1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 /// Checks if the provided value does not require scheduling. It does not 776 /// require scheduling if this is not an instruction or it is an instruction 777 /// that does not read/write memory and all operands are either not instructions 778 /// or phi nodes or instructions from different blocks. 779 static bool areAllOperandsNonInsts(Value *V) { 780 auto *I = dyn_cast<Instruction>(V); 781 if (!I) 782 return true; 783 return !mayHaveNonDefUseDependency(*I) && 784 all_of(I->operands(), [I](Value *V) { 785 auto *IO = dyn_cast<Instruction>(V); 786 if (!IO) 787 return true; 788 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 789 }); 790 } 791 792 /// Checks if the provided value does not require scheduling. It does not 793 /// require scheduling if this is not an instruction or it is an instruction 794 /// that does not read/write memory and all users are phi nodes or instructions 795 /// from the different blocks. 796 static bool isUsedOutsideBlock(Value *V) { 797 auto *I = dyn_cast<Instruction>(V); 798 if (!I) 799 return true; 800 // Limits the number of uses to save compile time. 801 constexpr int UsesLimit = 8; 802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 803 all_of(I->users(), [I](User *U) { 804 auto *IU = dyn_cast<Instruction>(U); 805 if (!IU) 806 return true; 807 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 808 }); 809 } 810 811 /// Checks if the specified value does not require scheduling. It does not 812 /// require scheduling if all operands and all users do not need to be scheduled 813 /// in the current basic block. 814 static bool doesNotNeedToBeScheduled(Value *V) { 815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 816 } 817 818 /// Checks if the specified array of instructions does not require scheduling. 819 /// It is so if all either instructions have operands that do not require 820 /// scheduling or their users do not require scheduling since they are phis or 821 /// in other basic blocks. 822 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 823 return !VL.empty() && 824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 825 } 826 827 namespace slpvectorizer { 828 829 /// Bottom Up SLP Vectorizer. 830 class BoUpSLP { 831 struct TreeEntry; 832 struct ScheduleData; 833 834 public: 835 using ValueList = SmallVector<Value *, 8>; 836 using InstrList = SmallVector<Instruction *, 16>; 837 using ValueSet = SmallPtrSet<Value *, 16>; 838 using StoreList = SmallVector<StoreInst *, 8>; 839 using ExtraValueToDebugLocsMap = 840 MapVector<Value *, SmallVector<Instruction *, 2>>; 841 using OrdersType = SmallVector<unsigned, 4>; 842 843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 846 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 849 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 850 // Use the vector register size specified by the target unless overridden 851 // by a command-line option. 852 // TODO: It would be better to limit the vectorization factor based on 853 // data type rather than just register size. For example, x86 AVX has 854 // 256-bit registers, but it does not support integer operations 855 // at that width (that requires AVX2). 856 if (MaxVectorRegSizeOption.getNumOccurrences()) 857 MaxVecRegSize = MaxVectorRegSizeOption; 858 else 859 MaxVecRegSize = 860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 861 .getFixedSize(); 862 863 if (MinVectorRegSizeOption.getNumOccurrences()) 864 MinVecRegSize = MinVectorRegSizeOption; 865 else 866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 867 } 868 869 /// Vectorize the tree that starts with the elements in \p VL. 870 /// Returns the vectorized root. 871 Value *vectorizeTree(); 872 873 /// Vectorize the tree but with the list of externally used values \p 874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 875 /// generated extractvalue instructions. 876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 877 878 /// \returns the cost incurred by unwanted spills and fills, caused by 879 /// holding live values over call sites. 880 InstructionCost getSpillCost() const; 881 882 /// \returns the vectorization cost of the subtree that starts at \p VL. 883 /// A negative number means that this is profitable. 884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 885 886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 888 void buildTree(ArrayRef<Value *> Roots, 889 ArrayRef<Value *> UserIgnoreLst = None); 890 891 /// Builds external uses of the vectorized scalars, i.e. the list of 892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 893 /// ExternallyUsedValues contains additional list of external uses to handle 894 /// vectorization of reductions. 895 void 896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 897 898 /// Clear the internal data structures that are created by 'buildTree'. 899 void deleteTree() { 900 VectorizableTree.clear(); 901 ScalarToTreeEntry.clear(); 902 MustGather.clear(); 903 ExternalUses.clear(); 904 for (auto &Iter : BlocksSchedules) { 905 BlockScheduling *BS = Iter.second.get(); 906 BS->clear(); 907 } 908 MinBWs.clear(); 909 InstrElementSize.clear(); 910 } 911 912 unsigned getTreeSize() const { return VectorizableTree.size(); } 913 914 /// Perform LICM and CSE on the newly generated gather sequences. 915 void optimizeGatherSequence(); 916 917 /// Checks if the specified gather tree entry \p TE can be represented as a 918 /// shuffled vector entry + (possibly) permutation with other gathers. It 919 /// implements the checks only for possibly ordered scalars (Loads, 920 /// ExtractElement, ExtractValue), which can be part of the graph. 921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 922 923 /// Gets reordering data for the given tree entry. If the entry is vectorized 924 /// - just return ReorderIndices, otherwise check if the scalars can be 925 /// reordered and return the most optimal order. 926 /// \param TopToBottom If true, include the order of vectorized stores and 927 /// insertelement nodes, otherwise skip them. 928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 929 930 /// Reorders the current graph to the most profitable order starting from the 931 /// root node to the leaf nodes. The best order is chosen only from the nodes 932 /// of the same size (vectorization factor). Smaller nodes are considered 933 /// parts of subgraph with smaller VF and they are reordered independently. We 934 /// can make it because we still need to extend smaller nodes to the wider VF 935 /// and we can merge reordering shuffles with the widening shuffles. 936 void reorderTopToBottom(); 937 938 /// Reorders the current graph to the most profitable order starting from 939 /// leaves to the root. It allows to rotate small subgraphs and reduce the 940 /// number of reshuffles if the leaf nodes use the same order. In this case we 941 /// can merge the orders and just shuffle user node instead of shuffling its 942 /// operands. Plus, even the leaf nodes have different orders, it allows to 943 /// sink reordering in the graph closer to the root node and merge it later 944 /// during analysis. 945 void reorderBottomToTop(bool IgnoreReorder = false); 946 947 /// \return The vector element size in bits to use when vectorizing the 948 /// expression tree ending at \p V. If V is a store, the size is the width of 949 /// the stored value. Otherwise, the size is the width of the largest loaded 950 /// value reaching V. This method is used by the vectorizer to calculate 951 /// vectorization factors. 952 unsigned getVectorElementSize(Value *V); 953 954 /// Compute the minimum type sizes required to represent the entries in a 955 /// vectorizable tree. 956 void computeMinimumValueSizes(); 957 958 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 959 unsigned getMaxVecRegSize() const { 960 return MaxVecRegSize; 961 } 962 963 // \returns minimum vector register size as set by cl::opt. 964 unsigned getMinVecRegSize() const { 965 return MinVecRegSize; 966 } 967 968 unsigned getMinVF(unsigned Sz) const { 969 return std::max(2U, getMinVecRegSize() / Sz); 970 } 971 972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 975 return MaxVF ? MaxVF : UINT_MAX; 976 } 977 978 /// Check if homogeneous aggregate is isomorphic to some VectorType. 979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 982 /// 983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 984 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 985 986 /// \returns True if the VectorizableTree is both tiny and not fully 987 /// vectorizable. We do not vectorize such trees. 988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 989 990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 991 /// can be load combined in the backend. Load combining may not be allowed in 992 /// the IR optimizer, so we do not want to alter the pattern. For example, 993 /// partially transforming a scalar bswap() pattern into vector code is 994 /// effectively impossible for the backend to undo. 995 /// TODO: If load combining is allowed in the IR optimizer, this analysis 996 /// may not be necessary. 997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 998 999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineCandidate() const; 1007 1008 OptimizationRemarkEmitter *getORE() { return ORE; } 1009 1010 /// This structure holds any data we need about the edges being traversed 1011 /// during buildTree_rec(). We keep track of: 1012 /// (i) the user TreeEntry index, and 1013 /// (ii) the index of the edge. 1014 struct EdgeInfo { 1015 EdgeInfo() = default; 1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1018 /// The user TreeEntry. 1019 TreeEntry *UserTE = nullptr; 1020 /// The operand index of the use. 1021 unsigned EdgeIdx = UINT_MAX; 1022 #ifndef NDEBUG 1023 friend inline raw_ostream &operator<<(raw_ostream &OS, 1024 const BoUpSLP::EdgeInfo &EI) { 1025 EI.dump(OS); 1026 return OS; 1027 } 1028 /// Debug print. 1029 void dump(raw_ostream &OS) const { 1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1031 << " EdgeIdx:" << EdgeIdx << "}"; 1032 } 1033 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1034 #endif 1035 }; 1036 1037 /// A helper class used for scoring candidates for two consecutive lanes. 1038 class LookAheadHeuristics { 1039 const DataLayout &DL; 1040 ScalarEvolution &SE; 1041 const BoUpSLP &R; 1042 int NumLanes; // Total number of lanes (aka vectorization factor). 1043 int MaxLevel; // The maximum recursion depth for accumulating score. 1044 1045 public: 1046 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1047 const BoUpSLP &R, int NumLanes, int MaxLevel) 1048 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1049 1050 // The hard-coded scores listed here are not very important, though it shall 1051 // be higher for better matches to improve the resulting cost. When 1052 // computing the scores of matching one sub-tree with another, we are 1053 // basically counting the number of values that are matching. So even if all 1054 // scores are set to 1, we would still get a decent matching result. 1055 // However, sometimes we have to break ties. For example we may have to 1056 // choose between matching loads vs matching opcodes. This is what these 1057 // scores are helping us with: they provide the order of preference. Also, 1058 // this is important if the scalar is externally used or used in another 1059 // tree entry node in the different lane. 1060 1061 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1062 static const int ScoreConsecutiveLoads = 4; 1063 /// The same load multiple times. This should have a better score than 1064 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1065 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1066 /// a vector load and 1.0 for a broadcast. 1067 static const int ScoreSplatLoads = 3; 1068 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1069 static const int ScoreReversedLoads = 3; 1070 /// ExtractElementInst from same vector and consecutive indexes. 1071 static const int ScoreConsecutiveExtracts = 4; 1072 /// ExtractElementInst from same vector and reversed indices. 1073 static const int ScoreReversedExtracts = 3; 1074 /// Constants. 1075 static const int ScoreConstants = 2; 1076 /// Instructions with the same opcode. 1077 static const int ScoreSameOpcode = 2; 1078 /// Instructions with alt opcodes (e.g, add + sub). 1079 static const int ScoreAltOpcodes = 1; 1080 /// Identical instructions (a.k.a. splat or broadcast). 1081 static const int ScoreSplat = 1; 1082 /// Matching with an undef is preferable to failing. 1083 static const int ScoreUndef = 1; 1084 /// Score for failing to find a decent match. 1085 static const int ScoreFail = 0; 1086 /// Score if all users are vectorized. 1087 static const int ScoreAllUserVectorized = 1; 1088 1089 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1090 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1091 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1092 /// MainAltOps. 1093 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1094 ArrayRef<Value *> MainAltOps) const { 1095 if (V1 == V2) { 1096 if (isa<LoadInst>(V1)) { 1097 // Retruns true if the users of V1 and V2 won't need to be extracted. 1098 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1099 // Bail out if we have too many uses to save compilation time. 1100 static constexpr unsigned Limit = 8; 1101 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1102 return false; 1103 1104 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1105 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1106 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1107 }); 1108 }; 1109 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1110 }; 1111 // A broadcast of a load can be cheaper on some targets. 1112 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1113 ElementCount::getFixed(NumLanes)) && 1114 ((int)V1->getNumUses() == NumLanes || 1115 AllUsersAreInternal(V1, V2))) 1116 return LookAheadHeuristics::ScoreSplatLoads; 1117 } 1118 return LookAheadHeuristics::ScoreSplat; 1119 } 1120 1121 auto *LI1 = dyn_cast<LoadInst>(V1); 1122 auto *LI2 = dyn_cast<LoadInst>(V2); 1123 if (LI1 && LI2) { 1124 if (LI1->getParent() != LI2->getParent()) 1125 return LookAheadHeuristics::ScoreFail; 1126 1127 Optional<int> Dist = getPointersDiff( 1128 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1129 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1130 if (!Dist || *Dist == 0) 1131 return LookAheadHeuristics::ScoreFail; 1132 // The distance is too large - still may be profitable to use masked 1133 // loads/gathers. 1134 if (std::abs(*Dist) > NumLanes / 2) 1135 return LookAheadHeuristics::ScoreAltOpcodes; 1136 // This still will detect consecutive loads, but we might have "holes" 1137 // in some cases. It is ok for non-power-2 vectorization and may produce 1138 // better results. It should not affect current vectorization. 1139 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1140 : LookAheadHeuristics::ScoreReversedLoads; 1141 } 1142 1143 auto *C1 = dyn_cast<Constant>(V1); 1144 auto *C2 = dyn_cast<Constant>(V2); 1145 if (C1 && C2) 1146 return LookAheadHeuristics::ScoreConstants; 1147 1148 // Extracts from consecutive indexes of the same vector better score as 1149 // the extracts could be optimized away. 1150 Value *EV1; 1151 ConstantInt *Ex1Idx; 1152 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1153 // Undefs are always profitable for extractelements. 1154 if (isa<UndefValue>(V2)) 1155 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1156 Value *EV2 = nullptr; 1157 ConstantInt *Ex2Idx = nullptr; 1158 if (match(V2, 1159 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1160 m_Undef())))) { 1161 // Undefs are always profitable for extractelements. 1162 if (!Ex2Idx) 1163 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1164 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1165 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1166 if (EV2 == EV1) { 1167 int Idx1 = Ex1Idx->getZExtValue(); 1168 int Idx2 = Ex2Idx->getZExtValue(); 1169 int Dist = Idx2 - Idx1; 1170 // The distance is too large - still may be profitable to use 1171 // shuffles. 1172 if (std::abs(Dist) == 0) 1173 return LookAheadHeuristics::ScoreSplat; 1174 if (std::abs(Dist) > NumLanes / 2) 1175 return LookAheadHeuristics::ScoreSameOpcode; 1176 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1177 : LookAheadHeuristics::ScoreReversedExtracts; 1178 } 1179 return LookAheadHeuristics::ScoreAltOpcodes; 1180 } 1181 return LookAheadHeuristics::ScoreFail; 1182 } 1183 1184 auto *I1 = dyn_cast<Instruction>(V1); 1185 auto *I2 = dyn_cast<Instruction>(V2); 1186 if (I1 && I2) { 1187 if (I1->getParent() != I2->getParent()) 1188 return LookAheadHeuristics::ScoreFail; 1189 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1190 Ops.push_back(I1); 1191 Ops.push_back(I2); 1192 InstructionsState S = getSameOpcode(Ops); 1193 // Note: Only consider instructions with <= 2 operands to avoid 1194 // complexity explosion. 1195 if (S.getOpcode() && 1196 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1197 !S.isAltShuffle()) && 1198 all_of(Ops, [&S](Value *V) { 1199 return cast<Instruction>(V)->getNumOperands() == 1200 S.MainOp->getNumOperands(); 1201 })) 1202 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1203 : LookAheadHeuristics::ScoreSameOpcode; 1204 } 1205 1206 if (isa<UndefValue>(V2)) 1207 return LookAheadHeuristics::ScoreUndef; 1208 1209 return LookAheadHeuristics::ScoreFail; 1210 } 1211 1212 /// Go through the operands of \p LHS and \p RHS recursively until 1213 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1214 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1215 /// of \p U1 and \p U2), except at the beginning of the recursion where 1216 /// these are set to nullptr. 1217 /// 1218 /// For example: 1219 /// \verbatim 1220 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1221 /// \ / \ / \ / \ / 1222 /// + + + + 1223 /// G1 G2 G3 G4 1224 /// \endverbatim 1225 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1226 /// each level recursively, accumulating the score. It starts from matching 1227 /// the additions at level 0, then moves on to the loads (level 1). The 1228 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1229 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1230 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1231 /// Please note that the order of the operands does not matter, as we 1232 /// evaluate the score of all profitable combinations of operands. In 1233 /// other words the score of G1 and G4 is the same as G1 and G2. This 1234 /// heuristic is based on ideas described in: 1235 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1236 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1237 /// Luís F. W. Góes 1238 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1239 Instruction *U2, int CurrLevel, 1240 ArrayRef<Value *> MainAltOps) const { 1241 1242 // Get the shallow score of V1 and V2. 1243 int ShallowScoreAtThisLevel = 1244 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1245 1246 // If reached MaxLevel, 1247 // or if V1 and V2 are not instructions, 1248 // or if they are SPLAT, 1249 // or if they are not consecutive, 1250 // or if profitable to vectorize loads or extractelements, early return 1251 // the current cost. 1252 auto *I1 = dyn_cast<Instruction>(LHS); 1253 auto *I2 = dyn_cast<Instruction>(RHS); 1254 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1255 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1256 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1257 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1258 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1259 ShallowScoreAtThisLevel)) 1260 return ShallowScoreAtThisLevel; 1261 assert(I1 && I2 && "Should have early exited."); 1262 1263 // Contains the I2 operand indexes that got matched with I1 operands. 1264 SmallSet<unsigned, 4> Op2Used; 1265 1266 // Recursion towards the operands of I1 and I2. We are trying all possible 1267 // operand pairs, and keeping track of the best score. 1268 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1269 OpIdx1 != NumOperands1; ++OpIdx1) { 1270 // Try to pair op1I with the best operand of I2. 1271 int MaxTmpScore = 0; 1272 unsigned MaxOpIdx2 = 0; 1273 bool FoundBest = false; 1274 // If I2 is commutative try all combinations. 1275 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1276 unsigned ToIdx = isCommutative(I2) 1277 ? I2->getNumOperands() 1278 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1279 assert(FromIdx <= ToIdx && "Bad index"); 1280 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1281 // Skip operands already paired with OpIdx1. 1282 if (Op2Used.count(OpIdx2)) 1283 continue; 1284 // Recursively calculate the cost at each level 1285 int TmpScore = 1286 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1287 I1, I2, CurrLevel + 1, None); 1288 // Look for the best score. 1289 if (TmpScore > LookAheadHeuristics::ScoreFail && 1290 TmpScore > MaxTmpScore) { 1291 MaxTmpScore = TmpScore; 1292 MaxOpIdx2 = OpIdx2; 1293 FoundBest = true; 1294 } 1295 } 1296 if (FoundBest) { 1297 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1298 Op2Used.insert(MaxOpIdx2); 1299 ShallowScoreAtThisLevel += MaxTmpScore; 1300 } 1301 } 1302 return ShallowScoreAtThisLevel; 1303 } 1304 }; 1305 /// A helper data structure to hold the operands of a vector of instructions. 1306 /// This supports a fixed vector length for all operand vectors. 1307 class VLOperands { 1308 /// For each operand we need (i) the value, and (ii) the opcode that it 1309 /// would be attached to if the expression was in a left-linearized form. 1310 /// This is required to avoid illegal operand reordering. 1311 /// For example: 1312 /// \verbatim 1313 /// 0 Op1 1314 /// |/ 1315 /// Op1 Op2 Linearized + Op2 1316 /// \ / ----------> |/ 1317 /// - - 1318 /// 1319 /// Op1 - Op2 (0 + Op1) - Op2 1320 /// \endverbatim 1321 /// 1322 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1323 /// 1324 /// Another way to think of this is to track all the operations across the 1325 /// path from the operand all the way to the root of the tree and to 1326 /// calculate the operation that corresponds to this path. For example, the 1327 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1328 /// corresponding operation is a '-' (which matches the one in the 1329 /// linearized tree, as shown above). 1330 /// 1331 /// For lack of a better term, we refer to this operation as Accumulated 1332 /// Path Operation (APO). 1333 struct OperandData { 1334 OperandData() = default; 1335 OperandData(Value *V, bool APO, bool IsUsed) 1336 : V(V), APO(APO), IsUsed(IsUsed) {} 1337 /// The operand value. 1338 Value *V = nullptr; 1339 /// TreeEntries only allow a single opcode, or an alternate sequence of 1340 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1341 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1342 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1343 /// (e.g., Add/Mul) 1344 bool APO = false; 1345 /// Helper data for the reordering function. 1346 bool IsUsed = false; 1347 }; 1348 1349 /// During operand reordering, we are trying to select the operand at lane 1350 /// that matches best with the operand at the neighboring lane. Our 1351 /// selection is based on the type of value we are looking for. For example, 1352 /// if the neighboring lane has a load, we need to look for a load that is 1353 /// accessing a consecutive address. These strategies are summarized in the 1354 /// 'ReorderingMode' enumerator. 1355 enum class ReorderingMode { 1356 Load, ///< Matching loads to consecutive memory addresses 1357 Opcode, ///< Matching instructions based on opcode (same or alternate) 1358 Constant, ///< Matching constants 1359 Splat, ///< Matching the same instruction multiple times (broadcast) 1360 Failed, ///< We failed to create a vectorizable group 1361 }; 1362 1363 using OperandDataVec = SmallVector<OperandData, 2>; 1364 1365 /// A vector of operand vectors. 1366 SmallVector<OperandDataVec, 4> OpsVec; 1367 1368 const DataLayout &DL; 1369 ScalarEvolution &SE; 1370 const BoUpSLP &R; 1371 1372 /// \returns the operand data at \p OpIdx and \p Lane. 1373 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1374 return OpsVec[OpIdx][Lane]; 1375 } 1376 1377 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1378 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1379 return OpsVec[OpIdx][Lane]; 1380 } 1381 1382 /// Clears the used flag for all entries. 1383 void clearUsed() { 1384 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1385 OpIdx != NumOperands; ++OpIdx) 1386 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1387 ++Lane) 1388 OpsVec[OpIdx][Lane].IsUsed = false; 1389 } 1390 1391 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1392 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1393 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1394 } 1395 1396 /// \param Lane lane of the operands under analysis. 1397 /// \param OpIdx operand index in \p Lane lane we're looking the best 1398 /// candidate for. 1399 /// \param Idx operand index of the current candidate value. 1400 /// \returns The additional score due to possible broadcasting of the 1401 /// elements in the lane. It is more profitable to have power-of-2 unique 1402 /// elements in the lane, it will be vectorized with higher probability 1403 /// after removing duplicates. Currently the SLP vectorizer supports only 1404 /// vectorization of the power-of-2 number of unique scalars. 1405 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1406 Value *IdxLaneV = getData(Idx, Lane).V; 1407 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1408 return 0; 1409 SmallPtrSet<Value *, 4> Uniques; 1410 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1411 if (Ln == Lane) 1412 continue; 1413 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1414 if (!isa<Instruction>(OpIdxLnV)) 1415 return 0; 1416 Uniques.insert(OpIdxLnV); 1417 } 1418 int UniquesCount = Uniques.size(); 1419 int UniquesCntWithIdxLaneV = 1420 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1421 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1422 int UniquesCntWithOpIdxLaneV = 1423 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1424 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1425 return 0; 1426 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1427 UniquesCntWithOpIdxLaneV) - 1428 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1429 } 1430 1431 /// \param Lane lane of the operands under analysis. 1432 /// \param OpIdx operand index in \p Lane lane we're looking the best 1433 /// candidate for. 1434 /// \param Idx operand index of the current candidate value. 1435 /// \returns The additional score for the scalar which users are all 1436 /// vectorized. 1437 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1438 Value *IdxLaneV = getData(Idx, Lane).V; 1439 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1440 // Do not care about number of uses for vector-like instructions 1441 // (extractelement/extractvalue with constant indices), they are extracts 1442 // themselves and already externally used. Vectorization of such 1443 // instructions does not add extra extractelement instruction, just may 1444 // remove it. 1445 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1446 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1447 return LookAheadHeuristics::ScoreAllUserVectorized; 1448 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1449 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1450 return 0; 1451 return R.areAllUsersVectorized(IdxLaneI, None) 1452 ? LookAheadHeuristics::ScoreAllUserVectorized 1453 : 0; 1454 } 1455 1456 /// Score scaling factor for fully compatible instructions but with 1457 /// different number of external uses. Allows better selection of the 1458 /// instructions with less external uses. 1459 static const int ScoreScaleFactor = 10; 1460 1461 /// \Returns the look-ahead score, which tells us how much the sub-trees 1462 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1463 /// score. This helps break ties in an informed way when we cannot decide on 1464 /// the order of the operands by just considering the immediate 1465 /// predecessors. 1466 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1467 int Lane, unsigned OpIdx, unsigned Idx, 1468 bool &IsUsed) { 1469 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1470 LookAheadMaxDepth); 1471 // Keep track of the instruction stack as we recurse into the operands 1472 // during the look-ahead score exploration. 1473 int Score = 1474 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1475 /*CurrLevel=*/1, MainAltOps); 1476 if (Score) { 1477 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1478 if (Score <= -SplatScore) { 1479 // Set the minimum score for splat-like sequence to avoid setting 1480 // failed state. 1481 Score = 1; 1482 } else { 1483 Score += SplatScore; 1484 // Scale score to see the difference between different operands 1485 // and similar operands but all vectorized/not all vectorized 1486 // uses. It does not affect actual selection of the best 1487 // compatible operand in general, just allows to select the 1488 // operand with all vectorized uses. 1489 Score *= ScoreScaleFactor; 1490 Score += getExternalUseScore(Lane, OpIdx, Idx); 1491 IsUsed = true; 1492 } 1493 } 1494 return Score; 1495 } 1496 1497 /// Best defined scores per lanes between the passes. Used to choose the 1498 /// best operand (with the highest score) between the passes. 1499 /// The key - {Operand Index, Lane}. 1500 /// The value - the best score between the passes for the lane and the 1501 /// operand. 1502 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1503 BestScoresPerLanes; 1504 1505 // Search all operands in Ops[*][Lane] for the one that matches best 1506 // Ops[OpIdx][LastLane] and return its opreand index. 1507 // If no good match can be found, return None. 1508 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1509 ArrayRef<ReorderingMode> ReorderingModes, 1510 ArrayRef<Value *> MainAltOps) { 1511 unsigned NumOperands = getNumOperands(); 1512 1513 // The operand of the previous lane at OpIdx. 1514 Value *OpLastLane = getData(OpIdx, LastLane).V; 1515 1516 // Our strategy mode for OpIdx. 1517 ReorderingMode RMode = ReorderingModes[OpIdx]; 1518 if (RMode == ReorderingMode::Failed) 1519 return None; 1520 1521 // The linearized opcode of the operand at OpIdx, Lane. 1522 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1523 1524 // The best operand index and its score. 1525 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1526 // are using the score to differentiate between the two. 1527 struct BestOpData { 1528 Optional<unsigned> Idx = None; 1529 unsigned Score = 0; 1530 } BestOp; 1531 BestOp.Score = 1532 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1533 .first->second; 1534 1535 // Track if the operand must be marked as used. If the operand is set to 1536 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1537 // want to reestimate the operands again on the following iterations). 1538 bool IsUsed = 1539 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1540 // Iterate through all unused operands and look for the best. 1541 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1542 // Get the operand at Idx and Lane. 1543 OperandData &OpData = getData(Idx, Lane); 1544 Value *Op = OpData.V; 1545 bool OpAPO = OpData.APO; 1546 1547 // Skip already selected operands. 1548 if (OpData.IsUsed) 1549 continue; 1550 1551 // Skip if we are trying to move the operand to a position with a 1552 // different opcode in the linearized tree form. This would break the 1553 // semantics. 1554 if (OpAPO != OpIdxAPO) 1555 continue; 1556 1557 // Look for an operand that matches the current mode. 1558 switch (RMode) { 1559 case ReorderingMode::Load: 1560 case ReorderingMode::Constant: 1561 case ReorderingMode::Opcode: { 1562 bool LeftToRight = Lane > LastLane; 1563 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1564 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1565 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1566 OpIdx, Idx, IsUsed); 1567 if (Score > static_cast<int>(BestOp.Score)) { 1568 BestOp.Idx = Idx; 1569 BestOp.Score = Score; 1570 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1571 } 1572 break; 1573 } 1574 case ReorderingMode::Splat: 1575 if (Op == OpLastLane) 1576 BestOp.Idx = Idx; 1577 break; 1578 case ReorderingMode::Failed: 1579 llvm_unreachable("Not expected Failed reordering mode."); 1580 } 1581 } 1582 1583 if (BestOp.Idx) { 1584 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1585 return BestOp.Idx; 1586 } 1587 // If we could not find a good match return None. 1588 return None; 1589 } 1590 1591 /// Helper for reorderOperandVecs. 1592 /// \returns the lane that we should start reordering from. This is the one 1593 /// which has the least number of operands that can freely move about or 1594 /// less profitable because it already has the most optimal set of operands. 1595 unsigned getBestLaneToStartReordering() const { 1596 unsigned Min = UINT_MAX; 1597 unsigned SameOpNumber = 0; 1598 // std::pair<unsigned, unsigned> is used to implement a simple voting 1599 // algorithm and choose the lane with the least number of operands that 1600 // can freely move about or less profitable because it already has the 1601 // most optimal set of operands. The first unsigned is a counter for 1602 // voting, the second unsigned is the counter of lanes with instructions 1603 // with same/alternate opcodes and same parent basic block. 1604 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1605 // Try to be closer to the original results, if we have multiple lanes 1606 // with same cost. If 2 lanes have the same cost, use the one with the 1607 // lowest index. 1608 for (int I = getNumLanes(); I > 0; --I) { 1609 unsigned Lane = I - 1; 1610 OperandsOrderData NumFreeOpsHash = 1611 getMaxNumOperandsThatCanBeReordered(Lane); 1612 // Compare the number of operands that can move and choose the one with 1613 // the least number. 1614 if (NumFreeOpsHash.NumOfAPOs < Min) { 1615 Min = NumFreeOpsHash.NumOfAPOs; 1616 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1617 HashMap.clear(); 1618 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1619 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1620 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1621 // Select the most optimal lane in terms of number of operands that 1622 // should be moved around. 1623 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1624 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1625 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1626 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1627 auto It = HashMap.find(NumFreeOpsHash.Hash); 1628 if (It == HashMap.end()) 1629 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1630 else 1631 ++It->second.first; 1632 } 1633 } 1634 // Select the lane with the minimum counter. 1635 unsigned BestLane = 0; 1636 unsigned CntMin = UINT_MAX; 1637 for (const auto &Data : reverse(HashMap)) { 1638 if (Data.second.first < CntMin) { 1639 CntMin = Data.second.first; 1640 BestLane = Data.second.second; 1641 } 1642 } 1643 return BestLane; 1644 } 1645 1646 /// Data structure that helps to reorder operands. 1647 struct OperandsOrderData { 1648 /// The best number of operands with the same APOs, which can be 1649 /// reordered. 1650 unsigned NumOfAPOs = UINT_MAX; 1651 /// Number of operands with the same/alternate instruction opcode and 1652 /// parent. 1653 unsigned NumOpsWithSameOpcodeParent = 0; 1654 /// Hash for the actual operands ordering. 1655 /// Used to count operands, actually their position id and opcode 1656 /// value. It is used in the voting mechanism to find the lane with the 1657 /// least number of operands that can freely move about or less profitable 1658 /// because it already has the most optimal set of operands. Can be 1659 /// replaced with SmallVector<unsigned> instead but hash code is faster 1660 /// and requires less memory. 1661 unsigned Hash = 0; 1662 }; 1663 /// \returns the maximum number of operands that are allowed to be reordered 1664 /// for \p Lane and the number of compatible instructions(with the same 1665 /// parent/opcode). This is used as a heuristic for selecting the first lane 1666 /// to start operand reordering. 1667 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1668 unsigned CntTrue = 0; 1669 unsigned NumOperands = getNumOperands(); 1670 // Operands with the same APO can be reordered. We therefore need to count 1671 // how many of them we have for each APO, like this: Cnt[APO] = x. 1672 // Since we only have two APOs, namely true and false, we can avoid using 1673 // a map. Instead we can simply count the number of operands that 1674 // correspond to one of them (in this case the 'true' APO), and calculate 1675 // the other by subtracting it from the total number of operands. 1676 // Operands with the same instruction opcode and parent are more 1677 // profitable since we don't need to move them in many cases, with a high 1678 // probability such lane already can be vectorized effectively. 1679 bool AllUndefs = true; 1680 unsigned NumOpsWithSameOpcodeParent = 0; 1681 Instruction *OpcodeI = nullptr; 1682 BasicBlock *Parent = nullptr; 1683 unsigned Hash = 0; 1684 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1685 const OperandData &OpData = getData(OpIdx, Lane); 1686 if (OpData.APO) 1687 ++CntTrue; 1688 // Use Boyer-Moore majority voting for finding the majority opcode and 1689 // the number of times it occurs. 1690 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1691 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1692 I->getParent() != Parent) { 1693 if (NumOpsWithSameOpcodeParent == 0) { 1694 NumOpsWithSameOpcodeParent = 1; 1695 OpcodeI = I; 1696 Parent = I->getParent(); 1697 } else { 1698 --NumOpsWithSameOpcodeParent; 1699 } 1700 } else { 1701 ++NumOpsWithSameOpcodeParent; 1702 } 1703 } 1704 Hash = hash_combine( 1705 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1706 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1707 } 1708 if (AllUndefs) 1709 return {}; 1710 OperandsOrderData Data; 1711 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1712 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1713 Data.Hash = Hash; 1714 return Data; 1715 } 1716 1717 /// Go through the instructions in VL and append their operands. 1718 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1719 assert(!VL.empty() && "Bad VL"); 1720 assert((empty() || VL.size() == getNumLanes()) && 1721 "Expected same number of lanes"); 1722 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1723 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1724 OpsVec.resize(NumOperands); 1725 unsigned NumLanes = VL.size(); 1726 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1727 OpsVec[OpIdx].resize(NumLanes); 1728 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1729 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1730 // Our tree has just 3 nodes: the root and two operands. 1731 // It is therefore trivial to get the APO. We only need to check the 1732 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1733 // RHS operand. The LHS operand of both add and sub is never attached 1734 // to an inversese operation in the linearized form, therefore its APO 1735 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1736 1737 // Since operand reordering is performed on groups of commutative 1738 // operations or alternating sequences (e.g., +, -), we can safely 1739 // tell the inverse operations by checking commutativity. 1740 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1741 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1742 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1743 APO, false}; 1744 } 1745 } 1746 } 1747 1748 /// \returns the number of operands. 1749 unsigned getNumOperands() const { return OpsVec.size(); } 1750 1751 /// \returns the number of lanes. 1752 unsigned getNumLanes() const { return OpsVec[0].size(); } 1753 1754 /// \returns the operand value at \p OpIdx and \p Lane. 1755 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1756 return getData(OpIdx, Lane).V; 1757 } 1758 1759 /// \returns true if the data structure is empty. 1760 bool empty() const { return OpsVec.empty(); } 1761 1762 /// Clears the data. 1763 void clear() { OpsVec.clear(); } 1764 1765 /// \Returns true if there are enough operands identical to \p Op to fill 1766 /// the whole vector. 1767 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1768 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1769 bool OpAPO = getData(OpIdx, Lane).APO; 1770 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1771 if (Ln == Lane) 1772 continue; 1773 // This is set to true if we found a candidate for broadcast at Lane. 1774 bool FoundCandidate = false; 1775 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1776 OperandData &Data = getData(OpI, Ln); 1777 if (Data.APO != OpAPO || Data.IsUsed) 1778 continue; 1779 if (Data.V == Op) { 1780 FoundCandidate = true; 1781 Data.IsUsed = true; 1782 break; 1783 } 1784 } 1785 if (!FoundCandidate) 1786 return false; 1787 } 1788 return true; 1789 } 1790 1791 public: 1792 /// Initialize with all the operands of the instruction vector \p RootVL. 1793 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1794 ScalarEvolution &SE, const BoUpSLP &R) 1795 : DL(DL), SE(SE), R(R) { 1796 // Append all the operands of RootVL. 1797 appendOperandsOfVL(RootVL); 1798 } 1799 1800 /// \Returns a value vector with the operands across all lanes for the 1801 /// opearnd at \p OpIdx. 1802 ValueList getVL(unsigned OpIdx) const { 1803 ValueList OpVL(OpsVec[OpIdx].size()); 1804 assert(OpsVec[OpIdx].size() == getNumLanes() && 1805 "Expected same num of lanes across all operands"); 1806 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1807 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1808 return OpVL; 1809 } 1810 1811 // Performs operand reordering for 2 or more operands. 1812 // The original operands are in OrigOps[OpIdx][Lane]. 1813 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1814 void reorder() { 1815 unsigned NumOperands = getNumOperands(); 1816 unsigned NumLanes = getNumLanes(); 1817 // Each operand has its own mode. We are using this mode to help us select 1818 // the instructions for each lane, so that they match best with the ones 1819 // we have selected so far. 1820 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1821 1822 // This is a greedy single-pass algorithm. We are going over each lane 1823 // once and deciding on the best order right away with no back-tracking. 1824 // However, in order to increase its effectiveness, we start with the lane 1825 // that has operands that can move the least. For example, given the 1826 // following lanes: 1827 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1828 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1829 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1830 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1831 // we will start at Lane 1, since the operands of the subtraction cannot 1832 // be reordered. Then we will visit the rest of the lanes in a circular 1833 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1834 1835 // Find the first lane that we will start our search from. 1836 unsigned FirstLane = getBestLaneToStartReordering(); 1837 1838 // Initialize the modes. 1839 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1840 Value *OpLane0 = getValue(OpIdx, FirstLane); 1841 // Keep track if we have instructions with all the same opcode on one 1842 // side. 1843 if (isa<LoadInst>(OpLane0)) 1844 ReorderingModes[OpIdx] = ReorderingMode::Load; 1845 else if (isa<Instruction>(OpLane0)) { 1846 // Check if OpLane0 should be broadcast. 1847 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1848 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1849 else 1850 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1851 } 1852 else if (isa<Constant>(OpLane0)) 1853 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1854 else if (isa<Argument>(OpLane0)) 1855 // Our best hope is a Splat. It may save some cost in some cases. 1856 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1857 else 1858 // NOTE: This should be unreachable. 1859 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1860 } 1861 1862 // Check that we don't have same operands. No need to reorder if operands 1863 // are just perfect diamond or shuffled diamond match. Do not do it only 1864 // for possible broadcasts or non-power of 2 number of scalars (just for 1865 // now). 1866 auto &&SkipReordering = [this]() { 1867 SmallPtrSet<Value *, 4> UniqueValues; 1868 ArrayRef<OperandData> Op0 = OpsVec.front(); 1869 for (const OperandData &Data : Op0) 1870 UniqueValues.insert(Data.V); 1871 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1872 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1873 return !UniqueValues.contains(Data.V); 1874 })) 1875 return false; 1876 } 1877 // TODO: Check if we can remove a check for non-power-2 number of 1878 // scalars after full support of non-power-2 vectorization. 1879 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1880 }; 1881 1882 // If the initial strategy fails for any of the operand indexes, then we 1883 // perform reordering again in a second pass. This helps avoid assigning 1884 // high priority to the failed strategy, and should improve reordering for 1885 // the non-failed operand indexes. 1886 for (int Pass = 0; Pass != 2; ++Pass) { 1887 // Check if no need to reorder operands since they're are perfect or 1888 // shuffled diamond match. 1889 // Need to to do it to avoid extra external use cost counting for 1890 // shuffled matches, which may cause regressions. 1891 if (SkipReordering()) 1892 break; 1893 // Skip the second pass if the first pass did not fail. 1894 bool StrategyFailed = false; 1895 // Mark all operand data as free to use. 1896 clearUsed(); 1897 // We keep the original operand order for the FirstLane, so reorder the 1898 // rest of the lanes. We are visiting the nodes in a circular fashion, 1899 // using FirstLane as the center point and increasing the radius 1900 // distance. 1901 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1902 for (unsigned I = 0; I < NumOperands; ++I) 1903 MainAltOps[I].push_back(getData(I, FirstLane).V); 1904 1905 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1906 // Visit the lane on the right and then the lane on the left. 1907 for (int Direction : {+1, -1}) { 1908 int Lane = FirstLane + Direction * Distance; 1909 if (Lane < 0 || Lane >= (int)NumLanes) 1910 continue; 1911 int LastLane = Lane - Direction; 1912 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1913 "Out of bounds"); 1914 // Look for a good match for each operand. 1915 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1916 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1917 Optional<unsigned> BestIdx = getBestOperand( 1918 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1919 // By not selecting a value, we allow the operands that follow to 1920 // select a better matching value. We will get a non-null value in 1921 // the next run of getBestOperand(). 1922 if (BestIdx) { 1923 // Swap the current operand with the one returned by 1924 // getBestOperand(). 1925 swap(OpIdx, BestIdx.getValue(), Lane); 1926 } else { 1927 // We failed to find a best operand, set mode to 'Failed'. 1928 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1929 // Enable the second pass. 1930 StrategyFailed = true; 1931 } 1932 // Try to get the alternate opcode and follow it during analysis. 1933 if (MainAltOps[OpIdx].size() != 2) { 1934 OperandData &AltOp = getData(OpIdx, Lane); 1935 InstructionsState OpS = 1936 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1937 if (OpS.getOpcode() && OpS.isAltShuffle()) 1938 MainAltOps[OpIdx].push_back(AltOp.V); 1939 } 1940 } 1941 } 1942 } 1943 // Skip second pass if the strategy did not fail. 1944 if (!StrategyFailed) 1945 break; 1946 } 1947 } 1948 1949 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1950 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1951 switch (RMode) { 1952 case ReorderingMode::Load: 1953 return "Load"; 1954 case ReorderingMode::Opcode: 1955 return "Opcode"; 1956 case ReorderingMode::Constant: 1957 return "Constant"; 1958 case ReorderingMode::Splat: 1959 return "Splat"; 1960 case ReorderingMode::Failed: 1961 return "Failed"; 1962 } 1963 llvm_unreachable("Unimplemented Reordering Type"); 1964 } 1965 1966 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1967 raw_ostream &OS) { 1968 return OS << getModeStr(RMode); 1969 } 1970 1971 /// Debug print. 1972 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1973 printMode(RMode, dbgs()); 1974 } 1975 1976 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1977 return printMode(RMode, OS); 1978 } 1979 1980 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1981 const unsigned Indent = 2; 1982 unsigned Cnt = 0; 1983 for (const OperandDataVec &OpDataVec : OpsVec) { 1984 OS << "Operand " << Cnt++ << "\n"; 1985 for (const OperandData &OpData : OpDataVec) { 1986 OS.indent(Indent) << "{"; 1987 if (Value *V = OpData.V) 1988 OS << *V; 1989 else 1990 OS << "null"; 1991 OS << ", APO:" << OpData.APO << "}\n"; 1992 } 1993 OS << "\n"; 1994 } 1995 return OS; 1996 } 1997 1998 /// Debug print. 1999 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2000 #endif 2001 }; 2002 2003 /// Checks if the instruction is marked for deletion. 2004 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2005 2006 /// Removes an instruction from its block and eventually deletes it. 2007 /// It's like Instruction::eraseFromParent() except that the actual deletion 2008 /// is delayed until BoUpSLP is destructed. 2009 void eraseInstruction(Instruction *I) { 2010 DeletedInstructions.insert(I); 2011 } 2012 2013 ~BoUpSLP(); 2014 2015 private: 2016 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2017 /// reordering (i.e. the operands can be reordered because they have only one 2018 /// user and reordarable). 2019 /// \param ReorderableGathers List of all gather nodes that require reordering 2020 /// (e.g., gather of extractlements or partially vectorizable loads). 2021 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2022 /// reordering, subset of \p NonVectorized. 2023 bool 2024 canReorderOperands(TreeEntry *UserTE, 2025 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2026 ArrayRef<TreeEntry *> ReorderableGathers, 2027 SmallVectorImpl<TreeEntry *> &GatherOps); 2028 2029 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2030 /// if any. If it is not vectorized (gather node), returns nullptr. 2031 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2032 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2033 TreeEntry *TE = nullptr; 2034 const auto *It = find_if(VL, [this, &TE](Value *V) { 2035 TE = getTreeEntry(V); 2036 return TE; 2037 }); 2038 if (It != VL.end() && TE->isSame(VL)) 2039 return TE; 2040 return nullptr; 2041 } 2042 2043 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2044 /// if any. If it is not vectorized (gather node), returns nullptr. 2045 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2046 unsigned OpIdx) const { 2047 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2048 const_cast<TreeEntry *>(UserTE), OpIdx); 2049 } 2050 2051 /// Checks if all users of \p I are the part of the vectorization tree. 2052 bool areAllUsersVectorized(Instruction *I, 2053 ArrayRef<Value *> VectorizedVals) const; 2054 2055 /// \returns the cost of the vectorizable entry. 2056 InstructionCost getEntryCost(const TreeEntry *E, 2057 ArrayRef<Value *> VectorizedVals); 2058 2059 /// This is the recursive part of buildTree. 2060 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2061 const EdgeInfo &EI); 2062 2063 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2064 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2065 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2066 /// returns false, setting \p CurrentOrder to either an empty vector or a 2067 /// non-identity permutation that allows to reuse extract instructions. 2068 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2069 SmallVectorImpl<unsigned> &CurrentOrder) const; 2070 2071 /// Vectorize a single entry in the tree. 2072 Value *vectorizeTree(TreeEntry *E); 2073 2074 /// Vectorize a single entry in the tree, starting in \p VL. 2075 Value *vectorizeTree(ArrayRef<Value *> VL); 2076 2077 /// Create a new vector from a list of scalar values. Produces a sequence 2078 /// which exploits values reused across lanes, and arranges the inserts 2079 /// for ease of later optimization. 2080 Value *createBuildVector(ArrayRef<Value *> VL); 2081 2082 /// \returns the scalarization cost for this type. Scalarization in this 2083 /// context means the creation of vectors from a group of scalars. If \p 2084 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2085 /// vector elements. 2086 InstructionCost getGatherCost(FixedVectorType *Ty, 2087 const APInt &ShuffledIndices, 2088 bool NeedToShuffle) const; 2089 2090 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2091 /// tree entries. 2092 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2093 /// previous tree entries. \p Mask is filled with the shuffle mask. 2094 Optional<TargetTransformInfo::ShuffleKind> 2095 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2096 SmallVectorImpl<const TreeEntry *> &Entries); 2097 2098 /// \returns the scalarization cost for this list of values. Assuming that 2099 /// this subtree gets vectorized, we may need to extract the values from the 2100 /// roots. This method calculates the cost of extracting the values. 2101 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2102 2103 /// Set the Builder insert point to one after the last instruction in 2104 /// the bundle 2105 void setInsertPointAfterBundle(const TreeEntry *E); 2106 2107 /// \returns a vector from a collection of scalars in \p VL. 2108 Value *gather(ArrayRef<Value *> VL); 2109 2110 /// \returns whether the VectorizableTree is fully vectorizable and will 2111 /// be beneficial even the tree height is tiny. 2112 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2113 2114 /// Reorder commutative or alt operands to get better probability of 2115 /// generating vectorized code. 2116 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2117 SmallVectorImpl<Value *> &Left, 2118 SmallVectorImpl<Value *> &Right, 2119 const DataLayout &DL, 2120 ScalarEvolution &SE, 2121 const BoUpSLP &R); 2122 struct TreeEntry { 2123 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2124 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2125 2126 /// \returns true if the scalars in VL are equal to this entry. 2127 bool isSame(ArrayRef<Value *> VL) const { 2128 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2129 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2130 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2131 return VL.size() == Mask.size() && 2132 std::equal(VL.begin(), VL.end(), Mask.begin(), 2133 [Scalars](Value *V, int Idx) { 2134 return (isa<UndefValue>(V) && 2135 Idx == UndefMaskElem) || 2136 (Idx != UndefMaskElem && V == Scalars[Idx]); 2137 }); 2138 }; 2139 if (!ReorderIndices.empty()) { 2140 // TODO: implement matching if the nodes are just reordered, still can 2141 // treat the vector as the same if the list of scalars matches VL 2142 // directly, without reordering. 2143 SmallVector<int> Mask; 2144 inversePermutation(ReorderIndices, Mask); 2145 if (VL.size() == Scalars.size()) 2146 return IsSame(Scalars, Mask); 2147 if (VL.size() == ReuseShuffleIndices.size()) { 2148 ::addMask(Mask, ReuseShuffleIndices); 2149 return IsSame(Scalars, Mask); 2150 } 2151 return false; 2152 } 2153 return IsSame(Scalars, ReuseShuffleIndices); 2154 } 2155 2156 /// \returns true if current entry has same operands as \p TE. 2157 bool hasEqualOperands(const TreeEntry &TE) const { 2158 if (TE.getNumOperands() != getNumOperands()) 2159 return false; 2160 SmallBitVector Used(getNumOperands()); 2161 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2162 unsigned PrevCount = Used.count(); 2163 for (unsigned K = 0; K < E; ++K) { 2164 if (Used.test(K)) 2165 continue; 2166 if (getOperand(K) == TE.getOperand(I)) { 2167 Used.set(K); 2168 break; 2169 } 2170 } 2171 // Check if we actually found the matching operand. 2172 if (PrevCount == Used.count()) 2173 return false; 2174 } 2175 return true; 2176 } 2177 2178 /// \return Final vectorization factor for the node. Defined by the total 2179 /// number of vectorized scalars, including those, used several times in the 2180 /// entry and counted in the \a ReuseShuffleIndices, if any. 2181 unsigned getVectorFactor() const { 2182 if (!ReuseShuffleIndices.empty()) 2183 return ReuseShuffleIndices.size(); 2184 return Scalars.size(); 2185 }; 2186 2187 /// A vector of scalars. 2188 ValueList Scalars; 2189 2190 /// The Scalars are vectorized into this value. It is initialized to Null. 2191 Value *VectorizedValue = nullptr; 2192 2193 /// Do we need to gather this sequence or vectorize it 2194 /// (either with vector instruction or with scatter/gather 2195 /// intrinsics for store/load)? 2196 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2197 EntryState State; 2198 2199 /// Does this sequence require some shuffling? 2200 SmallVector<int, 4> ReuseShuffleIndices; 2201 2202 /// Does this entry require reordering? 2203 SmallVector<unsigned, 4> ReorderIndices; 2204 2205 /// Points back to the VectorizableTree. 2206 /// 2207 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2208 /// to be a pointer and needs to be able to initialize the child iterator. 2209 /// Thus we need a reference back to the container to translate the indices 2210 /// to entries. 2211 VecTreeTy &Container; 2212 2213 /// The TreeEntry index containing the user of this entry. We can actually 2214 /// have multiple users so the data structure is not truly a tree. 2215 SmallVector<EdgeInfo, 1> UserTreeIndices; 2216 2217 /// The index of this treeEntry in VectorizableTree. 2218 int Idx = -1; 2219 2220 private: 2221 /// The operands of each instruction in each lane Operands[op_index][lane]. 2222 /// Note: This helps avoid the replication of the code that performs the 2223 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2224 SmallVector<ValueList, 2> Operands; 2225 2226 /// The main/alternate instruction. 2227 Instruction *MainOp = nullptr; 2228 Instruction *AltOp = nullptr; 2229 2230 public: 2231 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2232 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2233 if (Operands.size() < OpIdx + 1) 2234 Operands.resize(OpIdx + 1); 2235 assert(Operands[OpIdx].empty() && "Already resized?"); 2236 assert(OpVL.size() <= Scalars.size() && 2237 "Number of operands is greater than the number of scalars."); 2238 Operands[OpIdx].resize(OpVL.size()); 2239 copy(OpVL, Operands[OpIdx].begin()); 2240 } 2241 2242 /// Set the operands of this bundle in their original order. 2243 void setOperandsInOrder() { 2244 assert(Operands.empty() && "Already initialized?"); 2245 auto *I0 = cast<Instruction>(Scalars[0]); 2246 Operands.resize(I0->getNumOperands()); 2247 unsigned NumLanes = Scalars.size(); 2248 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2249 OpIdx != NumOperands; ++OpIdx) { 2250 Operands[OpIdx].resize(NumLanes); 2251 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2252 auto *I = cast<Instruction>(Scalars[Lane]); 2253 assert(I->getNumOperands() == NumOperands && 2254 "Expected same number of operands"); 2255 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2256 } 2257 } 2258 } 2259 2260 /// Reorders operands of the node to the given mask \p Mask. 2261 void reorderOperands(ArrayRef<int> Mask) { 2262 for (ValueList &Operand : Operands) 2263 reorderScalars(Operand, Mask); 2264 } 2265 2266 /// \returns the \p OpIdx operand of this TreeEntry. 2267 ValueList &getOperand(unsigned OpIdx) { 2268 assert(OpIdx < Operands.size() && "Off bounds"); 2269 return Operands[OpIdx]; 2270 } 2271 2272 /// \returns the \p OpIdx operand of this TreeEntry. 2273 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2274 assert(OpIdx < Operands.size() && "Off bounds"); 2275 return Operands[OpIdx]; 2276 } 2277 2278 /// \returns the number of operands. 2279 unsigned getNumOperands() const { return Operands.size(); } 2280 2281 /// \return the single \p OpIdx operand. 2282 Value *getSingleOperand(unsigned OpIdx) const { 2283 assert(OpIdx < Operands.size() && "Off bounds"); 2284 assert(!Operands[OpIdx].empty() && "No operand available"); 2285 return Operands[OpIdx][0]; 2286 } 2287 2288 /// Some of the instructions in the list have alternate opcodes. 2289 bool isAltShuffle() const { return MainOp != AltOp; } 2290 2291 bool isOpcodeOrAlt(Instruction *I) const { 2292 unsigned CheckedOpcode = I->getOpcode(); 2293 return (getOpcode() == CheckedOpcode || 2294 getAltOpcode() == CheckedOpcode); 2295 } 2296 2297 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2298 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2299 /// \p OpValue. 2300 Value *isOneOf(Value *Op) const { 2301 auto *I = dyn_cast<Instruction>(Op); 2302 if (I && isOpcodeOrAlt(I)) 2303 return Op; 2304 return MainOp; 2305 } 2306 2307 void setOperations(const InstructionsState &S) { 2308 MainOp = S.MainOp; 2309 AltOp = S.AltOp; 2310 } 2311 2312 Instruction *getMainOp() const { 2313 return MainOp; 2314 } 2315 2316 Instruction *getAltOp() const { 2317 return AltOp; 2318 } 2319 2320 /// The main/alternate opcodes for the list of instructions. 2321 unsigned getOpcode() const { 2322 return MainOp ? MainOp->getOpcode() : 0; 2323 } 2324 2325 unsigned getAltOpcode() const { 2326 return AltOp ? AltOp->getOpcode() : 0; 2327 } 2328 2329 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2330 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2331 int findLaneForValue(Value *V) const { 2332 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2333 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2334 if (!ReorderIndices.empty()) 2335 FoundLane = ReorderIndices[FoundLane]; 2336 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2337 if (!ReuseShuffleIndices.empty()) { 2338 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2339 find(ReuseShuffleIndices, FoundLane)); 2340 } 2341 return FoundLane; 2342 } 2343 2344 #ifndef NDEBUG 2345 /// Debug printer. 2346 LLVM_DUMP_METHOD void dump() const { 2347 dbgs() << Idx << ".\n"; 2348 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2349 dbgs() << "Operand " << OpI << ":\n"; 2350 for (const Value *V : Operands[OpI]) 2351 dbgs().indent(2) << *V << "\n"; 2352 } 2353 dbgs() << "Scalars: \n"; 2354 for (Value *V : Scalars) 2355 dbgs().indent(2) << *V << "\n"; 2356 dbgs() << "State: "; 2357 switch (State) { 2358 case Vectorize: 2359 dbgs() << "Vectorize\n"; 2360 break; 2361 case ScatterVectorize: 2362 dbgs() << "ScatterVectorize\n"; 2363 break; 2364 case NeedToGather: 2365 dbgs() << "NeedToGather\n"; 2366 break; 2367 } 2368 dbgs() << "MainOp: "; 2369 if (MainOp) 2370 dbgs() << *MainOp << "\n"; 2371 else 2372 dbgs() << "NULL\n"; 2373 dbgs() << "AltOp: "; 2374 if (AltOp) 2375 dbgs() << *AltOp << "\n"; 2376 else 2377 dbgs() << "NULL\n"; 2378 dbgs() << "VectorizedValue: "; 2379 if (VectorizedValue) 2380 dbgs() << *VectorizedValue << "\n"; 2381 else 2382 dbgs() << "NULL\n"; 2383 dbgs() << "ReuseShuffleIndices: "; 2384 if (ReuseShuffleIndices.empty()) 2385 dbgs() << "Empty"; 2386 else 2387 for (int ReuseIdx : ReuseShuffleIndices) 2388 dbgs() << ReuseIdx << ", "; 2389 dbgs() << "\n"; 2390 dbgs() << "ReorderIndices: "; 2391 for (unsigned ReorderIdx : ReorderIndices) 2392 dbgs() << ReorderIdx << ", "; 2393 dbgs() << "\n"; 2394 dbgs() << "UserTreeIndices: "; 2395 for (const auto &EInfo : UserTreeIndices) 2396 dbgs() << EInfo << ", "; 2397 dbgs() << "\n"; 2398 } 2399 #endif 2400 }; 2401 2402 #ifndef NDEBUG 2403 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2404 InstructionCost VecCost, 2405 InstructionCost ScalarCost) const { 2406 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2407 dbgs() << "SLP: Costs:\n"; 2408 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2409 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2410 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2411 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2412 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2413 } 2414 #endif 2415 2416 /// Create a new VectorizableTree entry. 2417 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2418 const InstructionsState &S, 2419 const EdgeInfo &UserTreeIdx, 2420 ArrayRef<int> ReuseShuffleIndices = None, 2421 ArrayRef<unsigned> ReorderIndices = None) { 2422 TreeEntry::EntryState EntryState = 2423 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2424 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2425 ReuseShuffleIndices, ReorderIndices); 2426 } 2427 2428 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2429 TreeEntry::EntryState EntryState, 2430 Optional<ScheduleData *> Bundle, 2431 const InstructionsState &S, 2432 const EdgeInfo &UserTreeIdx, 2433 ArrayRef<int> ReuseShuffleIndices = None, 2434 ArrayRef<unsigned> ReorderIndices = None) { 2435 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2436 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2437 "Need to vectorize gather entry?"); 2438 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2439 TreeEntry *Last = VectorizableTree.back().get(); 2440 Last->Idx = VectorizableTree.size() - 1; 2441 Last->State = EntryState; 2442 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2443 ReuseShuffleIndices.end()); 2444 if (ReorderIndices.empty()) { 2445 Last->Scalars.assign(VL.begin(), VL.end()); 2446 Last->setOperations(S); 2447 } else { 2448 // Reorder scalars and build final mask. 2449 Last->Scalars.assign(VL.size(), nullptr); 2450 transform(ReorderIndices, Last->Scalars.begin(), 2451 [VL](unsigned Idx) -> Value * { 2452 if (Idx >= VL.size()) 2453 return UndefValue::get(VL.front()->getType()); 2454 return VL[Idx]; 2455 }); 2456 InstructionsState S = getSameOpcode(Last->Scalars); 2457 Last->setOperations(S); 2458 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2459 } 2460 if (Last->State != TreeEntry::NeedToGather) { 2461 for (Value *V : VL) { 2462 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2463 ScalarToTreeEntry[V] = Last; 2464 } 2465 // Update the scheduler bundle to point to this TreeEntry. 2466 ScheduleData *BundleMember = Bundle.getValue(); 2467 assert((BundleMember || isa<PHINode>(S.MainOp) || 2468 isVectorLikeInstWithConstOps(S.MainOp) || 2469 doesNotNeedToSchedule(VL)) && 2470 "Bundle and VL out of sync"); 2471 if (BundleMember) { 2472 for (Value *V : VL) { 2473 if (doesNotNeedToBeScheduled(V)) 2474 continue; 2475 assert(BundleMember && "Unexpected end of bundle."); 2476 BundleMember->TE = Last; 2477 BundleMember = BundleMember->NextInBundle; 2478 } 2479 } 2480 assert(!BundleMember && "Bundle and VL out of sync"); 2481 } else { 2482 MustGather.insert(VL.begin(), VL.end()); 2483 } 2484 2485 if (UserTreeIdx.UserTE) 2486 Last->UserTreeIndices.push_back(UserTreeIdx); 2487 2488 return Last; 2489 } 2490 2491 /// -- Vectorization State -- 2492 /// Holds all of the tree entries. 2493 TreeEntry::VecTreeTy VectorizableTree; 2494 2495 #ifndef NDEBUG 2496 /// Debug printer. 2497 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2498 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2499 VectorizableTree[Id]->dump(); 2500 dbgs() << "\n"; 2501 } 2502 } 2503 #endif 2504 2505 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2506 2507 const TreeEntry *getTreeEntry(Value *V) const { 2508 return ScalarToTreeEntry.lookup(V); 2509 } 2510 2511 /// Maps a specific scalar to its tree entry. 2512 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2513 2514 /// Maps a value to the proposed vectorizable size. 2515 SmallDenseMap<Value *, unsigned> InstrElementSize; 2516 2517 /// A list of scalars that we found that we need to keep as scalars. 2518 ValueSet MustGather; 2519 2520 /// This POD struct describes one external user in the vectorized tree. 2521 struct ExternalUser { 2522 ExternalUser(Value *S, llvm::User *U, int L) 2523 : Scalar(S), User(U), Lane(L) {} 2524 2525 // Which scalar in our function. 2526 Value *Scalar; 2527 2528 // Which user that uses the scalar. 2529 llvm::User *User; 2530 2531 // Which lane does the scalar belong to. 2532 int Lane; 2533 }; 2534 using UserList = SmallVector<ExternalUser, 16>; 2535 2536 /// Checks if two instructions may access the same memory. 2537 /// 2538 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2539 /// is invariant in the calling loop. 2540 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2541 Instruction *Inst2) { 2542 // First check if the result is already in the cache. 2543 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2544 Optional<bool> &result = AliasCache[key]; 2545 if (result.hasValue()) { 2546 return result.getValue(); 2547 } 2548 bool aliased = true; 2549 if (Loc1.Ptr && isSimple(Inst1)) 2550 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2551 // Store the result in the cache. 2552 result = aliased; 2553 return aliased; 2554 } 2555 2556 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2557 2558 /// Cache for alias results. 2559 /// TODO: consider moving this to the AliasAnalysis itself. 2560 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2561 2562 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2563 // globally through SLP because we don't perform any action which 2564 // invalidates capture results. 2565 BatchAAResults BatchAA; 2566 2567 /// Temporary store for deleted instructions. Instructions will be deleted 2568 /// eventually when the BoUpSLP is destructed. The deferral is required to 2569 /// ensure that there are no incorrect collisions in the AliasCache, which 2570 /// can happen if a new instruction is allocated at the same address as a 2571 /// previously deleted instruction. 2572 DenseSet<Instruction *> DeletedInstructions; 2573 2574 /// A list of values that need to extracted out of the tree. 2575 /// This list holds pairs of (Internal Scalar : External User). External User 2576 /// can be nullptr, it means that this Internal Scalar will be used later, 2577 /// after vectorization. 2578 UserList ExternalUses; 2579 2580 /// Values used only by @llvm.assume calls. 2581 SmallPtrSet<const Value *, 32> EphValues; 2582 2583 /// Holds all of the instructions that we gathered. 2584 SetVector<Instruction *> GatherShuffleSeq; 2585 2586 /// A list of blocks that we are going to CSE. 2587 SetVector<BasicBlock *> CSEBlocks; 2588 2589 /// Contains all scheduling relevant data for an instruction. 2590 /// A ScheduleData either represents a single instruction or a member of an 2591 /// instruction bundle (= a group of instructions which is combined into a 2592 /// vector instruction). 2593 struct ScheduleData { 2594 // The initial value for the dependency counters. It means that the 2595 // dependencies are not calculated yet. 2596 enum { InvalidDeps = -1 }; 2597 2598 ScheduleData() = default; 2599 2600 void init(int BlockSchedulingRegionID, Value *OpVal) { 2601 FirstInBundle = this; 2602 NextInBundle = nullptr; 2603 NextLoadStore = nullptr; 2604 IsScheduled = false; 2605 SchedulingRegionID = BlockSchedulingRegionID; 2606 clearDependencies(); 2607 OpValue = OpVal; 2608 TE = nullptr; 2609 } 2610 2611 /// Verify basic self consistency properties 2612 void verify() { 2613 if (hasValidDependencies()) { 2614 assert(UnscheduledDeps <= Dependencies && "invariant"); 2615 } else { 2616 assert(UnscheduledDeps == Dependencies && "invariant"); 2617 } 2618 2619 if (IsScheduled) { 2620 assert(isSchedulingEntity() && 2621 "unexpected scheduled state"); 2622 for (const ScheduleData *BundleMember = this; BundleMember; 2623 BundleMember = BundleMember->NextInBundle) { 2624 assert(BundleMember->hasValidDependencies() && 2625 BundleMember->UnscheduledDeps == 0 && 2626 "unexpected scheduled state"); 2627 assert((BundleMember == this || !BundleMember->IsScheduled) && 2628 "only bundle is marked scheduled"); 2629 } 2630 } 2631 2632 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2633 "all bundle members must be in same basic block"); 2634 } 2635 2636 /// Returns true if the dependency information has been calculated. 2637 /// Note that depenendency validity can vary between instructions within 2638 /// a single bundle. 2639 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2640 2641 /// Returns true for single instructions and for bundle representatives 2642 /// (= the head of a bundle). 2643 bool isSchedulingEntity() const { return FirstInBundle == this; } 2644 2645 /// Returns true if it represents an instruction bundle and not only a 2646 /// single instruction. 2647 bool isPartOfBundle() const { 2648 return NextInBundle != nullptr || FirstInBundle != this || TE; 2649 } 2650 2651 /// Returns true if it is ready for scheduling, i.e. it has no more 2652 /// unscheduled depending instructions/bundles. 2653 bool isReady() const { 2654 assert(isSchedulingEntity() && 2655 "can't consider non-scheduling entity for ready list"); 2656 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2657 } 2658 2659 /// Modifies the number of unscheduled dependencies for this instruction, 2660 /// and returns the number of remaining dependencies for the containing 2661 /// bundle. 2662 int incrementUnscheduledDeps(int Incr) { 2663 assert(hasValidDependencies() && 2664 "increment of unscheduled deps would be meaningless"); 2665 UnscheduledDeps += Incr; 2666 return FirstInBundle->unscheduledDepsInBundle(); 2667 } 2668 2669 /// Sets the number of unscheduled dependencies to the number of 2670 /// dependencies. 2671 void resetUnscheduledDeps() { 2672 UnscheduledDeps = Dependencies; 2673 } 2674 2675 /// Clears all dependency information. 2676 void clearDependencies() { 2677 Dependencies = InvalidDeps; 2678 resetUnscheduledDeps(); 2679 MemoryDependencies.clear(); 2680 ControlDependencies.clear(); 2681 } 2682 2683 int unscheduledDepsInBundle() const { 2684 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2685 int Sum = 0; 2686 for (const ScheduleData *BundleMember = this; BundleMember; 2687 BundleMember = BundleMember->NextInBundle) { 2688 if (BundleMember->UnscheduledDeps == InvalidDeps) 2689 return InvalidDeps; 2690 Sum += BundleMember->UnscheduledDeps; 2691 } 2692 return Sum; 2693 } 2694 2695 void dump(raw_ostream &os) const { 2696 if (!isSchedulingEntity()) { 2697 os << "/ " << *Inst; 2698 } else if (NextInBundle) { 2699 os << '[' << *Inst; 2700 ScheduleData *SD = NextInBundle; 2701 while (SD) { 2702 os << ';' << *SD->Inst; 2703 SD = SD->NextInBundle; 2704 } 2705 os << ']'; 2706 } else { 2707 os << *Inst; 2708 } 2709 } 2710 2711 Instruction *Inst = nullptr; 2712 2713 /// Opcode of the current instruction in the schedule data. 2714 Value *OpValue = nullptr; 2715 2716 /// The TreeEntry that this instruction corresponds to. 2717 TreeEntry *TE = nullptr; 2718 2719 /// Points to the head in an instruction bundle (and always to this for 2720 /// single instructions). 2721 ScheduleData *FirstInBundle = nullptr; 2722 2723 /// Single linked list of all instructions in a bundle. Null if it is a 2724 /// single instruction. 2725 ScheduleData *NextInBundle = nullptr; 2726 2727 /// Single linked list of all memory instructions (e.g. load, store, call) 2728 /// in the block - until the end of the scheduling region. 2729 ScheduleData *NextLoadStore = nullptr; 2730 2731 /// The dependent memory instructions. 2732 /// This list is derived on demand in calculateDependencies(). 2733 SmallVector<ScheduleData *, 4> MemoryDependencies; 2734 2735 /// List of instructions which this instruction could be control dependent 2736 /// on. Allowing such nodes to be scheduled below this one could introduce 2737 /// a runtime fault which didn't exist in the original program. 2738 /// ex: this is a load or udiv following a readonly call which inf loops 2739 SmallVector<ScheduleData *, 4> ControlDependencies; 2740 2741 /// This ScheduleData is in the current scheduling region if this matches 2742 /// the current SchedulingRegionID of BlockScheduling. 2743 int SchedulingRegionID = 0; 2744 2745 /// Used for getting a "good" final ordering of instructions. 2746 int SchedulingPriority = 0; 2747 2748 /// The number of dependencies. Constitutes of the number of users of the 2749 /// instruction plus the number of dependent memory instructions (if any). 2750 /// This value is calculated on demand. 2751 /// If InvalidDeps, the number of dependencies is not calculated yet. 2752 int Dependencies = InvalidDeps; 2753 2754 /// The number of dependencies minus the number of dependencies of scheduled 2755 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2756 /// for scheduling. 2757 /// Note that this is negative as long as Dependencies is not calculated. 2758 int UnscheduledDeps = InvalidDeps; 2759 2760 /// True if this instruction is scheduled (or considered as scheduled in the 2761 /// dry-run). 2762 bool IsScheduled = false; 2763 }; 2764 2765 #ifndef NDEBUG 2766 friend inline raw_ostream &operator<<(raw_ostream &os, 2767 const BoUpSLP::ScheduleData &SD) { 2768 SD.dump(os); 2769 return os; 2770 } 2771 #endif 2772 2773 friend struct GraphTraits<BoUpSLP *>; 2774 friend struct DOTGraphTraits<BoUpSLP *>; 2775 2776 /// Contains all scheduling data for a basic block. 2777 /// It does not schedules instructions, which are not memory read/write 2778 /// instructions and their operands are either constants, or arguments, or 2779 /// phis, or instructions from others blocks, or their users are phis or from 2780 /// the other blocks. The resulting vector instructions can be placed at the 2781 /// beginning of the basic block without scheduling (if operands does not need 2782 /// to be scheduled) or at the end of the block (if users are outside of the 2783 /// block). It allows to save some compile time and memory used by the 2784 /// compiler. 2785 /// ScheduleData is assigned for each instruction in between the boundaries of 2786 /// the tree entry, even for those, which are not part of the graph. It is 2787 /// required to correctly follow the dependencies between the instructions and 2788 /// their correct scheduling. The ScheduleData is not allocated for the 2789 /// instructions, which do not require scheduling, like phis, nodes with 2790 /// extractelements/insertelements only or nodes with instructions, with 2791 /// uses/operands outside of the block. 2792 struct BlockScheduling { 2793 BlockScheduling(BasicBlock *BB) 2794 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2795 2796 void clear() { 2797 ReadyInsts.clear(); 2798 ScheduleStart = nullptr; 2799 ScheduleEnd = nullptr; 2800 FirstLoadStoreInRegion = nullptr; 2801 LastLoadStoreInRegion = nullptr; 2802 RegionHasStackSave = false; 2803 2804 // Reduce the maximum schedule region size by the size of the 2805 // previous scheduling run. 2806 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2807 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2808 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2809 ScheduleRegionSize = 0; 2810 2811 // Make a new scheduling region, i.e. all existing ScheduleData is not 2812 // in the new region yet. 2813 ++SchedulingRegionID; 2814 } 2815 2816 ScheduleData *getScheduleData(Instruction *I) { 2817 if (BB != I->getParent()) 2818 // Avoid lookup if can't possibly be in map. 2819 return nullptr; 2820 ScheduleData *SD = ScheduleDataMap.lookup(I); 2821 if (SD && isInSchedulingRegion(SD)) 2822 return SD; 2823 return nullptr; 2824 } 2825 2826 ScheduleData *getScheduleData(Value *V) { 2827 if (auto *I = dyn_cast<Instruction>(V)) 2828 return getScheduleData(I); 2829 return nullptr; 2830 } 2831 2832 ScheduleData *getScheduleData(Value *V, Value *Key) { 2833 if (V == Key) 2834 return getScheduleData(V); 2835 auto I = ExtraScheduleDataMap.find(V); 2836 if (I != ExtraScheduleDataMap.end()) { 2837 ScheduleData *SD = I->second.lookup(Key); 2838 if (SD && isInSchedulingRegion(SD)) 2839 return SD; 2840 } 2841 return nullptr; 2842 } 2843 2844 bool isInSchedulingRegion(ScheduleData *SD) const { 2845 return SD->SchedulingRegionID == SchedulingRegionID; 2846 } 2847 2848 /// Marks an instruction as scheduled and puts all dependent ready 2849 /// instructions into the ready-list. 2850 template <typename ReadyListType> 2851 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2852 SD->IsScheduled = true; 2853 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2854 2855 for (ScheduleData *BundleMember = SD; BundleMember; 2856 BundleMember = BundleMember->NextInBundle) { 2857 if (BundleMember->Inst != BundleMember->OpValue) 2858 continue; 2859 2860 // Handle the def-use chain dependencies. 2861 2862 // Decrement the unscheduled counter and insert to ready list if ready. 2863 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2864 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2865 if (OpDef && OpDef->hasValidDependencies() && 2866 OpDef->incrementUnscheduledDeps(-1) == 0) { 2867 // There are no more unscheduled dependencies after 2868 // decrementing, so we can put the dependent instruction 2869 // into the ready list. 2870 ScheduleData *DepBundle = OpDef->FirstInBundle; 2871 assert(!DepBundle->IsScheduled && 2872 "already scheduled bundle gets ready"); 2873 ReadyList.insert(DepBundle); 2874 LLVM_DEBUG(dbgs() 2875 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2876 } 2877 }); 2878 }; 2879 2880 // If BundleMember is a vector bundle, its operands may have been 2881 // reordered during buildTree(). We therefore need to get its operands 2882 // through the TreeEntry. 2883 if (TreeEntry *TE = BundleMember->TE) { 2884 // Need to search for the lane since the tree entry can be reordered. 2885 int Lane = std::distance(TE->Scalars.begin(), 2886 find(TE->Scalars, BundleMember->Inst)); 2887 assert(Lane >= 0 && "Lane not set"); 2888 2889 // Since vectorization tree is being built recursively this assertion 2890 // ensures that the tree entry has all operands set before reaching 2891 // this code. Couple of exceptions known at the moment are extracts 2892 // where their second (immediate) operand is not added. Since 2893 // immediates do not affect scheduler behavior this is considered 2894 // okay. 2895 auto *In = BundleMember->Inst; 2896 assert(In && 2897 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2898 In->getNumOperands() == TE->getNumOperands()) && 2899 "Missed TreeEntry operands?"); 2900 (void)In; // fake use to avoid build failure when assertions disabled 2901 2902 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2903 OpIdx != NumOperands; ++OpIdx) 2904 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2905 DecrUnsched(I); 2906 } else { 2907 // If BundleMember is a stand-alone instruction, no operand reordering 2908 // has taken place, so we directly access its operands. 2909 for (Use &U : BundleMember->Inst->operands()) 2910 if (auto *I = dyn_cast<Instruction>(U.get())) 2911 DecrUnsched(I); 2912 } 2913 // Handle the memory dependencies. 2914 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2915 if (MemoryDepSD->hasValidDependencies() && 2916 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2917 // There are no more unscheduled dependencies after decrementing, 2918 // so we can put the dependent instruction into the ready list. 2919 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2920 assert(!DepBundle->IsScheduled && 2921 "already scheduled bundle gets ready"); 2922 ReadyList.insert(DepBundle); 2923 LLVM_DEBUG(dbgs() 2924 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2925 } 2926 } 2927 // Handle the control dependencies. 2928 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2929 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2930 // There are no more unscheduled dependencies after decrementing, 2931 // so we can put the dependent instruction into the ready list. 2932 ScheduleData *DepBundle = DepSD->FirstInBundle; 2933 assert(!DepBundle->IsScheduled && 2934 "already scheduled bundle gets ready"); 2935 ReadyList.insert(DepBundle); 2936 LLVM_DEBUG(dbgs() 2937 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2938 } 2939 } 2940 2941 } 2942 } 2943 2944 /// Verify basic self consistency properties of the data structure. 2945 void verify() { 2946 if (!ScheduleStart) 2947 return; 2948 2949 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2950 ScheduleStart->comesBefore(ScheduleEnd) && 2951 "Not a valid scheduling region?"); 2952 2953 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2954 auto *SD = getScheduleData(I); 2955 if (!SD) 2956 continue; 2957 assert(isInSchedulingRegion(SD) && 2958 "primary schedule data not in window?"); 2959 assert(isInSchedulingRegion(SD->FirstInBundle) && 2960 "entire bundle in window!"); 2961 (void)SD; 2962 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2963 } 2964 2965 for (auto *SD : ReadyInsts) { 2966 assert(SD->isSchedulingEntity() && SD->isReady() && 2967 "item in ready list not ready?"); 2968 (void)SD; 2969 } 2970 } 2971 2972 void doForAllOpcodes(Value *V, 2973 function_ref<void(ScheduleData *SD)> Action) { 2974 if (ScheduleData *SD = getScheduleData(V)) 2975 Action(SD); 2976 auto I = ExtraScheduleDataMap.find(V); 2977 if (I != ExtraScheduleDataMap.end()) 2978 for (auto &P : I->second) 2979 if (isInSchedulingRegion(P.second)) 2980 Action(P.second); 2981 } 2982 2983 /// Put all instructions into the ReadyList which are ready for scheduling. 2984 template <typename ReadyListType> 2985 void initialFillReadyList(ReadyListType &ReadyList) { 2986 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2987 doForAllOpcodes(I, [&](ScheduleData *SD) { 2988 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2989 SD->isReady()) { 2990 ReadyList.insert(SD); 2991 LLVM_DEBUG(dbgs() 2992 << "SLP: initially in ready list: " << *SD << "\n"); 2993 } 2994 }); 2995 } 2996 } 2997 2998 /// Build a bundle from the ScheduleData nodes corresponding to the 2999 /// scalar instruction for each lane. 3000 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3001 3002 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3003 /// cyclic dependencies. This is only a dry-run, no instructions are 3004 /// actually moved at this stage. 3005 /// \returns the scheduling bundle. The returned Optional value is non-None 3006 /// if \p VL is allowed to be scheduled. 3007 Optional<ScheduleData *> 3008 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3009 const InstructionsState &S); 3010 3011 /// Un-bundles a group of instructions. 3012 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3013 3014 /// Allocates schedule data chunk. 3015 ScheduleData *allocateScheduleDataChunks(); 3016 3017 /// Extends the scheduling region so that V is inside the region. 3018 /// \returns true if the region size is within the limit. 3019 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3020 3021 /// Initialize the ScheduleData structures for new instructions in the 3022 /// scheduling region. 3023 void initScheduleData(Instruction *FromI, Instruction *ToI, 3024 ScheduleData *PrevLoadStore, 3025 ScheduleData *NextLoadStore); 3026 3027 /// Updates the dependency information of a bundle and of all instructions/ 3028 /// bundles which depend on the original bundle. 3029 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3030 BoUpSLP *SLP); 3031 3032 /// Sets all instruction in the scheduling region to un-scheduled. 3033 void resetSchedule(); 3034 3035 BasicBlock *BB; 3036 3037 /// Simple memory allocation for ScheduleData. 3038 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3039 3040 /// The size of a ScheduleData array in ScheduleDataChunks. 3041 int ChunkSize; 3042 3043 /// The allocator position in the current chunk, which is the last entry 3044 /// of ScheduleDataChunks. 3045 int ChunkPos; 3046 3047 /// Attaches ScheduleData to Instruction. 3048 /// Note that the mapping survives during all vectorization iterations, i.e. 3049 /// ScheduleData structures are recycled. 3050 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3051 3052 /// Attaches ScheduleData to Instruction with the leading key. 3053 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3054 ExtraScheduleDataMap; 3055 3056 /// The ready-list for scheduling (only used for the dry-run). 3057 SetVector<ScheduleData *> ReadyInsts; 3058 3059 /// The first instruction of the scheduling region. 3060 Instruction *ScheduleStart = nullptr; 3061 3062 /// The first instruction _after_ the scheduling region. 3063 Instruction *ScheduleEnd = nullptr; 3064 3065 /// The first memory accessing instruction in the scheduling region 3066 /// (can be null). 3067 ScheduleData *FirstLoadStoreInRegion = nullptr; 3068 3069 /// The last memory accessing instruction in the scheduling region 3070 /// (can be null). 3071 ScheduleData *LastLoadStoreInRegion = nullptr; 3072 3073 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3074 /// region? Used to optimize the dependence calculation for the 3075 /// common case where there isn't. 3076 bool RegionHasStackSave = false; 3077 3078 /// The current size of the scheduling region. 3079 int ScheduleRegionSize = 0; 3080 3081 /// The maximum size allowed for the scheduling region. 3082 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3083 3084 /// The ID of the scheduling region. For a new vectorization iteration this 3085 /// is incremented which "removes" all ScheduleData from the region. 3086 /// Make sure that the initial SchedulingRegionID is greater than the 3087 /// initial SchedulingRegionID in ScheduleData (which is 0). 3088 int SchedulingRegionID = 1; 3089 }; 3090 3091 /// Attaches the BlockScheduling structures to basic blocks. 3092 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3093 3094 /// Performs the "real" scheduling. Done before vectorization is actually 3095 /// performed in a basic block. 3096 void scheduleBlock(BlockScheduling *BS); 3097 3098 /// List of users to ignore during scheduling and that don't need extracting. 3099 ArrayRef<Value *> UserIgnoreList; 3100 3101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3102 /// sorted SmallVectors of unsigned. 3103 struct OrdersTypeDenseMapInfo { 3104 static OrdersType getEmptyKey() { 3105 OrdersType V; 3106 V.push_back(~1U); 3107 return V; 3108 } 3109 3110 static OrdersType getTombstoneKey() { 3111 OrdersType V; 3112 V.push_back(~2U); 3113 return V; 3114 } 3115 3116 static unsigned getHashValue(const OrdersType &V) { 3117 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3118 } 3119 3120 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3121 return LHS == RHS; 3122 } 3123 }; 3124 3125 // Analysis and block reference. 3126 Function *F; 3127 ScalarEvolution *SE; 3128 TargetTransformInfo *TTI; 3129 TargetLibraryInfo *TLI; 3130 LoopInfo *LI; 3131 DominatorTree *DT; 3132 AssumptionCache *AC; 3133 DemandedBits *DB; 3134 const DataLayout *DL; 3135 OptimizationRemarkEmitter *ORE; 3136 3137 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3138 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3139 3140 /// Instruction builder to construct the vectorized tree. 3141 IRBuilder<> Builder; 3142 3143 /// A map of scalar integer values to the smallest bit width with which they 3144 /// can legally be represented. The values map to (width, signed) pairs, 3145 /// where "width" indicates the minimum bit width and "signed" is True if the 3146 /// value must be signed-extended, rather than zero-extended, back to its 3147 /// original width. 3148 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3149 }; 3150 3151 } // end namespace slpvectorizer 3152 3153 template <> struct GraphTraits<BoUpSLP *> { 3154 using TreeEntry = BoUpSLP::TreeEntry; 3155 3156 /// NodeRef has to be a pointer per the GraphWriter. 3157 using NodeRef = TreeEntry *; 3158 3159 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3160 3161 /// Add the VectorizableTree to the index iterator to be able to return 3162 /// TreeEntry pointers. 3163 struct ChildIteratorType 3164 : public iterator_adaptor_base< 3165 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3166 ContainerTy &VectorizableTree; 3167 3168 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3169 ContainerTy &VT) 3170 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3171 3172 NodeRef operator*() { return I->UserTE; } 3173 }; 3174 3175 static NodeRef getEntryNode(BoUpSLP &R) { 3176 return R.VectorizableTree[0].get(); 3177 } 3178 3179 static ChildIteratorType child_begin(NodeRef N) { 3180 return {N->UserTreeIndices.begin(), N->Container}; 3181 } 3182 3183 static ChildIteratorType child_end(NodeRef N) { 3184 return {N->UserTreeIndices.end(), N->Container}; 3185 } 3186 3187 /// For the node iterator we just need to turn the TreeEntry iterator into a 3188 /// TreeEntry* iterator so that it dereferences to NodeRef. 3189 class nodes_iterator { 3190 using ItTy = ContainerTy::iterator; 3191 ItTy It; 3192 3193 public: 3194 nodes_iterator(const ItTy &It2) : It(It2) {} 3195 NodeRef operator*() { return It->get(); } 3196 nodes_iterator operator++() { 3197 ++It; 3198 return *this; 3199 } 3200 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3201 }; 3202 3203 static nodes_iterator nodes_begin(BoUpSLP *R) { 3204 return nodes_iterator(R->VectorizableTree.begin()); 3205 } 3206 3207 static nodes_iterator nodes_end(BoUpSLP *R) { 3208 return nodes_iterator(R->VectorizableTree.end()); 3209 } 3210 3211 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3212 }; 3213 3214 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3215 using TreeEntry = BoUpSLP::TreeEntry; 3216 3217 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3218 3219 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3220 std::string Str; 3221 raw_string_ostream OS(Str); 3222 if (isSplat(Entry->Scalars)) 3223 OS << "<splat> "; 3224 for (auto V : Entry->Scalars) { 3225 OS << *V; 3226 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3227 return EU.Scalar == V; 3228 })) 3229 OS << " <extract>"; 3230 OS << "\n"; 3231 } 3232 return Str; 3233 } 3234 3235 static std::string getNodeAttributes(const TreeEntry *Entry, 3236 const BoUpSLP *) { 3237 if (Entry->State == TreeEntry::NeedToGather) 3238 return "color=red"; 3239 return ""; 3240 } 3241 }; 3242 3243 } // end namespace llvm 3244 3245 BoUpSLP::~BoUpSLP() { 3246 SmallVector<WeakTrackingVH> DeadInsts; 3247 for (auto *I : DeletedInstructions) { 3248 for (Use &U : I->operands()) { 3249 auto *Op = dyn_cast<Instruction>(U.get()); 3250 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3251 wouldInstructionBeTriviallyDead(Op, TLI)) 3252 DeadInsts.emplace_back(Op); 3253 } 3254 I->dropAllReferences(); 3255 } 3256 for (auto *I : DeletedInstructions) { 3257 assert(I->use_empty() && 3258 "trying to erase instruction with users."); 3259 I->eraseFromParent(); 3260 } 3261 3262 // Cleanup any dead scalar code feeding the vectorized instructions 3263 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3264 3265 #ifdef EXPENSIVE_CHECKS 3266 // If we could guarantee that this call is not extremely slow, we could 3267 // remove the ifdef limitation (see PR47712). 3268 assert(!verifyFunction(*F, &dbgs())); 3269 #endif 3270 } 3271 3272 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3273 /// contains original mask for the scalars reused in the node. Procedure 3274 /// transform this mask in accordance with the given \p Mask. 3275 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3276 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3277 "Expected non-empty mask."); 3278 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3279 Prev.swap(Reuses); 3280 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3281 if (Mask[I] != UndefMaskElem) 3282 Reuses[Mask[I]] = Prev[I]; 3283 } 3284 3285 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3286 /// the original order of the scalars. Procedure transforms the provided order 3287 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3288 /// identity order, \p Order is cleared. 3289 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3290 assert(!Mask.empty() && "Expected non-empty mask."); 3291 SmallVector<int> MaskOrder; 3292 if (Order.empty()) { 3293 MaskOrder.resize(Mask.size()); 3294 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3295 } else { 3296 inversePermutation(Order, MaskOrder); 3297 } 3298 reorderReuses(MaskOrder, Mask); 3299 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3300 Order.clear(); 3301 return; 3302 } 3303 Order.assign(Mask.size(), Mask.size()); 3304 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3305 if (MaskOrder[I] != UndefMaskElem) 3306 Order[MaskOrder[I]] = I; 3307 fixupOrderingIndices(Order); 3308 } 3309 3310 Optional<BoUpSLP::OrdersType> 3311 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3312 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3313 unsigned NumScalars = TE.Scalars.size(); 3314 OrdersType CurrentOrder(NumScalars, NumScalars); 3315 SmallVector<int> Positions; 3316 SmallBitVector UsedPositions(NumScalars); 3317 const TreeEntry *STE = nullptr; 3318 // Try to find all gathered scalars that are gets vectorized in other 3319 // vectorize node. Here we can have only one single tree vector node to 3320 // correctly identify order of the gathered scalars. 3321 for (unsigned I = 0; I < NumScalars; ++I) { 3322 Value *V = TE.Scalars[I]; 3323 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3324 continue; 3325 if (const auto *LocalSTE = getTreeEntry(V)) { 3326 if (!STE) 3327 STE = LocalSTE; 3328 else if (STE != LocalSTE) 3329 // Take the order only from the single vector node. 3330 return None; 3331 unsigned Lane = 3332 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3333 if (Lane >= NumScalars) 3334 return None; 3335 if (CurrentOrder[Lane] != NumScalars) { 3336 if (Lane != I) 3337 continue; 3338 UsedPositions.reset(CurrentOrder[Lane]); 3339 } 3340 // The partial identity (where only some elements of the gather node are 3341 // in the identity order) is good. 3342 CurrentOrder[Lane] = I; 3343 UsedPositions.set(I); 3344 } 3345 } 3346 // Need to keep the order if we have a vector entry and at least 2 scalars or 3347 // the vectorized entry has just 2 scalars. 3348 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3349 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3350 for (unsigned I = 0; I < NumScalars; ++I) 3351 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3352 return false; 3353 return true; 3354 }; 3355 if (IsIdentityOrder(CurrentOrder)) { 3356 CurrentOrder.clear(); 3357 return CurrentOrder; 3358 } 3359 auto *It = CurrentOrder.begin(); 3360 for (unsigned I = 0; I < NumScalars;) { 3361 if (UsedPositions.test(I)) { 3362 ++I; 3363 continue; 3364 } 3365 if (*It == NumScalars) { 3366 *It = I; 3367 ++I; 3368 } 3369 ++It; 3370 } 3371 return CurrentOrder; 3372 } 3373 return None; 3374 } 3375 3376 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3377 bool TopToBottom) { 3378 // No need to reorder if need to shuffle reuses, still need to shuffle the 3379 // node. 3380 if (!TE.ReuseShuffleIndices.empty()) 3381 return None; 3382 if (TE.State == TreeEntry::Vectorize && 3383 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3384 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3385 !TE.isAltShuffle()) 3386 return TE.ReorderIndices; 3387 if (TE.State == TreeEntry::NeedToGather) { 3388 // TODO: add analysis of other gather nodes with extractelement 3389 // instructions and other values/instructions, not only undefs. 3390 if (((TE.getOpcode() == Instruction::ExtractElement && 3391 !TE.isAltShuffle()) || 3392 (all_of(TE.Scalars, 3393 [](Value *V) { 3394 return isa<UndefValue, ExtractElementInst>(V); 3395 }) && 3396 any_of(TE.Scalars, 3397 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3398 all_of(TE.Scalars, 3399 [](Value *V) { 3400 auto *EE = dyn_cast<ExtractElementInst>(V); 3401 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3402 }) && 3403 allSameType(TE.Scalars)) { 3404 // Check that gather of extractelements can be represented as 3405 // just a shuffle of a single vector. 3406 OrdersType CurrentOrder; 3407 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3408 if (Reuse || !CurrentOrder.empty()) { 3409 if (!CurrentOrder.empty()) 3410 fixupOrderingIndices(CurrentOrder); 3411 return CurrentOrder; 3412 } 3413 } 3414 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3415 return CurrentOrder; 3416 } 3417 return None; 3418 } 3419 3420 void BoUpSLP::reorderTopToBottom() { 3421 // Maps VF to the graph nodes. 3422 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3423 // ExtractElement gather nodes which can be vectorized and need to handle 3424 // their ordering. 3425 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3426 // Find all reorderable nodes with the given VF. 3427 // Currently the are vectorized stores,loads,extracts + some gathering of 3428 // extracts. 3429 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3430 const std::unique_ptr<TreeEntry> &TE) { 3431 if (Optional<OrdersType> CurrentOrder = 3432 getReorderingData(*TE, /*TopToBottom=*/true)) { 3433 // Do not include ordering for nodes used in the alt opcode vectorization, 3434 // better to reorder them during bottom-to-top stage. If follow the order 3435 // here, it causes reordering of the whole graph though actually it is 3436 // profitable just to reorder the subgraph that starts from the alternate 3437 // opcode vectorization node. Such nodes already end-up with the shuffle 3438 // instruction and it is just enough to change this shuffle rather than 3439 // rotate the scalars for the whole graph. 3440 unsigned Cnt = 0; 3441 const TreeEntry *UserTE = TE.get(); 3442 while (UserTE && Cnt < RecursionMaxDepth) { 3443 if (UserTE->UserTreeIndices.size() != 1) 3444 break; 3445 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3446 return EI.UserTE->State == TreeEntry::Vectorize && 3447 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3448 })) 3449 return; 3450 if (UserTE->UserTreeIndices.empty()) 3451 UserTE = nullptr; 3452 else 3453 UserTE = UserTE->UserTreeIndices.back().UserTE; 3454 ++Cnt; 3455 } 3456 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3457 if (TE->State != TreeEntry::Vectorize) 3458 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3459 } 3460 }); 3461 3462 // Reorder the graph nodes according to their vectorization factor. 3463 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3464 VF /= 2) { 3465 auto It = VFToOrderedEntries.find(VF); 3466 if (It == VFToOrderedEntries.end()) 3467 continue; 3468 // Try to find the most profitable order. We just are looking for the most 3469 // used order and reorder scalar elements in the nodes according to this 3470 // mostly used order. 3471 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3472 // All operands are reordered and used only in this node - propagate the 3473 // most used order to the user node. 3474 MapVector<OrdersType, unsigned, 3475 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3476 OrdersUses; 3477 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3478 for (const TreeEntry *OpTE : OrderedEntries) { 3479 // No need to reorder this nodes, still need to extend and to use shuffle, 3480 // just need to merge reordering shuffle and the reuse shuffle. 3481 if (!OpTE->ReuseShuffleIndices.empty()) 3482 continue; 3483 // Count number of orders uses. 3484 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3485 if (OpTE->State == TreeEntry::NeedToGather) 3486 return GathersToOrders.find(OpTE)->second; 3487 return OpTE->ReorderIndices; 3488 }(); 3489 // Stores actually store the mask, not the order, need to invert. 3490 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3491 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3492 SmallVector<int> Mask; 3493 inversePermutation(Order, Mask); 3494 unsigned E = Order.size(); 3495 OrdersType CurrentOrder(E, E); 3496 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3497 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3498 }); 3499 fixupOrderingIndices(CurrentOrder); 3500 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3501 } else { 3502 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3503 } 3504 } 3505 // Set order of the user node. 3506 if (OrdersUses.empty()) 3507 continue; 3508 // Choose the most used order. 3509 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3510 unsigned Cnt = OrdersUses.front().second; 3511 for (const auto &Pair : drop_begin(OrdersUses)) { 3512 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3513 BestOrder = Pair.first; 3514 Cnt = Pair.second; 3515 } 3516 } 3517 // Set order of the user node. 3518 if (BestOrder.empty()) 3519 continue; 3520 SmallVector<int> Mask; 3521 inversePermutation(BestOrder, Mask); 3522 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3523 unsigned E = BestOrder.size(); 3524 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3525 return I < E ? static_cast<int>(I) : UndefMaskElem; 3526 }); 3527 // Do an actual reordering, if profitable. 3528 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3529 // Just do the reordering for the nodes with the given VF. 3530 if (TE->Scalars.size() != VF) { 3531 if (TE->ReuseShuffleIndices.size() == VF) { 3532 // Need to reorder the reuses masks of the operands with smaller VF to 3533 // be able to find the match between the graph nodes and scalar 3534 // operands of the given node during vectorization/cost estimation. 3535 assert(all_of(TE->UserTreeIndices, 3536 [VF, &TE](const EdgeInfo &EI) { 3537 return EI.UserTE->Scalars.size() == VF || 3538 EI.UserTE->Scalars.size() == 3539 TE->Scalars.size(); 3540 }) && 3541 "All users must be of VF size."); 3542 // Update ordering of the operands with the smaller VF than the given 3543 // one. 3544 reorderReuses(TE->ReuseShuffleIndices, Mask); 3545 } 3546 continue; 3547 } 3548 if (TE->State == TreeEntry::Vectorize && 3549 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3550 InsertElementInst>(TE->getMainOp()) && 3551 !TE->isAltShuffle()) { 3552 // Build correct orders for extract{element,value}, loads and 3553 // stores. 3554 reorderOrder(TE->ReorderIndices, Mask); 3555 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3556 TE->reorderOperands(Mask); 3557 } else { 3558 // Reorder the node and its operands. 3559 TE->reorderOperands(Mask); 3560 assert(TE->ReorderIndices.empty() && 3561 "Expected empty reorder sequence."); 3562 reorderScalars(TE->Scalars, Mask); 3563 } 3564 if (!TE->ReuseShuffleIndices.empty()) { 3565 // Apply reversed order to keep the original ordering of the reused 3566 // elements to avoid extra reorder indices shuffling. 3567 OrdersType CurrentOrder; 3568 reorderOrder(CurrentOrder, MaskOrder); 3569 SmallVector<int> NewReuses; 3570 inversePermutation(CurrentOrder, NewReuses); 3571 addMask(NewReuses, TE->ReuseShuffleIndices); 3572 TE->ReuseShuffleIndices.swap(NewReuses); 3573 } 3574 } 3575 } 3576 } 3577 3578 bool BoUpSLP::canReorderOperands( 3579 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3580 ArrayRef<TreeEntry *> ReorderableGathers, 3581 SmallVectorImpl<TreeEntry *> &GatherOps) { 3582 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3583 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3584 return OpData.first == I && 3585 OpData.second->State == TreeEntry::Vectorize; 3586 })) 3587 continue; 3588 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3589 // Do not reorder if operand node is used by many user nodes. 3590 if (any_of(TE->UserTreeIndices, 3591 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3592 return false; 3593 // Add the node to the list of the ordered nodes with the identity 3594 // order. 3595 Edges.emplace_back(I, TE); 3596 continue; 3597 } 3598 ArrayRef<Value *> VL = UserTE->getOperand(I); 3599 TreeEntry *Gather = nullptr; 3600 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3601 assert(TE->State != TreeEntry::Vectorize && 3602 "Only non-vectorized nodes are expected."); 3603 if (TE->isSame(VL)) { 3604 Gather = TE; 3605 return true; 3606 } 3607 return false; 3608 }) > 1) 3609 return false; 3610 if (Gather) 3611 GatherOps.push_back(Gather); 3612 } 3613 return true; 3614 } 3615 3616 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3617 SetVector<TreeEntry *> OrderedEntries; 3618 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3619 // Find all reorderable leaf nodes with the given VF. 3620 // Currently the are vectorized loads,extracts without alternate operands + 3621 // some gathering of extracts. 3622 SmallVector<TreeEntry *> NonVectorized; 3623 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3624 &NonVectorized]( 3625 const std::unique_ptr<TreeEntry> &TE) { 3626 if (TE->State != TreeEntry::Vectorize) 3627 NonVectorized.push_back(TE.get()); 3628 if (Optional<OrdersType> CurrentOrder = 3629 getReorderingData(*TE, /*TopToBottom=*/false)) { 3630 OrderedEntries.insert(TE.get()); 3631 if (TE->State != TreeEntry::Vectorize) 3632 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3633 } 3634 }); 3635 3636 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3637 // I.e., if the node has operands, that are reordered, try to make at least 3638 // one operand order in the natural order and reorder others + reorder the 3639 // user node itself. 3640 SmallPtrSet<const TreeEntry *, 4> Visited; 3641 while (!OrderedEntries.empty()) { 3642 // 1. Filter out only reordered nodes. 3643 // 2. If the entry has multiple uses - skip it and jump to the next node. 3644 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3645 SmallVector<TreeEntry *> Filtered; 3646 for (TreeEntry *TE : OrderedEntries) { 3647 if (!(TE->State == TreeEntry::Vectorize || 3648 (TE->State == TreeEntry::NeedToGather && 3649 GathersToOrders.count(TE))) || 3650 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3651 !all_of(drop_begin(TE->UserTreeIndices), 3652 [TE](const EdgeInfo &EI) { 3653 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3654 }) || 3655 !Visited.insert(TE).second) { 3656 Filtered.push_back(TE); 3657 continue; 3658 } 3659 // Build a map between user nodes and their operands order to speedup 3660 // search. The graph currently does not provide this dependency directly. 3661 for (EdgeInfo &EI : TE->UserTreeIndices) { 3662 TreeEntry *UserTE = EI.UserTE; 3663 auto It = Users.find(UserTE); 3664 if (It == Users.end()) 3665 It = Users.insert({UserTE, {}}).first; 3666 It->second.emplace_back(EI.EdgeIdx, TE); 3667 } 3668 } 3669 // Erase filtered entries. 3670 for_each(Filtered, 3671 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3672 for (auto &Data : Users) { 3673 // Check that operands are used only in the User node. 3674 SmallVector<TreeEntry *> GatherOps; 3675 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3676 GatherOps)) { 3677 for_each(Data.second, 3678 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3679 OrderedEntries.remove(Op.second); 3680 }); 3681 continue; 3682 } 3683 // All operands are reordered and used only in this node - propagate the 3684 // most used order to the user node. 3685 MapVector<OrdersType, unsigned, 3686 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3687 OrdersUses; 3688 // Do the analysis for each tree entry only once, otherwise the order of 3689 // the same node my be considered several times, though might be not 3690 // profitable. 3691 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3692 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3693 for (const auto &Op : Data.second) { 3694 TreeEntry *OpTE = Op.second; 3695 if (!VisitedOps.insert(OpTE).second) 3696 continue; 3697 if (!OpTE->ReuseShuffleIndices.empty() || 3698 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3699 continue; 3700 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3701 if (OpTE->State == TreeEntry::NeedToGather) 3702 return GathersToOrders.find(OpTE)->second; 3703 return OpTE->ReorderIndices; 3704 }(); 3705 unsigned NumOps = count_if( 3706 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3707 return P.second == OpTE; 3708 }); 3709 // Stores actually store the mask, not the order, need to invert. 3710 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3711 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3712 SmallVector<int> Mask; 3713 inversePermutation(Order, Mask); 3714 unsigned E = Order.size(); 3715 OrdersType CurrentOrder(E, E); 3716 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3717 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3718 }); 3719 fixupOrderingIndices(CurrentOrder); 3720 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3721 NumOps; 3722 } else { 3723 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3724 } 3725 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3726 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3727 const TreeEntry *TE) { 3728 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3729 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3730 (IgnoreReorder && TE->Idx == 0)) 3731 return true; 3732 if (TE->State == TreeEntry::NeedToGather) { 3733 auto It = GathersToOrders.find(TE); 3734 if (It != GathersToOrders.end()) 3735 return !It->second.empty(); 3736 return true; 3737 } 3738 return false; 3739 }; 3740 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3741 TreeEntry *UserTE = EI.UserTE; 3742 if (!VisitedUsers.insert(UserTE).second) 3743 continue; 3744 // May reorder user node if it requires reordering, has reused 3745 // scalars, is an alternate op vectorize node or its op nodes require 3746 // reordering. 3747 if (AllowsReordering(UserTE)) 3748 continue; 3749 // Check if users allow reordering. 3750 // Currently look up just 1 level of operands to avoid increase of 3751 // the compile time. 3752 // Profitable to reorder if definitely more operands allow 3753 // reordering rather than those with natural order. 3754 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3755 if (static_cast<unsigned>(count_if( 3756 Ops, [UserTE, &AllowsReordering]( 3757 const std::pair<unsigned, TreeEntry *> &Op) { 3758 return AllowsReordering(Op.second) && 3759 all_of(Op.second->UserTreeIndices, 3760 [UserTE](const EdgeInfo &EI) { 3761 return EI.UserTE == UserTE; 3762 }); 3763 })) <= Ops.size() / 2) 3764 ++Res.first->second; 3765 } 3766 } 3767 // If no orders - skip current nodes and jump to the next one, if any. 3768 if (OrdersUses.empty()) { 3769 for_each(Data.second, 3770 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3771 OrderedEntries.remove(Op.second); 3772 }); 3773 continue; 3774 } 3775 // Choose the best order. 3776 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3777 unsigned Cnt = OrdersUses.front().second; 3778 for (const auto &Pair : drop_begin(OrdersUses)) { 3779 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3780 BestOrder = Pair.first; 3781 Cnt = Pair.second; 3782 } 3783 } 3784 // Set order of the user node (reordering of operands and user nodes). 3785 if (BestOrder.empty()) { 3786 for_each(Data.second, 3787 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3788 OrderedEntries.remove(Op.second); 3789 }); 3790 continue; 3791 } 3792 // Erase operands from OrderedEntries list and adjust their orders. 3793 VisitedOps.clear(); 3794 SmallVector<int> Mask; 3795 inversePermutation(BestOrder, Mask); 3796 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3797 unsigned E = BestOrder.size(); 3798 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3799 return I < E ? static_cast<int>(I) : UndefMaskElem; 3800 }); 3801 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3802 TreeEntry *TE = Op.second; 3803 OrderedEntries.remove(TE); 3804 if (!VisitedOps.insert(TE).second) 3805 continue; 3806 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3807 // Just reorder reuses indices. 3808 reorderReuses(TE->ReuseShuffleIndices, Mask); 3809 continue; 3810 } 3811 // Gathers are processed separately. 3812 if (TE->State != TreeEntry::Vectorize) 3813 continue; 3814 assert((BestOrder.size() == TE->ReorderIndices.size() || 3815 TE->ReorderIndices.empty()) && 3816 "Non-matching sizes of user/operand entries."); 3817 reorderOrder(TE->ReorderIndices, Mask); 3818 } 3819 // For gathers just need to reorder its scalars. 3820 for (TreeEntry *Gather : GatherOps) { 3821 assert(Gather->ReorderIndices.empty() && 3822 "Unexpected reordering of gathers."); 3823 if (!Gather->ReuseShuffleIndices.empty()) { 3824 // Just reorder reuses indices. 3825 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3826 continue; 3827 } 3828 reorderScalars(Gather->Scalars, Mask); 3829 OrderedEntries.remove(Gather); 3830 } 3831 // Reorder operands of the user node and set the ordering for the user 3832 // node itself. 3833 if (Data.first->State != TreeEntry::Vectorize || 3834 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3835 Data.first->getMainOp()) || 3836 Data.first->isAltShuffle()) 3837 Data.first->reorderOperands(Mask); 3838 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3839 Data.first->isAltShuffle()) { 3840 reorderScalars(Data.first->Scalars, Mask); 3841 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3842 if (Data.first->ReuseShuffleIndices.empty() && 3843 !Data.first->ReorderIndices.empty() && 3844 !Data.first->isAltShuffle()) { 3845 // Insert user node to the list to try to sink reordering deeper in 3846 // the graph. 3847 OrderedEntries.insert(Data.first); 3848 } 3849 } else { 3850 reorderOrder(Data.first->ReorderIndices, Mask); 3851 } 3852 } 3853 } 3854 // If the reordering is unnecessary, just remove the reorder. 3855 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3856 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3857 VectorizableTree.front()->ReorderIndices.clear(); 3858 } 3859 3860 void BoUpSLP::buildExternalUses( 3861 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3862 // Collect the values that we need to extract from the tree. 3863 for (auto &TEPtr : VectorizableTree) { 3864 TreeEntry *Entry = TEPtr.get(); 3865 3866 // No need to handle users of gathered values. 3867 if (Entry->State == TreeEntry::NeedToGather) 3868 continue; 3869 3870 // For each lane: 3871 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3872 Value *Scalar = Entry->Scalars[Lane]; 3873 int FoundLane = Entry->findLaneForValue(Scalar); 3874 3875 // Check if the scalar is externally used as an extra arg. 3876 auto ExtI = ExternallyUsedValues.find(Scalar); 3877 if (ExtI != ExternallyUsedValues.end()) { 3878 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3879 << Lane << " from " << *Scalar << ".\n"); 3880 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3881 } 3882 for (User *U : Scalar->users()) { 3883 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3884 3885 Instruction *UserInst = dyn_cast<Instruction>(U); 3886 if (!UserInst) 3887 continue; 3888 3889 if (isDeleted(UserInst)) 3890 continue; 3891 3892 // Skip in-tree scalars that become vectors 3893 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3894 Value *UseScalar = UseEntry->Scalars[0]; 3895 // Some in-tree scalars will remain as scalar in vectorized 3896 // instructions. If that is the case, the one in Lane 0 will 3897 // be used. 3898 if (UseScalar != U || 3899 UseEntry->State == TreeEntry::ScatterVectorize || 3900 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3901 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3902 << ".\n"); 3903 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3904 continue; 3905 } 3906 } 3907 3908 // Ignore users in the user ignore list. 3909 if (is_contained(UserIgnoreList, UserInst)) 3910 continue; 3911 3912 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3913 << Lane << " from " << *Scalar << ".\n"); 3914 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3915 } 3916 } 3917 } 3918 } 3919 3920 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3921 ArrayRef<Value *> UserIgnoreLst) { 3922 deleteTree(); 3923 UserIgnoreList = UserIgnoreLst; 3924 if (!allSameType(Roots)) 3925 return; 3926 buildTree_rec(Roots, 0, EdgeInfo()); 3927 } 3928 3929 namespace { 3930 /// Tracks the state we can represent the loads in the given sequence. 3931 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3932 } // anonymous namespace 3933 3934 /// Checks if the given array of loads can be represented as a vectorized, 3935 /// scatter or just simple gather. 3936 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3937 const TargetTransformInfo &TTI, 3938 const DataLayout &DL, ScalarEvolution &SE, 3939 SmallVectorImpl<unsigned> &Order, 3940 SmallVectorImpl<Value *> &PointerOps) { 3941 // Check that a vectorized load would load the same memory as a scalar 3942 // load. For example, we don't want to vectorize loads that are smaller 3943 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3944 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3945 // from such a struct, we read/write packed bits disagreeing with the 3946 // unvectorized version. 3947 Type *ScalarTy = VL0->getType(); 3948 3949 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3950 return LoadsState::Gather; 3951 3952 // Make sure all loads in the bundle are simple - we can't vectorize 3953 // atomic or volatile loads. 3954 PointerOps.clear(); 3955 PointerOps.resize(VL.size()); 3956 auto *POIter = PointerOps.begin(); 3957 for (Value *V : VL) { 3958 auto *L = cast<LoadInst>(V); 3959 if (!L->isSimple()) 3960 return LoadsState::Gather; 3961 *POIter = L->getPointerOperand(); 3962 ++POIter; 3963 } 3964 3965 Order.clear(); 3966 // Check the order of pointer operands. 3967 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3968 Value *Ptr0; 3969 Value *PtrN; 3970 if (Order.empty()) { 3971 Ptr0 = PointerOps.front(); 3972 PtrN = PointerOps.back(); 3973 } else { 3974 Ptr0 = PointerOps[Order.front()]; 3975 PtrN = PointerOps[Order.back()]; 3976 } 3977 Optional<int> Diff = 3978 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3979 // Check that the sorted loads are consecutive. 3980 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3981 return LoadsState::Vectorize; 3982 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3983 for (Value *V : VL) 3984 CommonAlignment = 3985 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3986 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3987 CommonAlignment)) 3988 return LoadsState::ScatterVectorize; 3989 } 3990 3991 return LoadsState::Gather; 3992 } 3993 3994 /// \return true if the specified list of values has only one instruction that 3995 /// requires scheduling, false otherwise. 3996 #ifndef NDEBUG 3997 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3998 Value *NeedsScheduling = nullptr; 3999 for (Value *V : VL) { 4000 if (doesNotNeedToBeScheduled(V)) 4001 continue; 4002 if (!NeedsScheduling) { 4003 NeedsScheduling = V; 4004 continue; 4005 } 4006 return false; 4007 } 4008 return NeedsScheduling; 4009 } 4010 #endif 4011 4012 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4013 const EdgeInfo &UserTreeIdx) { 4014 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4015 4016 SmallVector<int> ReuseShuffleIndicies; 4017 SmallVector<Value *> UniqueValues; 4018 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4019 &UserTreeIdx, 4020 this](const InstructionsState &S) { 4021 // Check that every instruction appears once in this bundle. 4022 DenseMap<Value *, unsigned> UniquePositions; 4023 for (Value *V : VL) { 4024 if (isConstant(V)) { 4025 ReuseShuffleIndicies.emplace_back( 4026 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4027 UniqueValues.emplace_back(V); 4028 continue; 4029 } 4030 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4031 ReuseShuffleIndicies.emplace_back(Res.first->second); 4032 if (Res.second) 4033 UniqueValues.emplace_back(V); 4034 } 4035 size_t NumUniqueScalarValues = UniqueValues.size(); 4036 if (NumUniqueScalarValues == VL.size()) { 4037 ReuseShuffleIndicies.clear(); 4038 } else { 4039 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4040 if (NumUniqueScalarValues <= 1 || 4041 (UniquePositions.size() == 1 && all_of(UniqueValues, 4042 [](Value *V) { 4043 return isa<UndefValue>(V) || 4044 !isConstant(V); 4045 })) || 4046 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4047 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4048 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4049 return false; 4050 } 4051 VL = UniqueValues; 4052 } 4053 return true; 4054 }; 4055 4056 InstructionsState S = getSameOpcode(VL); 4057 if (Depth == RecursionMaxDepth) { 4058 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4059 if (TryToFindDuplicates(S)) 4060 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4061 ReuseShuffleIndicies); 4062 return; 4063 } 4064 4065 // Don't handle scalable vectors 4066 if (S.getOpcode() == Instruction::ExtractElement && 4067 isa<ScalableVectorType>( 4068 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4069 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4070 if (TryToFindDuplicates(S)) 4071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4072 ReuseShuffleIndicies); 4073 return; 4074 } 4075 4076 // Don't handle vectors. 4077 if (S.OpValue->getType()->isVectorTy() && 4078 !isa<InsertElementInst>(S.OpValue)) { 4079 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4080 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4081 return; 4082 } 4083 4084 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4085 if (SI->getValueOperand()->getType()->isVectorTy()) { 4086 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4087 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4088 return; 4089 } 4090 4091 // If all of the operands are identical or constant we have a simple solution. 4092 // If we deal with insert/extract instructions, they all must have constant 4093 // indices, otherwise we should gather them, not try to vectorize. 4094 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4095 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4096 !all_of(VL, isVectorLikeInstWithConstOps))) { 4097 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4098 if (TryToFindDuplicates(S)) 4099 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4100 ReuseShuffleIndicies); 4101 return; 4102 } 4103 4104 // We now know that this is a vector of instructions of the same type from 4105 // the same block. 4106 4107 // Don't vectorize ephemeral values. 4108 for (Value *V : VL) { 4109 if (EphValues.count(V)) { 4110 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4111 << ") is ephemeral.\n"); 4112 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4113 return; 4114 } 4115 } 4116 4117 // Check if this is a duplicate of another entry. 4118 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4119 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4120 if (!E->isSame(VL)) { 4121 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4122 if (TryToFindDuplicates(S)) 4123 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4124 ReuseShuffleIndicies); 4125 return; 4126 } 4127 // Record the reuse of the tree node. FIXME, currently this is only used to 4128 // properly draw the graph rather than for the actual vectorization. 4129 E->UserTreeIndices.push_back(UserTreeIdx); 4130 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4131 << ".\n"); 4132 return; 4133 } 4134 4135 // Check that none of the instructions in the bundle are already in the tree. 4136 for (Value *V : VL) { 4137 auto *I = dyn_cast<Instruction>(V); 4138 if (!I) 4139 continue; 4140 if (getTreeEntry(I)) { 4141 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4142 << ") is already in tree.\n"); 4143 if (TryToFindDuplicates(S)) 4144 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4145 ReuseShuffleIndicies); 4146 return; 4147 } 4148 } 4149 4150 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4151 for (Value *V : VL) { 4152 if (is_contained(UserIgnoreList, V)) { 4153 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4154 if (TryToFindDuplicates(S)) 4155 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4156 ReuseShuffleIndicies); 4157 return; 4158 } 4159 } 4160 4161 // Check that all of the users of the scalars that we want to vectorize are 4162 // schedulable. 4163 auto *VL0 = cast<Instruction>(S.OpValue); 4164 BasicBlock *BB = VL0->getParent(); 4165 4166 if (!DT->isReachableFromEntry(BB)) { 4167 // Don't go into unreachable blocks. They may contain instructions with 4168 // dependency cycles which confuse the final scheduling. 4169 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4170 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4171 return; 4172 } 4173 4174 // Check that every instruction appears once in this bundle. 4175 if (!TryToFindDuplicates(S)) 4176 return; 4177 4178 auto &BSRef = BlocksSchedules[BB]; 4179 if (!BSRef) 4180 BSRef = std::make_unique<BlockScheduling>(BB); 4181 4182 BlockScheduling &BS = *BSRef; 4183 4184 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4185 #ifdef EXPENSIVE_CHECKS 4186 // Make sure we didn't break any internal invariants 4187 BS.verify(); 4188 #endif 4189 if (!Bundle) { 4190 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4191 assert((!BS.getScheduleData(VL0) || 4192 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4193 "tryScheduleBundle should cancelScheduling on failure"); 4194 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4195 ReuseShuffleIndicies); 4196 return; 4197 } 4198 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4199 4200 unsigned ShuffleOrOp = S.isAltShuffle() ? 4201 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4202 switch (ShuffleOrOp) { 4203 case Instruction::PHI: { 4204 auto *PH = cast<PHINode>(VL0); 4205 4206 // Check for terminator values (e.g. invoke). 4207 for (Value *V : VL) 4208 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4209 Instruction *Term = dyn_cast<Instruction>(Incoming); 4210 if (Term && Term->isTerminator()) { 4211 LLVM_DEBUG(dbgs() 4212 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4213 BS.cancelScheduling(VL, VL0); 4214 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4215 ReuseShuffleIndicies); 4216 return; 4217 } 4218 } 4219 4220 TreeEntry *TE = 4221 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4222 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4223 4224 // Keeps the reordered operands to avoid code duplication. 4225 SmallVector<ValueList, 2> OperandsVec; 4226 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4227 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4228 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4229 TE->setOperand(I, Operands); 4230 OperandsVec.push_back(Operands); 4231 continue; 4232 } 4233 ValueList Operands; 4234 // Prepare the operand vector. 4235 for (Value *V : VL) 4236 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4237 PH->getIncomingBlock(I))); 4238 TE->setOperand(I, Operands); 4239 OperandsVec.push_back(Operands); 4240 } 4241 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4242 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4243 return; 4244 } 4245 case Instruction::ExtractValue: 4246 case Instruction::ExtractElement: { 4247 OrdersType CurrentOrder; 4248 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4249 if (Reuse) { 4250 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4251 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4252 ReuseShuffleIndicies); 4253 // This is a special case, as it does not gather, but at the same time 4254 // we are not extending buildTree_rec() towards the operands. 4255 ValueList Op0; 4256 Op0.assign(VL.size(), VL0->getOperand(0)); 4257 VectorizableTree.back()->setOperand(0, Op0); 4258 return; 4259 } 4260 if (!CurrentOrder.empty()) { 4261 LLVM_DEBUG({ 4262 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4263 "with order"; 4264 for (unsigned Idx : CurrentOrder) 4265 dbgs() << " " << Idx; 4266 dbgs() << "\n"; 4267 }); 4268 fixupOrderingIndices(CurrentOrder); 4269 // Insert new order with initial value 0, if it does not exist, 4270 // otherwise return the iterator to the existing one. 4271 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4272 ReuseShuffleIndicies, CurrentOrder); 4273 // This is a special case, as it does not gather, but at the same time 4274 // we are not extending buildTree_rec() towards the operands. 4275 ValueList Op0; 4276 Op0.assign(VL.size(), VL0->getOperand(0)); 4277 VectorizableTree.back()->setOperand(0, Op0); 4278 return; 4279 } 4280 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4281 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4282 ReuseShuffleIndicies); 4283 BS.cancelScheduling(VL, VL0); 4284 return; 4285 } 4286 case Instruction::InsertElement: { 4287 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4288 4289 // Check that we have a buildvector and not a shuffle of 2 or more 4290 // different vectors. 4291 ValueSet SourceVectors; 4292 for (Value *V : VL) { 4293 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4294 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4295 } 4296 4297 if (count_if(VL, [&SourceVectors](Value *V) { 4298 return !SourceVectors.contains(V); 4299 }) >= 2) { 4300 // Found 2nd source vector - cancel. 4301 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4302 "different source vectors.\n"); 4303 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4304 BS.cancelScheduling(VL, VL0); 4305 return; 4306 } 4307 4308 auto OrdCompare = [](const std::pair<int, int> &P1, 4309 const std::pair<int, int> &P2) { 4310 return P1.first > P2.first; 4311 }; 4312 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4313 decltype(OrdCompare)> 4314 Indices(OrdCompare); 4315 for (int I = 0, E = VL.size(); I < E; ++I) { 4316 unsigned Idx = *getInsertIndex(VL[I]); 4317 Indices.emplace(Idx, I); 4318 } 4319 OrdersType CurrentOrder(VL.size(), VL.size()); 4320 bool IsIdentity = true; 4321 for (int I = 0, E = VL.size(); I < E; ++I) { 4322 CurrentOrder[Indices.top().second] = I; 4323 IsIdentity &= Indices.top().second == I; 4324 Indices.pop(); 4325 } 4326 if (IsIdentity) 4327 CurrentOrder.clear(); 4328 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4329 None, CurrentOrder); 4330 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4331 4332 constexpr int NumOps = 2; 4333 ValueList VectorOperands[NumOps]; 4334 for (int I = 0; I < NumOps; ++I) { 4335 for (Value *V : VL) 4336 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4337 4338 TE->setOperand(I, VectorOperands[I]); 4339 } 4340 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4341 return; 4342 } 4343 case Instruction::Load: { 4344 // Check that a vectorized load would load the same memory as a scalar 4345 // load. For example, we don't want to vectorize loads that are smaller 4346 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4347 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4348 // from such a struct, we read/write packed bits disagreeing with the 4349 // unvectorized version. 4350 SmallVector<Value *> PointerOps; 4351 OrdersType CurrentOrder; 4352 TreeEntry *TE = nullptr; 4353 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4354 PointerOps)) { 4355 case LoadsState::Vectorize: 4356 if (CurrentOrder.empty()) { 4357 // Original loads are consecutive and does not require reordering. 4358 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4359 ReuseShuffleIndicies); 4360 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4361 } else { 4362 fixupOrderingIndices(CurrentOrder); 4363 // Need to reorder. 4364 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4365 ReuseShuffleIndicies, CurrentOrder); 4366 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4367 } 4368 TE->setOperandsInOrder(); 4369 break; 4370 case LoadsState::ScatterVectorize: 4371 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4372 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4373 UserTreeIdx, ReuseShuffleIndicies); 4374 TE->setOperandsInOrder(); 4375 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4376 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4377 break; 4378 case LoadsState::Gather: 4379 BS.cancelScheduling(VL, VL0); 4380 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4381 ReuseShuffleIndicies); 4382 #ifndef NDEBUG 4383 Type *ScalarTy = VL0->getType(); 4384 if (DL->getTypeSizeInBits(ScalarTy) != 4385 DL->getTypeAllocSizeInBits(ScalarTy)) 4386 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4387 else if (any_of(VL, [](Value *V) { 4388 return !cast<LoadInst>(V)->isSimple(); 4389 })) 4390 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4391 else 4392 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4393 #endif // NDEBUG 4394 break; 4395 } 4396 return; 4397 } 4398 case Instruction::ZExt: 4399 case Instruction::SExt: 4400 case Instruction::FPToUI: 4401 case Instruction::FPToSI: 4402 case Instruction::FPExt: 4403 case Instruction::PtrToInt: 4404 case Instruction::IntToPtr: 4405 case Instruction::SIToFP: 4406 case Instruction::UIToFP: 4407 case Instruction::Trunc: 4408 case Instruction::FPTrunc: 4409 case Instruction::BitCast: { 4410 Type *SrcTy = VL0->getOperand(0)->getType(); 4411 for (Value *V : VL) { 4412 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4413 if (Ty != SrcTy || !isValidElementType(Ty)) { 4414 BS.cancelScheduling(VL, VL0); 4415 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4416 ReuseShuffleIndicies); 4417 LLVM_DEBUG(dbgs() 4418 << "SLP: Gathering casts with different src types.\n"); 4419 return; 4420 } 4421 } 4422 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4423 ReuseShuffleIndicies); 4424 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4425 4426 TE->setOperandsInOrder(); 4427 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4428 ValueList Operands; 4429 // Prepare the operand vector. 4430 for (Value *V : VL) 4431 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4432 4433 buildTree_rec(Operands, Depth + 1, {TE, i}); 4434 } 4435 return; 4436 } 4437 case Instruction::ICmp: 4438 case Instruction::FCmp: { 4439 // Check that all of the compares have the same predicate. 4440 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4441 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4442 Type *ComparedTy = VL0->getOperand(0)->getType(); 4443 for (Value *V : VL) { 4444 CmpInst *Cmp = cast<CmpInst>(V); 4445 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4446 Cmp->getOperand(0)->getType() != ComparedTy) { 4447 BS.cancelScheduling(VL, VL0); 4448 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4449 ReuseShuffleIndicies); 4450 LLVM_DEBUG(dbgs() 4451 << "SLP: Gathering cmp with different predicate.\n"); 4452 return; 4453 } 4454 } 4455 4456 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4457 ReuseShuffleIndicies); 4458 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4459 4460 ValueList Left, Right; 4461 if (cast<CmpInst>(VL0)->isCommutative()) { 4462 // Commutative predicate - collect + sort operands of the instructions 4463 // so that each side is more likely to have the same opcode. 4464 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4465 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4466 } else { 4467 // Collect operands - commute if it uses the swapped predicate. 4468 for (Value *V : VL) { 4469 auto *Cmp = cast<CmpInst>(V); 4470 Value *LHS = Cmp->getOperand(0); 4471 Value *RHS = Cmp->getOperand(1); 4472 if (Cmp->getPredicate() != P0) 4473 std::swap(LHS, RHS); 4474 Left.push_back(LHS); 4475 Right.push_back(RHS); 4476 } 4477 } 4478 TE->setOperand(0, Left); 4479 TE->setOperand(1, Right); 4480 buildTree_rec(Left, Depth + 1, {TE, 0}); 4481 buildTree_rec(Right, Depth + 1, {TE, 1}); 4482 return; 4483 } 4484 case Instruction::Select: 4485 case Instruction::FNeg: 4486 case Instruction::Add: 4487 case Instruction::FAdd: 4488 case Instruction::Sub: 4489 case Instruction::FSub: 4490 case Instruction::Mul: 4491 case Instruction::FMul: 4492 case Instruction::UDiv: 4493 case Instruction::SDiv: 4494 case Instruction::FDiv: 4495 case Instruction::URem: 4496 case Instruction::SRem: 4497 case Instruction::FRem: 4498 case Instruction::Shl: 4499 case Instruction::LShr: 4500 case Instruction::AShr: 4501 case Instruction::And: 4502 case Instruction::Or: 4503 case Instruction::Xor: { 4504 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4505 ReuseShuffleIndicies); 4506 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4507 4508 // Sort operands of the instructions so that each side is more likely to 4509 // have the same opcode. 4510 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4511 ValueList Left, Right; 4512 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4513 TE->setOperand(0, Left); 4514 TE->setOperand(1, Right); 4515 buildTree_rec(Left, Depth + 1, {TE, 0}); 4516 buildTree_rec(Right, Depth + 1, {TE, 1}); 4517 return; 4518 } 4519 4520 TE->setOperandsInOrder(); 4521 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4522 ValueList Operands; 4523 // Prepare the operand vector. 4524 for (Value *V : VL) 4525 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4526 4527 buildTree_rec(Operands, Depth + 1, {TE, i}); 4528 } 4529 return; 4530 } 4531 case Instruction::GetElementPtr: { 4532 // We don't combine GEPs with complicated (nested) indexing. 4533 for (Value *V : VL) { 4534 if (cast<Instruction>(V)->getNumOperands() != 2) { 4535 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4536 BS.cancelScheduling(VL, VL0); 4537 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4538 ReuseShuffleIndicies); 4539 return; 4540 } 4541 } 4542 4543 // We can't combine several GEPs into one vector if they operate on 4544 // different types. 4545 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4546 for (Value *V : VL) { 4547 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4548 if (Ty0 != CurTy) { 4549 LLVM_DEBUG(dbgs() 4550 << "SLP: not-vectorizable GEP (different types).\n"); 4551 BS.cancelScheduling(VL, VL0); 4552 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4553 ReuseShuffleIndicies); 4554 return; 4555 } 4556 } 4557 4558 // We don't combine GEPs with non-constant indexes. 4559 Type *Ty1 = VL0->getOperand(1)->getType(); 4560 for (Value *V : VL) { 4561 auto Op = cast<Instruction>(V)->getOperand(1); 4562 if (!isa<ConstantInt>(Op) || 4563 (Op->getType() != Ty1 && 4564 Op->getType()->getScalarSizeInBits() > 4565 DL->getIndexSizeInBits( 4566 V->getType()->getPointerAddressSpace()))) { 4567 LLVM_DEBUG(dbgs() 4568 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4569 BS.cancelScheduling(VL, VL0); 4570 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4571 ReuseShuffleIndicies); 4572 return; 4573 } 4574 } 4575 4576 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4577 ReuseShuffleIndicies); 4578 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4579 SmallVector<ValueList, 2> Operands(2); 4580 // Prepare the operand vector for pointer operands. 4581 for (Value *V : VL) 4582 Operands.front().push_back( 4583 cast<GetElementPtrInst>(V)->getPointerOperand()); 4584 TE->setOperand(0, Operands.front()); 4585 // Need to cast all indices to the same type before vectorization to 4586 // avoid crash. 4587 // Required to be able to find correct matches between different gather 4588 // nodes and reuse the vectorized values rather than trying to gather them 4589 // again. 4590 int IndexIdx = 1; 4591 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4592 Type *Ty = all_of(VL, 4593 [VL0Ty, IndexIdx](Value *V) { 4594 return VL0Ty == cast<GetElementPtrInst>(V) 4595 ->getOperand(IndexIdx) 4596 ->getType(); 4597 }) 4598 ? VL0Ty 4599 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4600 ->getPointerOperandType() 4601 ->getScalarType()); 4602 // Prepare the operand vector. 4603 for (Value *V : VL) { 4604 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4605 auto *CI = cast<ConstantInt>(Op); 4606 Operands.back().push_back(ConstantExpr::getIntegerCast( 4607 CI, Ty, CI->getValue().isSignBitSet())); 4608 } 4609 TE->setOperand(IndexIdx, Operands.back()); 4610 4611 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4612 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4613 return; 4614 } 4615 case Instruction::Store: { 4616 // Check if the stores are consecutive or if we need to swizzle them. 4617 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4618 // Avoid types that are padded when being allocated as scalars, while 4619 // being packed together in a vector (such as i1). 4620 if (DL->getTypeSizeInBits(ScalarTy) != 4621 DL->getTypeAllocSizeInBits(ScalarTy)) { 4622 BS.cancelScheduling(VL, VL0); 4623 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4624 ReuseShuffleIndicies); 4625 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4626 return; 4627 } 4628 // Make sure all stores in the bundle are simple - we can't vectorize 4629 // atomic or volatile stores. 4630 SmallVector<Value *, 4> PointerOps(VL.size()); 4631 ValueList Operands(VL.size()); 4632 auto POIter = PointerOps.begin(); 4633 auto OIter = Operands.begin(); 4634 for (Value *V : VL) { 4635 auto *SI = cast<StoreInst>(V); 4636 if (!SI->isSimple()) { 4637 BS.cancelScheduling(VL, VL0); 4638 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4639 ReuseShuffleIndicies); 4640 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4641 return; 4642 } 4643 *POIter = SI->getPointerOperand(); 4644 *OIter = SI->getValueOperand(); 4645 ++POIter; 4646 ++OIter; 4647 } 4648 4649 OrdersType CurrentOrder; 4650 // Check the order of pointer operands. 4651 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4652 Value *Ptr0; 4653 Value *PtrN; 4654 if (CurrentOrder.empty()) { 4655 Ptr0 = PointerOps.front(); 4656 PtrN = PointerOps.back(); 4657 } else { 4658 Ptr0 = PointerOps[CurrentOrder.front()]; 4659 PtrN = PointerOps[CurrentOrder.back()]; 4660 } 4661 Optional<int> Dist = 4662 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4663 // Check that the sorted pointer operands are consecutive. 4664 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4665 if (CurrentOrder.empty()) { 4666 // Original stores are consecutive and does not require reordering. 4667 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4668 UserTreeIdx, ReuseShuffleIndicies); 4669 TE->setOperandsInOrder(); 4670 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4671 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4672 } else { 4673 fixupOrderingIndices(CurrentOrder); 4674 TreeEntry *TE = 4675 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4676 ReuseShuffleIndicies, CurrentOrder); 4677 TE->setOperandsInOrder(); 4678 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4679 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4680 } 4681 return; 4682 } 4683 } 4684 4685 BS.cancelScheduling(VL, VL0); 4686 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4687 ReuseShuffleIndicies); 4688 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4689 return; 4690 } 4691 case Instruction::Call: { 4692 // Check if the calls are all to the same vectorizable intrinsic or 4693 // library function. 4694 CallInst *CI = cast<CallInst>(VL0); 4695 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4696 4697 VFShape Shape = VFShape::get( 4698 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4699 false /*HasGlobalPred*/); 4700 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4701 4702 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4703 BS.cancelScheduling(VL, VL0); 4704 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4705 ReuseShuffleIndicies); 4706 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4707 return; 4708 } 4709 Function *F = CI->getCalledFunction(); 4710 unsigned NumArgs = CI->arg_size(); 4711 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4712 for (unsigned j = 0; j != NumArgs; ++j) 4713 if (hasVectorInstrinsicScalarOpd(ID, j)) 4714 ScalarArgs[j] = CI->getArgOperand(j); 4715 for (Value *V : VL) { 4716 CallInst *CI2 = dyn_cast<CallInst>(V); 4717 if (!CI2 || CI2->getCalledFunction() != F || 4718 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4719 (VecFunc && 4720 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4721 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4722 BS.cancelScheduling(VL, VL0); 4723 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4724 ReuseShuffleIndicies); 4725 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4726 << "\n"); 4727 return; 4728 } 4729 // Some intrinsics have scalar arguments and should be same in order for 4730 // them to be vectorized. 4731 for (unsigned j = 0; j != NumArgs; ++j) { 4732 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4733 Value *A1J = CI2->getArgOperand(j); 4734 if (ScalarArgs[j] != A1J) { 4735 BS.cancelScheduling(VL, VL0); 4736 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4737 ReuseShuffleIndicies); 4738 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4739 << " argument " << ScalarArgs[j] << "!=" << A1J 4740 << "\n"); 4741 return; 4742 } 4743 } 4744 } 4745 // Verify that the bundle operands are identical between the two calls. 4746 if (CI->hasOperandBundles() && 4747 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4748 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4749 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4750 BS.cancelScheduling(VL, VL0); 4751 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4752 ReuseShuffleIndicies); 4753 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4754 << *CI << "!=" << *V << '\n'); 4755 return; 4756 } 4757 } 4758 4759 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4760 ReuseShuffleIndicies); 4761 TE->setOperandsInOrder(); 4762 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4763 // For scalar operands no need to to create an entry since no need to 4764 // vectorize it. 4765 if (hasVectorInstrinsicScalarOpd(ID, i)) 4766 continue; 4767 ValueList Operands; 4768 // Prepare the operand vector. 4769 for (Value *V : VL) { 4770 auto *CI2 = cast<CallInst>(V); 4771 Operands.push_back(CI2->getArgOperand(i)); 4772 } 4773 buildTree_rec(Operands, Depth + 1, {TE, i}); 4774 } 4775 return; 4776 } 4777 case Instruction::ShuffleVector: { 4778 // If this is not an alternate sequence of opcode like add-sub 4779 // then do not vectorize this instruction. 4780 if (!S.isAltShuffle()) { 4781 BS.cancelScheduling(VL, VL0); 4782 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4783 ReuseShuffleIndicies); 4784 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4785 return; 4786 } 4787 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4788 ReuseShuffleIndicies); 4789 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4790 4791 // Reorder operands if reordering would enable vectorization. 4792 auto *CI = dyn_cast<CmpInst>(VL0); 4793 if (isa<BinaryOperator>(VL0) || CI) { 4794 ValueList Left, Right; 4795 if (!CI || all_of(VL, [](Value *V) { 4796 return cast<CmpInst>(V)->isCommutative(); 4797 })) { 4798 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4799 } else { 4800 CmpInst::Predicate P0 = CI->getPredicate(); 4801 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4802 assert(P0 != AltP0 && 4803 "Expected different main/alternate predicates."); 4804 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4805 Value *BaseOp0 = VL0->getOperand(0); 4806 Value *BaseOp1 = VL0->getOperand(1); 4807 // Collect operands - commute if it uses the swapped predicate or 4808 // alternate operation. 4809 for (Value *V : VL) { 4810 auto *Cmp = cast<CmpInst>(V); 4811 Value *LHS = Cmp->getOperand(0); 4812 Value *RHS = Cmp->getOperand(1); 4813 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4814 if (P0 == AltP0Swapped) { 4815 if (CI != Cmp && S.AltOp != Cmp && 4816 ((P0 == CurrentPred && 4817 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4818 (AltP0 == CurrentPred && 4819 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4820 std::swap(LHS, RHS); 4821 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4822 std::swap(LHS, RHS); 4823 } 4824 Left.push_back(LHS); 4825 Right.push_back(RHS); 4826 } 4827 } 4828 TE->setOperand(0, Left); 4829 TE->setOperand(1, Right); 4830 buildTree_rec(Left, Depth + 1, {TE, 0}); 4831 buildTree_rec(Right, Depth + 1, {TE, 1}); 4832 return; 4833 } 4834 4835 TE->setOperandsInOrder(); 4836 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4837 ValueList Operands; 4838 // Prepare the operand vector. 4839 for (Value *V : VL) 4840 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4841 4842 buildTree_rec(Operands, Depth + 1, {TE, i}); 4843 } 4844 return; 4845 } 4846 default: 4847 BS.cancelScheduling(VL, VL0); 4848 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4849 ReuseShuffleIndicies); 4850 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4851 return; 4852 } 4853 } 4854 4855 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4856 unsigned N = 1; 4857 Type *EltTy = T; 4858 4859 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4860 isa<VectorType>(EltTy)) { 4861 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4862 // Check that struct is homogeneous. 4863 for (const auto *Ty : ST->elements()) 4864 if (Ty != *ST->element_begin()) 4865 return 0; 4866 N *= ST->getNumElements(); 4867 EltTy = *ST->element_begin(); 4868 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4869 N *= AT->getNumElements(); 4870 EltTy = AT->getElementType(); 4871 } else { 4872 auto *VT = cast<FixedVectorType>(EltTy); 4873 N *= VT->getNumElements(); 4874 EltTy = VT->getElementType(); 4875 } 4876 } 4877 4878 if (!isValidElementType(EltTy)) 4879 return 0; 4880 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4881 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4882 return 0; 4883 return N; 4884 } 4885 4886 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4887 SmallVectorImpl<unsigned> &CurrentOrder) const { 4888 const auto *It = find_if(VL, [](Value *V) { 4889 return isa<ExtractElementInst, ExtractValueInst>(V); 4890 }); 4891 assert(It != VL.end() && "Expected at least one extract instruction."); 4892 auto *E0 = cast<Instruction>(*It); 4893 assert(all_of(VL, 4894 [](Value *V) { 4895 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4896 V); 4897 }) && 4898 "Invalid opcode"); 4899 // Check if all of the extracts come from the same vector and from the 4900 // correct offset. 4901 Value *Vec = E0->getOperand(0); 4902 4903 CurrentOrder.clear(); 4904 4905 // We have to extract from a vector/aggregate with the same number of elements. 4906 unsigned NElts; 4907 if (E0->getOpcode() == Instruction::ExtractValue) { 4908 const DataLayout &DL = E0->getModule()->getDataLayout(); 4909 NElts = canMapToVector(Vec->getType(), DL); 4910 if (!NElts) 4911 return false; 4912 // Check if load can be rewritten as load of vector. 4913 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4914 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4915 return false; 4916 } else { 4917 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4918 } 4919 4920 if (NElts != VL.size()) 4921 return false; 4922 4923 // Check that all of the indices extract from the correct offset. 4924 bool ShouldKeepOrder = true; 4925 unsigned E = VL.size(); 4926 // Assign to all items the initial value E + 1 so we can check if the extract 4927 // instruction index was used already. 4928 // Also, later we can check that all the indices are used and we have a 4929 // consecutive access in the extract instructions, by checking that no 4930 // element of CurrentOrder still has value E + 1. 4931 CurrentOrder.assign(E, E); 4932 unsigned I = 0; 4933 for (; I < E; ++I) { 4934 auto *Inst = dyn_cast<Instruction>(VL[I]); 4935 if (!Inst) 4936 continue; 4937 if (Inst->getOperand(0) != Vec) 4938 break; 4939 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4940 if (isa<UndefValue>(EE->getIndexOperand())) 4941 continue; 4942 Optional<unsigned> Idx = getExtractIndex(Inst); 4943 if (!Idx) 4944 break; 4945 const unsigned ExtIdx = *Idx; 4946 if (ExtIdx != I) { 4947 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4948 break; 4949 ShouldKeepOrder = false; 4950 CurrentOrder[ExtIdx] = I; 4951 } else { 4952 if (CurrentOrder[I] != E) 4953 break; 4954 CurrentOrder[I] = I; 4955 } 4956 } 4957 if (I < E) { 4958 CurrentOrder.clear(); 4959 return false; 4960 } 4961 if (ShouldKeepOrder) 4962 CurrentOrder.clear(); 4963 4964 return ShouldKeepOrder; 4965 } 4966 4967 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4968 ArrayRef<Value *> VectorizedVals) const { 4969 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4970 all_of(I->users(), [this](User *U) { 4971 return ScalarToTreeEntry.count(U) > 0 || 4972 isVectorLikeInstWithConstOps(U) || 4973 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4974 }); 4975 } 4976 4977 static std::pair<InstructionCost, InstructionCost> 4978 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4979 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4980 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4981 4982 // Calculate the cost of the scalar and vector calls. 4983 SmallVector<Type *, 4> VecTys; 4984 for (Use &Arg : CI->args()) 4985 VecTys.push_back( 4986 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4987 FastMathFlags FMF; 4988 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4989 FMF = FPCI->getFastMathFlags(); 4990 SmallVector<const Value *> Arguments(CI->args()); 4991 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4992 dyn_cast<IntrinsicInst>(CI)); 4993 auto IntrinsicCost = 4994 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4995 4996 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4997 VecTy->getNumElements())), 4998 false /*HasGlobalPred*/); 4999 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5000 auto LibCost = IntrinsicCost; 5001 if (!CI->isNoBuiltin() && VecFunc) { 5002 // Calculate the cost of the vector library call. 5003 // If the corresponding vector call is cheaper, return its cost. 5004 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5005 TTI::TCK_RecipThroughput); 5006 } 5007 return {IntrinsicCost, LibCost}; 5008 } 5009 5010 /// Compute the cost of creating a vector of type \p VecTy containing the 5011 /// extracted values from \p VL. 5012 static InstructionCost 5013 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5014 TargetTransformInfo::ShuffleKind ShuffleKind, 5015 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5016 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5017 5018 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5019 VecTy->getNumElements() < NumOfParts) 5020 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5021 5022 bool AllConsecutive = true; 5023 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5024 unsigned Idx = -1; 5025 InstructionCost Cost = 0; 5026 5027 // Process extracts in blocks of EltsPerVector to check if the source vector 5028 // operand can be re-used directly. If not, add the cost of creating a shuffle 5029 // to extract the values into a vector register. 5030 for (auto *V : VL) { 5031 ++Idx; 5032 5033 // Need to exclude undefs from analysis. 5034 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5035 continue; 5036 5037 // Reached the start of a new vector registers. 5038 if (Idx % EltsPerVector == 0) { 5039 AllConsecutive = true; 5040 continue; 5041 } 5042 5043 // Check all extracts for a vector register on the target directly 5044 // extract values in order. 5045 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5046 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5047 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5048 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5049 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5050 } 5051 5052 if (AllConsecutive) 5053 continue; 5054 5055 // Skip all indices, except for the last index per vector block. 5056 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5057 continue; 5058 5059 // If we have a series of extracts which are not consecutive and hence 5060 // cannot re-use the source vector register directly, compute the shuffle 5061 // cost to extract the a vector with EltsPerVector elements. 5062 Cost += TTI.getShuffleCost( 5063 TargetTransformInfo::SK_PermuteSingleSrc, 5064 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5065 } 5066 return Cost; 5067 } 5068 5069 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5070 /// operations operands. 5071 static void 5072 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5073 ArrayRef<int> ReusesIndices, 5074 const function_ref<bool(Instruction *)> IsAltOp, 5075 SmallVectorImpl<int> &Mask, 5076 SmallVectorImpl<Value *> *OpScalars = nullptr, 5077 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5078 unsigned Sz = VL.size(); 5079 Mask.assign(Sz, UndefMaskElem); 5080 SmallVector<int> OrderMask; 5081 if (!ReorderIndices.empty()) 5082 inversePermutation(ReorderIndices, OrderMask); 5083 for (unsigned I = 0; I < Sz; ++I) { 5084 unsigned Idx = I; 5085 if (!ReorderIndices.empty()) 5086 Idx = OrderMask[I]; 5087 auto *OpInst = cast<Instruction>(VL[Idx]); 5088 if (IsAltOp(OpInst)) { 5089 Mask[I] = Sz + Idx; 5090 if (AltScalars) 5091 AltScalars->push_back(OpInst); 5092 } else { 5093 Mask[I] = Idx; 5094 if (OpScalars) 5095 OpScalars->push_back(OpInst); 5096 } 5097 } 5098 if (!ReusesIndices.empty()) { 5099 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5100 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5101 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5102 }); 5103 Mask.swap(NewMask); 5104 } 5105 } 5106 5107 /// Checks if the specified instruction \p I is an alternate operation for the 5108 /// given \p MainOp and \p AltOp instructions. 5109 static bool isAlternateInstruction(const Instruction *I, 5110 const Instruction *MainOp, 5111 const Instruction *AltOp) { 5112 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5113 auto *AltCI0 = cast<CmpInst>(AltOp); 5114 auto *CI = cast<CmpInst>(I); 5115 CmpInst::Predicate P0 = CI0->getPredicate(); 5116 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5117 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5118 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5119 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5120 if (P0 == AltP0Swapped) 5121 return I == AltCI0 || 5122 (I != MainOp && 5123 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5124 CI->getOperand(0), CI->getOperand(1))); 5125 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5126 } 5127 return I->getOpcode() == AltOp->getOpcode(); 5128 } 5129 5130 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5131 ArrayRef<Value *> VectorizedVals) { 5132 ArrayRef<Value*> VL = E->Scalars; 5133 5134 Type *ScalarTy = VL[0]->getType(); 5135 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5136 ScalarTy = SI->getValueOperand()->getType(); 5137 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5138 ScalarTy = CI->getOperand(0)->getType(); 5139 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5140 ScalarTy = IE->getOperand(1)->getType(); 5141 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5142 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5143 5144 // If we have computed a smaller type for the expression, update VecTy so 5145 // that the costs will be accurate. 5146 if (MinBWs.count(VL[0])) 5147 VecTy = FixedVectorType::get( 5148 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5149 unsigned EntryVF = E->getVectorFactor(); 5150 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5151 5152 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5153 // FIXME: it tries to fix a problem with MSVC buildbots. 5154 TargetTransformInfo &TTIRef = *TTI; 5155 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5156 VectorizedVals, E](InstructionCost &Cost) { 5157 DenseMap<Value *, int> ExtractVectorsTys; 5158 SmallPtrSet<Value *, 4> CheckedExtracts; 5159 for (auto *V : VL) { 5160 if (isa<UndefValue>(V)) 5161 continue; 5162 // If all users of instruction are going to be vectorized and this 5163 // instruction itself is not going to be vectorized, consider this 5164 // instruction as dead and remove its cost from the final cost of the 5165 // vectorized tree. 5166 // Also, avoid adjusting the cost for extractelements with multiple uses 5167 // in different graph entries. 5168 const TreeEntry *VE = getTreeEntry(V); 5169 if (!CheckedExtracts.insert(V).second || 5170 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5171 (VE && VE != E)) 5172 continue; 5173 auto *EE = cast<ExtractElementInst>(V); 5174 Optional<unsigned> EEIdx = getExtractIndex(EE); 5175 if (!EEIdx) 5176 continue; 5177 unsigned Idx = *EEIdx; 5178 if (TTIRef.getNumberOfParts(VecTy) != 5179 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5180 auto It = 5181 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5182 It->getSecond() = std::min<int>(It->second, Idx); 5183 } 5184 // Take credit for instruction that will become dead. 5185 if (EE->hasOneUse()) { 5186 Instruction *Ext = EE->user_back(); 5187 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5188 all_of(Ext->users(), 5189 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5190 // Use getExtractWithExtendCost() to calculate the cost of 5191 // extractelement/ext pair. 5192 Cost -= 5193 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5194 EE->getVectorOperandType(), Idx); 5195 // Add back the cost of s|zext which is subtracted separately. 5196 Cost += TTIRef.getCastInstrCost( 5197 Ext->getOpcode(), Ext->getType(), EE->getType(), 5198 TTI::getCastContextHint(Ext), CostKind, Ext); 5199 continue; 5200 } 5201 } 5202 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5203 EE->getVectorOperandType(), Idx); 5204 } 5205 // Add a cost for subvector extracts/inserts if required. 5206 for (const auto &Data : ExtractVectorsTys) { 5207 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5208 unsigned NumElts = VecTy->getNumElements(); 5209 if (Data.second % NumElts == 0) 5210 continue; 5211 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5212 unsigned Idx = (Data.second / NumElts) * NumElts; 5213 unsigned EENumElts = EEVTy->getNumElements(); 5214 if (Idx + NumElts <= EENumElts) { 5215 Cost += 5216 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5217 EEVTy, None, Idx, VecTy); 5218 } else { 5219 // Need to round up the subvector type vectorization factor to avoid a 5220 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5221 // <= EENumElts. 5222 auto *SubVT = 5223 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5224 Cost += 5225 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5226 EEVTy, None, Idx, SubVT); 5227 } 5228 } else { 5229 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5230 VecTy, None, 0, EEVTy); 5231 } 5232 } 5233 }; 5234 if (E->State == TreeEntry::NeedToGather) { 5235 if (allConstant(VL)) 5236 return 0; 5237 if (isa<InsertElementInst>(VL[0])) 5238 return InstructionCost::getInvalid(); 5239 SmallVector<int> Mask; 5240 SmallVector<const TreeEntry *> Entries; 5241 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5242 isGatherShuffledEntry(E, Mask, Entries); 5243 if (Shuffle.hasValue()) { 5244 InstructionCost GatherCost = 0; 5245 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5246 // Perfect match in the graph, will reuse the previously vectorized 5247 // node. Cost is 0. 5248 LLVM_DEBUG( 5249 dbgs() 5250 << "SLP: perfect diamond match for gather bundle that starts with " 5251 << *VL.front() << ".\n"); 5252 if (NeedToShuffleReuses) 5253 GatherCost = 5254 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5255 FinalVecTy, E->ReuseShuffleIndices); 5256 } else { 5257 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5258 << " entries for bundle that starts with " 5259 << *VL.front() << ".\n"); 5260 // Detected that instead of gather we can emit a shuffle of single/two 5261 // previously vectorized nodes. Add the cost of the permutation rather 5262 // than gather. 5263 ::addMask(Mask, E->ReuseShuffleIndices); 5264 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5265 } 5266 return GatherCost; 5267 } 5268 if ((E->getOpcode() == Instruction::ExtractElement || 5269 all_of(E->Scalars, 5270 [](Value *V) { 5271 return isa<ExtractElementInst, UndefValue>(V); 5272 })) && 5273 allSameType(VL)) { 5274 // Check that gather of extractelements can be represented as just a 5275 // shuffle of a single/two vectors the scalars are extracted from. 5276 SmallVector<int> Mask; 5277 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5278 isFixedVectorShuffle(VL, Mask); 5279 if (ShuffleKind.hasValue()) { 5280 // Found the bunch of extractelement instructions that must be gathered 5281 // into a vector and can be represented as a permutation elements in a 5282 // single input vector or of 2 input vectors. 5283 InstructionCost Cost = 5284 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5285 AdjustExtractsCost(Cost); 5286 if (NeedToShuffleReuses) 5287 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5288 FinalVecTy, E->ReuseShuffleIndices); 5289 return Cost; 5290 } 5291 } 5292 if (isSplat(VL)) { 5293 // Found the broadcasting of the single scalar, calculate the cost as the 5294 // broadcast. 5295 assert(VecTy == FinalVecTy && 5296 "No reused scalars expected for broadcast."); 5297 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5298 /*Mask=*/None, /*Index=*/0, 5299 /*SubTp=*/nullptr, /*Args=*/VL); 5300 } 5301 InstructionCost ReuseShuffleCost = 0; 5302 if (NeedToShuffleReuses) 5303 ReuseShuffleCost = TTI->getShuffleCost( 5304 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5305 // Improve gather cost for gather of loads, if we can group some of the 5306 // loads into vector loads. 5307 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5308 !E->isAltShuffle()) { 5309 BoUpSLP::ValueSet VectorizedLoads; 5310 unsigned StartIdx = 0; 5311 unsigned VF = VL.size() / 2; 5312 unsigned VectorizedCnt = 0; 5313 unsigned ScatterVectorizeCnt = 0; 5314 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5315 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5316 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5317 Cnt += VF) { 5318 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5319 if (!VectorizedLoads.count(Slice.front()) && 5320 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5321 SmallVector<Value *> PointerOps; 5322 OrdersType CurrentOrder; 5323 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5324 *SE, CurrentOrder, PointerOps); 5325 switch (LS) { 5326 case LoadsState::Vectorize: 5327 case LoadsState::ScatterVectorize: 5328 // Mark the vectorized loads so that we don't vectorize them 5329 // again. 5330 if (LS == LoadsState::Vectorize) 5331 ++VectorizedCnt; 5332 else 5333 ++ScatterVectorizeCnt; 5334 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5335 // If we vectorized initial block, no need to try to vectorize it 5336 // again. 5337 if (Cnt == StartIdx) 5338 StartIdx += VF; 5339 break; 5340 case LoadsState::Gather: 5341 break; 5342 } 5343 } 5344 } 5345 // Check if the whole array was vectorized already - exit. 5346 if (StartIdx >= VL.size()) 5347 break; 5348 // Found vectorizable parts - exit. 5349 if (!VectorizedLoads.empty()) 5350 break; 5351 } 5352 if (!VectorizedLoads.empty()) { 5353 InstructionCost GatherCost = 0; 5354 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5355 bool NeedInsertSubvectorAnalysis = 5356 !NumParts || (VL.size() / VF) > NumParts; 5357 // Get the cost for gathered loads. 5358 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5359 if (VectorizedLoads.contains(VL[I])) 5360 continue; 5361 GatherCost += getGatherCost(VL.slice(I, VF)); 5362 } 5363 // The cost for vectorized loads. 5364 InstructionCost ScalarsCost = 0; 5365 for (Value *V : VectorizedLoads) { 5366 auto *LI = cast<LoadInst>(V); 5367 ScalarsCost += TTI->getMemoryOpCost( 5368 Instruction::Load, LI->getType(), LI->getAlign(), 5369 LI->getPointerAddressSpace(), CostKind, LI); 5370 } 5371 auto *LI = cast<LoadInst>(E->getMainOp()); 5372 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5373 Align Alignment = LI->getAlign(); 5374 GatherCost += 5375 VectorizedCnt * 5376 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5377 LI->getPointerAddressSpace(), CostKind, LI); 5378 GatherCost += ScatterVectorizeCnt * 5379 TTI->getGatherScatterOpCost( 5380 Instruction::Load, LoadTy, LI->getPointerOperand(), 5381 /*VariableMask=*/false, Alignment, CostKind, LI); 5382 if (NeedInsertSubvectorAnalysis) { 5383 // Add the cost for the subvectors insert. 5384 for (int I = VF, E = VL.size(); I < E; I += VF) 5385 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5386 None, I, LoadTy); 5387 } 5388 return ReuseShuffleCost + GatherCost - ScalarsCost; 5389 } 5390 } 5391 return ReuseShuffleCost + getGatherCost(VL); 5392 } 5393 InstructionCost CommonCost = 0; 5394 SmallVector<int> Mask; 5395 if (!E->ReorderIndices.empty()) { 5396 SmallVector<int> NewMask; 5397 if (E->getOpcode() == Instruction::Store) { 5398 // For stores the order is actually a mask. 5399 NewMask.resize(E->ReorderIndices.size()); 5400 copy(E->ReorderIndices, NewMask.begin()); 5401 } else { 5402 inversePermutation(E->ReorderIndices, NewMask); 5403 } 5404 ::addMask(Mask, NewMask); 5405 } 5406 if (NeedToShuffleReuses) 5407 ::addMask(Mask, E->ReuseShuffleIndices); 5408 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5409 CommonCost = 5410 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5411 assert((E->State == TreeEntry::Vectorize || 5412 E->State == TreeEntry::ScatterVectorize) && 5413 "Unhandled state"); 5414 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5415 Instruction *VL0 = E->getMainOp(); 5416 unsigned ShuffleOrOp = 5417 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5418 switch (ShuffleOrOp) { 5419 case Instruction::PHI: 5420 return 0; 5421 5422 case Instruction::ExtractValue: 5423 case Instruction::ExtractElement: { 5424 // The common cost of removal ExtractElement/ExtractValue instructions + 5425 // the cost of shuffles, if required to resuffle the original vector. 5426 if (NeedToShuffleReuses) { 5427 unsigned Idx = 0; 5428 for (unsigned I : E->ReuseShuffleIndices) { 5429 if (ShuffleOrOp == Instruction::ExtractElement) { 5430 auto *EE = cast<ExtractElementInst>(VL[I]); 5431 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5432 EE->getVectorOperandType(), 5433 *getExtractIndex(EE)); 5434 } else { 5435 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5436 VecTy, Idx); 5437 ++Idx; 5438 } 5439 } 5440 Idx = EntryVF; 5441 for (Value *V : VL) { 5442 if (ShuffleOrOp == Instruction::ExtractElement) { 5443 auto *EE = cast<ExtractElementInst>(V); 5444 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5445 EE->getVectorOperandType(), 5446 *getExtractIndex(EE)); 5447 } else { 5448 --Idx; 5449 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5450 VecTy, Idx); 5451 } 5452 } 5453 } 5454 if (ShuffleOrOp == Instruction::ExtractValue) { 5455 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5456 auto *EI = cast<Instruction>(VL[I]); 5457 // Take credit for instruction that will become dead. 5458 if (EI->hasOneUse()) { 5459 Instruction *Ext = EI->user_back(); 5460 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5461 all_of(Ext->users(), 5462 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5463 // Use getExtractWithExtendCost() to calculate the cost of 5464 // extractelement/ext pair. 5465 CommonCost -= TTI->getExtractWithExtendCost( 5466 Ext->getOpcode(), Ext->getType(), VecTy, I); 5467 // Add back the cost of s|zext which is subtracted separately. 5468 CommonCost += TTI->getCastInstrCost( 5469 Ext->getOpcode(), Ext->getType(), EI->getType(), 5470 TTI::getCastContextHint(Ext), CostKind, Ext); 5471 continue; 5472 } 5473 } 5474 CommonCost -= 5475 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5476 } 5477 } else { 5478 AdjustExtractsCost(CommonCost); 5479 } 5480 return CommonCost; 5481 } 5482 case Instruction::InsertElement: { 5483 assert(E->ReuseShuffleIndices.empty() && 5484 "Unique insertelements only are expected."); 5485 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5486 5487 unsigned const NumElts = SrcVecTy->getNumElements(); 5488 unsigned const NumScalars = VL.size(); 5489 APInt DemandedElts = APInt::getZero(NumElts); 5490 // TODO: Add support for Instruction::InsertValue. 5491 SmallVector<int> Mask; 5492 if (!E->ReorderIndices.empty()) { 5493 inversePermutation(E->ReorderIndices, Mask); 5494 Mask.append(NumElts - NumScalars, UndefMaskElem); 5495 } else { 5496 Mask.assign(NumElts, UndefMaskElem); 5497 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5498 } 5499 unsigned Offset = *getInsertIndex(VL0); 5500 bool IsIdentity = true; 5501 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5502 Mask.swap(PrevMask); 5503 for (unsigned I = 0; I < NumScalars; ++I) { 5504 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5505 DemandedElts.setBit(InsertIdx); 5506 IsIdentity &= InsertIdx - Offset == I; 5507 Mask[InsertIdx - Offset] = I; 5508 } 5509 assert(Offset < NumElts && "Failed to find vector index offset"); 5510 5511 InstructionCost Cost = 0; 5512 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5513 /*Insert*/ true, /*Extract*/ false); 5514 5515 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5516 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5517 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5518 Cost += TTI->getShuffleCost( 5519 TargetTransformInfo::SK_PermuteSingleSrc, 5520 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5521 } else if (!IsIdentity) { 5522 auto *FirstInsert = 5523 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5524 return !is_contained(E->Scalars, 5525 cast<Instruction>(V)->getOperand(0)); 5526 })); 5527 if (isUndefVector(FirstInsert->getOperand(0))) { 5528 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5529 } else { 5530 SmallVector<int> InsertMask(NumElts); 5531 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5532 for (unsigned I = 0; I < NumElts; I++) { 5533 if (Mask[I] != UndefMaskElem) 5534 InsertMask[Offset + I] = NumElts + I; 5535 } 5536 Cost += 5537 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5538 } 5539 } 5540 5541 return Cost; 5542 } 5543 case Instruction::ZExt: 5544 case Instruction::SExt: 5545 case Instruction::FPToUI: 5546 case Instruction::FPToSI: 5547 case Instruction::FPExt: 5548 case Instruction::PtrToInt: 5549 case Instruction::IntToPtr: 5550 case Instruction::SIToFP: 5551 case Instruction::UIToFP: 5552 case Instruction::Trunc: 5553 case Instruction::FPTrunc: 5554 case Instruction::BitCast: { 5555 Type *SrcTy = VL0->getOperand(0)->getType(); 5556 InstructionCost ScalarEltCost = 5557 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5558 TTI::getCastContextHint(VL0), CostKind, VL0); 5559 if (NeedToShuffleReuses) { 5560 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5561 } 5562 5563 // Calculate the cost of this instruction. 5564 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5565 5566 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5567 InstructionCost VecCost = 0; 5568 // Check if the values are candidates to demote. 5569 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5570 VecCost = CommonCost + TTI->getCastInstrCost( 5571 E->getOpcode(), VecTy, SrcVecTy, 5572 TTI::getCastContextHint(VL0), CostKind, VL0); 5573 } 5574 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5575 return VecCost - ScalarCost; 5576 } 5577 case Instruction::FCmp: 5578 case Instruction::ICmp: 5579 case Instruction::Select: { 5580 // Calculate the cost of this instruction. 5581 InstructionCost ScalarEltCost = 5582 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5583 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5584 if (NeedToShuffleReuses) { 5585 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5586 } 5587 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5588 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5589 5590 // Check if all entries in VL are either compares or selects with compares 5591 // as condition that have the same predicates. 5592 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5593 bool First = true; 5594 for (auto *V : VL) { 5595 CmpInst::Predicate CurrentPred; 5596 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5597 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5598 !match(V, MatchCmp)) || 5599 (!First && VecPred != CurrentPred)) { 5600 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5601 break; 5602 } 5603 First = false; 5604 VecPred = CurrentPred; 5605 } 5606 5607 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5608 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5609 // Check if it is possible and profitable to use min/max for selects in 5610 // VL. 5611 // 5612 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5613 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5614 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5615 {VecTy, VecTy}); 5616 InstructionCost IntrinsicCost = 5617 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5618 // If the selects are the only uses of the compares, they will be dead 5619 // and we can adjust the cost by removing their cost. 5620 if (IntrinsicAndUse.second) 5621 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5622 MaskTy, VecPred, CostKind); 5623 VecCost = std::min(VecCost, IntrinsicCost); 5624 } 5625 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5626 return CommonCost + VecCost - ScalarCost; 5627 } 5628 case Instruction::FNeg: 5629 case Instruction::Add: 5630 case Instruction::FAdd: 5631 case Instruction::Sub: 5632 case Instruction::FSub: 5633 case Instruction::Mul: 5634 case Instruction::FMul: 5635 case Instruction::UDiv: 5636 case Instruction::SDiv: 5637 case Instruction::FDiv: 5638 case Instruction::URem: 5639 case Instruction::SRem: 5640 case Instruction::FRem: 5641 case Instruction::Shl: 5642 case Instruction::LShr: 5643 case Instruction::AShr: 5644 case Instruction::And: 5645 case Instruction::Or: 5646 case Instruction::Xor: { 5647 // Certain instructions can be cheaper to vectorize if they have a 5648 // constant second vector operand. 5649 TargetTransformInfo::OperandValueKind Op1VK = 5650 TargetTransformInfo::OK_AnyValue; 5651 TargetTransformInfo::OperandValueKind Op2VK = 5652 TargetTransformInfo::OK_UniformConstantValue; 5653 TargetTransformInfo::OperandValueProperties Op1VP = 5654 TargetTransformInfo::OP_None; 5655 TargetTransformInfo::OperandValueProperties Op2VP = 5656 TargetTransformInfo::OP_PowerOf2; 5657 5658 // If all operands are exactly the same ConstantInt then set the 5659 // operand kind to OK_UniformConstantValue. 5660 // If instead not all operands are constants, then set the operand kind 5661 // to OK_AnyValue. If all operands are constants but not the same, 5662 // then set the operand kind to OK_NonUniformConstantValue. 5663 ConstantInt *CInt0 = nullptr; 5664 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5665 const Instruction *I = cast<Instruction>(VL[i]); 5666 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5667 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5668 if (!CInt) { 5669 Op2VK = TargetTransformInfo::OK_AnyValue; 5670 Op2VP = TargetTransformInfo::OP_None; 5671 break; 5672 } 5673 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5674 !CInt->getValue().isPowerOf2()) 5675 Op2VP = TargetTransformInfo::OP_None; 5676 if (i == 0) { 5677 CInt0 = CInt; 5678 continue; 5679 } 5680 if (CInt0 != CInt) 5681 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5682 } 5683 5684 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5685 InstructionCost ScalarEltCost = 5686 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5687 Op2VK, Op1VP, Op2VP, Operands, VL0); 5688 if (NeedToShuffleReuses) { 5689 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5690 } 5691 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5692 InstructionCost VecCost = 5693 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5694 Op2VK, Op1VP, Op2VP, Operands, VL0); 5695 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5696 return CommonCost + VecCost - ScalarCost; 5697 } 5698 case Instruction::GetElementPtr: { 5699 TargetTransformInfo::OperandValueKind Op1VK = 5700 TargetTransformInfo::OK_AnyValue; 5701 TargetTransformInfo::OperandValueKind Op2VK = 5702 TargetTransformInfo::OK_UniformConstantValue; 5703 5704 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5705 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5706 if (NeedToShuffleReuses) { 5707 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5708 } 5709 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5710 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5711 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5712 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5713 return CommonCost + VecCost - ScalarCost; 5714 } 5715 case Instruction::Load: { 5716 // Cost of wide load - cost of scalar loads. 5717 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5718 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5719 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5720 if (NeedToShuffleReuses) { 5721 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5722 } 5723 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5724 InstructionCost VecLdCost; 5725 if (E->State == TreeEntry::Vectorize) { 5726 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5727 CostKind, VL0); 5728 } else { 5729 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5730 Align CommonAlignment = Alignment; 5731 for (Value *V : VL) 5732 CommonAlignment = 5733 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5734 VecLdCost = TTI->getGatherScatterOpCost( 5735 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5736 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5737 } 5738 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5739 return CommonCost + VecLdCost - ScalarLdCost; 5740 } 5741 case Instruction::Store: { 5742 // We know that we can merge the stores. Calculate the cost. 5743 bool IsReorder = !E->ReorderIndices.empty(); 5744 auto *SI = 5745 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5746 Align Alignment = SI->getAlign(); 5747 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5748 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5749 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5750 InstructionCost VecStCost = TTI->getMemoryOpCost( 5751 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5752 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5753 return CommonCost + VecStCost - ScalarStCost; 5754 } 5755 case Instruction::Call: { 5756 CallInst *CI = cast<CallInst>(VL0); 5757 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5758 5759 // Calculate the cost of the scalar and vector calls. 5760 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5761 InstructionCost ScalarEltCost = 5762 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5763 if (NeedToShuffleReuses) { 5764 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5765 } 5766 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5767 5768 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5769 InstructionCost VecCallCost = 5770 std::min(VecCallCosts.first, VecCallCosts.second); 5771 5772 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5773 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5774 << " for " << *CI << "\n"); 5775 5776 return CommonCost + VecCallCost - ScalarCallCost; 5777 } 5778 case Instruction::ShuffleVector: { 5779 assert(E->isAltShuffle() && 5780 ((Instruction::isBinaryOp(E->getOpcode()) && 5781 Instruction::isBinaryOp(E->getAltOpcode())) || 5782 (Instruction::isCast(E->getOpcode()) && 5783 Instruction::isCast(E->getAltOpcode())) || 5784 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5785 "Invalid Shuffle Vector Operand"); 5786 InstructionCost ScalarCost = 0; 5787 if (NeedToShuffleReuses) { 5788 for (unsigned Idx : E->ReuseShuffleIndices) { 5789 Instruction *I = cast<Instruction>(VL[Idx]); 5790 CommonCost -= TTI->getInstructionCost(I, CostKind); 5791 } 5792 for (Value *V : VL) { 5793 Instruction *I = cast<Instruction>(V); 5794 CommonCost += TTI->getInstructionCost(I, CostKind); 5795 } 5796 } 5797 for (Value *V : VL) { 5798 Instruction *I = cast<Instruction>(V); 5799 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5800 ScalarCost += TTI->getInstructionCost(I, CostKind); 5801 } 5802 // VecCost is equal to sum of the cost of creating 2 vectors 5803 // and the cost of creating shuffle. 5804 InstructionCost VecCost = 0; 5805 // Try to find the previous shuffle node with the same operands and same 5806 // main/alternate ops. 5807 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5808 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5809 if (TE.get() == E) 5810 break; 5811 if (TE->isAltShuffle() && 5812 ((TE->getOpcode() == E->getOpcode() && 5813 TE->getAltOpcode() == E->getAltOpcode()) || 5814 (TE->getOpcode() == E->getAltOpcode() && 5815 TE->getAltOpcode() == E->getOpcode())) && 5816 TE->hasEqualOperands(*E)) 5817 return true; 5818 } 5819 return false; 5820 }; 5821 if (TryFindNodeWithEqualOperands()) { 5822 LLVM_DEBUG({ 5823 dbgs() << "SLP: diamond match for alternate node found.\n"; 5824 E->dump(); 5825 }); 5826 // No need to add new vector costs here since we're going to reuse 5827 // same main/alternate vector ops, just do different shuffling. 5828 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5829 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5830 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5831 CostKind); 5832 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5833 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5834 Builder.getInt1Ty(), 5835 CI0->getPredicate(), CostKind, VL0); 5836 VecCost += TTI->getCmpSelInstrCost( 5837 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5838 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5839 E->getAltOp()); 5840 } else { 5841 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5842 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5843 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5844 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5845 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5846 TTI::CastContextHint::None, CostKind); 5847 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5848 TTI::CastContextHint::None, CostKind); 5849 } 5850 5851 SmallVector<int> Mask; 5852 buildShuffleEntryMask( 5853 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5854 [E](Instruction *I) { 5855 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5856 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5857 }, 5858 Mask); 5859 CommonCost = 5860 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5861 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5862 return CommonCost + VecCost - ScalarCost; 5863 } 5864 default: 5865 llvm_unreachable("Unknown instruction"); 5866 } 5867 } 5868 5869 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5870 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5871 << VectorizableTree.size() << " is fully vectorizable .\n"); 5872 5873 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5874 SmallVector<int> Mask; 5875 return TE->State == TreeEntry::NeedToGather && 5876 !any_of(TE->Scalars, 5877 [this](Value *V) { return EphValues.contains(V); }) && 5878 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5879 TE->Scalars.size() < Limit || 5880 ((TE->getOpcode() == Instruction::ExtractElement || 5881 all_of(TE->Scalars, 5882 [](Value *V) { 5883 return isa<ExtractElementInst, UndefValue>(V); 5884 })) && 5885 isFixedVectorShuffle(TE->Scalars, Mask)) || 5886 (TE->State == TreeEntry::NeedToGather && 5887 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5888 }; 5889 5890 // We only handle trees of heights 1 and 2. 5891 if (VectorizableTree.size() == 1 && 5892 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5893 (ForReduction && 5894 AreVectorizableGathers(VectorizableTree[0].get(), 5895 VectorizableTree[0]->Scalars.size()) && 5896 VectorizableTree[0]->getVectorFactor() > 2))) 5897 return true; 5898 5899 if (VectorizableTree.size() != 2) 5900 return false; 5901 5902 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5903 // with the second gather nodes if they have less scalar operands rather than 5904 // the initial tree element (may be profitable to shuffle the second gather) 5905 // or they are extractelements, which form shuffle. 5906 SmallVector<int> Mask; 5907 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5908 AreVectorizableGathers(VectorizableTree[1].get(), 5909 VectorizableTree[0]->Scalars.size())) 5910 return true; 5911 5912 // Gathering cost would be too much for tiny trees. 5913 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5914 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5915 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5916 return false; 5917 5918 return true; 5919 } 5920 5921 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5922 TargetTransformInfo *TTI, 5923 bool MustMatchOrInst) { 5924 // Look past the root to find a source value. Arbitrarily follow the 5925 // path through operand 0 of any 'or'. Also, peek through optional 5926 // shift-left-by-multiple-of-8-bits. 5927 Value *ZextLoad = Root; 5928 const APInt *ShAmtC; 5929 bool FoundOr = false; 5930 while (!isa<ConstantExpr>(ZextLoad) && 5931 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5932 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5933 ShAmtC->urem(8) == 0))) { 5934 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5935 ZextLoad = BinOp->getOperand(0); 5936 if (BinOp->getOpcode() == Instruction::Or) 5937 FoundOr = true; 5938 } 5939 // Check if the input is an extended load of the required or/shift expression. 5940 Value *Load; 5941 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5942 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5943 return false; 5944 5945 // Require that the total load bit width is a legal integer type. 5946 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5947 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5948 Type *SrcTy = Load->getType(); 5949 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5950 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5951 return false; 5952 5953 // Everything matched - assume that we can fold the whole sequence using 5954 // load combining. 5955 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5956 << *(cast<Instruction>(Root)) << "\n"); 5957 5958 return true; 5959 } 5960 5961 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5962 if (RdxKind != RecurKind::Or) 5963 return false; 5964 5965 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5966 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5967 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5968 /* MatchOr */ false); 5969 } 5970 5971 bool BoUpSLP::isLoadCombineCandidate() const { 5972 // Peek through a final sequence of stores and check if all operations are 5973 // likely to be load-combined. 5974 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5975 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5976 Value *X; 5977 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5978 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5979 return false; 5980 } 5981 return true; 5982 } 5983 5984 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5985 // No need to vectorize inserts of gathered values. 5986 if (VectorizableTree.size() == 2 && 5987 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5988 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5989 return true; 5990 5991 // We can vectorize the tree if its size is greater than or equal to the 5992 // minimum size specified by the MinTreeSize command line option. 5993 if (VectorizableTree.size() >= MinTreeSize) 5994 return false; 5995 5996 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5997 // can vectorize it if we can prove it fully vectorizable. 5998 if (isFullyVectorizableTinyTree(ForReduction)) 5999 return false; 6000 6001 assert(VectorizableTree.empty() 6002 ? ExternalUses.empty() 6003 : true && "We shouldn't have any external users"); 6004 6005 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6006 // vectorizable. 6007 return true; 6008 } 6009 6010 InstructionCost BoUpSLP::getSpillCost() const { 6011 // Walk from the bottom of the tree to the top, tracking which values are 6012 // live. When we see a call instruction that is not part of our tree, 6013 // query TTI to see if there is a cost to keeping values live over it 6014 // (for example, if spills and fills are required). 6015 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6016 InstructionCost Cost = 0; 6017 6018 SmallPtrSet<Instruction*, 4> LiveValues; 6019 Instruction *PrevInst = nullptr; 6020 6021 // The entries in VectorizableTree are not necessarily ordered by their 6022 // position in basic blocks. Collect them and order them by dominance so later 6023 // instructions are guaranteed to be visited first. For instructions in 6024 // different basic blocks, we only scan to the beginning of the block, so 6025 // their order does not matter, as long as all instructions in a basic block 6026 // are grouped together. Using dominance ensures a deterministic order. 6027 SmallVector<Instruction *, 16> OrderedScalars; 6028 for (const auto &TEPtr : VectorizableTree) { 6029 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6030 if (!Inst) 6031 continue; 6032 OrderedScalars.push_back(Inst); 6033 } 6034 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6035 auto *NodeA = DT->getNode(A->getParent()); 6036 auto *NodeB = DT->getNode(B->getParent()); 6037 assert(NodeA && "Should only process reachable instructions"); 6038 assert(NodeB && "Should only process reachable instructions"); 6039 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6040 "Different nodes should have different DFS numbers"); 6041 if (NodeA != NodeB) 6042 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6043 return B->comesBefore(A); 6044 }); 6045 6046 for (Instruction *Inst : OrderedScalars) { 6047 if (!PrevInst) { 6048 PrevInst = Inst; 6049 continue; 6050 } 6051 6052 // Update LiveValues. 6053 LiveValues.erase(PrevInst); 6054 for (auto &J : PrevInst->operands()) { 6055 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6056 LiveValues.insert(cast<Instruction>(&*J)); 6057 } 6058 6059 LLVM_DEBUG({ 6060 dbgs() << "SLP: #LV: " << LiveValues.size(); 6061 for (auto *X : LiveValues) 6062 dbgs() << " " << X->getName(); 6063 dbgs() << ", Looking at "; 6064 Inst->dump(); 6065 }); 6066 6067 // Now find the sequence of instructions between PrevInst and Inst. 6068 unsigned NumCalls = 0; 6069 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6070 PrevInstIt = 6071 PrevInst->getIterator().getReverse(); 6072 while (InstIt != PrevInstIt) { 6073 if (PrevInstIt == PrevInst->getParent()->rend()) { 6074 PrevInstIt = Inst->getParent()->rbegin(); 6075 continue; 6076 } 6077 6078 // Debug information does not impact spill cost. 6079 if ((isa<CallInst>(&*PrevInstIt) && 6080 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6081 &*PrevInstIt != PrevInst) 6082 NumCalls++; 6083 6084 ++PrevInstIt; 6085 } 6086 6087 if (NumCalls) { 6088 SmallVector<Type*, 4> V; 6089 for (auto *II : LiveValues) { 6090 auto *ScalarTy = II->getType(); 6091 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6092 ScalarTy = VectorTy->getElementType(); 6093 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6094 } 6095 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6096 } 6097 6098 PrevInst = Inst; 6099 } 6100 6101 return Cost; 6102 } 6103 6104 /// Check if two insertelement instructions are from the same buildvector. 6105 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6106 InsertElementInst *V) { 6107 // Instructions must be from the same basic blocks. 6108 if (VU->getParent() != V->getParent()) 6109 return false; 6110 // Checks if 2 insertelements are from the same buildvector. 6111 if (VU->getType() != V->getType()) 6112 return false; 6113 // Multiple used inserts are separate nodes. 6114 if (!VU->hasOneUse() && !V->hasOneUse()) 6115 return false; 6116 auto *IE1 = VU; 6117 auto *IE2 = V; 6118 // Go through the vector operand of insertelement instructions trying to find 6119 // either VU as the original vector for IE2 or V as the original vector for 6120 // IE1. 6121 do { 6122 if (IE2 == VU || IE1 == V) 6123 return true; 6124 if (IE1) { 6125 if (IE1 != VU && !IE1->hasOneUse()) 6126 IE1 = nullptr; 6127 else 6128 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6129 } 6130 if (IE2) { 6131 if (IE2 != V && !IE2->hasOneUse()) 6132 IE2 = nullptr; 6133 else 6134 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6135 } 6136 } while (IE1 || IE2); 6137 return false; 6138 } 6139 6140 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6141 InstructionCost Cost = 0; 6142 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6143 << VectorizableTree.size() << ".\n"); 6144 6145 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6146 6147 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6148 TreeEntry &TE = *VectorizableTree[I]; 6149 6150 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6151 Cost += C; 6152 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6153 << " for bundle that starts with " << *TE.Scalars[0] 6154 << ".\n" 6155 << "SLP: Current total cost = " << Cost << "\n"); 6156 } 6157 6158 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6159 InstructionCost ExtractCost = 0; 6160 SmallVector<unsigned> VF; 6161 SmallVector<SmallVector<int>> ShuffleMask; 6162 SmallVector<Value *> FirstUsers; 6163 SmallVector<APInt> DemandedElts; 6164 for (ExternalUser &EU : ExternalUses) { 6165 // We only add extract cost once for the same scalar. 6166 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6167 !ExtractCostCalculated.insert(EU.Scalar).second) 6168 continue; 6169 6170 // Uses by ephemeral values are free (because the ephemeral value will be 6171 // removed prior to code generation, and so the extraction will be 6172 // removed as well). 6173 if (EphValues.count(EU.User)) 6174 continue; 6175 6176 // No extract cost for vector "scalar" 6177 if (isa<FixedVectorType>(EU.Scalar->getType())) 6178 continue; 6179 6180 // Already counted the cost for external uses when tried to adjust the cost 6181 // for extractelements, no need to add it again. 6182 if (isa<ExtractElementInst>(EU.Scalar)) 6183 continue; 6184 6185 // If found user is an insertelement, do not calculate extract cost but try 6186 // to detect it as a final shuffled/identity match. 6187 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6188 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6189 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6190 if (InsertIdx) { 6191 auto *It = find_if(FirstUsers, [VU](Value *V) { 6192 return areTwoInsertFromSameBuildVector(VU, 6193 cast<InsertElementInst>(V)); 6194 }); 6195 int VecId = -1; 6196 if (It == FirstUsers.end()) { 6197 VF.push_back(FTy->getNumElements()); 6198 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6199 // Find the insertvector, vectorized in tree, if any. 6200 Value *Base = VU; 6201 while (isa<InsertElementInst>(Base)) { 6202 // Build the mask for the vectorized insertelement instructions. 6203 if (const TreeEntry *E = getTreeEntry(Base)) { 6204 VU = cast<InsertElementInst>(Base); 6205 do { 6206 int Idx = E->findLaneForValue(Base); 6207 ShuffleMask.back()[Idx] = Idx; 6208 Base = cast<InsertElementInst>(Base)->getOperand(0); 6209 } while (E == getTreeEntry(Base)); 6210 break; 6211 } 6212 Base = cast<InsertElementInst>(Base)->getOperand(0); 6213 } 6214 FirstUsers.push_back(VU); 6215 DemandedElts.push_back(APInt::getZero(VF.back())); 6216 VecId = FirstUsers.size() - 1; 6217 } else { 6218 VecId = std::distance(FirstUsers.begin(), It); 6219 } 6220 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6221 DemandedElts[VecId].setBit(*InsertIdx); 6222 continue; 6223 } 6224 } 6225 } 6226 6227 // If we plan to rewrite the tree in a smaller type, we will need to sign 6228 // extend the extracted value back to the original type. Here, we account 6229 // for the extract and the added cost of the sign extend if needed. 6230 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6231 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6232 if (MinBWs.count(ScalarRoot)) { 6233 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6234 auto Extend = 6235 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6236 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6237 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6238 VecTy, EU.Lane); 6239 } else { 6240 ExtractCost += 6241 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6242 } 6243 } 6244 6245 InstructionCost SpillCost = getSpillCost(); 6246 Cost += SpillCost + ExtractCost; 6247 if (FirstUsers.size() == 1) { 6248 int Limit = ShuffleMask.front().size() * 2; 6249 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6250 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6251 InstructionCost C = TTI->getShuffleCost( 6252 TTI::SK_PermuteSingleSrc, 6253 cast<FixedVectorType>(FirstUsers.front()->getType()), 6254 ShuffleMask.front()); 6255 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6256 << " for final shuffle of insertelement external users " 6257 << *VectorizableTree.front()->Scalars.front() << ".\n" 6258 << "SLP: Current total cost = " << Cost << "\n"); 6259 Cost += C; 6260 } 6261 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6262 cast<FixedVectorType>(FirstUsers.front()->getType()), 6263 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6264 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6265 << " for insertelements gather.\n" 6266 << "SLP: Current total cost = " << Cost << "\n"); 6267 Cost -= InsertCost; 6268 } else if (FirstUsers.size() >= 2) { 6269 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6270 // Combined masks of the first 2 vectors. 6271 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6272 copy(ShuffleMask.front(), CombinedMask.begin()); 6273 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6274 auto *VecTy = FixedVectorType::get( 6275 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6276 MaxVF); 6277 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6278 if (ShuffleMask[1][I] != UndefMaskElem) { 6279 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6280 CombinedDemandedElts.setBit(I); 6281 } 6282 } 6283 InstructionCost C = 6284 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6285 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6286 << " for final shuffle of vector node and external " 6287 "insertelement users " 6288 << *VectorizableTree.front()->Scalars.front() << ".\n" 6289 << "SLP: Current total cost = " << Cost << "\n"); 6290 Cost += C; 6291 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6292 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6293 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6294 << " for insertelements gather.\n" 6295 << "SLP: Current total cost = " << Cost << "\n"); 6296 Cost -= InsertCost; 6297 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6298 // Other elements - permutation of 2 vectors (the initial one and the 6299 // next Ith incoming vector). 6300 unsigned VF = ShuffleMask[I].size(); 6301 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6302 int Mask = ShuffleMask[I][Idx]; 6303 if (Mask != UndefMaskElem) 6304 CombinedMask[Idx] = MaxVF + Mask; 6305 else if (CombinedMask[Idx] != UndefMaskElem) 6306 CombinedMask[Idx] = Idx; 6307 } 6308 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6309 if (CombinedMask[Idx] != UndefMaskElem) 6310 CombinedMask[Idx] = Idx; 6311 InstructionCost C = 6312 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6313 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6314 << " for final shuffle of vector node and external " 6315 "insertelement users " 6316 << *VectorizableTree.front()->Scalars.front() << ".\n" 6317 << "SLP: Current total cost = " << Cost << "\n"); 6318 Cost += C; 6319 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6320 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6321 /*Insert*/ true, /*Extract*/ false); 6322 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6323 << " for insertelements gather.\n" 6324 << "SLP: Current total cost = " << Cost << "\n"); 6325 Cost -= InsertCost; 6326 } 6327 } 6328 6329 #ifndef NDEBUG 6330 SmallString<256> Str; 6331 { 6332 raw_svector_ostream OS(Str); 6333 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6334 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6335 << "SLP: Total Cost = " << Cost << ".\n"; 6336 } 6337 LLVM_DEBUG(dbgs() << Str); 6338 if (ViewSLPTree) 6339 ViewGraph(this, "SLP" + F->getName(), false, Str); 6340 #endif 6341 6342 return Cost; 6343 } 6344 6345 Optional<TargetTransformInfo::ShuffleKind> 6346 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6347 SmallVectorImpl<const TreeEntry *> &Entries) { 6348 // TODO: currently checking only for Scalars in the tree entry, need to count 6349 // reused elements too for better cost estimation. 6350 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6351 Entries.clear(); 6352 // Build a lists of values to tree entries. 6353 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6354 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6355 if (EntryPtr.get() == TE) 6356 break; 6357 if (EntryPtr->State != TreeEntry::NeedToGather) 6358 continue; 6359 for (Value *V : EntryPtr->Scalars) 6360 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6361 } 6362 // Find all tree entries used by the gathered values. If no common entries 6363 // found - not a shuffle. 6364 // Here we build a set of tree nodes for each gathered value and trying to 6365 // find the intersection between these sets. If we have at least one common 6366 // tree node for each gathered value - we have just a permutation of the 6367 // single vector. If we have 2 different sets, we're in situation where we 6368 // have a permutation of 2 input vectors. 6369 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6370 DenseMap<Value *, int> UsedValuesEntry; 6371 for (Value *V : TE->Scalars) { 6372 if (isa<UndefValue>(V)) 6373 continue; 6374 // Build a list of tree entries where V is used. 6375 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6376 auto It = ValueToTEs.find(V); 6377 if (It != ValueToTEs.end()) 6378 VToTEs = It->second; 6379 if (const TreeEntry *VTE = getTreeEntry(V)) 6380 VToTEs.insert(VTE); 6381 if (VToTEs.empty()) 6382 return None; 6383 if (UsedTEs.empty()) { 6384 // The first iteration, just insert the list of nodes to vector. 6385 UsedTEs.push_back(VToTEs); 6386 } else { 6387 // Need to check if there are any previously used tree nodes which use V. 6388 // If there are no such nodes, consider that we have another one input 6389 // vector. 6390 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6391 unsigned Idx = 0; 6392 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6393 // Do we have a non-empty intersection of previously listed tree entries 6394 // and tree entries using current V? 6395 set_intersect(VToTEs, Set); 6396 if (!VToTEs.empty()) { 6397 // Yes, write the new subset and continue analysis for the next 6398 // scalar. 6399 Set.swap(VToTEs); 6400 break; 6401 } 6402 VToTEs = SavedVToTEs; 6403 ++Idx; 6404 } 6405 // No non-empty intersection found - need to add a second set of possible 6406 // source vectors. 6407 if (Idx == UsedTEs.size()) { 6408 // If the number of input vectors is greater than 2 - not a permutation, 6409 // fallback to the regular gather. 6410 if (UsedTEs.size() == 2) 6411 return None; 6412 UsedTEs.push_back(SavedVToTEs); 6413 Idx = UsedTEs.size() - 1; 6414 } 6415 UsedValuesEntry.try_emplace(V, Idx); 6416 } 6417 } 6418 6419 unsigned VF = 0; 6420 if (UsedTEs.size() == 1) { 6421 // Try to find the perfect match in another gather node at first. 6422 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6423 return EntryPtr->isSame(TE->Scalars); 6424 }); 6425 if (It != UsedTEs.front().end()) { 6426 Entries.push_back(*It); 6427 std::iota(Mask.begin(), Mask.end(), 0); 6428 return TargetTransformInfo::SK_PermuteSingleSrc; 6429 } 6430 // No perfect match, just shuffle, so choose the first tree node. 6431 Entries.push_back(*UsedTEs.front().begin()); 6432 } else { 6433 // Try to find nodes with the same vector factor. 6434 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6435 DenseMap<int, const TreeEntry *> VFToTE; 6436 for (const TreeEntry *TE : UsedTEs.front()) 6437 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6438 for (const TreeEntry *TE : UsedTEs.back()) { 6439 auto It = VFToTE.find(TE->getVectorFactor()); 6440 if (It != VFToTE.end()) { 6441 VF = It->first; 6442 Entries.push_back(It->second); 6443 Entries.push_back(TE); 6444 break; 6445 } 6446 } 6447 // No 2 source vectors with the same vector factor - give up and do regular 6448 // gather. 6449 if (Entries.empty()) 6450 return None; 6451 } 6452 6453 // Build a shuffle mask for better cost estimation and vector emission. 6454 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6455 Value *V = TE->Scalars[I]; 6456 if (isa<UndefValue>(V)) 6457 continue; 6458 unsigned Idx = UsedValuesEntry.lookup(V); 6459 const TreeEntry *VTE = Entries[Idx]; 6460 int FoundLane = VTE->findLaneForValue(V); 6461 Mask[I] = Idx * VF + FoundLane; 6462 // Extra check required by isSingleSourceMaskImpl function (called by 6463 // ShuffleVectorInst::isSingleSourceMask). 6464 if (Mask[I] >= 2 * E) 6465 return None; 6466 } 6467 switch (Entries.size()) { 6468 case 1: 6469 return TargetTransformInfo::SK_PermuteSingleSrc; 6470 case 2: 6471 return TargetTransformInfo::SK_PermuteTwoSrc; 6472 default: 6473 break; 6474 } 6475 return None; 6476 } 6477 6478 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6479 const APInt &ShuffledIndices, 6480 bool NeedToShuffle) const { 6481 InstructionCost Cost = 6482 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6483 /*Extract*/ false); 6484 if (NeedToShuffle) 6485 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6486 return Cost; 6487 } 6488 6489 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6490 // Find the type of the operands in VL. 6491 Type *ScalarTy = VL[0]->getType(); 6492 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6493 ScalarTy = SI->getValueOperand()->getType(); 6494 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6495 bool DuplicateNonConst = false; 6496 // Find the cost of inserting/extracting values from the vector. 6497 // Check if the same elements are inserted several times and count them as 6498 // shuffle candidates. 6499 APInt ShuffledElements = APInt::getZero(VL.size()); 6500 DenseSet<Value *> UniqueElements; 6501 // Iterate in reverse order to consider insert elements with the high cost. 6502 for (unsigned I = VL.size(); I > 0; --I) { 6503 unsigned Idx = I - 1; 6504 // No need to shuffle duplicates for constants. 6505 if (isConstant(VL[Idx])) { 6506 ShuffledElements.setBit(Idx); 6507 continue; 6508 } 6509 if (!UniqueElements.insert(VL[Idx]).second) { 6510 DuplicateNonConst = true; 6511 ShuffledElements.setBit(Idx); 6512 } 6513 } 6514 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6515 } 6516 6517 // Perform operand reordering on the instructions in VL and return the reordered 6518 // operands in Left and Right. 6519 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6520 SmallVectorImpl<Value *> &Left, 6521 SmallVectorImpl<Value *> &Right, 6522 const DataLayout &DL, 6523 ScalarEvolution &SE, 6524 const BoUpSLP &R) { 6525 if (VL.empty()) 6526 return; 6527 VLOperands Ops(VL, DL, SE, R); 6528 // Reorder the operands in place. 6529 Ops.reorder(); 6530 Left = Ops.getVL(0); 6531 Right = Ops.getVL(1); 6532 } 6533 6534 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6535 // Get the basic block this bundle is in. All instructions in the bundle 6536 // should be in this block. 6537 auto *Front = E->getMainOp(); 6538 auto *BB = Front->getParent(); 6539 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6540 auto *I = cast<Instruction>(V); 6541 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6542 })); 6543 6544 auto &&FindLastInst = [E, Front]() { 6545 Instruction *LastInst = Front; 6546 for (Value *V : E->Scalars) { 6547 auto *I = dyn_cast<Instruction>(V); 6548 if (!I) 6549 continue; 6550 if (LastInst->comesBefore(I)) 6551 LastInst = I; 6552 } 6553 return LastInst; 6554 }; 6555 6556 auto &&FindFirstInst = [E, Front]() { 6557 Instruction *FirstInst = Front; 6558 for (Value *V : E->Scalars) { 6559 auto *I = dyn_cast<Instruction>(V); 6560 if (!I) 6561 continue; 6562 if (I->comesBefore(FirstInst)) 6563 FirstInst = I; 6564 } 6565 return FirstInst; 6566 }; 6567 6568 // Set the insert point to the beginning of the basic block if the entry 6569 // should not be scheduled. 6570 if (E->State != TreeEntry::NeedToGather && 6571 doesNotNeedToSchedule(E->Scalars)) { 6572 BasicBlock::iterator InsertPt; 6573 if (all_of(E->Scalars, isUsedOutsideBlock)) 6574 InsertPt = FindLastInst()->getIterator(); 6575 else 6576 InsertPt = FindFirstInst()->getIterator(); 6577 Builder.SetInsertPoint(BB, InsertPt); 6578 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6579 return; 6580 } 6581 6582 // The last instruction in the bundle in program order. 6583 Instruction *LastInst = nullptr; 6584 6585 // Find the last instruction. The common case should be that BB has been 6586 // scheduled, and the last instruction is VL.back(). So we start with 6587 // VL.back() and iterate over schedule data until we reach the end of the 6588 // bundle. The end of the bundle is marked by null ScheduleData. 6589 if (BlocksSchedules.count(BB)) { 6590 Value *V = E->isOneOf(E->Scalars.back()); 6591 if (doesNotNeedToBeScheduled(V)) 6592 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6593 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6594 if (Bundle && Bundle->isPartOfBundle()) 6595 for (; Bundle; Bundle = Bundle->NextInBundle) 6596 if (Bundle->OpValue == Bundle->Inst) 6597 LastInst = Bundle->Inst; 6598 } 6599 6600 // LastInst can still be null at this point if there's either not an entry 6601 // for BB in BlocksSchedules or there's no ScheduleData available for 6602 // VL.back(). This can be the case if buildTree_rec aborts for various 6603 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6604 // size is reached, etc.). ScheduleData is initialized in the scheduling 6605 // "dry-run". 6606 // 6607 // If this happens, we can still find the last instruction by brute force. We 6608 // iterate forwards from Front (inclusive) until we either see all 6609 // instructions in the bundle or reach the end of the block. If Front is the 6610 // last instruction in program order, LastInst will be set to Front, and we 6611 // will visit all the remaining instructions in the block. 6612 // 6613 // One of the reasons we exit early from buildTree_rec is to place an upper 6614 // bound on compile-time. Thus, taking an additional compile-time hit here is 6615 // not ideal. However, this should be exceedingly rare since it requires that 6616 // we both exit early from buildTree_rec and that the bundle be out-of-order 6617 // (causing us to iterate all the way to the end of the block). 6618 if (!LastInst) 6619 LastInst = FindLastInst(); 6620 assert(LastInst && "Failed to find last instruction in bundle"); 6621 6622 // Set the insertion point after the last instruction in the bundle. Set the 6623 // debug location to Front. 6624 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6625 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6626 } 6627 6628 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6629 // List of instructions/lanes from current block and/or the blocks which are 6630 // part of the current loop. These instructions will be inserted at the end to 6631 // make it possible to optimize loops and hoist invariant instructions out of 6632 // the loops body with better chances for success. 6633 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6634 SmallSet<int, 4> PostponedIndices; 6635 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6636 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6637 SmallPtrSet<BasicBlock *, 4> Visited; 6638 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6639 InsertBB = InsertBB->getSinglePredecessor(); 6640 return InsertBB && InsertBB == InstBB; 6641 }; 6642 for (int I = 0, E = VL.size(); I < E; ++I) { 6643 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6644 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6645 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6646 PostponedIndices.insert(I).second) 6647 PostponedInsts.emplace_back(Inst, I); 6648 } 6649 6650 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6651 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6652 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6653 if (!InsElt) 6654 return Vec; 6655 GatherShuffleSeq.insert(InsElt); 6656 CSEBlocks.insert(InsElt->getParent()); 6657 // Add to our 'need-to-extract' list. 6658 if (TreeEntry *Entry = getTreeEntry(V)) { 6659 // Find which lane we need to extract. 6660 unsigned FoundLane = Entry->findLaneForValue(V); 6661 ExternalUses.emplace_back(V, InsElt, FoundLane); 6662 } 6663 return Vec; 6664 }; 6665 Value *Val0 = 6666 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6667 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6668 Value *Vec = PoisonValue::get(VecTy); 6669 SmallVector<int> NonConsts; 6670 // Insert constant values at first. 6671 for (int I = 0, E = VL.size(); I < E; ++I) { 6672 if (PostponedIndices.contains(I)) 6673 continue; 6674 if (!isConstant(VL[I])) { 6675 NonConsts.push_back(I); 6676 continue; 6677 } 6678 Vec = CreateInsertElement(Vec, VL[I], I); 6679 } 6680 // Insert non-constant values. 6681 for (int I : NonConsts) 6682 Vec = CreateInsertElement(Vec, VL[I], I); 6683 // Append instructions, which are/may be part of the loop, in the end to make 6684 // it possible to hoist non-loop-based instructions. 6685 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6686 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6687 6688 return Vec; 6689 } 6690 6691 namespace { 6692 /// Merges shuffle masks and emits final shuffle instruction, if required. 6693 class ShuffleInstructionBuilder { 6694 IRBuilderBase &Builder; 6695 const unsigned VF = 0; 6696 bool IsFinalized = false; 6697 SmallVector<int, 4> Mask; 6698 /// Holds all of the instructions that we gathered. 6699 SetVector<Instruction *> &GatherShuffleSeq; 6700 /// A list of blocks that we are going to CSE. 6701 SetVector<BasicBlock *> &CSEBlocks; 6702 6703 public: 6704 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6705 SetVector<Instruction *> &GatherShuffleSeq, 6706 SetVector<BasicBlock *> &CSEBlocks) 6707 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6708 CSEBlocks(CSEBlocks) {} 6709 6710 /// Adds a mask, inverting it before applying. 6711 void addInversedMask(ArrayRef<unsigned> SubMask) { 6712 if (SubMask.empty()) 6713 return; 6714 SmallVector<int, 4> NewMask; 6715 inversePermutation(SubMask, NewMask); 6716 addMask(NewMask); 6717 } 6718 6719 /// Functions adds masks, merging them into single one. 6720 void addMask(ArrayRef<unsigned> SubMask) { 6721 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6722 addMask(NewMask); 6723 } 6724 6725 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6726 6727 Value *finalize(Value *V) { 6728 IsFinalized = true; 6729 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6730 if (VF == ValueVF && Mask.empty()) 6731 return V; 6732 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6733 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6734 addMask(NormalizedMask); 6735 6736 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6737 return V; 6738 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6739 if (auto *I = dyn_cast<Instruction>(Vec)) { 6740 GatherShuffleSeq.insert(I); 6741 CSEBlocks.insert(I->getParent()); 6742 } 6743 return Vec; 6744 } 6745 6746 ~ShuffleInstructionBuilder() { 6747 assert((IsFinalized || Mask.empty()) && 6748 "Shuffle construction must be finalized."); 6749 } 6750 }; 6751 } // namespace 6752 6753 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6754 const unsigned VF = VL.size(); 6755 InstructionsState S = getSameOpcode(VL); 6756 if (S.getOpcode()) { 6757 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6758 if (E->isSame(VL)) { 6759 Value *V = vectorizeTree(E); 6760 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6761 if (!E->ReuseShuffleIndices.empty()) { 6762 // Reshuffle to get only unique values. 6763 // If some of the scalars are duplicated in the vectorization tree 6764 // entry, we do not vectorize them but instead generate a mask for 6765 // the reuses. But if there are several users of the same entry, 6766 // they may have different vectorization factors. This is especially 6767 // important for PHI nodes. In this case, we need to adapt the 6768 // resulting instruction for the user vectorization factor and have 6769 // to reshuffle it again to take only unique elements of the vector. 6770 // Without this code the function incorrectly returns reduced vector 6771 // instruction with the same elements, not with the unique ones. 6772 6773 // block: 6774 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6775 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6776 // ... (use %2) 6777 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6778 // br %block 6779 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6780 SmallSet<int, 4> UsedIdxs; 6781 int Pos = 0; 6782 int Sz = VL.size(); 6783 for (int Idx : E->ReuseShuffleIndices) { 6784 if (Idx != Sz && Idx != UndefMaskElem && 6785 UsedIdxs.insert(Idx).second) 6786 UniqueIdxs[Idx] = Pos; 6787 ++Pos; 6788 } 6789 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6790 "less than original vector size."); 6791 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6792 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6793 } else { 6794 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6795 "Expected vectorization factor less " 6796 "than original vector size."); 6797 SmallVector<int> UniformMask(VF, 0); 6798 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6799 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6800 } 6801 if (auto *I = dyn_cast<Instruction>(V)) { 6802 GatherShuffleSeq.insert(I); 6803 CSEBlocks.insert(I->getParent()); 6804 } 6805 } 6806 return V; 6807 } 6808 } 6809 6810 // Can't vectorize this, so simply build a new vector with each lane 6811 // corresponding to the requested value. 6812 return createBuildVector(VL); 6813 } 6814 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6815 unsigned VF = VL.size(); 6816 // Exploit possible reuse of values across lanes. 6817 SmallVector<int> ReuseShuffleIndicies; 6818 SmallVector<Value *> UniqueValues; 6819 if (VL.size() > 2) { 6820 DenseMap<Value *, unsigned> UniquePositions; 6821 unsigned NumValues = 6822 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6823 return !isa<UndefValue>(V); 6824 }).base()); 6825 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6826 int UniqueVals = 0; 6827 for (Value *V : VL.drop_back(VL.size() - VF)) { 6828 if (isa<UndefValue>(V)) { 6829 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6830 continue; 6831 } 6832 if (isConstant(V)) { 6833 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6834 UniqueValues.emplace_back(V); 6835 continue; 6836 } 6837 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6838 ReuseShuffleIndicies.emplace_back(Res.first->second); 6839 if (Res.second) { 6840 UniqueValues.emplace_back(V); 6841 ++UniqueVals; 6842 } 6843 } 6844 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6845 // Emit pure splat vector. 6846 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6847 UndefMaskElem); 6848 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6849 ReuseShuffleIndicies.clear(); 6850 UniqueValues.clear(); 6851 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6852 } 6853 UniqueValues.append(VF - UniqueValues.size(), 6854 PoisonValue::get(VL[0]->getType())); 6855 VL = UniqueValues; 6856 } 6857 6858 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6859 CSEBlocks); 6860 Value *Vec = gather(VL); 6861 if (!ReuseShuffleIndicies.empty()) { 6862 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6863 Vec = ShuffleBuilder.finalize(Vec); 6864 } 6865 return Vec; 6866 } 6867 6868 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6869 IRBuilder<>::InsertPointGuard Guard(Builder); 6870 6871 if (E->VectorizedValue) { 6872 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6873 return E->VectorizedValue; 6874 } 6875 6876 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6877 unsigned VF = E->getVectorFactor(); 6878 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6879 CSEBlocks); 6880 if (E->State == TreeEntry::NeedToGather) { 6881 if (E->getMainOp()) 6882 setInsertPointAfterBundle(E); 6883 Value *Vec; 6884 SmallVector<int> Mask; 6885 SmallVector<const TreeEntry *> Entries; 6886 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6887 isGatherShuffledEntry(E, Mask, Entries); 6888 if (Shuffle.hasValue()) { 6889 assert((Entries.size() == 1 || Entries.size() == 2) && 6890 "Expected shuffle of 1 or 2 entries."); 6891 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6892 Entries.back()->VectorizedValue, Mask); 6893 if (auto *I = dyn_cast<Instruction>(Vec)) { 6894 GatherShuffleSeq.insert(I); 6895 CSEBlocks.insert(I->getParent()); 6896 } 6897 } else { 6898 Vec = gather(E->Scalars); 6899 } 6900 if (NeedToShuffleReuses) { 6901 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6902 Vec = ShuffleBuilder.finalize(Vec); 6903 } 6904 E->VectorizedValue = Vec; 6905 return Vec; 6906 } 6907 6908 assert((E->State == TreeEntry::Vectorize || 6909 E->State == TreeEntry::ScatterVectorize) && 6910 "Unhandled state"); 6911 unsigned ShuffleOrOp = 6912 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6913 Instruction *VL0 = E->getMainOp(); 6914 Type *ScalarTy = VL0->getType(); 6915 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6916 ScalarTy = Store->getValueOperand()->getType(); 6917 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6918 ScalarTy = IE->getOperand(1)->getType(); 6919 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6920 switch (ShuffleOrOp) { 6921 case Instruction::PHI: { 6922 assert( 6923 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6924 "PHI reordering is free."); 6925 auto *PH = cast<PHINode>(VL0); 6926 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6927 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6928 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6929 Value *V = NewPhi; 6930 6931 // Adjust insertion point once all PHI's have been generated. 6932 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6933 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6934 6935 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6936 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6937 V = ShuffleBuilder.finalize(V); 6938 6939 E->VectorizedValue = V; 6940 6941 // PHINodes may have multiple entries from the same block. We want to 6942 // visit every block once. 6943 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6944 6945 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6946 ValueList Operands; 6947 BasicBlock *IBB = PH->getIncomingBlock(i); 6948 6949 if (!VisitedBBs.insert(IBB).second) { 6950 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6951 continue; 6952 } 6953 6954 Builder.SetInsertPoint(IBB->getTerminator()); 6955 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6956 Value *Vec = vectorizeTree(E->getOperand(i)); 6957 NewPhi->addIncoming(Vec, IBB); 6958 } 6959 6960 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6961 "Invalid number of incoming values"); 6962 return V; 6963 } 6964 6965 case Instruction::ExtractElement: { 6966 Value *V = E->getSingleOperand(0); 6967 Builder.SetInsertPoint(VL0); 6968 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6969 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6970 V = ShuffleBuilder.finalize(V); 6971 E->VectorizedValue = V; 6972 return V; 6973 } 6974 case Instruction::ExtractValue: { 6975 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6976 Builder.SetInsertPoint(LI); 6977 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6978 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6979 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6980 Value *NewV = propagateMetadata(V, E->Scalars); 6981 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6982 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6983 NewV = ShuffleBuilder.finalize(NewV); 6984 E->VectorizedValue = NewV; 6985 return NewV; 6986 } 6987 case Instruction::InsertElement: { 6988 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6989 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6990 Value *V = vectorizeTree(E->getOperand(1)); 6991 6992 // Create InsertVector shuffle if necessary 6993 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6994 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6995 })); 6996 const unsigned NumElts = 6997 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6998 const unsigned NumScalars = E->Scalars.size(); 6999 7000 unsigned Offset = *getInsertIndex(VL0); 7001 assert(Offset < NumElts && "Failed to find vector index offset"); 7002 7003 // Create shuffle to resize vector 7004 SmallVector<int> Mask; 7005 if (!E->ReorderIndices.empty()) { 7006 inversePermutation(E->ReorderIndices, Mask); 7007 Mask.append(NumElts - NumScalars, UndefMaskElem); 7008 } else { 7009 Mask.assign(NumElts, UndefMaskElem); 7010 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7011 } 7012 // Create InsertVector shuffle if necessary 7013 bool IsIdentity = true; 7014 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7015 Mask.swap(PrevMask); 7016 for (unsigned I = 0; I < NumScalars; ++I) { 7017 Value *Scalar = E->Scalars[PrevMask[I]]; 7018 unsigned InsertIdx = *getInsertIndex(Scalar); 7019 IsIdentity &= InsertIdx - Offset == I; 7020 Mask[InsertIdx - Offset] = I; 7021 } 7022 if (!IsIdentity || NumElts != NumScalars) { 7023 V = Builder.CreateShuffleVector(V, Mask); 7024 if (auto *I = dyn_cast<Instruction>(V)) { 7025 GatherShuffleSeq.insert(I); 7026 CSEBlocks.insert(I->getParent()); 7027 } 7028 } 7029 7030 if ((!IsIdentity || Offset != 0 || 7031 !isUndefVector(FirstInsert->getOperand(0))) && 7032 NumElts != NumScalars) { 7033 SmallVector<int> InsertMask(NumElts); 7034 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7035 for (unsigned I = 0; I < NumElts; I++) { 7036 if (Mask[I] != UndefMaskElem) 7037 InsertMask[Offset + I] = NumElts + I; 7038 } 7039 7040 V = Builder.CreateShuffleVector( 7041 FirstInsert->getOperand(0), V, InsertMask, 7042 cast<Instruction>(E->Scalars.back())->getName()); 7043 if (auto *I = dyn_cast<Instruction>(V)) { 7044 GatherShuffleSeq.insert(I); 7045 CSEBlocks.insert(I->getParent()); 7046 } 7047 } 7048 7049 ++NumVectorInstructions; 7050 E->VectorizedValue = V; 7051 return V; 7052 } 7053 case Instruction::ZExt: 7054 case Instruction::SExt: 7055 case Instruction::FPToUI: 7056 case Instruction::FPToSI: 7057 case Instruction::FPExt: 7058 case Instruction::PtrToInt: 7059 case Instruction::IntToPtr: 7060 case Instruction::SIToFP: 7061 case Instruction::UIToFP: 7062 case Instruction::Trunc: 7063 case Instruction::FPTrunc: 7064 case Instruction::BitCast: { 7065 setInsertPointAfterBundle(E); 7066 7067 Value *InVec = vectorizeTree(E->getOperand(0)); 7068 7069 if (E->VectorizedValue) { 7070 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7071 return E->VectorizedValue; 7072 } 7073 7074 auto *CI = cast<CastInst>(VL0); 7075 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7076 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7077 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7078 V = ShuffleBuilder.finalize(V); 7079 7080 E->VectorizedValue = V; 7081 ++NumVectorInstructions; 7082 return V; 7083 } 7084 case Instruction::FCmp: 7085 case Instruction::ICmp: { 7086 setInsertPointAfterBundle(E); 7087 7088 Value *L = vectorizeTree(E->getOperand(0)); 7089 Value *R = vectorizeTree(E->getOperand(1)); 7090 7091 if (E->VectorizedValue) { 7092 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7093 return E->VectorizedValue; 7094 } 7095 7096 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7097 Value *V = Builder.CreateCmp(P0, L, R); 7098 propagateIRFlags(V, E->Scalars, VL0); 7099 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7100 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7101 V = ShuffleBuilder.finalize(V); 7102 7103 E->VectorizedValue = V; 7104 ++NumVectorInstructions; 7105 return V; 7106 } 7107 case Instruction::Select: { 7108 setInsertPointAfterBundle(E); 7109 7110 Value *Cond = vectorizeTree(E->getOperand(0)); 7111 Value *True = vectorizeTree(E->getOperand(1)); 7112 Value *False = vectorizeTree(E->getOperand(2)); 7113 7114 if (E->VectorizedValue) { 7115 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7116 return E->VectorizedValue; 7117 } 7118 7119 Value *V = Builder.CreateSelect(Cond, True, False); 7120 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7121 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7122 V = ShuffleBuilder.finalize(V); 7123 7124 E->VectorizedValue = V; 7125 ++NumVectorInstructions; 7126 return V; 7127 } 7128 case Instruction::FNeg: { 7129 setInsertPointAfterBundle(E); 7130 7131 Value *Op = vectorizeTree(E->getOperand(0)); 7132 7133 if (E->VectorizedValue) { 7134 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7135 return E->VectorizedValue; 7136 } 7137 7138 Value *V = Builder.CreateUnOp( 7139 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7140 propagateIRFlags(V, E->Scalars, VL0); 7141 if (auto *I = dyn_cast<Instruction>(V)) 7142 V = propagateMetadata(I, E->Scalars); 7143 7144 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7145 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7146 V = ShuffleBuilder.finalize(V); 7147 7148 E->VectorizedValue = V; 7149 ++NumVectorInstructions; 7150 7151 return V; 7152 } 7153 case Instruction::Add: 7154 case Instruction::FAdd: 7155 case Instruction::Sub: 7156 case Instruction::FSub: 7157 case Instruction::Mul: 7158 case Instruction::FMul: 7159 case Instruction::UDiv: 7160 case Instruction::SDiv: 7161 case Instruction::FDiv: 7162 case Instruction::URem: 7163 case Instruction::SRem: 7164 case Instruction::FRem: 7165 case Instruction::Shl: 7166 case Instruction::LShr: 7167 case Instruction::AShr: 7168 case Instruction::And: 7169 case Instruction::Or: 7170 case Instruction::Xor: { 7171 setInsertPointAfterBundle(E); 7172 7173 Value *LHS = vectorizeTree(E->getOperand(0)); 7174 Value *RHS = vectorizeTree(E->getOperand(1)); 7175 7176 if (E->VectorizedValue) { 7177 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7178 return E->VectorizedValue; 7179 } 7180 7181 Value *V = Builder.CreateBinOp( 7182 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7183 RHS); 7184 propagateIRFlags(V, E->Scalars, VL0); 7185 if (auto *I = dyn_cast<Instruction>(V)) 7186 V = propagateMetadata(I, E->Scalars); 7187 7188 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7189 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7190 V = ShuffleBuilder.finalize(V); 7191 7192 E->VectorizedValue = V; 7193 ++NumVectorInstructions; 7194 7195 return V; 7196 } 7197 case Instruction::Load: { 7198 // Loads are inserted at the head of the tree because we don't want to 7199 // sink them all the way down past store instructions. 7200 setInsertPointAfterBundle(E); 7201 7202 LoadInst *LI = cast<LoadInst>(VL0); 7203 Instruction *NewLI; 7204 unsigned AS = LI->getPointerAddressSpace(); 7205 Value *PO = LI->getPointerOperand(); 7206 if (E->State == TreeEntry::Vectorize) { 7207 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7208 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7209 7210 // The pointer operand uses an in-tree scalar so we add the new BitCast 7211 // or LoadInst to ExternalUses list to make sure that an extract will 7212 // be generated in the future. 7213 if (TreeEntry *Entry = getTreeEntry(PO)) { 7214 // Find which lane we need to extract. 7215 unsigned FoundLane = Entry->findLaneForValue(PO); 7216 ExternalUses.emplace_back( 7217 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7218 } 7219 } else { 7220 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7221 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7222 // Use the minimum alignment of the gathered loads. 7223 Align CommonAlignment = LI->getAlign(); 7224 for (Value *V : E->Scalars) 7225 CommonAlignment = 7226 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7227 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7228 } 7229 Value *V = propagateMetadata(NewLI, E->Scalars); 7230 7231 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7232 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7233 V = ShuffleBuilder.finalize(V); 7234 E->VectorizedValue = V; 7235 ++NumVectorInstructions; 7236 return V; 7237 } 7238 case Instruction::Store: { 7239 auto *SI = cast<StoreInst>(VL0); 7240 unsigned AS = SI->getPointerAddressSpace(); 7241 7242 setInsertPointAfterBundle(E); 7243 7244 Value *VecValue = vectorizeTree(E->getOperand(0)); 7245 ShuffleBuilder.addMask(E->ReorderIndices); 7246 VecValue = ShuffleBuilder.finalize(VecValue); 7247 7248 Value *ScalarPtr = SI->getPointerOperand(); 7249 Value *VecPtr = Builder.CreateBitCast( 7250 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7251 StoreInst *ST = 7252 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7253 7254 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7255 // StoreInst to ExternalUses to make sure that an extract will be 7256 // generated in the future. 7257 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7258 // Find which lane we need to extract. 7259 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7260 ExternalUses.push_back(ExternalUser( 7261 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7262 FoundLane)); 7263 } 7264 7265 Value *V = propagateMetadata(ST, E->Scalars); 7266 7267 E->VectorizedValue = V; 7268 ++NumVectorInstructions; 7269 return V; 7270 } 7271 case Instruction::GetElementPtr: { 7272 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7273 setInsertPointAfterBundle(E); 7274 7275 Value *Op0 = vectorizeTree(E->getOperand(0)); 7276 7277 SmallVector<Value *> OpVecs; 7278 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7279 Value *OpVec = vectorizeTree(E->getOperand(J)); 7280 OpVecs.push_back(OpVec); 7281 } 7282 7283 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7284 if (Instruction *I = dyn_cast<Instruction>(V)) 7285 V = propagateMetadata(I, E->Scalars); 7286 7287 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7288 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7289 V = ShuffleBuilder.finalize(V); 7290 7291 E->VectorizedValue = V; 7292 ++NumVectorInstructions; 7293 7294 return V; 7295 } 7296 case Instruction::Call: { 7297 CallInst *CI = cast<CallInst>(VL0); 7298 setInsertPointAfterBundle(E); 7299 7300 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7301 if (Function *FI = CI->getCalledFunction()) 7302 IID = FI->getIntrinsicID(); 7303 7304 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7305 7306 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7307 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7308 VecCallCosts.first <= VecCallCosts.second; 7309 7310 Value *ScalarArg = nullptr; 7311 std::vector<Value *> OpVecs; 7312 SmallVector<Type *, 2> TysForDecl = 7313 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7314 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7315 ValueList OpVL; 7316 // Some intrinsics have scalar arguments. This argument should not be 7317 // vectorized. 7318 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7319 CallInst *CEI = cast<CallInst>(VL0); 7320 ScalarArg = CEI->getArgOperand(j); 7321 OpVecs.push_back(CEI->getArgOperand(j)); 7322 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7323 TysForDecl.push_back(ScalarArg->getType()); 7324 continue; 7325 } 7326 7327 Value *OpVec = vectorizeTree(E->getOperand(j)); 7328 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7329 OpVecs.push_back(OpVec); 7330 } 7331 7332 Function *CF; 7333 if (!UseIntrinsic) { 7334 VFShape Shape = 7335 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7336 VecTy->getNumElements())), 7337 false /*HasGlobalPred*/); 7338 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7339 } else { 7340 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7341 } 7342 7343 SmallVector<OperandBundleDef, 1> OpBundles; 7344 CI->getOperandBundlesAsDefs(OpBundles); 7345 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7346 7347 // The scalar argument uses an in-tree scalar so we add the new vectorized 7348 // call to ExternalUses list to make sure that an extract will be 7349 // generated in the future. 7350 if (ScalarArg) { 7351 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7352 // Find which lane we need to extract. 7353 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7354 ExternalUses.push_back( 7355 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7356 } 7357 } 7358 7359 propagateIRFlags(V, E->Scalars, VL0); 7360 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7361 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7362 V = ShuffleBuilder.finalize(V); 7363 7364 E->VectorizedValue = V; 7365 ++NumVectorInstructions; 7366 return V; 7367 } 7368 case Instruction::ShuffleVector: { 7369 assert(E->isAltShuffle() && 7370 ((Instruction::isBinaryOp(E->getOpcode()) && 7371 Instruction::isBinaryOp(E->getAltOpcode())) || 7372 (Instruction::isCast(E->getOpcode()) && 7373 Instruction::isCast(E->getAltOpcode())) || 7374 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7375 "Invalid Shuffle Vector Operand"); 7376 7377 Value *LHS = nullptr, *RHS = nullptr; 7378 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7379 setInsertPointAfterBundle(E); 7380 LHS = vectorizeTree(E->getOperand(0)); 7381 RHS = vectorizeTree(E->getOperand(1)); 7382 } else { 7383 setInsertPointAfterBundle(E); 7384 LHS = vectorizeTree(E->getOperand(0)); 7385 } 7386 7387 if (E->VectorizedValue) { 7388 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7389 return E->VectorizedValue; 7390 } 7391 7392 Value *V0, *V1; 7393 if (Instruction::isBinaryOp(E->getOpcode())) { 7394 V0 = Builder.CreateBinOp( 7395 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7396 V1 = Builder.CreateBinOp( 7397 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7398 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7399 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7400 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7401 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7402 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7403 } else { 7404 V0 = Builder.CreateCast( 7405 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7406 V1 = Builder.CreateCast( 7407 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7408 } 7409 // Add V0 and V1 to later analysis to try to find and remove matching 7410 // instruction, if any. 7411 for (Value *V : {V0, V1}) { 7412 if (auto *I = dyn_cast<Instruction>(V)) { 7413 GatherShuffleSeq.insert(I); 7414 CSEBlocks.insert(I->getParent()); 7415 } 7416 } 7417 7418 // Create shuffle to take alternate operations from the vector. 7419 // Also, gather up main and alt scalar ops to propagate IR flags to 7420 // each vector operation. 7421 ValueList OpScalars, AltScalars; 7422 SmallVector<int> Mask; 7423 buildShuffleEntryMask( 7424 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7425 [E](Instruction *I) { 7426 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7427 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7428 }, 7429 Mask, &OpScalars, &AltScalars); 7430 7431 propagateIRFlags(V0, OpScalars); 7432 propagateIRFlags(V1, AltScalars); 7433 7434 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7435 if (auto *I = dyn_cast<Instruction>(V)) { 7436 V = propagateMetadata(I, E->Scalars); 7437 GatherShuffleSeq.insert(I); 7438 CSEBlocks.insert(I->getParent()); 7439 } 7440 V = ShuffleBuilder.finalize(V); 7441 7442 E->VectorizedValue = V; 7443 ++NumVectorInstructions; 7444 7445 return V; 7446 } 7447 default: 7448 llvm_unreachable("unknown inst"); 7449 } 7450 return nullptr; 7451 } 7452 7453 Value *BoUpSLP::vectorizeTree() { 7454 ExtraValueToDebugLocsMap ExternallyUsedValues; 7455 return vectorizeTree(ExternallyUsedValues); 7456 } 7457 7458 Value * 7459 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7460 // All blocks must be scheduled before any instructions are inserted. 7461 for (auto &BSIter : BlocksSchedules) { 7462 scheduleBlock(BSIter.second.get()); 7463 } 7464 7465 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7466 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7467 7468 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7469 // vectorized root. InstCombine will then rewrite the entire expression. We 7470 // sign extend the extracted values below. 7471 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7472 if (MinBWs.count(ScalarRoot)) { 7473 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7474 // If current instr is a phi and not the last phi, insert it after the 7475 // last phi node. 7476 if (isa<PHINode>(I)) 7477 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7478 else 7479 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7480 } 7481 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7482 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7483 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7484 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7485 VectorizableTree[0]->VectorizedValue = Trunc; 7486 } 7487 7488 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7489 << " values .\n"); 7490 7491 // Extract all of the elements with the external uses. 7492 for (const auto &ExternalUse : ExternalUses) { 7493 Value *Scalar = ExternalUse.Scalar; 7494 llvm::User *User = ExternalUse.User; 7495 7496 // Skip users that we already RAUW. This happens when one instruction 7497 // has multiple uses of the same value. 7498 if (User && !is_contained(Scalar->users(), User)) 7499 continue; 7500 TreeEntry *E = getTreeEntry(Scalar); 7501 assert(E && "Invalid scalar"); 7502 assert(E->State != TreeEntry::NeedToGather && 7503 "Extracting from a gather list"); 7504 7505 Value *Vec = E->VectorizedValue; 7506 assert(Vec && "Can't find vectorizable value"); 7507 7508 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7509 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7510 if (Scalar->getType() != Vec->getType()) { 7511 Value *Ex; 7512 // "Reuse" the existing extract to improve final codegen. 7513 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7514 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7515 ES->getOperand(1)); 7516 } else { 7517 Ex = Builder.CreateExtractElement(Vec, Lane); 7518 } 7519 // If necessary, sign-extend or zero-extend ScalarRoot 7520 // to the larger type. 7521 if (!MinBWs.count(ScalarRoot)) 7522 return Ex; 7523 if (MinBWs[ScalarRoot].second) 7524 return Builder.CreateSExt(Ex, Scalar->getType()); 7525 return Builder.CreateZExt(Ex, Scalar->getType()); 7526 } 7527 assert(isa<FixedVectorType>(Scalar->getType()) && 7528 isa<InsertElementInst>(Scalar) && 7529 "In-tree scalar of vector type is not insertelement?"); 7530 return Vec; 7531 }; 7532 // If User == nullptr, the Scalar is used as extra arg. Generate 7533 // ExtractElement instruction and update the record for this scalar in 7534 // ExternallyUsedValues. 7535 if (!User) { 7536 assert(ExternallyUsedValues.count(Scalar) && 7537 "Scalar with nullptr as an external user must be registered in " 7538 "ExternallyUsedValues map"); 7539 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7540 Builder.SetInsertPoint(VecI->getParent(), 7541 std::next(VecI->getIterator())); 7542 } else { 7543 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7544 } 7545 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7546 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7547 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7548 auto It = ExternallyUsedValues.find(Scalar); 7549 assert(It != ExternallyUsedValues.end() && 7550 "Externally used scalar is not found in ExternallyUsedValues"); 7551 NewInstLocs.append(It->second); 7552 ExternallyUsedValues.erase(Scalar); 7553 // Required to update internally referenced instructions. 7554 Scalar->replaceAllUsesWith(NewInst); 7555 continue; 7556 } 7557 7558 // Generate extracts for out-of-tree users. 7559 // Find the insertion point for the extractelement lane. 7560 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7561 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7562 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7563 if (PH->getIncomingValue(i) == Scalar) { 7564 Instruction *IncomingTerminator = 7565 PH->getIncomingBlock(i)->getTerminator(); 7566 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7567 Builder.SetInsertPoint(VecI->getParent(), 7568 std::next(VecI->getIterator())); 7569 } else { 7570 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7571 } 7572 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7573 CSEBlocks.insert(PH->getIncomingBlock(i)); 7574 PH->setOperand(i, NewInst); 7575 } 7576 } 7577 } else { 7578 Builder.SetInsertPoint(cast<Instruction>(User)); 7579 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7580 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7581 User->replaceUsesOfWith(Scalar, NewInst); 7582 } 7583 } else { 7584 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7585 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7586 CSEBlocks.insert(&F->getEntryBlock()); 7587 User->replaceUsesOfWith(Scalar, NewInst); 7588 } 7589 7590 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7591 } 7592 7593 // For each vectorized value: 7594 for (auto &TEPtr : VectorizableTree) { 7595 TreeEntry *Entry = TEPtr.get(); 7596 7597 // No need to handle users of gathered values. 7598 if (Entry->State == TreeEntry::NeedToGather) 7599 continue; 7600 7601 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7602 7603 // For each lane: 7604 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7605 Value *Scalar = Entry->Scalars[Lane]; 7606 7607 #ifndef NDEBUG 7608 Type *Ty = Scalar->getType(); 7609 if (!Ty->isVoidTy()) { 7610 for (User *U : Scalar->users()) { 7611 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7612 7613 // It is legal to delete users in the ignorelist. 7614 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7615 (isa_and_nonnull<Instruction>(U) && 7616 isDeleted(cast<Instruction>(U)))) && 7617 "Deleting out-of-tree value"); 7618 } 7619 } 7620 #endif 7621 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7622 eraseInstruction(cast<Instruction>(Scalar)); 7623 } 7624 } 7625 7626 Builder.ClearInsertionPoint(); 7627 InstrElementSize.clear(); 7628 7629 return VectorizableTree[0]->VectorizedValue; 7630 } 7631 7632 void BoUpSLP::optimizeGatherSequence() { 7633 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7634 << " gather sequences instructions.\n"); 7635 // LICM InsertElementInst sequences. 7636 for (Instruction *I : GatherShuffleSeq) { 7637 if (isDeleted(I)) 7638 continue; 7639 7640 // Check if this block is inside a loop. 7641 Loop *L = LI->getLoopFor(I->getParent()); 7642 if (!L) 7643 continue; 7644 7645 // Check if it has a preheader. 7646 BasicBlock *PreHeader = L->getLoopPreheader(); 7647 if (!PreHeader) 7648 continue; 7649 7650 // If the vector or the element that we insert into it are 7651 // instructions that are defined in this basic block then we can't 7652 // hoist this instruction. 7653 if (any_of(I->operands(), [L](Value *V) { 7654 auto *OpI = dyn_cast<Instruction>(V); 7655 return OpI && L->contains(OpI); 7656 })) 7657 continue; 7658 7659 // We can hoist this instruction. Move it to the pre-header. 7660 I->moveBefore(PreHeader->getTerminator()); 7661 } 7662 7663 // Make a list of all reachable blocks in our CSE queue. 7664 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7665 CSEWorkList.reserve(CSEBlocks.size()); 7666 for (BasicBlock *BB : CSEBlocks) 7667 if (DomTreeNode *N = DT->getNode(BB)) { 7668 assert(DT->isReachableFromEntry(N)); 7669 CSEWorkList.push_back(N); 7670 } 7671 7672 // Sort blocks by domination. This ensures we visit a block after all blocks 7673 // dominating it are visited. 7674 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7675 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7676 "Different nodes should have different DFS numbers"); 7677 return A->getDFSNumIn() < B->getDFSNumIn(); 7678 }); 7679 7680 // Less defined shuffles can be replaced by the more defined copies. 7681 // Between two shuffles one is less defined if it has the same vector operands 7682 // and its mask indeces are the same as in the first one or undefs. E.g. 7683 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7684 // poison, <0, 0, 0, 0>. 7685 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7686 SmallVectorImpl<int> &NewMask) { 7687 if (I1->getType() != I2->getType()) 7688 return false; 7689 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7690 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7691 if (!SI1 || !SI2) 7692 return I1->isIdenticalTo(I2); 7693 if (SI1->isIdenticalTo(SI2)) 7694 return true; 7695 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7696 if (SI1->getOperand(I) != SI2->getOperand(I)) 7697 return false; 7698 // Check if the second instruction is more defined than the first one. 7699 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7700 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7701 // Count trailing undefs in the mask to check the final number of used 7702 // registers. 7703 unsigned LastUndefsCnt = 0; 7704 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7705 if (SM1[I] == UndefMaskElem) 7706 ++LastUndefsCnt; 7707 else 7708 LastUndefsCnt = 0; 7709 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7710 NewMask[I] != SM1[I]) 7711 return false; 7712 if (NewMask[I] == UndefMaskElem) 7713 NewMask[I] = SM1[I]; 7714 } 7715 // Check if the last undefs actually change the final number of used vector 7716 // registers. 7717 return SM1.size() - LastUndefsCnt > 1 && 7718 TTI->getNumberOfParts(SI1->getType()) == 7719 TTI->getNumberOfParts( 7720 FixedVectorType::get(SI1->getType()->getElementType(), 7721 SM1.size() - LastUndefsCnt)); 7722 }; 7723 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7724 // instructions. TODO: We can further optimize this scan if we split the 7725 // instructions into different buckets based on the insert lane. 7726 SmallVector<Instruction *, 16> Visited; 7727 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7728 assert(*I && 7729 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7730 "Worklist not sorted properly!"); 7731 BasicBlock *BB = (*I)->getBlock(); 7732 // For all instructions in blocks containing gather sequences: 7733 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7734 if (isDeleted(&In)) 7735 continue; 7736 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7737 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7738 continue; 7739 7740 // Check if we can replace this instruction with any of the 7741 // visited instructions. 7742 bool Replaced = false; 7743 for (Instruction *&V : Visited) { 7744 SmallVector<int> NewMask; 7745 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7746 DT->dominates(V->getParent(), In.getParent())) { 7747 In.replaceAllUsesWith(V); 7748 eraseInstruction(&In); 7749 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7750 if (!NewMask.empty()) 7751 SI->setShuffleMask(NewMask); 7752 Replaced = true; 7753 break; 7754 } 7755 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7756 GatherShuffleSeq.contains(V) && 7757 IsIdenticalOrLessDefined(V, &In, NewMask) && 7758 DT->dominates(In.getParent(), V->getParent())) { 7759 In.moveAfter(V); 7760 V->replaceAllUsesWith(&In); 7761 eraseInstruction(V); 7762 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7763 if (!NewMask.empty()) 7764 SI->setShuffleMask(NewMask); 7765 V = &In; 7766 Replaced = true; 7767 break; 7768 } 7769 } 7770 if (!Replaced) { 7771 assert(!is_contained(Visited, &In)); 7772 Visited.push_back(&In); 7773 } 7774 } 7775 } 7776 CSEBlocks.clear(); 7777 GatherShuffleSeq.clear(); 7778 } 7779 7780 BoUpSLP::ScheduleData * 7781 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7782 ScheduleData *Bundle = nullptr; 7783 ScheduleData *PrevInBundle = nullptr; 7784 for (Value *V : VL) { 7785 if (doesNotNeedToBeScheduled(V)) 7786 continue; 7787 ScheduleData *BundleMember = getScheduleData(V); 7788 assert(BundleMember && 7789 "no ScheduleData for bundle member " 7790 "(maybe not in same basic block)"); 7791 assert(BundleMember->isSchedulingEntity() && 7792 "bundle member already part of other bundle"); 7793 if (PrevInBundle) { 7794 PrevInBundle->NextInBundle = BundleMember; 7795 } else { 7796 Bundle = BundleMember; 7797 } 7798 7799 // Group the instructions to a bundle. 7800 BundleMember->FirstInBundle = Bundle; 7801 PrevInBundle = BundleMember; 7802 } 7803 assert(Bundle && "Failed to find schedule bundle"); 7804 return Bundle; 7805 } 7806 7807 // Groups the instructions to a bundle (which is then a single scheduling entity) 7808 // and schedules instructions until the bundle gets ready. 7809 Optional<BoUpSLP::ScheduleData *> 7810 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7811 const InstructionsState &S) { 7812 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7813 // instructions. 7814 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7815 doesNotNeedToSchedule(VL)) 7816 return nullptr; 7817 7818 // Initialize the instruction bundle. 7819 Instruction *OldScheduleEnd = ScheduleEnd; 7820 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7821 7822 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7823 ScheduleData *Bundle) { 7824 // The scheduling region got new instructions at the lower end (or it is a 7825 // new region for the first bundle). This makes it necessary to 7826 // recalculate all dependencies. 7827 // It is seldom that this needs to be done a second time after adding the 7828 // initial bundle to the region. 7829 if (ScheduleEnd != OldScheduleEnd) { 7830 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7831 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7832 ReSchedule = true; 7833 } 7834 if (Bundle) { 7835 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7836 << " in block " << BB->getName() << "\n"); 7837 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7838 } 7839 7840 if (ReSchedule) { 7841 resetSchedule(); 7842 initialFillReadyList(ReadyInsts); 7843 } 7844 7845 // Now try to schedule the new bundle or (if no bundle) just calculate 7846 // dependencies. As soon as the bundle is "ready" it means that there are no 7847 // cyclic dependencies and we can schedule it. Note that's important that we 7848 // don't "schedule" the bundle yet (see cancelScheduling). 7849 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7850 !ReadyInsts.empty()) { 7851 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7852 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7853 "must be ready to schedule"); 7854 schedule(Picked, ReadyInsts); 7855 } 7856 }; 7857 7858 // Make sure that the scheduling region contains all 7859 // instructions of the bundle. 7860 for (Value *V : VL) { 7861 if (doesNotNeedToBeScheduled(V)) 7862 continue; 7863 if (!extendSchedulingRegion(V, S)) { 7864 // If the scheduling region got new instructions at the lower end (or it 7865 // is a new region for the first bundle). This makes it necessary to 7866 // recalculate all dependencies. 7867 // Otherwise the compiler may crash trying to incorrectly calculate 7868 // dependencies and emit instruction in the wrong order at the actual 7869 // scheduling. 7870 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7871 return None; 7872 } 7873 } 7874 7875 bool ReSchedule = false; 7876 for (Value *V : VL) { 7877 if (doesNotNeedToBeScheduled(V)) 7878 continue; 7879 ScheduleData *BundleMember = getScheduleData(V); 7880 assert(BundleMember && 7881 "no ScheduleData for bundle member (maybe not in same basic block)"); 7882 7883 // Make sure we don't leave the pieces of the bundle in the ready list when 7884 // whole bundle might not be ready. 7885 ReadyInsts.remove(BundleMember); 7886 7887 if (!BundleMember->IsScheduled) 7888 continue; 7889 // A bundle member was scheduled as single instruction before and now 7890 // needs to be scheduled as part of the bundle. We just get rid of the 7891 // existing schedule. 7892 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7893 << " was already scheduled\n"); 7894 ReSchedule = true; 7895 } 7896 7897 auto *Bundle = buildBundle(VL); 7898 TryScheduleBundleImpl(ReSchedule, Bundle); 7899 if (!Bundle->isReady()) { 7900 cancelScheduling(VL, S.OpValue); 7901 return None; 7902 } 7903 return Bundle; 7904 } 7905 7906 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7907 Value *OpValue) { 7908 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7909 doesNotNeedToSchedule(VL)) 7910 return; 7911 7912 if (doesNotNeedToBeScheduled(OpValue)) 7913 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7914 ScheduleData *Bundle = getScheduleData(OpValue); 7915 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7916 assert(!Bundle->IsScheduled && 7917 "Can't cancel bundle which is already scheduled"); 7918 assert(Bundle->isSchedulingEntity() && 7919 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7920 "tried to unbundle something which is not a bundle"); 7921 7922 // Remove the bundle from the ready list. 7923 if (Bundle->isReady()) 7924 ReadyInsts.remove(Bundle); 7925 7926 // Un-bundle: make single instructions out of the bundle. 7927 ScheduleData *BundleMember = Bundle; 7928 while (BundleMember) { 7929 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7930 BundleMember->FirstInBundle = BundleMember; 7931 ScheduleData *Next = BundleMember->NextInBundle; 7932 BundleMember->NextInBundle = nullptr; 7933 BundleMember->TE = nullptr; 7934 if (BundleMember->unscheduledDepsInBundle() == 0) { 7935 ReadyInsts.insert(BundleMember); 7936 } 7937 BundleMember = Next; 7938 } 7939 } 7940 7941 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7942 // Allocate a new ScheduleData for the instruction. 7943 if (ChunkPos >= ChunkSize) { 7944 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7945 ChunkPos = 0; 7946 } 7947 return &(ScheduleDataChunks.back()[ChunkPos++]); 7948 } 7949 7950 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7951 const InstructionsState &S) { 7952 if (getScheduleData(V, isOneOf(S, V))) 7953 return true; 7954 Instruction *I = dyn_cast<Instruction>(V); 7955 assert(I && "bundle member must be an instruction"); 7956 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7957 !doesNotNeedToBeScheduled(I) && 7958 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7959 "be scheduled"); 7960 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7961 ScheduleData *ISD = getScheduleData(I); 7962 if (!ISD) 7963 return false; 7964 assert(isInSchedulingRegion(ISD) && 7965 "ScheduleData not in scheduling region"); 7966 ScheduleData *SD = allocateScheduleDataChunks(); 7967 SD->Inst = I; 7968 SD->init(SchedulingRegionID, S.OpValue); 7969 ExtraScheduleDataMap[I][S.OpValue] = SD; 7970 return true; 7971 }; 7972 if (CheckScheduleForI(I)) 7973 return true; 7974 if (!ScheduleStart) { 7975 // It's the first instruction in the new region. 7976 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7977 ScheduleStart = I; 7978 ScheduleEnd = I->getNextNode(); 7979 if (isOneOf(S, I) != I) 7980 CheckScheduleForI(I); 7981 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7982 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7983 return true; 7984 } 7985 // Search up and down at the same time, because we don't know if the new 7986 // instruction is above or below the existing scheduling region. 7987 BasicBlock::reverse_iterator UpIter = 7988 ++ScheduleStart->getIterator().getReverse(); 7989 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7990 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7991 BasicBlock::iterator LowerEnd = BB->end(); 7992 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7993 &*DownIter != I) { 7994 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7995 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7996 return false; 7997 } 7998 7999 ++UpIter; 8000 ++DownIter; 8001 } 8002 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8003 assert(I->getParent() == ScheduleStart->getParent() && 8004 "Instruction is in wrong basic block."); 8005 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8006 ScheduleStart = I; 8007 if (isOneOf(S, I) != I) 8008 CheckScheduleForI(I); 8009 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8010 << "\n"); 8011 return true; 8012 } 8013 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8014 "Expected to reach top of the basic block or instruction down the " 8015 "lower end."); 8016 assert(I->getParent() == ScheduleEnd->getParent() && 8017 "Instruction is in wrong basic block."); 8018 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8019 nullptr); 8020 ScheduleEnd = I->getNextNode(); 8021 if (isOneOf(S, I) != I) 8022 CheckScheduleForI(I); 8023 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8024 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8025 return true; 8026 } 8027 8028 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8029 Instruction *ToI, 8030 ScheduleData *PrevLoadStore, 8031 ScheduleData *NextLoadStore) { 8032 ScheduleData *CurrentLoadStore = PrevLoadStore; 8033 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8034 // No need to allocate data for non-schedulable instructions. 8035 if (doesNotNeedToBeScheduled(I)) 8036 continue; 8037 ScheduleData *SD = ScheduleDataMap.lookup(I); 8038 if (!SD) { 8039 SD = allocateScheduleDataChunks(); 8040 ScheduleDataMap[I] = SD; 8041 SD->Inst = I; 8042 } 8043 assert(!isInSchedulingRegion(SD) && 8044 "new ScheduleData already in scheduling region"); 8045 SD->init(SchedulingRegionID, I); 8046 8047 if (I->mayReadOrWriteMemory() && 8048 (!isa<IntrinsicInst>(I) || 8049 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8050 cast<IntrinsicInst>(I)->getIntrinsicID() != 8051 Intrinsic::pseudoprobe))) { 8052 // Update the linked list of memory accessing instructions. 8053 if (CurrentLoadStore) { 8054 CurrentLoadStore->NextLoadStore = SD; 8055 } else { 8056 FirstLoadStoreInRegion = SD; 8057 } 8058 CurrentLoadStore = SD; 8059 } 8060 8061 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8062 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8063 RegionHasStackSave = true; 8064 } 8065 if (NextLoadStore) { 8066 if (CurrentLoadStore) 8067 CurrentLoadStore->NextLoadStore = NextLoadStore; 8068 } else { 8069 LastLoadStoreInRegion = CurrentLoadStore; 8070 } 8071 } 8072 8073 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8074 bool InsertInReadyList, 8075 BoUpSLP *SLP) { 8076 assert(SD->isSchedulingEntity()); 8077 8078 SmallVector<ScheduleData *, 10> WorkList; 8079 WorkList.push_back(SD); 8080 8081 while (!WorkList.empty()) { 8082 ScheduleData *SD = WorkList.pop_back_val(); 8083 for (ScheduleData *BundleMember = SD; BundleMember; 8084 BundleMember = BundleMember->NextInBundle) { 8085 assert(isInSchedulingRegion(BundleMember)); 8086 if (BundleMember->hasValidDependencies()) 8087 continue; 8088 8089 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8090 << "\n"); 8091 BundleMember->Dependencies = 0; 8092 BundleMember->resetUnscheduledDeps(); 8093 8094 // Handle def-use chain dependencies. 8095 if (BundleMember->OpValue != BundleMember->Inst) { 8096 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8097 BundleMember->Dependencies++; 8098 ScheduleData *DestBundle = UseSD->FirstInBundle; 8099 if (!DestBundle->IsScheduled) 8100 BundleMember->incrementUnscheduledDeps(1); 8101 if (!DestBundle->hasValidDependencies()) 8102 WorkList.push_back(DestBundle); 8103 } 8104 } else { 8105 for (User *U : BundleMember->Inst->users()) { 8106 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8107 BundleMember->Dependencies++; 8108 ScheduleData *DestBundle = UseSD->FirstInBundle; 8109 if (!DestBundle->IsScheduled) 8110 BundleMember->incrementUnscheduledDeps(1); 8111 if (!DestBundle->hasValidDependencies()) 8112 WorkList.push_back(DestBundle); 8113 } 8114 } 8115 } 8116 8117 auto makeControlDependent = [&](Instruction *I) { 8118 auto *DepDest = getScheduleData(I); 8119 assert(DepDest && "must be in schedule window"); 8120 DepDest->ControlDependencies.push_back(BundleMember); 8121 BundleMember->Dependencies++; 8122 ScheduleData *DestBundle = DepDest->FirstInBundle; 8123 if (!DestBundle->IsScheduled) 8124 BundleMember->incrementUnscheduledDeps(1); 8125 if (!DestBundle->hasValidDependencies()) 8126 WorkList.push_back(DestBundle); 8127 }; 8128 8129 // Any instruction which isn't safe to speculate at the begining of the 8130 // block is control dependend on any early exit or non-willreturn call 8131 // which proceeds it. 8132 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8133 for (Instruction *I = BundleMember->Inst->getNextNode(); 8134 I != ScheduleEnd; I = I->getNextNode()) { 8135 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8136 continue; 8137 8138 // Add the dependency 8139 makeControlDependent(I); 8140 8141 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8142 // Everything past here must be control dependent on I. 8143 break; 8144 } 8145 } 8146 8147 if (RegionHasStackSave) { 8148 // If we have an inalloc alloca instruction, it needs to be scheduled 8149 // after any preceeding stacksave. We also need to prevent any alloca 8150 // from reordering above a preceeding stackrestore. 8151 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8152 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8153 for (Instruction *I = BundleMember->Inst->getNextNode(); 8154 I != ScheduleEnd; I = I->getNextNode()) { 8155 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8156 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8157 // Any allocas past here must be control dependent on I, and I 8158 // must be memory dependend on BundleMember->Inst. 8159 break; 8160 8161 if (!isa<AllocaInst>(I)) 8162 continue; 8163 8164 // Add the dependency 8165 makeControlDependent(I); 8166 } 8167 } 8168 8169 // In addition to the cases handle just above, we need to prevent 8170 // allocas from moving below a stacksave. The stackrestore case 8171 // is currently thought to be conservatism. 8172 if (isa<AllocaInst>(BundleMember->Inst)) { 8173 for (Instruction *I = BundleMember->Inst->getNextNode(); 8174 I != ScheduleEnd; I = I->getNextNode()) { 8175 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8176 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8177 continue; 8178 8179 // Add the dependency 8180 makeControlDependent(I); 8181 break; 8182 } 8183 } 8184 } 8185 8186 // Handle the memory dependencies (if any). 8187 ScheduleData *DepDest = BundleMember->NextLoadStore; 8188 if (!DepDest) 8189 continue; 8190 Instruction *SrcInst = BundleMember->Inst; 8191 assert(SrcInst->mayReadOrWriteMemory() && 8192 "NextLoadStore list for non memory effecting bundle?"); 8193 MemoryLocation SrcLoc = getLocation(SrcInst); 8194 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8195 unsigned numAliased = 0; 8196 unsigned DistToSrc = 1; 8197 8198 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8199 assert(isInSchedulingRegion(DepDest)); 8200 8201 // We have two limits to reduce the complexity: 8202 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8203 // SLP->isAliased (which is the expensive part in this loop). 8204 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8205 // the whole loop (even if the loop is fast, it's quadratic). 8206 // It's important for the loop break condition (see below) to 8207 // check this limit even between two read-only instructions. 8208 if (DistToSrc >= MaxMemDepDistance || 8209 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8210 (numAliased >= AliasedCheckLimit || 8211 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8212 8213 // We increment the counter only if the locations are aliased 8214 // (instead of counting all alias checks). This gives a better 8215 // balance between reduced runtime and accurate dependencies. 8216 numAliased++; 8217 8218 DepDest->MemoryDependencies.push_back(BundleMember); 8219 BundleMember->Dependencies++; 8220 ScheduleData *DestBundle = DepDest->FirstInBundle; 8221 if (!DestBundle->IsScheduled) { 8222 BundleMember->incrementUnscheduledDeps(1); 8223 } 8224 if (!DestBundle->hasValidDependencies()) { 8225 WorkList.push_back(DestBundle); 8226 } 8227 } 8228 8229 // Example, explaining the loop break condition: Let's assume our 8230 // starting instruction is i0 and MaxMemDepDistance = 3. 8231 // 8232 // +--------v--v--v 8233 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8234 // +--------^--^--^ 8235 // 8236 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8237 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8238 // Previously we already added dependencies from i3 to i6,i7,i8 8239 // (because of MaxMemDepDistance). As we added a dependency from 8240 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8241 // and we can abort this loop at i6. 8242 if (DistToSrc >= 2 * MaxMemDepDistance) 8243 break; 8244 DistToSrc++; 8245 } 8246 } 8247 if (InsertInReadyList && SD->isReady()) { 8248 ReadyInsts.insert(SD); 8249 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8250 << "\n"); 8251 } 8252 } 8253 } 8254 8255 void BoUpSLP::BlockScheduling::resetSchedule() { 8256 assert(ScheduleStart && 8257 "tried to reset schedule on block which has not been scheduled"); 8258 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8259 doForAllOpcodes(I, [&](ScheduleData *SD) { 8260 assert(isInSchedulingRegion(SD) && 8261 "ScheduleData not in scheduling region"); 8262 SD->IsScheduled = false; 8263 SD->resetUnscheduledDeps(); 8264 }); 8265 } 8266 ReadyInsts.clear(); 8267 } 8268 8269 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8270 if (!BS->ScheduleStart) 8271 return; 8272 8273 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8274 8275 // A key point - if we got here, pre-scheduling was able to find a valid 8276 // scheduling of the sub-graph of the scheduling window which consists 8277 // of all vector bundles and their transitive users. As such, we do not 8278 // need to reschedule anything *outside of* that subgraph. 8279 8280 BS->resetSchedule(); 8281 8282 // For the real scheduling we use a more sophisticated ready-list: it is 8283 // sorted by the original instruction location. This lets the final schedule 8284 // be as close as possible to the original instruction order. 8285 // WARNING: If changing this order causes a correctness issue, that means 8286 // there is some missing dependence edge in the schedule data graph. 8287 struct ScheduleDataCompare { 8288 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8289 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8290 } 8291 }; 8292 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8293 8294 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8295 // and fill the ready-list with initial instructions. 8296 int Idx = 0; 8297 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8298 I = I->getNextNode()) { 8299 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8300 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8301 (void)SDTE; 8302 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8303 SD->isPartOfBundle() == 8304 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8305 "scheduler and vectorizer bundle mismatch"); 8306 SD->FirstInBundle->SchedulingPriority = Idx++; 8307 8308 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8309 BS->calculateDependencies(SD, false, this); 8310 }); 8311 } 8312 BS->initialFillReadyList(ReadyInsts); 8313 8314 Instruction *LastScheduledInst = BS->ScheduleEnd; 8315 8316 // Do the "real" scheduling. 8317 while (!ReadyInsts.empty()) { 8318 ScheduleData *picked = *ReadyInsts.begin(); 8319 ReadyInsts.erase(ReadyInsts.begin()); 8320 8321 // Move the scheduled instruction(s) to their dedicated places, if not 8322 // there yet. 8323 for (ScheduleData *BundleMember = picked; BundleMember; 8324 BundleMember = BundleMember->NextInBundle) { 8325 Instruction *pickedInst = BundleMember->Inst; 8326 if (pickedInst->getNextNode() != LastScheduledInst) 8327 pickedInst->moveBefore(LastScheduledInst); 8328 LastScheduledInst = pickedInst; 8329 } 8330 8331 BS->schedule(picked, ReadyInsts); 8332 } 8333 8334 // Check that we didn't break any of our invariants. 8335 #ifdef EXPENSIVE_CHECKS 8336 BS->verify(); 8337 #endif 8338 8339 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8340 // Check that all schedulable entities got scheduled 8341 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8342 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8343 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8344 assert(SD->IsScheduled && "must be scheduled at this point"); 8345 } 8346 }); 8347 } 8348 #endif 8349 8350 // Avoid duplicate scheduling of the block. 8351 BS->ScheduleStart = nullptr; 8352 } 8353 8354 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8355 // If V is a store, just return the width of the stored value (or value 8356 // truncated just before storing) without traversing the expression tree. 8357 // This is the common case. 8358 if (auto *Store = dyn_cast<StoreInst>(V)) { 8359 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8360 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8361 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8362 } 8363 8364 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8365 return getVectorElementSize(IEI->getOperand(1)); 8366 8367 auto E = InstrElementSize.find(V); 8368 if (E != InstrElementSize.end()) 8369 return E->second; 8370 8371 // If V is not a store, we can traverse the expression tree to find loads 8372 // that feed it. The type of the loaded value may indicate a more suitable 8373 // width than V's type. We want to base the vector element size on the width 8374 // of memory operations where possible. 8375 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8376 SmallPtrSet<Instruction *, 16> Visited; 8377 if (auto *I = dyn_cast<Instruction>(V)) { 8378 Worklist.emplace_back(I, I->getParent()); 8379 Visited.insert(I); 8380 } 8381 8382 // Traverse the expression tree in bottom-up order looking for loads. If we 8383 // encounter an instruction we don't yet handle, we give up. 8384 auto Width = 0u; 8385 while (!Worklist.empty()) { 8386 Instruction *I; 8387 BasicBlock *Parent; 8388 std::tie(I, Parent) = Worklist.pop_back_val(); 8389 8390 // We should only be looking at scalar instructions here. If the current 8391 // instruction has a vector type, skip. 8392 auto *Ty = I->getType(); 8393 if (isa<VectorType>(Ty)) 8394 continue; 8395 8396 // If the current instruction is a load, update MaxWidth to reflect the 8397 // width of the loaded value. 8398 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8399 isa<ExtractValueInst>(I)) 8400 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8401 8402 // Otherwise, we need to visit the operands of the instruction. We only 8403 // handle the interesting cases from buildTree here. If an operand is an 8404 // instruction we haven't yet visited and from the same basic block as the 8405 // user or the use is a PHI node, we add it to the worklist. 8406 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8407 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8408 isa<UnaryOperator>(I)) { 8409 for (Use &U : I->operands()) 8410 if (auto *J = dyn_cast<Instruction>(U.get())) 8411 if (Visited.insert(J).second && 8412 (isa<PHINode>(I) || J->getParent() == Parent)) 8413 Worklist.emplace_back(J, J->getParent()); 8414 } else { 8415 break; 8416 } 8417 } 8418 8419 // If we didn't encounter a memory access in the expression tree, or if we 8420 // gave up for some reason, just return the width of V. Otherwise, return the 8421 // maximum width we found. 8422 if (!Width) { 8423 if (auto *CI = dyn_cast<CmpInst>(V)) 8424 V = CI->getOperand(0); 8425 Width = DL->getTypeSizeInBits(V->getType()); 8426 } 8427 8428 for (Instruction *I : Visited) 8429 InstrElementSize[I] = Width; 8430 8431 return Width; 8432 } 8433 8434 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8435 // smaller type with a truncation. We collect the values that will be demoted 8436 // in ToDemote and additional roots that require investigating in Roots. 8437 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8438 SmallVectorImpl<Value *> &ToDemote, 8439 SmallVectorImpl<Value *> &Roots) { 8440 // We can always demote constants. 8441 if (isa<Constant>(V)) { 8442 ToDemote.push_back(V); 8443 return true; 8444 } 8445 8446 // If the value is not an instruction in the expression with only one use, it 8447 // cannot be demoted. 8448 auto *I = dyn_cast<Instruction>(V); 8449 if (!I || !I->hasOneUse() || !Expr.count(I)) 8450 return false; 8451 8452 switch (I->getOpcode()) { 8453 8454 // We can always demote truncations and extensions. Since truncations can 8455 // seed additional demotion, we save the truncated value. 8456 case Instruction::Trunc: 8457 Roots.push_back(I->getOperand(0)); 8458 break; 8459 case Instruction::ZExt: 8460 case Instruction::SExt: 8461 if (isa<ExtractElementInst>(I->getOperand(0)) || 8462 isa<InsertElementInst>(I->getOperand(0))) 8463 return false; 8464 break; 8465 8466 // We can demote certain binary operations if we can demote both of their 8467 // operands. 8468 case Instruction::Add: 8469 case Instruction::Sub: 8470 case Instruction::Mul: 8471 case Instruction::And: 8472 case Instruction::Or: 8473 case Instruction::Xor: 8474 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8475 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8476 return false; 8477 break; 8478 8479 // We can demote selects if we can demote their true and false values. 8480 case Instruction::Select: { 8481 SelectInst *SI = cast<SelectInst>(I); 8482 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8483 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8484 return false; 8485 break; 8486 } 8487 8488 // We can demote phis if we can demote all their incoming operands. Note that 8489 // we don't need to worry about cycles since we ensure single use above. 8490 case Instruction::PHI: { 8491 PHINode *PN = cast<PHINode>(I); 8492 for (Value *IncValue : PN->incoming_values()) 8493 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8494 return false; 8495 break; 8496 } 8497 8498 // Otherwise, conservatively give up. 8499 default: 8500 return false; 8501 } 8502 8503 // Record the value that we can demote. 8504 ToDemote.push_back(V); 8505 return true; 8506 } 8507 8508 void BoUpSLP::computeMinimumValueSizes() { 8509 // If there are no external uses, the expression tree must be rooted by a 8510 // store. We can't demote in-memory values, so there is nothing to do here. 8511 if (ExternalUses.empty()) 8512 return; 8513 8514 // We only attempt to truncate integer expressions. 8515 auto &TreeRoot = VectorizableTree[0]->Scalars; 8516 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8517 if (!TreeRootIT) 8518 return; 8519 8520 // If the expression is not rooted by a store, these roots should have 8521 // external uses. We will rely on InstCombine to rewrite the expression in 8522 // the narrower type. However, InstCombine only rewrites single-use values. 8523 // This means that if a tree entry other than a root is used externally, it 8524 // must have multiple uses and InstCombine will not rewrite it. The code 8525 // below ensures that only the roots are used externally. 8526 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8527 for (auto &EU : ExternalUses) 8528 if (!Expr.erase(EU.Scalar)) 8529 return; 8530 if (!Expr.empty()) 8531 return; 8532 8533 // Collect the scalar values of the vectorizable expression. We will use this 8534 // context to determine which values can be demoted. If we see a truncation, 8535 // we mark it as seeding another demotion. 8536 for (auto &EntryPtr : VectorizableTree) 8537 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8538 8539 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8540 // have a single external user that is not in the vectorizable tree. 8541 for (auto *Root : TreeRoot) 8542 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8543 return; 8544 8545 // Conservatively determine if we can actually truncate the roots of the 8546 // expression. Collect the values that can be demoted in ToDemote and 8547 // additional roots that require investigating in Roots. 8548 SmallVector<Value *, 32> ToDemote; 8549 SmallVector<Value *, 4> Roots; 8550 for (auto *Root : TreeRoot) 8551 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8552 return; 8553 8554 // The maximum bit width required to represent all the values that can be 8555 // demoted without loss of precision. It would be safe to truncate the roots 8556 // of the expression to this width. 8557 auto MaxBitWidth = 8u; 8558 8559 // We first check if all the bits of the roots are demanded. If they're not, 8560 // we can truncate the roots to this narrower type. 8561 for (auto *Root : TreeRoot) { 8562 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8563 MaxBitWidth = std::max<unsigned>( 8564 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8565 } 8566 8567 // True if the roots can be zero-extended back to their original type, rather 8568 // than sign-extended. We know that if the leading bits are not demanded, we 8569 // can safely zero-extend. So we initialize IsKnownPositive to True. 8570 bool IsKnownPositive = true; 8571 8572 // If all the bits of the roots are demanded, we can try a little harder to 8573 // compute a narrower type. This can happen, for example, if the roots are 8574 // getelementptr indices. InstCombine promotes these indices to the pointer 8575 // width. Thus, all their bits are technically demanded even though the 8576 // address computation might be vectorized in a smaller type. 8577 // 8578 // We start by looking at each entry that can be demoted. We compute the 8579 // maximum bit width required to store the scalar by using ValueTracking to 8580 // compute the number of high-order bits we can truncate. 8581 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8582 llvm::all_of(TreeRoot, [](Value *R) { 8583 assert(R->hasOneUse() && "Root should have only one use!"); 8584 return isa<GetElementPtrInst>(R->user_back()); 8585 })) { 8586 MaxBitWidth = 8u; 8587 8588 // Determine if the sign bit of all the roots is known to be zero. If not, 8589 // IsKnownPositive is set to False. 8590 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8591 KnownBits Known = computeKnownBits(R, *DL); 8592 return Known.isNonNegative(); 8593 }); 8594 8595 // Determine the maximum number of bits required to store the scalar 8596 // values. 8597 for (auto *Scalar : ToDemote) { 8598 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8599 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8600 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8601 } 8602 8603 // If we can't prove that the sign bit is zero, we must add one to the 8604 // maximum bit width to account for the unknown sign bit. This preserves 8605 // the existing sign bit so we can safely sign-extend the root back to the 8606 // original type. Otherwise, if we know the sign bit is zero, we will 8607 // zero-extend the root instead. 8608 // 8609 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8610 // one to the maximum bit width will yield a larger-than-necessary 8611 // type. In general, we need to add an extra bit only if we can't 8612 // prove that the upper bit of the original type is equal to the 8613 // upper bit of the proposed smaller type. If these two bits are the 8614 // same (either zero or one) we know that sign-extending from the 8615 // smaller type will result in the same value. Here, since we can't 8616 // yet prove this, we are just making the proposed smaller type 8617 // larger to ensure correctness. 8618 if (!IsKnownPositive) 8619 ++MaxBitWidth; 8620 } 8621 8622 // Round MaxBitWidth up to the next power-of-two. 8623 if (!isPowerOf2_64(MaxBitWidth)) 8624 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8625 8626 // If the maximum bit width we compute is less than the with of the roots' 8627 // type, we can proceed with the narrowing. Otherwise, do nothing. 8628 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8629 return; 8630 8631 // If we can truncate the root, we must collect additional values that might 8632 // be demoted as a result. That is, those seeded by truncations we will 8633 // modify. 8634 while (!Roots.empty()) 8635 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8636 8637 // Finally, map the values we can demote to the maximum bit with we computed. 8638 for (auto *Scalar : ToDemote) 8639 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8640 } 8641 8642 namespace { 8643 8644 /// The SLPVectorizer Pass. 8645 struct SLPVectorizer : public FunctionPass { 8646 SLPVectorizerPass Impl; 8647 8648 /// Pass identification, replacement for typeid 8649 static char ID; 8650 8651 explicit SLPVectorizer() : FunctionPass(ID) { 8652 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8653 } 8654 8655 bool doInitialization(Module &M) override { return false; } 8656 8657 bool runOnFunction(Function &F) override { 8658 if (skipFunction(F)) 8659 return false; 8660 8661 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8662 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8663 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8664 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8665 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8666 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8667 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8668 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8669 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8670 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8671 8672 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8673 } 8674 8675 void getAnalysisUsage(AnalysisUsage &AU) const override { 8676 FunctionPass::getAnalysisUsage(AU); 8677 AU.addRequired<AssumptionCacheTracker>(); 8678 AU.addRequired<ScalarEvolutionWrapperPass>(); 8679 AU.addRequired<AAResultsWrapperPass>(); 8680 AU.addRequired<TargetTransformInfoWrapperPass>(); 8681 AU.addRequired<LoopInfoWrapperPass>(); 8682 AU.addRequired<DominatorTreeWrapperPass>(); 8683 AU.addRequired<DemandedBitsWrapperPass>(); 8684 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8685 AU.addRequired<InjectTLIMappingsLegacy>(); 8686 AU.addPreserved<LoopInfoWrapperPass>(); 8687 AU.addPreserved<DominatorTreeWrapperPass>(); 8688 AU.addPreserved<AAResultsWrapperPass>(); 8689 AU.addPreserved<GlobalsAAWrapperPass>(); 8690 AU.setPreservesCFG(); 8691 } 8692 }; 8693 8694 } // end anonymous namespace 8695 8696 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8697 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8698 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8699 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8700 auto *AA = &AM.getResult<AAManager>(F); 8701 auto *LI = &AM.getResult<LoopAnalysis>(F); 8702 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8703 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8704 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8705 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8706 8707 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8708 if (!Changed) 8709 return PreservedAnalyses::all(); 8710 8711 PreservedAnalyses PA; 8712 PA.preserveSet<CFGAnalyses>(); 8713 return PA; 8714 } 8715 8716 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8717 TargetTransformInfo *TTI_, 8718 TargetLibraryInfo *TLI_, AAResults *AA_, 8719 LoopInfo *LI_, DominatorTree *DT_, 8720 AssumptionCache *AC_, DemandedBits *DB_, 8721 OptimizationRemarkEmitter *ORE_) { 8722 if (!RunSLPVectorization) 8723 return false; 8724 SE = SE_; 8725 TTI = TTI_; 8726 TLI = TLI_; 8727 AA = AA_; 8728 LI = LI_; 8729 DT = DT_; 8730 AC = AC_; 8731 DB = DB_; 8732 DL = &F.getParent()->getDataLayout(); 8733 8734 Stores.clear(); 8735 GEPs.clear(); 8736 bool Changed = false; 8737 8738 // If the target claims to have no vector registers don't attempt 8739 // vectorization. 8740 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8741 LLVM_DEBUG( 8742 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8743 return false; 8744 } 8745 8746 // Don't vectorize when the attribute NoImplicitFloat is used. 8747 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8748 return false; 8749 8750 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8751 8752 // Use the bottom up slp vectorizer to construct chains that start with 8753 // store instructions. 8754 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8755 8756 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8757 // delete instructions. 8758 8759 // Update DFS numbers now so that we can use them for ordering. 8760 DT->updateDFSNumbers(); 8761 8762 // Scan the blocks in the function in post order. 8763 for (auto BB : post_order(&F.getEntryBlock())) { 8764 collectSeedInstructions(BB); 8765 8766 // Vectorize trees that end at stores. 8767 if (!Stores.empty()) { 8768 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8769 << " underlying objects.\n"); 8770 Changed |= vectorizeStoreChains(R); 8771 } 8772 8773 // Vectorize trees that end at reductions. 8774 Changed |= vectorizeChainsInBlock(BB, R); 8775 8776 // Vectorize the index computations of getelementptr instructions. This 8777 // is primarily intended to catch gather-like idioms ending at 8778 // non-consecutive loads. 8779 if (!GEPs.empty()) { 8780 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8781 << " underlying objects.\n"); 8782 Changed |= vectorizeGEPIndices(BB, R); 8783 } 8784 } 8785 8786 if (Changed) { 8787 R.optimizeGatherSequence(); 8788 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8789 } 8790 return Changed; 8791 } 8792 8793 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8794 unsigned Idx) { 8795 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8796 << "\n"); 8797 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8798 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8799 unsigned VF = Chain.size(); 8800 8801 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8802 return false; 8803 8804 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8805 << "\n"); 8806 8807 R.buildTree(Chain); 8808 if (R.isTreeTinyAndNotFullyVectorizable()) 8809 return false; 8810 if (R.isLoadCombineCandidate()) 8811 return false; 8812 R.reorderTopToBottom(); 8813 R.reorderBottomToTop(); 8814 R.buildExternalUses(); 8815 8816 R.computeMinimumValueSizes(); 8817 8818 InstructionCost Cost = R.getTreeCost(); 8819 8820 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8821 if (Cost < -SLPCostThreshold) { 8822 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8823 8824 using namespace ore; 8825 8826 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8827 cast<StoreInst>(Chain[0])) 8828 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8829 << " and with tree size " 8830 << NV("TreeSize", R.getTreeSize())); 8831 8832 R.vectorizeTree(); 8833 return true; 8834 } 8835 8836 return false; 8837 } 8838 8839 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8840 BoUpSLP &R) { 8841 // We may run into multiple chains that merge into a single chain. We mark the 8842 // stores that we vectorized so that we don't visit the same store twice. 8843 BoUpSLP::ValueSet VectorizedStores; 8844 bool Changed = false; 8845 8846 int E = Stores.size(); 8847 SmallBitVector Tails(E, false); 8848 int MaxIter = MaxStoreLookup.getValue(); 8849 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8850 E, std::make_pair(E, INT_MAX)); 8851 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8852 int IterCnt; 8853 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8854 &CheckedPairs, 8855 &ConsecutiveChain](int K, int Idx) { 8856 if (IterCnt >= MaxIter) 8857 return true; 8858 if (CheckedPairs[Idx].test(K)) 8859 return ConsecutiveChain[K].second == 1 && 8860 ConsecutiveChain[K].first == Idx; 8861 ++IterCnt; 8862 CheckedPairs[Idx].set(K); 8863 CheckedPairs[K].set(Idx); 8864 Optional<int> Diff = getPointersDiff( 8865 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8866 Stores[Idx]->getValueOperand()->getType(), 8867 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8868 if (!Diff || *Diff == 0) 8869 return false; 8870 int Val = *Diff; 8871 if (Val < 0) { 8872 if (ConsecutiveChain[Idx].second > -Val) { 8873 Tails.set(K); 8874 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8875 } 8876 return false; 8877 } 8878 if (ConsecutiveChain[K].second <= Val) 8879 return false; 8880 8881 Tails.set(Idx); 8882 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8883 return Val == 1; 8884 }; 8885 // Do a quadratic search on all of the given stores in reverse order and find 8886 // all of the pairs of stores that follow each other. 8887 for (int Idx = E - 1; Idx >= 0; --Idx) { 8888 // If a store has multiple consecutive store candidates, search according 8889 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8890 // This is because usually pairing with immediate succeeding or preceding 8891 // candidate create the best chance to find slp vectorization opportunity. 8892 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8893 IterCnt = 0; 8894 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8895 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8896 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8897 break; 8898 } 8899 8900 // Tracks if we tried to vectorize stores starting from the given tail 8901 // already. 8902 SmallBitVector TriedTails(E, false); 8903 // For stores that start but don't end a link in the chain: 8904 for (int Cnt = E; Cnt > 0; --Cnt) { 8905 int I = Cnt - 1; 8906 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8907 continue; 8908 // We found a store instr that starts a chain. Now follow the chain and try 8909 // to vectorize it. 8910 BoUpSLP::ValueList Operands; 8911 // Collect the chain into a list. 8912 while (I != E && !VectorizedStores.count(Stores[I])) { 8913 Operands.push_back(Stores[I]); 8914 Tails.set(I); 8915 if (ConsecutiveChain[I].second != 1) { 8916 // Mark the new end in the chain and go back, if required. It might be 8917 // required if the original stores come in reversed order, for example. 8918 if (ConsecutiveChain[I].first != E && 8919 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8920 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8921 TriedTails.set(I); 8922 Tails.reset(ConsecutiveChain[I].first); 8923 if (Cnt < ConsecutiveChain[I].first + 2) 8924 Cnt = ConsecutiveChain[I].first + 2; 8925 } 8926 break; 8927 } 8928 // Move to the next value in the chain. 8929 I = ConsecutiveChain[I].first; 8930 } 8931 assert(!Operands.empty() && "Expected non-empty list of stores."); 8932 8933 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8934 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8935 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8936 8937 unsigned MinVF = R.getMinVF(EltSize); 8938 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8939 MaxElts); 8940 8941 // FIXME: Is division-by-2 the correct step? Should we assert that the 8942 // register size is a power-of-2? 8943 unsigned StartIdx = 0; 8944 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8945 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8946 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8947 if (!VectorizedStores.count(Slice.front()) && 8948 !VectorizedStores.count(Slice.back()) && 8949 vectorizeStoreChain(Slice, R, Cnt)) { 8950 // Mark the vectorized stores so that we don't vectorize them again. 8951 VectorizedStores.insert(Slice.begin(), Slice.end()); 8952 Changed = true; 8953 // If we vectorized initial block, no need to try to vectorize it 8954 // again. 8955 if (Cnt == StartIdx) 8956 StartIdx += Size; 8957 Cnt += Size; 8958 continue; 8959 } 8960 ++Cnt; 8961 } 8962 // Check if the whole array was vectorized already - exit. 8963 if (StartIdx >= Operands.size()) 8964 break; 8965 } 8966 } 8967 8968 return Changed; 8969 } 8970 8971 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8972 // Initialize the collections. We will make a single pass over the block. 8973 Stores.clear(); 8974 GEPs.clear(); 8975 8976 // Visit the store and getelementptr instructions in BB and organize them in 8977 // Stores and GEPs according to the underlying objects of their pointer 8978 // operands. 8979 for (Instruction &I : *BB) { 8980 // Ignore store instructions that are volatile or have a pointer operand 8981 // that doesn't point to a scalar type. 8982 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8983 if (!SI->isSimple()) 8984 continue; 8985 if (!isValidElementType(SI->getValueOperand()->getType())) 8986 continue; 8987 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8988 } 8989 8990 // Ignore getelementptr instructions that have more than one index, a 8991 // constant index, or a pointer operand that doesn't point to a scalar 8992 // type. 8993 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8994 auto Idx = GEP->idx_begin()->get(); 8995 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8996 continue; 8997 if (!isValidElementType(Idx->getType())) 8998 continue; 8999 if (GEP->getType()->isVectorTy()) 9000 continue; 9001 GEPs[GEP->getPointerOperand()].push_back(GEP); 9002 } 9003 } 9004 } 9005 9006 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9007 if (!A || !B) 9008 return false; 9009 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9010 return false; 9011 Value *VL[] = {A, B}; 9012 return tryToVectorizeList(VL, R); 9013 } 9014 9015 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9016 bool LimitForRegisterSize) { 9017 if (VL.size() < 2) 9018 return false; 9019 9020 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9021 << VL.size() << ".\n"); 9022 9023 // Check that all of the parts are instructions of the same type, 9024 // we permit an alternate opcode via InstructionsState. 9025 InstructionsState S = getSameOpcode(VL); 9026 if (!S.getOpcode()) 9027 return false; 9028 9029 Instruction *I0 = cast<Instruction>(S.OpValue); 9030 // Make sure invalid types (including vector type) are rejected before 9031 // determining vectorization factor for scalar instructions. 9032 for (Value *V : VL) { 9033 Type *Ty = V->getType(); 9034 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9035 // NOTE: the following will give user internal llvm type name, which may 9036 // not be useful. 9037 R.getORE()->emit([&]() { 9038 std::string type_str; 9039 llvm::raw_string_ostream rso(type_str); 9040 Ty->print(rso); 9041 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9042 << "Cannot SLP vectorize list: type " 9043 << rso.str() + " is unsupported by vectorizer"; 9044 }); 9045 return false; 9046 } 9047 } 9048 9049 unsigned Sz = R.getVectorElementSize(I0); 9050 unsigned MinVF = R.getMinVF(Sz); 9051 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9052 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9053 if (MaxVF < 2) { 9054 R.getORE()->emit([&]() { 9055 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9056 << "Cannot SLP vectorize list: vectorization factor " 9057 << "less than 2 is not supported"; 9058 }); 9059 return false; 9060 } 9061 9062 bool Changed = false; 9063 bool CandidateFound = false; 9064 InstructionCost MinCost = SLPCostThreshold.getValue(); 9065 Type *ScalarTy = VL[0]->getType(); 9066 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9067 ScalarTy = IE->getOperand(1)->getType(); 9068 9069 unsigned NextInst = 0, MaxInst = VL.size(); 9070 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9071 // No actual vectorization should happen, if number of parts is the same as 9072 // provided vectorization factor (i.e. the scalar type is used for vector 9073 // code during codegen). 9074 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9075 if (TTI->getNumberOfParts(VecTy) == VF) 9076 continue; 9077 for (unsigned I = NextInst; I < MaxInst; ++I) { 9078 unsigned OpsWidth = 0; 9079 9080 if (I + VF > MaxInst) 9081 OpsWidth = MaxInst - I; 9082 else 9083 OpsWidth = VF; 9084 9085 if (!isPowerOf2_32(OpsWidth)) 9086 continue; 9087 9088 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9089 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9090 break; 9091 9092 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9093 // Check that a previous iteration of this loop did not delete the Value. 9094 if (llvm::any_of(Ops, [&R](Value *V) { 9095 auto *I = dyn_cast<Instruction>(V); 9096 return I && R.isDeleted(I); 9097 })) 9098 continue; 9099 9100 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9101 << "\n"); 9102 9103 R.buildTree(Ops); 9104 if (R.isTreeTinyAndNotFullyVectorizable()) 9105 continue; 9106 R.reorderTopToBottom(); 9107 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9108 R.buildExternalUses(); 9109 9110 R.computeMinimumValueSizes(); 9111 InstructionCost Cost = R.getTreeCost(); 9112 CandidateFound = true; 9113 MinCost = std::min(MinCost, Cost); 9114 9115 if (Cost < -SLPCostThreshold) { 9116 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9117 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9118 cast<Instruction>(Ops[0])) 9119 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9120 << " and with tree size " 9121 << ore::NV("TreeSize", R.getTreeSize())); 9122 9123 R.vectorizeTree(); 9124 // Move to the next bundle. 9125 I += VF - 1; 9126 NextInst = I + 1; 9127 Changed = true; 9128 } 9129 } 9130 } 9131 9132 if (!Changed && CandidateFound) { 9133 R.getORE()->emit([&]() { 9134 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9135 << "List vectorization was possible but not beneficial with cost " 9136 << ore::NV("Cost", MinCost) << " >= " 9137 << ore::NV("Treshold", -SLPCostThreshold); 9138 }); 9139 } else if (!Changed) { 9140 R.getORE()->emit([&]() { 9141 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9142 << "Cannot SLP vectorize list: vectorization was impossible" 9143 << " with available vectorization factors"; 9144 }); 9145 } 9146 return Changed; 9147 } 9148 9149 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9150 if (!I) 9151 return false; 9152 9153 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9154 return false; 9155 9156 Value *P = I->getParent(); 9157 9158 // Vectorize in current basic block only. 9159 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9160 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9161 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9162 return false; 9163 9164 // Try to vectorize V. 9165 if (tryToVectorizePair(Op0, Op1, R)) 9166 return true; 9167 9168 auto *A = dyn_cast<BinaryOperator>(Op0); 9169 auto *B = dyn_cast<BinaryOperator>(Op1); 9170 // Try to skip B. 9171 if (B && B->hasOneUse()) { 9172 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9173 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9174 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9175 return true; 9176 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9177 return true; 9178 } 9179 9180 // Try to skip A. 9181 if (A && A->hasOneUse()) { 9182 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9183 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9184 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9185 return true; 9186 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9187 return true; 9188 } 9189 return false; 9190 } 9191 9192 namespace { 9193 9194 /// Model horizontal reductions. 9195 /// 9196 /// A horizontal reduction is a tree of reduction instructions that has values 9197 /// that can be put into a vector as its leaves. For example: 9198 /// 9199 /// mul mul mul mul 9200 /// \ / \ / 9201 /// + + 9202 /// \ / 9203 /// + 9204 /// This tree has "mul" as its leaf values and "+" as its reduction 9205 /// instructions. A reduction can feed into a store or a binary operation 9206 /// feeding a phi. 9207 /// ... 9208 /// \ / 9209 /// + 9210 /// | 9211 /// phi += 9212 /// 9213 /// Or: 9214 /// ... 9215 /// \ / 9216 /// + 9217 /// | 9218 /// *p = 9219 /// 9220 class HorizontalReduction { 9221 using ReductionOpsType = SmallVector<Value *, 16>; 9222 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9223 ReductionOpsListType ReductionOps; 9224 SmallVector<Value *, 32> ReducedVals; 9225 // Use map vector to make stable output. 9226 MapVector<Instruction *, Value *> ExtraArgs; 9227 WeakTrackingVH ReductionRoot; 9228 /// The type of reduction operation. 9229 RecurKind RdxKind; 9230 9231 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 9232 9233 static bool isCmpSelMinMax(Instruction *I) { 9234 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9235 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9236 } 9237 9238 // And/or are potentially poison-safe logical patterns like: 9239 // select x, y, false 9240 // select x, true, y 9241 static bool isBoolLogicOp(Instruction *I) { 9242 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9243 match(I, m_LogicalOr(m_Value(), m_Value())); 9244 } 9245 9246 /// Checks if instruction is associative and can be vectorized. 9247 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9248 if (Kind == RecurKind::None) 9249 return false; 9250 9251 // Integer ops that map to select instructions or intrinsics are fine. 9252 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9253 isBoolLogicOp(I)) 9254 return true; 9255 9256 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9257 // FP min/max are associative except for NaN and -0.0. We do not 9258 // have to rule out -0.0 here because the intrinsic semantics do not 9259 // specify a fixed result for it. 9260 return I->getFastMathFlags().noNaNs(); 9261 } 9262 9263 return I->isAssociative(); 9264 } 9265 9266 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9267 // Poison-safe 'or' takes the form: select X, true, Y 9268 // To make that work with the normal operand processing, we skip the 9269 // true value operand. 9270 // TODO: Change the code and data structures to handle this without a hack. 9271 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9272 return I->getOperand(2); 9273 return I->getOperand(Index); 9274 } 9275 9276 /// Checks if the ParentStackElem.first should be marked as a reduction 9277 /// operation with an extra argument or as extra argument itself. 9278 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 9279 Value *ExtraArg) { 9280 if (ExtraArgs.count(ParentStackElem.first)) { 9281 ExtraArgs[ParentStackElem.first] = nullptr; 9282 // We ran into something like: 9283 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 9284 // The whole ParentStackElem.first should be considered as an extra value 9285 // in this case. 9286 // Do not perform analysis of remaining operands of ParentStackElem.first 9287 // instruction, this whole instruction is an extra argument. 9288 ParentStackElem.second = INVALID_OPERAND_INDEX; 9289 } else { 9290 // We ran into something like: 9291 // ParentStackElem.first += ... + ExtraArg + ... 9292 ExtraArgs[ParentStackElem.first] = ExtraArg; 9293 } 9294 } 9295 9296 /// Creates reduction operation with the current opcode. 9297 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9298 Value *RHS, const Twine &Name, bool UseSelect) { 9299 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9300 switch (Kind) { 9301 case RecurKind::Or: 9302 if (UseSelect && 9303 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9304 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9305 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9306 Name); 9307 case RecurKind::And: 9308 if (UseSelect && 9309 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9310 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9311 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9312 Name); 9313 case RecurKind::Add: 9314 case RecurKind::Mul: 9315 case RecurKind::Xor: 9316 case RecurKind::FAdd: 9317 case RecurKind::FMul: 9318 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9319 Name); 9320 case RecurKind::FMax: 9321 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9322 case RecurKind::FMin: 9323 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9324 case RecurKind::SMax: 9325 if (UseSelect) { 9326 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9327 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9328 } 9329 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9330 case RecurKind::SMin: 9331 if (UseSelect) { 9332 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9333 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9334 } 9335 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9336 case RecurKind::UMax: 9337 if (UseSelect) { 9338 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9339 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9340 } 9341 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9342 case RecurKind::UMin: 9343 if (UseSelect) { 9344 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9345 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9346 } 9347 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9348 default: 9349 llvm_unreachable("Unknown reduction operation."); 9350 } 9351 } 9352 9353 /// Creates reduction operation with the current opcode with the IR flags 9354 /// from \p ReductionOps. 9355 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9356 Value *RHS, const Twine &Name, 9357 const ReductionOpsListType &ReductionOps) { 9358 bool UseSelect = ReductionOps.size() == 2 || 9359 // Logical or/and. 9360 (ReductionOps.size() == 1 && 9361 isa<SelectInst>(ReductionOps.front().front())); 9362 assert((!UseSelect || ReductionOps.size() != 2 || 9363 isa<SelectInst>(ReductionOps[1][0])) && 9364 "Expected cmp + select pairs for reduction"); 9365 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9366 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9367 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9368 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9369 propagateIRFlags(Op, ReductionOps[1]); 9370 return Op; 9371 } 9372 } 9373 propagateIRFlags(Op, ReductionOps[0]); 9374 return Op; 9375 } 9376 9377 /// Creates reduction operation with the current opcode with the IR flags 9378 /// from \p I. 9379 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9380 Value *RHS, const Twine &Name, Instruction *I) { 9381 auto *SelI = dyn_cast<SelectInst>(I); 9382 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9383 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9384 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9385 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9386 } 9387 propagateIRFlags(Op, I); 9388 return Op; 9389 } 9390 9391 static RecurKind getRdxKind(Instruction *I) { 9392 assert(I && "Expected instruction for reduction matching"); 9393 if (match(I, m_Add(m_Value(), m_Value()))) 9394 return RecurKind::Add; 9395 if (match(I, m_Mul(m_Value(), m_Value()))) 9396 return RecurKind::Mul; 9397 if (match(I, m_And(m_Value(), m_Value())) || 9398 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9399 return RecurKind::And; 9400 if (match(I, m_Or(m_Value(), m_Value())) || 9401 match(I, m_LogicalOr(m_Value(), m_Value()))) 9402 return RecurKind::Or; 9403 if (match(I, m_Xor(m_Value(), m_Value()))) 9404 return RecurKind::Xor; 9405 if (match(I, m_FAdd(m_Value(), m_Value()))) 9406 return RecurKind::FAdd; 9407 if (match(I, m_FMul(m_Value(), m_Value()))) 9408 return RecurKind::FMul; 9409 9410 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9411 return RecurKind::FMax; 9412 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9413 return RecurKind::FMin; 9414 9415 // This matches either cmp+select or intrinsics. SLP is expected to handle 9416 // either form. 9417 // TODO: If we are canonicalizing to intrinsics, we can remove several 9418 // special-case paths that deal with selects. 9419 if (match(I, m_SMax(m_Value(), m_Value()))) 9420 return RecurKind::SMax; 9421 if (match(I, m_SMin(m_Value(), m_Value()))) 9422 return RecurKind::SMin; 9423 if (match(I, m_UMax(m_Value(), m_Value()))) 9424 return RecurKind::UMax; 9425 if (match(I, m_UMin(m_Value(), m_Value()))) 9426 return RecurKind::UMin; 9427 9428 if (auto *Select = dyn_cast<SelectInst>(I)) { 9429 // Try harder: look for min/max pattern based on instructions producing 9430 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9431 // During the intermediate stages of SLP, it's very common to have 9432 // pattern like this (since optimizeGatherSequence is run only once 9433 // at the end): 9434 // %1 = extractelement <2 x i32> %a, i32 0 9435 // %2 = extractelement <2 x i32> %a, i32 1 9436 // %cond = icmp sgt i32 %1, %2 9437 // %3 = extractelement <2 x i32> %a, i32 0 9438 // %4 = extractelement <2 x i32> %a, i32 1 9439 // %select = select i1 %cond, i32 %3, i32 %4 9440 CmpInst::Predicate Pred; 9441 Instruction *L1; 9442 Instruction *L2; 9443 9444 Value *LHS = Select->getTrueValue(); 9445 Value *RHS = Select->getFalseValue(); 9446 Value *Cond = Select->getCondition(); 9447 9448 // TODO: Support inverse predicates. 9449 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9450 if (!isa<ExtractElementInst>(RHS) || 9451 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9452 return RecurKind::None; 9453 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9454 if (!isa<ExtractElementInst>(LHS) || 9455 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9456 return RecurKind::None; 9457 } else { 9458 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9459 return RecurKind::None; 9460 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9461 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9462 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9463 return RecurKind::None; 9464 } 9465 9466 switch (Pred) { 9467 default: 9468 return RecurKind::None; 9469 case CmpInst::ICMP_SGT: 9470 case CmpInst::ICMP_SGE: 9471 return RecurKind::SMax; 9472 case CmpInst::ICMP_SLT: 9473 case CmpInst::ICMP_SLE: 9474 return RecurKind::SMin; 9475 case CmpInst::ICMP_UGT: 9476 case CmpInst::ICMP_UGE: 9477 return RecurKind::UMax; 9478 case CmpInst::ICMP_ULT: 9479 case CmpInst::ICMP_ULE: 9480 return RecurKind::UMin; 9481 } 9482 } 9483 return RecurKind::None; 9484 } 9485 9486 /// Get the index of the first operand. 9487 static unsigned getFirstOperandIndex(Instruction *I) { 9488 return isCmpSelMinMax(I) ? 1 : 0; 9489 } 9490 9491 /// Total number of operands in the reduction operation. 9492 static unsigned getNumberOfOperands(Instruction *I) { 9493 return isCmpSelMinMax(I) ? 3 : 2; 9494 } 9495 9496 /// Checks if the instruction is in basic block \p BB. 9497 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9498 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9499 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9500 auto *Sel = cast<SelectInst>(I); 9501 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9502 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9503 } 9504 return I->getParent() == BB; 9505 } 9506 9507 /// Expected number of uses for reduction operations/reduced values. 9508 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9509 if (IsCmpSelMinMax) { 9510 // SelectInst must be used twice while the condition op must have single 9511 // use only. 9512 if (auto *Sel = dyn_cast<SelectInst>(I)) 9513 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9514 return I->hasNUses(2); 9515 } 9516 9517 // Arithmetic reduction operation must be used once only. 9518 return I->hasOneUse(); 9519 } 9520 9521 /// Initializes the list of reduction operations. 9522 void initReductionOps(Instruction *I) { 9523 if (isCmpSelMinMax(I)) 9524 ReductionOps.assign(2, ReductionOpsType()); 9525 else 9526 ReductionOps.assign(1, ReductionOpsType()); 9527 } 9528 9529 /// Add all reduction operations for the reduction instruction \p I. 9530 void addReductionOps(Instruction *I) { 9531 if (isCmpSelMinMax(I)) { 9532 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9533 ReductionOps[1].emplace_back(I); 9534 } else { 9535 ReductionOps[0].emplace_back(I); 9536 } 9537 } 9538 9539 static Value *getLHS(RecurKind Kind, Instruction *I) { 9540 if (Kind == RecurKind::None) 9541 return nullptr; 9542 return I->getOperand(getFirstOperandIndex(I)); 9543 } 9544 static Value *getRHS(RecurKind Kind, Instruction *I) { 9545 if (Kind == RecurKind::None) 9546 return nullptr; 9547 return I->getOperand(getFirstOperandIndex(I) + 1); 9548 } 9549 9550 public: 9551 HorizontalReduction() = default; 9552 9553 /// Try to find a reduction tree. 9554 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9555 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9556 "Phi needs to use the binary operator"); 9557 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9558 isa<IntrinsicInst>(Inst)) && 9559 "Expected binop, select, or intrinsic for reduction matching"); 9560 RdxKind = getRdxKind(Inst); 9561 9562 // We could have a initial reductions that is not an add. 9563 // r *= v1 + v2 + v3 + v4 9564 // In such a case start looking for a tree rooted in the first '+'. 9565 if (Phi) { 9566 if (getLHS(RdxKind, Inst) == Phi) { 9567 Phi = nullptr; 9568 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9569 if (!Inst) 9570 return false; 9571 RdxKind = getRdxKind(Inst); 9572 } else if (getRHS(RdxKind, Inst) == Phi) { 9573 Phi = nullptr; 9574 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9575 if (!Inst) 9576 return false; 9577 RdxKind = getRdxKind(Inst); 9578 } 9579 } 9580 9581 if (!isVectorizable(RdxKind, Inst)) 9582 return false; 9583 9584 // Analyze "regular" integer/FP types for reductions - no target-specific 9585 // types or pointers. 9586 Type *Ty = Inst->getType(); 9587 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9588 return false; 9589 9590 // Though the ultimate reduction may have multiple uses, its condition must 9591 // have only single use. 9592 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9593 if (!Sel->getCondition()->hasOneUse()) 9594 return false; 9595 9596 ReductionRoot = Inst; 9597 9598 // The opcode for leaf values that we perform a reduction on. 9599 // For example: load(x) + load(y) + load(z) + fptoui(w) 9600 // The leaf opcode for 'w' does not match, so we don't include it as a 9601 // potential candidate for the reduction. 9602 unsigned LeafOpcode = 0; 9603 9604 // Post-order traverse the reduction tree starting at Inst. We only handle 9605 // true trees containing binary operators or selects. 9606 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9607 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9608 initReductionOps(Inst); 9609 while (!Stack.empty()) { 9610 Instruction *TreeN = Stack.back().first; 9611 unsigned EdgeToVisit = Stack.back().second++; 9612 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9613 bool IsReducedValue = TreeRdxKind != RdxKind; 9614 9615 // Postorder visit. 9616 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9617 if (IsReducedValue) 9618 ReducedVals.push_back(TreeN); 9619 else { 9620 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9621 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9622 // Check if TreeN is an extra argument of its parent operation. 9623 if (Stack.size() <= 1) { 9624 // TreeN can't be an extra argument as it is a root reduction 9625 // operation. 9626 return false; 9627 } 9628 // Yes, TreeN is an extra argument, do not add it to a list of 9629 // reduction operations. 9630 // Stack[Stack.size() - 2] always points to the parent operation. 9631 markExtraArg(Stack[Stack.size() - 2], TreeN); 9632 ExtraArgs.erase(TreeN); 9633 } else 9634 addReductionOps(TreeN); 9635 } 9636 // Retract. 9637 Stack.pop_back(); 9638 continue; 9639 } 9640 9641 // Visit operands. 9642 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9643 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9644 if (!EdgeInst) { 9645 // Edge value is not a reduction instruction or a leaf instruction. 9646 // (It may be a constant, function argument, or something else.) 9647 markExtraArg(Stack.back(), EdgeVal); 9648 continue; 9649 } 9650 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9651 // Continue analysis if the next operand is a reduction operation or 9652 // (possibly) a leaf value. If the leaf value opcode is not set, 9653 // the first met operation != reduction operation is considered as the 9654 // leaf opcode. 9655 // Only handle trees in the current basic block. 9656 // Each tree node needs to have minimal number of users except for the 9657 // ultimate reduction. 9658 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9659 if (EdgeInst != Phi && EdgeInst != Inst && 9660 hasSameParent(EdgeInst, Inst->getParent()) && 9661 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9662 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9663 if (IsRdxInst) { 9664 // We need to be able to reassociate the reduction operations. 9665 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9666 // I is an extra argument for TreeN (its parent operation). 9667 markExtraArg(Stack.back(), EdgeInst); 9668 continue; 9669 } 9670 } else if (!LeafOpcode) { 9671 LeafOpcode = EdgeInst->getOpcode(); 9672 } 9673 Stack.push_back( 9674 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9675 continue; 9676 } 9677 // I is an extra argument for TreeN (its parent operation). 9678 markExtraArg(Stack.back(), EdgeInst); 9679 } 9680 return true; 9681 } 9682 9683 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9684 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9685 // If there are a sufficient number of reduction values, reduce 9686 // to a nearby power-of-2. We can safely generate oversized 9687 // vectors and rely on the backend to split them to legal sizes. 9688 unsigned NumReducedVals = ReducedVals.size(); 9689 if (NumReducedVals < 4) 9690 return nullptr; 9691 9692 // Intersect the fast-math-flags from all reduction operations. 9693 FastMathFlags RdxFMF; 9694 RdxFMF.set(); 9695 for (ReductionOpsType &RdxOp : ReductionOps) { 9696 for (Value *RdxVal : RdxOp) { 9697 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9698 RdxFMF &= FPMO->getFastMathFlags(); 9699 } 9700 } 9701 9702 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9703 Builder.setFastMathFlags(RdxFMF); 9704 9705 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9706 // The same extra argument may be used several times, so log each attempt 9707 // to use it. 9708 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9709 assert(Pair.first && "DebugLoc must be set."); 9710 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9711 } 9712 9713 // The compare instruction of a min/max is the insertion point for new 9714 // instructions and may be replaced with a new compare instruction. 9715 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9716 assert(isa<SelectInst>(RdxRootInst) && 9717 "Expected min/max reduction to have select root instruction"); 9718 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9719 assert(isa<Instruction>(ScalarCond) && 9720 "Expected min/max reduction to have compare condition"); 9721 return cast<Instruction>(ScalarCond); 9722 }; 9723 9724 // The reduction root is used as the insertion point for new instructions, 9725 // so set it as externally used to prevent it from being deleted. 9726 ExternallyUsedValues[ReductionRoot]; 9727 SmallVector<Value *, 16> IgnoreList; 9728 for (ReductionOpsType &RdxOp : ReductionOps) 9729 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9730 9731 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9732 if (NumReducedVals > ReduxWidth) { 9733 // In the loop below, we are building a tree based on a window of 9734 // 'ReduxWidth' values. 9735 // If the operands of those values have common traits (compare predicate, 9736 // constant operand, etc), then we want to group those together to 9737 // minimize the cost of the reduction. 9738 9739 // TODO: This should be extended to count common operands for 9740 // compares and binops. 9741 9742 // Step 1: Count the number of times each compare predicate occurs. 9743 SmallDenseMap<unsigned, unsigned> PredCountMap; 9744 for (Value *RdxVal : ReducedVals) { 9745 CmpInst::Predicate Pred; 9746 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9747 ++PredCountMap[Pred]; 9748 } 9749 // Step 2: Sort the values so the most common predicates come first. 9750 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9751 CmpInst::Predicate PredA, PredB; 9752 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9753 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9754 return PredCountMap[PredA] > PredCountMap[PredB]; 9755 } 9756 return false; 9757 }); 9758 } 9759 9760 Value *VectorizedTree = nullptr; 9761 unsigned i = 0; 9762 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9763 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9764 V.buildTree(VL, IgnoreList); 9765 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9766 break; 9767 if (V.isLoadCombineReductionCandidate(RdxKind)) 9768 break; 9769 V.reorderTopToBottom(); 9770 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9771 V.buildExternalUses(ExternallyUsedValues); 9772 9773 // For a poison-safe boolean logic reduction, do not replace select 9774 // instructions with logic ops. All reduced values will be frozen (see 9775 // below) to prevent leaking poison. 9776 if (isa<SelectInst>(ReductionRoot) && 9777 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9778 NumReducedVals != ReduxWidth) 9779 break; 9780 9781 V.computeMinimumValueSizes(); 9782 9783 // Estimate cost. 9784 InstructionCost TreeCost = 9785 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9786 InstructionCost ReductionCost = 9787 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9788 InstructionCost Cost = TreeCost + ReductionCost; 9789 if (!Cost.isValid()) { 9790 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9791 return nullptr; 9792 } 9793 if (Cost >= -SLPCostThreshold) { 9794 V.getORE()->emit([&]() { 9795 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9796 cast<Instruction>(VL[0])) 9797 << "Vectorizing horizontal reduction is possible" 9798 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9799 << " and threshold " 9800 << ore::NV("Threshold", -SLPCostThreshold); 9801 }); 9802 break; 9803 } 9804 9805 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9806 << Cost << ". (HorRdx)\n"); 9807 V.getORE()->emit([&]() { 9808 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9809 cast<Instruction>(VL[0])) 9810 << "Vectorized horizontal reduction with cost " 9811 << ore::NV("Cost", Cost) << " and with tree size " 9812 << ore::NV("TreeSize", V.getTreeSize()); 9813 }); 9814 9815 // Vectorize a tree. 9816 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9817 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9818 9819 // Emit a reduction. If the root is a select (min/max idiom), the insert 9820 // point is the compare condition of that select. 9821 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9822 if (isCmpSelMinMax(RdxRootInst)) 9823 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9824 else 9825 Builder.SetInsertPoint(RdxRootInst); 9826 9827 // To prevent poison from leaking across what used to be sequential, safe, 9828 // scalar boolean logic operations, the reduction operand must be frozen. 9829 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9830 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9831 9832 Value *ReducedSubTree = 9833 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9834 9835 if (!VectorizedTree) { 9836 // Initialize the final value in the reduction. 9837 VectorizedTree = ReducedSubTree; 9838 } else { 9839 // Update the final value in the reduction. 9840 Builder.SetCurrentDebugLocation(Loc); 9841 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9842 ReducedSubTree, "op.rdx", ReductionOps); 9843 } 9844 i += ReduxWidth; 9845 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9846 } 9847 9848 if (VectorizedTree) { 9849 // Finish the reduction. 9850 for (; i < NumReducedVals; ++i) { 9851 auto *I = cast<Instruction>(ReducedVals[i]); 9852 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9853 VectorizedTree = 9854 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9855 } 9856 for (auto &Pair : ExternallyUsedValues) { 9857 // Add each externally used value to the final reduction. 9858 for (auto *I : Pair.second) { 9859 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9860 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9861 Pair.first, "op.extra", I); 9862 } 9863 } 9864 9865 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9866 9867 // The original scalar reduction is expected to have no remaining 9868 // uses outside the reduction tree itself. Assert that we got this 9869 // correct, replace internal uses with undef, and mark for eventual 9870 // deletion. 9871 #ifndef NDEBUG 9872 SmallSet<Value *, 4> IgnoreSet; 9873 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end()); 9874 #endif 9875 for (auto *Ignore : IgnoreList) { 9876 #ifndef NDEBUG 9877 for (auto *U : Ignore->users()) { 9878 assert(IgnoreSet.count(U)); 9879 } 9880 #endif 9881 if (!Ignore->use_empty()) { 9882 Value *Undef = UndefValue::get(Ignore->getType()); 9883 Ignore->replaceAllUsesWith(Undef); 9884 } 9885 V.eraseInstruction(cast<Instruction>(Ignore)); 9886 } 9887 } 9888 return VectorizedTree; 9889 } 9890 9891 unsigned numReductionValues() const { return ReducedVals.size(); } 9892 9893 private: 9894 /// Calculate the cost of a reduction. 9895 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9896 Value *FirstReducedVal, unsigned ReduxWidth, 9897 FastMathFlags FMF) { 9898 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9899 Type *ScalarTy = FirstReducedVal->getType(); 9900 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9901 InstructionCost VectorCost, ScalarCost; 9902 switch (RdxKind) { 9903 case RecurKind::Add: 9904 case RecurKind::Mul: 9905 case RecurKind::Or: 9906 case RecurKind::And: 9907 case RecurKind::Xor: 9908 case RecurKind::FAdd: 9909 case RecurKind::FMul: { 9910 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9911 VectorCost = 9912 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9913 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9914 break; 9915 } 9916 case RecurKind::FMax: 9917 case RecurKind::FMin: { 9918 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9919 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9920 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9921 /*IsUnsigned=*/false, CostKind); 9922 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9923 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9924 SclCondTy, RdxPred, CostKind) + 9925 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9926 SclCondTy, RdxPred, CostKind); 9927 break; 9928 } 9929 case RecurKind::SMax: 9930 case RecurKind::SMin: 9931 case RecurKind::UMax: 9932 case RecurKind::UMin: { 9933 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9934 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9935 bool IsUnsigned = 9936 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9937 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9938 CostKind); 9939 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9940 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9941 SclCondTy, RdxPred, CostKind) + 9942 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9943 SclCondTy, RdxPred, CostKind); 9944 break; 9945 } 9946 default: 9947 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9948 } 9949 9950 // Scalar cost is repeated for N-1 elements. 9951 ScalarCost *= (ReduxWidth - 1); 9952 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9953 << " for reduction that starts with " << *FirstReducedVal 9954 << " (It is a splitting reduction)\n"); 9955 return VectorCost - ScalarCost; 9956 } 9957 9958 /// Emit a horizontal reduction of the vectorized value. 9959 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9960 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9961 assert(VectorizedValue && "Need to have a vectorized tree node"); 9962 assert(isPowerOf2_32(ReduxWidth) && 9963 "We only handle power-of-two reductions for now"); 9964 assert(RdxKind != RecurKind::FMulAdd && 9965 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9966 9967 ++NumVectorInstructions; 9968 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9969 } 9970 }; 9971 9972 } // end anonymous namespace 9973 9974 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9975 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9976 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9977 9978 unsigned AggregateSize = 1; 9979 auto *IV = cast<InsertValueInst>(InsertInst); 9980 Type *CurrentType = IV->getType(); 9981 do { 9982 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9983 for (auto *Elt : ST->elements()) 9984 if (Elt != ST->getElementType(0)) // check homogeneity 9985 return None; 9986 AggregateSize *= ST->getNumElements(); 9987 CurrentType = ST->getElementType(0); 9988 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9989 AggregateSize *= AT->getNumElements(); 9990 CurrentType = AT->getElementType(); 9991 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9992 AggregateSize *= VT->getNumElements(); 9993 return AggregateSize; 9994 } else if (CurrentType->isSingleValueType()) { 9995 return AggregateSize; 9996 } else { 9997 return None; 9998 } 9999 } while (true); 10000 } 10001 10002 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10003 TargetTransformInfo *TTI, 10004 SmallVectorImpl<Value *> &BuildVectorOpds, 10005 SmallVectorImpl<Value *> &InsertElts, 10006 unsigned OperandOffset) { 10007 do { 10008 Value *InsertedOperand = LastInsertInst->getOperand(1); 10009 Optional<unsigned> OperandIndex = 10010 getInsertIndex(LastInsertInst, OperandOffset); 10011 if (!OperandIndex) 10012 return; 10013 if (isa<InsertElementInst>(InsertedOperand) || 10014 isa<InsertValueInst>(InsertedOperand)) { 10015 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10016 BuildVectorOpds, InsertElts, *OperandIndex); 10017 10018 } else { 10019 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10020 InsertElts[*OperandIndex] = LastInsertInst; 10021 } 10022 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10023 } while (LastInsertInst != nullptr && 10024 (isa<InsertValueInst>(LastInsertInst) || 10025 isa<InsertElementInst>(LastInsertInst)) && 10026 LastInsertInst->hasOneUse()); 10027 } 10028 10029 /// Recognize construction of vectors like 10030 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10031 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10032 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10033 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10034 /// starting from the last insertelement or insertvalue instruction. 10035 /// 10036 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10037 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10038 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10039 /// 10040 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10041 /// 10042 /// \return true if it matches. 10043 static bool findBuildAggregate(Instruction *LastInsertInst, 10044 TargetTransformInfo *TTI, 10045 SmallVectorImpl<Value *> &BuildVectorOpds, 10046 SmallVectorImpl<Value *> &InsertElts) { 10047 10048 assert((isa<InsertElementInst>(LastInsertInst) || 10049 isa<InsertValueInst>(LastInsertInst)) && 10050 "Expected insertelement or insertvalue instruction!"); 10051 10052 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10053 "Expected empty result vectors!"); 10054 10055 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10056 if (!AggregateSize) 10057 return false; 10058 BuildVectorOpds.resize(*AggregateSize); 10059 InsertElts.resize(*AggregateSize); 10060 10061 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10062 llvm::erase_value(BuildVectorOpds, nullptr); 10063 llvm::erase_value(InsertElts, nullptr); 10064 if (BuildVectorOpds.size() >= 2) 10065 return true; 10066 10067 return false; 10068 } 10069 10070 /// Try and get a reduction value from a phi node. 10071 /// 10072 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10073 /// if they come from either \p ParentBB or a containing loop latch. 10074 /// 10075 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10076 /// if not possible. 10077 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10078 BasicBlock *ParentBB, LoopInfo *LI) { 10079 // There are situations where the reduction value is not dominated by the 10080 // reduction phi. Vectorizing such cases has been reported to cause 10081 // miscompiles. See PR25787. 10082 auto DominatedReduxValue = [&](Value *R) { 10083 return isa<Instruction>(R) && 10084 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10085 }; 10086 10087 Value *Rdx = nullptr; 10088 10089 // Return the incoming value if it comes from the same BB as the phi node. 10090 if (P->getIncomingBlock(0) == ParentBB) { 10091 Rdx = P->getIncomingValue(0); 10092 } else if (P->getIncomingBlock(1) == ParentBB) { 10093 Rdx = P->getIncomingValue(1); 10094 } 10095 10096 if (Rdx && DominatedReduxValue(Rdx)) 10097 return Rdx; 10098 10099 // Otherwise, check whether we have a loop latch to look at. 10100 Loop *BBL = LI->getLoopFor(ParentBB); 10101 if (!BBL) 10102 return nullptr; 10103 BasicBlock *BBLatch = BBL->getLoopLatch(); 10104 if (!BBLatch) 10105 return nullptr; 10106 10107 // There is a loop latch, return the incoming value if it comes from 10108 // that. This reduction pattern occasionally turns up. 10109 if (P->getIncomingBlock(0) == BBLatch) { 10110 Rdx = P->getIncomingValue(0); 10111 } else if (P->getIncomingBlock(1) == BBLatch) { 10112 Rdx = P->getIncomingValue(1); 10113 } 10114 10115 if (Rdx && DominatedReduxValue(Rdx)) 10116 return Rdx; 10117 10118 return nullptr; 10119 } 10120 10121 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10122 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10123 return true; 10124 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10125 return true; 10126 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10127 return true; 10128 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10129 return true; 10130 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10131 return true; 10132 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10133 return true; 10134 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10135 return true; 10136 return false; 10137 } 10138 10139 /// Attempt to reduce a horizontal reduction. 10140 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10141 /// with reduction operators \a Root (or one of its operands) in a basic block 10142 /// \a BB, then check if it can be done. If horizontal reduction is not found 10143 /// and root instruction is a binary operation, vectorization of the operands is 10144 /// attempted. 10145 /// \returns true if a horizontal reduction was matched and reduced or operands 10146 /// of one of the binary instruction were vectorized. 10147 /// \returns false if a horizontal reduction was not matched (or not possible) 10148 /// or no vectorization of any binary operation feeding \a Root instruction was 10149 /// performed. 10150 static bool tryToVectorizeHorReductionOrInstOperands( 10151 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10152 TargetTransformInfo *TTI, 10153 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10154 if (!ShouldVectorizeHor) 10155 return false; 10156 10157 if (!Root) 10158 return false; 10159 10160 if (Root->getParent() != BB || isa<PHINode>(Root)) 10161 return false; 10162 // Start analysis starting from Root instruction. If horizontal reduction is 10163 // found, try to vectorize it. If it is not a horizontal reduction or 10164 // vectorization is not possible or not effective, and currently analyzed 10165 // instruction is a binary operation, try to vectorize the operands, using 10166 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10167 // the same procedure considering each operand as a possible root of the 10168 // horizontal reduction. 10169 // Interrupt the process if the Root instruction itself was vectorized or all 10170 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10171 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10172 // CmpInsts so we can skip extra attempts in 10173 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10174 std::queue<std::pair<Instruction *, unsigned>> Stack; 10175 Stack.emplace(Root, 0); 10176 SmallPtrSet<Value *, 8> VisitedInstrs; 10177 SmallVector<WeakTrackingVH> PostponedInsts; 10178 bool Res = false; 10179 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 10180 Value *&B1) -> Value * { 10181 bool IsBinop = matchRdxBop(Inst, B0, B1); 10182 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10183 if (IsBinop || IsSelect) { 10184 HorizontalReduction HorRdx; 10185 if (HorRdx.matchAssociativeReduction(P, Inst)) 10186 return HorRdx.tryToReduce(R, TTI); 10187 } 10188 return nullptr; 10189 }; 10190 while (!Stack.empty()) { 10191 Instruction *Inst; 10192 unsigned Level; 10193 std::tie(Inst, Level) = Stack.front(); 10194 Stack.pop(); 10195 // Do not try to analyze instruction that has already been vectorized. 10196 // This may happen when we vectorize instruction operands on a previous 10197 // iteration while stack was populated before that happened. 10198 if (R.isDeleted(Inst)) 10199 continue; 10200 Value *B0 = nullptr, *B1 = nullptr; 10201 if (Value *V = TryToReduce(Inst, B0, B1)) { 10202 Res = true; 10203 // Set P to nullptr to avoid re-analysis of phi node in 10204 // matchAssociativeReduction function unless this is the root node. 10205 P = nullptr; 10206 if (auto *I = dyn_cast<Instruction>(V)) { 10207 // Try to find another reduction. 10208 Stack.emplace(I, Level); 10209 continue; 10210 } 10211 } else { 10212 bool IsBinop = B0 && B1; 10213 if (P && IsBinop) { 10214 Inst = dyn_cast<Instruction>(B0); 10215 if (Inst == P) 10216 Inst = dyn_cast<Instruction>(B1); 10217 if (!Inst) { 10218 // Set P to nullptr to avoid re-analysis of phi node in 10219 // matchAssociativeReduction function unless this is the root node. 10220 P = nullptr; 10221 continue; 10222 } 10223 } 10224 // Set P to nullptr to avoid re-analysis of phi node in 10225 // matchAssociativeReduction function unless this is the root node. 10226 P = nullptr; 10227 // Do not try to vectorize CmpInst operands, this is done separately. 10228 // Final attempt for binop args vectorization should happen after the loop 10229 // to try to find reductions. 10230 if (!isa<CmpInst>(Inst)) 10231 PostponedInsts.push_back(Inst); 10232 } 10233 10234 // Try to vectorize operands. 10235 // Continue analysis for the instruction from the same basic block only to 10236 // save compile time. 10237 if (++Level < RecursionMaxDepth) 10238 for (auto *Op : Inst->operand_values()) 10239 if (VisitedInstrs.insert(Op).second) 10240 if (auto *I = dyn_cast<Instruction>(Op)) 10241 // Do not try to vectorize CmpInst operands, this is done 10242 // separately. 10243 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10244 I->getParent() == BB) 10245 Stack.emplace(I, Level); 10246 } 10247 // Try to vectorized binops where reductions were not found. 10248 for (Value *V : PostponedInsts) 10249 if (auto *Inst = dyn_cast<Instruction>(V)) 10250 if (!R.isDeleted(Inst)) 10251 Res |= Vectorize(Inst, R); 10252 return Res; 10253 } 10254 10255 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10256 BasicBlock *BB, BoUpSLP &R, 10257 TargetTransformInfo *TTI) { 10258 auto *I = dyn_cast_or_null<Instruction>(V); 10259 if (!I) 10260 return false; 10261 10262 if (!isa<BinaryOperator>(I)) 10263 P = nullptr; 10264 // Try to match and vectorize a horizontal reduction. 10265 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10266 return tryToVectorize(I, R); 10267 }; 10268 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 10269 ExtraVectorization); 10270 } 10271 10272 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10273 BasicBlock *BB, BoUpSLP &R) { 10274 const DataLayout &DL = BB->getModule()->getDataLayout(); 10275 if (!R.canMapToVector(IVI->getType(), DL)) 10276 return false; 10277 10278 SmallVector<Value *, 16> BuildVectorOpds; 10279 SmallVector<Value *, 16> BuildVectorInsts; 10280 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10281 return false; 10282 10283 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10284 // Aggregate value is unlikely to be processed in vector register. 10285 return tryToVectorizeList(BuildVectorOpds, R); 10286 } 10287 10288 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10289 BasicBlock *BB, BoUpSLP &R) { 10290 SmallVector<Value *, 16> BuildVectorInsts; 10291 SmallVector<Value *, 16> BuildVectorOpds; 10292 SmallVector<int> Mask; 10293 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10294 (llvm::all_of( 10295 BuildVectorOpds, 10296 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10297 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10298 return false; 10299 10300 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10301 return tryToVectorizeList(BuildVectorInsts, R); 10302 } 10303 10304 template <typename T> 10305 static bool 10306 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10307 function_ref<unsigned(T *)> Limit, 10308 function_ref<bool(T *, T *)> Comparator, 10309 function_ref<bool(T *, T *)> AreCompatible, 10310 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10311 bool LimitForRegisterSize) { 10312 bool Changed = false; 10313 // Sort by type, parent, operands. 10314 stable_sort(Incoming, Comparator); 10315 10316 // Try to vectorize elements base on their type. 10317 SmallVector<T *> Candidates; 10318 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10319 // Look for the next elements with the same type, parent and operand 10320 // kinds. 10321 auto *SameTypeIt = IncIt; 10322 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10323 ++SameTypeIt; 10324 10325 // Try to vectorize them. 10326 unsigned NumElts = (SameTypeIt - IncIt); 10327 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10328 << NumElts << ")\n"); 10329 // The vectorization is a 3-state attempt: 10330 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10331 // size of maximal register at first. 10332 // 2. Try to vectorize remaining instructions with the same type, if 10333 // possible. This may result in the better vectorization results rather than 10334 // if we try just to vectorize instructions with the same/alternate opcodes. 10335 // 3. Final attempt to try to vectorize all instructions with the 10336 // same/alternate ops only, this may result in some extra final 10337 // vectorization. 10338 if (NumElts > 1 && 10339 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10340 // Success start over because instructions might have been changed. 10341 Changed = true; 10342 } else if (NumElts < Limit(*IncIt) && 10343 (Candidates.empty() || 10344 Candidates.front()->getType() == (*IncIt)->getType())) { 10345 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10346 } 10347 // Final attempt to vectorize instructions with the same types. 10348 if (Candidates.size() > 1 && 10349 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10350 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10351 // Success start over because instructions might have been changed. 10352 Changed = true; 10353 } else if (LimitForRegisterSize) { 10354 // Try to vectorize using small vectors. 10355 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10356 It != End;) { 10357 auto *SameTypeIt = It; 10358 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10359 ++SameTypeIt; 10360 unsigned NumElts = (SameTypeIt - It); 10361 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10362 /*LimitForRegisterSize=*/false)) 10363 Changed = true; 10364 It = SameTypeIt; 10365 } 10366 } 10367 Candidates.clear(); 10368 } 10369 10370 // Start over at the next instruction of a different type (or the end). 10371 IncIt = SameTypeIt; 10372 } 10373 return Changed; 10374 } 10375 10376 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10377 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10378 /// operands. If IsCompatibility is false, function implements strict weak 10379 /// ordering relation between two cmp instructions, returning true if the first 10380 /// instruction is "less" than the second, i.e. its predicate is less than the 10381 /// predicate of the second or the operands IDs are less than the operands IDs 10382 /// of the second cmp instruction. 10383 template <bool IsCompatibility> 10384 static bool compareCmp(Value *V, Value *V2, 10385 function_ref<bool(Instruction *)> IsDeleted) { 10386 auto *CI1 = cast<CmpInst>(V); 10387 auto *CI2 = cast<CmpInst>(V2); 10388 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10389 return false; 10390 if (CI1->getOperand(0)->getType()->getTypeID() < 10391 CI2->getOperand(0)->getType()->getTypeID()) 10392 return !IsCompatibility; 10393 if (CI1->getOperand(0)->getType()->getTypeID() > 10394 CI2->getOperand(0)->getType()->getTypeID()) 10395 return false; 10396 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10397 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10398 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10399 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10400 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10401 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10402 if (BasePred1 < BasePred2) 10403 return !IsCompatibility; 10404 if (BasePred1 > BasePred2) 10405 return false; 10406 // Compare operands. 10407 bool LEPreds = Pred1 <= Pred2; 10408 bool GEPreds = Pred1 >= Pred2; 10409 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10410 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10411 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10412 if (Op1->getValueID() < Op2->getValueID()) 10413 return !IsCompatibility; 10414 if (Op1->getValueID() > Op2->getValueID()) 10415 return false; 10416 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10417 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10418 if (I1->getParent() != I2->getParent()) 10419 return false; 10420 InstructionsState S = getSameOpcode({I1, I2}); 10421 if (S.getOpcode()) 10422 continue; 10423 return false; 10424 } 10425 } 10426 return IsCompatibility; 10427 } 10428 10429 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10430 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10431 bool AtTerminator) { 10432 bool OpsChanged = false; 10433 SmallVector<Instruction *, 4> PostponedCmps; 10434 for (auto *I : reverse(Instructions)) { 10435 if (R.isDeleted(I)) 10436 continue; 10437 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10438 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10439 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10440 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10441 else if (isa<CmpInst>(I)) 10442 PostponedCmps.push_back(I); 10443 } 10444 if (AtTerminator) { 10445 // Try to find reductions first. 10446 for (Instruction *I : PostponedCmps) { 10447 if (R.isDeleted(I)) 10448 continue; 10449 for (Value *Op : I->operands()) 10450 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10451 } 10452 // Try to vectorize operands as vector bundles. 10453 for (Instruction *I : PostponedCmps) { 10454 if (R.isDeleted(I)) 10455 continue; 10456 OpsChanged |= tryToVectorize(I, R); 10457 } 10458 // Try to vectorize list of compares. 10459 // Sort by type, compare predicate, etc. 10460 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10461 return compareCmp<false>(V, V2, 10462 [&R](Instruction *I) { return R.isDeleted(I); }); 10463 }; 10464 10465 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10466 if (V1 == V2) 10467 return true; 10468 return compareCmp<true>(V1, V2, 10469 [&R](Instruction *I) { return R.isDeleted(I); }); 10470 }; 10471 auto Limit = [&R](Value *V) { 10472 unsigned EltSize = R.getVectorElementSize(V); 10473 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10474 }; 10475 10476 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10477 OpsChanged |= tryToVectorizeSequence<Value>( 10478 Vals, Limit, CompareSorter, AreCompatibleCompares, 10479 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10480 // Exclude possible reductions from other blocks. 10481 bool ArePossiblyReducedInOtherBlock = 10482 any_of(Candidates, [](Value *V) { 10483 return any_of(V->users(), [V](User *U) { 10484 return isa<SelectInst>(U) && 10485 cast<SelectInst>(U)->getParent() != 10486 cast<Instruction>(V)->getParent(); 10487 }); 10488 }); 10489 if (ArePossiblyReducedInOtherBlock) 10490 return false; 10491 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10492 }, 10493 /*LimitForRegisterSize=*/true); 10494 Instructions.clear(); 10495 } else { 10496 // Insert in reverse order since the PostponedCmps vector was filled in 10497 // reverse order. 10498 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10499 } 10500 return OpsChanged; 10501 } 10502 10503 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10504 bool Changed = false; 10505 SmallVector<Value *, 4> Incoming; 10506 SmallPtrSet<Value *, 16> VisitedInstrs; 10507 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10508 // node. Allows better to identify the chains that can be vectorized in the 10509 // better way. 10510 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10511 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10512 assert(isValidElementType(V1->getType()) && 10513 isValidElementType(V2->getType()) && 10514 "Expected vectorizable types only."); 10515 // It is fine to compare type IDs here, since we expect only vectorizable 10516 // types, like ints, floats and pointers, we don't care about other type. 10517 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10518 return true; 10519 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10520 return false; 10521 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10522 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10523 if (Opcodes1.size() < Opcodes2.size()) 10524 return true; 10525 if (Opcodes1.size() > Opcodes2.size()) 10526 return false; 10527 Optional<bool> ConstOrder; 10528 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10529 // Undefs are compatible with any other value. 10530 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10531 if (!ConstOrder) 10532 ConstOrder = 10533 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10534 continue; 10535 } 10536 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10537 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10538 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10539 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10540 if (!NodeI1) 10541 return NodeI2 != nullptr; 10542 if (!NodeI2) 10543 return false; 10544 assert((NodeI1 == NodeI2) == 10545 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10546 "Different nodes should have different DFS numbers"); 10547 if (NodeI1 != NodeI2) 10548 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10549 InstructionsState S = getSameOpcode({I1, I2}); 10550 if (S.getOpcode()) 10551 continue; 10552 return I1->getOpcode() < I2->getOpcode(); 10553 } 10554 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10555 if (!ConstOrder) 10556 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10557 continue; 10558 } 10559 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10560 return true; 10561 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10562 return false; 10563 } 10564 return ConstOrder && *ConstOrder; 10565 }; 10566 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10567 if (V1 == V2) 10568 return true; 10569 if (V1->getType() != V2->getType()) 10570 return false; 10571 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10572 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10573 if (Opcodes1.size() != Opcodes2.size()) 10574 return false; 10575 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10576 // Undefs are compatible with any other value. 10577 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10578 continue; 10579 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10580 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10581 if (I1->getParent() != I2->getParent()) 10582 return false; 10583 InstructionsState S = getSameOpcode({I1, I2}); 10584 if (S.getOpcode()) 10585 continue; 10586 return false; 10587 } 10588 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10589 continue; 10590 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10591 return false; 10592 } 10593 return true; 10594 }; 10595 auto Limit = [&R](Value *V) { 10596 unsigned EltSize = R.getVectorElementSize(V); 10597 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10598 }; 10599 10600 bool HaveVectorizedPhiNodes = false; 10601 do { 10602 // Collect the incoming values from the PHIs. 10603 Incoming.clear(); 10604 for (Instruction &I : *BB) { 10605 PHINode *P = dyn_cast<PHINode>(&I); 10606 if (!P) 10607 break; 10608 10609 // No need to analyze deleted, vectorized and non-vectorizable 10610 // instructions. 10611 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10612 isValidElementType(P->getType())) 10613 Incoming.push_back(P); 10614 } 10615 10616 // Find the corresponding non-phi nodes for better matching when trying to 10617 // build the tree. 10618 for (Value *V : Incoming) { 10619 SmallVectorImpl<Value *> &Opcodes = 10620 PHIToOpcodes.try_emplace(V).first->getSecond(); 10621 if (!Opcodes.empty()) 10622 continue; 10623 SmallVector<Value *, 4> Nodes(1, V); 10624 SmallPtrSet<Value *, 4> Visited; 10625 while (!Nodes.empty()) { 10626 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10627 if (!Visited.insert(PHI).second) 10628 continue; 10629 for (Value *V : PHI->incoming_values()) { 10630 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10631 Nodes.push_back(PHI1); 10632 continue; 10633 } 10634 Opcodes.emplace_back(V); 10635 } 10636 } 10637 } 10638 10639 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10640 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10641 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10642 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10643 }, 10644 /*LimitForRegisterSize=*/true); 10645 Changed |= HaveVectorizedPhiNodes; 10646 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10647 } while (HaveVectorizedPhiNodes); 10648 10649 VisitedInstrs.clear(); 10650 10651 SmallVector<Instruction *, 8> PostProcessInstructions; 10652 SmallDenseSet<Instruction *, 4> KeyNodes; 10653 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10654 // Skip instructions with scalable type. The num of elements is unknown at 10655 // compile-time for scalable type. 10656 if (isa<ScalableVectorType>(it->getType())) 10657 continue; 10658 10659 // Skip instructions marked for the deletion. 10660 if (R.isDeleted(&*it)) 10661 continue; 10662 // We may go through BB multiple times so skip the one we have checked. 10663 if (!VisitedInstrs.insert(&*it).second) { 10664 if (it->use_empty() && KeyNodes.contains(&*it) && 10665 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10666 it->isTerminator())) { 10667 // We would like to start over since some instructions are deleted 10668 // and the iterator may become invalid value. 10669 Changed = true; 10670 it = BB->begin(); 10671 e = BB->end(); 10672 } 10673 continue; 10674 } 10675 10676 if (isa<DbgInfoIntrinsic>(it)) 10677 continue; 10678 10679 // Try to vectorize reductions that use PHINodes. 10680 if (PHINode *P = dyn_cast<PHINode>(it)) { 10681 // Check that the PHI is a reduction PHI. 10682 if (P->getNumIncomingValues() == 2) { 10683 // Try to match and vectorize a horizontal reduction. 10684 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10685 TTI)) { 10686 Changed = true; 10687 it = BB->begin(); 10688 e = BB->end(); 10689 continue; 10690 } 10691 } 10692 // Try to vectorize the incoming values of the PHI, to catch reductions 10693 // that feed into PHIs. 10694 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10695 // Skip if the incoming block is the current BB for now. Also, bypass 10696 // unreachable IR for efficiency and to avoid crashing. 10697 // TODO: Collect the skipped incoming values and try to vectorize them 10698 // after processing BB. 10699 if (BB == P->getIncomingBlock(I) || 10700 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10701 continue; 10702 10703 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10704 P->getIncomingBlock(I), R, TTI); 10705 } 10706 continue; 10707 } 10708 10709 // Ran into an instruction without users, like terminator, or function call 10710 // with ignored return value, store. Ignore unused instructions (basing on 10711 // instruction type, except for CallInst and InvokeInst). 10712 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10713 isa<InvokeInst>(it))) { 10714 KeyNodes.insert(&*it); 10715 bool OpsChanged = false; 10716 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10717 for (auto *V : it->operand_values()) { 10718 // Try to match and vectorize a horizontal reduction. 10719 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10720 } 10721 } 10722 // Start vectorization of post-process list of instructions from the 10723 // top-tree instructions to try to vectorize as many instructions as 10724 // possible. 10725 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10726 it->isTerminator()); 10727 if (OpsChanged) { 10728 // We would like to start over since some instructions are deleted 10729 // and the iterator may become invalid value. 10730 Changed = true; 10731 it = BB->begin(); 10732 e = BB->end(); 10733 continue; 10734 } 10735 } 10736 10737 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10738 isa<InsertValueInst>(it)) 10739 PostProcessInstructions.push_back(&*it); 10740 } 10741 10742 return Changed; 10743 } 10744 10745 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10746 auto Changed = false; 10747 for (auto &Entry : GEPs) { 10748 // If the getelementptr list has fewer than two elements, there's nothing 10749 // to do. 10750 if (Entry.second.size() < 2) 10751 continue; 10752 10753 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10754 << Entry.second.size() << ".\n"); 10755 10756 // Process the GEP list in chunks suitable for the target's supported 10757 // vector size. If a vector register can't hold 1 element, we are done. We 10758 // are trying to vectorize the index computations, so the maximum number of 10759 // elements is based on the size of the index expression, rather than the 10760 // size of the GEP itself (the target's pointer size). 10761 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10762 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10763 if (MaxVecRegSize < EltSize) 10764 continue; 10765 10766 unsigned MaxElts = MaxVecRegSize / EltSize; 10767 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10768 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10769 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10770 10771 // Initialize a set a candidate getelementptrs. Note that we use a 10772 // SetVector here to preserve program order. If the index computations 10773 // are vectorizable and begin with loads, we want to minimize the chance 10774 // of having to reorder them later. 10775 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10776 10777 // Some of the candidates may have already been vectorized after we 10778 // initially collected them. If so, they are marked as deleted, so remove 10779 // them from the set of candidates. 10780 Candidates.remove_if( 10781 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10782 10783 // Remove from the set of candidates all pairs of getelementptrs with 10784 // constant differences. Such getelementptrs are likely not good 10785 // candidates for vectorization in a bottom-up phase since one can be 10786 // computed from the other. We also ensure all candidate getelementptr 10787 // indices are unique. 10788 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10789 auto *GEPI = GEPList[I]; 10790 if (!Candidates.count(GEPI)) 10791 continue; 10792 auto *SCEVI = SE->getSCEV(GEPList[I]); 10793 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10794 auto *GEPJ = GEPList[J]; 10795 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10796 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10797 Candidates.remove(GEPI); 10798 Candidates.remove(GEPJ); 10799 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10800 Candidates.remove(GEPJ); 10801 } 10802 } 10803 } 10804 10805 // We break out of the above computation as soon as we know there are 10806 // fewer than two candidates remaining. 10807 if (Candidates.size() < 2) 10808 continue; 10809 10810 // Add the single, non-constant index of each candidate to the bundle. We 10811 // ensured the indices met these constraints when we originally collected 10812 // the getelementptrs. 10813 SmallVector<Value *, 16> Bundle(Candidates.size()); 10814 auto BundleIndex = 0u; 10815 for (auto *V : Candidates) { 10816 auto *GEP = cast<GetElementPtrInst>(V); 10817 auto *GEPIdx = GEP->idx_begin()->get(); 10818 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10819 Bundle[BundleIndex++] = GEPIdx; 10820 } 10821 10822 // Try and vectorize the indices. We are currently only interested in 10823 // gather-like cases of the form: 10824 // 10825 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10826 // 10827 // where the loads of "a", the loads of "b", and the subtractions can be 10828 // performed in parallel. It's likely that detecting this pattern in a 10829 // bottom-up phase will be simpler and less costly than building a 10830 // full-blown top-down phase beginning at the consecutive loads. 10831 Changed |= tryToVectorizeList(Bundle, R); 10832 } 10833 } 10834 return Changed; 10835 } 10836 10837 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10838 bool Changed = false; 10839 // Sort by type, base pointers and values operand. Value operands must be 10840 // compatible (have the same opcode, same parent), otherwise it is 10841 // definitely not profitable to try to vectorize them. 10842 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10843 if (V->getPointerOperandType()->getTypeID() < 10844 V2->getPointerOperandType()->getTypeID()) 10845 return true; 10846 if (V->getPointerOperandType()->getTypeID() > 10847 V2->getPointerOperandType()->getTypeID()) 10848 return false; 10849 // UndefValues are compatible with all other values. 10850 if (isa<UndefValue>(V->getValueOperand()) || 10851 isa<UndefValue>(V2->getValueOperand())) 10852 return false; 10853 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10854 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10855 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10856 DT->getNode(I1->getParent()); 10857 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10858 DT->getNode(I2->getParent()); 10859 assert(NodeI1 && "Should only process reachable instructions"); 10860 assert(NodeI1 && "Should only process reachable instructions"); 10861 assert((NodeI1 == NodeI2) == 10862 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10863 "Different nodes should have different DFS numbers"); 10864 if (NodeI1 != NodeI2) 10865 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10866 InstructionsState S = getSameOpcode({I1, I2}); 10867 if (S.getOpcode()) 10868 return false; 10869 return I1->getOpcode() < I2->getOpcode(); 10870 } 10871 if (isa<Constant>(V->getValueOperand()) && 10872 isa<Constant>(V2->getValueOperand())) 10873 return false; 10874 return V->getValueOperand()->getValueID() < 10875 V2->getValueOperand()->getValueID(); 10876 }; 10877 10878 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10879 if (V1 == V2) 10880 return true; 10881 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10882 return false; 10883 // Undefs are compatible with any other value. 10884 if (isa<UndefValue>(V1->getValueOperand()) || 10885 isa<UndefValue>(V2->getValueOperand())) 10886 return true; 10887 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10888 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10889 if (I1->getParent() != I2->getParent()) 10890 return false; 10891 InstructionsState S = getSameOpcode({I1, I2}); 10892 return S.getOpcode() > 0; 10893 } 10894 if (isa<Constant>(V1->getValueOperand()) && 10895 isa<Constant>(V2->getValueOperand())) 10896 return true; 10897 return V1->getValueOperand()->getValueID() == 10898 V2->getValueOperand()->getValueID(); 10899 }; 10900 auto Limit = [&R, this](StoreInst *SI) { 10901 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10902 return R.getMinVF(EltSize); 10903 }; 10904 10905 // Attempt to sort and vectorize each of the store-groups. 10906 for (auto &Pair : Stores) { 10907 if (Pair.second.size() < 2) 10908 continue; 10909 10910 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10911 << Pair.second.size() << ".\n"); 10912 10913 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10914 continue; 10915 10916 Changed |= tryToVectorizeSequence<StoreInst>( 10917 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10918 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10919 return vectorizeStores(Candidates, R); 10920 }, 10921 /*LimitForRegisterSize=*/false); 10922 } 10923 return Changed; 10924 } 10925 10926 char SLPVectorizer::ID = 0; 10927 10928 static const char lv_name[] = "SLP Vectorizer"; 10929 10930 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10931 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10932 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10933 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10934 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10935 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10936 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10937 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10938 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10939 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10940 10941 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10942