1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// TODO: Can we split off and reuse the shuffle mask detection from 291 /// TargetTransformInfo::getInstructionThroughput? 292 static Optional<TargetTransformInfo::ShuffleKind> 293 isShuffle(ArrayRef<Value *> VL) { 294 auto *EI0 = cast<ExtractElementInst>(VL[0]); 295 unsigned Size = 296 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 297 Value *Vec1 = nullptr; 298 Value *Vec2 = nullptr; 299 enum ShuffleMode { Unknown, Select, Permute }; 300 ShuffleMode CommonShuffleMode = Unknown; 301 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 302 auto *EI = cast<ExtractElementInst>(VL[I]); 303 auto *Vec = EI->getVectorOperand(); 304 // All vector operands must have the same number of vector elements. 305 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 306 return None; 307 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 308 if (!Idx) 309 return None; 310 // Undefined behavior if Idx is negative or >= Size. 311 if (Idx->getValue().uge(Size)) 312 continue; 313 unsigned IntIdx = Idx->getValue().getZExtValue(); 314 // We can extractelement from undef vector. 315 if (isa<UndefValue>(Vec)) 316 continue; 317 // For correct shuffling we have to have at most 2 different vector operands 318 // in all extractelement instructions. 319 if (!Vec1 || Vec1 == Vec) 320 Vec1 = Vec; 321 else if (!Vec2 || Vec2 == Vec) 322 Vec2 = Vec; 323 else 324 return None; 325 if (CommonShuffleMode == Permute) 326 continue; 327 // If the extract index is not the same as the operation number, it is a 328 // permutation. 329 if (IntIdx != I) { 330 CommonShuffleMode = Permute; 331 continue; 332 } 333 CommonShuffleMode = Select; 334 } 335 // If we're not crossing lanes in different vectors, consider it as blending. 336 if (CommonShuffleMode == Select && Vec2) 337 return TargetTransformInfo::SK_Select; 338 // If Vec2 was never used, we have a permutation of a single vector, otherwise 339 // we have permutation of 2 vectors. 340 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 341 : TargetTransformInfo::SK_PermuteSingleSrc; 342 } 343 344 namespace { 345 346 /// Main data required for vectorization of instructions. 347 struct InstructionsState { 348 /// The very first instruction in the list with the main opcode. 349 Value *OpValue = nullptr; 350 351 /// The main/alternate instruction. 352 Instruction *MainOp = nullptr; 353 Instruction *AltOp = nullptr; 354 355 /// The main/alternate opcodes for the list of instructions. 356 unsigned getOpcode() const { 357 return MainOp ? MainOp->getOpcode() : 0; 358 } 359 360 unsigned getAltOpcode() const { 361 return AltOp ? AltOp->getOpcode() : 0; 362 } 363 364 /// Some of the instructions in the list have alternate opcodes. 365 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 366 367 bool isOpcodeOrAlt(Instruction *I) const { 368 unsigned CheckedOpcode = I->getOpcode(); 369 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 370 } 371 372 InstructionsState() = delete; 373 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 374 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 375 }; 376 377 } // end anonymous namespace 378 379 /// Chooses the correct key for scheduling data. If \p Op has the same (or 380 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 381 /// OpValue. 382 static Value *isOneOf(const InstructionsState &S, Value *Op) { 383 auto *I = dyn_cast<Instruction>(Op); 384 if (I && S.isOpcodeOrAlt(I)) 385 return Op; 386 return S.OpValue; 387 } 388 389 /// \returns true if \p Opcode is allowed as part of of the main/alternate 390 /// instruction for SLP vectorization. 391 /// 392 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 393 /// "shuffled out" lane would result in division by zero. 394 static bool isValidForAlternation(unsigned Opcode) { 395 if (Instruction::isIntDivRem(Opcode)) 396 return false; 397 398 return true; 399 } 400 401 /// \returns analysis of the Instructions in \p VL described in 402 /// InstructionsState, the Opcode that we suppose the whole list 403 /// could be vectorized even if its structure is diverse. 404 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 405 unsigned BaseIndex = 0) { 406 // Make sure these are all Instructions. 407 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 408 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 409 410 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 411 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 412 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 413 unsigned AltOpcode = Opcode; 414 unsigned AltIndex = BaseIndex; 415 416 // Check for one alternate opcode from another BinaryOperator. 417 // TODO - generalize to support all operators (types, calls etc.). 418 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 419 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 420 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 421 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 422 continue; 423 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 424 isValidForAlternation(Opcode)) { 425 AltOpcode = InstOpcode; 426 AltIndex = Cnt; 427 continue; 428 } 429 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 430 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 431 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 432 if (Ty0 == Ty1) { 433 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 434 continue; 435 if (Opcode == AltOpcode) { 436 assert(isValidForAlternation(Opcode) && 437 isValidForAlternation(InstOpcode) && 438 "Cast isn't safe for alternation, logic needs to be updated!"); 439 AltOpcode = InstOpcode; 440 AltIndex = Cnt; 441 continue; 442 } 443 } 444 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 445 continue; 446 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 447 } 448 449 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 450 cast<Instruction>(VL[AltIndex])); 451 } 452 453 /// \returns true if all of the values in \p VL have the same type or false 454 /// otherwise. 455 static bool allSameType(ArrayRef<Value *> VL) { 456 Type *Ty = VL[0]->getType(); 457 for (int i = 1, e = VL.size(); i < e; i++) 458 if (VL[i]->getType() != Ty) 459 return false; 460 461 return true; 462 } 463 464 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 465 static Optional<unsigned> getExtractIndex(Instruction *E) { 466 unsigned Opcode = E->getOpcode(); 467 assert((Opcode == Instruction::ExtractElement || 468 Opcode == Instruction::ExtractValue) && 469 "Expected extractelement or extractvalue instruction."); 470 if (Opcode == Instruction::ExtractElement) { 471 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 472 if (!CI) 473 return None; 474 return CI->getZExtValue(); 475 } 476 ExtractValueInst *EI = cast<ExtractValueInst>(E); 477 if (EI->getNumIndices() != 1) 478 return None; 479 return *EI->idx_begin(); 480 } 481 482 /// \returns True if in-tree use also needs extract. This refers to 483 /// possible scalar operand in vectorized instruction. 484 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 485 TargetLibraryInfo *TLI) { 486 unsigned Opcode = UserInst->getOpcode(); 487 switch (Opcode) { 488 case Instruction::Load: { 489 LoadInst *LI = cast<LoadInst>(UserInst); 490 return (LI->getPointerOperand() == Scalar); 491 } 492 case Instruction::Store: { 493 StoreInst *SI = cast<StoreInst>(UserInst); 494 return (SI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Call: { 497 CallInst *CI = cast<CallInst>(UserInst); 498 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 499 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 500 if (hasVectorInstrinsicScalarOpd(ID, i)) 501 return (CI->getArgOperand(i) == Scalar); 502 } 503 LLVM_FALLTHROUGH; 504 } 505 default: 506 return false; 507 } 508 } 509 510 /// \returns the AA location that is being access by the instruction. 511 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 512 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 513 return MemoryLocation::get(SI); 514 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 515 return MemoryLocation::get(LI); 516 return MemoryLocation(); 517 } 518 519 /// \returns True if the instruction is not a volatile or atomic load/store. 520 static bool isSimple(Instruction *I) { 521 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 522 return LI->isSimple(); 523 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 524 return SI->isSimple(); 525 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 526 return !MI->isVolatile(); 527 return true; 528 } 529 530 namespace llvm { 531 532 static void inversePermutation(ArrayRef<unsigned> Indices, 533 SmallVectorImpl<int> &Mask) { 534 Mask.clear(); 535 const unsigned E = Indices.size(); 536 Mask.resize(E, E + 1); 537 for (unsigned I = 0; I < E; ++I) 538 Mask[Indices[I]] = I; 539 } 540 541 namespace slpvectorizer { 542 543 /// Bottom Up SLP Vectorizer. 544 class BoUpSLP { 545 struct TreeEntry; 546 struct ScheduleData; 547 548 public: 549 using ValueList = SmallVector<Value *, 8>; 550 using InstrList = SmallVector<Instruction *, 16>; 551 using ValueSet = SmallPtrSet<Value *, 16>; 552 using StoreList = SmallVector<StoreInst *, 8>; 553 using ExtraValueToDebugLocsMap = 554 MapVector<Value *, SmallVector<Instruction *, 2>>; 555 using OrdersType = SmallVector<unsigned, 4>; 556 557 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 558 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 559 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 560 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 561 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 562 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 563 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 564 // Use the vector register size specified by the target unless overridden 565 // by a command-line option. 566 // TODO: It would be better to limit the vectorization factor based on 567 // data type rather than just register size. For example, x86 AVX has 568 // 256-bit registers, but it does not support integer operations 569 // at that width (that requires AVX2). 570 if (MaxVectorRegSizeOption.getNumOccurrences()) 571 MaxVecRegSize = MaxVectorRegSizeOption; 572 else 573 MaxVecRegSize = TTI->getRegisterBitWidth(true); 574 575 if (MinVectorRegSizeOption.getNumOccurrences()) 576 MinVecRegSize = MinVectorRegSizeOption; 577 else 578 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 579 } 580 581 /// Vectorize the tree that starts with the elements in \p VL. 582 /// Returns the vectorized root. 583 Value *vectorizeTree(); 584 585 /// Vectorize the tree but with the list of externally used values \p 586 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 587 /// generated extractvalue instructions. 588 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 589 590 /// \returns the cost incurred by unwanted spills and fills, caused by 591 /// holding live values over call sites. 592 InstructionCost getSpillCost() const; 593 594 /// \returns the vectorization cost of the subtree that starts at \p VL. 595 /// A negative number means that this is profitable. 596 InstructionCost getTreeCost(); 597 598 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 599 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 600 void buildTree(ArrayRef<Value *> Roots, 601 ArrayRef<Value *> UserIgnoreLst = None); 602 603 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 604 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 605 /// into account (and updating it, if required) list of externally used 606 /// values stored in \p ExternallyUsedValues. 607 void buildTree(ArrayRef<Value *> Roots, 608 ExtraValueToDebugLocsMap &ExternallyUsedValues, 609 ArrayRef<Value *> UserIgnoreLst = None); 610 611 /// Clear the internal data structures that are created by 'buildTree'. 612 void deleteTree() { 613 VectorizableTree.clear(); 614 ScalarToTreeEntry.clear(); 615 MustGather.clear(); 616 ExternalUses.clear(); 617 NumOpsWantToKeepOrder.clear(); 618 NumOpsWantToKeepOriginalOrder = 0; 619 for (auto &Iter : BlocksSchedules) { 620 BlockScheduling *BS = Iter.second.get(); 621 BS->clear(); 622 } 623 MinBWs.clear(); 624 } 625 626 unsigned getTreeSize() const { return VectorizableTree.size(); } 627 628 /// Perform LICM and CSE on the newly generated gather sequences. 629 void optimizeGatherSequence(); 630 631 /// \returns The best order of instructions for vectorization. 632 Optional<ArrayRef<unsigned>> bestOrder() const { 633 assert(llvm::all_of( 634 NumOpsWantToKeepOrder, 635 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 636 return D.getFirst().size() == 637 VectorizableTree[0]->Scalars.size(); 638 }) && 639 "All orders must have the same size as number of instructions in " 640 "tree node."); 641 auto I = std::max_element( 642 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 643 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 644 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 645 return D1.second < D2.second; 646 }); 647 if (I == NumOpsWantToKeepOrder.end() || 648 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 649 return None; 650 651 return makeArrayRef(I->getFirst()); 652 } 653 654 /// Builds the correct order for root instructions. 655 /// If some leaves have the same instructions to be vectorized, we may 656 /// incorrectly evaluate the best order for the root node (it is built for the 657 /// vector of instructions without repeated instructions and, thus, has less 658 /// elements than the root node). This function builds the correct order for 659 /// the root node. 660 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 661 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 662 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 663 /// be reordered, the best order will be \<1, 0\>. We need to extend this 664 /// order for the root node. For the root node this order should look like 665 /// \<3, 0, 1, 2\>. This function extends the order for the reused 666 /// instructions. 667 void findRootOrder(OrdersType &Order) { 668 // If the leaf has the same number of instructions to vectorize as the root 669 // - order must be set already. 670 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 671 if (Order.size() == RootSize) 672 return; 673 SmallVector<unsigned, 4> RealOrder(Order.size()); 674 std::swap(Order, RealOrder); 675 SmallVector<int, 4> Mask; 676 inversePermutation(RealOrder, Mask); 677 Order.assign(Mask.begin(), Mask.end()); 678 // The leaf has less number of instructions - need to find the true order of 679 // the root. 680 // Scan the nodes starting from the leaf back to the root. 681 const TreeEntry *PNode = VectorizableTree.back().get(); 682 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 683 SmallPtrSet<const TreeEntry *, 4> Visited; 684 while (!Nodes.empty() && Order.size() != RootSize) { 685 const TreeEntry *PNode = Nodes.pop_back_val(); 686 if (!Visited.insert(PNode).second) 687 continue; 688 const TreeEntry &Node = *PNode; 689 for (const EdgeInfo &EI : Node.UserTreeIndices) 690 if (EI.UserTE) 691 Nodes.push_back(EI.UserTE); 692 if (Node.ReuseShuffleIndices.empty()) 693 continue; 694 // Build the order for the parent node. 695 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 696 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 697 // The algorithm of the order extension is: 698 // 1. Calculate the number of the same instructions for the order. 699 // 2. Calculate the index of the new order: total number of instructions 700 // with order less than the order of the current instruction + reuse 701 // number of the current instruction. 702 // 3. The new order is just the index of the instruction in the original 703 // vector of the instructions. 704 for (unsigned I : Node.ReuseShuffleIndices) 705 ++OrderCounter[Order[I]]; 706 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 707 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 708 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 709 unsigned OrderIdx = Order[ReusedIdx]; 710 unsigned NewIdx = 0; 711 for (unsigned J = 0; J < OrderIdx; ++J) 712 NewIdx += OrderCounter[J]; 713 NewIdx += CurrentCounter[OrderIdx]; 714 ++CurrentCounter[OrderIdx]; 715 assert(NewOrder[NewIdx] == RootSize && 716 "The order index should not be written already."); 717 NewOrder[NewIdx] = I; 718 } 719 std::swap(Order, NewOrder); 720 } 721 assert(Order.size() == RootSize && 722 "Root node is expected or the size of the order must be the same as " 723 "the number of elements in the root node."); 724 assert(llvm::all_of(Order, 725 [RootSize](unsigned Val) { return Val != RootSize; }) && 726 "All indices must be initialized"); 727 } 728 729 /// \return The vector element size in bits to use when vectorizing the 730 /// expression tree ending at \p V. If V is a store, the size is the width of 731 /// the stored value. Otherwise, the size is the width of the largest loaded 732 /// value reaching V. This method is used by the vectorizer to calculate 733 /// vectorization factors. 734 unsigned getVectorElementSize(Value *V); 735 736 /// Compute the minimum type sizes required to represent the entries in a 737 /// vectorizable tree. 738 void computeMinimumValueSizes(); 739 740 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 741 unsigned getMaxVecRegSize() const { 742 return MaxVecRegSize; 743 } 744 745 // \returns minimum vector register size as set by cl::opt. 746 unsigned getMinVecRegSize() const { 747 return MinVecRegSize; 748 } 749 750 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 751 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 752 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 753 return MaxVF ? MaxVF : UINT_MAX; 754 } 755 756 /// Check if homogeneous aggregate is isomorphic to some VectorType. 757 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 758 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 759 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 760 /// 761 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 762 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 763 764 /// \returns True if the VectorizableTree is both tiny and not fully 765 /// vectorizable. We do not vectorize such trees. 766 bool isTreeTinyAndNotFullyVectorizable() const; 767 768 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 769 /// can be load combined in the backend. Load combining may not be allowed in 770 /// the IR optimizer, so we do not want to alter the pattern. For example, 771 /// partially transforming a scalar bswap() pattern into vector code is 772 /// effectively impossible for the backend to undo. 773 /// TODO: If load combining is allowed in the IR optimizer, this analysis 774 /// may not be necessary. 775 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 776 777 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 778 /// can be load combined in the backend. Load combining may not be allowed in 779 /// the IR optimizer, so we do not want to alter the pattern. For example, 780 /// partially transforming a scalar bswap() pattern into vector code is 781 /// effectively impossible for the backend to undo. 782 /// TODO: If load combining is allowed in the IR optimizer, this analysis 783 /// may not be necessary. 784 bool isLoadCombineCandidate() const; 785 786 OptimizationRemarkEmitter *getORE() { return ORE; } 787 788 /// This structure holds any data we need about the edges being traversed 789 /// during buildTree_rec(). We keep track of: 790 /// (i) the user TreeEntry index, and 791 /// (ii) the index of the edge. 792 struct EdgeInfo { 793 EdgeInfo() = default; 794 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 795 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 796 /// The user TreeEntry. 797 TreeEntry *UserTE = nullptr; 798 /// The operand index of the use. 799 unsigned EdgeIdx = UINT_MAX; 800 #ifndef NDEBUG 801 friend inline raw_ostream &operator<<(raw_ostream &OS, 802 const BoUpSLP::EdgeInfo &EI) { 803 EI.dump(OS); 804 return OS; 805 } 806 /// Debug print. 807 void dump(raw_ostream &OS) const { 808 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 809 << " EdgeIdx:" << EdgeIdx << "}"; 810 } 811 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 812 #endif 813 }; 814 815 /// A helper data structure to hold the operands of a vector of instructions. 816 /// This supports a fixed vector length for all operand vectors. 817 class VLOperands { 818 /// For each operand we need (i) the value, and (ii) the opcode that it 819 /// would be attached to if the expression was in a left-linearized form. 820 /// This is required to avoid illegal operand reordering. 821 /// For example: 822 /// \verbatim 823 /// 0 Op1 824 /// |/ 825 /// Op1 Op2 Linearized + Op2 826 /// \ / ----------> |/ 827 /// - - 828 /// 829 /// Op1 - Op2 (0 + Op1) - Op2 830 /// \endverbatim 831 /// 832 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 833 /// 834 /// Another way to think of this is to track all the operations across the 835 /// path from the operand all the way to the root of the tree and to 836 /// calculate the operation that corresponds to this path. For example, the 837 /// path from Op2 to the root crosses the RHS of the '-', therefore the 838 /// corresponding operation is a '-' (which matches the one in the 839 /// linearized tree, as shown above). 840 /// 841 /// For lack of a better term, we refer to this operation as Accumulated 842 /// Path Operation (APO). 843 struct OperandData { 844 OperandData() = default; 845 OperandData(Value *V, bool APO, bool IsUsed) 846 : V(V), APO(APO), IsUsed(IsUsed) {} 847 /// The operand value. 848 Value *V = nullptr; 849 /// TreeEntries only allow a single opcode, or an alternate sequence of 850 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 851 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 852 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 853 /// (e.g., Add/Mul) 854 bool APO = false; 855 /// Helper data for the reordering function. 856 bool IsUsed = false; 857 }; 858 859 /// During operand reordering, we are trying to select the operand at lane 860 /// that matches best with the operand at the neighboring lane. Our 861 /// selection is based on the type of value we are looking for. For example, 862 /// if the neighboring lane has a load, we need to look for a load that is 863 /// accessing a consecutive address. These strategies are summarized in the 864 /// 'ReorderingMode' enumerator. 865 enum class ReorderingMode { 866 Load, ///< Matching loads to consecutive memory addresses 867 Opcode, ///< Matching instructions based on opcode (same or alternate) 868 Constant, ///< Matching constants 869 Splat, ///< Matching the same instruction multiple times (broadcast) 870 Failed, ///< We failed to create a vectorizable group 871 }; 872 873 using OperandDataVec = SmallVector<OperandData, 2>; 874 875 /// A vector of operand vectors. 876 SmallVector<OperandDataVec, 4> OpsVec; 877 878 const DataLayout &DL; 879 ScalarEvolution &SE; 880 const BoUpSLP &R; 881 882 /// \returns the operand data at \p OpIdx and \p Lane. 883 OperandData &getData(unsigned OpIdx, unsigned Lane) { 884 return OpsVec[OpIdx][Lane]; 885 } 886 887 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 888 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 889 return OpsVec[OpIdx][Lane]; 890 } 891 892 /// Clears the used flag for all entries. 893 void clearUsed() { 894 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 895 OpIdx != NumOperands; ++OpIdx) 896 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 897 ++Lane) 898 OpsVec[OpIdx][Lane].IsUsed = false; 899 } 900 901 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 902 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 903 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 904 } 905 906 // The hard-coded scores listed here are not very important. When computing 907 // the scores of matching one sub-tree with another, we are basically 908 // counting the number of values that are matching. So even if all scores 909 // are set to 1, we would still get a decent matching result. 910 // However, sometimes we have to break ties. For example we may have to 911 // choose between matching loads vs matching opcodes. This is what these 912 // scores are helping us with: they provide the order of preference. 913 914 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 915 static const int ScoreConsecutiveLoads = 3; 916 /// ExtractElementInst from same vector and consecutive indexes. 917 static const int ScoreConsecutiveExtracts = 3; 918 /// Constants. 919 static const int ScoreConstants = 2; 920 /// Instructions with the same opcode. 921 static const int ScoreSameOpcode = 2; 922 /// Instructions with alt opcodes (e.g, add + sub). 923 static const int ScoreAltOpcodes = 1; 924 /// Identical instructions (a.k.a. splat or broadcast). 925 static const int ScoreSplat = 1; 926 /// Matching with an undef is preferable to failing. 927 static const int ScoreUndef = 1; 928 /// Score for failing to find a decent match. 929 static const int ScoreFail = 0; 930 /// User exteranl to the vectorized code. 931 static const int ExternalUseCost = 1; 932 /// The user is internal but in a different lane. 933 static const int UserInDiffLaneCost = ExternalUseCost; 934 935 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 936 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 937 ScalarEvolution &SE) { 938 auto *LI1 = dyn_cast<LoadInst>(V1); 939 auto *LI2 = dyn_cast<LoadInst>(V2); 940 if (LI1 && LI2) 941 return isConsecutiveAccess(LI1, LI2, DL, SE) 942 ? VLOperands::ScoreConsecutiveLoads 943 : VLOperands::ScoreFail; 944 945 auto *C1 = dyn_cast<Constant>(V1); 946 auto *C2 = dyn_cast<Constant>(V2); 947 if (C1 && C2) 948 return VLOperands::ScoreConstants; 949 950 // Extracts from consecutive indexes of the same vector better score as 951 // the extracts could be optimized away. 952 Value *EV; 953 ConstantInt *Ex1Idx, *Ex2Idx; 954 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 955 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 956 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 957 return VLOperands::ScoreConsecutiveExtracts; 958 959 auto *I1 = dyn_cast<Instruction>(V1); 960 auto *I2 = dyn_cast<Instruction>(V2); 961 if (I1 && I2) { 962 if (I1 == I2) 963 return VLOperands::ScoreSplat; 964 InstructionsState S = getSameOpcode({I1, I2}); 965 // Note: Only consider instructions with <= 2 operands to avoid 966 // complexity explosion. 967 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 968 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 969 : VLOperands::ScoreSameOpcode; 970 } 971 972 if (isa<UndefValue>(V2)) 973 return VLOperands::ScoreUndef; 974 975 return VLOperands::ScoreFail; 976 } 977 978 /// Holds the values and their lane that are taking part in the look-ahead 979 /// score calculation. This is used in the external uses cost calculation. 980 SmallDenseMap<Value *, int> InLookAheadValues; 981 982 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 983 /// either external to the vectorized code, or require shuffling. 984 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 985 const std::pair<Value *, int> &RHS) { 986 int Cost = 0; 987 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 988 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 989 Value *V = Values[Idx].first; 990 // Calculate the absolute lane, using the minimum relative lane of LHS 991 // and RHS as base and Idx as the offset. 992 int Ln = std::min(LHS.second, RHS.second) + Idx; 993 assert(Ln >= 0 && "Bad lane calculation"); 994 unsigned UsersBudget = LookAheadUsersBudget; 995 for (User *U : V->users()) { 996 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 997 // The user is in the VectorizableTree. Check if we need to insert. 998 auto It = llvm::find(UserTE->Scalars, U); 999 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1000 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1001 assert(UserLn >= 0 && "Bad lane"); 1002 if (UserLn != Ln) 1003 Cost += UserInDiffLaneCost; 1004 } else { 1005 // Check if the user is in the look-ahead code. 1006 auto It2 = InLookAheadValues.find(U); 1007 if (It2 != InLookAheadValues.end()) { 1008 // The user is in the look-ahead code. Check the lane. 1009 if (It2->second != Ln) 1010 Cost += UserInDiffLaneCost; 1011 } else { 1012 // The user is neither in SLP tree nor in the look-ahead code. 1013 Cost += ExternalUseCost; 1014 } 1015 } 1016 // Limit the number of visited uses to cap compilation time. 1017 if (--UsersBudget == 0) 1018 break; 1019 } 1020 } 1021 return Cost; 1022 } 1023 1024 /// Go through the operands of \p LHS and \p RHS recursively until \p 1025 /// MaxLevel, and return the cummulative score. For example: 1026 /// \verbatim 1027 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1028 /// \ / \ / \ / \ / 1029 /// + + + + 1030 /// G1 G2 G3 G4 1031 /// \endverbatim 1032 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1033 /// each level recursively, accumulating the score. It starts from matching 1034 /// the additions at level 0, then moves on to the loads (level 1). The 1035 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1036 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1037 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1038 /// Please note that the order of the operands does not matter, as we 1039 /// evaluate the score of all profitable combinations of operands. In 1040 /// other words the score of G1 and G4 is the same as G1 and G2. This 1041 /// heuristic is based on ideas described in: 1042 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1043 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1044 /// Luís F. W. Góes 1045 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1046 const std::pair<Value *, int> &RHS, int CurrLevel, 1047 int MaxLevel) { 1048 1049 Value *V1 = LHS.first; 1050 Value *V2 = RHS.first; 1051 // Get the shallow score of V1 and V2. 1052 int ShallowScoreAtThisLevel = 1053 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1054 getExternalUsesCost(LHS, RHS)); 1055 int Lane1 = LHS.second; 1056 int Lane2 = RHS.second; 1057 1058 // If reached MaxLevel, 1059 // or if V1 and V2 are not instructions, 1060 // or if they are SPLAT, 1061 // or if they are not consecutive, early return the current cost. 1062 auto *I1 = dyn_cast<Instruction>(V1); 1063 auto *I2 = dyn_cast<Instruction>(V2); 1064 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1065 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1066 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1067 return ShallowScoreAtThisLevel; 1068 assert(I1 && I2 && "Should have early exited."); 1069 1070 // Keep track of in-tree values for determining the external-use cost. 1071 InLookAheadValues[V1] = Lane1; 1072 InLookAheadValues[V2] = Lane2; 1073 1074 // Contains the I2 operand indexes that got matched with I1 operands. 1075 SmallSet<unsigned, 4> Op2Used; 1076 1077 // Recursion towards the operands of I1 and I2. We are trying all possbile 1078 // operand pairs, and keeping track of the best score. 1079 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1080 OpIdx1 != NumOperands1; ++OpIdx1) { 1081 // Try to pair op1I with the best operand of I2. 1082 int MaxTmpScore = 0; 1083 unsigned MaxOpIdx2 = 0; 1084 bool FoundBest = false; 1085 // If I2 is commutative try all combinations. 1086 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1087 unsigned ToIdx = isCommutative(I2) 1088 ? I2->getNumOperands() 1089 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1090 assert(FromIdx <= ToIdx && "Bad index"); 1091 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1092 // Skip operands already paired with OpIdx1. 1093 if (Op2Used.count(OpIdx2)) 1094 continue; 1095 // Recursively calculate the cost at each level 1096 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1097 {I2->getOperand(OpIdx2), Lane2}, 1098 CurrLevel + 1, MaxLevel); 1099 // Look for the best score. 1100 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1101 MaxTmpScore = TmpScore; 1102 MaxOpIdx2 = OpIdx2; 1103 FoundBest = true; 1104 } 1105 } 1106 if (FoundBest) { 1107 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1108 Op2Used.insert(MaxOpIdx2); 1109 ShallowScoreAtThisLevel += MaxTmpScore; 1110 } 1111 } 1112 return ShallowScoreAtThisLevel; 1113 } 1114 1115 /// \Returns the look-ahead score, which tells us how much the sub-trees 1116 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1117 /// score. This helps break ties in an informed way when we cannot decide on 1118 /// the order of the operands by just considering the immediate 1119 /// predecessors. 1120 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1121 const std::pair<Value *, int> &RHS) { 1122 InLookAheadValues.clear(); 1123 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1124 } 1125 1126 // Search all operands in Ops[*][Lane] for the one that matches best 1127 // Ops[OpIdx][LastLane] and return its opreand index. 1128 // If no good match can be found, return None. 1129 Optional<unsigned> 1130 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1131 ArrayRef<ReorderingMode> ReorderingModes) { 1132 unsigned NumOperands = getNumOperands(); 1133 1134 // The operand of the previous lane at OpIdx. 1135 Value *OpLastLane = getData(OpIdx, LastLane).V; 1136 1137 // Our strategy mode for OpIdx. 1138 ReorderingMode RMode = ReorderingModes[OpIdx]; 1139 1140 // The linearized opcode of the operand at OpIdx, Lane. 1141 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1142 1143 // The best operand index and its score. 1144 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1145 // are using the score to differentiate between the two. 1146 struct BestOpData { 1147 Optional<unsigned> Idx = None; 1148 unsigned Score = 0; 1149 } BestOp; 1150 1151 // Iterate through all unused operands and look for the best. 1152 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1153 // Get the operand at Idx and Lane. 1154 OperandData &OpData = getData(Idx, Lane); 1155 Value *Op = OpData.V; 1156 bool OpAPO = OpData.APO; 1157 1158 // Skip already selected operands. 1159 if (OpData.IsUsed) 1160 continue; 1161 1162 // Skip if we are trying to move the operand to a position with a 1163 // different opcode in the linearized tree form. This would break the 1164 // semantics. 1165 if (OpAPO != OpIdxAPO) 1166 continue; 1167 1168 // Look for an operand that matches the current mode. 1169 switch (RMode) { 1170 case ReorderingMode::Load: 1171 case ReorderingMode::Constant: 1172 case ReorderingMode::Opcode: { 1173 bool LeftToRight = Lane > LastLane; 1174 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1175 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1176 unsigned Score = 1177 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1178 if (Score > BestOp.Score) { 1179 BestOp.Idx = Idx; 1180 BestOp.Score = Score; 1181 } 1182 break; 1183 } 1184 case ReorderingMode::Splat: 1185 if (Op == OpLastLane) 1186 BestOp.Idx = Idx; 1187 break; 1188 case ReorderingMode::Failed: 1189 return None; 1190 } 1191 } 1192 1193 if (BestOp.Idx) { 1194 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1195 return BestOp.Idx; 1196 } 1197 // If we could not find a good match return None. 1198 return None; 1199 } 1200 1201 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1202 /// reordering from. This is the one which has the least number of operands 1203 /// that can freely move about. 1204 unsigned getBestLaneToStartReordering() const { 1205 unsigned BestLane = 0; 1206 unsigned Min = UINT_MAX; 1207 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1208 ++Lane) { 1209 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1210 if (NumFreeOps < Min) { 1211 Min = NumFreeOps; 1212 BestLane = Lane; 1213 } 1214 } 1215 return BestLane; 1216 } 1217 1218 /// \Returns the maximum number of operands that are allowed to be reordered 1219 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1220 /// start operand reordering. 1221 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1222 unsigned CntTrue = 0; 1223 unsigned NumOperands = getNumOperands(); 1224 // Operands with the same APO can be reordered. We therefore need to count 1225 // how many of them we have for each APO, like this: Cnt[APO] = x. 1226 // Since we only have two APOs, namely true and false, we can avoid using 1227 // a map. Instead we can simply count the number of operands that 1228 // correspond to one of them (in this case the 'true' APO), and calculate 1229 // the other by subtracting it from the total number of operands. 1230 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1231 if (getData(OpIdx, Lane).APO) 1232 ++CntTrue; 1233 unsigned CntFalse = NumOperands - CntTrue; 1234 return std::max(CntTrue, CntFalse); 1235 } 1236 1237 /// Go through the instructions in VL and append their operands. 1238 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1239 assert(!VL.empty() && "Bad VL"); 1240 assert((empty() || VL.size() == getNumLanes()) && 1241 "Expected same number of lanes"); 1242 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1243 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1244 OpsVec.resize(NumOperands); 1245 unsigned NumLanes = VL.size(); 1246 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1247 OpsVec[OpIdx].resize(NumLanes); 1248 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1249 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1250 // Our tree has just 3 nodes: the root and two operands. 1251 // It is therefore trivial to get the APO. We only need to check the 1252 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1253 // RHS operand. The LHS operand of both add and sub is never attached 1254 // to an inversese operation in the linearized form, therefore its APO 1255 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1256 1257 // Since operand reordering is performed on groups of commutative 1258 // operations or alternating sequences (e.g., +, -), we can safely 1259 // tell the inverse operations by checking commutativity. 1260 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1261 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1262 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1263 APO, false}; 1264 } 1265 } 1266 } 1267 1268 /// \returns the number of operands. 1269 unsigned getNumOperands() const { return OpsVec.size(); } 1270 1271 /// \returns the number of lanes. 1272 unsigned getNumLanes() const { return OpsVec[0].size(); } 1273 1274 /// \returns the operand value at \p OpIdx and \p Lane. 1275 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1276 return getData(OpIdx, Lane).V; 1277 } 1278 1279 /// \returns true if the data structure is empty. 1280 bool empty() const { return OpsVec.empty(); } 1281 1282 /// Clears the data. 1283 void clear() { OpsVec.clear(); } 1284 1285 /// \Returns true if there are enough operands identical to \p Op to fill 1286 /// the whole vector. 1287 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1288 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1289 bool OpAPO = getData(OpIdx, Lane).APO; 1290 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1291 if (Ln == Lane) 1292 continue; 1293 // This is set to true if we found a candidate for broadcast at Lane. 1294 bool FoundCandidate = false; 1295 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1296 OperandData &Data = getData(OpI, Ln); 1297 if (Data.APO != OpAPO || Data.IsUsed) 1298 continue; 1299 if (Data.V == Op) { 1300 FoundCandidate = true; 1301 Data.IsUsed = true; 1302 break; 1303 } 1304 } 1305 if (!FoundCandidate) 1306 return false; 1307 } 1308 return true; 1309 } 1310 1311 public: 1312 /// Initialize with all the operands of the instruction vector \p RootVL. 1313 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1314 ScalarEvolution &SE, const BoUpSLP &R) 1315 : DL(DL), SE(SE), R(R) { 1316 // Append all the operands of RootVL. 1317 appendOperandsOfVL(RootVL); 1318 } 1319 1320 /// \Returns a value vector with the operands across all lanes for the 1321 /// opearnd at \p OpIdx. 1322 ValueList getVL(unsigned OpIdx) const { 1323 ValueList OpVL(OpsVec[OpIdx].size()); 1324 assert(OpsVec[OpIdx].size() == getNumLanes() && 1325 "Expected same num of lanes across all operands"); 1326 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1327 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1328 return OpVL; 1329 } 1330 1331 // Performs operand reordering for 2 or more operands. 1332 // The original operands are in OrigOps[OpIdx][Lane]. 1333 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1334 void reorder() { 1335 unsigned NumOperands = getNumOperands(); 1336 unsigned NumLanes = getNumLanes(); 1337 // Each operand has its own mode. We are using this mode to help us select 1338 // the instructions for each lane, so that they match best with the ones 1339 // we have selected so far. 1340 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1341 1342 // This is a greedy single-pass algorithm. We are going over each lane 1343 // once and deciding on the best order right away with no back-tracking. 1344 // However, in order to increase its effectiveness, we start with the lane 1345 // that has operands that can move the least. For example, given the 1346 // following lanes: 1347 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1348 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1349 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1350 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1351 // we will start at Lane 1, since the operands of the subtraction cannot 1352 // be reordered. Then we will visit the rest of the lanes in a circular 1353 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1354 1355 // Find the first lane that we will start our search from. 1356 unsigned FirstLane = getBestLaneToStartReordering(); 1357 1358 // Initialize the modes. 1359 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1360 Value *OpLane0 = getValue(OpIdx, FirstLane); 1361 // Keep track if we have instructions with all the same opcode on one 1362 // side. 1363 if (isa<LoadInst>(OpLane0)) 1364 ReorderingModes[OpIdx] = ReorderingMode::Load; 1365 else if (isa<Instruction>(OpLane0)) { 1366 // Check if OpLane0 should be broadcast. 1367 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1368 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1369 else 1370 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1371 } 1372 else if (isa<Constant>(OpLane0)) 1373 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1374 else if (isa<Argument>(OpLane0)) 1375 // Our best hope is a Splat. It may save some cost in some cases. 1376 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1377 else 1378 // NOTE: This should be unreachable. 1379 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1380 } 1381 1382 // If the initial strategy fails for any of the operand indexes, then we 1383 // perform reordering again in a second pass. This helps avoid assigning 1384 // high priority to the failed strategy, and should improve reordering for 1385 // the non-failed operand indexes. 1386 for (int Pass = 0; Pass != 2; ++Pass) { 1387 // Skip the second pass if the first pass did not fail. 1388 bool StrategyFailed = false; 1389 // Mark all operand data as free to use. 1390 clearUsed(); 1391 // We keep the original operand order for the FirstLane, so reorder the 1392 // rest of the lanes. We are visiting the nodes in a circular fashion, 1393 // using FirstLane as the center point and increasing the radius 1394 // distance. 1395 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1396 // Visit the lane on the right and then the lane on the left. 1397 for (int Direction : {+1, -1}) { 1398 int Lane = FirstLane + Direction * Distance; 1399 if (Lane < 0 || Lane >= (int)NumLanes) 1400 continue; 1401 int LastLane = Lane - Direction; 1402 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1403 "Out of bounds"); 1404 // Look for a good match for each operand. 1405 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1406 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1407 Optional<unsigned> BestIdx = 1408 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1409 // By not selecting a value, we allow the operands that follow to 1410 // select a better matching value. We will get a non-null value in 1411 // the next run of getBestOperand(). 1412 if (BestIdx) { 1413 // Swap the current operand with the one returned by 1414 // getBestOperand(). 1415 swap(OpIdx, BestIdx.getValue(), Lane); 1416 } else { 1417 // We failed to find a best operand, set mode to 'Failed'. 1418 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1419 // Enable the second pass. 1420 StrategyFailed = true; 1421 } 1422 } 1423 } 1424 } 1425 // Skip second pass if the strategy did not fail. 1426 if (!StrategyFailed) 1427 break; 1428 } 1429 } 1430 1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1432 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1433 switch (RMode) { 1434 case ReorderingMode::Load: 1435 return "Load"; 1436 case ReorderingMode::Opcode: 1437 return "Opcode"; 1438 case ReorderingMode::Constant: 1439 return "Constant"; 1440 case ReorderingMode::Splat: 1441 return "Splat"; 1442 case ReorderingMode::Failed: 1443 return "Failed"; 1444 } 1445 llvm_unreachable("Unimplemented Reordering Type"); 1446 } 1447 1448 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1449 raw_ostream &OS) { 1450 return OS << getModeStr(RMode); 1451 } 1452 1453 /// Debug print. 1454 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1455 printMode(RMode, dbgs()); 1456 } 1457 1458 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1459 return printMode(RMode, OS); 1460 } 1461 1462 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1463 const unsigned Indent = 2; 1464 unsigned Cnt = 0; 1465 for (const OperandDataVec &OpDataVec : OpsVec) { 1466 OS << "Operand " << Cnt++ << "\n"; 1467 for (const OperandData &OpData : OpDataVec) { 1468 OS.indent(Indent) << "{"; 1469 if (Value *V = OpData.V) 1470 OS << *V; 1471 else 1472 OS << "null"; 1473 OS << ", APO:" << OpData.APO << "}\n"; 1474 } 1475 OS << "\n"; 1476 } 1477 return OS; 1478 } 1479 1480 /// Debug print. 1481 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1482 #endif 1483 }; 1484 1485 /// Checks if the instruction is marked for deletion. 1486 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1487 1488 /// Marks values operands for later deletion by replacing them with Undefs. 1489 void eraseInstructions(ArrayRef<Value *> AV); 1490 1491 ~BoUpSLP(); 1492 1493 private: 1494 /// Checks if all users of \p I are the part of the vectorization tree. 1495 bool areAllUsersVectorized(Instruction *I) const; 1496 1497 /// \returns the cost of the vectorizable entry. 1498 InstructionCost getEntryCost(TreeEntry *E); 1499 1500 /// This is the recursive part of buildTree. 1501 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1502 const EdgeInfo &EI); 1503 1504 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1505 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1506 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1507 /// returns false, setting \p CurrentOrder to either an empty vector or a 1508 /// non-identity permutation that allows to reuse extract instructions. 1509 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1510 SmallVectorImpl<unsigned> &CurrentOrder) const; 1511 1512 /// Vectorize a single entry in the tree. 1513 Value *vectorizeTree(TreeEntry *E); 1514 1515 /// Vectorize a single entry in the tree, starting in \p VL. 1516 Value *vectorizeTree(ArrayRef<Value *> VL); 1517 1518 /// \returns the scalarization cost for this type. Scalarization in this 1519 /// context means the creation of vectors from a group of scalars. 1520 InstructionCost 1521 getGatherCost(FixedVectorType *Ty, 1522 const DenseSet<unsigned> &ShuffledIndices) const; 1523 1524 /// \returns the scalarization cost for this list of values. Assuming that 1525 /// this subtree gets vectorized, we may need to extract the values from the 1526 /// roots. This method calculates the cost of extracting the values. 1527 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1528 1529 /// Set the Builder insert point to one after the last instruction in 1530 /// the bundle 1531 void setInsertPointAfterBundle(TreeEntry *E); 1532 1533 /// \returns a vector from a collection of scalars in \p VL. 1534 Value *gather(ArrayRef<Value *> VL); 1535 1536 /// \returns whether the VectorizableTree is fully vectorizable and will 1537 /// be beneficial even the tree height is tiny. 1538 bool isFullyVectorizableTinyTree() const; 1539 1540 /// Reorder commutative or alt operands to get better probability of 1541 /// generating vectorized code. 1542 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1543 SmallVectorImpl<Value *> &Left, 1544 SmallVectorImpl<Value *> &Right, 1545 const DataLayout &DL, 1546 ScalarEvolution &SE, 1547 const BoUpSLP &R); 1548 struct TreeEntry { 1549 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1550 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1551 1552 /// \returns true if the scalars in VL are equal to this entry. 1553 bool isSame(ArrayRef<Value *> VL) const { 1554 if (VL.size() == Scalars.size()) 1555 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1556 return VL.size() == ReuseShuffleIndices.size() && 1557 std::equal( 1558 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1559 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1560 } 1561 1562 /// A vector of scalars. 1563 ValueList Scalars; 1564 1565 /// The Scalars are vectorized into this value. It is initialized to Null. 1566 Value *VectorizedValue = nullptr; 1567 1568 /// Do we need to gather this sequence or vectorize it 1569 /// (either with vector instruction or with scatter/gather 1570 /// intrinsics for store/load)? 1571 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1572 EntryState State; 1573 1574 /// Does this sequence require some shuffling? 1575 SmallVector<int, 4> ReuseShuffleIndices; 1576 1577 /// Does this entry require reordering? 1578 SmallVector<unsigned, 4> ReorderIndices; 1579 1580 /// Points back to the VectorizableTree. 1581 /// 1582 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1583 /// to be a pointer and needs to be able to initialize the child iterator. 1584 /// Thus we need a reference back to the container to translate the indices 1585 /// to entries. 1586 VecTreeTy &Container; 1587 1588 /// The TreeEntry index containing the user of this entry. We can actually 1589 /// have multiple users so the data structure is not truly a tree. 1590 SmallVector<EdgeInfo, 1> UserTreeIndices; 1591 1592 /// The index of this treeEntry in VectorizableTree. 1593 int Idx = -1; 1594 1595 private: 1596 /// The operands of each instruction in each lane Operands[op_index][lane]. 1597 /// Note: This helps avoid the replication of the code that performs the 1598 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1599 SmallVector<ValueList, 2> Operands; 1600 1601 /// The main/alternate instruction. 1602 Instruction *MainOp = nullptr; 1603 Instruction *AltOp = nullptr; 1604 1605 public: 1606 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1607 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1608 if (Operands.size() < OpIdx + 1) 1609 Operands.resize(OpIdx + 1); 1610 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1611 Operands[OpIdx].resize(Scalars.size()); 1612 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1613 Operands[OpIdx][Lane] = OpVL[Lane]; 1614 } 1615 1616 /// Set the operands of this bundle in their original order. 1617 void setOperandsInOrder() { 1618 assert(Operands.empty() && "Already initialized?"); 1619 auto *I0 = cast<Instruction>(Scalars[0]); 1620 Operands.resize(I0->getNumOperands()); 1621 unsigned NumLanes = Scalars.size(); 1622 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1623 OpIdx != NumOperands; ++OpIdx) { 1624 Operands[OpIdx].resize(NumLanes); 1625 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1626 auto *I = cast<Instruction>(Scalars[Lane]); 1627 assert(I->getNumOperands() == NumOperands && 1628 "Expected same number of operands"); 1629 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1630 } 1631 } 1632 } 1633 1634 /// \returns the \p OpIdx operand of this TreeEntry. 1635 ValueList &getOperand(unsigned OpIdx) { 1636 assert(OpIdx < Operands.size() && "Off bounds"); 1637 return Operands[OpIdx]; 1638 } 1639 1640 /// \returns the number of operands. 1641 unsigned getNumOperands() const { return Operands.size(); } 1642 1643 /// \return the single \p OpIdx operand. 1644 Value *getSingleOperand(unsigned OpIdx) const { 1645 assert(OpIdx < Operands.size() && "Off bounds"); 1646 assert(!Operands[OpIdx].empty() && "No operand available"); 1647 return Operands[OpIdx][0]; 1648 } 1649 1650 /// Some of the instructions in the list have alternate opcodes. 1651 bool isAltShuffle() const { 1652 return getOpcode() != getAltOpcode(); 1653 } 1654 1655 bool isOpcodeOrAlt(Instruction *I) const { 1656 unsigned CheckedOpcode = I->getOpcode(); 1657 return (getOpcode() == CheckedOpcode || 1658 getAltOpcode() == CheckedOpcode); 1659 } 1660 1661 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1662 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1663 /// \p OpValue. 1664 Value *isOneOf(Value *Op) const { 1665 auto *I = dyn_cast<Instruction>(Op); 1666 if (I && isOpcodeOrAlt(I)) 1667 return Op; 1668 return MainOp; 1669 } 1670 1671 void setOperations(const InstructionsState &S) { 1672 MainOp = S.MainOp; 1673 AltOp = S.AltOp; 1674 } 1675 1676 Instruction *getMainOp() const { 1677 return MainOp; 1678 } 1679 1680 Instruction *getAltOp() const { 1681 return AltOp; 1682 } 1683 1684 /// The main/alternate opcodes for the list of instructions. 1685 unsigned getOpcode() const { 1686 return MainOp ? MainOp->getOpcode() : 0; 1687 } 1688 1689 unsigned getAltOpcode() const { 1690 return AltOp ? AltOp->getOpcode() : 0; 1691 } 1692 1693 /// Update operations state of this entry if reorder occurred. 1694 bool updateStateIfReorder() { 1695 if (ReorderIndices.empty()) 1696 return false; 1697 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1698 setOperations(S); 1699 return true; 1700 } 1701 1702 #ifndef NDEBUG 1703 /// Debug printer. 1704 LLVM_DUMP_METHOD void dump() const { 1705 dbgs() << Idx << ".\n"; 1706 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1707 dbgs() << "Operand " << OpI << ":\n"; 1708 for (const Value *V : Operands[OpI]) 1709 dbgs().indent(2) << *V << "\n"; 1710 } 1711 dbgs() << "Scalars: \n"; 1712 for (Value *V : Scalars) 1713 dbgs().indent(2) << *V << "\n"; 1714 dbgs() << "State: "; 1715 switch (State) { 1716 case Vectorize: 1717 dbgs() << "Vectorize\n"; 1718 break; 1719 case ScatterVectorize: 1720 dbgs() << "ScatterVectorize\n"; 1721 break; 1722 case NeedToGather: 1723 dbgs() << "NeedToGather\n"; 1724 break; 1725 } 1726 dbgs() << "MainOp: "; 1727 if (MainOp) 1728 dbgs() << *MainOp << "\n"; 1729 else 1730 dbgs() << "NULL\n"; 1731 dbgs() << "AltOp: "; 1732 if (AltOp) 1733 dbgs() << *AltOp << "\n"; 1734 else 1735 dbgs() << "NULL\n"; 1736 dbgs() << "VectorizedValue: "; 1737 if (VectorizedValue) 1738 dbgs() << *VectorizedValue << "\n"; 1739 else 1740 dbgs() << "NULL\n"; 1741 dbgs() << "ReuseShuffleIndices: "; 1742 if (ReuseShuffleIndices.empty()) 1743 dbgs() << "Empty"; 1744 else 1745 for (unsigned ReuseIdx : ReuseShuffleIndices) 1746 dbgs() << ReuseIdx << ", "; 1747 dbgs() << "\n"; 1748 dbgs() << "ReorderIndices: "; 1749 for (unsigned ReorderIdx : ReorderIndices) 1750 dbgs() << ReorderIdx << ", "; 1751 dbgs() << "\n"; 1752 dbgs() << "UserTreeIndices: "; 1753 for (const auto &EInfo : UserTreeIndices) 1754 dbgs() << EInfo << ", "; 1755 dbgs() << "\n"; 1756 } 1757 #endif 1758 }; 1759 1760 #ifndef NDEBUG 1761 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1762 InstructionCost VecCost, 1763 InstructionCost ScalarCost) const { 1764 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1765 dbgs() << "SLP: Costs:\n"; 1766 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1767 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1768 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1769 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1770 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1771 } 1772 #endif 1773 1774 /// Create a new VectorizableTree entry. 1775 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1776 const InstructionsState &S, 1777 const EdgeInfo &UserTreeIdx, 1778 ArrayRef<unsigned> ReuseShuffleIndices = None, 1779 ArrayRef<unsigned> ReorderIndices = None) { 1780 TreeEntry::EntryState EntryState = 1781 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1782 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1783 ReuseShuffleIndices, ReorderIndices); 1784 } 1785 1786 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1787 TreeEntry::EntryState EntryState, 1788 Optional<ScheduleData *> Bundle, 1789 const InstructionsState &S, 1790 const EdgeInfo &UserTreeIdx, 1791 ArrayRef<unsigned> ReuseShuffleIndices = None, 1792 ArrayRef<unsigned> ReorderIndices = None) { 1793 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1794 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1795 "Need to vectorize gather entry?"); 1796 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1797 TreeEntry *Last = VectorizableTree.back().get(); 1798 Last->Idx = VectorizableTree.size() - 1; 1799 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1800 Last->State = EntryState; 1801 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1802 ReuseShuffleIndices.end()); 1803 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1804 Last->setOperations(S); 1805 if (Last->State != TreeEntry::NeedToGather) { 1806 for (Value *V : VL) { 1807 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1808 ScalarToTreeEntry[V] = Last; 1809 } 1810 // Update the scheduler bundle to point to this TreeEntry. 1811 unsigned Lane = 0; 1812 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1813 BundleMember = BundleMember->NextInBundle) { 1814 BundleMember->TE = Last; 1815 BundleMember->Lane = Lane; 1816 ++Lane; 1817 } 1818 assert((!Bundle.getValue() || Lane == VL.size()) && 1819 "Bundle and VL out of sync"); 1820 } else { 1821 MustGather.insert(VL.begin(), VL.end()); 1822 } 1823 1824 if (UserTreeIdx.UserTE) 1825 Last->UserTreeIndices.push_back(UserTreeIdx); 1826 1827 return Last; 1828 } 1829 1830 /// -- Vectorization State -- 1831 /// Holds all of the tree entries. 1832 TreeEntry::VecTreeTy VectorizableTree; 1833 1834 #ifndef NDEBUG 1835 /// Debug printer. 1836 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1837 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1838 VectorizableTree[Id]->dump(); 1839 dbgs() << "\n"; 1840 } 1841 } 1842 #endif 1843 1844 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1845 1846 const TreeEntry *getTreeEntry(Value *V) const { 1847 return ScalarToTreeEntry.lookup(V); 1848 } 1849 1850 /// Maps a specific scalar to its tree entry. 1851 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1852 1853 /// Maps a value to the proposed vectorizable size. 1854 SmallDenseMap<Value *, unsigned> InstrElementSize; 1855 1856 /// A list of scalars that we found that we need to keep as scalars. 1857 ValueSet MustGather; 1858 1859 /// This POD struct describes one external user in the vectorized tree. 1860 struct ExternalUser { 1861 ExternalUser(Value *S, llvm::User *U, int L) 1862 : Scalar(S), User(U), Lane(L) {} 1863 1864 // Which scalar in our function. 1865 Value *Scalar; 1866 1867 // Which user that uses the scalar. 1868 llvm::User *User; 1869 1870 // Which lane does the scalar belong to. 1871 int Lane; 1872 }; 1873 using UserList = SmallVector<ExternalUser, 16>; 1874 1875 /// Checks if two instructions may access the same memory. 1876 /// 1877 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1878 /// is invariant in the calling loop. 1879 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1880 Instruction *Inst2) { 1881 // First check if the result is already in the cache. 1882 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1883 Optional<bool> &result = AliasCache[key]; 1884 if (result.hasValue()) { 1885 return result.getValue(); 1886 } 1887 MemoryLocation Loc2 = getLocation(Inst2, AA); 1888 bool aliased = true; 1889 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1890 // Do the alias check. 1891 aliased = AA->alias(Loc1, Loc2); 1892 } 1893 // Store the result in the cache. 1894 result = aliased; 1895 return aliased; 1896 } 1897 1898 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1899 1900 /// Cache for alias results. 1901 /// TODO: consider moving this to the AliasAnalysis itself. 1902 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1903 1904 /// Removes an instruction from its block and eventually deletes it. 1905 /// It's like Instruction::eraseFromParent() except that the actual deletion 1906 /// is delayed until BoUpSLP is destructed. 1907 /// This is required to ensure that there are no incorrect collisions in the 1908 /// AliasCache, which can happen if a new instruction is allocated at the 1909 /// same address as a previously deleted instruction. 1910 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1911 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1912 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1913 } 1914 1915 /// Temporary store for deleted instructions. Instructions will be deleted 1916 /// eventually when the BoUpSLP is destructed. 1917 DenseMap<Instruction *, bool> DeletedInstructions; 1918 1919 /// A list of values that need to extracted out of the tree. 1920 /// This list holds pairs of (Internal Scalar : External User). External User 1921 /// can be nullptr, it means that this Internal Scalar will be used later, 1922 /// after vectorization. 1923 UserList ExternalUses; 1924 1925 /// Values used only by @llvm.assume calls. 1926 SmallPtrSet<const Value *, 32> EphValues; 1927 1928 /// Holds all of the instructions that we gathered. 1929 SetVector<Instruction *> GatherSeq; 1930 1931 /// A list of blocks that we are going to CSE. 1932 SetVector<BasicBlock *> CSEBlocks; 1933 1934 /// Contains all scheduling relevant data for an instruction. 1935 /// A ScheduleData either represents a single instruction or a member of an 1936 /// instruction bundle (= a group of instructions which is combined into a 1937 /// vector instruction). 1938 struct ScheduleData { 1939 // The initial value for the dependency counters. It means that the 1940 // dependencies are not calculated yet. 1941 enum { InvalidDeps = -1 }; 1942 1943 ScheduleData() = default; 1944 1945 void init(int BlockSchedulingRegionID, Value *OpVal) { 1946 FirstInBundle = this; 1947 NextInBundle = nullptr; 1948 NextLoadStore = nullptr; 1949 IsScheduled = false; 1950 SchedulingRegionID = BlockSchedulingRegionID; 1951 UnscheduledDepsInBundle = UnscheduledDeps; 1952 clearDependencies(); 1953 OpValue = OpVal; 1954 TE = nullptr; 1955 Lane = -1; 1956 } 1957 1958 /// Returns true if the dependency information has been calculated. 1959 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1960 1961 /// Returns true for single instructions and for bundle representatives 1962 /// (= the head of a bundle). 1963 bool isSchedulingEntity() const { return FirstInBundle == this; } 1964 1965 /// Returns true if it represents an instruction bundle and not only a 1966 /// single instruction. 1967 bool isPartOfBundle() const { 1968 return NextInBundle != nullptr || FirstInBundle != this; 1969 } 1970 1971 /// Returns true if it is ready for scheduling, i.e. it has no more 1972 /// unscheduled depending instructions/bundles. 1973 bool isReady() const { 1974 assert(isSchedulingEntity() && 1975 "can't consider non-scheduling entity for ready list"); 1976 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1977 } 1978 1979 /// Modifies the number of unscheduled dependencies, also updating it for 1980 /// the whole bundle. 1981 int incrementUnscheduledDeps(int Incr) { 1982 UnscheduledDeps += Incr; 1983 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1984 } 1985 1986 /// Sets the number of unscheduled dependencies to the number of 1987 /// dependencies. 1988 void resetUnscheduledDeps() { 1989 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1990 } 1991 1992 /// Clears all dependency information. 1993 void clearDependencies() { 1994 Dependencies = InvalidDeps; 1995 resetUnscheduledDeps(); 1996 MemoryDependencies.clear(); 1997 } 1998 1999 void dump(raw_ostream &os) const { 2000 if (!isSchedulingEntity()) { 2001 os << "/ " << *Inst; 2002 } else if (NextInBundle) { 2003 os << '[' << *Inst; 2004 ScheduleData *SD = NextInBundle; 2005 while (SD) { 2006 os << ';' << *SD->Inst; 2007 SD = SD->NextInBundle; 2008 } 2009 os << ']'; 2010 } else { 2011 os << *Inst; 2012 } 2013 } 2014 2015 Instruction *Inst = nullptr; 2016 2017 /// Points to the head in an instruction bundle (and always to this for 2018 /// single instructions). 2019 ScheduleData *FirstInBundle = nullptr; 2020 2021 /// Single linked list of all instructions in a bundle. Null if it is a 2022 /// single instruction. 2023 ScheduleData *NextInBundle = nullptr; 2024 2025 /// Single linked list of all memory instructions (e.g. load, store, call) 2026 /// in the block - until the end of the scheduling region. 2027 ScheduleData *NextLoadStore = nullptr; 2028 2029 /// The dependent memory instructions. 2030 /// This list is derived on demand in calculateDependencies(). 2031 SmallVector<ScheduleData *, 4> MemoryDependencies; 2032 2033 /// This ScheduleData is in the current scheduling region if this matches 2034 /// the current SchedulingRegionID of BlockScheduling. 2035 int SchedulingRegionID = 0; 2036 2037 /// Used for getting a "good" final ordering of instructions. 2038 int SchedulingPriority = 0; 2039 2040 /// The number of dependencies. Constitutes of the number of users of the 2041 /// instruction plus the number of dependent memory instructions (if any). 2042 /// This value is calculated on demand. 2043 /// If InvalidDeps, the number of dependencies is not calculated yet. 2044 int Dependencies = InvalidDeps; 2045 2046 /// The number of dependencies minus the number of dependencies of scheduled 2047 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2048 /// for scheduling. 2049 /// Note that this is negative as long as Dependencies is not calculated. 2050 int UnscheduledDeps = InvalidDeps; 2051 2052 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2053 /// single instructions. 2054 int UnscheduledDepsInBundle = InvalidDeps; 2055 2056 /// True if this instruction is scheduled (or considered as scheduled in the 2057 /// dry-run). 2058 bool IsScheduled = false; 2059 2060 /// Opcode of the current instruction in the schedule data. 2061 Value *OpValue = nullptr; 2062 2063 /// The TreeEntry that this instruction corresponds to. 2064 TreeEntry *TE = nullptr; 2065 2066 /// The lane of this node in the TreeEntry. 2067 int Lane = -1; 2068 }; 2069 2070 #ifndef NDEBUG 2071 friend inline raw_ostream &operator<<(raw_ostream &os, 2072 const BoUpSLP::ScheduleData &SD) { 2073 SD.dump(os); 2074 return os; 2075 } 2076 #endif 2077 2078 friend struct GraphTraits<BoUpSLP *>; 2079 friend struct DOTGraphTraits<BoUpSLP *>; 2080 2081 /// Contains all scheduling data for a basic block. 2082 struct BlockScheduling { 2083 BlockScheduling(BasicBlock *BB) 2084 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2085 2086 void clear() { 2087 ReadyInsts.clear(); 2088 ScheduleStart = nullptr; 2089 ScheduleEnd = nullptr; 2090 FirstLoadStoreInRegion = nullptr; 2091 LastLoadStoreInRegion = nullptr; 2092 2093 // Reduce the maximum schedule region size by the size of the 2094 // previous scheduling run. 2095 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2096 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2097 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2098 ScheduleRegionSize = 0; 2099 2100 // Make a new scheduling region, i.e. all existing ScheduleData is not 2101 // in the new region yet. 2102 ++SchedulingRegionID; 2103 } 2104 2105 ScheduleData *getScheduleData(Value *V) { 2106 ScheduleData *SD = ScheduleDataMap[V]; 2107 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2108 return SD; 2109 return nullptr; 2110 } 2111 2112 ScheduleData *getScheduleData(Value *V, Value *Key) { 2113 if (V == Key) 2114 return getScheduleData(V); 2115 auto I = ExtraScheduleDataMap.find(V); 2116 if (I != ExtraScheduleDataMap.end()) { 2117 ScheduleData *SD = I->second[Key]; 2118 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2119 return SD; 2120 } 2121 return nullptr; 2122 } 2123 2124 bool isInSchedulingRegion(ScheduleData *SD) const { 2125 return SD->SchedulingRegionID == SchedulingRegionID; 2126 } 2127 2128 /// Marks an instruction as scheduled and puts all dependent ready 2129 /// instructions into the ready-list. 2130 template <typename ReadyListType> 2131 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2132 SD->IsScheduled = true; 2133 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2134 2135 ScheduleData *BundleMember = SD; 2136 while (BundleMember) { 2137 if (BundleMember->Inst != BundleMember->OpValue) { 2138 BundleMember = BundleMember->NextInBundle; 2139 continue; 2140 } 2141 // Handle the def-use chain dependencies. 2142 2143 // Decrement the unscheduled counter and insert to ready list if ready. 2144 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2145 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2146 if (OpDef && OpDef->hasValidDependencies() && 2147 OpDef->incrementUnscheduledDeps(-1) == 0) { 2148 // There are no more unscheduled dependencies after 2149 // decrementing, so we can put the dependent instruction 2150 // into the ready list. 2151 ScheduleData *DepBundle = OpDef->FirstInBundle; 2152 assert(!DepBundle->IsScheduled && 2153 "already scheduled bundle gets ready"); 2154 ReadyList.insert(DepBundle); 2155 LLVM_DEBUG(dbgs() 2156 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2157 } 2158 }); 2159 }; 2160 2161 // If BundleMember is a vector bundle, its operands may have been 2162 // reordered duiring buildTree(). We therefore need to get its operands 2163 // through the TreeEntry. 2164 if (TreeEntry *TE = BundleMember->TE) { 2165 int Lane = BundleMember->Lane; 2166 assert(Lane >= 0 && "Lane not set"); 2167 2168 // Since vectorization tree is being built recursively this assertion 2169 // ensures that the tree entry has all operands set before reaching 2170 // this code. Couple of exceptions known at the moment are extracts 2171 // where their second (immediate) operand is not added. Since 2172 // immediates do not affect scheduler behavior this is considered 2173 // okay. 2174 auto *In = TE->getMainOp(); 2175 assert(In && 2176 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2177 In->getNumOperands() == TE->getNumOperands()) && 2178 "Missed TreeEntry operands?"); 2179 (void)In; // fake use to avoid build failure when assertions disabled 2180 2181 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2182 OpIdx != NumOperands; ++OpIdx) 2183 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2184 DecrUnsched(I); 2185 } else { 2186 // If BundleMember is a stand-alone instruction, no operand reordering 2187 // has taken place, so we directly access its operands. 2188 for (Use &U : BundleMember->Inst->operands()) 2189 if (auto *I = dyn_cast<Instruction>(U.get())) 2190 DecrUnsched(I); 2191 } 2192 // Handle the memory dependencies. 2193 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2194 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2195 // There are no more unscheduled dependencies after decrementing, 2196 // so we can put the dependent instruction into the ready list. 2197 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2198 assert(!DepBundle->IsScheduled && 2199 "already scheduled bundle gets ready"); 2200 ReadyList.insert(DepBundle); 2201 LLVM_DEBUG(dbgs() 2202 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2203 } 2204 } 2205 BundleMember = BundleMember->NextInBundle; 2206 } 2207 } 2208 2209 void doForAllOpcodes(Value *V, 2210 function_ref<void(ScheduleData *SD)> Action) { 2211 if (ScheduleData *SD = getScheduleData(V)) 2212 Action(SD); 2213 auto I = ExtraScheduleDataMap.find(V); 2214 if (I != ExtraScheduleDataMap.end()) 2215 for (auto &P : I->second) 2216 if (P.second->SchedulingRegionID == SchedulingRegionID) 2217 Action(P.second); 2218 } 2219 2220 /// Put all instructions into the ReadyList which are ready for scheduling. 2221 template <typename ReadyListType> 2222 void initialFillReadyList(ReadyListType &ReadyList) { 2223 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2224 doForAllOpcodes(I, [&](ScheduleData *SD) { 2225 if (SD->isSchedulingEntity() && SD->isReady()) { 2226 ReadyList.insert(SD); 2227 LLVM_DEBUG(dbgs() 2228 << "SLP: initially in ready list: " << *I << "\n"); 2229 } 2230 }); 2231 } 2232 } 2233 2234 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2235 /// cyclic dependencies. This is only a dry-run, no instructions are 2236 /// actually moved at this stage. 2237 /// \returns the scheduling bundle. The returned Optional value is non-None 2238 /// if \p VL is allowed to be scheduled. 2239 Optional<ScheduleData *> 2240 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2241 const InstructionsState &S); 2242 2243 /// Un-bundles a group of instructions. 2244 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2245 2246 /// Allocates schedule data chunk. 2247 ScheduleData *allocateScheduleDataChunks(); 2248 2249 /// Extends the scheduling region so that V is inside the region. 2250 /// \returns true if the region size is within the limit. 2251 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2252 2253 /// Initialize the ScheduleData structures for new instructions in the 2254 /// scheduling region. 2255 void initScheduleData(Instruction *FromI, Instruction *ToI, 2256 ScheduleData *PrevLoadStore, 2257 ScheduleData *NextLoadStore); 2258 2259 /// Updates the dependency information of a bundle and of all instructions/ 2260 /// bundles which depend on the original bundle. 2261 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2262 BoUpSLP *SLP); 2263 2264 /// Sets all instruction in the scheduling region to un-scheduled. 2265 void resetSchedule(); 2266 2267 BasicBlock *BB; 2268 2269 /// Simple memory allocation for ScheduleData. 2270 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2271 2272 /// The size of a ScheduleData array in ScheduleDataChunks. 2273 int ChunkSize; 2274 2275 /// The allocator position in the current chunk, which is the last entry 2276 /// of ScheduleDataChunks. 2277 int ChunkPos; 2278 2279 /// Attaches ScheduleData to Instruction. 2280 /// Note that the mapping survives during all vectorization iterations, i.e. 2281 /// ScheduleData structures are recycled. 2282 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2283 2284 /// Attaches ScheduleData to Instruction with the leading key. 2285 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2286 ExtraScheduleDataMap; 2287 2288 struct ReadyList : SmallVector<ScheduleData *, 8> { 2289 void insert(ScheduleData *SD) { push_back(SD); } 2290 }; 2291 2292 /// The ready-list for scheduling (only used for the dry-run). 2293 ReadyList ReadyInsts; 2294 2295 /// The first instruction of the scheduling region. 2296 Instruction *ScheduleStart = nullptr; 2297 2298 /// The first instruction _after_ the scheduling region. 2299 Instruction *ScheduleEnd = nullptr; 2300 2301 /// The first memory accessing instruction in the scheduling region 2302 /// (can be null). 2303 ScheduleData *FirstLoadStoreInRegion = nullptr; 2304 2305 /// The last memory accessing instruction in the scheduling region 2306 /// (can be null). 2307 ScheduleData *LastLoadStoreInRegion = nullptr; 2308 2309 /// The current size of the scheduling region. 2310 int ScheduleRegionSize = 0; 2311 2312 /// The maximum size allowed for the scheduling region. 2313 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2314 2315 /// The ID of the scheduling region. For a new vectorization iteration this 2316 /// is incremented which "removes" all ScheduleData from the region. 2317 // Make sure that the initial SchedulingRegionID is greater than the 2318 // initial SchedulingRegionID in ScheduleData (which is 0). 2319 int SchedulingRegionID = 1; 2320 }; 2321 2322 /// Attaches the BlockScheduling structures to basic blocks. 2323 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2324 2325 /// Performs the "real" scheduling. Done before vectorization is actually 2326 /// performed in a basic block. 2327 void scheduleBlock(BlockScheduling *BS); 2328 2329 /// List of users to ignore during scheduling and that don't need extracting. 2330 ArrayRef<Value *> UserIgnoreList; 2331 2332 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2333 /// sorted SmallVectors of unsigned. 2334 struct OrdersTypeDenseMapInfo { 2335 static OrdersType getEmptyKey() { 2336 OrdersType V; 2337 V.push_back(~1U); 2338 return V; 2339 } 2340 2341 static OrdersType getTombstoneKey() { 2342 OrdersType V; 2343 V.push_back(~2U); 2344 return V; 2345 } 2346 2347 static unsigned getHashValue(const OrdersType &V) { 2348 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2349 } 2350 2351 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2352 return LHS == RHS; 2353 } 2354 }; 2355 2356 /// Contains orders of operations along with the number of bundles that have 2357 /// operations in this order. It stores only those orders that require 2358 /// reordering, if reordering is not required it is counted using \a 2359 /// NumOpsWantToKeepOriginalOrder. 2360 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2361 /// Number of bundles that do not require reordering. 2362 unsigned NumOpsWantToKeepOriginalOrder = 0; 2363 2364 // Analysis and block reference. 2365 Function *F; 2366 ScalarEvolution *SE; 2367 TargetTransformInfo *TTI; 2368 TargetLibraryInfo *TLI; 2369 AAResults *AA; 2370 LoopInfo *LI; 2371 DominatorTree *DT; 2372 AssumptionCache *AC; 2373 DemandedBits *DB; 2374 const DataLayout *DL; 2375 OptimizationRemarkEmitter *ORE; 2376 2377 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2378 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2379 2380 /// Instruction builder to construct the vectorized tree. 2381 IRBuilder<> Builder; 2382 2383 /// A map of scalar integer values to the smallest bit width with which they 2384 /// can legally be represented. The values map to (width, signed) pairs, 2385 /// where "width" indicates the minimum bit width and "signed" is True if the 2386 /// value must be signed-extended, rather than zero-extended, back to its 2387 /// original width. 2388 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2389 }; 2390 2391 } // end namespace slpvectorizer 2392 2393 template <> struct GraphTraits<BoUpSLP *> { 2394 using TreeEntry = BoUpSLP::TreeEntry; 2395 2396 /// NodeRef has to be a pointer per the GraphWriter. 2397 using NodeRef = TreeEntry *; 2398 2399 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2400 2401 /// Add the VectorizableTree to the index iterator to be able to return 2402 /// TreeEntry pointers. 2403 struct ChildIteratorType 2404 : public iterator_adaptor_base< 2405 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2406 ContainerTy &VectorizableTree; 2407 2408 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2409 ContainerTy &VT) 2410 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2411 2412 NodeRef operator*() { return I->UserTE; } 2413 }; 2414 2415 static NodeRef getEntryNode(BoUpSLP &R) { 2416 return R.VectorizableTree[0].get(); 2417 } 2418 2419 static ChildIteratorType child_begin(NodeRef N) { 2420 return {N->UserTreeIndices.begin(), N->Container}; 2421 } 2422 2423 static ChildIteratorType child_end(NodeRef N) { 2424 return {N->UserTreeIndices.end(), N->Container}; 2425 } 2426 2427 /// For the node iterator we just need to turn the TreeEntry iterator into a 2428 /// TreeEntry* iterator so that it dereferences to NodeRef. 2429 class nodes_iterator { 2430 using ItTy = ContainerTy::iterator; 2431 ItTy It; 2432 2433 public: 2434 nodes_iterator(const ItTy &It2) : It(It2) {} 2435 NodeRef operator*() { return It->get(); } 2436 nodes_iterator operator++() { 2437 ++It; 2438 return *this; 2439 } 2440 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2441 }; 2442 2443 static nodes_iterator nodes_begin(BoUpSLP *R) { 2444 return nodes_iterator(R->VectorizableTree.begin()); 2445 } 2446 2447 static nodes_iterator nodes_end(BoUpSLP *R) { 2448 return nodes_iterator(R->VectorizableTree.end()); 2449 } 2450 2451 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2452 }; 2453 2454 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2455 using TreeEntry = BoUpSLP::TreeEntry; 2456 2457 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2458 2459 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2460 std::string Str; 2461 raw_string_ostream OS(Str); 2462 if (isSplat(Entry->Scalars)) { 2463 OS << "<splat> " << *Entry->Scalars[0]; 2464 return Str; 2465 } 2466 for (auto V : Entry->Scalars) { 2467 OS << *V; 2468 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2469 return EU.Scalar == V; 2470 })) 2471 OS << " <extract>"; 2472 OS << "\n"; 2473 } 2474 return Str; 2475 } 2476 2477 static std::string getNodeAttributes(const TreeEntry *Entry, 2478 const BoUpSLP *) { 2479 if (Entry->State == TreeEntry::NeedToGather) 2480 return "color=red"; 2481 return ""; 2482 } 2483 }; 2484 2485 } // end namespace llvm 2486 2487 BoUpSLP::~BoUpSLP() { 2488 for (const auto &Pair : DeletedInstructions) { 2489 // Replace operands of ignored instructions with Undefs in case if they were 2490 // marked for deletion. 2491 if (Pair.getSecond()) { 2492 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2493 Pair.getFirst()->replaceAllUsesWith(Undef); 2494 } 2495 Pair.getFirst()->dropAllReferences(); 2496 } 2497 for (const auto &Pair : DeletedInstructions) { 2498 assert(Pair.getFirst()->use_empty() && 2499 "trying to erase instruction with users."); 2500 Pair.getFirst()->eraseFromParent(); 2501 } 2502 assert(!verifyFunction(*F, &dbgs())); 2503 } 2504 2505 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2506 for (auto *V : AV) { 2507 if (auto *I = dyn_cast<Instruction>(V)) 2508 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2509 }; 2510 } 2511 2512 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2513 ArrayRef<Value *> UserIgnoreLst) { 2514 ExtraValueToDebugLocsMap ExternallyUsedValues; 2515 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2516 } 2517 2518 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2519 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2520 ArrayRef<Value *> UserIgnoreLst) { 2521 deleteTree(); 2522 UserIgnoreList = UserIgnoreLst; 2523 if (!allSameType(Roots)) 2524 return; 2525 buildTree_rec(Roots, 0, EdgeInfo()); 2526 2527 // Collect the values that we need to extract from the tree. 2528 for (auto &TEPtr : VectorizableTree) { 2529 TreeEntry *Entry = TEPtr.get(); 2530 2531 // No need to handle users of gathered values. 2532 if (Entry->State == TreeEntry::NeedToGather) 2533 continue; 2534 2535 // For each lane: 2536 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2537 Value *Scalar = Entry->Scalars[Lane]; 2538 int FoundLane = Lane; 2539 if (!Entry->ReuseShuffleIndices.empty()) { 2540 FoundLane = 2541 std::distance(Entry->ReuseShuffleIndices.begin(), 2542 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2543 } 2544 2545 // Check if the scalar is externally used as an extra arg. 2546 auto ExtI = ExternallyUsedValues.find(Scalar); 2547 if (ExtI != ExternallyUsedValues.end()) { 2548 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2549 << Lane << " from " << *Scalar << ".\n"); 2550 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2551 } 2552 for (User *U : Scalar->users()) { 2553 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2554 2555 Instruction *UserInst = dyn_cast<Instruction>(U); 2556 if (!UserInst) 2557 continue; 2558 2559 // Skip in-tree scalars that become vectors 2560 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2561 Value *UseScalar = UseEntry->Scalars[0]; 2562 // Some in-tree scalars will remain as scalar in vectorized 2563 // instructions. If that is the case, the one in Lane 0 will 2564 // be used. 2565 if (UseScalar != U || 2566 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2567 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2568 << ".\n"); 2569 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2570 continue; 2571 } 2572 } 2573 2574 // Ignore users in the user ignore list. 2575 if (is_contained(UserIgnoreList, UserInst)) 2576 continue; 2577 2578 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2579 << Lane << " from " << *Scalar << ".\n"); 2580 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2581 } 2582 } 2583 } 2584 } 2585 2586 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2587 const EdgeInfo &UserTreeIdx) { 2588 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2589 2590 InstructionsState S = getSameOpcode(VL); 2591 if (Depth == RecursionMaxDepth) { 2592 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2593 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2594 return; 2595 } 2596 2597 // Don't handle vectors. 2598 if (S.OpValue->getType()->isVectorTy()) { 2599 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2600 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2601 return; 2602 } 2603 2604 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2605 if (SI->getValueOperand()->getType()->isVectorTy()) { 2606 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2607 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2608 return; 2609 } 2610 2611 // If all of the operands are identical or constant we have a simple solution. 2612 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2613 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2614 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2615 return; 2616 } 2617 2618 // We now know that this is a vector of instructions of the same type from 2619 // the same block. 2620 2621 // Don't vectorize ephemeral values. 2622 for (Value *V : VL) { 2623 if (EphValues.count(V)) { 2624 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2625 << ") is ephemeral.\n"); 2626 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2627 return; 2628 } 2629 } 2630 2631 // Check if this is a duplicate of another entry. 2632 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2633 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2634 if (!E->isSame(VL)) { 2635 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2636 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2637 return; 2638 } 2639 // Record the reuse of the tree node. FIXME, currently this is only used to 2640 // properly draw the graph rather than for the actual vectorization. 2641 E->UserTreeIndices.push_back(UserTreeIdx); 2642 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2643 << ".\n"); 2644 return; 2645 } 2646 2647 // Check that none of the instructions in the bundle are already in the tree. 2648 for (Value *V : VL) { 2649 auto *I = dyn_cast<Instruction>(V); 2650 if (!I) 2651 continue; 2652 if (getTreeEntry(I)) { 2653 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2654 << ") is already in tree.\n"); 2655 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2656 return; 2657 } 2658 } 2659 2660 // If any of the scalars is marked as a value that needs to stay scalar, then 2661 // we need to gather the scalars. 2662 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2663 for (Value *V : VL) { 2664 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2665 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2666 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2667 return; 2668 } 2669 } 2670 2671 // Check that all of the users of the scalars that we want to vectorize are 2672 // schedulable. 2673 auto *VL0 = cast<Instruction>(S.OpValue); 2674 BasicBlock *BB = VL0->getParent(); 2675 2676 if (!DT->isReachableFromEntry(BB)) { 2677 // Don't go into unreachable blocks. They may contain instructions with 2678 // dependency cycles which confuse the final scheduling. 2679 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2680 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2681 return; 2682 } 2683 2684 // Check that every instruction appears once in this bundle. 2685 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2686 SmallVector<Value *, 4> UniqueValues; 2687 DenseMap<Value *, unsigned> UniquePositions; 2688 for (Value *V : VL) { 2689 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2690 ReuseShuffleIndicies.emplace_back(Res.first->second); 2691 if (Res.second) 2692 UniqueValues.emplace_back(V); 2693 } 2694 size_t NumUniqueScalarValues = UniqueValues.size(); 2695 if (NumUniqueScalarValues == VL.size()) { 2696 ReuseShuffleIndicies.clear(); 2697 } else { 2698 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2699 if (NumUniqueScalarValues <= 1 || 2700 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2701 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2702 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2703 return; 2704 } 2705 VL = UniqueValues; 2706 } 2707 2708 auto &BSRef = BlocksSchedules[BB]; 2709 if (!BSRef) 2710 BSRef = std::make_unique<BlockScheduling>(BB); 2711 2712 BlockScheduling &BS = *BSRef.get(); 2713 2714 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2715 if (!Bundle) { 2716 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2717 assert((!BS.getScheduleData(VL0) || 2718 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2719 "tryScheduleBundle should cancelScheduling on failure"); 2720 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2721 ReuseShuffleIndicies); 2722 return; 2723 } 2724 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2725 2726 unsigned ShuffleOrOp = S.isAltShuffle() ? 2727 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2728 switch (ShuffleOrOp) { 2729 case Instruction::PHI: { 2730 auto *PH = cast<PHINode>(VL0); 2731 2732 // Check for terminator values (e.g. invoke). 2733 for (Value *V : VL) 2734 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2735 Instruction *Term = dyn_cast<Instruction>( 2736 cast<PHINode>(V)->getIncomingValueForBlock( 2737 PH->getIncomingBlock(I))); 2738 if (Term && Term->isTerminator()) { 2739 LLVM_DEBUG(dbgs() 2740 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2741 BS.cancelScheduling(VL, VL0); 2742 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2743 ReuseShuffleIndicies); 2744 return; 2745 } 2746 } 2747 2748 TreeEntry *TE = 2749 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2750 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2751 2752 // Keeps the reordered operands to avoid code duplication. 2753 SmallVector<ValueList, 2> OperandsVec; 2754 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2755 ValueList Operands; 2756 // Prepare the operand vector. 2757 for (Value *V : VL) 2758 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2759 PH->getIncomingBlock(I))); 2760 TE->setOperand(I, Operands); 2761 OperandsVec.push_back(Operands); 2762 } 2763 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2764 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2765 return; 2766 } 2767 case Instruction::ExtractValue: 2768 case Instruction::ExtractElement: { 2769 OrdersType CurrentOrder; 2770 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2771 if (Reuse) { 2772 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2773 ++NumOpsWantToKeepOriginalOrder; 2774 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2775 ReuseShuffleIndicies); 2776 // This is a special case, as it does not gather, but at the same time 2777 // we are not extending buildTree_rec() towards the operands. 2778 ValueList Op0; 2779 Op0.assign(VL.size(), VL0->getOperand(0)); 2780 VectorizableTree.back()->setOperand(0, Op0); 2781 return; 2782 } 2783 if (!CurrentOrder.empty()) { 2784 LLVM_DEBUG({ 2785 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2786 "with order"; 2787 for (unsigned Idx : CurrentOrder) 2788 dbgs() << " " << Idx; 2789 dbgs() << "\n"; 2790 }); 2791 // Insert new order with initial value 0, if it does not exist, 2792 // otherwise return the iterator to the existing one. 2793 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2794 ReuseShuffleIndicies, CurrentOrder); 2795 findRootOrder(CurrentOrder); 2796 ++NumOpsWantToKeepOrder[CurrentOrder]; 2797 // This is a special case, as it does not gather, but at the same time 2798 // we are not extending buildTree_rec() towards the operands. 2799 ValueList Op0; 2800 Op0.assign(VL.size(), VL0->getOperand(0)); 2801 VectorizableTree.back()->setOperand(0, Op0); 2802 return; 2803 } 2804 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2805 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2806 ReuseShuffleIndicies); 2807 BS.cancelScheduling(VL, VL0); 2808 return; 2809 } 2810 case Instruction::Load: { 2811 // Check that a vectorized load would load the same memory as a scalar 2812 // load. For example, we don't want to vectorize loads that are smaller 2813 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2814 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2815 // from such a struct, we read/write packed bits disagreeing with the 2816 // unvectorized version. 2817 Type *ScalarTy = VL0->getType(); 2818 2819 if (DL->getTypeSizeInBits(ScalarTy) != 2820 DL->getTypeAllocSizeInBits(ScalarTy)) { 2821 BS.cancelScheduling(VL, VL0); 2822 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2823 ReuseShuffleIndicies); 2824 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2825 return; 2826 } 2827 2828 // Make sure all loads in the bundle are simple - we can't vectorize 2829 // atomic or volatile loads. 2830 SmallVector<Value *, 4> PointerOps(VL.size()); 2831 auto POIter = PointerOps.begin(); 2832 for (Value *V : VL) { 2833 auto *L = cast<LoadInst>(V); 2834 if (!L->isSimple()) { 2835 BS.cancelScheduling(VL, VL0); 2836 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2837 ReuseShuffleIndicies); 2838 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2839 return; 2840 } 2841 *POIter = L->getPointerOperand(); 2842 ++POIter; 2843 } 2844 2845 OrdersType CurrentOrder; 2846 // Check the order of pointer operands. 2847 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2848 Value *Ptr0; 2849 Value *PtrN; 2850 if (CurrentOrder.empty()) { 2851 Ptr0 = PointerOps.front(); 2852 PtrN = PointerOps.back(); 2853 } else { 2854 Ptr0 = PointerOps[CurrentOrder.front()]; 2855 PtrN = PointerOps[CurrentOrder.back()]; 2856 } 2857 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2858 const SCEV *ScevN = SE->getSCEV(PtrN); 2859 const auto *Diff = 2860 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2861 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2862 // Check that the sorted loads are consecutive. 2863 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2864 if (CurrentOrder.empty()) { 2865 // Original loads are consecutive and does not require reordering. 2866 ++NumOpsWantToKeepOriginalOrder; 2867 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2868 UserTreeIdx, ReuseShuffleIndicies); 2869 TE->setOperandsInOrder(); 2870 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2871 } else { 2872 // Need to reorder. 2873 TreeEntry *TE = 2874 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2875 ReuseShuffleIndicies, CurrentOrder); 2876 TE->setOperandsInOrder(); 2877 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2878 findRootOrder(CurrentOrder); 2879 ++NumOpsWantToKeepOrder[CurrentOrder]; 2880 } 2881 return; 2882 } 2883 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2884 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2885 UserTreeIdx, ReuseShuffleIndicies); 2886 TE->setOperandsInOrder(); 2887 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2888 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2889 return; 2890 } 2891 2892 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2893 BS.cancelScheduling(VL, VL0); 2894 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2895 ReuseShuffleIndicies); 2896 return; 2897 } 2898 case Instruction::ZExt: 2899 case Instruction::SExt: 2900 case Instruction::FPToUI: 2901 case Instruction::FPToSI: 2902 case Instruction::FPExt: 2903 case Instruction::PtrToInt: 2904 case Instruction::IntToPtr: 2905 case Instruction::SIToFP: 2906 case Instruction::UIToFP: 2907 case Instruction::Trunc: 2908 case Instruction::FPTrunc: 2909 case Instruction::BitCast: { 2910 Type *SrcTy = VL0->getOperand(0)->getType(); 2911 for (Value *V : VL) { 2912 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2913 if (Ty != SrcTy || !isValidElementType(Ty)) { 2914 BS.cancelScheduling(VL, VL0); 2915 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2916 ReuseShuffleIndicies); 2917 LLVM_DEBUG(dbgs() 2918 << "SLP: Gathering casts with different src types.\n"); 2919 return; 2920 } 2921 } 2922 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2923 ReuseShuffleIndicies); 2924 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2925 2926 TE->setOperandsInOrder(); 2927 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2928 ValueList Operands; 2929 // Prepare the operand vector. 2930 for (Value *V : VL) 2931 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2932 2933 buildTree_rec(Operands, Depth + 1, {TE, i}); 2934 } 2935 return; 2936 } 2937 case Instruction::ICmp: 2938 case Instruction::FCmp: { 2939 // Check that all of the compares have the same predicate. 2940 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2941 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2942 Type *ComparedTy = VL0->getOperand(0)->getType(); 2943 for (Value *V : VL) { 2944 CmpInst *Cmp = cast<CmpInst>(V); 2945 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2946 Cmp->getOperand(0)->getType() != ComparedTy) { 2947 BS.cancelScheduling(VL, VL0); 2948 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2949 ReuseShuffleIndicies); 2950 LLVM_DEBUG(dbgs() 2951 << "SLP: Gathering cmp with different predicate.\n"); 2952 return; 2953 } 2954 } 2955 2956 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2957 ReuseShuffleIndicies); 2958 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2959 2960 ValueList Left, Right; 2961 if (cast<CmpInst>(VL0)->isCommutative()) { 2962 // Commutative predicate - collect + sort operands of the instructions 2963 // so that each side is more likely to have the same opcode. 2964 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2965 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2966 } else { 2967 // Collect operands - commute if it uses the swapped predicate. 2968 for (Value *V : VL) { 2969 auto *Cmp = cast<CmpInst>(V); 2970 Value *LHS = Cmp->getOperand(0); 2971 Value *RHS = Cmp->getOperand(1); 2972 if (Cmp->getPredicate() != P0) 2973 std::swap(LHS, RHS); 2974 Left.push_back(LHS); 2975 Right.push_back(RHS); 2976 } 2977 } 2978 TE->setOperand(0, Left); 2979 TE->setOperand(1, Right); 2980 buildTree_rec(Left, Depth + 1, {TE, 0}); 2981 buildTree_rec(Right, Depth + 1, {TE, 1}); 2982 return; 2983 } 2984 case Instruction::Select: 2985 case Instruction::FNeg: 2986 case Instruction::Add: 2987 case Instruction::FAdd: 2988 case Instruction::Sub: 2989 case Instruction::FSub: 2990 case Instruction::Mul: 2991 case Instruction::FMul: 2992 case Instruction::UDiv: 2993 case Instruction::SDiv: 2994 case Instruction::FDiv: 2995 case Instruction::URem: 2996 case Instruction::SRem: 2997 case Instruction::FRem: 2998 case Instruction::Shl: 2999 case Instruction::LShr: 3000 case Instruction::AShr: 3001 case Instruction::And: 3002 case Instruction::Or: 3003 case Instruction::Xor: { 3004 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3005 ReuseShuffleIndicies); 3006 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3007 3008 // Sort operands of the instructions so that each side is more likely to 3009 // have the same opcode. 3010 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3011 ValueList Left, Right; 3012 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3013 TE->setOperand(0, Left); 3014 TE->setOperand(1, Right); 3015 buildTree_rec(Left, Depth + 1, {TE, 0}); 3016 buildTree_rec(Right, Depth + 1, {TE, 1}); 3017 return; 3018 } 3019 3020 TE->setOperandsInOrder(); 3021 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3022 ValueList Operands; 3023 // Prepare the operand vector. 3024 for (Value *V : VL) 3025 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3026 3027 buildTree_rec(Operands, Depth + 1, {TE, i}); 3028 } 3029 return; 3030 } 3031 case Instruction::GetElementPtr: { 3032 // We don't combine GEPs with complicated (nested) indexing. 3033 for (Value *V : VL) { 3034 if (cast<Instruction>(V)->getNumOperands() != 2) { 3035 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3036 BS.cancelScheduling(VL, VL0); 3037 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3038 ReuseShuffleIndicies); 3039 return; 3040 } 3041 } 3042 3043 // We can't combine several GEPs into one vector if they operate on 3044 // different types. 3045 Type *Ty0 = VL0->getOperand(0)->getType(); 3046 for (Value *V : VL) { 3047 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3048 if (Ty0 != CurTy) { 3049 LLVM_DEBUG(dbgs() 3050 << "SLP: not-vectorizable GEP (different types).\n"); 3051 BS.cancelScheduling(VL, VL0); 3052 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3053 ReuseShuffleIndicies); 3054 return; 3055 } 3056 } 3057 3058 // We don't combine GEPs with non-constant indexes. 3059 Type *Ty1 = VL0->getOperand(1)->getType(); 3060 for (Value *V : VL) { 3061 auto Op = cast<Instruction>(V)->getOperand(1); 3062 if (!isa<ConstantInt>(Op) || 3063 (Op->getType() != Ty1 && 3064 Op->getType()->getScalarSizeInBits() > 3065 DL->getIndexSizeInBits( 3066 V->getType()->getPointerAddressSpace()))) { 3067 LLVM_DEBUG(dbgs() 3068 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3069 BS.cancelScheduling(VL, VL0); 3070 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3071 ReuseShuffleIndicies); 3072 return; 3073 } 3074 } 3075 3076 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3077 ReuseShuffleIndicies); 3078 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3079 TE->setOperandsInOrder(); 3080 for (unsigned i = 0, e = 2; i < e; ++i) { 3081 ValueList Operands; 3082 // Prepare the operand vector. 3083 for (Value *V : VL) 3084 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3085 3086 buildTree_rec(Operands, Depth + 1, {TE, i}); 3087 } 3088 return; 3089 } 3090 case Instruction::Store: { 3091 // Check if the stores are consecutive or if we need to swizzle them. 3092 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3093 // Make sure all stores in the bundle are simple - we can't vectorize 3094 // atomic or volatile stores. 3095 SmallVector<Value *, 4> PointerOps(VL.size()); 3096 ValueList Operands(VL.size()); 3097 auto POIter = PointerOps.begin(); 3098 auto OIter = Operands.begin(); 3099 for (Value *V : VL) { 3100 auto *SI = cast<StoreInst>(V); 3101 if (!SI->isSimple()) { 3102 BS.cancelScheduling(VL, VL0); 3103 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3104 ReuseShuffleIndicies); 3105 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3106 return; 3107 } 3108 *POIter = SI->getPointerOperand(); 3109 *OIter = SI->getValueOperand(); 3110 ++POIter; 3111 ++OIter; 3112 } 3113 3114 OrdersType CurrentOrder; 3115 // Check the order of pointer operands. 3116 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3117 Value *Ptr0; 3118 Value *PtrN; 3119 if (CurrentOrder.empty()) { 3120 Ptr0 = PointerOps.front(); 3121 PtrN = PointerOps.back(); 3122 } else { 3123 Ptr0 = PointerOps[CurrentOrder.front()]; 3124 PtrN = PointerOps[CurrentOrder.back()]; 3125 } 3126 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3127 const SCEV *ScevN = SE->getSCEV(PtrN); 3128 const auto *Diff = 3129 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3130 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3131 // Check that the sorted pointer operands are consecutive. 3132 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3133 if (CurrentOrder.empty()) { 3134 // Original stores are consecutive and does not require reordering. 3135 ++NumOpsWantToKeepOriginalOrder; 3136 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3137 UserTreeIdx, ReuseShuffleIndicies); 3138 TE->setOperandsInOrder(); 3139 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3140 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3141 } else { 3142 TreeEntry *TE = 3143 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3144 ReuseShuffleIndicies, CurrentOrder); 3145 TE->setOperandsInOrder(); 3146 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3147 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3148 findRootOrder(CurrentOrder); 3149 ++NumOpsWantToKeepOrder[CurrentOrder]; 3150 } 3151 return; 3152 } 3153 } 3154 3155 BS.cancelScheduling(VL, VL0); 3156 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3157 ReuseShuffleIndicies); 3158 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3159 return; 3160 } 3161 case Instruction::Call: { 3162 // Check if the calls are all to the same vectorizable intrinsic or 3163 // library function. 3164 CallInst *CI = cast<CallInst>(VL0); 3165 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3166 3167 VFShape Shape = VFShape::get( 3168 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3169 false /*HasGlobalPred*/); 3170 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3171 3172 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3173 BS.cancelScheduling(VL, VL0); 3174 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3175 ReuseShuffleIndicies); 3176 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3177 return; 3178 } 3179 Function *F = CI->getCalledFunction(); 3180 unsigned NumArgs = CI->getNumArgOperands(); 3181 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3182 for (unsigned j = 0; j != NumArgs; ++j) 3183 if (hasVectorInstrinsicScalarOpd(ID, j)) 3184 ScalarArgs[j] = CI->getArgOperand(j); 3185 for (Value *V : VL) { 3186 CallInst *CI2 = dyn_cast<CallInst>(V); 3187 if (!CI2 || CI2->getCalledFunction() != F || 3188 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3189 (VecFunc && 3190 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3191 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3192 BS.cancelScheduling(VL, VL0); 3193 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3194 ReuseShuffleIndicies); 3195 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3196 << "\n"); 3197 return; 3198 } 3199 // Some intrinsics have scalar arguments and should be same in order for 3200 // them to be vectorized. 3201 for (unsigned j = 0; j != NumArgs; ++j) { 3202 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3203 Value *A1J = CI2->getArgOperand(j); 3204 if (ScalarArgs[j] != A1J) { 3205 BS.cancelScheduling(VL, VL0); 3206 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3207 ReuseShuffleIndicies); 3208 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3209 << " argument " << ScalarArgs[j] << "!=" << A1J 3210 << "\n"); 3211 return; 3212 } 3213 } 3214 } 3215 // Verify that the bundle operands are identical between the two calls. 3216 if (CI->hasOperandBundles() && 3217 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3218 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3219 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3220 BS.cancelScheduling(VL, VL0); 3221 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3222 ReuseShuffleIndicies); 3223 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3224 << *CI << "!=" << *V << '\n'); 3225 return; 3226 } 3227 } 3228 3229 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3230 ReuseShuffleIndicies); 3231 TE->setOperandsInOrder(); 3232 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3233 ValueList Operands; 3234 // Prepare the operand vector. 3235 for (Value *V : VL) { 3236 auto *CI2 = cast<CallInst>(V); 3237 Operands.push_back(CI2->getArgOperand(i)); 3238 } 3239 buildTree_rec(Operands, Depth + 1, {TE, i}); 3240 } 3241 return; 3242 } 3243 case Instruction::ShuffleVector: { 3244 // If this is not an alternate sequence of opcode like add-sub 3245 // then do not vectorize this instruction. 3246 if (!S.isAltShuffle()) { 3247 BS.cancelScheduling(VL, VL0); 3248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3249 ReuseShuffleIndicies); 3250 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3251 return; 3252 } 3253 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3254 ReuseShuffleIndicies); 3255 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3256 3257 // Reorder operands if reordering would enable vectorization. 3258 if (isa<BinaryOperator>(VL0)) { 3259 ValueList Left, Right; 3260 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3261 TE->setOperand(0, Left); 3262 TE->setOperand(1, Right); 3263 buildTree_rec(Left, Depth + 1, {TE, 0}); 3264 buildTree_rec(Right, Depth + 1, {TE, 1}); 3265 return; 3266 } 3267 3268 TE->setOperandsInOrder(); 3269 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3270 ValueList Operands; 3271 // Prepare the operand vector. 3272 for (Value *V : VL) 3273 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3274 3275 buildTree_rec(Operands, Depth + 1, {TE, i}); 3276 } 3277 return; 3278 } 3279 default: 3280 BS.cancelScheduling(VL, VL0); 3281 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3282 ReuseShuffleIndicies); 3283 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3284 return; 3285 } 3286 } 3287 3288 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3289 unsigned N = 1; 3290 Type *EltTy = T; 3291 3292 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3293 isa<VectorType>(EltTy)) { 3294 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3295 // Check that struct is homogeneous. 3296 for (const auto *Ty : ST->elements()) 3297 if (Ty != *ST->element_begin()) 3298 return 0; 3299 N *= ST->getNumElements(); 3300 EltTy = *ST->element_begin(); 3301 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3302 N *= AT->getNumElements(); 3303 EltTy = AT->getElementType(); 3304 } else { 3305 auto *VT = cast<FixedVectorType>(EltTy); 3306 N *= VT->getNumElements(); 3307 EltTy = VT->getElementType(); 3308 } 3309 } 3310 3311 if (!isValidElementType(EltTy)) 3312 return 0; 3313 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3314 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3315 return 0; 3316 return N; 3317 } 3318 3319 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3320 SmallVectorImpl<unsigned> &CurrentOrder) const { 3321 Instruction *E0 = cast<Instruction>(OpValue); 3322 assert(E0->getOpcode() == Instruction::ExtractElement || 3323 E0->getOpcode() == Instruction::ExtractValue); 3324 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3325 // Check if all of the extracts come from the same vector and from the 3326 // correct offset. 3327 Value *Vec = E0->getOperand(0); 3328 3329 CurrentOrder.clear(); 3330 3331 // We have to extract from a vector/aggregate with the same number of elements. 3332 unsigned NElts; 3333 if (E0->getOpcode() == Instruction::ExtractValue) { 3334 const DataLayout &DL = E0->getModule()->getDataLayout(); 3335 NElts = canMapToVector(Vec->getType(), DL); 3336 if (!NElts) 3337 return false; 3338 // Check if load can be rewritten as load of vector. 3339 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3340 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3341 return false; 3342 } else { 3343 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3344 } 3345 3346 if (NElts != VL.size()) 3347 return false; 3348 3349 // Check that all of the indices extract from the correct offset. 3350 bool ShouldKeepOrder = true; 3351 unsigned E = VL.size(); 3352 // Assign to all items the initial value E + 1 so we can check if the extract 3353 // instruction index was used already. 3354 // Also, later we can check that all the indices are used and we have a 3355 // consecutive access in the extract instructions, by checking that no 3356 // element of CurrentOrder still has value E + 1. 3357 CurrentOrder.assign(E, E + 1); 3358 unsigned I = 0; 3359 for (; I < E; ++I) { 3360 auto *Inst = cast<Instruction>(VL[I]); 3361 if (Inst->getOperand(0) != Vec) 3362 break; 3363 Optional<unsigned> Idx = getExtractIndex(Inst); 3364 if (!Idx) 3365 break; 3366 const unsigned ExtIdx = *Idx; 3367 if (ExtIdx != I) { 3368 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3369 break; 3370 ShouldKeepOrder = false; 3371 CurrentOrder[ExtIdx] = I; 3372 } else { 3373 if (CurrentOrder[I] != E + 1) 3374 break; 3375 CurrentOrder[I] = I; 3376 } 3377 } 3378 if (I < E) { 3379 CurrentOrder.clear(); 3380 return false; 3381 } 3382 3383 return ShouldKeepOrder; 3384 } 3385 3386 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3387 return I->hasOneUse() || 3388 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3389 return ScalarToTreeEntry.count(U) > 0; 3390 }); 3391 } 3392 3393 static std::pair<unsigned, unsigned> 3394 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3395 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3396 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3397 3398 // Calculate the cost of the scalar and vector calls. 3399 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3400 int IntrinsicCost = 3401 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3402 3403 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3404 VecTy->getNumElements())), 3405 false /*HasGlobalPred*/); 3406 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3407 int LibCost = IntrinsicCost; 3408 if (!CI->isNoBuiltin() && VecFunc) { 3409 // Calculate the cost of the vector library call. 3410 SmallVector<Type *, 4> VecTys; 3411 for (Use &Arg : CI->args()) 3412 VecTys.push_back( 3413 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3414 3415 // If the corresponding vector call is cheaper, return its cost. 3416 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3417 TTI::TCK_RecipThroughput); 3418 } 3419 return {IntrinsicCost, LibCost}; 3420 } 3421 3422 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3423 ArrayRef<Value*> VL = E->Scalars; 3424 3425 Type *ScalarTy = VL[0]->getType(); 3426 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3427 ScalarTy = SI->getValueOperand()->getType(); 3428 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3429 ScalarTy = CI->getOperand(0)->getType(); 3430 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3431 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3432 3433 // If we have computed a smaller type for the expression, update VecTy so 3434 // that the costs will be accurate. 3435 if (MinBWs.count(VL[0])) 3436 VecTy = FixedVectorType::get( 3437 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3438 3439 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3440 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3441 InstructionCost ReuseShuffleCost = 0; 3442 if (NeedToShuffleReuses) { 3443 ReuseShuffleCost = 3444 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3445 } 3446 if (E->State == TreeEntry::NeedToGather) { 3447 if (allConstant(VL)) 3448 return 0; 3449 if (isSplat(VL)) { 3450 return ReuseShuffleCost + 3451 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3452 } 3453 if (E->getOpcode() == Instruction::ExtractElement && 3454 allSameType(VL) && allSameBlock(VL)) { 3455 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3456 if (ShuffleKind.hasValue()) { 3457 InstructionCost Cost = 3458 TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3459 for (auto *V : VL) { 3460 // If all users of instruction are going to be vectorized and this 3461 // instruction itself is not going to be vectorized, consider this 3462 // instruction as dead and remove its cost from the final cost of the 3463 // vectorized tree. 3464 if (areAllUsersVectorized(cast<Instruction>(V)) && 3465 !ScalarToTreeEntry.count(V)) { 3466 auto *IO = cast<ConstantInt>( 3467 cast<ExtractElementInst>(V)->getIndexOperand()); 3468 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3469 IO->getZExtValue()); 3470 } 3471 } 3472 return ReuseShuffleCost + Cost; 3473 } 3474 } 3475 return ReuseShuffleCost + getGatherCost(VL); 3476 } 3477 assert((E->State == TreeEntry::Vectorize || 3478 E->State == TreeEntry::ScatterVectorize) && 3479 "Unhandled state"); 3480 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3481 Instruction *VL0 = E->getMainOp(); 3482 unsigned ShuffleOrOp = 3483 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3484 switch (ShuffleOrOp) { 3485 case Instruction::PHI: 3486 return 0; 3487 3488 case Instruction::ExtractValue: 3489 case Instruction::ExtractElement: { 3490 InstructionCost DeadCost = 0; 3491 if (NeedToShuffleReuses) { 3492 unsigned Idx = 0; 3493 for (unsigned I : E->ReuseShuffleIndices) { 3494 if (ShuffleOrOp == Instruction::ExtractElement) { 3495 auto *IO = cast<ConstantInt>( 3496 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3497 Idx = IO->getZExtValue(); 3498 ReuseShuffleCost -= TTI->getVectorInstrCost( 3499 Instruction::ExtractElement, VecTy, Idx); 3500 } else { 3501 ReuseShuffleCost -= TTI->getVectorInstrCost( 3502 Instruction::ExtractElement, VecTy, Idx); 3503 ++Idx; 3504 } 3505 } 3506 Idx = ReuseShuffleNumbers; 3507 for (Value *V : VL) { 3508 if (ShuffleOrOp == Instruction::ExtractElement) { 3509 auto *IO = cast<ConstantInt>( 3510 cast<ExtractElementInst>(V)->getIndexOperand()); 3511 Idx = IO->getZExtValue(); 3512 } else { 3513 --Idx; 3514 } 3515 ReuseShuffleCost += 3516 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3517 } 3518 DeadCost = ReuseShuffleCost; 3519 } else if (!E->ReorderIndices.empty()) { 3520 DeadCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3521 VecTy); 3522 } 3523 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3524 Instruction *EI = cast<Instruction>(VL[I]); 3525 // If all users are going to be vectorized, instruction can be 3526 // considered as dead. 3527 // The same, if have only one user, it will be vectorized for sure. 3528 if (areAllUsersVectorized(EI)) { 3529 // Take credit for instruction that will become dead. 3530 if (EI->hasOneUse()) { 3531 Instruction *Ext = EI->user_back(); 3532 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3533 all_of(Ext->users(), 3534 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3535 // Use getExtractWithExtendCost() to calculate the cost of 3536 // extractelement/ext pair. 3537 DeadCost -= TTI->getExtractWithExtendCost( 3538 Ext->getOpcode(), Ext->getType(), VecTy, I); 3539 // Add back the cost of s|zext which is subtracted separately. 3540 DeadCost += TTI->getCastInstrCost( 3541 Ext->getOpcode(), Ext->getType(), EI->getType(), 3542 TTI::getCastContextHint(Ext), CostKind, Ext); 3543 continue; 3544 } 3545 } 3546 DeadCost -= 3547 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3548 } 3549 } 3550 return DeadCost; 3551 } 3552 case Instruction::ZExt: 3553 case Instruction::SExt: 3554 case Instruction::FPToUI: 3555 case Instruction::FPToSI: 3556 case Instruction::FPExt: 3557 case Instruction::PtrToInt: 3558 case Instruction::IntToPtr: 3559 case Instruction::SIToFP: 3560 case Instruction::UIToFP: 3561 case Instruction::Trunc: 3562 case Instruction::FPTrunc: 3563 case Instruction::BitCast: { 3564 Type *SrcTy = VL0->getOperand(0)->getType(); 3565 InstructionCost ScalarEltCost = 3566 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3567 TTI::getCastContextHint(VL0), CostKind, VL0); 3568 if (NeedToShuffleReuses) { 3569 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3570 } 3571 3572 // Calculate the cost of this instruction. 3573 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3574 3575 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3576 InstructionCost VecCost = 0; 3577 // Check if the values are candidates to demote. 3578 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3579 VecCost = 3580 ReuseShuffleCost + 3581 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3582 TTI::getCastContextHint(VL0), CostKind, VL0); 3583 } 3584 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3585 return VecCost - ScalarCost; 3586 } 3587 case Instruction::FCmp: 3588 case Instruction::ICmp: 3589 case Instruction::Select: { 3590 // Calculate the cost of this instruction. 3591 InstructionCost ScalarEltCost = 3592 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3593 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3594 if (NeedToShuffleReuses) { 3595 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3596 } 3597 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3598 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3599 3600 // Check if all entries in VL are either compares or selects with compares 3601 // as condition that have the same predicates. 3602 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3603 bool First = true; 3604 for (auto *V : VL) { 3605 CmpInst::Predicate CurrentPred; 3606 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3607 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3608 !match(V, MatchCmp)) || 3609 (!First && VecPred != CurrentPred)) { 3610 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3611 break; 3612 } 3613 First = false; 3614 VecPred = CurrentPred; 3615 } 3616 3617 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3618 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3619 // Check if it is possible and profitable to use min/max for selects in 3620 // VL. 3621 // 3622 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3623 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3624 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3625 {VecTy, VecTy}); 3626 InstructionCost IntrinsicCost = 3627 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3628 // If the selects are the only uses of the compares, they will be dead 3629 // and we can adjust the cost by removing their cost. 3630 if (IntrinsicAndUse.second) 3631 IntrinsicCost -= 3632 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3633 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3634 VecCost = std::min(VecCost, IntrinsicCost); 3635 } 3636 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3637 return ReuseShuffleCost + VecCost - ScalarCost; 3638 } 3639 case Instruction::FNeg: 3640 case Instruction::Add: 3641 case Instruction::FAdd: 3642 case Instruction::Sub: 3643 case Instruction::FSub: 3644 case Instruction::Mul: 3645 case Instruction::FMul: 3646 case Instruction::UDiv: 3647 case Instruction::SDiv: 3648 case Instruction::FDiv: 3649 case Instruction::URem: 3650 case Instruction::SRem: 3651 case Instruction::FRem: 3652 case Instruction::Shl: 3653 case Instruction::LShr: 3654 case Instruction::AShr: 3655 case Instruction::And: 3656 case Instruction::Or: 3657 case Instruction::Xor: { 3658 // Certain instructions can be cheaper to vectorize if they have a 3659 // constant second vector operand. 3660 TargetTransformInfo::OperandValueKind Op1VK = 3661 TargetTransformInfo::OK_AnyValue; 3662 TargetTransformInfo::OperandValueKind Op2VK = 3663 TargetTransformInfo::OK_UniformConstantValue; 3664 TargetTransformInfo::OperandValueProperties Op1VP = 3665 TargetTransformInfo::OP_None; 3666 TargetTransformInfo::OperandValueProperties Op2VP = 3667 TargetTransformInfo::OP_PowerOf2; 3668 3669 // If all operands are exactly the same ConstantInt then set the 3670 // operand kind to OK_UniformConstantValue. 3671 // If instead not all operands are constants, then set the operand kind 3672 // to OK_AnyValue. If all operands are constants but not the same, 3673 // then set the operand kind to OK_NonUniformConstantValue. 3674 ConstantInt *CInt0 = nullptr; 3675 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3676 const Instruction *I = cast<Instruction>(VL[i]); 3677 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3678 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3679 if (!CInt) { 3680 Op2VK = TargetTransformInfo::OK_AnyValue; 3681 Op2VP = TargetTransformInfo::OP_None; 3682 break; 3683 } 3684 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3685 !CInt->getValue().isPowerOf2()) 3686 Op2VP = TargetTransformInfo::OP_None; 3687 if (i == 0) { 3688 CInt0 = CInt; 3689 continue; 3690 } 3691 if (CInt0 != CInt) 3692 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3693 } 3694 3695 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3696 InstructionCost ScalarEltCost = 3697 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3698 Op2VK, Op1VP, Op2VP, Operands, VL0); 3699 if (NeedToShuffleReuses) { 3700 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3701 } 3702 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3703 InstructionCost VecCost = 3704 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3705 Op2VK, Op1VP, Op2VP, Operands, VL0); 3706 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3707 return ReuseShuffleCost + VecCost - ScalarCost; 3708 } 3709 case Instruction::GetElementPtr: { 3710 TargetTransformInfo::OperandValueKind Op1VK = 3711 TargetTransformInfo::OK_AnyValue; 3712 TargetTransformInfo::OperandValueKind Op2VK = 3713 TargetTransformInfo::OK_UniformConstantValue; 3714 3715 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3716 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3717 if (NeedToShuffleReuses) { 3718 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3719 } 3720 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3721 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3722 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3723 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3724 return ReuseShuffleCost + VecCost - ScalarCost; 3725 } 3726 case Instruction::Load: { 3727 // Cost of wide load - cost of scalar loads. 3728 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3729 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3730 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3731 if (NeedToShuffleReuses) { 3732 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3733 } 3734 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3735 InstructionCost VecLdCost; 3736 if (E->State == TreeEntry::Vectorize) { 3737 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3738 CostKind, VL0); 3739 } else { 3740 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3741 VecLdCost = TTI->getGatherScatterOpCost( 3742 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3743 /*VariableMask=*/false, alignment, CostKind, VL0); 3744 } 3745 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) 3746 VecLdCost += TTI->getShuffleCost( 3747 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3748 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3749 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3750 } 3751 case Instruction::Store: { 3752 // We know that we can merge the stores. Calculate the cost. 3753 bool IsReorder = !E->ReorderIndices.empty(); 3754 auto *SI = 3755 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3756 Align Alignment = SI->getAlign(); 3757 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3758 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3759 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3760 InstructionCost VecStCost = TTI->getMemoryOpCost( 3761 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3762 if (IsReorder) 3763 VecStCost += TTI->getShuffleCost( 3764 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3765 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3766 return VecStCost - ScalarStCost; 3767 } 3768 case Instruction::Call: { 3769 CallInst *CI = cast<CallInst>(VL0); 3770 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3771 3772 // Calculate the cost of the scalar and vector calls. 3773 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3774 InstructionCost ScalarEltCost = 3775 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3776 if (NeedToShuffleReuses) { 3777 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3778 } 3779 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3780 3781 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3782 InstructionCost VecCallCost = 3783 std::min(VecCallCosts.first, VecCallCosts.second); 3784 3785 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3786 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3787 << " for " << *CI << "\n"); 3788 3789 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3790 } 3791 case Instruction::ShuffleVector: { 3792 assert(E->isAltShuffle() && 3793 ((Instruction::isBinaryOp(E->getOpcode()) && 3794 Instruction::isBinaryOp(E->getAltOpcode())) || 3795 (Instruction::isCast(E->getOpcode()) && 3796 Instruction::isCast(E->getAltOpcode()))) && 3797 "Invalid Shuffle Vector Operand"); 3798 InstructionCost ScalarCost = 0; 3799 if (NeedToShuffleReuses) { 3800 for (unsigned Idx : E->ReuseShuffleIndices) { 3801 Instruction *I = cast<Instruction>(VL[Idx]); 3802 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3803 } 3804 for (Value *V : VL) { 3805 Instruction *I = cast<Instruction>(V); 3806 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3807 } 3808 } 3809 for (Value *V : VL) { 3810 Instruction *I = cast<Instruction>(V); 3811 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3812 ScalarCost += TTI->getInstructionCost(I, CostKind); 3813 } 3814 // VecCost is equal to sum of the cost of creating 2 vectors 3815 // and the cost of creating shuffle. 3816 InstructionCost VecCost = 0; 3817 if (Instruction::isBinaryOp(E->getOpcode())) { 3818 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3819 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3820 CostKind); 3821 } else { 3822 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3823 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3824 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3825 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3826 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3827 TTI::CastContextHint::None, CostKind); 3828 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3829 TTI::CastContextHint::None, CostKind); 3830 } 3831 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3832 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3833 return ReuseShuffleCost + VecCost - ScalarCost; 3834 } 3835 default: 3836 llvm_unreachable("Unknown instruction"); 3837 } 3838 } 3839 3840 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3841 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3842 << VectorizableTree.size() << " is fully vectorizable .\n"); 3843 3844 // We only handle trees of heights 1 and 2. 3845 if (VectorizableTree.size() == 1 && 3846 VectorizableTree[0]->State == TreeEntry::Vectorize) 3847 return true; 3848 3849 if (VectorizableTree.size() != 2) 3850 return false; 3851 3852 // Handle splat and all-constants stores. 3853 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3854 (allConstant(VectorizableTree[1]->Scalars) || 3855 isSplat(VectorizableTree[1]->Scalars))) 3856 return true; 3857 3858 // Gathering cost would be too much for tiny trees. 3859 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3860 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3861 return false; 3862 3863 return true; 3864 } 3865 3866 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3867 TargetTransformInfo *TTI) { 3868 // Look past the root to find a source value. Arbitrarily follow the 3869 // path through operand 0 of any 'or'. Also, peek through optional 3870 // shift-left-by-multiple-of-8-bits. 3871 Value *ZextLoad = Root; 3872 const APInt *ShAmtC; 3873 while (!isa<ConstantExpr>(ZextLoad) && 3874 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3875 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3876 ShAmtC->urem(8) == 0))) 3877 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3878 3879 // Check if the input is an extended load of the required or/shift expression. 3880 Value *LoadPtr; 3881 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3882 return false; 3883 3884 // Require that the total load bit width is a legal integer type. 3885 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3886 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3887 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3888 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3889 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3890 return false; 3891 3892 // Everything matched - assume that we can fold the whole sequence using 3893 // load combining. 3894 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3895 << *(cast<Instruction>(Root)) << "\n"); 3896 3897 return true; 3898 } 3899 3900 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3901 if (RdxOpcode != Instruction::Or) 3902 return false; 3903 3904 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3905 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3906 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3907 } 3908 3909 bool BoUpSLP::isLoadCombineCandidate() const { 3910 // Peek through a final sequence of stores and check if all operations are 3911 // likely to be load-combined. 3912 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3913 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3914 Value *X; 3915 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3916 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3917 return false; 3918 } 3919 return true; 3920 } 3921 3922 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3923 // We can vectorize the tree if its size is greater than or equal to the 3924 // minimum size specified by the MinTreeSize command line option. 3925 if (VectorizableTree.size() >= MinTreeSize) 3926 return false; 3927 3928 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3929 // can vectorize it if we can prove it fully vectorizable. 3930 if (isFullyVectorizableTinyTree()) 3931 return false; 3932 3933 assert(VectorizableTree.empty() 3934 ? ExternalUses.empty() 3935 : true && "We shouldn't have any external users"); 3936 3937 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3938 // vectorizable. 3939 return true; 3940 } 3941 3942 InstructionCost BoUpSLP::getSpillCost() const { 3943 // Walk from the bottom of the tree to the top, tracking which values are 3944 // live. When we see a call instruction that is not part of our tree, 3945 // query TTI to see if there is a cost to keeping values live over it 3946 // (for example, if spills and fills are required). 3947 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3948 InstructionCost Cost = 0; 3949 3950 SmallPtrSet<Instruction*, 4> LiveValues; 3951 Instruction *PrevInst = nullptr; 3952 3953 // The entries in VectorizableTree are not necessarily ordered by their 3954 // position in basic blocks. Collect them and order them by dominance so later 3955 // instructions are guaranteed to be visited first. For instructions in 3956 // different basic blocks, we only scan to the beginning of the block, so 3957 // their order does not matter, as long as all instructions in a basic block 3958 // are grouped together. Using dominance ensures a deterministic order. 3959 SmallVector<Instruction *, 16> OrderedScalars; 3960 for (const auto &TEPtr : VectorizableTree) { 3961 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3962 if (!Inst) 3963 continue; 3964 OrderedScalars.push_back(Inst); 3965 } 3966 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3967 return DT->dominates(B, A); 3968 }); 3969 3970 for (Instruction *Inst : OrderedScalars) { 3971 if (!PrevInst) { 3972 PrevInst = Inst; 3973 continue; 3974 } 3975 3976 // Update LiveValues. 3977 LiveValues.erase(PrevInst); 3978 for (auto &J : PrevInst->operands()) { 3979 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3980 LiveValues.insert(cast<Instruction>(&*J)); 3981 } 3982 3983 LLVM_DEBUG({ 3984 dbgs() << "SLP: #LV: " << LiveValues.size(); 3985 for (auto *X : LiveValues) 3986 dbgs() << " " << X->getName(); 3987 dbgs() << ", Looking at "; 3988 Inst->dump(); 3989 }); 3990 3991 // Now find the sequence of instructions between PrevInst and Inst. 3992 unsigned NumCalls = 0; 3993 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3994 PrevInstIt = 3995 PrevInst->getIterator().getReverse(); 3996 while (InstIt != PrevInstIt) { 3997 if (PrevInstIt == PrevInst->getParent()->rend()) { 3998 PrevInstIt = Inst->getParent()->rbegin(); 3999 continue; 4000 } 4001 4002 // Debug information does not impact spill cost. 4003 if ((isa<CallInst>(&*PrevInstIt) && 4004 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4005 &*PrevInstIt != PrevInst) 4006 NumCalls++; 4007 4008 ++PrevInstIt; 4009 } 4010 4011 if (NumCalls) { 4012 SmallVector<Type*, 4> V; 4013 for (auto *II : LiveValues) 4014 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4015 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4016 } 4017 4018 PrevInst = Inst; 4019 } 4020 4021 return Cost; 4022 } 4023 4024 InstructionCost BoUpSLP::getTreeCost() { 4025 InstructionCost Cost = 0; 4026 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4027 << VectorizableTree.size() << ".\n"); 4028 4029 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4030 4031 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4032 TreeEntry &TE = *VectorizableTree[I].get(); 4033 4034 // We create duplicate tree entries for gather sequences that have multiple 4035 // uses. However, we should not compute the cost of duplicate sequences. 4036 // For example, if we have a build vector (i.e., insertelement sequence) 4037 // that is used by more than one vector instruction, we only need to 4038 // compute the cost of the insertelement instructions once. The redundant 4039 // instructions will be eliminated by CSE. 4040 // 4041 // We should consider not creating duplicate tree entries for gather 4042 // sequences, and instead add additional edges to the tree representing 4043 // their uses. Since such an approach results in fewer total entries, 4044 // existing heuristics based on tree size may yield different results. 4045 // 4046 if (TE.State == TreeEntry::NeedToGather && 4047 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4048 VectorizableTree.end(), 4049 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4050 return EntryPtr->State == TreeEntry::NeedToGather && 4051 EntryPtr->isSame(TE.Scalars); 4052 })) 4053 continue; 4054 4055 InstructionCost C = getEntryCost(&TE); 4056 Cost += C; 4057 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4058 << " for bundle that starts with " << *TE.Scalars[0] 4059 << ".\n" 4060 << "SLP: Current total cost = " << Cost << "\n"); 4061 } 4062 4063 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4064 InstructionCost ExtractCost = 0; 4065 for (ExternalUser &EU : ExternalUses) { 4066 // We only add extract cost once for the same scalar. 4067 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4068 continue; 4069 4070 // Uses by ephemeral values are free (because the ephemeral value will be 4071 // removed prior to code generation, and so the extraction will be 4072 // removed as well). 4073 if (EphValues.count(EU.User)) 4074 continue; 4075 4076 // If we plan to rewrite the tree in a smaller type, we will need to sign 4077 // extend the extracted value back to the original type. Here, we account 4078 // for the extract and the added cost of the sign extend if needed. 4079 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4080 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4081 if (MinBWs.count(ScalarRoot)) { 4082 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4083 auto Extend = 4084 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4085 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4086 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4087 VecTy, EU.Lane); 4088 } else { 4089 ExtractCost += 4090 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4091 } 4092 } 4093 4094 InstructionCost SpillCost = getSpillCost(); 4095 Cost += SpillCost + ExtractCost; 4096 4097 #ifndef NDEBUG 4098 SmallString<256> Str; 4099 { 4100 raw_svector_ostream OS(Str); 4101 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4102 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4103 << "SLP: Total Cost = " << Cost << ".\n"; 4104 } 4105 LLVM_DEBUG(dbgs() << Str); 4106 if (ViewSLPTree) 4107 ViewGraph(this, "SLP" + F->getName(), false, Str); 4108 #endif 4109 4110 return Cost; 4111 } 4112 4113 InstructionCost 4114 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4115 const DenseSet<unsigned> &ShuffledIndices) const { 4116 unsigned NumElts = Ty->getNumElements(); 4117 APInt DemandedElts = APInt::getNullValue(NumElts); 4118 for (unsigned I = 0; I < NumElts; ++I) 4119 if (!ShuffledIndices.count(I)) 4120 DemandedElts.setBit(I); 4121 InstructionCost Cost = 4122 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4123 /*Extract*/ false); 4124 if (!ShuffledIndices.empty()) 4125 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4126 return Cost; 4127 } 4128 4129 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4130 // Find the type of the operands in VL. 4131 Type *ScalarTy = VL[0]->getType(); 4132 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4133 ScalarTy = SI->getValueOperand()->getType(); 4134 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4135 // Find the cost of inserting/extracting values from the vector. 4136 // Check if the same elements are inserted several times and count them as 4137 // shuffle candidates. 4138 DenseSet<unsigned> ShuffledElements; 4139 DenseSet<Value *> UniqueElements; 4140 // Iterate in reverse order to consider insert elements with the high cost. 4141 for (unsigned I = VL.size(); I > 0; --I) { 4142 unsigned Idx = I - 1; 4143 if (!UniqueElements.insert(VL[Idx]).second) 4144 ShuffledElements.insert(Idx); 4145 } 4146 return getGatherCost(VecTy, ShuffledElements); 4147 } 4148 4149 // Perform operand reordering on the instructions in VL and return the reordered 4150 // operands in Left and Right. 4151 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4152 SmallVectorImpl<Value *> &Left, 4153 SmallVectorImpl<Value *> &Right, 4154 const DataLayout &DL, 4155 ScalarEvolution &SE, 4156 const BoUpSLP &R) { 4157 if (VL.empty()) 4158 return; 4159 VLOperands Ops(VL, DL, SE, R); 4160 // Reorder the operands in place. 4161 Ops.reorder(); 4162 Left = Ops.getVL(0); 4163 Right = Ops.getVL(1); 4164 } 4165 4166 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4167 // Get the basic block this bundle is in. All instructions in the bundle 4168 // should be in this block. 4169 auto *Front = E->getMainOp(); 4170 auto *BB = Front->getParent(); 4171 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4172 [=](Value *V) -> bool { 4173 auto *I = cast<Instruction>(V); 4174 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4175 })); 4176 4177 // The last instruction in the bundle in program order. 4178 Instruction *LastInst = nullptr; 4179 4180 // Find the last instruction. The common case should be that BB has been 4181 // scheduled, and the last instruction is VL.back(). So we start with 4182 // VL.back() and iterate over schedule data until we reach the end of the 4183 // bundle. The end of the bundle is marked by null ScheduleData. 4184 if (BlocksSchedules.count(BB)) { 4185 auto *Bundle = 4186 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4187 if (Bundle && Bundle->isPartOfBundle()) 4188 for (; Bundle; Bundle = Bundle->NextInBundle) 4189 if (Bundle->OpValue == Bundle->Inst) 4190 LastInst = Bundle->Inst; 4191 } 4192 4193 // LastInst can still be null at this point if there's either not an entry 4194 // for BB in BlocksSchedules or there's no ScheduleData available for 4195 // VL.back(). This can be the case if buildTree_rec aborts for various 4196 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4197 // size is reached, etc.). ScheduleData is initialized in the scheduling 4198 // "dry-run". 4199 // 4200 // If this happens, we can still find the last instruction by brute force. We 4201 // iterate forwards from Front (inclusive) until we either see all 4202 // instructions in the bundle or reach the end of the block. If Front is the 4203 // last instruction in program order, LastInst will be set to Front, and we 4204 // will visit all the remaining instructions in the block. 4205 // 4206 // One of the reasons we exit early from buildTree_rec is to place an upper 4207 // bound on compile-time. Thus, taking an additional compile-time hit here is 4208 // not ideal. However, this should be exceedingly rare since it requires that 4209 // we both exit early from buildTree_rec and that the bundle be out-of-order 4210 // (causing us to iterate all the way to the end of the block). 4211 if (!LastInst) { 4212 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4213 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4214 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4215 LastInst = &I; 4216 if (Bundle.empty()) 4217 break; 4218 } 4219 } 4220 assert(LastInst && "Failed to find last instruction in bundle"); 4221 4222 // Set the insertion point after the last instruction in the bundle. Set the 4223 // debug location to Front. 4224 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4225 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4226 } 4227 4228 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4229 Value *Val0 = 4230 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4231 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4232 Value *Vec = UndefValue::get(VecTy); 4233 unsigned InsIndex = 0; 4234 for (Value *Val : VL) { 4235 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4236 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4237 if (!InsElt) 4238 continue; 4239 GatherSeq.insert(InsElt); 4240 CSEBlocks.insert(InsElt->getParent()); 4241 // Add to our 'need-to-extract' list. 4242 if (TreeEntry *Entry = getTreeEntry(Val)) { 4243 // Find which lane we need to extract. 4244 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4245 find(Entry->Scalars, Val)); 4246 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4247 if (!Entry->ReuseShuffleIndices.empty()) { 4248 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4249 find(Entry->ReuseShuffleIndices, FoundLane)); 4250 } 4251 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4252 } 4253 } 4254 4255 return Vec; 4256 } 4257 4258 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4259 InstructionsState S = getSameOpcode(VL); 4260 if (S.getOpcode()) { 4261 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4262 if (E->isSame(VL)) { 4263 Value *V = vectorizeTree(E); 4264 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4265 // We need to get the vectorized value but without shuffle. 4266 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4267 V = SV->getOperand(0); 4268 } else { 4269 // Reshuffle to get only unique values. 4270 SmallVector<int, 4> UniqueIdxs; 4271 SmallSet<int, 4> UsedIdxs; 4272 for (int Idx : E->ReuseShuffleIndices) 4273 if (UsedIdxs.insert(Idx).second) 4274 UniqueIdxs.emplace_back(Idx); 4275 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4276 } 4277 } 4278 return V; 4279 } 4280 } 4281 } 4282 4283 // Check that every instruction appears once in this bundle. 4284 SmallVector<int, 4> ReuseShuffleIndicies; 4285 SmallVector<Value *, 4> UniqueValues; 4286 if (VL.size() > 2) { 4287 DenseMap<Value *, unsigned> UniquePositions; 4288 for (Value *V : VL) { 4289 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4290 ReuseShuffleIndicies.emplace_back(Res.first->second); 4291 if (Res.second || isa<Constant>(V)) 4292 UniqueValues.emplace_back(V); 4293 } 4294 // Do not shuffle single element or if number of unique values is not power 4295 // of 2. 4296 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4297 !llvm::isPowerOf2_32(UniqueValues.size())) 4298 ReuseShuffleIndicies.clear(); 4299 else 4300 VL = UniqueValues; 4301 } 4302 4303 Value *Vec = gather(VL); 4304 if (!ReuseShuffleIndicies.empty()) { 4305 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4306 if (auto *I = dyn_cast<Instruction>(Vec)) { 4307 GatherSeq.insert(I); 4308 CSEBlocks.insert(I->getParent()); 4309 } 4310 } 4311 return Vec; 4312 } 4313 4314 namespace { 4315 /// Merges shuffle masks and emits final shuffle instruction, if required. 4316 class ShuffleInstructionBuilder { 4317 IRBuilderBase &Builder; 4318 bool IsFinalized = false; 4319 SmallVector<int, 4> Mask; 4320 4321 public: 4322 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4323 4324 /// Adds a mask, inverting it before applying. 4325 void addInversedMask(ArrayRef<unsigned> SubMask) { 4326 if (SubMask.empty()) 4327 return; 4328 SmallVector<int, 4> NewMask; 4329 inversePermutation(SubMask, NewMask); 4330 addMask(NewMask); 4331 } 4332 4333 /// Functions adds masks, merging them into single one. 4334 void addMask(ArrayRef<unsigned> SubMask) { 4335 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4336 addMask(NewMask); 4337 } 4338 4339 void addMask(ArrayRef<int> SubMask) { 4340 if (SubMask.empty()) 4341 return; 4342 if (Mask.empty()) { 4343 Mask.append(SubMask.begin(), SubMask.end()); 4344 return; 4345 } 4346 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4347 int TermValue = std::min(Mask.size(), SubMask.size()); 4348 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4349 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4350 NewMask[I] = E; 4351 continue; 4352 } 4353 NewMask[I] = Mask[SubMask[I]]; 4354 } 4355 Mask.swap(NewMask); 4356 } 4357 4358 Value *finalize(Value *V) { 4359 IsFinalized = true; 4360 if (Mask.empty()) 4361 return V; 4362 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4363 } 4364 4365 ~ShuffleInstructionBuilder() { 4366 assert((IsFinalized || Mask.empty()) && 4367 "Must be finalized construction of the shuffles."); 4368 } 4369 }; 4370 } // namespace 4371 4372 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4373 IRBuilder<>::InsertPointGuard Guard(Builder); 4374 4375 if (E->VectorizedValue) { 4376 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4377 return E->VectorizedValue; 4378 } 4379 4380 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4381 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4382 if (E->State == TreeEntry::NeedToGather) { 4383 setInsertPointAfterBundle(E); 4384 Value *Vec = gather(E->Scalars); 4385 if (NeedToShuffleReuses) { 4386 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4387 Vec = ShuffleBuilder.finalize(Vec); 4388 if (auto *I = dyn_cast<Instruction>(Vec)) { 4389 GatherSeq.insert(I); 4390 CSEBlocks.insert(I->getParent()); 4391 } 4392 } 4393 E->VectorizedValue = Vec; 4394 return Vec; 4395 } 4396 4397 assert((E->State == TreeEntry::Vectorize || 4398 E->State == TreeEntry::ScatterVectorize) && 4399 "Unhandled state"); 4400 unsigned ShuffleOrOp = 4401 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4402 Instruction *VL0 = E->getMainOp(); 4403 Type *ScalarTy = VL0->getType(); 4404 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4405 ScalarTy = Store->getValueOperand()->getType(); 4406 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4407 switch (ShuffleOrOp) { 4408 case Instruction::PHI: { 4409 auto *PH = cast<PHINode>(VL0); 4410 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4411 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4412 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4413 Value *V = NewPhi; 4414 if (NeedToShuffleReuses) 4415 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4416 4417 E->VectorizedValue = V; 4418 4419 // PHINodes may have multiple entries from the same block. We want to 4420 // visit every block once. 4421 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4422 4423 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4424 ValueList Operands; 4425 BasicBlock *IBB = PH->getIncomingBlock(i); 4426 4427 if (!VisitedBBs.insert(IBB).second) { 4428 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4429 continue; 4430 } 4431 4432 Builder.SetInsertPoint(IBB->getTerminator()); 4433 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4434 Value *Vec = vectorizeTree(E->getOperand(i)); 4435 NewPhi->addIncoming(Vec, IBB); 4436 } 4437 4438 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4439 "Invalid number of incoming values"); 4440 return V; 4441 } 4442 4443 case Instruction::ExtractElement: { 4444 Value *V = E->getSingleOperand(0); 4445 Builder.SetInsertPoint(VL0); 4446 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4447 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4448 V = ShuffleBuilder.finalize(V); 4449 E->VectorizedValue = V; 4450 return V; 4451 } 4452 case Instruction::ExtractValue: { 4453 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4454 Builder.SetInsertPoint(LI); 4455 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4456 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4457 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4458 Value *NewV = propagateMetadata(V, E->Scalars); 4459 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4460 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4461 NewV = ShuffleBuilder.finalize(NewV); 4462 E->VectorizedValue = NewV; 4463 return NewV; 4464 } 4465 case Instruction::ZExt: 4466 case Instruction::SExt: 4467 case Instruction::FPToUI: 4468 case Instruction::FPToSI: 4469 case Instruction::FPExt: 4470 case Instruction::PtrToInt: 4471 case Instruction::IntToPtr: 4472 case Instruction::SIToFP: 4473 case Instruction::UIToFP: 4474 case Instruction::Trunc: 4475 case Instruction::FPTrunc: 4476 case Instruction::BitCast: { 4477 setInsertPointAfterBundle(E); 4478 4479 Value *InVec = vectorizeTree(E->getOperand(0)); 4480 4481 if (E->VectorizedValue) { 4482 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4483 return E->VectorizedValue; 4484 } 4485 4486 auto *CI = cast<CastInst>(VL0); 4487 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4488 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4489 V = ShuffleBuilder.finalize(V); 4490 4491 E->VectorizedValue = V; 4492 ++NumVectorInstructions; 4493 return V; 4494 } 4495 case Instruction::FCmp: 4496 case Instruction::ICmp: { 4497 setInsertPointAfterBundle(E); 4498 4499 Value *L = vectorizeTree(E->getOperand(0)); 4500 Value *R = vectorizeTree(E->getOperand(1)); 4501 4502 if (E->VectorizedValue) { 4503 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4504 return E->VectorizedValue; 4505 } 4506 4507 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4508 Value *V = Builder.CreateCmp(P0, L, R); 4509 propagateIRFlags(V, E->Scalars, VL0); 4510 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4511 V = ShuffleBuilder.finalize(V); 4512 4513 E->VectorizedValue = V; 4514 ++NumVectorInstructions; 4515 return V; 4516 } 4517 case Instruction::Select: { 4518 setInsertPointAfterBundle(E); 4519 4520 Value *Cond = vectorizeTree(E->getOperand(0)); 4521 Value *True = vectorizeTree(E->getOperand(1)); 4522 Value *False = vectorizeTree(E->getOperand(2)); 4523 4524 if (E->VectorizedValue) { 4525 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4526 return E->VectorizedValue; 4527 } 4528 4529 Value *V = Builder.CreateSelect(Cond, True, False); 4530 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4531 V = ShuffleBuilder.finalize(V); 4532 4533 E->VectorizedValue = V; 4534 ++NumVectorInstructions; 4535 return V; 4536 } 4537 case Instruction::FNeg: { 4538 setInsertPointAfterBundle(E); 4539 4540 Value *Op = vectorizeTree(E->getOperand(0)); 4541 4542 if (E->VectorizedValue) { 4543 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4544 return E->VectorizedValue; 4545 } 4546 4547 Value *V = Builder.CreateUnOp( 4548 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4549 propagateIRFlags(V, E->Scalars, VL0); 4550 if (auto *I = dyn_cast<Instruction>(V)) 4551 V = propagateMetadata(I, E->Scalars); 4552 4553 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4554 V = ShuffleBuilder.finalize(V); 4555 4556 E->VectorizedValue = V; 4557 ++NumVectorInstructions; 4558 4559 return V; 4560 } 4561 case Instruction::Add: 4562 case Instruction::FAdd: 4563 case Instruction::Sub: 4564 case Instruction::FSub: 4565 case Instruction::Mul: 4566 case Instruction::FMul: 4567 case Instruction::UDiv: 4568 case Instruction::SDiv: 4569 case Instruction::FDiv: 4570 case Instruction::URem: 4571 case Instruction::SRem: 4572 case Instruction::FRem: 4573 case Instruction::Shl: 4574 case Instruction::LShr: 4575 case Instruction::AShr: 4576 case Instruction::And: 4577 case Instruction::Or: 4578 case Instruction::Xor: { 4579 setInsertPointAfterBundle(E); 4580 4581 Value *LHS = vectorizeTree(E->getOperand(0)); 4582 Value *RHS = vectorizeTree(E->getOperand(1)); 4583 4584 if (E->VectorizedValue) { 4585 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4586 return E->VectorizedValue; 4587 } 4588 4589 Value *V = Builder.CreateBinOp( 4590 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4591 RHS); 4592 propagateIRFlags(V, E->Scalars, VL0); 4593 if (auto *I = dyn_cast<Instruction>(V)) 4594 V = propagateMetadata(I, E->Scalars); 4595 4596 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4597 V = ShuffleBuilder.finalize(V); 4598 4599 E->VectorizedValue = V; 4600 ++NumVectorInstructions; 4601 4602 return V; 4603 } 4604 case Instruction::Load: { 4605 // Loads are inserted at the head of the tree because we don't want to 4606 // sink them all the way down past store instructions. 4607 bool IsReorder = E->updateStateIfReorder(); 4608 if (IsReorder) 4609 VL0 = E->getMainOp(); 4610 setInsertPointAfterBundle(E); 4611 4612 LoadInst *LI = cast<LoadInst>(VL0); 4613 Instruction *NewLI; 4614 unsigned AS = LI->getPointerAddressSpace(); 4615 Value *PO = LI->getPointerOperand(); 4616 if (E->State == TreeEntry::Vectorize) { 4617 4618 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4619 4620 // The pointer operand uses an in-tree scalar so we add the new BitCast 4621 // to ExternalUses list to make sure that an extract will be generated 4622 // in the future. 4623 if (getTreeEntry(PO)) 4624 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4625 4626 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4627 } else { 4628 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4629 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4630 // Use the minimum alignment of the gathered loads. 4631 Align CommonAlignment = LI->getAlign(); 4632 for (Value *V : E->Scalars) 4633 CommonAlignment = 4634 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4635 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4636 } 4637 Value *V = propagateMetadata(NewLI, E->Scalars); 4638 4639 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4640 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4641 V = ShuffleBuilder.finalize(V); 4642 E->VectorizedValue = V; 4643 ++NumVectorInstructions; 4644 return V; 4645 } 4646 case Instruction::Store: { 4647 bool IsReorder = !E->ReorderIndices.empty(); 4648 auto *SI = cast<StoreInst>( 4649 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4650 unsigned AS = SI->getPointerAddressSpace(); 4651 4652 setInsertPointAfterBundle(E); 4653 4654 Value *VecValue = vectorizeTree(E->getOperand(0)); 4655 ShuffleBuilder.addMask(E->ReorderIndices); 4656 VecValue = ShuffleBuilder.finalize(VecValue); 4657 4658 Value *ScalarPtr = SI->getPointerOperand(); 4659 Value *VecPtr = Builder.CreateBitCast( 4660 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4661 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4662 SI->getAlign()); 4663 4664 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4665 // ExternalUses to make sure that an extract will be generated in the 4666 // future. 4667 if (getTreeEntry(ScalarPtr)) 4668 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4669 4670 Value *V = propagateMetadata(ST, E->Scalars); 4671 4672 E->VectorizedValue = V; 4673 ++NumVectorInstructions; 4674 return V; 4675 } 4676 case Instruction::GetElementPtr: { 4677 setInsertPointAfterBundle(E); 4678 4679 Value *Op0 = vectorizeTree(E->getOperand(0)); 4680 4681 std::vector<Value *> OpVecs; 4682 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4683 ++j) { 4684 ValueList &VL = E->getOperand(j); 4685 // Need to cast all elements to the same type before vectorization to 4686 // avoid crash. 4687 Type *VL0Ty = VL0->getOperand(j)->getType(); 4688 Type *Ty = llvm::all_of( 4689 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4690 ? VL0Ty 4691 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4692 ->getPointerOperandType() 4693 ->getScalarType()); 4694 for (Value *&V : VL) { 4695 auto *CI = cast<ConstantInt>(V); 4696 V = ConstantExpr::getIntegerCast(CI, Ty, 4697 CI->getValue().isSignBitSet()); 4698 } 4699 Value *OpVec = vectorizeTree(VL); 4700 OpVecs.push_back(OpVec); 4701 } 4702 4703 Value *V = Builder.CreateGEP( 4704 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4705 if (Instruction *I = dyn_cast<Instruction>(V)) 4706 V = propagateMetadata(I, E->Scalars); 4707 4708 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4709 V = ShuffleBuilder.finalize(V); 4710 4711 E->VectorizedValue = V; 4712 ++NumVectorInstructions; 4713 4714 return V; 4715 } 4716 case Instruction::Call: { 4717 CallInst *CI = cast<CallInst>(VL0); 4718 setInsertPointAfterBundle(E); 4719 4720 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4721 if (Function *FI = CI->getCalledFunction()) 4722 IID = FI->getIntrinsicID(); 4723 4724 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4725 4726 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4727 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4728 VecCallCosts.first <= VecCallCosts.second; 4729 4730 Value *ScalarArg = nullptr; 4731 std::vector<Value *> OpVecs; 4732 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4733 ValueList OpVL; 4734 // Some intrinsics have scalar arguments. This argument should not be 4735 // vectorized. 4736 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4737 CallInst *CEI = cast<CallInst>(VL0); 4738 ScalarArg = CEI->getArgOperand(j); 4739 OpVecs.push_back(CEI->getArgOperand(j)); 4740 continue; 4741 } 4742 4743 Value *OpVec = vectorizeTree(E->getOperand(j)); 4744 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4745 OpVecs.push_back(OpVec); 4746 } 4747 4748 Function *CF; 4749 if (!UseIntrinsic) { 4750 VFShape Shape = 4751 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4752 VecTy->getNumElements())), 4753 false /*HasGlobalPred*/); 4754 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4755 } else { 4756 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4757 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4758 } 4759 4760 SmallVector<OperandBundleDef, 1> OpBundles; 4761 CI->getOperandBundlesAsDefs(OpBundles); 4762 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4763 4764 // The scalar argument uses an in-tree scalar so we add the new vectorized 4765 // call to ExternalUses list to make sure that an extract will be 4766 // generated in the future. 4767 if (ScalarArg && getTreeEntry(ScalarArg)) 4768 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4769 4770 propagateIRFlags(V, E->Scalars, VL0); 4771 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4772 V = ShuffleBuilder.finalize(V); 4773 4774 E->VectorizedValue = V; 4775 ++NumVectorInstructions; 4776 return V; 4777 } 4778 case Instruction::ShuffleVector: { 4779 assert(E->isAltShuffle() && 4780 ((Instruction::isBinaryOp(E->getOpcode()) && 4781 Instruction::isBinaryOp(E->getAltOpcode())) || 4782 (Instruction::isCast(E->getOpcode()) && 4783 Instruction::isCast(E->getAltOpcode()))) && 4784 "Invalid Shuffle Vector Operand"); 4785 4786 Value *LHS = nullptr, *RHS = nullptr; 4787 if (Instruction::isBinaryOp(E->getOpcode())) { 4788 setInsertPointAfterBundle(E); 4789 LHS = vectorizeTree(E->getOperand(0)); 4790 RHS = vectorizeTree(E->getOperand(1)); 4791 } else { 4792 setInsertPointAfterBundle(E); 4793 LHS = vectorizeTree(E->getOperand(0)); 4794 } 4795 4796 if (E->VectorizedValue) { 4797 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4798 return E->VectorizedValue; 4799 } 4800 4801 Value *V0, *V1; 4802 if (Instruction::isBinaryOp(E->getOpcode())) { 4803 V0 = Builder.CreateBinOp( 4804 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4805 V1 = Builder.CreateBinOp( 4806 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4807 } else { 4808 V0 = Builder.CreateCast( 4809 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4810 V1 = Builder.CreateCast( 4811 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4812 } 4813 4814 // Create shuffle to take alternate operations from the vector. 4815 // Also, gather up main and alt scalar ops to propagate IR flags to 4816 // each vector operation. 4817 ValueList OpScalars, AltScalars; 4818 unsigned e = E->Scalars.size(); 4819 SmallVector<int, 8> Mask(e); 4820 for (unsigned i = 0; i < e; ++i) { 4821 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4822 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4823 if (OpInst->getOpcode() == E->getAltOpcode()) { 4824 Mask[i] = e + i; 4825 AltScalars.push_back(E->Scalars[i]); 4826 } else { 4827 Mask[i] = i; 4828 OpScalars.push_back(E->Scalars[i]); 4829 } 4830 } 4831 4832 propagateIRFlags(V0, OpScalars); 4833 propagateIRFlags(V1, AltScalars); 4834 4835 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4836 if (Instruction *I = dyn_cast<Instruction>(V)) 4837 V = propagateMetadata(I, E->Scalars); 4838 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4839 V = ShuffleBuilder.finalize(V); 4840 4841 E->VectorizedValue = V; 4842 ++NumVectorInstructions; 4843 4844 return V; 4845 } 4846 default: 4847 llvm_unreachable("unknown inst"); 4848 } 4849 return nullptr; 4850 } 4851 4852 Value *BoUpSLP::vectorizeTree() { 4853 ExtraValueToDebugLocsMap ExternallyUsedValues; 4854 return vectorizeTree(ExternallyUsedValues); 4855 } 4856 4857 Value * 4858 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4859 // All blocks must be scheduled before any instructions are inserted. 4860 for (auto &BSIter : BlocksSchedules) { 4861 scheduleBlock(BSIter.second.get()); 4862 } 4863 4864 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4865 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4866 4867 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4868 // vectorized root. InstCombine will then rewrite the entire expression. We 4869 // sign extend the extracted values below. 4870 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4871 if (MinBWs.count(ScalarRoot)) { 4872 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4873 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4874 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4875 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4876 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4877 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4878 VectorizableTree[0]->VectorizedValue = Trunc; 4879 } 4880 4881 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4882 << " values .\n"); 4883 4884 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4885 // specified by ScalarType. 4886 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4887 if (!MinBWs.count(ScalarRoot)) 4888 return Ex; 4889 if (MinBWs[ScalarRoot].second) 4890 return Builder.CreateSExt(Ex, ScalarType); 4891 return Builder.CreateZExt(Ex, ScalarType); 4892 }; 4893 4894 // Extract all of the elements with the external uses. 4895 for (const auto &ExternalUse : ExternalUses) { 4896 Value *Scalar = ExternalUse.Scalar; 4897 llvm::User *User = ExternalUse.User; 4898 4899 // Skip users that we already RAUW. This happens when one instruction 4900 // has multiple uses of the same value. 4901 if (User && !is_contained(Scalar->users(), User)) 4902 continue; 4903 TreeEntry *E = getTreeEntry(Scalar); 4904 assert(E && "Invalid scalar"); 4905 assert(E->State != TreeEntry::NeedToGather && 4906 "Extracting from a gather list"); 4907 4908 Value *Vec = E->VectorizedValue; 4909 assert(Vec && "Can't find vectorizable value"); 4910 4911 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4912 // If User == nullptr, the Scalar is used as extra arg. Generate 4913 // ExtractElement instruction and update the record for this scalar in 4914 // ExternallyUsedValues. 4915 if (!User) { 4916 assert(ExternallyUsedValues.count(Scalar) && 4917 "Scalar with nullptr as an external user must be registered in " 4918 "ExternallyUsedValues map"); 4919 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4920 Builder.SetInsertPoint(VecI->getParent(), 4921 std::next(VecI->getIterator())); 4922 } else { 4923 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4924 } 4925 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4926 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4927 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4928 auto &Locs = ExternallyUsedValues[Scalar]; 4929 ExternallyUsedValues.insert({Ex, Locs}); 4930 ExternallyUsedValues.erase(Scalar); 4931 // Required to update internally referenced instructions. 4932 Scalar->replaceAllUsesWith(Ex); 4933 continue; 4934 } 4935 4936 // Generate extracts for out-of-tree users. 4937 // Find the insertion point for the extractelement lane. 4938 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4939 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4940 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4941 if (PH->getIncomingValue(i) == Scalar) { 4942 Instruction *IncomingTerminator = 4943 PH->getIncomingBlock(i)->getTerminator(); 4944 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4945 Builder.SetInsertPoint(VecI->getParent(), 4946 std::next(VecI->getIterator())); 4947 } else { 4948 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4949 } 4950 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4951 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4952 CSEBlocks.insert(PH->getIncomingBlock(i)); 4953 PH->setOperand(i, Ex); 4954 } 4955 } 4956 } else { 4957 Builder.SetInsertPoint(cast<Instruction>(User)); 4958 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4959 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4960 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4961 User->replaceUsesOfWith(Scalar, Ex); 4962 } 4963 } else { 4964 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4965 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4966 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4967 CSEBlocks.insert(&F->getEntryBlock()); 4968 User->replaceUsesOfWith(Scalar, Ex); 4969 } 4970 4971 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4972 } 4973 4974 // For each vectorized value: 4975 for (auto &TEPtr : VectorizableTree) { 4976 TreeEntry *Entry = TEPtr.get(); 4977 4978 // No need to handle users of gathered values. 4979 if (Entry->State == TreeEntry::NeedToGather) 4980 continue; 4981 4982 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4983 4984 // For each lane: 4985 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4986 Value *Scalar = Entry->Scalars[Lane]; 4987 4988 #ifndef NDEBUG 4989 Type *Ty = Scalar->getType(); 4990 if (!Ty->isVoidTy()) { 4991 for (User *U : Scalar->users()) { 4992 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4993 4994 // It is legal to delete users in the ignorelist. 4995 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4996 "Deleting out-of-tree value"); 4997 } 4998 } 4999 #endif 5000 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5001 eraseInstruction(cast<Instruction>(Scalar)); 5002 } 5003 } 5004 5005 Builder.ClearInsertionPoint(); 5006 InstrElementSize.clear(); 5007 5008 return VectorizableTree[0]->VectorizedValue; 5009 } 5010 5011 void BoUpSLP::optimizeGatherSequence() { 5012 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5013 << " gather sequences instructions.\n"); 5014 // LICM InsertElementInst sequences. 5015 for (Instruction *I : GatherSeq) { 5016 if (isDeleted(I)) 5017 continue; 5018 5019 // Check if this block is inside a loop. 5020 Loop *L = LI->getLoopFor(I->getParent()); 5021 if (!L) 5022 continue; 5023 5024 // Check if it has a preheader. 5025 BasicBlock *PreHeader = L->getLoopPreheader(); 5026 if (!PreHeader) 5027 continue; 5028 5029 // If the vector or the element that we insert into it are 5030 // instructions that are defined in this basic block then we can't 5031 // hoist this instruction. 5032 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5033 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5034 if (Op0 && L->contains(Op0)) 5035 continue; 5036 if (Op1 && L->contains(Op1)) 5037 continue; 5038 5039 // We can hoist this instruction. Move it to the pre-header. 5040 I->moveBefore(PreHeader->getTerminator()); 5041 } 5042 5043 // Make a list of all reachable blocks in our CSE queue. 5044 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5045 CSEWorkList.reserve(CSEBlocks.size()); 5046 for (BasicBlock *BB : CSEBlocks) 5047 if (DomTreeNode *N = DT->getNode(BB)) { 5048 assert(DT->isReachableFromEntry(N)); 5049 CSEWorkList.push_back(N); 5050 } 5051 5052 // Sort blocks by domination. This ensures we visit a block after all blocks 5053 // dominating it are visited. 5054 llvm::stable_sort(CSEWorkList, 5055 [this](const DomTreeNode *A, const DomTreeNode *B) { 5056 return DT->properlyDominates(A, B); 5057 }); 5058 5059 // Perform O(N^2) search over the gather sequences and merge identical 5060 // instructions. TODO: We can further optimize this scan if we split the 5061 // instructions into different buckets based on the insert lane. 5062 SmallVector<Instruction *, 16> Visited; 5063 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5064 assert(*I && 5065 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5066 "Worklist not sorted properly!"); 5067 BasicBlock *BB = (*I)->getBlock(); 5068 // For all instructions in blocks containing gather sequences: 5069 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5070 Instruction *In = &*it++; 5071 if (isDeleted(In)) 5072 continue; 5073 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5074 continue; 5075 5076 // Check if we can replace this instruction with any of the 5077 // visited instructions. 5078 for (Instruction *v : Visited) { 5079 if (In->isIdenticalTo(v) && 5080 DT->dominates(v->getParent(), In->getParent())) { 5081 In->replaceAllUsesWith(v); 5082 eraseInstruction(In); 5083 In = nullptr; 5084 break; 5085 } 5086 } 5087 if (In) { 5088 assert(!is_contained(Visited, In)); 5089 Visited.push_back(In); 5090 } 5091 } 5092 } 5093 CSEBlocks.clear(); 5094 GatherSeq.clear(); 5095 } 5096 5097 // Groups the instructions to a bundle (which is then a single scheduling entity) 5098 // and schedules instructions until the bundle gets ready. 5099 Optional<BoUpSLP::ScheduleData *> 5100 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5101 const InstructionsState &S) { 5102 if (isa<PHINode>(S.OpValue)) 5103 return nullptr; 5104 5105 // Initialize the instruction bundle. 5106 Instruction *OldScheduleEnd = ScheduleEnd; 5107 ScheduleData *PrevInBundle = nullptr; 5108 ScheduleData *Bundle = nullptr; 5109 bool ReSchedule = false; 5110 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5111 5112 // Make sure that the scheduling region contains all 5113 // instructions of the bundle. 5114 for (Value *V : VL) { 5115 if (!extendSchedulingRegion(V, S)) 5116 return None; 5117 } 5118 5119 for (Value *V : VL) { 5120 ScheduleData *BundleMember = getScheduleData(V); 5121 assert(BundleMember && 5122 "no ScheduleData for bundle member (maybe not in same basic block)"); 5123 if (BundleMember->IsScheduled) { 5124 // A bundle member was scheduled as single instruction before and now 5125 // needs to be scheduled as part of the bundle. We just get rid of the 5126 // existing schedule. 5127 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5128 << " was already scheduled\n"); 5129 ReSchedule = true; 5130 } 5131 assert(BundleMember->isSchedulingEntity() && 5132 "bundle member already part of other bundle"); 5133 if (PrevInBundle) { 5134 PrevInBundle->NextInBundle = BundleMember; 5135 } else { 5136 Bundle = BundleMember; 5137 } 5138 BundleMember->UnscheduledDepsInBundle = 0; 5139 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5140 5141 // Group the instructions to a bundle. 5142 BundleMember->FirstInBundle = Bundle; 5143 PrevInBundle = BundleMember; 5144 } 5145 if (ScheduleEnd != OldScheduleEnd) { 5146 // The scheduling region got new instructions at the lower end (or it is a 5147 // new region for the first bundle). This makes it necessary to 5148 // recalculate all dependencies. 5149 // It is seldom that this needs to be done a second time after adding the 5150 // initial bundle to the region. 5151 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5152 doForAllOpcodes(I, [](ScheduleData *SD) { 5153 SD->clearDependencies(); 5154 }); 5155 } 5156 ReSchedule = true; 5157 } 5158 if (ReSchedule) { 5159 resetSchedule(); 5160 initialFillReadyList(ReadyInsts); 5161 } 5162 assert(Bundle && "Failed to find schedule bundle"); 5163 5164 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5165 << BB->getName() << "\n"); 5166 5167 calculateDependencies(Bundle, true, SLP); 5168 5169 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5170 // means that there are no cyclic dependencies and we can schedule it. 5171 // Note that's important that we don't "schedule" the bundle yet (see 5172 // cancelScheduling). 5173 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5174 5175 ScheduleData *pickedSD = ReadyInsts.back(); 5176 ReadyInsts.pop_back(); 5177 5178 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5179 schedule(pickedSD, ReadyInsts); 5180 } 5181 } 5182 if (!Bundle->isReady()) { 5183 cancelScheduling(VL, S.OpValue); 5184 return None; 5185 } 5186 return Bundle; 5187 } 5188 5189 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5190 Value *OpValue) { 5191 if (isa<PHINode>(OpValue)) 5192 return; 5193 5194 ScheduleData *Bundle = getScheduleData(OpValue); 5195 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5196 assert(!Bundle->IsScheduled && 5197 "Can't cancel bundle which is already scheduled"); 5198 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5199 "tried to unbundle something which is not a bundle"); 5200 5201 // Un-bundle: make single instructions out of the bundle. 5202 ScheduleData *BundleMember = Bundle; 5203 while (BundleMember) { 5204 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5205 BundleMember->FirstInBundle = BundleMember; 5206 ScheduleData *Next = BundleMember->NextInBundle; 5207 BundleMember->NextInBundle = nullptr; 5208 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5209 if (BundleMember->UnscheduledDepsInBundle == 0) { 5210 ReadyInsts.insert(BundleMember); 5211 } 5212 BundleMember = Next; 5213 } 5214 } 5215 5216 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5217 // Allocate a new ScheduleData for the instruction. 5218 if (ChunkPos >= ChunkSize) { 5219 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5220 ChunkPos = 0; 5221 } 5222 return &(ScheduleDataChunks.back()[ChunkPos++]); 5223 } 5224 5225 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5226 const InstructionsState &S) { 5227 if (getScheduleData(V, isOneOf(S, V))) 5228 return true; 5229 Instruction *I = dyn_cast<Instruction>(V); 5230 assert(I && "bundle member must be an instruction"); 5231 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5232 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5233 ScheduleData *ISD = getScheduleData(I); 5234 if (!ISD) 5235 return false; 5236 assert(isInSchedulingRegion(ISD) && 5237 "ScheduleData not in scheduling region"); 5238 ScheduleData *SD = allocateScheduleDataChunks(); 5239 SD->Inst = I; 5240 SD->init(SchedulingRegionID, S.OpValue); 5241 ExtraScheduleDataMap[I][S.OpValue] = SD; 5242 return true; 5243 }; 5244 if (CheckSheduleForI(I)) 5245 return true; 5246 if (!ScheduleStart) { 5247 // It's the first instruction in the new region. 5248 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5249 ScheduleStart = I; 5250 ScheduleEnd = I->getNextNode(); 5251 if (isOneOf(S, I) != I) 5252 CheckSheduleForI(I); 5253 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5254 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5255 return true; 5256 } 5257 // Search up and down at the same time, because we don't know if the new 5258 // instruction is above or below the existing scheduling region. 5259 BasicBlock::reverse_iterator UpIter = 5260 ++ScheduleStart->getIterator().getReverse(); 5261 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5262 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5263 BasicBlock::iterator LowerEnd = BB->end(); 5264 while (true) { 5265 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5266 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5267 return false; 5268 } 5269 5270 if (UpIter != UpperEnd) { 5271 if (&*UpIter == I) { 5272 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5273 ScheduleStart = I; 5274 if (isOneOf(S, I) != I) 5275 CheckSheduleForI(I); 5276 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5277 << "\n"); 5278 return true; 5279 } 5280 ++UpIter; 5281 } 5282 if (DownIter != LowerEnd) { 5283 if (&*DownIter == I) { 5284 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5285 nullptr); 5286 ScheduleEnd = I->getNextNode(); 5287 if (isOneOf(S, I) != I) 5288 CheckSheduleForI(I); 5289 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5290 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5291 << "\n"); 5292 return true; 5293 } 5294 ++DownIter; 5295 } 5296 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5297 "instruction not found in block"); 5298 } 5299 return true; 5300 } 5301 5302 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5303 Instruction *ToI, 5304 ScheduleData *PrevLoadStore, 5305 ScheduleData *NextLoadStore) { 5306 ScheduleData *CurrentLoadStore = PrevLoadStore; 5307 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5308 ScheduleData *SD = ScheduleDataMap[I]; 5309 if (!SD) { 5310 SD = allocateScheduleDataChunks(); 5311 ScheduleDataMap[I] = SD; 5312 SD->Inst = I; 5313 } 5314 assert(!isInSchedulingRegion(SD) && 5315 "new ScheduleData already in scheduling region"); 5316 SD->init(SchedulingRegionID, I); 5317 5318 if (I->mayReadOrWriteMemory() && 5319 (!isa<IntrinsicInst>(I) || 5320 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5321 cast<IntrinsicInst>(I)->getIntrinsicID() != 5322 Intrinsic::pseudoprobe))) { 5323 // Update the linked list of memory accessing instructions. 5324 if (CurrentLoadStore) { 5325 CurrentLoadStore->NextLoadStore = SD; 5326 } else { 5327 FirstLoadStoreInRegion = SD; 5328 } 5329 CurrentLoadStore = SD; 5330 } 5331 } 5332 if (NextLoadStore) { 5333 if (CurrentLoadStore) 5334 CurrentLoadStore->NextLoadStore = NextLoadStore; 5335 } else { 5336 LastLoadStoreInRegion = CurrentLoadStore; 5337 } 5338 } 5339 5340 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5341 bool InsertInReadyList, 5342 BoUpSLP *SLP) { 5343 assert(SD->isSchedulingEntity()); 5344 5345 SmallVector<ScheduleData *, 10> WorkList; 5346 WorkList.push_back(SD); 5347 5348 while (!WorkList.empty()) { 5349 ScheduleData *SD = WorkList.back(); 5350 WorkList.pop_back(); 5351 5352 ScheduleData *BundleMember = SD; 5353 while (BundleMember) { 5354 assert(isInSchedulingRegion(BundleMember)); 5355 if (!BundleMember->hasValidDependencies()) { 5356 5357 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5358 << "\n"); 5359 BundleMember->Dependencies = 0; 5360 BundleMember->resetUnscheduledDeps(); 5361 5362 // Handle def-use chain dependencies. 5363 if (BundleMember->OpValue != BundleMember->Inst) { 5364 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5365 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5366 BundleMember->Dependencies++; 5367 ScheduleData *DestBundle = UseSD->FirstInBundle; 5368 if (!DestBundle->IsScheduled) 5369 BundleMember->incrementUnscheduledDeps(1); 5370 if (!DestBundle->hasValidDependencies()) 5371 WorkList.push_back(DestBundle); 5372 } 5373 } else { 5374 for (User *U : BundleMember->Inst->users()) { 5375 if (isa<Instruction>(U)) { 5376 ScheduleData *UseSD = getScheduleData(U); 5377 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5378 BundleMember->Dependencies++; 5379 ScheduleData *DestBundle = UseSD->FirstInBundle; 5380 if (!DestBundle->IsScheduled) 5381 BundleMember->incrementUnscheduledDeps(1); 5382 if (!DestBundle->hasValidDependencies()) 5383 WorkList.push_back(DestBundle); 5384 } 5385 } else { 5386 // I'm not sure if this can ever happen. But we need to be safe. 5387 // This lets the instruction/bundle never be scheduled and 5388 // eventually disable vectorization. 5389 BundleMember->Dependencies++; 5390 BundleMember->incrementUnscheduledDeps(1); 5391 } 5392 } 5393 } 5394 5395 // Handle the memory dependencies. 5396 ScheduleData *DepDest = BundleMember->NextLoadStore; 5397 if (DepDest) { 5398 Instruction *SrcInst = BundleMember->Inst; 5399 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5400 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5401 unsigned numAliased = 0; 5402 unsigned DistToSrc = 1; 5403 5404 while (DepDest) { 5405 assert(isInSchedulingRegion(DepDest)); 5406 5407 // We have two limits to reduce the complexity: 5408 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5409 // SLP->isAliased (which is the expensive part in this loop). 5410 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5411 // the whole loop (even if the loop is fast, it's quadratic). 5412 // It's important for the loop break condition (see below) to 5413 // check this limit even between two read-only instructions. 5414 if (DistToSrc >= MaxMemDepDistance || 5415 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5416 (numAliased >= AliasedCheckLimit || 5417 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5418 5419 // We increment the counter only if the locations are aliased 5420 // (instead of counting all alias checks). This gives a better 5421 // balance between reduced runtime and accurate dependencies. 5422 numAliased++; 5423 5424 DepDest->MemoryDependencies.push_back(BundleMember); 5425 BundleMember->Dependencies++; 5426 ScheduleData *DestBundle = DepDest->FirstInBundle; 5427 if (!DestBundle->IsScheduled) { 5428 BundleMember->incrementUnscheduledDeps(1); 5429 } 5430 if (!DestBundle->hasValidDependencies()) { 5431 WorkList.push_back(DestBundle); 5432 } 5433 } 5434 DepDest = DepDest->NextLoadStore; 5435 5436 // Example, explaining the loop break condition: Let's assume our 5437 // starting instruction is i0 and MaxMemDepDistance = 3. 5438 // 5439 // +--------v--v--v 5440 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5441 // +--------^--^--^ 5442 // 5443 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5444 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5445 // Previously we already added dependencies from i3 to i6,i7,i8 5446 // (because of MaxMemDepDistance). As we added a dependency from 5447 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5448 // and we can abort this loop at i6. 5449 if (DistToSrc >= 2 * MaxMemDepDistance) 5450 break; 5451 DistToSrc++; 5452 } 5453 } 5454 } 5455 BundleMember = BundleMember->NextInBundle; 5456 } 5457 if (InsertInReadyList && SD->isReady()) { 5458 ReadyInsts.push_back(SD); 5459 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5460 << "\n"); 5461 } 5462 } 5463 } 5464 5465 void BoUpSLP::BlockScheduling::resetSchedule() { 5466 assert(ScheduleStart && 5467 "tried to reset schedule on block which has not been scheduled"); 5468 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5469 doForAllOpcodes(I, [&](ScheduleData *SD) { 5470 assert(isInSchedulingRegion(SD) && 5471 "ScheduleData not in scheduling region"); 5472 SD->IsScheduled = false; 5473 SD->resetUnscheduledDeps(); 5474 }); 5475 } 5476 ReadyInsts.clear(); 5477 } 5478 5479 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5480 if (!BS->ScheduleStart) 5481 return; 5482 5483 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5484 5485 BS->resetSchedule(); 5486 5487 // For the real scheduling we use a more sophisticated ready-list: it is 5488 // sorted by the original instruction location. This lets the final schedule 5489 // be as close as possible to the original instruction order. 5490 struct ScheduleDataCompare { 5491 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5492 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5493 } 5494 }; 5495 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5496 5497 // Ensure that all dependency data is updated and fill the ready-list with 5498 // initial instructions. 5499 int Idx = 0; 5500 int NumToSchedule = 0; 5501 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5502 I = I->getNextNode()) { 5503 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5504 assert(SD->isPartOfBundle() == 5505 (getTreeEntry(SD->Inst) != nullptr) && 5506 "scheduler and vectorizer bundle mismatch"); 5507 SD->FirstInBundle->SchedulingPriority = Idx++; 5508 if (SD->isSchedulingEntity()) { 5509 BS->calculateDependencies(SD, false, this); 5510 NumToSchedule++; 5511 } 5512 }); 5513 } 5514 BS->initialFillReadyList(ReadyInsts); 5515 5516 Instruction *LastScheduledInst = BS->ScheduleEnd; 5517 5518 // Do the "real" scheduling. 5519 while (!ReadyInsts.empty()) { 5520 ScheduleData *picked = *ReadyInsts.begin(); 5521 ReadyInsts.erase(ReadyInsts.begin()); 5522 5523 // Move the scheduled instruction(s) to their dedicated places, if not 5524 // there yet. 5525 ScheduleData *BundleMember = picked; 5526 while (BundleMember) { 5527 Instruction *pickedInst = BundleMember->Inst; 5528 if (LastScheduledInst->getNextNode() != pickedInst) { 5529 BS->BB->getInstList().remove(pickedInst); 5530 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5531 pickedInst); 5532 } 5533 LastScheduledInst = pickedInst; 5534 BundleMember = BundleMember->NextInBundle; 5535 } 5536 5537 BS->schedule(picked, ReadyInsts); 5538 NumToSchedule--; 5539 } 5540 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5541 5542 // Avoid duplicate scheduling of the block. 5543 BS->ScheduleStart = nullptr; 5544 } 5545 5546 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5547 // If V is a store, just return the width of the stored value (or value 5548 // truncated just before storing) without traversing the expression tree. 5549 // This is the common case. 5550 if (auto *Store = dyn_cast<StoreInst>(V)) { 5551 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5552 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5553 else 5554 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5555 } 5556 5557 auto E = InstrElementSize.find(V); 5558 if (E != InstrElementSize.end()) 5559 return E->second; 5560 5561 // If V is not a store, we can traverse the expression tree to find loads 5562 // that feed it. The type of the loaded value may indicate a more suitable 5563 // width than V's type. We want to base the vector element size on the width 5564 // of memory operations where possible. 5565 SmallVector<Instruction *, 16> Worklist; 5566 SmallPtrSet<Instruction *, 16> Visited; 5567 if (auto *I = dyn_cast<Instruction>(V)) { 5568 Worklist.push_back(I); 5569 Visited.insert(I); 5570 } 5571 5572 // Traverse the expression tree in bottom-up order looking for loads. If we 5573 // encounter an instruction we don't yet handle, we give up. 5574 auto MaxWidth = 0u; 5575 auto FoundUnknownInst = false; 5576 while (!Worklist.empty() && !FoundUnknownInst) { 5577 auto *I = Worklist.pop_back_val(); 5578 5579 // We should only be looking at scalar instructions here. If the current 5580 // instruction has a vector type, give up. 5581 auto *Ty = I->getType(); 5582 if (isa<VectorType>(Ty)) 5583 FoundUnknownInst = true; 5584 5585 // If the current instruction is a load, update MaxWidth to reflect the 5586 // width of the loaded value. 5587 else if (isa<LoadInst>(I)) 5588 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5589 5590 // Otherwise, we need to visit the operands of the instruction. We only 5591 // handle the interesting cases from buildTree here. If an operand is an 5592 // instruction we haven't yet visited, we add it to the worklist. 5593 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5594 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5595 for (Use &U : I->operands()) 5596 if (auto *J = dyn_cast<Instruction>(U.get())) 5597 if (Visited.insert(J).second) 5598 Worklist.push_back(J); 5599 } 5600 5601 // If we don't yet handle the instruction, give up. 5602 else 5603 FoundUnknownInst = true; 5604 } 5605 5606 int Width = MaxWidth; 5607 // If we didn't encounter a memory access in the expression tree, or if we 5608 // gave up for some reason, just return the width of V. Otherwise, return the 5609 // maximum width we found. 5610 if (!MaxWidth || FoundUnknownInst) 5611 Width = DL->getTypeSizeInBits(V->getType()); 5612 5613 for (Instruction *I : Visited) 5614 InstrElementSize[I] = Width; 5615 5616 return Width; 5617 } 5618 5619 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5620 // smaller type with a truncation. We collect the values that will be demoted 5621 // in ToDemote and additional roots that require investigating in Roots. 5622 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5623 SmallVectorImpl<Value *> &ToDemote, 5624 SmallVectorImpl<Value *> &Roots) { 5625 // We can always demote constants. 5626 if (isa<Constant>(V)) { 5627 ToDemote.push_back(V); 5628 return true; 5629 } 5630 5631 // If the value is not an instruction in the expression with only one use, it 5632 // cannot be demoted. 5633 auto *I = dyn_cast<Instruction>(V); 5634 if (!I || !I->hasOneUse() || !Expr.count(I)) 5635 return false; 5636 5637 switch (I->getOpcode()) { 5638 5639 // We can always demote truncations and extensions. Since truncations can 5640 // seed additional demotion, we save the truncated value. 5641 case Instruction::Trunc: 5642 Roots.push_back(I->getOperand(0)); 5643 break; 5644 case Instruction::ZExt: 5645 case Instruction::SExt: 5646 break; 5647 5648 // We can demote certain binary operations if we can demote both of their 5649 // operands. 5650 case Instruction::Add: 5651 case Instruction::Sub: 5652 case Instruction::Mul: 5653 case Instruction::And: 5654 case Instruction::Or: 5655 case Instruction::Xor: 5656 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5657 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5658 return false; 5659 break; 5660 5661 // We can demote selects if we can demote their true and false values. 5662 case Instruction::Select: { 5663 SelectInst *SI = cast<SelectInst>(I); 5664 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5665 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5666 return false; 5667 break; 5668 } 5669 5670 // We can demote phis if we can demote all their incoming operands. Note that 5671 // we don't need to worry about cycles since we ensure single use above. 5672 case Instruction::PHI: { 5673 PHINode *PN = cast<PHINode>(I); 5674 for (Value *IncValue : PN->incoming_values()) 5675 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5676 return false; 5677 break; 5678 } 5679 5680 // Otherwise, conservatively give up. 5681 default: 5682 return false; 5683 } 5684 5685 // Record the value that we can demote. 5686 ToDemote.push_back(V); 5687 return true; 5688 } 5689 5690 void BoUpSLP::computeMinimumValueSizes() { 5691 // If there are no external uses, the expression tree must be rooted by a 5692 // store. We can't demote in-memory values, so there is nothing to do here. 5693 if (ExternalUses.empty()) 5694 return; 5695 5696 // We only attempt to truncate integer expressions. 5697 auto &TreeRoot = VectorizableTree[0]->Scalars; 5698 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5699 if (!TreeRootIT) 5700 return; 5701 5702 // If the expression is not rooted by a store, these roots should have 5703 // external uses. We will rely on InstCombine to rewrite the expression in 5704 // the narrower type. However, InstCombine only rewrites single-use values. 5705 // This means that if a tree entry other than a root is used externally, it 5706 // must have multiple uses and InstCombine will not rewrite it. The code 5707 // below ensures that only the roots are used externally. 5708 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5709 for (auto &EU : ExternalUses) 5710 if (!Expr.erase(EU.Scalar)) 5711 return; 5712 if (!Expr.empty()) 5713 return; 5714 5715 // Collect the scalar values of the vectorizable expression. We will use this 5716 // context to determine which values can be demoted. If we see a truncation, 5717 // we mark it as seeding another demotion. 5718 for (auto &EntryPtr : VectorizableTree) 5719 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5720 5721 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5722 // have a single external user that is not in the vectorizable tree. 5723 for (auto *Root : TreeRoot) 5724 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5725 return; 5726 5727 // Conservatively determine if we can actually truncate the roots of the 5728 // expression. Collect the values that can be demoted in ToDemote and 5729 // additional roots that require investigating in Roots. 5730 SmallVector<Value *, 32> ToDemote; 5731 SmallVector<Value *, 4> Roots; 5732 for (auto *Root : TreeRoot) 5733 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5734 return; 5735 5736 // The maximum bit width required to represent all the values that can be 5737 // demoted without loss of precision. It would be safe to truncate the roots 5738 // of the expression to this width. 5739 auto MaxBitWidth = 8u; 5740 5741 // We first check if all the bits of the roots are demanded. If they're not, 5742 // we can truncate the roots to this narrower type. 5743 for (auto *Root : TreeRoot) { 5744 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5745 MaxBitWidth = std::max<unsigned>( 5746 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5747 } 5748 5749 // True if the roots can be zero-extended back to their original type, rather 5750 // than sign-extended. We know that if the leading bits are not demanded, we 5751 // can safely zero-extend. So we initialize IsKnownPositive to True. 5752 bool IsKnownPositive = true; 5753 5754 // If all the bits of the roots are demanded, we can try a little harder to 5755 // compute a narrower type. This can happen, for example, if the roots are 5756 // getelementptr indices. InstCombine promotes these indices to the pointer 5757 // width. Thus, all their bits are technically demanded even though the 5758 // address computation might be vectorized in a smaller type. 5759 // 5760 // We start by looking at each entry that can be demoted. We compute the 5761 // maximum bit width required to store the scalar by using ValueTracking to 5762 // compute the number of high-order bits we can truncate. 5763 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5764 llvm::all_of(TreeRoot, [](Value *R) { 5765 assert(R->hasOneUse() && "Root should have only one use!"); 5766 return isa<GetElementPtrInst>(R->user_back()); 5767 })) { 5768 MaxBitWidth = 8u; 5769 5770 // Determine if the sign bit of all the roots is known to be zero. If not, 5771 // IsKnownPositive is set to False. 5772 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5773 KnownBits Known = computeKnownBits(R, *DL); 5774 return Known.isNonNegative(); 5775 }); 5776 5777 // Determine the maximum number of bits required to store the scalar 5778 // values. 5779 for (auto *Scalar : ToDemote) { 5780 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5781 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5782 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5783 } 5784 5785 // If we can't prove that the sign bit is zero, we must add one to the 5786 // maximum bit width to account for the unknown sign bit. This preserves 5787 // the existing sign bit so we can safely sign-extend the root back to the 5788 // original type. Otherwise, if we know the sign bit is zero, we will 5789 // zero-extend the root instead. 5790 // 5791 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5792 // one to the maximum bit width will yield a larger-than-necessary 5793 // type. In general, we need to add an extra bit only if we can't 5794 // prove that the upper bit of the original type is equal to the 5795 // upper bit of the proposed smaller type. If these two bits are the 5796 // same (either zero or one) we know that sign-extending from the 5797 // smaller type will result in the same value. Here, since we can't 5798 // yet prove this, we are just making the proposed smaller type 5799 // larger to ensure correctness. 5800 if (!IsKnownPositive) 5801 ++MaxBitWidth; 5802 } 5803 5804 // Round MaxBitWidth up to the next power-of-two. 5805 if (!isPowerOf2_64(MaxBitWidth)) 5806 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5807 5808 // If the maximum bit width we compute is less than the with of the roots' 5809 // type, we can proceed with the narrowing. Otherwise, do nothing. 5810 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5811 return; 5812 5813 // If we can truncate the root, we must collect additional values that might 5814 // be demoted as a result. That is, those seeded by truncations we will 5815 // modify. 5816 while (!Roots.empty()) 5817 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5818 5819 // Finally, map the values we can demote to the maximum bit with we computed. 5820 for (auto *Scalar : ToDemote) 5821 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5822 } 5823 5824 namespace { 5825 5826 /// The SLPVectorizer Pass. 5827 struct SLPVectorizer : public FunctionPass { 5828 SLPVectorizerPass Impl; 5829 5830 /// Pass identification, replacement for typeid 5831 static char ID; 5832 5833 explicit SLPVectorizer() : FunctionPass(ID) { 5834 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5835 } 5836 5837 bool doInitialization(Module &M) override { 5838 return false; 5839 } 5840 5841 bool runOnFunction(Function &F) override { 5842 if (skipFunction(F)) 5843 return false; 5844 5845 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5846 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5847 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5848 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5849 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5850 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5851 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5852 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5853 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5854 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5855 5856 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5857 } 5858 5859 void getAnalysisUsage(AnalysisUsage &AU) const override { 5860 FunctionPass::getAnalysisUsage(AU); 5861 AU.addRequired<AssumptionCacheTracker>(); 5862 AU.addRequired<ScalarEvolutionWrapperPass>(); 5863 AU.addRequired<AAResultsWrapperPass>(); 5864 AU.addRequired<TargetTransformInfoWrapperPass>(); 5865 AU.addRequired<LoopInfoWrapperPass>(); 5866 AU.addRequired<DominatorTreeWrapperPass>(); 5867 AU.addRequired<DemandedBitsWrapperPass>(); 5868 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5869 AU.addRequired<InjectTLIMappingsLegacy>(); 5870 AU.addPreserved<LoopInfoWrapperPass>(); 5871 AU.addPreserved<DominatorTreeWrapperPass>(); 5872 AU.addPreserved<AAResultsWrapperPass>(); 5873 AU.addPreserved<GlobalsAAWrapperPass>(); 5874 AU.setPreservesCFG(); 5875 } 5876 }; 5877 5878 } // end anonymous namespace 5879 5880 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5881 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5882 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5883 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5884 auto *AA = &AM.getResult<AAManager>(F); 5885 auto *LI = &AM.getResult<LoopAnalysis>(F); 5886 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5887 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5888 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5889 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5890 5891 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5892 if (!Changed) 5893 return PreservedAnalyses::all(); 5894 5895 PreservedAnalyses PA; 5896 PA.preserveSet<CFGAnalyses>(); 5897 PA.preserve<AAManager>(); 5898 PA.preserve<GlobalsAA>(); 5899 return PA; 5900 } 5901 5902 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5903 TargetTransformInfo *TTI_, 5904 TargetLibraryInfo *TLI_, AAResults *AA_, 5905 LoopInfo *LI_, DominatorTree *DT_, 5906 AssumptionCache *AC_, DemandedBits *DB_, 5907 OptimizationRemarkEmitter *ORE_) { 5908 if (!RunSLPVectorization) 5909 return false; 5910 SE = SE_; 5911 TTI = TTI_; 5912 TLI = TLI_; 5913 AA = AA_; 5914 LI = LI_; 5915 DT = DT_; 5916 AC = AC_; 5917 DB = DB_; 5918 DL = &F.getParent()->getDataLayout(); 5919 5920 Stores.clear(); 5921 GEPs.clear(); 5922 bool Changed = false; 5923 5924 // If the target claims to have no vector registers don't attempt 5925 // vectorization. 5926 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5927 return false; 5928 5929 // Don't vectorize when the attribute NoImplicitFloat is used. 5930 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5931 return false; 5932 5933 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5934 5935 // Use the bottom up slp vectorizer to construct chains that start with 5936 // store instructions. 5937 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5938 5939 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5940 // delete instructions. 5941 5942 // Scan the blocks in the function in post order. 5943 for (auto BB : post_order(&F.getEntryBlock())) { 5944 collectSeedInstructions(BB); 5945 5946 // Vectorize trees that end at stores. 5947 if (!Stores.empty()) { 5948 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5949 << " underlying objects.\n"); 5950 Changed |= vectorizeStoreChains(R); 5951 } 5952 5953 // Vectorize trees that end at reductions. 5954 Changed |= vectorizeChainsInBlock(BB, R); 5955 5956 // Vectorize the index computations of getelementptr instructions. This 5957 // is primarily intended to catch gather-like idioms ending at 5958 // non-consecutive loads. 5959 if (!GEPs.empty()) { 5960 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5961 << " underlying objects.\n"); 5962 Changed |= vectorizeGEPIndices(BB, R); 5963 } 5964 } 5965 5966 if (Changed) { 5967 R.optimizeGatherSequence(); 5968 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5969 } 5970 return Changed; 5971 } 5972 5973 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5974 unsigned Idx) { 5975 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5976 << "\n"); 5977 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5978 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5979 unsigned VF = Chain.size(); 5980 5981 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5982 return false; 5983 5984 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5985 << "\n"); 5986 5987 R.buildTree(Chain); 5988 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5989 // TODO: Handle orders of size less than number of elements in the vector. 5990 if (Order && Order->size() == Chain.size()) { 5991 // TODO: reorder tree nodes without tree rebuilding. 5992 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5993 llvm::transform(*Order, ReorderedOps.begin(), 5994 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5995 R.buildTree(ReorderedOps); 5996 } 5997 if (R.isTreeTinyAndNotFullyVectorizable()) 5998 return false; 5999 if (R.isLoadCombineCandidate()) 6000 return false; 6001 6002 R.computeMinimumValueSizes(); 6003 6004 InstructionCost Cost = R.getTreeCost(); 6005 6006 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6007 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6008 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6009 6010 using namespace ore; 6011 6012 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6013 cast<StoreInst>(Chain[0])) 6014 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6015 << " and with tree size " 6016 << NV("TreeSize", R.getTreeSize())); 6017 6018 R.vectorizeTree(); 6019 return true; 6020 } 6021 6022 return false; 6023 } 6024 6025 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6026 BoUpSLP &R) { 6027 // We may run into multiple chains that merge into a single chain. We mark the 6028 // stores that we vectorized so that we don't visit the same store twice. 6029 BoUpSLP::ValueSet VectorizedStores; 6030 bool Changed = false; 6031 6032 int E = Stores.size(); 6033 SmallBitVector Tails(E, false); 6034 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6035 int MaxIter = MaxStoreLookup.getValue(); 6036 int IterCnt; 6037 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6038 &ConsecutiveChain](int K, int Idx) { 6039 if (IterCnt >= MaxIter) 6040 return true; 6041 ++IterCnt; 6042 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6043 return false; 6044 6045 Tails.set(Idx); 6046 ConsecutiveChain[K] = Idx; 6047 return true; 6048 }; 6049 // Do a quadratic search on all of the given stores in reverse order and find 6050 // all of the pairs of stores that follow each other. 6051 for (int Idx = E - 1; Idx >= 0; --Idx) { 6052 // If a store has multiple consecutive store candidates, search according 6053 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6054 // This is because usually pairing with immediate succeeding or preceding 6055 // candidate create the best chance to find slp vectorization opportunity. 6056 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6057 IterCnt = 0; 6058 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6059 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6060 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6061 break; 6062 } 6063 6064 // For stores that start but don't end a link in the chain: 6065 for (int Cnt = E; Cnt > 0; --Cnt) { 6066 int I = Cnt - 1; 6067 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6068 continue; 6069 // We found a store instr that starts a chain. Now follow the chain and try 6070 // to vectorize it. 6071 BoUpSLP::ValueList Operands; 6072 // Collect the chain into a list. 6073 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6074 Operands.push_back(Stores[I]); 6075 // Move to the next value in the chain. 6076 I = ConsecutiveChain[I]; 6077 } 6078 6079 // If a vector register can't hold 1 element, we are done. 6080 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6081 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6082 if (MaxVecRegSize % EltSize != 0) 6083 continue; 6084 6085 unsigned MaxElts = MaxVecRegSize / EltSize; 6086 // FIXME: Is division-by-2 the correct step? Should we assert that the 6087 // register size is a power-of-2? 6088 unsigned StartIdx = 0; 6089 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6090 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6091 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6092 if (!VectorizedStores.count(Slice.front()) && 6093 !VectorizedStores.count(Slice.back()) && 6094 vectorizeStoreChain(Slice, R, Cnt)) { 6095 // Mark the vectorized stores so that we don't vectorize them again. 6096 VectorizedStores.insert(Slice.begin(), Slice.end()); 6097 Changed = true; 6098 // If we vectorized initial block, no need to try to vectorize it 6099 // again. 6100 if (Cnt == StartIdx) 6101 StartIdx += Size; 6102 Cnt += Size; 6103 continue; 6104 } 6105 ++Cnt; 6106 } 6107 // Check if the whole array was vectorized already - exit. 6108 if (StartIdx >= Operands.size()) 6109 break; 6110 } 6111 } 6112 6113 return Changed; 6114 } 6115 6116 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6117 // Initialize the collections. We will make a single pass over the block. 6118 Stores.clear(); 6119 GEPs.clear(); 6120 6121 // Visit the store and getelementptr instructions in BB and organize them in 6122 // Stores and GEPs according to the underlying objects of their pointer 6123 // operands. 6124 for (Instruction &I : *BB) { 6125 // Ignore store instructions that are volatile or have a pointer operand 6126 // that doesn't point to a scalar type. 6127 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6128 if (!SI->isSimple()) 6129 continue; 6130 if (!isValidElementType(SI->getValueOperand()->getType())) 6131 continue; 6132 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6133 } 6134 6135 // Ignore getelementptr instructions that have more than one index, a 6136 // constant index, or a pointer operand that doesn't point to a scalar 6137 // type. 6138 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6139 auto Idx = GEP->idx_begin()->get(); 6140 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6141 continue; 6142 if (!isValidElementType(Idx->getType())) 6143 continue; 6144 if (GEP->getType()->isVectorTy()) 6145 continue; 6146 GEPs[GEP->getPointerOperand()].push_back(GEP); 6147 } 6148 } 6149 } 6150 6151 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6152 if (!A || !B) 6153 return false; 6154 Value *VL[] = {A, B}; 6155 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6156 } 6157 6158 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6159 bool AllowReorder, 6160 ArrayRef<Value *> InsertUses) { 6161 if (VL.size() < 2) 6162 return false; 6163 6164 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6165 << VL.size() << ".\n"); 6166 6167 // Check that all of the parts are instructions of the same type, 6168 // we permit an alternate opcode via InstructionsState. 6169 InstructionsState S = getSameOpcode(VL); 6170 if (!S.getOpcode()) 6171 return false; 6172 6173 Instruction *I0 = cast<Instruction>(S.OpValue); 6174 // Make sure invalid types (including vector type) are rejected before 6175 // determining vectorization factor for scalar instructions. 6176 for (Value *V : VL) { 6177 Type *Ty = V->getType(); 6178 if (!isValidElementType(Ty)) { 6179 // NOTE: the following will give user internal llvm type name, which may 6180 // not be useful. 6181 R.getORE()->emit([&]() { 6182 std::string type_str; 6183 llvm::raw_string_ostream rso(type_str); 6184 Ty->print(rso); 6185 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6186 << "Cannot SLP vectorize list: type " 6187 << rso.str() + " is unsupported by vectorizer"; 6188 }); 6189 return false; 6190 } 6191 } 6192 6193 unsigned Sz = R.getVectorElementSize(I0); 6194 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6195 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6196 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6197 if (MaxVF < 2) { 6198 R.getORE()->emit([&]() { 6199 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6200 << "Cannot SLP vectorize list: vectorization factor " 6201 << "less than 2 is not supported"; 6202 }); 6203 return false; 6204 } 6205 6206 bool Changed = false; 6207 bool CandidateFound = false; 6208 InstructionCost MinCost = SLPCostThreshold.getValue(); 6209 6210 bool CompensateUseCost = 6211 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6212 return V && isa<InsertElementInst>(V); 6213 }); 6214 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6215 "Each scalar expected to have an associated InsertElement user."); 6216 6217 unsigned NextInst = 0, MaxInst = VL.size(); 6218 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6219 // No actual vectorization should happen, if number of parts is the same as 6220 // provided vectorization factor (i.e. the scalar type is used for vector 6221 // code during codegen). 6222 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6223 if (TTI->getNumberOfParts(VecTy) == VF) 6224 continue; 6225 for (unsigned I = NextInst; I < MaxInst; ++I) { 6226 unsigned OpsWidth = 0; 6227 6228 if (I + VF > MaxInst) 6229 OpsWidth = MaxInst - I; 6230 else 6231 OpsWidth = VF; 6232 6233 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6234 break; 6235 6236 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6237 // Check that a previous iteration of this loop did not delete the Value. 6238 if (llvm::any_of(Ops, [&R](Value *V) { 6239 auto *I = dyn_cast<Instruction>(V); 6240 return I && R.isDeleted(I); 6241 })) 6242 continue; 6243 6244 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6245 << "\n"); 6246 6247 R.buildTree(Ops); 6248 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6249 // TODO: check if we can allow reordering for more cases. 6250 if (AllowReorder && Order) { 6251 // TODO: reorder tree nodes without tree rebuilding. 6252 // Conceptually, there is nothing actually preventing us from trying to 6253 // reorder a larger list. In fact, we do exactly this when vectorizing 6254 // reductions. However, at this point, we only expect to get here when 6255 // there are exactly two operations. 6256 assert(Ops.size() == 2); 6257 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6258 R.buildTree(ReorderedOps, None); 6259 } 6260 if (R.isTreeTinyAndNotFullyVectorizable()) 6261 continue; 6262 6263 R.computeMinimumValueSizes(); 6264 InstructionCost Cost = R.getTreeCost(); 6265 CandidateFound = true; 6266 if (CompensateUseCost) { 6267 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6268 // rather than sum of single inserts as the latter may overestimate 6269 // cost. This work should imply improving cost estimation for extracts 6270 // that added in for external (for vectorization tree) users,i.e. that 6271 // part should also switch to same interface. 6272 // For example, the following case is projected code after SLP: 6273 // %4 = extractelement <4 x i64> %3, i32 0 6274 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6275 // %5 = extractelement <4 x i64> %3, i32 1 6276 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6277 // %6 = extractelement <4 x i64> %3, i32 2 6278 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6279 // %7 = extractelement <4 x i64> %3, i32 3 6280 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6281 // 6282 // Extracts here added by SLP in order to feed users (the inserts) of 6283 // original scalars and contribute to "ExtractCost" at cost evaluation. 6284 // The inserts in turn form sequence to build an aggregate that 6285 // detected by findBuildAggregate routine. 6286 // SLP makes an assumption that such sequence will be optimized away 6287 // later (instcombine) so it tries to compensate ExctractCost with 6288 // cost of insert sequence. 6289 // Current per element cost calculation approach is not quite accurate 6290 // and tends to create bias toward favoring vectorization. 6291 // Switching to the TTI interface might help a bit. 6292 // Alternative solution could be pattern-match to detect a no-op or 6293 // shuffle. 6294 InstructionCost UserCost = 0; 6295 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6296 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6297 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6298 UserCost += TTI->getVectorInstrCost( 6299 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6300 } 6301 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6302 << ".\n"); 6303 Cost -= UserCost; 6304 } 6305 6306 MinCost = InstructionCost::min(MinCost, Cost); 6307 6308 if (Cost.isValid() && Cost < -SLPCostThreshold) { 6309 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6310 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6311 cast<Instruction>(Ops[0])) 6312 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6313 << " and with tree size " 6314 << ore::NV("TreeSize", R.getTreeSize())); 6315 6316 R.vectorizeTree(); 6317 // Move to the next bundle. 6318 I += VF - 1; 6319 NextInst = I + 1; 6320 Changed = true; 6321 } 6322 } 6323 } 6324 6325 if (!Changed && CandidateFound) { 6326 R.getORE()->emit([&]() { 6327 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6328 << "List vectorization was possible but not beneficial with cost " 6329 << ore::NV("Cost", MinCost) << " >= " 6330 << ore::NV("Treshold", -SLPCostThreshold); 6331 }); 6332 } else if (!Changed) { 6333 R.getORE()->emit([&]() { 6334 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6335 << "Cannot SLP vectorize list: vectorization was impossible" 6336 << " with available vectorization factors"; 6337 }); 6338 } 6339 return Changed; 6340 } 6341 6342 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6343 if (!I) 6344 return false; 6345 6346 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6347 return false; 6348 6349 Value *P = I->getParent(); 6350 6351 // Vectorize in current basic block only. 6352 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6353 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6354 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6355 return false; 6356 6357 // Try to vectorize V. 6358 if (tryToVectorizePair(Op0, Op1, R)) 6359 return true; 6360 6361 auto *A = dyn_cast<BinaryOperator>(Op0); 6362 auto *B = dyn_cast<BinaryOperator>(Op1); 6363 // Try to skip B. 6364 if (B && B->hasOneUse()) { 6365 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6366 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6367 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6368 return true; 6369 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6370 return true; 6371 } 6372 6373 // Try to skip A. 6374 if (A && A->hasOneUse()) { 6375 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6376 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6377 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6378 return true; 6379 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6380 return true; 6381 } 6382 return false; 6383 } 6384 6385 /// Generate a shuffle mask to be used in a reduction tree. 6386 /// 6387 /// \param VecLen The length of the vector to be reduced. 6388 /// \param NumEltsToRdx The number of elements that should be reduced in the 6389 /// vector. 6390 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6391 /// reduction. A pairwise reduction will generate a mask of 6392 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6393 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6394 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6395 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6396 unsigned NumEltsToRdx, 6397 bool IsPairwise, bool IsLeft) { 6398 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6399 6400 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6401 6402 if (IsPairwise) 6403 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6404 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6405 ShuffleMask[i] = 2 * i + !IsLeft; 6406 else 6407 // Move the upper half of the vector to the lower half. 6408 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6409 ShuffleMask[i] = NumEltsToRdx + i; 6410 6411 return ShuffleMask; 6412 } 6413 6414 namespace { 6415 6416 /// Model horizontal reductions. 6417 /// 6418 /// A horizontal reduction is a tree of reduction instructions that has values 6419 /// that can be put into a vector as its leaves. For example: 6420 /// 6421 /// mul mul mul mul 6422 /// \ / \ / 6423 /// + + 6424 /// \ / 6425 /// + 6426 /// This tree has "mul" as its leaf values and "+" as its reduction 6427 /// instructions. A reduction can feed into a store or a binary operation 6428 /// feeding a phi. 6429 /// ... 6430 /// \ / 6431 /// + 6432 /// | 6433 /// phi += 6434 /// 6435 /// Or: 6436 /// ... 6437 /// \ / 6438 /// + 6439 /// | 6440 /// *p = 6441 /// 6442 class HorizontalReduction { 6443 using ReductionOpsType = SmallVector<Value *, 16>; 6444 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6445 ReductionOpsListType ReductionOps; 6446 SmallVector<Value *, 32> ReducedVals; 6447 // Use map vector to make stable output. 6448 MapVector<Instruction *, Value *> ExtraArgs; 6449 6450 /// Contains info about operation, like its opcode, left and right operands. 6451 class OperationData { 6452 /// Opcode of the instruction. 6453 unsigned Opcode = 0; 6454 6455 /// Kind of the reduction operation. 6456 RecurKind Kind = RecurKind::None; 6457 6458 /// Checks if the reduction operation can be vectorized. 6459 bool isVectorizable() const { 6460 switch (Kind) { 6461 case RecurKind::Add: 6462 return Opcode == Instruction::Add; 6463 case RecurKind::Mul: 6464 return Opcode == Instruction::Mul; 6465 case RecurKind::Or: 6466 return Opcode == Instruction::Or; 6467 case RecurKind::And: 6468 return Opcode == Instruction::And; 6469 case RecurKind::Xor: 6470 return Opcode == Instruction::Xor; 6471 case RecurKind::FAdd: 6472 return Opcode == Instruction::FAdd; 6473 case RecurKind::FMul: 6474 return Opcode == Instruction::FMul; 6475 case RecurKind::SMax: 6476 case RecurKind::SMin: 6477 case RecurKind::UMax: 6478 case RecurKind::UMin: 6479 return Opcode == Instruction::ICmp; 6480 default: 6481 return false; 6482 } 6483 } 6484 6485 /// Creates reduction operation with the current opcode. 6486 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6487 const Twine &Name) const { 6488 assert(isVectorizable() && "Unhandled reduction operation."); 6489 switch (Kind) { 6490 case RecurKind::Add: 6491 case RecurKind::Mul: 6492 case RecurKind::Or: 6493 case RecurKind::And: 6494 case RecurKind::Xor: 6495 case RecurKind::FAdd: 6496 case RecurKind::FMul: 6497 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6498 Name); 6499 6500 case RecurKind::SMax: { 6501 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6502 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6503 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6504 } 6505 case RecurKind::SMin: { 6506 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6507 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6508 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6509 } 6510 case RecurKind::UMax: { 6511 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6512 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6513 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6514 } 6515 case RecurKind::UMin: { 6516 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6517 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6518 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6519 } 6520 default: 6521 llvm_unreachable("Unknown reduction operation."); 6522 } 6523 } 6524 6525 public: 6526 explicit OperationData() = default; 6527 6528 /// Construction for reduced values. They are identified by opcode only and 6529 /// don't have associated LHS/RHS values. 6530 explicit OperationData(Instruction &I) { 6531 Opcode = I.getOpcode(); 6532 } 6533 6534 /// Constructor for reduction operations with opcode and type. 6535 OperationData(unsigned Opcode, RecurKind RdxKind) 6536 : Opcode(Opcode), Kind(RdxKind) { 6537 assert(Kind != RecurKind::None && "Expected reduction operation."); 6538 } 6539 6540 explicit operator bool() const { return Opcode; } 6541 6542 /// Return true if this operation is any kind of minimum or maximum. 6543 bool isMinMax() const { 6544 assert(Kind != RecurKind::None && "Expected reduction operation."); 6545 return RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind); 6546 } 6547 6548 /// Get the index of the first operand. 6549 unsigned getFirstOperandIndex() const { 6550 assert(!!*this && "The opcode is not set."); 6551 // We allow calling this before 'Kind' is set, so handle that specially. 6552 if (Kind == RecurKind::None) 6553 return 0; 6554 return isMinMax() ? 1 : 0; 6555 } 6556 6557 /// Total number of operands in the reduction operation. 6558 unsigned getNumberOfOperands() const { 6559 assert(Kind != RecurKind::None && !!*this && 6560 "Expected reduction operation."); 6561 return isMinMax() ? 3 : 2; 6562 } 6563 6564 /// Checks if the instruction is in basic block \p BB. 6565 /// For a min/max reduction check that both compare and select are in \p BB. 6566 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6567 assert(Kind != RecurKind::None && !!*this && 6568 "Expected reduction operation."); 6569 if (IsRedOp && isMinMax()) { 6570 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6571 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6572 } 6573 return I->getParent() == BB; 6574 } 6575 6576 /// Expected number of uses for reduction operations/reduced values. 6577 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6578 assert(Kind != RecurKind::None && !!*this && 6579 "Expected reduction operation."); 6580 // SelectInst must be used twice while the condition op must have single 6581 // use only. 6582 if (isMinMax()) 6583 return I->hasNUses(2) && 6584 (!IsReductionOp || 6585 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6586 6587 // Arithmetic reduction operation must be used once only. 6588 return I->hasOneUse(); 6589 } 6590 6591 /// Initializes the list of reduction operations. 6592 void initReductionOps(ReductionOpsListType &ReductionOps) { 6593 assert(Kind != RecurKind::None && !!*this && 6594 "Expected reduction operation."); 6595 if (isMinMax()) 6596 ReductionOps.assign(2, ReductionOpsType()); 6597 else 6598 ReductionOps.assign(1, ReductionOpsType()); 6599 } 6600 6601 /// Add all reduction operations for the reduction instruction \p I. 6602 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6603 assert(Kind != RecurKind::None && !!*this && 6604 "Expected reduction operation."); 6605 if (isMinMax()) { 6606 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6607 ReductionOps[1].emplace_back(I); 6608 } else { 6609 ReductionOps[0].emplace_back(I); 6610 } 6611 } 6612 6613 /// Checks if instruction is associative and can be vectorized. 6614 bool isAssociative(Instruction *I) const { 6615 assert(Kind != RecurKind::None && *this && 6616 "Expected reduction operation."); 6617 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) { 6618 assert(Opcode == Instruction::ICmp && 6619 "Only integer compare operation is expected."); 6620 return true; 6621 } 6622 return I->isAssociative(); 6623 } 6624 6625 /// Checks if the reduction operation can be vectorized. 6626 bool isVectorizable(Instruction *I) const { 6627 return isVectorizable() && isAssociative(I); 6628 } 6629 6630 /// Checks if two operation data are both a reduction op or both a reduced 6631 /// value. 6632 bool operator==(const OperationData &OD) const { 6633 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6634 "One of the comparing operations is incorrect."); 6635 return Kind == OD.Kind && Opcode == OD.Opcode; 6636 } 6637 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6638 void clear() { 6639 Opcode = 0; 6640 Kind = RecurKind::None; 6641 } 6642 6643 /// Get the opcode of the reduction operation. 6644 unsigned getOpcode() const { 6645 assert(isVectorizable() && "Expected vectorizable operation."); 6646 return Opcode; 6647 } 6648 6649 /// Get kind of reduction data. 6650 RecurKind getKind() const { return Kind; } 6651 Value *getLHS(Instruction *I) const { 6652 if (Kind == RecurKind::None) 6653 return nullptr; 6654 return I->getOperand(getFirstOperandIndex()); 6655 } 6656 Value *getRHS(Instruction *I) const { 6657 if (Kind == RecurKind::None) 6658 return nullptr; 6659 return I->getOperand(getFirstOperandIndex() + 1); 6660 } 6661 6662 /// Creates reduction operation with the current opcode with the IR flags 6663 /// from \p ReductionOps. 6664 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6665 const Twine &Name, 6666 const ReductionOpsListType &ReductionOps) const { 6667 assert(isVectorizable() && 6668 "Expected add|fadd or min/max reduction operation."); 6669 auto *Op = createOp(Builder, LHS, RHS, Name); 6670 switch (Kind) { 6671 case RecurKind::Add: 6672 case RecurKind::Mul: 6673 case RecurKind::Or: 6674 case RecurKind::And: 6675 case RecurKind::Xor: 6676 case RecurKind::FAdd: 6677 case RecurKind::FMul: 6678 propagateIRFlags(Op, ReductionOps[0]); 6679 return Op; 6680 case RecurKind::SMax: 6681 case RecurKind::SMin: 6682 case RecurKind::UMax: 6683 case RecurKind::UMin: 6684 if (auto *SI = dyn_cast<SelectInst>(Op)) 6685 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6686 propagateIRFlags(Op, ReductionOps[1]); 6687 return Op; 6688 default: 6689 llvm_unreachable("Unknown reduction operation."); 6690 } 6691 } 6692 /// Creates reduction operation with the current opcode with the IR flags 6693 /// from \p I. 6694 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6695 const Twine &Name, Instruction *I) const { 6696 assert(isVectorizable() && 6697 "Expected add|fadd or min/max reduction operation."); 6698 auto *Op = createOp(Builder, LHS, RHS, Name); 6699 switch (Kind) { 6700 case RecurKind::Add: 6701 case RecurKind::Mul: 6702 case RecurKind::Or: 6703 case RecurKind::And: 6704 case RecurKind::Xor: 6705 case RecurKind::FAdd: 6706 case RecurKind::FMul: 6707 propagateIRFlags(Op, I); 6708 return Op; 6709 case RecurKind::SMax: 6710 case RecurKind::SMin: 6711 case RecurKind::UMax: 6712 case RecurKind::UMin: 6713 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6714 propagateIRFlags(SI->getCondition(), 6715 cast<SelectInst>(I)->getCondition()); 6716 } 6717 propagateIRFlags(Op, I); 6718 return Op; 6719 default: 6720 llvm_unreachable("Unknown reduction operation."); 6721 } 6722 } 6723 }; 6724 6725 WeakTrackingVH ReductionRoot; 6726 6727 /// The operation data of the reduction operation. 6728 OperationData RdxTreeInst; 6729 6730 /// The operation data for the leaf values that we perform a reduction on. 6731 OperationData RdxLeafVal; 6732 6733 /// Should we model this reduction as a pairwise reduction tree or a tree that 6734 /// splits the vector in halves and adds those halves. 6735 bool IsPairwiseReduction = false; 6736 6737 /// Checks if the ParentStackElem.first should be marked as a reduction 6738 /// operation with an extra argument or as extra argument itself. 6739 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6740 Value *ExtraArg) { 6741 if (ExtraArgs.count(ParentStackElem.first)) { 6742 ExtraArgs[ParentStackElem.first] = nullptr; 6743 // We ran into something like: 6744 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6745 // The whole ParentStackElem.first should be considered as an extra value 6746 // in this case. 6747 // Do not perform analysis of remaining operands of ParentStackElem.first 6748 // instruction, this whole instruction is an extra argument. 6749 OperationData OpData = getOperationData(ParentStackElem.first); 6750 ParentStackElem.second = OpData.getNumberOfOperands(); 6751 } else { 6752 // We ran into something like: 6753 // ParentStackElem.first += ... + ExtraArg + ... 6754 ExtraArgs[ParentStackElem.first] = ExtraArg; 6755 } 6756 } 6757 6758 static OperationData getOperationData(Instruction *I) { 6759 if (!I) 6760 return OperationData(); 6761 6762 TargetTransformInfo::ReductionFlags RdxFlags; 6763 if (match(I, m_Add(m_Value(), m_Value()))) 6764 return OperationData(I->getOpcode(), RecurKind::Add); 6765 if (match(I, m_Mul(m_Value(), m_Value()))) 6766 return OperationData(I->getOpcode(), RecurKind::Mul); 6767 if (match(I, m_And(m_Value(), m_Value()))) 6768 return OperationData(I->getOpcode(), RecurKind::And); 6769 if (match(I, m_Or(m_Value(), m_Value()))) 6770 return OperationData(I->getOpcode(), RecurKind::Or); 6771 if (match(I, m_Xor(m_Value(), m_Value()))) 6772 return OperationData(I->getOpcode(), RecurKind::Xor); 6773 if (match(I, m_FAdd(m_Value(), m_Value()))) 6774 return OperationData(I->getOpcode(), RecurKind::FAdd); 6775 if (match(I, m_FMul(m_Value(), m_Value()))) 6776 return OperationData(I->getOpcode(), RecurKind::FMul); 6777 6778 if (match(I, m_SMax(m_Value(), m_Value()))) 6779 return OperationData(Instruction::ICmp, RecurKind::SMax); 6780 if (match(I, m_SMin(m_Value(), m_Value()))) 6781 return OperationData(Instruction::ICmp, RecurKind::SMin); 6782 if (match(I, m_UMax(m_Value(), m_Value()))) 6783 return OperationData(Instruction::ICmp, RecurKind::UMax); 6784 if (match(I, m_UMin(m_Value(), m_Value()))) 6785 return OperationData(Instruction::ICmp, RecurKind::UMin); 6786 6787 if (auto *Select = dyn_cast<SelectInst>(I)) { 6788 // Try harder: look for min/max pattern based on instructions producing 6789 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6790 // During the intermediate stages of SLP, it's very common to have 6791 // pattern like this (since optimizeGatherSequence is run only once 6792 // at the end): 6793 // %1 = extractelement <2 x i32> %a, i32 0 6794 // %2 = extractelement <2 x i32> %a, i32 1 6795 // %cond = icmp sgt i32 %1, %2 6796 // %3 = extractelement <2 x i32> %a, i32 0 6797 // %4 = extractelement <2 x i32> %a, i32 1 6798 // %select = select i1 %cond, i32 %3, i32 %4 6799 CmpInst::Predicate Pred; 6800 Instruction *L1; 6801 Instruction *L2; 6802 6803 Value *LHS = Select->getTrueValue(); 6804 Value *RHS = Select->getFalseValue(); 6805 Value *Cond = Select->getCondition(); 6806 6807 // TODO: Support inverse predicates. 6808 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6809 if (!isa<ExtractElementInst>(RHS) || 6810 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6811 return OperationData(*I); 6812 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6813 if (!isa<ExtractElementInst>(LHS) || 6814 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6815 return OperationData(*I); 6816 } else { 6817 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6818 return OperationData(*I); 6819 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6820 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6821 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6822 return OperationData(*I); 6823 } 6824 6825 TargetTransformInfo::ReductionFlags RdxFlags; 6826 switch (Pred) { 6827 default: 6828 return OperationData(*I); 6829 case CmpInst::ICMP_SGT: 6830 case CmpInst::ICMP_SGE: 6831 return OperationData(Instruction::ICmp, RecurKind::SMax); 6832 case CmpInst::ICMP_SLT: 6833 case CmpInst::ICMP_SLE: 6834 return OperationData(Instruction::ICmp, RecurKind::SMin); 6835 case CmpInst::ICMP_UGT: 6836 case CmpInst::ICMP_UGE: 6837 return OperationData(Instruction::ICmp, RecurKind::UMax); 6838 case CmpInst::ICMP_ULT: 6839 case CmpInst::ICMP_ULE: 6840 return OperationData(Instruction::ICmp, RecurKind::UMin); 6841 } 6842 } 6843 return OperationData(*I); 6844 } 6845 6846 public: 6847 HorizontalReduction() = default; 6848 6849 /// Try to find a reduction tree. 6850 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6851 assert((!Phi || is_contained(Phi->operands(), B)) && 6852 "Thi phi needs to use the binary operator"); 6853 6854 RdxTreeInst = getOperationData(B); 6855 6856 // We could have a initial reductions that is not an add. 6857 // r *= v1 + v2 + v3 + v4 6858 // In such a case start looking for a tree rooted in the first '+'. 6859 if (Phi) { 6860 if (RdxTreeInst.getLHS(B) == Phi) { 6861 Phi = nullptr; 6862 B = dyn_cast<Instruction>(RdxTreeInst.getRHS(B)); 6863 RdxTreeInst = getOperationData(B); 6864 } else if (RdxTreeInst.getRHS(B) == Phi) { 6865 Phi = nullptr; 6866 B = dyn_cast<Instruction>(RdxTreeInst.getLHS(B)); 6867 RdxTreeInst = getOperationData(B); 6868 } 6869 } 6870 6871 if (!RdxTreeInst.isVectorizable(B)) 6872 return false; 6873 6874 Type *Ty = B->getType(); 6875 if (!isValidElementType(Ty)) 6876 return false; 6877 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6878 return false; 6879 6880 RdxLeafVal.clear(); 6881 ReductionRoot = B; 6882 6883 // Post order traverse the reduction tree starting at B. We only handle true 6884 // trees containing only binary operators. 6885 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6886 Stack.push_back(std::make_pair(B, RdxTreeInst.getFirstOperandIndex())); 6887 RdxTreeInst.initReductionOps(ReductionOps); 6888 while (!Stack.empty()) { 6889 Instruction *TreeN = Stack.back().first; 6890 unsigned EdgeToVisit = Stack.back().second++; 6891 OperationData OpData = getOperationData(TreeN); 6892 bool IsReducedValue = OpData != RdxTreeInst; 6893 6894 // Postorder vist. 6895 if (IsReducedValue || EdgeToVisit == OpData.getNumberOfOperands()) { 6896 if (IsReducedValue) 6897 ReducedVals.push_back(TreeN); 6898 else { 6899 auto I = ExtraArgs.find(TreeN); 6900 if (I != ExtraArgs.end() && !I->second) { 6901 // Check if TreeN is an extra argument of its parent operation. 6902 if (Stack.size() <= 1) { 6903 // TreeN can't be an extra argument as it is a root reduction 6904 // operation. 6905 return false; 6906 } 6907 // Yes, TreeN is an extra argument, do not add it to a list of 6908 // reduction operations. 6909 // Stack[Stack.size() - 2] always points to the parent operation. 6910 markExtraArg(Stack[Stack.size() - 2], TreeN); 6911 ExtraArgs.erase(TreeN); 6912 } else 6913 RdxTreeInst.addReductionOps(TreeN, ReductionOps); 6914 } 6915 // Retract. 6916 Stack.pop_back(); 6917 continue; 6918 } 6919 6920 // Visit left or right. 6921 Value *NextV = TreeN->getOperand(EdgeToVisit); 6922 if (NextV != Phi) { 6923 auto *I = dyn_cast<Instruction>(NextV); 6924 OpData = getOperationData(I); 6925 // Continue analysis if the next operand is a reduction operation or 6926 // (possibly) a reduced value. If the reduced value opcode is not set, 6927 // the first met operation != reduction operation is considered as the 6928 // reduced value class. 6929 const bool IsRdxInst = OpData == RdxTreeInst; 6930 if (I && (!RdxLeafVal || OpData == RdxLeafVal || IsRdxInst)) { 6931 // Only handle trees in the current basic block. 6932 if (!RdxTreeInst.hasSameParent(I, B->getParent(), IsRdxInst)) { 6933 // I is an extra argument for TreeN (its parent operation). 6934 markExtraArg(Stack.back(), I); 6935 continue; 6936 } 6937 6938 // Each tree node needs to have minimal number of users except for the 6939 // ultimate reduction. 6940 if (!RdxTreeInst.hasRequiredNumberOfUses(I, IsRdxInst) && I != B) { 6941 // I is an extra argument for TreeN (its parent operation). 6942 markExtraArg(Stack.back(), I); 6943 continue; 6944 } 6945 6946 if (IsRdxInst) { 6947 // We need to be able to reassociate the reduction operations. 6948 if (!OpData.isAssociative(I)) { 6949 // I is an extra argument for TreeN (its parent operation). 6950 markExtraArg(Stack.back(), I); 6951 continue; 6952 } 6953 } else if (RdxLeafVal && RdxLeafVal != OpData) { 6954 // Make sure that the opcodes of the operations that we are going to 6955 // reduce match. 6956 // I is an extra argument for TreeN (its parent operation). 6957 markExtraArg(Stack.back(), I); 6958 continue; 6959 } else if (!RdxLeafVal) { 6960 RdxLeafVal = OpData; 6961 } 6962 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6963 continue; 6964 } 6965 } 6966 // NextV is an extra argument for TreeN (its parent operation). 6967 markExtraArg(Stack.back(), NextV); 6968 } 6969 return true; 6970 } 6971 6972 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6973 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6974 // If there are a sufficient number of reduction values, reduce 6975 // to a nearby power-of-2. We can safely generate oversized 6976 // vectors and rely on the backend to split them to legal sizes. 6977 unsigned NumReducedVals = ReducedVals.size(); 6978 if (NumReducedVals < 4) 6979 return false; 6980 6981 // FIXME: Fast-math-flags should be set based on the instructions in the 6982 // reduction (not all of 'fast' are required). 6983 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6984 FastMathFlags Unsafe; 6985 Unsafe.setFast(); 6986 Builder.setFastMathFlags(Unsafe); 6987 6988 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6989 // The same extra argument may be used several times, so log each attempt 6990 // to use it. 6991 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6992 assert(Pair.first && "DebugLoc must be set."); 6993 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6994 } 6995 6996 // The compare instruction of a min/max is the insertion point for new 6997 // instructions and may be replaced with a new compare instruction. 6998 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6999 assert(isa<SelectInst>(RdxRootInst) && 7000 "Expected min/max reduction to have select root instruction"); 7001 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7002 assert(isa<Instruction>(ScalarCond) && 7003 "Expected min/max reduction to have compare condition"); 7004 return cast<Instruction>(ScalarCond); 7005 }; 7006 7007 // The reduction root is used as the insertion point for new instructions, 7008 // so set it as externally used to prevent it from being deleted. 7009 ExternallyUsedValues[ReductionRoot]; 7010 SmallVector<Value *, 16> IgnoreList; 7011 for (ReductionOpsType &RdxOp : ReductionOps) 7012 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7013 7014 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7015 if (NumReducedVals > ReduxWidth) { 7016 // In the loop below, we are building a tree based on a window of 7017 // 'ReduxWidth' values. 7018 // If the operands of those values have common traits (compare predicate, 7019 // constant operand, etc), then we want to group those together to 7020 // minimize the cost of the reduction. 7021 7022 // TODO: This should be extended to count common operands for 7023 // compares and binops. 7024 7025 // Step 1: Count the number of times each compare predicate occurs. 7026 SmallDenseMap<unsigned, unsigned> PredCountMap; 7027 for (Value *RdxVal : ReducedVals) { 7028 CmpInst::Predicate Pred; 7029 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7030 ++PredCountMap[Pred]; 7031 } 7032 // Step 2: Sort the values so the most common predicates come first. 7033 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7034 CmpInst::Predicate PredA, PredB; 7035 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7036 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7037 return PredCountMap[PredA] > PredCountMap[PredB]; 7038 } 7039 return false; 7040 }); 7041 } 7042 7043 Value *VectorizedTree = nullptr; 7044 unsigned i = 0; 7045 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7046 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7047 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7048 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7049 if (Order) { 7050 assert(Order->size() == VL.size() && 7051 "Order size must be the same as number of vectorized " 7052 "instructions."); 7053 // TODO: reorder tree nodes without tree rebuilding. 7054 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7055 llvm::transform(*Order, ReorderedOps.begin(), 7056 [VL](const unsigned Idx) { return VL[Idx]; }); 7057 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7058 } 7059 if (V.isTreeTinyAndNotFullyVectorizable()) 7060 break; 7061 if (V.isLoadCombineReductionCandidate(RdxTreeInst.getOpcode())) 7062 break; 7063 7064 V.computeMinimumValueSizes(); 7065 7066 // Estimate cost. 7067 InstructionCost TreeCost = V.getTreeCost(); 7068 InstructionCost ReductionCost = 7069 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7070 InstructionCost Cost = TreeCost + ReductionCost; 7071 if (!Cost.isValid()) { 7072 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7073 return false; 7074 } 7075 if (Cost >= -SLPCostThreshold) { 7076 V.getORE()->emit([&]() { 7077 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7078 cast<Instruction>(VL[0])) 7079 << "Vectorizing horizontal reduction is possible" 7080 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7081 << " and threshold " 7082 << ore::NV("Threshold", -SLPCostThreshold); 7083 }); 7084 break; 7085 } 7086 7087 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7088 << Cost << ". (HorRdx)\n"); 7089 V.getORE()->emit([&]() { 7090 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7091 cast<Instruction>(VL[0])) 7092 << "Vectorized horizontal reduction with cost " 7093 << ore::NV("Cost", Cost) << " and with tree size " 7094 << ore::NV("TreeSize", V.getTreeSize()); 7095 }); 7096 7097 // Vectorize a tree. 7098 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7099 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7100 7101 // Emit a reduction. For min/max, the root is a select, but the insertion 7102 // point is the compare condition of that select. 7103 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7104 if (RdxTreeInst.isMinMax()) 7105 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7106 else 7107 Builder.SetInsertPoint(RdxRootInst); 7108 7109 Value *ReducedSubTree = 7110 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7111 7112 if (!VectorizedTree) { 7113 // Initialize the final value in the reduction. 7114 VectorizedTree = ReducedSubTree; 7115 } else { 7116 // Update the final value in the reduction. 7117 Builder.SetCurrentDebugLocation(Loc); 7118 VectorizedTree = RdxTreeInst.createOp( 7119 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7120 } 7121 i += ReduxWidth; 7122 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7123 } 7124 7125 if (VectorizedTree) { 7126 // Finish the reduction. 7127 for (; i < NumReducedVals; ++i) { 7128 auto *I = cast<Instruction>(ReducedVals[i]); 7129 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7130 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, I, "", 7131 ReductionOps); 7132 } 7133 for (auto &Pair : ExternallyUsedValues) { 7134 // Add each externally used value to the final reduction. 7135 for (auto *I : Pair.second) { 7136 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7137 VectorizedTree = RdxTreeInst.createOp(Builder, VectorizedTree, 7138 Pair.first, "op.extra", I); 7139 } 7140 } 7141 7142 // Update users. For a min/max reduction that ends with a compare and 7143 // select, we also have to RAUW for the compare instruction feeding the 7144 // reduction root. That's because the original compare may have extra uses 7145 // besides the final select of the reduction. 7146 if (RdxTreeInst.isMinMax()) { 7147 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7148 Instruction *ScalarCmp = 7149 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7150 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7151 } 7152 } 7153 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7154 7155 // Mark all scalar reduction ops for deletion, they are replaced by the 7156 // vector reductions. 7157 V.eraseInstructions(IgnoreList); 7158 } 7159 return VectorizedTree != nullptr; 7160 } 7161 7162 unsigned numReductionValues() const { 7163 return ReducedVals.size(); 7164 } 7165 7166 private: 7167 /// Calculate the cost of a reduction. 7168 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7169 unsigned ReduxWidth) { 7170 Type *ScalarTy = FirstReducedVal->getType(); 7171 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7172 7173 int PairwiseRdxCost; 7174 int SplittingRdxCost; 7175 switch (RdxTreeInst.getKind()) { 7176 case RecurKind::Add: 7177 case RecurKind::Mul: 7178 case RecurKind::Or: 7179 case RecurKind::And: 7180 case RecurKind::Xor: 7181 case RecurKind::FAdd: 7182 case RecurKind::FMul: 7183 PairwiseRdxCost = 7184 TTI->getArithmeticReductionCost(RdxTreeInst.getOpcode(), VecTy, 7185 /*IsPairwiseForm=*/true); 7186 SplittingRdxCost = 7187 TTI->getArithmeticReductionCost(RdxTreeInst.getOpcode(), VecTy, 7188 /*IsPairwiseForm=*/false); 7189 break; 7190 case RecurKind::SMax: 7191 case RecurKind::SMin: 7192 case RecurKind::UMax: 7193 case RecurKind::UMin: { 7194 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7195 RecurKind Kind = RdxTreeInst.getKind(); 7196 bool IsUnsigned = Kind == RecurKind::UMax || Kind == RecurKind::UMin; 7197 PairwiseRdxCost = 7198 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7199 /*IsPairwiseForm=*/true, IsUnsigned); 7200 SplittingRdxCost = 7201 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7202 /*IsPairwiseForm=*/false, IsUnsigned); 7203 break; 7204 } 7205 default: 7206 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7207 } 7208 7209 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7210 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7211 7212 int ScalarReduxCost = 0; 7213 switch (RdxTreeInst.getKind()) { 7214 case RecurKind::Add: 7215 case RecurKind::Mul: 7216 case RecurKind::Or: 7217 case RecurKind::And: 7218 case RecurKind::Xor: 7219 case RecurKind::FAdd: 7220 case RecurKind::FMul: 7221 ScalarReduxCost = 7222 TTI->getArithmeticInstrCost(RdxTreeInst.getOpcode(), ScalarTy); 7223 break; 7224 case RecurKind::SMax: 7225 case RecurKind::SMin: 7226 case RecurKind::UMax: 7227 case RecurKind::UMin: 7228 ScalarReduxCost = 7229 TTI->getCmpSelInstrCost(RdxTreeInst.getOpcode(), ScalarTy) + 7230 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7231 CmpInst::makeCmpResultType(ScalarTy)); 7232 break; 7233 default: 7234 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7235 } 7236 ScalarReduxCost *= (ReduxWidth - 1); 7237 7238 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7239 << " for reduction that starts with " << *FirstReducedVal 7240 << " (It is a " 7241 << (IsPairwiseReduction ? "pairwise" : "splitting") 7242 << " reduction)\n"); 7243 7244 return VecReduxCost - ScalarReduxCost; 7245 } 7246 7247 /// Emit a horizontal reduction of the vectorized value. 7248 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7249 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7250 assert(VectorizedValue && "Need to have a vectorized tree node"); 7251 assert(isPowerOf2_32(ReduxWidth) && 7252 "We only handle power-of-two reductions for now"); 7253 7254 if (!IsPairwiseReduction) { 7255 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7256 // to 'fast'. 7257 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7258 return createSimpleTargetReduction( 7259 Builder, TTI, RdxTreeInst.getOpcode(), VectorizedValue, 7260 RdxTreeInst.getKind(), ReductionOps.back()); 7261 } 7262 7263 Value *TmpVec = VectorizedValue; 7264 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7265 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7266 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7267 7268 Value *LeftShuf = 7269 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7270 Value *RightShuf = 7271 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7272 TmpVec = RdxTreeInst.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7273 ReductionOps); 7274 } 7275 7276 // The result is in the first element of the vector. 7277 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7278 } 7279 }; 7280 7281 } // end anonymous namespace 7282 7283 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7284 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7285 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7286 7287 unsigned AggregateSize = 1; 7288 auto *IV = cast<InsertValueInst>(InsertInst); 7289 Type *CurrentType = IV->getType(); 7290 do { 7291 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7292 for (auto *Elt : ST->elements()) 7293 if (Elt != ST->getElementType(0)) // check homogeneity 7294 return None; 7295 AggregateSize *= ST->getNumElements(); 7296 CurrentType = ST->getElementType(0); 7297 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7298 AggregateSize *= AT->getNumElements(); 7299 CurrentType = AT->getElementType(); 7300 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7301 AggregateSize *= VT->getNumElements(); 7302 return AggregateSize; 7303 } else if (CurrentType->isSingleValueType()) { 7304 return AggregateSize; 7305 } else { 7306 return None; 7307 } 7308 } while (true); 7309 } 7310 7311 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7312 unsigned OperandOffset) { 7313 unsigned OperandIndex = OperandOffset; 7314 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7315 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7316 auto *VT = cast<FixedVectorType>(IE->getType()); 7317 OperandIndex *= VT->getNumElements(); 7318 OperandIndex += CI->getZExtValue(); 7319 return OperandIndex; 7320 } 7321 return None; 7322 } 7323 7324 auto *IV = cast<InsertValueInst>(InsertInst); 7325 Type *CurrentType = IV->getType(); 7326 for (unsigned int Index : IV->indices()) { 7327 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7328 OperandIndex *= ST->getNumElements(); 7329 CurrentType = ST->getElementType(Index); 7330 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7331 OperandIndex *= AT->getNumElements(); 7332 CurrentType = AT->getElementType(); 7333 } else { 7334 return None; 7335 } 7336 OperandIndex += Index; 7337 } 7338 return OperandIndex; 7339 } 7340 7341 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7342 TargetTransformInfo *TTI, 7343 SmallVectorImpl<Value *> &BuildVectorOpds, 7344 SmallVectorImpl<Value *> &InsertElts, 7345 unsigned OperandOffset) { 7346 do { 7347 Value *InsertedOperand = LastInsertInst->getOperand(1); 7348 Optional<unsigned> OperandIndex = 7349 getOperandIndex(LastInsertInst, OperandOffset); 7350 if (!OperandIndex) 7351 return false; 7352 if (isa<InsertElementInst>(InsertedOperand) || 7353 isa<InsertValueInst>(InsertedOperand)) { 7354 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7355 BuildVectorOpds, InsertElts, *OperandIndex)) 7356 return false; 7357 } else { 7358 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7359 InsertElts[*OperandIndex] = LastInsertInst; 7360 } 7361 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7362 return true; 7363 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7364 } while (LastInsertInst != nullptr && 7365 (isa<InsertValueInst>(LastInsertInst) || 7366 isa<InsertElementInst>(LastInsertInst)) && 7367 LastInsertInst->hasOneUse()); 7368 return false; 7369 } 7370 7371 /// Recognize construction of vectors like 7372 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7373 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7374 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7375 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7376 /// starting from the last insertelement or insertvalue instruction. 7377 /// 7378 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7379 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7380 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7381 /// 7382 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7383 /// 7384 /// \return true if it matches. 7385 static bool findBuildAggregate(Instruction *LastInsertInst, 7386 TargetTransformInfo *TTI, 7387 SmallVectorImpl<Value *> &BuildVectorOpds, 7388 SmallVectorImpl<Value *> &InsertElts) { 7389 7390 assert((isa<InsertElementInst>(LastInsertInst) || 7391 isa<InsertValueInst>(LastInsertInst)) && 7392 "Expected insertelement or insertvalue instruction!"); 7393 7394 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7395 "Expected empty result vectors!"); 7396 7397 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7398 if (!AggregateSize) 7399 return false; 7400 BuildVectorOpds.resize(*AggregateSize); 7401 InsertElts.resize(*AggregateSize); 7402 7403 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7404 0)) { 7405 llvm::erase_value(BuildVectorOpds, nullptr); 7406 llvm::erase_value(InsertElts, nullptr); 7407 if (BuildVectorOpds.size() >= 2) 7408 return true; 7409 } 7410 7411 return false; 7412 } 7413 7414 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7415 return V->getType() < V2->getType(); 7416 } 7417 7418 /// Try and get a reduction value from a phi node. 7419 /// 7420 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7421 /// if they come from either \p ParentBB or a containing loop latch. 7422 /// 7423 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7424 /// if not possible. 7425 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7426 BasicBlock *ParentBB, LoopInfo *LI) { 7427 // There are situations where the reduction value is not dominated by the 7428 // reduction phi. Vectorizing such cases has been reported to cause 7429 // miscompiles. See PR25787. 7430 auto DominatedReduxValue = [&](Value *R) { 7431 return isa<Instruction>(R) && 7432 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7433 }; 7434 7435 Value *Rdx = nullptr; 7436 7437 // Return the incoming value if it comes from the same BB as the phi node. 7438 if (P->getIncomingBlock(0) == ParentBB) { 7439 Rdx = P->getIncomingValue(0); 7440 } else if (P->getIncomingBlock(1) == ParentBB) { 7441 Rdx = P->getIncomingValue(1); 7442 } 7443 7444 if (Rdx && DominatedReduxValue(Rdx)) 7445 return Rdx; 7446 7447 // Otherwise, check whether we have a loop latch to look at. 7448 Loop *BBL = LI->getLoopFor(ParentBB); 7449 if (!BBL) 7450 return nullptr; 7451 BasicBlock *BBLatch = BBL->getLoopLatch(); 7452 if (!BBLatch) 7453 return nullptr; 7454 7455 // There is a loop latch, return the incoming value if it comes from 7456 // that. This reduction pattern occasionally turns up. 7457 if (P->getIncomingBlock(0) == BBLatch) { 7458 Rdx = P->getIncomingValue(0); 7459 } else if (P->getIncomingBlock(1) == BBLatch) { 7460 Rdx = P->getIncomingValue(1); 7461 } 7462 7463 if (Rdx && DominatedReduxValue(Rdx)) 7464 return Rdx; 7465 7466 return nullptr; 7467 } 7468 7469 /// Attempt to reduce a horizontal reduction. 7470 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7471 /// with reduction operators \a Root (or one of its operands) in a basic block 7472 /// \a BB, then check if it can be done. If horizontal reduction is not found 7473 /// and root instruction is a binary operation, vectorization of the operands is 7474 /// attempted. 7475 /// \returns true if a horizontal reduction was matched and reduced or operands 7476 /// of one of the binary instruction were vectorized. 7477 /// \returns false if a horizontal reduction was not matched (or not possible) 7478 /// or no vectorization of any binary operation feeding \a Root instruction was 7479 /// performed. 7480 static bool tryToVectorizeHorReductionOrInstOperands( 7481 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7482 TargetTransformInfo *TTI, 7483 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7484 if (!ShouldVectorizeHor) 7485 return false; 7486 7487 if (!Root) 7488 return false; 7489 7490 if (Root->getParent() != BB || isa<PHINode>(Root)) 7491 return false; 7492 // Start analysis starting from Root instruction. If horizontal reduction is 7493 // found, try to vectorize it. If it is not a horizontal reduction or 7494 // vectorization is not possible or not effective, and currently analyzed 7495 // instruction is a binary operation, try to vectorize the operands, using 7496 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7497 // the same procedure considering each operand as a possible root of the 7498 // horizontal reduction. 7499 // Interrupt the process if the Root instruction itself was vectorized or all 7500 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7501 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7502 SmallPtrSet<Value *, 8> VisitedInstrs; 7503 bool Res = false; 7504 while (!Stack.empty()) { 7505 Instruction *Inst; 7506 unsigned Level; 7507 std::tie(Inst, Level) = Stack.pop_back_val(); 7508 Value *B0, *B1; 7509 bool IsBinop = match(Inst, m_BinOp(m_Value(B0), m_Value(B1))); 7510 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7511 if (IsBinop || IsSelect) { 7512 HorizontalReduction HorRdx; 7513 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7514 if (HorRdx.tryToReduce(R, TTI)) { 7515 Res = true; 7516 // Set P to nullptr to avoid re-analysis of phi node in 7517 // matchAssociativeReduction function unless this is the root node. 7518 P = nullptr; 7519 continue; 7520 } 7521 } 7522 if (P && IsBinop) { 7523 Inst = dyn_cast<Instruction>(B0); 7524 if (Inst == P) 7525 Inst = dyn_cast<Instruction>(B1); 7526 if (!Inst) { 7527 // Set P to nullptr to avoid re-analysis of phi node in 7528 // matchAssociativeReduction function unless this is the root node. 7529 P = nullptr; 7530 continue; 7531 } 7532 } 7533 } 7534 // Set P to nullptr to avoid re-analysis of phi node in 7535 // matchAssociativeReduction function unless this is the root node. 7536 P = nullptr; 7537 if (Vectorize(Inst, R)) { 7538 Res = true; 7539 continue; 7540 } 7541 7542 // Try to vectorize operands. 7543 // Continue analysis for the instruction from the same basic block only to 7544 // save compile time. 7545 if (++Level < RecursionMaxDepth) 7546 for (auto *Op : Inst->operand_values()) 7547 if (VisitedInstrs.insert(Op).second) 7548 if (auto *I = dyn_cast<Instruction>(Op)) 7549 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7550 Stack.emplace_back(I, Level); 7551 } 7552 return Res; 7553 } 7554 7555 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7556 BasicBlock *BB, BoUpSLP &R, 7557 TargetTransformInfo *TTI) { 7558 auto *I = dyn_cast_or_null<Instruction>(V); 7559 if (!I) 7560 return false; 7561 7562 if (!isa<BinaryOperator>(I)) 7563 P = nullptr; 7564 // Try to match and vectorize a horizontal reduction. 7565 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7566 return tryToVectorize(I, R); 7567 }; 7568 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7569 ExtraVectorization); 7570 } 7571 7572 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7573 BasicBlock *BB, BoUpSLP &R) { 7574 const DataLayout &DL = BB->getModule()->getDataLayout(); 7575 if (!R.canMapToVector(IVI->getType(), DL)) 7576 return false; 7577 7578 SmallVector<Value *, 16> BuildVectorOpds; 7579 SmallVector<Value *, 16> BuildVectorInsts; 7580 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7581 return false; 7582 7583 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7584 // Aggregate value is unlikely to be processed in vector register, we need to 7585 // extract scalars into scalar registers, so NeedExtraction is set true. 7586 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7587 BuildVectorInsts); 7588 } 7589 7590 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7591 BasicBlock *BB, BoUpSLP &R) { 7592 SmallVector<Value *, 16> BuildVectorInsts; 7593 SmallVector<Value *, 16> BuildVectorOpds; 7594 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7595 (llvm::all_of(BuildVectorOpds, 7596 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7597 isShuffle(BuildVectorOpds))) 7598 return false; 7599 7600 // Vectorize starting with the build vector operands ignoring the BuildVector 7601 // instructions for the purpose of scheduling and user extraction. 7602 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7603 BuildVectorInsts); 7604 } 7605 7606 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7607 BoUpSLP &R) { 7608 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7609 return true; 7610 7611 bool OpsChanged = false; 7612 for (int Idx = 0; Idx < 2; ++Idx) { 7613 OpsChanged |= 7614 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7615 } 7616 return OpsChanged; 7617 } 7618 7619 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7620 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7621 bool OpsChanged = false; 7622 for (auto *I : reverse(Instructions)) { 7623 if (R.isDeleted(I)) 7624 continue; 7625 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7626 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7627 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7628 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7629 else if (auto *CI = dyn_cast<CmpInst>(I)) 7630 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7631 } 7632 Instructions.clear(); 7633 return OpsChanged; 7634 } 7635 7636 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7637 bool Changed = false; 7638 SmallVector<Value *, 4> Incoming; 7639 SmallPtrSet<Value *, 16> VisitedInstrs; 7640 7641 bool HaveVectorizedPhiNodes = true; 7642 while (HaveVectorizedPhiNodes) { 7643 HaveVectorizedPhiNodes = false; 7644 7645 // Collect the incoming values from the PHIs. 7646 Incoming.clear(); 7647 for (Instruction &I : *BB) { 7648 PHINode *P = dyn_cast<PHINode>(&I); 7649 if (!P) 7650 break; 7651 7652 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7653 Incoming.push_back(P); 7654 } 7655 7656 // Sort by type. 7657 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7658 7659 // Try to vectorize elements base on their type. 7660 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7661 E = Incoming.end(); 7662 IncIt != E;) { 7663 7664 // Look for the next elements with the same type. 7665 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7666 while (SameTypeIt != E && 7667 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7668 VisitedInstrs.insert(*SameTypeIt); 7669 ++SameTypeIt; 7670 } 7671 7672 // Try to vectorize them. 7673 unsigned NumElts = (SameTypeIt - IncIt); 7674 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7675 << NumElts << ")\n"); 7676 // The order in which the phi nodes appear in the program does not matter. 7677 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7678 // is done when there are exactly two elements since tryToVectorizeList 7679 // asserts that there are only two values when AllowReorder is true. 7680 bool AllowReorder = NumElts == 2; 7681 if (NumElts > 1 && 7682 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7683 // Success start over because instructions might have been changed. 7684 HaveVectorizedPhiNodes = true; 7685 Changed = true; 7686 break; 7687 } 7688 7689 // Start over at the next instruction of a different type (or the end). 7690 IncIt = SameTypeIt; 7691 } 7692 } 7693 7694 VisitedInstrs.clear(); 7695 7696 SmallVector<Instruction *, 8> PostProcessInstructions; 7697 SmallDenseSet<Instruction *, 4> KeyNodes; 7698 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7699 // Skip instructions with scalable type. The num of elements is unknown at 7700 // compile-time for scalable type. 7701 if (isa<ScalableVectorType>(it->getType())) 7702 continue; 7703 7704 // Skip instructions marked for the deletion. 7705 if (R.isDeleted(&*it)) 7706 continue; 7707 // We may go through BB multiple times so skip the one we have checked. 7708 if (!VisitedInstrs.insert(&*it).second) { 7709 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7710 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7711 // We would like to start over since some instructions are deleted 7712 // and the iterator may become invalid value. 7713 Changed = true; 7714 it = BB->begin(); 7715 e = BB->end(); 7716 } 7717 continue; 7718 } 7719 7720 if (isa<DbgInfoIntrinsic>(it)) 7721 continue; 7722 7723 // Try to vectorize reductions that use PHINodes. 7724 if (PHINode *P = dyn_cast<PHINode>(it)) { 7725 // Check that the PHI is a reduction PHI. 7726 if (P->getNumIncomingValues() == 2) { 7727 // Try to match and vectorize a horizontal reduction. 7728 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7729 TTI)) { 7730 Changed = true; 7731 it = BB->begin(); 7732 e = BB->end(); 7733 continue; 7734 } 7735 } 7736 // Try to vectorize the incoming values of the PHI, to catch reductions 7737 // that feed into PHIs. 7738 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7739 // Skip if the incoming block is the current BB for now. Also, bypass 7740 // unreachable IR for efficiency and to avoid crashing. 7741 // TODO: Collect the skipped incoming values and try to vectorize them 7742 // after processing BB. 7743 if (BB == P->getIncomingBlock(I) || 7744 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7745 continue; 7746 7747 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7748 P->getIncomingBlock(I), R, TTI); 7749 } 7750 continue; 7751 } 7752 7753 // Ran into an instruction without users, like terminator, or function call 7754 // with ignored return value, store. Ignore unused instructions (basing on 7755 // instruction type, except for CallInst and InvokeInst). 7756 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7757 isa<InvokeInst>(it))) { 7758 KeyNodes.insert(&*it); 7759 bool OpsChanged = false; 7760 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7761 for (auto *V : it->operand_values()) { 7762 // Try to match and vectorize a horizontal reduction. 7763 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7764 } 7765 } 7766 // Start vectorization of post-process list of instructions from the 7767 // top-tree instructions to try to vectorize as many instructions as 7768 // possible. 7769 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7770 if (OpsChanged) { 7771 // We would like to start over since some instructions are deleted 7772 // and the iterator may become invalid value. 7773 Changed = true; 7774 it = BB->begin(); 7775 e = BB->end(); 7776 continue; 7777 } 7778 } 7779 7780 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7781 isa<InsertValueInst>(it)) 7782 PostProcessInstructions.push_back(&*it); 7783 } 7784 7785 return Changed; 7786 } 7787 7788 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7789 auto Changed = false; 7790 for (auto &Entry : GEPs) { 7791 // If the getelementptr list has fewer than two elements, there's nothing 7792 // to do. 7793 if (Entry.second.size() < 2) 7794 continue; 7795 7796 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7797 << Entry.second.size() << ".\n"); 7798 7799 // Process the GEP list in chunks suitable for the target's supported 7800 // vector size. If a vector register can't hold 1 element, we are done. We 7801 // are trying to vectorize the index computations, so the maximum number of 7802 // elements is based on the size of the index expression, rather than the 7803 // size of the GEP itself (the target's pointer size). 7804 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7805 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7806 if (MaxVecRegSize < EltSize) 7807 continue; 7808 7809 unsigned MaxElts = MaxVecRegSize / EltSize; 7810 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7811 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7812 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7813 7814 // Initialize a set a candidate getelementptrs. Note that we use a 7815 // SetVector here to preserve program order. If the index computations 7816 // are vectorizable and begin with loads, we want to minimize the chance 7817 // of having to reorder them later. 7818 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7819 7820 // Some of the candidates may have already been vectorized after we 7821 // initially collected them. If so, they are marked as deleted, so remove 7822 // them from the set of candidates. 7823 Candidates.remove_if( 7824 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7825 7826 // Remove from the set of candidates all pairs of getelementptrs with 7827 // constant differences. Such getelementptrs are likely not good 7828 // candidates for vectorization in a bottom-up phase since one can be 7829 // computed from the other. We also ensure all candidate getelementptr 7830 // indices are unique. 7831 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7832 auto *GEPI = GEPList[I]; 7833 if (!Candidates.count(GEPI)) 7834 continue; 7835 auto *SCEVI = SE->getSCEV(GEPList[I]); 7836 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7837 auto *GEPJ = GEPList[J]; 7838 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7839 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7840 Candidates.remove(GEPI); 7841 Candidates.remove(GEPJ); 7842 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7843 Candidates.remove(GEPJ); 7844 } 7845 } 7846 } 7847 7848 // We break out of the above computation as soon as we know there are 7849 // fewer than two candidates remaining. 7850 if (Candidates.size() < 2) 7851 continue; 7852 7853 // Add the single, non-constant index of each candidate to the bundle. We 7854 // ensured the indices met these constraints when we originally collected 7855 // the getelementptrs. 7856 SmallVector<Value *, 16> Bundle(Candidates.size()); 7857 auto BundleIndex = 0u; 7858 for (auto *V : Candidates) { 7859 auto *GEP = cast<GetElementPtrInst>(V); 7860 auto *GEPIdx = GEP->idx_begin()->get(); 7861 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7862 Bundle[BundleIndex++] = GEPIdx; 7863 } 7864 7865 // Try and vectorize the indices. We are currently only interested in 7866 // gather-like cases of the form: 7867 // 7868 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7869 // 7870 // where the loads of "a", the loads of "b", and the subtractions can be 7871 // performed in parallel. It's likely that detecting this pattern in a 7872 // bottom-up phase will be simpler and less costly than building a 7873 // full-blown top-down phase beginning at the consecutive loads. 7874 Changed |= tryToVectorizeList(Bundle, R); 7875 } 7876 } 7877 return Changed; 7878 } 7879 7880 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7881 bool Changed = false; 7882 // Attempt to sort and vectorize each of the store-groups. 7883 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7884 ++it) { 7885 if (it->second.size() < 2) 7886 continue; 7887 7888 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7889 << it->second.size() << ".\n"); 7890 7891 Changed |= vectorizeStores(it->second, R); 7892 } 7893 return Changed; 7894 } 7895 7896 char SLPVectorizer::ID = 0; 7897 7898 static const char lv_name[] = "SLP Vectorizer"; 7899 7900 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7901 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7902 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7903 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7904 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7905 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7906 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7907 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7908 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7909 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7910 7911 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7912