1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 /// \returns analysis of the Instructions in \p VL described in 475 /// InstructionsState, the Opcode that we suppose the whole list 476 /// could be vectorized even if its structure is diverse. 477 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 478 unsigned BaseIndex = 0) { 479 // Make sure these are all Instructions. 480 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 481 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 482 483 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 484 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 485 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 486 unsigned AltOpcode = Opcode; 487 unsigned AltIndex = BaseIndex; 488 489 // Check for one alternate opcode from another BinaryOperator. 490 // TODO - generalize to support all operators (types, calls etc.). 491 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 492 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 493 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 494 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 495 continue; 496 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 497 isValidForAlternation(Opcode)) { 498 AltOpcode = InstOpcode; 499 AltIndex = Cnt; 500 continue; 501 } 502 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 503 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 504 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 505 if (Ty0 == Ty1) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode) { 509 assert(isValidForAlternation(Opcode) && 510 isValidForAlternation(InstOpcode) && 511 "Cast isn't safe for alternation, logic needs to be updated!"); 512 AltOpcode = InstOpcode; 513 AltIndex = Cnt; 514 continue; 515 } 516 } 517 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 520 } 521 522 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 523 cast<Instruction>(VL[AltIndex])); 524 } 525 526 /// \returns true if all of the values in \p VL have the same type or false 527 /// otherwise. 528 static bool allSameType(ArrayRef<Value *> VL) { 529 Type *Ty = VL[0]->getType(); 530 for (int i = 1, e = VL.size(); i < e; i++) 531 if (VL[i]->getType() != Ty) 532 return false; 533 534 return true; 535 } 536 537 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 538 static Optional<unsigned> getExtractIndex(Instruction *E) { 539 unsigned Opcode = E->getOpcode(); 540 assert((Opcode == Instruction::ExtractElement || 541 Opcode == Instruction::ExtractValue) && 542 "Expected extractelement or extractvalue instruction."); 543 if (Opcode == Instruction::ExtractElement) { 544 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 545 if (!CI) 546 return None; 547 return CI->getZExtValue(); 548 } 549 ExtractValueInst *EI = cast<ExtractValueInst>(E); 550 if (EI->getNumIndices() != 1) 551 return None; 552 return *EI->idx_begin(); 553 } 554 555 /// \returns True if in-tree use also needs extract. This refers to 556 /// possible scalar operand in vectorized instruction. 557 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 558 TargetLibraryInfo *TLI) { 559 unsigned Opcode = UserInst->getOpcode(); 560 switch (Opcode) { 561 case Instruction::Load: { 562 LoadInst *LI = cast<LoadInst>(UserInst); 563 return (LI->getPointerOperand() == Scalar); 564 } 565 case Instruction::Store: { 566 StoreInst *SI = cast<StoreInst>(UserInst); 567 return (SI->getPointerOperand() == Scalar); 568 } 569 case Instruction::Call: { 570 CallInst *CI = cast<CallInst>(UserInst); 571 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 572 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 573 if (hasVectorInstrinsicScalarOpd(ID, i)) 574 return (CI->getArgOperand(i) == Scalar); 575 } 576 LLVM_FALLTHROUGH; 577 } 578 default: 579 return false; 580 } 581 } 582 583 /// \returns the AA location that is being access by the instruction. 584 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 586 return MemoryLocation::get(SI); 587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 588 return MemoryLocation::get(LI); 589 return MemoryLocation(); 590 } 591 592 /// \returns True if the instruction is not a volatile or atomic load/store. 593 static bool isSimple(Instruction *I) { 594 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 595 return LI->isSimple(); 596 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 597 return SI->isSimple(); 598 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 599 return !MI->isVolatile(); 600 return true; 601 } 602 603 /// Shuffles \p Mask in accordance with the given \p SubMask. 604 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 605 if (SubMask.empty()) 606 return; 607 if (Mask.empty()) { 608 Mask.append(SubMask.begin(), SubMask.end()); 609 return; 610 } 611 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 612 int TermValue = std::min(Mask.size(), SubMask.size()); 613 for (int I = 0, E = SubMask.size(); I < E; ++I) { 614 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 615 Mask[SubMask[I]] >= TermValue) 616 continue; 617 NewMask[I] = Mask[SubMask[I]]; 618 } 619 Mask.swap(NewMask); 620 } 621 622 /// Order may have elements assigned special value (size) which is out of 623 /// bounds. Such indices only appear on places which correspond to undef values 624 /// (see canReuseExtract for details) and used in order to avoid undef values 625 /// have effect on operands ordering. 626 /// The first loop below simply finds all unused indices and then the next loop 627 /// nest assigns these indices for undef values positions. 628 /// As an example below Order has two undef positions and they have assigned 629 /// values 3 and 7 respectively: 630 /// before: 6 9 5 4 9 2 1 0 631 /// after: 6 3 5 4 7 2 1 0 632 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 633 const unsigned Sz = Order.size(); 634 SmallBitVector UsedIndices(Sz); 635 SmallVector<int> MaskedIndices; 636 for (unsigned I = 0; I < Sz; ++I) { 637 if (Order[I] < Sz) 638 UsedIndices.set(Order[I]); 639 else 640 MaskedIndices.push_back(I); 641 } 642 if (MaskedIndices.empty()) 643 return; 644 SmallVector<int> AvailableIndices(MaskedIndices.size()); 645 unsigned Cnt = 0; 646 int Idx = UsedIndices.find_first(); 647 do { 648 AvailableIndices[Cnt] = Idx; 649 Idx = UsedIndices.find_next(Idx); 650 ++Cnt; 651 } while (Idx > 0); 652 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 653 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 654 Order[MaskedIndices[I]] = AvailableIndices[I]; 655 } 656 657 namespace llvm { 658 659 static void inversePermutation(ArrayRef<unsigned> Indices, 660 SmallVectorImpl<int> &Mask) { 661 Mask.clear(); 662 const unsigned E = Indices.size(); 663 Mask.resize(E, UndefMaskElem); 664 for (unsigned I = 0; I < E; ++I) 665 Mask[Indices[I]] = I; 666 } 667 668 /// \returns inserting index of InsertElement or InsertValue instruction, 669 /// using Offset as base offset for index. 670 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 671 int Index = Offset; 672 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 673 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 674 auto *VT = cast<FixedVectorType>(IE->getType()); 675 if (CI->getValue().uge(VT->getNumElements())) 676 return UndefMaskElem; 677 Index *= VT->getNumElements(); 678 Index += CI->getZExtValue(); 679 return Index; 680 } 681 if (isa<UndefValue>(IE->getOperand(2))) 682 return UndefMaskElem; 683 return None; 684 } 685 686 auto *IV = cast<InsertValueInst>(InsertInst); 687 Type *CurrentType = IV->getType(); 688 for (unsigned I : IV->indices()) { 689 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 690 Index *= ST->getNumElements(); 691 CurrentType = ST->getElementType(I); 692 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 693 Index *= AT->getNumElements(); 694 CurrentType = AT->getElementType(); 695 } else { 696 return None; 697 } 698 Index += I; 699 } 700 return Index; 701 } 702 703 /// Reorders the list of scalars in accordance with the given \p Order and then 704 /// the \p Mask. \p Order - is the original order of the scalars, need to 705 /// reorder scalars into an unordered state at first according to the given 706 /// order. Then the ordered scalars are shuffled once again in accordance with 707 /// the provided mask. 708 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 709 ArrayRef<int> Mask) { 710 assert(!Mask.empty() && "Expected non-empty mask."); 711 SmallVector<Value *> Prev(Scalars.size(), 712 UndefValue::get(Scalars.front()->getType())); 713 Prev.swap(Scalars); 714 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 715 if (Mask[I] != UndefMaskElem) 716 Scalars[Mask[I]] = Prev[I]; 717 } 718 719 namespace slpvectorizer { 720 721 /// Bottom Up SLP Vectorizer. 722 class BoUpSLP { 723 struct TreeEntry; 724 struct ScheduleData; 725 726 public: 727 using ValueList = SmallVector<Value *, 8>; 728 using InstrList = SmallVector<Instruction *, 16>; 729 using ValueSet = SmallPtrSet<Value *, 16>; 730 using StoreList = SmallVector<StoreInst *, 8>; 731 using ExtraValueToDebugLocsMap = 732 MapVector<Value *, SmallVector<Instruction *, 2>>; 733 using OrdersType = SmallVector<unsigned, 4>; 734 735 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 736 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 737 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 738 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 739 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 740 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 741 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 742 // Use the vector register size specified by the target unless overridden 743 // by a command-line option. 744 // TODO: It would be better to limit the vectorization factor based on 745 // data type rather than just register size. For example, x86 AVX has 746 // 256-bit registers, but it does not support integer operations 747 // at that width (that requires AVX2). 748 if (MaxVectorRegSizeOption.getNumOccurrences()) 749 MaxVecRegSize = MaxVectorRegSizeOption; 750 else 751 MaxVecRegSize = 752 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 753 .getFixedSize(); 754 755 if (MinVectorRegSizeOption.getNumOccurrences()) 756 MinVecRegSize = MinVectorRegSizeOption; 757 else 758 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 759 } 760 761 /// Vectorize the tree that starts with the elements in \p VL. 762 /// Returns the vectorized root. 763 Value *vectorizeTree(); 764 765 /// Vectorize the tree but with the list of externally used values \p 766 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 767 /// generated extractvalue instructions. 768 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 769 770 /// \returns the cost incurred by unwanted spills and fills, caused by 771 /// holding live values over call sites. 772 InstructionCost getSpillCost() const; 773 774 /// \returns the vectorization cost of the subtree that starts at \p VL. 775 /// A negative number means that this is profitable. 776 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 777 778 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 779 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 780 void buildTree(ArrayRef<Value *> Roots, 781 ArrayRef<Value *> UserIgnoreLst = None); 782 783 /// Builds external uses of the vectorized scalars, i.e. the list of 784 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 785 /// ExternallyUsedValues contains additional list of external uses to handle 786 /// vectorization of reductions. 787 void 788 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 789 790 /// Clear the internal data structures that are created by 'buildTree'. 791 void deleteTree() { 792 VectorizableTree.clear(); 793 ScalarToTreeEntry.clear(); 794 MustGather.clear(); 795 ExternalUses.clear(); 796 for (auto &Iter : BlocksSchedules) { 797 BlockScheduling *BS = Iter.second.get(); 798 BS->clear(); 799 } 800 MinBWs.clear(); 801 InstrElementSize.clear(); 802 } 803 804 unsigned getTreeSize() const { return VectorizableTree.size(); } 805 806 /// Perform LICM and CSE on the newly generated gather sequences. 807 void optimizeGatherSequence(); 808 809 /// Checks if the specified gather tree entry \p TE can be represented as a 810 /// shuffled vector entry + (possibly) permutation with other gathers. It 811 /// implements the checks only for possibly ordered scalars (Loads, 812 /// ExtractElement, ExtractValue), which can be part of the graph. 813 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 814 815 /// Reorders the current graph to the most profitable order starting from the 816 /// root node to the leaf nodes. The best order is chosen only from the nodes 817 /// of the same size (vectorization factor). Smaller nodes are considered 818 /// parts of subgraph with smaller VF and they are reordered independently. We 819 /// can make it because we still need to extend smaller nodes to the wider VF 820 /// and we can merge reordering shuffles with the widening shuffles. 821 void reorderTopToBottom(); 822 823 /// Reorders the current graph to the most profitable order starting from 824 /// leaves to the root. It allows to rotate small subgraphs and reduce the 825 /// number of reshuffles if the leaf nodes use the same order. In this case we 826 /// can merge the orders and just shuffle user node instead of shuffling its 827 /// operands. Plus, even the leaf nodes have different orders, it allows to 828 /// sink reordering in the graph closer to the root node and merge it later 829 /// during analysis. 830 void reorderBottomToTop(bool IgnoreReorder = false); 831 832 /// \return The vector element size in bits to use when vectorizing the 833 /// expression tree ending at \p V. If V is a store, the size is the width of 834 /// the stored value. Otherwise, the size is the width of the largest loaded 835 /// value reaching V. This method is used by the vectorizer to calculate 836 /// vectorization factors. 837 unsigned getVectorElementSize(Value *V); 838 839 /// Compute the minimum type sizes required to represent the entries in a 840 /// vectorizable tree. 841 void computeMinimumValueSizes(); 842 843 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 844 unsigned getMaxVecRegSize() const { 845 return MaxVecRegSize; 846 } 847 848 // \returns minimum vector register size as set by cl::opt. 849 unsigned getMinVecRegSize() const { 850 return MinVecRegSize; 851 } 852 853 unsigned getMinVF(unsigned Sz) const { 854 return std::max(2U, getMinVecRegSize() / Sz); 855 } 856 857 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 858 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 859 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 860 return MaxVF ? MaxVF : UINT_MAX; 861 } 862 863 /// Check if homogeneous aggregate is isomorphic to some VectorType. 864 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 865 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 866 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 867 /// 868 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 869 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 870 871 /// \returns True if the VectorizableTree is both tiny and not fully 872 /// vectorizable. We do not vectorize such trees. 873 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 874 875 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 876 /// can be load combined in the backend. Load combining may not be allowed in 877 /// the IR optimizer, so we do not want to alter the pattern. For example, 878 /// partially transforming a scalar bswap() pattern into vector code is 879 /// effectively impossible for the backend to undo. 880 /// TODO: If load combining is allowed in the IR optimizer, this analysis 881 /// may not be necessary. 882 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 883 884 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 885 /// can be load combined in the backend. Load combining may not be allowed in 886 /// the IR optimizer, so we do not want to alter the pattern. For example, 887 /// partially transforming a scalar bswap() pattern into vector code is 888 /// effectively impossible for the backend to undo. 889 /// TODO: If load combining is allowed in the IR optimizer, this analysis 890 /// may not be necessary. 891 bool isLoadCombineCandidate() const; 892 893 OptimizationRemarkEmitter *getORE() { return ORE; } 894 895 /// This structure holds any data we need about the edges being traversed 896 /// during buildTree_rec(). We keep track of: 897 /// (i) the user TreeEntry index, and 898 /// (ii) the index of the edge. 899 struct EdgeInfo { 900 EdgeInfo() = default; 901 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 902 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 903 /// The user TreeEntry. 904 TreeEntry *UserTE = nullptr; 905 /// The operand index of the use. 906 unsigned EdgeIdx = UINT_MAX; 907 #ifndef NDEBUG 908 friend inline raw_ostream &operator<<(raw_ostream &OS, 909 const BoUpSLP::EdgeInfo &EI) { 910 EI.dump(OS); 911 return OS; 912 } 913 /// Debug print. 914 void dump(raw_ostream &OS) const { 915 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 916 << " EdgeIdx:" << EdgeIdx << "}"; 917 } 918 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 919 #endif 920 }; 921 922 /// A helper data structure to hold the operands of a vector of instructions. 923 /// This supports a fixed vector length for all operand vectors. 924 class VLOperands { 925 /// For each operand we need (i) the value, and (ii) the opcode that it 926 /// would be attached to if the expression was in a left-linearized form. 927 /// This is required to avoid illegal operand reordering. 928 /// For example: 929 /// \verbatim 930 /// 0 Op1 931 /// |/ 932 /// Op1 Op2 Linearized + Op2 933 /// \ / ----------> |/ 934 /// - - 935 /// 936 /// Op1 - Op2 (0 + Op1) - Op2 937 /// \endverbatim 938 /// 939 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 940 /// 941 /// Another way to think of this is to track all the operations across the 942 /// path from the operand all the way to the root of the tree and to 943 /// calculate the operation that corresponds to this path. For example, the 944 /// path from Op2 to the root crosses the RHS of the '-', therefore the 945 /// corresponding operation is a '-' (which matches the one in the 946 /// linearized tree, as shown above). 947 /// 948 /// For lack of a better term, we refer to this operation as Accumulated 949 /// Path Operation (APO). 950 struct OperandData { 951 OperandData() = default; 952 OperandData(Value *V, bool APO, bool IsUsed) 953 : V(V), APO(APO), IsUsed(IsUsed) {} 954 /// The operand value. 955 Value *V = nullptr; 956 /// TreeEntries only allow a single opcode, or an alternate sequence of 957 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 958 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 959 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 960 /// (e.g., Add/Mul) 961 bool APO = false; 962 /// Helper data for the reordering function. 963 bool IsUsed = false; 964 }; 965 966 /// During operand reordering, we are trying to select the operand at lane 967 /// that matches best with the operand at the neighboring lane. Our 968 /// selection is based on the type of value we are looking for. For example, 969 /// if the neighboring lane has a load, we need to look for a load that is 970 /// accessing a consecutive address. These strategies are summarized in the 971 /// 'ReorderingMode' enumerator. 972 enum class ReorderingMode { 973 Load, ///< Matching loads to consecutive memory addresses 974 Opcode, ///< Matching instructions based on opcode (same or alternate) 975 Constant, ///< Matching constants 976 Splat, ///< Matching the same instruction multiple times (broadcast) 977 Failed, ///< We failed to create a vectorizable group 978 }; 979 980 using OperandDataVec = SmallVector<OperandData, 2>; 981 982 /// A vector of operand vectors. 983 SmallVector<OperandDataVec, 4> OpsVec; 984 985 const DataLayout &DL; 986 ScalarEvolution &SE; 987 const BoUpSLP &R; 988 989 /// \returns the operand data at \p OpIdx and \p Lane. 990 OperandData &getData(unsigned OpIdx, unsigned Lane) { 991 return OpsVec[OpIdx][Lane]; 992 } 993 994 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 995 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 996 return OpsVec[OpIdx][Lane]; 997 } 998 999 /// Clears the used flag for all entries. 1000 void clearUsed() { 1001 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1002 OpIdx != NumOperands; ++OpIdx) 1003 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1004 ++Lane) 1005 OpsVec[OpIdx][Lane].IsUsed = false; 1006 } 1007 1008 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1009 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1010 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1011 } 1012 1013 // The hard-coded scores listed here are not very important. When computing 1014 // the scores of matching one sub-tree with another, we are basically 1015 // counting the number of values that are matching. So even if all scores 1016 // are set to 1, we would still get a decent matching result. 1017 // However, sometimes we have to break ties. For example we may have to 1018 // choose between matching loads vs matching opcodes. This is what these 1019 // scores are helping us with: they provide the order of preference. 1020 1021 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1022 static const int ScoreConsecutiveLoads = 3; 1023 /// ExtractElementInst from same vector and consecutive indexes. 1024 static const int ScoreConsecutiveExtracts = 3; 1025 /// Constants. 1026 static const int ScoreConstants = 2; 1027 /// Instructions with the same opcode. 1028 static const int ScoreSameOpcode = 2; 1029 /// Instructions with alt opcodes (e.g, add + sub). 1030 static const int ScoreAltOpcodes = 1; 1031 /// Identical instructions (a.k.a. splat or broadcast). 1032 static const int ScoreSplat = 1; 1033 /// Matching with an undef is preferable to failing. 1034 static const int ScoreUndef = 1; 1035 /// Score for failing to find a decent match. 1036 static const int ScoreFail = 0; 1037 /// User exteranl to the vectorized code. 1038 static const int ExternalUseCost = 1; 1039 /// The user is internal but in a different lane. 1040 static const int UserInDiffLaneCost = ExternalUseCost; 1041 1042 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1043 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1044 ScalarEvolution &SE) { 1045 auto *LI1 = dyn_cast<LoadInst>(V1); 1046 auto *LI2 = dyn_cast<LoadInst>(V2); 1047 if (LI1 && LI2) { 1048 if (LI1->getParent() != LI2->getParent()) 1049 return VLOperands::ScoreFail; 1050 1051 Optional<int> Dist = getPointersDiff( 1052 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1053 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1054 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1055 : VLOperands::ScoreFail; 1056 } 1057 1058 auto *C1 = dyn_cast<Constant>(V1); 1059 auto *C2 = dyn_cast<Constant>(V2); 1060 if (C1 && C2) 1061 return VLOperands::ScoreConstants; 1062 1063 // Extracts from consecutive indexes of the same vector better score as 1064 // the extracts could be optimized away. 1065 Value *EV; 1066 ConstantInt *Ex1Idx, *Ex2Idx; 1067 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1068 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1069 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1070 return VLOperands::ScoreConsecutiveExtracts; 1071 1072 auto *I1 = dyn_cast<Instruction>(V1); 1073 auto *I2 = dyn_cast<Instruction>(V2); 1074 if (I1 && I2) { 1075 if (I1 == I2) 1076 return VLOperands::ScoreSplat; 1077 InstructionsState S = getSameOpcode({I1, I2}); 1078 // Note: Only consider instructions with <= 2 operands to avoid 1079 // complexity explosion. 1080 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1081 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1082 : VLOperands::ScoreSameOpcode; 1083 } 1084 1085 if (isa<UndefValue>(V2)) 1086 return VLOperands::ScoreUndef; 1087 1088 return VLOperands::ScoreFail; 1089 } 1090 1091 /// Holds the values and their lane that are taking part in the look-ahead 1092 /// score calculation. This is used in the external uses cost calculation. 1093 SmallDenseMap<Value *, int> InLookAheadValues; 1094 1095 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1096 /// either external to the vectorized code, or require shuffling. 1097 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1098 const std::pair<Value *, int> &RHS) { 1099 int Cost = 0; 1100 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1101 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1102 Value *V = Values[Idx].first; 1103 if (isa<Constant>(V)) { 1104 // Since this is a function pass, it doesn't make semantic sense to 1105 // walk the users of a subclass of Constant. The users could be in 1106 // another function, or even another module that happens to be in 1107 // the same LLVMContext. 1108 continue; 1109 } 1110 1111 // Calculate the absolute lane, using the minimum relative lane of LHS 1112 // and RHS as base and Idx as the offset. 1113 int Ln = std::min(LHS.second, RHS.second) + Idx; 1114 assert(Ln >= 0 && "Bad lane calculation"); 1115 unsigned UsersBudget = LookAheadUsersBudget; 1116 for (User *U : V->users()) { 1117 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1118 // The user is in the VectorizableTree. Check if we need to insert. 1119 auto It = llvm::find(UserTE->Scalars, U); 1120 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1121 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1122 assert(UserLn >= 0 && "Bad lane"); 1123 if (UserLn != Ln) 1124 Cost += UserInDiffLaneCost; 1125 } else { 1126 // Check if the user is in the look-ahead code. 1127 auto It2 = InLookAheadValues.find(U); 1128 if (It2 != InLookAheadValues.end()) { 1129 // The user is in the look-ahead code. Check the lane. 1130 if (It2->second != Ln) 1131 Cost += UserInDiffLaneCost; 1132 } else { 1133 // The user is neither in SLP tree nor in the look-ahead code. 1134 Cost += ExternalUseCost; 1135 } 1136 } 1137 // Limit the number of visited uses to cap compilation time. 1138 if (--UsersBudget == 0) 1139 break; 1140 } 1141 } 1142 return Cost; 1143 } 1144 1145 /// Go through the operands of \p LHS and \p RHS recursively until \p 1146 /// MaxLevel, and return the cummulative score. For example: 1147 /// \verbatim 1148 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1149 /// \ / \ / \ / \ / 1150 /// + + + + 1151 /// G1 G2 G3 G4 1152 /// \endverbatim 1153 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1154 /// each level recursively, accumulating the score. It starts from matching 1155 /// the additions at level 0, then moves on to the loads (level 1). The 1156 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1157 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1158 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1159 /// Please note that the order of the operands does not matter, as we 1160 /// evaluate the score of all profitable combinations of operands. In 1161 /// other words the score of G1 and G4 is the same as G1 and G2. This 1162 /// heuristic is based on ideas described in: 1163 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1164 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1165 /// Luís F. W. Góes 1166 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1167 const std::pair<Value *, int> &RHS, int CurrLevel, 1168 int MaxLevel) { 1169 1170 Value *V1 = LHS.first; 1171 Value *V2 = RHS.first; 1172 // Get the shallow score of V1 and V2. 1173 int ShallowScoreAtThisLevel = 1174 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1175 getExternalUsesCost(LHS, RHS)); 1176 int Lane1 = LHS.second; 1177 int Lane2 = RHS.second; 1178 1179 // If reached MaxLevel, 1180 // or if V1 and V2 are not instructions, 1181 // or if they are SPLAT, 1182 // or if they are not consecutive, early return the current cost. 1183 auto *I1 = dyn_cast<Instruction>(V1); 1184 auto *I2 = dyn_cast<Instruction>(V2); 1185 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1186 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1187 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1188 return ShallowScoreAtThisLevel; 1189 assert(I1 && I2 && "Should have early exited."); 1190 1191 // Keep track of in-tree values for determining the external-use cost. 1192 InLookAheadValues[V1] = Lane1; 1193 InLookAheadValues[V2] = Lane2; 1194 1195 // Contains the I2 operand indexes that got matched with I1 operands. 1196 SmallSet<unsigned, 4> Op2Used; 1197 1198 // Recursion towards the operands of I1 and I2. We are trying all possbile 1199 // operand pairs, and keeping track of the best score. 1200 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1201 OpIdx1 != NumOperands1; ++OpIdx1) { 1202 // Try to pair op1I with the best operand of I2. 1203 int MaxTmpScore = 0; 1204 unsigned MaxOpIdx2 = 0; 1205 bool FoundBest = false; 1206 // If I2 is commutative try all combinations. 1207 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1208 unsigned ToIdx = isCommutative(I2) 1209 ? I2->getNumOperands() 1210 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1211 assert(FromIdx <= ToIdx && "Bad index"); 1212 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1213 // Skip operands already paired with OpIdx1. 1214 if (Op2Used.count(OpIdx2)) 1215 continue; 1216 // Recursively calculate the cost at each level 1217 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1218 {I2->getOperand(OpIdx2), Lane2}, 1219 CurrLevel + 1, MaxLevel); 1220 // Look for the best score. 1221 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1222 MaxTmpScore = TmpScore; 1223 MaxOpIdx2 = OpIdx2; 1224 FoundBest = true; 1225 } 1226 } 1227 if (FoundBest) { 1228 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1229 Op2Used.insert(MaxOpIdx2); 1230 ShallowScoreAtThisLevel += MaxTmpScore; 1231 } 1232 } 1233 return ShallowScoreAtThisLevel; 1234 } 1235 1236 /// \Returns the look-ahead score, which tells us how much the sub-trees 1237 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1238 /// score. This helps break ties in an informed way when we cannot decide on 1239 /// the order of the operands by just considering the immediate 1240 /// predecessors. 1241 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1242 const std::pair<Value *, int> &RHS) { 1243 InLookAheadValues.clear(); 1244 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1245 } 1246 1247 // Search all operands in Ops[*][Lane] for the one that matches best 1248 // Ops[OpIdx][LastLane] and return its opreand index. 1249 // If no good match can be found, return None. 1250 Optional<unsigned> 1251 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1252 ArrayRef<ReorderingMode> ReorderingModes) { 1253 unsigned NumOperands = getNumOperands(); 1254 1255 // The operand of the previous lane at OpIdx. 1256 Value *OpLastLane = getData(OpIdx, LastLane).V; 1257 1258 // Our strategy mode for OpIdx. 1259 ReorderingMode RMode = ReorderingModes[OpIdx]; 1260 1261 // The linearized opcode of the operand at OpIdx, Lane. 1262 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1263 1264 // The best operand index and its score. 1265 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1266 // are using the score to differentiate between the two. 1267 struct BestOpData { 1268 Optional<unsigned> Idx = None; 1269 unsigned Score = 0; 1270 } BestOp; 1271 1272 // Iterate through all unused operands and look for the best. 1273 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1274 // Get the operand at Idx and Lane. 1275 OperandData &OpData = getData(Idx, Lane); 1276 Value *Op = OpData.V; 1277 bool OpAPO = OpData.APO; 1278 1279 // Skip already selected operands. 1280 if (OpData.IsUsed) 1281 continue; 1282 1283 // Skip if we are trying to move the operand to a position with a 1284 // different opcode in the linearized tree form. This would break the 1285 // semantics. 1286 if (OpAPO != OpIdxAPO) 1287 continue; 1288 1289 // Look for an operand that matches the current mode. 1290 switch (RMode) { 1291 case ReorderingMode::Load: 1292 case ReorderingMode::Constant: 1293 case ReorderingMode::Opcode: { 1294 bool LeftToRight = Lane > LastLane; 1295 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1296 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1297 unsigned Score = 1298 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1299 if (Score > BestOp.Score) { 1300 BestOp.Idx = Idx; 1301 BestOp.Score = Score; 1302 } 1303 break; 1304 } 1305 case ReorderingMode::Splat: 1306 if (Op == OpLastLane) 1307 BestOp.Idx = Idx; 1308 break; 1309 case ReorderingMode::Failed: 1310 return None; 1311 } 1312 } 1313 1314 if (BestOp.Idx) { 1315 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1316 return BestOp.Idx; 1317 } 1318 // If we could not find a good match return None. 1319 return None; 1320 } 1321 1322 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1323 /// reordering from. This is the one which has the least number of operands 1324 /// that can freely move about. 1325 unsigned getBestLaneToStartReordering() const { 1326 unsigned BestLane = 0; 1327 unsigned Min = UINT_MAX; 1328 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1329 ++Lane) { 1330 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1331 if (NumFreeOps < Min) { 1332 Min = NumFreeOps; 1333 BestLane = Lane; 1334 } 1335 } 1336 return BestLane; 1337 } 1338 1339 /// \Returns the maximum number of operands that are allowed to be reordered 1340 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1341 /// start operand reordering. 1342 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1343 unsigned CntTrue = 0; 1344 unsigned NumOperands = getNumOperands(); 1345 // Operands with the same APO can be reordered. We therefore need to count 1346 // how many of them we have for each APO, like this: Cnt[APO] = x. 1347 // Since we only have two APOs, namely true and false, we can avoid using 1348 // a map. Instead we can simply count the number of operands that 1349 // correspond to one of them (in this case the 'true' APO), and calculate 1350 // the other by subtracting it from the total number of operands. 1351 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1352 if (getData(OpIdx, Lane).APO) 1353 ++CntTrue; 1354 unsigned CntFalse = NumOperands - CntTrue; 1355 return std::max(CntTrue, CntFalse); 1356 } 1357 1358 /// Go through the instructions in VL and append their operands. 1359 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1360 assert(!VL.empty() && "Bad VL"); 1361 assert((empty() || VL.size() == getNumLanes()) && 1362 "Expected same number of lanes"); 1363 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1364 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1365 OpsVec.resize(NumOperands); 1366 unsigned NumLanes = VL.size(); 1367 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1368 OpsVec[OpIdx].resize(NumLanes); 1369 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1370 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1371 // Our tree has just 3 nodes: the root and two operands. 1372 // It is therefore trivial to get the APO. We only need to check the 1373 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1374 // RHS operand. The LHS operand of both add and sub is never attached 1375 // to an inversese operation in the linearized form, therefore its APO 1376 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1377 1378 // Since operand reordering is performed on groups of commutative 1379 // operations or alternating sequences (e.g., +, -), we can safely 1380 // tell the inverse operations by checking commutativity. 1381 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1382 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1383 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1384 APO, false}; 1385 } 1386 } 1387 } 1388 1389 /// \returns the number of operands. 1390 unsigned getNumOperands() const { return OpsVec.size(); } 1391 1392 /// \returns the number of lanes. 1393 unsigned getNumLanes() const { return OpsVec[0].size(); } 1394 1395 /// \returns the operand value at \p OpIdx and \p Lane. 1396 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1397 return getData(OpIdx, Lane).V; 1398 } 1399 1400 /// \returns true if the data structure is empty. 1401 bool empty() const { return OpsVec.empty(); } 1402 1403 /// Clears the data. 1404 void clear() { OpsVec.clear(); } 1405 1406 /// \Returns true if there are enough operands identical to \p Op to fill 1407 /// the whole vector. 1408 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1409 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1410 bool OpAPO = getData(OpIdx, Lane).APO; 1411 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1412 if (Ln == Lane) 1413 continue; 1414 // This is set to true if we found a candidate for broadcast at Lane. 1415 bool FoundCandidate = false; 1416 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1417 OperandData &Data = getData(OpI, Ln); 1418 if (Data.APO != OpAPO || Data.IsUsed) 1419 continue; 1420 if (Data.V == Op) { 1421 FoundCandidate = true; 1422 Data.IsUsed = true; 1423 break; 1424 } 1425 } 1426 if (!FoundCandidate) 1427 return false; 1428 } 1429 return true; 1430 } 1431 1432 public: 1433 /// Initialize with all the operands of the instruction vector \p RootVL. 1434 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1435 ScalarEvolution &SE, const BoUpSLP &R) 1436 : DL(DL), SE(SE), R(R) { 1437 // Append all the operands of RootVL. 1438 appendOperandsOfVL(RootVL); 1439 } 1440 1441 /// \Returns a value vector with the operands across all lanes for the 1442 /// opearnd at \p OpIdx. 1443 ValueList getVL(unsigned OpIdx) const { 1444 ValueList OpVL(OpsVec[OpIdx].size()); 1445 assert(OpsVec[OpIdx].size() == getNumLanes() && 1446 "Expected same num of lanes across all operands"); 1447 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1448 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1449 return OpVL; 1450 } 1451 1452 // Performs operand reordering for 2 or more operands. 1453 // The original operands are in OrigOps[OpIdx][Lane]. 1454 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1455 void reorder() { 1456 unsigned NumOperands = getNumOperands(); 1457 unsigned NumLanes = getNumLanes(); 1458 // Each operand has its own mode. We are using this mode to help us select 1459 // the instructions for each lane, so that they match best with the ones 1460 // we have selected so far. 1461 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1462 1463 // This is a greedy single-pass algorithm. We are going over each lane 1464 // once and deciding on the best order right away with no back-tracking. 1465 // However, in order to increase its effectiveness, we start with the lane 1466 // that has operands that can move the least. For example, given the 1467 // following lanes: 1468 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1469 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1470 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1471 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1472 // we will start at Lane 1, since the operands of the subtraction cannot 1473 // be reordered. Then we will visit the rest of the lanes in a circular 1474 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1475 1476 // Find the first lane that we will start our search from. 1477 unsigned FirstLane = getBestLaneToStartReordering(); 1478 1479 // Initialize the modes. 1480 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1481 Value *OpLane0 = getValue(OpIdx, FirstLane); 1482 // Keep track if we have instructions with all the same opcode on one 1483 // side. 1484 if (isa<LoadInst>(OpLane0)) 1485 ReorderingModes[OpIdx] = ReorderingMode::Load; 1486 else if (isa<Instruction>(OpLane0)) { 1487 // Check if OpLane0 should be broadcast. 1488 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1489 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1490 else 1491 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1492 } 1493 else if (isa<Constant>(OpLane0)) 1494 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1495 else if (isa<Argument>(OpLane0)) 1496 // Our best hope is a Splat. It may save some cost in some cases. 1497 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1498 else 1499 // NOTE: This should be unreachable. 1500 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1501 } 1502 1503 // If the initial strategy fails for any of the operand indexes, then we 1504 // perform reordering again in a second pass. This helps avoid assigning 1505 // high priority to the failed strategy, and should improve reordering for 1506 // the non-failed operand indexes. 1507 for (int Pass = 0; Pass != 2; ++Pass) { 1508 // Skip the second pass if the first pass did not fail. 1509 bool StrategyFailed = false; 1510 // Mark all operand data as free to use. 1511 clearUsed(); 1512 // We keep the original operand order for the FirstLane, so reorder the 1513 // rest of the lanes. We are visiting the nodes in a circular fashion, 1514 // using FirstLane as the center point and increasing the radius 1515 // distance. 1516 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1517 // Visit the lane on the right and then the lane on the left. 1518 for (int Direction : {+1, -1}) { 1519 int Lane = FirstLane + Direction * Distance; 1520 if (Lane < 0 || Lane >= (int)NumLanes) 1521 continue; 1522 int LastLane = Lane - Direction; 1523 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1524 "Out of bounds"); 1525 // Look for a good match for each operand. 1526 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1527 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1528 Optional<unsigned> BestIdx = 1529 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1530 // By not selecting a value, we allow the operands that follow to 1531 // select a better matching value. We will get a non-null value in 1532 // the next run of getBestOperand(). 1533 if (BestIdx) { 1534 // Swap the current operand with the one returned by 1535 // getBestOperand(). 1536 swap(OpIdx, BestIdx.getValue(), Lane); 1537 } else { 1538 // We failed to find a best operand, set mode to 'Failed'. 1539 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1540 // Enable the second pass. 1541 StrategyFailed = true; 1542 } 1543 } 1544 } 1545 } 1546 // Skip second pass if the strategy did not fail. 1547 if (!StrategyFailed) 1548 break; 1549 } 1550 } 1551 1552 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1553 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1554 switch (RMode) { 1555 case ReorderingMode::Load: 1556 return "Load"; 1557 case ReorderingMode::Opcode: 1558 return "Opcode"; 1559 case ReorderingMode::Constant: 1560 return "Constant"; 1561 case ReorderingMode::Splat: 1562 return "Splat"; 1563 case ReorderingMode::Failed: 1564 return "Failed"; 1565 } 1566 llvm_unreachable("Unimplemented Reordering Type"); 1567 } 1568 1569 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1570 raw_ostream &OS) { 1571 return OS << getModeStr(RMode); 1572 } 1573 1574 /// Debug print. 1575 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1576 printMode(RMode, dbgs()); 1577 } 1578 1579 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1580 return printMode(RMode, OS); 1581 } 1582 1583 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1584 const unsigned Indent = 2; 1585 unsigned Cnt = 0; 1586 for (const OperandDataVec &OpDataVec : OpsVec) { 1587 OS << "Operand " << Cnt++ << "\n"; 1588 for (const OperandData &OpData : OpDataVec) { 1589 OS.indent(Indent) << "{"; 1590 if (Value *V = OpData.V) 1591 OS << *V; 1592 else 1593 OS << "null"; 1594 OS << ", APO:" << OpData.APO << "}\n"; 1595 } 1596 OS << "\n"; 1597 } 1598 return OS; 1599 } 1600 1601 /// Debug print. 1602 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1603 #endif 1604 }; 1605 1606 /// Checks if the instruction is marked for deletion. 1607 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1608 1609 /// Marks values operands for later deletion by replacing them with Undefs. 1610 void eraseInstructions(ArrayRef<Value *> AV); 1611 1612 ~BoUpSLP(); 1613 1614 private: 1615 /// Checks if all users of \p I are the part of the vectorization tree. 1616 bool areAllUsersVectorized(Instruction *I, 1617 ArrayRef<Value *> VectorizedVals) const; 1618 1619 /// \returns the cost of the vectorizable entry. 1620 InstructionCost getEntryCost(const TreeEntry *E, 1621 ArrayRef<Value *> VectorizedVals); 1622 1623 /// This is the recursive part of buildTree. 1624 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1625 const EdgeInfo &EI); 1626 1627 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1628 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1629 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1630 /// returns false, setting \p CurrentOrder to either an empty vector or a 1631 /// non-identity permutation that allows to reuse extract instructions. 1632 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1633 SmallVectorImpl<unsigned> &CurrentOrder) const; 1634 1635 /// Vectorize a single entry in the tree. 1636 Value *vectorizeTree(TreeEntry *E); 1637 1638 /// Vectorize a single entry in the tree, starting in \p VL. 1639 Value *vectorizeTree(ArrayRef<Value *> VL); 1640 1641 /// \returns the scalarization cost for this type. Scalarization in this 1642 /// context means the creation of vectors from a group of scalars. If \p 1643 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1644 /// vector elements. 1645 InstructionCost getGatherCost(FixedVectorType *Ty, 1646 const DenseSet<unsigned> &ShuffledIndices, 1647 bool NeedToShuffle) const; 1648 1649 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1650 /// tree entries. 1651 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1652 /// previous tree entries. \p Mask is filled with the shuffle mask. 1653 Optional<TargetTransformInfo::ShuffleKind> 1654 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1655 SmallVectorImpl<const TreeEntry *> &Entries); 1656 1657 /// \returns the scalarization cost for this list of values. Assuming that 1658 /// this subtree gets vectorized, we may need to extract the values from the 1659 /// roots. This method calculates the cost of extracting the values. 1660 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1661 1662 /// Set the Builder insert point to one after the last instruction in 1663 /// the bundle 1664 void setInsertPointAfterBundle(const TreeEntry *E); 1665 1666 /// \returns a vector from a collection of scalars in \p VL. 1667 Value *gather(ArrayRef<Value *> VL); 1668 1669 /// \returns whether the VectorizableTree is fully vectorizable and will 1670 /// be beneficial even the tree height is tiny. 1671 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1672 1673 /// Reorder commutative or alt operands to get better probability of 1674 /// generating vectorized code. 1675 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1676 SmallVectorImpl<Value *> &Left, 1677 SmallVectorImpl<Value *> &Right, 1678 const DataLayout &DL, 1679 ScalarEvolution &SE, 1680 const BoUpSLP &R); 1681 struct TreeEntry { 1682 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1683 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1684 1685 /// \returns true if the scalars in VL are equal to this entry. 1686 bool isSame(ArrayRef<Value *> VL) const { 1687 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1688 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1689 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1690 return VL.size() == Mask.size() && 1691 std::equal(VL.begin(), VL.end(), Mask.begin(), 1692 [Scalars](Value *V, int Idx) { 1693 return (isa<UndefValue>(V) && 1694 Idx == UndefMaskElem) || 1695 (Idx != UndefMaskElem && V == Scalars[Idx]); 1696 }); 1697 }; 1698 if (!ReorderIndices.empty()) { 1699 // TODO: implement matching if the nodes are just reordered, still can 1700 // treat the vector as the same if the list of scalars matches VL 1701 // directly, without reordering. 1702 SmallVector<int> Mask; 1703 inversePermutation(ReorderIndices, Mask); 1704 if (VL.size() == Scalars.size()) 1705 return IsSame(Scalars, Mask); 1706 if (VL.size() == ReuseShuffleIndices.size()) { 1707 ::addMask(Mask, ReuseShuffleIndices); 1708 return IsSame(Scalars, Mask); 1709 } 1710 return false; 1711 } 1712 return IsSame(Scalars, ReuseShuffleIndices); 1713 } 1714 1715 /// \returns true if current entry has same operands as \p TE. 1716 bool hasEqualOperands(const TreeEntry &TE) const { 1717 if (TE.getNumOperands() != getNumOperands()) 1718 return false; 1719 SmallBitVector Used(getNumOperands()); 1720 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1721 unsigned PrevCount = Used.count(); 1722 for (unsigned K = 0; K < E; ++K) { 1723 if (Used.test(K)) 1724 continue; 1725 if (getOperand(K) == TE.getOperand(I)) { 1726 Used.set(K); 1727 break; 1728 } 1729 } 1730 // Check if we actually found the matching operand. 1731 if (PrevCount == Used.count()) 1732 return false; 1733 } 1734 return true; 1735 } 1736 1737 /// \return Final vectorization factor for the node. Defined by the total 1738 /// number of vectorized scalars, including those, used several times in the 1739 /// entry and counted in the \a ReuseShuffleIndices, if any. 1740 unsigned getVectorFactor() const { 1741 if (!ReuseShuffleIndices.empty()) 1742 return ReuseShuffleIndices.size(); 1743 return Scalars.size(); 1744 }; 1745 1746 /// A vector of scalars. 1747 ValueList Scalars; 1748 1749 /// The Scalars are vectorized into this value. It is initialized to Null. 1750 Value *VectorizedValue = nullptr; 1751 1752 /// Do we need to gather this sequence or vectorize it 1753 /// (either with vector instruction or with scatter/gather 1754 /// intrinsics for store/load)? 1755 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1756 EntryState State; 1757 1758 /// Does this sequence require some shuffling? 1759 SmallVector<int, 4> ReuseShuffleIndices; 1760 1761 /// Does this entry require reordering? 1762 SmallVector<unsigned, 4> ReorderIndices; 1763 1764 /// Points back to the VectorizableTree. 1765 /// 1766 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1767 /// to be a pointer and needs to be able to initialize the child iterator. 1768 /// Thus we need a reference back to the container to translate the indices 1769 /// to entries. 1770 VecTreeTy &Container; 1771 1772 /// The TreeEntry index containing the user of this entry. We can actually 1773 /// have multiple users so the data structure is not truly a tree. 1774 SmallVector<EdgeInfo, 1> UserTreeIndices; 1775 1776 /// The index of this treeEntry in VectorizableTree. 1777 int Idx = -1; 1778 1779 private: 1780 /// The operands of each instruction in each lane Operands[op_index][lane]. 1781 /// Note: This helps avoid the replication of the code that performs the 1782 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1783 SmallVector<ValueList, 2> Operands; 1784 1785 /// The main/alternate instruction. 1786 Instruction *MainOp = nullptr; 1787 Instruction *AltOp = nullptr; 1788 1789 public: 1790 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1791 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1792 if (Operands.size() < OpIdx + 1) 1793 Operands.resize(OpIdx + 1); 1794 assert(Operands[OpIdx].empty() && "Already resized?"); 1795 Operands[OpIdx].resize(Scalars.size()); 1796 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1797 Operands[OpIdx][Lane] = OpVL[Lane]; 1798 } 1799 1800 /// Set the operands of this bundle in their original order. 1801 void setOperandsInOrder() { 1802 assert(Operands.empty() && "Already initialized?"); 1803 auto *I0 = cast<Instruction>(Scalars[0]); 1804 Operands.resize(I0->getNumOperands()); 1805 unsigned NumLanes = Scalars.size(); 1806 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1807 OpIdx != NumOperands; ++OpIdx) { 1808 Operands[OpIdx].resize(NumLanes); 1809 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1810 auto *I = cast<Instruction>(Scalars[Lane]); 1811 assert(I->getNumOperands() == NumOperands && 1812 "Expected same number of operands"); 1813 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1814 } 1815 } 1816 } 1817 1818 /// Reorders operands of the node to the given mask \p Mask. 1819 void reorderOperands(ArrayRef<int> Mask) { 1820 for (ValueList &Operand : Operands) 1821 reorderScalars(Operand, Mask); 1822 } 1823 1824 /// \returns the \p OpIdx operand of this TreeEntry. 1825 ValueList &getOperand(unsigned OpIdx) { 1826 assert(OpIdx < Operands.size() && "Off bounds"); 1827 return Operands[OpIdx]; 1828 } 1829 1830 /// \returns the \p OpIdx operand of this TreeEntry. 1831 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 1832 assert(OpIdx < Operands.size() && "Off bounds"); 1833 return Operands[OpIdx]; 1834 } 1835 1836 /// \returns the number of operands. 1837 unsigned getNumOperands() const { return Operands.size(); } 1838 1839 /// \return the single \p OpIdx operand. 1840 Value *getSingleOperand(unsigned OpIdx) const { 1841 assert(OpIdx < Operands.size() && "Off bounds"); 1842 assert(!Operands[OpIdx].empty() && "No operand available"); 1843 return Operands[OpIdx][0]; 1844 } 1845 1846 /// Some of the instructions in the list have alternate opcodes. 1847 bool isAltShuffle() const { 1848 return getOpcode() != getAltOpcode(); 1849 } 1850 1851 bool isOpcodeOrAlt(Instruction *I) const { 1852 unsigned CheckedOpcode = I->getOpcode(); 1853 return (getOpcode() == CheckedOpcode || 1854 getAltOpcode() == CheckedOpcode); 1855 } 1856 1857 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1858 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1859 /// \p OpValue. 1860 Value *isOneOf(Value *Op) const { 1861 auto *I = dyn_cast<Instruction>(Op); 1862 if (I && isOpcodeOrAlt(I)) 1863 return Op; 1864 return MainOp; 1865 } 1866 1867 void setOperations(const InstructionsState &S) { 1868 MainOp = S.MainOp; 1869 AltOp = S.AltOp; 1870 } 1871 1872 Instruction *getMainOp() const { 1873 return MainOp; 1874 } 1875 1876 Instruction *getAltOp() const { 1877 return AltOp; 1878 } 1879 1880 /// The main/alternate opcodes for the list of instructions. 1881 unsigned getOpcode() const { 1882 return MainOp ? MainOp->getOpcode() : 0; 1883 } 1884 1885 unsigned getAltOpcode() const { 1886 return AltOp ? AltOp->getOpcode() : 0; 1887 } 1888 1889 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1890 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1891 int findLaneForValue(Value *V) const { 1892 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1893 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1894 if (!ReorderIndices.empty()) 1895 FoundLane = ReorderIndices[FoundLane]; 1896 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1897 if (!ReuseShuffleIndices.empty()) { 1898 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1899 find(ReuseShuffleIndices, FoundLane)); 1900 } 1901 return FoundLane; 1902 } 1903 1904 #ifndef NDEBUG 1905 /// Debug printer. 1906 LLVM_DUMP_METHOD void dump() const { 1907 dbgs() << Idx << ".\n"; 1908 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1909 dbgs() << "Operand " << OpI << ":\n"; 1910 for (const Value *V : Operands[OpI]) 1911 dbgs().indent(2) << *V << "\n"; 1912 } 1913 dbgs() << "Scalars: \n"; 1914 for (Value *V : Scalars) 1915 dbgs().indent(2) << *V << "\n"; 1916 dbgs() << "State: "; 1917 switch (State) { 1918 case Vectorize: 1919 dbgs() << "Vectorize\n"; 1920 break; 1921 case ScatterVectorize: 1922 dbgs() << "ScatterVectorize\n"; 1923 break; 1924 case NeedToGather: 1925 dbgs() << "NeedToGather\n"; 1926 break; 1927 } 1928 dbgs() << "MainOp: "; 1929 if (MainOp) 1930 dbgs() << *MainOp << "\n"; 1931 else 1932 dbgs() << "NULL\n"; 1933 dbgs() << "AltOp: "; 1934 if (AltOp) 1935 dbgs() << *AltOp << "\n"; 1936 else 1937 dbgs() << "NULL\n"; 1938 dbgs() << "VectorizedValue: "; 1939 if (VectorizedValue) 1940 dbgs() << *VectorizedValue << "\n"; 1941 else 1942 dbgs() << "NULL\n"; 1943 dbgs() << "ReuseShuffleIndices: "; 1944 if (ReuseShuffleIndices.empty()) 1945 dbgs() << "Empty"; 1946 else 1947 for (unsigned ReuseIdx : ReuseShuffleIndices) 1948 dbgs() << ReuseIdx << ", "; 1949 dbgs() << "\n"; 1950 dbgs() << "ReorderIndices: "; 1951 for (unsigned ReorderIdx : ReorderIndices) 1952 dbgs() << ReorderIdx << ", "; 1953 dbgs() << "\n"; 1954 dbgs() << "UserTreeIndices: "; 1955 for (const auto &EInfo : UserTreeIndices) 1956 dbgs() << EInfo << ", "; 1957 dbgs() << "\n"; 1958 } 1959 #endif 1960 }; 1961 1962 #ifndef NDEBUG 1963 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1964 InstructionCost VecCost, 1965 InstructionCost ScalarCost) const { 1966 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1967 dbgs() << "SLP: Costs:\n"; 1968 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1969 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1970 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1971 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1972 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1973 } 1974 #endif 1975 1976 /// Create a new VectorizableTree entry. 1977 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1978 const InstructionsState &S, 1979 const EdgeInfo &UserTreeIdx, 1980 ArrayRef<int> ReuseShuffleIndices = None, 1981 ArrayRef<unsigned> ReorderIndices = None) { 1982 TreeEntry::EntryState EntryState = 1983 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1984 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1985 ReuseShuffleIndices, ReorderIndices); 1986 } 1987 1988 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1989 TreeEntry::EntryState EntryState, 1990 Optional<ScheduleData *> Bundle, 1991 const InstructionsState &S, 1992 const EdgeInfo &UserTreeIdx, 1993 ArrayRef<int> ReuseShuffleIndices = None, 1994 ArrayRef<unsigned> ReorderIndices = None) { 1995 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1996 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1997 "Need to vectorize gather entry?"); 1998 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1999 TreeEntry *Last = VectorizableTree.back().get(); 2000 Last->Idx = VectorizableTree.size() - 1; 2001 Last->State = EntryState; 2002 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2003 ReuseShuffleIndices.end()); 2004 if (ReorderIndices.empty()) { 2005 Last->Scalars.assign(VL.begin(), VL.end()); 2006 Last->setOperations(S); 2007 } else { 2008 // Reorder scalars and build final mask. 2009 Last->Scalars.assign(VL.size(), nullptr); 2010 transform(ReorderIndices, Last->Scalars.begin(), 2011 [VL](unsigned Idx) -> Value * { 2012 if (Idx >= VL.size()) 2013 return UndefValue::get(VL.front()->getType()); 2014 return VL[Idx]; 2015 }); 2016 InstructionsState S = getSameOpcode(Last->Scalars); 2017 Last->setOperations(S); 2018 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2019 } 2020 if (Last->State != TreeEntry::NeedToGather) { 2021 for (Value *V : VL) { 2022 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2023 ScalarToTreeEntry[V] = Last; 2024 } 2025 // Update the scheduler bundle to point to this TreeEntry. 2026 unsigned Lane = 0; 2027 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2028 BundleMember = BundleMember->NextInBundle) { 2029 BundleMember->TE = Last; 2030 BundleMember->Lane = Lane; 2031 ++Lane; 2032 } 2033 assert((!Bundle.getValue() || Lane == VL.size()) && 2034 "Bundle and VL out of sync"); 2035 } else { 2036 MustGather.insert(VL.begin(), VL.end()); 2037 } 2038 2039 if (UserTreeIdx.UserTE) 2040 Last->UserTreeIndices.push_back(UserTreeIdx); 2041 2042 return Last; 2043 } 2044 2045 /// -- Vectorization State -- 2046 /// Holds all of the tree entries. 2047 TreeEntry::VecTreeTy VectorizableTree; 2048 2049 #ifndef NDEBUG 2050 /// Debug printer. 2051 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2052 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2053 VectorizableTree[Id]->dump(); 2054 dbgs() << "\n"; 2055 } 2056 } 2057 #endif 2058 2059 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2060 2061 const TreeEntry *getTreeEntry(Value *V) const { 2062 return ScalarToTreeEntry.lookup(V); 2063 } 2064 2065 /// Maps a specific scalar to its tree entry. 2066 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2067 2068 /// Maps a value to the proposed vectorizable size. 2069 SmallDenseMap<Value *, unsigned> InstrElementSize; 2070 2071 /// A list of scalars that we found that we need to keep as scalars. 2072 ValueSet MustGather; 2073 2074 /// This POD struct describes one external user in the vectorized tree. 2075 struct ExternalUser { 2076 ExternalUser(Value *S, llvm::User *U, int L) 2077 : Scalar(S), User(U), Lane(L) {} 2078 2079 // Which scalar in our function. 2080 Value *Scalar; 2081 2082 // Which user that uses the scalar. 2083 llvm::User *User; 2084 2085 // Which lane does the scalar belong to. 2086 int Lane; 2087 }; 2088 using UserList = SmallVector<ExternalUser, 16>; 2089 2090 /// Checks if two instructions may access the same memory. 2091 /// 2092 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2093 /// is invariant in the calling loop. 2094 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2095 Instruction *Inst2) { 2096 // First check if the result is already in the cache. 2097 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2098 Optional<bool> &result = AliasCache[key]; 2099 if (result.hasValue()) { 2100 return result.getValue(); 2101 } 2102 bool aliased = true; 2103 if (Loc1.Ptr && isSimple(Inst1)) 2104 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2105 // Store the result in the cache. 2106 result = aliased; 2107 return aliased; 2108 } 2109 2110 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2111 2112 /// Cache for alias results. 2113 /// TODO: consider moving this to the AliasAnalysis itself. 2114 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2115 2116 /// Removes an instruction from its block and eventually deletes it. 2117 /// It's like Instruction::eraseFromParent() except that the actual deletion 2118 /// is delayed until BoUpSLP is destructed. 2119 /// This is required to ensure that there are no incorrect collisions in the 2120 /// AliasCache, which can happen if a new instruction is allocated at the 2121 /// same address as a previously deleted instruction. 2122 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2123 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2124 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2125 } 2126 2127 /// Temporary store for deleted instructions. Instructions will be deleted 2128 /// eventually when the BoUpSLP is destructed. 2129 DenseMap<Instruction *, bool> DeletedInstructions; 2130 2131 /// A list of values that need to extracted out of the tree. 2132 /// This list holds pairs of (Internal Scalar : External User). External User 2133 /// can be nullptr, it means that this Internal Scalar will be used later, 2134 /// after vectorization. 2135 UserList ExternalUses; 2136 2137 /// Values used only by @llvm.assume calls. 2138 SmallPtrSet<const Value *, 32> EphValues; 2139 2140 /// Holds all of the instructions that we gathered. 2141 SetVector<Instruction *> GatherShuffleSeq; 2142 2143 /// A list of blocks that we are going to CSE. 2144 SetVector<BasicBlock *> CSEBlocks; 2145 2146 /// Contains all scheduling relevant data for an instruction. 2147 /// A ScheduleData either represents a single instruction or a member of an 2148 /// instruction bundle (= a group of instructions which is combined into a 2149 /// vector instruction). 2150 struct ScheduleData { 2151 // The initial value for the dependency counters. It means that the 2152 // dependencies are not calculated yet. 2153 enum { InvalidDeps = -1 }; 2154 2155 ScheduleData() = default; 2156 2157 void init(int BlockSchedulingRegionID, Value *OpVal) { 2158 FirstInBundle = this; 2159 NextInBundle = nullptr; 2160 NextLoadStore = nullptr; 2161 IsScheduled = false; 2162 SchedulingRegionID = BlockSchedulingRegionID; 2163 UnscheduledDepsInBundle = UnscheduledDeps; 2164 clearDependencies(); 2165 OpValue = OpVal; 2166 TE = nullptr; 2167 Lane = -1; 2168 } 2169 2170 /// Returns true if the dependency information has been calculated. 2171 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2172 2173 /// Returns true for single instructions and for bundle representatives 2174 /// (= the head of a bundle). 2175 bool isSchedulingEntity() const { return FirstInBundle == this; } 2176 2177 /// Returns true if it represents an instruction bundle and not only a 2178 /// single instruction. 2179 bool isPartOfBundle() const { 2180 return NextInBundle != nullptr || FirstInBundle != this; 2181 } 2182 2183 /// Returns true if it is ready for scheduling, i.e. it has no more 2184 /// unscheduled depending instructions/bundles. 2185 bool isReady() const { 2186 assert(isSchedulingEntity() && 2187 "can't consider non-scheduling entity for ready list"); 2188 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2189 } 2190 2191 /// Modifies the number of unscheduled dependencies, also updating it for 2192 /// the whole bundle. 2193 int incrementUnscheduledDeps(int Incr) { 2194 UnscheduledDeps += Incr; 2195 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2196 } 2197 2198 /// Sets the number of unscheduled dependencies to the number of 2199 /// dependencies. 2200 void resetUnscheduledDeps() { 2201 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2202 } 2203 2204 /// Clears all dependency information. 2205 void clearDependencies() { 2206 Dependencies = InvalidDeps; 2207 resetUnscheduledDeps(); 2208 MemoryDependencies.clear(); 2209 } 2210 2211 void dump(raw_ostream &os) const { 2212 if (!isSchedulingEntity()) { 2213 os << "/ " << *Inst; 2214 } else if (NextInBundle) { 2215 os << '[' << *Inst; 2216 ScheduleData *SD = NextInBundle; 2217 while (SD) { 2218 os << ';' << *SD->Inst; 2219 SD = SD->NextInBundle; 2220 } 2221 os << ']'; 2222 } else { 2223 os << *Inst; 2224 } 2225 } 2226 2227 Instruction *Inst = nullptr; 2228 2229 /// Points to the head in an instruction bundle (and always to this for 2230 /// single instructions). 2231 ScheduleData *FirstInBundle = nullptr; 2232 2233 /// Single linked list of all instructions in a bundle. Null if it is a 2234 /// single instruction. 2235 ScheduleData *NextInBundle = nullptr; 2236 2237 /// Single linked list of all memory instructions (e.g. load, store, call) 2238 /// in the block - until the end of the scheduling region. 2239 ScheduleData *NextLoadStore = nullptr; 2240 2241 /// The dependent memory instructions. 2242 /// This list is derived on demand in calculateDependencies(). 2243 SmallVector<ScheduleData *, 4> MemoryDependencies; 2244 2245 /// This ScheduleData is in the current scheduling region if this matches 2246 /// the current SchedulingRegionID of BlockScheduling. 2247 int SchedulingRegionID = 0; 2248 2249 /// Used for getting a "good" final ordering of instructions. 2250 int SchedulingPriority = 0; 2251 2252 /// The number of dependencies. Constitutes of the number of users of the 2253 /// instruction plus the number of dependent memory instructions (if any). 2254 /// This value is calculated on demand. 2255 /// If InvalidDeps, the number of dependencies is not calculated yet. 2256 int Dependencies = InvalidDeps; 2257 2258 /// The number of dependencies minus the number of dependencies of scheduled 2259 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2260 /// for scheduling. 2261 /// Note that this is negative as long as Dependencies is not calculated. 2262 int UnscheduledDeps = InvalidDeps; 2263 2264 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2265 /// single instructions. 2266 int UnscheduledDepsInBundle = InvalidDeps; 2267 2268 /// True if this instruction is scheduled (or considered as scheduled in the 2269 /// dry-run). 2270 bool IsScheduled = false; 2271 2272 /// Opcode of the current instruction in the schedule data. 2273 Value *OpValue = nullptr; 2274 2275 /// The TreeEntry that this instruction corresponds to. 2276 TreeEntry *TE = nullptr; 2277 2278 /// The lane of this node in the TreeEntry. 2279 int Lane = -1; 2280 }; 2281 2282 #ifndef NDEBUG 2283 friend inline raw_ostream &operator<<(raw_ostream &os, 2284 const BoUpSLP::ScheduleData &SD) { 2285 SD.dump(os); 2286 return os; 2287 } 2288 #endif 2289 2290 friend struct GraphTraits<BoUpSLP *>; 2291 friend struct DOTGraphTraits<BoUpSLP *>; 2292 2293 /// Contains all scheduling data for a basic block. 2294 struct BlockScheduling { 2295 BlockScheduling(BasicBlock *BB) 2296 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2297 2298 void clear() { 2299 ReadyInsts.clear(); 2300 ScheduleStart = nullptr; 2301 ScheduleEnd = nullptr; 2302 FirstLoadStoreInRegion = nullptr; 2303 LastLoadStoreInRegion = nullptr; 2304 2305 // Reduce the maximum schedule region size by the size of the 2306 // previous scheduling run. 2307 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2308 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2309 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2310 ScheduleRegionSize = 0; 2311 2312 // Make a new scheduling region, i.e. all existing ScheduleData is not 2313 // in the new region yet. 2314 ++SchedulingRegionID; 2315 } 2316 2317 ScheduleData *getScheduleData(Value *V) { 2318 ScheduleData *SD = ScheduleDataMap[V]; 2319 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2320 return SD; 2321 return nullptr; 2322 } 2323 2324 ScheduleData *getScheduleData(Value *V, Value *Key) { 2325 if (V == Key) 2326 return getScheduleData(V); 2327 auto I = ExtraScheduleDataMap.find(V); 2328 if (I != ExtraScheduleDataMap.end()) { 2329 ScheduleData *SD = I->second[Key]; 2330 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2331 return SD; 2332 } 2333 return nullptr; 2334 } 2335 2336 bool isInSchedulingRegion(ScheduleData *SD) const { 2337 return SD->SchedulingRegionID == SchedulingRegionID; 2338 } 2339 2340 /// Marks an instruction as scheduled and puts all dependent ready 2341 /// instructions into the ready-list. 2342 template <typename ReadyListType> 2343 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2344 SD->IsScheduled = true; 2345 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2346 2347 ScheduleData *BundleMember = SD; 2348 while (BundleMember) { 2349 if (BundleMember->Inst != BundleMember->OpValue) { 2350 BundleMember = BundleMember->NextInBundle; 2351 continue; 2352 } 2353 // Handle the def-use chain dependencies. 2354 2355 // Decrement the unscheduled counter and insert to ready list if ready. 2356 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2357 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2358 if (OpDef && OpDef->hasValidDependencies() && 2359 OpDef->incrementUnscheduledDeps(-1) == 0) { 2360 // There are no more unscheduled dependencies after 2361 // decrementing, so we can put the dependent instruction 2362 // into the ready list. 2363 ScheduleData *DepBundle = OpDef->FirstInBundle; 2364 assert(!DepBundle->IsScheduled && 2365 "already scheduled bundle gets ready"); 2366 ReadyList.insert(DepBundle); 2367 LLVM_DEBUG(dbgs() 2368 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2369 } 2370 }); 2371 }; 2372 2373 // If BundleMember is a vector bundle, its operands may have been 2374 // reordered duiring buildTree(). We therefore need to get its operands 2375 // through the TreeEntry. 2376 if (TreeEntry *TE = BundleMember->TE) { 2377 int Lane = BundleMember->Lane; 2378 assert(Lane >= 0 && "Lane not set"); 2379 2380 // Since vectorization tree is being built recursively this assertion 2381 // ensures that the tree entry has all operands set before reaching 2382 // this code. Couple of exceptions known at the moment are extracts 2383 // where their second (immediate) operand is not added. Since 2384 // immediates do not affect scheduler behavior this is considered 2385 // okay. 2386 auto *In = TE->getMainOp(); 2387 assert(In && 2388 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2389 In->getNumOperands() == TE->getNumOperands()) && 2390 "Missed TreeEntry operands?"); 2391 (void)In; // fake use to avoid build failure when assertions disabled 2392 2393 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2394 OpIdx != NumOperands; ++OpIdx) 2395 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2396 DecrUnsched(I); 2397 } else { 2398 // If BundleMember is a stand-alone instruction, no operand reordering 2399 // has taken place, so we directly access its operands. 2400 for (Use &U : BundleMember->Inst->operands()) 2401 if (auto *I = dyn_cast<Instruction>(U.get())) 2402 DecrUnsched(I); 2403 } 2404 // Handle the memory dependencies. 2405 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2406 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2407 // There are no more unscheduled dependencies after decrementing, 2408 // so we can put the dependent instruction into the ready list. 2409 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2410 assert(!DepBundle->IsScheduled && 2411 "already scheduled bundle gets ready"); 2412 ReadyList.insert(DepBundle); 2413 LLVM_DEBUG(dbgs() 2414 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2415 } 2416 } 2417 BundleMember = BundleMember->NextInBundle; 2418 } 2419 } 2420 2421 void doForAllOpcodes(Value *V, 2422 function_ref<void(ScheduleData *SD)> Action) { 2423 if (ScheduleData *SD = getScheduleData(V)) 2424 Action(SD); 2425 auto I = ExtraScheduleDataMap.find(V); 2426 if (I != ExtraScheduleDataMap.end()) 2427 for (auto &P : I->second) 2428 if (P.second->SchedulingRegionID == SchedulingRegionID) 2429 Action(P.second); 2430 } 2431 2432 /// Put all instructions into the ReadyList which are ready for scheduling. 2433 template <typename ReadyListType> 2434 void initialFillReadyList(ReadyListType &ReadyList) { 2435 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2436 doForAllOpcodes(I, [&](ScheduleData *SD) { 2437 if (SD->isSchedulingEntity() && SD->isReady()) { 2438 ReadyList.insert(SD); 2439 LLVM_DEBUG(dbgs() 2440 << "SLP: initially in ready list: " << *I << "\n"); 2441 } 2442 }); 2443 } 2444 } 2445 2446 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2447 /// cyclic dependencies. This is only a dry-run, no instructions are 2448 /// actually moved at this stage. 2449 /// \returns the scheduling bundle. The returned Optional value is non-None 2450 /// if \p VL is allowed to be scheduled. 2451 Optional<ScheduleData *> 2452 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2453 const InstructionsState &S); 2454 2455 /// Un-bundles a group of instructions. 2456 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2457 2458 /// Allocates schedule data chunk. 2459 ScheduleData *allocateScheduleDataChunks(); 2460 2461 /// Extends the scheduling region so that V is inside the region. 2462 /// \returns true if the region size is within the limit. 2463 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2464 2465 /// Initialize the ScheduleData structures for new instructions in the 2466 /// scheduling region. 2467 void initScheduleData(Instruction *FromI, Instruction *ToI, 2468 ScheduleData *PrevLoadStore, 2469 ScheduleData *NextLoadStore); 2470 2471 /// Updates the dependency information of a bundle and of all instructions/ 2472 /// bundles which depend on the original bundle. 2473 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2474 BoUpSLP *SLP); 2475 2476 /// Sets all instruction in the scheduling region to un-scheduled. 2477 void resetSchedule(); 2478 2479 BasicBlock *BB; 2480 2481 /// Simple memory allocation for ScheduleData. 2482 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2483 2484 /// The size of a ScheduleData array in ScheduleDataChunks. 2485 int ChunkSize; 2486 2487 /// The allocator position in the current chunk, which is the last entry 2488 /// of ScheduleDataChunks. 2489 int ChunkPos; 2490 2491 /// Attaches ScheduleData to Instruction. 2492 /// Note that the mapping survives during all vectorization iterations, i.e. 2493 /// ScheduleData structures are recycled. 2494 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2495 2496 /// Attaches ScheduleData to Instruction with the leading key. 2497 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2498 ExtraScheduleDataMap; 2499 2500 struct ReadyList : SmallVector<ScheduleData *, 8> { 2501 void insert(ScheduleData *SD) { push_back(SD); } 2502 }; 2503 2504 /// The ready-list for scheduling (only used for the dry-run). 2505 ReadyList ReadyInsts; 2506 2507 /// The first instruction of the scheduling region. 2508 Instruction *ScheduleStart = nullptr; 2509 2510 /// The first instruction _after_ the scheduling region. 2511 Instruction *ScheduleEnd = nullptr; 2512 2513 /// The first memory accessing instruction in the scheduling region 2514 /// (can be null). 2515 ScheduleData *FirstLoadStoreInRegion = nullptr; 2516 2517 /// The last memory accessing instruction in the scheduling region 2518 /// (can be null). 2519 ScheduleData *LastLoadStoreInRegion = nullptr; 2520 2521 /// The current size of the scheduling region. 2522 int ScheduleRegionSize = 0; 2523 2524 /// The maximum size allowed for the scheduling region. 2525 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2526 2527 /// The ID of the scheduling region. For a new vectorization iteration this 2528 /// is incremented which "removes" all ScheduleData from the region. 2529 // Make sure that the initial SchedulingRegionID is greater than the 2530 // initial SchedulingRegionID in ScheduleData (which is 0). 2531 int SchedulingRegionID = 1; 2532 }; 2533 2534 /// Attaches the BlockScheduling structures to basic blocks. 2535 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2536 2537 /// Performs the "real" scheduling. Done before vectorization is actually 2538 /// performed in a basic block. 2539 void scheduleBlock(BlockScheduling *BS); 2540 2541 /// List of users to ignore during scheduling and that don't need extracting. 2542 ArrayRef<Value *> UserIgnoreList; 2543 2544 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2545 /// sorted SmallVectors of unsigned. 2546 struct OrdersTypeDenseMapInfo { 2547 static OrdersType getEmptyKey() { 2548 OrdersType V; 2549 V.push_back(~1U); 2550 return V; 2551 } 2552 2553 static OrdersType getTombstoneKey() { 2554 OrdersType V; 2555 V.push_back(~2U); 2556 return V; 2557 } 2558 2559 static unsigned getHashValue(const OrdersType &V) { 2560 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2561 } 2562 2563 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2564 return LHS == RHS; 2565 } 2566 }; 2567 2568 // Analysis and block reference. 2569 Function *F; 2570 ScalarEvolution *SE; 2571 TargetTransformInfo *TTI; 2572 TargetLibraryInfo *TLI; 2573 AAResults *AA; 2574 LoopInfo *LI; 2575 DominatorTree *DT; 2576 AssumptionCache *AC; 2577 DemandedBits *DB; 2578 const DataLayout *DL; 2579 OptimizationRemarkEmitter *ORE; 2580 2581 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2582 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2583 2584 /// Instruction builder to construct the vectorized tree. 2585 IRBuilder<> Builder; 2586 2587 /// A map of scalar integer values to the smallest bit width with which they 2588 /// can legally be represented. The values map to (width, signed) pairs, 2589 /// where "width" indicates the minimum bit width and "signed" is True if the 2590 /// value must be signed-extended, rather than zero-extended, back to its 2591 /// original width. 2592 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2593 }; 2594 2595 } // end namespace slpvectorizer 2596 2597 template <> struct GraphTraits<BoUpSLP *> { 2598 using TreeEntry = BoUpSLP::TreeEntry; 2599 2600 /// NodeRef has to be a pointer per the GraphWriter. 2601 using NodeRef = TreeEntry *; 2602 2603 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2604 2605 /// Add the VectorizableTree to the index iterator to be able to return 2606 /// TreeEntry pointers. 2607 struct ChildIteratorType 2608 : public iterator_adaptor_base< 2609 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2610 ContainerTy &VectorizableTree; 2611 2612 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2613 ContainerTy &VT) 2614 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2615 2616 NodeRef operator*() { return I->UserTE; } 2617 }; 2618 2619 static NodeRef getEntryNode(BoUpSLP &R) { 2620 return R.VectorizableTree[0].get(); 2621 } 2622 2623 static ChildIteratorType child_begin(NodeRef N) { 2624 return {N->UserTreeIndices.begin(), N->Container}; 2625 } 2626 2627 static ChildIteratorType child_end(NodeRef N) { 2628 return {N->UserTreeIndices.end(), N->Container}; 2629 } 2630 2631 /// For the node iterator we just need to turn the TreeEntry iterator into a 2632 /// TreeEntry* iterator so that it dereferences to NodeRef. 2633 class nodes_iterator { 2634 using ItTy = ContainerTy::iterator; 2635 ItTy It; 2636 2637 public: 2638 nodes_iterator(const ItTy &It2) : It(It2) {} 2639 NodeRef operator*() { return It->get(); } 2640 nodes_iterator operator++() { 2641 ++It; 2642 return *this; 2643 } 2644 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2645 }; 2646 2647 static nodes_iterator nodes_begin(BoUpSLP *R) { 2648 return nodes_iterator(R->VectorizableTree.begin()); 2649 } 2650 2651 static nodes_iterator nodes_end(BoUpSLP *R) { 2652 return nodes_iterator(R->VectorizableTree.end()); 2653 } 2654 2655 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2656 }; 2657 2658 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2659 using TreeEntry = BoUpSLP::TreeEntry; 2660 2661 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2662 2663 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2664 std::string Str; 2665 raw_string_ostream OS(Str); 2666 if (isSplat(Entry->Scalars)) 2667 OS << "<splat> "; 2668 for (auto V : Entry->Scalars) { 2669 OS << *V; 2670 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2671 return EU.Scalar == V; 2672 })) 2673 OS << " <extract>"; 2674 OS << "\n"; 2675 } 2676 return Str; 2677 } 2678 2679 static std::string getNodeAttributes(const TreeEntry *Entry, 2680 const BoUpSLP *) { 2681 if (Entry->State == TreeEntry::NeedToGather) 2682 return "color=red"; 2683 return ""; 2684 } 2685 }; 2686 2687 } // end namespace llvm 2688 2689 BoUpSLP::~BoUpSLP() { 2690 for (const auto &Pair : DeletedInstructions) { 2691 // Replace operands of ignored instructions with Undefs in case if they were 2692 // marked for deletion. 2693 if (Pair.getSecond()) { 2694 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2695 Pair.getFirst()->replaceAllUsesWith(Undef); 2696 } 2697 Pair.getFirst()->dropAllReferences(); 2698 } 2699 for (const auto &Pair : DeletedInstructions) { 2700 assert(Pair.getFirst()->use_empty() && 2701 "trying to erase instruction with users."); 2702 Pair.getFirst()->eraseFromParent(); 2703 } 2704 #ifdef EXPENSIVE_CHECKS 2705 // If we could guarantee that this call is not extremely slow, we could 2706 // remove the ifdef limitation (see PR47712). 2707 assert(!verifyFunction(*F, &dbgs())); 2708 #endif 2709 } 2710 2711 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2712 for (auto *V : AV) { 2713 if (auto *I = dyn_cast<Instruction>(V)) 2714 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2715 }; 2716 } 2717 2718 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2719 /// contains original mask for the scalars reused in the node. Procedure 2720 /// transform this mask in accordance with the given \p Mask. 2721 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2722 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2723 "Expected non-empty mask."); 2724 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2725 Prev.swap(Reuses); 2726 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2727 if (Mask[I] != UndefMaskElem) 2728 Reuses[Mask[I]] = Prev[I]; 2729 } 2730 2731 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2732 /// the original order of the scalars. Procedure transforms the provided order 2733 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2734 /// identity order, \p Order is cleared. 2735 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2736 assert(!Mask.empty() && "Expected non-empty mask."); 2737 SmallVector<int> MaskOrder; 2738 if (Order.empty()) { 2739 MaskOrder.resize(Mask.size()); 2740 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2741 } else { 2742 inversePermutation(Order, MaskOrder); 2743 } 2744 reorderReuses(MaskOrder, Mask); 2745 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2746 Order.clear(); 2747 return; 2748 } 2749 Order.assign(Mask.size(), Mask.size()); 2750 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2751 if (MaskOrder[I] != UndefMaskElem) 2752 Order[MaskOrder[I]] = I; 2753 fixupOrderingIndices(Order); 2754 } 2755 2756 Optional<BoUpSLP::OrdersType> 2757 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2758 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2759 unsigned NumScalars = TE.Scalars.size(); 2760 OrdersType CurrentOrder(NumScalars, NumScalars); 2761 SmallVector<int> Positions; 2762 SmallBitVector UsedPositions(NumScalars); 2763 const TreeEntry *STE = nullptr; 2764 // Try to find all gathered scalars that are gets vectorized in other 2765 // vectorize node. Here we can have only one single tree vector node to 2766 // correctly identify order of the gathered scalars. 2767 for (unsigned I = 0; I < NumScalars; ++I) { 2768 Value *V = TE.Scalars[I]; 2769 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2770 continue; 2771 if (const auto *LocalSTE = getTreeEntry(V)) { 2772 if (!STE) 2773 STE = LocalSTE; 2774 else if (STE != LocalSTE) 2775 // Take the order only from the single vector node. 2776 return None; 2777 unsigned Lane = 2778 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2779 if (Lane >= NumScalars) 2780 return None; 2781 if (CurrentOrder[Lane] != NumScalars) { 2782 if (Lane != I) 2783 continue; 2784 UsedPositions.reset(CurrentOrder[Lane]); 2785 } 2786 // The partial identity (where only some elements of the gather node are 2787 // in the identity order) is good. 2788 CurrentOrder[Lane] = I; 2789 UsedPositions.set(I); 2790 } 2791 } 2792 // Need to keep the order if we have a vector entry and at least 2 scalars or 2793 // the vectorized entry has just 2 scalars. 2794 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2795 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2796 for (unsigned I = 0; I < NumScalars; ++I) 2797 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2798 return false; 2799 return true; 2800 }; 2801 if (IsIdentityOrder(CurrentOrder)) { 2802 CurrentOrder.clear(); 2803 return CurrentOrder; 2804 } 2805 auto *It = CurrentOrder.begin(); 2806 for (unsigned I = 0; I < NumScalars;) { 2807 if (UsedPositions.test(I)) { 2808 ++I; 2809 continue; 2810 } 2811 if (*It == NumScalars) { 2812 *It = I; 2813 ++I; 2814 } 2815 ++It; 2816 } 2817 return CurrentOrder; 2818 } 2819 return None; 2820 } 2821 2822 void BoUpSLP::reorderTopToBottom() { 2823 // Maps VF to the graph nodes. 2824 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2825 // ExtractElement gather nodes which can be vectorized and need to handle 2826 // their ordering. 2827 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2828 // Find all reorderable nodes with the given VF. 2829 // Currently the are vectorized loads,extracts + some gathering of extracts. 2830 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2831 const std::unique_ptr<TreeEntry> &TE) { 2832 // No need to reorder if need to shuffle reuses, still need to shuffle the 2833 // node. 2834 if (!TE->ReuseShuffleIndices.empty()) 2835 return; 2836 if (TE->State == TreeEntry::Vectorize && 2837 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2838 InsertElementInst>(TE->getMainOp()) && 2839 !TE->isAltShuffle()) { 2840 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2841 return; 2842 } 2843 if (TE->State == TreeEntry::NeedToGather) { 2844 if (TE->getOpcode() == Instruction::ExtractElement && 2845 !TE->isAltShuffle() && 2846 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2847 ->getVectorOperandType()) && 2848 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2849 // Check that gather of extractelements can be represented as 2850 // just a shuffle of a single vector. 2851 OrdersType CurrentOrder; 2852 bool Reuse = 2853 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2854 if (Reuse || !CurrentOrder.empty()) { 2855 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2856 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2857 return; 2858 } 2859 } 2860 if (Optional<OrdersType> CurrentOrder = 2861 findReusedOrderedScalars(*TE.get())) { 2862 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2863 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2864 } 2865 } 2866 }); 2867 2868 // Reorder the graph nodes according to their vectorization factor. 2869 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2870 VF /= 2) { 2871 auto It = VFToOrderedEntries.find(VF); 2872 if (It == VFToOrderedEntries.end()) 2873 continue; 2874 // Try to find the most profitable order. We just are looking for the most 2875 // used order and reorder scalar elements in the nodes according to this 2876 // mostly used order. 2877 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2878 // All operands are reordered and used only in this node - propagate the 2879 // most used order to the user node. 2880 MapVector<OrdersType, unsigned, 2881 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 2882 OrdersUses; 2883 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2884 for (const TreeEntry *OpTE : OrderedEntries) { 2885 // No need to reorder this nodes, still need to extend and to use shuffle, 2886 // just need to merge reordering shuffle and the reuse shuffle. 2887 if (!OpTE->ReuseShuffleIndices.empty()) 2888 continue; 2889 // Count number of orders uses. 2890 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2891 if (OpTE->State == TreeEntry::NeedToGather) 2892 return GathersToOrders.find(OpTE)->second; 2893 return OpTE->ReorderIndices; 2894 }(); 2895 // Stores actually store the mask, not the order, need to invert. 2896 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2897 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2898 SmallVector<int> Mask; 2899 inversePermutation(Order, Mask); 2900 unsigned E = Order.size(); 2901 OrdersType CurrentOrder(E, E); 2902 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2903 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2904 }); 2905 fixupOrderingIndices(CurrentOrder); 2906 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 2907 } else { 2908 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 2909 } 2910 } 2911 // Set order of the user node. 2912 if (OrdersUses.empty()) 2913 continue; 2914 // Choose the most used order. 2915 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 2916 unsigned Cnt = OrdersUses.front().second; 2917 for (const auto &Pair : drop_begin(OrdersUses)) { 2918 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2919 BestOrder = Pair.first; 2920 Cnt = Pair.second; 2921 } 2922 } 2923 // Set order of the user node. 2924 if (BestOrder.empty()) 2925 continue; 2926 SmallVector<int> Mask; 2927 inversePermutation(BestOrder, Mask); 2928 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2929 unsigned E = BestOrder.size(); 2930 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2931 return I < E ? static_cast<int>(I) : UndefMaskElem; 2932 }); 2933 // Do an actual reordering, if profitable. 2934 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2935 // Just do the reordering for the nodes with the given VF. 2936 if (TE->Scalars.size() != VF) { 2937 if (TE->ReuseShuffleIndices.size() == VF) { 2938 // Need to reorder the reuses masks of the operands with smaller VF to 2939 // be able to find the match between the graph nodes and scalar 2940 // operands of the given node during vectorization/cost estimation. 2941 assert(all_of(TE->UserTreeIndices, 2942 [VF, &TE](const EdgeInfo &EI) { 2943 return EI.UserTE->Scalars.size() == VF || 2944 EI.UserTE->Scalars.size() == 2945 TE->Scalars.size(); 2946 }) && 2947 "All users must be of VF size."); 2948 // Update ordering of the operands with the smaller VF than the given 2949 // one. 2950 reorderReuses(TE->ReuseShuffleIndices, Mask); 2951 } 2952 continue; 2953 } 2954 if (TE->State == TreeEntry::Vectorize && 2955 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2956 InsertElementInst>(TE->getMainOp()) && 2957 !TE->isAltShuffle()) { 2958 // Build correct orders for extract{element,value}, loads and 2959 // stores. 2960 reorderOrder(TE->ReorderIndices, Mask); 2961 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2962 TE->reorderOperands(Mask); 2963 } else { 2964 // Reorder the node and its operands. 2965 TE->reorderOperands(Mask); 2966 assert(TE->ReorderIndices.empty() && 2967 "Expected empty reorder sequence."); 2968 reorderScalars(TE->Scalars, Mask); 2969 } 2970 if (!TE->ReuseShuffleIndices.empty()) { 2971 // Apply reversed order to keep the original ordering of the reused 2972 // elements to avoid extra reorder indices shuffling. 2973 OrdersType CurrentOrder; 2974 reorderOrder(CurrentOrder, MaskOrder); 2975 SmallVector<int> NewReuses; 2976 inversePermutation(CurrentOrder, NewReuses); 2977 addMask(NewReuses, TE->ReuseShuffleIndices); 2978 TE->ReuseShuffleIndices.swap(NewReuses); 2979 } 2980 } 2981 } 2982 } 2983 2984 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 2985 SetVector<TreeEntry *> OrderedEntries; 2986 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2987 // Find all reorderable leaf nodes with the given VF. 2988 // Currently the are vectorized loads,extracts without alternate operands + 2989 // some gathering of extracts. 2990 SmallVector<TreeEntry *> NonVectorized; 2991 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2992 &NonVectorized]( 2993 const std::unique_ptr<TreeEntry> &TE) { 2994 if (TE->State != TreeEntry::Vectorize) 2995 NonVectorized.push_back(TE.get()); 2996 // No need to reorder if need to shuffle reuses, still need to shuffle the 2997 // node. 2998 if (!TE->ReuseShuffleIndices.empty()) 2999 return; 3000 if (TE->State == TreeEntry::Vectorize && 3001 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 3002 !TE->isAltShuffle()) { 3003 OrderedEntries.insert(TE.get()); 3004 return; 3005 } 3006 if (TE->State == TreeEntry::NeedToGather) { 3007 if (TE->getOpcode() == Instruction::ExtractElement && 3008 !TE->isAltShuffle() && 3009 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 3010 ->getVectorOperandType()) && 3011 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 3012 // Check that gather of extractelements can be represented as 3013 // just a shuffle of a single vector with a single user only. 3014 OrdersType CurrentOrder; 3015 bool Reuse = 3016 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 3017 if ((Reuse || !CurrentOrder.empty()) && 3018 !any_of(VectorizableTree, 3019 [&TE](const std::unique_ptr<TreeEntry> &Entry) { 3020 return Entry->State == TreeEntry::NeedToGather && 3021 Entry.get() != TE.get() && 3022 Entry->isSame(TE->Scalars); 3023 })) { 3024 OrderedEntries.insert(TE.get()); 3025 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 3026 return; 3027 } 3028 } 3029 if (Optional<OrdersType> CurrentOrder = 3030 findReusedOrderedScalars(*TE.get())) { 3031 OrderedEntries.insert(TE.get()); 3032 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3033 } 3034 } 3035 }); 3036 3037 // Checks if the operands of the users are reordarable and have only single 3038 // use. 3039 auto &&CheckOperands = 3040 [this, &NonVectorized](const auto &Data, 3041 SmallVectorImpl<TreeEntry *> &GatherOps) { 3042 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3043 if (any_of(Data.second, 3044 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3045 return OpData.first == I && 3046 OpData.second->State == TreeEntry::Vectorize; 3047 })) 3048 continue; 3049 ArrayRef<Value *> VL = Data.first->getOperand(I); 3050 const TreeEntry *TE = nullptr; 3051 const auto *It = find_if(VL, [this, &TE](Value *V) { 3052 TE = getTreeEntry(V); 3053 return TE; 3054 }); 3055 if (It != VL.end() && TE->isSame(VL)) 3056 return false; 3057 TreeEntry *Gather = nullptr; 3058 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3059 assert(TE->State != TreeEntry::Vectorize && 3060 "Only non-vectorized nodes are expected."); 3061 if (TE->isSame(VL)) { 3062 Gather = TE; 3063 return true; 3064 } 3065 return false; 3066 }) > 1) 3067 return false; 3068 if (Gather) 3069 GatherOps.push_back(Gather); 3070 } 3071 return true; 3072 }; 3073 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3074 // I.e., if the node has operands, that are reordered, try to make at least 3075 // one operand order in the natural order and reorder others + reorder the 3076 // user node itself. 3077 SmallPtrSet<const TreeEntry *, 4> Visited; 3078 while (!OrderedEntries.empty()) { 3079 // 1. Filter out only reordered nodes. 3080 // 2. If the entry has multiple uses - skip it and jump to the next node. 3081 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3082 SmallVector<TreeEntry *> Filtered; 3083 for (TreeEntry *TE : OrderedEntries) { 3084 if (!(TE->State == TreeEntry::Vectorize || 3085 (TE->State == TreeEntry::NeedToGather && 3086 GathersToOrders.count(TE))) || 3087 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3088 !all_of(drop_begin(TE->UserTreeIndices), 3089 [TE](const EdgeInfo &EI) { 3090 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3091 }) || 3092 !Visited.insert(TE).second) { 3093 Filtered.push_back(TE); 3094 continue; 3095 } 3096 // Build a map between user nodes and their operands order to speedup 3097 // search. The graph currently does not provide this dependency directly. 3098 for (EdgeInfo &EI : TE->UserTreeIndices) { 3099 TreeEntry *UserTE = EI.UserTE; 3100 auto It = Users.find(UserTE); 3101 if (It == Users.end()) 3102 It = Users.insert({UserTE, {}}).first; 3103 It->second.emplace_back(EI.EdgeIdx, TE); 3104 } 3105 } 3106 // Erase filtered entries. 3107 for_each(Filtered, 3108 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3109 for (const auto &Data : Users) { 3110 // Check that operands are used only in the User node. 3111 SmallVector<TreeEntry *> GatherOps; 3112 if (!CheckOperands(Data, GatherOps)) { 3113 for_each(Data.second, 3114 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3115 OrderedEntries.remove(Op.second); 3116 }); 3117 continue; 3118 } 3119 // All operands are reordered and used only in this node - propagate the 3120 // most used order to the user node. 3121 MapVector<OrdersType, unsigned, 3122 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3123 OrdersUses; 3124 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3125 for (const auto &Op : Data.second) { 3126 TreeEntry *OpTE = Op.second; 3127 if (!OpTE->ReuseShuffleIndices.empty() || 3128 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3129 continue; 3130 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3131 if (OpTE->State == TreeEntry::NeedToGather) 3132 return GathersToOrders.find(OpTE)->second; 3133 return OpTE->ReorderIndices; 3134 }(); 3135 // Stores actually store the mask, not the order, need to invert. 3136 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3137 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3138 SmallVector<int> Mask; 3139 inversePermutation(Order, Mask); 3140 unsigned E = Order.size(); 3141 OrdersType CurrentOrder(E, E); 3142 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3143 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3144 }); 3145 fixupOrderingIndices(CurrentOrder); 3146 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3147 } else { 3148 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3149 } 3150 if (VisitedOps.insert(OpTE).second) 3151 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3152 OpTE->UserTreeIndices.size(); 3153 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3154 --OrdersUses[{}]; 3155 } 3156 // If no orders - skip current nodes and jump to the next one, if any. 3157 if (OrdersUses.empty()) { 3158 for_each(Data.second, 3159 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3160 OrderedEntries.remove(Op.second); 3161 }); 3162 continue; 3163 } 3164 // Choose the best order. 3165 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3166 unsigned Cnt = OrdersUses.front().second; 3167 for (const auto &Pair : drop_begin(OrdersUses)) { 3168 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3169 BestOrder = Pair.first; 3170 Cnt = Pair.second; 3171 } 3172 } 3173 // Set order of the user node (reordering of operands and user nodes). 3174 if (BestOrder.empty()) { 3175 for_each(Data.second, 3176 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3177 OrderedEntries.remove(Op.second); 3178 }); 3179 continue; 3180 } 3181 // Erase operands from OrderedEntries list and adjust their orders. 3182 VisitedOps.clear(); 3183 SmallVector<int> Mask; 3184 inversePermutation(BestOrder, Mask); 3185 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3186 unsigned E = BestOrder.size(); 3187 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3188 return I < E ? static_cast<int>(I) : UndefMaskElem; 3189 }); 3190 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3191 TreeEntry *TE = Op.second; 3192 OrderedEntries.remove(TE); 3193 if (!VisitedOps.insert(TE).second) 3194 continue; 3195 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3196 // Just reorder reuses indices. 3197 reorderReuses(TE->ReuseShuffleIndices, Mask); 3198 continue; 3199 } 3200 // Gathers are processed separately. 3201 if (TE->State != TreeEntry::Vectorize) 3202 continue; 3203 assert((BestOrder.size() == TE->ReorderIndices.size() || 3204 TE->ReorderIndices.empty()) && 3205 "Non-matching sizes of user/operand entries."); 3206 reorderOrder(TE->ReorderIndices, Mask); 3207 } 3208 // For gathers just need to reorder its scalars. 3209 for (TreeEntry *Gather : GatherOps) { 3210 assert(Gather->ReorderIndices.empty() && 3211 "Unexpected reordering of gathers."); 3212 if (!Gather->ReuseShuffleIndices.empty()) { 3213 // Just reorder reuses indices. 3214 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3215 continue; 3216 } 3217 reorderScalars(Gather->Scalars, Mask); 3218 OrderedEntries.remove(Gather); 3219 } 3220 // Reorder operands of the user node and set the ordering for the user 3221 // node itself. 3222 if (Data.first->State != TreeEntry::Vectorize || 3223 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3224 Data.first->getMainOp()) || 3225 Data.first->isAltShuffle()) 3226 Data.first->reorderOperands(Mask); 3227 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3228 Data.first->isAltShuffle()) { 3229 reorderScalars(Data.first->Scalars, Mask); 3230 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3231 if (Data.first->ReuseShuffleIndices.empty() && 3232 !Data.first->ReorderIndices.empty() && 3233 !Data.first->isAltShuffle()) { 3234 // Insert user node to the list to try to sink reordering deeper in 3235 // the graph. 3236 OrderedEntries.insert(Data.first); 3237 } 3238 } else { 3239 reorderOrder(Data.first->ReorderIndices, Mask); 3240 } 3241 } 3242 } 3243 // If the reordering is unnecessary, just remove the reorder. 3244 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3245 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3246 VectorizableTree.front()->ReorderIndices.clear(); 3247 } 3248 3249 void BoUpSLP::buildExternalUses( 3250 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3251 // Collect the values that we need to extract from the tree. 3252 for (auto &TEPtr : VectorizableTree) { 3253 TreeEntry *Entry = TEPtr.get(); 3254 3255 // No need to handle users of gathered values. 3256 if (Entry->State == TreeEntry::NeedToGather) 3257 continue; 3258 3259 // For each lane: 3260 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3261 Value *Scalar = Entry->Scalars[Lane]; 3262 int FoundLane = Entry->findLaneForValue(Scalar); 3263 3264 // Check if the scalar is externally used as an extra arg. 3265 auto ExtI = ExternallyUsedValues.find(Scalar); 3266 if (ExtI != ExternallyUsedValues.end()) { 3267 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3268 << Lane << " from " << *Scalar << ".\n"); 3269 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3270 } 3271 for (User *U : Scalar->users()) { 3272 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3273 3274 Instruction *UserInst = dyn_cast<Instruction>(U); 3275 if (!UserInst) 3276 continue; 3277 3278 if (isDeleted(UserInst)) 3279 continue; 3280 3281 // Skip in-tree scalars that become vectors 3282 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3283 Value *UseScalar = UseEntry->Scalars[0]; 3284 // Some in-tree scalars will remain as scalar in vectorized 3285 // instructions. If that is the case, the one in Lane 0 will 3286 // be used. 3287 if (UseScalar != U || 3288 UseEntry->State == TreeEntry::ScatterVectorize || 3289 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3290 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3291 << ".\n"); 3292 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3293 continue; 3294 } 3295 } 3296 3297 // Ignore users in the user ignore list. 3298 if (is_contained(UserIgnoreList, UserInst)) 3299 continue; 3300 3301 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3302 << Lane << " from " << *Scalar << ".\n"); 3303 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3304 } 3305 } 3306 } 3307 } 3308 3309 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3310 ArrayRef<Value *> UserIgnoreLst) { 3311 deleteTree(); 3312 UserIgnoreList = UserIgnoreLst; 3313 if (!allSameType(Roots)) 3314 return; 3315 buildTree_rec(Roots, 0, EdgeInfo()); 3316 } 3317 3318 namespace { 3319 /// Tracks the state we can represent the loads in the given sequence. 3320 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3321 } // anonymous namespace 3322 3323 /// Checks if the given array of loads can be represented as a vectorized, 3324 /// scatter or just simple gather. 3325 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3326 const TargetTransformInfo &TTI, 3327 const DataLayout &DL, ScalarEvolution &SE, 3328 SmallVectorImpl<unsigned> &Order, 3329 SmallVectorImpl<Value *> &PointerOps) { 3330 // Check that a vectorized load would load the same memory as a scalar 3331 // load. For example, we don't want to vectorize loads that are smaller 3332 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3333 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3334 // from such a struct, we read/write packed bits disagreeing with the 3335 // unvectorized version. 3336 Type *ScalarTy = VL0->getType(); 3337 3338 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3339 return LoadsState::Gather; 3340 3341 // Make sure all loads in the bundle are simple - we can't vectorize 3342 // atomic or volatile loads. 3343 PointerOps.clear(); 3344 PointerOps.resize(VL.size()); 3345 auto *POIter = PointerOps.begin(); 3346 for (Value *V : VL) { 3347 auto *L = cast<LoadInst>(V); 3348 if (!L->isSimple()) 3349 return LoadsState::Gather; 3350 *POIter = L->getPointerOperand(); 3351 ++POIter; 3352 } 3353 3354 Order.clear(); 3355 // Check the order of pointer operands. 3356 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3357 Value *Ptr0; 3358 Value *PtrN; 3359 if (Order.empty()) { 3360 Ptr0 = PointerOps.front(); 3361 PtrN = PointerOps.back(); 3362 } else { 3363 Ptr0 = PointerOps[Order.front()]; 3364 PtrN = PointerOps[Order.back()]; 3365 } 3366 Optional<int> Diff = 3367 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3368 // Check that the sorted loads are consecutive. 3369 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3370 return LoadsState::Vectorize; 3371 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3372 for (Value *V : VL) 3373 CommonAlignment = 3374 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3375 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3376 CommonAlignment)) 3377 return LoadsState::ScatterVectorize; 3378 } 3379 3380 return LoadsState::Gather; 3381 } 3382 3383 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3384 const EdgeInfo &UserTreeIdx) { 3385 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3386 3387 SmallVector<int> ReuseShuffleIndicies; 3388 SmallVector<Value *> UniqueValues; 3389 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3390 &UserTreeIdx, 3391 this](const InstructionsState &S) { 3392 // Check that every instruction appears once in this bundle. 3393 DenseMap<Value *, unsigned> UniquePositions; 3394 for (Value *V : VL) { 3395 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3396 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3397 : Res.first->second); 3398 if (Res.second) 3399 UniqueValues.emplace_back(V); 3400 } 3401 size_t NumUniqueScalarValues = UniqueValues.size(); 3402 if (NumUniqueScalarValues == VL.size()) { 3403 ReuseShuffleIndicies.clear(); 3404 } else { 3405 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3406 if (NumUniqueScalarValues <= 1 || 3407 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3408 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3409 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3410 return false; 3411 } 3412 VL = UniqueValues; 3413 } 3414 return true; 3415 }; 3416 3417 InstructionsState S = getSameOpcode(VL); 3418 if (Depth == RecursionMaxDepth) { 3419 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3420 if (TryToFindDuplicates(S)) 3421 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3422 ReuseShuffleIndicies); 3423 return; 3424 } 3425 3426 // Don't handle scalable vectors 3427 if (S.getOpcode() == Instruction::ExtractElement && 3428 isa<ScalableVectorType>( 3429 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3430 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3431 if (TryToFindDuplicates(S)) 3432 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3433 ReuseShuffleIndicies); 3434 return; 3435 } 3436 3437 // Don't handle vectors. 3438 if (S.OpValue->getType()->isVectorTy() && 3439 !isa<InsertElementInst>(S.OpValue)) { 3440 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3441 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3442 return; 3443 } 3444 3445 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3446 if (SI->getValueOperand()->getType()->isVectorTy()) { 3447 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3448 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3449 return; 3450 } 3451 3452 // If all of the operands are identical or constant we have a simple solution. 3453 // If we deal with insert/extract instructions, they all must have constant 3454 // indices, otherwise we should gather them, not try to vectorize. 3455 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3456 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3457 !all_of(VL, isVectorLikeInstWithConstOps))) { 3458 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3459 if (TryToFindDuplicates(S)) 3460 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3461 ReuseShuffleIndicies); 3462 return; 3463 } 3464 3465 // We now know that this is a vector of instructions of the same type from 3466 // the same block. 3467 3468 // Don't vectorize ephemeral values. 3469 for (Value *V : VL) { 3470 if (EphValues.count(V)) { 3471 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3472 << ") is ephemeral.\n"); 3473 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3474 return; 3475 } 3476 } 3477 3478 // Check if this is a duplicate of another entry. 3479 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3480 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3481 if (!E->isSame(VL)) { 3482 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3483 if (TryToFindDuplicates(S)) 3484 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3485 ReuseShuffleIndicies); 3486 return; 3487 } 3488 // Record the reuse of the tree node. FIXME, currently this is only used to 3489 // properly draw the graph rather than for the actual vectorization. 3490 E->UserTreeIndices.push_back(UserTreeIdx); 3491 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3492 << ".\n"); 3493 return; 3494 } 3495 3496 // Check that none of the instructions in the bundle are already in the tree. 3497 for (Value *V : VL) { 3498 auto *I = dyn_cast<Instruction>(V); 3499 if (!I) 3500 continue; 3501 if (getTreeEntry(I)) { 3502 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3503 << ") is already in tree.\n"); 3504 if (TryToFindDuplicates(S)) 3505 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3506 ReuseShuffleIndicies); 3507 return; 3508 } 3509 } 3510 3511 // If any of the scalars is marked as a value that needs to stay scalar, then 3512 // we need to gather the scalars. 3513 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3514 for (Value *V : VL) { 3515 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3516 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3517 if (TryToFindDuplicates(S)) 3518 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3519 ReuseShuffleIndicies); 3520 return; 3521 } 3522 } 3523 3524 // Check that all of the users of the scalars that we want to vectorize are 3525 // schedulable. 3526 auto *VL0 = cast<Instruction>(S.OpValue); 3527 BasicBlock *BB = VL0->getParent(); 3528 3529 if (!DT->isReachableFromEntry(BB)) { 3530 // Don't go into unreachable blocks. They may contain instructions with 3531 // dependency cycles which confuse the final scheduling. 3532 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3533 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3534 return; 3535 } 3536 3537 // Check that every instruction appears once in this bundle. 3538 if (!TryToFindDuplicates(S)) 3539 return; 3540 3541 auto &BSRef = BlocksSchedules[BB]; 3542 if (!BSRef) 3543 BSRef = std::make_unique<BlockScheduling>(BB); 3544 3545 BlockScheduling &BS = *BSRef.get(); 3546 3547 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3548 if (!Bundle) { 3549 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3550 assert((!BS.getScheduleData(VL0) || 3551 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3552 "tryScheduleBundle should cancelScheduling on failure"); 3553 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3554 ReuseShuffleIndicies); 3555 return; 3556 } 3557 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3558 3559 unsigned ShuffleOrOp = S.isAltShuffle() ? 3560 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3561 switch (ShuffleOrOp) { 3562 case Instruction::PHI: { 3563 auto *PH = cast<PHINode>(VL0); 3564 3565 // Check for terminator values (e.g. invoke). 3566 for (Value *V : VL) 3567 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3568 Instruction *Term = dyn_cast<Instruction>( 3569 cast<PHINode>(V)->getIncomingValueForBlock( 3570 PH->getIncomingBlock(I))); 3571 if (Term && Term->isTerminator()) { 3572 LLVM_DEBUG(dbgs() 3573 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3574 BS.cancelScheduling(VL, VL0); 3575 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3576 ReuseShuffleIndicies); 3577 return; 3578 } 3579 } 3580 3581 TreeEntry *TE = 3582 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3583 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3584 3585 // Keeps the reordered operands to avoid code duplication. 3586 SmallVector<ValueList, 2> OperandsVec; 3587 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3588 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3589 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3590 TE->setOperand(I, Operands); 3591 OperandsVec.push_back(Operands); 3592 continue; 3593 } 3594 ValueList Operands; 3595 // Prepare the operand vector. 3596 for (Value *V : VL) 3597 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3598 PH->getIncomingBlock(I))); 3599 TE->setOperand(I, Operands); 3600 OperandsVec.push_back(Operands); 3601 } 3602 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3603 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3604 return; 3605 } 3606 case Instruction::ExtractValue: 3607 case Instruction::ExtractElement: { 3608 OrdersType CurrentOrder; 3609 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3610 if (Reuse) { 3611 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3612 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3613 ReuseShuffleIndicies); 3614 // This is a special case, as it does not gather, but at the same time 3615 // we are not extending buildTree_rec() towards the operands. 3616 ValueList Op0; 3617 Op0.assign(VL.size(), VL0->getOperand(0)); 3618 VectorizableTree.back()->setOperand(0, Op0); 3619 return; 3620 } 3621 if (!CurrentOrder.empty()) { 3622 LLVM_DEBUG({ 3623 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3624 "with order"; 3625 for (unsigned Idx : CurrentOrder) 3626 dbgs() << " " << Idx; 3627 dbgs() << "\n"; 3628 }); 3629 fixupOrderingIndices(CurrentOrder); 3630 // Insert new order with initial value 0, if it does not exist, 3631 // otherwise return the iterator to the existing one. 3632 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3633 ReuseShuffleIndicies, CurrentOrder); 3634 // This is a special case, as it does not gather, but at the same time 3635 // we are not extending buildTree_rec() towards the operands. 3636 ValueList Op0; 3637 Op0.assign(VL.size(), VL0->getOperand(0)); 3638 VectorizableTree.back()->setOperand(0, Op0); 3639 return; 3640 } 3641 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3642 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3643 ReuseShuffleIndicies); 3644 BS.cancelScheduling(VL, VL0); 3645 return; 3646 } 3647 case Instruction::InsertElement: { 3648 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3649 3650 // Check that we have a buildvector and not a shuffle of 2 or more 3651 // different vectors. 3652 ValueSet SourceVectors; 3653 int MinIdx = std::numeric_limits<int>::max(); 3654 for (Value *V : VL) { 3655 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3656 Optional<int> Idx = *getInsertIndex(V, 0); 3657 if (!Idx || *Idx == UndefMaskElem) 3658 continue; 3659 MinIdx = std::min(MinIdx, *Idx); 3660 } 3661 3662 if (count_if(VL, [&SourceVectors](Value *V) { 3663 return !SourceVectors.contains(V); 3664 }) >= 2) { 3665 // Found 2nd source vector - cancel. 3666 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3667 "different source vectors.\n"); 3668 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3669 BS.cancelScheduling(VL, VL0); 3670 return; 3671 } 3672 3673 auto OrdCompare = [](const std::pair<int, int> &P1, 3674 const std::pair<int, int> &P2) { 3675 return P1.first > P2.first; 3676 }; 3677 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3678 decltype(OrdCompare)> 3679 Indices(OrdCompare); 3680 for (int I = 0, E = VL.size(); I < E; ++I) { 3681 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3682 if (!Idx || *Idx == UndefMaskElem) 3683 continue; 3684 Indices.emplace(*Idx, I); 3685 } 3686 OrdersType CurrentOrder(VL.size(), VL.size()); 3687 bool IsIdentity = true; 3688 for (int I = 0, E = VL.size(); I < E; ++I) { 3689 CurrentOrder[Indices.top().second] = I; 3690 IsIdentity &= Indices.top().second == I; 3691 Indices.pop(); 3692 } 3693 if (IsIdentity) 3694 CurrentOrder.clear(); 3695 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3696 None, CurrentOrder); 3697 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3698 3699 constexpr int NumOps = 2; 3700 ValueList VectorOperands[NumOps]; 3701 for (int I = 0; I < NumOps; ++I) { 3702 for (Value *V : VL) 3703 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3704 3705 TE->setOperand(I, VectorOperands[I]); 3706 } 3707 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3708 return; 3709 } 3710 case Instruction::Load: { 3711 // Check that a vectorized load would load the same memory as a scalar 3712 // load. For example, we don't want to vectorize loads that are smaller 3713 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3714 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3715 // from such a struct, we read/write packed bits disagreeing with the 3716 // unvectorized version. 3717 SmallVector<Value *> PointerOps; 3718 OrdersType CurrentOrder; 3719 TreeEntry *TE = nullptr; 3720 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3721 PointerOps)) { 3722 case LoadsState::Vectorize: 3723 if (CurrentOrder.empty()) { 3724 // Original loads are consecutive and does not require reordering. 3725 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3726 ReuseShuffleIndicies); 3727 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3728 } else { 3729 fixupOrderingIndices(CurrentOrder); 3730 // Need to reorder. 3731 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3732 ReuseShuffleIndicies, CurrentOrder); 3733 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3734 } 3735 TE->setOperandsInOrder(); 3736 break; 3737 case LoadsState::ScatterVectorize: 3738 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3739 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3740 UserTreeIdx, ReuseShuffleIndicies); 3741 TE->setOperandsInOrder(); 3742 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3743 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3744 break; 3745 case LoadsState::Gather: 3746 BS.cancelScheduling(VL, VL0); 3747 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3748 ReuseShuffleIndicies); 3749 #ifndef NDEBUG 3750 Type *ScalarTy = VL0->getType(); 3751 if (DL->getTypeSizeInBits(ScalarTy) != 3752 DL->getTypeAllocSizeInBits(ScalarTy)) 3753 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3754 else if (any_of(VL, [](Value *V) { 3755 return !cast<LoadInst>(V)->isSimple(); 3756 })) 3757 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3758 else 3759 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3760 #endif // NDEBUG 3761 break; 3762 } 3763 return; 3764 } 3765 case Instruction::ZExt: 3766 case Instruction::SExt: 3767 case Instruction::FPToUI: 3768 case Instruction::FPToSI: 3769 case Instruction::FPExt: 3770 case Instruction::PtrToInt: 3771 case Instruction::IntToPtr: 3772 case Instruction::SIToFP: 3773 case Instruction::UIToFP: 3774 case Instruction::Trunc: 3775 case Instruction::FPTrunc: 3776 case Instruction::BitCast: { 3777 Type *SrcTy = VL0->getOperand(0)->getType(); 3778 for (Value *V : VL) { 3779 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3780 if (Ty != SrcTy || !isValidElementType(Ty)) { 3781 BS.cancelScheduling(VL, VL0); 3782 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3783 ReuseShuffleIndicies); 3784 LLVM_DEBUG(dbgs() 3785 << "SLP: Gathering casts with different src types.\n"); 3786 return; 3787 } 3788 } 3789 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3790 ReuseShuffleIndicies); 3791 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3792 3793 TE->setOperandsInOrder(); 3794 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3795 ValueList Operands; 3796 // Prepare the operand vector. 3797 for (Value *V : VL) 3798 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3799 3800 buildTree_rec(Operands, Depth + 1, {TE, i}); 3801 } 3802 return; 3803 } 3804 case Instruction::ICmp: 3805 case Instruction::FCmp: { 3806 // Check that all of the compares have the same predicate. 3807 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3808 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3809 Type *ComparedTy = VL0->getOperand(0)->getType(); 3810 for (Value *V : VL) { 3811 CmpInst *Cmp = cast<CmpInst>(V); 3812 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3813 Cmp->getOperand(0)->getType() != ComparedTy) { 3814 BS.cancelScheduling(VL, VL0); 3815 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3816 ReuseShuffleIndicies); 3817 LLVM_DEBUG(dbgs() 3818 << "SLP: Gathering cmp with different predicate.\n"); 3819 return; 3820 } 3821 } 3822 3823 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3824 ReuseShuffleIndicies); 3825 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3826 3827 ValueList Left, Right; 3828 if (cast<CmpInst>(VL0)->isCommutative()) { 3829 // Commutative predicate - collect + sort operands of the instructions 3830 // so that each side is more likely to have the same opcode. 3831 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3832 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3833 } else { 3834 // Collect operands - commute if it uses the swapped predicate. 3835 for (Value *V : VL) { 3836 auto *Cmp = cast<CmpInst>(V); 3837 Value *LHS = Cmp->getOperand(0); 3838 Value *RHS = Cmp->getOperand(1); 3839 if (Cmp->getPredicate() != P0) 3840 std::swap(LHS, RHS); 3841 Left.push_back(LHS); 3842 Right.push_back(RHS); 3843 } 3844 } 3845 TE->setOperand(0, Left); 3846 TE->setOperand(1, Right); 3847 buildTree_rec(Left, Depth + 1, {TE, 0}); 3848 buildTree_rec(Right, Depth + 1, {TE, 1}); 3849 return; 3850 } 3851 case Instruction::Select: 3852 case Instruction::FNeg: 3853 case Instruction::Add: 3854 case Instruction::FAdd: 3855 case Instruction::Sub: 3856 case Instruction::FSub: 3857 case Instruction::Mul: 3858 case Instruction::FMul: 3859 case Instruction::UDiv: 3860 case Instruction::SDiv: 3861 case Instruction::FDiv: 3862 case Instruction::URem: 3863 case Instruction::SRem: 3864 case Instruction::FRem: 3865 case Instruction::Shl: 3866 case Instruction::LShr: 3867 case Instruction::AShr: 3868 case Instruction::And: 3869 case Instruction::Or: 3870 case Instruction::Xor: { 3871 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3872 ReuseShuffleIndicies); 3873 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3874 3875 // Sort operands of the instructions so that each side is more likely to 3876 // have the same opcode. 3877 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3878 ValueList Left, Right; 3879 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3880 TE->setOperand(0, Left); 3881 TE->setOperand(1, Right); 3882 buildTree_rec(Left, Depth + 1, {TE, 0}); 3883 buildTree_rec(Right, Depth + 1, {TE, 1}); 3884 return; 3885 } 3886 3887 TE->setOperandsInOrder(); 3888 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3889 ValueList Operands; 3890 // Prepare the operand vector. 3891 for (Value *V : VL) 3892 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3893 3894 buildTree_rec(Operands, Depth + 1, {TE, i}); 3895 } 3896 return; 3897 } 3898 case Instruction::GetElementPtr: { 3899 // We don't combine GEPs with complicated (nested) indexing. 3900 for (Value *V : VL) { 3901 if (cast<Instruction>(V)->getNumOperands() != 2) { 3902 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3903 BS.cancelScheduling(VL, VL0); 3904 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3905 ReuseShuffleIndicies); 3906 return; 3907 } 3908 } 3909 3910 // We can't combine several GEPs into one vector if they operate on 3911 // different types. 3912 Type *Ty0 = VL0->getOperand(0)->getType(); 3913 for (Value *V : VL) { 3914 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3915 if (Ty0 != CurTy) { 3916 LLVM_DEBUG(dbgs() 3917 << "SLP: not-vectorizable GEP (different types).\n"); 3918 BS.cancelScheduling(VL, VL0); 3919 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3920 ReuseShuffleIndicies); 3921 return; 3922 } 3923 } 3924 3925 // We don't combine GEPs with non-constant indexes. 3926 Type *Ty1 = VL0->getOperand(1)->getType(); 3927 for (Value *V : VL) { 3928 auto Op = cast<Instruction>(V)->getOperand(1); 3929 if (!isa<ConstantInt>(Op) || 3930 (Op->getType() != Ty1 && 3931 Op->getType()->getScalarSizeInBits() > 3932 DL->getIndexSizeInBits( 3933 V->getType()->getPointerAddressSpace()))) { 3934 LLVM_DEBUG(dbgs() 3935 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3936 BS.cancelScheduling(VL, VL0); 3937 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3938 ReuseShuffleIndicies); 3939 return; 3940 } 3941 } 3942 3943 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3944 ReuseShuffleIndicies); 3945 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3946 SmallVector<ValueList, 2> Operands(2); 3947 // Prepare the operand vector for pointer operands. 3948 for (Value *V : VL) 3949 Operands.front().push_back( 3950 cast<GetElementPtrInst>(V)->getPointerOperand()); 3951 TE->setOperand(0, Operands.front()); 3952 // Need to cast all indices to the same type before vectorization to 3953 // avoid crash. 3954 // Required to be able to find correct matches between different gather 3955 // nodes and reuse the vectorized values rather than trying to gather them 3956 // again. 3957 int IndexIdx = 1; 3958 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 3959 Type *Ty = all_of(VL, 3960 [VL0Ty, IndexIdx](Value *V) { 3961 return VL0Ty == cast<GetElementPtrInst>(V) 3962 ->getOperand(IndexIdx) 3963 ->getType(); 3964 }) 3965 ? VL0Ty 3966 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 3967 ->getPointerOperandType() 3968 ->getScalarType()); 3969 // Prepare the operand vector. 3970 for (Value *V : VL) { 3971 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 3972 auto *CI = cast<ConstantInt>(Op); 3973 Operands.back().push_back(ConstantExpr::getIntegerCast( 3974 CI, Ty, CI->getValue().isSignBitSet())); 3975 } 3976 TE->setOperand(IndexIdx, Operands.back()); 3977 3978 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 3979 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 3980 return; 3981 } 3982 case Instruction::Store: { 3983 // Check if the stores are consecutive or if we need to swizzle them. 3984 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3985 // Avoid types that are padded when being allocated as scalars, while 3986 // being packed together in a vector (such as i1). 3987 if (DL->getTypeSizeInBits(ScalarTy) != 3988 DL->getTypeAllocSizeInBits(ScalarTy)) { 3989 BS.cancelScheduling(VL, VL0); 3990 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3991 ReuseShuffleIndicies); 3992 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3993 return; 3994 } 3995 // Make sure all stores in the bundle are simple - we can't vectorize 3996 // atomic or volatile stores. 3997 SmallVector<Value *, 4> PointerOps(VL.size()); 3998 ValueList Operands(VL.size()); 3999 auto POIter = PointerOps.begin(); 4000 auto OIter = Operands.begin(); 4001 for (Value *V : VL) { 4002 auto *SI = cast<StoreInst>(V); 4003 if (!SI->isSimple()) { 4004 BS.cancelScheduling(VL, VL0); 4005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4006 ReuseShuffleIndicies); 4007 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4008 return; 4009 } 4010 *POIter = SI->getPointerOperand(); 4011 *OIter = SI->getValueOperand(); 4012 ++POIter; 4013 ++OIter; 4014 } 4015 4016 OrdersType CurrentOrder; 4017 // Check the order of pointer operands. 4018 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4019 Value *Ptr0; 4020 Value *PtrN; 4021 if (CurrentOrder.empty()) { 4022 Ptr0 = PointerOps.front(); 4023 PtrN = PointerOps.back(); 4024 } else { 4025 Ptr0 = PointerOps[CurrentOrder.front()]; 4026 PtrN = PointerOps[CurrentOrder.back()]; 4027 } 4028 Optional<int> Dist = 4029 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4030 // Check that the sorted pointer operands are consecutive. 4031 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4032 if (CurrentOrder.empty()) { 4033 // Original stores are consecutive and does not require reordering. 4034 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4035 UserTreeIdx, ReuseShuffleIndicies); 4036 TE->setOperandsInOrder(); 4037 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4038 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4039 } else { 4040 fixupOrderingIndices(CurrentOrder); 4041 TreeEntry *TE = 4042 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4043 ReuseShuffleIndicies, CurrentOrder); 4044 TE->setOperandsInOrder(); 4045 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4046 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4047 } 4048 return; 4049 } 4050 } 4051 4052 BS.cancelScheduling(VL, VL0); 4053 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4054 ReuseShuffleIndicies); 4055 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4056 return; 4057 } 4058 case Instruction::Call: { 4059 // Check if the calls are all to the same vectorizable intrinsic or 4060 // library function. 4061 CallInst *CI = cast<CallInst>(VL0); 4062 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4063 4064 VFShape Shape = VFShape::get( 4065 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4066 false /*HasGlobalPred*/); 4067 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4068 4069 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4070 BS.cancelScheduling(VL, VL0); 4071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4072 ReuseShuffleIndicies); 4073 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4074 return; 4075 } 4076 Function *F = CI->getCalledFunction(); 4077 unsigned NumArgs = CI->arg_size(); 4078 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4079 for (unsigned j = 0; j != NumArgs; ++j) 4080 if (hasVectorInstrinsicScalarOpd(ID, j)) 4081 ScalarArgs[j] = CI->getArgOperand(j); 4082 for (Value *V : VL) { 4083 CallInst *CI2 = dyn_cast<CallInst>(V); 4084 if (!CI2 || CI2->getCalledFunction() != F || 4085 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4086 (VecFunc && 4087 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4088 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4089 BS.cancelScheduling(VL, VL0); 4090 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4091 ReuseShuffleIndicies); 4092 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4093 << "\n"); 4094 return; 4095 } 4096 // Some intrinsics have scalar arguments and should be same in order for 4097 // them to be vectorized. 4098 for (unsigned j = 0; j != NumArgs; ++j) { 4099 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4100 Value *A1J = CI2->getArgOperand(j); 4101 if (ScalarArgs[j] != A1J) { 4102 BS.cancelScheduling(VL, VL0); 4103 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4104 ReuseShuffleIndicies); 4105 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4106 << " argument " << ScalarArgs[j] << "!=" << A1J 4107 << "\n"); 4108 return; 4109 } 4110 } 4111 } 4112 // Verify that the bundle operands are identical between the two calls. 4113 if (CI->hasOperandBundles() && 4114 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4115 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4116 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4117 BS.cancelScheduling(VL, VL0); 4118 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4119 ReuseShuffleIndicies); 4120 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4121 << *CI << "!=" << *V << '\n'); 4122 return; 4123 } 4124 } 4125 4126 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4127 ReuseShuffleIndicies); 4128 TE->setOperandsInOrder(); 4129 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4130 // For scalar operands no need to to create an entry since no need to 4131 // vectorize it. 4132 if (hasVectorInstrinsicScalarOpd(ID, i)) 4133 continue; 4134 ValueList Operands; 4135 // Prepare the operand vector. 4136 for (Value *V : VL) { 4137 auto *CI2 = cast<CallInst>(V); 4138 Operands.push_back(CI2->getArgOperand(i)); 4139 } 4140 buildTree_rec(Operands, Depth + 1, {TE, i}); 4141 } 4142 return; 4143 } 4144 case Instruction::ShuffleVector: { 4145 // If this is not an alternate sequence of opcode like add-sub 4146 // then do not vectorize this instruction. 4147 if (!S.isAltShuffle()) { 4148 BS.cancelScheduling(VL, VL0); 4149 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4150 ReuseShuffleIndicies); 4151 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4152 return; 4153 } 4154 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4155 ReuseShuffleIndicies); 4156 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4157 4158 // Reorder operands if reordering would enable vectorization. 4159 if (isa<BinaryOperator>(VL0)) { 4160 ValueList Left, Right; 4161 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4162 TE->setOperand(0, Left); 4163 TE->setOperand(1, Right); 4164 buildTree_rec(Left, Depth + 1, {TE, 0}); 4165 buildTree_rec(Right, Depth + 1, {TE, 1}); 4166 return; 4167 } 4168 4169 TE->setOperandsInOrder(); 4170 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4171 ValueList Operands; 4172 // Prepare the operand vector. 4173 for (Value *V : VL) 4174 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4175 4176 buildTree_rec(Operands, Depth + 1, {TE, i}); 4177 } 4178 return; 4179 } 4180 default: 4181 BS.cancelScheduling(VL, VL0); 4182 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4183 ReuseShuffleIndicies); 4184 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4185 return; 4186 } 4187 } 4188 4189 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4190 unsigned N = 1; 4191 Type *EltTy = T; 4192 4193 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4194 isa<VectorType>(EltTy)) { 4195 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4196 // Check that struct is homogeneous. 4197 for (const auto *Ty : ST->elements()) 4198 if (Ty != *ST->element_begin()) 4199 return 0; 4200 N *= ST->getNumElements(); 4201 EltTy = *ST->element_begin(); 4202 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4203 N *= AT->getNumElements(); 4204 EltTy = AT->getElementType(); 4205 } else { 4206 auto *VT = cast<FixedVectorType>(EltTy); 4207 N *= VT->getNumElements(); 4208 EltTy = VT->getElementType(); 4209 } 4210 } 4211 4212 if (!isValidElementType(EltTy)) 4213 return 0; 4214 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4215 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4216 return 0; 4217 return N; 4218 } 4219 4220 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4221 SmallVectorImpl<unsigned> &CurrentOrder) const { 4222 Instruction *E0 = cast<Instruction>(OpValue); 4223 assert(E0->getOpcode() == Instruction::ExtractElement || 4224 E0->getOpcode() == Instruction::ExtractValue); 4225 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 4226 // Check if all of the extracts come from the same vector and from the 4227 // correct offset. 4228 Value *Vec = E0->getOperand(0); 4229 4230 CurrentOrder.clear(); 4231 4232 // We have to extract from a vector/aggregate with the same number of elements. 4233 unsigned NElts; 4234 if (E0->getOpcode() == Instruction::ExtractValue) { 4235 const DataLayout &DL = E0->getModule()->getDataLayout(); 4236 NElts = canMapToVector(Vec->getType(), DL); 4237 if (!NElts) 4238 return false; 4239 // Check if load can be rewritten as load of vector. 4240 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4241 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4242 return false; 4243 } else { 4244 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4245 } 4246 4247 if (NElts != VL.size()) 4248 return false; 4249 4250 // Check that all of the indices extract from the correct offset. 4251 bool ShouldKeepOrder = true; 4252 unsigned E = VL.size(); 4253 // Assign to all items the initial value E + 1 so we can check if the extract 4254 // instruction index was used already. 4255 // Also, later we can check that all the indices are used and we have a 4256 // consecutive access in the extract instructions, by checking that no 4257 // element of CurrentOrder still has value E + 1. 4258 CurrentOrder.assign(E, E + 1); 4259 unsigned I = 0; 4260 for (; I < E; ++I) { 4261 auto *Inst = cast<Instruction>(VL[I]); 4262 if (Inst->getOperand(0) != Vec) 4263 break; 4264 Optional<unsigned> Idx = getExtractIndex(Inst); 4265 if (!Idx) 4266 break; 4267 const unsigned ExtIdx = *Idx; 4268 if (ExtIdx != I) { 4269 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4270 break; 4271 ShouldKeepOrder = false; 4272 CurrentOrder[ExtIdx] = I; 4273 } else { 4274 if (CurrentOrder[I] != E + 1) 4275 break; 4276 CurrentOrder[I] = I; 4277 } 4278 } 4279 if (I < E) { 4280 CurrentOrder.clear(); 4281 return false; 4282 } 4283 4284 return ShouldKeepOrder; 4285 } 4286 4287 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4288 ArrayRef<Value *> VectorizedVals) const { 4289 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4290 llvm::all_of(I->users(), [this](User *U) { 4291 return ScalarToTreeEntry.count(U) > 0; 4292 }); 4293 } 4294 4295 static std::pair<InstructionCost, InstructionCost> 4296 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4297 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4298 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4299 4300 // Calculate the cost of the scalar and vector calls. 4301 SmallVector<Type *, 4> VecTys; 4302 for (Use &Arg : CI->args()) 4303 VecTys.push_back( 4304 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4305 FastMathFlags FMF; 4306 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4307 FMF = FPCI->getFastMathFlags(); 4308 SmallVector<const Value *> Arguments(CI->args()); 4309 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4310 dyn_cast<IntrinsicInst>(CI)); 4311 auto IntrinsicCost = 4312 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4313 4314 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4315 VecTy->getNumElements())), 4316 false /*HasGlobalPred*/); 4317 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4318 auto LibCost = IntrinsicCost; 4319 if (!CI->isNoBuiltin() && VecFunc) { 4320 // Calculate the cost of the vector library call. 4321 // If the corresponding vector call is cheaper, return its cost. 4322 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4323 TTI::TCK_RecipThroughput); 4324 } 4325 return {IntrinsicCost, LibCost}; 4326 } 4327 4328 /// Compute the cost of creating a vector of type \p VecTy containing the 4329 /// extracted values from \p VL. 4330 static InstructionCost 4331 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4332 TargetTransformInfo::ShuffleKind ShuffleKind, 4333 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4334 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4335 4336 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4337 VecTy->getNumElements() < NumOfParts) 4338 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4339 4340 bool AllConsecutive = true; 4341 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4342 unsigned Idx = -1; 4343 InstructionCost Cost = 0; 4344 4345 // Process extracts in blocks of EltsPerVector to check if the source vector 4346 // operand can be re-used directly. If not, add the cost of creating a shuffle 4347 // to extract the values into a vector register. 4348 for (auto *V : VL) { 4349 ++Idx; 4350 4351 // Reached the start of a new vector registers. 4352 if (Idx % EltsPerVector == 0) { 4353 AllConsecutive = true; 4354 continue; 4355 } 4356 4357 // Check all extracts for a vector register on the target directly 4358 // extract values in order. 4359 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4360 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4361 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4362 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4363 4364 if (AllConsecutive) 4365 continue; 4366 4367 // Skip all indices, except for the last index per vector block. 4368 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4369 continue; 4370 4371 // If we have a series of extracts which are not consecutive and hence 4372 // cannot re-use the source vector register directly, compute the shuffle 4373 // cost to extract the a vector with EltsPerVector elements. 4374 Cost += TTI.getShuffleCost( 4375 TargetTransformInfo::SK_PermuteSingleSrc, 4376 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4377 } 4378 return Cost; 4379 } 4380 4381 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4382 /// operations operands. 4383 static void 4384 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4385 ArrayRef<int> ReusesIndices, 4386 const function_ref<bool(Instruction *)> IsAltOp, 4387 SmallVectorImpl<int> &Mask, 4388 SmallVectorImpl<Value *> *OpScalars = nullptr, 4389 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4390 unsigned Sz = VL.size(); 4391 Mask.assign(Sz, UndefMaskElem); 4392 SmallVector<int> OrderMask; 4393 if (!ReorderIndices.empty()) 4394 inversePermutation(ReorderIndices, OrderMask); 4395 for (unsigned I = 0; I < Sz; ++I) { 4396 unsigned Idx = I; 4397 if (!ReorderIndices.empty()) 4398 Idx = OrderMask[I]; 4399 auto *OpInst = cast<Instruction>(VL[Idx]); 4400 if (IsAltOp(OpInst)) { 4401 Mask[I] = Sz + Idx; 4402 if (AltScalars) 4403 AltScalars->push_back(OpInst); 4404 } else { 4405 Mask[I] = Idx; 4406 if (OpScalars) 4407 OpScalars->push_back(OpInst); 4408 } 4409 } 4410 if (!ReusesIndices.empty()) { 4411 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4412 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4413 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4414 }); 4415 Mask.swap(NewMask); 4416 } 4417 } 4418 4419 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4420 ArrayRef<Value *> VectorizedVals) { 4421 ArrayRef<Value*> VL = E->Scalars; 4422 4423 Type *ScalarTy = VL[0]->getType(); 4424 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4425 ScalarTy = SI->getValueOperand()->getType(); 4426 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4427 ScalarTy = CI->getOperand(0)->getType(); 4428 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4429 ScalarTy = IE->getOperand(1)->getType(); 4430 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4431 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4432 4433 // If we have computed a smaller type for the expression, update VecTy so 4434 // that the costs will be accurate. 4435 if (MinBWs.count(VL[0])) 4436 VecTy = FixedVectorType::get( 4437 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4438 unsigned EntryVF = E->getVectorFactor(); 4439 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4440 4441 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4442 // FIXME: it tries to fix a problem with MSVC buildbots. 4443 TargetTransformInfo &TTIRef = *TTI; 4444 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4445 VectorizedVals](InstructionCost &Cost, 4446 bool IsGather) { 4447 DenseMap<Value *, int> ExtractVectorsTys; 4448 for (auto *V : VL) { 4449 if (isa<UndefValue>(V)) 4450 continue; 4451 // If all users of instruction are going to be vectorized and this 4452 // instruction itself is not going to be vectorized, consider this 4453 // instruction as dead and remove its cost from the final cost of the 4454 // vectorized tree. 4455 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals)) 4456 continue; 4457 auto *EE = cast<ExtractElementInst>(V); 4458 Optional<unsigned> EEIdx = getExtractIndex(EE); 4459 if (!EEIdx) 4460 continue; 4461 unsigned Idx = *EEIdx; 4462 if (TTIRef.getNumberOfParts(VecTy) != 4463 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4464 auto It = 4465 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4466 It->getSecond() = std::min<int>(It->second, Idx); 4467 } 4468 // Take credit for instruction that will become dead. 4469 if (EE->hasOneUse()) { 4470 Instruction *Ext = EE->user_back(); 4471 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4472 all_of(Ext->users(), 4473 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4474 // Use getExtractWithExtendCost() to calculate the cost of 4475 // extractelement/ext pair. 4476 Cost -= 4477 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4478 EE->getVectorOperandType(), Idx); 4479 // Add back the cost of s|zext which is subtracted separately. 4480 Cost += TTIRef.getCastInstrCost( 4481 Ext->getOpcode(), Ext->getType(), EE->getType(), 4482 TTI::getCastContextHint(Ext), CostKind, Ext); 4483 continue; 4484 } 4485 } 4486 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4487 EE->getVectorOperandType(), Idx); 4488 } 4489 // Add a cost for subvector extracts/inserts if required. 4490 for (const auto &Data : ExtractVectorsTys) { 4491 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4492 unsigned NumElts = VecTy->getNumElements(); 4493 if (Data.second % NumElts == 0) 4494 continue; 4495 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4496 unsigned Idx = (Data.second / NumElts) * NumElts; 4497 unsigned EENumElts = EEVTy->getNumElements(); 4498 if (Idx + NumElts <= EENumElts) { 4499 Cost += 4500 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4501 EEVTy, None, Idx, VecTy); 4502 } else { 4503 // Need to round up the subvector type vectorization factor to avoid a 4504 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4505 // <= EENumElts. 4506 auto *SubVT = 4507 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4508 Cost += 4509 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4510 EEVTy, None, Idx, SubVT); 4511 } 4512 } else { 4513 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4514 VecTy, None, 0, EEVTy); 4515 } 4516 } 4517 }; 4518 if (E->State == TreeEntry::NeedToGather) { 4519 if (allConstant(VL)) 4520 return 0; 4521 if (isa<InsertElementInst>(VL[0])) 4522 return InstructionCost::getInvalid(); 4523 SmallVector<int> Mask; 4524 SmallVector<const TreeEntry *> Entries; 4525 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4526 isGatherShuffledEntry(E, Mask, Entries); 4527 if (Shuffle.hasValue()) { 4528 InstructionCost GatherCost = 0; 4529 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4530 // Perfect match in the graph, will reuse the previously vectorized 4531 // node. Cost is 0. 4532 LLVM_DEBUG( 4533 dbgs() 4534 << "SLP: perfect diamond match for gather bundle that starts with " 4535 << *VL.front() << ".\n"); 4536 if (NeedToShuffleReuses) 4537 GatherCost = 4538 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4539 FinalVecTy, E->ReuseShuffleIndices); 4540 } else { 4541 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4542 << " entries for bundle that starts with " 4543 << *VL.front() << ".\n"); 4544 // Detected that instead of gather we can emit a shuffle of single/two 4545 // previously vectorized nodes. Add the cost of the permutation rather 4546 // than gather. 4547 ::addMask(Mask, E->ReuseShuffleIndices); 4548 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4549 } 4550 return GatherCost; 4551 } 4552 if (isSplat(VL)) { 4553 // Found the broadcasting of the single scalar, calculate the cost as the 4554 // broadcast. 4555 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4556 } 4557 if ((E->getOpcode() == Instruction::ExtractElement || 4558 all_of(E->Scalars, 4559 [](Value *V) { 4560 return isa<ExtractElementInst, UndefValue>(V); 4561 })) && 4562 allSameType(VL)) { 4563 // Check that gather of extractelements can be represented as just a 4564 // shuffle of a single/two vectors the scalars are extracted from. 4565 SmallVector<int> Mask; 4566 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4567 isFixedVectorShuffle(VL, Mask); 4568 if (ShuffleKind.hasValue()) { 4569 // Found the bunch of extractelement instructions that must be gathered 4570 // into a vector and can be represented as a permutation elements in a 4571 // single input vector or of 2 input vectors. 4572 InstructionCost Cost = 4573 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4574 AdjustExtractsCost(Cost, /*IsGather=*/true); 4575 if (NeedToShuffleReuses) 4576 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4577 FinalVecTy, E->ReuseShuffleIndices); 4578 return Cost; 4579 } 4580 } 4581 InstructionCost ReuseShuffleCost = 0; 4582 if (NeedToShuffleReuses) 4583 ReuseShuffleCost = TTI->getShuffleCost( 4584 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4585 // Improve gather cost for gather of loads, if we can group some of the 4586 // loads into vector loads. 4587 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4588 !E->isAltShuffle()) { 4589 BoUpSLP::ValueSet VectorizedLoads; 4590 unsigned StartIdx = 0; 4591 unsigned VF = VL.size() / 2; 4592 unsigned VectorizedCnt = 0; 4593 unsigned ScatterVectorizeCnt = 0; 4594 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4595 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4596 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4597 Cnt += VF) { 4598 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4599 if (!VectorizedLoads.count(Slice.front()) && 4600 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4601 SmallVector<Value *> PointerOps; 4602 OrdersType CurrentOrder; 4603 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4604 *SE, CurrentOrder, PointerOps); 4605 switch (LS) { 4606 case LoadsState::Vectorize: 4607 case LoadsState::ScatterVectorize: 4608 // Mark the vectorized loads so that we don't vectorize them 4609 // again. 4610 if (LS == LoadsState::Vectorize) 4611 ++VectorizedCnt; 4612 else 4613 ++ScatterVectorizeCnt; 4614 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4615 // If we vectorized initial block, no need to try to vectorize it 4616 // again. 4617 if (Cnt == StartIdx) 4618 StartIdx += VF; 4619 break; 4620 case LoadsState::Gather: 4621 break; 4622 } 4623 } 4624 } 4625 // Check if the whole array was vectorized already - exit. 4626 if (StartIdx >= VL.size()) 4627 break; 4628 // Found vectorizable parts - exit. 4629 if (!VectorizedLoads.empty()) 4630 break; 4631 } 4632 if (!VectorizedLoads.empty()) { 4633 InstructionCost GatherCost = 0; 4634 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4635 bool NeedInsertSubvectorAnalysis = 4636 !NumParts || (VL.size() / VF) > NumParts; 4637 // Get the cost for gathered loads. 4638 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4639 if (VectorizedLoads.contains(VL[I])) 4640 continue; 4641 GatherCost += getGatherCost(VL.slice(I, VF)); 4642 } 4643 // The cost for vectorized loads. 4644 InstructionCost ScalarsCost = 0; 4645 for (Value *V : VectorizedLoads) { 4646 auto *LI = cast<LoadInst>(V); 4647 ScalarsCost += TTI->getMemoryOpCost( 4648 Instruction::Load, LI->getType(), LI->getAlign(), 4649 LI->getPointerAddressSpace(), CostKind, LI); 4650 } 4651 auto *LI = cast<LoadInst>(E->getMainOp()); 4652 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4653 Align Alignment = LI->getAlign(); 4654 GatherCost += 4655 VectorizedCnt * 4656 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4657 LI->getPointerAddressSpace(), CostKind, LI); 4658 GatherCost += ScatterVectorizeCnt * 4659 TTI->getGatherScatterOpCost( 4660 Instruction::Load, LoadTy, LI->getPointerOperand(), 4661 /*VariableMask=*/false, Alignment, CostKind, LI); 4662 if (NeedInsertSubvectorAnalysis) { 4663 // Add the cost for the subvectors insert. 4664 for (int I = VF, E = VL.size(); I < E; I += VF) 4665 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4666 None, I, LoadTy); 4667 } 4668 return ReuseShuffleCost + GatherCost - ScalarsCost; 4669 } 4670 } 4671 return ReuseShuffleCost + getGatherCost(VL); 4672 } 4673 InstructionCost CommonCost = 0; 4674 SmallVector<int> Mask; 4675 if (!E->ReorderIndices.empty()) { 4676 SmallVector<int> NewMask; 4677 if (E->getOpcode() == Instruction::Store) { 4678 // For stores the order is actually a mask. 4679 NewMask.resize(E->ReorderIndices.size()); 4680 copy(E->ReorderIndices, NewMask.begin()); 4681 } else { 4682 inversePermutation(E->ReorderIndices, NewMask); 4683 } 4684 ::addMask(Mask, NewMask); 4685 } 4686 if (NeedToShuffleReuses) 4687 ::addMask(Mask, E->ReuseShuffleIndices); 4688 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4689 CommonCost = 4690 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4691 assert((E->State == TreeEntry::Vectorize || 4692 E->State == TreeEntry::ScatterVectorize) && 4693 "Unhandled state"); 4694 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4695 Instruction *VL0 = E->getMainOp(); 4696 unsigned ShuffleOrOp = 4697 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4698 switch (ShuffleOrOp) { 4699 case Instruction::PHI: 4700 return 0; 4701 4702 case Instruction::ExtractValue: 4703 case Instruction::ExtractElement: { 4704 // The common cost of removal ExtractElement/ExtractValue instructions + 4705 // the cost of shuffles, if required to resuffle the original vector. 4706 if (NeedToShuffleReuses) { 4707 unsigned Idx = 0; 4708 for (unsigned I : E->ReuseShuffleIndices) { 4709 if (ShuffleOrOp == Instruction::ExtractElement) { 4710 auto *EE = cast<ExtractElementInst>(VL[I]); 4711 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4712 EE->getVectorOperandType(), 4713 *getExtractIndex(EE)); 4714 } else { 4715 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4716 VecTy, Idx); 4717 ++Idx; 4718 } 4719 } 4720 Idx = EntryVF; 4721 for (Value *V : VL) { 4722 if (ShuffleOrOp == Instruction::ExtractElement) { 4723 auto *EE = cast<ExtractElementInst>(V); 4724 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4725 EE->getVectorOperandType(), 4726 *getExtractIndex(EE)); 4727 } else { 4728 --Idx; 4729 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4730 VecTy, Idx); 4731 } 4732 } 4733 } 4734 if (ShuffleOrOp == Instruction::ExtractValue) { 4735 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4736 auto *EI = cast<Instruction>(VL[I]); 4737 // Take credit for instruction that will become dead. 4738 if (EI->hasOneUse()) { 4739 Instruction *Ext = EI->user_back(); 4740 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4741 all_of(Ext->users(), 4742 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4743 // Use getExtractWithExtendCost() to calculate the cost of 4744 // extractelement/ext pair. 4745 CommonCost -= TTI->getExtractWithExtendCost( 4746 Ext->getOpcode(), Ext->getType(), VecTy, I); 4747 // Add back the cost of s|zext which is subtracted separately. 4748 CommonCost += TTI->getCastInstrCost( 4749 Ext->getOpcode(), Ext->getType(), EI->getType(), 4750 TTI::getCastContextHint(Ext), CostKind, Ext); 4751 continue; 4752 } 4753 } 4754 CommonCost -= 4755 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4756 } 4757 } else { 4758 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4759 } 4760 return CommonCost; 4761 } 4762 case Instruction::InsertElement: { 4763 assert(E->ReuseShuffleIndices.empty() && 4764 "Unique insertelements only are expected."); 4765 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4766 4767 unsigned const NumElts = SrcVecTy->getNumElements(); 4768 unsigned const NumScalars = VL.size(); 4769 APInt DemandedElts = APInt::getZero(NumElts); 4770 // TODO: Add support for Instruction::InsertValue. 4771 SmallVector<int> Mask; 4772 if (!E->ReorderIndices.empty()) { 4773 inversePermutation(E->ReorderIndices, Mask); 4774 Mask.append(NumElts - NumScalars, UndefMaskElem); 4775 } else { 4776 Mask.assign(NumElts, UndefMaskElem); 4777 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4778 } 4779 unsigned Offset = *getInsertIndex(VL0, 0); 4780 bool IsIdentity = true; 4781 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4782 Mask.swap(PrevMask); 4783 for (unsigned I = 0; I < NumScalars; ++I) { 4784 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4785 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4786 continue; 4787 DemandedElts.setBit(*InsertIdx); 4788 IsIdentity &= *InsertIdx - Offset == I; 4789 Mask[*InsertIdx - Offset] = I; 4790 } 4791 assert(Offset < NumElts && "Failed to find vector index offset"); 4792 4793 InstructionCost Cost = 0; 4794 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4795 /*Insert*/ true, /*Extract*/ false); 4796 4797 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4798 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4799 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4800 Cost += TTI->getShuffleCost( 4801 TargetTransformInfo::SK_PermuteSingleSrc, 4802 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4803 } else if (!IsIdentity) { 4804 auto *FirstInsert = 4805 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4806 return !is_contained(E->Scalars, 4807 cast<Instruction>(V)->getOperand(0)); 4808 })); 4809 if (isUndefVector(FirstInsert->getOperand(0))) { 4810 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4811 } else { 4812 SmallVector<int> InsertMask(NumElts); 4813 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4814 for (unsigned I = 0; I < NumElts; I++) { 4815 if (Mask[I] != UndefMaskElem) 4816 InsertMask[Offset + I] = NumElts + I; 4817 } 4818 Cost += 4819 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4820 } 4821 } 4822 4823 return Cost; 4824 } 4825 case Instruction::ZExt: 4826 case Instruction::SExt: 4827 case Instruction::FPToUI: 4828 case Instruction::FPToSI: 4829 case Instruction::FPExt: 4830 case Instruction::PtrToInt: 4831 case Instruction::IntToPtr: 4832 case Instruction::SIToFP: 4833 case Instruction::UIToFP: 4834 case Instruction::Trunc: 4835 case Instruction::FPTrunc: 4836 case Instruction::BitCast: { 4837 Type *SrcTy = VL0->getOperand(0)->getType(); 4838 InstructionCost ScalarEltCost = 4839 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4840 TTI::getCastContextHint(VL0), CostKind, VL0); 4841 if (NeedToShuffleReuses) { 4842 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4843 } 4844 4845 // Calculate the cost of this instruction. 4846 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4847 4848 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4849 InstructionCost VecCost = 0; 4850 // Check if the values are candidates to demote. 4851 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4852 VecCost = CommonCost + TTI->getCastInstrCost( 4853 E->getOpcode(), VecTy, SrcVecTy, 4854 TTI::getCastContextHint(VL0), CostKind, VL0); 4855 } 4856 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4857 return VecCost - ScalarCost; 4858 } 4859 case Instruction::FCmp: 4860 case Instruction::ICmp: 4861 case Instruction::Select: { 4862 // Calculate the cost of this instruction. 4863 InstructionCost ScalarEltCost = 4864 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4865 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4866 if (NeedToShuffleReuses) { 4867 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4868 } 4869 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4870 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4871 4872 // Check if all entries in VL are either compares or selects with compares 4873 // as condition that have the same predicates. 4874 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4875 bool First = true; 4876 for (auto *V : VL) { 4877 CmpInst::Predicate CurrentPred; 4878 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4879 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4880 !match(V, MatchCmp)) || 4881 (!First && VecPred != CurrentPred)) { 4882 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4883 break; 4884 } 4885 First = false; 4886 VecPred = CurrentPred; 4887 } 4888 4889 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4890 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4891 // Check if it is possible and profitable to use min/max for selects in 4892 // VL. 4893 // 4894 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4895 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4896 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4897 {VecTy, VecTy}); 4898 InstructionCost IntrinsicCost = 4899 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4900 // If the selects are the only uses of the compares, they will be dead 4901 // and we can adjust the cost by removing their cost. 4902 if (IntrinsicAndUse.second) 4903 IntrinsicCost -= 4904 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4905 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4906 VecCost = std::min(VecCost, IntrinsicCost); 4907 } 4908 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4909 return CommonCost + VecCost - ScalarCost; 4910 } 4911 case Instruction::FNeg: 4912 case Instruction::Add: 4913 case Instruction::FAdd: 4914 case Instruction::Sub: 4915 case Instruction::FSub: 4916 case Instruction::Mul: 4917 case Instruction::FMul: 4918 case Instruction::UDiv: 4919 case Instruction::SDiv: 4920 case Instruction::FDiv: 4921 case Instruction::URem: 4922 case Instruction::SRem: 4923 case Instruction::FRem: 4924 case Instruction::Shl: 4925 case Instruction::LShr: 4926 case Instruction::AShr: 4927 case Instruction::And: 4928 case Instruction::Or: 4929 case Instruction::Xor: { 4930 // Certain instructions can be cheaper to vectorize if they have a 4931 // constant second vector operand. 4932 TargetTransformInfo::OperandValueKind Op1VK = 4933 TargetTransformInfo::OK_AnyValue; 4934 TargetTransformInfo::OperandValueKind Op2VK = 4935 TargetTransformInfo::OK_UniformConstantValue; 4936 TargetTransformInfo::OperandValueProperties Op1VP = 4937 TargetTransformInfo::OP_None; 4938 TargetTransformInfo::OperandValueProperties Op2VP = 4939 TargetTransformInfo::OP_PowerOf2; 4940 4941 // If all operands are exactly the same ConstantInt then set the 4942 // operand kind to OK_UniformConstantValue. 4943 // If instead not all operands are constants, then set the operand kind 4944 // to OK_AnyValue. If all operands are constants but not the same, 4945 // then set the operand kind to OK_NonUniformConstantValue. 4946 ConstantInt *CInt0 = nullptr; 4947 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4948 const Instruction *I = cast<Instruction>(VL[i]); 4949 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4950 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4951 if (!CInt) { 4952 Op2VK = TargetTransformInfo::OK_AnyValue; 4953 Op2VP = TargetTransformInfo::OP_None; 4954 break; 4955 } 4956 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4957 !CInt->getValue().isPowerOf2()) 4958 Op2VP = TargetTransformInfo::OP_None; 4959 if (i == 0) { 4960 CInt0 = CInt; 4961 continue; 4962 } 4963 if (CInt0 != CInt) 4964 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4965 } 4966 4967 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4968 InstructionCost ScalarEltCost = 4969 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4970 Op2VK, Op1VP, Op2VP, Operands, VL0); 4971 if (NeedToShuffleReuses) { 4972 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4973 } 4974 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4975 InstructionCost VecCost = 4976 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4977 Op2VK, Op1VP, Op2VP, Operands, VL0); 4978 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4979 return CommonCost + VecCost - ScalarCost; 4980 } 4981 case Instruction::GetElementPtr: { 4982 TargetTransformInfo::OperandValueKind Op1VK = 4983 TargetTransformInfo::OK_AnyValue; 4984 TargetTransformInfo::OperandValueKind Op2VK = 4985 TargetTransformInfo::OK_UniformConstantValue; 4986 4987 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4988 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4989 if (NeedToShuffleReuses) { 4990 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4991 } 4992 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4993 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4994 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4995 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4996 return CommonCost + VecCost - ScalarCost; 4997 } 4998 case Instruction::Load: { 4999 // Cost of wide load - cost of scalar loads. 5000 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5001 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5002 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5003 if (NeedToShuffleReuses) { 5004 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5005 } 5006 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5007 InstructionCost VecLdCost; 5008 if (E->State == TreeEntry::Vectorize) { 5009 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5010 CostKind, VL0); 5011 } else { 5012 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5013 Align CommonAlignment = Alignment; 5014 for (Value *V : VL) 5015 CommonAlignment = 5016 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5017 VecLdCost = TTI->getGatherScatterOpCost( 5018 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5019 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5020 } 5021 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5022 return CommonCost + VecLdCost - ScalarLdCost; 5023 } 5024 case Instruction::Store: { 5025 // We know that we can merge the stores. Calculate the cost. 5026 bool IsReorder = !E->ReorderIndices.empty(); 5027 auto *SI = 5028 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5029 Align Alignment = SI->getAlign(); 5030 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5031 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5032 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5033 InstructionCost VecStCost = TTI->getMemoryOpCost( 5034 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5035 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5036 return CommonCost + VecStCost - ScalarStCost; 5037 } 5038 case Instruction::Call: { 5039 CallInst *CI = cast<CallInst>(VL0); 5040 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5041 5042 // Calculate the cost of the scalar and vector calls. 5043 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5044 InstructionCost ScalarEltCost = 5045 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5046 if (NeedToShuffleReuses) { 5047 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5048 } 5049 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5050 5051 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5052 InstructionCost VecCallCost = 5053 std::min(VecCallCosts.first, VecCallCosts.second); 5054 5055 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5056 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5057 << " for " << *CI << "\n"); 5058 5059 return CommonCost + VecCallCost - ScalarCallCost; 5060 } 5061 case Instruction::ShuffleVector: { 5062 assert(E->isAltShuffle() && 5063 ((Instruction::isBinaryOp(E->getOpcode()) && 5064 Instruction::isBinaryOp(E->getAltOpcode())) || 5065 (Instruction::isCast(E->getOpcode()) && 5066 Instruction::isCast(E->getAltOpcode()))) && 5067 "Invalid Shuffle Vector Operand"); 5068 InstructionCost ScalarCost = 0; 5069 if (NeedToShuffleReuses) { 5070 for (unsigned Idx : E->ReuseShuffleIndices) { 5071 Instruction *I = cast<Instruction>(VL[Idx]); 5072 CommonCost -= TTI->getInstructionCost(I, CostKind); 5073 } 5074 for (Value *V : VL) { 5075 Instruction *I = cast<Instruction>(V); 5076 CommonCost += TTI->getInstructionCost(I, CostKind); 5077 } 5078 } 5079 for (Value *V : VL) { 5080 Instruction *I = cast<Instruction>(V); 5081 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5082 ScalarCost += TTI->getInstructionCost(I, CostKind); 5083 } 5084 // VecCost is equal to sum of the cost of creating 2 vectors 5085 // and the cost of creating shuffle. 5086 InstructionCost VecCost = 0; 5087 // Try to find the previous shuffle node with the same operands and same 5088 // main/alternate ops. 5089 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5090 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5091 if (TE.get() == E) 5092 break; 5093 if (TE->isAltShuffle() && 5094 ((TE->getOpcode() == E->getOpcode() && 5095 TE->getAltOpcode() == E->getAltOpcode()) || 5096 (TE->getOpcode() == E->getAltOpcode() && 5097 TE->getAltOpcode() == E->getOpcode())) && 5098 TE->hasEqualOperands(*E)) 5099 return true; 5100 } 5101 return false; 5102 }; 5103 if (TryFindNodeWithEqualOperands()) { 5104 LLVM_DEBUG({ 5105 dbgs() << "SLP: diamond match for alternate node found.\n"; 5106 E->dump(); 5107 }); 5108 // No need to add new vector costs here since we're going to reuse 5109 // same main/alternate vector ops, just do different shuffling. 5110 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5111 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5112 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5113 CostKind); 5114 } else { 5115 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5116 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5117 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5118 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5119 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5120 TTI::CastContextHint::None, CostKind); 5121 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5122 TTI::CastContextHint::None, CostKind); 5123 } 5124 5125 SmallVector<int> Mask; 5126 buildSuffleEntryMask( 5127 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5128 [E](Instruction *I) { 5129 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5130 return I->getOpcode() == E->getAltOpcode(); 5131 }, 5132 Mask); 5133 CommonCost = 5134 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5135 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5136 return CommonCost + VecCost - ScalarCost; 5137 } 5138 default: 5139 llvm_unreachable("Unknown instruction"); 5140 } 5141 } 5142 5143 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5144 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5145 << VectorizableTree.size() << " is fully vectorizable .\n"); 5146 5147 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5148 SmallVector<int> Mask; 5149 return TE->State == TreeEntry::NeedToGather && 5150 !any_of(TE->Scalars, 5151 [this](Value *V) { return EphValues.contains(V); }) && 5152 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5153 TE->Scalars.size() < Limit || 5154 ((TE->getOpcode() == Instruction::ExtractElement || 5155 all_of(TE->Scalars, 5156 [](Value *V) { 5157 return isa<ExtractElementInst, UndefValue>(V); 5158 })) && 5159 isFixedVectorShuffle(TE->Scalars, Mask)) || 5160 (TE->State == TreeEntry::NeedToGather && 5161 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5162 }; 5163 5164 // We only handle trees of heights 1 and 2. 5165 if (VectorizableTree.size() == 1 && 5166 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5167 (ForReduction && 5168 AreVectorizableGathers(VectorizableTree[0].get(), 5169 VectorizableTree[0]->Scalars.size()) && 5170 VectorizableTree[0]->getVectorFactor() > 2))) 5171 return true; 5172 5173 if (VectorizableTree.size() != 2) 5174 return false; 5175 5176 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5177 // with the second gather nodes if they have less scalar operands rather than 5178 // the initial tree element (may be profitable to shuffle the second gather) 5179 // or they are extractelements, which form shuffle. 5180 SmallVector<int> Mask; 5181 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5182 AreVectorizableGathers(VectorizableTree[1].get(), 5183 VectorizableTree[0]->Scalars.size())) 5184 return true; 5185 5186 // Gathering cost would be too much for tiny trees. 5187 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5188 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5189 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5190 return false; 5191 5192 return true; 5193 } 5194 5195 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5196 TargetTransformInfo *TTI, 5197 bool MustMatchOrInst) { 5198 // Look past the root to find a source value. Arbitrarily follow the 5199 // path through operand 0 of any 'or'. Also, peek through optional 5200 // shift-left-by-multiple-of-8-bits. 5201 Value *ZextLoad = Root; 5202 const APInt *ShAmtC; 5203 bool FoundOr = false; 5204 while (!isa<ConstantExpr>(ZextLoad) && 5205 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5206 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5207 ShAmtC->urem(8) == 0))) { 5208 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5209 ZextLoad = BinOp->getOperand(0); 5210 if (BinOp->getOpcode() == Instruction::Or) 5211 FoundOr = true; 5212 } 5213 // Check if the input is an extended load of the required or/shift expression. 5214 Value *LoadPtr; 5215 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5216 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 5217 return false; 5218 5219 // Require that the total load bit width is a legal integer type. 5220 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5221 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5222 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 5223 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5224 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5225 return false; 5226 5227 // Everything matched - assume that we can fold the whole sequence using 5228 // load combining. 5229 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5230 << *(cast<Instruction>(Root)) << "\n"); 5231 5232 return true; 5233 } 5234 5235 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5236 if (RdxKind != RecurKind::Or) 5237 return false; 5238 5239 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5240 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5241 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5242 /* MatchOr */ false); 5243 } 5244 5245 bool BoUpSLP::isLoadCombineCandidate() const { 5246 // Peek through a final sequence of stores and check if all operations are 5247 // likely to be load-combined. 5248 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5249 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5250 Value *X; 5251 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5252 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5253 return false; 5254 } 5255 return true; 5256 } 5257 5258 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5259 // No need to vectorize inserts of gathered values. 5260 if (VectorizableTree.size() == 2 && 5261 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5262 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5263 return true; 5264 5265 // We can vectorize the tree if its size is greater than or equal to the 5266 // minimum size specified by the MinTreeSize command line option. 5267 if (VectorizableTree.size() >= MinTreeSize) 5268 return false; 5269 5270 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5271 // can vectorize it if we can prove it fully vectorizable. 5272 if (isFullyVectorizableTinyTree(ForReduction)) 5273 return false; 5274 5275 assert(VectorizableTree.empty() 5276 ? ExternalUses.empty() 5277 : true && "We shouldn't have any external users"); 5278 5279 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5280 // vectorizable. 5281 return true; 5282 } 5283 5284 InstructionCost BoUpSLP::getSpillCost() const { 5285 // Walk from the bottom of the tree to the top, tracking which values are 5286 // live. When we see a call instruction that is not part of our tree, 5287 // query TTI to see if there is a cost to keeping values live over it 5288 // (for example, if spills and fills are required). 5289 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5290 InstructionCost Cost = 0; 5291 5292 SmallPtrSet<Instruction*, 4> LiveValues; 5293 Instruction *PrevInst = nullptr; 5294 5295 // The entries in VectorizableTree are not necessarily ordered by their 5296 // position in basic blocks. Collect them and order them by dominance so later 5297 // instructions are guaranteed to be visited first. For instructions in 5298 // different basic blocks, we only scan to the beginning of the block, so 5299 // their order does not matter, as long as all instructions in a basic block 5300 // are grouped together. Using dominance ensures a deterministic order. 5301 SmallVector<Instruction *, 16> OrderedScalars; 5302 for (const auto &TEPtr : VectorizableTree) { 5303 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5304 if (!Inst) 5305 continue; 5306 OrderedScalars.push_back(Inst); 5307 } 5308 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5309 auto *NodeA = DT->getNode(A->getParent()); 5310 auto *NodeB = DT->getNode(B->getParent()); 5311 assert(NodeA && "Should only process reachable instructions"); 5312 assert(NodeB && "Should only process reachable instructions"); 5313 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5314 "Different nodes should have different DFS numbers"); 5315 if (NodeA != NodeB) 5316 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5317 return B->comesBefore(A); 5318 }); 5319 5320 for (Instruction *Inst : OrderedScalars) { 5321 if (!PrevInst) { 5322 PrevInst = Inst; 5323 continue; 5324 } 5325 5326 // Update LiveValues. 5327 LiveValues.erase(PrevInst); 5328 for (auto &J : PrevInst->operands()) { 5329 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5330 LiveValues.insert(cast<Instruction>(&*J)); 5331 } 5332 5333 LLVM_DEBUG({ 5334 dbgs() << "SLP: #LV: " << LiveValues.size(); 5335 for (auto *X : LiveValues) 5336 dbgs() << " " << X->getName(); 5337 dbgs() << ", Looking at "; 5338 Inst->dump(); 5339 }); 5340 5341 // Now find the sequence of instructions between PrevInst and Inst. 5342 unsigned NumCalls = 0; 5343 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5344 PrevInstIt = 5345 PrevInst->getIterator().getReverse(); 5346 while (InstIt != PrevInstIt) { 5347 if (PrevInstIt == PrevInst->getParent()->rend()) { 5348 PrevInstIt = Inst->getParent()->rbegin(); 5349 continue; 5350 } 5351 5352 // Debug information does not impact spill cost. 5353 if ((isa<CallInst>(&*PrevInstIt) && 5354 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5355 &*PrevInstIt != PrevInst) 5356 NumCalls++; 5357 5358 ++PrevInstIt; 5359 } 5360 5361 if (NumCalls) { 5362 SmallVector<Type*, 4> V; 5363 for (auto *II : LiveValues) { 5364 auto *ScalarTy = II->getType(); 5365 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5366 ScalarTy = VectorTy->getElementType(); 5367 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5368 } 5369 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5370 } 5371 5372 PrevInst = Inst; 5373 } 5374 5375 return Cost; 5376 } 5377 5378 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5379 InstructionCost Cost = 0; 5380 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5381 << VectorizableTree.size() << ".\n"); 5382 5383 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5384 5385 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5386 TreeEntry &TE = *VectorizableTree[I].get(); 5387 5388 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5389 Cost += C; 5390 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5391 << " for bundle that starts with " << *TE.Scalars[0] 5392 << ".\n" 5393 << "SLP: Current total cost = " << Cost << "\n"); 5394 } 5395 5396 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5397 InstructionCost ExtractCost = 0; 5398 SmallVector<unsigned> VF; 5399 SmallVector<SmallVector<int>> ShuffleMask; 5400 SmallVector<Value *> FirstUsers; 5401 SmallVector<APInt> DemandedElts; 5402 for (ExternalUser &EU : ExternalUses) { 5403 // We only add extract cost once for the same scalar. 5404 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5405 !ExtractCostCalculated.insert(EU.Scalar).second) 5406 continue; 5407 5408 // Uses by ephemeral values are free (because the ephemeral value will be 5409 // removed prior to code generation, and so the extraction will be 5410 // removed as well). 5411 if (EphValues.count(EU.User)) 5412 continue; 5413 5414 // No extract cost for vector "scalar" 5415 if (isa<FixedVectorType>(EU.Scalar->getType())) 5416 continue; 5417 5418 // Already counted the cost for external uses when tried to adjust the cost 5419 // for extractelements, no need to add it again. 5420 if (isa<ExtractElementInst>(EU.Scalar)) 5421 continue; 5422 5423 // If found user is an insertelement, do not calculate extract cost but try 5424 // to detect it as a final shuffled/identity match. 5425 if (isa_and_nonnull<InsertElementInst>(EU.User)) { 5426 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5427 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5428 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5429 continue; 5430 Value *VU = EU.User; 5431 auto *It = find_if(FirstUsers, [VU](Value *V) { 5432 // Checks if 2 insertelements are from the same buildvector. 5433 if (VU->getType() != V->getType()) 5434 return false; 5435 auto *IE1 = cast<InsertElementInst>(VU); 5436 auto *IE2 = cast<InsertElementInst>(V); 5437 // Go through of insertelement instructions trying to find either VU 5438 // as the original vector for IE2 or V as the original vector for IE1. 5439 do { 5440 if (IE1 == VU || IE2 == V) 5441 return true; 5442 if (IE1) 5443 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5444 if (IE2) 5445 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5446 } while (IE1 || IE2); 5447 return false; 5448 }); 5449 int VecId = -1; 5450 if (It == FirstUsers.end()) { 5451 VF.push_back(FTy->getNumElements()); 5452 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5453 // Find the insertvector, vectorized in tree, if any. 5454 Value *Base = VU; 5455 while (isa<InsertElementInst>(Base)) { 5456 // Build the mask for the vectorized insertelement instructions. 5457 if (const TreeEntry *E = getTreeEntry(Base)) { 5458 VU = Base; 5459 do { 5460 int Idx = E->findLaneForValue(Base); 5461 ShuffleMask.back()[Idx] = Idx; 5462 Base = cast<InsertElementInst>(Base)->getOperand(0); 5463 } while (E == getTreeEntry(Base)); 5464 break; 5465 } 5466 Base = cast<InsertElementInst>(Base)->getOperand(0); 5467 } 5468 FirstUsers.push_back(VU); 5469 DemandedElts.push_back(APInt::getZero(VF.back())); 5470 VecId = FirstUsers.size() - 1; 5471 } else { 5472 VecId = std::distance(FirstUsers.begin(), It); 5473 } 5474 int Idx = *InsertIdx; 5475 ShuffleMask[VecId][Idx] = EU.Lane; 5476 DemandedElts[VecId].setBit(Idx); 5477 continue; 5478 } 5479 } 5480 5481 // If we plan to rewrite the tree in a smaller type, we will need to sign 5482 // extend the extracted value back to the original type. Here, we account 5483 // for the extract and the added cost of the sign extend if needed. 5484 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5485 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5486 if (MinBWs.count(ScalarRoot)) { 5487 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5488 auto Extend = 5489 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5490 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5491 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5492 VecTy, EU.Lane); 5493 } else { 5494 ExtractCost += 5495 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5496 } 5497 } 5498 5499 InstructionCost SpillCost = getSpillCost(); 5500 Cost += SpillCost + ExtractCost; 5501 if (FirstUsers.size() == 1) { 5502 int Limit = ShuffleMask.front().size() * 2; 5503 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5504 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5505 InstructionCost C = TTI->getShuffleCost( 5506 TTI::SK_PermuteSingleSrc, 5507 cast<FixedVectorType>(FirstUsers.front()->getType()), 5508 ShuffleMask.front()); 5509 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5510 << " for final shuffle of insertelement external users " 5511 << *VectorizableTree.front()->Scalars.front() << ".\n" 5512 << "SLP: Current total cost = " << Cost << "\n"); 5513 Cost += C; 5514 } 5515 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5516 cast<FixedVectorType>(FirstUsers.front()->getType()), 5517 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5518 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5519 << " for insertelements gather.\n" 5520 << "SLP: Current total cost = " << Cost << "\n"); 5521 Cost -= InsertCost; 5522 } else if (FirstUsers.size() >= 2) { 5523 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5524 // Combined masks of the first 2 vectors. 5525 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5526 copy(ShuffleMask.front(), CombinedMask.begin()); 5527 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5528 auto *VecTy = FixedVectorType::get( 5529 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5530 MaxVF); 5531 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5532 if (ShuffleMask[1][I] != UndefMaskElem) { 5533 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5534 CombinedDemandedElts.setBit(I); 5535 } 5536 } 5537 InstructionCost C = 5538 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5539 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5540 << " for final shuffle of vector node and external " 5541 "insertelement users " 5542 << *VectorizableTree.front()->Scalars.front() << ".\n" 5543 << "SLP: Current total cost = " << Cost << "\n"); 5544 Cost += C; 5545 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5546 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5547 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5548 << " for insertelements gather.\n" 5549 << "SLP: Current total cost = " << Cost << "\n"); 5550 Cost -= InsertCost; 5551 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5552 // Other elements - permutation of 2 vectors (the initial one and the 5553 // next Ith incoming vector). 5554 unsigned VF = ShuffleMask[I].size(); 5555 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5556 int Mask = ShuffleMask[I][Idx]; 5557 if (Mask != UndefMaskElem) 5558 CombinedMask[Idx] = MaxVF + Mask; 5559 else if (CombinedMask[Idx] != UndefMaskElem) 5560 CombinedMask[Idx] = Idx; 5561 } 5562 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5563 if (CombinedMask[Idx] != UndefMaskElem) 5564 CombinedMask[Idx] = Idx; 5565 InstructionCost C = 5566 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5567 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5568 << " for final shuffle of vector node and external " 5569 "insertelement users " 5570 << *VectorizableTree.front()->Scalars.front() << ".\n" 5571 << "SLP: Current total cost = " << Cost << "\n"); 5572 Cost += C; 5573 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5574 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5575 /*Insert*/ true, /*Extract*/ false); 5576 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5577 << " for insertelements gather.\n" 5578 << "SLP: Current total cost = " << Cost << "\n"); 5579 Cost -= InsertCost; 5580 } 5581 } 5582 5583 #ifndef NDEBUG 5584 SmallString<256> Str; 5585 { 5586 raw_svector_ostream OS(Str); 5587 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5588 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5589 << "SLP: Total Cost = " << Cost << ".\n"; 5590 } 5591 LLVM_DEBUG(dbgs() << Str); 5592 if (ViewSLPTree) 5593 ViewGraph(this, "SLP" + F->getName(), false, Str); 5594 #endif 5595 5596 return Cost; 5597 } 5598 5599 Optional<TargetTransformInfo::ShuffleKind> 5600 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5601 SmallVectorImpl<const TreeEntry *> &Entries) { 5602 // TODO: currently checking only for Scalars in the tree entry, need to count 5603 // reused elements too for better cost estimation. 5604 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5605 Entries.clear(); 5606 // Build a lists of values to tree entries. 5607 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5608 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5609 if (EntryPtr.get() == TE) 5610 break; 5611 if (EntryPtr->State != TreeEntry::NeedToGather) 5612 continue; 5613 for (Value *V : EntryPtr->Scalars) 5614 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5615 } 5616 // Find all tree entries used by the gathered values. If no common entries 5617 // found - not a shuffle. 5618 // Here we build a set of tree nodes for each gathered value and trying to 5619 // find the intersection between these sets. If we have at least one common 5620 // tree node for each gathered value - we have just a permutation of the 5621 // single vector. If we have 2 different sets, we're in situation where we 5622 // have a permutation of 2 input vectors. 5623 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5624 DenseMap<Value *, int> UsedValuesEntry; 5625 for (Value *V : TE->Scalars) { 5626 if (isa<UndefValue>(V)) 5627 continue; 5628 // Build a list of tree entries where V is used. 5629 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5630 auto It = ValueToTEs.find(V); 5631 if (It != ValueToTEs.end()) 5632 VToTEs = It->second; 5633 if (const TreeEntry *VTE = getTreeEntry(V)) 5634 VToTEs.insert(VTE); 5635 if (VToTEs.empty()) 5636 return None; 5637 if (UsedTEs.empty()) { 5638 // The first iteration, just insert the list of nodes to vector. 5639 UsedTEs.push_back(VToTEs); 5640 } else { 5641 // Need to check if there are any previously used tree nodes which use V. 5642 // If there are no such nodes, consider that we have another one input 5643 // vector. 5644 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5645 unsigned Idx = 0; 5646 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5647 // Do we have a non-empty intersection of previously listed tree entries 5648 // and tree entries using current V? 5649 set_intersect(VToTEs, Set); 5650 if (!VToTEs.empty()) { 5651 // Yes, write the new subset and continue analysis for the next 5652 // scalar. 5653 Set.swap(VToTEs); 5654 break; 5655 } 5656 VToTEs = SavedVToTEs; 5657 ++Idx; 5658 } 5659 // No non-empty intersection found - need to add a second set of possible 5660 // source vectors. 5661 if (Idx == UsedTEs.size()) { 5662 // If the number of input vectors is greater than 2 - not a permutation, 5663 // fallback to the regular gather. 5664 if (UsedTEs.size() == 2) 5665 return None; 5666 UsedTEs.push_back(SavedVToTEs); 5667 Idx = UsedTEs.size() - 1; 5668 } 5669 UsedValuesEntry.try_emplace(V, Idx); 5670 } 5671 } 5672 5673 unsigned VF = 0; 5674 if (UsedTEs.size() == 1) { 5675 // Try to find the perfect match in another gather node at first. 5676 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5677 return EntryPtr->isSame(TE->Scalars); 5678 }); 5679 if (It != UsedTEs.front().end()) { 5680 Entries.push_back(*It); 5681 std::iota(Mask.begin(), Mask.end(), 0); 5682 return TargetTransformInfo::SK_PermuteSingleSrc; 5683 } 5684 // No perfect match, just shuffle, so choose the first tree node. 5685 Entries.push_back(*UsedTEs.front().begin()); 5686 } else { 5687 // Try to find nodes with the same vector factor. 5688 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5689 DenseMap<int, const TreeEntry *> VFToTE; 5690 for (const TreeEntry *TE : UsedTEs.front()) 5691 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5692 for (const TreeEntry *TE : UsedTEs.back()) { 5693 auto It = VFToTE.find(TE->getVectorFactor()); 5694 if (It != VFToTE.end()) { 5695 VF = It->first; 5696 Entries.push_back(It->second); 5697 Entries.push_back(TE); 5698 break; 5699 } 5700 } 5701 // No 2 source vectors with the same vector factor - give up and do regular 5702 // gather. 5703 if (Entries.empty()) 5704 return None; 5705 } 5706 5707 // Build a shuffle mask for better cost estimation and vector emission. 5708 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5709 Value *V = TE->Scalars[I]; 5710 if (isa<UndefValue>(V)) 5711 continue; 5712 unsigned Idx = UsedValuesEntry.lookup(V); 5713 const TreeEntry *VTE = Entries[Idx]; 5714 int FoundLane = VTE->findLaneForValue(V); 5715 Mask[I] = Idx * VF + FoundLane; 5716 // Extra check required by isSingleSourceMaskImpl function (called by 5717 // ShuffleVectorInst::isSingleSourceMask). 5718 if (Mask[I] >= 2 * E) 5719 return None; 5720 } 5721 switch (Entries.size()) { 5722 case 1: 5723 return TargetTransformInfo::SK_PermuteSingleSrc; 5724 case 2: 5725 return TargetTransformInfo::SK_PermuteTwoSrc; 5726 default: 5727 break; 5728 } 5729 return None; 5730 } 5731 5732 InstructionCost 5733 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5734 const DenseSet<unsigned> &ShuffledIndices, 5735 bool NeedToShuffle) const { 5736 unsigned NumElts = Ty->getNumElements(); 5737 APInt DemandedElts = APInt::getZero(NumElts); 5738 for (unsigned I = 0; I < NumElts; ++I) 5739 if (!ShuffledIndices.count(I)) 5740 DemandedElts.setBit(I); 5741 InstructionCost Cost = 5742 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5743 /*Extract*/ false); 5744 if (NeedToShuffle) 5745 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5746 return Cost; 5747 } 5748 5749 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5750 // Find the type of the operands in VL. 5751 Type *ScalarTy = VL[0]->getType(); 5752 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5753 ScalarTy = SI->getValueOperand()->getType(); 5754 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5755 bool DuplicateNonConst = false; 5756 // Find the cost of inserting/extracting values from the vector. 5757 // Check if the same elements are inserted several times and count them as 5758 // shuffle candidates. 5759 DenseSet<unsigned> ShuffledElements; 5760 DenseSet<Value *> UniqueElements; 5761 // Iterate in reverse order to consider insert elements with the high cost. 5762 for (unsigned I = VL.size(); I > 0; --I) { 5763 unsigned Idx = I - 1; 5764 // No need to shuffle duplicates for constants. 5765 if (isConstant(VL[Idx])) { 5766 ShuffledElements.insert(Idx); 5767 continue; 5768 } 5769 if (!UniqueElements.insert(VL[Idx]).second) { 5770 DuplicateNonConst = true; 5771 ShuffledElements.insert(Idx); 5772 } 5773 } 5774 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5775 } 5776 5777 // Perform operand reordering on the instructions in VL and return the reordered 5778 // operands in Left and Right. 5779 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5780 SmallVectorImpl<Value *> &Left, 5781 SmallVectorImpl<Value *> &Right, 5782 const DataLayout &DL, 5783 ScalarEvolution &SE, 5784 const BoUpSLP &R) { 5785 if (VL.empty()) 5786 return; 5787 VLOperands Ops(VL, DL, SE, R); 5788 // Reorder the operands in place. 5789 Ops.reorder(); 5790 Left = Ops.getVL(0); 5791 Right = Ops.getVL(1); 5792 } 5793 5794 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5795 // Get the basic block this bundle is in. All instructions in the bundle 5796 // should be in this block. 5797 auto *Front = E->getMainOp(); 5798 auto *BB = Front->getParent(); 5799 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5800 auto *I = cast<Instruction>(V); 5801 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5802 })); 5803 5804 // The last instruction in the bundle in program order. 5805 Instruction *LastInst = nullptr; 5806 5807 // Find the last instruction. The common case should be that BB has been 5808 // scheduled, and the last instruction is VL.back(). So we start with 5809 // VL.back() and iterate over schedule data until we reach the end of the 5810 // bundle. The end of the bundle is marked by null ScheduleData. 5811 if (BlocksSchedules.count(BB)) { 5812 auto *Bundle = 5813 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5814 if (Bundle && Bundle->isPartOfBundle()) 5815 for (; Bundle; Bundle = Bundle->NextInBundle) 5816 if (Bundle->OpValue == Bundle->Inst) 5817 LastInst = Bundle->Inst; 5818 } 5819 5820 // LastInst can still be null at this point if there's either not an entry 5821 // for BB in BlocksSchedules or there's no ScheduleData available for 5822 // VL.back(). This can be the case if buildTree_rec aborts for various 5823 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5824 // size is reached, etc.). ScheduleData is initialized in the scheduling 5825 // "dry-run". 5826 // 5827 // If this happens, we can still find the last instruction by brute force. We 5828 // iterate forwards from Front (inclusive) until we either see all 5829 // instructions in the bundle or reach the end of the block. If Front is the 5830 // last instruction in program order, LastInst will be set to Front, and we 5831 // will visit all the remaining instructions in the block. 5832 // 5833 // One of the reasons we exit early from buildTree_rec is to place an upper 5834 // bound on compile-time. Thus, taking an additional compile-time hit here is 5835 // not ideal. However, this should be exceedingly rare since it requires that 5836 // we both exit early from buildTree_rec and that the bundle be out-of-order 5837 // (causing us to iterate all the way to the end of the block). 5838 if (!LastInst) { 5839 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5840 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5841 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5842 LastInst = &I; 5843 if (Bundle.empty()) 5844 break; 5845 } 5846 } 5847 assert(LastInst && "Failed to find last instruction in bundle"); 5848 5849 // Set the insertion point after the last instruction in the bundle. Set the 5850 // debug location to Front. 5851 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5852 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5853 } 5854 5855 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5856 // List of instructions/lanes from current block and/or the blocks which are 5857 // part of the current loop. These instructions will be inserted at the end to 5858 // make it possible to optimize loops and hoist invariant instructions out of 5859 // the loops body with better chances for success. 5860 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5861 SmallSet<int, 4> PostponedIndices; 5862 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5863 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5864 SmallPtrSet<BasicBlock *, 4> Visited; 5865 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5866 InsertBB = InsertBB->getSinglePredecessor(); 5867 return InsertBB && InsertBB == InstBB; 5868 }; 5869 for (int I = 0, E = VL.size(); I < E; ++I) { 5870 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5871 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5872 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5873 PostponedIndices.insert(I).second) 5874 PostponedInsts.emplace_back(Inst, I); 5875 } 5876 5877 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5878 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5879 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5880 if (!InsElt) 5881 return Vec; 5882 GatherShuffleSeq.insert(InsElt); 5883 CSEBlocks.insert(InsElt->getParent()); 5884 // Add to our 'need-to-extract' list. 5885 if (TreeEntry *Entry = getTreeEntry(V)) { 5886 // Find which lane we need to extract. 5887 unsigned FoundLane = Entry->findLaneForValue(V); 5888 ExternalUses.emplace_back(V, InsElt, FoundLane); 5889 } 5890 return Vec; 5891 }; 5892 Value *Val0 = 5893 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5894 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5895 Value *Vec = PoisonValue::get(VecTy); 5896 SmallVector<int> NonConsts; 5897 // Insert constant values at first. 5898 for (int I = 0, E = VL.size(); I < E; ++I) { 5899 if (PostponedIndices.contains(I)) 5900 continue; 5901 if (!isConstant(VL[I])) { 5902 NonConsts.push_back(I); 5903 continue; 5904 } 5905 Vec = CreateInsertElement(Vec, VL[I], I); 5906 } 5907 // Insert non-constant values. 5908 for (int I : NonConsts) 5909 Vec = CreateInsertElement(Vec, VL[I], I); 5910 // Append instructions, which are/may be part of the loop, in the end to make 5911 // it possible to hoist non-loop-based instructions. 5912 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5913 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5914 5915 return Vec; 5916 } 5917 5918 namespace { 5919 /// Merges shuffle masks and emits final shuffle instruction, if required. 5920 class ShuffleInstructionBuilder { 5921 IRBuilderBase &Builder; 5922 const unsigned VF = 0; 5923 bool IsFinalized = false; 5924 SmallVector<int, 4> Mask; 5925 5926 public: 5927 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5928 : Builder(Builder), VF(VF) {} 5929 5930 /// Adds a mask, inverting it before applying. 5931 void addInversedMask(ArrayRef<unsigned> SubMask) { 5932 if (SubMask.empty()) 5933 return; 5934 SmallVector<int, 4> NewMask; 5935 inversePermutation(SubMask, NewMask); 5936 addMask(NewMask); 5937 } 5938 5939 /// Functions adds masks, merging them into single one. 5940 void addMask(ArrayRef<unsigned> SubMask) { 5941 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5942 addMask(NewMask); 5943 } 5944 5945 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5946 5947 Value *finalize(Value *V) { 5948 IsFinalized = true; 5949 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5950 if (VF == ValueVF && Mask.empty()) 5951 return V; 5952 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5953 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5954 addMask(NormalizedMask); 5955 5956 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5957 return V; 5958 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5959 } 5960 5961 ~ShuffleInstructionBuilder() { 5962 assert((IsFinalized || Mask.empty()) && 5963 "Shuffle construction must be finalized."); 5964 } 5965 }; 5966 } // namespace 5967 5968 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5969 unsigned VF = VL.size(); 5970 InstructionsState S = getSameOpcode(VL); 5971 if (S.getOpcode()) { 5972 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5973 if (E->isSame(VL)) { 5974 Value *V = vectorizeTree(E); 5975 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5976 if (!E->ReuseShuffleIndices.empty()) { 5977 // Reshuffle to get only unique values. 5978 // If some of the scalars are duplicated in the vectorization tree 5979 // entry, we do not vectorize them but instead generate a mask for 5980 // the reuses. But if there are several users of the same entry, 5981 // they may have different vectorization factors. This is especially 5982 // important for PHI nodes. In this case, we need to adapt the 5983 // resulting instruction for the user vectorization factor and have 5984 // to reshuffle it again to take only unique elements of the vector. 5985 // Without this code the function incorrectly returns reduced vector 5986 // instruction with the same elements, not with the unique ones. 5987 5988 // block: 5989 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5990 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 5991 // ... (use %2) 5992 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 5993 // br %block 5994 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 5995 SmallSet<int, 4> UsedIdxs; 5996 int Pos = 0; 5997 int Sz = VL.size(); 5998 for (int Idx : E->ReuseShuffleIndices) { 5999 if (Idx != Sz && Idx != UndefMaskElem && 6000 UsedIdxs.insert(Idx).second) 6001 UniqueIdxs[Idx] = Pos; 6002 ++Pos; 6003 } 6004 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6005 "less than original vector size."); 6006 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6007 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6008 } else { 6009 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6010 "Expected vectorization factor less " 6011 "than original vector size."); 6012 SmallVector<int> UniformMask(VF, 0); 6013 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6014 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6015 } 6016 } 6017 return V; 6018 } 6019 } 6020 6021 // Check that every instruction appears once in this bundle. 6022 SmallVector<int> ReuseShuffleIndicies; 6023 SmallVector<Value *> UniqueValues; 6024 if (VL.size() > 2) { 6025 DenseMap<Value *, unsigned> UniquePositions; 6026 unsigned NumValues = 6027 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6028 return !isa<UndefValue>(V); 6029 }).base()); 6030 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6031 int UniqueVals = 0; 6032 for (Value *V : VL.drop_back(VL.size() - VF)) { 6033 if (isa<UndefValue>(V)) { 6034 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6035 continue; 6036 } 6037 if (isConstant(V)) { 6038 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6039 UniqueValues.emplace_back(V); 6040 continue; 6041 } 6042 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6043 ReuseShuffleIndicies.emplace_back(Res.first->second); 6044 if (Res.second) { 6045 UniqueValues.emplace_back(V); 6046 ++UniqueVals; 6047 } 6048 } 6049 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6050 // Emit pure splat vector. 6051 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6052 UndefMaskElem); 6053 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6054 ReuseShuffleIndicies.clear(); 6055 UniqueValues.clear(); 6056 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6057 } 6058 UniqueValues.append(VF - UniqueValues.size(), 6059 PoisonValue::get(VL[0]->getType())); 6060 VL = UniqueValues; 6061 } 6062 6063 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 6064 Value *Vec = gather(VL); 6065 if (!ReuseShuffleIndicies.empty()) { 6066 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6067 Vec = ShuffleBuilder.finalize(Vec); 6068 if (auto *I = dyn_cast<Instruction>(Vec)) { 6069 GatherShuffleSeq.insert(I); 6070 CSEBlocks.insert(I->getParent()); 6071 } 6072 } 6073 return Vec; 6074 } 6075 6076 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6077 IRBuilder<>::InsertPointGuard Guard(Builder); 6078 6079 if (E->VectorizedValue) { 6080 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6081 return E->VectorizedValue; 6082 } 6083 6084 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6085 unsigned VF = E->getVectorFactor(); 6086 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 6087 if (E->State == TreeEntry::NeedToGather) { 6088 if (E->getMainOp()) 6089 setInsertPointAfterBundle(E); 6090 Value *Vec; 6091 SmallVector<int> Mask; 6092 SmallVector<const TreeEntry *> Entries; 6093 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6094 isGatherShuffledEntry(E, Mask, Entries); 6095 if (Shuffle.hasValue()) { 6096 assert((Entries.size() == 1 || Entries.size() == 2) && 6097 "Expected shuffle of 1 or 2 entries."); 6098 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6099 Entries.back()->VectorizedValue, Mask); 6100 } else { 6101 Vec = gather(E->Scalars); 6102 } 6103 if (NeedToShuffleReuses) { 6104 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6105 Vec = ShuffleBuilder.finalize(Vec); 6106 if (auto *I = dyn_cast<Instruction>(Vec)) { 6107 GatherShuffleSeq.insert(I); 6108 CSEBlocks.insert(I->getParent()); 6109 } 6110 } 6111 E->VectorizedValue = Vec; 6112 return Vec; 6113 } 6114 6115 assert((E->State == TreeEntry::Vectorize || 6116 E->State == TreeEntry::ScatterVectorize) && 6117 "Unhandled state"); 6118 unsigned ShuffleOrOp = 6119 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6120 Instruction *VL0 = E->getMainOp(); 6121 Type *ScalarTy = VL0->getType(); 6122 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6123 ScalarTy = Store->getValueOperand()->getType(); 6124 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6125 ScalarTy = IE->getOperand(1)->getType(); 6126 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6127 switch (ShuffleOrOp) { 6128 case Instruction::PHI: { 6129 assert( 6130 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6131 "PHI reordering is free."); 6132 auto *PH = cast<PHINode>(VL0); 6133 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6134 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6135 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6136 Value *V = NewPhi; 6137 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6138 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6139 V = ShuffleBuilder.finalize(V); 6140 6141 E->VectorizedValue = V; 6142 6143 // PHINodes may have multiple entries from the same block. We want to 6144 // visit every block once. 6145 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6146 6147 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6148 ValueList Operands; 6149 BasicBlock *IBB = PH->getIncomingBlock(i); 6150 6151 if (!VisitedBBs.insert(IBB).second) { 6152 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6153 continue; 6154 } 6155 6156 Builder.SetInsertPoint(IBB->getTerminator()); 6157 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6158 Value *Vec = vectorizeTree(E->getOperand(i)); 6159 NewPhi->addIncoming(Vec, IBB); 6160 } 6161 6162 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6163 "Invalid number of incoming values"); 6164 return V; 6165 } 6166 6167 case Instruction::ExtractElement: { 6168 Value *V = E->getSingleOperand(0); 6169 Builder.SetInsertPoint(VL0); 6170 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6171 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6172 V = ShuffleBuilder.finalize(V); 6173 E->VectorizedValue = V; 6174 return V; 6175 } 6176 case Instruction::ExtractValue: { 6177 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6178 Builder.SetInsertPoint(LI); 6179 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6180 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6181 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6182 Value *NewV = propagateMetadata(V, E->Scalars); 6183 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6184 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6185 NewV = ShuffleBuilder.finalize(NewV); 6186 E->VectorizedValue = NewV; 6187 return NewV; 6188 } 6189 case Instruction::InsertElement: { 6190 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6191 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6192 Value *V = vectorizeTree(E->getOperand(1)); 6193 6194 // Create InsertVector shuffle if necessary 6195 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6196 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6197 })); 6198 const unsigned NumElts = 6199 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6200 const unsigned NumScalars = E->Scalars.size(); 6201 6202 unsigned Offset = *getInsertIndex(VL0, 0); 6203 assert(Offset < NumElts && "Failed to find vector index offset"); 6204 6205 // Create shuffle to resize vector 6206 SmallVector<int> Mask; 6207 if (!E->ReorderIndices.empty()) { 6208 inversePermutation(E->ReorderIndices, Mask); 6209 Mask.append(NumElts - NumScalars, UndefMaskElem); 6210 } else { 6211 Mask.assign(NumElts, UndefMaskElem); 6212 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6213 } 6214 // Create InsertVector shuffle if necessary 6215 bool IsIdentity = true; 6216 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6217 Mask.swap(PrevMask); 6218 for (unsigned I = 0; I < NumScalars; ++I) { 6219 Value *Scalar = E->Scalars[PrevMask[I]]; 6220 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6221 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6222 continue; 6223 IsIdentity &= *InsertIdx - Offset == I; 6224 Mask[*InsertIdx - Offset] = I; 6225 } 6226 if (!IsIdentity || NumElts != NumScalars) 6227 V = Builder.CreateShuffleVector(V, Mask); 6228 6229 if ((!IsIdentity || Offset != 0 || 6230 !isUndefVector(FirstInsert->getOperand(0))) && 6231 NumElts != NumScalars) { 6232 SmallVector<int> InsertMask(NumElts); 6233 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6234 for (unsigned I = 0; I < NumElts; I++) { 6235 if (Mask[I] != UndefMaskElem) 6236 InsertMask[Offset + I] = NumElts + I; 6237 } 6238 6239 V = Builder.CreateShuffleVector( 6240 FirstInsert->getOperand(0), V, InsertMask, 6241 cast<Instruction>(E->Scalars.back())->getName()); 6242 } 6243 6244 ++NumVectorInstructions; 6245 E->VectorizedValue = V; 6246 return V; 6247 } 6248 case Instruction::ZExt: 6249 case Instruction::SExt: 6250 case Instruction::FPToUI: 6251 case Instruction::FPToSI: 6252 case Instruction::FPExt: 6253 case Instruction::PtrToInt: 6254 case Instruction::IntToPtr: 6255 case Instruction::SIToFP: 6256 case Instruction::UIToFP: 6257 case Instruction::Trunc: 6258 case Instruction::FPTrunc: 6259 case Instruction::BitCast: { 6260 setInsertPointAfterBundle(E); 6261 6262 Value *InVec = vectorizeTree(E->getOperand(0)); 6263 6264 if (E->VectorizedValue) { 6265 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6266 return E->VectorizedValue; 6267 } 6268 6269 auto *CI = cast<CastInst>(VL0); 6270 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6271 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6272 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6273 V = ShuffleBuilder.finalize(V); 6274 6275 E->VectorizedValue = V; 6276 ++NumVectorInstructions; 6277 return V; 6278 } 6279 case Instruction::FCmp: 6280 case Instruction::ICmp: { 6281 setInsertPointAfterBundle(E); 6282 6283 Value *L = vectorizeTree(E->getOperand(0)); 6284 Value *R = vectorizeTree(E->getOperand(1)); 6285 6286 if (E->VectorizedValue) { 6287 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6288 return E->VectorizedValue; 6289 } 6290 6291 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6292 Value *V = Builder.CreateCmp(P0, L, R); 6293 propagateIRFlags(V, E->Scalars, VL0); 6294 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6295 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6296 V = ShuffleBuilder.finalize(V); 6297 6298 E->VectorizedValue = V; 6299 ++NumVectorInstructions; 6300 return V; 6301 } 6302 case Instruction::Select: { 6303 setInsertPointAfterBundle(E); 6304 6305 Value *Cond = vectorizeTree(E->getOperand(0)); 6306 Value *True = vectorizeTree(E->getOperand(1)); 6307 Value *False = vectorizeTree(E->getOperand(2)); 6308 6309 if (E->VectorizedValue) { 6310 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6311 return E->VectorizedValue; 6312 } 6313 6314 Value *V = Builder.CreateSelect(Cond, True, False); 6315 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6316 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6317 V = ShuffleBuilder.finalize(V); 6318 6319 E->VectorizedValue = V; 6320 ++NumVectorInstructions; 6321 return V; 6322 } 6323 case Instruction::FNeg: { 6324 setInsertPointAfterBundle(E); 6325 6326 Value *Op = vectorizeTree(E->getOperand(0)); 6327 6328 if (E->VectorizedValue) { 6329 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6330 return E->VectorizedValue; 6331 } 6332 6333 Value *V = Builder.CreateUnOp( 6334 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6335 propagateIRFlags(V, E->Scalars, VL0); 6336 if (auto *I = dyn_cast<Instruction>(V)) 6337 V = propagateMetadata(I, E->Scalars); 6338 6339 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6340 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6341 V = ShuffleBuilder.finalize(V); 6342 6343 E->VectorizedValue = V; 6344 ++NumVectorInstructions; 6345 6346 return V; 6347 } 6348 case Instruction::Add: 6349 case Instruction::FAdd: 6350 case Instruction::Sub: 6351 case Instruction::FSub: 6352 case Instruction::Mul: 6353 case Instruction::FMul: 6354 case Instruction::UDiv: 6355 case Instruction::SDiv: 6356 case Instruction::FDiv: 6357 case Instruction::URem: 6358 case Instruction::SRem: 6359 case Instruction::FRem: 6360 case Instruction::Shl: 6361 case Instruction::LShr: 6362 case Instruction::AShr: 6363 case Instruction::And: 6364 case Instruction::Or: 6365 case Instruction::Xor: { 6366 setInsertPointAfterBundle(E); 6367 6368 Value *LHS = vectorizeTree(E->getOperand(0)); 6369 Value *RHS = vectorizeTree(E->getOperand(1)); 6370 6371 if (E->VectorizedValue) { 6372 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6373 return E->VectorizedValue; 6374 } 6375 6376 Value *V = Builder.CreateBinOp( 6377 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6378 RHS); 6379 propagateIRFlags(V, E->Scalars, VL0); 6380 if (auto *I = dyn_cast<Instruction>(V)) 6381 V = propagateMetadata(I, E->Scalars); 6382 6383 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6384 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6385 V = ShuffleBuilder.finalize(V); 6386 6387 E->VectorizedValue = V; 6388 ++NumVectorInstructions; 6389 6390 return V; 6391 } 6392 case Instruction::Load: { 6393 // Loads are inserted at the head of the tree because we don't want to 6394 // sink them all the way down past store instructions. 6395 setInsertPointAfterBundle(E); 6396 6397 LoadInst *LI = cast<LoadInst>(VL0); 6398 Instruction *NewLI; 6399 unsigned AS = LI->getPointerAddressSpace(); 6400 Value *PO = LI->getPointerOperand(); 6401 if (E->State == TreeEntry::Vectorize) { 6402 6403 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6404 6405 // The pointer operand uses an in-tree scalar so we add the new BitCast 6406 // to ExternalUses list to make sure that an extract will be generated 6407 // in the future. 6408 if (TreeEntry *Entry = getTreeEntry(PO)) { 6409 // Find which lane we need to extract. 6410 unsigned FoundLane = Entry->findLaneForValue(PO); 6411 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6412 } 6413 6414 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6415 } else { 6416 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6417 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6418 // Use the minimum alignment of the gathered loads. 6419 Align CommonAlignment = LI->getAlign(); 6420 for (Value *V : E->Scalars) 6421 CommonAlignment = 6422 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6423 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6424 } 6425 Value *V = propagateMetadata(NewLI, E->Scalars); 6426 6427 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6428 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6429 V = ShuffleBuilder.finalize(V); 6430 E->VectorizedValue = V; 6431 ++NumVectorInstructions; 6432 return V; 6433 } 6434 case Instruction::Store: { 6435 auto *SI = cast<StoreInst>(VL0); 6436 unsigned AS = SI->getPointerAddressSpace(); 6437 6438 setInsertPointAfterBundle(E); 6439 6440 Value *VecValue = vectorizeTree(E->getOperand(0)); 6441 ShuffleBuilder.addMask(E->ReorderIndices); 6442 VecValue = ShuffleBuilder.finalize(VecValue); 6443 6444 Value *ScalarPtr = SI->getPointerOperand(); 6445 Value *VecPtr = Builder.CreateBitCast( 6446 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6447 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6448 SI->getAlign()); 6449 6450 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6451 // ExternalUses to make sure that an extract will be generated in the 6452 // future. 6453 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6454 // Find which lane we need to extract. 6455 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6456 ExternalUses.push_back( 6457 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6458 } 6459 6460 Value *V = propagateMetadata(ST, E->Scalars); 6461 6462 E->VectorizedValue = V; 6463 ++NumVectorInstructions; 6464 return V; 6465 } 6466 case Instruction::GetElementPtr: { 6467 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6468 setInsertPointAfterBundle(E); 6469 6470 Value *Op0 = vectorizeTree(E->getOperand(0)); 6471 6472 SmallVector<Value *> OpVecs; 6473 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6474 Value *OpVec = vectorizeTree(E->getOperand(J)); 6475 OpVecs.push_back(OpVec); 6476 } 6477 6478 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6479 if (Instruction *I = dyn_cast<Instruction>(V)) 6480 V = propagateMetadata(I, E->Scalars); 6481 6482 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6483 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6484 V = ShuffleBuilder.finalize(V); 6485 6486 E->VectorizedValue = V; 6487 ++NumVectorInstructions; 6488 6489 return V; 6490 } 6491 case Instruction::Call: { 6492 CallInst *CI = cast<CallInst>(VL0); 6493 setInsertPointAfterBundle(E); 6494 6495 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6496 if (Function *FI = CI->getCalledFunction()) 6497 IID = FI->getIntrinsicID(); 6498 6499 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6500 6501 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6502 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6503 VecCallCosts.first <= VecCallCosts.second; 6504 6505 Value *ScalarArg = nullptr; 6506 std::vector<Value *> OpVecs; 6507 SmallVector<Type *, 2> TysForDecl = 6508 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6509 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6510 ValueList OpVL; 6511 // Some intrinsics have scalar arguments. This argument should not be 6512 // vectorized. 6513 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6514 CallInst *CEI = cast<CallInst>(VL0); 6515 ScalarArg = CEI->getArgOperand(j); 6516 OpVecs.push_back(CEI->getArgOperand(j)); 6517 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6518 TysForDecl.push_back(ScalarArg->getType()); 6519 continue; 6520 } 6521 6522 Value *OpVec = vectorizeTree(E->getOperand(j)); 6523 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6524 OpVecs.push_back(OpVec); 6525 } 6526 6527 Function *CF; 6528 if (!UseIntrinsic) { 6529 VFShape Shape = 6530 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6531 VecTy->getNumElements())), 6532 false /*HasGlobalPred*/); 6533 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6534 } else { 6535 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6536 } 6537 6538 SmallVector<OperandBundleDef, 1> OpBundles; 6539 CI->getOperandBundlesAsDefs(OpBundles); 6540 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6541 6542 // The scalar argument uses an in-tree scalar so we add the new vectorized 6543 // call to ExternalUses list to make sure that an extract will be 6544 // generated in the future. 6545 if (ScalarArg) { 6546 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6547 // Find which lane we need to extract. 6548 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6549 ExternalUses.push_back( 6550 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6551 } 6552 } 6553 6554 propagateIRFlags(V, E->Scalars, VL0); 6555 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6556 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6557 V = ShuffleBuilder.finalize(V); 6558 6559 E->VectorizedValue = V; 6560 ++NumVectorInstructions; 6561 return V; 6562 } 6563 case Instruction::ShuffleVector: { 6564 assert(E->isAltShuffle() && 6565 ((Instruction::isBinaryOp(E->getOpcode()) && 6566 Instruction::isBinaryOp(E->getAltOpcode())) || 6567 (Instruction::isCast(E->getOpcode()) && 6568 Instruction::isCast(E->getAltOpcode()))) && 6569 "Invalid Shuffle Vector Operand"); 6570 6571 Value *LHS = nullptr, *RHS = nullptr; 6572 if (Instruction::isBinaryOp(E->getOpcode())) { 6573 setInsertPointAfterBundle(E); 6574 LHS = vectorizeTree(E->getOperand(0)); 6575 RHS = vectorizeTree(E->getOperand(1)); 6576 } else { 6577 setInsertPointAfterBundle(E); 6578 LHS = vectorizeTree(E->getOperand(0)); 6579 } 6580 6581 if (E->VectorizedValue) { 6582 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6583 return E->VectorizedValue; 6584 } 6585 6586 Value *V0, *V1; 6587 if (Instruction::isBinaryOp(E->getOpcode())) { 6588 V0 = Builder.CreateBinOp( 6589 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6590 V1 = Builder.CreateBinOp( 6591 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6592 } else { 6593 V0 = Builder.CreateCast( 6594 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6595 V1 = Builder.CreateCast( 6596 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6597 } 6598 // Add V0 and V1 to later analysis to try to find and remove matching 6599 // instruction, if any. 6600 for (Value *V : {V0, V1}) { 6601 if (auto *I = dyn_cast<Instruction>(V)) { 6602 GatherShuffleSeq.insert(I); 6603 CSEBlocks.insert(I->getParent()); 6604 } 6605 } 6606 6607 // Create shuffle to take alternate operations from the vector. 6608 // Also, gather up main and alt scalar ops to propagate IR flags to 6609 // each vector operation. 6610 ValueList OpScalars, AltScalars; 6611 SmallVector<int> Mask; 6612 buildSuffleEntryMask( 6613 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6614 [E](Instruction *I) { 6615 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6616 return I->getOpcode() == E->getAltOpcode(); 6617 }, 6618 Mask, &OpScalars, &AltScalars); 6619 6620 propagateIRFlags(V0, OpScalars); 6621 propagateIRFlags(V1, AltScalars); 6622 6623 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6624 if (Instruction *I = dyn_cast<Instruction>(V)) 6625 V = propagateMetadata(I, E->Scalars); 6626 V = ShuffleBuilder.finalize(V); 6627 6628 E->VectorizedValue = V; 6629 ++NumVectorInstructions; 6630 6631 return V; 6632 } 6633 default: 6634 llvm_unreachable("unknown inst"); 6635 } 6636 return nullptr; 6637 } 6638 6639 Value *BoUpSLP::vectorizeTree() { 6640 ExtraValueToDebugLocsMap ExternallyUsedValues; 6641 return vectorizeTree(ExternallyUsedValues); 6642 } 6643 6644 Value * 6645 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6646 // All blocks must be scheduled before any instructions are inserted. 6647 for (auto &BSIter : BlocksSchedules) { 6648 scheduleBlock(BSIter.second.get()); 6649 } 6650 6651 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6652 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6653 6654 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6655 // vectorized root. InstCombine will then rewrite the entire expression. We 6656 // sign extend the extracted values below. 6657 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6658 if (MinBWs.count(ScalarRoot)) { 6659 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6660 // If current instr is a phi and not the last phi, insert it after the 6661 // last phi node. 6662 if (isa<PHINode>(I)) 6663 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6664 else 6665 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6666 } 6667 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6668 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6669 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6670 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6671 VectorizableTree[0]->VectorizedValue = Trunc; 6672 } 6673 6674 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6675 << " values .\n"); 6676 6677 // Extract all of the elements with the external uses. 6678 for (const auto &ExternalUse : ExternalUses) { 6679 Value *Scalar = ExternalUse.Scalar; 6680 llvm::User *User = ExternalUse.User; 6681 6682 // Skip users that we already RAUW. This happens when one instruction 6683 // has multiple uses of the same value. 6684 if (User && !is_contained(Scalar->users(), User)) 6685 continue; 6686 TreeEntry *E = getTreeEntry(Scalar); 6687 assert(E && "Invalid scalar"); 6688 assert(E->State != TreeEntry::NeedToGather && 6689 "Extracting from a gather list"); 6690 6691 Value *Vec = E->VectorizedValue; 6692 assert(Vec && "Can't find vectorizable value"); 6693 6694 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6695 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6696 if (Scalar->getType() != Vec->getType()) { 6697 Value *Ex; 6698 // "Reuse" the existing extract to improve final codegen. 6699 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6700 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6701 ES->getOperand(1)); 6702 } else { 6703 Ex = Builder.CreateExtractElement(Vec, Lane); 6704 } 6705 // If necessary, sign-extend or zero-extend ScalarRoot 6706 // to the larger type. 6707 if (!MinBWs.count(ScalarRoot)) 6708 return Ex; 6709 if (MinBWs[ScalarRoot].second) 6710 return Builder.CreateSExt(Ex, Scalar->getType()); 6711 return Builder.CreateZExt(Ex, Scalar->getType()); 6712 } 6713 assert(isa<FixedVectorType>(Scalar->getType()) && 6714 isa<InsertElementInst>(Scalar) && 6715 "In-tree scalar of vector type is not insertelement?"); 6716 return Vec; 6717 }; 6718 // If User == nullptr, the Scalar is used as extra arg. Generate 6719 // ExtractElement instruction and update the record for this scalar in 6720 // ExternallyUsedValues. 6721 if (!User) { 6722 assert(ExternallyUsedValues.count(Scalar) && 6723 "Scalar with nullptr as an external user must be registered in " 6724 "ExternallyUsedValues map"); 6725 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6726 Builder.SetInsertPoint(VecI->getParent(), 6727 std::next(VecI->getIterator())); 6728 } else { 6729 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6730 } 6731 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6732 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6733 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6734 auto It = ExternallyUsedValues.find(Scalar); 6735 assert(It != ExternallyUsedValues.end() && 6736 "Externally used scalar is not found in ExternallyUsedValues"); 6737 NewInstLocs.append(It->second); 6738 ExternallyUsedValues.erase(Scalar); 6739 // Required to update internally referenced instructions. 6740 Scalar->replaceAllUsesWith(NewInst); 6741 continue; 6742 } 6743 6744 // Generate extracts for out-of-tree users. 6745 // Find the insertion point for the extractelement lane. 6746 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6747 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6748 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6749 if (PH->getIncomingValue(i) == Scalar) { 6750 Instruction *IncomingTerminator = 6751 PH->getIncomingBlock(i)->getTerminator(); 6752 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6753 Builder.SetInsertPoint(VecI->getParent(), 6754 std::next(VecI->getIterator())); 6755 } else { 6756 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6757 } 6758 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6759 CSEBlocks.insert(PH->getIncomingBlock(i)); 6760 PH->setOperand(i, NewInst); 6761 } 6762 } 6763 } else { 6764 Builder.SetInsertPoint(cast<Instruction>(User)); 6765 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6766 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6767 User->replaceUsesOfWith(Scalar, NewInst); 6768 } 6769 } else { 6770 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6771 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6772 CSEBlocks.insert(&F->getEntryBlock()); 6773 User->replaceUsesOfWith(Scalar, NewInst); 6774 } 6775 6776 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6777 } 6778 6779 // For each vectorized value: 6780 for (auto &TEPtr : VectorizableTree) { 6781 TreeEntry *Entry = TEPtr.get(); 6782 6783 // No need to handle users of gathered values. 6784 if (Entry->State == TreeEntry::NeedToGather) 6785 continue; 6786 6787 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6788 6789 // For each lane: 6790 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6791 Value *Scalar = Entry->Scalars[Lane]; 6792 6793 #ifndef NDEBUG 6794 Type *Ty = Scalar->getType(); 6795 if (!Ty->isVoidTy()) { 6796 for (User *U : Scalar->users()) { 6797 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6798 6799 // It is legal to delete users in the ignorelist. 6800 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6801 (isa_and_nonnull<Instruction>(U) && 6802 isDeleted(cast<Instruction>(U)))) && 6803 "Deleting out-of-tree value"); 6804 } 6805 } 6806 #endif 6807 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6808 eraseInstruction(cast<Instruction>(Scalar)); 6809 } 6810 } 6811 6812 Builder.ClearInsertionPoint(); 6813 InstrElementSize.clear(); 6814 6815 return VectorizableTree[0]->VectorizedValue; 6816 } 6817 6818 void BoUpSLP::optimizeGatherSequence() { 6819 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 6820 << " gather sequences instructions.\n"); 6821 // LICM InsertElementInst sequences. 6822 for (Instruction *I : GatherShuffleSeq) { 6823 if (isDeleted(I)) 6824 continue; 6825 6826 // Check if this block is inside a loop. 6827 Loop *L = LI->getLoopFor(I->getParent()); 6828 if (!L) 6829 continue; 6830 6831 // Check if it has a preheader. 6832 BasicBlock *PreHeader = L->getLoopPreheader(); 6833 if (!PreHeader) 6834 continue; 6835 6836 // If the vector or the element that we insert into it are 6837 // instructions that are defined in this basic block then we can't 6838 // hoist this instruction. 6839 if (any_of(I->operands(), [L](Value *V) { 6840 auto *OpI = dyn_cast<Instruction>(V); 6841 return OpI && L->contains(OpI); 6842 })) 6843 continue; 6844 6845 // We can hoist this instruction. Move it to the pre-header. 6846 I->moveBefore(PreHeader->getTerminator()); 6847 } 6848 6849 // Make a list of all reachable blocks in our CSE queue. 6850 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6851 CSEWorkList.reserve(CSEBlocks.size()); 6852 for (BasicBlock *BB : CSEBlocks) 6853 if (DomTreeNode *N = DT->getNode(BB)) { 6854 assert(DT->isReachableFromEntry(N)); 6855 CSEWorkList.push_back(N); 6856 } 6857 6858 // Sort blocks by domination. This ensures we visit a block after all blocks 6859 // dominating it are visited. 6860 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6861 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6862 "Different nodes should have different DFS numbers"); 6863 return A->getDFSNumIn() < B->getDFSNumIn(); 6864 }); 6865 6866 // Perform O(N^2) search over the gather sequences and merge identical 6867 // instructions. TODO: We can further optimize this scan if we split the 6868 // instructions into different buckets based on the insert lane. 6869 SmallVector<Instruction *, 16> Visited; 6870 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6871 assert(*I && 6872 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6873 "Worklist not sorted properly!"); 6874 BasicBlock *BB = (*I)->getBlock(); 6875 // For all instructions in blocks containing gather sequences: 6876 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 6877 if (isDeleted(&In)) 6878 continue; 6879 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 6880 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 6881 continue; 6882 6883 // Check if we can replace this instruction with any of the 6884 // visited instructions. 6885 bool Replaced = false; 6886 for (Instruction *v : Visited) { 6887 if (In.isIdenticalTo(v) && 6888 DT->dominates(v->getParent(), In.getParent())) { 6889 In.replaceAllUsesWith(v); 6890 eraseInstruction(&In); 6891 Replaced = true; 6892 break; 6893 } 6894 } 6895 if (!Replaced) { 6896 assert(!is_contained(Visited, &In)); 6897 Visited.push_back(&In); 6898 } 6899 } 6900 } 6901 CSEBlocks.clear(); 6902 GatherShuffleSeq.clear(); 6903 } 6904 6905 // Groups the instructions to a bundle (which is then a single scheduling entity) 6906 // and schedules instructions until the bundle gets ready. 6907 Optional<BoUpSLP::ScheduleData *> 6908 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6909 const InstructionsState &S) { 6910 // No need to schedule PHIs, insertelement, extractelement and extractvalue 6911 // instructions. 6912 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 6913 return nullptr; 6914 6915 // Initialize the instruction bundle. 6916 Instruction *OldScheduleEnd = ScheduleEnd; 6917 ScheduleData *PrevInBundle = nullptr; 6918 ScheduleData *Bundle = nullptr; 6919 bool ReSchedule = false; 6920 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6921 6922 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6923 ScheduleData *Bundle) { 6924 // The scheduling region got new instructions at the lower end (or it is a 6925 // new region for the first bundle). This makes it necessary to 6926 // recalculate all dependencies. 6927 // It is seldom that this needs to be done a second time after adding the 6928 // initial bundle to the region. 6929 if (ScheduleEnd != OldScheduleEnd) { 6930 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6931 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6932 ReSchedule = true; 6933 } 6934 if (ReSchedule) { 6935 resetSchedule(); 6936 initialFillReadyList(ReadyInsts); 6937 } 6938 if (Bundle) { 6939 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6940 << " in block " << BB->getName() << "\n"); 6941 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6942 } 6943 6944 // Now try to schedule the new bundle or (if no bundle) just calculate 6945 // dependencies. As soon as the bundle is "ready" it means that there are no 6946 // cyclic dependencies and we can schedule it. Note that's important that we 6947 // don't "schedule" the bundle yet (see cancelScheduling). 6948 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6949 !ReadyInsts.empty()) { 6950 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6951 if (Picked->isSchedulingEntity() && Picked->isReady()) 6952 schedule(Picked, ReadyInsts); 6953 } 6954 }; 6955 6956 // Make sure that the scheduling region contains all 6957 // instructions of the bundle. 6958 for (Value *V : VL) { 6959 if (!extendSchedulingRegion(V, S)) { 6960 // If the scheduling region got new instructions at the lower end (or it 6961 // is a new region for the first bundle). This makes it necessary to 6962 // recalculate all dependencies. 6963 // Otherwise the compiler may crash trying to incorrectly calculate 6964 // dependencies and emit instruction in the wrong order at the actual 6965 // scheduling. 6966 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6967 return None; 6968 } 6969 } 6970 6971 for (Value *V : VL) { 6972 ScheduleData *BundleMember = getScheduleData(V); 6973 assert(BundleMember && 6974 "no ScheduleData for bundle member (maybe not in same basic block)"); 6975 if (BundleMember->IsScheduled) { 6976 // A bundle member was scheduled as single instruction before and now 6977 // needs to be scheduled as part of the bundle. We just get rid of the 6978 // existing schedule. 6979 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6980 << " was already scheduled\n"); 6981 ReSchedule = true; 6982 } 6983 assert(BundleMember->isSchedulingEntity() && 6984 "bundle member already part of other bundle"); 6985 if (PrevInBundle) { 6986 PrevInBundle->NextInBundle = BundleMember; 6987 } else { 6988 Bundle = BundleMember; 6989 } 6990 BundleMember->UnscheduledDepsInBundle = 0; 6991 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6992 6993 // Group the instructions to a bundle. 6994 BundleMember->FirstInBundle = Bundle; 6995 PrevInBundle = BundleMember; 6996 } 6997 assert(Bundle && "Failed to find schedule bundle"); 6998 TryScheduleBundle(ReSchedule, Bundle); 6999 if (!Bundle->isReady()) { 7000 cancelScheduling(VL, S.OpValue); 7001 return None; 7002 } 7003 return Bundle; 7004 } 7005 7006 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7007 Value *OpValue) { 7008 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7009 return; 7010 7011 ScheduleData *Bundle = getScheduleData(OpValue); 7012 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7013 assert(!Bundle->IsScheduled && 7014 "Can't cancel bundle which is already scheduled"); 7015 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7016 "tried to unbundle something which is not a bundle"); 7017 7018 // Un-bundle: make single instructions out of the bundle. 7019 ScheduleData *BundleMember = Bundle; 7020 while (BundleMember) { 7021 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7022 BundleMember->FirstInBundle = BundleMember; 7023 ScheduleData *Next = BundleMember->NextInBundle; 7024 BundleMember->NextInBundle = nullptr; 7025 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7026 if (BundleMember->UnscheduledDepsInBundle == 0) { 7027 ReadyInsts.insert(BundleMember); 7028 } 7029 BundleMember = Next; 7030 } 7031 } 7032 7033 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7034 // Allocate a new ScheduleData for the instruction. 7035 if (ChunkPos >= ChunkSize) { 7036 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7037 ChunkPos = 0; 7038 } 7039 return &(ScheduleDataChunks.back()[ChunkPos++]); 7040 } 7041 7042 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7043 const InstructionsState &S) { 7044 if (getScheduleData(V, isOneOf(S, V))) 7045 return true; 7046 Instruction *I = dyn_cast<Instruction>(V); 7047 assert(I && "bundle member must be an instruction"); 7048 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7049 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7050 "be scheduled"); 7051 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7052 ScheduleData *ISD = getScheduleData(I); 7053 if (!ISD) 7054 return false; 7055 assert(isInSchedulingRegion(ISD) && 7056 "ScheduleData not in scheduling region"); 7057 ScheduleData *SD = allocateScheduleDataChunks(); 7058 SD->Inst = I; 7059 SD->init(SchedulingRegionID, S.OpValue); 7060 ExtraScheduleDataMap[I][S.OpValue] = SD; 7061 return true; 7062 }; 7063 if (CheckSheduleForI(I)) 7064 return true; 7065 if (!ScheduleStart) { 7066 // It's the first instruction in the new region. 7067 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7068 ScheduleStart = I; 7069 ScheduleEnd = I->getNextNode(); 7070 if (isOneOf(S, I) != I) 7071 CheckSheduleForI(I); 7072 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7073 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7074 return true; 7075 } 7076 // Search up and down at the same time, because we don't know if the new 7077 // instruction is above or below the existing scheduling region. 7078 BasicBlock::reverse_iterator UpIter = 7079 ++ScheduleStart->getIterator().getReverse(); 7080 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7081 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7082 BasicBlock::iterator LowerEnd = BB->end(); 7083 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7084 &*DownIter != I) { 7085 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7086 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7087 return false; 7088 } 7089 7090 ++UpIter; 7091 ++DownIter; 7092 } 7093 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7094 assert(I->getParent() == ScheduleStart->getParent() && 7095 "Instruction is in wrong basic block."); 7096 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7097 ScheduleStart = I; 7098 if (isOneOf(S, I) != I) 7099 CheckSheduleForI(I); 7100 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7101 << "\n"); 7102 return true; 7103 } 7104 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7105 "Expected to reach top of the basic block or instruction down the " 7106 "lower end."); 7107 assert(I->getParent() == ScheduleEnd->getParent() && 7108 "Instruction is in wrong basic block."); 7109 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7110 nullptr); 7111 ScheduleEnd = I->getNextNode(); 7112 if (isOneOf(S, I) != I) 7113 CheckSheduleForI(I); 7114 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7115 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7116 return true; 7117 } 7118 7119 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7120 Instruction *ToI, 7121 ScheduleData *PrevLoadStore, 7122 ScheduleData *NextLoadStore) { 7123 ScheduleData *CurrentLoadStore = PrevLoadStore; 7124 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7125 ScheduleData *SD = ScheduleDataMap[I]; 7126 if (!SD) { 7127 SD = allocateScheduleDataChunks(); 7128 ScheduleDataMap[I] = SD; 7129 SD->Inst = I; 7130 } 7131 assert(!isInSchedulingRegion(SD) && 7132 "new ScheduleData already in scheduling region"); 7133 SD->init(SchedulingRegionID, I); 7134 7135 if (I->mayReadOrWriteMemory() && 7136 (!isa<IntrinsicInst>(I) || 7137 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7138 cast<IntrinsicInst>(I)->getIntrinsicID() != 7139 Intrinsic::pseudoprobe))) { 7140 // Update the linked list of memory accessing instructions. 7141 if (CurrentLoadStore) { 7142 CurrentLoadStore->NextLoadStore = SD; 7143 } else { 7144 FirstLoadStoreInRegion = SD; 7145 } 7146 CurrentLoadStore = SD; 7147 } 7148 } 7149 if (NextLoadStore) { 7150 if (CurrentLoadStore) 7151 CurrentLoadStore->NextLoadStore = NextLoadStore; 7152 } else { 7153 LastLoadStoreInRegion = CurrentLoadStore; 7154 } 7155 } 7156 7157 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7158 bool InsertInReadyList, 7159 BoUpSLP *SLP) { 7160 assert(SD->isSchedulingEntity()); 7161 7162 SmallVector<ScheduleData *, 10> WorkList; 7163 WorkList.push_back(SD); 7164 7165 while (!WorkList.empty()) { 7166 ScheduleData *SD = WorkList.pop_back_val(); 7167 7168 ScheduleData *BundleMember = SD; 7169 while (BundleMember) { 7170 assert(isInSchedulingRegion(BundleMember)); 7171 if (!BundleMember->hasValidDependencies()) { 7172 7173 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7174 << "\n"); 7175 BundleMember->Dependencies = 0; 7176 BundleMember->resetUnscheduledDeps(); 7177 7178 // Handle def-use chain dependencies. 7179 if (BundleMember->OpValue != BundleMember->Inst) { 7180 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7181 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7182 BundleMember->Dependencies++; 7183 ScheduleData *DestBundle = UseSD->FirstInBundle; 7184 if (!DestBundle->IsScheduled) 7185 BundleMember->incrementUnscheduledDeps(1); 7186 if (!DestBundle->hasValidDependencies()) 7187 WorkList.push_back(DestBundle); 7188 } 7189 } else { 7190 for (User *U : BundleMember->Inst->users()) { 7191 if (isa<Instruction>(U)) { 7192 ScheduleData *UseSD = getScheduleData(U); 7193 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7194 BundleMember->Dependencies++; 7195 ScheduleData *DestBundle = UseSD->FirstInBundle; 7196 if (!DestBundle->IsScheduled) 7197 BundleMember->incrementUnscheduledDeps(1); 7198 if (!DestBundle->hasValidDependencies()) 7199 WorkList.push_back(DestBundle); 7200 } 7201 } else { 7202 // I'm not sure if this can ever happen. But we need to be safe. 7203 // This lets the instruction/bundle never be scheduled and 7204 // eventually disable vectorization. 7205 BundleMember->Dependencies++; 7206 BundleMember->incrementUnscheduledDeps(1); 7207 } 7208 } 7209 } 7210 7211 // Handle the memory dependencies. 7212 ScheduleData *DepDest = BundleMember->NextLoadStore; 7213 if (DepDest) { 7214 Instruction *SrcInst = BundleMember->Inst; 7215 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7216 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7217 unsigned numAliased = 0; 7218 unsigned DistToSrc = 1; 7219 7220 while (DepDest) { 7221 assert(isInSchedulingRegion(DepDest)); 7222 7223 // We have two limits to reduce the complexity: 7224 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7225 // SLP->isAliased (which is the expensive part in this loop). 7226 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7227 // the whole loop (even if the loop is fast, it's quadratic). 7228 // It's important for the loop break condition (see below) to 7229 // check this limit even between two read-only instructions. 7230 if (DistToSrc >= MaxMemDepDistance || 7231 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7232 (numAliased >= AliasedCheckLimit || 7233 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7234 7235 // We increment the counter only if the locations are aliased 7236 // (instead of counting all alias checks). This gives a better 7237 // balance between reduced runtime and accurate dependencies. 7238 numAliased++; 7239 7240 DepDest->MemoryDependencies.push_back(BundleMember); 7241 BundleMember->Dependencies++; 7242 ScheduleData *DestBundle = DepDest->FirstInBundle; 7243 if (!DestBundle->IsScheduled) { 7244 BundleMember->incrementUnscheduledDeps(1); 7245 } 7246 if (!DestBundle->hasValidDependencies()) { 7247 WorkList.push_back(DestBundle); 7248 } 7249 } 7250 DepDest = DepDest->NextLoadStore; 7251 7252 // Example, explaining the loop break condition: Let's assume our 7253 // starting instruction is i0 and MaxMemDepDistance = 3. 7254 // 7255 // +--------v--v--v 7256 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7257 // +--------^--^--^ 7258 // 7259 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7260 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7261 // Previously we already added dependencies from i3 to i6,i7,i8 7262 // (because of MaxMemDepDistance). As we added a dependency from 7263 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7264 // and we can abort this loop at i6. 7265 if (DistToSrc >= 2 * MaxMemDepDistance) 7266 break; 7267 DistToSrc++; 7268 } 7269 } 7270 } 7271 BundleMember = BundleMember->NextInBundle; 7272 } 7273 if (InsertInReadyList && SD->isReady()) { 7274 ReadyInsts.push_back(SD); 7275 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7276 << "\n"); 7277 } 7278 } 7279 } 7280 7281 void BoUpSLP::BlockScheduling::resetSchedule() { 7282 assert(ScheduleStart && 7283 "tried to reset schedule on block which has not been scheduled"); 7284 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7285 doForAllOpcodes(I, [&](ScheduleData *SD) { 7286 assert(isInSchedulingRegion(SD) && 7287 "ScheduleData not in scheduling region"); 7288 SD->IsScheduled = false; 7289 SD->resetUnscheduledDeps(); 7290 }); 7291 } 7292 ReadyInsts.clear(); 7293 } 7294 7295 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7296 if (!BS->ScheduleStart) 7297 return; 7298 7299 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7300 7301 BS->resetSchedule(); 7302 7303 // For the real scheduling we use a more sophisticated ready-list: it is 7304 // sorted by the original instruction location. This lets the final schedule 7305 // be as close as possible to the original instruction order. 7306 struct ScheduleDataCompare { 7307 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7308 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7309 } 7310 }; 7311 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7312 7313 // Ensure that all dependency data is updated and fill the ready-list with 7314 // initial instructions. 7315 int Idx = 0; 7316 int NumToSchedule = 0; 7317 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7318 I = I->getNextNode()) { 7319 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7320 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7321 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7322 "scheduler and vectorizer bundle mismatch"); 7323 SD->FirstInBundle->SchedulingPriority = Idx++; 7324 if (SD->isSchedulingEntity()) { 7325 BS->calculateDependencies(SD, false, this); 7326 NumToSchedule++; 7327 } 7328 }); 7329 } 7330 BS->initialFillReadyList(ReadyInsts); 7331 7332 Instruction *LastScheduledInst = BS->ScheduleEnd; 7333 7334 // Do the "real" scheduling. 7335 while (!ReadyInsts.empty()) { 7336 ScheduleData *picked = *ReadyInsts.begin(); 7337 ReadyInsts.erase(ReadyInsts.begin()); 7338 7339 // Move the scheduled instruction(s) to their dedicated places, if not 7340 // there yet. 7341 ScheduleData *BundleMember = picked; 7342 while (BundleMember) { 7343 Instruction *pickedInst = BundleMember->Inst; 7344 if (pickedInst->getNextNode() != LastScheduledInst) { 7345 BS->BB->getInstList().remove(pickedInst); 7346 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7347 pickedInst); 7348 } 7349 LastScheduledInst = pickedInst; 7350 BundleMember = BundleMember->NextInBundle; 7351 } 7352 7353 BS->schedule(picked, ReadyInsts); 7354 NumToSchedule--; 7355 } 7356 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7357 7358 // Avoid duplicate scheduling of the block. 7359 BS->ScheduleStart = nullptr; 7360 } 7361 7362 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7363 // If V is a store, just return the width of the stored value (or value 7364 // truncated just before storing) without traversing the expression tree. 7365 // This is the common case. 7366 if (auto *Store = dyn_cast<StoreInst>(V)) { 7367 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7368 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7369 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7370 } 7371 7372 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7373 return getVectorElementSize(IEI->getOperand(1)); 7374 7375 auto E = InstrElementSize.find(V); 7376 if (E != InstrElementSize.end()) 7377 return E->second; 7378 7379 // If V is not a store, we can traverse the expression tree to find loads 7380 // that feed it. The type of the loaded value may indicate a more suitable 7381 // width than V's type. We want to base the vector element size on the width 7382 // of memory operations where possible. 7383 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7384 SmallPtrSet<Instruction *, 16> Visited; 7385 if (auto *I = dyn_cast<Instruction>(V)) { 7386 Worklist.emplace_back(I, I->getParent()); 7387 Visited.insert(I); 7388 } 7389 7390 // Traverse the expression tree in bottom-up order looking for loads. If we 7391 // encounter an instruction we don't yet handle, we give up. 7392 auto Width = 0u; 7393 while (!Worklist.empty()) { 7394 Instruction *I; 7395 BasicBlock *Parent; 7396 std::tie(I, Parent) = Worklist.pop_back_val(); 7397 7398 // We should only be looking at scalar instructions here. If the current 7399 // instruction has a vector type, skip. 7400 auto *Ty = I->getType(); 7401 if (isa<VectorType>(Ty)) 7402 continue; 7403 7404 // If the current instruction is a load, update MaxWidth to reflect the 7405 // width of the loaded value. 7406 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7407 isa<ExtractValueInst>(I)) 7408 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7409 7410 // Otherwise, we need to visit the operands of the instruction. We only 7411 // handle the interesting cases from buildTree here. If an operand is an 7412 // instruction we haven't yet visited and from the same basic block as the 7413 // user or the use is a PHI node, we add it to the worklist. 7414 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7415 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7416 isa<UnaryOperator>(I)) { 7417 for (Use &U : I->operands()) 7418 if (auto *J = dyn_cast<Instruction>(U.get())) 7419 if (Visited.insert(J).second && 7420 (isa<PHINode>(I) || J->getParent() == Parent)) 7421 Worklist.emplace_back(J, J->getParent()); 7422 } else { 7423 break; 7424 } 7425 } 7426 7427 // If we didn't encounter a memory access in the expression tree, or if we 7428 // gave up for some reason, just return the width of V. Otherwise, return the 7429 // maximum width we found. 7430 if (!Width) { 7431 if (auto *CI = dyn_cast<CmpInst>(V)) 7432 V = CI->getOperand(0); 7433 Width = DL->getTypeSizeInBits(V->getType()); 7434 } 7435 7436 for (Instruction *I : Visited) 7437 InstrElementSize[I] = Width; 7438 7439 return Width; 7440 } 7441 7442 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7443 // smaller type with a truncation. We collect the values that will be demoted 7444 // in ToDemote and additional roots that require investigating in Roots. 7445 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7446 SmallVectorImpl<Value *> &ToDemote, 7447 SmallVectorImpl<Value *> &Roots) { 7448 // We can always demote constants. 7449 if (isa<Constant>(V)) { 7450 ToDemote.push_back(V); 7451 return true; 7452 } 7453 7454 // If the value is not an instruction in the expression with only one use, it 7455 // cannot be demoted. 7456 auto *I = dyn_cast<Instruction>(V); 7457 if (!I || !I->hasOneUse() || !Expr.count(I)) 7458 return false; 7459 7460 switch (I->getOpcode()) { 7461 7462 // We can always demote truncations and extensions. Since truncations can 7463 // seed additional demotion, we save the truncated value. 7464 case Instruction::Trunc: 7465 Roots.push_back(I->getOperand(0)); 7466 break; 7467 case Instruction::ZExt: 7468 case Instruction::SExt: 7469 if (isa<ExtractElementInst>(I->getOperand(0)) || 7470 isa<InsertElementInst>(I->getOperand(0))) 7471 return false; 7472 break; 7473 7474 // We can demote certain binary operations if we can demote both of their 7475 // operands. 7476 case Instruction::Add: 7477 case Instruction::Sub: 7478 case Instruction::Mul: 7479 case Instruction::And: 7480 case Instruction::Or: 7481 case Instruction::Xor: 7482 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7483 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7484 return false; 7485 break; 7486 7487 // We can demote selects if we can demote their true and false values. 7488 case Instruction::Select: { 7489 SelectInst *SI = cast<SelectInst>(I); 7490 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7491 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7492 return false; 7493 break; 7494 } 7495 7496 // We can demote phis if we can demote all their incoming operands. Note that 7497 // we don't need to worry about cycles since we ensure single use above. 7498 case Instruction::PHI: { 7499 PHINode *PN = cast<PHINode>(I); 7500 for (Value *IncValue : PN->incoming_values()) 7501 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7502 return false; 7503 break; 7504 } 7505 7506 // Otherwise, conservatively give up. 7507 default: 7508 return false; 7509 } 7510 7511 // Record the value that we can demote. 7512 ToDemote.push_back(V); 7513 return true; 7514 } 7515 7516 void BoUpSLP::computeMinimumValueSizes() { 7517 // If there are no external uses, the expression tree must be rooted by a 7518 // store. We can't demote in-memory values, so there is nothing to do here. 7519 if (ExternalUses.empty()) 7520 return; 7521 7522 // We only attempt to truncate integer expressions. 7523 auto &TreeRoot = VectorizableTree[0]->Scalars; 7524 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7525 if (!TreeRootIT) 7526 return; 7527 7528 // If the expression is not rooted by a store, these roots should have 7529 // external uses. We will rely on InstCombine to rewrite the expression in 7530 // the narrower type. However, InstCombine only rewrites single-use values. 7531 // This means that if a tree entry other than a root is used externally, it 7532 // must have multiple uses and InstCombine will not rewrite it. The code 7533 // below ensures that only the roots are used externally. 7534 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7535 for (auto &EU : ExternalUses) 7536 if (!Expr.erase(EU.Scalar)) 7537 return; 7538 if (!Expr.empty()) 7539 return; 7540 7541 // Collect the scalar values of the vectorizable expression. We will use this 7542 // context to determine which values can be demoted. If we see a truncation, 7543 // we mark it as seeding another demotion. 7544 for (auto &EntryPtr : VectorizableTree) 7545 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7546 7547 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7548 // have a single external user that is not in the vectorizable tree. 7549 for (auto *Root : TreeRoot) 7550 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7551 return; 7552 7553 // Conservatively determine if we can actually truncate the roots of the 7554 // expression. Collect the values that can be demoted in ToDemote and 7555 // additional roots that require investigating in Roots. 7556 SmallVector<Value *, 32> ToDemote; 7557 SmallVector<Value *, 4> Roots; 7558 for (auto *Root : TreeRoot) 7559 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7560 return; 7561 7562 // The maximum bit width required to represent all the values that can be 7563 // demoted without loss of precision. It would be safe to truncate the roots 7564 // of the expression to this width. 7565 auto MaxBitWidth = 8u; 7566 7567 // We first check if all the bits of the roots are demanded. If they're not, 7568 // we can truncate the roots to this narrower type. 7569 for (auto *Root : TreeRoot) { 7570 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7571 MaxBitWidth = std::max<unsigned>( 7572 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7573 } 7574 7575 // True if the roots can be zero-extended back to their original type, rather 7576 // than sign-extended. We know that if the leading bits are not demanded, we 7577 // can safely zero-extend. So we initialize IsKnownPositive to True. 7578 bool IsKnownPositive = true; 7579 7580 // If all the bits of the roots are demanded, we can try a little harder to 7581 // compute a narrower type. This can happen, for example, if the roots are 7582 // getelementptr indices. InstCombine promotes these indices to the pointer 7583 // width. Thus, all their bits are technically demanded even though the 7584 // address computation might be vectorized in a smaller type. 7585 // 7586 // We start by looking at each entry that can be demoted. We compute the 7587 // maximum bit width required to store the scalar by using ValueTracking to 7588 // compute the number of high-order bits we can truncate. 7589 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7590 llvm::all_of(TreeRoot, [](Value *R) { 7591 assert(R->hasOneUse() && "Root should have only one use!"); 7592 return isa<GetElementPtrInst>(R->user_back()); 7593 })) { 7594 MaxBitWidth = 8u; 7595 7596 // Determine if the sign bit of all the roots is known to be zero. If not, 7597 // IsKnownPositive is set to False. 7598 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7599 KnownBits Known = computeKnownBits(R, *DL); 7600 return Known.isNonNegative(); 7601 }); 7602 7603 // Determine the maximum number of bits required to store the scalar 7604 // values. 7605 for (auto *Scalar : ToDemote) { 7606 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7607 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7608 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7609 } 7610 7611 // If we can't prove that the sign bit is zero, we must add one to the 7612 // maximum bit width to account for the unknown sign bit. This preserves 7613 // the existing sign bit so we can safely sign-extend the root back to the 7614 // original type. Otherwise, if we know the sign bit is zero, we will 7615 // zero-extend the root instead. 7616 // 7617 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7618 // one to the maximum bit width will yield a larger-than-necessary 7619 // type. In general, we need to add an extra bit only if we can't 7620 // prove that the upper bit of the original type is equal to the 7621 // upper bit of the proposed smaller type. If these two bits are the 7622 // same (either zero or one) we know that sign-extending from the 7623 // smaller type will result in the same value. Here, since we can't 7624 // yet prove this, we are just making the proposed smaller type 7625 // larger to ensure correctness. 7626 if (!IsKnownPositive) 7627 ++MaxBitWidth; 7628 } 7629 7630 // Round MaxBitWidth up to the next power-of-two. 7631 if (!isPowerOf2_64(MaxBitWidth)) 7632 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7633 7634 // If the maximum bit width we compute is less than the with of the roots' 7635 // type, we can proceed with the narrowing. Otherwise, do nothing. 7636 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7637 return; 7638 7639 // If we can truncate the root, we must collect additional values that might 7640 // be demoted as a result. That is, those seeded by truncations we will 7641 // modify. 7642 while (!Roots.empty()) 7643 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7644 7645 // Finally, map the values we can demote to the maximum bit with we computed. 7646 for (auto *Scalar : ToDemote) 7647 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7648 } 7649 7650 namespace { 7651 7652 /// The SLPVectorizer Pass. 7653 struct SLPVectorizer : public FunctionPass { 7654 SLPVectorizerPass Impl; 7655 7656 /// Pass identification, replacement for typeid 7657 static char ID; 7658 7659 explicit SLPVectorizer() : FunctionPass(ID) { 7660 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7661 } 7662 7663 bool doInitialization(Module &M) override { return false; } 7664 7665 bool runOnFunction(Function &F) override { 7666 if (skipFunction(F)) 7667 return false; 7668 7669 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7670 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7671 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7672 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7673 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7674 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7675 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7676 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7677 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7678 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7679 7680 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7681 } 7682 7683 void getAnalysisUsage(AnalysisUsage &AU) const override { 7684 FunctionPass::getAnalysisUsage(AU); 7685 AU.addRequired<AssumptionCacheTracker>(); 7686 AU.addRequired<ScalarEvolutionWrapperPass>(); 7687 AU.addRequired<AAResultsWrapperPass>(); 7688 AU.addRequired<TargetTransformInfoWrapperPass>(); 7689 AU.addRequired<LoopInfoWrapperPass>(); 7690 AU.addRequired<DominatorTreeWrapperPass>(); 7691 AU.addRequired<DemandedBitsWrapperPass>(); 7692 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7693 AU.addRequired<InjectTLIMappingsLegacy>(); 7694 AU.addPreserved<LoopInfoWrapperPass>(); 7695 AU.addPreserved<DominatorTreeWrapperPass>(); 7696 AU.addPreserved<AAResultsWrapperPass>(); 7697 AU.addPreserved<GlobalsAAWrapperPass>(); 7698 AU.setPreservesCFG(); 7699 } 7700 }; 7701 7702 } // end anonymous namespace 7703 7704 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7705 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7706 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7707 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7708 auto *AA = &AM.getResult<AAManager>(F); 7709 auto *LI = &AM.getResult<LoopAnalysis>(F); 7710 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7711 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7712 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7713 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7714 7715 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7716 if (!Changed) 7717 return PreservedAnalyses::all(); 7718 7719 PreservedAnalyses PA; 7720 PA.preserveSet<CFGAnalyses>(); 7721 return PA; 7722 } 7723 7724 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7725 TargetTransformInfo *TTI_, 7726 TargetLibraryInfo *TLI_, AAResults *AA_, 7727 LoopInfo *LI_, DominatorTree *DT_, 7728 AssumptionCache *AC_, DemandedBits *DB_, 7729 OptimizationRemarkEmitter *ORE_) { 7730 if (!RunSLPVectorization) 7731 return false; 7732 SE = SE_; 7733 TTI = TTI_; 7734 TLI = TLI_; 7735 AA = AA_; 7736 LI = LI_; 7737 DT = DT_; 7738 AC = AC_; 7739 DB = DB_; 7740 DL = &F.getParent()->getDataLayout(); 7741 7742 Stores.clear(); 7743 GEPs.clear(); 7744 bool Changed = false; 7745 7746 // If the target claims to have no vector registers don't attempt 7747 // vectorization. 7748 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7749 return false; 7750 7751 // Don't vectorize when the attribute NoImplicitFloat is used. 7752 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7753 return false; 7754 7755 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7756 7757 // Use the bottom up slp vectorizer to construct chains that start with 7758 // store instructions. 7759 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7760 7761 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7762 // delete instructions. 7763 7764 // Update DFS numbers now so that we can use them for ordering. 7765 DT->updateDFSNumbers(); 7766 7767 // Scan the blocks in the function in post order. 7768 for (auto BB : post_order(&F.getEntryBlock())) { 7769 collectSeedInstructions(BB); 7770 7771 // Vectorize trees that end at stores. 7772 if (!Stores.empty()) { 7773 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7774 << " underlying objects.\n"); 7775 Changed |= vectorizeStoreChains(R); 7776 } 7777 7778 // Vectorize trees that end at reductions. 7779 Changed |= vectorizeChainsInBlock(BB, R); 7780 7781 // Vectorize the index computations of getelementptr instructions. This 7782 // is primarily intended to catch gather-like idioms ending at 7783 // non-consecutive loads. 7784 if (!GEPs.empty()) { 7785 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7786 << " underlying objects.\n"); 7787 Changed |= vectorizeGEPIndices(BB, R); 7788 } 7789 } 7790 7791 if (Changed) { 7792 R.optimizeGatherSequence(); 7793 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7794 } 7795 return Changed; 7796 } 7797 7798 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7799 unsigned Idx) { 7800 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7801 << "\n"); 7802 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7803 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7804 unsigned VF = Chain.size(); 7805 7806 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7807 return false; 7808 7809 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7810 << "\n"); 7811 7812 R.buildTree(Chain); 7813 if (R.isTreeTinyAndNotFullyVectorizable()) 7814 return false; 7815 if (R.isLoadCombineCandidate()) 7816 return false; 7817 R.reorderTopToBottom(); 7818 R.reorderBottomToTop(); 7819 R.buildExternalUses(); 7820 7821 R.computeMinimumValueSizes(); 7822 7823 InstructionCost Cost = R.getTreeCost(); 7824 7825 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7826 if (Cost < -SLPCostThreshold) { 7827 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7828 7829 using namespace ore; 7830 7831 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7832 cast<StoreInst>(Chain[0])) 7833 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7834 << " and with tree size " 7835 << NV("TreeSize", R.getTreeSize())); 7836 7837 R.vectorizeTree(); 7838 return true; 7839 } 7840 7841 return false; 7842 } 7843 7844 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7845 BoUpSLP &R) { 7846 // We may run into multiple chains that merge into a single chain. We mark the 7847 // stores that we vectorized so that we don't visit the same store twice. 7848 BoUpSLP::ValueSet VectorizedStores; 7849 bool Changed = false; 7850 7851 int E = Stores.size(); 7852 SmallBitVector Tails(E, false); 7853 int MaxIter = MaxStoreLookup.getValue(); 7854 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7855 E, std::make_pair(E, INT_MAX)); 7856 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7857 int IterCnt; 7858 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7859 &CheckedPairs, 7860 &ConsecutiveChain](int K, int Idx) { 7861 if (IterCnt >= MaxIter) 7862 return true; 7863 if (CheckedPairs[Idx].test(K)) 7864 return ConsecutiveChain[K].second == 1 && 7865 ConsecutiveChain[K].first == Idx; 7866 ++IterCnt; 7867 CheckedPairs[Idx].set(K); 7868 CheckedPairs[K].set(Idx); 7869 Optional<int> Diff = getPointersDiff( 7870 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7871 Stores[Idx]->getValueOperand()->getType(), 7872 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7873 if (!Diff || *Diff == 0) 7874 return false; 7875 int Val = *Diff; 7876 if (Val < 0) { 7877 if (ConsecutiveChain[Idx].second > -Val) { 7878 Tails.set(K); 7879 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7880 } 7881 return false; 7882 } 7883 if (ConsecutiveChain[K].second <= Val) 7884 return false; 7885 7886 Tails.set(Idx); 7887 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7888 return Val == 1; 7889 }; 7890 // Do a quadratic search on all of the given stores in reverse order and find 7891 // all of the pairs of stores that follow each other. 7892 for (int Idx = E - 1; Idx >= 0; --Idx) { 7893 // If a store has multiple consecutive store candidates, search according 7894 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7895 // This is because usually pairing with immediate succeeding or preceding 7896 // candidate create the best chance to find slp vectorization opportunity. 7897 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7898 IterCnt = 0; 7899 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7900 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7901 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7902 break; 7903 } 7904 7905 // Tracks if we tried to vectorize stores starting from the given tail 7906 // already. 7907 SmallBitVector TriedTails(E, false); 7908 // For stores that start but don't end a link in the chain: 7909 for (int Cnt = E; Cnt > 0; --Cnt) { 7910 int I = Cnt - 1; 7911 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7912 continue; 7913 // We found a store instr that starts a chain. Now follow the chain and try 7914 // to vectorize it. 7915 BoUpSLP::ValueList Operands; 7916 // Collect the chain into a list. 7917 while (I != E && !VectorizedStores.count(Stores[I])) { 7918 Operands.push_back(Stores[I]); 7919 Tails.set(I); 7920 if (ConsecutiveChain[I].second != 1) { 7921 // Mark the new end in the chain and go back, if required. It might be 7922 // required if the original stores come in reversed order, for example. 7923 if (ConsecutiveChain[I].first != E && 7924 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7925 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7926 TriedTails.set(I); 7927 Tails.reset(ConsecutiveChain[I].first); 7928 if (Cnt < ConsecutiveChain[I].first + 2) 7929 Cnt = ConsecutiveChain[I].first + 2; 7930 } 7931 break; 7932 } 7933 // Move to the next value in the chain. 7934 I = ConsecutiveChain[I].first; 7935 } 7936 assert(!Operands.empty() && "Expected non-empty list of stores."); 7937 7938 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7939 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7940 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7941 7942 unsigned MinVF = R.getMinVF(EltSize); 7943 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7944 MaxElts); 7945 7946 // FIXME: Is division-by-2 the correct step? Should we assert that the 7947 // register size is a power-of-2? 7948 unsigned StartIdx = 0; 7949 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7950 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7951 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7952 if (!VectorizedStores.count(Slice.front()) && 7953 !VectorizedStores.count(Slice.back()) && 7954 vectorizeStoreChain(Slice, R, Cnt)) { 7955 // Mark the vectorized stores so that we don't vectorize them again. 7956 VectorizedStores.insert(Slice.begin(), Slice.end()); 7957 Changed = true; 7958 // If we vectorized initial block, no need to try to vectorize it 7959 // again. 7960 if (Cnt == StartIdx) 7961 StartIdx += Size; 7962 Cnt += Size; 7963 continue; 7964 } 7965 ++Cnt; 7966 } 7967 // Check if the whole array was vectorized already - exit. 7968 if (StartIdx >= Operands.size()) 7969 break; 7970 } 7971 } 7972 7973 return Changed; 7974 } 7975 7976 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7977 // Initialize the collections. We will make a single pass over the block. 7978 Stores.clear(); 7979 GEPs.clear(); 7980 7981 // Visit the store and getelementptr instructions in BB and organize them in 7982 // Stores and GEPs according to the underlying objects of their pointer 7983 // operands. 7984 for (Instruction &I : *BB) { 7985 // Ignore store instructions that are volatile or have a pointer operand 7986 // that doesn't point to a scalar type. 7987 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7988 if (!SI->isSimple()) 7989 continue; 7990 if (!isValidElementType(SI->getValueOperand()->getType())) 7991 continue; 7992 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7993 } 7994 7995 // Ignore getelementptr instructions that have more than one index, a 7996 // constant index, or a pointer operand that doesn't point to a scalar 7997 // type. 7998 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7999 auto Idx = GEP->idx_begin()->get(); 8000 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8001 continue; 8002 if (!isValidElementType(Idx->getType())) 8003 continue; 8004 if (GEP->getType()->isVectorTy()) 8005 continue; 8006 GEPs[GEP->getPointerOperand()].push_back(GEP); 8007 } 8008 } 8009 } 8010 8011 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8012 if (!A || !B) 8013 return false; 8014 Value *VL[] = {A, B}; 8015 return tryToVectorizeList(VL, R); 8016 } 8017 8018 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8019 bool LimitForRegisterSize) { 8020 if (VL.size() < 2) 8021 return false; 8022 8023 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8024 << VL.size() << ".\n"); 8025 8026 // Check that all of the parts are instructions of the same type, 8027 // we permit an alternate opcode via InstructionsState. 8028 InstructionsState S = getSameOpcode(VL); 8029 if (!S.getOpcode()) 8030 return false; 8031 8032 Instruction *I0 = cast<Instruction>(S.OpValue); 8033 // Make sure invalid types (including vector type) are rejected before 8034 // determining vectorization factor for scalar instructions. 8035 for (Value *V : VL) { 8036 Type *Ty = V->getType(); 8037 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8038 // NOTE: the following will give user internal llvm type name, which may 8039 // not be useful. 8040 R.getORE()->emit([&]() { 8041 std::string type_str; 8042 llvm::raw_string_ostream rso(type_str); 8043 Ty->print(rso); 8044 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8045 << "Cannot SLP vectorize list: type " 8046 << rso.str() + " is unsupported by vectorizer"; 8047 }); 8048 return false; 8049 } 8050 } 8051 8052 unsigned Sz = R.getVectorElementSize(I0); 8053 unsigned MinVF = R.getMinVF(Sz); 8054 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8055 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8056 if (MaxVF < 2) { 8057 R.getORE()->emit([&]() { 8058 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8059 << "Cannot SLP vectorize list: vectorization factor " 8060 << "less than 2 is not supported"; 8061 }); 8062 return false; 8063 } 8064 8065 bool Changed = false; 8066 bool CandidateFound = false; 8067 InstructionCost MinCost = SLPCostThreshold.getValue(); 8068 Type *ScalarTy = VL[0]->getType(); 8069 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8070 ScalarTy = IE->getOperand(1)->getType(); 8071 8072 unsigned NextInst = 0, MaxInst = VL.size(); 8073 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8074 // No actual vectorization should happen, if number of parts is the same as 8075 // provided vectorization factor (i.e. the scalar type is used for vector 8076 // code during codegen). 8077 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8078 if (TTI->getNumberOfParts(VecTy) == VF) 8079 continue; 8080 for (unsigned I = NextInst; I < MaxInst; ++I) { 8081 unsigned OpsWidth = 0; 8082 8083 if (I + VF > MaxInst) 8084 OpsWidth = MaxInst - I; 8085 else 8086 OpsWidth = VF; 8087 8088 if (!isPowerOf2_32(OpsWidth)) 8089 continue; 8090 8091 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8092 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8093 break; 8094 8095 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8096 // Check that a previous iteration of this loop did not delete the Value. 8097 if (llvm::any_of(Ops, [&R](Value *V) { 8098 auto *I = dyn_cast<Instruction>(V); 8099 return I && R.isDeleted(I); 8100 })) 8101 continue; 8102 8103 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8104 << "\n"); 8105 8106 R.buildTree(Ops); 8107 if (R.isTreeTinyAndNotFullyVectorizable()) 8108 continue; 8109 R.reorderTopToBottom(); 8110 R.reorderBottomToTop(); 8111 R.buildExternalUses(); 8112 8113 R.computeMinimumValueSizes(); 8114 InstructionCost Cost = R.getTreeCost(); 8115 CandidateFound = true; 8116 MinCost = std::min(MinCost, Cost); 8117 8118 if (Cost < -SLPCostThreshold) { 8119 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8120 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8121 cast<Instruction>(Ops[0])) 8122 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8123 << " and with tree size " 8124 << ore::NV("TreeSize", R.getTreeSize())); 8125 8126 R.vectorizeTree(); 8127 // Move to the next bundle. 8128 I += VF - 1; 8129 NextInst = I + 1; 8130 Changed = true; 8131 } 8132 } 8133 } 8134 8135 if (!Changed && CandidateFound) { 8136 R.getORE()->emit([&]() { 8137 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8138 << "List vectorization was possible but not beneficial with cost " 8139 << ore::NV("Cost", MinCost) << " >= " 8140 << ore::NV("Treshold", -SLPCostThreshold); 8141 }); 8142 } else if (!Changed) { 8143 R.getORE()->emit([&]() { 8144 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8145 << "Cannot SLP vectorize list: vectorization was impossible" 8146 << " with available vectorization factors"; 8147 }); 8148 } 8149 return Changed; 8150 } 8151 8152 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8153 if (!I) 8154 return false; 8155 8156 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8157 return false; 8158 8159 Value *P = I->getParent(); 8160 8161 // Vectorize in current basic block only. 8162 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8163 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8164 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8165 return false; 8166 8167 // Try to vectorize V. 8168 if (tryToVectorizePair(Op0, Op1, R)) 8169 return true; 8170 8171 auto *A = dyn_cast<BinaryOperator>(Op0); 8172 auto *B = dyn_cast<BinaryOperator>(Op1); 8173 // Try to skip B. 8174 if (B && B->hasOneUse()) { 8175 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8176 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8177 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8178 return true; 8179 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8180 return true; 8181 } 8182 8183 // Try to skip A. 8184 if (A && A->hasOneUse()) { 8185 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8186 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8187 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8188 return true; 8189 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8190 return true; 8191 } 8192 return false; 8193 } 8194 8195 namespace { 8196 8197 /// Model horizontal reductions. 8198 /// 8199 /// A horizontal reduction is a tree of reduction instructions that has values 8200 /// that can be put into a vector as its leaves. For example: 8201 /// 8202 /// mul mul mul mul 8203 /// \ / \ / 8204 /// + + 8205 /// \ / 8206 /// + 8207 /// This tree has "mul" as its leaf values and "+" as its reduction 8208 /// instructions. A reduction can feed into a store or a binary operation 8209 /// feeding a phi. 8210 /// ... 8211 /// \ / 8212 /// + 8213 /// | 8214 /// phi += 8215 /// 8216 /// Or: 8217 /// ... 8218 /// \ / 8219 /// + 8220 /// | 8221 /// *p = 8222 /// 8223 class HorizontalReduction { 8224 using ReductionOpsType = SmallVector<Value *, 16>; 8225 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8226 ReductionOpsListType ReductionOps; 8227 SmallVector<Value *, 32> ReducedVals; 8228 // Use map vector to make stable output. 8229 MapVector<Instruction *, Value *> ExtraArgs; 8230 WeakTrackingVH ReductionRoot; 8231 /// The type of reduction operation. 8232 RecurKind RdxKind; 8233 8234 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8235 8236 static bool isCmpSelMinMax(Instruction *I) { 8237 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8238 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8239 } 8240 8241 // And/or are potentially poison-safe logical patterns like: 8242 // select x, y, false 8243 // select x, true, y 8244 static bool isBoolLogicOp(Instruction *I) { 8245 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8246 match(I, m_LogicalOr(m_Value(), m_Value())); 8247 } 8248 8249 /// Checks if instruction is associative and can be vectorized. 8250 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8251 if (Kind == RecurKind::None) 8252 return false; 8253 8254 // Integer ops that map to select instructions or intrinsics are fine. 8255 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8256 isBoolLogicOp(I)) 8257 return true; 8258 8259 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8260 // FP min/max are associative except for NaN and -0.0. We do not 8261 // have to rule out -0.0 here because the intrinsic semantics do not 8262 // specify a fixed result for it. 8263 return I->getFastMathFlags().noNaNs(); 8264 } 8265 8266 return I->isAssociative(); 8267 } 8268 8269 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8270 // Poison-safe 'or' takes the form: select X, true, Y 8271 // To make that work with the normal operand processing, we skip the 8272 // true value operand. 8273 // TODO: Change the code and data structures to handle this without a hack. 8274 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8275 return I->getOperand(2); 8276 return I->getOperand(Index); 8277 } 8278 8279 /// Checks if the ParentStackElem.first should be marked as a reduction 8280 /// operation with an extra argument or as extra argument itself. 8281 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8282 Value *ExtraArg) { 8283 if (ExtraArgs.count(ParentStackElem.first)) { 8284 ExtraArgs[ParentStackElem.first] = nullptr; 8285 // We ran into something like: 8286 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8287 // The whole ParentStackElem.first should be considered as an extra value 8288 // in this case. 8289 // Do not perform analysis of remaining operands of ParentStackElem.first 8290 // instruction, this whole instruction is an extra argument. 8291 ParentStackElem.second = INVALID_OPERAND_INDEX; 8292 } else { 8293 // We ran into something like: 8294 // ParentStackElem.first += ... + ExtraArg + ... 8295 ExtraArgs[ParentStackElem.first] = ExtraArg; 8296 } 8297 } 8298 8299 /// Creates reduction operation with the current opcode. 8300 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8301 Value *RHS, const Twine &Name, bool UseSelect) { 8302 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8303 switch (Kind) { 8304 case RecurKind::Or: 8305 if (UseSelect && 8306 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8307 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8308 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8309 Name); 8310 case RecurKind::And: 8311 if (UseSelect && 8312 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8313 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8314 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8315 Name); 8316 case RecurKind::Add: 8317 case RecurKind::Mul: 8318 case RecurKind::Xor: 8319 case RecurKind::FAdd: 8320 case RecurKind::FMul: 8321 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8322 Name); 8323 case RecurKind::FMax: 8324 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8325 case RecurKind::FMin: 8326 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8327 case RecurKind::SMax: 8328 if (UseSelect) { 8329 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8330 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8331 } 8332 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8333 case RecurKind::SMin: 8334 if (UseSelect) { 8335 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8336 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8337 } 8338 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8339 case RecurKind::UMax: 8340 if (UseSelect) { 8341 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8342 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8343 } 8344 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8345 case RecurKind::UMin: 8346 if (UseSelect) { 8347 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8348 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8349 } 8350 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8351 default: 8352 llvm_unreachable("Unknown reduction operation."); 8353 } 8354 } 8355 8356 /// Creates reduction operation with the current opcode with the IR flags 8357 /// from \p ReductionOps. 8358 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8359 Value *RHS, const Twine &Name, 8360 const ReductionOpsListType &ReductionOps) { 8361 bool UseSelect = ReductionOps.size() == 2 || 8362 // Logical or/and. 8363 (ReductionOps.size() == 1 && 8364 isa<SelectInst>(ReductionOps.front().front())); 8365 assert((!UseSelect || ReductionOps.size() != 2 || 8366 isa<SelectInst>(ReductionOps[1][0])) && 8367 "Expected cmp + select pairs for reduction"); 8368 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8369 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8370 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8371 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8372 propagateIRFlags(Op, ReductionOps[1]); 8373 return Op; 8374 } 8375 } 8376 propagateIRFlags(Op, ReductionOps[0]); 8377 return Op; 8378 } 8379 8380 /// Creates reduction operation with the current opcode with the IR flags 8381 /// from \p I. 8382 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8383 Value *RHS, const Twine &Name, Instruction *I) { 8384 auto *SelI = dyn_cast<SelectInst>(I); 8385 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8386 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8387 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8388 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8389 } 8390 propagateIRFlags(Op, I); 8391 return Op; 8392 } 8393 8394 static RecurKind getRdxKind(Instruction *I) { 8395 assert(I && "Expected instruction for reduction matching"); 8396 TargetTransformInfo::ReductionFlags RdxFlags; 8397 if (match(I, m_Add(m_Value(), m_Value()))) 8398 return RecurKind::Add; 8399 if (match(I, m_Mul(m_Value(), m_Value()))) 8400 return RecurKind::Mul; 8401 if (match(I, m_And(m_Value(), m_Value())) || 8402 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8403 return RecurKind::And; 8404 if (match(I, m_Or(m_Value(), m_Value())) || 8405 match(I, m_LogicalOr(m_Value(), m_Value()))) 8406 return RecurKind::Or; 8407 if (match(I, m_Xor(m_Value(), m_Value()))) 8408 return RecurKind::Xor; 8409 if (match(I, m_FAdd(m_Value(), m_Value()))) 8410 return RecurKind::FAdd; 8411 if (match(I, m_FMul(m_Value(), m_Value()))) 8412 return RecurKind::FMul; 8413 8414 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8415 return RecurKind::FMax; 8416 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8417 return RecurKind::FMin; 8418 8419 // This matches either cmp+select or intrinsics. SLP is expected to handle 8420 // either form. 8421 // TODO: If we are canonicalizing to intrinsics, we can remove several 8422 // special-case paths that deal with selects. 8423 if (match(I, m_SMax(m_Value(), m_Value()))) 8424 return RecurKind::SMax; 8425 if (match(I, m_SMin(m_Value(), m_Value()))) 8426 return RecurKind::SMin; 8427 if (match(I, m_UMax(m_Value(), m_Value()))) 8428 return RecurKind::UMax; 8429 if (match(I, m_UMin(m_Value(), m_Value()))) 8430 return RecurKind::UMin; 8431 8432 if (auto *Select = dyn_cast<SelectInst>(I)) { 8433 // Try harder: look for min/max pattern based on instructions producing 8434 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8435 // During the intermediate stages of SLP, it's very common to have 8436 // pattern like this (since optimizeGatherSequence is run only once 8437 // at the end): 8438 // %1 = extractelement <2 x i32> %a, i32 0 8439 // %2 = extractelement <2 x i32> %a, i32 1 8440 // %cond = icmp sgt i32 %1, %2 8441 // %3 = extractelement <2 x i32> %a, i32 0 8442 // %4 = extractelement <2 x i32> %a, i32 1 8443 // %select = select i1 %cond, i32 %3, i32 %4 8444 CmpInst::Predicate Pred; 8445 Instruction *L1; 8446 Instruction *L2; 8447 8448 Value *LHS = Select->getTrueValue(); 8449 Value *RHS = Select->getFalseValue(); 8450 Value *Cond = Select->getCondition(); 8451 8452 // TODO: Support inverse predicates. 8453 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8454 if (!isa<ExtractElementInst>(RHS) || 8455 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8456 return RecurKind::None; 8457 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8458 if (!isa<ExtractElementInst>(LHS) || 8459 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8460 return RecurKind::None; 8461 } else { 8462 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8463 return RecurKind::None; 8464 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8465 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8466 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8467 return RecurKind::None; 8468 } 8469 8470 TargetTransformInfo::ReductionFlags RdxFlags; 8471 switch (Pred) { 8472 default: 8473 return RecurKind::None; 8474 case CmpInst::ICMP_SGT: 8475 case CmpInst::ICMP_SGE: 8476 return RecurKind::SMax; 8477 case CmpInst::ICMP_SLT: 8478 case CmpInst::ICMP_SLE: 8479 return RecurKind::SMin; 8480 case CmpInst::ICMP_UGT: 8481 case CmpInst::ICMP_UGE: 8482 return RecurKind::UMax; 8483 case CmpInst::ICMP_ULT: 8484 case CmpInst::ICMP_ULE: 8485 return RecurKind::UMin; 8486 } 8487 } 8488 return RecurKind::None; 8489 } 8490 8491 /// Get the index of the first operand. 8492 static unsigned getFirstOperandIndex(Instruction *I) { 8493 return isCmpSelMinMax(I) ? 1 : 0; 8494 } 8495 8496 /// Total number of operands in the reduction operation. 8497 static unsigned getNumberOfOperands(Instruction *I) { 8498 return isCmpSelMinMax(I) ? 3 : 2; 8499 } 8500 8501 /// Checks if the instruction is in basic block \p BB. 8502 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8503 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8504 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8505 auto *Sel = cast<SelectInst>(I); 8506 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8507 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8508 } 8509 return I->getParent() == BB; 8510 } 8511 8512 /// Expected number of uses for reduction operations/reduced values. 8513 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8514 if (IsCmpSelMinMax) { 8515 // SelectInst must be used twice while the condition op must have single 8516 // use only. 8517 if (auto *Sel = dyn_cast<SelectInst>(I)) 8518 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8519 return I->hasNUses(2); 8520 } 8521 8522 // Arithmetic reduction operation must be used once only. 8523 return I->hasOneUse(); 8524 } 8525 8526 /// Initializes the list of reduction operations. 8527 void initReductionOps(Instruction *I) { 8528 if (isCmpSelMinMax(I)) 8529 ReductionOps.assign(2, ReductionOpsType()); 8530 else 8531 ReductionOps.assign(1, ReductionOpsType()); 8532 } 8533 8534 /// Add all reduction operations for the reduction instruction \p I. 8535 void addReductionOps(Instruction *I) { 8536 if (isCmpSelMinMax(I)) { 8537 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8538 ReductionOps[1].emplace_back(I); 8539 } else { 8540 ReductionOps[0].emplace_back(I); 8541 } 8542 } 8543 8544 static Value *getLHS(RecurKind Kind, Instruction *I) { 8545 if (Kind == RecurKind::None) 8546 return nullptr; 8547 return I->getOperand(getFirstOperandIndex(I)); 8548 } 8549 static Value *getRHS(RecurKind Kind, Instruction *I) { 8550 if (Kind == RecurKind::None) 8551 return nullptr; 8552 return I->getOperand(getFirstOperandIndex(I) + 1); 8553 } 8554 8555 public: 8556 HorizontalReduction() = default; 8557 8558 /// Try to find a reduction tree. 8559 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8560 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8561 "Phi needs to use the binary operator"); 8562 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8563 isa<IntrinsicInst>(Inst)) && 8564 "Expected binop, select, or intrinsic for reduction matching"); 8565 RdxKind = getRdxKind(Inst); 8566 8567 // We could have a initial reductions that is not an add. 8568 // r *= v1 + v2 + v3 + v4 8569 // In such a case start looking for a tree rooted in the first '+'. 8570 if (Phi) { 8571 if (getLHS(RdxKind, Inst) == Phi) { 8572 Phi = nullptr; 8573 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8574 if (!Inst) 8575 return false; 8576 RdxKind = getRdxKind(Inst); 8577 } else if (getRHS(RdxKind, Inst) == Phi) { 8578 Phi = nullptr; 8579 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8580 if (!Inst) 8581 return false; 8582 RdxKind = getRdxKind(Inst); 8583 } 8584 } 8585 8586 if (!isVectorizable(RdxKind, Inst)) 8587 return false; 8588 8589 // Analyze "regular" integer/FP types for reductions - no target-specific 8590 // types or pointers. 8591 Type *Ty = Inst->getType(); 8592 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8593 return false; 8594 8595 // Though the ultimate reduction may have multiple uses, its condition must 8596 // have only single use. 8597 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8598 if (!Sel->getCondition()->hasOneUse()) 8599 return false; 8600 8601 ReductionRoot = Inst; 8602 8603 // The opcode for leaf values that we perform a reduction on. 8604 // For example: load(x) + load(y) + load(z) + fptoui(w) 8605 // The leaf opcode for 'w' does not match, so we don't include it as a 8606 // potential candidate for the reduction. 8607 unsigned LeafOpcode = 0; 8608 8609 // Post-order traverse the reduction tree starting at Inst. We only handle 8610 // true trees containing binary operators or selects. 8611 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8612 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8613 initReductionOps(Inst); 8614 while (!Stack.empty()) { 8615 Instruction *TreeN = Stack.back().first; 8616 unsigned EdgeToVisit = Stack.back().second++; 8617 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8618 bool IsReducedValue = TreeRdxKind != RdxKind; 8619 8620 // Postorder visit. 8621 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8622 if (IsReducedValue) 8623 ReducedVals.push_back(TreeN); 8624 else { 8625 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8626 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8627 // Check if TreeN is an extra argument of its parent operation. 8628 if (Stack.size() <= 1) { 8629 // TreeN can't be an extra argument as it is a root reduction 8630 // operation. 8631 return false; 8632 } 8633 // Yes, TreeN is an extra argument, do not add it to a list of 8634 // reduction operations. 8635 // Stack[Stack.size() - 2] always points to the parent operation. 8636 markExtraArg(Stack[Stack.size() - 2], TreeN); 8637 ExtraArgs.erase(TreeN); 8638 } else 8639 addReductionOps(TreeN); 8640 } 8641 // Retract. 8642 Stack.pop_back(); 8643 continue; 8644 } 8645 8646 // Visit operands. 8647 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8648 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8649 if (!EdgeInst) { 8650 // Edge value is not a reduction instruction or a leaf instruction. 8651 // (It may be a constant, function argument, or something else.) 8652 markExtraArg(Stack.back(), EdgeVal); 8653 continue; 8654 } 8655 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8656 // Continue analysis if the next operand is a reduction operation or 8657 // (possibly) a leaf value. If the leaf value opcode is not set, 8658 // the first met operation != reduction operation is considered as the 8659 // leaf opcode. 8660 // Only handle trees in the current basic block. 8661 // Each tree node needs to have minimal number of users except for the 8662 // ultimate reduction. 8663 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8664 if (EdgeInst != Phi && EdgeInst != Inst && 8665 hasSameParent(EdgeInst, Inst->getParent()) && 8666 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8667 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8668 if (IsRdxInst) { 8669 // We need to be able to reassociate the reduction operations. 8670 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8671 // I is an extra argument for TreeN (its parent operation). 8672 markExtraArg(Stack.back(), EdgeInst); 8673 continue; 8674 } 8675 } else if (!LeafOpcode) { 8676 LeafOpcode = EdgeInst->getOpcode(); 8677 } 8678 Stack.push_back( 8679 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8680 continue; 8681 } 8682 // I is an extra argument for TreeN (its parent operation). 8683 markExtraArg(Stack.back(), EdgeInst); 8684 } 8685 return true; 8686 } 8687 8688 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8689 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8690 // If there are a sufficient number of reduction values, reduce 8691 // to a nearby power-of-2. We can safely generate oversized 8692 // vectors and rely on the backend to split them to legal sizes. 8693 unsigned NumReducedVals = ReducedVals.size(); 8694 if (NumReducedVals < 4) 8695 return nullptr; 8696 8697 // Intersect the fast-math-flags from all reduction operations. 8698 FastMathFlags RdxFMF; 8699 RdxFMF.set(); 8700 for (ReductionOpsType &RdxOp : ReductionOps) { 8701 for (Value *RdxVal : RdxOp) { 8702 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8703 RdxFMF &= FPMO->getFastMathFlags(); 8704 } 8705 } 8706 8707 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8708 Builder.setFastMathFlags(RdxFMF); 8709 8710 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8711 // The same extra argument may be used several times, so log each attempt 8712 // to use it. 8713 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8714 assert(Pair.first && "DebugLoc must be set."); 8715 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8716 } 8717 8718 // The compare instruction of a min/max is the insertion point for new 8719 // instructions and may be replaced with a new compare instruction. 8720 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8721 assert(isa<SelectInst>(RdxRootInst) && 8722 "Expected min/max reduction to have select root instruction"); 8723 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8724 assert(isa<Instruction>(ScalarCond) && 8725 "Expected min/max reduction to have compare condition"); 8726 return cast<Instruction>(ScalarCond); 8727 }; 8728 8729 // The reduction root is used as the insertion point for new instructions, 8730 // so set it as externally used to prevent it from being deleted. 8731 ExternallyUsedValues[ReductionRoot]; 8732 SmallVector<Value *, 16> IgnoreList; 8733 for (ReductionOpsType &RdxOp : ReductionOps) 8734 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8735 8736 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8737 if (NumReducedVals > ReduxWidth) { 8738 // In the loop below, we are building a tree based on a window of 8739 // 'ReduxWidth' values. 8740 // If the operands of those values have common traits (compare predicate, 8741 // constant operand, etc), then we want to group those together to 8742 // minimize the cost of the reduction. 8743 8744 // TODO: This should be extended to count common operands for 8745 // compares and binops. 8746 8747 // Step 1: Count the number of times each compare predicate occurs. 8748 SmallDenseMap<unsigned, unsigned> PredCountMap; 8749 for (Value *RdxVal : ReducedVals) { 8750 CmpInst::Predicate Pred; 8751 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8752 ++PredCountMap[Pred]; 8753 } 8754 // Step 2: Sort the values so the most common predicates come first. 8755 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8756 CmpInst::Predicate PredA, PredB; 8757 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8758 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8759 return PredCountMap[PredA] > PredCountMap[PredB]; 8760 } 8761 return false; 8762 }); 8763 } 8764 8765 Value *VectorizedTree = nullptr; 8766 unsigned i = 0; 8767 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8768 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8769 V.buildTree(VL, IgnoreList); 8770 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 8771 break; 8772 if (V.isLoadCombineReductionCandidate(RdxKind)) 8773 break; 8774 V.reorderTopToBottom(); 8775 V.reorderBottomToTop(/*IgnoreReorder=*/true); 8776 V.buildExternalUses(ExternallyUsedValues); 8777 8778 // For a poison-safe boolean logic reduction, do not replace select 8779 // instructions with logic ops. All reduced values will be frozen (see 8780 // below) to prevent leaking poison. 8781 if (isa<SelectInst>(ReductionRoot) && 8782 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8783 NumReducedVals != ReduxWidth) 8784 break; 8785 8786 V.computeMinimumValueSizes(); 8787 8788 // Estimate cost. 8789 InstructionCost TreeCost = 8790 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8791 InstructionCost ReductionCost = 8792 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8793 InstructionCost Cost = TreeCost + ReductionCost; 8794 if (!Cost.isValid()) { 8795 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8796 return nullptr; 8797 } 8798 if (Cost >= -SLPCostThreshold) { 8799 V.getORE()->emit([&]() { 8800 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8801 cast<Instruction>(VL[0])) 8802 << "Vectorizing horizontal reduction is possible" 8803 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8804 << " and threshold " 8805 << ore::NV("Threshold", -SLPCostThreshold); 8806 }); 8807 break; 8808 } 8809 8810 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8811 << Cost << ". (HorRdx)\n"); 8812 V.getORE()->emit([&]() { 8813 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8814 cast<Instruction>(VL[0])) 8815 << "Vectorized horizontal reduction with cost " 8816 << ore::NV("Cost", Cost) << " and with tree size " 8817 << ore::NV("TreeSize", V.getTreeSize()); 8818 }); 8819 8820 // Vectorize a tree. 8821 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8822 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8823 8824 // Emit a reduction. If the root is a select (min/max idiom), the insert 8825 // point is the compare condition of that select. 8826 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8827 if (isCmpSelMinMax(RdxRootInst)) 8828 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8829 else 8830 Builder.SetInsertPoint(RdxRootInst); 8831 8832 // To prevent poison from leaking across what used to be sequential, safe, 8833 // scalar boolean logic operations, the reduction operand must be frozen. 8834 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8835 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8836 8837 Value *ReducedSubTree = 8838 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8839 8840 if (!VectorizedTree) { 8841 // Initialize the final value in the reduction. 8842 VectorizedTree = ReducedSubTree; 8843 } else { 8844 // Update the final value in the reduction. 8845 Builder.SetCurrentDebugLocation(Loc); 8846 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8847 ReducedSubTree, "op.rdx", ReductionOps); 8848 } 8849 i += ReduxWidth; 8850 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8851 } 8852 8853 if (VectorizedTree) { 8854 // Finish the reduction. 8855 for (; i < NumReducedVals; ++i) { 8856 auto *I = cast<Instruction>(ReducedVals[i]); 8857 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8858 VectorizedTree = 8859 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8860 } 8861 for (auto &Pair : ExternallyUsedValues) { 8862 // Add each externally used value to the final reduction. 8863 for (auto *I : Pair.second) { 8864 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8865 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8866 Pair.first, "op.extra", I); 8867 } 8868 } 8869 8870 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8871 8872 // Mark all scalar reduction ops for deletion, they are replaced by the 8873 // vector reductions. 8874 V.eraseInstructions(IgnoreList); 8875 } 8876 return VectorizedTree; 8877 } 8878 8879 unsigned numReductionValues() const { return ReducedVals.size(); } 8880 8881 private: 8882 /// Calculate the cost of a reduction. 8883 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8884 Value *FirstReducedVal, unsigned ReduxWidth, 8885 FastMathFlags FMF) { 8886 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8887 Type *ScalarTy = FirstReducedVal->getType(); 8888 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8889 InstructionCost VectorCost, ScalarCost; 8890 switch (RdxKind) { 8891 case RecurKind::Add: 8892 case RecurKind::Mul: 8893 case RecurKind::Or: 8894 case RecurKind::And: 8895 case RecurKind::Xor: 8896 case RecurKind::FAdd: 8897 case RecurKind::FMul: { 8898 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8899 VectorCost = 8900 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 8901 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 8902 break; 8903 } 8904 case RecurKind::FMax: 8905 case RecurKind::FMin: { 8906 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8907 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8908 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8909 /*unsigned=*/false, CostKind); 8910 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8911 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 8912 SclCondTy, RdxPred, CostKind) + 8913 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8914 SclCondTy, RdxPred, CostKind); 8915 break; 8916 } 8917 case RecurKind::SMax: 8918 case RecurKind::SMin: 8919 case RecurKind::UMax: 8920 case RecurKind::UMin: { 8921 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8922 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8923 bool IsUnsigned = 8924 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8925 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 8926 CostKind); 8927 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8928 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 8929 SclCondTy, RdxPred, CostKind) + 8930 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8931 SclCondTy, RdxPred, CostKind); 8932 break; 8933 } 8934 default: 8935 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8936 } 8937 8938 // Scalar cost is repeated for N-1 elements. 8939 ScalarCost *= (ReduxWidth - 1); 8940 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8941 << " for reduction that starts with " << *FirstReducedVal 8942 << " (It is a splitting reduction)\n"); 8943 return VectorCost - ScalarCost; 8944 } 8945 8946 /// Emit a horizontal reduction of the vectorized value. 8947 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8948 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8949 assert(VectorizedValue && "Need to have a vectorized tree node"); 8950 assert(isPowerOf2_32(ReduxWidth) && 8951 "We only handle power-of-two reductions for now"); 8952 assert(RdxKind != RecurKind::FMulAdd && 8953 "A call to the llvm.fmuladd intrinsic is not handled yet"); 8954 8955 ++NumVectorInstructions; 8956 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8957 ReductionOps.back()); 8958 } 8959 }; 8960 8961 } // end anonymous namespace 8962 8963 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8964 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8965 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8966 8967 unsigned AggregateSize = 1; 8968 auto *IV = cast<InsertValueInst>(InsertInst); 8969 Type *CurrentType = IV->getType(); 8970 do { 8971 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8972 for (auto *Elt : ST->elements()) 8973 if (Elt != ST->getElementType(0)) // check homogeneity 8974 return None; 8975 AggregateSize *= ST->getNumElements(); 8976 CurrentType = ST->getElementType(0); 8977 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8978 AggregateSize *= AT->getNumElements(); 8979 CurrentType = AT->getElementType(); 8980 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8981 AggregateSize *= VT->getNumElements(); 8982 return AggregateSize; 8983 } else if (CurrentType->isSingleValueType()) { 8984 return AggregateSize; 8985 } else { 8986 return None; 8987 } 8988 } while (true); 8989 } 8990 8991 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8992 TargetTransformInfo *TTI, 8993 SmallVectorImpl<Value *> &BuildVectorOpds, 8994 SmallVectorImpl<Value *> &InsertElts, 8995 unsigned OperandOffset) { 8996 do { 8997 Value *InsertedOperand = LastInsertInst->getOperand(1); 8998 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8999 if (!OperandIndex) 9000 return false; 9001 if (isa<InsertElementInst>(InsertedOperand) || 9002 isa<InsertValueInst>(InsertedOperand)) { 9003 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9004 BuildVectorOpds, InsertElts, *OperandIndex)) 9005 return false; 9006 } else { 9007 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9008 InsertElts[*OperandIndex] = LastInsertInst; 9009 } 9010 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9011 } while (LastInsertInst != nullptr && 9012 (isa<InsertValueInst>(LastInsertInst) || 9013 isa<InsertElementInst>(LastInsertInst)) && 9014 LastInsertInst->hasOneUse()); 9015 return true; 9016 } 9017 9018 /// Recognize construction of vectors like 9019 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9020 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9021 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9022 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9023 /// starting from the last insertelement or insertvalue instruction. 9024 /// 9025 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9026 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9027 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9028 /// 9029 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9030 /// 9031 /// \return true if it matches. 9032 static bool findBuildAggregate(Instruction *LastInsertInst, 9033 TargetTransformInfo *TTI, 9034 SmallVectorImpl<Value *> &BuildVectorOpds, 9035 SmallVectorImpl<Value *> &InsertElts) { 9036 9037 assert((isa<InsertElementInst>(LastInsertInst) || 9038 isa<InsertValueInst>(LastInsertInst)) && 9039 "Expected insertelement or insertvalue instruction!"); 9040 9041 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9042 "Expected empty result vectors!"); 9043 9044 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9045 if (!AggregateSize) 9046 return false; 9047 BuildVectorOpds.resize(*AggregateSize); 9048 InsertElts.resize(*AggregateSize); 9049 9050 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9051 0)) { 9052 llvm::erase_value(BuildVectorOpds, nullptr); 9053 llvm::erase_value(InsertElts, nullptr); 9054 if (BuildVectorOpds.size() >= 2) 9055 return true; 9056 } 9057 9058 return false; 9059 } 9060 9061 /// Try and get a reduction value from a phi node. 9062 /// 9063 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9064 /// if they come from either \p ParentBB or a containing loop latch. 9065 /// 9066 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9067 /// if not possible. 9068 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9069 BasicBlock *ParentBB, LoopInfo *LI) { 9070 // There are situations where the reduction value is not dominated by the 9071 // reduction phi. Vectorizing such cases has been reported to cause 9072 // miscompiles. See PR25787. 9073 auto DominatedReduxValue = [&](Value *R) { 9074 return isa<Instruction>(R) && 9075 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9076 }; 9077 9078 Value *Rdx = nullptr; 9079 9080 // Return the incoming value if it comes from the same BB as the phi node. 9081 if (P->getIncomingBlock(0) == ParentBB) { 9082 Rdx = P->getIncomingValue(0); 9083 } else if (P->getIncomingBlock(1) == ParentBB) { 9084 Rdx = P->getIncomingValue(1); 9085 } 9086 9087 if (Rdx && DominatedReduxValue(Rdx)) 9088 return Rdx; 9089 9090 // Otherwise, check whether we have a loop latch to look at. 9091 Loop *BBL = LI->getLoopFor(ParentBB); 9092 if (!BBL) 9093 return nullptr; 9094 BasicBlock *BBLatch = BBL->getLoopLatch(); 9095 if (!BBLatch) 9096 return nullptr; 9097 9098 // There is a loop latch, return the incoming value if it comes from 9099 // that. This reduction pattern occasionally turns up. 9100 if (P->getIncomingBlock(0) == BBLatch) { 9101 Rdx = P->getIncomingValue(0); 9102 } else if (P->getIncomingBlock(1) == BBLatch) { 9103 Rdx = P->getIncomingValue(1); 9104 } 9105 9106 if (Rdx && DominatedReduxValue(Rdx)) 9107 return Rdx; 9108 9109 return nullptr; 9110 } 9111 9112 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9113 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9114 return true; 9115 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9116 return true; 9117 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9118 return true; 9119 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9120 return true; 9121 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9122 return true; 9123 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9124 return true; 9125 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9126 return true; 9127 return false; 9128 } 9129 9130 /// Attempt to reduce a horizontal reduction. 9131 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9132 /// with reduction operators \a Root (or one of its operands) in a basic block 9133 /// \a BB, then check if it can be done. If horizontal reduction is not found 9134 /// and root instruction is a binary operation, vectorization of the operands is 9135 /// attempted. 9136 /// \returns true if a horizontal reduction was matched and reduced or operands 9137 /// of one of the binary instruction were vectorized. 9138 /// \returns false if a horizontal reduction was not matched (or not possible) 9139 /// or no vectorization of any binary operation feeding \a Root instruction was 9140 /// performed. 9141 static bool tryToVectorizeHorReductionOrInstOperands( 9142 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9143 TargetTransformInfo *TTI, 9144 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9145 if (!ShouldVectorizeHor) 9146 return false; 9147 9148 if (!Root) 9149 return false; 9150 9151 if (Root->getParent() != BB || isa<PHINode>(Root)) 9152 return false; 9153 // Start analysis starting from Root instruction. If horizontal reduction is 9154 // found, try to vectorize it. If it is not a horizontal reduction or 9155 // vectorization is not possible or not effective, and currently analyzed 9156 // instruction is a binary operation, try to vectorize the operands, using 9157 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9158 // the same procedure considering each operand as a possible root of the 9159 // horizontal reduction. 9160 // Interrupt the process if the Root instruction itself was vectorized or all 9161 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9162 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9163 // CmpInsts so we can skip extra attempts in 9164 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9165 std::queue<std::pair<Instruction *, unsigned>> Stack; 9166 Stack.emplace(Root, 0); 9167 SmallPtrSet<Value *, 8> VisitedInstrs; 9168 SmallVector<WeakTrackingVH> PostponedInsts; 9169 bool Res = false; 9170 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9171 Value *&B1) -> Value * { 9172 bool IsBinop = matchRdxBop(Inst, B0, B1); 9173 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9174 if (IsBinop || IsSelect) { 9175 HorizontalReduction HorRdx; 9176 if (HorRdx.matchAssociativeReduction(P, Inst)) 9177 return HorRdx.tryToReduce(R, TTI); 9178 } 9179 return nullptr; 9180 }; 9181 while (!Stack.empty()) { 9182 Instruction *Inst; 9183 unsigned Level; 9184 std::tie(Inst, Level) = Stack.front(); 9185 Stack.pop(); 9186 // Do not try to analyze instruction that has already been vectorized. 9187 // This may happen when we vectorize instruction operands on a previous 9188 // iteration while stack was populated before that happened. 9189 if (R.isDeleted(Inst)) 9190 continue; 9191 Value *B0 = nullptr, *B1 = nullptr; 9192 if (Value *V = TryToReduce(Inst, B0, B1)) { 9193 Res = true; 9194 // Set P to nullptr to avoid re-analysis of phi node in 9195 // matchAssociativeReduction function unless this is the root node. 9196 P = nullptr; 9197 if (auto *I = dyn_cast<Instruction>(V)) { 9198 // Try to find another reduction. 9199 Stack.emplace(I, Level); 9200 continue; 9201 } 9202 } else { 9203 bool IsBinop = B0 && B1; 9204 if (P && IsBinop) { 9205 Inst = dyn_cast<Instruction>(B0); 9206 if (Inst == P) 9207 Inst = dyn_cast<Instruction>(B1); 9208 if (!Inst) { 9209 // Set P to nullptr to avoid re-analysis of phi node in 9210 // matchAssociativeReduction function unless this is the root node. 9211 P = nullptr; 9212 continue; 9213 } 9214 } 9215 // Set P to nullptr to avoid re-analysis of phi node in 9216 // matchAssociativeReduction function unless this is the root node. 9217 P = nullptr; 9218 // Do not try to vectorize CmpInst operands, this is done separately. 9219 // Final attempt for binop args vectorization should happen after the loop 9220 // to try to find reductions. 9221 if (!isa<CmpInst>(Inst)) 9222 PostponedInsts.push_back(Inst); 9223 } 9224 9225 // Try to vectorize operands. 9226 // Continue analysis for the instruction from the same basic block only to 9227 // save compile time. 9228 if (++Level < RecursionMaxDepth) 9229 for (auto *Op : Inst->operand_values()) 9230 if (VisitedInstrs.insert(Op).second) 9231 if (auto *I = dyn_cast<Instruction>(Op)) 9232 // Do not try to vectorize CmpInst operands, this is done 9233 // separately. 9234 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9235 I->getParent() == BB) 9236 Stack.emplace(I, Level); 9237 } 9238 // Try to vectorized binops where reductions were not found. 9239 for (Value *V : PostponedInsts) 9240 if (auto *Inst = dyn_cast<Instruction>(V)) 9241 if (!R.isDeleted(Inst)) 9242 Res |= Vectorize(Inst, R); 9243 return Res; 9244 } 9245 9246 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9247 BasicBlock *BB, BoUpSLP &R, 9248 TargetTransformInfo *TTI) { 9249 auto *I = dyn_cast_or_null<Instruction>(V); 9250 if (!I) 9251 return false; 9252 9253 if (!isa<BinaryOperator>(I)) 9254 P = nullptr; 9255 // Try to match and vectorize a horizontal reduction. 9256 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9257 return tryToVectorize(I, R); 9258 }; 9259 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9260 ExtraVectorization); 9261 } 9262 9263 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9264 BasicBlock *BB, BoUpSLP &R) { 9265 const DataLayout &DL = BB->getModule()->getDataLayout(); 9266 if (!R.canMapToVector(IVI->getType(), DL)) 9267 return false; 9268 9269 SmallVector<Value *, 16> BuildVectorOpds; 9270 SmallVector<Value *, 16> BuildVectorInsts; 9271 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9272 return false; 9273 9274 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9275 // Aggregate value is unlikely to be processed in vector register, we need to 9276 // extract scalars into scalar registers, so NeedExtraction is set true. 9277 return tryToVectorizeList(BuildVectorOpds, R); 9278 } 9279 9280 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9281 BasicBlock *BB, BoUpSLP &R) { 9282 SmallVector<Value *, 16> BuildVectorInsts; 9283 SmallVector<Value *, 16> BuildVectorOpds; 9284 SmallVector<int> Mask; 9285 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9286 (llvm::all_of( 9287 BuildVectorOpds, 9288 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9289 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9290 return false; 9291 9292 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9293 return tryToVectorizeList(BuildVectorInsts, R); 9294 } 9295 9296 template <typename T> 9297 static bool 9298 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9299 function_ref<unsigned(T *)> Limit, 9300 function_ref<bool(T *, T *)> Comparator, 9301 function_ref<bool(T *, T *)> AreCompatible, 9302 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9303 bool LimitForRegisterSize) { 9304 bool Changed = false; 9305 // Sort by type, parent, operands. 9306 stable_sort(Incoming, Comparator); 9307 9308 // Try to vectorize elements base on their type. 9309 SmallVector<T *> Candidates; 9310 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9311 // Look for the next elements with the same type, parent and operand 9312 // kinds. 9313 auto *SameTypeIt = IncIt; 9314 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9315 ++SameTypeIt; 9316 9317 // Try to vectorize them. 9318 unsigned NumElts = (SameTypeIt - IncIt); 9319 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9320 << NumElts << ")\n"); 9321 // The vectorization is a 3-state attempt: 9322 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9323 // size of maximal register at first. 9324 // 2. Try to vectorize remaining instructions with the same type, if 9325 // possible. This may result in the better vectorization results rather than 9326 // if we try just to vectorize instructions with the same/alternate opcodes. 9327 // 3. Final attempt to try to vectorize all instructions with the 9328 // same/alternate ops only, this may result in some extra final 9329 // vectorization. 9330 if (NumElts > 1 && 9331 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9332 // Success start over because instructions might have been changed. 9333 Changed = true; 9334 } else if (NumElts < Limit(*IncIt) && 9335 (Candidates.empty() || 9336 Candidates.front()->getType() == (*IncIt)->getType())) { 9337 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9338 } 9339 // Final attempt to vectorize instructions with the same types. 9340 if (Candidates.size() > 1 && 9341 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9342 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9343 // Success start over because instructions might have been changed. 9344 Changed = true; 9345 } else if (LimitForRegisterSize) { 9346 // Try to vectorize using small vectors. 9347 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9348 It != End;) { 9349 auto *SameTypeIt = It; 9350 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9351 ++SameTypeIt; 9352 unsigned NumElts = (SameTypeIt - It); 9353 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9354 /*LimitForRegisterSize=*/false)) 9355 Changed = true; 9356 It = SameTypeIt; 9357 } 9358 } 9359 Candidates.clear(); 9360 } 9361 9362 // Start over at the next instruction of a different type (or the end). 9363 IncIt = SameTypeIt; 9364 } 9365 return Changed; 9366 } 9367 9368 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9369 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9370 bool AtTerminator) { 9371 bool OpsChanged = false; 9372 SmallVector<Instruction *, 4> PostponedCmps; 9373 for (auto *I : reverse(Instructions)) { 9374 if (R.isDeleted(I)) 9375 continue; 9376 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9377 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9378 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9379 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9380 else if (isa<CmpInst>(I)) 9381 PostponedCmps.push_back(I); 9382 } 9383 if (AtTerminator) { 9384 // Try to find reductions first. 9385 for (Instruction *I : PostponedCmps) { 9386 if (R.isDeleted(I)) 9387 continue; 9388 for (Value *Op : I->operands()) 9389 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9390 } 9391 // Try to vectorize operands as vector bundles. 9392 for (Instruction *I : PostponedCmps) { 9393 if (R.isDeleted(I)) 9394 continue; 9395 OpsChanged |= tryToVectorize(I, R); 9396 } 9397 // Try to vectorize list of compares. 9398 // Sort by type, compare predicate, etc. 9399 // TODO: Add analysis on the operand opcodes (profitable to vectorize 9400 // instructions with same/alternate opcodes/const values). 9401 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9402 auto *CI1 = cast<CmpInst>(V); 9403 auto *CI2 = cast<CmpInst>(V2); 9404 if (R.isDeleted(CI2) || !isValidElementType(CI2->getType())) 9405 return false; 9406 if (CI1->getOperand(0)->getType()->getTypeID() < 9407 CI2->getOperand(0)->getType()->getTypeID()) 9408 return true; 9409 if (CI1->getOperand(0)->getType()->getTypeID() > 9410 CI2->getOperand(0)->getType()->getTypeID()) 9411 return false; 9412 return CI1->getPredicate() < CI2->getPredicate() || 9413 (CI1->getPredicate() > CI2->getPredicate() && 9414 CI1->getPredicate() < 9415 CmpInst::getSwappedPredicate(CI2->getPredicate())); 9416 }; 9417 9418 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9419 if (V1 == V2) 9420 return true; 9421 auto *CI1 = cast<CmpInst>(V1); 9422 auto *CI2 = cast<CmpInst>(V2); 9423 if (R.isDeleted(CI2) || !isValidElementType(CI2->getType())) 9424 return false; 9425 if (CI1->getOperand(0)->getType() != CI2->getOperand(0)->getType()) 9426 return false; 9427 return CI1->getPredicate() == CI2->getPredicate() || 9428 CI1->getPredicate() == 9429 CmpInst::getSwappedPredicate(CI2->getPredicate()); 9430 }; 9431 auto Limit = [&R](Value *V) { 9432 unsigned EltSize = R.getVectorElementSize(V); 9433 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9434 }; 9435 9436 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9437 OpsChanged |= tryToVectorizeSequence<Value>( 9438 Vals, Limit, CompareSorter, AreCompatibleCompares, 9439 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9440 // Exclude possible reductions from other blocks. 9441 bool ArePossiblyReducedInOtherBlock = 9442 any_of(Candidates, [](Value *V) { 9443 return any_of(V->users(), [V](User *U) { 9444 return isa<SelectInst>(U) && 9445 cast<SelectInst>(U)->getParent() != 9446 cast<Instruction>(V)->getParent(); 9447 }); 9448 }); 9449 if (ArePossiblyReducedInOtherBlock) 9450 return false; 9451 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9452 }, 9453 /*LimitForRegisterSize=*/true); 9454 Instructions.clear(); 9455 } else { 9456 // Insert in reverse order since the PostponedCmps vector was filled in 9457 // reverse order. 9458 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9459 } 9460 return OpsChanged; 9461 } 9462 9463 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9464 bool Changed = false; 9465 SmallVector<Value *, 4> Incoming; 9466 SmallPtrSet<Value *, 16> VisitedInstrs; 9467 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9468 // node. Allows better to identify the chains that can be vectorized in the 9469 // better way. 9470 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9471 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9472 assert(isValidElementType(V1->getType()) && 9473 isValidElementType(V2->getType()) && 9474 "Expected vectorizable types only."); 9475 // It is fine to compare type IDs here, since we expect only vectorizable 9476 // types, like ints, floats and pointers, we don't care about other type. 9477 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9478 return true; 9479 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9480 return false; 9481 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9482 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9483 if (Opcodes1.size() < Opcodes2.size()) 9484 return true; 9485 if (Opcodes1.size() > Opcodes2.size()) 9486 return false; 9487 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9488 // Undefs are compatible with any other value. 9489 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9490 continue; 9491 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9492 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9493 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9494 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9495 if (!NodeI1) 9496 return NodeI2 != nullptr; 9497 if (!NodeI2) 9498 return false; 9499 assert((NodeI1 == NodeI2) == 9500 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9501 "Different nodes should have different DFS numbers"); 9502 if (NodeI1 != NodeI2) 9503 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9504 InstructionsState S = getSameOpcode({I1, I2}); 9505 if (S.getOpcode()) 9506 continue; 9507 return I1->getOpcode() < I2->getOpcode(); 9508 } 9509 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9510 continue; 9511 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9512 return true; 9513 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9514 return false; 9515 } 9516 return false; 9517 }; 9518 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9519 if (V1 == V2) 9520 return true; 9521 if (V1->getType() != V2->getType()) 9522 return false; 9523 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9524 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9525 if (Opcodes1.size() != Opcodes2.size()) 9526 return false; 9527 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9528 // Undefs are compatible with any other value. 9529 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9530 continue; 9531 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9532 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9533 if (I1->getParent() != I2->getParent()) 9534 return false; 9535 InstructionsState S = getSameOpcode({I1, I2}); 9536 if (S.getOpcode()) 9537 continue; 9538 return false; 9539 } 9540 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9541 continue; 9542 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9543 return false; 9544 } 9545 return true; 9546 }; 9547 auto Limit = [&R](Value *V) { 9548 unsigned EltSize = R.getVectorElementSize(V); 9549 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9550 }; 9551 9552 bool HaveVectorizedPhiNodes = false; 9553 do { 9554 // Collect the incoming values from the PHIs. 9555 Incoming.clear(); 9556 for (Instruction &I : *BB) { 9557 PHINode *P = dyn_cast<PHINode>(&I); 9558 if (!P) 9559 break; 9560 9561 // No need to analyze deleted, vectorized and non-vectorizable 9562 // instructions. 9563 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9564 isValidElementType(P->getType())) 9565 Incoming.push_back(P); 9566 } 9567 9568 // Find the corresponding non-phi nodes for better matching when trying to 9569 // build the tree. 9570 for (Value *V : Incoming) { 9571 SmallVectorImpl<Value *> &Opcodes = 9572 PHIToOpcodes.try_emplace(V).first->getSecond(); 9573 if (!Opcodes.empty()) 9574 continue; 9575 SmallVector<Value *, 4> Nodes(1, V); 9576 SmallPtrSet<Value *, 4> Visited; 9577 while (!Nodes.empty()) { 9578 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9579 if (!Visited.insert(PHI).second) 9580 continue; 9581 for (Value *V : PHI->incoming_values()) { 9582 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9583 Nodes.push_back(PHI1); 9584 continue; 9585 } 9586 Opcodes.emplace_back(V); 9587 } 9588 } 9589 } 9590 9591 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9592 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9593 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9594 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9595 }, 9596 /*LimitForRegisterSize=*/true); 9597 Changed |= HaveVectorizedPhiNodes; 9598 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9599 } while (HaveVectorizedPhiNodes); 9600 9601 VisitedInstrs.clear(); 9602 9603 SmallVector<Instruction *, 8> PostProcessInstructions; 9604 SmallDenseSet<Instruction *, 4> KeyNodes; 9605 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9606 // Skip instructions with scalable type. The num of elements is unknown at 9607 // compile-time for scalable type. 9608 if (isa<ScalableVectorType>(it->getType())) 9609 continue; 9610 9611 // Skip instructions marked for the deletion. 9612 if (R.isDeleted(&*it)) 9613 continue; 9614 // We may go through BB multiple times so skip the one we have checked. 9615 if (!VisitedInstrs.insert(&*it).second) { 9616 if (it->use_empty() && KeyNodes.contains(&*it) && 9617 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9618 it->isTerminator())) { 9619 // We would like to start over since some instructions are deleted 9620 // and the iterator may become invalid value. 9621 Changed = true; 9622 it = BB->begin(); 9623 e = BB->end(); 9624 } 9625 continue; 9626 } 9627 9628 if (isa<DbgInfoIntrinsic>(it)) 9629 continue; 9630 9631 // Try to vectorize reductions that use PHINodes. 9632 if (PHINode *P = dyn_cast<PHINode>(it)) { 9633 // Check that the PHI is a reduction PHI. 9634 if (P->getNumIncomingValues() == 2) { 9635 // Try to match and vectorize a horizontal reduction. 9636 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9637 TTI)) { 9638 Changed = true; 9639 it = BB->begin(); 9640 e = BB->end(); 9641 continue; 9642 } 9643 } 9644 // Try to vectorize the incoming values of the PHI, to catch reductions 9645 // that feed into PHIs. 9646 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9647 // Skip if the incoming block is the current BB for now. Also, bypass 9648 // unreachable IR for efficiency and to avoid crashing. 9649 // TODO: Collect the skipped incoming values and try to vectorize them 9650 // after processing BB. 9651 if (BB == P->getIncomingBlock(I) || 9652 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9653 continue; 9654 9655 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9656 P->getIncomingBlock(I), R, TTI); 9657 } 9658 continue; 9659 } 9660 9661 // Ran into an instruction without users, like terminator, or function call 9662 // with ignored return value, store. Ignore unused instructions (basing on 9663 // instruction type, except for CallInst and InvokeInst). 9664 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9665 isa<InvokeInst>(it))) { 9666 KeyNodes.insert(&*it); 9667 bool OpsChanged = false; 9668 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9669 for (auto *V : it->operand_values()) { 9670 // Try to match and vectorize a horizontal reduction. 9671 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9672 } 9673 } 9674 // Start vectorization of post-process list of instructions from the 9675 // top-tree instructions to try to vectorize as many instructions as 9676 // possible. 9677 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9678 it->isTerminator()); 9679 if (OpsChanged) { 9680 // We would like to start over since some instructions are deleted 9681 // and the iterator may become invalid value. 9682 Changed = true; 9683 it = BB->begin(); 9684 e = BB->end(); 9685 continue; 9686 } 9687 } 9688 9689 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9690 isa<InsertValueInst>(it)) 9691 PostProcessInstructions.push_back(&*it); 9692 } 9693 9694 return Changed; 9695 } 9696 9697 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9698 auto Changed = false; 9699 for (auto &Entry : GEPs) { 9700 // If the getelementptr list has fewer than two elements, there's nothing 9701 // to do. 9702 if (Entry.second.size() < 2) 9703 continue; 9704 9705 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9706 << Entry.second.size() << ".\n"); 9707 9708 // Process the GEP list in chunks suitable for the target's supported 9709 // vector size. If a vector register can't hold 1 element, we are done. We 9710 // are trying to vectorize the index computations, so the maximum number of 9711 // elements is based on the size of the index expression, rather than the 9712 // size of the GEP itself (the target's pointer size). 9713 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9714 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9715 if (MaxVecRegSize < EltSize) 9716 continue; 9717 9718 unsigned MaxElts = MaxVecRegSize / EltSize; 9719 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9720 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9721 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9722 9723 // Initialize a set a candidate getelementptrs. Note that we use a 9724 // SetVector here to preserve program order. If the index computations 9725 // are vectorizable and begin with loads, we want to minimize the chance 9726 // of having to reorder them later. 9727 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9728 9729 // Some of the candidates may have already been vectorized after we 9730 // initially collected them. If so, they are marked as deleted, so remove 9731 // them from the set of candidates. 9732 Candidates.remove_if( 9733 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9734 9735 // Remove from the set of candidates all pairs of getelementptrs with 9736 // constant differences. Such getelementptrs are likely not good 9737 // candidates for vectorization in a bottom-up phase since one can be 9738 // computed from the other. We also ensure all candidate getelementptr 9739 // indices are unique. 9740 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9741 auto *GEPI = GEPList[I]; 9742 if (!Candidates.count(GEPI)) 9743 continue; 9744 auto *SCEVI = SE->getSCEV(GEPList[I]); 9745 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9746 auto *GEPJ = GEPList[J]; 9747 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9748 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9749 Candidates.remove(GEPI); 9750 Candidates.remove(GEPJ); 9751 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9752 Candidates.remove(GEPJ); 9753 } 9754 } 9755 } 9756 9757 // We break out of the above computation as soon as we know there are 9758 // fewer than two candidates remaining. 9759 if (Candidates.size() < 2) 9760 continue; 9761 9762 // Add the single, non-constant index of each candidate to the bundle. We 9763 // ensured the indices met these constraints when we originally collected 9764 // the getelementptrs. 9765 SmallVector<Value *, 16> Bundle(Candidates.size()); 9766 auto BundleIndex = 0u; 9767 for (auto *V : Candidates) { 9768 auto *GEP = cast<GetElementPtrInst>(V); 9769 auto *GEPIdx = GEP->idx_begin()->get(); 9770 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9771 Bundle[BundleIndex++] = GEPIdx; 9772 } 9773 9774 // Try and vectorize the indices. We are currently only interested in 9775 // gather-like cases of the form: 9776 // 9777 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9778 // 9779 // where the loads of "a", the loads of "b", and the subtractions can be 9780 // performed in parallel. It's likely that detecting this pattern in a 9781 // bottom-up phase will be simpler and less costly than building a 9782 // full-blown top-down phase beginning at the consecutive loads. 9783 Changed |= tryToVectorizeList(Bundle, R); 9784 } 9785 } 9786 return Changed; 9787 } 9788 9789 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9790 bool Changed = false; 9791 // Sort by type, base pointers and values operand. Value operands must be 9792 // compatible (have the same opcode, same parent), otherwise it is 9793 // definitely not profitable to try to vectorize them. 9794 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9795 if (V->getPointerOperandType()->getTypeID() < 9796 V2->getPointerOperandType()->getTypeID()) 9797 return true; 9798 if (V->getPointerOperandType()->getTypeID() > 9799 V2->getPointerOperandType()->getTypeID()) 9800 return false; 9801 // UndefValues are compatible with all other values. 9802 if (isa<UndefValue>(V->getValueOperand()) || 9803 isa<UndefValue>(V2->getValueOperand())) 9804 return false; 9805 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9806 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9807 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9808 DT->getNode(I1->getParent()); 9809 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9810 DT->getNode(I2->getParent()); 9811 assert(NodeI1 && "Should only process reachable instructions"); 9812 assert(NodeI1 && "Should only process reachable instructions"); 9813 assert((NodeI1 == NodeI2) == 9814 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9815 "Different nodes should have different DFS numbers"); 9816 if (NodeI1 != NodeI2) 9817 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9818 InstructionsState S = getSameOpcode({I1, I2}); 9819 if (S.getOpcode()) 9820 return false; 9821 return I1->getOpcode() < I2->getOpcode(); 9822 } 9823 if (isa<Constant>(V->getValueOperand()) && 9824 isa<Constant>(V2->getValueOperand())) 9825 return false; 9826 return V->getValueOperand()->getValueID() < 9827 V2->getValueOperand()->getValueID(); 9828 }; 9829 9830 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9831 if (V1 == V2) 9832 return true; 9833 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9834 return false; 9835 // Undefs are compatible with any other value. 9836 if (isa<UndefValue>(V1->getValueOperand()) || 9837 isa<UndefValue>(V2->getValueOperand())) 9838 return true; 9839 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9840 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9841 if (I1->getParent() != I2->getParent()) 9842 return false; 9843 InstructionsState S = getSameOpcode({I1, I2}); 9844 return S.getOpcode() > 0; 9845 } 9846 if (isa<Constant>(V1->getValueOperand()) && 9847 isa<Constant>(V2->getValueOperand())) 9848 return true; 9849 return V1->getValueOperand()->getValueID() == 9850 V2->getValueOperand()->getValueID(); 9851 }; 9852 auto Limit = [&R, this](StoreInst *SI) { 9853 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 9854 return R.getMinVF(EltSize); 9855 }; 9856 9857 // Attempt to sort and vectorize each of the store-groups. 9858 for (auto &Pair : Stores) { 9859 if (Pair.second.size() < 2) 9860 continue; 9861 9862 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9863 << Pair.second.size() << ".\n"); 9864 9865 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 9866 continue; 9867 9868 Changed |= tryToVectorizeSequence<StoreInst>( 9869 Pair.second, Limit, StoreSorter, AreCompatibleStores, 9870 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 9871 return vectorizeStores(Candidates, R); 9872 }, 9873 /*LimitForRegisterSize=*/false); 9874 } 9875 return Changed; 9876 } 9877 9878 char SLPVectorizer::ID = 0; 9879 9880 static const char lv_name[] = "SLP Vectorizer"; 9881 9882 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9883 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9884 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9885 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9886 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9887 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9888 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9889 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9890 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9891 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9892 9893 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9894