; 1919 1920 /// The TreeEntry index containing the user of this entry. We can actually 1921 /// have multiple users so the data structure is not truly a tree. 1922 SmallVector<EdgeInfo, 1> UserTreeIndices; 1923 1924 /// The index of this treeEntry in VectorizableTree. 1925 int Idx = -1; 1926 1927 private: 1928 /// The operands of each instruction in each lane Operands[op_index][lane]. 1929 /// Note: This helps avoid the replication of the code that performs the 1930 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1931 SmallVector<ValueList, 2> Operands; 1932 1933 /// The main/alternate instruction. 1934 Instruction *MainOp = nullptr; 1935 Instruction *AltOp = nullptr; 1936 1937 public: 1938 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1939 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1940 if (Operands.size() < OpIdx + 1) 1941 Operands.resize(OpIdx + 1); 1942 assert(Operands[OpIdx].empty() && "Already resized?"); 1943 Operands[OpIdx].resize(Scalars.size()); 1944 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1945 Operands[OpIdx][Lane] = OpVL[Lane]; 1946 } 1947 1948 /// Set the operands of this bundle in their original order. 1949 void setOperandsInOrder() { 1950 assert(Operands.empty() && "Already initialized?"); 1951 auto *I0 = cast<Instruction>(Scalars[0]); 1952 Operands.resize(I0->getNumOperands()); 1953 unsigned NumLanes = Scalars.size(); 1954 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1955 OpIdx != NumOperands; ++OpIdx) { 1956 Operands[OpIdx].resize(NumLanes); 1957 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1958 auto *I = cast<Instruction>(Scalars[Lane]); 1959 assert(I->getNumOperands() == NumOperands && 1960 "Expected same number of operands"); 1961 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1962 } 1963 } 1964 } 1965 1966 /// Reorders operands of the node to the given mask \p Mask. 1967 void reorderOperands(ArrayRef<int> Mask) { 1968 for (ValueList &Operand : Operands) 1969 reorderScalars(Operand, Mask); 1970 } 1971 1972 /// \returns the \p OpIdx operand of this TreeEntry. 1973 ValueList &getOperand(unsigned OpIdx) { 1974 assert(OpIdx < Operands.size() && "Off bounds"); 1975 return Operands[OpIdx]; 1976 } 1977 1978 /// \returns the \p OpIdx operand of this TreeEntry. 1979 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 1980 assert(OpIdx < Operands.size() && "Off bounds"); 1981 return Operands[OpIdx]; 1982 } 1983 1984 /// \returns the number of operands. 1985 unsigned getNumOperands() const { return Operands.size(); } 1986 1987 /// \return the single \p OpIdx operand. 1988 Value *getSingleOperand(unsigned OpIdx) const { 1989 assert(OpIdx < Operands.size() && "Off bounds"); 1990 assert(!Operands[OpIdx].empty() && "No operand available"); 1991 return Operands[OpIdx][0]; 1992 } 1993 1994 /// Some of the instructions in the list have alternate opcodes. 1995 bool isAltShuffle() const { 1996 return getOpcode() != getAltOpcode(); 1997 } 1998 1999 bool isOpcodeOrAlt(Instruction *I) const { 2000 unsigned CheckedOpcode = I->getOpcode(); 2001 return (getOpcode() == CheckedOpcode || 2002 getAltOpcode() == CheckedOpcode); 2003 } 2004 2005 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2006 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2007 /// \p OpValue. 2008 Value *isOneOf(Value *Op) const { 2009 auto *I = dyn_cast<Instruction>(Op); 2010 if (I && isOpcodeOrAlt(I)) 2011 return Op; 2012 return MainOp; 2013 } 2014 2015 void setOperations(const InstructionsState &S) { 2016 MainOp = S.MainOp; 2017 AltOp = S.AltOp; 2018 } 2019 2020 Instruction *getMainOp() const { 2021 return MainOp; 2022 } 2023 2024 Instruction *getAltOp() const { 2025 return AltOp; 2026 } 2027 2028 /// The main/alternate opcodes for the list of instructions. 2029 unsigned getOpcode() const { 2030 return MainOp ? MainOp->getOpcode() : 0; 2031 } 2032 2033 unsigned getAltOpcode() const { 2034 return AltOp ? AltOp->getOpcode() : 0; 2035 } 2036 2037 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2038 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2039 int findLaneForValue(Value *V) const { 2040 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2041 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2042 if (!ReorderIndices.empty()) 2043 FoundLane = ReorderIndices[FoundLane]; 2044 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2045 if (!ReuseShuffleIndices.empty()) { 2046 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2047 find(ReuseShuffleIndices, FoundLane)); 2048 } 2049 return FoundLane; 2050 } 2051 2052 #ifndef NDEBUG 2053 /// Debug printer. 2054 LLVM_DUMP_METHOD void dump() const { 2055 dbgs() << Idx << ".\n"; 2056 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2057 dbgs() << "Operand " << OpI << ":\n"; 2058 for (const Value *V : Operands[OpI]) 2059 dbgs().indent(2) << *V << "\n"; 2060 } 2061 dbgs() << "Scalars: \n"; 2062 for (Value *V : Scalars) 2063 dbgs().indent(2) << *V << "\n"; 2064 dbgs() << "State: "; 2065 switch (State) { 2066 case Vectorize: 2067 dbgs() << "Vectorize\n"; 2068 break; 2069 case ScatterVectorize: 2070 dbgs() << "ScatterVectorize\n"; 2071 break; 2072 case NeedToGather: 2073 dbgs() << "NeedToGather\n"; 2074 break; 2075 } 2076 dbgs() << "MainOp: "; 2077 if (MainOp) 2078 dbgs() << *MainOp << "\n"; 2079 else 2080 dbgs() << "NULL\n"; 2081 dbgs() << "AltOp: "; 2082 if (AltOp) 2083 dbgs() << *AltOp << "\n"; 2084 else 2085 dbgs() << "NULL\n"; 2086 dbgs() << "VectorizedValue: "; 2087 if (VectorizedValue) 2088 dbgs() << *VectorizedValue << "\n"; 2089 else 2090 dbgs() << "NULL\n"; 2091 dbgs() << "ReuseShuffleIndices: "; 2092 if (ReuseShuffleIndices.empty()) 2093 dbgs() << "Empty"; 2094 else 2095 for (unsigned ReuseIdx : ReuseShuffleIndices) 2096 dbgs() << ReuseIdx << ", "; 2097 dbgs() << "\n"; 2098 dbgs() << "ReorderIndices: "; 2099 for (unsigned ReorderIdx : ReorderIndices) 2100 dbgs() << ReorderIdx << ", "; 2101 dbgs() << "\n"; 2102 dbgs() << "UserTreeIndices: "; 2103 for (const auto &EInfo : UserTreeIndices) 2104 dbgs() << EInfo << ", "; 2105 dbgs() << "\n"; 2106 } 2107 #endif 2108 }; 2109 2110 #ifndef NDEBUG 2111 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2112 InstructionCost VecCost, 2113 InstructionCost ScalarCost) const { 2114 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2115 dbgs() << "SLP: Costs:\n"; 2116 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2117 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2118 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2119 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2120 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2121 } 2122 #endif 2123 2124 /// Create a new VectorizableTree entry. 2125 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2126 const InstructionsState &S, 2127 const EdgeInfo &UserTreeIdx, 2128 ArrayRef<int> ReuseShuffleIndices = None, 2129 ArrayRef<unsigned> ReorderIndices = None) { 2130 TreeEntry::EntryState EntryState = 2131 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2132 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2133 ReuseShuffleIndices, ReorderIndices); 2134 } 2135 2136 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2137 TreeEntry::EntryState EntryState, 2138 Optional<ScheduleData *> Bundle, 2139 const InstructionsState &S, 2140 const EdgeInfo &UserTreeIdx, 2141 ArrayRef<int> ReuseShuffleIndices = None, 2142 ArrayRef<unsigned> ReorderIndices = None) { 2143 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2144 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2145 "Need to vectorize gather entry?"); 2146 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2147 TreeEntry *Last = VectorizableTree.back().get(); 2148 Last->Idx = VectorizableTree.size() - 1; 2149 Last->State = EntryState; 2150 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2151 ReuseShuffleIndices.end()); 2152 if (ReorderIndices.empty()) { 2153 Last->Scalars.assign(VL.begin(), VL.end()); 2154 Last->setOperations(S); 2155 } else { 2156 // Reorder scalars and build final mask. 2157 Last->Scalars.assign(VL.size(), nullptr); 2158 transform(ReorderIndices, Last->Scalars.begin(), 2159 [VL](unsigned Idx) -> Value * { 2160 if (Idx >= VL.size()) 2161 return UndefValue::get(VL.front()->getType()); 2162 return VL[Idx]; 2163 }); 2164 InstructionsState S = getSameOpcode(Last->Scalars); 2165 Last->setOperations(S); 2166 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2167 } 2168 if (Last->State != TreeEntry::NeedToGather) { 2169 for (Value *V : VL) { 2170 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2171 ScalarToTreeEntry[V] = Last; 2172 } 2173 // Update the scheduler bundle to point to this TreeEntry. 2174 unsigned Lane = 0; 2175 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2176 BundleMember = BundleMember->NextInBundle) { 2177 BundleMember->TE = Last; 2178 BundleMember->Lane = Lane; 2179 ++Lane; 2180 } 2181 assert((!Bundle.getValue() || Lane == VL.size()) && 2182 "Bundle and VL out of sync"); 2183 } else { 2184 MustGather.insert(VL.begin(), VL.end()); 2185 } 2186 2187 if (UserTreeIdx.UserTE) 2188 Last->UserTreeIndices.push_back(UserTreeIdx); 2189 2190 return Last; 2191 } 2192 2193 /// -- Vectorization State -- 2194 /// Holds all of the tree entries. 2195 TreeEntry::VecTreeTy VectorizableTree; 2196 2197 #ifndef NDEBUG 2198 /// Debug printer. 2199 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2200 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2201 VectorizableTree[Id]->dump(); 2202 dbgs() << "\n"; 2203 } 2204 } 2205 #endif 2206 2207 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2208 2209 const TreeEntry *getTreeEntry(Value *V) const { 2210 return ScalarToTreeEntry.lookup(V); 2211 } 2212 2213 /// Maps a specific scalar to its tree entry. 2214 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2215 2216 /// Maps a value to the proposed vectorizable size. 2217 SmallDenseMap<Value *, unsigned> InstrElementSize; 2218 2219 /// A list of scalars that we found that we need to keep as scalars. 2220 ValueSet MustGather; 2221 2222 /// This POD struct describes one external user in the vectorized tree. 2223 struct ExternalUser { 2224 ExternalUser(Value *S, llvm::User *U, int L) 2225 : Scalar(S), User(U), Lane(L) {} 2226 2227 // Which scalar in our function. 2228 Value *Scalar; 2229 2230 // Which user that uses the scalar. 2231 llvm::User *User; 2232 2233 // Which lane does the scalar belong to. 2234 int Lane; 2235 }; 2236 using UserList = SmallVector<ExternalUser, 16>; 2237 2238 /// Checks if two instructions may access the same memory. 2239 /// 2240 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2241 /// is invariant in the calling loop. 2242 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2243 Instruction *Inst2) { 2244 // First check if the result is already in the cache. 2245 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2246 Optional<bool> &result = AliasCache[key]; 2247 if (result.hasValue()) { 2248 return result.getValue(); 2249 } 2250 bool aliased = true; 2251 if (Loc1.Ptr && isSimple(Inst1)) 2252 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2253 // Store the result in the cache. 2254 result = aliased; 2255 return aliased; 2256 } 2257 2258 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2259 2260 /// Cache for alias results. 2261 /// TODO: consider moving this to the AliasAnalysis itself. 2262 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2263 2264 /// Removes an instruction from its block and eventually deletes it. 2265 /// It's like Instruction::eraseFromParent() except that the actual deletion 2266 /// is delayed until BoUpSLP is destructed. 2267 /// This is required to ensure that there are no incorrect collisions in the 2268 /// AliasCache, which can happen if a new instruction is allocated at the 2269 /// same address as a previously deleted instruction. 2270 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2271 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2272 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2273 } 2274 2275 /// Temporary store for deleted instructions. Instructions will be deleted 2276 /// eventually when the BoUpSLP is destructed. 2277 DenseMap<Instruction *, bool> DeletedInstructions; 2278 2279 /// A list of values that need to extracted out of the tree. 2280 /// This list holds pairs of (Internal Scalar : External User). External User 2281 /// can be nullptr, it means that this Internal Scalar will be used later, 2282 /// after vectorization. 2283 UserList ExternalUses; 2284 2285 /// Values used only by @llvm.assume calls. 2286 SmallPtrSet<const Value *, 32> EphValues; 2287 2288 /// Holds all of the instructions that we gathered. 2289 SetVector<Instruction *> GatherShuffleSeq; 2290 2291 /// A list of blocks that we are going to CSE. 2292 SetVector<BasicBlock *> CSEBlocks; 2293 2294 /// Contains all scheduling relevant data for an instruction. 2295 /// A ScheduleData either represents a single instruction or a member of an 2296 /// instruction bundle (= a group of instructions which is combined into a 2297 /// vector instruction). 2298 struct ScheduleData { 2299 // The initial value for the dependency counters. It means that the 2300 // dependencies are not calculated yet. 2301 enum { InvalidDeps = -1 }; 2302 2303 ScheduleData() = default; 2304 2305 void init(int BlockSchedulingRegionID, Value *OpVal) { 2306 FirstInBundle = this; 2307 NextInBundle = nullptr; 2308 NextLoadStore = nullptr; 2309 IsScheduled = false; 2310 SchedulingRegionID = BlockSchedulingRegionID; 2311 UnscheduledDepsInBundle = UnscheduledDeps; 2312 clearDependencies(); 2313 OpValue = OpVal; 2314 TE = nullptr; 2315 Lane = -1; 2316 } 2317 2318 /// Returns true if the dependency information has been calculated. 2319 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2320 2321 /// Returns true for single instructions and for bundle representatives 2322 /// (= the head of a bundle). 2323 bool isSchedulingEntity() const { return FirstInBundle == this; } 2324 2325 /// Returns true if it represents an instruction bundle and not only a 2326 /// single instruction. 2327 bool isPartOfBundle() const { 2328 return NextInBundle != nullptr || FirstInBundle != this; 2329 } 2330 2331 /// Returns true if it is ready for scheduling, i.e. it has no more 2332 /// unscheduled depending instructions/bundles. 2333 bool isReady() const { 2334 assert(isSchedulingEntity() && 2335 "can't consider non-scheduling entity for ready list"); 2336 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2337 } 2338 2339 /// Modifies the number of unscheduled dependencies, also updating it for 2340 /// the whole bundle. 2341 int incrementUnscheduledDeps(int Incr) { 2342 UnscheduledDeps += Incr; 2343 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2344 } 2345 2346 /// Sets the number of unscheduled dependencies to the number of 2347 /// dependencies. 2348 void resetUnscheduledDeps() { 2349 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2350 } 2351 2352 /// Clears all dependency information. 2353 void clearDependencies() { 2354 Dependencies = InvalidDeps; 2355 resetUnscheduledDeps(); 2356 MemoryDependencies.clear(); 2357 } 2358 2359 void dump(raw_ostream &os) const { 2360 if (!isSchedulingEntity()) { 2361 os << "/ " << *Inst; 2362 } else if (NextInBundle) { 2363 os << '[' << *Inst; 2364 ScheduleData *SD = NextInBundle; 2365 while (SD) { 2366 os << ';' << *SD->Inst; 2367 SD = SD->NextInBundle; 2368 } 2369 os << ']'; 2370 } else { 2371 os << *Inst; 2372 } 2373 } 2374 2375 Instruction *Inst = nullptr; 2376 2377 /// Points to the head in an instruction bundle (and always to this for 2378 /// single instructions). 2379 ScheduleData *FirstInBundle = nullptr; 2380 2381 /// Single linked list of all instructions in a bundle. Null if it is a 2382 /// single instruction. 2383 ScheduleData *NextInBundle = nullptr; 2384 2385 /// Single linked list of all memory instructions (e.g. load, store, call) 2386 /// in the block - until the end of the scheduling region. 2387 ScheduleData *NextLoadStore = nullptr; 2388 2389 /// The dependent memory instructions. 2390 /// This list is derived on demand in calculateDependencies(). 2391 SmallVector<ScheduleData *, 4> MemoryDependencies; 2392 2393 /// This ScheduleData is in the current scheduling region if this matches 2394 /// the current SchedulingRegionID of BlockScheduling. 2395 int SchedulingRegionID = 0; 2396 2397 /// Used for getting a "good" final ordering of instructions. 2398 int SchedulingPriority = 0; 2399 2400 /// The number of dependencies. Constitutes of the number of users of the 2401 /// instruction plus the number of dependent memory instructions (if any). 2402 /// This value is calculated on demand. 2403 /// If InvalidDeps, the number of dependencies is not calculated yet. 2404 int Dependencies = InvalidDeps; 2405 2406 /// The number of dependencies minus the number of dependencies of scheduled 2407 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2408 /// for scheduling. 2409 /// Note that this is negative as long as Dependencies is not calculated. 2410 int UnscheduledDeps = InvalidDeps; 2411 2412 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2413 /// single instructions. 2414 int UnscheduledDepsInBundle = InvalidDeps; 2415 2416 /// True if this instruction is scheduled (or considered as scheduled in the 2417 /// dry-run). 2418 bool IsScheduled = false; 2419 2420 /// Opcode of the current instruction in the schedule data. 2421 Value *OpValue = nullptr; 2422 2423 /// The TreeEntry that this instruction corresponds to. 2424 TreeEntry *TE = nullptr; 2425 2426 /// The lane of this node in the TreeEntry. 2427 int Lane = -1; 2428 }; 2429 2430 #ifndef NDEBUG 2431 friend inline raw_ostream &operator<<(raw_ostream &os, 2432 const BoUpSLP::ScheduleData &SD) { 2433 SD.dump(os); 2434 return os; 2435 } 2436 #endif 2437 2438 friend struct GraphTraits<BoUpSLP *>; 2439 friend struct DOTGraphTraits<BoUpSLP *>; 2440 2441 /// Contains all scheduling data for a basic block. 2442 struct BlockScheduling { 2443 BlockScheduling(BasicBlock *BB) 2444 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2445 2446 void clear() { 2447 ReadyInsts.clear(); 2448 ScheduleStart = nullptr; 2449 ScheduleEnd = nullptr; 2450 FirstLoadStoreInRegion = nullptr; 2451 LastLoadStoreInRegion = nullptr; 2452 2453 // Reduce the maximum schedule region size by the size of the 2454 // previous scheduling run. 2455 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2456 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2457 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2458 ScheduleRegionSize = 0; 2459 2460 // Make a new scheduling region, i.e. all existing ScheduleData is not 2461 // in the new region yet. 2462 ++SchedulingRegionID; 2463 } 2464 2465 ScheduleData *getScheduleData(Value *V) { 2466 ScheduleData *SD = ScheduleDataMap[V]; 2467 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2468 return SD; 2469 return nullptr; 2470 } 2471 2472 ScheduleData *getScheduleData(Value *V, Value *Key) { 2473 if (V == Key) 2474 return getScheduleData(V); 2475 auto I = ExtraScheduleDataMap.find(V); 2476 if (I != ExtraScheduleDataMap.end()) { 2477 ScheduleData *SD = I->second[Key]; 2478 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2479 return SD; 2480 } 2481 return nullptr; 2482 } 2483 2484 bool isInSchedulingRegion(ScheduleData *SD) const { 2485 return SD->SchedulingRegionID == SchedulingRegionID; 2486 } 2487 2488 /// Marks an instruction as scheduled and puts all dependent ready 2489 /// instructions into the ready-list. 2490 template <typename ReadyListType> 2491 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2492 SD->IsScheduled = true; 2493 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2494 2495 ScheduleData *BundleMember = SD; 2496 while (BundleMember) { 2497 if (BundleMember->Inst != BundleMember->OpValue) { 2498 BundleMember = BundleMember->NextInBundle; 2499 continue; 2500 } 2501 // Handle the def-use chain dependencies. 2502 2503 // Decrement the unscheduled counter and insert to ready list if ready. 2504 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2505 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2506 if (OpDef && OpDef->hasValidDependencies() && 2507 OpDef->incrementUnscheduledDeps(-1) == 0) { 2508 // There are no more unscheduled dependencies after 2509 // decrementing, so we can put the dependent instruction 2510 // into the ready list. 2511 ScheduleData *DepBundle = OpDef->FirstInBundle; 2512 assert(!DepBundle->IsScheduled && 2513 "already scheduled bundle gets ready"); 2514 ReadyList.insert(DepBundle); 2515 LLVM_DEBUG(dbgs() 2516 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2517 } 2518 }); 2519 }; 2520 2521 // If BundleMember is a vector bundle, its operands may have been 2522 // reordered duiring buildTree(). We therefore need to get its operands 2523 // through the TreeEntry. 2524 if (TreeEntry *TE = BundleMember->TE) { 2525 int Lane = BundleMember->Lane; 2526 assert(Lane >= 0 && "Lane not set"); 2527 2528 // Since vectorization tree is being built recursively this assertion 2529 // ensures that the tree entry has all operands set before reaching 2530 // this code. Couple of exceptions known at the moment are extracts 2531 // where their second (immediate) operand is not added. Since 2532 // immediates do not affect scheduler behavior this is considered 2533 // okay. 2534 auto *In = TE->getMainOp(); 2535 assert(In && 2536 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2537 In->getNumOperands() == TE->getNumOperands()) && 2538 "Missed TreeEntry operands?"); 2539 (void)In; // fake use to avoid build failure when assertions disabled 2540 2541 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2542 OpIdx != NumOperands; ++OpIdx) 2543 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2544 DecrUnsched(I); 2545 } else { 2546 // If BundleMember is a stand-alone instruction, no operand reordering 2547 // has taken place, so we directly access its operands. 2548 for (Use &U : BundleMember->Inst->operands()) 2549 if (auto *I = dyn_cast<Instruction>(U.get())) 2550 DecrUnsched(I); 2551 } 2552 // Handle the memory dependencies. 2553 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2554 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2555 // There are no more unscheduled dependencies after decrementing, 2556 // so we can put the dependent instruction into the ready list. 2557 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2558 assert(!DepBundle->IsScheduled && 2559 "already scheduled bundle gets ready"); 2560 ReadyList.insert(DepBundle); 2561 LLVM_DEBUG(dbgs() 2562 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2563 } 2564 } 2565 BundleMember = BundleMember->NextInBundle; 2566 } 2567 } 2568 2569 void doForAllOpcodes(Value *V, 2570 function_ref<void(ScheduleData *SD)> Action) { 2571 if (ScheduleData *SD = getScheduleData(V)) 2572 Action(SD); 2573 auto I = ExtraScheduleDataMap.find(V); 2574 if (I != ExtraScheduleDataMap.end()) 2575 for (auto &P : I->second) 2576 if (P.second->SchedulingRegionID == SchedulingRegionID) 2577 Action(P.second); 2578 } 2579 2580 /// Put all instructions into the ReadyList which are ready for scheduling. 2581 template <typename ReadyListType> 2582 void initialFillReadyList(ReadyListType &ReadyList) { 2583 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2584 doForAllOpcodes(I, [&](ScheduleData *SD) { 2585 if (SD->isSchedulingEntity() && SD->isReady()) { 2586 ReadyList.insert(SD); 2587 LLVM_DEBUG(dbgs() 2588 << "SLP: initially in ready list: " << *I << "\n"); 2589 } 2590 }); 2591 } 2592 } 2593 2594 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2595 /// cyclic dependencies. This is only a dry-run, no instructions are 2596 /// actually moved at this stage. 2597 /// \returns the scheduling bundle. The returned Optional value is non-None 2598 /// if \p VL is allowed to be scheduled. 2599 Optional<ScheduleData *> 2600 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2601 const InstructionsState &S); 2602 2603 /// Un-bundles a group of instructions. 2604 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2605 2606 /// Allocates schedule data chunk. 2607 ScheduleData *allocateScheduleDataChunks(); 2608 2609 /// Extends the scheduling region so that V is inside the region. 2610 /// \returns true if the region size is within the limit. 2611 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2612 2613 /// Initialize the ScheduleData structures for new instructions in the 2614 /// scheduling region. 2615 void initScheduleData(Instruction *FromI, Instruction *ToI, 2616 ScheduleData *PrevLoadStore, 2617 ScheduleData *NextLoadStore); 2618 2619 /// Updates the dependency information of a bundle and of all instructions/ 2620 /// bundles which depend on the original bundle. 2621 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2622 BoUpSLP *SLP); 2623 2624 /// Sets all instruction in the scheduling region to un-scheduled. 2625 void resetSchedule(); 2626 2627 BasicBlock *BB; 2628 2629 /// Simple memory allocation for ScheduleData. 2630 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2631 2632 /// The size of a ScheduleData array in ScheduleDataChunks. 2633 int ChunkSize; 2634 2635 /// The allocator position in the current chunk, which is the last entry 2636 /// of ScheduleDataChunks. 2637 int ChunkPos; 2638 2639 /// Attaches ScheduleData to Instruction. 2640 /// Note that the mapping survives during all vectorization iterations, i.e. 2641 /// ScheduleData structures are recycled. 2642 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2643 2644 /// Attaches ScheduleData to Instruction with the leading key. 2645 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2646 ExtraScheduleDataMap; 2647 2648 struct ReadyList : SmallVector<ScheduleData *, 8> { 2649 void insert(ScheduleData *SD) { push_back(SD); } 2650 }; 2651 2652 /// The ready-list for scheduling (only used for the dry-run). 2653 ReadyList ReadyInsts; 2654 2655 /// The first instruction of the scheduling region. 2656 Instruction *ScheduleStart = nullptr; 2657 2658 /// The first instruction _after_ the scheduling region. 2659 Instruction *ScheduleEnd = nullptr; 2660 2661 /// The first memory accessing instruction in the scheduling region 2662 /// (can be null). 2663 ScheduleData *FirstLoadStoreInRegion = nullptr; 2664 2665 /// The last memory accessing instruction in the scheduling region 2666 /// (can be null). 2667 ScheduleData *LastLoadStoreInRegion = nullptr; 2668 2669 /// The current size of the scheduling region. 2670 int ScheduleRegionSize = 0; 2671 2672 /// The maximum size allowed for the scheduling region. 2673 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2674 2675 /// The ID of the scheduling region. For a new vectorization iteration this 2676 /// is incremented which "removes" all ScheduleData from the region. 2677 // Make sure that the initial SchedulingRegionID is greater than the 2678 // initial SchedulingRegionID in ScheduleData (which is 0). 2679 int SchedulingRegionID = 1; 2680 }; 2681 2682 /// Attaches the BlockScheduling structures to basic blocks. 2683 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2684 2685 /// Performs the "real" scheduling. Done before vectorization is actually 2686 /// performed in a basic block. 2687 void scheduleBlock(BlockScheduling *BS); 2688 2689 /// List of users to ignore during scheduling and that don't need extracting. 2690 ArrayRef<Value *> UserIgnoreList; 2691 2692 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2693 /// sorted SmallVectors of unsigned. 2694 struct OrdersTypeDenseMapInfo { 2695 static OrdersType getEmptyKey() { 2696 OrdersType V; 2697 V.push_back(~1U); 2698 return V; 2699 } 2700 2701 static OrdersType getTombstoneKey() { 2702 OrdersType V; 2703 V.push_back(~2U); 2704 return V; 2705 } 2706 2707 static unsigned getHashValue(const OrdersType &V) { 2708 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2709 } 2710 2711 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2712 return LHS == RHS; 2713 } 2714 }; 2715 2716 // Analysis and block reference. 2717 Function *F; 2718 ScalarEvolution *SE; 2719 TargetTransformInfo *TTI; 2720 TargetLibraryInfo *TLI; 2721 AAResults *AA; 2722 LoopInfo *LI; 2723 DominatorTree *DT; 2724 AssumptionCache *AC; 2725 DemandedBits *DB; 2726 const DataLayout *DL; 2727 OptimizationRemarkEmitter *ORE; 2728 2729 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2730 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2731 2732 /// Instruction builder to construct the vectorized tree. 2733 IRBuilder<> Builder; 2734 2735 /// A map of scalar integer values to the smallest bit width with which they 2736 /// can legally be represented. The values map to (width, signed) pairs, 2737 /// where "width" indicates the minimum bit width and "signed" is True if the 2738 /// value must be signed-extended, rather than zero-extended, back to its 2739 /// original width. 2740 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2741 }; 2742 2743 } // end namespace slpvectorizer 2744 2745 template <> struct GraphTraits<BoUpSLP *> { 2746 using TreeEntry = BoUpSLP::TreeEntry; 2747 2748 /// NodeRef has to be a pointer per the GraphWriter. 2749 using NodeRef = TreeEntry *; 2750 2751 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2752 2753 /// Add the VectorizableTree to the index iterator to be able to return 2754 /// TreeEntry pointers. 2755 struct ChildIteratorType 2756 : public iterator_adaptor_base< 2757 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2758 ContainerTy &VectorizableTree; 2759 2760 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2761 ContainerTy &VT) 2762 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2763 2764 NodeRef operator*() { return I->UserTE; } 2765 }; 2766 2767 static NodeRef getEntryNode(BoUpSLP &R) { 2768 return R.VectorizableTree[0].get(); 2769 } 2770 2771 static ChildIteratorType child_begin(NodeRef N) { 2772 return {N->UserTreeIndices.begin(), N->Container}; 2773 } 2774 2775 static ChildIteratorType child_end(NodeRef N) { 2776 return {N->UserTreeIndices.end(), N->Container}; 2777 } 2778 2779 /// For the node iterator we just need to turn the TreeEntry iterator into a 2780 /// TreeEntry* iterator so that it dereferences to NodeRef. 2781 class nodes_iterator { 2782 using ItTy = ContainerTy::iterator; 2783 ItTy It; 2784 2785 public: 2786 nodes_iterator(const ItTy &It2) : It(It2) {} 2787 NodeRef operator*() { return It->get(); } 2788 nodes_iterator operator++() { 2789 ++It; 2790 return *this; 2791 } 2792 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2793 }; 2794 2795 static nodes_iterator nodes_begin(BoUpSLP *R) { 2796 return nodes_iterator(R->VectorizableTree.begin()); 2797 } 2798 2799 static nodes_iterator nodes_end(BoUpSLP *R) { 2800 return nodes_iterator(R->VectorizableTree.end()); 2801 } 2802 2803 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2804 }; 2805 2806 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2807 using TreeEntry = BoUpSLP::TreeEntry; 2808 2809 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2810 2811 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2812 std::string Str; 2813 raw_string_ostream OS(Str); 2814 if (isSplat(Entry->Scalars)) 2815 OS << "<splat> "; 2816 for (auto V : Entry->Scalars) { 2817 OS << *V; 2818 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2819 return EU.Scalar == V; 2820 })) 2821 OS << " <extract>"; 2822 OS << "\n"; 2823 } 2824 return Str; 2825 } 2826 2827 static std::string getNodeAttributes(const TreeEntry *Entry, 2828 const BoUpSLP *) { 2829 if (Entry->State == TreeEntry::NeedToGather) 2830 return "color=red"; 2831 return ""; 2832 } 2833 }; 2834 2835 } // end namespace llvm 2836 2837 BoUpSLP::~BoUpSLP() { 2838 for (const auto &Pair : DeletedInstructions) { 2839 // Replace operands of ignored instructions with Undefs in case if they were 2840 // marked for deletion. 2841 if (Pair.getSecond()) { 2842 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2843 Pair.getFirst()->replaceAllUsesWith(Undef); 2844 } 2845 Pair.getFirst()->dropAllReferences(); 2846 } 2847 for (const auto &Pair : DeletedInstructions) { 2848 assert(Pair.getFirst()->use_empty() && 2849 "trying to erase instruction with users."); 2850 Pair.getFirst()->eraseFromParent(); 2851 } 2852 #ifdef EXPENSIVE_CHECKS 2853 // If we could guarantee that this call is not extremely slow, we could 2854 // remove the ifdef limitation (see PR47712). 2855 assert(!verifyFunction(*F, &dbgs())); 2856 #endif 2857 } 2858 2859 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2860 for (auto *V : AV) { 2861 if (auto *I = dyn_cast<Instruction>(V)) 2862 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2863 }; 2864 } 2865 2866 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2867 /// contains original mask for the scalars reused in the node. Procedure 2868 /// transform this mask in accordance with the given \p Mask. 2869 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2870 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2871 "Expected non-empty mask."); 2872 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2873 Prev.swap(Reuses); 2874 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2875 if (Mask[I] != UndefMaskElem) 2876 Reuses[Mask[I]] = Prev[I]; 2877 } 2878 2879 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2880 /// the original order of the scalars. Procedure transforms the provided order 2881 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2882 /// identity order, \p Order is cleared. 2883 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2884 assert(!Mask.empty() && "Expected non-empty mask."); 2885 SmallVector<int> MaskOrder; 2886 if (Order.empty()) { 2887 MaskOrder.resize(Mask.size()); 2888 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2889 } else { 2890 inversePermutation(Order, MaskOrder); 2891 } 2892 reorderReuses(MaskOrder, Mask); 2893 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2894 Order.clear(); 2895 return; 2896 } 2897 Order.assign(Mask.size(), Mask.size()); 2898 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2899 if (MaskOrder[I] != UndefMaskElem) 2900 Order[MaskOrder[I]] = I; 2901 fixupOrderingIndices(Order); 2902 } 2903 2904 Optional<BoUpSLP::OrdersType> 2905 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2906 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2907 unsigned NumScalars = TE.Scalars.size(); 2908 OrdersType CurrentOrder(NumScalars, NumScalars); 2909 SmallVector<int> Positions; 2910 SmallBitVector UsedPositions(NumScalars); 2911 const TreeEntry *STE = nullptr; 2912 // Try to find all gathered scalars that are gets vectorized in other 2913 // vectorize node. Here we can have only one single tree vector node to 2914 // correctly identify order of the gathered scalars. 2915 for (unsigned I = 0; I < NumScalars; ++I) { 2916 Value *V = TE.Scalars[I]; 2917 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2918 continue; 2919 if (const auto *LocalSTE = getTreeEntry(V)) { 2920 if (!STE) 2921 STE = LocalSTE; 2922 else if (STE != LocalSTE) 2923 // Take the order only from the single vector node. 2924 return None; 2925 unsigned Lane = 2926 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2927 if (Lane >= NumScalars) 2928 return None; 2929 if (CurrentOrder[Lane] != NumScalars) { 2930 if (Lane != I) 2931 continue; 2932 UsedPositions.reset(CurrentOrder[Lane]); 2933 } 2934 // The partial identity (where only some elements of the gather node are 2935 // in the identity order) is good. 2936 CurrentOrder[Lane] = I; 2937 UsedPositions.set(I); 2938 } 2939 } 2940 // Need to keep the order if we have a vector entry and at least 2 scalars or 2941 // the vectorized entry has just 2 scalars. 2942 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2943 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2944 for (unsigned I = 0; I < NumScalars; ++I) 2945 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2946 return false; 2947 return true; 2948 }; 2949 if (IsIdentityOrder(CurrentOrder)) { 2950 CurrentOrder.clear(); 2951 return CurrentOrder; 2952 } 2953 auto *It = CurrentOrder.begin(); 2954 for (unsigned I = 0; I < NumScalars;) { 2955 if (UsedPositions.test(I)) { 2956 ++I; 2957 continue; 2958 } 2959 if (*It == NumScalars) { 2960 *It = I; 2961 ++I; 2962 } 2963 ++It; 2964 } 2965 return CurrentOrder; 2966 } 2967 return None; 2968 } 2969 2970 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 2971 bool TopToBottom) { 2972 // No need to reorder if need to shuffle reuses, still need to shuffle the 2973 // node. 2974 if (!TE.ReuseShuffleIndices.empty()) 2975 return None; 2976 if (TE.State == TreeEntry::Vectorize && 2977 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 2978 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 2979 !TE.isAltShuffle()) 2980 return TE.ReorderIndices; 2981 if (TE.State == TreeEntry::NeedToGather) { 2982 // TODO: add analysis of other gather nodes with extractelement 2983 // instructions and other values/instructions, not only undefs. 2984 if (((TE.getOpcode() == Instruction::ExtractElement && 2985 !TE.isAltShuffle()) || 2986 (all_of(TE.Scalars, 2987 [](Value *V) { 2988 return isa<UndefValue, ExtractElementInst>(V); 2989 }) && 2990 any_of(TE.Scalars, 2991 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 2992 all_of(TE.Scalars, 2993 [](Value *V) { 2994 auto *EE = dyn_cast<ExtractElementInst>(V); 2995 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 2996 }) && 2997 allSameType(TE.Scalars)) { 2998 // Check that gather of extractelements can be represented as 2999 // just a shuffle of a single vector. 3000 OrdersType CurrentOrder; 3001 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3002 if (Reuse || !CurrentOrder.empty()) { 3003 if (!CurrentOrder.empty()) 3004 fixupOrderingIndices(CurrentOrder); 3005 return CurrentOrder; 3006 } 3007 } 3008 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3009 return CurrentOrder; 3010 } 3011 return None; 3012 } 3013 3014 void BoUpSLP::reorderTopToBottom() { 3015 // Maps VF to the graph nodes. 3016 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 3017 // ExtractElement gather nodes which can be vectorized and need to handle 3018 // their ordering. 3019 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3020 // Find all reorderable nodes with the given VF. 3021 // Currently the are vectorized stores,loads,extracts + some gathering of 3022 // extracts. 3023 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3024 const std::unique_ptr<TreeEntry> &TE) { 3025 if (Optional<OrdersType> CurrentOrder = 3026 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3027 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3028 if (TE->State != TreeEntry::Vectorize) 3029 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3030 } 3031 }); 3032 3033 // Reorder the graph nodes according to their vectorization factor. 3034 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3035 VF /= 2) { 3036 auto It = VFToOrderedEntries.find(VF); 3037 if (It == VFToOrderedEntries.end()) 3038 continue; 3039 // Try to find the most profitable order. We just are looking for the most 3040 // used order and reorder scalar elements in the nodes according to this 3041 // mostly used order. 3042 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 3043 // All operands are reordered and used only in this node - propagate the 3044 // most used order to the user node. 3045 MapVector<OrdersType, unsigned, 3046 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3047 OrdersUses; 3048 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3049 for (const TreeEntry *OpTE : OrderedEntries) { 3050 // No need to reorder this nodes, still need to extend and to use shuffle, 3051 // just need to merge reordering shuffle and the reuse shuffle. 3052 if (!OpTE->ReuseShuffleIndices.empty()) 3053 continue; 3054 // Count number of orders uses. 3055 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3056 if (OpTE->State == TreeEntry::NeedToGather) 3057 return GathersToOrders.find(OpTE)->second; 3058 return OpTE->ReorderIndices; 3059 }(); 3060 // Stores actually store the mask, not the order, need to invert. 3061 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3062 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3063 SmallVector<int> Mask; 3064 inversePermutation(Order, Mask); 3065 unsigned E = Order.size(); 3066 OrdersType CurrentOrder(E, E); 3067 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3068 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3069 }); 3070 fixupOrderingIndices(CurrentOrder); 3071 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3072 } else { 3073 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3074 } 3075 } 3076 // Set order of the user node. 3077 if (OrdersUses.empty()) 3078 continue; 3079 // Choose the most used order. 3080 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3081 unsigned Cnt = OrdersUses.front().second; 3082 for (const auto &Pair : drop_begin(OrdersUses)) { 3083 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3084 BestOrder = Pair.first; 3085 Cnt = Pair.second; 3086 } 3087 } 3088 // Set order of the user node. 3089 if (BestOrder.empty()) 3090 continue; 3091 SmallVector<int> Mask; 3092 inversePermutation(BestOrder, Mask); 3093 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3094 unsigned E = BestOrder.size(); 3095 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3096 return I < E ? static_cast<int>(I) : UndefMaskElem; 3097 }); 3098 // Do an actual reordering, if profitable. 3099 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3100 // Just do the reordering for the nodes with the given VF. 3101 if (TE->Scalars.size() != VF) { 3102 if (TE->ReuseShuffleIndices.size() == VF) { 3103 // Need to reorder the reuses masks of the operands with smaller VF to 3104 // be able to find the match between the graph nodes and scalar 3105 // operands of the given node during vectorization/cost estimation. 3106 assert(all_of(TE->UserTreeIndices, 3107 [VF, &TE](const EdgeInfo &EI) { 3108 return EI.UserTE->Scalars.size() == VF || 3109 EI.UserTE->Scalars.size() == 3110 TE->Scalars.size(); 3111 }) && 3112 "All users must be of VF size."); 3113 // Update ordering of the operands with the smaller VF than the given 3114 // one. 3115 reorderReuses(TE->ReuseShuffleIndices, Mask); 3116 } 3117 continue; 3118 } 3119 if (TE->State == TreeEntry::Vectorize && 3120 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3121 InsertElementInst>(TE->getMainOp()) && 3122 !TE->isAltShuffle()) { 3123 // Build correct orders for extract{element,value}, loads and 3124 // stores. 3125 reorderOrder(TE->ReorderIndices, Mask); 3126 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3127 TE->reorderOperands(Mask); 3128 } else { 3129 // Reorder the node and its operands. 3130 TE->reorderOperands(Mask); 3131 assert(TE->ReorderIndices.empty() && 3132 "Expected empty reorder sequence."); 3133 reorderScalars(TE->Scalars, Mask); 3134 } 3135 if (!TE->ReuseShuffleIndices.empty()) { 3136 // Apply reversed order to keep the original ordering of the reused 3137 // elements to avoid extra reorder indices shuffling. 3138 OrdersType CurrentOrder; 3139 reorderOrder(CurrentOrder, MaskOrder); 3140 SmallVector<int> NewReuses; 3141 inversePermutation(CurrentOrder, NewReuses); 3142 addMask(NewReuses, TE->ReuseShuffleIndices); 3143 TE->ReuseShuffleIndices.swap(NewReuses); 3144 } 3145 } 3146 } 3147 } 3148 3149 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3150 SetVector<TreeEntry *> OrderedEntries; 3151 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3152 // Find all reorderable leaf nodes with the given VF. 3153 // Currently the are vectorized loads,extracts without alternate operands + 3154 // some gathering of extracts. 3155 SmallVector<TreeEntry *> NonVectorized; 3156 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3157 &NonVectorized]( 3158 const std::unique_ptr<TreeEntry> &TE) { 3159 if (TE->State != TreeEntry::Vectorize) 3160 NonVectorized.push_back(TE.get()); 3161 if (Optional<OrdersType> CurrentOrder = 3162 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3163 OrderedEntries.insert(TE.get()); 3164 if (TE->State != TreeEntry::Vectorize) 3165 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3166 } 3167 }); 3168 3169 // Checks if the operands of the users are reordarable and have only single 3170 // use. 3171 auto &&CheckOperands = 3172 [this, &NonVectorized](const auto &Data, 3173 SmallVectorImpl<TreeEntry *> &GatherOps) { 3174 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3175 if (any_of(Data.second, 3176 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3177 return OpData.first == I && 3178 OpData.second->State == TreeEntry::Vectorize; 3179 })) 3180 continue; 3181 ArrayRef<Value *> VL = Data.first->getOperand(I); 3182 const TreeEntry *TE = nullptr; 3183 const auto *It = find_if(VL, [this, &TE](Value *V) { 3184 TE = getTreeEntry(V); 3185 return TE; 3186 }); 3187 if (It != VL.end() && TE->isSame(VL)) 3188 return false; 3189 TreeEntry *Gather = nullptr; 3190 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3191 assert(TE->State != TreeEntry::Vectorize && 3192 "Only non-vectorized nodes are expected."); 3193 if (TE->isSame(VL)) { 3194 Gather = TE; 3195 return true; 3196 } 3197 return false; 3198 }) > 1) 3199 return false; 3200 if (Gather) 3201 GatherOps.push_back(Gather); 3202 } 3203 return true; 3204 }; 3205 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3206 // I.e., if the node has operands, that are reordered, try to make at least 3207 // one operand order in the natural order and reorder others + reorder the 3208 // user node itself. 3209 SmallPtrSet<const TreeEntry *, 4> Visited; 3210 while (!OrderedEntries.empty()) { 3211 // 1. Filter out only reordered nodes. 3212 // 2. If the entry has multiple uses - skip it and jump to the next node. 3213 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3214 SmallVector<TreeEntry *> Filtered; 3215 for (TreeEntry *TE : OrderedEntries) { 3216 if (!(TE->State == TreeEntry::Vectorize || 3217 (TE->State == TreeEntry::NeedToGather && 3218 GathersToOrders.count(TE))) || 3219 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3220 !all_of(drop_begin(TE->UserTreeIndices), 3221 [TE](const EdgeInfo &EI) { 3222 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3223 }) || 3224 !Visited.insert(TE).second) { 3225 Filtered.push_back(TE); 3226 continue; 3227 } 3228 // Build a map between user nodes and their operands order to speedup 3229 // search. The graph currently does not provide this dependency directly. 3230 for (EdgeInfo &EI : TE->UserTreeIndices) { 3231 TreeEntry *UserTE = EI.UserTE; 3232 auto It = Users.find(UserTE); 3233 if (It == Users.end()) 3234 It = Users.insert({UserTE, {}}).first; 3235 It->second.emplace_back(EI.EdgeIdx, TE); 3236 } 3237 } 3238 // Erase filtered entries. 3239 for_each(Filtered, 3240 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3241 for (const auto &Data : Users) { 3242 // Check that operands are used only in the User node. 3243 SmallVector<TreeEntry *> GatherOps; 3244 if (!CheckOperands(Data, GatherOps)) { 3245 for_each(Data.second, 3246 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3247 OrderedEntries.remove(Op.second); 3248 }); 3249 continue; 3250 } 3251 // All operands are reordered and used only in this node - propagate the 3252 // most used order to the user node. 3253 MapVector<OrdersType, unsigned, 3254 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3255 OrdersUses; 3256 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3257 for (const auto &Op : Data.second) { 3258 TreeEntry *OpTE = Op.second; 3259 if (!OpTE->ReuseShuffleIndices.empty() || 3260 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3261 continue; 3262 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3263 if (OpTE->State == TreeEntry::NeedToGather) 3264 return GathersToOrders.find(OpTE)->second; 3265 return OpTE->ReorderIndices; 3266 }(); 3267 // Stores actually store the mask, not the order, need to invert. 3268 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3269 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3270 SmallVector<int> Mask; 3271 inversePermutation(Order, Mask); 3272 unsigned E = Order.size(); 3273 OrdersType CurrentOrder(E, E); 3274 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3275 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3276 }); 3277 fixupOrderingIndices(CurrentOrder); 3278 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3279 } else { 3280 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3281 } 3282 if (VisitedOps.insert(OpTE).second) 3283 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3284 OpTE->UserTreeIndices.size(); 3285 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3286 --OrdersUses[{}]; 3287 } 3288 // If no orders - skip current nodes and jump to the next one, if any. 3289 if (OrdersUses.empty()) { 3290 for_each(Data.second, 3291 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3292 OrderedEntries.remove(Op.second); 3293 }); 3294 continue; 3295 } 3296 // Choose the best order. 3297 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3298 unsigned Cnt = OrdersUses.front().second; 3299 for (const auto &Pair : drop_begin(OrdersUses)) { 3300 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3301 BestOrder = Pair.first; 3302 Cnt = Pair.second; 3303 } 3304 } 3305 // Set order of the user node (reordering of operands and user nodes). 3306 if (BestOrder.empty()) { 3307 for_each(Data.second, 3308 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3309 OrderedEntries.remove(Op.second); 3310 }); 3311 continue; 3312 } 3313 // Erase operands from OrderedEntries list and adjust their orders. 3314 VisitedOps.clear(); 3315 SmallVector<int> Mask; 3316 inversePermutation(BestOrder, Mask); 3317 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3318 unsigned E = BestOrder.size(); 3319 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3320 return I < E ? static_cast<int>(I) : UndefMaskElem; 3321 }); 3322 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3323 TreeEntry *TE = Op.second; 3324 OrderedEntries.remove(TE); 3325 if (!VisitedOps.insert(TE).second) 3326 continue; 3327 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3328 // Just reorder reuses indices. 3329 reorderReuses(TE->ReuseShuffleIndices, Mask); 3330 continue; 3331 } 3332 // Gathers are processed separately. 3333 if (TE->State != TreeEntry::Vectorize) 3334 continue; 3335 assert((BestOrder.size() == TE->ReorderIndices.size() || 3336 TE->ReorderIndices.empty()) && 3337 "Non-matching sizes of user/operand entries."); 3338 reorderOrder(TE->ReorderIndices, Mask); 3339 } 3340 // For gathers just need to reorder its scalars. 3341 for (TreeEntry *Gather : GatherOps) { 3342 assert(Gather->ReorderIndices.empty() && 3343 "Unexpected reordering of gathers."); 3344 if (!Gather->ReuseShuffleIndices.empty()) { 3345 // Just reorder reuses indices. 3346 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3347 continue; 3348 } 3349 reorderScalars(Gather->Scalars, Mask); 3350 OrderedEntries.remove(Gather); 3351 } 3352 // Reorder operands of the user node and set the ordering for the user 3353 // node itself. 3354 if (Data.first->State != TreeEntry::Vectorize || 3355 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3356 Data.first->getMainOp()) || 3357 Data.first->isAltShuffle()) 3358 Data.first->reorderOperands(Mask); 3359 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3360 Data.first->isAltShuffle()) { 3361 reorderScalars(Data.first->Scalars, Mask); 3362 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3363 if (Data.first->ReuseShuffleIndices.empty() && 3364 !Data.first->ReorderIndices.empty() && 3365 !Data.first->isAltShuffle()) { 3366 // Insert user node to the list to try to sink reordering deeper in 3367 // the graph. 3368 OrderedEntries.insert(Data.first); 3369 } 3370 } else { 3371 reorderOrder(Data.first->ReorderIndices, Mask); 3372 } 3373 } 3374 } 3375 // If the reordering is unnecessary, just remove the reorder. 3376 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3377 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3378 VectorizableTree.front()->ReorderIndices.clear(); 3379 } 3380 3381 void BoUpSLP::buildExternalUses( 3382 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3383 // Collect the values that we need to extract from the tree. 3384 for (auto &TEPtr : VectorizableTree) { 3385 TreeEntry *Entry = TEPtr.get(); 3386 3387 // No need to handle users of gathered values. 3388 if (Entry->State == TreeEntry::NeedToGather) 3389 continue; 3390 3391 // For each lane: 3392 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3393 Value *Scalar = Entry->Scalars[Lane]; 3394 int FoundLane = Entry->findLaneForValue(Scalar); 3395 3396 // Check if the scalar is externally used as an extra arg. 3397 auto ExtI = ExternallyUsedValues.find(Scalar); 3398 if (ExtI != ExternallyUsedValues.end()) { 3399 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3400 << Lane << " from " << *Scalar << ".\n"); 3401 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3402 } 3403 for (User *U : Scalar->users()) { 3404 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3405 3406 Instruction *UserInst = dyn_cast<Instruction>(U); 3407 if (!UserInst) 3408 continue; 3409 3410 if (isDeleted(UserInst)) 3411 continue; 3412 3413 // Skip in-tree scalars that become vectors 3414 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3415 Value *UseScalar = UseEntry->Scalars[0]; 3416 // Some in-tree scalars will remain as scalar in vectorized 3417 // instructions. If that is the case, the one in Lane 0 will 3418 // be used. 3419 if (UseScalar != U || 3420 UseEntry->State == TreeEntry::ScatterVectorize || 3421 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3422 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3423 << ".\n"); 3424 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3425 continue; 3426 } 3427 } 3428 3429 // Ignore users in the user ignore list. 3430 if (is_contained(UserIgnoreList, UserInst)) 3431 continue; 3432 3433 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3434 << Lane << " from " << *Scalar << ".\n"); 3435 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3436 } 3437 } 3438 } 3439 } 3440 3441 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3442 ArrayRef<Value *> UserIgnoreLst) { 3443 deleteTree(); 3444 UserIgnoreList = UserIgnoreLst; 3445 if (!allSameType(Roots)) 3446 return; 3447 buildTree_rec(Roots, 0, EdgeInfo()); 3448 } 3449 3450 namespace { 3451 /// Tracks the state we can represent the loads in the given sequence. 3452 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3453 } // anonymous namespace 3454 3455 /// Checks if the given array of loads can be represented as a vectorized, 3456 /// scatter or just simple gather. 3457 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3458 const TargetTransformInfo &TTI, 3459 const DataLayout &DL, ScalarEvolution &SE, 3460 SmallVectorImpl<unsigned> &Order, 3461 SmallVectorImpl<Value *> &PointerOps) { 3462 // Check that a vectorized load would load the same memory as a scalar 3463 // load. For example, we don't want to vectorize loads that are smaller 3464 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3465 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3466 // from such a struct, we read/write packed bits disagreeing with the 3467 // unvectorized version. 3468 Type *ScalarTy = VL0->getType(); 3469 3470 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3471 return LoadsState::Gather; 3472 3473 // Make sure all loads in the bundle are simple - we can't vectorize 3474 // atomic or volatile loads. 3475 PointerOps.clear(); 3476 PointerOps.resize(VL.size()); 3477 auto *POIter = PointerOps.begin(); 3478 for (Value *V : VL) { 3479 auto *L = cast<LoadInst>(V); 3480 if (!L->isSimple()) 3481 return LoadsState::Gather; 3482 *POIter = L->getPointerOperand(); 3483 ++POIter; 3484 } 3485 3486 Order.clear(); 3487 // Check the order of pointer operands. 3488 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3489 Value *Ptr0; 3490 Value *PtrN; 3491 if (Order.empty()) { 3492 Ptr0 = PointerOps.front(); 3493 PtrN = PointerOps.back(); 3494 } else { 3495 Ptr0 = PointerOps[Order.front()]; 3496 PtrN = PointerOps[Order.back()]; 3497 } 3498 Optional<int> Diff = 3499 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3500 // Check that the sorted loads are consecutive. 3501 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3502 return LoadsState::Vectorize; 3503 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3504 for (Value *V : VL) 3505 CommonAlignment = 3506 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3507 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3508 CommonAlignment)) 3509 return LoadsState::ScatterVectorize; 3510 } 3511 3512 return LoadsState::Gather; 3513 } 3514 3515 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3516 const EdgeInfo &UserTreeIdx) { 3517 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3518 3519 SmallVector<int> ReuseShuffleIndicies; 3520 SmallVector<Value *> UniqueValues; 3521 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3522 &UserTreeIdx, 3523 this](const InstructionsState &S) { 3524 // Check that every instruction appears once in this bundle. 3525 DenseMap<Value *, unsigned> UniquePositions; 3526 for (Value *V : VL) { 3527 if (isConstant(V)) { 3528 ReuseShuffleIndicies.emplace_back( 3529 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3530 UniqueValues.emplace_back(V); 3531 continue; 3532 } 3533 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3534 ReuseShuffleIndicies.emplace_back(Res.first->second); 3535 if (Res.second) 3536 UniqueValues.emplace_back(V); 3537 } 3538 size_t NumUniqueScalarValues = UniqueValues.size(); 3539 if (NumUniqueScalarValues == VL.size()) { 3540 ReuseShuffleIndicies.clear(); 3541 } else { 3542 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3543 if (NumUniqueScalarValues <= 1 || 3544 (NumUniqueScalarValues == 2 && 3545 any_of(UniqueValues, UndefValue::classof)) || 3546 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3547 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3548 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3549 return false; 3550 } 3551 VL = UniqueValues; 3552 } 3553 return true; 3554 }; 3555 3556 InstructionsState S = getSameOpcode(VL); 3557 if (Depth == RecursionMaxDepth) { 3558 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3559 if (TryToFindDuplicates(S)) 3560 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3561 ReuseShuffleIndicies); 3562 return; 3563 } 3564 3565 // Don't handle scalable vectors 3566 if (S.getOpcode() == Instruction::ExtractElement && 3567 isa<ScalableVectorType>( 3568 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3569 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3570 if (TryToFindDuplicates(S)) 3571 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3572 ReuseShuffleIndicies); 3573 return; 3574 } 3575 3576 // Don't handle vectors. 3577 if (S.OpValue->getType()->isVectorTy() && 3578 !isa<InsertElementInst>(S.OpValue)) { 3579 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3580 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3581 return; 3582 } 3583 3584 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3585 if (SI->getValueOperand()->getType()->isVectorTy()) { 3586 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3587 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3588 return; 3589 } 3590 3591 // If all of the operands are identical or constant we have a simple solution. 3592 // If we deal with insert/extract instructions, they all must have constant 3593 // indices, otherwise we should gather them, not try to vectorize. 3594 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3595 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3596 !all_of(VL, isVectorLikeInstWithConstOps))) { 3597 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3598 if (TryToFindDuplicates(S)) 3599 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3600 ReuseShuffleIndicies); 3601 return; 3602 } 3603 3604 // We now know that this is a vector of instructions of the same type from 3605 // the same block. 3606 3607 // Don't vectorize ephemeral values. 3608 for (Value *V : VL) { 3609 if (EphValues.count(V)) { 3610 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3611 << ") is ephemeral.\n"); 3612 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3613 return; 3614 } 3615 } 3616 3617 // Check if this is a duplicate of another entry. 3618 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3619 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3620 if (!E->isSame(VL)) { 3621 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3622 if (TryToFindDuplicates(S)) 3623 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3624 ReuseShuffleIndicies); 3625 return; 3626 } 3627 // Record the reuse of the tree node. FIXME, currently this is only used to 3628 // properly draw the graph rather than for the actual vectorization. 3629 E->UserTreeIndices.push_back(UserTreeIdx); 3630 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3631 << ".\n"); 3632 return; 3633 } 3634 3635 // Check that none of the instructions in the bundle are already in the tree. 3636 for (Value *V : VL) { 3637 auto *I = dyn_cast<Instruction>(V); 3638 if (!I) 3639 continue; 3640 if (getTreeEntry(I)) { 3641 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3642 << ") is already in tree.\n"); 3643 if (TryToFindDuplicates(S)) 3644 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3645 ReuseShuffleIndicies); 3646 return; 3647 } 3648 } 3649 3650 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3651 for (Value *V : VL) { 3652 if (is_contained(UserIgnoreList, V)) { 3653 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3654 if (TryToFindDuplicates(S)) 3655 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3656 ReuseShuffleIndicies); 3657 return; 3658 } 3659 } 3660 3661 // Check that all of the users of the scalars that we want to vectorize are 3662 // schedulable. 3663 auto *VL0 = cast<Instruction>(S.OpValue); 3664 BasicBlock *BB = VL0->getParent(); 3665 3666 if (!DT->isReachableFromEntry(BB)) { 3667 // Don't go into unreachable blocks. They may contain instructions with 3668 // dependency cycles which confuse the final scheduling. 3669 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3670 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3671 return; 3672 } 3673 3674 // Check that every instruction appears once in this bundle. 3675 if (!TryToFindDuplicates(S)) 3676 return; 3677 3678 auto &BSRef = BlocksSchedules[BB]; 3679 if (!BSRef) 3680 BSRef = std::make_unique<BlockScheduling>(BB); 3681 3682 BlockScheduling &BS = *BSRef.get(); 3683 3684 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3685 if (!Bundle) { 3686 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3687 assert((!BS.getScheduleData(VL0) || 3688 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3689 "tryScheduleBundle should cancelScheduling on failure"); 3690 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3691 ReuseShuffleIndicies); 3692 return; 3693 } 3694 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3695 3696 unsigned ShuffleOrOp = S.isAltShuffle() ? 3697 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3698 switch (ShuffleOrOp) { 3699 case Instruction::PHI: { 3700 auto *PH = cast<PHINode>(VL0); 3701 3702 // Check for terminator values (e.g. invoke). 3703 for (Value *V : VL) 3704 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3705 Instruction *Term = dyn_cast<Instruction>( 3706 cast<PHINode>(V)->getIncomingValueForBlock( 3707 PH->getIncomingBlock(I))); 3708 if (Term && Term->isTerminator()) { 3709 LLVM_DEBUG(dbgs() 3710 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3711 BS.cancelScheduling(VL, VL0); 3712 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3713 ReuseShuffleIndicies); 3714 return; 3715 } 3716 } 3717 3718 TreeEntry *TE = 3719 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3720 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3721 3722 // Keeps the reordered operands to avoid code duplication. 3723 SmallVector<ValueList, 2> OperandsVec; 3724 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3725 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3726 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3727 TE->setOperand(I, Operands); 3728 OperandsVec.push_back(Operands); 3729 continue; 3730 } 3731 ValueList Operands; 3732 // Prepare the operand vector. 3733 for (Value *V : VL) 3734 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3735 PH->getIncomingBlock(I))); 3736 TE->setOperand(I, Operands); 3737 OperandsVec.push_back(Operands); 3738 } 3739 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3740 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3741 return; 3742 } 3743 case Instruction::ExtractValue: 3744 case Instruction::ExtractElement: { 3745 OrdersType CurrentOrder; 3746 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3747 if (Reuse) { 3748 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3749 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3750 ReuseShuffleIndicies); 3751 // This is a special case, as it does not gather, but at the same time 3752 // we are not extending buildTree_rec() towards the operands. 3753 ValueList Op0; 3754 Op0.assign(VL.size(), VL0->getOperand(0)); 3755 VectorizableTree.back()->setOperand(0, Op0); 3756 return; 3757 } 3758 if (!CurrentOrder.empty()) { 3759 LLVM_DEBUG({ 3760 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3761 "with order"; 3762 for (unsigned Idx : CurrentOrder) 3763 dbgs() << " " << Idx; 3764 dbgs() << "\n"; 3765 }); 3766 fixupOrderingIndices(CurrentOrder); 3767 // Insert new order with initial value 0, if it does not exist, 3768 // otherwise return the iterator to the existing one. 3769 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3770 ReuseShuffleIndicies, CurrentOrder); 3771 // This is a special case, as it does not gather, but at the same time 3772 // we are not extending buildTree_rec() towards the operands. 3773 ValueList Op0; 3774 Op0.assign(VL.size(), VL0->getOperand(0)); 3775 VectorizableTree.back()->setOperand(0, Op0); 3776 return; 3777 } 3778 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3779 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3780 ReuseShuffleIndicies); 3781 BS.cancelScheduling(VL, VL0); 3782 return; 3783 } 3784 case Instruction::InsertElement: { 3785 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3786 3787 // Check that we have a buildvector and not a shuffle of 2 or more 3788 // different vectors. 3789 ValueSet SourceVectors; 3790 int MinIdx = std::numeric_limits<int>::max(); 3791 for (Value *V : VL) { 3792 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3793 Optional<int> Idx = *getInsertIndex(V, 0); 3794 if (!Idx || *Idx == UndefMaskElem) 3795 continue; 3796 MinIdx = std::min(MinIdx, *Idx); 3797 } 3798 3799 if (count_if(VL, [&SourceVectors](Value *V) { 3800 return !SourceVectors.contains(V); 3801 }) >= 2) { 3802 // Found 2nd source vector - cancel. 3803 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3804 "different source vectors.\n"); 3805 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3806 BS.cancelScheduling(VL, VL0); 3807 return; 3808 } 3809 3810 auto OrdCompare = [](const std::pair<int, int> &P1, 3811 const std::pair<int, int> &P2) { 3812 return P1.first > P2.first; 3813 }; 3814 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3815 decltype(OrdCompare)> 3816 Indices(OrdCompare); 3817 for (int I = 0, E = VL.size(); I < E; ++I) { 3818 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3819 if (!Idx || *Idx == UndefMaskElem) 3820 continue; 3821 Indices.emplace(*Idx, I); 3822 } 3823 OrdersType CurrentOrder(VL.size(), VL.size()); 3824 bool IsIdentity = true; 3825 for (int I = 0, E = VL.size(); I < E; ++I) { 3826 CurrentOrder[Indices.top().second] = I; 3827 IsIdentity &= Indices.top().second == I; 3828 Indices.pop(); 3829 } 3830 if (IsIdentity) 3831 CurrentOrder.clear(); 3832 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3833 None, CurrentOrder); 3834 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3835 3836 constexpr int NumOps = 2; 3837 ValueList VectorOperands[NumOps]; 3838 for (int I = 0; I < NumOps; ++I) { 3839 for (Value *V : VL) 3840 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3841 3842 TE->setOperand(I, VectorOperands[I]); 3843 } 3844 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3845 return; 3846 } 3847 case Instruction::Load: { 3848 // Check that a vectorized load would load the same memory as a scalar 3849 // load. For example, we don't want to vectorize loads that are smaller 3850 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3851 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3852 // from such a struct, we read/write packed bits disagreeing with the 3853 // unvectorized version. 3854 SmallVector<Value *> PointerOps; 3855 OrdersType CurrentOrder; 3856 TreeEntry *TE = nullptr; 3857 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3858 PointerOps)) { 3859 case LoadsState::Vectorize: 3860 if (CurrentOrder.empty()) { 3861 // Original loads are consecutive and does not require reordering. 3862 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3863 ReuseShuffleIndicies); 3864 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3865 } else { 3866 fixupOrderingIndices(CurrentOrder); 3867 // Need to reorder. 3868 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3869 ReuseShuffleIndicies, CurrentOrder); 3870 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3871 } 3872 TE->setOperandsInOrder(); 3873 break; 3874 case LoadsState::ScatterVectorize: 3875 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3876 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3877 UserTreeIdx, ReuseShuffleIndicies); 3878 TE->setOperandsInOrder(); 3879 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3880 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3881 break; 3882 case LoadsState::Gather: 3883 BS.cancelScheduling(VL, VL0); 3884 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3885 ReuseShuffleIndicies); 3886 #ifndef NDEBUG 3887 Type *ScalarTy = VL0->getType(); 3888 if (DL->getTypeSizeInBits(ScalarTy) != 3889 DL->getTypeAllocSizeInBits(ScalarTy)) 3890 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3891 else if (any_of(VL, [](Value *V) { 3892 return !cast<LoadInst>(V)->isSimple(); 3893 })) 3894 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3895 else 3896 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3897 #endif // NDEBUG 3898 break; 3899 } 3900 return; 3901 } 3902 case Instruction::ZExt: 3903 case Instruction::SExt: 3904 case Instruction::FPToUI: 3905 case Instruction::FPToSI: 3906 case Instruction::FPExt: 3907 case Instruction::PtrToInt: 3908 case Instruction::IntToPtr: 3909 case Instruction::SIToFP: 3910 case Instruction::UIToFP: 3911 case Instruction::Trunc: 3912 case Instruction::FPTrunc: 3913 case Instruction::BitCast: { 3914 Type *SrcTy = VL0->getOperand(0)->getType(); 3915 for (Value *V : VL) { 3916 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3917 if (Ty != SrcTy || !isValidElementType(Ty)) { 3918 BS.cancelScheduling(VL, VL0); 3919 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3920 ReuseShuffleIndicies); 3921 LLVM_DEBUG(dbgs() 3922 << "SLP: Gathering casts with different src types.\n"); 3923 return; 3924 } 3925 } 3926 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3927 ReuseShuffleIndicies); 3928 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3929 3930 TE->setOperandsInOrder(); 3931 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3932 ValueList Operands; 3933 // Prepare the operand vector. 3934 for (Value *V : VL) 3935 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3936 3937 buildTree_rec(Operands, Depth + 1, {TE, i}); 3938 } 3939 return; 3940 } 3941 case Instruction::ICmp: 3942 case Instruction::FCmp: { 3943 // Check that all of the compares have the same predicate. 3944 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3945 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3946 Type *ComparedTy = VL0->getOperand(0)->getType(); 3947 for (Value *V : VL) { 3948 CmpInst *Cmp = cast<CmpInst>(V); 3949 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3950 Cmp->getOperand(0)->getType() != ComparedTy) { 3951 BS.cancelScheduling(VL, VL0); 3952 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3953 ReuseShuffleIndicies); 3954 LLVM_DEBUG(dbgs() 3955 << "SLP: Gathering cmp with different predicate.\n"); 3956 return; 3957 } 3958 } 3959 3960 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3961 ReuseShuffleIndicies); 3962 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3963 3964 ValueList Left, Right; 3965 if (cast<CmpInst>(VL0)->isCommutative()) { 3966 // Commutative predicate - collect + sort operands of the instructions 3967 // so that each side is more likely to have the same opcode. 3968 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3969 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3970 } else { 3971 // Collect operands - commute if it uses the swapped predicate. 3972 for (Value *V : VL) { 3973 auto *Cmp = cast<CmpInst>(V); 3974 Value *LHS = Cmp->getOperand(0); 3975 Value *RHS = Cmp->getOperand(1); 3976 if (Cmp->getPredicate() != P0) 3977 std::swap(LHS, RHS); 3978 Left.push_back(LHS); 3979 Right.push_back(RHS); 3980 } 3981 } 3982 TE->setOperand(0, Left); 3983 TE->setOperand(1, Right); 3984 buildTree_rec(Left, Depth + 1, {TE, 0}); 3985 buildTree_rec(Right, Depth + 1, {TE, 1}); 3986 return; 3987 } 3988 case Instruction::Select: 3989 case Instruction::FNeg: 3990 case Instruction::Add: 3991 case Instruction::FAdd: 3992 case Instruction::Sub: 3993 case Instruction::FSub: 3994 case Instruction::Mul: 3995 case Instruction::FMul: 3996 case Instruction::UDiv: 3997 case Instruction::SDiv: 3998 case Instruction::FDiv: 3999 case Instruction::URem: 4000 case Instruction::SRem: 4001 case Instruction::FRem: 4002 case Instruction::Shl: 4003 case Instruction::LShr: 4004 case Instruction::AShr: 4005 case Instruction::And: 4006 case Instruction::Or: 4007 case Instruction::Xor: { 4008 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4009 ReuseShuffleIndicies); 4010 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4011 4012 // Sort operands of the instructions so that each side is more likely to 4013 // have the same opcode. 4014 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4015 ValueList Left, Right; 4016 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4017 TE->setOperand(0, Left); 4018 TE->setOperand(1, Right); 4019 buildTree_rec(Left, Depth + 1, {TE, 0}); 4020 buildTree_rec(Right, Depth + 1, {TE, 1}); 4021 return; 4022 } 4023 4024 TE->setOperandsInOrder(); 4025 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4026 ValueList Operands; 4027 // Prepare the operand vector. 4028 for (Value *V : VL) 4029 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4030 4031 buildTree_rec(Operands, Depth + 1, {TE, i}); 4032 } 4033 return; 4034 } 4035 case Instruction::GetElementPtr: { 4036 // We don't combine GEPs with complicated (nested) indexing. 4037 for (Value *V : VL) { 4038 if (cast<Instruction>(V)->getNumOperands() != 2) { 4039 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4040 BS.cancelScheduling(VL, VL0); 4041 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4042 ReuseShuffleIndicies); 4043 return; 4044 } 4045 } 4046 4047 // We can't combine several GEPs into one vector if they operate on 4048 // different types. 4049 Type *Ty0 = VL0->getOperand(0)->getType(); 4050 for (Value *V : VL) { 4051 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4052 if (Ty0 != CurTy) { 4053 LLVM_DEBUG(dbgs() 4054 << "SLP: not-vectorizable GEP (different types).\n"); 4055 BS.cancelScheduling(VL, VL0); 4056 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4057 ReuseShuffleIndicies); 4058 return; 4059 } 4060 } 4061 4062 // We don't combine GEPs with non-constant indexes. 4063 Type *Ty1 = VL0->getOperand(1)->getType(); 4064 for (Value *V : VL) { 4065 auto Op = cast<Instruction>(V)->getOperand(1); 4066 if (!isa<ConstantInt>(Op) || 4067 (Op->getType() != Ty1 && 4068 Op->getType()->getScalarSizeInBits() > 4069 DL->getIndexSizeInBits( 4070 V->getType()->getPointerAddressSpace()))) { 4071 LLVM_DEBUG(dbgs() 4072 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4073 BS.cancelScheduling(VL, VL0); 4074 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4075 ReuseShuffleIndicies); 4076 return; 4077 } 4078 } 4079 4080 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4081 ReuseShuffleIndicies); 4082 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4083 SmallVector<ValueList, 2> Operands(2); 4084 // Prepare the operand vector for pointer operands. 4085 for (Value *V : VL) 4086 Operands.front().push_back( 4087 cast<GetElementPtrInst>(V)->getPointerOperand()); 4088 TE->setOperand(0, Operands.front()); 4089 // Need to cast all indices to the same type before vectorization to 4090 // avoid crash. 4091 // Required to be able to find correct matches between different gather 4092 // nodes and reuse the vectorized values rather than trying to gather them 4093 // again. 4094 int IndexIdx = 1; 4095 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4096 Type *Ty = all_of(VL, 4097 [VL0Ty, IndexIdx](Value *V) { 4098 return VL0Ty == cast<GetElementPtrInst>(V) 4099 ->getOperand(IndexIdx) 4100 ->getType(); 4101 }) 4102 ? VL0Ty 4103 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4104 ->getPointerOperandType() 4105 ->getScalarType()); 4106 // Prepare the operand vector. 4107 for (Value *V : VL) { 4108 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4109 auto *CI = cast<ConstantInt>(Op); 4110 Operands.back().push_back(ConstantExpr::getIntegerCast( 4111 CI, Ty, CI->getValue().isSignBitSet())); 4112 } 4113 TE->setOperand(IndexIdx, Operands.back()); 4114 4115 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4116 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4117 return; 4118 } 4119 case Instruction::Store: { 4120 // Check if the stores are consecutive or if we need to swizzle them. 4121 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4122 // Avoid types that are padded when being allocated as scalars, while 4123 // being packed together in a vector (such as i1). 4124 if (DL->getTypeSizeInBits(ScalarTy) != 4125 DL->getTypeAllocSizeInBits(ScalarTy)) { 4126 BS.cancelScheduling(VL, VL0); 4127 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4128 ReuseShuffleIndicies); 4129 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4130 return; 4131 } 4132 // Make sure all stores in the bundle are simple - we can't vectorize 4133 // atomic or volatile stores. 4134 SmallVector<Value *, 4> PointerOps(VL.size()); 4135 ValueList Operands(VL.size()); 4136 auto POIter = PointerOps.begin(); 4137 auto OIter = Operands.begin(); 4138 for (Value *V : VL) { 4139 auto *SI = cast<StoreInst>(V); 4140 if (!SI->isSimple()) { 4141 BS.cancelScheduling(VL, VL0); 4142 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4143 ReuseShuffleIndicies); 4144 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4145 return; 4146 } 4147 *POIter = SI->getPointerOperand(); 4148 *OIter = SI->getValueOperand(); 4149 ++POIter; 4150 ++OIter; 4151 } 4152 4153 OrdersType CurrentOrder; 4154 // Check the order of pointer operands. 4155 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4156 Value *Ptr0; 4157 Value *PtrN; 4158 if (CurrentOrder.empty()) { 4159 Ptr0 = PointerOps.front(); 4160 PtrN = PointerOps.back(); 4161 } else { 4162 Ptr0 = PointerOps[CurrentOrder.front()]; 4163 PtrN = PointerOps[CurrentOrder.back()]; 4164 } 4165 Optional<int> Dist = 4166 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4167 // Check that the sorted pointer operands are consecutive. 4168 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4169 if (CurrentOrder.empty()) { 4170 // Original stores are consecutive and does not require reordering. 4171 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4172 UserTreeIdx, ReuseShuffleIndicies); 4173 TE->setOperandsInOrder(); 4174 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4175 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4176 } else { 4177 fixupOrderingIndices(CurrentOrder); 4178 TreeEntry *TE = 4179 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4180 ReuseShuffleIndicies, CurrentOrder); 4181 TE->setOperandsInOrder(); 4182 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4183 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4184 } 4185 return; 4186 } 4187 } 4188 4189 BS.cancelScheduling(VL, VL0); 4190 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4191 ReuseShuffleIndicies); 4192 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4193 return; 4194 } 4195 case Instruction::Call: { 4196 // Check if the calls are all to the same vectorizable intrinsic or 4197 // library function. 4198 CallInst *CI = cast<CallInst>(VL0); 4199 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4200 4201 VFShape Shape = VFShape::get( 4202 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4203 false /*HasGlobalPred*/); 4204 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4205 4206 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4207 BS.cancelScheduling(VL, VL0); 4208 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4209 ReuseShuffleIndicies); 4210 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4211 return; 4212 } 4213 Function *F = CI->getCalledFunction(); 4214 unsigned NumArgs = CI->arg_size(); 4215 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4216 for (unsigned j = 0; j != NumArgs; ++j) 4217 if (hasVectorInstrinsicScalarOpd(ID, j)) 4218 ScalarArgs[j] = CI->getArgOperand(j); 4219 for (Value *V : VL) { 4220 CallInst *CI2 = dyn_cast<CallInst>(V); 4221 if (!CI2 || CI2->getCalledFunction() != F || 4222 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4223 (VecFunc && 4224 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4225 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4226 BS.cancelScheduling(VL, VL0); 4227 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4228 ReuseShuffleIndicies); 4229 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4230 << "\n"); 4231 return; 4232 } 4233 // Some intrinsics have scalar arguments and should be same in order for 4234 // them to be vectorized. 4235 for (unsigned j = 0; j != NumArgs; ++j) { 4236 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4237 Value *A1J = CI2->getArgOperand(j); 4238 if (ScalarArgs[j] != A1J) { 4239 BS.cancelScheduling(VL, VL0); 4240 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4241 ReuseShuffleIndicies); 4242 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4243 << " argument " << ScalarArgs[j] << "!=" << A1J 4244 << "\n"); 4245 return; 4246 } 4247 } 4248 } 4249 // Verify that the bundle operands are identical between the two calls. 4250 if (CI->hasOperandBundles() && 4251 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4252 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4253 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4254 BS.cancelScheduling(VL, VL0); 4255 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4256 ReuseShuffleIndicies); 4257 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4258 << *CI << "!=" << *V << '\n'); 4259 return; 4260 } 4261 } 4262 4263 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4264 ReuseShuffleIndicies); 4265 TE->setOperandsInOrder(); 4266 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4267 // For scalar operands no need to to create an entry since no need to 4268 // vectorize it. 4269 if (hasVectorInstrinsicScalarOpd(ID, i)) 4270 continue; 4271 ValueList Operands; 4272 // Prepare the operand vector. 4273 for (Value *V : VL) { 4274 auto *CI2 = cast<CallInst>(V); 4275 Operands.push_back(CI2->getArgOperand(i)); 4276 } 4277 buildTree_rec(Operands, Depth + 1, {TE, i}); 4278 } 4279 return; 4280 } 4281 case Instruction::ShuffleVector: { 4282 // If this is not an alternate sequence of opcode like add-sub 4283 // then do not vectorize this instruction. 4284 if (!S.isAltShuffle()) { 4285 BS.cancelScheduling(VL, VL0); 4286 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4287 ReuseShuffleIndicies); 4288 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4289 return; 4290 } 4291 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4292 ReuseShuffleIndicies); 4293 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4294 4295 // Reorder operands if reordering would enable vectorization. 4296 if (isa<BinaryOperator>(VL0)) { 4297 ValueList Left, Right; 4298 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4299 TE->setOperand(0, Left); 4300 TE->setOperand(1, Right); 4301 buildTree_rec(Left, Depth + 1, {TE, 0}); 4302 buildTree_rec(Right, Depth + 1, {TE, 1}); 4303 return; 4304 } 4305 4306 TE->setOperandsInOrder(); 4307 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4308 ValueList Operands; 4309 // Prepare the operand vector. 4310 for (Value *V : VL) 4311 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4312 4313 buildTree_rec(Operands, Depth + 1, {TE, i}); 4314 } 4315 return; 4316 } 4317 default: 4318 BS.cancelScheduling(VL, VL0); 4319 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4320 ReuseShuffleIndicies); 4321 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4322 return; 4323 } 4324 } 4325 4326 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4327 unsigned N = 1; 4328 Type *EltTy = T; 4329 4330 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4331 isa<VectorType>(EltTy)) { 4332 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4333 // Check that struct is homogeneous. 4334 for (const auto *Ty : ST->elements()) 4335 if (Ty != *ST->element_begin()) 4336 return 0; 4337 N *= ST->getNumElements(); 4338 EltTy = *ST->element_begin(); 4339 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4340 N *= AT->getNumElements(); 4341 EltTy = AT->getElementType(); 4342 } else { 4343 auto *VT = cast<FixedVectorType>(EltTy); 4344 N *= VT->getNumElements(); 4345 EltTy = VT->getElementType(); 4346 } 4347 } 4348 4349 if (!isValidElementType(EltTy)) 4350 return 0; 4351 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4352 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4353 return 0; 4354 return N; 4355 } 4356 4357 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4358 SmallVectorImpl<unsigned> &CurrentOrder) const { 4359 const auto *It = find_if(VL, [](Value *V) { 4360 return isa<ExtractElementInst, ExtractValueInst>(V); 4361 }); 4362 assert(It != VL.end() && "Expected at least one extract instruction."); 4363 auto *E0 = cast<Instruction>(*It); 4364 assert(all_of(VL, 4365 [](Value *V) { 4366 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4367 V); 4368 }) && 4369 "Invalid opcode"); 4370 // Check if all of the extracts come from the same vector and from the 4371 // correct offset. 4372 Value *Vec = E0->getOperand(0); 4373 4374 CurrentOrder.clear(); 4375 4376 // We have to extract from a vector/aggregate with the same number of elements. 4377 unsigned NElts; 4378 if (E0->getOpcode() == Instruction::ExtractValue) { 4379 const DataLayout &DL = E0->getModule()->getDataLayout(); 4380 NElts = canMapToVector(Vec->getType(), DL); 4381 if (!NElts) 4382 return false; 4383 // Check if load can be rewritten as load of vector. 4384 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4385 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4386 return false; 4387 } else { 4388 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4389 } 4390 4391 if (NElts != VL.size()) 4392 return false; 4393 4394 // Check that all of the indices extract from the correct offset. 4395 bool ShouldKeepOrder = true; 4396 unsigned E = VL.size(); 4397 // Assign to all items the initial value E + 1 so we can check if the extract 4398 // instruction index was used already. 4399 // Also, later we can check that all the indices are used and we have a 4400 // consecutive access in the extract instructions, by checking that no 4401 // element of CurrentOrder still has value E + 1. 4402 CurrentOrder.assign(E, E); 4403 unsigned I = 0; 4404 for (; I < E; ++I) { 4405 auto *Inst = dyn_cast<Instruction>(VL[I]); 4406 if (!Inst) 4407 continue; 4408 if (Inst->getOperand(0) != Vec) 4409 break; 4410 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4411 if (isa<UndefValue>(EE->getIndexOperand())) 4412 continue; 4413 Optional<unsigned> Idx = getExtractIndex(Inst); 4414 if (!Idx) 4415 break; 4416 const unsigned ExtIdx = *Idx; 4417 if (ExtIdx != I) { 4418 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4419 break; 4420 ShouldKeepOrder = false; 4421 CurrentOrder[ExtIdx] = I; 4422 } else { 4423 if (CurrentOrder[I] != E) 4424 break; 4425 CurrentOrder[I] = I; 4426 } 4427 } 4428 if (I < E) { 4429 CurrentOrder.clear(); 4430 return false; 4431 } 4432 4433 return ShouldKeepOrder; 4434 } 4435 4436 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4437 ArrayRef<Value *> VectorizedVals) const { 4438 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4439 all_of(I->users(), [this](User *U) { 4440 return ScalarToTreeEntry.count(U) > 0 || MustGather.contains(U); 4441 }); 4442 } 4443 4444 static std::pair<InstructionCost, InstructionCost> 4445 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4446 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4447 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4448 4449 // Calculate the cost of the scalar and vector calls. 4450 SmallVector<Type *, 4> VecTys; 4451 for (Use &Arg : CI->args()) 4452 VecTys.push_back( 4453 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4454 FastMathFlags FMF; 4455 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4456 FMF = FPCI->getFastMathFlags(); 4457 SmallVector<const Value *> Arguments(CI->args()); 4458 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4459 dyn_cast<IntrinsicInst>(CI)); 4460 auto IntrinsicCost = 4461 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4462 4463 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4464 VecTy->getNumElements())), 4465 false /*HasGlobalPred*/); 4466 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4467 auto LibCost = IntrinsicCost; 4468 if (!CI->isNoBuiltin() && VecFunc) { 4469 // Calculate the cost of the vector library call. 4470 // If the corresponding vector call is cheaper, return its cost. 4471 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4472 TTI::TCK_RecipThroughput); 4473 } 4474 return {IntrinsicCost, LibCost}; 4475 } 4476 4477 /// Compute the cost of creating a vector of type \p VecTy containing the 4478 /// extracted values from \p VL. 4479 static InstructionCost 4480 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4481 TargetTransformInfo::ShuffleKind ShuffleKind, 4482 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4483 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4484 4485 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4486 VecTy->getNumElements() < NumOfParts) 4487 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4488 4489 bool AllConsecutive = true; 4490 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4491 unsigned Idx = -1; 4492 InstructionCost Cost = 0; 4493 4494 // Process extracts in blocks of EltsPerVector to check if the source vector 4495 // operand can be re-used directly. If not, add the cost of creating a shuffle 4496 // to extract the values into a vector register. 4497 for (auto *V : VL) { 4498 ++Idx; 4499 4500 // Need to exclude undefs from analysis. 4501 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4502 continue; 4503 4504 // Reached the start of a new vector registers. 4505 if (Idx % EltsPerVector == 0) { 4506 AllConsecutive = true; 4507 continue; 4508 } 4509 4510 // Check all extracts for a vector register on the target directly 4511 // extract values in order. 4512 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4513 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4514 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4515 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4516 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4517 } 4518 4519 if (AllConsecutive) 4520 continue; 4521 4522 // Skip all indices, except for the last index per vector block. 4523 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4524 continue; 4525 4526 // If we have a series of extracts which are not consecutive and hence 4527 // cannot re-use the source vector register directly, compute the shuffle 4528 // cost to extract the a vector with EltsPerVector elements. 4529 Cost += TTI.getShuffleCost( 4530 TargetTransformInfo::SK_PermuteSingleSrc, 4531 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4532 } 4533 return Cost; 4534 } 4535 4536 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4537 /// operations operands. 4538 static void 4539 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4540 ArrayRef<int> ReusesIndices, 4541 const function_ref<bool(Instruction *)> IsAltOp, 4542 SmallVectorImpl<int> &Mask, 4543 SmallVectorImpl<Value *> *OpScalars = nullptr, 4544 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4545 unsigned Sz = VL.size(); 4546 Mask.assign(Sz, UndefMaskElem); 4547 SmallVector<int> OrderMask; 4548 if (!ReorderIndices.empty()) 4549 inversePermutation(ReorderIndices, OrderMask); 4550 for (unsigned I = 0; I < Sz; ++I) { 4551 unsigned Idx = I; 4552 if (!ReorderIndices.empty()) 4553 Idx = OrderMask[I]; 4554 auto *OpInst = cast<Instruction>(VL[Idx]); 4555 if (IsAltOp(OpInst)) { 4556 Mask[I] = Sz + Idx; 4557 if (AltScalars) 4558 AltScalars->push_back(OpInst); 4559 } else { 4560 Mask[I] = Idx; 4561 if (OpScalars) 4562 OpScalars->push_back(OpInst); 4563 } 4564 } 4565 if (!ReusesIndices.empty()) { 4566 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4567 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4568 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4569 }); 4570 Mask.swap(NewMask); 4571 } 4572 } 4573 4574 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4575 ArrayRef<Value *> VectorizedVals) { 4576 ArrayRef<Value*> VL = E->Scalars; 4577 4578 Type *ScalarTy = VL[0]->getType(); 4579 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4580 ScalarTy = SI->getValueOperand()->getType(); 4581 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4582 ScalarTy = CI->getOperand(0)->getType(); 4583 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4584 ScalarTy = IE->getOperand(1)->getType(); 4585 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4586 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4587 4588 // If we have computed a smaller type for the expression, update VecTy so 4589 // that the costs will be accurate. 4590 if (MinBWs.count(VL[0])) 4591 VecTy = FixedVectorType::get( 4592 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4593 unsigned EntryVF = E->getVectorFactor(); 4594 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4595 4596 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4597 // FIXME: it tries to fix a problem with MSVC buildbots. 4598 TargetTransformInfo &TTIRef = *TTI; 4599 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4600 VectorizedVals, E](InstructionCost &Cost) { 4601 DenseMap<Value *, int> ExtractVectorsTys; 4602 SmallPtrSet<Value *, 4> CheckedExtracts; 4603 for (auto *V : VL) { 4604 if (isa<UndefValue>(V)) 4605 continue; 4606 // If all users of instruction are going to be vectorized and this 4607 // instruction itself is not going to be vectorized, consider this 4608 // instruction as dead and remove its cost from the final cost of the 4609 // vectorized tree. 4610 // Also, avoid adjusting the cost for extractelements with multiple uses 4611 // in different graph entries. 4612 const TreeEntry *VE = getTreeEntry(V); 4613 if (!CheckedExtracts.insert(V).second || 4614 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4615 (VE && VE != E)) 4616 continue; 4617 auto *EE = cast<ExtractElementInst>(V); 4618 Optional<unsigned> EEIdx = getExtractIndex(EE); 4619 if (!EEIdx) 4620 continue; 4621 unsigned Idx = *EEIdx; 4622 if (TTIRef.getNumberOfParts(VecTy) != 4623 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4624 auto It = 4625 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4626 It->getSecond() = std::min<int>(It->second, Idx); 4627 } 4628 // Take credit for instruction that will become dead. 4629 if (EE->hasOneUse()) { 4630 Instruction *Ext = EE->user_back(); 4631 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4632 all_of(Ext->users(), 4633 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4634 // Use getExtractWithExtendCost() to calculate the cost of 4635 // extractelement/ext pair. 4636 Cost -= 4637 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4638 EE->getVectorOperandType(), Idx); 4639 // Add back the cost of s|zext which is subtracted separately. 4640 Cost += TTIRef.getCastInstrCost( 4641 Ext->getOpcode(), Ext->getType(), EE->getType(), 4642 TTI::getCastContextHint(Ext), CostKind, Ext); 4643 continue; 4644 } 4645 } 4646 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4647 EE->getVectorOperandType(), Idx); 4648 } 4649 // Add a cost for subvector extracts/inserts if required. 4650 for (const auto &Data : ExtractVectorsTys) { 4651 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4652 unsigned NumElts = VecTy->getNumElements(); 4653 if (Data.second % NumElts == 0) 4654 continue; 4655 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4656 unsigned Idx = (Data.second / NumElts) * NumElts; 4657 unsigned EENumElts = EEVTy->getNumElements(); 4658 if (Idx + NumElts <= EENumElts) { 4659 Cost += 4660 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4661 EEVTy, None, Idx, VecTy); 4662 } else { 4663 // Need to round up the subvector type vectorization factor to avoid a 4664 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4665 // <= EENumElts. 4666 auto *SubVT = 4667 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4668 Cost += 4669 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4670 EEVTy, None, Idx, SubVT); 4671 } 4672 } else { 4673 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4674 VecTy, None, 0, EEVTy); 4675 } 4676 } 4677 }; 4678 if (E->State == TreeEntry::NeedToGather) { 4679 if (allConstant(VL)) 4680 return 0; 4681 if (isa<InsertElementInst>(VL[0])) 4682 return InstructionCost::getInvalid(); 4683 SmallVector<int> Mask; 4684 SmallVector<const TreeEntry *> Entries; 4685 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4686 isGatherShuffledEntry(E, Mask, Entries); 4687 if (Shuffle.hasValue()) { 4688 InstructionCost GatherCost = 0; 4689 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4690 // Perfect match in the graph, will reuse the previously vectorized 4691 // node. Cost is 0. 4692 LLVM_DEBUG( 4693 dbgs() 4694 << "SLP: perfect diamond match for gather bundle that starts with " 4695 << *VL.front() << ".\n"); 4696 if (NeedToShuffleReuses) 4697 GatherCost = 4698 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4699 FinalVecTy, E->ReuseShuffleIndices); 4700 } else { 4701 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4702 << " entries for bundle that starts with " 4703 << *VL.front() << ".\n"); 4704 // Detected that instead of gather we can emit a shuffle of single/two 4705 // previously vectorized nodes. Add the cost of the permutation rather 4706 // than gather. 4707 ::addMask(Mask, E->ReuseShuffleIndices); 4708 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4709 } 4710 return GatherCost; 4711 } 4712 if ((E->getOpcode() == Instruction::ExtractElement || 4713 all_of(E->Scalars, 4714 [](Value *V) { 4715 return isa<ExtractElementInst, UndefValue>(V); 4716 })) && 4717 allSameType(VL)) { 4718 // Check that gather of extractelements can be represented as just a 4719 // shuffle of a single/two vectors the scalars are extracted from. 4720 SmallVector<int> Mask; 4721 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4722 isFixedVectorShuffle(VL, Mask); 4723 if (ShuffleKind.hasValue()) { 4724 // Found the bunch of extractelement instructions that must be gathered 4725 // into a vector and can be represented as a permutation elements in a 4726 // single input vector or of 2 input vectors. 4727 InstructionCost Cost = 4728 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4729 AdjustExtractsCost(Cost); 4730 if (NeedToShuffleReuses) 4731 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4732 FinalVecTy, E->ReuseShuffleIndices); 4733 return Cost; 4734 } 4735 } 4736 if (isSplat(VL)) { 4737 // Found the broadcasting of the single scalar, calculate the cost as the 4738 // broadcast. 4739 assert(VecTy == FinalVecTy && 4740 "No reused scalars expected for broadcast."); 4741 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4742 } 4743 InstructionCost ReuseShuffleCost = 0; 4744 if (NeedToShuffleReuses) 4745 ReuseShuffleCost = TTI->getShuffleCost( 4746 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4747 // Improve gather cost for gather of loads, if we can group some of the 4748 // loads into vector loads. 4749 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4750 !E->isAltShuffle()) { 4751 BoUpSLP::ValueSet VectorizedLoads; 4752 unsigned StartIdx = 0; 4753 unsigned VF = VL.size() / 2; 4754 unsigned VectorizedCnt = 0; 4755 unsigned ScatterVectorizeCnt = 0; 4756 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4757 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4758 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4759 Cnt += VF) { 4760 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4761 if (!VectorizedLoads.count(Slice.front()) && 4762 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4763 SmallVector<Value *> PointerOps; 4764 OrdersType CurrentOrder; 4765 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4766 *SE, CurrentOrder, PointerOps); 4767 switch (LS) { 4768 case LoadsState::Vectorize: 4769 case LoadsState::ScatterVectorize: 4770 // Mark the vectorized loads so that we don't vectorize them 4771 // again. 4772 if (LS == LoadsState::Vectorize) 4773 ++VectorizedCnt; 4774 else 4775 ++ScatterVectorizeCnt; 4776 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4777 // If we vectorized initial block, no need to try to vectorize it 4778 // again. 4779 if (Cnt == StartIdx) 4780 StartIdx += VF; 4781 break; 4782 case LoadsState::Gather: 4783 break; 4784 } 4785 } 4786 } 4787 // Check if the whole array was vectorized already - exit. 4788 if (StartIdx >= VL.size()) 4789 break; 4790 // Found vectorizable parts - exit. 4791 if (!VectorizedLoads.empty()) 4792 break; 4793 } 4794 if (!VectorizedLoads.empty()) { 4795 InstructionCost GatherCost = 0; 4796 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4797 bool NeedInsertSubvectorAnalysis = 4798 !NumParts || (VL.size() / VF) > NumParts; 4799 // Get the cost for gathered loads. 4800 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4801 if (VectorizedLoads.contains(VL[I])) 4802 continue; 4803 GatherCost += getGatherCost(VL.slice(I, VF)); 4804 } 4805 // The cost for vectorized loads. 4806 InstructionCost ScalarsCost = 0; 4807 for (Value *V : VectorizedLoads) { 4808 auto *LI = cast<LoadInst>(V); 4809 ScalarsCost += TTI->getMemoryOpCost( 4810 Instruction::Load, LI->getType(), LI->getAlign(), 4811 LI->getPointerAddressSpace(), CostKind, LI); 4812 } 4813 auto *LI = cast<LoadInst>(E->getMainOp()); 4814 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4815 Align Alignment = LI->getAlign(); 4816 GatherCost += 4817 VectorizedCnt * 4818 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4819 LI->getPointerAddressSpace(), CostKind, LI); 4820 GatherCost += ScatterVectorizeCnt * 4821 TTI->getGatherScatterOpCost( 4822 Instruction::Load, LoadTy, LI->getPointerOperand(), 4823 /*VariableMask=*/false, Alignment, CostKind, LI); 4824 if (NeedInsertSubvectorAnalysis) { 4825 // Add the cost for the subvectors insert. 4826 for (int I = VF, E = VL.size(); I < E; I += VF) 4827 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4828 None, I, LoadTy); 4829 } 4830 return ReuseShuffleCost + GatherCost - ScalarsCost; 4831 } 4832 } 4833 return ReuseShuffleCost + getGatherCost(VL); 4834 } 4835 InstructionCost CommonCost = 0; 4836 SmallVector<int> Mask; 4837 if (!E->ReorderIndices.empty()) { 4838 SmallVector<int> NewMask; 4839 if (E->getOpcode() == Instruction::Store) { 4840 // For stores the order is actually a mask. 4841 NewMask.resize(E->ReorderIndices.size()); 4842 copy(E->ReorderIndices, NewMask.begin()); 4843 } else { 4844 inversePermutation(E->ReorderIndices, NewMask); 4845 } 4846 ::addMask(Mask, NewMask); 4847 } 4848 if (NeedToShuffleReuses) 4849 ::addMask(Mask, E->ReuseShuffleIndices); 4850 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4851 CommonCost = 4852 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4853 assert((E->State == TreeEntry::Vectorize || 4854 E->State == TreeEntry::ScatterVectorize) && 4855 "Unhandled state"); 4856 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4857 Instruction *VL0 = E->getMainOp(); 4858 unsigned ShuffleOrOp = 4859 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4860 switch (ShuffleOrOp) { 4861 case Instruction::PHI: 4862 return 0; 4863 4864 case Instruction::ExtractValue: 4865 case Instruction::ExtractElement: { 4866 // The common cost of removal ExtractElement/ExtractValue instructions + 4867 // the cost of shuffles, if required to resuffle the original vector. 4868 if (NeedToShuffleReuses) { 4869 unsigned Idx = 0; 4870 for (unsigned I : E->ReuseShuffleIndices) { 4871 if (ShuffleOrOp == Instruction::ExtractElement) { 4872 auto *EE = cast<ExtractElementInst>(VL[I]); 4873 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4874 EE->getVectorOperandType(), 4875 *getExtractIndex(EE)); 4876 } else { 4877 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4878 VecTy, Idx); 4879 ++Idx; 4880 } 4881 } 4882 Idx = EntryVF; 4883 for (Value *V : VL) { 4884 if (ShuffleOrOp == Instruction::ExtractElement) { 4885 auto *EE = cast<ExtractElementInst>(V); 4886 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4887 EE->getVectorOperandType(), 4888 *getExtractIndex(EE)); 4889 } else { 4890 --Idx; 4891 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4892 VecTy, Idx); 4893 } 4894 } 4895 } 4896 if (ShuffleOrOp == Instruction::ExtractValue) { 4897 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4898 auto *EI = cast<Instruction>(VL[I]); 4899 // Take credit for instruction that will become dead. 4900 if (EI->hasOneUse()) { 4901 Instruction *Ext = EI->user_back(); 4902 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4903 all_of(Ext->users(), 4904 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4905 // Use getExtractWithExtendCost() to calculate the cost of 4906 // extractelement/ext pair. 4907 CommonCost -= TTI->getExtractWithExtendCost( 4908 Ext->getOpcode(), Ext->getType(), VecTy, I); 4909 // Add back the cost of s|zext which is subtracted separately. 4910 CommonCost += TTI->getCastInstrCost( 4911 Ext->getOpcode(), Ext->getType(), EI->getType(), 4912 TTI::getCastContextHint(Ext), CostKind, Ext); 4913 continue; 4914 } 4915 } 4916 CommonCost -= 4917 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4918 } 4919 } else { 4920 AdjustExtractsCost(CommonCost); 4921 } 4922 return CommonCost; 4923 } 4924 case Instruction::InsertElement: { 4925 assert(E->ReuseShuffleIndices.empty() && 4926 "Unique insertelements only are expected."); 4927 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4928 4929 unsigned const NumElts = SrcVecTy->getNumElements(); 4930 unsigned const NumScalars = VL.size(); 4931 APInt DemandedElts = APInt::getZero(NumElts); 4932 // TODO: Add support for Instruction::InsertValue. 4933 SmallVector<int> Mask; 4934 if (!E->ReorderIndices.empty()) { 4935 inversePermutation(E->ReorderIndices, Mask); 4936 Mask.append(NumElts - NumScalars, UndefMaskElem); 4937 } else { 4938 Mask.assign(NumElts, UndefMaskElem); 4939 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4940 } 4941 unsigned Offset = *getInsertIndex(VL0, 0); 4942 bool IsIdentity = true; 4943 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4944 Mask.swap(PrevMask); 4945 for (unsigned I = 0; I < NumScalars; ++I) { 4946 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4947 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4948 continue; 4949 DemandedElts.setBit(*InsertIdx); 4950 IsIdentity &= *InsertIdx - Offset == I; 4951 Mask[*InsertIdx - Offset] = I; 4952 } 4953 assert(Offset < NumElts && "Failed to find vector index offset"); 4954 4955 InstructionCost Cost = 0; 4956 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4957 /*Insert*/ true, /*Extract*/ false); 4958 4959 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4960 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4961 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4962 Cost += TTI->getShuffleCost( 4963 TargetTransformInfo::SK_PermuteSingleSrc, 4964 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4965 } else if (!IsIdentity) { 4966 auto *FirstInsert = 4967 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4968 return !is_contained(E->Scalars, 4969 cast<Instruction>(V)->getOperand(0)); 4970 })); 4971 if (isUndefVector(FirstInsert->getOperand(0))) { 4972 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4973 } else { 4974 SmallVector<int> InsertMask(NumElts); 4975 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4976 for (unsigned I = 0; I < NumElts; I++) { 4977 if (Mask[I] != UndefMaskElem) 4978 InsertMask[Offset + I] = NumElts + I; 4979 } 4980 Cost += 4981 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4982 } 4983 } 4984 4985 return Cost; 4986 } 4987 case Instruction::ZExt: 4988 case Instruction::SExt: 4989 case Instruction::FPToUI: 4990 case Instruction::FPToSI: 4991 case Instruction::FPExt: 4992 case Instruction::PtrToInt: 4993 case Instruction::IntToPtr: 4994 case Instruction::SIToFP: 4995 case Instruction::UIToFP: 4996 case Instruction::Trunc: 4997 case Instruction::FPTrunc: 4998 case Instruction::BitCast: { 4999 Type *SrcTy = VL0->getOperand(0)->getType(); 5000 InstructionCost ScalarEltCost = 5001 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5002 TTI::getCastContextHint(VL0), CostKind, VL0); 5003 if (NeedToShuffleReuses) { 5004 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5005 } 5006 5007 // Calculate the cost of this instruction. 5008 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5009 5010 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5011 InstructionCost VecCost = 0; 5012 // Check if the values are candidates to demote. 5013 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5014 VecCost = CommonCost + TTI->getCastInstrCost( 5015 E->getOpcode(), VecTy, SrcVecTy, 5016 TTI::getCastContextHint(VL0), CostKind, VL0); 5017 } 5018 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5019 return VecCost - ScalarCost; 5020 } 5021 case Instruction::FCmp: 5022 case Instruction::ICmp: 5023 case Instruction::Select: { 5024 // Calculate the cost of this instruction. 5025 InstructionCost ScalarEltCost = 5026 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5027 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5028 if (NeedToShuffleReuses) { 5029 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5030 } 5031 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5032 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5033 5034 // Check if all entries in VL are either compares or selects with compares 5035 // as condition that have the same predicates. 5036 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5037 bool First = true; 5038 for (auto *V : VL) { 5039 CmpInst::Predicate CurrentPred; 5040 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5041 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5042 !match(V, MatchCmp)) || 5043 (!First && VecPred != CurrentPred)) { 5044 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5045 break; 5046 } 5047 First = false; 5048 VecPred = CurrentPred; 5049 } 5050 5051 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5052 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5053 // Check if it is possible and profitable to use min/max for selects in 5054 // VL. 5055 // 5056 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5057 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5058 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5059 {VecTy, VecTy}); 5060 InstructionCost IntrinsicCost = 5061 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5062 // If the selects are the only uses of the compares, they will be dead 5063 // and we can adjust the cost by removing their cost. 5064 if (IntrinsicAndUse.second) 5065 IntrinsicCost -= 5066 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5067 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5068 VecCost = std::min(VecCost, IntrinsicCost); 5069 } 5070 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5071 return CommonCost + VecCost - ScalarCost; 5072 } 5073 case Instruction::FNeg: 5074 case Instruction::Add: 5075 case Instruction::FAdd: 5076 case Instruction::Sub: 5077 case Instruction::FSub: 5078 case Instruction::Mul: 5079 case Instruction::FMul: 5080 case Instruction::UDiv: 5081 case Instruction::SDiv: 5082 case Instruction::FDiv: 5083 case Instruction::URem: 5084 case Instruction::SRem: 5085 case Instruction::FRem: 5086 case Instruction::Shl: 5087 case Instruction::LShr: 5088 case Instruction::AShr: 5089 case Instruction::And: 5090 case Instruction::Or: 5091 case Instruction::Xor: { 5092 // Certain instructions can be cheaper to vectorize if they have a 5093 // constant second vector operand. 5094 TargetTransformInfo::OperandValueKind Op1VK = 5095 TargetTransformInfo::OK_AnyValue; 5096 TargetTransformInfo::OperandValueKind Op2VK = 5097 TargetTransformInfo::OK_UniformConstantValue; 5098 TargetTransformInfo::OperandValueProperties Op1VP = 5099 TargetTransformInfo::OP_None; 5100 TargetTransformInfo::OperandValueProperties Op2VP = 5101 TargetTransformInfo::OP_PowerOf2; 5102 5103 // If all operands are exactly the same ConstantInt then set the 5104 // operand kind to OK_UniformConstantValue. 5105 // If instead not all operands are constants, then set the operand kind 5106 // to OK_AnyValue. If all operands are constants but not the same, 5107 // then set the operand kind to OK_NonUniformConstantValue. 5108 ConstantInt *CInt0 = nullptr; 5109 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5110 const Instruction *I = cast<Instruction>(VL[i]); 5111 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5112 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5113 if (!CInt) { 5114 Op2VK = TargetTransformInfo::OK_AnyValue; 5115 Op2VP = TargetTransformInfo::OP_None; 5116 break; 5117 } 5118 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5119 !CInt->getValue().isPowerOf2()) 5120 Op2VP = TargetTransformInfo::OP_None; 5121 if (i == 0) { 5122 CInt0 = CInt; 5123 continue; 5124 } 5125 if (CInt0 != CInt) 5126 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5127 } 5128 5129 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5130 InstructionCost ScalarEltCost = 5131 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5132 Op2VK, Op1VP, Op2VP, Operands, VL0); 5133 if (NeedToShuffleReuses) { 5134 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5135 } 5136 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5137 InstructionCost VecCost = 5138 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5139 Op2VK, Op1VP, Op2VP, Operands, VL0); 5140 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5141 return CommonCost + VecCost - ScalarCost; 5142 } 5143 case Instruction::GetElementPtr: { 5144 TargetTransformInfo::OperandValueKind Op1VK = 5145 TargetTransformInfo::OK_AnyValue; 5146 TargetTransformInfo::OperandValueKind Op2VK = 5147 TargetTransformInfo::OK_UniformConstantValue; 5148 5149 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5150 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5151 if (NeedToShuffleReuses) { 5152 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5153 } 5154 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5155 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5156 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5157 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5158 return CommonCost + VecCost - ScalarCost; 5159 } 5160 case Instruction::Load: { 5161 // Cost of wide load - cost of scalar loads. 5162 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5163 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5164 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5165 if (NeedToShuffleReuses) { 5166 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5167 } 5168 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5169 InstructionCost VecLdCost; 5170 if (E->State == TreeEntry::Vectorize) { 5171 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5172 CostKind, VL0); 5173 } else { 5174 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5175 Align CommonAlignment = Alignment; 5176 for (Value *V : VL) 5177 CommonAlignment = 5178 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5179 VecLdCost = TTI->getGatherScatterOpCost( 5180 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5181 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5182 } 5183 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5184 return CommonCost + VecLdCost - ScalarLdCost; 5185 } 5186 case Instruction::Store: { 5187 // We know that we can merge the stores. Calculate the cost. 5188 bool IsReorder = !E->ReorderIndices.empty(); 5189 auto *SI = 5190 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5191 Align Alignment = SI->getAlign(); 5192 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5193 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5194 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5195 InstructionCost VecStCost = TTI->getMemoryOpCost( 5196 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5197 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5198 return CommonCost + VecStCost - ScalarStCost; 5199 } 5200 case Instruction::Call: { 5201 CallInst *CI = cast<CallInst>(VL0); 5202 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5203 5204 // Calculate the cost of the scalar and vector calls. 5205 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5206 InstructionCost ScalarEltCost = 5207 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5208 if (NeedToShuffleReuses) { 5209 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5210 } 5211 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5212 5213 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5214 InstructionCost VecCallCost = 5215 std::min(VecCallCosts.first, VecCallCosts.second); 5216 5217 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5218 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5219 << " for " << *CI << "\n"); 5220 5221 return CommonCost + VecCallCost - ScalarCallCost; 5222 } 5223 case Instruction::ShuffleVector: { 5224 assert(E->isAltShuffle() && 5225 ((Instruction::isBinaryOp(E->getOpcode()) && 5226 Instruction::isBinaryOp(E->getAltOpcode())) || 5227 (Instruction::isCast(E->getOpcode()) && 5228 Instruction::isCast(E->getAltOpcode()))) && 5229 "Invalid Shuffle Vector Operand"); 5230 InstructionCost ScalarCost = 0; 5231 if (NeedToShuffleReuses) { 5232 for (unsigned Idx : E->ReuseShuffleIndices) { 5233 Instruction *I = cast<Instruction>(VL[Idx]); 5234 CommonCost -= TTI->getInstructionCost(I, CostKind); 5235 } 5236 for (Value *V : VL) { 5237 Instruction *I = cast<Instruction>(V); 5238 CommonCost += TTI->getInstructionCost(I, CostKind); 5239 } 5240 } 5241 for (Value *V : VL) { 5242 Instruction *I = cast<Instruction>(V); 5243 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5244 ScalarCost += TTI->getInstructionCost(I, CostKind); 5245 } 5246 // VecCost is equal to sum of the cost of creating 2 vectors 5247 // and the cost of creating shuffle. 5248 InstructionCost VecCost = 0; 5249 // Try to find the previous shuffle node with the same operands and same 5250 // main/alternate ops. 5251 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5252 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5253 if (TE.get() == E) 5254 break; 5255 if (TE->isAltShuffle() && 5256 ((TE->getOpcode() == E->getOpcode() && 5257 TE->getAltOpcode() == E->getAltOpcode()) || 5258 (TE->getOpcode() == E->getAltOpcode() && 5259 TE->getAltOpcode() == E->getOpcode())) && 5260 TE->hasEqualOperands(*E)) 5261 return true; 5262 } 5263 return false; 5264 }; 5265 if (TryFindNodeWithEqualOperands()) { 5266 LLVM_DEBUG({ 5267 dbgs() << "SLP: diamond match for alternate node found.\n"; 5268 E->dump(); 5269 }); 5270 // No need to add new vector costs here since we're going to reuse 5271 // same main/alternate vector ops, just do different shuffling. 5272 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5273 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5274 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5275 CostKind); 5276 } else { 5277 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5278 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5279 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5280 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5281 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5282 TTI::CastContextHint::None, CostKind); 5283 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5284 TTI::CastContextHint::None, CostKind); 5285 } 5286 5287 SmallVector<int> Mask; 5288 buildSuffleEntryMask( 5289 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5290 [E](Instruction *I) { 5291 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5292 return I->getOpcode() == E->getAltOpcode(); 5293 }, 5294 Mask); 5295 CommonCost = 5296 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5297 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5298 return CommonCost + VecCost - ScalarCost; 5299 } 5300 default: 5301 llvm_unreachable("Unknown instruction"); 5302 } 5303 } 5304 5305 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5306 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5307 << VectorizableTree.size() << " is fully vectorizable .\n"); 5308 5309 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5310 SmallVector<int> Mask; 5311 return TE->State == TreeEntry::NeedToGather && 5312 !any_of(TE->Scalars, 5313 [this](Value *V) { return EphValues.contains(V); }) && 5314 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5315 TE->Scalars.size() < Limit || 5316 ((TE->getOpcode() == Instruction::ExtractElement || 5317 all_of(TE->Scalars, 5318 [](Value *V) { 5319 return isa<ExtractElementInst, UndefValue>(V); 5320 })) && 5321 isFixedVectorShuffle(TE->Scalars, Mask)) || 5322 (TE->State == TreeEntry::NeedToGather && 5323 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5324 }; 5325 5326 // We only handle trees of heights 1 and 2. 5327 if (VectorizableTree.size() == 1 && 5328 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5329 (ForReduction && 5330 AreVectorizableGathers(VectorizableTree[0].get(), 5331 VectorizableTree[0]->Scalars.size()) && 5332 VectorizableTree[0]->getVectorFactor() > 2))) 5333 return true; 5334 5335 if (VectorizableTree.size() != 2) 5336 return false; 5337 5338 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5339 // with the second gather nodes if they have less scalar operands rather than 5340 // the initial tree element (may be profitable to shuffle the second gather) 5341 // or they are extractelements, which form shuffle. 5342 SmallVector<int> Mask; 5343 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5344 AreVectorizableGathers(VectorizableTree[1].get(), 5345 VectorizableTree[0]->Scalars.size())) 5346 return true; 5347 5348 // Gathering cost would be too much for tiny trees. 5349 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5350 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5351 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5352 return false; 5353 5354 return true; 5355 } 5356 5357 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5358 TargetTransformInfo *TTI, 5359 bool MustMatchOrInst) { 5360 // Look past the root to find a source value. Arbitrarily follow the 5361 // path through operand 0 of any 'or'. Also, peek through optional 5362 // shift-left-by-multiple-of-8-bits. 5363 Value *ZextLoad = Root; 5364 const APInt *ShAmtC; 5365 bool FoundOr = false; 5366 while (!isa<ConstantExpr>(ZextLoad) && 5367 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5368 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5369 ShAmtC->urem(8) == 0))) { 5370 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5371 ZextLoad = BinOp->getOperand(0); 5372 if (BinOp->getOpcode() == Instruction::Or) 5373 FoundOr = true; 5374 } 5375 // Check if the input is an extended load of the required or/shift expression. 5376 Value *Load; 5377 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5378 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5379 return false; 5380 5381 // Require that the total load bit width is a legal integer type. 5382 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5383 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5384 Type *SrcTy = Load->getType(); 5385 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5386 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5387 return false; 5388 5389 // Everything matched - assume that we can fold the whole sequence using 5390 // load combining. 5391 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5392 << *(cast<Instruction>(Root)) << "\n"); 5393 5394 return true; 5395 } 5396 5397 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5398 if (RdxKind != RecurKind::Or) 5399 return false; 5400 5401 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5402 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5403 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5404 /* MatchOr */ false); 5405 } 5406 5407 bool BoUpSLP::isLoadCombineCandidate() const { 5408 // Peek through a final sequence of stores and check if all operations are 5409 // likely to be load-combined. 5410 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5411 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5412 Value *X; 5413 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5414 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5415 return false; 5416 } 5417 return true; 5418 } 5419 5420 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5421 // No need to vectorize inserts of gathered values. 5422 if (VectorizableTree.size() == 2 && 5423 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5424 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5425 return true; 5426 5427 // We can vectorize the tree if its size is greater than or equal to the 5428 // minimum size specified by the MinTreeSize command line option. 5429 if (VectorizableTree.size() >= MinTreeSize) 5430 return false; 5431 5432 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5433 // can vectorize it if we can prove it fully vectorizable. 5434 if (isFullyVectorizableTinyTree(ForReduction)) 5435 return false; 5436 5437 assert(VectorizableTree.empty() 5438 ? ExternalUses.empty() 5439 : true && "We shouldn't have any external users"); 5440 5441 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5442 // vectorizable. 5443 return true; 5444 } 5445 5446 InstructionCost BoUpSLP::getSpillCost() const { 5447 // Walk from the bottom of the tree to the top, tracking which values are 5448 // live. When we see a call instruction that is not part of our tree, 5449 // query TTI to see if there is a cost to keeping values live over it 5450 // (for example, if spills and fills are required). 5451 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5452 InstructionCost Cost = 0; 5453 5454 SmallPtrSet<Instruction*, 4> LiveValues; 5455 Instruction *PrevInst = nullptr; 5456 5457 // The entries in VectorizableTree are not necessarily ordered by their 5458 // position in basic blocks. Collect them and order them by dominance so later 5459 // instructions are guaranteed to be visited first. For instructions in 5460 // different basic blocks, we only scan to the beginning of the block, so 5461 // their order does not matter, as long as all instructions in a basic block 5462 // are grouped together. Using dominance ensures a deterministic order. 5463 SmallVector<Instruction *, 16> OrderedScalars; 5464 for (const auto &TEPtr : VectorizableTree) { 5465 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5466 if (!Inst) 5467 continue; 5468 OrderedScalars.push_back(Inst); 5469 } 5470 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5471 auto *NodeA = DT->getNode(A->getParent()); 5472 auto *NodeB = DT->getNode(B->getParent()); 5473 assert(NodeA && "Should only process reachable instructions"); 5474 assert(NodeB && "Should only process reachable instructions"); 5475 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5476 "Different nodes should have different DFS numbers"); 5477 if (NodeA != NodeB) 5478 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5479 return B->comesBefore(A); 5480 }); 5481 5482 for (Instruction *Inst : OrderedScalars) { 5483 if (!PrevInst) { 5484 PrevInst = Inst; 5485 continue; 5486 } 5487 5488 // Update LiveValues. 5489 LiveValues.erase(PrevInst); 5490 for (auto &J : PrevInst->operands()) { 5491 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5492 LiveValues.insert(cast<Instruction>(&*J)); 5493 } 5494 5495 LLVM_DEBUG({ 5496 dbgs() << "SLP: #LV: " << LiveValues.size(); 5497 for (auto *X : LiveValues) 5498 dbgs() << " " << X->getName(); 5499 dbgs() << ", Looking at "; 5500 Inst->dump(); 5501 }); 5502 5503 // Now find the sequence of instructions between PrevInst and Inst. 5504 unsigned NumCalls = 0; 5505 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5506 PrevInstIt = 5507 PrevInst->getIterator().getReverse(); 5508 while (InstIt != PrevInstIt) { 5509 if (PrevInstIt == PrevInst->getParent()->rend()) { 5510 PrevInstIt = Inst->getParent()->rbegin(); 5511 continue; 5512 } 5513 5514 // Debug information does not impact spill cost. 5515 if ((isa<CallInst>(&*PrevInstIt) && 5516 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5517 &*PrevInstIt != PrevInst) 5518 NumCalls++; 5519 5520 ++PrevInstIt; 5521 } 5522 5523 if (NumCalls) { 5524 SmallVector<Type*, 4> V; 5525 for (auto *II : LiveValues) { 5526 auto *ScalarTy = II->getType(); 5527 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5528 ScalarTy = VectorTy->getElementType(); 5529 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5530 } 5531 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5532 } 5533 5534 PrevInst = Inst; 5535 } 5536 5537 return Cost; 5538 } 5539 5540 /// Check if two insertelement instructions are from the same buildvector. 5541 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5542 InsertElementInst *V) { 5543 // Instructions must be from the same basic blocks. 5544 if (VU->getParent() != V->getParent()) 5545 return false; 5546 // Checks if 2 insertelements are from the same buildvector. 5547 if (VU->getType() != V->getType()) 5548 return false; 5549 // Multiple used inserts are separate nodes. 5550 if (!VU->hasOneUse() && !V->hasOneUse()) 5551 return false; 5552 auto *IE1 = VU; 5553 auto *IE2 = V; 5554 // Go through the vector operand of insertelement instructions trying to find 5555 // either VU as the original vector for IE2 or V as the original vector for 5556 // IE1. 5557 do { 5558 if (IE2 == VU || IE1 == V) 5559 return true; 5560 if (IE1) { 5561 if (IE1 != VU && !IE1->hasOneUse()) 5562 IE1 = nullptr; 5563 else 5564 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5565 } 5566 if (IE2) { 5567 if (IE2 != V && !IE2->hasOneUse()) 5568 IE2 = nullptr; 5569 else 5570 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5571 } 5572 } while (IE1 || IE2); 5573 return false; 5574 } 5575 5576 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5577 InstructionCost Cost = 0; 5578 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5579 << VectorizableTree.size() << ".\n"); 5580 5581 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5582 5583 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5584 TreeEntry &TE = *VectorizableTree[I].get(); 5585 5586 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5587 Cost += C; 5588 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5589 << " for bundle that starts with " << *TE.Scalars[0] 5590 << ".\n" 5591 << "SLP: Current total cost = " << Cost << "\n"); 5592 } 5593 5594 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5595 InstructionCost ExtractCost = 0; 5596 SmallVector<unsigned> VF; 5597 SmallVector<SmallVector<int>> ShuffleMask; 5598 SmallVector<Value *> FirstUsers; 5599 SmallVector<APInt> DemandedElts; 5600 for (ExternalUser &EU : ExternalUses) { 5601 // We only add extract cost once for the same scalar. 5602 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5603 !ExtractCostCalculated.insert(EU.Scalar).second) 5604 continue; 5605 5606 // Uses by ephemeral values are free (because the ephemeral value will be 5607 // removed prior to code generation, and so the extraction will be 5608 // removed as well). 5609 if (EphValues.count(EU.User)) 5610 continue; 5611 5612 // No extract cost for vector "scalar" 5613 if (isa<FixedVectorType>(EU.Scalar->getType())) 5614 continue; 5615 5616 // Already counted the cost for external uses when tried to adjust the cost 5617 // for extractelements, no need to add it again. 5618 if (isa<ExtractElementInst>(EU.Scalar)) 5619 continue; 5620 5621 // If found user is an insertelement, do not calculate extract cost but try 5622 // to detect it as a final shuffled/identity match. 5623 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5624 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5625 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5626 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5627 continue; 5628 auto *It = find_if(FirstUsers, [VU](Value *V) { 5629 return areTwoInsertFromSameBuildVector(VU, 5630 cast<InsertElementInst>(V)); 5631 }); 5632 int VecId = -1; 5633 if (It == FirstUsers.end()) { 5634 VF.push_back(FTy->getNumElements()); 5635 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5636 // Find the insertvector, vectorized in tree, if any. 5637 Value *Base = VU; 5638 while (isa<InsertElementInst>(Base)) { 5639 // Build the mask for the vectorized insertelement instructions. 5640 if (const TreeEntry *E = getTreeEntry(Base)) { 5641 VU = cast<InsertElementInst>(Base); 5642 do { 5643 int Idx = E->findLaneForValue(Base); 5644 ShuffleMask.back()[Idx] = Idx; 5645 Base = cast<InsertElementInst>(Base)->getOperand(0); 5646 } while (E == getTreeEntry(Base)); 5647 break; 5648 } 5649 Base = cast<InsertElementInst>(Base)->getOperand(0); 5650 } 5651 FirstUsers.push_back(VU); 5652 DemandedElts.push_back(APInt::getZero(VF.back())); 5653 VecId = FirstUsers.size() - 1; 5654 } else { 5655 VecId = std::distance(FirstUsers.begin(), It); 5656 } 5657 int Idx = *InsertIdx; 5658 ShuffleMask[VecId][Idx] = EU.Lane; 5659 DemandedElts[VecId].setBit(Idx); 5660 continue; 5661 } 5662 } 5663 5664 // If we plan to rewrite the tree in a smaller type, we will need to sign 5665 // extend the extracted value back to the original type. Here, we account 5666 // for the extract and the added cost of the sign extend if needed. 5667 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5668 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5669 if (MinBWs.count(ScalarRoot)) { 5670 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5671 auto Extend = 5672 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5673 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5674 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5675 VecTy, EU.Lane); 5676 } else { 5677 ExtractCost += 5678 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5679 } 5680 } 5681 5682 InstructionCost SpillCost = getSpillCost(); 5683 Cost += SpillCost + ExtractCost; 5684 if (FirstUsers.size() == 1) { 5685 int Limit = ShuffleMask.front().size() * 2; 5686 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5687 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5688 InstructionCost C = TTI->getShuffleCost( 5689 TTI::SK_PermuteSingleSrc, 5690 cast<FixedVectorType>(FirstUsers.front()->getType()), 5691 ShuffleMask.front()); 5692 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5693 << " for final shuffle of insertelement external users " 5694 << *VectorizableTree.front()->Scalars.front() << ".\n" 5695 << "SLP: Current total cost = " << Cost << "\n"); 5696 Cost += C; 5697 } 5698 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5699 cast<FixedVectorType>(FirstUsers.front()->getType()), 5700 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5701 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5702 << " for insertelements gather.\n" 5703 << "SLP: Current total cost = " << Cost << "\n"); 5704 Cost -= InsertCost; 5705 } else if (FirstUsers.size() >= 2) { 5706 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5707 // Combined masks of the first 2 vectors. 5708 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5709 copy(ShuffleMask.front(), CombinedMask.begin()); 5710 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5711 auto *VecTy = FixedVectorType::get( 5712 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5713 MaxVF); 5714 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5715 if (ShuffleMask[1][I] != UndefMaskElem) { 5716 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5717 CombinedDemandedElts.setBit(I); 5718 } 5719 } 5720 InstructionCost C = 5721 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5722 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5723 << " for final shuffle of vector node and external " 5724 "insertelement users " 5725 << *VectorizableTree.front()->Scalars.front() << ".\n" 5726 << "SLP: Current total cost = " << Cost << "\n"); 5727 Cost += C; 5728 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5729 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5730 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5731 << " for insertelements gather.\n" 5732 << "SLP: Current total cost = " << Cost << "\n"); 5733 Cost -= InsertCost; 5734 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5735 // Other elements - permutation of 2 vectors (the initial one and the 5736 // next Ith incoming vector). 5737 unsigned VF = ShuffleMask[I].size(); 5738 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5739 int Mask = ShuffleMask[I][Idx]; 5740 if (Mask != UndefMaskElem) 5741 CombinedMask[Idx] = MaxVF + Mask; 5742 else if (CombinedMask[Idx] != UndefMaskElem) 5743 CombinedMask[Idx] = Idx; 5744 } 5745 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5746 if (CombinedMask[Idx] != UndefMaskElem) 5747 CombinedMask[Idx] = Idx; 5748 InstructionCost C = 5749 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5750 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5751 << " for final shuffle of vector node and external " 5752 "insertelement users " 5753 << *VectorizableTree.front()->Scalars.front() << ".\n" 5754 << "SLP: Current total cost = " << Cost << "\n"); 5755 Cost += C; 5756 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5757 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5758 /*Insert*/ true, /*Extract*/ false); 5759 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5760 << " for insertelements gather.\n" 5761 << "SLP: Current total cost = " << Cost << "\n"); 5762 Cost -= InsertCost; 5763 } 5764 } 5765 5766 #ifndef NDEBUG 5767 SmallString<256> Str; 5768 { 5769 raw_svector_ostream OS(Str); 5770 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5771 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5772 << "SLP: Total Cost = " << Cost << ".\n"; 5773 } 5774 LLVM_DEBUG(dbgs() << Str); 5775 if (ViewSLPTree) 5776 ViewGraph(this, "SLP" + F->getName(), false, Str); 5777 #endif 5778 5779 return Cost; 5780 } 5781 5782 Optional<TargetTransformInfo::ShuffleKind> 5783 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5784 SmallVectorImpl<const TreeEntry *> &Entries) { 5785 // TODO: currently checking only for Scalars in the tree entry, need to count 5786 // reused elements too for better cost estimation. 5787 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5788 Entries.clear(); 5789 // Build a lists of values to tree entries. 5790 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5791 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5792 if (EntryPtr.get() == TE) 5793 break; 5794 if (EntryPtr->State != TreeEntry::NeedToGather) 5795 continue; 5796 for (Value *V : EntryPtr->Scalars) 5797 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5798 } 5799 // Find all tree entries used by the gathered values. If no common entries 5800 // found - not a shuffle. 5801 // Here we build a set of tree nodes for each gathered value and trying to 5802 // find the intersection between these sets. If we have at least one common 5803 // tree node for each gathered value - we have just a permutation of the 5804 // single vector. If we have 2 different sets, we're in situation where we 5805 // have a permutation of 2 input vectors. 5806 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5807 DenseMap<Value *, int> UsedValuesEntry; 5808 for (Value *V : TE->Scalars) { 5809 if (isa<UndefValue>(V)) 5810 continue; 5811 // Build a list of tree entries where V is used. 5812 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5813 auto It = ValueToTEs.find(V); 5814 if (It != ValueToTEs.end()) 5815 VToTEs = It->second; 5816 if (const TreeEntry *VTE = getTreeEntry(V)) 5817 VToTEs.insert(VTE); 5818 if (VToTEs.empty()) 5819 return None; 5820 if (UsedTEs.empty()) { 5821 // The first iteration, just insert the list of nodes to vector. 5822 UsedTEs.push_back(VToTEs); 5823 } else { 5824 // Need to check if there are any previously used tree nodes which use V. 5825 // If there are no such nodes, consider that we have another one input 5826 // vector. 5827 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5828 unsigned Idx = 0; 5829 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5830 // Do we have a non-empty intersection of previously listed tree entries 5831 // and tree entries using current V? 5832 set_intersect(VToTEs, Set); 5833 if (!VToTEs.empty()) { 5834 // Yes, write the new subset and continue analysis for the next 5835 // scalar. 5836 Set.swap(VToTEs); 5837 break; 5838 } 5839 VToTEs = SavedVToTEs; 5840 ++Idx; 5841 } 5842 // No non-empty intersection found - need to add a second set of possible 5843 // source vectors. 5844 if (Idx == UsedTEs.size()) { 5845 // If the number of input vectors is greater than 2 - not a permutation, 5846 // fallback to the regular gather. 5847 if (UsedTEs.size() == 2) 5848 return None; 5849 UsedTEs.push_back(SavedVToTEs); 5850 Idx = UsedTEs.size() - 1; 5851 } 5852 UsedValuesEntry.try_emplace(V, Idx); 5853 } 5854 } 5855 5856 unsigned VF = 0; 5857 if (UsedTEs.size() == 1) { 5858 // Try to find the perfect match in another gather node at first. 5859 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5860 return EntryPtr->isSame(TE->Scalars); 5861 }); 5862 if (It != UsedTEs.front().end()) { 5863 Entries.push_back(*It); 5864 std::iota(Mask.begin(), Mask.end(), 0); 5865 return TargetTransformInfo::SK_PermuteSingleSrc; 5866 } 5867 // No perfect match, just shuffle, so choose the first tree node. 5868 Entries.push_back(*UsedTEs.front().begin()); 5869 } else { 5870 // Try to find nodes with the same vector factor. 5871 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5872 DenseMap<int, const TreeEntry *> VFToTE; 5873 for (const TreeEntry *TE : UsedTEs.front()) 5874 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5875 for (const TreeEntry *TE : UsedTEs.back()) { 5876 auto It = VFToTE.find(TE->getVectorFactor()); 5877 if (It != VFToTE.end()) { 5878 VF = It->first; 5879 Entries.push_back(It->second); 5880 Entries.push_back(TE); 5881 break; 5882 } 5883 } 5884 // No 2 source vectors with the same vector factor - give up and do regular 5885 // gather. 5886 if (Entries.empty()) 5887 return None; 5888 } 5889 5890 // Build a shuffle mask for better cost estimation and vector emission. 5891 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5892 Value *V = TE->Scalars[I]; 5893 if (isa<UndefValue>(V)) 5894 continue; 5895 unsigned Idx = UsedValuesEntry.lookup(V); 5896 const TreeEntry *VTE = Entries[Idx]; 5897 int FoundLane = VTE->findLaneForValue(V); 5898 Mask[I] = Idx * VF + FoundLane; 5899 // Extra check required by isSingleSourceMaskImpl function (called by 5900 // ShuffleVectorInst::isSingleSourceMask). 5901 if (Mask[I] >= 2 * E) 5902 return None; 5903 } 5904 switch (Entries.size()) { 5905 case 1: 5906 return TargetTransformInfo::SK_PermuteSingleSrc; 5907 case 2: 5908 return TargetTransformInfo::SK_PermuteTwoSrc; 5909 default: 5910 break; 5911 } 5912 return None; 5913 } 5914 5915 InstructionCost 5916 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5917 const DenseSet<unsigned> &ShuffledIndices, 5918 bool NeedToShuffle) const { 5919 unsigned NumElts = Ty->getNumElements(); 5920 APInt DemandedElts = APInt::getZero(NumElts); 5921 for (unsigned I = 0; I < NumElts; ++I) 5922 if (!ShuffledIndices.count(I)) 5923 DemandedElts.setBit(I); 5924 InstructionCost Cost = 5925 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5926 /*Extract*/ false); 5927 if (NeedToShuffle) 5928 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5929 return Cost; 5930 } 5931 5932 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5933 // Find the type of the operands in VL. 5934 Type *ScalarTy = VL[0]->getType(); 5935 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5936 ScalarTy = SI->getValueOperand()->getType(); 5937 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5938 bool DuplicateNonConst = false; 5939 // Find the cost of inserting/extracting values from the vector. 5940 // Check if the same elements are inserted several times and count them as 5941 // shuffle candidates. 5942 DenseSet<unsigned> ShuffledElements; 5943 DenseSet<Value *> UniqueElements; 5944 // Iterate in reverse order to consider insert elements with the high cost. 5945 for (unsigned I = VL.size(); I > 0; --I) { 5946 unsigned Idx = I - 1; 5947 // No need to shuffle duplicates for constants. 5948 if (isConstant(VL[Idx])) { 5949 ShuffledElements.insert(Idx); 5950 continue; 5951 } 5952 if (!UniqueElements.insert(VL[Idx]).second) { 5953 DuplicateNonConst = true; 5954 ShuffledElements.insert(Idx); 5955 } 5956 } 5957 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5958 } 5959 5960 // Perform operand reordering on the instructions in VL and return the reordered 5961 // operands in Left and Right. 5962 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5963 SmallVectorImpl<Value *> &Left, 5964 SmallVectorImpl<Value *> &Right, 5965 const DataLayout &DL, 5966 ScalarEvolution &SE, 5967 const BoUpSLP &R) { 5968 if (VL.empty()) 5969 return; 5970 VLOperands Ops(VL, DL, SE, R); 5971 // Reorder the operands in place. 5972 Ops.reorder(); 5973 Left = Ops.getVL(0); 5974 Right = Ops.getVL(1); 5975 } 5976 5977 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5978 // Get the basic block this bundle is in. All instructions in the bundle 5979 // should be in this block. 5980 auto *Front = E->getMainOp(); 5981 auto *BB = Front->getParent(); 5982 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5983 auto *I = cast<Instruction>(V); 5984 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5985 })); 5986 5987 // The last instruction in the bundle in program order. 5988 Instruction *LastInst = nullptr; 5989 5990 // Find the last instruction. The common case should be that BB has been 5991 // scheduled, and the last instruction is VL.back(). So we start with 5992 // VL.back() and iterate over schedule data until we reach the end of the 5993 // bundle. The end of the bundle is marked by null ScheduleData. 5994 if (BlocksSchedules.count(BB)) { 5995 auto *Bundle = 5996 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5997 if (Bundle && Bundle->isPartOfBundle()) 5998 for (; Bundle; Bundle = Bundle->NextInBundle) 5999 if (Bundle->OpValue == Bundle->Inst) 6000 LastInst = Bundle->Inst; 6001 } 6002 6003 // LastInst can still be null at this point if there's either not an entry 6004 // for BB in BlocksSchedules or there's no ScheduleData available for 6005 // VL.back(). This can be the case if buildTree_rec aborts for various 6006 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6007 // size is reached, etc.). ScheduleData is initialized in the scheduling 6008 // "dry-run". 6009 // 6010 // If this happens, we can still find the last instruction by brute force. We 6011 // iterate forwards from Front (inclusive) until we either see all 6012 // instructions in the bundle or reach the end of the block. If Front is the 6013 // last instruction in program order, LastInst will be set to Front, and we 6014 // will visit all the remaining instructions in the block. 6015 // 6016 // One of the reasons we exit early from buildTree_rec is to place an upper 6017 // bound on compile-time. Thus, taking an additional compile-time hit here is 6018 // not ideal. However, this should be exceedingly rare since it requires that 6019 // we both exit early from buildTree_rec and that the bundle be out-of-order 6020 // (causing us to iterate all the way to the end of the block). 6021 if (!LastInst) { 6022 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6023 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6024 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6025 LastInst = &I; 6026 if (Bundle.empty()) 6027 break; 6028 } 6029 } 6030 assert(LastInst && "Failed to find last instruction in bundle"); 6031 6032 // Set the insertion point after the last instruction in the bundle. Set the 6033 // debug location to Front. 6034 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6035 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6036 } 6037 6038 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6039 // List of instructions/lanes from current block and/or the blocks which are 6040 // part of the current loop. These instructions will be inserted at the end to 6041 // make it possible to optimize loops and hoist invariant instructions out of 6042 // the loops body with better chances for success. 6043 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6044 SmallSet<int, 4> PostponedIndices; 6045 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6046 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6047 SmallPtrSet<BasicBlock *, 4> Visited; 6048 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6049 InsertBB = InsertBB->getSinglePredecessor(); 6050 return InsertBB && InsertBB == InstBB; 6051 }; 6052 for (int I = 0, E = VL.size(); I < E; ++I) { 6053 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6054 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6055 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6056 PostponedIndices.insert(I).second) 6057 PostponedInsts.emplace_back(Inst, I); 6058 } 6059 6060 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6061 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6062 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6063 if (!InsElt) 6064 return Vec; 6065 GatherShuffleSeq.insert(InsElt); 6066 CSEBlocks.insert(InsElt->getParent()); 6067 // Add to our 'need-to-extract' list. 6068 if (TreeEntry *Entry = getTreeEntry(V)) { 6069 // Find which lane we need to extract. 6070 unsigned FoundLane = Entry->findLaneForValue(V); 6071 ExternalUses.emplace_back(V, InsElt, FoundLane); 6072 } 6073 return Vec; 6074 }; 6075 Value *Val0 = 6076 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6077 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6078 Value *Vec = PoisonValue::get(VecTy); 6079 SmallVector<int> NonConsts; 6080 // Insert constant values at first. 6081 for (int I = 0, E = VL.size(); I < E; ++I) { 6082 if (PostponedIndices.contains(I)) 6083 continue; 6084 if (!isConstant(VL[I])) { 6085 NonConsts.push_back(I); 6086 continue; 6087 } 6088 Vec = CreateInsertElement(Vec, VL[I], I); 6089 } 6090 // Insert non-constant values. 6091 for (int I : NonConsts) 6092 Vec = CreateInsertElement(Vec, VL[I], I); 6093 // Append instructions, which are/may be part of the loop, in the end to make 6094 // it possible to hoist non-loop-based instructions. 6095 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6096 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6097 6098 return Vec; 6099 } 6100 6101 namespace { 6102 /// Merges shuffle masks and emits final shuffle instruction, if required. 6103 class ShuffleInstructionBuilder { 6104 IRBuilderBase &Builder; 6105 const unsigned VF = 0; 6106 bool IsFinalized = false; 6107 SmallVector<int, 4> Mask; 6108 /// Holds all of the instructions that we gathered. 6109 SetVector<Instruction *> &GatherShuffleSeq; 6110 /// A list of blocks that we are going to CSE. 6111 SetVector<BasicBlock *> &CSEBlocks; 6112 6113 public: 6114 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6115 SetVector<Instruction *> &GatherShuffleSeq, 6116 SetVector<BasicBlock *> &CSEBlocks) 6117 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6118 CSEBlocks(CSEBlocks) {} 6119 6120 /// Adds a mask, inverting it before applying. 6121 void addInversedMask(ArrayRef<unsigned> SubMask) { 6122 if (SubMask.empty()) 6123 return; 6124 SmallVector<int, 4> NewMask; 6125 inversePermutation(SubMask, NewMask); 6126 addMask(NewMask); 6127 } 6128 6129 /// Functions adds masks, merging them into single one. 6130 void addMask(ArrayRef<unsigned> SubMask) { 6131 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6132 addMask(NewMask); 6133 } 6134 6135 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6136 6137 Value *finalize(Value *V) { 6138 IsFinalized = true; 6139 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6140 if (VF == ValueVF && Mask.empty()) 6141 return V; 6142 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6143 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6144 addMask(NormalizedMask); 6145 6146 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6147 return V; 6148 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6149 if (auto *I = dyn_cast<Instruction>(Vec)) { 6150 GatherShuffleSeq.insert(I); 6151 CSEBlocks.insert(I->getParent()); 6152 } 6153 return Vec; 6154 } 6155 6156 ~ShuffleInstructionBuilder() { 6157 assert((IsFinalized || Mask.empty()) && 6158 "Shuffle construction must be finalized."); 6159 } 6160 }; 6161 } // namespace 6162 6163 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6164 unsigned VF = VL.size(); 6165 InstructionsState S = getSameOpcode(VL); 6166 if (S.getOpcode()) { 6167 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6168 if (E->isSame(VL)) { 6169 Value *V = vectorizeTree(E); 6170 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6171 if (!E->ReuseShuffleIndices.empty()) { 6172 // Reshuffle to get only unique values. 6173 // If some of the scalars are duplicated in the vectorization tree 6174 // entry, we do not vectorize them but instead generate a mask for 6175 // the reuses. But if there are several users of the same entry, 6176 // they may have different vectorization factors. This is especially 6177 // important for PHI nodes. In this case, we need to adapt the 6178 // resulting instruction for the user vectorization factor and have 6179 // to reshuffle it again to take only unique elements of the vector. 6180 // Without this code the function incorrectly returns reduced vector 6181 // instruction with the same elements, not with the unique ones. 6182 6183 // block: 6184 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6185 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6186 // ... (use %2) 6187 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6188 // br %block 6189 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6190 SmallSet<int, 4> UsedIdxs; 6191 int Pos = 0; 6192 int Sz = VL.size(); 6193 for (int Idx : E->ReuseShuffleIndices) { 6194 if (Idx != Sz && Idx != UndefMaskElem && 6195 UsedIdxs.insert(Idx).second) 6196 UniqueIdxs[Idx] = Pos; 6197 ++Pos; 6198 } 6199 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6200 "less than original vector size."); 6201 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6202 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6203 } else { 6204 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6205 "Expected vectorization factor less " 6206 "than original vector size."); 6207 SmallVector<int> UniformMask(VF, 0); 6208 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6209 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6210 } 6211 if (auto *I = dyn_cast<Instruction>(V)) { 6212 GatherShuffleSeq.insert(I); 6213 CSEBlocks.insert(I->getParent()); 6214 } 6215 } 6216 return V; 6217 } 6218 } 6219 6220 // Check that every instruction appears once in this bundle. 6221 SmallVector<int> ReuseShuffleIndicies; 6222 SmallVector<Value *> UniqueValues; 6223 if (VL.size() > 2) { 6224 DenseMap<Value *, unsigned> UniquePositions; 6225 unsigned NumValues = 6226 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6227 return !isa<UndefValue>(V); 6228 }).base()); 6229 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6230 int UniqueVals = 0; 6231 for (Value *V : VL.drop_back(VL.size() - VF)) { 6232 if (isa<UndefValue>(V)) { 6233 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6234 continue; 6235 } 6236 if (isConstant(V)) { 6237 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6238 UniqueValues.emplace_back(V); 6239 continue; 6240 } 6241 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6242 ReuseShuffleIndicies.emplace_back(Res.first->second); 6243 if (Res.second) { 6244 UniqueValues.emplace_back(V); 6245 ++UniqueVals; 6246 } 6247 } 6248 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6249 // Emit pure splat vector. 6250 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6251 UndefMaskElem); 6252 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6253 ReuseShuffleIndicies.clear(); 6254 UniqueValues.clear(); 6255 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6256 } 6257 UniqueValues.append(VF - UniqueValues.size(), 6258 PoisonValue::get(VL[0]->getType())); 6259 VL = UniqueValues; 6260 } 6261 6262 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6263 CSEBlocks); 6264 Value *Vec = gather(VL); 6265 if (!ReuseShuffleIndicies.empty()) { 6266 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6267 Vec = ShuffleBuilder.finalize(Vec); 6268 } 6269 return Vec; 6270 } 6271 6272 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6273 IRBuilder<>::InsertPointGuard Guard(Builder); 6274 6275 if (E->VectorizedValue) { 6276 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6277 return E->VectorizedValue; 6278 } 6279 6280 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6281 unsigned VF = E->getVectorFactor(); 6282 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6283 CSEBlocks); 6284 if (E->State == TreeEntry::NeedToGather) { 6285 if (E->getMainOp()) 6286 setInsertPointAfterBundle(E); 6287 Value *Vec; 6288 SmallVector<int> Mask; 6289 SmallVector<const TreeEntry *> Entries; 6290 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6291 isGatherShuffledEntry(E, Mask, Entries); 6292 if (Shuffle.hasValue()) { 6293 assert((Entries.size() == 1 || Entries.size() == 2) && 6294 "Expected shuffle of 1 or 2 entries."); 6295 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6296 Entries.back()->VectorizedValue, Mask); 6297 if (auto *I = dyn_cast<Instruction>(Vec)) { 6298 GatherShuffleSeq.insert(I); 6299 CSEBlocks.insert(I->getParent()); 6300 } 6301 } else { 6302 Vec = gather(E->Scalars); 6303 } 6304 if (NeedToShuffleReuses) { 6305 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6306 Vec = ShuffleBuilder.finalize(Vec); 6307 } 6308 E->VectorizedValue = Vec; 6309 return Vec; 6310 } 6311 6312 assert((E->State == TreeEntry::Vectorize || 6313 E->State == TreeEntry::ScatterVectorize) && 6314 "Unhandled state"); 6315 unsigned ShuffleOrOp = 6316 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6317 Instruction *VL0 = E->getMainOp(); 6318 Type *ScalarTy = VL0->getType(); 6319 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6320 ScalarTy = Store->getValueOperand()->getType(); 6321 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6322 ScalarTy = IE->getOperand(1)->getType(); 6323 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6324 switch (ShuffleOrOp) { 6325 case Instruction::PHI: { 6326 assert( 6327 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6328 "PHI reordering is free."); 6329 auto *PH = cast<PHINode>(VL0); 6330 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6331 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6332 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6333 Value *V = NewPhi; 6334 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6335 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6336 V = ShuffleBuilder.finalize(V); 6337 6338 E->VectorizedValue = V; 6339 6340 // PHINodes may have multiple entries from the same block. We want to 6341 // visit every block once. 6342 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6343 6344 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6345 ValueList Operands; 6346 BasicBlock *IBB = PH->getIncomingBlock(i); 6347 6348 if (!VisitedBBs.insert(IBB).second) { 6349 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6350 continue; 6351 } 6352 6353 Builder.SetInsertPoint(IBB->getTerminator()); 6354 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6355 Value *Vec = vectorizeTree(E->getOperand(i)); 6356 NewPhi->addIncoming(Vec, IBB); 6357 } 6358 6359 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6360 "Invalid number of incoming values"); 6361 return V; 6362 } 6363 6364 case Instruction::ExtractElement: { 6365 Value *V = E->getSingleOperand(0); 6366 Builder.SetInsertPoint(VL0); 6367 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6368 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6369 V = ShuffleBuilder.finalize(V); 6370 E->VectorizedValue = V; 6371 return V; 6372 } 6373 case Instruction::ExtractValue: { 6374 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6375 Builder.SetInsertPoint(LI); 6376 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6377 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6378 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6379 Value *NewV = propagateMetadata(V, E->Scalars); 6380 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6381 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6382 NewV = ShuffleBuilder.finalize(NewV); 6383 E->VectorizedValue = NewV; 6384 return NewV; 6385 } 6386 case Instruction::InsertElement: { 6387 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6388 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6389 Value *V = vectorizeTree(E->getOperand(1)); 6390 6391 // Create InsertVector shuffle if necessary 6392 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6393 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6394 })); 6395 const unsigned NumElts = 6396 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6397 const unsigned NumScalars = E->Scalars.size(); 6398 6399 unsigned Offset = *getInsertIndex(VL0, 0); 6400 assert(Offset < NumElts && "Failed to find vector index offset"); 6401 6402 // Create shuffle to resize vector 6403 SmallVector<int> Mask; 6404 if (!E->ReorderIndices.empty()) { 6405 inversePermutation(E->ReorderIndices, Mask); 6406 Mask.append(NumElts - NumScalars, UndefMaskElem); 6407 } else { 6408 Mask.assign(NumElts, UndefMaskElem); 6409 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6410 } 6411 // Create InsertVector shuffle if necessary 6412 bool IsIdentity = true; 6413 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6414 Mask.swap(PrevMask); 6415 for (unsigned I = 0; I < NumScalars; ++I) { 6416 Value *Scalar = E->Scalars[PrevMask[I]]; 6417 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6418 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6419 continue; 6420 IsIdentity &= *InsertIdx - Offset == I; 6421 Mask[*InsertIdx - Offset] = I; 6422 } 6423 if (!IsIdentity || NumElts != NumScalars) { 6424 V = Builder.CreateShuffleVector(V, Mask); 6425 if (auto *I = dyn_cast<Instruction>(V)) { 6426 GatherShuffleSeq.insert(I); 6427 CSEBlocks.insert(I->getParent()); 6428 } 6429 } 6430 6431 if ((!IsIdentity || Offset != 0 || 6432 !isUndefVector(FirstInsert->getOperand(0))) && 6433 NumElts != NumScalars) { 6434 SmallVector<int> InsertMask(NumElts); 6435 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6436 for (unsigned I = 0; I < NumElts; I++) { 6437 if (Mask[I] != UndefMaskElem) 6438 InsertMask[Offset + I] = NumElts + I; 6439 } 6440 6441 V = Builder.CreateShuffleVector( 6442 FirstInsert->getOperand(0), V, InsertMask, 6443 cast<Instruction>(E->Scalars.back())->getName()); 6444 if (auto *I = dyn_cast<Instruction>(V)) { 6445 GatherShuffleSeq.insert(I); 6446 CSEBlocks.insert(I->getParent()); 6447 } 6448 } 6449 6450 ++NumVectorInstructions; 6451 E->VectorizedValue = V; 6452 return V; 6453 } 6454 case Instruction::ZExt: 6455 case Instruction::SExt: 6456 case Instruction::FPToUI: 6457 case Instruction::FPToSI: 6458 case Instruction::FPExt: 6459 case Instruction::PtrToInt: 6460 case Instruction::IntToPtr: 6461 case Instruction::SIToFP: 6462 case Instruction::UIToFP: 6463 case Instruction::Trunc: 6464 case Instruction::FPTrunc: 6465 case Instruction::BitCast: { 6466 setInsertPointAfterBundle(E); 6467 6468 Value *InVec = vectorizeTree(E->getOperand(0)); 6469 6470 if (E->VectorizedValue) { 6471 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6472 return E->VectorizedValue; 6473 } 6474 6475 auto *CI = cast<CastInst>(VL0); 6476 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6477 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6478 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6479 V = ShuffleBuilder.finalize(V); 6480 6481 E->VectorizedValue = V; 6482 ++NumVectorInstructions; 6483 return V; 6484 } 6485 case Instruction::FCmp: 6486 case Instruction::ICmp: { 6487 setInsertPointAfterBundle(E); 6488 6489 Value *L = vectorizeTree(E->getOperand(0)); 6490 Value *R = vectorizeTree(E->getOperand(1)); 6491 6492 if (E->VectorizedValue) { 6493 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6494 return E->VectorizedValue; 6495 } 6496 6497 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6498 Value *V = Builder.CreateCmp(P0, L, R); 6499 propagateIRFlags(V, E->Scalars, VL0); 6500 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6501 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6502 V = ShuffleBuilder.finalize(V); 6503 6504 E->VectorizedValue = V; 6505 ++NumVectorInstructions; 6506 return V; 6507 } 6508 case Instruction::Select: { 6509 setInsertPointAfterBundle(E); 6510 6511 Value *Cond = vectorizeTree(E->getOperand(0)); 6512 Value *True = vectorizeTree(E->getOperand(1)); 6513 Value *False = vectorizeTree(E->getOperand(2)); 6514 6515 if (E->VectorizedValue) { 6516 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6517 return E->VectorizedValue; 6518 } 6519 6520 Value *V = Builder.CreateSelect(Cond, True, False); 6521 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6522 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6523 V = ShuffleBuilder.finalize(V); 6524 6525 E->VectorizedValue = V; 6526 ++NumVectorInstructions; 6527 return V; 6528 } 6529 case Instruction::FNeg: { 6530 setInsertPointAfterBundle(E); 6531 6532 Value *Op = vectorizeTree(E->getOperand(0)); 6533 6534 if (E->VectorizedValue) { 6535 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6536 return E->VectorizedValue; 6537 } 6538 6539 Value *V = Builder.CreateUnOp( 6540 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6541 propagateIRFlags(V, E->Scalars, VL0); 6542 if (auto *I = dyn_cast<Instruction>(V)) 6543 V = propagateMetadata(I, E->Scalars); 6544 6545 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6546 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6547 V = ShuffleBuilder.finalize(V); 6548 6549 E->VectorizedValue = V; 6550 ++NumVectorInstructions; 6551 6552 return V; 6553 } 6554 case Instruction::Add: 6555 case Instruction::FAdd: 6556 case Instruction::Sub: 6557 case Instruction::FSub: 6558 case Instruction::Mul: 6559 case Instruction::FMul: 6560 case Instruction::UDiv: 6561 case Instruction::SDiv: 6562 case Instruction::FDiv: 6563 case Instruction::URem: 6564 case Instruction::SRem: 6565 case Instruction::FRem: 6566 case Instruction::Shl: 6567 case Instruction::LShr: 6568 case Instruction::AShr: 6569 case Instruction::And: 6570 case Instruction::Or: 6571 case Instruction::Xor: { 6572 setInsertPointAfterBundle(E); 6573 6574 Value *LHS = vectorizeTree(E->getOperand(0)); 6575 Value *RHS = vectorizeTree(E->getOperand(1)); 6576 6577 if (E->VectorizedValue) { 6578 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6579 return E->VectorizedValue; 6580 } 6581 6582 Value *V = Builder.CreateBinOp( 6583 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6584 RHS); 6585 propagateIRFlags(V, E->Scalars, VL0); 6586 if (auto *I = dyn_cast<Instruction>(V)) 6587 V = propagateMetadata(I, E->Scalars); 6588 6589 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6590 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6591 V = ShuffleBuilder.finalize(V); 6592 6593 E->VectorizedValue = V; 6594 ++NumVectorInstructions; 6595 6596 return V; 6597 } 6598 case Instruction::Load: { 6599 // Loads are inserted at the head of the tree because we don't want to 6600 // sink them all the way down past store instructions. 6601 setInsertPointAfterBundle(E); 6602 6603 LoadInst *LI = cast<LoadInst>(VL0); 6604 Instruction *NewLI; 6605 unsigned AS = LI->getPointerAddressSpace(); 6606 Value *PO = LI->getPointerOperand(); 6607 if (E->State == TreeEntry::Vectorize) { 6608 6609 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6610 6611 // The pointer operand uses an in-tree scalar so we add the new BitCast 6612 // to ExternalUses list to make sure that an extract will be generated 6613 // in the future. 6614 if (TreeEntry *Entry = getTreeEntry(PO)) { 6615 // Find which lane we need to extract. 6616 unsigned FoundLane = Entry->findLaneForValue(PO); 6617 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6618 } 6619 6620 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6621 } else { 6622 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6623 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6624 // Use the minimum alignment of the gathered loads. 6625 Align CommonAlignment = LI->getAlign(); 6626 for (Value *V : E->Scalars) 6627 CommonAlignment = 6628 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6629 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6630 } 6631 Value *V = propagateMetadata(NewLI, E->Scalars); 6632 6633 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6634 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6635 V = ShuffleBuilder.finalize(V); 6636 E->VectorizedValue = V; 6637 ++NumVectorInstructions; 6638 return V; 6639 } 6640 case Instruction::Store: { 6641 auto *SI = cast<StoreInst>(VL0); 6642 unsigned AS = SI->getPointerAddressSpace(); 6643 6644 setInsertPointAfterBundle(E); 6645 6646 Value *VecValue = vectorizeTree(E->getOperand(0)); 6647 ShuffleBuilder.addMask(E->ReorderIndices); 6648 VecValue = ShuffleBuilder.finalize(VecValue); 6649 6650 Value *ScalarPtr = SI->getPointerOperand(); 6651 Value *VecPtr = Builder.CreateBitCast( 6652 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6653 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6654 SI->getAlign()); 6655 6656 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6657 // ExternalUses to make sure that an extract will be generated in the 6658 // future. 6659 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6660 // Find which lane we need to extract. 6661 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6662 ExternalUses.push_back( 6663 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6664 } 6665 6666 Value *V = propagateMetadata(ST, E->Scalars); 6667 6668 E->VectorizedValue = V; 6669 ++NumVectorInstructions; 6670 return V; 6671 } 6672 case Instruction::GetElementPtr: { 6673 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6674 setInsertPointAfterBundle(E); 6675 6676 Value *Op0 = vectorizeTree(E->getOperand(0)); 6677 6678 SmallVector<Value *> OpVecs; 6679 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6680 Value *OpVec = vectorizeTree(E->getOperand(J)); 6681 OpVecs.push_back(OpVec); 6682 } 6683 6684 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6685 if (Instruction *I = dyn_cast<Instruction>(V)) 6686 V = propagateMetadata(I, E->Scalars); 6687 6688 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6689 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6690 V = ShuffleBuilder.finalize(V); 6691 6692 E->VectorizedValue = V; 6693 ++NumVectorInstructions; 6694 6695 return V; 6696 } 6697 case Instruction::Call: { 6698 CallInst *CI = cast<CallInst>(VL0); 6699 setInsertPointAfterBundle(E); 6700 6701 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6702 if (Function *FI = CI->getCalledFunction()) 6703 IID = FI->getIntrinsicID(); 6704 6705 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6706 6707 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6708 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6709 VecCallCosts.first <= VecCallCosts.second; 6710 6711 Value *ScalarArg = nullptr; 6712 std::vector<Value *> OpVecs; 6713 SmallVector<Type *, 2> TysForDecl = 6714 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6715 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6716 ValueList OpVL; 6717 // Some intrinsics have scalar arguments. This argument should not be 6718 // vectorized. 6719 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6720 CallInst *CEI = cast<CallInst>(VL0); 6721 ScalarArg = CEI->getArgOperand(j); 6722 OpVecs.push_back(CEI->getArgOperand(j)); 6723 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6724 TysForDecl.push_back(ScalarArg->getType()); 6725 continue; 6726 } 6727 6728 Value *OpVec = vectorizeTree(E->getOperand(j)); 6729 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6730 OpVecs.push_back(OpVec); 6731 } 6732 6733 Function *CF; 6734 if (!UseIntrinsic) { 6735 VFShape Shape = 6736 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6737 VecTy->getNumElements())), 6738 false /*HasGlobalPred*/); 6739 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6740 } else { 6741 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6742 } 6743 6744 SmallVector<OperandBundleDef, 1> OpBundles; 6745 CI->getOperandBundlesAsDefs(OpBundles); 6746 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6747 6748 // The scalar argument uses an in-tree scalar so we add the new vectorized 6749 // call to ExternalUses list to make sure that an extract will be 6750 // generated in the future. 6751 if (ScalarArg) { 6752 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6753 // Find which lane we need to extract. 6754 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6755 ExternalUses.push_back( 6756 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6757 } 6758 } 6759 6760 propagateIRFlags(V, E->Scalars, VL0); 6761 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6762 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6763 V = ShuffleBuilder.finalize(V); 6764 6765 E->VectorizedValue = V; 6766 ++NumVectorInstructions; 6767 return V; 6768 } 6769 case Instruction::ShuffleVector: { 6770 assert(E->isAltShuffle() && 6771 ((Instruction::isBinaryOp(E->getOpcode()) && 6772 Instruction::isBinaryOp(E->getAltOpcode())) || 6773 (Instruction::isCast(E->getOpcode()) && 6774 Instruction::isCast(E->getAltOpcode()))) && 6775 "Invalid Shuffle Vector Operand"); 6776 6777 Value *LHS = nullptr, *RHS = nullptr; 6778 if (Instruction::isBinaryOp(E->getOpcode())) { 6779 setInsertPointAfterBundle(E); 6780 LHS = vectorizeTree(E->getOperand(0)); 6781 RHS = vectorizeTree(E->getOperand(1)); 6782 } else { 6783 setInsertPointAfterBundle(E); 6784 LHS = vectorizeTree(E->getOperand(0)); 6785 } 6786 6787 if (E->VectorizedValue) { 6788 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6789 return E->VectorizedValue; 6790 } 6791 6792 Value *V0, *V1; 6793 if (Instruction::isBinaryOp(E->getOpcode())) { 6794 V0 = Builder.CreateBinOp( 6795 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6796 V1 = Builder.CreateBinOp( 6797 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6798 } else { 6799 V0 = Builder.CreateCast( 6800 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6801 V1 = Builder.CreateCast( 6802 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6803 } 6804 // Add V0 and V1 to later analysis to try to find and remove matching 6805 // instruction, if any. 6806 for (Value *V : {V0, V1}) { 6807 if (auto *I = dyn_cast<Instruction>(V)) { 6808 GatherShuffleSeq.insert(I); 6809 CSEBlocks.insert(I->getParent()); 6810 } 6811 } 6812 6813 // Create shuffle to take alternate operations from the vector. 6814 // Also, gather up main and alt scalar ops to propagate IR flags to 6815 // each vector operation. 6816 ValueList OpScalars, AltScalars; 6817 SmallVector<int> Mask; 6818 buildSuffleEntryMask( 6819 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6820 [E](Instruction *I) { 6821 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6822 return I->getOpcode() == E->getAltOpcode(); 6823 }, 6824 Mask, &OpScalars, &AltScalars); 6825 6826 propagateIRFlags(V0, OpScalars); 6827 propagateIRFlags(V1, AltScalars); 6828 6829 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6830 if (auto *I = dyn_cast<Instruction>(V)) { 6831 V = propagateMetadata(I, E->Scalars); 6832 GatherShuffleSeq.insert(I); 6833 CSEBlocks.insert(I->getParent()); 6834 } 6835 V = ShuffleBuilder.finalize(V); 6836 6837 E->VectorizedValue = V; 6838 ++NumVectorInstructions; 6839 6840 return V; 6841 } 6842 default: 6843 llvm_unreachable("unknown inst"); 6844 } 6845 return nullptr; 6846 } 6847 6848 Value *BoUpSLP::vectorizeTree() { 6849 ExtraValueToDebugLocsMap ExternallyUsedValues; 6850 return vectorizeTree(ExternallyUsedValues); 6851 } 6852 6853 Value * 6854 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6855 // All blocks must be scheduled before any instructions are inserted. 6856 for (auto &BSIter : BlocksSchedules) { 6857 scheduleBlock(BSIter.second.get()); 6858 } 6859 6860 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6861 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6862 6863 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6864 // vectorized root. InstCombine will then rewrite the entire expression. We 6865 // sign extend the extracted values below. 6866 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6867 if (MinBWs.count(ScalarRoot)) { 6868 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6869 // If current instr is a phi and not the last phi, insert it after the 6870 // last phi node. 6871 if (isa<PHINode>(I)) 6872 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6873 else 6874 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6875 } 6876 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6877 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6878 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6879 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6880 VectorizableTree[0]->VectorizedValue = Trunc; 6881 } 6882 6883 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6884 << " values .\n"); 6885 6886 // Extract all of the elements with the external uses. 6887 for (const auto &ExternalUse : ExternalUses) { 6888 Value *Scalar = ExternalUse.Scalar; 6889 llvm::User *User = ExternalUse.User; 6890 6891 // Skip users that we already RAUW. This happens when one instruction 6892 // has multiple uses of the same value. 6893 if (User && !is_contained(Scalar->users(), User)) 6894 continue; 6895 TreeEntry *E = getTreeEntry(Scalar); 6896 assert(E && "Invalid scalar"); 6897 assert(E->State != TreeEntry::NeedToGather && 6898 "Extracting from a gather list"); 6899 6900 Value *Vec = E->VectorizedValue; 6901 assert(Vec && "Can't find vectorizable value"); 6902 6903 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6904 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6905 if (Scalar->getType() != Vec->getType()) { 6906 Value *Ex; 6907 // "Reuse" the existing extract to improve final codegen. 6908 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6909 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6910 ES->getOperand(1)); 6911 } else { 6912 Ex = Builder.CreateExtractElement(Vec, Lane); 6913 } 6914 // If necessary, sign-extend or zero-extend ScalarRoot 6915 // to the larger type. 6916 if (!MinBWs.count(ScalarRoot)) 6917 return Ex; 6918 if (MinBWs[ScalarRoot].second) 6919 return Builder.CreateSExt(Ex, Scalar->getType()); 6920 return Builder.CreateZExt(Ex, Scalar->getType()); 6921 } 6922 assert(isa<FixedVectorType>(Scalar->getType()) && 6923 isa<InsertElementInst>(Scalar) && 6924 "In-tree scalar of vector type is not insertelement?"); 6925 return Vec; 6926 }; 6927 // If User == nullptr, the Scalar is used as extra arg. Generate 6928 // ExtractElement instruction and update the record for this scalar in 6929 // ExternallyUsedValues. 6930 if (!User) { 6931 assert(ExternallyUsedValues.count(Scalar) && 6932 "Scalar with nullptr as an external user must be registered in " 6933 "ExternallyUsedValues map"); 6934 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6935 Builder.SetInsertPoint(VecI->getParent(), 6936 std::next(VecI->getIterator())); 6937 } else { 6938 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6939 } 6940 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6941 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6942 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6943 auto It = ExternallyUsedValues.find(Scalar); 6944 assert(It != ExternallyUsedValues.end() && 6945 "Externally used scalar is not found in ExternallyUsedValues"); 6946 NewInstLocs.append(It->second); 6947 ExternallyUsedValues.erase(Scalar); 6948 // Required to update internally referenced instructions. 6949 Scalar->replaceAllUsesWith(NewInst); 6950 continue; 6951 } 6952 6953 // Generate extracts for out-of-tree users. 6954 // Find the insertion point for the extractelement lane. 6955 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6956 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6957 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6958 if (PH->getIncomingValue(i) == Scalar) { 6959 Instruction *IncomingTerminator = 6960 PH->getIncomingBlock(i)->getTerminator(); 6961 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6962 Builder.SetInsertPoint(VecI->getParent(), 6963 std::next(VecI->getIterator())); 6964 } else { 6965 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6966 } 6967 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6968 CSEBlocks.insert(PH->getIncomingBlock(i)); 6969 PH->setOperand(i, NewInst); 6970 } 6971 } 6972 } else { 6973 Builder.SetInsertPoint(cast<Instruction>(User)); 6974 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6975 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6976 User->replaceUsesOfWith(Scalar, NewInst); 6977 } 6978 } else { 6979 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6980 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6981 CSEBlocks.insert(&F->getEntryBlock()); 6982 User->replaceUsesOfWith(Scalar, NewInst); 6983 } 6984 6985 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6986 } 6987 6988 // For each vectorized value: 6989 for (auto &TEPtr : VectorizableTree) { 6990 TreeEntry *Entry = TEPtr.get(); 6991 6992 // No need to handle users of gathered values. 6993 if (Entry->State == TreeEntry::NeedToGather) 6994 continue; 6995 6996 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6997 6998 // For each lane: 6999 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7000 Value *Scalar = Entry->Scalars[Lane]; 7001 7002 #ifndef NDEBUG 7003 Type *Ty = Scalar->getType(); 7004 if (!Ty->isVoidTy()) { 7005 for (User *U : Scalar->users()) { 7006 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7007 7008 // It is legal to delete users in the ignorelist. 7009 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7010 (isa_and_nonnull<Instruction>(U) && 7011 isDeleted(cast<Instruction>(U)))) && 7012 "Deleting out-of-tree value"); 7013 } 7014 } 7015 #endif 7016 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7017 eraseInstruction(cast<Instruction>(Scalar)); 7018 } 7019 } 7020 7021 Builder.ClearInsertionPoint(); 7022 InstrElementSize.clear(); 7023 7024 return VectorizableTree[0]->VectorizedValue; 7025 } 7026 7027 void BoUpSLP::optimizeGatherSequence() { 7028 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7029 << " gather sequences instructions.\n"); 7030 // LICM InsertElementInst sequences. 7031 for (Instruction *I : GatherShuffleSeq) { 7032 if (isDeleted(I)) 7033 continue; 7034 7035 // Check if this block is inside a loop. 7036 Loop *L = LI->getLoopFor(I->getParent()); 7037 if (!L) 7038 continue; 7039 7040 // Check if it has a preheader. 7041 BasicBlock *PreHeader = L->getLoopPreheader(); 7042 if (!PreHeader) 7043 continue; 7044 7045 // If the vector or the element that we insert into it are 7046 // instructions that are defined in this basic block then we can't 7047 // hoist this instruction. 7048 if (any_of(I->operands(), [L](Value *V) { 7049 auto *OpI = dyn_cast<Instruction>(V); 7050 return OpI && L->contains(OpI); 7051 })) 7052 continue; 7053 7054 // We can hoist this instruction. Move it to the pre-header. 7055 I->moveBefore(PreHeader->getTerminator()); 7056 } 7057 7058 // Make a list of all reachable blocks in our CSE queue. 7059 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7060 CSEWorkList.reserve(CSEBlocks.size()); 7061 for (BasicBlock *BB : CSEBlocks) 7062 if (DomTreeNode *N = DT->getNode(BB)) { 7063 assert(DT->isReachableFromEntry(N)); 7064 CSEWorkList.push_back(N); 7065 } 7066 7067 // Sort blocks by domination. This ensures we visit a block after all blocks 7068 // dominating it are visited. 7069 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7070 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7071 "Different nodes should have different DFS numbers"); 7072 return A->getDFSNumIn() < B->getDFSNumIn(); 7073 }); 7074 7075 // Less defined shuffles can be replaced by the more defined copies. 7076 // Between two shuffles one is less defined if it has the same vector operands 7077 // and its mask indeces are the same as in the first one or undefs. E.g. 7078 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7079 // poison, <0, 0, 0, 0>. 7080 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7081 SmallVectorImpl<int> &NewMask) { 7082 if (I1->getType() != I2->getType()) 7083 return false; 7084 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7085 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7086 if (!SI1 || !SI2) 7087 return I1->isIdenticalTo(I2); 7088 if (SI1->isIdenticalTo(SI2)) 7089 return true; 7090 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7091 if (SI1->getOperand(I) != SI2->getOperand(I)) 7092 return false; 7093 // Check if the second instruction is more defined than the first one. 7094 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7095 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7096 // Count trailing undefs in the mask to check the final number of used 7097 // registers. 7098 unsigned LastUndefsCnt = 0; 7099 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7100 if (SM1[I] == UndefMaskElem) 7101 ++LastUndefsCnt; 7102 else 7103 LastUndefsCnt = 0; 7104 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7105 NewMask[I] != SM1[I]) 7106 return false; 7107 if (NewMask[I] == UndefMaskElem) 7108 NewMask[I] = SM1[I]; 7109 } 7110 // Check if the last undefs actually change the final number of used vector 7111 // registers. 7112 return SM1.size() - LastUndefsCnt > 1 && 7113 TTI->getNumberOfParts(SI1->getType()) == 7114 TTI->getNumberOfParts( 7115 FixedVectorType::get(SI1->getType()->getElementType(), 7116 SM1.size() - LastUndefsCnt)); 7117 }; 7118 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7119 // instructions. TODO: We can further optimize this scan if we split the 7120 // instructions into different buckets based on the insert lane. 7121 SmallVector<Instruction *, 16> Visited; 7122 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7123 assert(*I && 7124 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7125 "Worklist not sorted properly!"); 7126 BasicBlock *BB = (*I)->getBlock(); 7127 // For all instructions in blocks containing gather sequences: 7128 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7129 if (isDeleted(&In)) 7130 continue; 7131 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7132 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7133 continue; 7134 7135 // Check if we can replace this instruction with any of the 7136 // visited instructions. 7137 bool Replaced = false; 7138 for (Instruction *&V : Visited) { 7139 SmallVector<int> NewMask; 7140 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7141 DT->dominates(V->getParent(), In.getParent())) { 7142 In.replaceAllUsesWith(V); 7143 eraseInstruction(&In); 7144 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7145 if (!NewMask.empty()) 7146 SI->setShuffleMask(NewMask); 7147 Replaced = true; 7148 break; 7149 } 7150 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7151 GatherShuffleSeq.contains(V) && 7152 IsIdenticalOrLessDefined(V, &In, NewMask) && 7153 DT->dominates(In.getParent(), V->getParent())) { 7154 In.moveAfter(V); 7155 V->replaceAllUsesWith(&In); 7156 eraseInstruction(V); 7157 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7158 if (!NewMask.empty()) 7159 SI->setShuffleMask(NewMask); 7160 V = &In; 7161 Replaced = true; 7162 break; 7163 } 7164 } 7165 if (!Replaced) { 7166 assert(!is_contained(Visited, &In)); 7167 Visited.push_back(&In); 7168 } 7169 } 7170 } 7171 CSEBlocks.clear(); 7172 GatherShuffleSeq.clear(); 7173 } 7174 7175 // Groups the instructions to a bundle (which is then a single scheduling entity) 7176 // and schedules instructions until the bundle gets ready. 7177 Optional<BoUpSLP::ScheduleData *> 7178 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7179 const InstructionsState &S) { 7180 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7181 // instructions. 7182 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7183 return nullptr; 7184 7185 // Initialize the instruction bundle. 7186 Instruction *OldScheduleEnd = ScheduleEnd; 7187 ScheduleData *PrevInBundle = nullptr; 7188 ScheduleData *Bundle = nullptr; 7189 bool ReSchedule = false; 7190 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7191 7192 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 7193 ScheduleData *Bundle) { 7194 // The scheduling region got new instructions at the lower end (or it is a 7195 // new region for the first bundle). This makes it necessary to 7196 // recalculate all dependencies. 7197 // It is seldom that this needs to be done a second time after adding the 7198 // initial bundle to the region. 7199 if (ScheduleEnd != OldScheduleEnd) { 7200 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7201 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7202 ReSchedule = true; 7203 } 7204 if (ReSchedule) { 7205 resetSchedule(); 7206 initialFillReadyList(ReadyInsts); 7207 } 7208 if (Bundle) { 7209 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7210 << " in block " << BB->getName() << "\n"); 7211 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7212 } 7213 7214 // Now try to schedule the new bundle or (if no bundle) just calculate 7215 // dependencies. As soon as the bundle is "ready" it means that there are no 7216 // cyclic dependencies and we can schedule it. Note that's important that we 7217 // don't "schedule" the bundle yet (see cancelScheduling). 7218 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7219 !ReadyInsts.empty()) { 7220 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7221 if (Picked->isSchedulingEntity() && Picked->isReady()) 7222 schedule(Picked, ReadyInsts); 7223 } 7224 }; 7225 7226 // Make sure that the scheduling region contains all 7227 // instructions of the bundle. 7228 for (Value *V : VL) { 7229 if (!extendSchedulingRegion(V, S)) { 7230 // If the scheduling region got new instructions at the lower end (or it 7231 // is a new region for the first bundle). This makes it necessary to 7232 // recalculate all dependencies. 7233 // Otherwise the compiler may crash trying to incorrectly calculate 7234 // dependencies and emit instruction in the wrong order at the actual 7235 // scheduling. 7236 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 7237 return None; 7238 } 7239 } 7240 7241 for (Value *V : VL) { 7242 ScheduleData *BundleMember = getScheduleData(V); 7243 assert(BundleMember && 7244 "no ScheduleData for bundle member (maybe not in same basic block)"); 7245 if (BundleMember->IsScheduled) { 7246 // A bundle member was scheduled as single instruction before and now 7247 // needs to be scheduled as part of the bundle. We just get rid of the 7248 // existing schedule. 7249 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7250 << " was already scheduled\n"); 7251 ReSchedule = true; 7252 } 7253 assert(BundleMember->isSchedulingEntity() && 7254 "bundle member already part of other bundle"); 7255 if (PrevInBundle) { 7256 PrevInBundle->NextInBundle = BundleMember; 7257 } else { 7258 Bundle = BundleMember; 7259 } 7260 BundleMember->UnscheduledDepsInBundle = 0; 7261 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7262 7263 // Group the instructions to a bundle. 7264 BundleMember->FirstInBundle = Bundle; 7265 PrevInBundle = BundleMember; 7266 } 7267 assert(Bundle && "Failed to find schedule bundle"); 7268 TryScheduleBundle(ReSchedule, Bundle); 7269 if (!Bundle->isReady()) { 7270 cancelScheduling(VL, S.OpValue); 7271 return None; 7272 } 7273 return Bundle; 7274 } 7275 7276 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7277 Value *OpValue) { 7278 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7279 return; 7280 7281 ScheduleData *Bundle = getScheduleData(OpValue); 7282 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7283 assert(!Bundle->IsScheduled && 7284 "Can't cancel bundle which is already scheduled"); 7285 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7286 "tried to unbundle something which is not a bundle"); 7287 7288 // Un-bundle: make single instructions out of the bundle. 7289 ScheduleData *BundleMember = Bundle; 7290 while (BundleMember) { 7291 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7292 BundleMember->FirstInBundle = BundleMember; 7293 ScheduleData *Next = BundleMember->NextInBundle; 7294 BundleMember->NextInBundle = nullptr; 7295 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7296 if (BundleMember->UnscheduledDepsInBundle == 0) { 7297 ReadyInsts.insert(BundleMember); 7298 } 7299 BundleMember = Next; 7300 } 7301 } 7302 7303 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7304 // Allocate a new ScheduleData for the instruction. 7305 if (ChunkPos >= ChunkSize) { 7306 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7307 ChunkPos = 0; 7308 } 7309 return &(ScheduleDataChunks.back()[ChunkPos++]); 7310 } 7311 7312 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7313 const InstructionsState &S) { 7314 if (getScheduleData(V, isOneOf(S, V))) 7315 return true; 7316 Instruction *I = dyn_cast<Instruction>(V); 7317 assert(I && "bundle member must be an instruction"); 7318 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7319 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7320 "be scheduled"); 7321 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7322 ScheduleData *ISD = getScheduleData(I); 7323 if (!ISD) 7324 return false; 7325 assert(isInSchedulingRegion(ISD) && 7326 "ScheduleData not in scheduling region"); 7327 ScheduleData *SD = allocateScheduleDataChunks(); 7328 SD->Inst = I; 7329 SD->init(SchedulingRegionID, S.OpValue); 7330 ExtraScheduleDataMap[I][S.OpValue] = SD; 7331 return true; 7332 }; 7333 if (CheckSheduleForI(I)) 7334 return true; 7335 if (!ScheduleStart) { 7336 // It's the first instruction in the new region. 7337 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7338 ScheduleStart = I; 7339 ScheduleEnd = I->getNextNode(); 7340 if (isOneOf(S, I) != I) 7341 CheckSheduleForI(I); 7342 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7343 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7344 return true; 7345 } 7346 // Search up and down at the same time, because we don't know if the new 7347 // instruction is above or below the existing scheduling region. 7348 BasicBlock::reverse_iterator UpIter = 7349 ++ScheduleStart->getIterator().getReverse(); 7350 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7351 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7352 BasicBlock::iterator LowerEnd = BB->end(); 7353 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7354 &*DownIter != I) { 7355 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7356 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7357 return false; 7358 } 7359 7360 ++UpIter; 7361 ++DownIter; 7362 } 7363 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7364 assert(I->getParent() == ScheduleStart->getParent() && 7365 "Instruction is in wrong basic block."); 7366 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7367 ScheduleStart = I; 7368 if (isOneOf(S, I) != I) 7369 CheckSheduleForI(I); 7370 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7371 << "\n"); 7372 return true; 7373 } 7374 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7375 "Expected to reach top of the basic block or instruction down the " 7376 "lower end."); 7377 assert(I->getParent() == ScheduleEnd->getParent() && 7378 "Instruction is in wrong basic block."); 7379 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7380 nullptr); 7381 ScheduleEnd = I->getNextNode(); 7382 if (isOneOf(S, I) != I) 7383 CheckSheduleForI(I); 7384 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7385 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7386 return true; 7387 } 7388 7389 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7390 Instruction *ToI, 7391 ScheduleData *PrevLoadStore, 7392 ScheduleData *NextLoadStore) { 7393 ScheduleData *CurrentLoadStore = PrevLoadStore; 7394 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7395 ScheduleData *SD = ScheduleDataMap[I]; 7396 if (!SD) { 7397 SD = allocateScheduleDataChunks(); 7398 ScheduleDataMap[I] = SD; 7399 SD->Inst = I; 7400 } 7401 assert(!isInSchedulingRegion(SD) && 7402 "new ScheduleData already in scheduling region"); 7403 SD->init(SchedulingRegionID, I); 7404 7405 if (I->mayReadOrWriteMemory() && 7406 (!isa<IntrinsicInst>(I) || 7407 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7408 cast<IntrinsicInst>(I)->getIntrinsicID() != 7409 Intrinsic::pseudoprobe))) { 7410 // Update the linked list of memory accessing instructions. 7411 if (CurrentLoadStore) { 7412 CurrentLoadStore->NextLoadStore = SD; 7413 } else { 7414 FirstLoadStoreInRegion = SD; 7415 } 7416 CurrentLoadStore = SD; 7417 } 7418 } 7419 if (NextLoadStore) { 7420 if (CurrentLoadStore) 7421 CurrentLoadStore->NextLoadStore = NextLoadStore; 7422 } else { 7423 LastLoadStoreInRegion = CurrentLoadStore; 7424 } 7425 } 7426 7427 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7428 bool InsertInReadyList, 7429 BoUpSLP *SLP) { 7430 assert(SD->isSchedulingEntity()); 7431 7432 SmallVector<ScheduleData *, 10> WorkList; 7433 WorkList.push_back(SD); 7434 7435 while (!WorkList.empty()) { 7436 ScheduleData *SD = WorkList.pop_back_val(); 7437 7438 ScheduleData *BundleMember = SD; 7439 while (BundleMember) { 7440 assert(isInSchedulingRegion(BundleMember)); 7441 if (!BundleMember->hasValidDependencies()) { 7442 7443 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7444 << "\n"); 7445 BundleMember->Dependencies = 0; 7446 BundleMember->resetUnscheduledDeps(); 7447 7448 // Handle def-use chain dependencies. 7449 if (BundleMember->OpValue != BundleMember->Inst) { 7450 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7451 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7452 BundleMember->Dependencies++; 7453 ScheduleData *DestBundle = UseSD->FirstInBundle; 7454 if (!DestBundle->IsScheduled) 7455 BundleMember->incrementUnscheduledDeps(1); 7456 if (!DestBundle->hasValidDependencies()) 7457 WorkList.push_back(DestBundle); 7458 } 7459 } else { 7460 for (User *U : BundleMember->Inst->users()) { 7461 if (isa<Instruction>(U)) { 7462 ScheduleData *UseSD = getScheduleData(U); 7463 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7464 BundleMember->Dependencies++; 7465 ScheduleData *DestBundle = UseSD->FirstInBundle; 7466 if (!DestBundle->IsScheduled) 7467 BundleMember->incrementUnscheduledDeps(1); 7468 if (!DestBundle->hasValidDependencies()) 7469 WorkList.push_back(DestBundle); 7470 } 7471 } else { 7472 // I'm not sure if this can ever happen. But we need to be safe. 7473 // This lets the instruction/bundle never be scheduled and 7474 // eventually disable vectorization. 7475 BundleMember->Dependencies++; 7476 BundleMember->incrementUnscheduledDeps(1); 7477 } 7478 } 7479 } 7480 7481 // Handle the memory dependencies. 7482 ScheduleData *DepDest = BundleMember->NextLoadStore; 7483 if (DepDest) { 7484 Instruction *SrcInst = BundleMember->Inst; 7485 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7486 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7487 unsigned numAliased = 0; 7488 unsigned DistToSrc = 1; 7489 7490 while (DepDest) { 7491 assert(isInSchedulingRegion(DepDest)); 7492 7493 // We have two limits to reduce the complexity: 7494 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7495 // SLP->isAliased (which is the expensive part in this loop). 7496 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7497 // the whole loop (even if the loop is fast, it's quadratic). 7498 // It's important for the loop break condition (see below) to 7499 // check this limit even between two read-only instructions. 7500 if (DistToSrc >= MaxMemDepDistance || 7501 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7502 (numAliased >= AliasedCheckLimit || 7503 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7504 7505 // We increment the counter only if the locations are aliased 7506 // (instead of counting all alias checks). This gives a better 7507 // balance between reduced runtime and accurate dependencies. 7508 numAliased++; 7509 7510 DepDest->MemoryDependencies.push_back(BundleMember); 7511 BundleMember->Dependencies++; 7512 ScheduleData *DestBundle = DepDest->FirstInBundle; 7513 if (!DestBundle->IsScheduled) { 7514 BundleMember->incrementUnscheduledDeps(1); 7515 } 7516 if (!DestBundle->hasValidDependencies()) { 7517 WorkList.push_back(DestBundle); 7518 } 7519 } 7520 DepDest = DepDest->NextLoadStore; 7521 7522 // Example, explaining the loop break condition: Let's assume our 7523 // starting instruction is i0 and MaxMemDepDistance = 3. 7524 // 7525 // +--------v--v--v 7526 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7527 // +--------^--^--^ 7528 // 7529 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7530 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7531 // Previously we already added dependencies from i3 to i6,i7,i8 7532 // (because of MaxMemDepDistance). As we added a dependency from 7533 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7534 // and we can abort this loop at i6. 7535 if (DistToSrc >= 2 * MaxMemDepDistance) 7536 break; 7537 DistToSrc++; 7538 } 7539 } 7540 } 7541 BundleMember = BundleMember->NextInBundle; 7542 } 7543 if (InsertInReadyList && SD->isReady()) { 7544 ReadyInsts.push_back(SD); 7545 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7546 << "\n"); 7547 } 7548 } 7549 } 7550 7551 void BoUpSLP::BlockScheduling::resetSchedule() { 7552 assert(ScheduleStart && 7553 "tried to reset schedule on block which has not been scheduled"); 7554 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7555 doForAllOpcodes(I, [&](ScheduleData *SD) { 7556 assert(isInSchedulingRegion(SD) && 7557 "ScheduleData not in scheduling region"); 7558 SD->IsScheduled = false; 7559 SD->resetUnscheduledDeps(); 7560 }); 7561 } 7562 ReadyInsts.clear(); 7563 } 7564 7565 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7566 if (!BS->ScheduleStart) 7567 return; 7568 7569 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7570 7571 BS->resetSchedule(); 7572 7573 // For the real scheduling we use a more sophisticated ready-list: it is 7574 // sorted by the original instruction location. This lets the final schedule 7575 // be as close as possible to the original instruction order. 7576 struct ScheduleDataCompare { 7577 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7578 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7579 } 7580 }; 7581 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7582 7583 // Ensure that all dependency data is updated and fill the ready-list with 7584 // initial instructions. 7585 int Idx = 0; 7586 int NumToSchedule = 0; 7587 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7588 I = I->getNextNode()) { 7589 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7590 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7591 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7592 "scheduler and vectorizer bundle mismatch"); 7593 SD->FirstInBundle->SchedulingPriority = Idx++; 7594 if (SD->isSchedulingEntity()) { 7595 BS->calculateDependencies(SD, false, this); 7596 NumToSchedule++; 7597 } 7598 }); 7599 } 7600 BS->initialFillReadyList(ReadyInsts); 7601 7602 Instruction *LastScheduledInst = BS->ScheduleEnd; 7603 7604 // Do the "real" scheduling. 7605 while (!ReadyInsts.empty()) { 7606 ScheduleData *picked = *ReadyInsts.begin(); 7607 ReadyInsts.erase(ReadyInsts.begin()); 7608 7609 // Move the scheduled instruction(s) to their dedicated places, if not 7610 // there yet. 7611 ScheduleData *BundleMember = picked; 7612 while (BundleMember) { 7613 Instruction *pickedInst = BundleMember->Inst; 7614 if (pickedInst->getNextNode() != LastScheduledInst) { 7615 BS->BB->getInstList().remove(pickedInst); 7616 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7617 pickedInst); 7618 } 7619 LastScheduledInst = pickedInst; 7620 BundleMember = BundleMember->NextInBundle; 7621 } 7622 7623 BS->schedule(picked, ReadyInsts); 7624 NumToSchedule--; 7625 } 7626 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7627 7628 // Avoid duplicate scheduling of the block. 7629 BS->ScheduleStart = nullptr; 7630 } 7631 7632 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7633 // If V is a store, just return the width of the stored value (or value 7634 // truncated just before storing) without traversing the expression tree. 7635 // This is the common case. 7636 if (auto *Store = dyn_cast<StoreInst>(V)) { 7637 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7638 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7639 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7640 } 7641 7642 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7643 return getVectorElementSize(IEI->getOperand(1)); 7644 7645 auto E = InstrElementSize.find(V); 7646 if (E != InstrElementSize.end()) 7647 return E->second; 7648 7649 // If V is not a store, we can traverse the expression tree to find loads 7650 // that feed it. The type of the loaded value may indicate a more suitable 7651 // width than V's type. We want to base the vector element size on the width 7652 // of memory operations where possible. 7653 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7654 SmallPtrSet<Instruction *, 16> Visited; 7655 if (auto *I = dyn_cast<Instruction>(V)) { 7656 Worklist.emplace_back(I, I->getParent()); 7657 Visited.insert(I); 7658 } 7659 7660 // Traverse the expression tree in bottom-up order looking for loads. If we 7661 // encounter an instruction we don't yet handle, we give up. 7662 auto Width = 0u; 7663 while (!Worklist.empty()) { 7664 Instruction *I; 7665 BasicBlock *Parent; 7666 std::tie(I, Parent) = Worklist.pop_back_val(); 7667 7668 // We should only be looking at scalar instructions here. If the current 7669 // instruction has a vector type, skip. 7670 auto *Ty = I->getType(); 7671 if (isa<VectorType>(Ty)) 7672 continue; 7673 7674 // If the current instruction is a load, update MaxWidth to reflect the 7675 // width of the loaded value. 7676 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7677 isa<ExtractValueInst>(I)) 7678 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7679 7680 // Otherwise, we need to visit the operands of the instruction. We only 7681 // handle the interesting cases from buildTree here. If an operand is an 7682 // instruction we haven't yet visited and from the same basic block as the 7683 // user or the use is a PHI node, we add it to the worklist. 7684 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7685 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7686 isa<UnaryOperator>(I)) { 7687 for (Use &U : I->operands()) 7688 if (auto *J = dyn_cast<Instruction>(U.get())) 7689 if (Visited.insert(J).second && 7690 (isa<PHINode>(I) || J->getParent() == Parent)) 7691 Worklist.emplace_back(J, J->getParent()); 7692 } else { 7693 break; 7694 } 7695 } 7696 7697 // If we didn't encounter a memory access in the expression tree, or if we 7698 // gave up for some reason, just return the width of V. Otherwise, return the 7699 // maximum width we found. 7700 if (!Width) { 7701 if (auto *CI = dyn_cast<CmpInst>(V)) 7702 V = CI->getOperand(0); 7703 Width = DL->getTypeSizeInBits(V->getType()); 7704 } 7705 7706 for (Instruction *I : Visited) 7707 InstrElementSize[I] = Width; 7708 7709 return Width; 7710 } 7711 7712 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7713 // smaller type with a truncation. We collect the values that will be demoted 7714 // in ToDemote and additional roots that require investigating in Roots. 7715 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7716 SmallVectorImpl<Value *> &ToDemote, 7717 SmallVectorImpl<Value *> &Roots) { 7718 // We can always demote constants. 7719 if (isa<Constant>(V)) { 7720 ToDemote.push_back(V); 7721 return true; 7722 } 7723 7724 // If the value is not an instruction in the expression with only one use, it 7725 // cannot be demoted. 7726 auto *I = dyn_cast<Instruction>(V); 7727 if (!I || !I->hasOneUse() || !Expr.count(I)) 7728 return false; 7729 7730 switch (I->getOpcode()) { 7731 7732 // We can always demote truncations and extensions. Since truncations can 7733 // seed additional demotion, we save the truncated value. 7734 case Instruction::Trunc: 7735 Roots.push_back(I->getOperand(0)); 7736 break; 7737 case Instruction::ZExt: 7738 case Instruction::SExt: 7739 if (isa<ExtractElementInst>(I->getOperand(0)) || 7740 isa<InsertElementInst>(I->getOperand(0))) 7741 return false; 7742 break; 7743 7744 // We can demote certain binary operations if we can demote both of their 7745 // operands. 7746 case Instruction::Add: 7747 case Instruction::Sub: 7748 case Instruction::Mul: 7749 case Instruction::And: 7750 case Instruction::Or: 7751 case Instruction::Xor: 7752 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7753 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7754 return false; 7755 break; 7756 7757 // We can demote selects if we can demote their true and false values. 7758 case Instruction::Select: { 7759 SelectInst *SI = cast<SelectInst>(I); 7760 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7761 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7762 return false; 7763 break; 7764 } 7765 7766 // We can demote phis if we can demote all their incoming operands. Note that 7767 // we don't need to worry about cycles since we ensure single use above. 7768 case Instruction::PHI: { 7769 PHINode *PN = cast<PHINode>(I); 7770 for (Value *IncValue : PN->incoming_values()) 7771 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7772 return false; 7773 break; 7774 } 7775 7776 // Otherwise, conservatively give up. 7777 default: 7778 return false; 7779 } 7780 7781 // Record the value that we can demote. 7782 ToDemote.push_back(V); 7783 return true; 7784 } 7785 7786 void BoUpSLP::computeMinimumValueSizes() { 7787 // If there are no external uses, the expression tree must be rooted by a 7788 // store. We can't demote in-memory values, so there is nothing to do here. 7789 if (ExternalUses.empty()) 7790 return; 7791 7792 // We only attempt to truncate integer expressions. 7793 auto &TreeRoot = VectorizableTree[0]->Scalars; 7794 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7795 if (!TreeRootIT) 7796 return; 7797 7798 // If the expression is not rooted by a store, these roots should have 7799 // external uses. We will rely on InstCombine to rewrite the expression in 7800 // the narrower type. However, InstCombine only rewrites single-use values. 7801 // This means that if a tree entry other than a root is used externally, it 7802 // must have multiple uses and InstCombine will not rewrite it. The code 7803 // below ensures that only the roots are used externally. 7804 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7805 for (auto &EU : ExternalUses) 7806 if (!Expr.erase(EU.Scalar)) 7807 return; 7808 if (!Expr.empty()) 7809 return; 7810 7811 // Collect the scalar values of the vectorizable expression. We will use this 7812 // context to determine which values can be demoted. If we see a truncation, 7813 // we mark it as seeding another demotion. 7814 for (auto &EntryPtr : VectorizableTree) 7815 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7816 7817 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7818 // have a single external user that is not in the vectorizable tree. 7819 for (auto *Root : TreeRoot) 7820 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7821 return; 7822 7823 // Conservatively determine if we can actually truncate the roots of the 7824 // expression. Collect the values that can be demoted in ToDemote and 7825 // additional roots that require investigating in Roots. 7826 SmallVector<Value *, 32> ToDemote; 7827 SmallVector<Value *, 4> Roots; 7828 for (auto *Root : TreeRoot) 7829 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7830 return; 7831 7832 // The maximum bit width required to represent all the values that can be 7833 // demoted without loss of precision. It would be safe to truncate the roots 7834 // of the expression to this width. 7835 auto MaxBitWidth = 8u; 7836 7837 // We first check if all the bits of the roots are demanded. If they're not, 7838 // we can truncate the roots to this narrower type. 7839 for (auto *Root : TreeRoot) { 7840 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7841 MaxBitWidth = std::max<unsigned>( 7842 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7843 } 7844 7845 // True if the roots can be zero-extended back to their original type, rather 7846 // than sign-extended. We know that if the leading bits are not demanded, we 7847 // can safely zero-extend. So we initialize IsKnownPositive to True. 7848 bool IsKnownPositive = true; 7849 7850 // If all the bits of the roots are demanded, we can try a little harder to 7851 // compute a narrower type. This can happen, for example, if the roots are 7852 // getelementptr indices. InstCombine promotes these indices to the pointer 7853 // width. Thus, all their bits are technically demanded even though the 7854 // address computation might be vectorized in a smaller type. 7855 // 7856 // We start by looking at each entry that can be demoted. We compute the 7857 // maximum bit width required to store the scalar by using ValueTracking to 7858 // compute the number of high-order bits we can truncate. 7859 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7860 llvm::all_of(TreeRoot, [](Value *R) { 7861 assert(R->hasOneUse() && "Root should have only one use!"); 7862 return isa<GetElementPtrInst>(R->user_back()); 7863 })) { 7864 MaxBitWidth = 8u; 7865 7866 // Determine if the sign bit of all the roots is known to be zero. If not, 7867 // IsKnownPositive is set to False. 7868 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7869 KnownBits Known = computeKnownBits(R, *DL); 7870 return Known.isNonNegative(); 7871 }); 7872 7873 // Determine the maximum number of bits required to store the scalar 7874 // values. 7875 for (auto *Scalar : ToDemote) { 7876 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7877 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7878 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7879 } 7880 7881 // If we can't prove that the sign bit is zero, we must add one to the 7882 // maximum bit width to account for the unknown sign bit. This preserves 7883 // the existing sign bit so we can safely sign-extend the root back to the 7884 // original type. Otherwise, if we know the sign bit is zero, we will 7885 // zero-extend the root instead. 7886 // 7887 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7888 // one to the maximum bit width will yield a larger-than-necessary 7889 // type. In general, we need to add an extra bit only if we can't 7890 // prove that the upper bit of the original type is equal to the 7891 // upper bit of the proposed smaller type. If these two bits are the 7892 // same (either zero or one) we know that sign-extending from the 7893 // smaller type will result in the same value. Here, since we can't 7894 // yet prove this, we are just making the proposed smaller type 7895 // larger to ensure correctness. 7896 if (!IsKnownPositive) 7897 ++MaxBitWidth; 7898 } 7899 7900 // Round MaxBitWidth up to the next power-of-two. 7901 if (!isPowerOf2_64(MaxBitWidth)) 7902 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7903 7904 // If the maximum bit width we compute is less than the with of the roots' 7905 // type, we can proceed with the narrowing. Otherwise, do nothing. 7906 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7907 return; 7908 7909 // If we can truncate the root, we must collect additional values that might 7910 // be demoted as a result. That is, those seeded by truncations we will 7911 // modify. 7912 while (!Roots.empty()) 7913 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7914 7915 // Finally, map the values we can demote to the maximum bit with we computed. 7916 for (auto *Scalar : ToDemote) 7917 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7918 } 7919 7920 namespace { 7921 7922 /// The SLPVectorizer Pass. 7923 struct SLPVectorizer : public FunctionPass { 7924 SLPVectorizerPass Impl; 7925 7926 /// Pass identification, replacement for typeid 7927 static char ID; 7928 7929 explicit SLPVectorizer() : FunctionPass(ID) { 7930 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7931 } 7932 7933 bool doInitialization(Module &M) override { return false; } 7934 7935 bool runOnFunction(Function &F) override { 7936 if (skipFunction(F)) 7937 return false; 7938 7939 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7940 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7941 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7942 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7943 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7944 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7945 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7946 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7947 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7948 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7949 7950 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7951 } 7952 7953 void getAnalysisUsage(AnalysisUsage &AU) const override { 7954 FunctionPass::getAnalysisUsage(AU); 7955 AU.addRequired<AssumptionCacheTracker>(); 7956 AU.addRequired<ScalarEvolutionWrapperPass>(); 7957 AU.addRequired<AAResultsWrapperPass>(); 7958 AU.addRequired<TargetTransformInfoWrapperPass>(); 7959 AU.addRequired<LoopInfoWrapperPass>(); 7960 AU.addRequired<DominatorTreeWrapperPass>(); 7961 AU.addRequired<DemandedBitsWrapperPass>(); 7962 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7963 AU.addRequired<InjectTLIMappingsLegacy>(); 7964 AU.addPreserved<LoopInfoWrapperPass>(); 7965 AU.addPreserved<DominatorTreeWrapperPass>(); 7966 AU.addPreserved<AAResultsWrapperPass>(); 7967 AU.addPreserved<GlobalsAAWrapperPass>(); 7968 AU.setPreservesCFG(); 7969 } 7970 }; 7971 7972 } // end anonymous namespace 7973 7974 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7975 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7976 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7977 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7978 auto *AA = &AM.getResult<AAManager>(F); 7979 auto *LI = &AM.getResult<LoopAnalysis>(F); 7980 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7981 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7982 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7983 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7984 7985 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7986 if (!Changed) 7987 return PreservedAnalyses::all(); 7988 7989 PreservedAnalyses PA; 7990 PA.preserveSet<CFGAnalyses>(); 7991 return PA; 7992 } 7993 7994 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7995 TargetTransformInfo *TTI_, 7996 TargetLibraryInfo *TLI_, AAResults *AA_, 7997 LoopInfo *LI_, DominatorTree *DT_, 7998 AssumptionCache *AC_, DemandedBits *DB_, 7999 OptimizationRemarkEmitter *ORE_) { 8000 if (!RunSLPVectorization) 8001 return false; 8002 SE = SE_; 8003 TTI = TTI_; 8004 TLI = TLI_; 8005 AA = AA_; 8006 LI = LI_; 8007 DT = DT_; 8008 AC = AC_; 8009 DB = DB_; 8010 DL = &F.getParent()->getDataLayout(); 8011 8012 Stores.clear(); 8013 GEPs.clear(); 8014 bool Changed = false; 8015 8016 // If the target claims to have no vector registers don't attempt 8017 // vectorization. 8018 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 8019 return false; 8020 8021 // Don't vectorize when the attribute NoImplicitFloat is used. 8022 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8023 return false; 8024 8025 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8026 8027 // Use the bottom up slp vectorizer to construct chains that start with 8028 // store instructions. 8029 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8030 8031 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8032 // delete instructions. 8033 8034 // Update DFS numbers now so that we can use them for ordering. 8035 DT->updateDFSNumbers(); 8036 8037 // Scan the blocks in the function in post order. 8038 for (auto BB : post_order(&F.getEntryBlock())) { 8039 collectSeedInstructions(BB); 8040 8041 // Vectorize trees that end at stores. 8042 if (!Stores.empty()) { 8043 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8044 << " underlying objects.\n"); 8045 Changed |= vectorizeStoreChains(R); 8046 } 8047 8048 // Vectorize trees that end at reductions. 8049 Changed |= vectorizeChainsInBlock(BB, R); 8050 8051 // Vectorize the index computations of getelementptr instructions. This 8052 // is primarily intended to catch gather-like idioms ending at 8053 // non-consecutive loads. 8054 if (!GEPs.empty()) { 8055 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8056 << " underlying objects.\n"); 8057 Changed |= vectorizeGEPIndices(BB, R); 8058 } 8059 } 8060 8061 if (Changed) { 8062 R.optimizeGatherSequence(); 8063 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8064 } 8065 return Changed; 8066 } 8067 8068 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8069 unsigned Idx) { 8070 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8071 << "\n"); 8072 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8073 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8074 unsigned VF = Chain.size(); 8075 8076 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8077 return false; 8078 8079 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8080 << "\n"); 8081 8082 R.buildTree(Chain); 8083 if (R.isTreeTinyAndNotFullyVectorizable()) 8084 return false; 8085 if (R.isLoadCombineCandidate()) 8086 return false; 8087 R.reorderTopToBottom(); 8088 R.reorderBottomToTop(); 8089 R.buildExternalUses(); 8090 8091 R.computeMinimumValueSizes(); 8092 8093 InstructionCost Cost = R.getTreeCost(); 8094 8095 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8096 if (Cost < -SLPCostThreshold) { 8097 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8098 8099 using namespace ore; 8100 8101 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8102 cast<StoreInst>(Chain[0])) 8103 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8104 << " and with tree size " 8105 << NV("TreeSize", R.getTreeSize())); 8106 8107 R.vectorizeTree(); 8108 return true; 8109 } 8110 8111 return false; 8112 } 8113 8114 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8115 BoUpSLP &R) { 8116 // We may run into multiple chains that merge into a single chain. We mark the 8117 // stores that we vectorized so that we don't visit the same store twice. 8118 BoUpSLP::ValueSet VectorizedStores; 8119 bool Changed = false; 8120 8121 int E = Stores.size(); 8122 SmallBitVector Tails(E, false); 8123 int MaxIter = MaxStoreLookup.getValue(); 8124 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8125 E, std::make_pair(E, INT_MAX)); 8126 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8127 int IterCnt; 8128 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8129 &CheckedPairs, 8130 &ConsecutiveChain](int K, int Idx) { 8131 if (IterCnt >= MaxIter) 8132 return true; 8133 if (CheckedPairs[Idx].test(K)) 8134 return ConsecutiveChain[K].second == 1 && 8135 ConsecutiveChain[K].first == Idx; 8136 ++IterCnt; 8137 CheckedPairs[Idx].set(K); 8138 CheckedPairs[K].set(Idx); 8139 Optional<int> Diff = getPointersDiff( 8140 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8141 Stores[Idx]->getValueOperand()->getType(), 8142 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8143 if (!Diff || *Diff == 0) 8144 return false; 8145 int Val = *Diff; 8146 if (Val < 0) { 8147 if (ConsecutiveChain[Idx].second > -Val) { 8148 Tails.set(K); 8149 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8150 } 8151 return false; 8152 } 8153 if (ConsecutiveChain[K].second <= Val) 8154 return false; 8155 8156 Tails.set(Idx); 8157 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8158 return Val == 1; 8159 }; 8160 // Do a quadratic search on all of the given stores in reverse order and find 8161 // all of the pairs of stores that follow each other. 8162 for (int Idx = E - 1; Idx >= 0; --Idx) { 8163 // If a store has multiple consecutive store candidates, search according 8164 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8165 // This is because usually pairing with immediate succeeding or preceding 8166 // candidate create the best chance to find slp vectorization opportunity. 8167 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8168 IterCnt = 0; 8169 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8170 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8171 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8172 break; 8173 } 8174 8175 // Tracks if we tried to vectorize stores starting from the given tail 8176 // already. 8177 SmallBitVector TriedTails(E, false); 8178 // For stores that start but don't end a link in the chain: 8179 for (int Cnt = E; Cnt > 0; --Cnt) { 8180 int I = Cnt - 1; 8181 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8182 continue; 8183 // We found a store instr that starts a chain. Now follow the chain and try 8184 // to vectorize it. 8185 BoUpSLP::ValueList Operands; 8186 // Collect the chain into a list. 8187 while (I != E && !VectorizedStores.count(Stores[I])) { 8188 Operands.push_back(Stores[I]); 8189 Tails.set(I); 8190 if (ConsecutiveChain[I].second != 1) { 8191 // Mark the new end in the chain and go back, if required. It might be 8192 // required if the original stores come in reversed order, for example. 8193 if (ConsecutiveChain[I].first != E && 8194 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8195 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8196 TriedTails.set(I); 8197 Tails.reset(ConsecutiveChain[I].first); 8198 if (Cnt < ConsecutiveChain[I].first + 2) 8199 Cnt = ConsecutiveChain[I].first + 2; 8200 } 8201 break; 8202 } 8203 // Move to the next value in the chain. 8204 I = ConsecutiveChain[I].first; 8205 } 8206 assert(!Operands.empty() && "Expected non-empty list of stores."); 8207 8208 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8209 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8210 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8211 8212 unsigned MinVF = R.getMinVF(EltSize); 8213 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8214 MaxElts); 8215 8216 // FIXME: Is division-by-2 the correct step? Should we assert that the 8217 // register size is a power-of-2? 8218 unsigned StartIdx = 0; 8219 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8220 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8221 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8222 if (!VectorizedStores.count(Slice.front()) && 8223 !VectorizedStores.count(Slice.back()) && 8224 vectorizeStoreChain(Slice, R, Cnt)) { 8225 // Mark the vectorized stores so that we don't vectorize them again. 8226 VectorizedStores.insert(Slice.begin(), Slice.end()); 8227 Changed = true; 8228 // If we vectorized initial block, no need to try to vectorize it 8229 // again. 8230 if (Cnt == StartIdx) 8231 StartIdx += Size; 8232 Cnt += Size; 8233 continue; 8234 } 8235 ++Cnt; 8236 } 8237 // Check if the whole array was vectorized already - exit. 8238 if (StartIdx >= Operands.size()) 8239 break; 8240 } 8241 } 8242 8243 return Changed; 8244 } 8245 8246 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8247 // Initialize the collections. We will make a single pass over the block. 8248 Stores.clear(); 8249 GEPs.clear(); 8250 8251 // Visit the store and getelementptr instructions in BB and organize them in 8252 // Stores and GEPs according to the underlying objects of their pointer 8253 // operands. 8254 for (Instruction &I : *BB) { 8255 // Ignore store instructions that are volatile or have a pointer operand 8256 // that doesn't point to a scalar type. 8257 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8258 if (!SI->isSimple()) 8259 continue; 8260 if (!isValidElementType(SI->getValueOperand()->getType())) 8261 continue; 8262 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8263 } 8264 8265 // Ignore getelementptr instructions that have more than one index, a 8266 // constant index, or a pointer operand that doesn't point to a scalar 8267 // type. 8268 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8269 auto Idx = GEP->idx_begin()->get(); 8270 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8271 continue; 8272 if (!isValidElementType(Idx->getType())) 8273 continue; 8274 if (GEP->getType()->isVectorTy()) 8275 continue; 8276 GEPs[GEP->getPointerOperand()].push_back(GEP); 8277 } 8278 } 8279 } 8280 8281 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8282 if (!A || !B) 8283 return false; 8284 Value *VL[] = {A, B}; 8285 return tryToVectorizeList(VL, R); 8286 } 8287 8288 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8289 bool LimitForRegisterSize) { 8290 if (VL.size() < 2) 8291 return false; 8292 8293 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8294 << VL.size() << ".\n"); 8295 8296 // Check that all of the parts are instructions of the same type, 8297 // we permit an alternate opcode via InstructionsState. 8298 InstructionsState S = getSameOpcode(VL); 8299 if (!S.getOpcode()) 8300 return false; 8301 8302 Instruction *I0 = cast<Instruction>(S.OpValue); 8303 // Make sure invalid types (including vector type) are rejected before 8304 // determining vectorization factor for scalar instructions. 8305 for (Value *V : VL) { 8306 Type *Ty = V->getType(); 8307 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8308 // NOTE: the following will give user internal llvm type name, which may 8309 // not be useful. 8310 R.getORE()->emit([&]() { 8311 std::string type_str; 8312 llvm::raw_string_ostream rso(type_str); 8313 Ty->print(rso); 8314 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8315 << "Cannot SLP vectorize list: type " 8316 << rso.str() + " is unsupported by vectorizer"; 8317 }); 8318 return false; 8319 } 8320 } 8321 8322 unsigned Sz = R.getVectorElementSize(I0); 8323 unsigned MinVF = R.getMinVF(Sz); 8324 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8325 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8326 if (MaxVF < 2) { 8327 R.getORE()->emit([&]() { 8328 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8329 << "Cannot SLP vectorize list: vectorization factor " 8330 << "less than 2 is not supported"; 8331 }); 8332 return false; 8333 } 8334 8335 bool Changed = false; 8336 bool CandidateFound = false; 8337 InstructionCost MinCost = SLPCostThreshold.getValue(); 8338 Type *ScalarTy = VL[0]->getType(); 8339 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8340 ScalarTy = IE->getOperand(1)->getType(); 8341 8342 unsigned NextInst = 0, MaxInst = VL.size(); 8343 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8344 // No actual vectorization should happen, if number of parts is the same as 8345 // provided vectorization factor (i.e. the scalar type is used for vector 8346 // code during codegen). 8347 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8348 if (TTI->getNumberOfParts(VecTy) == VF) 8349 continue; 8350 for (unsigned I = NextInst; I < MaxInst; ++I) { 8351 unsigned OpsWidth = 0; 8352 8353 if (I + VF > MaxInst) 8354 OpsWidth = MaxInst - I; 8355 else 8356 OpsWidth = VF; 8357 8358 if (!isPowerOf2_32(OpsWidth)) 8359 continue; 8360 8361 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8362 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8363 break; 8364 8365 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8366 // Check that a previous iteration of this loop did not delete the Value. 8367 if (llvm::any_of(Ops, [&R](Value *V) { 8368 auto *I = dyn_cast<Instruction>(V); 8369 return I && R.isDeleted(I); 8370 })) 8371 continue; 8372 8373 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8374 << "\n"); 8375 8376 R.buildTree(Ops); 8377 if (R.isTreeTinyAndNotFullyVectorizable()) 8378 continue; 8379 R.reorderTopToBottom(); 8380 R.reorderBottomToTop(); 8381 R.buildExternalUses(); 8382 8383 R.computeMinimumValueSizes(); 8384 InstructionCost Cost = R.getTreeCost(); 8385 CandidateFound = true; 8386 MinCost = std::min(MinCost, Cost); 8387 8388 if (Cost < -SLPCostThreshold) { 8389 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8390 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8391 cast<Instruction>(Ops[0])) 8392 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8393 << " and with tree size " 8394 << ore::NV("TreeSize", R.getTreeSize())); 8395 8396 R.vectorizeTree(); 8397 // Move to the next bundle. 8398 I += VF - 1; 8399 NextInst = I + 1; 8400 Changed = true; 8401 } 8402 } 8403 } 8404 8405 if (!Changed && CandidateFound) { 8406 R.getORE()->emit([&]() { 8407 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8408 << "List vectorization was possible but not beneficial with cost " 8409 << ore::NV("Cost", MinCost) << " >= " 8410 << ore::NV("Treshold", -SLPCostThreshold); 8411 }); 8412 } else if (!Changed) { 8413 R.getORE()->emit([&]() { 8414 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8415 << "Cannot SLP vectorize list: vectorization was impossible" 8416 << " with available vectorization factors"; 8417 }); 8418 } 8419 return Changed; 8420 } 8421 8422 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8423 if (!I) 8424 return false; 8425 8426 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8427 return false; 8428 8429 Value *P = I->getParent(); 8430 8431 // Vectorize in current basic block only. 8432 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8433 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8434 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8435 return false; 8436 8437 // Try to vectorize V. 8438 if (tryToVectorizePair(Op0, Op1, R)) 8439 return true; 8440 8441 auto *A = dyn_cast<BinaryOperator>(Op0); 8442 auto *B = dyn_cast<BinaryOperator>(Op1); 8443 // Try to skip B. 8444 if (B && B->hasOneUse()) { 8445 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8446 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8447 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8448 return true; 8449 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8450 return true; 8451 } 8452 8453 // Try to skip A. 8454 if (A && A->hasOneUse()) { 8455 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8456 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8457 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8458 return true; 8459 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8460 return true; 8461 } 8462 return false; 8463 } 8464 8465 namespace { 8466 8467 /// Model horizontal reductions. 8468 /// 8469 /// A horizontal reduction is a tree of reduction instructions that has values 8470 /// that can be put into a vector as its leaves. For example: 8471 /// 8472 /// mul mul mul mul 8473 /// \ / \ / 8474 /// + + 8475 /// \ / 8476 /// + 8477 /// This tree has "mul" as its leaf values and "+" as its reduction 8478 /// instructions. A reduction can feed into a store or a binary operation 8479 /// feeding a phi. 8480 /// ... 8481 /// \ / 8482 /// + 8483 /// | 8484 /// phi += 8485 /// 8486 /// Or: 8487 /// ... 8488 /// \ / 8489 /// + 8490 /// | 8491 /// *p = 8492 /// 8493 class HorizontalReduction { 8494 using ReductionOpsType = SmallVector<Value *, 16>; 8495 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8496 ReductionOpsListType ReductionOps; 8497 SmallVector<Value *, 32> ReducedVals; 8498 // Use map vector to make stable output. 8499 MapVector<Instruction *, Value *> ExtraArgs; 8500 WeakTrackingVH ReductionRoot; 8501 /// The type of reduction operation. 8502 RecurKind RdxKind; 8503 8504 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8505 8506 static bool isCmpSelMinMax(Instruction *I) { 8507 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8508 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8509 } 8510 8511 // And/or are potentially poison-safe logical patterns like: 8512 // select x, y, false 8513 // select x, true, y 8514 static bool isBoolLogicOp(Instruction *I) { 8515 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8516 match(I, m_LogicalOr(m_Value(), m_Value())); 8517 } 8518 8519 /// Checks if instruction is associative and can be vectorized. 8520 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8521 if (Kind == RecurKind::None) 8522 return false; 8523 8524 // Integer ops that map to select instructions or intrinsics are fine. 8525 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8526 isBoolLogicOp(I)) 8527 return true; 8528 8529 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8530 // FP min/max are associative except for NaN and -0.0. We do not 8531 // have to rule out -0.0 here because the intrinsic semantics do not 8532 // specify a fixed result for it. 8533 return I->getFastMathFlags().noNaNs(); 8534 } 8535 8536 return I->isAssociative(); 8537 } 8538 8539 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8540 // Poison-safe 'or' takes the form: select X, true, Y 8541 // To make that work with the normal operand processing, we skip the 8542 // true value operand. 8543 // TODO: Change the code and data structures to handle this without a hack. 8544 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8545 return I->getOperand(2); 8546 return I->getOperand(Index); 8547 } 8548 8549 /// Checks if the ParentStackElem.first should be marked as a reduction 8550 /// operation with an extra argument or as extra argument itself. 8551 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8552 Value *ExtraArg) { 8553 if (ExtraArgs.count(ParentStackElem.first)) { 8554 ExtraArgs[ParentStackElem.first] = nullptr; 8555 // We ran into something like: 8556 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8557 // The whole ParentStackElem.first should be considered as an extra value 8558 // in this case. 8559 // Do not perform analysis of remaining operands of ParentStackElem.first 8560 // instruction, this whole instruction is an extra argument. 8561 ParentStackElem.second = INVALID_OPERAND_INDEX; 8562 } else { 8563 // We ran into something like: 8564 // ParentStackElem.first += ... + ExtraArg + ... 8565 ExtraArgs[ParentStackElem.first] = ExtraArg; 8566 } 8567 } 8568 8569 /// Creates reduction operation with the current opcode. 8570 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8571 Value *RHS, const Twine &Name, bool UseSelect) { 8572 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8573 switch (Kind) { 8574 case RecurKind::Or: 8575 if (UseSelect && 8576 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8577 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8578 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8579 Name); 8580 case RecurKind::And: 8581 if (UseSelect && 8582 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8583 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8584 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8585 Name); 8586 case RecurKind::Add: 8587 case RecurKind::Mul: 8588 case RecurKind::Xor: 8589 case RecurKind::FAdd: 8590 case RecurKind::FMul: 8591 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8592 Name); 8593 case RecurKind::FMax: 8594 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8595 case RecurKind::FMin: 8596 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8597 case RecurKind::SMax: 8598 if (UseSelect) { 8599 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8600 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8601 } 8602 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8603 case RecurKind::SMin: 8604 if (UseSelect) { 8605 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8606 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8607 } 8608 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8609 case RecurKind::UMax: 8610 if (UseSelect) { 8611 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8612 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8613 } 8614 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8615 case RecurKind::UMin: 8616 if (UseSelect) { 8617 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8618 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8619 } 8620 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8621 default: 8622 llvm_unreachable("Unknown reduction operation."); 8623 } 8624 } 8625 8626 /// Creates reduction operation with the current opcode with the IR flags 8627 /// from \p ReductionOps. 8628 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8629 Value *RHS, const Twine &Name, 8630 const ReductionOpsListType &ReductionOps) { 8631 bool UseSelect = ReductionOps.size() == 2 || 8632 // Logical or/and. 8633 (ReductionOps.size() == 1 && 8634 isa<SelectInst>(ReductionOps.front().front())); 8635 assert((!UseSelect || ReductionOps.size() != 2 || 8636 isa<SelectInst>(ReductionOps[1][0])) && 8637 "Expected cmp + select pairs for reduction"); 8638 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8639 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8640 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8641 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8642 propagateIRFlags(Op, ReductionOps[1]); 8643 return Op; 8644 } 8645 } 8646 propagateIRFlags(Op, ReductionOps[0]); 8647 return Op; 8648 } 8649 8650 /// Creates reduction operation with the current opcode with the IR flags 8651 /// from \p I. 8652 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8653 Value *RHS, const Twine &Name, Instruction *I) { 8654 auto *SelI = dyn_cast<SelectInst>(I); 8655 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8656 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8657 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8658 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8659 } 8660 propagateIRFlags(Op, I); 8661 return Op; 8662 } 8663 8664 static RecurKind getRdxKind(Instruction *I) { 8665 assert(I && "Expected instruction for reduction matching"); 8666 TargetTransformInfo::ReductionFlags RdxFlags; 8667 if (match(I, m_Add(m_Value(), m_Value()))) 8668 return RecurKind::Add; 8669 if (match(I, m_Mul(m_Value(), m_Value()))) 8670 return RecurKind::Mul; 8671 if (match(I, m_And(m_Value(), m_Value())) || 8672 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8673 return RecurKind::And; 8674 if (match(I, m_Or(m_Value(), m_Value())) || 8675 match(I, m_LogicalOr(m_Value(), m_Value()))) 8676 return RecurKind::Or; 8677 if (match(I, m_Xor(m_Value(), m_Value()))) 8678 return RecurKind::Xor; 8679 if (match(I, m_FAdd(m_Value(), m_Value()))) 8680 return RecurKind::FAdd; 8681 if (match(I, m_FMul(m_Value(), m_Value()))) 8682 return RecurKind::FMul; 8683 8684 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8685 return RecurKind::FMax; 8686 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8687 return RecurKind::FMin; 8688 8689 // This matches either cmp+select or intrinsics. SLP is expected to handle 8690 // either form. 8691 // TODO: If we are canonicalizing to intrinsics, we can remove several 8692 // special-case paths that deal with selects. 8693 if (match(I, m_SMax(m_Value(), m_Value()))) 8694 return RecurKind::SMax; 8695 if (match(I, m_SMin(m_Value(), m_Value()))) 8696 return RecurKind::SMin; 8697 if (match(I, m_UMax(m_Value(), m_Value()))) 8698 return RecurKind::UMax; 8699 if (match(I, m_UMin(m_Value(), m_Value()))) 8700 return RecurKind::UMin; 8701 8702 if (auto *Select = dyn_cast<SelectInst>(I)) { 8703 // Try harder: look for min/max pattern based on instructions producing 8704 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8705 // During the intermediate stages of SLP, it's very common to have 8706 // pattern like this (since optimizeGatherSequence is run only once 8707 // at the end): 8708 // %1 = extractelement <2 x i32> %a, i32 0 8709 // %2 = extractelement <2 x i32> %a, i32 1 8710 // %cond = icmp sgt i32 %1, %2 8711 // %3 = extractelement <2 x i32> %a, i32 0 8712 // %4 = extractelement <2 x i32> %a, i32 1 8713 // %select = select i1 %cond, i32 %3, i32 %4 8714 CmpInst::Predicate Pred; 8715 Instruction *L1; 8716 Instruction *L2; 8717 8718 Value *LHS = Select->getTrueValue(); 8719 Value *RHS = Select->getFalseValue(); 8720 Value *Cond = Select->getCondition(); 8721 8722 // TODO: Support inverse predicates. 8723 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8724 if (!isa<ExtractElementInst>(RHS) || 8725 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8726 return RecurKind::None; 8727 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8728 if (!isa<ExtractElementInst>(LHS) || 8729 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8730 return RecurKind::None; 8731 } else { 8732 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8733 return RecurKind::None; 8734 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8735 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8736 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8737 return RecurKind::None; 8738 } 8739 8740 TargetTransformInfo::ReductionFlags RdxFlags; 8741 switch (Pred) { 8742 default: 8743 return RecurKind::None; 8744 case CmpInst::ICMP_SGT: 8745 case CmpInst::ICMP_SGE: 8746 return RecurKind::SMax; 8747 case CmpInst::ICMP_SLT: 8748 case CmpInst::ICMP_SLE: 8749 return RecurKind::SMin; 8750 case CmpInst::ICMP_UGT: 8751 case CmpInst::ICMP_UGE: 8752 return RecurKind::UMax; 8753 case CmpInst::ICMP_ULT: 8754 case CmpInst::ICMP_ULE: 8755 return RecurKind::UMin; 8756 } 8757 } 8758 return RecurKind::None; 8759 } 8760 8761 /// Get the index of the first operand. 8762 static unsigned getFirstOperandIndex(Instruction *I) { 8763 return isCmpSelMinMax(I) ? 1 : 0; 8764 } 8765 8766 /// Total number of operands in the reduction operation. 8767 static unsigned getNumberOfOperands(Instruction *I) { 8768 return isCmpSelMinMax(I) ? 3 : 2; 8769 } 8770 8771 /// Checks if the instruction is in basic block \p BB. 8772 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8773 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8774 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8775 auto *Sel = cast<SelectInst>(I); 8776 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8777 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8778 } 8779 return I->getParent() == BB; 8780 } 8781 8782 /// Expected number of uses for reduction operations/reduced values. 8783 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8784 if (IsCmpSelMinMax) { 8785 // SelectInst must be used twice while the condition op must have single 8786 // use only. 8787 if (auto *Sel = dyn_cast<SelectInst>(I)) 8788 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8789 return I->hasNUses(2); 8790 } 8791 8792 // Arithmetic reduction operation must be used once only. 8793 return I->hasOneUse(); 8794 } 8795 8796 /// Initializes the list of reduction operations. 8797 void initReductionOps(Instruction *I) { 8798 if (isCmpSelMinMax(I)) 8799 ReductionOps.assign(2, ReductionOpsType()); 8800 else 8801 ReductionOps.assign(1, ReductionOpsType()); 8802 } 8803 8804 /// Add all reduction operations for the reduction instruction \p I. 8805 void addReductionOps(Instruction *I) { 8806 if (isCmpSelMinMax(I)) { 8807 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8808 ReductionOps[1].emplace_back(I); 8809 } else { 8810 ReductionOps[0].emplace_back(I); 8811 } 8812 } 8813 8814 static Value *getLHS(RecurKind Kind, Instruction *I) { 8815 if (Kind == RecurKind::None) 8816 return nullptr; 8817 return I->getOperand(getFirstOperandIndex(I)); 8818 } 8819 static Value *getRHS(RecurKind Kind, Instruction *I) { 8820 if (Kind == RecurKind::None) 8821 return nullptr; 8822 return I->getOperand(getFirstOperandIndex(I) + 1); 8823 } 8824 8825 public: 8826 HorizontalReduction() = default; 8827 8828 /// Try to find a reduction tree. 8829 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8830 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8831 "Phi needs to use the binary operator"); 8832 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8833 isa<IntrinsicInst>(Inst)) && 8834 "Expected binop, select, or intrinsic for reduction matching"); 8835 RdxKind = getRdxKind(Inst); 8836 8837 // We could have a initial reductions that is not an add. 8838 // r *= v1 + v2 + v3 + v4 8839 // In such a case start looking for a tree rooted in the first '+'. 8840 if (Phi) { 8841 if (getLHS(RdxKind, Inst) == Phi) { 8842 Phi = nullptr; 8843 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8844 if (!Inst) 8845 return false; 8846 RdxKind = getRdxKind(Inst); 8847 } else if (getRHS(RdxKind, Inst) == Phi) { 8848 Phi = nullptr; 8849 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8850 if (!Inst) 8851 return false; 8852 RdxKind = getRdxKind(Inst); 8853 } 8854 } 8855 8856 if (!isVectorizable(RdxKind, Inst)) 8857 return false; 8858 8859 // Analyze "regular" integer/FP types for reductions - no target-specific 8860 // types or pointers. 8861 Type *Ty = Inst->getType(); 8862 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8863 return false; 8864 8865 // Though the ultimate reduction may have multiple uses, its condition must 8866 // have only single use. 8867 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8868 if (!Sel->getCondition()->hasOneUse()) 8869 return false; 8870 8871 ReductionRoot = Inst; 8872 8873 // The opcode for leaf values that we perform a reduction on. 8874 // For example: load(x) + load(y) + load(z) + fptoui(w) 8875 // The leaf opcode for 'w' does not match, so we don't include it as a 8876 // potential candidate for the reduction. 8877 unsigned LeafOpcode = 0; 8878 8879 // Post-order traverse the reduction tree starting at Inst. We only handle 8880 // true trees containing binary operators or selects. 8881 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8882 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8883 initReductionOps(Inst); 8884 while (!Stack.empty()) { 8885 Instruction *TreeN = Stack.back().first; 8886 unsigned EdgeToVisit = Stack.back().second++; 8887 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8888 bool IsReducedValue = TreeRdxKind != RdxKind; 8889 8890 // Postorder visit. 8891 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8892 if (IsReducedValue) 8893 ReducedVals.push_back(TreeN); 8894 else { 8895 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8896 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8897 // Check if TreeN is an extra argument of its parent operation. 8898 if (Stack.size() <= 1) { 8899 // TreeN can't be an extra argument as it is a root reduction 8900 // operation. 8901 return false; 8902 } 8903 // Yes, TreeN is an extra argument, do not add it to a list of 8904 // reduction operations. 8905 // Stack[Stack.size() - 2] always points to the parent operation. 8906 markExtraArg(Stack[Stack.size() - 2], TreeN); 8907 ExtraArgs.erase(TreeN); 8908 } else 8909 addReductionOps(TreeN); 8910 } 8911 // Retract. 8912 Stack.pop_back(); 8913 continue; 8914 } 8915 8916 // Visit operands. 8917 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8918 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8919 if (!EdgeInst) { 8920 // Edge value is not a reduction instruction or a leaf instruction. 8921 // (It may be a constant, function argument, or something else.) 8922 markExtraArg(Stack.back(), EdgeVal); 8923 continue; 8924 } 8925 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8926 // Continue analysis if the next operand is a reduction operation or 8927 // (possibly) a leaf value. If the leaf value opcode is not set, 8928 // the first met operation != reduction operation is considered as the 8929 // leaf opcode. 8930 // Only handle trees in the current basic block. 8931 // Each tree node needs to have minimal number of users except for the 8932 // ultimate reduction. 8933 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8934 if (EdgeInst != Phi && EdgeInst != Inst && 8935 hasSameParent(EdgeInst, Inst->getParent()) && 8936 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8937 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8938 if (IsRdxInst) { 8939 // We need to be able to reassociate the reduction operations. 8940 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8941 // I is an extra argument for TreeN (its parent operation). 8942 markExtraArg(Stack.back(), EdgeInst); 8943 continue; 8944 } 8945 } else if (!LeafOpcode) { 8946 LeafOpcode = EdgeInst->getOpcode(); 8947 } 8948 Stack.push_back( 8949 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8950 continue; 8951 } 8952 // I is an extra argument for TreeN (its parent operation). 8953 markExtraArg(Stack.back(), EdgeInst); 8954 } 8955 return true; 8956 } 8957 8958 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8959 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8960 // If there are a sufficient number of reduction values, reduce 8961 // to a nearby power-of-2. We can safely generate oversized 8962 // vectors and rely on the backend to split them to legal sizes. 8963 unsigned NumReducedVals = ReducedVals.size(); 8964 if (NumReducedVals < 4) 8965 return nullptr; 8966 8967 // Intersect the fast-math-flags from all reduction operations. 8968 FastMathFlags RdxFMF; 8969 RdxFMF.set(); 8970 for (ReductionOpsType &RdxOp : ReductionOps) { 8971 for (Value *RdxVal : RdxOp) { 8972 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8973 RdxFMF &= FPMO->getFastMathFlags(); 8974 } 8975 } 8976 8977 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8978 Builder.setFastMathFlags(RdxFMF); 8979 8980 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8981 // The same extra argument may be used several times, so log each attempt 8982 // to use it. 8983 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8984 assert(Pair.first && "DebugLoc must be set."); 8985 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8986 } 8987 8988 // The compare instruction of a min/max is the insertion point for new 8989 // instructions and may be replaced with a new compare instruction. 8990 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8991 assert(isa<SelectInst>(RdxRootInst) && 8992 "Expected min/max reduction to have select root instruction"); 8993 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8994 assert(isa<Instruction>(ScalarCond) && 8995 "Expected min/max reduction to have compare condition"); 8996 return cast<Instruction>(ScalarCond); 8997 }; 8998 8999 // The reduction root is used as the insertion point for new instructions, 9000 // so set it as externally used to prevent it from being deleted. 9001 ExternallyUsedValues[ReductionRoot]; 9002 SmallVector<Value *, 16> IgnoreList; 9003 for (ReductionOpsType &RdxOp : ReductionOps) 9004 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9005 9006 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9007 if (NumReducedVals > ReduxWidth) { 9008 // In the loop below, we are building a tree based on a window of 9009 // 'ReduxWidth' values. 9010 // If the operands of those values have common traits (compare predicate, 9011 // constant operand, etc), then we want to group those together to 9012 // minimize the cost of the reduction. 9013 9014 // TODO: This should be extended to count common operands for 9015 // compares and binops. 9016 9017 // Step 1: Count the number of times each compare predicate occurs. 9018 SmallDenseMap<unsigned, unsigned> PredCountMap; 9019 for (Value *RdxVal : ReducedVals) { 9020 CmpInst::Predicate Pred; 9021 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9022 ++PredCountMap[Pred]; 9023 } 9024 // Step 2: Sort the values so the most common predicates come first. 9025 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9026 CmpInst::Predicate PredA, PredB; 9027 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9028 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9029 return PredCountMap[PredA] > PredCountMap[PredB]; 9030 } 9031 return false; 9032 }); 9033 } 9034 9035 Value *VectorizedTree = nullptr; 9036 unsigned i = 0; 9037 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9038 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9039 V.buildTree(VL, IgnoreList); 9040 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9041 break; 9042 if (V.isLoadCombineReductionCandidate(RdxKind)) 9043 break; 9044 V.reorderTopToBottom(); 9045 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9046 V.buildExternalUses(ExternallyUsedValues); 9047 9048 // For a poison-safe boolean logic reduction, do not replace select 9049 // instructions with logic ops. All reduced values will be frozen (see 9050 // below) to prevent leaking poison. 9051 if (isa<SelectInst>(ReductionRoot) && 9052 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9053 NumReducedVals != ReduxWidth) 9054 break; 9055 9056 V.computeMinimumValueSizes(); 9057 9058 // Estimate cost. 9059 InstructionCost TreeCost = 9060 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9061 InstructionCost ReductionCost = 9062 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9063 InstructionCost Cost = TreeCost + ReductionCost; 9064 if (!Cost.isValid()) { 9065 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9066 return nullptr; 9067 } 9068 if (Cost >= -SLPCostThreshold) { 9069 V.getORE()->emit([&]() { 9070 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9071 cast<Instruction>(VL[0])) 9072 << "Vectorizing horizontal reduction is possible" 9073 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9074 << " and threshold " 9075 << ore::NV("Threshold", -SLPCostThreshold); 9076 }); 9077 break; 9078 } 9079 9080 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9081 << Cost << ". (HorRdx)\n"); 9082 V.getORE()->emit([&]() { 9083 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9084 cast<Instruction>(VL[0])) 9085 << "Vectorized horizontal reduction with cost " 9086 << ore::NV("Cost", Cost) << " and with tree size " 9087 << ore::NV("TreeSize", V.getTreeSize()); 9088 }); 9089 9090 // Vectorize a tree. 9091 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9092 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9093 9094 // Emit a reduction. If the root is a select (min/max idiom), the insert 9095 // point is the compare condition of that select. 9096 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9097 if (isCmpSelMinMax(RdxRootInst)) 9098 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9099 else 9100 Builder.SetInsertPoint(RdxRootInst); 9101 9102 // To prevent poison from leaking across what used to be sequential, safe, 9103 // scalar boolean logic operations, the reduction operand must be frozen. 9104 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9105 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9106 9107 Value *ReducedSubTree = 9108 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9109 9110 if (!VectorizedTree) { 9111 // Initialize the final value in the reduction. 9112 VectorizedTree = ReducedSubTree; 9113 } else { 9114 // Update the final value in the reduction. 9115 Builder.SetCurrentDebugLocation(Loc); 9116 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9117 ReducedSubTree, "op.rdx", ReductionOps); 9118 } 9119 i += ReduxWidth; 9120 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9121 } 9122 9123 if (VectorizedTree) { 9124 // Finish the reduction. 9125 for (; i < NumReducedVals; ++i) { 9126 auto *I = cast<Instruction>(ReducedVals[i]); 9127 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9128 VectorizedTree = 9129 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9130 } 9131 for (auto &Pair : ExternallyUsedValues) { 9132 // Add each externally used value to the final reduction. 9133 for (auto *I : Pair.second) { 9134 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9135 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9136 Pair.first, "op.extra", I); 9137 } 9138 } 9139 9140 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9141 9142 // Mark all scalar reduction ops for deletion, they are replaced by the 9143 // vector reductions. 9144 V.eraseInstructions(IgnoreList); 9145 } 9146 return VectorizedTree; 9147 } 9148 9149 unsigned numReductionValues() const { return ReducedVals.size(); } 9150 9151 private: 9152 /// Calculate the cost of a reduction. 9153 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9154 Value *FirstReducedVal, unsigned ReduxWidth, 9155 FastMathFlags FMF) { 9156 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9157 Type *ScalarTy = FirstReducedVal->getType(); 9158 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9159 InstructionCost VectorCost, ScalarCost; 9160 switch (RdxKind) { 9161 case RecurKind::Add: 9162 case RecurKind::Mul: 9163 case RecurKind::Or: 9164 case RecurKind::And: 9165 case RecurKind::Xor: 9166 case RecurKind::FAdd: 9167 case RecurKind::FMul: { 9168 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9169 VectorCost = 9170 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9171 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9172 break; 9173 } 9174 case RecurKind::FMax: 9175 case RecurKind::FMin: { 9176 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9177 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9178 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9179 /*unsigned=*/false, CostKind); 9180 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9181 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9182 SclCondTy, RdxPred, CostKind) + 9183 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9184 SclCondTy, RdxPred, CostKind); 9185 break; 9186 } 9187 case RecurKind::SMax: 9188 case RecurKind::SMin: 9189 case RecurKind::UMax: 9190 case RecurKind::UMin: { 9191 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9192 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9193 bool IsUnsigned = 9194 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9195 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9196 CostKind); 9197 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9198 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9199 SclCondTy, RdxPred, CostKind) + 9200 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9201 SclCondTy, RdxPred, CostKind); 9202 break; 9203 } 9204 default: 9205 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9206 } 9207 9208 // Scalar cost is repeated for N-1 elements. 9209 ScalarCost *= (ReduxWidth - 1); 9210 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9211 << " for reduction that starts with " << *FirstReducedVal 9212 << " (It is a splitting reduction)\n"); 9213 return VectorCost - ScalarCost; 9214 } 9215 9216 /// Emit a horizontal reduction of the vectorized value. 9217 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9218 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9219 assert(VectorizedValue && "Need to have a vectorized tree node"); 9220 assert(isPowerOf2_32(ReduxWidth) && 9221 "We only handle power-of-two reductions for now"); 9222 assert(RdxKind != RecurKind::FMulAdd && 9223 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9224 9225 ++NumVectorInstructions; 9226 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9227 } 9228 }; 9229 9230 } // end anonymous namespace 9231 9232 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9233 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9234 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9235 9236 unsigned AggregateSize = 1; 9237 auto *IV = cast<InsertValueInst>(InsertInst); 9238 Type *CurrentType = IV->getType(); 9239 do { 9240 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9241 for (auto *Elt : ST->elements()) 9242 if (Elt != ST->getElementType(0)) // check homogeneity 9243 return None; 9244 AggregateSize *= ST->getNumElements(); 9245 CurrentType = ST->getElementType(0); 9246 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9247 AggregateSize *= AT->getNumElements(); 9248 CurrentType = AT->getElementType(); 9249 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9250 AggregateSize *= VT->getNumElements(); 9251 return AggregateSize; 9252 } else if (CurrentType->isSingleValueType()) { 9253 return AggregateSize; 9254 } else { 9255 return None; 9256 } 9257 } while (true); 9258 } 9259 9260 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9261 TargetTransformInfo *TTI, 9262 SmallVectorImpl<Value *> &BuildVectorOpds, 9263 SmallVectorImpl<Value *> &InsertElts, 9264 unsigned OperandOffset) { 9265 do { 9266 Value *InsertedOperand = LastInsertInst->getOperand(1); 9267 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9268 if (!OperandIndex) 9269 return false; 9270 if (isa<InsertElementInst>(InsertedOperand) || 9271 isa<InsertValueInst>(InsertedOperand)) { 9272 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9273 BuildVectorOpds, InsertElts, *OperandIndex)) 9274 return false; 9275 } else { 9276 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9277 InsertElts[*OperandIndex] = LastInsertInst; 9278 } 9279 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9280 } while (LastInsertInst != nullptr && 9281 (isa<InsertValueInst>(LastInsertInst) || 9282 isa<InsertElementInst>(LastInsertInst)) && 9283 LastInsertInst->hasOneUse()); 9284 return true; 9285 } 9286 9287 /// Recognize construction of vectors like 9288 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9289 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9290 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9291 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9292 /// starting from the last insertelement or insertvalue instruction. 9293 /// 9294 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9295 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9296 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9297 /// 9298 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9299 /// 9300 /// \return true if it matches. 9301 static bool findBuildAggregate(Instruction *LastInsertInst, 9302 TargetTransformInfo *TTI, 9303 SmallVectorImpl<Value *> &BuildVectorOpds, 9304 SmallVectorImpl<Value *> &InsertElts) { 9305 9306 assert((isa<InsertElementInst>(LastInsertInst) || 9307 isa<InsertValueInst>(LastInsertInst)) && 9308 "Expected insertelement or insertvalue instruction!"); 9309 9310 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9311 "Expected empty result vectors!"); 9312 9313 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9314 if (!AggregateSize) 9315 return false; 9316 BuildVectorOpds.resize(*AggregateSize); 9317 InsertElts.resize(*AggregateSize); 9318 9319 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9320 0)) { 9321 llvm::erase_value(BuildVectorOpds, nullptr); 9322 llvm::erase_value(InsertElts, nullptr); 9323 if (BuildVectorOpds.size() >= 2) 9324 return true; 9325 } 9326 9327 return false; 9328 } 9329 9330 /// Try and get a reduction value from a phi node. 9331 /// 9332 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9333 /// if they come from either \p ParentBB or a containing loop latch. 9334 /// 9335 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9336 /// if not possible. 9337 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9338 BasicBlock *ParentBB, LoopInfo *LI) { 9339 // There are situations where the reduction value is not dominated by the 9340 // reduction phi. Vectorizing such cases has been reported to cause 9341 // miscompiles. See PR25787. 9342 auto DominatedReduxValue = [&](Value *R) { 9343 return isa<Instruction>(R) && 9344 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9345 }; 9346 9347 Value *Rdx = nullptr; 9348 9349 // Return the incoming value if it comes from the same BB as the phi node. 9350 if (P->getIncomingBlock(0) == ParentBB) { 9351 Rdx = P->getIncomingValue(0); 9352 } else if (P->getIncomingBlock(1) == ParentBB) { 9353 Rdx = P->getIncomingValue(1); 9354 } 9355 9356 if (Rdx && DominatedReduxValue(Rdx)) 9357 return Rdx; 9358 9359 // Otherwise, check whether we have a loop latch to look at. 9360 Loop *BBL = LI->getLoopFor(ParentBB); 9361 if (!BBL) 9362 return nullptr; 9363 BasicBlock *BBLatch = BBL->getLoopLatch(); 9364 if (!BBLatch) 9365 return nullptr; 9366 9367 // There is a loop latch, return the incoming value if it comes from 9368 // that. This reduction pattern occasionally turns up. 9369 if (P->getIncomingBlock(0) == BBLatch) { 9370 Rdx = P->getIncomingValue(0); 9371 } else if (P->getIncomingBlock(1) == BBLatch) { 9372 Rdx = P->getIncomingValue(1); 9373 } 9374 9375 if (Rdx && DominatedReduxValue(Rdx)) 9376 return Rdx; 9377 9378 return nullptr; 9379 } 9380 9381 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9382 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9383 return true; 9384 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9385 return true; 9386 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9387 return true; 9388 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9389 return true; 9390 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9391 return true; 9392 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9393 return true; 9394 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9395 return true; 9396 return false; 9397 } 9398 9399 /// Attempt to reduce a horizontal reduction. 9400 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9401 /// with reduction operators \a Root (or one of its operands) in a basic block 9402 /// \a BB, then check if it can be done. If horizontal reduction is not found 9403 /// and root instruction is a binary operation, vectorization of the operands is 9404 /// attempted. 9405 /// \returns true if a horizontal reduction was matched and reduced or operands 9406 /// of one of the binary instruction were vectorized. 9407 /// \returns false if a horizontal reduction was not matched (or not possible) 9408 /// or no vectorization of any binary operation feeding \a Root instruction was 9409 /// performed. 9410 static bool tryToVectorizeHorReductionOrInstOperands( 9411 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9412 TargetTransformInfo *TTI, 9413 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9414 if (!ShouldVectorizeHor) 9415 return false; 9416 9417 if (!Root) 9418 return false; 9419 9420 if (Root->getParent() != BB || isa<PHINode>(Root)) 9421 return false; 9422 // Start analysis starting from Root instruction. If horizontal reduction is 9423 // found, try to vectorize it. If it is not a horizontal reduction or 9424 // vectorization is not possible or not effective, and currently analyzed 9425 // instruction is a binary operation, try to vectorize the operands, using 9426 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9427 // the same procedure considering each operand as a possible root of the 9428 // horizontal reduction. 9429 // Interrupt the process if the Root instruction itself was vectorized or all 9430 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9431 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9432 // CmpInsts so we can skip extra attempts in 9433 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9434 std::queue<std::pair<Instruction *, unsigned>> Stack; 9435 Stack.emplace(Root, 0); 9436 SmallPtrSet<Value *, 8> VisitedInstrs; 9437 SmallVector<WeakTrackingVH> PostponedInsts; 9438 bool Res = false; 9439 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9440 Value *&B1) -> Value * { 9441 bool IsBinop = matchRdxBop(Inst, B0, B1); 9442 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9443 if (IsBinop || IsSelect) { 9444 HorizontalReduction HorRdx; 9445 if (HorRdx.matchAssociativeReduction(P, Inst)) 9446 return HorRdx.tryToReduce(R, TTI); 9447 } 9448 return nullptr; 9449 }; 9450 while (!Stack.empty()) { 9451 Instruction *Inst; 9452 unsigned Level; 9453 std::tie(Inst, Level) = Stack.front(); 9454 Stack.pop(); 9455 // Do not try to analyze instruction that has already been vectorized. 9456 // This may happen when we vectorize instruction operands on a previous 9457 // iteration while stack was populated before that happened. 9458 if (R.isDeleted(Inst)) 9459 continue; 9460 Value *B0 = nullptr, *B1 = nullptr; 9461 if (Value *V = TryToReduce(Inst, B0, B1)) { 9462 Res = true; 9463 // Set P to nullptr to avoid re-analysis of phi node in 9464 // matchAssociativeReduction function unless this is the root node. 9465 P = nullptr; 9466 if (auto *I = dyn_cast<Instruction>(V)) { 9467 // Try to find another reduction. 9468 Stack.emplace(I, Level); 9469 continue; 9470 } 9471 } else { 9472 bool IsBinop = B0 && B1; 9473 if (P && IsBinop) { 9474 Inst = dyn_cast<Instruction>(B0); 9475 if (Inst == P) 9476 Inst = dyn_cast<Instruction>(B1); 9477 if (!Inst) { 9478 // Set P to nullptr to avoid re-analysis of phi node in 9479 // matchAssociativeReduction function unless this is the root node. 9480 P = nullptr; 9481 continue; 9482 } 9483 } 9484 // Set P to nullptr to avoid re-analysis of phi node in 9485 // matchAssociativeReduction function unless this is the root node. 9486 P = nullptr; 9487 // Do not try to vectorize CmpInst operands, this is done separately. 9488 // Final attempt for binop args vectorization should happen after the loop 9489 // to try to find reductions. 9490 if (!isa<CmpInst>(Inst)) 9491 PostponedInsts.push_back(Inst); 9492 } 9493 9494 // Try to vectorize operands. 9495 // Continue analysis for the instruction from the same basic block only to 9496 // save compile time. 9497 if (++Level < RecursionMaxDepth) 9498 for (auto *Op : Inst->operand_values()) 9499 if (VisitedInstrs.insert(Op).second) 9500 if (auto *I = dyn_cast<Instruction>(Op)) 9501 // Do not try to vectorize CmpInst operands, this is done 9502 // separately. 9503 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9504 I->getParent() == BB) 9505 Stack.emplace(I, Level); 9506 } 9507 // Try to vectorized binops where reductions were not found. 9508 for (Value *V : PostponedInsts) 9509 if (auto *Inst = dyn_cast<Instruction>(V)) 9510 if (!R.isDeleted(Inst)) 9511 Res |= Vectorize(Inst, R); 9512 return Res; 9513 } 9514 9515 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9516 BasicBlock *BB, BoUpSLP &R, 9517 TargetTransformInfo *TTI) { 9518 auto *I = dyn_cast_or_null<Instruction>(V); 9519 if (!I) 9520 return false; 9521 9522 if (!isa<BinaryOperator>(I)) 9523 P = nullptr; 9524 // Try to match and vectorize a horizontal reduction. 9525 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9526 return tryToVectorize(I, R); 9527 }; 9528 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9529 ExtraVectorization); 9530 } 9531 9532 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9533 BasicBlock *BB, BoUpSLP &R) { 9534 const DataLayout &DL = BB->getModule()->getDataLayout(); 9535 if (!R.canMapToVector(IVI->getType(), DL)) 9536 return false; 9537 9538 SmallVector<Value *, 16> BuildVectorOpds; 9539 SmallVector<Value *, 16> BuildVectorInsts; 9540 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9541 return false; 9542 9543 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9544 // Aggregate value is unlikely to be processed in vector register, we need to 9545 // extract scalars into scalar registers, so NeedExtraction is set true. 9546 return tryToVectorizeList(BuildVectorOpds, R); 9547 } 9548 9549 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9550 BasicBlock *BB, BoUpSLP &R) { 9551 SmallVector<Value *, 16> BuildVectorInsts; 9552 SmallVector<Value *, 16> BuildVectorOpds; 9553 SmallVector<int> Mask; 9554 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9555 (llvm::all_of( 9556 BuildVectorOpds, 9557 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9558 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9559 return false; 9560 9561 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9562 return tryToVectorizeList(BuildVectorInsts, R); 9563 } 9564 9565 template <typename T> 9566 static bool 9567 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9568 function_ref<unsigned(T *)> Limit, 9569 function_ref<bool(T *, T *)> Comparator, 9570 function_ref<bool(T *, T *)> AreCompatible, 9571 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9572 bool LimitForRegisterSize) { 9573 bool Changed = false; 9574 // Sort by type, parent, operands. 9575 stable_sort(Incoming, Comparator); 9576 9577 // Try to vectorize elements base on their type. 9578 SmallVector<T *> Candidates; 9579 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9580 // Look for the next elements with the same type, parent and operand 9581 // kinds. 9582 auto *SameTypeIt = IncIt; 9583 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9584 ++SameTypeIt; 9585 9586 // Try to vectorize them. 9587 unsigned NumElts = (SameTypeIt - IncIt); 9588 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9589 << NumElts << ")\n"); 9590 // The vectorization is a 3-state attempt: 9591 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9592 // size of maximal register at first. 9593 // 2. Try to vectorize remaining instructions with the same type, if 9594 // possible. This may result in the better vectorization results rather than 9595 // if we try just to vectorize instructions with the same/alternate opcodes. 9596 // 3. Final attempt to try to vectorize all instructions with the 9597 // same/alternate ops only, this may result in some extra final 9598 // vectorization. 9599 if (NumElts > 1 && 9600 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9601 // Success start over because instructions might have been changed. 9602 Changed = true; 9603 } else if (NumElts < Limit(*IncIt) && 9604 (Candidates.empty() || 9605 Candidates.front()->getType() == (*IncIt)->getType())) { 9606 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9607 } 9608 // Final attempt to vectorize instructions with the same types. 9609 if (Candidates.size() > 1 && 9610 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9611 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9612 // Success start over because instructions might have been changed. 9613 Changed = true; 9614 } else if (LimitForRegisterSize) { 9615 // Try to vectorize using small vectors. 9616 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9617 It != End;) { 9618 auto *SameTypeIt = It; 9619 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9620 ++SameTypeIt; 9621 unsigned NumElts = (SameTypeIt - It); 9622 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9623 /*LimitForRegisterSize=*/false)) 9624 Changed = true; 9625 It = SameTypeIt; 9626 } 9627 } 9628 Candidates.clear(); 9629 } 9630 9631 // Start over at the next instruction of a different type (or the end). 9632 IncIt = SameTypeIt; 9633 } 9634 return Changed; 9635 } 9636 9637 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9638 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9639 /// operands. If IsCompatibility is false, function implements strict weak 9640 /// ordering relation between two cmp instructions, returning true if the first 9641 /// instruction is "less" than the second, i.e. its predicate is less than the 9642 /// predicate of the second or the operands IDs are less than the operands IDs 9643 /// of the second cmp instruction. 9644 template <bool IsCompatibility> 9645 static bool compareCmp(Value *V, Value *V2, 9646 function_ref<bool(Instruction *)> IsDeleted) { 9647 auto *CI1 = cast<CmpInst>(V); 9648 auto *CI2 = cast<CmpInst>(V2); 9649 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9650 return false; 9651 if (CI1->getOperand(0)->getType()->getTypeID() < 9652 CI2->getOperand(0)->getType()->getTypeID()) 9653 return !IsCompatibility; 9654 if (CI1->getOperand(0)->getType()->getTypeID() > 9655 CI2->getOperand(0)->getType()->getTypeID()) 9656 return false; 9657 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9658 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9659 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9660 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9661 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9662 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9663 if (BasePred1 < BasePred2) 9664 return !IsCompatibility; 9665 if (BasePred1 > BasePred2) 9666 return false; 9667 // Compare operands. 9668 bool LEPreds = Pred1 <= Pred2; 9669 bool GEPreds = Pred1 >= Pred2; 9670 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9671 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9672 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9673 if (Op1->getValueID() < Op2->getValueID()) 9674 return !IsCompatibility; 9675 if (Op1->getValueID() > Op2->getValueID()) 9676 return false; 9677 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9678 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9679 if (I1->getParent() != I2->getParent()) 9680 return false; 9681 InstructionsState S = getSameOpcode({I1, I2}); 9682 if (S.getOpcode()) 9683 continue; 9684 return false; 9685 } 9686 } 9687 return IsCompatibility; 9688 } 9689 9690 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9691 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9692 bool AtTerminator) { 9693 bool OpsChanged = false; 9694 SmallVector<Instruction *, 4> PostponedCmps; 9695 for (auto *I : reverse(Instructions)) { 9696 if (R.isDeleted(I)) 9697 continue; 9698 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9699 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9700 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9701 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9702 else if (isa<CmpInst>(I)) 9703 PostponedCmps.push_back(I); 9704 } 9705 if (AtTerminator) { 9706 // Try to find reductions first. 9707 for (Instruction *I : PostponedCmps) { 9708 if (R.isDeleted(I)) 9709 continue; 9710 for (Value *Op : I->operands()) 9711 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9712 } 9713 // Try to vectorize operands as vector bundles. 9714 for (Instruction *I : PostponedCmps) { 9715 if (R.isDeleted(I)) 9716 continue; 9717 OpsChanged |= tryToVectorize(I, R); 9718 } 9719 // Try to vectorize list of compares. 9720 // Sort by type, compare predicate, etc. 9721 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9722 return compareCmp<false>(V, V2, 9723 [&R](Instruction *I) { return R.isDeleted(I); }); 9724 }; 9725 9726 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9727 if (V1 == V2) 9728 return true; 9729 return compareCmp<true>(V1, V2, 9730 [&R](Instruction *I) { return R.isDeleted(I); }); 9731 }; 9732 auto Limit = [&R](Value *V) { 9733 unsigned EltSize = R.getVectorElementSize(V); 9734 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9735 }; 9736 9737 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9738 OpsChanged |= tryToVectorizeSequence<Value>( 9739 Vals, Limit, CompareSorter, AreCompatibleCompares, 9740 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9741 // Exclude possible reductions from other blocks. 9742 bool ArePossiblyReducedInOtherBlock = 9743 any_of(Candidates, [](Value *V) { 9744 return any_of(V->users(), [V](User *U) { 9745 return isa<SelectInst>(U) && 9746 cast<SelectInst>(U)->getParent() != 9747 cast<Instruction>(V)->getParent(); 9748 }); 9749 }); 9750 if (ArePossiblyReducedInOtherBlock) 9751 return false; 9752 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9753 }, 9754 /*LimitForRegisterSize=*/true); 9755 Instructions.clear(); 9756 } else { 9757 // Insert in reverse order since the PostponedCmps vector was filled in 9758 // reverse order. 9759 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9760 } 9761 return OpsChanged; 9762 } 9763 9764 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9765 bool Changed = false; 9766 SmallVector<Value *, 4> Incoming; 9767 SmallPtrSet<Value *, 16> VisitedInstrs; 9768 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9769 // node. Allows better to identify the chains that can be vectorized in the 9770 // better way. 9771 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9772 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9773 assert(isValidElementType(V1->getType()) && 9774 isValidElementType(V2->getType()) && 9775 "Expected vectorizable types only."); 9776 // It is fine to compare type IDs here, since we expect only vectorizable 9777 // types, like ints, floats and pointers, we don't care about other type. 9778 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9779 return true; 9780 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9781 return false; 9782 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9783 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9784 if (Opcodes1.size() < Opcodes2.size()) 9785 return true; 9786 if (Opcodes1.size() > Opcodes2.size()) 9787 return false; 9788 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9789 // Undefs are compatible with any other value. 9790 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9791 continue; 9792 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9793 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9794 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9795 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9796 if (!NodeI1) 9797 return NodeI2 != nullptr; 9798 if (!NodeI2) 9799 return false; 9800 assert((NodeI1 == NodeI2) == 9801 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9802 "Different nodes should have different DFS numbers"); 9803 if (NodeI1 != NodeI2) 9804 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9805 InstructionsState S = getSameOpcode({I1, I2}); 9806 if (S.getOpcode()) 9807 continue; 9808 return I1->getOpcode() < I2->getOpcode(); 9809 } 9810 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9811 continue; 9812 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9813 return true; 9814 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9815 return false; 9816 } 9817 return false; 9818 }; 9819 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9820 if (V1 == V2) 9821 return true; 9822 if (V1->getType() != V2->getType()) 9823 return false; 9824 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9825 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9826 if (Opcodes1.size() != Opcodes2.size()) 9827 return false; 9828 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9829 // Undefs are compatible with any other value. 9830 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9831 continue; 9832 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9833 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9834 if (I1->getParent() != I2->getParent()) 9835 return false; 9836 InstructionsState S = getSameOpcode({I1, I2}); 9837 if (S.getOpcode()) 9838 continue; 9839 return false; 9840 } 9841 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9842 continue; 9843 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9844 return false; 9845 } 9846 return true; 9847 }; 9848 auto Limit = [&R](Value *V) { 9849 unsigned EltSize = R.getVectorElementSize(V); 9850 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9851 }; 9852 9853 bool HaveVectorizedPhiNodes = false; 9854 do { 9855 // Collect the incoming values from the PHIs. 9856 Incoming.clear(); 9857 for (Instruction &I : *BB) { 9858 PHINode *P = dyn_cast<PHINode>(&I); 9859 if (!P) 9860 break; 9861 9862 // No need to analyze deleted, vectorized and non-vectorizable 9863 // instructions. 9864 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9865 isValidElementType(P->getType())) 9866 Incoming.push_back(P); 9867 } 9868 9869 // Find the corresponding non-phi nodes for better matching when trying to 9870 // build the tree. 9871 for (Value *V : Incoming) { 9872 SmallVectorImpl<Value *> &Opcodes = 9873 PHIToOpcodes.try_emplace(V).first->getSecond(); 9874 if (!Opcodes.empty()) 9875 continue; 9876 SmallVector<Value *, 4> Nodes(1, V); 9877 SmallPtrSet<Value *, 4> Visited; 9878 while (!Nodes.empty()) { 9879 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9880 if (!Visited.insert(PHI).second) 9881 continue; 9882 for (Value *V : PHI->incoming_values()) { 9883 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9884 Nodes.push_back(PHI1); 9885 continue; 9886 } 9887 Opcodes.emplace_back(V); 9888 } 9889 } 9890 } 9891 9892 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9893 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9894 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9895 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9896 }, 9897 /*LimitForRegisterSize=*/true); 9898 Changed |= HaveVectorizedPhiNodes; 9899 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9900 } while (HaveVectorizedPhiNodes); 9901 9902 VisitedInstrs.clear(); 9903 9904 SmallVector<Instruction *, 8> PostProcessInstructions; 9905 SmallDenseSet<Instruction *, 4> KeyNodes; 9906 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9907 // Skip instructions with scalable type. The num of elements is unknown at 9908 // compile-time for scalable type. 9909 if (isa<ScalableVectorType>(it->getType())) 9910 continue; 9911 9912 // Skip instructions marked for the deletion. 9913 if (R.isDeleted(&*it)) 9914 continue; 9915 // We may go through BB multiple times so skip the one we have checked. 9916 if (!VisitedInstrs.insert(&*it).second) { 9917 if (it->use_empty() && KeyNodes.contains(&*it) && 9918 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9919 it->isTerminator())) { 9920 // We would like to start over since some instructions are deleted 9921 // and the iterator may become invalid value. 9922 Changed = true; 9923 it = BB->begin(); 9924 e = BB->end(); 9925 } 9926 continue; 9927 } 9928 9929 if (isa<DbgInfoIntrinsic>(it)) 9930 continue; 9931 9932 // Try to vectorize reductions that use PHINodes. 9933 if (PHINode *P = dyn_cast<PHINode>(it)) { 9934 // Check that the PHI is a reduction PHI. 9935 if (P->getNumIncomingValues() == 2) { 9936 // Try to match and vectorize a horizontal reduction. 9937 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9938 TTI)) { 9939 Changed = true; 9940 it = BB->begin(); 9941 e = BB->end(); 9942 continue; 9943 } 9944 } 9945 // Try to vectorize the incoming values of the PHI, to catch reductions 9946 // that feed into PHIs. 9947 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9948 // Skip if the incoming block is the current BB for now. Also, bypass 9949 // unreachable IR for efficiency and to avoid crashing. 9950 // TODO: Collect the skipped incoming values and try to vectorize them 9951 // after processing BB. 9952 if (BB == P->getIncomingBlock(I) || 9953 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9954 continue; 9955 9956 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9957 P->getIncomingBlock(I), R, TTI); 9958 } 9959 continue; 9960 } 9961 9962 // Ran into an instruction without users, like terminator, or function call 9963 // with ignored return value, store. Ignore unused instructions (basing on 9964 // instruction type, except for CallInst and InvokeInst). 9965 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9966 isa<InvokeInst>(it))) { 9967 KeyNodes.insert(&*it); 9968 bool OpsChanged = false; 9969 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9970 for (auto *V : it->operand_values()) { 9971 // Try to match and vectorize a horizontal reduction. 9972 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9973 } 9974 } 9975 // Start vectorization of post-process list of instructions from the 9976 // top-tree instructions to try to vectorize as many instructions as 9977 // possible. 9978 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9979 it->isTerminator()); 9980 if (OpsChanged) { 9981 // We would like to start over since some instructions are deleted 9982 // and the iterator may become invalid value. 9983 Changed = true; 9984 it = BB->begin(); 9985 e = BB->end(); 9986 continue; 9987 } 9988 } 9989 9990 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9991 isa<InsertValueInst>(it)) 9992 PostProcessInstructions.push_back(&*it); 9993 } 9994 9995 return Changed; 9996 } 9997 9998 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9999 auto Changed = false; 10000 for (auto &Entry : GEPs) { 10001 // If the getelementptr list has fewer than two elements, there's nothing 10002 // to do. 10003 if (Entry.second.size() < 2) 10004 continue; 10005 10006 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10007 << Entry.second.size() << ".\n"); 10008 10009 // Process the GEP list in chunks suitable for the target's supported 10010 // vector size. If a vector register can't hold 1 element, we are done. We 10011 // are trying to vectorize the index computations, so the maximum number of 10012 // elements is based on the size of the index expression, rather than the 10013 // size of the GEP itself (the target's pointer size). 10014 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10015 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10016 if (MaxVecRegSize < EltSize) 10017 continue; 10018 10019 unsigned MaxElts = MaxVecRegSize / EltSize; 10020 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10021 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10022 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10023 10024 // Initialize a set a candidate getelementptrs. Note that we use a 10025 // SetVector here to preserve program order. If the index computations 10026 // are vectorizable and begin with loads, we want to minimize the chance 10027 // of having to reorder them later. 10028 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10029 10030 // Some of the candidates may have already been vectorized after we 10031 // initially collected them. If so, they are marked as deleted, so remove 10032 // them from the set of candidates. 10033 Candidates.remove_if( 10034 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10035 10036 // Remove from the set of candidates all pairs of getelementptrs with 10037 // constant differences. Such getelementptrs are likely not good 10038 // candidates for vectorization in a bottom-up phase since one can be 10039 // computed from the other. We also ensure all candidate getelementptr 10040 // indices are unique. 10041 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10042 auto *GEPI = GEPList[I]; 10043 if (!Candidates.count(GEPI)) 10044 continue; 10045 auto *SCEVI = SE->getSCEV(GEPList[I]); 10046 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10047 auto *GEPJ = GEPList[J]; 10048 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10049 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10050 Candidates.remove(GEPI); 10051 Candidates.remove(GEPJ); 10052 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10053 Candidates.remove(GEPJ); 10054 } 10055 } 10056 } 10057 10058 // We break out of the above computation as soon as we know there are 10059 // fewer than two candidates remaining. 10060 if (Candidates.size() < 2) 10061 continue; 10062 10063 // Add the single, non-constant index of each candidate to the bundle. We 10064 // ensured the indices met these constraints when we originally collected 10065 // the getelementptrs. 10066 SmallVector<Value *, 16> Bundle(Candidates.size()); 10067 auto BundleIndex = 0u; 10068 for (auto *V : Candidates) { 10069 auto *GEP = cast<GetElementPtrInst>(V); 10070 auto *GEPIdx = GEP->idx_begin()->get(); 10071 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10072 Bundle[BundleIndex++] = GEPIdx; 10073 } 10074 10075 // Try and vectorize the indices. We are currently only interested in 10076 // gather-like cases of the form: 10077 // 10078 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10079 // 10080 // where the loads of "a", the loads of "b", and the subtractions can be 10081 // performed in parallel. It's likely that detecting this pattern in a 10082 // bottom-up phase will be simpler and less costly than building a 10083 // full-blown top-down phase beginning at the consecutive loads. 10084 Changed |= tryToVectorizeList(Bundle, R); 10085 } 10086 } 10087 return Changed; 10088 } 10089 10090 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10091 bool Changed = false; 10092 // Sort by type, base pointers and values operand. Value operands must be 10093 // compatible (have the same opcode, same parent), otherwise it is 10094 // definitely not profitable to try to vectorize them. 10095 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10096 if (V->getPointerOperandType()->getTypeID() < 10097 V2->getPointerOperandType()->getTypeID()) 10098 return true; 10099 if (V->getPointerOperandType()->getTypeID() > 10100 V2->getPointerOperandType()->getTypeID()) 10101 return false; 10102 // UndefValues are compatible with all other values. 10103 if (isa<UndefValue>(V->getValueOperand()) || 10104 isa<UndefValue>(V2->getValueOperand())) 10105 return false; 10106 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10107 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10108 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10109 DT->getNode(I1->getParent()); 10110 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10111 DT->getNode(I2->getParent()); 10112 assert(NodeI1 && "Should only process reachable instructions"); 10113 assert(NodeI1 && "Should only process reachable instructions"); 10114 assert((NodeI1 == NodeI2) == 10115 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10116 "Different nodes should have different DFS numbers"); 10117 if (NodeI1 != NodeI2) 10118 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10119 InstructionsState S = getSameOpcode({I1, I2}); 10120 if (S.getOpcode()) 10121 return false; 10122 return I1->getOpcode() < I2->getOpcode(); 10123 } 10124 if (isa<Constant>(V->getValueOperand()) && 10125 isa<Constant>(V2->getValueOperand())) 10126 return false; 10127 return V->getValueOperand()->getValueID() < 10128 V2->getValueOperand()->getValueID(); 10129 }; 10130 10131 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10132 if (V1 == V2) 10133 return true; 10134 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10135 return false; 10136 // Undefs are compatible with any other value. 10137 if (isa<UndefValue>(V1->getValueOperand()) || 10138 isa<UndefValue>(V2->getValueOperand())) 10139 return true; 10140 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10141 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10142 if (I1->getParent() != I2->getParent()) 10143 return false; 10144 InstructionsState S = getSameOpcode({I1, I2}); 10145 return S.getOpcode() > 0; 10146 } 10147 if (isa<Constant>(V1->getValueOperand()) && 10148 isa<Constant>(V2->getValueOperand())) 10149 return true; 10150 return V1->getValueOperand()->getValueID() == 10151 V2->getValueOperand()->getValueID(); 10152 }; 10153 auto Limit = [&R, this](StoreInst *SI) { 10154 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10155 return R.getMinVF(EltSize); 10156 }; 10157 10158 // Attempt to sort and vectorize each of the store-groups. 10159 for (auto &Pair : Stores) { 10160 if (Pair.second.size() < 2) 10161 continue; 10162 10163 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10164 << Pair.second.size() << ".\n"); 10165 10166 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10167 continue; 10168 10169 Changed |= tryToVectorizeSequence<StoreInst>( 10170 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10171 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10172 return vectorizeStores(Candidates, R); 10173 }, 10174 /*LimitForRegisterSize=*/false); 10175 } 10176 return Changed; 10177 } 10178 10179 char SLPVectorizer::ID = 0; 10180 10181 static const char lv_name[] = "SLP Vectorizer"; 10182 10183 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10184 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10185 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10186 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10187 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10188 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10189 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10190 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10191 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10192 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10193 10194 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10195