1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 namespace slpvectorizer { 776 777 /// Bottom Up SLP Vectorizer. 778 class BoUpSLP { 779 struct TreeEntry; 780 struct ScheduleData; 781 782 public: 783 using ValueList = SmallVector<Value *, 8>; 784 using InstrList = SmallVector<Instruction *, 16>; 785 using ValueSet = SmallPtrSet<Value *, 16>; 786 using StoreList = SmallVector<StoreInst *, 8>; 787 using ExtraValueToDebugLocsMap = 788 MapVector<Value *, SmallVector<Instruction *, 2>>; 789 using OrdersType = SmallVector<unsigned, 4>; 790 791 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 792 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 793 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 794 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 795 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 796 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 797 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 798 // Use the vector register size specified by the target unless overridden 799 // by a command-line option. 800 // TODO: It would be better to limit the vectorization factor based on 801 // data type rather than just register size. For example, x86 AVX has 802 // 256-bit registers, but it does not support integer operations 803 // at that width (that requires AVX2). 804 if (MaxVectorRegSizeOption.getNumOccurrences()) 805 MaxVecRegSize = MaxVectorRegSizeOption; 806 else 807 MaxVecRegSize = 808 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 809 .getFixedSize(); 810 811 if (MinVectorRegSizeOption.getNumOccurrences()) 812 MinVecRegSize = MinVectorRegSizeOption; 813 else 814 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 815 } 816 817 /// Vectorize the tree that starts with the elements in \p VL. 818 /// Returns the vectorized root. 819 Value *vectorizeTree(); 820 821 /// Vectorize the tree but with the list of externally used values \p 822 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 823 /// generated extractvalue instructions. 824 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 825 826 /// \returns the cost incurred by unwanted spills and fills, caused by 827 /// holding live values over call sites. 828 InstructionCost getSpillCost() const; 829 830 /// \returns the vectorization cost of the subtree that starts at \p VL. 831 /// A negative number means that this is profitable. 832 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 833 834 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 835 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 836 void buildTree(ArrayRef<Value *> Roots, 837 ArrayRef<Value *> UserIgnoreLst = None); 838 839 /// Builds external uses of the vectorized scalars, i.e. the list of 840 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 841 /// ExternallyUsedValues contains additional list of external uses to handle 842 /// vectorization of reductions. 843 void 844 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 845 846 /// Clear the internal data structures that are created by 'buildTree'. 847 void deleteTree() { 848 VectorizableTree.clear(); 849 ScalarToTreeEntry.clear(); 850 MustGather.clear(); 851 ExternalUses.clear(); 852 for (auto &Iter : BlocksSchedules) { 853 BlockScheduling *BS = Iter.second.get(); 854 BS->clear(); 855 } 856 MinBWs.clear(); 857 InstrElementSize.clear(); 858 } 859 860 unsigned getTreeSize() const { return VectorizableTree.size(); } 861 862 /// Perform LICM and CSE on the newly generated gather sequences. 863 void optimizeGatherSequence(); 864 865 /// Checks if the specified gather tree entry \p TE can be represented as a 866 /// shuffled vector entry + (possibly) permutation with other gathers. It 867 /// implements the checks only for possibly ordered scalars (Loads, 868 /// ExtractElement, ExtractValue), which can be part of the graph. 869 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 870 871 /// Gets reordering data for the given tree entry. If the entry is vectorized 872 /// - just return ReorderIndices, otherwise check if the scalars can be 873 /// reordered and return the most optimal order. 874 /// \param TopToBottom If true, include the order of vectorized stores and 875 /// insertelement nodes, otherwise skip them. 876 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 877 878 /// Reorders the current graph to the most profitable order starting from the 879 /// root node to the leaf nodes. The best order is chosen only from the nodes 880 /// of the same size (vectorization factor). Smaller nodes are considered 881 /// parts of subgraph with smaller VF and they are reordered independently. We 882 /// can make it because we still need to extend smaller nodes to the wider VF 883 /// and we can merge reordering shuffles with the widening shuffles. 884 void reorderTopToBottom(); 885 886 /// Reorders the current graph to the most profitable order starting from 887 /// leaves to the root. It allows to rotate small subgraphs and reduce the 888 /// number of reshuffles if the leaf nodes use the same order. In this case we 889 /// can merge the orders and just shuffle user node instead of shuffling its 890 /// operands. Plus, even the leaf nodes have different orders, it allows to 891 /// sink reordering in the graph closer to the root node and merge it later 892 /// during analysis. 893 void reorderBottomToTop(bool IgnoreReorder = false); 894 895 /// \return The vector element size in bits to use when vectorizing the 896 /// expression tree ending at \p V. If V is a store, the size is the width of 897 /// the stored value. Otherwise, the size is the width of the largest loaded 898 /// value reaching V. This method is used by the vectorizer to calculate 899 /// vectorization factors. 900 unsigned getVectorElementSize(Value *V); 901 902 /// Compute the minimum type sizes required to represent the entries in a 903 /// vectorizable tree. 904 void computeMinimumValueSizes(); 905 906 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 907 unsigned getMaxVecRegSize() const { 908 return MaxVecRegSize; 909 } 910 911 // \returns minimum vector register size as set by cl::opt. 912 unsigned getMinVecRegSize() const { 913 return MinVecRegSize; 914 } 915 916 unsigned getMinVF(unsigned Sz) const { 917 return std::max(2U, getMinVecRegSize() / Sz); 918 } 919 920 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 921 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 922 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 923 return MaxVF ? MaxVF : UINT_MAX; 924 } 925 926 /// Check if homogeneous aggregate is isomorphic to some VectorType. 927 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 928 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 929 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 930 /// 931 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 932 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 933 934 /// \returns True if the VectorizableTree is both tiny and not fully 935 /// vectorizable. We do not vectorize such trees. 936 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 937 938 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 939 /// can be load combined in the backend. Load combining may not be allowed in 940 /// the IR optimizer, so we do not want to alter the pattern. For example, 941 /// partially transforming a scalar bswap() pattern into vector code is 942 /// effectively impossible for the backend to undo. 943 /// TODO: If load combining is allowed in the IR optimizer, this analysis 944 /// may not be necessary. 945 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 946 947 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 948 /// can be load combined in the backend. Load combining may not be allowed in 949 /// the IR optimizer, so we do not want to alter the pattern. For example, 950 /// partially transforming a scalar bswap() pattern into vector code is 951 /// effectively impossible for the backend to undo. 952 /// TODO: If load combining is allowed in the IR optimizer, this analysis 953 /// may not be necessary. 954 bool isLoadCombineCandidate() const; 955 956 OptimizationRemarkEmitter *getORE() { return ORE; } 957 958 /// This structure holds any data we need about the edges being traversed 959 /// during buildTree_rec(). We keep track of: 960 /// (i) the user TreeEntry index, and 961 /// (ii) the index of the edge. 962 struct EdgeInfo { 963 EdgeInfo() = default; 964 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 965 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 966 /// The user TreeEntry. 967 TreeEntry *UserTE = nullptr; 968 /// The operand index of the use. 969 unsigned EdgeIdx = UINT_MAX; 970 #ifndef NDEBUG 971 friend inline raw_ostream &operator<<(raw_ostream &OS, 972 const BoUpSLP::EdgeInfo &EI) { 973 EI.dump(OS); 974 return OS; 975 } 976 /// Debug print. 977 void dump(raw_ostream &OS) const { 978 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 979 << " EdgeIdx:" << EdgeIdx << "}"; 980 } 981 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 982 #endif 983 }; 984 985 /// A helper data structure to hold the operands of a vector of instructions. 986 /// This supports a fixed vector length for all operand vectors. 987 class VLOperands { 988 /// For each operand we need (i) the value, and (ii) the opcode that it 989 /// would be attached to if the expression was in a left-linearized form. 990 /// This is required to avoid illegal operand reordering. 991 /// For example: 992 /// \verbatim 993 /// 0 Op1 994 /// |/ 995 /// Op1 Op2 Linearized + Op2 996 /// \ / ----------> |/ 997 /// - - 998 /// 999 /// Op1 - Op2 (0 + Op1) - Op2 1000 /// \endverbatim 1001 /// 1002 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1003 /// 1004 /// Another way to think of this is to track all the operations across the 1005 /// path from the operand all the way to the root of the tree and to 1006 /// calculate the operation that corresponds to this path. For example, the 1007 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1008 /// corresponding operation is a '-' (which matches the one in the 1009 /// linearized tree, as shown above). 1010 /// 1011 /// For lack of a better term, we refer to this operation as Accumulated 1012 /// Path Operation (APO). 1013 struct OperandData { 1014 OperandData() = default; 1015 OperandData(Value *V, bool APO, bool IsUsed) 1016 : V(V), APO(APO), IsUsed(IsUsed) {} 1017 /// The operand value. 1018 Value *V = nullptr; 1019 /// TreeEntries only allow a single opcode, or an alternate sequence of 1020 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1021 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1022 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1023 /// (e.g., Add/Mul) 1024 bool APO = false; 1025 /// Helper data for the reordering function. 1026 bool IsUsed = false; 1027 }; 1028 1029 /// During operand reordering, we are trying to select the operand at lane 1030 /// that matches best with the operand at the neighboring lane. Our 1031 /// selection is based on the type of value we are looking for. For example, 1032 /// if the neighboring lane has a load, we need to look for a load that is 1033 /// accessing a consecutive address. These strategies are summarized in the 1034 /// 'ReorderingMode' enumerator. 1035 enum class ReorderingMode { 1036 Load, ///< Matching loads to consecutive memory addresses 1037 Opcode, ///< Matching instructions based on opcode (same or alternate) 1038 Constant, ///< Matching constants 1039 Splat, ///< Matching the same instruction multiple times (broadcast) 1040 Failed, ///< We failed to create a vectorizable group 1041 }; 1042 1043 using OperandDataVec = SmallVector<OperandData, 2>; 1044 1045 /// A vector of operand vectors. 1046 SmallVector<OperandDataVec, 4> OpsVec; 1047 1048 const DataLayout &DL; 1049 ScalarEvolution &SE; 1050 const BoUpSLP &R; 1051 1052 /// \returns the operand data at \p OpIdx and \p Lane. 1053 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1054 return OpsVec[OpIdx][Lane]; 1055 } 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1058 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// Clears the used flag for all entries. 1063 void clearUsed() { 1064 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1065 OpIdx != NumOperands; ++OpIdx) 1066 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1067 ++Lane) 1068 OpsVec[OpIdx][Lane].IsUsed = false; 1069 } 1070 1071 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1072 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1073 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1074 } 1075 1076 // The hard-coded scores listed here are not very important, though it shall 1077 // be higher for better matches to improve the resulting cost. When 1078 // computing the scores of matching one sub-tree with another, we are 1079 // basically counting the number of values that are matching. So even if all 1080 // scores are set to 1, we would still get a decent matching result. 1081 // However, sometimes we have to break ties. For example we may have to 1082 // choose between matching loads vs matching opcodes. This is what these 1083 // scores are helping us with: they provide the order of preference. Also, 1084 // this is important if the scalar is externally used or used in another 1085 // tree entry node in the different lane. 1086 1087 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1088 static const int ScoreConsecutiveLoads = 4; 1089 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1090 static const int ScoreReversedLoads = 3; 1091 /// ExtractElementInst from same vector and consecutive indexes. 1092 static const int ScoreConsecutiveExtracts = 4; 1093 /// ExtractElementInst from same vector and reversed indices. 1094 static const int ScoreReversedExtracts = 3; 1095 /// Constants. 1096 static const int ScoreConstants = 2; 1097 /// Instructions with the same opcode. 1098 static const int ScoreSameOpcode = 2; 1099 /// Instructions with alt opcodes (e.g, add + sub). 1100 static const int ScoreAltOpcodes = 1; 1101 /// Identical instructions (a.k.a. splat or broadcast). 1102 static const int ScoreSplat = 1; 1103 /// Matching with an undef is preferable to failing. 1104 static const int ScoreUndef = 1; 1105 /// Score for failing to find a decent match. 1106 static const int ScoreFail = 0; 1107 /// Score if all users are vectorized. 1108 static const int ScoreAllUserVectorized = 1; 1109 1110 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1111 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1112 /// MainAltOps. 1113 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1114 ScalarEvolution &SE, int NumLanes, 1115 ArrayRef<Value *> MainAltOps) { 1116 if (V1 == V2) 1117 return VLOperands::ScoreSplat; 1118 1119 auto *LI1 = dyn_cast<LoadInst>(V1); 1120 auto *LI2 = dyn_cast<LoadInst>(V2); 1121 if (LI1 && LI2) { 1122 if (LI1->getParent() != LI2->getParent()) 1123 return VLOperands::ScoreFail; 1124 1125 Optional<int> Dist = getPointersDiff( 1126 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1127 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1128 if (!Dist || *Dist == 0) 1129 return VLOperands::ScoreFail; 1130 // The distance is too large - still may be profitable to use masked 1131 // loads/gathers. 1132 if (std::abs(*Dist) > NumLanes / 2) 1133 return VLOperands::ScoreAltOpcodes; 1134 // This still will detect consecutive loads, but we might have "holes" 1135 // in some cases. It is ok for non-power-2 vectorization and may produce 1136 // better results. It should not affect current vectorization. 1137 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1138 : VLOperands::ScoreReversedLoads; 1139 } 1140 1141 auto *C1 = dyn_cast<Constant>(V1); 1142 auto *C2 = dyn_cast<Constant>(V2); 1143 if (C1 && C2) 1144 return VLOperands::ScoreConstants; 1145 1146 // Extracts from consecutive indexes of the same vector better score as 1147 // the extracts could be optimized away. 1148 Value *EV1; 1149 ConstantInt *Ex1Idx; 1150 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1151 // Undefs are always profitable for extractelements. 1152 if (isa<UndefValue>(V2)) 1153 return VLOperands::ScoreConsecutiveExtracts; 1154 Value *EV2 = nullptr; 1155 ConstantInt *Ex2Idx = nullptr; 1156 if (match(V2, 1157 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1158 m_Undef())))) { 1159 // Undefs are always profitable for extractelements. 1160 if (!Ex2Idx) 1161 return VLOperands::ScoreConsecutiveExtracts; 1162 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1163 return VLOperands::ScoreConsecutiveExtracts; 1164 if (EV2 == EV1) { 1165 int Idx1 = Ex1Idx->getZExtValue(); 1166 int Idx2 = Ex2Idx->getZExtValue(); 1167 int Dist = Idx2 - Idx1; 1168 // The distance is too large - still may be profitable to use 1169 // shuffles. 1170 if (std::abs(Dist) == 0) 1171 return VLOperands::ScoreSplat; 1172 if (std::abs(Dist) > NumLanes / 2) 1173 return VLOperands::ScoreSameOpcode; 1174 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1175 : VLOperands::ScoreReversedExtracts; 1176 } 1177 return VLOperands::ScoreAltOpcodes; 1178 } 1179 return VLOperands::ScoreFail; 1180 } 1181 1182 auto *I1 = dyn_cast<Instruction>(V1); 1183 auto *I2 = dyn_cast<Instruction>(V2); 1184 if (I1 && I2) { 1185 if (I1->getParent() != I2->getParent()) 1186 return VLOperands::ScoreFail; 1187 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1188 Ops.push_back(I1); 1189 Ops.push_back(I2); 1190 InstructionsState S = getSameOpcode(Ops); 1191 // Note: Only consider instructions with <= 2 operands to avoid 1192 // complexity explosion. 1193 if (S.getOpcode() && 1194 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1195 !S.isAltShuffle()) && 1196 all_of(Ops, [&S](Value *V) { 1197 return cast<Instruction>(V)->getNumOperands() == 1198 S.MainOp->getNumOperands(); 1199 })) 1200 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1201 : VLOperands::ScoreSameOpcode; 1202 } 1203 1204 if (isa<UndefValue>(V2)) 1205 return VLOperands::ScoreUndef; 1206 1207 return VLOperands::ScoreFail; 1208 } 1209 1210 /// \param Lane lane of the operands under analysis. 1211 /// \param OpIdx operand index in \p Lane lane we're looking the best 1212 /// candidate for. 1213 /// \param Idx operand index of the current candidate value. 1214 /// \returns The additional score due to possible broadcasting of the 1215 /// elements in the lane. It is more profitable to have power-of-2 unique 1216 /// elements in the lane, it will be vectorized with higher probability 1217 /// after removing duplicates. Currently the SLP vectorizer supports only 1218 /// vectorization of the power-of-2 number of unique scalars. 1219 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1220 Value *IdxLaneV = getData(Idx, Lane).V; 1221 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1222 return 0; 1223 SmallPtrSet<Value *, 4> Uniques; 1224 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1225 if (Ln == Lane) 1226 continue; 1227 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1228 if (!isa<Instruction>(OpIdxLnV)) 1229 return 0; 1230 Uniques.insert(OpIdxLnV); 1231 } 1232 int UniquesCount = Uniques.size(); 1233 int UniquesCntWithIdxLaneV = 1234 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1235 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1236 int UniquesCntWithOpIdxLaneV = 1237 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1238 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1239 return 0; 1240 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1241 UniquesCntWithOpIdxLaneV) - 1242 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1243 } 1244 1245 /// \param Lane lane of the operands under analysis. 1246 /// \param OpIdx operand index in \p Lane lane we're looking the best 1247 /// candidate for. 1248 /// \param Idx operand index of the current candidate value. 1249 /// \returns The additional score for the scalar which users are all 1250 /// vectorized. 1251 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1252 Value *IdxLaneV = getData(Idx, Lane).V; 1253 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1254 // Do not care about number of uses for vector-like instructions 1255 // (extractelement/extractvalue with constant indices), they are extracts 1256 // themselves and already externally used. Vectorization of such 1257 // instructions does not add extra extractelement instruction, just may 1258 // remove it. 1259 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1260 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1261 return VLOperands::ScoreAllUserVectorized; 1262 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1263 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1264 return 0; 1265 return R.areAllUsersVectorized(IdxLaneI, None) 1266 ? VLOperands::ScoreAllUserVectorized 1267 : 0; 1268 } 1269 1270 /// Go through the operands of \p LHS and \p RHS recursively until \p 1271 /// MaxLevel, and return the cummulative score. For example: 1272 /// \verbatim 1273 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1274 /// \ / \ / \ / \ / 1275 /// + + + + 1276 /// G1 G2 G3 G4 1277 /// \endverbatim 1278 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1279 /// each level recursively, accumulating the score. It starts from matching 1280 /// the additions at level 0, then moves on to the loads (level 1). The 1281 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1282 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1283 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1284 /// Please note that the order of the operands does not matter, as we 1285 /// evaluate the score of all profitable combinations of operands. In 1286 /// other words the score of G1 and G4 is the same as G1 and G2. This 1287 /// heuristic is based on ideas described in: 1288 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1289 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1290 /// Luís F. W. Góes 1291 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1292 ArrayRef<Value *> MainAltOps) { 1293 1294 // Get the shallow score of V1 and V2. 1295 int ShallowScoreAtThisLevel = 1296 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1297 1298 // If reached MaxLevel, 1299 // or if V1 and V2 are not instructions, 1300 // or if they are SPLAT, 1301 // or if they are not consecutive, 1302 // or if profitable to vectorize loads or extractelements, early return 1303 // the current cost. 1304 auto *I1 = dyn_cast<Instruction>(LHS); 1305 auto *I2 = dyn_cast<Instruction>(RHS); 1306 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1307 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1308 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1309 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1310 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1311 ShallowScoreAtThisLevel)) 1312 return ShallowScoreAtThisLevel; 1313 assert(I1 && I2 && "Should have early exited."); 1314 1315 // Contains the I2 operand indexes that got matched with I1 operands. 1316 SmallSet<unsigned, 4> Op2Used; 1317 1318 // Recursion towards the operands of I1 and I2. We are trying all possible 1319 // operand pairs, and keeping track of the best score. 1320 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1321 OpIdx1 != NumOperands1; ++OpIdx1) { 1322 // Try to pair op1I with the best operand of I2. 1323 int MaxTmpScore = 0; 1324 unsigned MaxOpIdx2 = 0; 1325 bool FoundBest = false; 1326 // If I2 is commutative try all combinations. 1327 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1328 unsigned ToIdx = isCommutative(I2) 1329 ? I2->getNumOperands() 1330 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1331 assert(FromIdx <= ToIdx && "Bad index"); 1332 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1333 // Skip operands already paired with OpIdx1. 1334 if (Op2Used.count(OpIdx2)) 1335 continue; 1336 // Recursively calculate the cost at each level 1337 int TmpScore = 1338 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1339 CurrLevel + 1, MaxLevel, None); 1340 // Look for the best score. 1341 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1342 MaxTmpScore = TmpScore; 1343 MaxOpIdx2 = OpIdx2; 1344 FoundBest = true; 1345 } 1346 } 1347 if (FoundBest) { 1348 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1349 Op2Used.insert(MaxOpIdx2); 1350 ShallowScoreAtThisLevel += MaxTmpScore; 1351 } 1352 } 1353 return ShallowScoreAtThisLevel; 1354 } 1355 1356 /// Score scaling factor for fully compatible instructions but with 1357 /// different number of external uses. Allows better selection of the 1358 /// instructions with less external uses. 1359 static const int ScoreScaleFactor = 10; 1360 1361 /// \Returns the look-ahead score, which tells us how much the sub-trees 1362 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1363 /// score. This helps break ties in an informed way when we cannot decide on 1364 /// the order of the operands by just considering the immediate 1365 /// predecessors. 1366 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1367 int Lane, unsigned OpIdx, unsigned Idx, 1368 bool &IsUsed) { 1369 int Score = 1370 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1371 if (Score) { 1372 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1373 if (Score <= -SplatScore) { 1374 // Set the minimum score for splat-like sequence to avoid setting 1375 // failed state. 1376 Score = 1; 1377 } else { 1378 Score += SplatScore; 1379 // Scale score to see the difference between different operands 1380 // and similar operands but all vectorized/not all vectorized 1381 // uses. It does not affect actual selection of the best 1382 // compatible operand in general, just allows to select the 1383 // operand with all vectorized uses. 1384 Score *= ScoreScaleFactor; 1385 Score += getExternalUseScore(Lane, OpIdx, Idx); 1386 IsUsed = true; 1387 } 1388 } 1389 return Score; 1390 } 1391 1392 /// Best defined scores per lanes between the passes. Used to choose the 1393 /// best operand (with the highest score) between the passes. 1394 /// The key - {Operand Index, Lane}. 1395 /// The value - the best score between the passes for the lane and the 1396 /// operand. 1397 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1398 BestScoresPerLanes; 1399 1400 // Search all operands in Ops[*][Lane] for the one that matches best 1401 // Ops[OpIdx][LastLane] and return its opreand index. 1402 // If no good match can be found, return None. 1403 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1404 ArrayRef<ReorderingMode> ReorderingModes, 1405 ArrayRef<Value *> MainAltOps) { 1406 unsigned NumOperands = getNumOperands(); 1407 1408 // The operand of the previous lane at OpIdx. 1409 Value *OpLastLane = getData(OpIdx, LastLane).V; 1410 1411 // Our strategy mode for OpIdx. 1412 ReorderingMode RMode = ReorderingModes[OpIdx]; 1413 if (RMode == ReorderingMode::Failed) 1414 return None; 1415 1416 // The linearized opcode of the operand at OpIdx, Lane. 1417 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1418 1419 // The best operand index and its score. 1420 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1421 // are using the score to differentiate between the two. 1422 struct BestOpData { 1423 Optional<unsigned> Idx = None; 1424 unsigned Score = 0; 1425 } BestOp; 1426 BestOp.Score = 1427 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1428 .first->second; 1429 1430 // Track if the operand must be marked as used. If the operand is set to 1431 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1432 // want to reestimate the operands again on the following iterations). 1433 bool IsUsed = 1434 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1435 // Iterate through all unused operands and look for the best. 1436 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1437 // Get the operand at Idx and Lane. 1438 OperandData &OpData = getData(Idx, Lane); 1439 Value *Op = OpData.V; 1440 bool OpAPO = OpData.APO; 1441 1442 // Skip already selected operands. 1443 if (OpData.IsUsed) 1444 continue; 1445 1446 // Skip if we are trying to move the operand to a position with a 1447 // different opcode in the linearized tree form. This would break the 1448 // semantics. 1449 if (OpAPO != OpIdxAPO) 1450 continue; 1451 1452 // Look for an operand that matches the current mode. 1453 switch (RMode) { 1454 case ReorderingMode::Load: 1455 case ReorderingMode::Constant: 1456 case ReorderingMode::Opcode: { 1457 bool LeftToRight = Lane > LastLane; 1458 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1459 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1460 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1461 OpIdx, Idx, IsUsed); 1462 if (Score > static_cast<int>(BestOp.Score)) { 1463 BestOp.Idx = Idx; 1464 BestOp.Score = Score; 1465 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1466 } 1467 break; 1468 } 1469 case ReorderingMode::Splat: 1470 if (Op == OpLastLane) 1471 BestOp.Idx = Idx; 1472 break; 1473 case ReorderingMode::Failed: 1474 llvm_unreachable("Not expected Failed reordering mode."); 1475 } 1476 } 1477 1478 if (BestOp.Idx) { 1479 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1480 return BestOp.Idx; 1481 } 1482 // If we could not find a good match return None. 1483 return None; 1484 } 1485 1486 /// Helper for reorderOperandVecs. 1487 /// \returns the lane that we should start reordering from. This is the one 1488 /// which has the least number of operands that can freely move about or 1489 /// less profitable because it already has the most optimal set of operands. 1490 unsigned getBestLaneToStartReordering() const { 1491 unsigned Min = UINT_MAX; 1492 unsigned SameOpNumber = 0; 1493 // std::pair<unsigned, unsigned> is used to implement a simple voting 1494 // algorithm and choose the lane with the least number of operands that 1495 // can freely move about or less profitable because it already has the 1496 // most optimal set of operands. The first unsigned is a counter for 1497 // voting, the second unsigned is the counter of lanes with instructions 1498 // with same/alternate opcodes and same parent basic block. 1499 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1500 // Try to be closer to the original results, if we have multiple lanes 1501 // with same cost. If 2 lanes have the same cost, use the one with the 1502 // lowest index. 1503 for (int I = getNumLanes(); I > 0; --I) { 1504 unsigned Lane = I - 1; 1505 OperandsOrderData NumFreeOpsHash = 1506 getMaxNumOperandsThatCanBeReordered(Lane); 1507 // Compare the number of operands that can move and choose the one with 1508 // the least number. 1509 if (NumFreeOpsHash.NumOfAPOs < Min) { 1510 Min = NumFreeOpsHash.NumOfAPOs; 1511 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1512 HashMap.clear(); 1513 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1514 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1515 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1516 // Select the most optimal lane in terms of number of operands that 1517 // should be moved around. 1518 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1519 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1520 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1521 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1522 auto It = HashMap.find(NumFreeOpsHash.Hash); 1523 if (It == HashMap.end()) 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 else 1526 ++It->second.first; 1527 } 1528 } 1529 // Select the lane with the minimum counter. 1530 unsigned BestLane = 0; 1531 unsigned CntMin = UINT_MAX; 1532 for (const auto &Data : reverse(HashMap)) { 1533 if (Data.second.first < CntMin) { 1534 CntMin = Data.second.first; 1535 BestLane = Data.second.second; 1536 } 1537 } 1538 return BestLane; 1539 } 1540 1541 /// Data structure that helps to reorder operands. 1542 struct OperandsOrderData { 1543 /// The best number of operands with the same APOs, which can be 1544 /// reordered. 1545 unsigned NumOfAPOs = UINT_MAX; 1546 /// Number of operands with the same/alternate instruction opcode and 1547 /// parent. 1548 unsigned NumOpsWithSameOpcodeParent = 0; 1549 /// Hash for the actual operands ordering. 1550 /// Used to count operands, actually their position id and opcode 1551 /// value. It is used in the voting mechanism to find the lane with the 1552 /// least number of operands that can freely move about or less profitable 1553 /// because it already has the most optimal set of operands. Can be 1554 /// replaced with SmallVector<unsigned> instead but hash code is faster 1555 /// and requires less memory. 1556 unsigned Hash = 0; 1557 }; 1558 /// \returns the maximum number of operands that are allowed to be reordered 1559 /// for \p Lane and the number of compatible instructions(with the same 1560 /// parent/opcode). This is used as a heuristic for selecting the first lane 1561 /// to start operand reordering. 1562 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1563 unsigned CntTrue = 0; 1564 unsigned NumOperands = getNumOperands(); 1565 // Operands with the same APO can be reordered. We therefore need to count 1566 // how many of them we have for each APO, like this: Cnt[APO] = x. 1567 // Since we only have two APOs, namely true and false, we can avoid using 1568 // a map. Instead we can simply count the number of operands that 1569 // correspond to one of them (in this case the 'true' APO), and calculate 1570 // the other by subtracting it from the total number of operands. 1571 // Operands with the same instruction opcode and parent are more 1572 // profitable since we don't need to move them in many cases, with a high 1573 // probability such lane already can be vectorized effectively. 1574 bool AllUndefs = true; 1575 unsigned NumOpsWithSameOpcodeParent = 0; 1576 Instruction *OpcodeI = nullptr; 1577 BasicBlock *Parent = nullptr; 1578 unsigned Hash = 0; 1579 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1580 const OperandData &OpData = getData(OpIdx, Lane); 1581 if (OpData.APO) 1582 ++CntTrue; 1583 // Use Boyer-Moore majority voting for finding the majority opcode and 1584 // the number of times it occurs. 1585 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1586 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1587 I->getParent() != Parent) { 1588 if (NumOpsWithSameOpcodeParent == 0) { 1589 NumOpsWithSameOpcodeParent = 1; 1590 OpcodeI = I; 1591 Parent = I->getParent(); 1592 } else { 1593 --NumOpsWithSameOpcodeParent; 1594 } 1595 } else { 1596 ++NumOpsWithSameOpcodeParent; 1597 } 1598 } 1599 Hash = hash_combine( 1600 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1601 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1602 } 1603 if (AllUndefs) 1604 return {}; 1605 OperandsOrderData Data; 1606 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1607 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1608 Data.Hash = Hash; 1609 return Data; 1610 } 1611 1612 /// Go through the instructions in VL and append their operands. 1613 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1614 assert(!VL.empty() && "Bad VL"); 1615 assert((empty() || VL.size() == getNumLanes()) && 1616 "Expected same number of lanes"); 1617 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1618 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1619 OpsVec.resize(NumOperands); 1620 unsigned NumLanes = VL.size(); 1621 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1622 OpsVec[OpIdx].resize(NumLanes); 1623 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1624 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1625 // Our tree has just 3 nodes: the root and two operands. 1626 // It is therefore trivial to get the APO. We only need to check the 1627 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1628 // RHS operand. The LHS operand of both add and sub is never attached 1629 // to an inversese operation in the linearized form, therefore its APO 1630 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1631 1632 // Since operand reordering is performed on groups of commutative 1633 // operations or alternating sequences (e.g., +, -), we can safely 1634 // tell the inverse operations by checking commutativity. 1635 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1636 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1637 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1638 APO, false}; 1639 } 1640 } 1641 } 1642 1643 /// \returns the number of operands. 1644 unsigned getNumOperands() const { return OpsVec.size(); } 1645 1646 /// \returns the number of lanes. 1647 unsigned getNumLanes() const { return OpsVec[0].size(); } 1648 1649 /// \returns the operand value at \p OpIdx and \p Lane. 1650 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1651 return getData(OpIdx, Lane).V; 1652 } 1653 1654 /// \returns true if the data structure is empty. 1655 bool empty() const { return OpsVec.empty(); } 1656 1657 /// Clears the data. 1658 void clear() { OpsVec.clear(); } 1659 1660 /// \Returns true if there are enough operands identical to \p Op to fill 1661 /// the whole vector. 1662 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1663 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1664 bool OpAPO = getData(OpIdx, Lane).APO; 1665 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1666 if (Ln == Lane) 1667 continue; 1668 // This is set to true if we found a candidate for broadcast at Lane. 1669 bool FoundCandidate = false; 1670 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1671 OperandData &Data = getData(OpI, Ln); 1672 if (Data.APO != OpAPO || Data.IsUsed) 1673 continue; 1674 if (Data.V == Op) { 1675 FoundCandidate = true; 1676 Data.IsUsed = true; 1677 break; 1678 } 1679 } 1680 if (!FoundCandidate) 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 public: 1687 /// Initialize with all the operands of the instruction vector \p RootVL. 1688 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1689 ScalarEvolution &SE, const BoUpSLP &R) 1690 : DL(DL), SE(SE), R(R) { 1691 // Append all the operands of RootVL. 1692 appendOperandsOfVL(RootVL); 1693 } 1694 1695 /// \Returns a value vector with the operands across all lanes for the 1696 /// opearnd at \p OpIdx. 1697 ValueList getVL(unsigned OpIdx) const { 1698 ValueList OpVL(OpsVec[OpIdx].size()); 1699 assert(OpsVec[OpIdx].size() == getNumLanes() && 1700 "Expected same num of lanes across all operands"); 1701 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1702 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1703 return OpVL; 1704 } 1705 1706 // Performs operand reordering for 2 or more operands. 1707 // The original operands are in OrigOps[OpIdx][Lane]. 1708 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1709 void reorder() { 1710 unsigned NumOperands = getNumOperands(); 1711 unsigned NumLanes = getNumLanes(); 1712 // Each operand has its own mode. We are using this mode to help us select 1713 // the instructions for each lane, so that they match best with the ones 1714 // we have selected so far. 1715 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1716 1717 // This is a greedy single-pass algorithm. We are going over each lane 1718 // once and deciding on the best order right away with no back-tracking. 1719 // However, in order to increase its effectiveness, we start with the lane 1720 // that has operands that can move the least. For example, given the 1721 // following lanes: 1722 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1723 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1724 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1725 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1726 // we will start at Lane 1, since the operands of the subtraction cannot 1727 // be reordered. Then we will visit the rest of the lanes in a circular 1728 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1729 1730 // Find the first lane that we will start our search from. 1731 unsigned FirstLane = getBestLaneToStartReordering(); 1732 1733 // Initialize the modes. 1734 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1735 Value *OpLane0 = getValue(OpIdx, FirstLane); 1736 // Keep track if we have instructions with all the same opcode on one 1737 // side. 1738 if (isa<LoadInst>(OpLane0)) 1739 ReorderingModes[OpIdx] = ReorderingMode::Load; 1740 else if (isa<Instruction>(OpLane0)) { 1741 // Check if OpLane0 should be broadcast. 1742 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1743 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1744 else 1745 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1746 } 1747 else if (isa<Constant>(OpLane0)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1749 else if (isa<Argument>(OpLane0)) 1750 // Our best hope is a Splat. It may save some cost in some cases. 1751 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1752 else 1753 // NOTE: This should be unreachable. 1754 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1755 } 1756 1757 // Check that we don't have same operands. No need to reorder if operands 1758 // are just perfect diamond or shuffled diamond match. Do not do it only 1759 // for possible broadcasts or non-power of 2 number of scalars (just for 1760 // now). 1761 auto &&SkipReordering = [this]() { 1762 SmallPtrSet<Value *, 4> UniqueValues; 1763 ArrayRef<OperandData> Op0 = OpsVec.front(); 1764 for (const OperandData &Data : Op0) 1765 UniqueValues.insert(Data.V); 1766 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1767 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1768 return !UniqueValues.contains(Data.V); 1769 })) 1770 return false; 1771 } 1772 // TODO: Check if we can remove a check for non-power-2 number of 1773 // scalars after full support of non-power-2 vectorization. 1774 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1775 }; 1776 1777 // If the initial strategy fails for any of the operand indexes, then we 1778 // perform reordering again in a second pass. This helps avoid assigning 1779 // high priority to the failed strategy, and should improve reordering for 1780 // the non-failed operand indexes. 1781 for (int Pass = 0; Pass != 2; ++Pass) { 1782 // Check if no need to reorder operands since they're are perfect or 1783 // shuffled diamond match. 1784 // Need to to do it to avoid extra external use cost counting for 1785 // shuffled matches, which may cause regressions. 1786 if (SkipReordering()) 1787 break; 1788 // Skip the second pass if the first pass did not fail. 1789 bool StrategyFailed = false; 1790 // Mark all operand data as free to use. 1791 clearUsed(); 1792 // We keep the original operand order for the FirstLane, so reorder the 1793 // rest of the lanes. We are visiting the nodes in a circular fashion, 1794 // using FirstLane as the center point and increasing the radius 1795 // distance. 1796 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1797 for (unsigned I = 0; I < NumOperands; ++I) 1798 MainAltOps[I].push_back(getData(I, FirstLane).V); 1799 1800 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1801 // Visit the lane on the right and then the lane on the left. 1802 for (int Direction : {+1, -1}) { 1803 int Lane = FirstLane + Direction * Distance; 1804 if (Lane < 0 || Lane >= (int)NumLanes) 1805 continue; 1806 int LastLane = Lane - Direction; 1807 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1808 "Out of bounds"); 1809 // Look for a good match for each operand. 1810 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1811 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1812 Optional<unsigned> BestIdx = getBestOperand( 1813 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1814 // By not selecting a value, we allow the operands that follow to 1815 // select a better matching value. We will get a non-null value in 1816 // the next run of getBestOperand(). 1817 if (BestIdx) { 1818 // Swap the current operand with the one returned by 1819 // getBestOperand(). 1820 swap(OpIdx, BestIdx.getValue(), Lane); 1821 } else { 1822 // We failed to find a best operand, set mode to 'Failed'. 1823 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1824 // Enable the second pass. 1825 StrategyFailed = true; 1826 } 1827 // Try to get the alternate opcode and follow it during analysis. 1828 if (MainAltOps[OpIdx].size() != 2) { 1829 OperandData &AltOp = getData(OpIdx, Lane); 1830 InstructionsState OpS = 1831 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1832 if (OpS.getOpcode() && OpS.isAltShuffle()) 1833 MainAltOps[OpIdx].push_back(AltOp.V); 1834 } 1835 } 1836 } 1837 } 1838 // Skip second pass if the strategy did not fail. 1839 if (!StrategyFailed) 1840 break; 1841 } 1842 } 1843 1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1845 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1846 switch (RMode) { 1847 case ReorderingMode::Load: 1848 return "Load"; 1849 case ReorderingMode::Opcode: 1850 return "Opcode"; 1851 case ReorderingMode::Constant: 1852 return "Constant"; 1853 case ReorderingMode::Splat: 1854 return "Splat"; 1855 case ReorderingMode::Failed: 1856 return "Failed"; 1857 } 1858 llvm_unreachable("Unimplemented Reordering Type"); 1859 } 1860 1861 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1862 raw_ostream &OS) { 1863 return OS << getModeStr(RMode); 1864 } 1865 1866 /// Debug print. 1867 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1868 printMode(RMode, dbgs()); 1869 } 1870 1871 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1872 return printMode(RMode, OS); 1873 } 1874 1875 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1876 const unsigned Indent = 2; 1877 unsigned Cnt = 0; 1878 for (const OperandDataVec &OpDataVec : OpsVec) { 1879 OS << "Operand " << Cnt++ << "\n"; 1880 for (const OperandData &OpData : OpDataVec) { 1881 OS.indent(Indent) << "{"; 1882 if (Value *V = OpData.V) 1883 OS << *V; 1884 else 1885 OS << "null"; 1886 OS << ", APO:" << OpData.APO << "}\n"; 1887 } 1888 OS << "\n"; 1889 } 1890 return OS; 1891 } 1892 1893 /// Debug print. 1894 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1895 #endif 1896 }; 1897 1898 /// Checks if the instruction is marked for deletion. 1899 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1900 1901 /// Marks values operands for later deletion by replacing them with Undefs. 1902 void eraseInstructions(ArrayRef<Value *> AV); 1903 1904 ~BoUpSLP(); 1905 1906 private: 1907 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1908 /// reordering (i.e. the operands can be reordered because they have only one 1909 /// user and reordarable). 1910 /// \param NonVectorized List of all gather nodes that require reordering 1911 /// (e.g., gather of extractlements or partially vectorizable loads). 1912 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1913 /// reordering, subset of \p NonVectorized. 1914 bool 1915 canReorderOperands(TreeEntry *UserTE, 1916 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1917 ArrayRef<TreeEntry *> ReorderableGathers, 1918 SmallVectorImpl<TreeEntry *> &GatherOps); 1919 1920 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1921 /// if any. If it is not vectorized (gather node), returns nullptr. 1922 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1923 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1924 TreeEntry *TE = nullptr; 1925 const auto *It = find_if(VL, [this, &TE](Value *V) { 1926 TE = getTreeEntry(V); 1927 return TE; 1928 }); 1929 if (It != VL.end() && TE->isSame(VL)) 1930 return TE; 1931 return nullptr; 1932 } 1933 1934 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1935 /// if any. If it is not vectorized (gather node), returns nullptr. 1936 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1937 unsigned OpIdx) const { 1938 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1939 const_cast<TreeEntry *>(UserTE), OpIdx); 1940 } 1941 1942 /// Checks if all users of \p I are the part of the vectorization tree. 1943 bool areAllUsersVectorized(Instruction *I, 1944 ArrayRef<Value *> VectorizedVals) const; 1945 1946 /// \returns the cost of the vectorizable entry. 1947 InstructionCost getEntryCost(const TreeEntry *E, 1948 ArrayRef<Value *> VectorizedVals); 1949 1950 /// This is the recursive part of buildTree. 1951 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1952 const EdgeInfo &EI); 1953 1954 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1955 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1956 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1957 /// returns false, setting \p CurrentOrder to either an empty vector or a 1958 /// non-identity permutation that allows to reuse extract instructions. 1959 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1960 SmallVectorImpl<unsigned> &CurrentOrder) const; 1961 1962 /// Vectorize a single entry in the tree. 1963 Value *vectorizeTree(TreeEntry *E); 1964 1965 /// Vectorize a single entry in the tree, starting in \p VL. 1966 Value *vectorizeTree(ArrayRef<Value *> VL); 1967 1968 /// \returns the scalarization cost for this type. Scalarization in this 1969 /// context means the creation of vectors from a group of scalars. If \p 1970 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1971 /// vector elements. 1972 InstructionCost getGatherCost(FixedVectorType *Ty, 1973 const APInt &ShuffledIndices, 1974 bool NeedToShuffle) const; 1975 1976 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1977 /// tree entries. 1978 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1979 /// previous tree entries. \p Mask is filled with the shuffle mask. 1980 Optional<TargetTransformInfo::ShuffleKind> 1981 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1982 SmallVectorImpl<const TreeEntry *> &Entries); 1983 1984 /// \returns the scalarization cost for this list of values. Assuming that 1985 /// this subtree gets vectorized, we may need to extract the values from the 1986 /// roots. This method calculates the cost of extracting the values. 1987 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1988 1989 /// Set the Builder insert point to one after the last instruction in 1990 /// the bundle 1991 void setInsertPointAfterBundle(const TreeEntry *E); 1992 1993 /// \returns a vector from a collection of scalars in \p VL. 1994 Value *gather(ArrayRef<Value *> VL); 1995 1996 /// \returns whether the VectorizableTree is fully vectorizable and will 1997 /// be beneficial even the tree height is tiny. 1998 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1999 2000 /// Reorder commutative or alt operands to get better probability of 2001 /// generating vectorized code. 2002 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2003 SmallVectorImpl<Value *> &Left, 2004 SmallVectorImpl<Value *> &Right, 2005 const DataLayout &DL, 2006 ScalarEvolution &SE, 2007 const BoUpSLP &R); 2008 struct TreeEntry { 2009 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2010 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2011 2012 /// \returns true if the scalars in VL are equal to this entry. 2013 bool isSame(ArrayRef<Value *> VL) const { 2014 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2015 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2016 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2017 return VL.size() == Mask.size() && 2018 std::equal(VL.begin(), VL.end(), Mask.begin(), 2019 [Scalars](Value *V, int Idx) { 2020 return (isa<UndefValue>(V) && 2021 Idx == UndefMaskElem) || 2022 (Idx != UndefMaskElem && V == Scalars[Idx]); 2023 }); 2024 }; 2025 if (!ReorderIndices.empty()) { 2026 // TODO: implement matching if the nodes are just reordered, still can 2027 // treat the vector as the same if the list of scalars matches VL 2028 // directly, without reordering. 2029 SmallVector<int> Mask; 2030 inversePermutation(ReorderIndices, Mask); 2031 if (VL.size() == Scalars.size()) 2032 return IsSame(Scalars, Mask); 2033 if (VL.size() == ReuseShuffleIndices.size()) { 2034 ::addMask(Mask, ReuseShuffleIndices); 2035 return IsSame(Scalars, Mask); 2036 } 2037 return false; 2038 } 2039 return IsSame(Scalars, ReuseShuffleIndices); 2040 } 2041 2042 /// \returns true if current entry has same operands as \p TE. 2043 bool hasEqualOperands(const TreeEntry &TE) const { 2044 if (TE.getNumOperands() != getNumOperands()) 2045 return false; 2046 SmallBitVector Used(getNumOperands()); 2047 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2048 unsigned PrevCount = Used.count(); 2049 for (unsigned K = 0; K < E; ++K) { 2050 if (Used.test(K)) 2051 continue; 2052 if (getOperand(K) == TE.getOperand(I)) { 2053 Used.set(K); 2054 break; 2055 } 2056 } 2057 // Check if we actually found the matching operand. 2058 if (PrevCount == Used.count()) 2059 return false; 2060 } 2061 return true; 2062 } 2063 2064 /// \return Final vectorization factor for the node. Defined by the total 2065 /// number of vectorized scalars, including those, used several times in the 2066 /// entry and counted in the \a ReuseShuffleIndices, if any. 2067 unsigned getVectorFactor() const { 2068 if (!ReuseShuffleIndices.empty()) 2069 return ReuseShuffleIndices.size(); 2070 return Scalars.size(); 2071 }; 2072 2073 /// A vector of scalars. 2074 ValueList Scalars; 2075 2076 /// The Scalars are vectorized into this value. It is initialized to Null. 2077 Value *VectorizedValue = nullptr; 2078 2079 /// Do we need to gather this sequence or vectorize it 2080 /// (either with vector instruction or with scatter/gather 2081 /// intrinsics for store/load)? 2082 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2083 EntryState State; 2084 2085 /// Does this sequence require some shuffling? 2086 SmallVector<int, 4> ReuseShuffleIndices; 2087 2088 /// Does this entry require reordering? 2089 SmallVector<unsigned, 4> ReorderIndices; 2090 2091 /// Points back to the VectorizableTree. 2092 /// 2093 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2094 /// to be a pointer and needs to be able to initialize the child iterator. 2095 /// Thus we need a reference back to the container to translate the indices 2096 /// to entries. 2097 VecTreeTy &Container; 2098 2099 /// The TreeEntry index containing the user of this entry. We can actually 2100 /// have multiple users so the data structure is not truly a tree. 2101 SmallVector<EdgeInfo, 1> UserTreeIndices; 2102 2103 /// The index of this treeEntry in VectorizableTree. 2104 int Idx = -1; 2105 2106 private: 2107 /// The operands of each instruction in each lane Operands[op_index][lane]. 2108 /// Note: This helps avoid the replication of the code that performs the 2109 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2110 SmallVector<ValueList, 2> Operands; 2111 2112 /// The main/alternate instruction. 2113 Instruction *MainOp = nullptr; 2114 Instruction *AltOp = nullptr; 2115 2116 public: 2117 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2118 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2119 if (Operands.size() < OpIdx + 1) 2120 Operands.resize(OpIdx + 1); 2121 assert(Operands[OpIdx].empty() && "Already resized?"); 2122 assert(OpVL.size() <= Scalars.size() && 2123 "Number of operands is greater than the number of scalars."); 2124 Operands[OpIdx].resize(OpVL.size()); 2125 copy(OpVL, Operands[OpIdx].begin()); 2126 } 2127 2128 /// Set the operands of this bundle in their original order. 2129 void setOperandsInOrder() { 2130 assert(Operands.empty() && "Already initialized?"); 2131 auto *I0 = cast<Instruction>(Scalars[0]); 2132 Operands.resize(I0->getNumOperands()); 2133 unsigned NumLanes = Scalars.size(); 2134 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2135 OpIdx != NumOperands; ++OpIdx) { 2136 Operands[OpIdx].resize(NumLanes); 2137 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2138 auto *I = cast<Instruction>(Scalars[Lane]); 2139 assert(I->getNumOperands() == NumOperands && 2140 "Expected same number of operands"); 2141 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2142 } 2143 } 2144 } 2145 2146 /// Reorders operands of the node to the given mask \p Mask. 2147 void reorderOperands(ArrayRef<int> Mask) { 2148 for (ValueList &Operand : Operands) 2149 reorderScalars(Operand, Mask); 2150 } 2151 2152 /// \returns the \p OpIdx operand of this TreeEntry. 2153 ValueList &getOperand(unsigned OpIdx) { 2154 assert(OpIdx < Operands.size() && "Off bounds"); 2155 return Operands[OpIdx]; 2156 } 2157 2158 /// \returns the \p OpIdx operand of this TreeEntry. 2159 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2160 assert(OpIdx < Operands.size() && "Off bounds"); 2161 return Operands[OpIdx]; 2162 } 2163 2164 /// \returns the number of operands. 2165 unsigned getNumOperands() const { return Operands.size(); } 2166 2167 /// \return the single \p OpIdx operand. 2168 Value *getSingleOperand(unsigned OpIdx) const { 2169 assert(OpIdx < Operands.size() && "Off bounds"); 2170 assert(!Operands[OpIdx].empty() && "No operand available"); 2171 return Operands[OpIdx][0]; 2172 } 2173 2174 /// Some of the instructions in the list have alternate opcodes. 2175 bool isAltShuffle() const { return MainOp != AltOp; } 2176 2177 bool isOpcodeOrAlt(Instruction *I) const { 2178 unsigned CheckedOpcode = I->getOpcode(); 2179 return (getOpcode() == CheckedOpcode || 2180 getAltOpcode() == CheckedOpcode); 2181 } 2182 2183 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2184 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2185 /// \p OpValue. 2186 Value *isOneOf(Value *Op) const { 2187 auto *I = dyn_cast<Instruction>(Op); 2188 if (I && isOpcodeOrAlt(I)) 2189 return Op; 2190 return MainOp; 2191 } 2192 2193 void setOperations(const InstructionsState &S) { 2194 MainOp = S.MainOp; 2195 AltOp = S.AltOp; 2196 } 2197 2198 Instruction *getMainOp() const { 2199 return MainOp; 2200 } 2201 2202 Instruction *getAltOp() const { 2203 return AltOp; 2204 } 2205 2206 /// The main/alternate opcodes for the list of instructions. 2207 unsigned getOpcode() const { 2208 return MainOp ? MainOp->getOpcode() : 0; 2209 } 2210 2211 unsigned getAltOpcode() const { 2212 return AltOp ? AltOp->getOpcode() : 0; 2213 } 2214 2215 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2216 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2217 int findLaneForValue(Value *V) const { 2218 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2219 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2220 if (!ReorderIndices.empty()) 2221 FoundLane = ReorderIndices[FoundLane]; 2222 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2223 if (!ReuseShuffleIndices.empty()) { 2224 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2225 find(ReuseShuffleIndices, FoundLane)); 2226 } 2227 return FoundLane; 2228 } 2229 2230 #ifndef NDEBUG 2231 /// Debug printer. 2232 LLVM_DUMP_METHOD void dump() const { 2233 dbgs() << Idx << ".\n"; 2234 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2235 dbgs() << "Operand " << OpI << ":\n"; 2236 for (const Value *V : Operands[OpI]) 2237 dbgs().indent(2) << *V << "\n"; 2238 } 2239 dbgs() << "Scalars: \n"; 2240 for (Value *V : Scalars) 2241 dbgs().indent(2) << *V << "\n"; 2242 dbgs() << "State: "; 2243 switch (State) { 2244 case Vectorize: 2245 dbgs() << "Vectorize\n"; 2246 break; 2247 case ScatterVectorize: 2248 dbgs() << "ScatterVectorize\n"; 2249 break; 2250 case NeedToGather: 2251 dbgs() << "NeedToGather\n"; 2252 break; 2253 } 2254 dbgs() << "MainOp: "; 2255 if (MainOp) 2256 dbgs() << *MainOp << "\n"; 2257 else 2258 dbgs() << "NULL\n"; 2259 dbgs() << "AltOp: "; 2260 if (AltOp) 2261 dbgs() << *AltOp << "\n"; 2262 else 2263 dbgs() << "NULL\n"; 2264 dbgs() << "VectorizedValue: "; 2265 if (VectorizedValue) 2266 dbgs() << *VectorizedValue << "\n"; 2267 else 2268 dbgs() << "NULL\n"; 2269 dbgs() << "ReuseShuffleIndices: "; 2270 if (ReuseShuffleIndices.empty()) 2271 dbgs() << "Empty"; 2272 else 2273 for (int ReuseIdx : ReuseShuffleIndices) 2274 dbgs() << ReuseIdx << ", "; 2275 dbgs() << "\n"; 2276 dbgs() << "ReorderIndices: "; 2277 for (unsigned ReorderIdx : ReorderIndices) 2278 dbgs() << ReorderIdx << ", "; 2279 dbgs() << "\n"; 2280 dbgs() << "UserTreeIndices: "; 2281 for (const auto &EInfo : UserTreeIndices) 2282 dbgs() << EInfo << ", "; 2283 dbgs() << "\n"; 2284 } 2285 #endif 2286 }; 2287 2288 #ifndef NDEBUG 2289 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2290 InstructionCost VecCost, 2291 InstructionCost ScalarCost) const { 2292 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2293 dbgs() << "SLP: Costs:\n"; 2294 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2295 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2296 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2297 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2298 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2299 } 2300 #endif 2301 2302 /// Create a new VectorizableTree entry. 2303 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2304 const InstructionsState &S, 2305 const EdgeInfo &UserTreeIdx, 2306 ArrayRef<int> ReuseShuffleIndices = None, 2307 ArrayRef<unsigned> ReorderIndices = None) { 2308 TreeEntry::EntryState EntryState = 2309 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2310 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2311 ReuseShuffleIndices, ReorderIndices); 2312 } 2313 2314 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2315 TreeEntry::EntryState EntryState, 2316 Optional<ScheduleData *> Bundle, 2317 const InstructionsState &S, 2318 const EdgeInfo &UserTreeIdx, 2319 ArrayRef<int> ReuseShuffleIndices = None, 2320 ArrayRef<unsigned> ReorderIndices = None) { 2321 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2322 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2323 "Need to vectorize gather entry?"); 2324 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2325 TreeEntry *Last = VectorizableTree.back().get(); 2326 Last->Idx = VectorizableTree.size() - 1; 2327 Last->State = EntryState; 2328 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2329 ReuseShuffleIndices.end()); 2330 if (ReorderIndices.empty()) { 2331 Last->Scalars.assign(VL.begin(), VL.end()); 2332 Last->setOperations(S); 2333 } else { 2334 // Reorder scalars and build final mask. 2335 Last->Scalars.assign(VL.size(), nullptr); 2336 transform(ReorderIndices, Last->Scalars.begin(), 2337 [VL](unsigned Idx) -> Value * { 2338 if (Idx >= VL.size()) 2339 return UndefValue::get(VL.front()->getType()); 2340 return VL[Idx]; 2341 }); 2342 InstructionsState S = getSameOpcode(Last->Scalars); 2343 Last->setOperations(S); 2344 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2345 } 2346 if (Last->State != TreeEntry::NeedToGather) { 2347 for (Value *V : VL) { 2348 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2349 ScalarToTreeEntry[V] = Last; 2350 } 2351 // Update the scheduler bundle to point to this TreeEntry. 2352 unsigned Lane = 0; 2353 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2354 BundleMember = BundleMember->NextInBundle) { 2355 BundleMember->TE = Last; 2356 BundleMember->Lane = Lane; 2357 ++Lane; 2358 } 2359 assert((!Bundle.getValue() || Lane == VL.size()) && 2360 "Bundle and VL out of sync"); 2361 } else { 2362 MustGather.insert(VL.begin(), VL.end()); 2363 } 2364 2365 if (UserTreeIdx.UserTE) 2366 Last->UserTreeIndices.push_back(UserTreeIdx); 2367 2368 return Last; 2369 } 2370 2371 /// -- Vectorization State -- 2372 /// Holds all of the tree entries. 2373 TreeEntry::VecTreeTy VectorizableTree; 2374 2375 #ifndef NDEBUG 2376 /// Debug printer. 2377 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2378 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2379 VectorizableTree[Id]->dump(); 2380 dbgs() << "\n"; 2381 } 2382 } 2383 #endif 2384 2385 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2386 2387 const TreeEntry *getTreeEntry(Value *V) const { 2388 return ScalarToTreeEntry.lookup(V); 2389 } 2390 2391 /// Maps a specific scalar to its tree entry. 2392 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2393 2394 /// Maps a value to the proposed vectorizable size. 2395 SmallDenseMap<Value *, unsigned> InstrElementSize; 2396 2397 /// A list of scalars that we found that we need to keep as scalars. 2398 ValueSet MustGather; 2399 2400 /// This POD struct describes one external user in the vectorized tree. 2401 struct ExternalUser { 2402 ExternalUser(Value *S, llvm::User *U, int L) 2403 : Scalar(S), User(U), Lane(L) {} 2404 2405 // Which scalar in our function. 2406 Value *Scalar; 2407 2408 // Which user that uses the scalar. 2409 llvm::User *User; 2410 2411 // Which lane does the scalar belong to. 2412 int Lane; 2413 }; 2414 using UserList = SmallVector<ExternalUser, 16>; 2415 2416 /// Checks if two instructions may access the same memory. 2417 /// 2418 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2419 /// is invariant in the calling loop. 2420 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2421 Instruction *Inst2) { 2422 // First check if the result is already in the cache. 2423 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2424 Optional<bool> &result = AliasCache[key]; 2425 if (result.hasValue()) { 2426 return result.getValue(); 2427 } 2428 bool aliased = true; 2429 if (Loc1.Ptr && isSimple(Inst1)) 2430 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2431 // Store the result in the cache. 2432 result = aliased; 2433 return aliased; 2434 } 2435 2436 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2437 2438 /// Cache for alias results. 2439 /// TODO: consider moving this to the AliasAnalysis itself. 2440 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2441 2442 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2443 // globally through SLP because we don't perform any action which 2444 // invalidates capture results. 2445 BatchAAResults BatchAA; 2446 2447 /// Removes an instruction from its block and eventually deletes it. 2448 /// It's like Instruction::eraseFromParent() except that the actual deletion 2449 /// is delayed until BoUpSLP is destructed. 2450 /// This is required to ensure that there are no incorrect collisions in the 2451 /// AliasCache, which can happen if a new instruction is allocated at the 2452 /// same address as a previously deleted instruction. 2453 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2454 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2455 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2456 } 2457 2458 /// Temporary store for deleted instructions. Instructions will be deleted 2459 /// eventually when the BoUpSLP is destructed. 2460 DenseMap<Instruction *, bool> DeletedInstructions; 2461 2462 /// A list of values that need to extracted out of the tree. 2463 /// This list holds pairs of (Internal Scalar : External User). External User 2464 /// can be nullptr, it means that this Internal Scalar will be used later, 2465 /// after vectorization. 2466 UserList ExternalUses; 2467 2468 /// Values used only by @llvm.assume calls. 2469 SmallPtrSet<const Value *, 32> EphValues; 2470 2471 /// Holds all of the instructions that we gathered. 2472 SetVector<Instruction *> GatherShuffleSeq; 2473 2474 /// A list of blocks that we are going to CSE. 2475 SetVector<BasicBlock *> CSEBlocks; 2476 2477 /// Contains all scheduling relevant data for an instruction. 2478 /// A ScheduleData either represents a single instruction or a member of an 2479 /// instruction bundle (= a group of instructions which is combined into a 2480 /// vector instruction). 2481 struct ScheduleData { 2482 // The initial value for the dependency counters. It means that the 2483 // dependencies are not calculated yet. 2484 enum { InvalidDeps = -1 }; 2485 2486 ScheduleData() = default; 2487 2488 void init(int BlockSchedulingRegionID, Value *OpVal) { 2489 FirstInBundle = this; 2490 NextInBundle = nullptr; 2491 NextLoadStore = nullptr; 2492 IsScheduled = false; 2493 SchedulingRegionID = BlockSchedulingRegionID; 2494 clearDependencies(); 2495 OpValue = OpVal; 2496 TE = nullptr; 2497 Lane = -1; 2498 } 2499 2500 /// Verify basic self consistency properties 2501 void verify() { 2502 if (hasValidDependencies()) { 2503 assert(UnscheduledDeps <= Dependencies && "invariant"); 2504 } else { 2505 assert(UnscheduledDeps == Dependencies && "invariant"); 2506 } 2507 2508 if (IsScheduled) { 2509 assert(isSchedulingEntity() && 2510 "unexpected scheduled state"); 2511 for (const ScheduleData *BundleMember = this; BundleMember; 2512 BundleMember = BundleMember->NextInBundle) { 2513 assert(BundleMember->hasValidDependencies() && 2514 BundleMember->UnscheduledDeps == 0 && 2515 "unexpected scheduled state"); 2516 assert((BundleMember == this || !BundleMember->IsScheduled) && 2517 "only bundle is marked scheduled"); 2518 } 2519 } 2520 } 2521 2522 /// Returns true if the dependency information has been calculated. 2523 /// Note that depenendency validity can vary between instructions within 2524 /// a single bundle. 2525 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2526 2527 /// Returns true for single instructions and for bundle representatives 2528 /// (= the head of a bundle). 2529 bool isSchedulingEntity() const { return FirstInBundle == this; } 2530 2531 /// Returns true if it represents an instruction bundle and not only a 2532 /// single instruction. 2533 bool isPartOfBundle() const { 2534 return NextInBundle != nullptr || FirstInBundle != this; 2535 } 2536 2537 /// Returns true if it is ready for scheduling, i.e. it has no more 2538 /// unscheduled depending instructions/bundles. 2539 bool isReady() const { 2540 assert(isSchedulingEntity() && 2541 "can't consider non-scheduling entity for ready list"); 2542 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2543 } 2544 2545 /// Modifies the number of unscheduled dependencies for this instruction, 2546 /// and returns the number of remaining dependencies for the containing 2547 /// bundle. 2548 int incrementUnscheduledDeps(int Incr) { 2549 assert(hasValidDependencies() && 2550 "increment of unscheduled deps would be meaningless"); 2551 UnscheduledDeps += Incr; 2552 return FirstInBundle->unscheduledDepsInBundle(); 2553 } 2554 2555 /// Sets the number of unscheduled dependencies to the number of 2556 /// dependencies. 2557 void resetUnscheduledDeps() { 2558 UnscheduledDeps = Dependencies; 2559 } 2560 2561 /// Clears all dependency information. 2562 void clearDependencies() { 2563 Dependencies = InvalidDeps; 2564 resetUnscheduledDeps(); 2565 MemoryDependencies.clear(); 2566 } 2567 2568 int unscheduledDepsInBundle() const { 2569 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2570 int Sum = 0; 2571 for (const ScheduleData *BundleMember = this; BundleMember; 2572 BundleMember = BundleMember->NextInBundle) { 2573 if (BundleMember->UnscheduledDeps == InvalidDeps) 2574 return InvalidDeps; 2575 Sum += BundleMember->UnscheduledDeps; 2576 } 2577 return Sum; 2578 } 2579 2580 void dump(raw_ostream &os) const { 2581 if (!isSchedulingEntity()) { 2582 os << "/ " << *Inst; 2583 } else if (NextInBundle) { 2584 os << '[' << *Inst; 2585 ScheduleData *SD = NextInBundle; 2586 while (SD) { 2587 os << ';' << *SD->Inst; 2588 SD = SD->NextInBundle; 2589 } 2590 os << ']'; 2591 } else { 2592 os << *Inst; 2593 } 2594 } 2595 2596 Instruction *Inst = nullptr; 2597 2598 /// Opcode of the current instruction in the schedule data. 2599 Value *OpValue = nullptr; 2600 2601 /// The TreeEntry that this instruction corresponds to. 2602 TreeEntry *TE = nullptr; 2603 2604 /// Points to the head in an instruction bundle (and always to this for 2605 /// single instructions). 2606 ScheduleData *FirstInBundle = nullptr; 2607 2608 /// Single linked list of all instructions in a bundle. Null if it is a 2609 /// single instruction. 2610 ScheduleData *NextInBundle = nullptr; 2611 2612 /// Single linked list of all memory instructions (e.g. load, store, call) 2613 /// in the block - until the end of the scheduling region. 2614 ScheduleData *NextLoadStore = nullptr; 2615 2616 /// The dependent memory instructions. 2617 /// This list is derived on demand in calculateDependencies(). 2618 SmallVector<ScheduleData *, 4> MemoryDependencies; 2619 2620 /// This ScheduleData is in the current scheduling region if this matches 2621 /// the current SchedulingRegionID of BlockScheduling. 2622 int SchedulingRegionID = 0; 2623 2624 /// The number of dependencies. Constitutes of the number of users of the 2625 /// instruction plus the number of dependent memory instructions (if any). 2626 /// This value is calculated on demand. 2627 /// If InvalidDeps, the number of dependencies is not calculated yet. 2628 int Dependencies = InvalidDeps; 2629 2630 /// The number of dependencies minus the number of dependencies of scheduled 2631 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2632 /// for scheduling. 2633 /// Note that this is negative as long as Dependencies is not calculated. 2634 int UnscheduledDeps = InvalidDeps; 2635 2636 /// The lane of this node in the TreeEntry. 2637 int Lane = -1; 2638 2639 /// True if this instruction is scheduled (or considered as scheduled in the 2640 /// dry-run). 2641 bool IsScheduled = false; 2642 }; 2643 2644 #ifndef NDEBUG 2645 friend inline raw_ostream &operator<<(raw_ostream &os, 2646 const BoUpSLP::ScheduleData &SD) { 2647 SD.dump(os); 2648 return os; 2649 } 2650 #endif 2651 2652 friend struct GraphTraits<BoUpSLP *>; 2653 friend struct DOTGraphTraits<BoUpSLP *>; 2654 2655 /// Contains all scheduling data for a basic block. 2656 struct BlockScheduling { 2657 BlockScheduling(BasicBlock *BB) 2658 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2659 2660 void clear() { 2661 ReadyInsts.clear(); 2662 ScheduleStart = nullptr; 2663 ScheduleEnd = nullptr; 2664 FirstLoadStoreInRegion = nullptr; 2665 LastLoadStoreInRegion = nullptr; 2666 2667 // Reduce the maximum schedule region size by the size of the 2668 // previous scheduling run. 2669 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2670 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2671 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2672 ScheduleRegionSize = 0; 2673 2674 // Make a new scheduling region, i.e. all existing ScheduleData is not 2675 // in the new region yet. 2676 ++SchedulingRegionID; 2677 } 2678 2679 ScheduleData *getScheduleData(Instruction *I) { 2680 if (BB != I->getParent()) 2681 // Avoid lookup if can't possibly be in map. 2682 return nullptr; 2683 ScheduleData *SD = ScheduleDataMap[I]; 2684 if (SD && isInSchedulingRegion(SD)) 2685 return SD; 2686 return nullptr; 2687 } 2688 2689 ScheduleData *getScheduleData(Value *V) { 2690 if (auto *I = dyn_cast<Instruction>(V)) 2691 return getScheduleData(I); 2692 return nullptr; 2693 } 2694 2695 ScheduleData *getScheduleData(Value *V, Value *Key) { 2696 if (V == Key) 2697 return getScheduleData(V); 2698 auto I = ExtraScheduleDataMap.find(V); 2699 if (I != ExtraScheduleDataMap.end()) { 2700 ScheduleData *SD = I->second[Key]; 2701 if (SD && isInSchedulingRegion(SD)) 2702 return SD; 2703 } 2704 return nullptr; 2705 } 2706 2707 bool isInSchedulingRegion(ScheduleData *SD) const { 2708 return SD->SchedulingRegionID == SchedulingRegionID; 2709 } 2710 2711 /// Marks an instruction as scheduled and puts all dependent ready 2712 /// instructions into the ready-list. 2713 template <typename ReadyListType> 2714 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2715 SD->IsScheduled = true; 2716 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2717 2718 for (ScheduleData *BundleMember = SD; BundleMember; 2719 BundleMember = BundleMember->NextInBundle) { 2720 if (BundleMember->Inst != BundleMember->OpValue) 2721 continue; 2722 2723 // Handle the def-use chain dependencies. 2724 2725 // Decrement the unscheduled counter and insert to ready list if ready. 2726 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2727 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2728 if (OpDef && OpDef->hasValidDependencies() && 2729 OpDef->incrementUnscheduledDeps(-1) == 0) { 2730 // There are no more unscheduled dependencies after 2731 // decrementing, so we can put the dependent instruction 2732 // into the ready list. 2733 ScheduleData *DepBundle = OpDef->FirstInBundle; 2734 assert(!DepBundle->IsScheduled && 2735 "already scheduled bundle gets ready"); 2736 ReadyList.insert(DepBundle); 2737 LLVM_DEBUG(dbgs() 2738 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2739 } 2740 }); 2741 }; 2742 2743 // If BundleMember is a vector bundle, its operands may have been 2744 // reordered during buildTree(). We therefore need to get its operands 2745 // through the TreeEntry. 2746 if (TreeEntry *TE = BundleMember->TE) { 2747 int Lane = BundleMember->Lane; 2748 assert(Lane >= 0 && "Lane not set"); 2749 2750 // Since vectorization tree is being built recursively this assertion 2751 // ensures that the tree entry has all operands set before reaching 2752 // this code. Couple of exceptions known at the moment are extracts 2753 // where their second (immediate) operand is not added. Since 2754 // immediates do not affect scheduler behavior this is considered 2755 // okay. 2756 auto *In = TE->getMainOp(); 2757 assert(In && 2758 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2759 In->getNumOperands() == TE->getNumOperands()) && 2760 "Missed TreeEntry operands?"); 2761 (void)In; // fake use to avoid build failure when assertions disabled 2762 2763 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2764 OpIdx != NumOperands; ++OpIdx) 2765 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2766 DecrUnsched(I); 2767 } else { 2768 // If BundleMember is a stand-alone instruction, no operand reordering 2769 // has taken place, so we directly access its operands. 2770 for (Use &U : BundleMember->Inst->operands()) 2771 if (auto *I = dyn_cast<Instruction>(U.get())) 2772 DecrUnsched(I); 2773 } 2774 // Handle the memory dependencies. 2775 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2776 if (MemoryDepSD->hasValidDependencies() && 2777 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2778 // There are no more unscheduled dependencies after decrementing, 2779 // so we can put the dependent instruction into the ready list. 2780 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2781 assert(!DepBundle->IsScheduled && 2782 "already scheduled bundle gets ready"); 2783 ReadyList.insert(DepBundle); 2784 LLVM_DEBUG(dbgs() 2785 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2786 } 2787 } 2788 } 2789 } 2790 2791 /// Verify basic self consistency properties of the data structure. 2792 void verify() { 2793 if (!ScheduleStart) 2794 return; 2795 2796 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2797 ScheduleStart->comesBefore(ScheduleEnd) && 2798 "Not a valid scheduling region?"); 2799 2800 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2801 auto *SD = getScheduleData(I); 2802 assert(SD && "primary scheduledata must exist in window"); 2803 assert(isInSchedulingRegion(SD) && 2804 "primary schedule data not in window?"); 2805 assert(isInSchedulingRegion(SD->FirstInBundle) && 2806 "entire bundle in window!"); 2807 (void)SD; 2808 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2809 } 2810 2811 for (auto *SD : ReadyInsts) { 2812 assert(SD->isSchedulingEntity() && SD->isReady() && 2813 "item in ready list not ready?"); 2814 (void)SD; 2815 } 2816 } 2817 2818 void doForAllOpcodes(Value *V, 2819 function_ref<void(ScheduleData *SD)> Action) { 2820 if (ScheduleData *SD = getScheduleData(V)) 2821 Action(SD); 2822 auto I = ExtraScheduleDataMap.find(V); 2823 if (I != ExtraScheduleDataMap.end()) 2824 for (auto &P : I->second) 2825 if (isInSchedulingRegion(P.second)) 2826 Action(P.second); 2827 } 2828 2829 /// Put all instructions into the ReadyList which are ready for scheduling. 2830 template <typename ReadyListType> 2831 void initialFillReadyList(ReadyListType &ReadyList) { 2832 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2833 doForAllOpcodes(I, [&](ScheduleData *SD) { 2834 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2835 SD->isReady()) { 2836 ReadyList.insert(SD); 2837 LLVM_DEBUG(dbgs() 2838 << "SLP: initially in ready list: " << *SD << "\n"); 2839 } 2840 }); 2841 } 2842 } 2843 2844 /// Build a bundle from the ScheduleData nodes corresponding to the 2845 /// scalar instruction for each lane. 2846 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2847 2848 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2849 /// cyclic dependencies. This is only a dry-run, no instructions are 2850 /// actually moved at this stage. 2851 /// \returns the scheduling bundle. The returned Optional value is non-None 2852 /// if \p VL is allowed to be scheduled. 2853 Optional<ScheduleData *> 2854 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2855 const InstructionsState &S); 2856 2857 /// Un-bundles a group of instructions. 2858 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2859 2860 /// Allocates schedule data chunk. 2861 ScheduleData *allocateScheduleDataChunks(); 2862 2863 /// Extends the scheduling region so that V is inside the region. 2864 /// \returns true if the region size is within the limit. 2865 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2866 2867 /// Initialize the ScheduleData structures for new instructions in the 2868 /// scheduling region. 2869 void initScheduleData(Instruction *FromI, Instruction *ToI, 2870 ScheduleData *PrevLoadStore, 2871 ScheduleData *NextLoadStore); 2872 2873 /// Updates the dependency information of a bundle and of all instructions/ 2874 /// bundles which depend on the original bundle. 2875 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2876 BoUpSLP *SLP); 2877 2878 /// Sets all instruction in the scheduling region to un-scheduled. 2879 void resetSchedule(); 2880 2881 BasicBlock *BB; 2882 2883 /// Simple memory allocation for ScheduleData. 2884 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2885 2886 /// The size of a ScheduleData array in ScheduleDataChunks. 2887 int ChunkSize; 2888 2889 /// The allocator position in the current chunk, which is the last entry 2890 /// of ScheduleDataChunks. 2891 int ChunkPos; 2892 2893 /// Attaches ScheduleData to Instruction. 2894 /// Note that the mapping survives during all vectorization iterations, i.e. 2895 /// ScheduleData structures are recycled. 2896 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2897 2898 /// Attaches ScheduleData to Instruction with the leading key. 2899 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2900 ExtraScheduleDataMap; 2901 2902 /// The ready-list for scheduling (only used for the dry-run). 2903 SetVector<ScheduleData *> ReadyInsts; 2904 2905 /// The first instruction of the scheduling region. 2906 Instruction *ScheduleStart = nullptr; 2907 2908 /// The first instruction _after_ the scheduling region. 2909 Instruction *ScheduleEnd = nullptr; 2910 2911 /// The first memory accessing instruction in the scheduling region 2912 /// (can be null). 2913 ScheduleData *FirstLoadStoreInRegion = nullptr; 2914 2915 /// The last memory accessing instruction in the scheduling region 2916 /// (can be null). 2917 ScheduleData *LastLoadStoreInRegion = nullptr; 2918 2919 /// The current size of the scheduling region. 2920 int ScheduleRegionSize = 0; 2921 2922 /// The maximum size allowed for the scheduling region. 2923 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2924 2925 /// The ID of the scheduling region. For a new vectorization iteration this 2926 /// is incremented which "removes" all ScheduleData from the region. 2927 /// Make sure that the initial SchedulingRegionID is greater than the 2928 /// initial SchedulingRegionID in ScheduleData (which is 0). 2929 int SchedulingRegionID = 1; 2930 }; 2931 2932 /// Attaches the BlockScheduling structures to basic blocks. 2933 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2934 2935 /// Performs the "real" scheduling. Done before vectorization is actually 2936 /// performed in a basic block. 2937 void scheduleBlock(BlockScheduling *BS); 2938 2939 /// List of users to ignore during scheduling and that don't need extracting. 2940 ArrayRef<Value *> UserIgnoreList; 2941 2942 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2943 /// sorted SmallVectors of unsigned. 2944 struct OrdersTypeDenseMapInfo { 2945 static OrdersType getEmptyKey() { 2946 OrdersType V; 2947 V.push_back(~1U); 2948 return V; 2949 } 2950 2951 static OrdersType getTombstoneKey() { 2952 OrdersType V; 2953 V.push_back(~2U); 2954 return V; 2955 } 2956 2957 static unsigned getHashValue(const OrdersType &V) { 2958 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2959 } 2960 2961 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2962 return LHS == RHS; 2963 } 2964 }; 2965 2966 // Analysis and block reference. 2967 Function *F; 2968 ScalarEvolution *SE; 2969 TargetTransformInfo *TTI; 2970 TargetLibraryInfo *TLI; 2971 LoopInfo *LI; 2972 DominatorTree *DT; 2973 AssumptionCache *AC; 2974 DemandedBits *DB; 2975 const DataLayout *DL; 2976 OptimizationRemarkEmitter *ORE; 2977 2978 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2979 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2980 2981 /// Instruction builder to construct the vectorized tree. 2982 IRBuilder<> Builder; 2983 2984 /// A map of scalar integer values to the smallest bit width with which they 2985 /// can legally be represented. The values map to (width, signed) pairs, 2986 /// where "width" indicates the minimum bit width and "signed" is True if the 2987 /// value must be signed-extended, rather than zero-extended, back to its 2988 /// original width. 2989 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2990 }; 2991 2992 } // end namespace slpvectorizer 2993 2994 template <> struct GraphTraits<BoUpSLP *> { 2995 using TreeEntry = BoUpSLP::TreeEntry; 2996 2997 /// NodeRef has to be a pointer per the GraphWriter. 2998 using NodeRef = TreeEntry *; 2999 3000 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3001 3002 /// Add the VectorizableTree to the index iterator to be able to return 3003 /// TreeEntry pointers. 3004 struct ChildIteratorType 3005 : public iterator_adaptor_base< 3006 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3007 ContainerTy &VectorizableTree; 3008 3009 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3010 ContainerTy &VT) 3011 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3012 3013 NodeRef operator*() { return I->UserTE; } 3014 }; 3015 3016 static NodeRef getEntryNode(BoUpSLP &R) { 3017 return R.VectorizableTree[0].get(); 3018 } 3019 3020 static ChildIteratorType child_begin(NodeRef N) { 3021 return {N->UserTreeIndices.begin(), N->Container}; 3022 } 3023 3024 static ChildIteratorType child_end(NodeRef N) { 3025 return {N->UserTreeIndices.end(), N->Container}; 3026 } 3027 3028 /// For the node iterator we just need to turn the TreeEntry iterator into a 3029 /// TreeEntry* iterator so that it dereferences to NodeRef. 3030 class nodes_iterator { 3031 using ItTy = ContainerTy::iterator; 3032 ItTy It; 3033 3034 public: 3035 nodes_iterator(const ItTy &It2) : It(It2) {} 3036 NodeRef operator*() { return It->get(); } 3037 nodes_iterator operator++() { 3038 ++It; 3039 return *this; 3040 } 3041 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3042 }; 3043 3044 static nodes_iterator nodes_begin(BoUpSLP *R) { 3045 return nodes_iterator(R->VectorizableTree.begin()); 3046 } 3047 3048 static nodes_iterator nodes_end(BoUpSLP *R) { 3049 return nodes_iterator(R->VectorizableTree.end()); 3050 } 3051 3052 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3053 }; 3054 3055 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3056 using TreeEntry = BoUpSLP::TreeEntry; 3057 3058 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3059 3060 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3061 std::string Str; 3062 raw_string_ostream OS(Str); 3063 if (isSplat(Entry->Scalars)) 3064 OS << "<splat> "; 3065 for (auto V : Entry->Scalars) { 3066 OS << *V; 3067 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3068 return EU.Scalar == V; 3069 })) 3070 OS << " <extract>"; 3071 OS << "\n"; 3072 } 3073 return Str; 3074 } 3075 3076 static std::string getNodeAttributes(const TreeEntry *Entry, 3077 const BoUpSLP *) { 3078 if (Entry->State == TreeEntry::NeedToGather) 3079 return "color=red"; 3080 return ""; 3081 } 3082 }; 3083 3084 } // end namespace llvm 3085 3086 BoUpSLP::~BoUpSLP() { 3087 for (const auto &Pair : DeletedInstructions) { 3088 // Replace operands of ignored instructions with Undefs in case if they were 3089 // marked for deletion. 3090 if (Pair.getSecond()) { 3091 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3092 Pair.getFirst()->replaceAllUsesWith(Undef); 3093 } 3094 Pair.getFirst()->dropAllReferences(); 3095 } 3096 for (const auto &Pair : DeletedInstructions) { 3097 assert(Pair.getFirst()->use_empty() && 3098 "trying to erase instruction with users."); 3099 Pair.getFirst()->eraseFromParent(); 3100 } 3101 #ifdef EXPENSIVE_CHECKS 3102 // If we could guarantee that this call is not extremely slow, we could 3103 // remove the ifdef limitation (see PR47712). 3104 assert(!verifyFunction(*F, &dbgs())); 3105 #endif 3106 } 3107 3108 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3109 for (auto *V : AV) { 3110 if (auto *I = dyn_cast<Instruction>(V)) 3111 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3112 }; 3113 } 3114 3115 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3116 /// contains original mask for the scalars reused in the node. Procedure 3117 /// transform this mask in accordance with the given \p Mask. 3118 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3119 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3120 "Expected non-empty mask."); 3121 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3122 Prev.swap(Reuses); 3123 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3124 if (Mask[I] != UndefMaskElem) 3125 Reuses[Mask[I]] = Prev[I]; 3126 } 3127 3128 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3129 /// the original order of the scalars. Procedure transforms the provided order 3130 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3131 /// identity order, \p Order is cleared. 3132 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3133 assert(!Mask.empty() && "Expected non-empty mask."); 3134 SmallVector<int> MaskOrder; 3135 if (Order.empty()) { 3136 MaskOrder.resize(Mask.size()); 3137 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3138 } else { 3139 inversePermutation(Order, MaskOrder); 3140 } 3141 reorderReuses(MaskOrder, Mask); 3142 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3143 Order.clear(); 3144 return; 3145 } 3146 Order.assign(Mask.size(), Mask.size()); 3147 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3148 if (MaskOrder[I] != UndefMaskElem) 3149 Order[MaskOrder[I]] = I; 3150 fixupOrderingIndices(Order); 3151 } 3152 3153 Optional<BoUpSLP::OrdersType> 3154 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3155 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3156 unsigned NumScalars = TE.Scalars.size(); 3157 OrdersType CurrentOrder(NumScalars, NumScalars); 3158 SmallVector<int> Positions; 3159 SmallBitVector UsedPositions(NumScalars); 3160 const TreeEntry *STE = nullptr; 3161 // Try to find all gathered scalars that are gets vectorized in other 3162 // vectorize node. Here we can have only one single tree vector node to 3163 // correctly identify order of the gathered scalars. 3164 for (unsigned I = 0; I < NumScalars; ++I) { 3165 Value *V = TE.Scalars[I]; 3166 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3167 continue; 3168 if (const auto *LocalSTE = getTreeEntry(V)) { 3169 if (!STE) 3170 STE = LocalSTE; 3171 else if (STE != LocalSTE) 3172 // Take the order only from the single vector node. 3173 return None; 3174 unsigned Lane = 3175 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3176 if (Lane >= NumScalars) 3177 return None; 3178 if (CurrentOrder[Lane] != NumScalars) { 3179 if (Lane != I) 3180 continue; 3181 UsedPositions.reset(CurrentOrder[Lane]); 3182 } 3183 // The partial identity (where only some elements of the gather node are 3184 // in the identity order) is good. 3185 CurrentOrder[Lane] = I; 3186 UsedPositions.set(I); 3187 } 3188 } 3189 // Need to keep the order if we have a vector entry and at least 2 scalars or 3190 // the vectorized entry has just 2 scalars. 3191 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3192 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3193 for (unsigned I = 0; I < NumScalars; ++I) 3194 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3195 return false; 3196 return true; 3197 }; 3198 if (IsIdentityOrder(CurrentOrder)) { 3199 CurrentOrder.clear(); 3200 return CurrentOrder; 3201 } 3202 auto *It = CurrentOrder.begin(); 3203 for (unsigned I = 0; I < NumScalars;) { 3204 if (UsedPositions.test(I)) { 3205 ++I; 3206 continue; 3207 } 3208 if (*It == NumScalars) { 3209 *It = I; 3210 ++I; 3211 } 3212 ++It; 3213 } 3214 return CurrentOrder; 3215 } 3216 return None; 3217 } 3218 3219 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3220 bool TopToBottom) { 3221 // No need to reorder if need to shuffle reuses, still need to shuffle the 3222 // node. 3223 if (!TE.ReuseShuffleIndices.empty()) 3224 return None; 3225 if (TE.State == TreeEntry::Vectorize && 3226 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3227 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3228 !TE.isAltShuffle()) 3229 return TE.ReorderIndices; 3230 if (TE.State == TreeEntry::NeedToGather) { 3231 // TODO: add analysis of other gather nodes with extractelement 3232 // instructions and other values/instructions, not only undefs. 3233 if (((TE.getOpcode() == Instruction::ExtractElement && 3234 !TE.isAltShuffle()) || 3235 (all_of(TE.Scalars, 3236 [](Value *V) { 3237 return isa<UndefValue, ExtractElementInst>(V); 3238 }) && 3239 any_of(TE.Scalars, 3240 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3241 all_of(TE.Scalars, 3242 [](Value *V) { 3243 auto *EE = dyn_cast<ExtractElementInst>(V); 3244 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3245 }) && 3246 allSameType(TE.Scalars)) { 3247 // Check that gather of extractelements can be represented as 3248 // just a shuffle of a single vector. 3249 OrdersType CurrentOrder; 3250 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3251 if (Reuse || !CurrentOrder.empty()) { 3252 if (!CurrentOrder.empty()) 3253 fixupOrderingIndices(CurrentOrder); 3254 return CurrentOrder; 3255 } 3256 } 3257 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3258 return CurrentOrder; 3259 } 3260 return None; 3261 } 3262 3263 void BoUpSLP::reorderTopToBottom() { 3264 // Maps VF to the graph nodes. 3265 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3266 // ExtractElement gather nodes which can be vectorized and need to handle 3267 // their ordering. 3268 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3269 // Find all reorderable nodes with the given VF. 3270 // Currently the are vectorized stores,loads,extracts + some gathering of 3271 // extracts. 3272 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3273 const std::unique_ptr<TreeEntry> &TE) { 3274 if (Optional<OrdersType> CurrentOrder = 3275 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3276 // Do not include ordering for nodes used in the alt opcode vectorization, 3277 // better to reorder them during bottom-to-top stage. If follow the order 3278 // here, it causes reordering of the whole graph though actually it is 3279 // profitable just to reorder the subgraph that starts from the alternate 3280 // opcode vectorization node. Such nodes already end-up with the shuffle 3281 // instruction and it is just enough to change this shuffle rather than 3282 // rotate the scalars for the whole graph. 3283 unsigned Cnt = 0; 3284 const TreeEntry *UserTE = TE.get(); 3285 while (UserTE && Cnt < RecursionMaxDepth) { 3286 if (UserTE->UserTreeIndices.size() != 1) 3287 break; 3288 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3289 return EI.UserTE->State == TreeEntry::Vectorize && 3290 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3291 })) 3292 return; 3293 if (UserTE->UserTreeIndices.empty()) 3294 UserTE = nullptr; 3295 else 3296 UserTE = UserTE->UserTreeIndices.back().UserTE; 3297 ++Cnt; 3298 } 3299 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3300 if (TE->State != TreeEntry::Vectorize) 3301 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3302 } 3303 }); 3304 3305 // Reorder the graph nodes according to their vectorization factor. 3306 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3307 VF /= 2) { 3308 auto It = VFToOrderedEntries.find(VF); 3309 if (It == VFToOrderedEntries.end()) 3310 continue; 3311 // Try to find the most profitable order. We just are looking for the most 3312 // used order and reorder scalar elements in the nodes according to this 3313 // mostly used order. 3314 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3315 // All operands are reordered and used only in this node - propagate the 3316 // most used order to the user node. 3317 MapVector<OrdersType, unsigned, 3318 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3319 OrdersUses; 3320 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3321 for (const TreeEntry *OpTE : OrderedEntries) { 3322 // No need to reorder this nodes, still need to extend and to use shuffle, 3323 // just need to merge reordering shuffle and the reuse shuffle. 3324 if (!OpTE->ReuseShuffleIndices.empty()) 3325 continue; 3326 // Count number of orders uses. 3327 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3328 if (OpTE->State == TreeEntry::NeedToGather) 3329 return GathersToOrders.find(OpTE)->second; 3330 return OpTE->ReorderIndices; 3331 }(); 3332 // Stores actually store the mask, not the order, need to invert. 3333 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3334 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3335 SmallVector<int> Mask; 3336 inversePermutation(Order, Mask); 3337 unsigned E = Order.size(); 3338 OrdersType CurrentOrder(E, E); 3339 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3340 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3341 }); 3342 fixupOrderingIndices(CurrentOrder); 3343 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3344 } else { 3345 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3346 } 3347 } 3348 // Set order of the user node. 3349 if (OrdersUses.empty()) 3350 continue; 3351 // Choose the most used order. 3352 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3353 unsigned Cnt = OrdersUses.front().second; 3354 for (const auto &Pair : drop_begin(OrdersUses)) { 3355 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3356 BestOrder = Pair.first; 3357 Cnt = Pair.second; 3358 } 3359 } 3360 // Set order of the user node. 3361 if (BestOrder.empty()) 3362 continue; 3363 SmallVector<int> Mask; 3364 inversePermutation(BestOrder, Mask); 3365 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3366 unsigned E = BestOrder.size(); 3367 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3368 return I < E ? static_cast<int>(I) : UndefMaskElem; 3369 }); 3370 // Do an actual reordering, if profitable. 3371 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3372 // Just do the reordering for the nodes with the given VF. 3373 if (TE->Scalars.size() != VF) { 3374 if (TE->ReuseShuffleIndices.size() == VF) { 3375 // Need to reorder the reuses masks of the operands with smaller VF to 3376 // be able to find the match between the graph nodes and scalar 3377 // operands of the given node during vectorization/cost estimation. 3378 assert(all_of(TE->UserTreeIndices, 3379 [VF, &TE](const EdgeInfo &EI) { 3380 return EI.UserTE->Scalars.size() == VF || 3381 EI.UserTE->Scalars.size() == 3382 TE->Scalars.size(); 3383 }) && 3384 "All users must be of VF size."); 3385 // Update ordering of the operands with the smaller VF than the given 3386 // one. 3387 reorderReuses(TE->ReuseShuffleIndices, Mask); 3388 } 3389 continue; 3390 } 3391 if (TE->State == TreeEntry::Vectorize && 3392 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3393 InsertElementInst>(TE->getMainOp()) && 3394 !TE->isAltShuffle()) { 3395 // Build correct orders for extract{element,value}, loads and 3396 // stores. 3397 reorderOrder(TE->ReorderIndices, Mask); 3398 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3399 TE->reorderOperands(Mask); 3400 } else { 3401 // Reorder the node and its operands. 3402 TE->reorderOperands(Mask); 3403 assert(TE->ReorderIndices.empty() && 3404 "Expected empty reorder sequence."); 3405 reorderScalars(TE->Scalars, Mask); 3406 } 3407 if (!TE->ReuseShuffleIndices.empty()) { 3408 // Apply reversed order to keep the original ordering of the reused 3409 // elements to avoid extra reorder indices shuffling. 3410 OrdersType CurrentOrder; 3411 reorderOrder(CurrentOrder, MaskOrder); 3412 SmallVector<int> NewReuses; 3413 inversePermutation(CurrentOrder, NewReuses); 3414 addMask(NewReuses, TE->ReuseShuffleIndices); 3415 TE->ReuseShuffleIndices.swap(NewReuses); 3416 } 3417 } 3418 } 3419 } 3420 3421 bool BoUpSLP::canReorderOperands( 3422 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3423 ArrayRef<TreeEntry *> ReorderableGathers, 3424 SmallVectorImpl<TreeEntry *> &GatherOps) { 3425 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3426 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3427 return OpData.first == I && 3428 OpData.second->State == TreeEntry::Vectorize; 3429 })) 3430 continue; 3431 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3432 // Do not reorder if operand node is used by many user nodes. 3433 if (any_of(TE->UserTreeIndices, 3434 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3435 return false; 3436 // Add the node to the list of the ordered nodes with the identity 3437 // order. 3438 Edges.emplace_back(I, TE); 3439 continue; 3440 } 3441 ArrayRef<Value *> VL = UserTE->getOperand(I); 3442 TreeEntry *Gather = nullptr; 3443 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3444 assert(TE->State != TreeEntry::Vectorize && 3445 "Only non-vectorized nodes are expected."); 3446 if (TE->isSame(VL)) { 3447 Gather = TE; 3448 return true; 3449 } 3450 return false; 3451 }) > 1) 3452 return false; 3453 if (Gather) 3454 GatherOps.push_back(Gather); 3455 } 3456 return true; 3457 } 3458 3459 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3460 SetVector<TreeEntry *> OrderedEntries; 3461 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3462 // Find all reorderable leaf nodes with the given VF. 3463 // Currently the are vectorized loads,extracts without alternate operands + 3464 // some gathering of extracts. 3465 SmallVector<TreeEntry *> NonVectorized; 3466 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3467 &NonVectorized]( 3468 const std::unique_ptr<TreeEntry> &TE) { 3469 if (TE->State != TreeEntry::Vectorize) 3470 NonVectorized.push_back(TE.get()); 3471 if (Optional<OrdersType> CurrentOrder = 3472 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3473 OrderedEntries.insert(TE.get()); 3474 if (TE->State != TreeEntry::Vectorize) 3475 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3476 } 3477 }); 3478 3479 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3480 // I.e., if the node has operands, that are reordered, try to make at least 3481 // one operand order in the natural order and reorder others + reorder the 3482 // user node itself. 3483 SmallPtrSet<const TreeEntry *, 4> Visited; 3484 while (!OrderedEntries.empty()) { 3485 // 1. Filter out only reordered nodes. 3486 // 2. If the entry has multiple uses - skip it and jump to the next node. 3487 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3488 SmallVector<TreeEntry *> Filtered; 3489 for (TreeEntry *TE : OrderedEntries) { 3490 if (!(TE->State == TreeEntry::Vectorize || 3491 (TE->State == TreeEntry::NeedToGather && 3492 GathersToOrders.count(TE))) || 3493 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3494 !all_of(drop_begin(TE->UserTreeIndices), 3495 [TE](const EdgeInfo &EI) { 3496 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3497 }) || 3498 !Visited.insert(TE).second) { 3499 Filtered.push_back(TE); 3500 continue; 3501 } 3502 // Build a map between user nodes and their operands order to speedup 3503 // search. The graph currently does not provide this dependency directly. 3504 for (EdgeInfo &EI : TE->UserTreeIndices) { 3505 TreeEntry *UserTE = EI.UserTE; 3506 auto It = Users.find(UserTE); 3507 if (It == Users.end()) 3508 It = Users.insert({UserTE, {}}).first; 3509 It->second.emplace_back(EI.EdgeIdx, TE); 3510 } 3511 } 3512 // Erase filtered entries. 3513 for_each(Filtered, 3514 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3515 for (auto &Data : Users) { 3516 // Check that operands are used only in the User node. 3517 SmallVector<TreeEntry *> GatherOps; 3518 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3519 GatherOps)) { 3520 for_each(Data.second, 3521 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3522 OrderedEntries.remove(Op.second); 3523 }); 3524 continue; 3525 } 3526 // All operands are reordered and used only in this node - propagate the 3527 // most used order to the user node. 3528 MapVector<OrdersType, unsigned, 3529 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3530 OrdersUses; 3531 // Do the analysis for each tree entry only once, otherwise the order of 3532 // the same node my be considered several times, though might be not 3533 // profitable. 3534 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3535 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3536 for (const auto &Op : Data.second) { 3537 TreeEntry *OpTE = Op.second; 3538 if (!VisitedOps.insert(OpTE).second) 3539 continue; 3540 if (!OpTE->ReuseShuffleIndices.empty() || 3541 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3542 continue; 3543 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3544 if (OpTE->State == TreeEntry::NeedToGather) 3545 return GathersToOrders.find(OpTE)->second; 3546 return OpTE->ReorderIndices; 3547 }(); 3548 unsigned NumOps = count_if( 3549 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3550 return P.second == OpTE; 3551 }); 3552 // Stores actually store the mask, not the order, need to invert. 3553 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3554 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3555 SmallVector<int> Mask; 3556 inversePermutation(Order, Mask); 3557 unsigned E = Order.size(); 3558 OrdersType CurrentOrder(E, E); 3559 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3560 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3561 }); 3562 fixupOrderingIndices(CurrentOrder); 3563 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3564 NumOps; 3565 } else { 3566 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3567 } 3568 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3569 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3570 const TreeEntry *TE) { 3571 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3572 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3573 (IgnoreReorder && TE->Idx == 0)) 3574 return true; 3575 if (TE->State == TreeEntry::NeedToGather) { 3576 auto It = GathersToOrders.find(TE); 3577 if (It != GathersToOrders.end()) 3578 return !It->second.empty(); 3579 return true; 3580 } 3581 return false; 3582 }; 3583 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3584 TreeEntry *UserTE = EI.UserTE; 3585 if (!VisitedUsers.insert(UserTE).second) 3586 continue; 3587 // May reorder user node if it requires reordering, has reused 3588 // scalars, is an alternate op vectorize node or its op nodes require 3589 // reordering. 3590 if (AllowsReordering(UserTE)) 3591 continue; 3592 // Check if users allow reordering. 3593 // Currently look up just 1 level of operands to avoid increase of 3594 // the compile time. 3595 // Profitable to reorder if definitely more operands allow 3596 // reordering rather than those with natural order. 3597 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3598 if (static_cast<unsigned>(count_if( 3599 Ops, [UserTE, &AllowsReordering]( 3600 const std::pair<unsigned, TreeEntry *> &Op) { 3601 return AllowsReordering(Op.second) && 3602 all_of(Op.second->UserTreeIndices, 3603 [UserTE](const EdgeInfo &EI) { 3604 return EI.UserTE == UserTE; 3605 }); 3606 })) <= Ops.size() / 2) 3607 ++Res.first->second; 3608 } 3609 } 3610 // If no orders - skip current nodes and jump to the next one, if any. 3611 if (OrdersUses.empty()) { 3612 for_each(Data.second, 3613 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3614 OrderedEntries.remove(Op.second); 3615 }); 3616 continue; 3617 } 3618 // Choose the best order. 3619 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3620 unsigned Cnt = OrdersUses.front().second; 3621 for (const auto &Pair : drop_begin(OrdersUses)) { 3622 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3623 BestOrder = Pair.first; 3624 Cnt = Pair.second; 3625 } 3626 } 3627 // Set order of the user node (reordering of operands and user nodes). 3628 if (BestOrder.empty()) { 3629 for_each(Data.second, 3630 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3631 OrderedEntries.remove(Op.second); 3632 }); 3633 continue; 3634 } 3635 // Erase operands from OrderedEntries list and adjust their orders. 3636 VisitedOps.clear(); 3637 SmallVector<int> Mask; 3638 inversePermutation(BestOrder, Mask); 3639 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3640 unsigned E = BestOrder.size(); 3641 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3642 return I < E ? static_cast<int>(I) : UndefMaskElem; 3643 }); 3644 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3645 TreeEntry *TE = Op.second; 3646 OrderedEntries.remove(TE); 3647 if (!VisitedOps.insert(TE).second) 3648 continue; 3649 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3650 // Just reorder reuses indices. 3651 reorderReuses(TE->ReuseShuffleIndices, Mask); 3652 continue; 3653 } 3654 // Gathers are processed separately. 3655 if (TE->State != TreeEntry::Vectorize) 3656 continue; 3657 assert((BestOrder.size() == TE->ReorderIndices.size() || 3658 TE->ReorderIndices.empty()) && 3659 "Non-matching sizes of user/operand entries."); 3660 reorderOrder(TE->ReorderIndices, Mask); 3661 } 3662 // For gathers just need to reorder its scalars. 3663 for (TreeEntry *Gather : GatherOps) { 3664 assert(Gather->ReorderIndices.empty() && 3665 "Unexpected reordering of gathers."); 3666 if (!Gather->ReuseShuffleIndices.empty()) { 3667 // Just reorder reuses indices. 3668 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3669 continue; 3670 } 3671 reorderScalars(Gather->Scalars, Mask); 3672 OrderedEntries.remove(Gather); 3673 } 3674 // Reorder operands of the user node and set the ordering for the user 3675 // node itself. 3676 if (Data.first->State != TreeEntry::Vectorize || 3677 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3678 Data.first->getMainOp()) || 3679 Data.first->isAltShuffle()) 3680 Data.first->reorderOperands(Mask); 3681 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3682 Data.first->isAltShuffle()) { 3683 reorderScalars(Data.first->Scalars, Mask); 3684 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3685 if (Data.first->ReuseShuffleIndices.empty() && 3686 !Data.first->ReorderIndices.empty() && 3687 !Data.first->isAltShuffle()) { 3688 // Insert user node to the list to try to sink reordering deeper in 3689 // the graph. 3690 OrderedEntries.insert(Data.first); 3691 } 3692 } else { 3693 reorderOrder(Data.first->ReorderIndices, Mask); 3694 } 3695 } 3696 } 3697 // If the reordering is unnecessary, just remove the reorder. 3698 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3699 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3700 VectorizableTree.front()->ReorderIndices.clear(); 3701 } 3702 3703 void BoUpSLP::buildExternalUses( 3704 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3705 // Collect the values that we need to extract from the tree. 3706 for (auto &TEPtr : VectorizableTree) { 3707 TreeEntry *Entry = TEPtr.get(); 3708 3709 // No need to handle users of gathered values. 3710 if (Entry->State == TreeEntry::NeedToGather) 3711 continue; 3712 3713 // For each lane: 3714 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3715 Value *Scalar = Entry->Scalars[Lane]; 3716 int FoundLane = Entry->findLaneForValue(Scalar); 3717 3718 // Check if the scalar is externally used as an extra arg. 3719 auto ExtI = ExternallyUsedValues.find(Scalar); 3720 if (ExtI != ExternallyUsedValues.end()) { 3721 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3722 << Lane << " from " << *Scalar << ".\n"); 3723 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3724 } 3725 for (User *U : Scalar->users()) { 3726 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3727 3728 Instruction *UserInst = dyn_cast<Instruction>(U); 3729 if (!UserInst) 3730 continue; 3731 3732 if (isDeleted(UserInst)) 3733 continue; 3734 3735 // Skip in-tree scalars that become vectors 3736 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3737 Value *UseScalar = UseEntry->Scalars[0]; 3738 // Some in-tree scalars will remain as scalar in vectorized 3739 // instructions. If that is the case, the one in Lane 0 will 3740 // be used. 3741 if (UseScalar != U || 3742 UseEntry->State == TreeEntry::ScatterVectorize || 3743 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3744 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3745 << ".\n"); 3746 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3747 continue; 3748 } 3749 } 3750 3751 // Ignore users in the user ignore list. 3752 if (is_contained(UserIgnoreList, UserInst)) 3753 continue; 3754 3755 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3756 << Lane << " from " << *Scalar << ".\n"); 3757 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3758 } 3759 } 3760 } 3761 } 3762 3763 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3764 ArrayRef<Value *> UserIgnoreLst) { 3765 deleteTree(); 3766 UserIgnoreList = UserIgnoreLst; 3767 if (!allSameType(Roots)) 3768 return; 3769 buildTree_rec(Roots, 0, EdgeInfo()); 3770 } 3771 3772 namespace { 3773 /// Tracks the state we can represent the loads in the given sequence. 3774 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3775 } // anonymous namespace 3776 3777 /// Checks if the given array of loads can be represented as a vectorized, 3778 /// scatter or just simple gather. 3779 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3780 const TargetTransformInfo &TTI, 3781 const DataLayout &DL, ScalarEvolution &SE, 3782 SmallVectorImpl<unsigned> &Order, 3783 SmallVectorImpl<Value *> &PointerOps) { 3784 // Check that a vectorized load would load the same memory as a scalar 3785 // load. For example, we don't want to vectorize loads that are smaller 3786 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3787 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3788 // from such a struct, we read/write packed bits disagreeing with the 3789 // unvectorized version. 3790 Type *ScalarTy = VL0->getType(); 3791 3792 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3793 return LoadsState::Gather; 3794 3795 // Make sure all loads in the bundle are simple - we can't vectorize 3796 // atomic or volatile loads. 3797 PointerOps.clear(); 3798 PointerOps.resize(VL.size()); 3799 auto *POIter = PointerOps.begin(); 3800 for (Value *V : VL) { 3801 auto *L = cast<LoadInst>(V); 3802 if (!L->isSimple()) 3803 return LoadsState::Gather; 3804 *POIter = L->getPointerOperand(); 3805 ++POIter; 3806 } 3807 3808 Order.clear(); 3809 // Check the order of pointer operands. 3810 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3811 Value *Ptr0; 3812 Value *PtrN; 3813 if (Order.empty()) { 3814 Ptr0 = PointerOps.front(); 3815 PtrN = PointerOps.back(); 3816 } else { 3817 Ptr0 = PointerOps[Order.front()]; 3818 PtrN = PointerOps[Order.back()]; 3819 } 3820 Optional<int> Diff = 3821 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3822 // Check that the sorted loads are consecutive. 3823 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3824 return LoadsState::Vectorize; 3825 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3826 for (Value *V : VL) 3827 CommonAlignment = 3828 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3829 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3830 CommonAlignment)) 3831 return LoadsState::ScatterVectorize; 3832 } 3833 3834 return LoadsState::Gather; 3835 } 3836 3837 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3838 const EdgeInfo &UserTreeIdx) { 3839 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3840 3841 SmallVector<int> ReuseShuffleIndicies; 3842 SmallVector<Value *> UniqueValues; 3843 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3844 &UserTreeIdx, 3845 this](const InstructionsState &S) { 3846 // Check that every instruction appears once in this bundle. 3847 DenseMap<Value *, unsigned> UniquePositions; 3848 for (Value *V : VL) { 3849 if (isConstant(V)) { 3850 ReuseShuffleIndicies.emplace_back( 3851 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3852 UniqueValues.emplace_back(V); 3853 continue; 3854 } 3855 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3856 ReuseShuffleIndicies.emplace_back(Res.first->second); 3857 if (Res.second) 3858 UniqueValues.emplace_back(V); 3859 } 3860 size_t NumUniqueScalarValues = UniqueValues.size(); 3861 if (NumUniqueScalarValues == VL.size()) { 3862 ReuseShuffleIndicies.clear(); 3863 } else { 3864 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3865 if (NumUniqueScalarValues <= 1 || 3866 (UniquePositions.size() == 1 && all_of(UniqueValues, 3867 [](Value *V) { 3868 return isa<UndefValue>(V) || 3869 !isConstant(V); 3870 })) || 3871 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3872 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3873 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3874 return false; 3875 } 3876 VL = UniqueValues; 3877 } 3878 return true; 3879 }; 3880 3881 InstructionsState S = getSameOpcode(VL); 3882 if (Depth == RecursionMaxDepth) { 3883 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3884 if (TryToFindDuplicates(S)) 3885 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3886 ReuseShuffleIndicies); 3887 return; 3888 } 3889 3890 // Don't handle scalable vectors 3891 if (S.getOpcode() == Instruction::ExtractElement && 3892 isa<ScalableVectorType>( 3893 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3894 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3895 if (TryToFindDuplicates(S)) 3896 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3897 ReuseShuffleIndicies); 3898 return; 3899 } 3900 3901 // Don't handle vectors. 3902 if (S.OpValue->getType()->isVectorTy() && 3903 !isa<InsertElementInst>(S.OpValue)) { 3904 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3905 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3906 return; 3907 } 3908 3909 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3910 if (SI->getValueOperand()->getType()->isVectorTy()) { 3911 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3912 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3913 return; 3914 } 3915 3916 // If all of the operands are identical or constant we have a simple solution. 3917 // If we deal with insert/extract instructions, they all must have constant 3918 // indices, otherwise we should gather them, not try to vectorize. 3919 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3920 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3921 !all_of(VL, isVectorLikeInstWithConstOps))) { 3922 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3923 if (TryToFindDuplicates(S)) 3924 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3925 ReuseShuffleIndicies); 3926 return; 3927 } 3928 3929 // We now know that this is a vector of instructions of the same type from 3930 // the same block. 3931 3932 // Don't vectorize ephemeral values. 3933 for (Value *V : VL) { 3934 if (EphValues.count(V)) { 3935 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3936 << ") is ephemeral.\n"); 3937 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3938 return; 3939 } 3940 } 3941 3942 // Check if this is a duplicate of another entry. 3943 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3944 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3945 if (!E->isSame(VL)) { 3946 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3947 if (TryToFindDuplicates(S)) 3948 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3949 ReuseShuffleIndicies); 3950 return; 3951 } 3952 // Record the reuse of the tree node. FIXME, currently this is only used to 3953 // properly draw the graph rather than for the actual vectorization. 3954 E->UserTreeIndices.push_back(UserTreeIdx); 3955 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3956 << ".\n"); 3957 return; 3958 } 3959 3960 // Check that none of the instructions in the bundle are already in the tree. 3961 for (Value *V : VL) { 3962 auto *I = dyn_cast<Instruction>(V); 3963 if (!I) 3964 continue; 3965 if (getTreeEntry(I)) { 3966 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3967 << ") is already in tree.\n"); 3968 if (TryToFindDuplicates(S)) 3969 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3970 ReuseShuffleIndicies); 3971 return; 3972 } 3973 } 3974 3975 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3976 for (Value *V : VL) { 3977 if (is_contained(UserIgnoreList, V)) { 3978 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3979 if (TryToFindDuplicates(S)) 3980 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3981 ReuseShuffleIndicies); 3982 return; 3983 } 3984 } 3985 3986 // Check that all of the users of the scalars that we want to vectorize are 3987 // schedulable. 3988 auto *VL0 = cast<Instruction>(S.OpValue); 3989 BasicBlock *BB = VL0->getParent(); 3990 3991 if (!DT->isReachableFromEntry(BB)) { 3992 // Don't go into unreachable blocks. They may contain instructions with 3993 // dependency cycles which confuse the final scheduling. 3994 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3995 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3996 return; 3997 } 3998 3999 // Check that every instruction appears once in this bundle. 4000 if (!TryToFindDuplicates(S)) 4001 return; 4002 4003 auto &BSRef = BlocksSchedules[BB]; 4004 if (!BSRef) 4005 BSRef = std::make_unique<BlockScheduling>(BB); 4006 4007 BlockScheduling &BS = *BSRef.get(); 4008 4009 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4010 #ifdef EXPENSIVE_CHECKS 4011 // Make sure we didn't break any internal invariants 4012 BS.verify(); 4013 #endif 4014 if (!Bundle) { 4015 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4016 assert((!BS.getScheduleData(VL0) || 4017 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4018 "tryScheduleBundle should cancelScheduling on failure"); 4019 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4020 ReuseShuffleIndicies); 4021 return; 4022 } 4023 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4024 4025 unsigned ShuffleOrOp = S.isAltShuffle() ? 4026 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4027 switch (ShuffleOrOp) { 4028 case Instruction::PHI: { 4029 auto *PH = cast<PHINode>(VL0); 4030 4031 // Check for terminator values (e.g. invoke). 4032 for (Value *V : VL) 4033 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4034 Instruction *Term = dyn_cast<Instruction>( 4035 cast<PHINode>(V)->getIncomingValueForBlock( 4036 PH->getIncomingBlock(I))); 4037 if (Term && Term->isTerminator()) { 4038 LLVM_DEBUG(dbgs() 4039 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4040 BS.cancelScheduling(VL, VL0); 4041 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4042 ReuseShuffleIndicies); 4043 return; 4044 } 4045 } 4046 4047 TreeEntry *TE = 4048 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4049 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4050 4051 // Keeps the reordered operands to avoid code duplication. 4052 SmallVector<ValueList, 2> OperandsVec; 4053 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4054 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4055 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4056 TE->setOperand(I, Operands); 4057 OperandsVec.push_back(Operands); 4058 continue; 4059 } 4060 ValueList Operands; 4061 // Prepare the operand vector. 4062 for (Value *V : VL) 4063 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4064 PH->getIncomingBlock(I))); 4065 TE->setOperand(I, Operands); 4066 OperandsVec.push_back(Operands); 4067 } 4068 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4069 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4070 return; 4071 } 4072 case Instruction::ExtractValue: 4073 case Instruction::ExtractElement: { 4074 OrdersType CurrentOrder; 4075 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4076 if (Reuse) { 4077 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4078 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4079 ReuseShuffleIndicies); 4080 // This is a special case, as it does not gather, but at the same time 4081 // we are not extending buildTree_rec() towards the operands. 4082 ValueList Op0; 4083 Op0.assign(VL.size(), VL0->getOperand(0)); 4084 VectorizableTree.back()->setOperand(0, Op0); 4085 return; 4086 } 4087 if (!CurrentOrder.empty()) { 4088 LLVM_DEBUG({ 4089 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4090 "with order"; 4091 for (unsigned Idx : CurrentOrder) 4092 dbgs() << " " << Idx; 4093 dbgs() << "\n"; 4094 }); 4095 fixupOrderingIndices(CurrentOrder); 4096 // Insert new order with initial value 0, if it does not exist, 4097 // otherwise return the iterator to the existing one. 4098 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4099 ReuseShuffleIndicies, CurrentOrder); 4100 // This is a special case, as it does not gather, but at the same time 4101 // we are not extending buildTree_rec() towards the operands. 4102 ValueList Op0; 4103 Op0.assign(VL.size(), VL0->getOperand(0)); 4104 VectorizableTree.back()->setOperand(0, Op0); 4105 return; 4106 } 4107 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4108 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4109 ReuseShuffleIndicies); 4110 BS.cancelScheduling(VL, VL0); 4111 return; 4112 } 4113 case Instruction::InsertElement: { 4114 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4115 4116 // Check that we have a buildvector and not a shuffle of 2 or more 4117 // different vectors. 4118 ValueSet SourceVectors; 4119 for (Value *V : VL) { 4120 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4121 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4122 } 4123 4124 if (count_if(VL, [&SourceVectors](Value *V) { 4125 return !SourceVectors.contains(V); 4126 }) >= 2) { 4127 // Found 2nd source vector - cancel. 4128 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4129 "different source vectors.\n"); 4130 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4131 BS.cancelScheduling(VL, VL0); 4132 return; 4133 } 4134 4135 auto OrdCompare = [](const std::pair<int, int> &P1, 4136 const std::pair<int, int> &P2) { 4137 return P1.first > P2.first; 4138 }; 4139 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4140 decltype(OrdCompare)> 4141 Indices(OrdCompare); 4142 for (int I = 0, E = VL.size(); I < E; ++I) { 4143 unsigned Idx = *getInsertIndex(VL[I]); 4144 Indices.emplace(Idx, I); 4145 } 4146 OrdersType CurrentOrder(VL.size(), VL.size()); 4147 bool IsIdentity = true; 4148 for (int I = 0, E = VL.size(); I < E; ++I) { 4149 CurrentOrder[Indices.top().second] = I; 4150 IsIdentity &= Indices.top().second == I; 4151 Indices.pop(); 4152 } 4153 if (IsIdentity) 4154 CurrentOrder.clear(); 4155 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4156 None, CurrentOrder); 4157 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4158 4159 constexpr int NumOps = 2; 4160 ValueList VectorOperands[NumOps]; 4161 for (int I = 0; I < NumOps; ++I) { 4162 for (Value *V : VL) 4163 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4164 4165 TE->setOperand(I, VectorOperands[I]); 4166 } 4167 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4168 return; 4169 } 4170 case Instruction::Load: { 4171 // Check that a vectorized load would load the same memory as a scalar 4172 // load. For example, we don't want to vectorize loads that are smaller 4173 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4174 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4175 // from such a struct, we read/write packed bits disagreeing with the 4176 // unvectorized version. 4177 SmallVector<Value *> PointerOps; 4178 OrdersType CurrentOrder; 4179 TreeEntry *TE = nullptr; 4180 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4181 PointerOps)) { 4182 case LoadsState::Vectorize: 4183 if (CurrentOrder.empty()) { 4184 // Original loads are consecutive and does not require reordering. 4185 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4186 ReuseShuffleIndicies); 4187 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4188 } else { 4189 fixupOrderingIndices(CurrentOrder); 4190 // Need to reorder. 4191 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4192 ReuseShuffleIndicies, CurrentOrder); 4193 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4194 } 4195 TE->setOperandsInOrder(); 4196 break; 4197 case LoadsState::ScatterVectorize: 4198 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4199 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4200 UserTreeIdx, ReuseShuffleIndicies); 4201 TE->setOperandsInOrder(); 4202 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4203 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4204 break; 4205 case LoadsState::Gather: 4206 BS.cancelScheduling(VL, VL0); 4207 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4208 ReuseShuffleIndicies); 4209 #ifndef NDEBUG 4210 Type *ScalarTy = VL0->getType(); 4211 if (DL->getTypeSizeInBits(ScalarTy) != 4212 DL->getTypeAllocSizeInBits(ScalarTy)) 4213 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4214 else if (any_of(VL, [](Value *V) { 4215 return !cast<LoadInst>(V)->isSimple(); 4216 })) 4217 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4218 else 4219 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4220 #endif // NDEBUG 4221 break; 4222 } 4223 return; 4224 } 4225 case Instruction::ZExt: 4226 case Instruction::SExt: 4227 case Instruction::FPToUI: 4228 case Instruction::FPToSI: 4229 case Instruction::FPExt: 4230 case Instruction::PtrToInt: 4231 case Instruction::IntToPtr: 4232 case Instruction::SIToFP: 4233 case Instruction::UIToFP: 4234 case Instruction::Trunc: 4235 case Instruction::FPTrunc: 4236 case Instruction::BitCast: { 4237 Type *SrcTy = VL0->getOperand(0)->getType(); 4238 for (Value *V : VL) { 4239 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4240 if (Ty != SrcTy || !isValidElementType(Ty)) { 4241 BS.cancelScheduling(VL, VL0); 4242 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4243 ReuseShuffleIndicies); 4244 LLVM_DEBUG(dbgs() 4245 << "SLP: Gathering casts with different src types.\n"); 4246 return; 4247 } 4248 } 4249 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4250 ReuseShuffleIndicies); 4251 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4252 4253 TE->setOperandsInOrder(); 4254 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4255 ValueList Operands; 4256 // Prepare the operand vector. 4257 for (Value *V : VL) 4258 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4259 4260 buildTree_rec(Operands, Depth + 1, {TE, i}); 4261 } 4262 return; 4263 } 4264 case Instruction::ICmp: 4265 case Instruction::FCmp: { 4266 // Check that all of the compares have the same predicate. 4267 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4268 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4269 Type *ComparedTy = VL0->getOperand(0)->getType(); 4270 for (Value *V : VL) { 4271 CmpInst *Cmp = cast<CmpInst>(V); 4272 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4273 Cmp->getOperand(0)->getType() != ComparedTy) { 4274 BS.cancelScheduling(VL, VL0); 4275 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4276 ReuseShuffleIndicies); 4277 LLVM_DEBUG(dbgs() 4278 << "SLP: Gathering cmp with different predicate.\n"); 4279 return; 4280 } 4281 } 4282 4283 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4284 ReuseShuffleIndicies); 4285 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4286 4287 ValueList Left, Right; 4288 if (cast<CmpInst>(VL0)->isCommutative()) { 4289 // Commutative predicate - collect + sort operands of the instructions 4290 // so that each side is more likely to have the same opcode. 4291 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4292 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4293 } else { 4294 // Collect operands - commute if it uses the swapped predicate. 4295 for (Value *V : VL) { 4296 auto *Cmp = cast<CmpInst>(V); 4297 Value *LHS = Cmp->getOperand(0); 4298 Value *RHS = Cmp->getOperand(1); 4299 if (Cmp->getPredicate() != P0) 4300 std::swap(LHS, RHS); 4301 Left.push_back(LHS); 4302 Right.push_back(RHS); 4303 } 4304 } 4305 TE->setOperand(0, Left); 4306 TE->setOperand(1, Right); 4307 buildTree_rec(Left, Depth + 1, {TE, 0}); 4308 buildTree_rec(Right, Depth + 1, {TE, 1}); 4309 return; 4310 } 4311 case Instruction::Select: 4312 case Instruction::FNeg: 4313 case Instruction::Add: 4314 case Instruction::FAdd: 4315 case Instruction::Sub: 4316 case Instruction::FSub: 4317 case Instruction::Mul: 4318 case Instruction::FMul: 4319 case Instruction::UDiv: 4320 case Instruction::SDiv: 4321 case Instruction::FDiv: 4322 case Instruction::URem: 4323 case Instruction::SRem: 4324 case Instruction::FRem: 4325 case Instruction::Shl: 4326 case Instruction::LShr: 4327 case Instruction::AShr: 4328 case Instruction::And: 4329 case Instruction::Or: 4330 case Instruction::Xor: { 4331 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4332 ReuseShuffleIndicies); 4333 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4334 4335 // Sort operands of the instructions so that each side is more likely to 4336 // have the same opcode. 4337 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4338 ValueList Left, Right; 4339 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4340 TE->setOperand(0, Left); 4341 TE->setOperand(1, Right); 4342 buildTree_rec(Left, Depth + 1, {TE, 0}); 4343 buildTree_rec(Right, Depth + 1, {TE, 1}); 4344 return; 4345 } 4346 4347 TE->setOperandsInOrder(); 4348 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4349 ValueList Operands; 4350 // Prepare the operand vector. 4351 for (Value *V : VL) 4352 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4353 4354 buildTree_rec(Operands, Depth + 1, {TE, i}); 4355 } 4356 return; 4357 } 4358 case Instruction::GetElementPtr: { 4359 // We don't combine GEPs with complicated (nested) indexing. 4360 for (Value *V : VL) { 4361 if (cast<Instruction>(V)->getNumOperands() != 2) { 4362 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4363 BS.cancelScheduling(VL, VL0); 4364 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4365 ReuseShuffleIndicies); 4366 return; 4367 } 4368 } 4369 4370 // We can't combine several GEPs into one vector if they operate on 4371 // different types. 4372 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4373 for (Value *V : VL) { 4374 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4375 if (Ty0 != CurTy) { 4376 LLVM_DEBUG(dbgs() 4377 << "SLP: not-vectorizable GEP (different types).\n"); 4378 BS.cancelScheduling(VL, VL0); 4379 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4380 ReuseShuffleIndicies); 4381 return; 4382 } 4383 } 4384 4385 // We don't combine GEPs with non-constant indexes. 4386 Type *Ty1 = VL0->getOperand(1)->getType(); 4387 for (Value *V : VL) { 4388 auto Op = cast<Instruction>(V)->getOperand(1); 4389 if (!isa<ConstantInt>(Op) || 4390 (Op->getType() != Ty1 && 4391 Op->getType()->getScalarSizeInBits() > 4392 DL->getIndexSizeInBits( 4393 V->getType()->getPointerAddressSpace()))) { 4394 LLVM_DEBUG(dbgs() 4395 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4396 BS.cancelScheduling(VL, VL0); 4397 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4398 ReuseShuffleIndicies); 4399 return; 4400 } 4401 } 4402 4403 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4404 ReuseShuffleIndicies); 4405 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4406 SmallVector<ValueList, 2> Operands(2); 4407 // Prepare the operand vector for pointer operands. 4408 for (Value *V : VL) 4409 Operands.front().push_back( 4410 cast<GetElementPtrInst>(V)->getPointerOperand()); 4411 TE->setOperand(0, Operands.front()); 4412 // Need to cast all indices to the same type before vectorization to 4413 // avoid crash. 4414 // Required to be able to find correct matches between different gather 4415 // nodes and reuse the vectorized values rather than trying to gather them 4416 // again. 4417 int IndexIdx = 1; 4418 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4419 Type *Ty = all_of(VL, 4420 [VL0Ty, IndexIdx](Value *V) { 4421 return VL0Ty == cast<GetElementPtrInst>(V) 4422 ->getOperand(IndexIdx) 4423 ->getType(); 4424 }) 4425 ? VL0Ty 4426 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4427 ->getPointerOperandType() 4428 ->getScalarType()); 4429 // Prepare the operand vector. 4430 for (Value *V : VL) { 4431 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4432 auto *CI = cast<ConstantInt>(Op); 4433 Operands.back().push_back(ConstantExpr::getIntegerCast( 4434 CI, Ty, CI->getValue().isSignBitSet())); 4435 } 4436 TE->setOperand(IndexIdx, Operands.back()); 4437 4438 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4439 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4440 return; 4441 } 4442 case Instruction::Store: { 4443 // Check if the stores are consecutive or if we need to swizzle them. 4444 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4445 // Avoid types that are padded when being allocated as scalars, while 4446 // being packed together in a vector (such as i1). 4447 if (DL->getTypeSizeInBits(ScalarTy) != 4448 DL->getTypeAllocSizeInBits(ScalarTy)) { 4449 BS.cancelScheduling(VL, VL0); 4450 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4451 ReuseShuffleIndicies); 4452 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4453 return; 4454 } 4455 // Make sure all stores in the bundle are simple - we can't vectorize 4456 // atomic or volatile stores. 4457 SmallVector<Value *, 4> PointerOps(VL.size()); 4458 ValueList Operands(VL.size()); 4459 auto POIter = PointerOps.begin(); 4460 auto OIter = Operands.begin(); 4461 for (Value *V : VL) { 4462 auto *SI = cast<StoreInst>(V); 4463 if (!SI->isSimple()) { 4464 BS.cancelScheduling(VL, VL0); 4465 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4466 ReuseShuffleIndicies); 4467 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4468 return; 4469 } 4470 *POIter = SI->getPointerOperand(); 4471 *OIter = SI->getValueOperand(); 4472 ++POIter; 4473 ++OIter; 4474 } 4475 4476 OrdersType CurrentOrder; 4477 // Check the order of pointer operands. 4478 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4479 Value *Ptr0; 4480 Value *PtrN; 4481 if (CurrentOrder.empty()) { 4482 Ptr0 = PointerOps.front(); 4483 PtrN = PointerOps.back(); 4484 } else { 4485 Ptr0 = PointerOps[CurrentOrder.front()]; 4486 PtrN = PointerOps[CurrentOrder.back()]; 4487 } 4488 Optional<int> Dist = 4489 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4490 // Check that the sorted pointer operands are consecutive. 4491 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4492 if (CurrentOrder.empty()) { 4493 // Original stores are consecutive and does not require reordering. 4494 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4495 UserTreeIdx, ReuseShuffleIndicies); 4496 TE->setOperandsInOrder(); 4497 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4498 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4499 } else { 4500 fixupOrderingIndices(CurrentOrder); 4501 TreeEntry *TE = 4502 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4503 ReuseShuffleIndicies, CurrentOrder); 4504 TE->setOperandsInOrder(); 4505 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4506 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4507 } 4508 return; 4509 } 4510 } 4511 4512 BS.cancelScheduling(VL, VL0); 4513 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4514 ReuseShuffleIndicies); 4515 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4516 return; 4517 } 4518 case Instruction::Call: { 4519 // Check if the calls are all to the same vectorizable intrinsic or 4520 // library function. 4521 CallInst *CI = cast<CallInst>(VL0); 4522 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4523 4524 VFShape Shape = VFShape::get( 4525 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4526 false /*HasGlobalPred*/); 4527 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4528 4529 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4530 BS.cancelScheduling(VL, VL0); 4531 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4532 ReuseShuffleIndicies); 4533 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4534 return; 4535 } 4536 Function *F = CI->getCalledFunction(); 4537 unsigned NumArgs = CI->arg_size(); 4538 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4539 for (unsigned j = 0; j != NumArgs; ++j) 4540 if (hasVectorInstrinsicScalarOpd(ID, j)) 4541 ScalarArgs[j] = CI->getArgOperand(j); 4542 for (Value *V : VL) { 4543 CallInst *CI2 = dyn_cast<CallInst>(V); 4544 if (!CI2 || CI2->getCalledFunction() != F || 4545 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4546 (VecFunc && 4547 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4548 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4549 BS.cancelScheduling(VL, VL0); 4550 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4551 ReuseShuffleIndicies); 4552 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4553 << "\n"); 4554 return; 4555 } 4556 // Some intrinsics have scalar arguments and should be same in order for 4557 // them to be vectorized. 4558 for (unsigned j = 0; j != NumArgs; ++j) { 4559 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4560 Value *A1J = CI2->getArgOperand(j); 4561 if (ScalarArgs[j] != A1J) { 4562 BS.cancelScheduling(VL, VL0); 4563 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4564 ReuseShuffleIndicies); 4565 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4566 << " argument " << ScalarArgs[j] << "!=" << A1J 4567 << "\n"); 4568 return; 4569 } 4570 } 4571 } 4572 // Verify that the bundle operands are identical between the two calls. 4573 if (CI->hasOperandBundles() && 4574 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4575 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4576 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4577 BS.cancelScheduling(VL, VL0); 4578 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4579 ReuseShuffleIndicies); 4580 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4581 << *CI << "!=" << *V << '\n'); 4582 return; 4583 } 4584 } 4585 4586 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4587 ReuseShuffleIndicies); 4588 TE->setOperandsInOrder(); 4589 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4590 // For scalar operands no need to to create an entry since no need to 4591 // vectorize it. 4592 if (hasVectorInstrinsicScalarOpd(ID, i)) 4593 continue; 4594 ValueList Operands; 4595 // Prepare the operand vector. 4596 for (Value *V : VL) { 4597 auto *CI2 = cast<CallInst>(V); 4598 Operands.push_back(CI2->getArgOperand(i)); 4599 } 4600 buildTree_rec(Operands, Depth + 1, {TE, i}); 4601 } 4602 return; 4603 } 4604 case Instruction::ShuffleVector: { 4605 // If this is not an alternate sequence of opcode like add-sub 4606 // then do not vectorize this instruction. 4607 if (!S.isAltShuffle()) { 4608 BS.cancelScheduling(VL, VL0); 4609 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4610 ReuseShuffleIndicies); 4611 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4612 return; 4613 } 4614 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4615 ReuseShuffleIndicies); 4616 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4617 4618 // Reorder operands if reordering would enable vectorization. 4619 auto *CI = dyn_cast<CmpInst>(VL0); 4620 if (isa<BinaryOperator>(VL0) || CI) { 4621 ValueList Left, Right; 4622 if (!CI || all_of(VL, [](Value *V) { 4623 return cast<CmpInst>(V)->isCommutative(); 4624 })) { 4625 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4626 } else { 4627 CmpInst::Predicate P0 = CI->getPredicate(); 4628 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4629 assert(P0 != AltP0 && 4630 "Expected different main/alternate predicates."); 4631 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4632 Value *BaseOp0 = VL0->getOperand(0); 4633 Value *BaseOp1 = VL0->getOperand(1); 4634 // Collect operands - commute if it uses the swapped predicate or 4635 // alternate operation. 4636 for (Value *V : VL) { 4637 auto *Cmp = cast<CmpInst>(V); 4638 Value *LHS = Cmp->getOperand(0); 4639 Value *RHS = Cmp->getOperand(1); 4640 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4641 if (P0 == AltP0Swapped) { 4642 if (CI != Cmp && S.AltOp != Cmp && 4643 ((P0 == CurrentPred && 4644 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4645 (AltP0 == CurrentPred && 4646 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4647 std::swap(LHS, RHS); 4648 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4649 std::swap(LHS, RHS); 4650 } 4651 Left.push_back(LHS); 4652 Right.push_back(RHS); 4653 } 4654 } 4655 TE->setOperand(0, Left); 4656 TE->setOperand(1, Right); 4657 buildTree_rec(Left, Depth + 1, {TE, 0}); 4658 buildTree_rec(Right, Depth + 1, {TE, 1}); 4659 return; 4660 } 4661 4662 TE->setOperandsInOrder(); 4663 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4664 ValueList Operands; 4665 // Prepare the operand vector. 4666 for (Value *V : VL) 4667 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4668 4669 buildTree_rec(Operands, Depth + 1, {TE, i}); 4670 } 4671 return; 4672 } 4673 default: 4674 BS.cancelScheduling(VL, VL0); 4675 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4676 ReuseShuffleIndicies); 4677 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4678 return; 4679 } 4680 } 4681 4682 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4683 unsigned N = 1; 4684 Type *EltTy = T; 4685 4686 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4687 isa<VectorType>(EltTy)) { 4688 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4689 // Check that struct is homogeneous. 4690 for (const auto *Ty : ST->elements()) 4691 if (Ty != *ST->element_begin()) 4692 return 0; 4693 N *= ST->getNumElements(); 4694 EltTy = *ST->element_begin(); 4695 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4696 N *= AT->getNumElements(); 4697 EltTy = AT->getElementType(); 4698 } else { 4699 auto *VT = cast<FixedVectorType>(EltTy); 4700 N *= VT->getNumElements(); 4701 EltTy = VT->getElementType(); 4702 } 4703 } 4704 4705 if (!isValidElementType(EltTy)) 4706 return 0; 4707 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4708 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4709 return 0; 4710 return N; 4711 } 4712 4713 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4714 SmallVectorImpl<unsigned> &CurrentOrder) const { 4715 const auto *It = find_if(VL, [](Value *V) { 4716 return isa<ExtractElementInst, ExtractValueInst>(V); 4717 }); 4718 assert(It != VL.end() && "Expected at least one extract instruction."); 4719 auto *E0 = cast<Instruction>(*It); 4720 assert(all_of(VL, 4721 [](Value *V) { 4722 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4723 V); 4724 }) && 4725 "Invalid opcode"); 4726 // Check if all of the extracts come from the same vector and from the 4727 // correct offset. 4728 Value *Vec = E0->getOperand(0); 4729 4730 CurrentOrder.clear(); 4731 4732 // We have to extract from a vector/aggregate with the same number of elements. 4733 unsigned NElts; 4734 if (E0->getOpcode() == Instruction::ExtractValue) { 4735 const DataLayout &DL = E0->getModule()->getDataLayout(); 4736 NElts = canMapToVector(Vec->getType(), DL); 4737 if (!NElts) 4738 return false; 4739 // Check if load can be rewritten as load of vector. 4740 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4741 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4742 return false; 4743 } else { 4744 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4745 } 4746 4747 if (NElts != VL.size()) 4748 return false; 4749 4750 // Check that all of the indices extract from the correct offset. 4751 bool ShouldKeepOrder = true; 4752 unsigned E = VL.size(); 4753 // Assign to all items the initial value E + 1 so we can check if the extract 4754 // instruction index was used already. 4755 // Also, later we can check that all the indices are used and we have a 4756 // consecutive access in the extract instructions, by checking that no 4757 // element of CurrentOrder still has value E + 1. 4758 CurrentOrder.assign(E, E); 4759 unsigned I = 0; 4760 for (; I < E; ++I) { 4761 auto *Inst = dyn_cast<Instruction>(VL[I]); 4762 if (!Inst) 4763 continue; 4764 if (Inst->getOperand(0) != Vec) 4765 break; 4766 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4767 if (isa<UndefValue>(EE->getIndexOperand())) 4768 continue; 4769 Optional<unsigned> Idx = getExtractIndex(Inst); 4770 if (!Idx) 4771 break; 4772 const unsigned ExtIdx = *Idx; 4773 if (ExtIdx != I) { 4774 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4775 break; 4776 ShouldKeepOrder = false; 4777 CurrentOrder[ExtIdx] = I; 4778 } else { 4779 if (CurrentOrder[I] != E) 4780 break; 4781 CurrentOrder[I] = I; 4782 } 4783 } 4784 if (I < E) { 4785 CurrentOrder.clear(); 4786 return false; 4787 } 4788 if (ShouldKeepOrder) 4789 CurrentOrder.clear(); 4790 4791 return ShouldKeepOrder; 4792 } 4793 4794 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4795 ArrayRef<Value *> VectorizedVals) const { 4796 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4797 all_of(I->users(), [this](User *U) { 4798 return ScalarToTreeEntry.count(U) > 0 || 4799 isVectorLikeInstWithConstOps(U) || 4800 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4801 }); 4802 } 4803 4804 static std::pair<InstructionCost, InstructionCost> 4805 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4806 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4807 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4808 4809 // Calculate the cost of the scalar and vector calls. 4810 SmallVector<Type *, 4> VecTys; 4811 for (Use &Arg : CI->args()) 4812 VecTys.push_back( 4813 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4814 FastMathFlags FMF; 4815 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4816 FMF = FPCI->getFastMathFlags(); 4817 SmallVector<const Value *> Arguments(CI->args()); 4818 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4819 dyn_cast<IntrinsicInst>(CI)); 4820 auto IntrinsicCost = 4821 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4822 4823 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4824 VecTy->getNumElements())), 4825 false /*HasGlobalPred*/); 4826 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4827 auto LibCost = IntrinsicCost; 4828 if (!CI->isNoBuiltin() && VecFunc) { 4829 // Calculate the cost of the vector library call. 4830 // If the corresponding vector call is cheaper, return its cost. 4831 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4832 TTI::TCK_RecipThroughput); 4833 } 4834 return {IntrinsicCost, LibCost}; 4835 } 4836 4837 /// Compute the cost of creating a vector of type \p VecTy containing the 4838 /// extracted values from \p VL. 4839 static InstructionCost 4840 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4841 TargetTransformInfo::ShuffleKind ShuffleKind, 4842 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4843 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4844 4845 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4846 VecTy->getNumElements() < NumOfParts) 4847 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4848 4849 bool AllConsecutive = true; 4850 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4851 unsigned Idx = -1; 4852 InstructionCost Cost = 0; 4853 4854 // Process extracts in blocks of EltsPerVector to check if the source vector 4855 // operand can be re-used directly. If not, add the cost of creating a shuffle 4856 // to extract the values into a vector register. 4857 for (auto *V : VL) { 4858 ++Idx; 4859 4860 // Need to exclude undefs from analysis. 4861 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4862 continue; 4863 4864 // Reached the start of a new vector registers. 4865 if (Idx % EltsPerVector == 0) { 4866 AllConsecutive = true; 4867 continue; 4868 } 4869 4870 // Check all extracts for a vector register on the target directly 4871 // extract values in order. 4872 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4873 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4874 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4875 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4876 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4877 } 4878 4879 if (AllConsecutive) 4880 continue; 4881 4882 // Skip all indices, except for the last index per vector block. 4883 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4884 continue; 4885 4886 // If we have a series of extracts which are not consecutive and hence 4887 // cannot re-use the source vector register directly, compute the shuffle 4888 // cost to extract the a vector with EltsPerVector elements. 4889 Cost += TTI.getShuffleCost( 4890 TargetTransformInfo::SK_PermuteSingleSrc, 4891 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4892 } 4893 return Cost; 4894 } 4895 4896 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4897 /// operations operands. 4898 static void 4899 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4900 ArrayRef<int> ReusesIndices, 4901 const function_ref<bool(Instruction *)> IsAltOp, 4902 SmallVectorImpl<int> &Mask, 4903 SmallVectorImpl<Value *> *OpScalars = nullptr, 4904 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4905 unsigned Sz = VL.size(); 4906 Mask.assign(Sz, UndefMaskElem); 4907 SmallVector<int> OrderMask; 4908 if (!ReorderIndices.empty()) 4909 inversePermutation(ReorderIndices, OrderMask); 4910 for (unsigned I = 0; I < Sz; ++I) { 4911 unsigned Idx = I; 4912 if (!ReorderIndices.empty()) 4913 Idx = OrderMask[I]; 4914 auto *OpInst = cast<Instruction>(VL[Idx]); 4915 if (IsAltOp(OpInst)) { 4916 Mask[I] = Sz + Idx; 4917 if (AltScalars) 4918 AltScalars->push_back(OpInst); 4919 } else { 4920 Mask[I] = Idx; 4921 if (OpScalars) 4922 OpScalars->push_back(OpInst); 4923 } 4924 } 4925 if (!ReusesIndices.empty()) { 4926 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4927 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4928 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4929 }); 4930 Mask.swap(NewMask); 4931 } 4932 } 4933 4934 /// Checks if the specified instruction \p I is an alternate operation for the 4935 /// given \p MainOp and \p AltOp instructions. 4936 static bool isAlternateInstruction(const Instruction *I, 4937 const Instruction *MainOp, 4938 const Instruction *AltOp) { 4939 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4940 auto *AltCI0 = cast<CmpInst>(AltOp); 4941 auto *CI = cast<CmpInst>(I); 4942 CmpInst::Predicate P0 = CI0->getPredicate(); 4943 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4944 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4945 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4946 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4947 if (P0 == AltP0Swapped) 4948 return I == AltCI0 || 4949 (I != MainOp && 4950 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4951 CI->getOperand(0), CI->getOperand(1))); 4952 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4953 } 4954 return I->getOpcode() == AltOp->getOpcode(); 4955 } 4956 4957 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4958 ArrayRef<Value *> VectorizedVals) { 4959 ArrayRef<Value*> VL = E->Scalars; 4960 4961 Type *ScalarTy = VL[0]->getType(); 4962 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4963 ScalarTy = SI->getValueOperand()->getType(); 4964 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4965 ScalarTy = CI->getOperand(0)->getType(); 4966 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4967 ScalarTy = IE->getOperand(1)->getType(); 4968 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4969 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4970 4971 // If we have computed a smaller type for the expression, update VecTy so 4972 // that the costs will be accurate. 4973 if (MinBWs.count(VL[0])) 4974 VecTy = FixedVectorType::get( 4975 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4976 unsigned EntryVF = E->getVectorFactor(); 4977 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4978 4979 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4980 // FIXME: it tries to fix a problem with MSVC buildbots. 4981 TargetTransformInfo &TTIRef = *TTI; 4982 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4983 VectorizedVals, E](InstructionCost &Cost) { 4984 DenseMap<Value *, int> ExtractVectorsTys; 4985 SmallPtrSet<Value *, 4> CheckedExtracts; 4986 for (auto *V : VL) { 4987 if (isa<UndefValue>(V)) 4988 continue; 4989 // If all users of instruction are going to be vectorized and this 4990 // instruction itself is not going to be vectorized, consider this 4991 // instruction as dead and remove its cost from the final cost of the 4992 // vectorized tree. 4993 // Also, avoid adjusting the cost for extractelements with multiple uses 4994 // in different graph entries. 4995 const TreeEntry *VE = getTreeEntry(V); 4996 if (!CheckedExtracts.insert(V).second || 4997 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4998 (VE && VE != E)) 4999 continue; 5000 auto *EE = cast<ExtractElementInst>(V); 5001 Optional<unsigned> EEIdx = getExtractIndex(EE); 5002 if (!EEIdx) 5003 continue; 5004 unsigned Idx = *EEIdx; 5005 if (TTIRef.getNumberOfParts(VecTy) != 5006 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5007 auto It = 5008 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5009 It->getSecond() = std::min<int>(It->second, Idx); 5010 } 5011 // Take credit for instruction that will become dead. 5012 if (EE->hasOneUse()) { 5013 Instruction *Ext = EE->user_back(); 5014 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5015 all_of(Ext->users(), 5016 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5017 // Use getExtractWithExtendCost() to calculate the cost of 5018 // extractelement/ext pair. 5019 Cost -= 5020 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5021 EE->getVectorOperandType(), Idx); 5022 // Add back the cost of s|zext which is subtracted separately. 5023 Cost += TTIRef.getCastInstrCost( 5024 Ext->getOpcode(), Ext->getType(), EE->getType(), 5025 TTI::getCastContextHint(Ext), CostKind, Ext); 5026 continue; 5027 } 5028 } 5029 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5030 EE->getVectorOperandType(), Idx); 5031 } 5032 // Add a cost for subvector extracts/inserts if required. 5033 for (const auto &Data : ExtractVectorsTys) { 5034 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5035 unsigned NumElts = VecTy->getNumElements(); 5036 if (Data.second % NumElts == 0) 5037 continue; 5038 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5039 unsigned Idx = (Data.second / NumElts) * NumElts; 5040 unsigned EENumElts = EEVTy->getNumElements(); 5041 if (Idx + NumElts <= EENumElts) { 5042 Cost += 5043 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5044 EEVTy, None, Idx, VecTy); 5045 } else { 5046 // Need to round up the subvector type vectorization factor to avoid a 5047 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5048 // <= EENumElts. 5049 auto *SubVT = 5050 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5051 Cost += 5052 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5053 EEVTy, None, Idx, SubVT); 5054 } 5055 } else { 5056 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5057 VecTy, None, 0, EEVTy); 5058 } 5059 } 5060 }; 5061 if (E->State == TreeEntry::NeedToGather) { 5062 if (allConstant(VL)) 5063 return 0; 5064 if (isa<InsertElementInst>(VL[0])) 5065 return InstructionCost::getInvalid(); 5066 SmallVector<int> Mask; 5067 SmallVector<const TreeEntry *> Entries; 5068 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5069 isGatherShuffledEntry(E, Mask, Entries); 5070 if (Shuffle.hasValue()) { 5071 InstructionCost GatherCost = 0; 5072 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5073 // Perfect match in the graph, will reuse the previously vectorized 5074 // node. Cost is 0. 5075 LLVM_DEBUG( 5076 dbgs() 5077 << "SLP: perfect diamond match for gather bundle that starts with " 5078 << *VL.front() << ".\n"); 5079 if (NeedToShuffleReuses) 5080 GatherCost = 5081 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5082 FinalVecTy, E->ReuseShuffleIndices); 5083 } else { 5084 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5085 << " entries for bundle that starts with " 5086 << *VL.front() << ".\n"); 5087 // Detected that instead of gather we can emit a shuffle of single/two 5088 // previously vectorized nodes. Add the cost of the permutation rather 5089 // than gather. 5090 ::addMask(Mask, E->ReuseShuffleIndices); 5091 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5092 } 5093 return GatherCost; 5094 } 5095 if ((E->getOpcode() == Instruction::ExtractElement || 5096 all_of(E->Scalars, 5097 [](Value *V) { 5098 return isa<ExtractElementInst, UndefValue>(V); 5099 })) && 5100 allSameType(VL)) { 5101 // Check that gather of extractelements can be represented as just a 5102 // shuffle of a single/two vectors the scalars are extracted from. 5103 SmallVector<int> Mask; 5104 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5105 isFixedVectorShuffle(VL, Mask); 5106 if (ShuffleKind.hasValue()) { 5107 // Found the bunch of extractelement instructions that must be gathered 5108 // into a vector and can be represented as a permutation elements in a 5109 // single input vector or of 2 input vectors. 5110 InstructionCost Cost = 5111 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5112 AdjustExtractsCost(Cost); 5113 if (NeedToShuffleReuses) 5114 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5115 FinalVecTy, E->ReuseShuffleIndices); 5116 return Cost; 5117 } 5118 } 5119 if (isSplat(VL)) { 5120 // Found the broadcasting of the single scalar, calculate the cost as the 5121 // broadcast. 5122 assert(VecTy == FinalVecTy && 5123 "No reused scalars expected for broadcast."); 5124 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5125 } 5126 InstructionCost ReuseShuffleCost = 0; 5127 if (NeedToShuffleReuses) 5128 ReuseShuffleCost = TTI->getShuffleCost( 5129 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5130 // Improve gather cost for gather of loads, if we can group some of the 5131 // loads into vector loads. 5132 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5133 !E->isAltShuffle()) { 5134 BoUpSLP::ValueSet VectorizedLoads; 5135 unsigned StartIdx = 0; 5136 unsigned VF = VL.size() / 2; 5137 unsigned VectorizedCnt = 0; 5138 unsigned ScatterVectorizeCnt = 0; 5139 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5140 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5141 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5142 Cnt += VF) { 5143 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5144 if (!VectorizedLoads.count(Slice.front()) && 5145 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5146 SmallVector<Value *> PointerOps; 5147 OrdersType CurrentOrder; 5148 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5149 *SE, CurrentOrder, PointerOps); 5150 switch (LS) { 5151 case LoadsState::Vectorize: 5152 case LoadsState::ScatterVectorize: 5153 // Mark the vectorized loads so that we don't vectorize them 5154 // again. 5155 if (LS == LoadsState::Vectorize) 5156 ++VectorizedCnt; 5157 else 5158 ++ScatterVectorizeCnt; 5159 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5160 // If we vectorized initial block, no need to try to vectorize it 5161 // again. 5162 if (Cnt == StartIdx) 5163 StartIdx += VF; 5164 break; 5165 case LoadsState::Gather: 5166 break; 5167 } 5168 } 5169 } 5170 // Check if the whole array was vectorized already - exit. 5171 if (StartIdx >= VL.size()) 5172 break; 5173 // Found vectorizable parts - exit. 5174 if (!VectorizedLoads.empty()) 5175 break; 5176 } 5177 if (!VectorizedLoads.empty()) { 5178 InstructionCost GatherCost = 0; 5179 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5180 bool NeedInsertSubvectorAnalysis = 5181 !NumParts || (VL.size() / VF) > NumParts; 5182 // Get the cost for gathered loads. 5183 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5184 if (VectorizedLoads.contains(VL[I])) 5185 continue; 5186 GatherCost += getGatherCost(VL.slice(I, VF)); 5187 } 5188 // The cost for vectorized loads. 5189 InstructionCost ScalarsCost = 0; 5190 for (Value *V : VectorizedLoads) { 5191 auto *LI = cast<LoadInst>(V); 5192 ScalarsCost += TTI->getMemoryOpCost( 5193 Instruction::Load, LI->getType(), LI->getAlign(), 5194 LI->getPointerAddressSpace(), CostKind, LI); 5195 } 5196 auto *LI = cast<LoadInst>(E->getMainOp()); 5197 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5198 Align Alignment = LI->getAlign(); 5199 GatherCost += 5200 VectorizedCnt * 5201 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5202 LI->getPointerAddressSpace(), CostKind, LI); 5203 GatherCost += ScatterVectorizeCnt * 5204 TTI->getGatherScatterOpCost( 5205 Instruction::Load, LoadTy, LI->getPointerOperand(), 5206 /*VariableMask=*/false, Alignment, CostKind, LI); 5207 if (NeedInsertSubvectorAnalysis) { 5208 // Add the cost for the subvectors insert. 5209 for (int I = VF, E = VL.size(); I < E; I += VF) 5210 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5211 None, I, LoadTy); 5212 } 5213 return ReuseShuffleCost + GatherCost - ScalarsCost; 5214 } 5215 } 5216 return ReuseShuffleCost + getGatherCost(VL); 5217 } 5218 InstructionCost CommonCost = 0; 5219 SmallVector<int> Mask; 5220 if (!E->ReorderIndices.empty()) { 5221 SmallVector<int> NewMask; 5222 if (E->getOpcode() == Instruction::Store) { 5223 // For stores the order is actually a mask. 5224 NewMask.resize(E->ReorderIndices.size()); 5225 copy(E->ReorderIndices, NewMask.begin()); 5226 } else { 5227 inversePermutation(E->ReorderIndices, NewMask); 5228 } 5229 ::addMask(Mask, NewMask); 5230 } 5231 if (NeedToShuffleReuses) 5232 ::addMask(Mask, E->ReuseShuffleIndices); 5233 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5234 CommonCost = 5235 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5236 assert((E->State == TreeEntry::Vectorize || 5237 E->State == TreeEntry::ScatterVectorize) && 5238 "Unhandled state"); 5239 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5240 Instruction *VL0 = E->getMainOp(); 5241 unsigned ShuffleOrOp = 5242 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5243 switch (ShuffleOrOp) { 5244 case Instruction::PHI: 5245 return 0; 5246 5247 case Instruction::ExtractValue: 5248 case Instruction::ExtractElement: { 5249 // The common cost of removal ExtractElement/ExtractValue instructions + 5250 // the cost of shuffles, if required to resuffle the original vector. 5251 if (NeedToShuffleReuses) { 5252 unsigned Idx = 0; 5253 for (unsigned I : E->ReuseShuffleIndices) { 5254 if (ShuffleOrOp == Instruction::ExtractElement) { 5255 auto *EE = cast<ExtractElementInst>(VL[I]); 5256 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5257 EE->getVectorOperandType(), 5258 *getExtractIndex(EE)); 5259 } else { 5260 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5261 VecTy, Idx); 5262 ++Idx; 5263 } 5264 } 5265 Idx = EntryVF; 5266 for (Value *V : VL) { 5267 if (ShuffleOrOp == Instruction::ExtractElement) { 5268 auto *EE = cast<ExtractElementInst>(V); 5269 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5270 EE->getVectorOperandType(), 5271 *getExtractIndex(EE)); 5272 } else { 5273 --Idx; 5274 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5275 VecTy, Idx); 5276 } 5277 } 5278 } 5279 if (ShuffleOrOp == Instruction::ExtractValue) { 5280 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5281 auto *EI = cast<Instruction>(VL[I]); 5282 // Take credit for instruction that will become dead. 5283 if (EI->hasOneUse()) { 5284 Instruction *Ext = EI->user_back(); 5285 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5286 all_of(Ext->users(), 5287 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5288 // Use getExtractWithExtendCost() to calculate the cost of 5289 // extractelement/ext pair. 5290 CommonCost -= TTI->getExtractWithExtendCost( 5291 Ext->getOpcode(), Ext->getType(), VecTy, I); 5292 // Add back the cost of s|zext which is subtracted separately. 5293 CommonCost += TTI->getCastInstrCost( 5294 Ext->getOpcode(), Ext->getType(), EI->getType(), 5295 TTI::getCastContextHint(Ext), CostKind, Ext); 5296 continue; 5297 } 5298 } 5299 CommonCost -= 5300 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5301 } 5302 } else { 5303 AdjustExtractsCost(CommonCost); 5304 } 5305 return CommonCost; 5306 } 5307 case Instruction::InsertElement: { 5308 assert(E->ReuseShuffleIndices.empty() && 5309 "Unique insertelements only are expected."); 5310 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5311 5312 unsigned const NumElts = SrcVecTy->getNumElements(); 5313 unsigned const NumScalars = VL.size(); 5314 APInt DemandedElts = APInt::getZero(NumElts); 5315 // TODO: Add support for Instruction::InsertValue. 5316 SmallVector<int> Mask; 5317 if (!E->ReorderIndices.empty()) { 5318 inversePermutation(E->ReorderIndices, Mask); 5319 Mask.append(NumElts - NumScalars, UndefMaskElem); 5320 } else { 5321 Mask.assign(NumElts, UndefMaskElem); 5322 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5323 } 5324 unsigned Offset = *getInsertIndex(VL0); 5325 bool IsIdentity = true; 5326 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5327 Mask.swap(PrevMask); 5328 for (unsigned I = 0; I < NumScalars; ++I) { 5329 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5330 DemandedElts.setBit(InsertIdx); 5331 IsIdentity &= InsertIdx - Offset == I; 5332 Mask[InsertIdx - Offset] = I; 5333 } 5334 assert(Offset < NumElts && "Failed to find vector index offset"); 5335 5336 InstructionCost Cost = 0; 5337 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5338 /*Insert*/ true, /*Extract*/ false); 5339 5340 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5341 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5342 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5343 Cost += TTI->getShuffleCost( 5344 TargetTransformInfo::SK_PermuteSingleSrc, 5345 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5346 } else if (!IsIdentity) { 5347 auto *FirstInsert = 5348 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5349 return !is_contained(E->Scalars, 5350 cast<Instruction>(V)->getOperand(0)); 5351 })); 5352 if (isUndefVector(FirstInsert->getOperand(0))) { 5353 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5354 } else { 5355 SmallVector<int> InsertMask(NumElts); 5356 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5357 for (unsigned I = 0; I < NumElts; I++) { 5358 if (Mask[I] != UndefMaskElem) 5359 InsertMask[Offset + I] = NumElts + I; 5360 } 5361 Cost += 5362 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5363 } 5364 } 5365 5366 return Cost; 5367 } 5368 case Instruction::ZExt: 5369 case Instruction::SExt: 5370 case Instruction::FPToUI: 5371 case Instruction::FPToSI: 5372 case Instruction::FPExt: 5373 case Instruction::PtrToInt: 5374 case Instruction::IntToPtr: 5375 case Instruction::SIToFP: 5376 case Instruction::UIToFP: 5377 case Instruction::Trunc: 5378 case Instruction::FPTrunc: 5379 case Instruction::BitCast: { 5380 Type *SrcTy = VL0->getOperand(0)->getType(); 5381 InstructionCost ScalarEltCost = 5382 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5383 TTI::getCastContextHint(VL0), CostKind, VL0); 5384 if (NeedToShuffleReuses) { 5385 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5386 } 5387 5388 // Calculate the cost of this instruction. 5389 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5390 5391 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5392 InstructionCost VecCost = 0; 5393 // Check if the values are candidates to demote. 5394 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5395 VecCost = CommonCost + TTI->getCastInstrCost( 5396 E->getOpcode(), VecTy, SrcVecTy, 5397 TTI::getCastContextHint(VL0), CostKind, VL0); 5398 } 5399 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5400 return VecCost - ScalarCost; 5401 } 5402 case Instruction::FCmp: 5403 case Instruction::ICmp: 5404 case Instruction::Select: { 5405 // Calculate the cost of this instruction. 5406 InstructionCost ScalarEltCost = 5407 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5408 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5409 if (NeedToShuffleReuses) { 5410 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5411 } 5412 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5413 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5414 5415 // Check if all entries in VL are either compares or selects with compares 5416 // as condition that have the same predicates. 5417 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5418 bool First = true; 5419 for (auto *V : VL) { 5420 CmpInst::Predicate CurrentPred; 5421 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5422 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5423 !match(V, MatchCmp)) || 5424 (!First && VecPred != CurrentPred)) { 5425 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5426 break; 5427 } 5428 First = false; 5429 VecPred = CurrentPred; 5430 } 5431 5432 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5433 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5434 // Check if it is possible and profitable to use min/max for selects in 5435 // VL. 5436 // 5437 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5438 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5439 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5440 {VecTy, VecTy}); 5441 InstructionCost IntrinsicCost = 5442 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5443 // If the selects are the only uses of the compares, they will be dead 5444 // and we can adjust the cost by removing their cost. 5445 if (IntrinsicAndUse.second) 5446 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5447 MaskTy, VecPred, CostKind); 5448 VecCost = std::min(VecCost, IntrinsicCost); 5449 } 5450 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5451 return CommonCost + VecCost - ScalarCost; 5452 } 5453 case Instruction::FNeg: 5454 case Instruction::Add: 5455 case Instruction::FAdd: 5456 case Instruction::Sub: 5457 case Instruction::FSub: 5458 case Instruction::Mul: 5459 case Instruction::FMul: 5460 case Instruction::UDiv: 5461 case Instruction::SDiv: 5462 case Instruction::FDiv: 5463 case Instruction::URem: 5464 case Instruction::SRem: 5465 case Instruction::FRem: 5466 case Instruction::Shl: 5467 case Instruction::LShr: 5468 case Instruction::AShr: 5469 case Instruction::And: 5470 case Instruction::Or: 5471 case Instruction::Xor: { 5472 // Certain instructions can be cheaper to vectorize if they have a 5473 // constant second vector operand. 5474 TargetTransformInfo::OperandValueKind Op1VK = 5475 TargetTransformInfo::OK_AnyValue; 5476 TargetTransformInfo::OperandValueKind Op2VK = 5477 TargetTransformInfo::OK_UniformConstantValue; 5478 TargetTransformInfo::OperandValueProperties Op1VP = 5479 TargetTransformInfo::OP_None; 5480 TargetTransformInfo::OperandValueProperties Op2VP = 5481 TargetTransformInfo::OP_PowerOf2; 5482 5483 // If all operands are exactly the same ConstantInt then set the 5484 // operand kind to OK_UniformConstantValue. 5485 // If instead not all operands are constants, then set the operand kind 5486 // to OK_AnyValue. If all operands are constants but not the same, 5487 // then set the operand kind to OK_NonUniformConstantValue. 5488 ConstantInt *CInt0 = nullptr; 5489 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5490 const Instruction *I = cast<Instruction>(VL[i]); 5491 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5492 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5493 if (!CInt) { 5494 Op2VK = TargetTransformInfo::OK_AnyValue; 5495 Op2VP = TargetTransformInfo::OP_None; 5496 break; 5497 } 5498 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5499 !CInt->getValue().isPowerOf2()) 5500 Op2VP = TargetTransformInfo::OP_None; 5501 if (i == 0) { 5502 CInt0 = CInt; 5503 continue; 5504 } 5505 if (CInt0 != CInt) 5506 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5507 } 5508 5509 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5510 InstructionCost ScalarEltCost = 5511 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5512 Op2VK, Op1VP, Op2VP, Operands, VL0); 5513 if (NeedToShuffleReuses) { 5514 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5515 } 5516 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5517 InstructionCost VecCost = 5518 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5519 Op2VK, Op1VP, Op2VP, Operands, VL0); 5520 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5521 return CommonCost + VecCost - ScalarCost; 5522 } 5523 case Instruction::GetElementPtr: { 5524 TargetTransformInfo::OperandValueKind Op1VK = 5525 TargetTransformInfo::OK_AnyValue; 5526 TargetTransformInfo::OperandValueKind Op2VK = 5527 TargetTransformInfo::OK_UniformConstantValue; 5528 5529 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5530 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5531 if (NeedToShuffleReuses) { 5532 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5533 } 5534 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5535 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5536 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5537 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5538 return CommonCost + VecCost - ScalarCost; 5539 } 5540 case Instruction::Load: { 5541 // Cost of wide load - cost of scalar loads. 5542 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5543 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5544 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5545 if (NeedToShuffleReuses) { 5546 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5547 } 5548 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5549 InstructionCost VecLdCost; 5550 if (E->State == TreeEntry::Vectorize) { 5551 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5552 CostKind, VL0); 5553 } else { 5554 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5555 Align CommonAlignment = Alignment; 5556 for (Value *V : VL) 5557 CommonAlignment = 5558 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5559 VecLdCost = TTI->getGatherScatterOpCost( 5560 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5561 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5562 } 5563 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5564 return CommonCost + VecLdCost - ScalarLdCost; 5565 } 5566 case Instruction::Store: { 5567 // We know that we can merge the stores. Calculate the cost. 5568 bool IsReorder = !E->ReorderIndices.empty(); 5569 auto *SI = 5570 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5571 Align Alignment = SI->getAlign(); 5572 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5573 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5574 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5575 InstructionCost VecStCost = TTI->getMemoryOpCost( 5576 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5577 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5578 return CommonCost + VecStCost - ScalarStCost; 5579 } 5580 case Instruction::Call: { 5581 CallInst *CI = cast<CallInst>(VL0); 5582 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5583 5584 // Calculate the cost of the scalar and vector calls. 5585 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5586 InstructionCost ScalarEltCost = 5587 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5588 if (NeedToShuffleReuses) { 5589 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5590 } 5591 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5592 5593 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5594 InstructionCost VecCallCost = 5595 std::min(VecCallCosts.first, VecCallCosts.second); 5596 5597 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5598 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5599 << " for " << *CI << "\n"); 5600 5601 return CommonCost + VecCallCost - ScalarCallCost; 5602 } 5603 case Instruction::ShuffleVector: { 5604 assert(E->isAltShuffle() && 5605 ((Instruction::isBinaryOp(E->getOpcode()) && 5606 Instruction::isBinaryOp(E->getAltOpcode())) || 5607 (Instruction::isCast(E->getOpcode()) && 5608 Instruction::isCast(E->getAltOpcode())) || 5609 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5610 "Invalid Shuffle Vector Operand"); 5611 InstructionCost ScalarCost = 0; 5612 if (NeedToShuffleReuses) { 5613 for (unsigned Idx : E->ReuseShuffleIndices) { 5614 Instruction *I = cast<Instruction>(VL[Idx]); 5615 CommonCost -= TTI->getInstructionCost(I, CostKind); 5616 } 5617 for (Value *V : VL) { 5618 Instruction *I = cast<Instruction>(V); 5619 CommonCost += TTI->getInstructionCost(I, CostKind); 5620 } 5621 } 5622 for (Value *V : VL) { 5623 Instruction *I = cast<Instruction>(V); 5624 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5625 ScalarCost += TTI->getInstructionCost(I, CostKind); 5626 } 5627 // VecCost is equal to sum of the cost of creating 2 vectors 5628 // and the cost of creating shuffle. 5629 InstructionCost VecCost = 0; 5630 // Try to find the previous shuffle node with the same operands and same 5631 // main/alternate ops. 5632 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5633 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5634 if (TE.get() == E) 5635 break; 5636 if (TE->isAltShuffle() && 5637 ((TE->getOpcode() == E->getOpcode() && 5638 TE->getAltOpcode() == E->getAltOpcode()) || 5639 (TE->getOpcode() == E->getAltOpcode() && 5640 TE->getAltOpcode() == E->getOpcode())) && 5641 TE->hasEqualOperands(*E)) 5642 return true; 5643 } 5644 return false; 5645 }; 5646 if (TryFindNodeWithEqualOperands()) { 5647 LLVM_DEBUG({ 5648 dbgs() << "SLP: diamond match for alternate node found.\n"; 5649 E->dump(); 5650 }); 5651 // No need to add new vector costs here since we're going to reuse 5652 // same main/alternate vector ops, just do different shuffling. 5653 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5654 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5655 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5656 CostKind); 5657 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5658 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5659 Builder.getInt1Ty(), 5660 CI0->getPredicate(), CostKind, VL0); 5661 VecCost += TTI->getCmpSelInstrCost( 5662 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5663 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5664 E->getAltOp()); 5665 } else { 5666 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5667 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5668 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5669 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5670 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5671 TTI::CastContextHint::None, CostKind); 5672 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5673 TTI::CastContextHint::None, CostKind); 5674 } 5675 5676 SmallVector<int> Mask; 5677 buildShuffleEntryMask( 5678 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5679 [E](Instruction *I) { 5680 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5681 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5682 }, 5683 Mask); 5684 CommonCost = 5685 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5686 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5687 return CommonCost + VecCost - ScalarCost; 5688 } 5689 default: 5690 llvm_unreachable("Unknown instruction"); 5691 } 5692 } 5693 5694 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5695 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5696 << VectorizableTree.size() << " is fully vectorizable .\n"); 5697 5698 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5699 SmallVector<int> Mask; 5700 return TE->State == TreeEntry::NeedToGather && 5701 !any_of(TE->Scalars, 5702 [this](Value *V) { return EphValues.contains(V); }) && 5703 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5704 TE->Scalars.size() < Limit || 5705 ((TE->getOpcode() == Instruction::ExtractElement || 5706 all_of(TE->Scalars, 5707 [](Value *V) { 5708 return isa<ExtractElementInst, UndefValue>(V); 5709 })) && 5710 isFixedVectorShuffle(TE->Scalars, Mask)) || 5711 (TE->State == TreeEntry::NeedToGather && 5712 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5713 }; 5714 5715 // We only handle trees of heights 1 and 2. 5716 if (VectorizableTree.size() == 1 && 5717 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5718 (ForReduction && 5719 AreVectorizableGathers(VectorizableTree[0].get(), 5720 VectorizableTree[0]->Scalars.size()) && 5721 VectorizableTree[0]->getVectorFactor() > 2))) 5722 return true; 5723 5724 if (VectorizableTree.size() != 2) 5725 return false; 5726 5727 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5728 // with the second gather nodes if they have less scalar operands rather than 5729 // the initial tree element (may be profitable to shuffle the second gather) 5730 // or they are extractelements, which form shuffle. 5731 SmallVector<int> Mask; 5732 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5733 AreVectorizableGathers(VectorizableTree[1].get(), 5734 VectorizableTree[0]->Scalars.size())) 5735 return true; 5736 5737 // Gathering cost would be too much for tiny trees. 5738 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5739 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5740 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5741 return false; 5742 5743 return true; 5744 } 5745 5746 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5747 TargetTransformInfo *TTI, 5748 bool MustMatchOrInst) { 5749 // Look past the root to find a source value. Arbitrarily follow the 5750 // path through operand 0 of any 'or'. Also, peek through optional 5751 // shift-left-by-multiple-of-8-bits. 5752 Value *ZextLoad = Root; 5753 const APInt *ShAmtC; 5754 bool FoundOr = false; 5755 while (!isa<ConstantExpr>(ZextLoad) && 5756 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5757 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5758 ShAmtC->urem(8) == 0))) { 5759 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5760 ZextLoad = BinOp->getOperand(0); 5761 if (BinOp->getOpcode() == Instruction::Or) 5762 FoundOr = true; 5763 } 5764 // Check if the input is an extended load of the required or/shift expression. 5765 Value *Load; 5766 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5767 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5768 return false; 5769 5770 // Require that the total load bit width is a legal integer type. 5771 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5772 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5773 Type *SrcTy = Load->getType(); 5774 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5775 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5776 return false; 5777 5778 // Everything matched - assume that we can fold the whole sequence using 5779 // load combining. 5780 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5781 << *(cast<Instruction>(Root)) << "\n"); 5782 5783 return true; 5784 } 5785 5786 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5787 if (RdxKind != RecurKind::Or) 5788 return false; 5789 5790 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5791 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5792 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5793 /* MatchOr */ false); 5794 } 5795 5796 bool BoUpSLP::isLoadCombineCandidate() const { 5797 // Peek through a final sequence of stores and check if all operations are 5798 // likely to be load-combined. 5799 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5800 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5801 Value *X; 5802 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5803 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5804 return false; 5805 } 5806 return true; 5807 } 5808 5809 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5810 // No need to vectorize inserts of gathered values. 5811 if (VectorizableTree.size() == 2 && 5812 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5813 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5814 return true; 5815 5816 // We can vectorize the tree if its size is greater than or equal to the 5817 // minimum size specified by the MinTreeSize command line option. 5818 if (VectorizableTree.size() >= MinTreeSize) 5819 return false; 5820 5821 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5822 // can vectorize it if we can prove it fully vectorizable. 5823 if (isFullyVectorizableTinyTree(ForReduction)) 5824 return false; 5825 5826 assert(VectorizableTree.empty() 5827 ? ExternalUses.empty() 5828 : true && "We shouldn't have any external users"); 5829 5830 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5831 // vectorizable. 5832 return true; 5833 } 5834 5835 InstructionCost BoUpSLP::getSpillCost() const { 5836 // Walk from the bottom of the tree to the top, tracking which values are 5837 // live. When we see a call instruction that is not part of our tree, 5838 // query TTI to see if there is a cost to keeping values live over it 5839 // (for example, if spills and fills are required). 5840 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5841 InstructionCost Cost = 0; 5842 5843 SmallPtrSet<Instruction*, 4> LiveValues; 5844 Instruction *PrevInst = nullptr; 5845 5846 // The entries in VectorizableTree are not necessarily ordered by their 5847 // position in basic blocks. Collect them and order them by dominance so later 5848 // instructions are guaranteed to be visited first. For instructions in 5849 // different basic blocks, we only scan to the beginning of the block, so 5850 // their order does not matter, as long as all instructions in a basic block 5851 // are grouped together. Using dominance ensures a deterministic order. 5852 SmallVector<Instruction *, 16> OrderedScalars; 5853 for (const auto &TEPtr : VectorizableTree) { 5854 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5855 if (!Inst) 5856 continue; 5857 OrderedScalars.push_back(Inst); 5858 } 5859 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5860 auto *NodeA = DT->getNode(A->getParent()); 5861 auto *NodeB = DT->getNode(B->getParent()); 5862 assert(NodeA && "Should only process reachable instructions"); 5863 assert(NodeB && "Should only process reachable instructions"); 5864 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5865 "Different nodes should have different DFS numbers"); 5866 if (NodeA != NodeB) 5867 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5868 return B->comesBefore(A); 5869 }); 5870 5871 for (Instruction *Inst : OrderedScalars) { 5872 if (!PrevInst) { 5873 PrevInst = Inst; 5874 continue; 5875 } 5876 5877 // Update LiveValues. 5878 LiveValues.erase(PrevInst); 5879 for (auto &J : PrevInst->operands()) { 5880 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5881 LiveValues.insert(cast<Instruction>(&*J)); 5882 } 5883 5884 LLVM_DEBUG({ 5885 dbgs() << "SLP: #LV: " << LiveValues.size(); 5886 for (auto *X : LiveValues) 5887 dbgs() << " " << X->getName(); 5888 dbgs() << ", Looking at "; 5889 Inst->dump(); 5890 }); 5891 5892 // Now find the sequence of instructions between PrevInst and Inst. 5893 unsigned NumCalls = 0; 5894 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5895 PrevInstIt = 5896 PrevInst->getIterator().getReverse(); 5897 while (InstIt != PrevInstIt) { 5898 if (PrevInstIt == PrevInst->getParent()->rend()) { 5899 PrevInstIt = Inst->getParent()->rbegin(); 5900 continue; 5901 } 5902 5903 // Debug information does not impact spill cost. 5904 if ((isa<CallInst>(&*PrevInstIt) && 5905 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5906 &*PrevInstIt != PrevInst) 5907 NumCalls++; 5908 5909 ++PrevInstIt; 5910 } 5911 5912 if (NumCalls) { 5913 SmallVector<Type*, 4> V; 5914 for (auto *II : LiveValues) { 5915 auto *ScalarTy = II->getType(); 5916 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5917 ScalarTy = VectorTy->getElementType(); 5918 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5919 } 5920 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5921 } 5922 5923 PrevInst = Inst; 5924 } 5925 5926 return Cost; 5927 } 5928 5929 /// Check if two insertelement instructions are from the same buildvector. 5930 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5931 InsertElementInst *V) { 5932 // Instructions must be from the same basic blocks. 5933 if (VU->getParent() != V->getParent()) 5934 return false; 5935 // Checks if 2 insertelements are from the same buildvector. 5936 if (VU->getType() != V->getType()) 5937 return false; 5938 // Multiple used inserts are separate nodes. 5939 if (!VU->hasOneUse() && !V->hasOneUse()) 5940 return false; 5941 auto *IE1 = VU; 5942 auto *IE2 = V; 5943 // Go through the vector operand of insertelement instructions trying to find 5944 // either VU as the original vector for IE2 or V as the original vector for 5945 // IE1. 5946 do { 5947 if (IE2 == VU || IE1 == V) 5948 return true; 5949 if (IE1) { 5950 if (IE1 != VU && !IE1->hasOneUse()) 5951 IE1 = nullptr; 5952 else 5953 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5954 } 5955 if (IE2) { 5956 if (IE2 != V && !IE2->hasOneUse()) 5957 IE2 = nullptr; 5958 else 5959 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5960 } 5961 } while (IE1 || IE2); 5962 return false; 5963 } 5964 5965 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5966 InstructionCost Cost = 0; 5967 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5968 << VectorizableTree.size() << ".\n"); 5969 5970 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5971 5972 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5973 TreeEntry &TE = *VectorizableTree[I].get(); 5974 5975 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5976 Cost += C; 5977 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5978 << " for bundle that starts with " << *TE.Scalars[0] 5979 << ".\n" 5980 << "SLP: Current total cost = " << Cost << "\n"); 5981 } 5982 5983 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5984 InstructionCost ExtractCost = 0; 5985 SmallVector<unsigned> VF; 5986 SmallVector<SmallVector<int>> ShuffleMask; 5987 SmallVector<Value *> FirstUsers; 5988 SmallVector<APInt> DemandedElts; 5989 for (ExternalUser &EU : ExternalUses) { 5990 // We only add extract cost once for the same scalar. 5991 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5992 !ExtractCostCalculated.insert(EU.Scalar).second) 5993 continue; 5994 5995 // Uses by ephemeral values are free (because the ephemeral value will be 5996 // removed prior to code generation, and so the extraction will be 5997 // removed as well). 5998 if (EphValues.count(EU.User)) 5999 continue; 6000 6001 // No extract cost for vector "scalar" 6002 if (isa<FixedVectorType>(EU.Scalar->getType())) 6003 continue; 6004 6005 // Already counted the cost for external uses when tried to adjust the cost 6006 // for extractelements, no need to add it again. 6007 if (isa<ExtractElementInst>(EU.Scalar)) 6008 continue; 6009 6010 // If found user is an insertelement, do not calculate extract cost but try 6011 // to detect it as a final shuffled/identity match. 6012 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6013 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6014 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6015 if (InsertIdx) { 6016 auto *It = find_if(FirstUsers, [VU](Value *V) { 6017 return areTwoInsertFromSameBuildVector(VU, 6018 cast<InsertElementInst>(V)); 6019 }); 6020 int VecId = -1; 6021 if (It == FirstUsers.end()) { 6022 VF.push_back(FTy->getNumElements()); 6023 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6024 // Find the insertvector, vectorized in tree, if any. 6025 Value *Base = VU; 6026 while (isa<InsertElementInst>(Base)) { 6027 // Build the mask for the vectorized insertelement instructions. 6028 if (const TreeEntry *E = getTreeEntry(Base)) { 6029 VU = cast<InsertElementInst>(Base); 6030 do { 6031 int Idx = E->findLaneForValue(Base); 6032 ShuffleMask.back()[Idx] = Idx; 6033 Base = cast<InsertElementInst>(Base)->getOperand(0); 6034 } while (E == getTreeEntry(Base)); 6035 break; 6036 } 6037 Base = cast<InsertElementInst>(Base)->getOperand(0); 6038 } 6039 FirstUsers.push_back(VU); 6040 DemandedElts.push_back(APInt::getZero(VF.back())); 6041 VecId = FirstUsers.size() - 1; 6042 } else { 6043 VecId = std::distance(FirstUsers.begin(), It); 6044 } 6045 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6046 DemandedElts[VecId].setBit(*InsertIdx); 6047 continue; 6048 } 6049 } 6050 } 6051 6052 // If we plan to rewrite the tree in a smaller type, we will need to sign 6053 // extend the extracted value back to the original type. Here, we account 6054 // for the extract and the added cost of the sign extend if needed. 6055 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6056 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6057 if (MinBWs.count(ScalarRoot)) { 6058 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6059 auto Extend = 6060 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6061 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6062 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6063 VecTy, EU.Lane); 6064 } else { 6065 ExtractCost += 6066 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6067 } 6068 } 6069 6070 InstructionCost SpillCost = getSpillCost(); 6071 Cost += SpillCost + ExtractCost; 6072 if (FirstUsers.size() == 1) { 6073 int Limit = ShuffleMask.front().size() * 2; 6074 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6075 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6076 InstructionCost C = TTI->getShuffleCost( 6077 TTI::SK_PermuteSingleSrc, 6078 cast<FixedVectorType>(FirstUsers.front()->getType()), 6079 ShuffleMask.front()); 6080 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6081 << " for final shuffle of insertelement external users " 6082 << *VectorizableTree.front()->Scalars.front() << ".\n" 6083 << "SLP: Current total cost = " << Cost << "\n"); 6084 Cost += C; 6085 } 6086 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6087 cast<FixedVectorType>(FirstUsers.front()->getType()), 6088 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6089 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6090 << " for insertelements gather.\n" 6091 << "SLP: Current total cost = " << Cost << "\n"); 6092 Cost -= InsertCost; 6093 } else if (FirstUsers.size() >= 2) { 6094 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6095 // Combined masks of the first 2 vectors. 6096 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6097 copy(ShuffleMask.front(), CombinedMask.begin()); 6098 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6099 auto *VecTy = FixedVectorType::get( 6100 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6101 MaxVF); 6102 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6103 if (ShuffleMask[1][I] != UndefMaskElem) { 6104 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6105 CombinedDemandedElts.setBit(I); 6106 } 6107 } 6108 InstructionCost C = 6109 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6110 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6111 << " for final shuffle of vector node and external " 6112 "insertelement users " 6113 << *VectorizableTree.front()->Scalars.front() << ".\n" 6114 << "SLP: Current total cost = " << Cost << "\n"); 6115 Cost += C; 6116 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6117 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6118 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6119 << " for insertelements gather.\n" 6120 << "SLP: Current total cost = " << Cost << "\n"); 6121 Cost -= InsertCost; 6122 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6123 // Other elements - permutation of 2 vectors (the initial one and the 6124 // next Ith incoming vector). 6125 unsigned VF = ShuffleMask[I].size(); 6126 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6127 int Mask = ShuffleMask[I][Idx]; 6128 if (Mask != UndefMaskElem) 6129 CombinedMask[Idx] = MaxVF + Mask; 6130 else if (CombinedMask[Idx] != UndefMaskElem) 6131 CombinedMask[Idx] = Idx; 6132 } 6133 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6134 if (CombinedMask[Idx] != UndefMaskElem) 6135 CombinedMask[Idx] = Idx; 6136 InstructionCost C = 6137 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6138 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6139 << " for final shuffle of vector node and external " 6140 "insertelement users " 6141 << *VectorizableTree.front()->Scalars.front() << ".\n" 6142 << "SLP: Current total cost = " << Cost << "\n"); 6143 Cost += C; 6144 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6145 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6146 /*Insert*/ true, /*Extract*/ false); 6147 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6148 << " for insertelements gather.\n" 6149 << "SLP: Current total cost = " << Cost << "\n"); 6150 Cost -= InsertCost; 6151 } 6152 } 6153 6154 #ifndef NDEBUG 6155 SmallString<256> Str; 6156 { 6157 raw_svector_ostream OS(Str); 6158 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6159 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6160 << "SLP: Total Cost = " << Cost << ".\n"; 6161 } 6162 LLVM_DEBUG(dbgs() << Str); 6163 if (ViewSLPTree) 6164 ViewGraph(this, "SLP" + F->getName(), false, Str); 6165 #endif 6166 6167 return Cost; 6168 } 6169 6170 Optional<TargetTransformInfo::ShuffleKind> 6171 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6172 SmallVectorImpl<const TreeEntry *> &Entries) { 6173 // TODO: currently checking only for Scalars in the tree entry, need to count 6174 // reused elements too for better cost estimation. 6175 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6176 Entries.clear(); 6177 // Build a lists of values to tree entries. 6178 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6179 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6180 if (EntryPtr.get() == TE) 6181 break; 6182 if (EntryPtr->State != TreeEntry::NeedToGather) 6183 continue; 6184 for (Value *V : EntryPtr->Scalars) 6185 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6186 } 6187 // Find all tree entries used by the gathered values. If no common entries 6188 // found - not a shuffle. 6189 // Here we build a set of tree nodes for each gathered value and trying to 6190 // find the intersection between these sets. If we have at least one common 6191 // tree node for each gathered value - we have just a permutation of the 6192 // single vector. If we have 2 different sets, we're in situation where we 6193 // have a permutation of 2 input vectors. 6194 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6195 DenseMap<Value *, int> UsedValuesEntry; 6196 for (Value *V : TE->Scalars) { 6197 if (isa<UndefValue>(V)) 6198 continue; 6199 // Build a list of tree entries where V is used. 6200 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6201 auto It = ValueToTEs.find(V); 6202 if (It != ValueToTEs.end()) 6203 VToTEs = It->second; 6204 if (const TreeEntry *VTE = getTreeEntry(V)) 6205 VToTEs.insert(VTE); 6206 if (VToTEs.empty()) 6207 return None; 6208 if (UsedTEs.empty()) { 6209 // The first iteration, just insert the list of nodes to vector. 6210 UsedTEs.push_back(VToTEs); 6211 } else { 6212 // Need to check if there are any previously used tree nodes which use V. 6213 // If there are no such nodes, consider that we have another one input 6214 // vector. 6215 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6216 unsigned Idx = 0; 6217 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6218 // Do we have a non-empty intersection of previously listed tree entries 6219 // and tree entries using current V? 6220 set_intersect(VToTEs, Set); 6221 if (!VToTEs.empty()) { 6222 // Yes, write the new subset and continue analysis for the next 6223 // scalar. 6224 Set.swap(VToTEs); 6225 break; 6226 } 6227 VToTEs = SavedVToTEs; 6228 ++Idx; 6229 } 6230 // No non-empty intersection found - need to add a second set of possible 6231 // source vectors. 6232 if (Idx == UsedTEs.size()) { 6233 // If the number of input vectors is greater than 2 - not a permutation, 6234 // fallback to the regular gather. 6235 if (UsedTEs.size() == 2) 6236 return None; 6237 UsedTEs.push_back(SavedVToTEs); 6238 Idx = UsedTEs.size() - 1; 6239 } 6240 UsedValuesEntry.try_emplace(V, Idx); 6241 } 6242 } 6243 6244 unsigned VF = 0; 6245 if (UsedTEs.size() == 1) { 6246 // Try to find the perfect match in another gather node at first. 6247 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6248 return EntryPtr->isSame(TE->Scalars); 6249 }); 6250 if (It != UsedTEs.front().end()) { 6251 Entries.push_back(*It); 6252 std::iota(Mask.begin(), Mask.end(), 0); 6253 return TargetTransformInfo::SK_PermuteSingleSrc; 6254 } 6255 // No perfect match, just shuffle, so choose the first tree node. 6256 Entries.push_back(*UsedTEs.front().begin()); 6257 } else { 6258 // Try to find nodes with the same vector factor. 6259 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6260 DenseMap<int, const TreeEntry *> VFToTE; 6261 for (const TreeEntry *TE : UsedTEs.front()) 6262 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6263 for (const TreeEntry *TE : UsedTEs.back()) { 6264 auto It = VFToTE.find(TE->getVectorFactor()); 6265 if (It != VFToTE.end()) { 6266 VF = It->first; 6267 Entries.push_back(It->second); 6268 Entries.push_back(TE); 6269 break; 6270 } 6271 } 6272 // No 2 source vectors with the same vector factor - give up and do regular 6273 // gather. 6274 if (Entries.empty()) 6275 return None; 6276 } 6277 6278 // Build a shuffle mask for better cost estimation and vector emission. 6279 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6280 Value *V = TE->Scalars[I]; 6281 if (isa<UndefValue>(V)) 6282 continue; 6283 unsigned Idx = UsedValuesEntry.lookup(V); 6284 const TreeEntry *VTE = Entries[Idx]; 6285 int FoundLane = VTE->findLaneForValue(V); 6286 Mask[I] = Idx * VF + FoundLane; 6287 // Extra check required by isSingleSourceMaskImpl function (called by 6288 // ShuffleVectorInst::isSingleSourceMask). 6289 if (Mask[I] >= 2 * E) 6290 return None; 6291 } 6292 switch (Entries.size()) { 6293 case 1: 6294 return TargetTransformInfo::SK_PermuteSingleSrc; 6295 case 2: 6296 return TargetTransformInfo::SK_PermuteTwoSrc; 6297 default: 6298 break; 6299 } 6300 return None; 6301 } 6302 6303 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6304 const APInt &ShuffledIndices, 6305 bool NeedToShuffle) const { 6306 InstructionCost Cost = 6307 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6308 /*Extract*/ false); 6309 if (NeedToShuffle) 6310 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6311 return Cost; 6312 } 6313 6314 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6315 // Find the type of the operands in VL. 6316 Type *ScalarTy = VL[0]->getType(); 6317 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6318 ScalarTy = SI->getValueOperand()->getType(); 6319 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6320 bool DuplicateNonConst = false; 6321 // Find the cost of inserting/extracting values from the vector. 6322 // Check if the same elements are inserted several times and count them as 6323 // shuffle candidates. 6324 APInt ShuffledElements = APInt::getZero(VL.size()); 6325 DenseSet<Value *> UniqueElements; 6326 // Iterate in reverse order to consider insert elements with the high cost. 6327 for (unsigned I = VL.size(); I > 0; --I) { 6328 unsigned Idx = I - 1; 6329 // No need to shuffle duplicates for constants. 6330 if (isConstant(VL[Idx])) { 6331 ShuffledElements.setBit(Idx); 6332 continue; 6333 } 6334 if (!UniqueElements.insert(VL[Idx]).second) { 6335 DuplicateNonConst = true; 6336 ShuffledElements.setBit(Idx); 6337 } 6338 } 6339 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6340 } 6341 6342 // Perform operand reordering on the instructions in VL and return the reordered 6343 // operands in Left and Right. 6344 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6345 SmallVectorImpl<Value *> &Left, 6346 SmallVectorImpl<Value *> &Right, 6347 const DataLayout &DL, 6348 ScalarEvolution &SE, 6349 const BoUpSLP &R) { 6350 if (VL.empty()) 6351 return; 6352 VLOperands Ops(VL, DL, SE, R); 6353 // Reorder the operands in place. 6354 Ops.reorder(); 6355 Left = Ops.getVL(0); 6356 Right = Ops.getVL(1); 6357 } 6358 6359 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6360 // Get the basic block this bundle is in. All instructions in the bundle 6361 // should be in this block. 6362 auto *Front = E->getMainOp(); 6363 auto *BB = Front->getParent(); 6364 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6365 auto *I = cast<Instruction>(V); 6366 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6367 })); 6368 6369 // The last instruction in the bundle in program order. 6370 Instruction *LastInst = nullptr; 6371 6372 // Find the last instruction. The common case should be that BB has been 6373 // scheduled, and the last instruction is VL.back(). So we start with 6374 // VL.back() and iterate over schedule data until we reach the end of the 6375 // bundle. The end of the bundle is marked by null ScheduleData. 6376 if (BlocksSchedules.count(BB)) { 6377 auto *Bundle = 6378 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6379 if (Bundle && Bundle->isPartOfBundle()) 6380 for (; Bundle; Bundle = Bundle->NextInBundle) 6381 if (Bundle->OpValue == Bundle->Inst) 6382 LastInst = Bundle->Inst; 6383 } 6384 6385 // LastInst can still be null at this point if there's either not an entry 6386 // for BB in BlocksSchedules or there's no ScheduleData available for 6387 // VL.back(). This can be the case if buildTree_rec aborts for various 6388 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6389 // size is reached, etc.). ScheduleData is initialized in the scheduling 6390 // "dry-run". 6391 // 6392 // If this happens, we can still find the last instruction by brute force. We 6393 // iterate forwards from Front (inclusive) until we either see all 6394 // instructions in the bundle or reach the end of the block. If Front is the 6395 // last instruction in program order, LastInst will be set to Front, and we 6396 // will visit all the remaining instructions in the block. 6397 // 6398 // One of the reasons we exit early from buildTree_rec is to place an upper 6399 // bound on compile-time. Thus, taking an additional compile-time hit here is 6400 // not ideal. However, this should be exceedingly rare since it requires that 6401 // we both exit early from buildTree_rec and that the bundle be out-of-order 6402 // (causing us to iterate all the way to the end of the block). 6403 if (!LastInst) { 6404 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6405 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6406 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6407 LastInst = &I; 6408 if (Bundle.empty()) 6409 break; 6410 } 6411 } 6412 assert(LastInst && "Failed to find last instruction in bundle"); 6413 6414 // Set the insertion point after the last instruction in the bundle. Set the 6415 // debug location to Front. 6416 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6417 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6418 } 6419 6420 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6421 // List of instructions/lanes from current block and/or the blocks which are 6422 // part of the current loop. These instructions will be inserted at the end to 6423 // make it possible to optimize loops and hoist invariant instructions out of 6424 // the loops body with better chances for success. 6425 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6426 SmallSet<int, 4> PostponedIndices; 6427 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6428 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6429 SmallPtrSet<BasicBlock *, 4> Visited; 6430 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6431 InsertBB = InsertBB->getSinglePredecessor(); 6432 return InsertBB && InsertBB == InstBB; 6433 }; 6434 for (int I = 0, E = VL.size(); I < E; ++I) { 6435 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6436 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6437 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6438 PostponedIndices.insert(I).second) 6439 PostponedInsts.emplace_back(Inst, I); 6440 } 6441 6442 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6443 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6444 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6445 if (!InsElt) 6446 return Vec; 6447 GatherShuffleSeq.insert(InsElt); 6448 CSEBlocks.insert(InsElt->getParent()); 6449 // Add to our 'need-to-extract' list. 6450 if (TreeEntry *Entry = getTreeEntry(V)) { 6451 // Find which lane we need to extract. 6452 unsigned FoundLane = Entry->findLaneForValue(V); 6453 ExternalUses.emplace_back(V, InsElt, FoundLane); 6454 } 6455 return Vec; 6456 }; 6457 Value *Val0 = 6458 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6459 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6460 Value *Vec = PoisonValue::get(VecTy); 6461 SmallVector<int> NonConsts; 6462 // Insert constant values at first. 6463 for (int I = 0, E = VL.size(); I < E; ++I) { 6464 if (PostponedIndices.contains(I)) 6465 continue; 6466 if (!isConstant(VL[I])) { 6467 NonConsts.push_back(I); 6468 continue; 6469 } 6470 Vec = CreateInsertElement(Vec, VL[I], I); 6471 } 6472 // Insert non-constant values. 6473 for (int I : NonConsts) 6474 Vec = CreateInsertElement(Vec, VL[I], I); 6475 // Append instructions, which are/may be part of the loop, in the end to make 6476 // it possible to hoist non-loop-based instructions. 6477 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6478 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6479 6480 return Vec; 6481 } 6482 6483 namespace { 6484 /// Merges shuffle masks and emits final shuffle instruction, if required. 6485 class ShuffleInstructionBuilder { 6486 IRBuilderBase &Builder; 6487 const unsigned VF = 0; 6488 bool IsFinalized = false; 6489 SmallVector<int, 4> Mask; 6490 /// Holds all of the instructions that we gathered. 6491 SetVector<Instruction *> &GatherShuffleSeq; 6492 /// A list of blocks that we are going to CSE. 6493 SetVector<BasicBlock *> &CSEBlocks; 6494 6495 public: 6496 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6497 SetVector<Instruction *> &GatherShuffleSeq, 6498 SetVector<BasicBlock *> &CSEBlocks) 6499 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6500 CSEBlocks(CSEBlocks) {} 6501 6502 /// Adds a mask, inverting it before applying. 6503 void addInversedMask(ArrayRef<unsigned> SubMask) { 6504 if (SubMask.empty()) 6505 return; 6506 SmallVector<int, 4> NewMask; 6507 inversePermutation(SubMask, NewMask); 6508 addMask(NewMask); 6509 } 6510 6511 /// Functions adds masks, merging them into single one. 6512 void addMask(ArrayRef<unsigned> SubMask) { 6513 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6514 addMask(NewMask); 6515 } 6516 6517 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6518 6519 Value *finalize(Value *V) { 6520 IsFinalized = true; 6521 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6522 if (VF == ValueVF && Mask.empty()) 6523 return V; 6524 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6525 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6526 addMask(NormalizedMask); 6527 6528 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6529 return V; 6530 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6531 if (auto *I = dyn_cast<Instruction>(Vec)) { 6532 GatherShuffleSeq.insert(I); 6533 CSEBlocks.insert(I->getParent()); 6534 } 6535 return Vec; 6536 } 6537 6538 ~ShuffleInstructionBuilder() { 6539 assert((IsFinalized || Mask.empty()) && 6540 "Shuffle construction must be finalized."); 6541 } 6542 }; 6543 } // namespace 6544 6545 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6546 unsigned VF = VL.size(); 6547 InstructionsState S = getSameOpcode(VL); 6548 if (S.getOpcode()) { 6549 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6550 if (E->isSame(VL)) { 6551 Value *V = vectorizeTree(E); 6552 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6553 if (!E->ReuseShuffleIndices.empty()) { 6554 // Reshuffle to get only unique values. 6555 // If some of the scalars are duplicated in the vectorization tree 6556 // entry, we do not vectorize them but instead generate a mask for 6557 // the reuses. But if there are several users of the same entry, 6558 // they may have different vectorization factors. This is especially 6559 // important for PHI nodes. In this case, we need to adapt the 6560 // resulting instruction for the user vectorization factor and have 6561 // to reshuffle it again to take only unique elements of the vector. 6562 // Without this code the function incorrectly returns reduced vector 6563 // instruction with the same elements, not with the unique ones. 6564 6565 // block: 6566 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6567 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6568 // ... (use %2) 6569 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6570 // br %block 6571 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6572 SmallSet<int, 4> UsedIdxs; 6573 int Pos = 0; 6574 int Sz = VL.size(); 6575 for (int Idx : E->ReuseShuffleIndices) { 6576 if (Idx != Sz && Idx != UndefMaskElem && 6577 UsedIdxs.insert(Idx).second) 6578 UniqueIdxs[Idx] = Pos; 6579 ++Pos; 6580 } 6581 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6582 "less than original vector size."); 6583 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6584 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6585 } else { 6586 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6587 "Expected vectorization factor less " 6588 "than original vector size."); 6589 SmallVector<int> UniformMask(VF, 0); 6590 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6591 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6592 } 6593 if (auto *I = dyn_cast<Instruction>(V)) { 6594 GatherShuffleSeq.insert(I); 6595 CSEBlocks.insert(I->getParent()); 6596 } 6597 } 6598 return V; 6599 } 6600 } 6601 6602 // Check that every instruction appears once in this bundle. 6603 SmallVector<int> ReuseShuffleIndicies; 6604 SmallVector<Value *> UniqueValues; 6605 if (VL.size() > 2) { 6606 DenseMap<Value *, unsigned> UniquePositions; 6607 unsigned NumValues = 6608 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6609 return !isa<UndefValue>(V); 6610 }).base()); 6611 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6612 int UniqueVals = 0; 6613 for (Value *V : VL.drop_back(VL.size() - VF)) { 6614 if (isa<UndefValue>(V)) { 6615 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6616 continue; 6617 } 6618 if (isConstant(V)) { 6619 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6620 UniqueValues.emplace_back(V); 6621 continue; 6622 } 6623 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6624 ReuseShuffleIndicies.emplace_back(Res.first->second); 6625 if (Res.second) { 6626 UniqueValues.emplace_back(V); 6627 ++UniqueVals; 6628 } 6629 } 6630 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6631 // Emit pure splat vector. 6632 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6633 UndefMaskElem); 6634 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6635 ReuseShuffleIndicies.clear(); 6636 UniqueValues.clear(); 6637 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6638 } 6639 UniqueValues.append(VF - UniqueValues.size(), 6640 PoisonValue::get(VL[0]->getType())); 6641 VL = UniqueValues; 6642 } 6643 6644 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6645 CSEBlocks); 6646 Value *Vec = gather(VL); 6647 if (!ReuseShuffleIndicies.empty()) { 6648 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6649 Vec = ShuffleBuilder.finalize(Vec); 6650 } 6651 return Vec; 6652 } 6653 6654 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6655 IRBuilder<>::InsertPointGuard Guard(Builder); 6656 6657 if (E->VectorizedValue) { 6658 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6659 return E->VectorizedValue; 6660 } 6661 6662 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6663 unsigned VF = E->getVectorFactor(); 6664 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6665 CSEBlocks); 6666 if (E->State == TreeEntry::NeedToGather) { 6667 if (E->getMainOp()) 6668 setInsertPointAfterBundle(E); 6669 Value *Vec; 6670 SmallVector<int> Mask; 6671 SmallVector<const TreeEntry *> Entries; 6672 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6673 isGatherShuffledEntry(E, Mask, Entries); 6674 if (Shuffle.hasValue()) { 6675 assert((Entries.size() == 1 || Entries.size() == 2) && 6676 "Expected shuffle of 1 or 2 entries."); 6677 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6678 Entries.back()->VectorizedValue, Mask); 6679 if (auto *I = dyn_cast<Instruction>(Vec)) { 6680 GatherShuffleSeq.insert(I); 6681 CSEBlocks.insert(I->getParent()); 6682 } 6683 } else { 6684 Vec = gather(E->Scalars); 6685 } 6686 if (NeedToShuffleReuses) { 6687 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6688 Vec = ShuffleBuilder.finalize(Vec); 6689 } 6690 E->VectorizedValue = Vec; 6691 return Vec; 6692 } 6693 6694 assert((E->State == TreeEntry::Vectorize || 6695 E->State == TreeEntry::ScatterVectorize) && 6696 "Unhandled state"); 6697 unsigned ShuffleOrOp = 6698 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6699 Instruction *VL0 = E->getMainOp(); 6700 Type *ScalarTy = VL0->getType(); 6701 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6702 ScalarTy = Store->getValueOperand()->getType(); 6703 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6704 ScalarTy = IE->getOperand(1)->getType(); 6705 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6706 switch (ShuffleOrOp) { 6707 case Instruction::PHI: { 6708 assert( 6709 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6710 "PHI reordering is free."); 6711 auto *PH = cast<PHINode>(VL0); 6712 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6713 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6714 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6715 Value *V = NewPhi; 6716 6717 // Adjust insertion point once all PHI's have been generated. 6718 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6719 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6720 6721 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6722 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6723 V = ShuffleBuilder.finalize(V); 6724 6725 E->VectorizedValue = V; 6726 6727 // PHINodes may have multiple entries from the same block. We want to 6728 // visit every block once. 6729 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6730 6731 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6732 ValueList Operands; 6733 BasicBlock *IBB = PH->getIncomingBlock(i); 6734 6735 if (!VisitedBBs.insert(IBB).second) { 6736 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6737 continue; 6738 } 6739 6740 Builder.SetInsertPoint(IBB->getTerminator()); 6741 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6742 Value *Vec = vectorizeTree(E->getOperand(i)); 6743 NewPhi->addIncoming(Vec, IBB); 6744 } 6745 6746 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6747 "Invalid number of incoming values"); 6748 return V; 6749 } 6750 6751 case Instruction::ExtractElement: { 6752 Value *V = E->getSingleOperand(0); 6753 Builder.SetInsertPoint(VL0); 6754 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6755 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6756 V = ShuffleBuilder.finalize(V); 6757 E->VectorizedValue = V; 6758 return V; 6759 } 6760 case Instruction::ExtractValue: { 6761 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6762 Builder.SetInsertPoint(LI); 6763 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6764 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6765 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6766 Value *NewV = propagateMetadata(V, E->Scalars); 6767 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6768 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6769 NewV = ShuffleBuilder.finalize(NewV); 6770 E->VectorizedValue = NewV; 6771 return NewV; 6772 } 6773 case Instruction::InsertElement: { 6774 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6775 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6776 Value *V = vectorizeTree(E->getOperand(1)); 6777 6778 // Create InsertVector shuffle if necessary 6779 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6780 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6781 })); 6782 const unsigned NumElts = 6783 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6784 const unsigned NumScalars = E->Scalars.size(); 6785 6786 unsigned Offset = *getInsertIndex(VL0); 6787 assert(Offset < NumElts && "Failed to find vector index offset"); 6788 6789 // Create shuffle to resize vector 6790 SmallVector<int> Mask; 6791 if (!E->ReorderIndices.empty()) { 6792 inversePermutation(E->ReorderIndices, Mask); 6793 Mask.append(NumElts - NumScalars, UndefMaskElem); 6794 } else { 6795 Mask.assign(NumElts, UndefMaskElem); 6796 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6797 } 6798 // Create InsertVector shuffle if necessary 6799 bool IsIdentity = true; 6800 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6801 Mask.swap(PrevMask); 6802 for (unsigned I = 0; I < NumScalars; ++I) { 6803 Value *Scalar = E->Scalars[PrevMask[I]]; 6804 unsigned InsertIdx = *getInsertIndex(Scalar); 6805 IsIdentity &= InsertIdx - Offset == I; 6806 Mask[InsertIdx - Offset] = I; 6807 } 6808 if (!IsIdentity || NumElts != NumScalars) { 6809 V = Builder.CreateShuffleVector(V, Mask); 6810 if (auto *I = dyn_cast<Instruction>(V)) { 6811 GatherShuffleSeq.insert(I); 6812 CSEBlocks.insert(I->getParent()); 6813 } 6814 } 6815 6816 if ((!IsIdentity || Offset != 0 || 6817 !isUndefVector(FirstInsert->getOperand(0))) && 6818 NumElts != NumScalars) { 6819 SmallVector<int> InsertMask(NumElts); 6820 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6821 for (unsigned I = 0; I < NumElts; I++) { 6822 if (Mask[I] != UndefMaskElem) 6823 InsertMask[Offset + I] = NumElts + I; 6824 } 6825 6826 V = Builder.CreateShuffleVector( 6827 FirstInsert->getOperand(0), V, InsertMask, 6828 cast<Instruction>(E->Scalars.back())->getName()); 6829 if (auto *I = dyn_cast<Instruction>(V)) { 6830 GatherShuffleSeq.insert(I); 6831 CSEBlocks.insert(I->getParent()); 6832 } 6833 } 6834 6835 ++NumVectorInstructions; 6836 E->VectorizedValue = V; 6837 return V; 6838 } 6839 case Instruction::ZExt: 6840 case Instruction::SExt: 6841 case Instruction::FPToUI: 6842 case Instruction::FPToSI: 6843 case Instruction::FPExt: 6844 case Instruction::PtrToInt: 6845 case Instruction::IntToPtr: 6846 case Instruction::SIToFP: 6847 case Instruction::UIToFP: 6848 case Instruction::Trunc: 6849 case Instruction::FPTrunc: 6850 case Instruction::BitCast: { 6851 setInsertPointAfterBundle(E); 6852 6853 Value *InVec = vectorizeTree(E->getOperand(0)); 6854 6855 if (E->VectorizedValue) { 6856 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6857 return E->VectorizedValue; 6858 } 6859 6860 auto *CI = cast<CastInst>(VL0); 6861 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6862 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6863 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6864 V = ShuffleBuilder.finalize(V); 6865 6866 E->VectorizedValue = V; 6867 ++NumVectorInstructions; 6868 return V; 6869 } 6870 case Instruction::FCmp: 6871 case Instruction::ICmp: { 6872 setInsertPointAfterBundle(E); 6873 6874 Value *L = vectorizeTree(E->getOperand(0)); 6875 Value *R = vectorizeTree(E->getOperand(1)); 6876 6877 if (E->VectorizedValue) { 6878 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6879 return E->VectorizedValue; 6880 } 6881 6882 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6883 Value *V = Builder.CreateCmp(P0, L, R); 6884 propagateIRFlags(V, E->Scalars, VL0); 6885 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6886 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6887 V = ShuffleBuilder.finalize(V); 6888 6889 E->VectorizedValue = V; 6890 ++NumVectorInstructions; 6891 return V; 6892 } 6893 case Instruction::Select: { 6894 setInsertPointAfterBundle(E); 6895 6896 Value *Cond = vectorizeTree(E->getOperand(0)); 6897 Value *True = vectorizeTree(E->getOperand(1)); 6898 Value *False = vectorizeTree(E->getOperand(2)); 6899 6900 if (E->VectorizedValue) { 6901 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6902 return E->VectorizedValue; 6903 } 6904 6905 Value *V = Builder.CreateSelect(Cond, True, False); 6906 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6907 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6908 V = ShuffleBuilder.finalize(V); 6909 6910 E->VectorizedValue = V; 6911 ++NumVectorInstructions; 6912 return V; 6913 } 6914 case Instruction::FNeg: { 6915 setInsertPointAfterBundle(E); 6916 6917 Value *Op = vectorizeTree(E->getOperand(0)); 6918 6919 if (E->VectorizedValue) { 6920 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6921 return E->VectorizedValue; 6922 } 6923 6924 Value *V = Builder.CreateUnOp( 6925 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6926 propagateIRFlags(V, E->Scalars, VL0); 6927 if (auto *I = dyn_cast<Instruction>(V)) 6928 V = propagateMetadata(I, E->Scalars); 6929 6930 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6931 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6932 V = ShuffleBuilder.finalize(V); 6933 6934 E->VectorizedValue = V; 6935 ++NumVectorInstructions; 6936 6937 return V; 6938 } 6939 case Instruction::Add: 6940 case Instruction::FAdd: 6941 case Instruction::Sub: 6942 case Instruction::FSub: 6943 case Instruction::Mul: 6944 case Instruction::FMul: 6945 case Instruction::UDiv: 6946 case Instruction::SDiv: 6947 case Instruction::FDiv: 6948 case Instruction::URem: 6949 case Instruction::SRem: 6950 case Instruction::FRem: 6951 case Instruction::Shl: 6952 case Instruction::LShr: 6953 case Instruction::AShr: 6954 case Instruction::And: 6955 case Instruction::Or: 6956 case Instruction::Xor: { 6957 setInsertPointAfterBundle(E); 6958 6959 Value *LHS = vectorizeTree(E->getOperand(0)); 6960 Value *RHS = vectorizeTree(E->getOperand(1)); 6961 6962 if (E->VectorizedValue) { 6963 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6964 return E->VectorizedValue; 6965 } 6966 6967 Value *V = Builder.CreateBinOp( 6968 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6969 RHS); 6970 propagateIRFlags(V, E->Scalars, VL0); 6971 if (auto *I = dyn_cast<Instruction>(V)) 6972 V = propagateMetadata(I, E->Scalars); 6973 6974 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6975 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6976 V = ShuffleBuilder.finalize(V); 6977 6978 E->VectorizedValue = V; 6979 ++NumVectorInstructions; 6980 6981 return V; 6982 } 6983 case Instruction::Load: { 6984 // Loads are inserted at the head of the tree because we don't want to 6985 // sink them all the way down past store instructions. 6986 setInsertPointAfterBundle(E); 6987 6988 LoadInst *LI = cast<LoadInst>(VL0); 6989 Instruction *NewLI; 6990 unsigned AS = LI->getPointerAddressSpace(); 6991 Value *PO = LI->getPointerOperand(); 6992 if (E->State == TreeEntry::Vectorize) { 6993 6994 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6995 6996 // The pointer operand uses an in-tree scalar so we add the new BitCast 6997 // to ExternalUses list to make sure that an extract will be generated 6998 // in the future. 6999 if (TreeEntry *Entry = getTreeEntry(PO)) { 7000 // Find which lane we need to extract. 7001 unsigned FoundLane = Entry->findLaneForValue(PO); 7002 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 7003 } 7004 7005 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7006 } else { 7007 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7008 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7009 // Use the minimum alignment of the gathered loads. 7010 Align CommonAlignment = LI->getAlign(); 7011 for (Value *V : E->Scalars) 7012 CommonAlignment = 7013 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7014 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7015 } 7016 Value *V = propagateMetadata(NewLI, E->Scalars); 7017 7018 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7019 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7020 V = ShuffleBuilder.finalize(V); 7021 E->VectorizedValue = V; 7022 ++NumVectorInstructions; 7023 return V; 7024 } 7025 case Instruction::Store: { 7026 auto *SI = cast<StoreInst>(VL0); 7027 unsigned AS = SI->getPointerAddressSpace(); 7028 7029 setInsertPointAfterBundle(E); 7030 7031 Value *VecValue = vectorizeTree(E->getOperand(0)); 7032 ShuffleBuilder.addMask(E->ReorderIndices); 7033 VecValue = ShuffleBuilder.finalize(VecValue); 7034 7035 Value *ScalarPtr = SI->getPointerOperand(); 7036 Value *VecPtr = Builder.CreateBitCast( 7037 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7038 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 7039 SI->getAlign()); 7040 7041 // The pointer operand uses an in-tree scalar, so add the new BitCast to 7042 // ExternalUses to make sure that an extract will be generated in the 7043 // future. 7044 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7045 // Find which lane we need to extract. 7046 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7047 ExternalUses.push_back( 7048 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 7049 } 7050 7051 Value *V = propagateMetadata(ST, E->Scalars); 7052 7053 E->VectorizedValue = V; 7054 ++NumVectorInstructions; 7055 return V; 7056 } 7057 case Instruction::GetElementPtr: { 7058 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7059 setInsertPointAfterBundle(E); 7060 7061 Value *Op0 = vectorizeTree(E->getOperand(0)); 7062 7063 SmallVector<Value *> OpVecs; 7064 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7065 Value *OpVec = vectorizeTree(E->getOperand(J)); 7066 OpVecs.push_back(OpVec); 7067 } 7068 7069 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7070 if (Instruction *I = dyn_cast<Instruction>(V)) 7071 V = propagateMetadata(I, E->Scalars); 7072 7073 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7074 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7075 V = ShuffleBuilder.finalize(V); 7076 7077 E->VectorizedValue = V; 7078 ++NumVectorInstructions; 7079 7080 return V; 7081 } 7082 case Instruction::Call: { 7083 CallInst *CI = cast<CallInst>(VL0); 7084 setInsertPointAfterBundle(E); 7085 7086 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7087 if (Function *FI = CI->getCalledFunction()) 7088 IID = FI->getIntrinsicID(); 7089 7090 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7091 7092 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7093 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7094 VecCallCosts.first <= VecCallCosts.second; 7095 7096 Value *ScalarArg = nullptr; 7097 std::vector<Value *> OpVecs; 7098 SmallVector<Type *, 2> TysForDecl = 7099 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7100 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7101 ValueList OpVL; 7102 // Some intrinsics have scalar arguments. This argument should not be 7103 // vectorized. 7104 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7105 CallInst *CEI = cast<CallInst>(VL0); 7106 ScalarArg = CEI->getArgOperand(j); 7107 OpVecs.push_back(CEI->getArgOperand(j)); 7108 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7109 TysForDecl.push_back(ScalarArg->getType()); 7110 continue; 7111 } 7112 7113 Value *OpVec = vectorizeTree(E->getOperand(j)); 7114 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7115 OpVecs.push_back(OpVec); 7116 } 7117 7118 Function *CF; 7119 if (!UseIntrinsic) { 7120 VFShape Shape = 7121 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7122 VecTy->getNumElements())), 7123 false /*HasGlobalPred*/); 7124 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7125 } else { 7126 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7127 } 7128 7129 SmallVector<OperandBundleDef, 1> OpBundles; 7130 CI->getOperandBundlesAsDefs(OpBundles); 7131 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7132 7133 // The scalar argument uses an in-tree scalar so we add the new vectorized 7134 // call to ExternalUses list to make sure that an extract will be 7135 // generated in the future. 7136 if (ScalarArg) { 7137 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7138 // Find which lane we need to extract. 7139 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7140 ExternalUses.push_back( 7141 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7142 } 7143 } 7144 7145 propagateIRFlags(V, E->Scalars, VL0); 7146 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7147 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7148 V = ShuffleBuilder.finalize(V); 7149 7150 E->VectorizedValue = V; 7151 ++NumVectorInstructions; 7152 return V; 7153 } 7154 case Instruction::ShuffleVector: { 7155 assert(E->isAltShuffle() && 7156 ((Instruction::isBinaryOp(E->getOpcode()) && 7157 Instruction::isBinaryOp(E->getAltOpcode())) || 7158 (Instruction::isCast(E->getOpcode()) && 7159 Instruction::isCast(E->getAltOpcode())) || 7160 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7161 "Invalid Shuffle Vector Operand"); 7162 7163 Value *LHS = nullptr, *RHS = nullptr; 7164 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7165 setInsertPointAfterBundle(E); 7166 LHS = vectorizeTree(E->getOperand(0)); 7167 RHS = vectorizeTree(E->getOperand(1)); 7168 } else { 7169 setInsertPointAfterBundle(E); 7170 LHS = vectorizeTree(E->getOperand(0)); 7171 } 7172 7173 if (E->VectorizedValue) { 7174 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7175 return E->VectorizedValue; 7176 } 7177 7178 Value *V0, *V1; 7179 if (Instruction::isBinaryOp(E->getOpcode())) { 7180 V0 = Builder.CreateBinOp( 7181 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7182 V1 = Builder.CreateBinOp( 7183 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7184 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7185 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7186 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7187 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7188 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7189 } else { 7190 V0 = Builder.CreateCast( 7191 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7192 V1 = Builder.CreateCast( 7193 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7194 } 7195 // Add V0 and V1 to later analysis to try to find and remove matching 7196 // instruction, if any. 7197 for (Value *V : {V0, V1}) { 7198 if (auto *I = dyn_cast<Instruction>(V)) { 7199 GatherShuffleSeq.insert(I); 7200 CSEBlocks.insert(I->getParent()); 7201 } 7202 } 7203 7204 // Create shuffle to take alternate operations from the vector. 7205 // Also, gather up main and alt scalar ops to propagate IR flags to 7206 // each vector operation. 7207 ValueList OpScalars, AltScalars; 7208 SmallVector<int> Mask; 7209 buildShuffleEntryMask( 7210 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7211 [E](Instruction *I) { 7212 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7213 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7214 }, 7215 Mask, &OpScalars, &AltScalars); 7216 7217 propagateIRFlags(V0, OpScalars); 7218 propagateIRFlags(V1, AltScalars); 7219 7220 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7221 if (auto *I = dyn_cast<Instruction>(V)) { 7222 V = propagateMetadata(I, E->Scalars); 7223 GatherShuffleSeq.insert(I); 7224 CSEBlocks.insert(I->getParent()); 7225 } 7226 V = ShuffleBuilder.finalize(V); 7227 7228 E->VectorizedValue = V; 7229 ++NumVectorInstructions; 7230 7231 return V; 7232 } 7233 default: 7234 llvm_unreachable("unknown inst"); 7235 } 7236 return nullptr; 7237 } 7238 7239 Value *BoUpSLP::vectorizeTree() { 7240 ExtraValueToDebugLocsMap ExternallyUsedValues; 7241 return vectorizeTree(ExternallyUsedValues); 7242 } 7243 7244 Value * 7245 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7246 // All blocks must be scheduled before any instructions are inserted. 7247 for (auto &BSIter : BlocksSchedules) { 7248 scheduleBlock(BSIter.second.get()); 7249 } 7250 7251 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7252 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7253 7254 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7255 // vectorized root. InstCombine will then rewrite the entire expression. We 7256 // sign extend the extracted values below. 7257 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7258 if (MinBWs.count(ScalarRoot)) { 7259 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7260 // If current instr is a phi and not the last phi, insert it after the 7261 // last phi node. 7262 if (isa<PHINode>(I)) 7263 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7264 else 7265 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7266 } 7267 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7268 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7269 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7270 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7271 VectorizableTree[0]->VectorizedValue = Trunc; 7272 } 7273 7274 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7275 << " values .\n"); 7276 7277 // Extract all of the elements with the external uses. 7278 for (const auto &ExternalUse : ExternalUses) { 7279 Value *Scalar = ExternalUse.Scalar; 7280 llvm::User *User = ExternalUse.User; 7281 7282 // Skip users that we already RAUW. This happens when one instruction 7283 // has multiple uses of the same value. 7284 if (User && !is_contained(Scalar->users(), User)) 7285 continue; 7286 TreeEntry *E = getTreeEntry(Scalar); 7287 assert(E && "Invalid scalar"); 7288 assert(E->State != TreeEntry::NeedToGather && 7289 "Extracting from a gather list"); 7290 7291 Value *Vec = E->VectorizedValue; 7292 assert(Vec && "Can't find vectorizable value"); 7293 7294 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7295 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7296 if (Scalar->getType() != Vec->getType()) { 7297 Value *Ex; 7298 // "Reuse" the existing extract to improve final codegen. 7299 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7300 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7301 ES->getOperand(1)); 7302 } else { 7303 Ex = Builder.CreateExtractElement(Vec, Lane); 7304 } 7305 // If necessary, sign-extend or zero-extend ScalarRoot 7306 // to the larger type. 7307 if (!MinBWs.count(ScalarRoot)) 7308 return Ex; 7309 if (MinBWs[ScalarRoot].second) 7310 return Builder.CreateSExt(Ex, Scalar->getType()); 7311 return Builder.CreateZExt(Ex, Scalar->getType()); 7312 } 7313 assert(isa<FixedVectorType>(Scalar->getType()) && 7314 isa<InsertElementInst>(Scalar) && 7315 "In-tree scalar of vector type is not insertelement?"); 7316 return Vec; 7317 }; 7318 // If User == nullptr, the Scalar is used as extra arg. Generate 7319 // ExtractElement instruction and update the record for this scalar in 7320 // ExternallyUsedValues. 7321 if (!User) { 7322 assert(ExternallyUsedValues.count(Scalar) && 7323 "Scalar with nullptr as an external user must be registered in " 7324 "ExternallyUsedValues map"); 7325 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7326 Builder.SetInsertPoint(VecI->getParent(), 7327 std::next(VecI->getIterator())); 7328 } else { 7329 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7330 } 7331 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7332 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7333 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7334 auto It = ExternallyUsedValues.find(Scalar); 7335 assert(It != ExternallyUsedValues.end() && 7336 "Externally used scalar is not found in ExternallyUsedValues"); 7337 NewInstLocs.append(It->second); 7338 ExternallyUsedValues.erase(Scalar); 7339 // Required to update internally referenced instructions. 7340 Scalar->replaceAllUsesWith(NewInst); 7341 continue; 7342 } 7343 7344 // Generate extracts for out-of-tree users. 7345 // Find the insertion point for the extractelement lane. 7346 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7347 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7348 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7349 if (PH->getIncomingValue(i) == Scalar) { 7350 Instruction *IncomingTerminator = 7351 PH->getIncomingBlock(i)->getTerminator(); 7352 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7353 Builder.SetInsertPoint(VecI->getParent(), 7354 std::next(VecI->getIterator())); 7355 } else { 7356 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7357 } 7358 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7359 CSEBlocks.insert(PH->getIncomingBlock(i)); 7360 PH->setOperand(i, NewInst); 7361 } 7362 } 7363 } else { 7364 Builder.SetInsertPoint(cast<Instruction>(User)); 7365 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7366 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7367 User->replaceUsesOfWith(Scalar, NewInst); 7368 } 7369 } else { 7370 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7371 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7372 CSEBlocks.insert(&F->getEntryBlock()); 7373 User->replaceUsesOfWith(Scalar, NewInst); 7374 } 7375 7376 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7377 } 7378 7379 // For each vectorized value: 7380 for (auto &TEPtr : VectorizableTree) { 7381 TreeEntry *Entry = TEPtr.get(); 7382 7383 // No need to handle users of gathered values. 7384 if (Entry->State == TreeEntry::NeedToGather) 7385 continue; 7386 7387 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7388 7389 // For each lane: 7390 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7391 Value *Scalar = Entry->Scalars[Lane]; 7392 7393 #ifndef NDEBUG 7394 Type *Ty = Scalar->getType(); 7395 if (!Ty->isVoidTy()) { 7396 for (User *U : Scalar->users()) { 7397 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7398 7399 // It is legal to delete users in the ignorelist. 7400 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7401 (isa_and_nonnull<Instruction>(U) && 7402 isDeleted(cast<Instruction>(U)))) && 7403 "Deleting out-of-tree value"); 7404 } 7405 } 7406 #endif 7407 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7408 eraseInstruction(cast<Instruction>(Scalar)); 7409 } 7410 } 7411 7412 Builder.ClearInsertionPoint(); 7413 InstrElementSize.clear(); 7414 7415 return VectorizableTree[0]->VectorizedValue; 7416 } 7417 7418 void BoUpSLP::optimizeGatherSequence() { 7419 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7420 << " gather sequences instructions.\n"); 7421 // LICM InsertElementInst sequences. 7422 for (Instruction *I : GatherShuffleSeq) { 7423 if (isDeleted(I)) 7424 continue; 7425 7426 // Check if this block is inside a loop. 7427 Loop *L = LI->getLoopFor(I->getParent()); 7428 if (!L) 7429 continue; 7430 7431 // Check if it has a preheader. 7432 BasicBlock *PreHeader = L->getLoopPreheader(); 7433 if (!PreHeader) 7434 continue; 7435 7436 // If the vector or the element that we insert into it are 7437 // instructions that are defined in this basic block then we can't 7438 // hoist this instruction. 7439 if (any_of(I->operands(), [L](Value *V) { 7440 auto *OpI = dyn_cast<Instruction>(V); 7441 return OpI && L->contains(OpI); 7442 })) 7443 continue; 7444 7445 // We can hoist this instruction. Move it to the pre-header. 7446 I->moveBefore(PreHeader->getTerminator()); 7447 } 7448 7449 // Make a list of all reachable blocks in our CSE queue. 7450 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7451 CSEWorkList.reserve(CSEBlocks.size()); 7452 for (BasicBlock *BB : CSEBlocks) 7453 if (DomTreeNode *N = DT->getNode(BB)) { 7454 assert(DT->isReachableFromEntry(N)); 7455 CSEWorkList.push_back(N); 7456 } 7457 7458 // Sort blocks by domination. This ensures we visit a block after all blocks 7459 // dominating it are visited. 7460 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7461 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7462 "Different nodes should have different DFS numbers"); 7463 return A->getDFSNumIn() < B->getDFSNumIn(); 7464 }); 7465 7466 // Less defined shuffles can be replaced by the more defined copies. 7467 // Between two shuffles one is less defined if it has the same vector operands 7468 // and its mask indeces are the same as in the first one or undefs. E.g. 7469 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7470 // poison, <0, 0, 0, 0>. 7471 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7472 SmallVectorImpl<int> &NewMask) { 7473 if (I1->getType() != I2->getType()) 7474 return false; 7475 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7476 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7477 if (!SI1 || !SI2) 7478 return I1->isIdenticalTo(I2); 7479 if (SI1->isIdenticalTo(SI2)) 7480 return true; 7481 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7482 if (SI1->getOperand(I) != SI2->getOperand(I)) 7483 return false; 7484 // Check if the second instruction is more defined than the first one. 7485 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7486 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7487 // Count trailing undefs in the mask to check the final number of used 7488 // registers. 7489 unsigned LastUndefsCnt = 0; 7490 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7491 if (SM1[I] == UndefMaskElem) 7492 ++LastUndefsCnt; 7493 else 7494 LastUndefsCnt = 0; 7495 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7496 NewMask[I] != SM1[I]) 7497 return false; 7498 if (NewMask[I] == UndefMaskElem) 7499 NewMask[I] = SM1[I]; 7500 } 7501 // Check if the last undefs actually change the final number of used vector 7502 // registers. 7503 return SM1.size() - LastUndefsCnt > 1 && 7504 TTI->getNumberOfParts(SI1->getType()) == 7505 TTI->getNumberOfParts( 7506 FixedVectorType::get(SI1->getType()->getElementType(), 7507 SM1.size() - LastUndefsCnt)); 7508 }; 7509 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7510 // instructions. TODO: We can further optimize this scan if we split the 7511 // instructions into different buckets based on the insert lane. 7512 SmallVector<Instruction *, 16> Visited; 7513 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7514 assert(*I && 7515 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7516 "Worklist not sorted properly!"); 7517 BasicBlock *BB = (*I)->getBlock(); 7518 // For all instructions in blocks containing gather sequences: 7519 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7520 if (isDeleted(&In)) 7521 continue; 7522 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7523 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7524 continue; 7525 7526 // Check if we can replace this instruction with any of the 7527 // visited instructions. 7528 bool Replaced = false; 7529 for (Instruction *&V : Visited) { 7530 SmallVector<int> NewMask; 7531 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7532 DT->dominates(V->getParent(), In.getParent())) { 7533 In.replaceAllUsesWith(V); 7534 eraseInstruction(&In); 7535 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7536 if (!NewMask.empty()) 7537 SI->setShuffleMask(NewMask); 7538 Replaced = true; 7539 break; 7540 } 7541 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7542 GatherShuffleSeq.contains(V) && 7543 IsIdenticalOrLessDefined(V, &In, NewMask) && 7544 DT->dominates(In.getParent(), V->getParent())) { 7545 In.moveAfter(V); 7546 V->replaceAllUsesWith(&In); 7547 eraseInstruction(V); 7548 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7549 if (!NewMask.empty()) 7550 SI->setShuffleMask(NewMask); 7551 V = &In; 7552 Replaced = true; 7553 break; 7554 } 7555 } 7556 if (!Replaced) { 7557 assert(!is_contained(Visited, &In)); 7558 Visited.push_back(&In); 7559 } 7560 } 7561 } 7562 CSEBlocks.clear(); 7563 GatherShuffleSeq.clear(); 7564 } 7565 7566 BoUpSLP::ScheduleData * 7567 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7568 ScheduleData *Bundle = nullptr; 7569 ScheduleData *PrevInBundle = nullptr; 7570 for (Value *V : VL) { 7571 ScheduleData *BundleMember = getScheduleData(V); 7572 assert(BundleMember && 7573 "no ScheduleData for bundle member " 7574 "(maybe not in same basic block)"); 7575 assert(BundleMember->isSchedulingEntity() && 7576 "bundle member already part of other bundle"); 7577 if (PrevInBundle) { 7578 PrevInBundle->NextInBundle = BundleMember; 7579 } else { 7580 Bundle = BundleMember; 7581 } 7582 7583 // Group the instructions to a bundle. 7584 BundleMember->FirstInBundle = Bundle; 7585 PrevInBundle = BundleMember; 7586 } 7587 assert(Bundle && "Failed to find schedule bundle"); 7588 return Bundle; 7589 } 7590 7591 // Groups the instructions to a bundle (which is then a single scheduling entity) 7592 // and schedules instructions until the bundle gets ready. 7593 Optional<BoUpSLP::ScheduleData *> 7594 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7595 const InstructionsState &S) { 7596 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7597 // instructions. 7598 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7599 return nullptr; 7600 7601 // Initialize the instruction bundle. 7602 Instruction *OldScheduleEnd = ScheduleEnd; 7603 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7604 7605 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7606 ScheduleData *Bundle) { 7607 // The scheduling region got new instructions at the lower end (or it is a 7608 // new region for the first bundle). This makes it necessary to 7609 // recalculate all dependencies. 7610 // It is seldom that this needs to be done a second time after adding the 7611 // initial bundle to the region. 7612 if (ScheduleEnd != OldScheduleEnd) { 7613 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7614 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7615 ReSchedule = true; 7616 } 7617 if (Bundle) { 7618 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7619 << " in block " << BB->getName() << "\n"); 7620 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7621 } 7622 7623 if (ReSchedule) { 7624 resetSchedule(); 7625 initialFillReadyList(ReadyInsts); 7626 } 7627 7628 // Now try to schedule the new bundle or (if no bundle) just calculate 7629 // dependencies. As soon as the bundle is "ready" it means that there are no 7630 // cyclic dependencies and we can schedule it. Note that's important that we 7631 // don't "schedule" the bundle yet (see cancelScheduling). 7632 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7633 !ReadyInsts.empty()) { 7634 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7635 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7636 "must be ready to schedule"); 7637 schedule(Picked, ReadyInsts); 7638 } 7639 }; 7640 7641 // Make sure that the scheduling region contains all 7642 // instructions of the bundle. 7643 for (Value *V : VL) { 7644 if (!extendSchedulingRegion(V, S)) { 7645 // If the scheduling region got new instructions at the lower end (or it 7646 // is a new region for the first bundle). This makes it necessary to 7647 // recalculate all dependencies. 7648 // Otherwise the compiler may crash trying to incorrectly calculate 7649 // dependencies and emit instruction in the wrong order at the actual 7650 // scheduling. 7651 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7652 return None; 7653 } 7654 } 7655 7656 bool ReSchedule = false; 7657 for (Value *V : VL) { 7658 ScheduleData *BundleMember = getScheduleData(V); 7659 assert(BundleMember && 7660 "no ScheduleData for bundle member (maybe not in same basic block)"); 7661 7662 // Make sure we don't leave the pieces of the bundle in the ready list when 7663 // whole bundle might not be ready. 7664 ReadyInsts.remove(BundleMember); 7665 7666 if (!BundleMember->IsScheduled) 7667 continue; 7668 // A bundle member was scheduled as single instruction before and now 7669 // needs to be scheduled as part of the bundle. We just get rid of the 7670 // existing schedule. 7671 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7672 << " was already scheduled\n"); 7673 ReSchedule = true; 7674 } 7675 7676 auto *Bundle = buildBundle(VL); 7677 TryScheduleBundleImpl(ReSchedule, Bundle); 7678 if (!Bundle->isReady()) { 7679 cancelScheduling(VL, S.OpValue); 7680 return None; 7681 } 7682 return Bundle; 7683 } 7684 7685 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7686 Value *OpValue) { 7687 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7688 return; 7689 7690 ScheduleData *Bundle = getScheduleData(OpValue); 7691 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7692 assert(!Bundle->IsScheduled && 7693 "Can't cancel bundle which is already scheduled"); 7694 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7695 "tried to unbundle something which is not a bundle"); 7696 7697 // Remove the bundle from the ready list. 7698 if (Bundle->isReady()) 7699 ReadyInsts.remove(Bundle); 7700 7701 // Un-bundle: make single instructions out of the bundle. 7702 ScheduleData *BundleMember = Bundle; 7703 while (BundleMember) { 7704 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7705 BundleMember->FirstInBundle = BundleMember; 7706 ScheduleData *Next = BundleMember->NextInBundle; 7707 BundleMember->NextInBundle = nullptr; 7708 if (BundleMember->unscheduledDepsInBundle() == 0) { 7709 ReadyInsts.insert(BundleMember); 7710 } 7711 BundleMember = Next; 7712 } 7713 } 7714 7715 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7716 // Allocate a new ScheduleData for the instruction. 7717 if (ChunkPos >= ChunkSize) { 7718 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7719 ChunkPos = 0; 7720 } 7721 return &(ScheduleDataChunks.back()[ChunkPos++]); 7722 } 7723 7724 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7725 const InstructionsState &S) { 7726 if (getScheduleData(V, isOneOf(S, V))) 7727 return true; 7728 Instruction *I = dyn_cast<Instruction>(V); 7729 assert(I && "bundle member must be an instruction"); 7730 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7731 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7732 "be scheduled"); 7733 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7734 ScheduleData *ISD = getScheduleData(I); 7735 if (!ISD) 7736 return false; 7737 assert(isInSchedulingRegion(ISD) && 7738 "ScheduleData not in scheduling region"); 7739 ScheduleData *SD = allocateScheduleDataChunks(); 7740 SD->Inst = I; 7741 SD->init(SchedulingRegionID, S.OpValue); 7742 ExtraScheduleDataMap[I][S.OpValue] = SD; 7743 return true; 7744 }; 7745 if (CheckSheduleForI(I)) 7746 return true; 7747 if (!ScheduleStart) { 7748 // It's the first instruction in the new region. 7749 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7750 ScheduleStart = I; 7751 ScheduleEnd = I->getNextNode(); 7752 if (isOneOf(S, I) != I) 7753 CheckSheduleForI(I); 7754 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7755 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7756 return true; 7757 } 7758 // Search up and down at the same time, because we don't know if the new 7759 // instruction is above or below the existing scheduling region. 7760 BasicBlock::reverse_iterator UpIter = 7761 ++ScheduleStart->getIterator().getReverse(); 7762 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7763 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7764 BasicBlock::iterator LowerEnd = BB->end(); 7765 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7766 &*DownIter != I) { 7767 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7768 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7769 return false; 7770 } 7771 7772 ++UpIter; 7773 ++DownIter; 7774 } 7775 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7776 assert(I->getParent() == ScheduleStart->getParent() && 7777 "Instruction is in wrong basic block."); 7778 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7779 ScheduleStart = I; 7780 if (isOneOf(S, I) != I) 7781 CheckSheduleForI(I); 7782 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7783 << "\n"); 7784 return true; 7785 } 7786 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7787 "Expected to reach top of the basic block or instruction down the " 7788 "lower end."); 7789 assert(I->getParent() == ScheduleEnd->getParent() && 7790 "Instruction is in wrong basic block."); 7791 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7792 nullptr); 7793 ScheduleEnd = I->getNextNode(); 7794 if (isOneOf(S, I) != I) 7795 CheckSheduleForI(I); 7796 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7797 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7798 return true; 7799 } 7800 7801 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7802 Instruction *ToI, 7803 ScheduleData *PrevLoadStore, 7804 ScheduleData *NextLoadStore) { 7805 ScheduleData *CurrentLoadStore = PrevLoadStore; 7806 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7807 ScheduleData *SD = ScheduleDataMap[I]; 7808 if (!SD) { 7809 SD = allocateScheduleDataChunks(); 7810 ScheduleDataMap[I] = SD; 7811 SD->Inst = I; 7812 } 7813 assert(!isInSchedulingRegion(SD) && 7814 "new ScheduleData already in scheduling region"); 7815 SD->init(SchedulingRegionID, I); 7816 7817 if (I->mayReadOrWriteMemory() && 7818 (!isa<IntrinsicInst>(I) || 7819 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7820 cast<IntrinsicInst>(I)->getIntrinsicID() != 7821 Intrinsic::pseudoprobe))) { 7822 // Update the linked list of memory accessing instructions. 7823 if (CurrentLoadStore) { 7824 CurrentLoadStore->NextLoadStore = SD; 7825 } else { 7826 FirstLoadStoreInRegion = SD; 7827 } 7828 CurrentLoadStore = SD; 7829 } 7830 } 7831 if (NextLoadStore) { 7832 if (CurrentLoadStore) 7833 CurrentLoadStore->NextLoadStore = NextLoadStore; 7834 } else { 7835 LastLoadStoreInRegion = CurrentLoadStore; 7836 } 7837 } 7838 7839 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7840 bool InsertInReadyList, 7841 BoUpSLP *SLP) { 7842 assert(SD->isSchedulingEntity()); 7843 7844 SmallVector<ScheduleData *, 10> WorkList; 7845 WorkList.push_back(SD); 7846 7847 while (!WorkList.empty()) { 7848 ScheduleData *SD = WorkList.pop_back_val(); 7849 for (ScheduleData *BundleMember = SD; BundleMember; 7850 BundleMember = BundleMember->NextInBundle) { 7851 assert(isInSchedulingRegion(BundleMember)); 7852 if (BundleMember->hasValidDependencies()) 7853 continue; 7854 7855 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7856 << "\n"); 7857 BundleMember->Dependencies = 0; 7858 BundleMember->resetUnscheduledDeps(); 7859 7860 // Handle def-use chain dependencies. 7861 if (BundleMember->OpValue != BundleMember->Inst) { 7862 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 7863 BundleMember->Dependencies++; 7864 ScheduleData *DestBundle = UseSD->FirstInBundle; 7865 if (!DestBundle->IsScheduled) 7866 BundleMember->incrementUnscheduledDeps(1); 7867 if (!DestBundle->hasValidDependencies()) 7868 WorkList.push_back(DestBundle); 7869 } 7870 } else { 7871 for (User *U : BundleMember->Inst->users()) { 7872 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 7873 BundleMember->Dependencies++; 7874 ScheduleData *DestBundle = UseSD->FirstInBundle; 7875 if (!DestBundle->IsScheduled) 7876 BundleMember->incrementUnscheduledDeps(1); 7877 if (!DestBundle->hasValidDependencies()) 7878 WorkList.push_back(DestBundle); 7879 } 7880 } 7881 } 7882 7883 // Handle the memory dependencies (if any). 7884 ScheduleData *DepDest = BundleMember->NextLoadStore; 7885 if (!DepDest) 7886 continue; 7887 Instruction *SrcInst = BundleMember->Inst; 7888 assert(SrcInst->mayReadOrWriteMemory() && 7889 "NextLoadStore list for non memory effecting bundle?"); 7890 MemoryLocation SrcLoc = getLocation(SrcInst); 7891 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7892 unsigned numAliased = 0; 7893 unsigned DistToSrc = 1; 7894 7895 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7896 assert(isInSchedulingRegion(DepDest)); 7897 7898 // We have two limits to reduce the complexity: 7899 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7900 // SLP->isAliased (which is the expensive part in this loop). 7901 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7902 // the whole loop (even if the loop is fast, it's quadratic). 7903 // It's important for the loop break condition (see below) to 7904 // check this limit even between two read-only instructions. 7905 if (DistToSrc >= MaxMemDepDistance || 7906 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7907 (numAliased >= AliasedCheckLimit || 7908 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7909 7910 // We increment the counter only if the locations are aliased 7911 // (instead of counting all alias checks). This gives a better 7912 // balance between reduced runtime and accurate dependencies. 7913 numAliased++; 7914 7915 DepDest->MemoryDependencies.push_back(BundleMember); 7916 BundleMember->Dependencies++; 7917 ScheduleData *DestBundle = DepDest->FirstInBundle; 7918 if (!DestBundle->IsScheduled) { 7919 BundleMember->incrementUnscheduledDeps(1); 7920 } 7921 if (!DestBundle->hasValidDependencies()) { 7922 WorkList.push_back(DestBundle); 7923 } 7924 } 7925 7926 // Example, explaining the loop break condition: Let's assume our 7927 // starting instruction is i0 and MaxMemDepDistance = 3. 7928 // 7929 // +--------v--v--v 7930 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7931 // +--------^--^--^ 7932 // 7933 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7934 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7935 // Previously we already added dependencies from i3 to i6,i7,i8 7936 // (because of MaxMemDepDistance). As we added a dependency from 7937 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7938 // and we can abort this loop at i6. 7939 if (DistToSrc >= 2 * MaxMemDepDistance) 7940 break; 7941 DistToSrc++; 7942 } 7943 } 7944 if (InsertInReadyList && SD->isReady()) { 7945 ReadyInsts.insert(SD); 7946 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7947 << "\n"); 7948 } 7949 } 7950 } 7951 7952 void BoUpSLP::BlockScheduling::resetSchedule() { 7953 assert(ScheduleStart && 7954 "tried to reset schedule on block which has not been scheduled"); 7955 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7956 doForAllOpcodes(I, [&](ScheduleData *SD) { 7957 assert(isInSchedulingRegion(SD) && 7958 "ScheduleData not in scheduling region"); 7959 SD->IsScheduled = false; 7960 SD->resetUnscheduledDeps(); 7961 }); 7962 } 7963 ReadyInsts.clear(); 7964 } 7965 7966 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7967 if (!BS->ScheduleStart) 7968 return; 7969 7970 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7971 7972 // A key point - if we got here, pre-scheduling was able to find a valid 7973 // scheduling of the sub-graph of the scheduling window which consists 7974 // of all vector bundles and their transitive users. As such, we do not 7975 // need to reschedule anything *outside of* that subgraph. 7976 7977 BS->resetSchedule(); 7978 7979 // For the real scheduling we use a more sophisticated ready-list: it is 7980 // sorted by the original instruction location. This lets the final schedule 7981 // be as close as possible to the original instruction order. 7982 DenseMap<ScheduleData *, unsigned> OriginalOrder; 7983 auto ScheduleDataCompare = [&](ScheduleData *SD1, ScheduleData *SD2) { 7984 return OriginalOrder[SD2] < OriginalOrder[SD1]; 7985 }; 7986 std::set<ScheduleData *, decltype(ScheduleDataCompare)> 7987 ReadyInsts(ScheduleDataCompare); 7988 7989 // Ensure that all dependency data is updated (for nodes in the sub-graph) 7990 // and fill the ready-list with initial instructions. 7991 int Idx = 0; 7992 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7993 I = I->getNextNode()) { 7994 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 7995 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7996 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7997 "scheduler and vectorizer bundle mismatch"); 7998 OriginalOrder[SD->FirstInBundle] = Idx++; 7999 8000 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8001 BS->calculateDependencies(SD, false, this); 8002 }); 8003 } 8004 BS->initialFillReadyList(ReadyInsts); 8005 8006 Instruction *LastScheduledInst = BS->ScheduleEnd; 8007 8008 // Do the "real" scheduling. 8009 while (!ReadyInsts.empty()) { 8010 ScheduleData *picked = *ReadyInsts.begin(); 8011 ReadyInsts.erase(ReadyInsts.begin()); 8012 8013 // Move the scheduled instruction(s) to their dedicated places, if not 8014 // there yet. 8015 for (ScheduleData *BundleMember = picked; BundleMember; 8016 BundleMember = BundleMember->NextInBundle) { 8017 Instruction *pickedInst = BundleMember->Inst; 8018 if (pickedInst->getNextNode() != LastScheduledInst) 8019 pickedInst->moveBefore(LastScheduledInst); 8020 LastScheduledInst = pickedInst; 8021 } 8022 8023 BS->schedule(picked, ReadyInsts); 8024 } 8025 8026 // Check that we didn't break any of our invariants. 8027 #ifdef EXPENSIVE_CHECKS 8028 BS->verify(); 8029 #endif 8030 8031 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8032 // Check that all schedulable entities got scheduled 8033 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8034 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8035 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8036 assert(SD->IsScheduled && "must be scheduled at this point"); 8037 } 8038 }); 8039 } 8040 #endif 8041 8042 // Avoid duplicate scheduling of the block. 8043 BS->ScheduleStart = nullptr; 8044 } 8045 8046 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8047 // If V is a store, just return the width of the stored value (or value 8048 // truncated just before storing) without traversing the expression tree. 8049 // This is the common case. 8050 if (auto *Store = dyn_cast<StoreInst>(V)) { 8051 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8052 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8053 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8054 } 8055 8056 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8057 return getVectorElementSize(IEI->getOperand(1)); 8058 8059 auto E = InstrElementSize.find(V); 8060 if (E != InstrElementSize.end()) 8061 return E->second; 8062 8063 // If V is not a store, we can traverse the expression tree to find loads 8064 // that feed it. The type of the loaded value may indicate a more suitable 8065 // width than V's type. We want to base the vector element size on the width 8066 // of memory operations where possible. 8067 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8068 SmallPtrSet<Instruction *, 16> Visited; 8069 if (auto *I = dyn_cast<Instruction>(V)) { 8070 Worklist.emplace_back(I, I->getParent()); 8071 Visited.insert(I); 8072 } 8073 8074 // Traverse the expression tree in bottom-up order looking for loads. If we 8075 // encounter an instruction we don't yet handle, we give up. 8076 auto Width = 0u; 8077 while (!Worklist.empty()) { 8078 Instruction *I; 8079 BasicBlock *Parent; 8080 std::tie(I, Parent) = Worklist.pop_back_val(); 8081 8082 // We should only be looking at scalar instructions here. If the current 8083 // instruction has a vector type, skip. 8084 auto *Ty = I->getType(); 8085 if (isa<VectorType>(Ty)) 8086 continue; 8087 8088 // If the current instruction is a load, update MaxWidth to reflect the 8089 // width of the loaded value. 8090 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8091 isa<ExtractValueInst>(I)) 8092 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8093 8094 // Otherwise, we need to visit the operands of the instruction. We only 8095 // handle the interesting cases from buildTree here. If an operand is an 8096 // instruction we haven't yet visited and from the same basic block as the 8097 // user or the use is a PHI node, we add it to the worklist. 8098 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8099 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8100 isa<UnaryOperator>(I)) { 8101 for (Use &U : I->operands()) 8102 if (auto *J = dyn_cast<Instruction>(U.get())) 8103 if (Visited.insert(J).second && 8104 (isa<PHINode>(I) || J->getParent() == Parent)) 8105 Worklist.emplace_back(J, J->getParent()); 8106 } else { 8107 break; 8108 } 8109 } 8110 8111 // If we didn't encounter a memory access in the expression tree, or if we 8112 // gave up for some reason, just return the width of V. Otherwise, return the 8113 // maximum width we found. 8114 if (!Width) { 8115 if (auto *CI = dyn_cast<CmpInst>(V)) 8116 V = CI->getOperand(0); 8117 Width = DL->getTypeSizeInBits(V->getType()); 8118 } 8119 8120 for (Instruction *I : Visited) 8121 InstrElementSize[I] = Width; 8122 8123 return Width; 8124 } 8125 8126 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8127 // smaller type with a truncation. We collect the values that will be demoted 8128 // in ToDemote and additional roots that require investigating in Roots. 8129 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8130 SmallVectorImpl<Value *> &ToDemote, 8131 SmallVectorImpl<Value *> &Roots) { 8132 // We can always demote constants. 8133 if (isa<Constant>(V)) { 8134 ToDemote.push_back(V); 8135 return true; 8136 } 8137 8138 // If the value is not an instruction in the expression with only one use, it 8139 // cannot be demoted. 8140 auto *I = dyn_cast<Instruction>(V); 8141 if (!I || !I->hasOneUse() || !Expr.count(I)) 8142 return false; 8143 8144 switch (I->getOpcode()) { 8145 8146 // We can always demote truncations and extensions. Since truncations can 8147 // seed additional demotion, we save the truncated value. 8148 case Instruction::Trunc: 8149 Roots.push_back(I->getOperand(0)); 8150 break; 8151 case Instruction::ZExt: 8152 case Instruction::SExt: 8153 if (isa<ExtractElementInst>(I->getOperand(0)) || 8154 isa<InsertElementInst>(I->getOperand(0))) 8155 return false; 8156 break; 8157 8158 // We can demote certain binary operations if we can demote both of their 8159 // operands. 8160 case Instruction::Add: 8161 case Instruction::Sub: 8162 case Instruction::Mul: 8163 case Instruction::And: 8164 case Instruction::Or: 8165 case Instruction::Xor: 8166 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8167 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8168 return false; 8169 break; 8170 8171 // We can demote selects if we can demote their true and false values. 8172 case Instruction::Select: { 8173 SelectInst *SI = cast<SelectInst>(I); 8174 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8175 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8176 return false; 8177 break; 8178 } 8179 8180 // We can demote phis if we can demote all their incoming operands. Note that 8181 // we don't need to worry about cycles since we ensure single use above. 8182 case Instruction::PHI: { 8183 PHINode *PN = cast<PHINode>(I); 8184 for (Value *IncValue : PN->incoming_values()) 8185 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8186 return false; 8187 break; 8188 } 8189 8190 // Otherwise, conservatively give up. 8191 default: 8192 return false; 8193 } 8194 8195 // Record the value that we can demote. 8196 ToDemote.push_back(V); 8197 return true; 8198 } 8199 8200 void BoUpSLP::computeMinimumValueSizes() { 8201 // If there are no external uses, the expression tree must be rooted by a 8202 // store. We can't demote in-memory values, so there is nothing to do here. 8203 if (ExternalUses.empty()) 8204 return; 8205 8206 // We only attempt to truncate integer expressions. 8207 auto &TreeRoot = VectorizableTree[0]->Scalars; 8208 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8209 if (!TreeRootIT) 8210 return; 8211 8212 // If the expression is not rooted by a store, these roots should have 8213 // external uses. We will rely on InstCombine to rewrite the expression in 8214 // the narrower type. However, InstCombine only rewrites single-use values. 8215 // This means that if a tree entry other than a root is used externally, it 8216 // must have multiple uses and InstCombine will not rewrite it. The code 8217 // below ensures that only the roots are used externally. 8218 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8219 for (auto &EU : ExternalUses) 8220 if (!Expr.erase(EU.Scalar)) 8221 return; 8222 if (!Expr.empty()) 8223 return; 8224 8225 // Collect the scalar values of the vectorizable expression. We will use this 8226 // context to determine which values can be demoted. If we see a truncation, 8227 // we mark it as seeding another demotion. 8228 for (auto &EntryPtr : VectorizableTree) 8229 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8230 8231 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8232 // have a single external user that is not in the vectorizable tree. 8233 for (auto *Root : TreeRoot) 8234 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8235 return; 8236 8237 // Conservatively determine if we can actually truncate the roots of the 8238 // expression. Collect the values that can be demoted in ToDemote and 8239 // additional roots that require investigating in Roots. 8240 SmallVector<Value *, 32> ToDemote; 8241 SmallVector<Value *, 4> Roots; 8242 for (auto *Root : TreeRoot) 8243 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8244 return; 8245 8246 // The maximum bit width required to represent all the values that can be 8247 // demoted without loss of precision. It would be safe to truncate the roots 8248 // of the expression to this width. 8249 auto MaxBitWidth = 8u; 8250 8251 // We first check if all the bits of the roots are demanded. If they're not, 8252 // we can truncate the roots to this narrower type. 8253 for (auto *Root : TreeRoot) { 8254 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8255 MaxBitWidth = std::max<unsigned>( 8256 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8257 } 8258 8259 // True if the roots can be zero-extended back to their original type, rather 8260 // than sign-extended. We know that if the leading bits are not demanded, we 8261 // can safely zero-extend. So we initialize IsKnownPositive to True. 8262 bool IsKnownPositive = true; 8263 8264 // If all the bits of the roots are demanded, we can try a little harder to 8265 // compute a narrower type. This can happen, for example, if the roots are 8266 // getelementptr indices. InstCombine promotes these indices to the pointer 8267 // width. Thus, all their bits are technically demanded even though the 8268 // address computation might be vectorized in a smaller type. 8269 // 8270 // We start by looking at each entry that can be demoted. We compute the 8271 // maximum bit width required to store the scalar by using ValueTracking to 8272 // compute the number of high-order bits we can truncate. 8273 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8274 llvm::all_of(TreeRoot, [](Value *R) { 8275 assert(R->hasOneUse() && "Root should have only one use!"); 8276 return isa<GetElementPtrInst>(R->user_back()); 8277 })) { 8278 MaxBitWidth = 8u; 8279 8280 // Determine if the sign bit of all the roots is known to be zero. If not, 8281 // IsKnownPositive is set to False. 8282 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8283 KnownBits Known = computeKnownBits(R, *DL); 8284 return Known.isNonNegative(); 8285 }); 8286 8287 // Determine the maximum number of bits required to store the scalar 8288 // values. 8289 for (auto *Scalar : ToDemote) { 8290 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8291 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8292 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8293 } 8294 8295 // If we can't prove that the sign bit is zero, we must add one to the 8296 // maximum bit width to account for the unknown sign bit. This preserves 8297 // the existing sign bit so we can safely sign-extend the root back to the 8298 // original type. Otherwise, if we know the sign bit is zero, we will 8299 // zero-extend the root instead. 8300 // 8301 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8302 // one to the maximum bit width will yield a larger-than-necessary 8303 // type. In general, we need to add an extra bit only if we can't 8304 // prove that the upper bit of the original type is equal to the 8305 // upper bit of the proposed smaller type. If these two bits are the 8306 // same (either zero or one) we know that sign-extending from the 8307 // smaller type will result in the same value. Here, since we can't 8308 // yet prove this, we are just making the proposed smaller type 8309 // larger to ensure correctness. 8310 if (!IsKnownPositive) 8311 ++MaxBitWidth; 8312 } 8313 8314 // Round MaxBitWidth up to the next power-of-two. 8315 if (!isPowerOf2_64(MaxBitWidth)) 8316 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8317 8318 // If the maximum bit width we compute is less than the with of the roots' 8319 // type, we can proceed with the narrowing. Otherwise, do nothing. 8320 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8321 return; 8322 8323 // If we can truncate the root, we must collect additional values that might 8324 // be demoted as a result. That is, those seeded by truncations we will 8325 // modify. 8326 while (!Roots.empty()) 8327 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8328 8329 // Finally, map the values we can demote to the maximum bit with we computed. 8330 for (auto *Scalar : ToDemote) 8331 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8332 } 8333 8334 namespace { 8335 8336 /// The SLPVectorizer Pass. 8337 struct SLPVectorizer : public FunctionPass { 8338 SLPVectorizerPass Impl; 8339 8340 /// Pass identification, replacement for typeid 8341 static char ID; 8342 8343 explicit SLPVectorizer() : FunctionPass(ID) { 8344 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8345 } 8346 8347 bool doInitialization(Module &M) override { return false; } 8348 8349 bool runOnFunction(Function &F) override { 8350 if (skipFunction(F)) 8351 return false; 8352 8353 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8354 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8355 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8356 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8357 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8358 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8359 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8360 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8361 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8362 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8363 8364 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8365 } 8366 8367 void getAnalysisUsage(AnalysisUsage &AU) const override { 8368 FunctionPass::getAnalysisUsage(AU); 8369 AU.addRequired<AssumptionCacheTracker>(); 8370 AU.addRequired<ScalarEvolutionWrapperPass>(); 8371 AU.addRequired<AAResultsWrapperPass>(); 8372 AU.addRequired<TargetTransformInfoWrapperPass>(); 8373 AU.addRequired<LoopInfoWrapperPass>(); 8374 AU.addRequired<DominatorTreeWrapperPass>(); 8375 AU.addRequired<DemandedBitsWrapperPass>(); 8376 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8377 AU.addRequired<InjectTLIMappingsLegacy>(); 8378 AU.addPreserved<LoopInfoWrapperPass>(); 8379 AU.addPreserved<DominatorTreeWrapperPass>(); 8380 AU.addPreserved<AAResultsWrapperPass>(); 8381 AU.addPreserved<GlobalsAAWrapperPass>(); 8382 AU.setPreservesCFG(); 8383 } 8384 }; 8385 8386 } // end anonymous namespace 8387 8388 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8389 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8390 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8391 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8392 auto *AA = &AM.getResult<AAManager>(F); 8393 auto *LI = &AM.getResult<LoopAnalysis>(F); 8394 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8395 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8396 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8397 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8398 8399 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8400 if (!Changed) 8401 return PreservedAnalyses::all(); 8402 8403 PreservedAnalyses PA; 8404 PA.preserveSet<CFGAnalyses>(); 8405 return PA; 8406 } 8407 8408 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8409 TargetTransformInfo *TTI_, 8410 TargetLibraryInfo *TLI_, AAResults *AA_, 8411 LoopInfo *LI_, DominatorTree *DT_, 8412 AssumptionCache *AC_, DemandedBits *DB_, 8413 OptimizationRemarkEmitter *ORE_) { 8414 if (!RunSLPVectorization) 8415 return false; 8416 SE = SE_; 8417 TTI = TTI_; 8418 TLI = TLI_; 8419 AA = AA_; 8420 LI = LI_; 8421 DT = DT_; 8422 AC = AC_; 8423 DB = DB_; 8424 DL = &F.getParent()->getDataLayout(); 8425 8426 Stores.clear(); 8427 GEPs.clear(); 8428 bool Changed = false; 8429 8430 // If the target claims to have no vector registers don't attempt 8431 // vectorization. 8432 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8433 LLVM_DEBUG( 8434 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8435 return false; 8436 } 8437 8438 // Don't vectorize when the attribute NoImplicitFloat is used. 8439 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8440 return false; 8441 8442 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8443 8444 // Use the bottom up slp vectorizer to construct chains that start with 8445 // store instructions. 8446 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8447 8448 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8449 // delete instructions. 8450 8451 // Update DFS numbers now so that we can use them for ordering. 8452 DT->updateDFSNumbers(); 8453 8454 // Scan the blocks in the function in post order. 8455 for (auto BB : post_order(&F.getEntryBlock())) { 8456 collectSeedInstructions(BB); 8457 8458 // Vectorize trees that end at stores. 8459 if (!Stores.empty()) { 8460 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8461 << " underlying objects.\n"); 8462 Changed |= vectorizeStoreChains(R); 8463 } 8464 8465 // Vectorize trees that end at reductions. 8466 Changed |= vectorizeChainsInBlock(BB, R); 8467 8468 // Vectorize the index computations of getelementptr instructions. This 8469 // is primarily intended to catch gather-like idioms ending at 8470 // non-consecutive loads. 8471 if (!GEPs.empty()) { 8472 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8473 << " underlying objects.\n"); 8474 Changed |= vectorizeGEPIndices(BB, R); 8475 } 8476 } 8477 8478 if (Changed) { 8479 R.optimizeGatherSequence(); 8480 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8481 } 8482 return Changed; 8483 } 8484 8485 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8486 unsigned Idx) { 8487 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8488 << "\n"); 8489 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8490 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8491 unsigned VF = Chain.size(); 8492 8493 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8494 return false; 8495 8496 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8497 << "\n"); 8498 8499 R.buildTree(Chain); 8500 if (R.isTreeTinyAndNotFullyVectorizable()) 8501 return false; 8502 if (R.isLoadCombineCandidate()) 8503 return false; 8504 R.reorderTopToBottom(); 8505 R.reorderBottomToTop(); 8506 R.buildExternalUses(); 8507 8508 R.computeMinimumValueSizes(); 8509 8510 InstructionCost Cost = R.getTreeCost(); 8511 8512 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8513 if (Cost < -SLPCostThreshold) { 8514 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8515 8516 using namespace ore; 8517 8518 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8519 cast<StoreInst>(Chain[0])) 8520 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8521 << " and with tree size " 8522 << NV("TreeSize", R.getTreeSize())); 8523 8524 R.vectorizeTree(); 8525 return true; 8526 } 8527 8528 return false; 8529 } 8530 8531 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8532 BoUpSLP &R) { 8533 // We may run into multiple chains that merge into a single chain. We mark the 8534 // stores that we vectorized so that we don't visit the same store twice. 8535 BoUpSLP::ValueSet VectorizedStores; 8536 bool Changed = false; 8537 8538 int E = Stores.size(); 8539 SmallBitVector Tails(E, false); 8540 int MaxIter = MaxStoreLookup.getValue(); 8541 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8542 E, std::make_pair(E, INT_MAX)); 8543 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8544 int IterCnt; 8545 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8546 &CheckedPairs, 8547 &ConsecutiveChain](int K, int Idx) { 8548 if (IterCnt >= MaxIter) 8549 return true; 8550 if (CheckedPairs[Idx].test(K)) 8551 return ConsecutiveChain[K].second == 1 && 8552 ConsecutiveChain[K].first == Idx; 8553 ++IterCnt; 8554 CheckedPairs[Idx].set(K); 8555 CheckedPairs[K].set(Idx); 8556 Optional<int> Diff = getPointersDiff( 8557 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8558 Stores[Idx]->getValueOperand()->getType(), 8559 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8560 if (!Diff || *Diff == 0) 8561 return false; 8562 int Val = *Diff; 8563 if (Val < 0) { 8564 if (ConsecutiveChain[Idx].second > -Val) { 8565 Tails.set(K); 8566 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8567 } 8568 return false; 8569 } 8570 if (ConsecutiveChain[K].second <= Val) 8571 return false; 8572 8573 Tails.set(Idx); 8574 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8575 return Val == 1; 8576 }; 8577 // Do a quadratic search on all of the given stores in reverse order and find 8578 // all of the pairs of stores that follow each other. 8579 for (int Idx = E - 1; Idx >= 0; --Idx) { 8580 // If a store has multiple consecutive store candidates, search according 8581 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8582 // This is because usually pairing with immediate succeeding or preceding 8583 // candidate create the best chance to find slp vectorization opportunity. 8584 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8585 IterCnt = 0; 8586 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8587 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8588 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8589 break; 8590 } 8591 8592 // Tracks if we tried to vectorize stores starting from the given tail 8593 // already. 8594 SmallBitVector TriedTails(E, false); 8595 // For stores that start but don't end a link in the chain: 8596 for (int Cnt = E; Cnt > 0; --Cnt) { 8597 int I = Cnt - 1; 8598 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8599 continue; 8600 // We found a store instr that starts a chain. Now follow the chain and try 8601 // to vectorize it. 8602 BoUpSLP::ValueList Operands; 8603 // Collect the chain into a list. 8604 while (I != E && !VectorizedStores.count(Stores[I])) { 8605 Operands.push_back(Stores[I]); 8606 Tails.set(I); 8607 if (ConsecutiveChain[I].second != 1) { 8608 // Mark the new end in the chain and go back, if required. It might be 8609 // required if the original stores come in reversed order, for example. 8610 if (ConsecutiveChain[I].first != E && 8611 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8612 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8613 TriedTails.set(I); 8614 Tails.reset(ConsecutiveChain[I].first); 8615 if (Cnt < ConsecutiveChain[I].first + 2) 8616 Cnt = ConsecutiveChain[I].first + 2; 8617 } 8618 break; 8619 } 8620 // Move to the next value in the chain. 8621 I = ConsecutiveChain[I].first; 8622 } 8623 assert(!Operands.empty() && "Expected non-empty list of stores."); 8624 8625 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8626 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8627 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8628 8629 unsigned MinVF = R.getMinVF(EltSize); 8630 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8631 MaxElts); 8632 8633 // FIXME: Is division-by-2 the correct step? Should we assert that the 8634 // register size is a power-of-2? 8635 unsigned StartIdx = 0; 8636 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8637 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8638 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8639 if (!VectorizedStores.count(Slice.front()) && 8640 !VectorizedStores.count(Slice.back()) && 8641 vectorizeStoreChain(Slice, R, Cnt)) { 8642 // Mark the vectorized stores so that we don't vectorize them again. 8643 VectorizedStores.insert(Slice.begin(), Slice.end()); 8644 Changed = true; 8645 // If we vectorized initial block, no need to try to vectorize it 8646 // again. 8647 if (Cnt == StartIdx) 8648 StartIdx += Size; 8649 Cnt += Size; 8650 continue; 8651 } 8652 ++Cnt; 8653 } 8654 // Check if the whole array was vectorized already - exit. 8655 if (StartIdx >= Operands.size()) 8656 break; 8657 } 8658 } 8659 8660 return Changed; 8661 } 8662 8663 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8664 // Initialize the collections. We will make a single pass over the block. 8665 Stores.clear(); 8666 GEPs.clear(); 8667 8668 // Visit the store and getelementptr instructions in BB and organize them in 8669 // Stores and GEPs according to the underlying objects of their pointer 8670 // operands. 8671 for (Instruction &I : *BB) { 8672 // Ignore store instructions that are volatile or have a pointer operand 8673 // that doesn't point to a scalar type. 8674 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8675 if (!SI->isSimple()) 8676 continue; 8677 if (!isValidElementType(SI->getValueOperand()->getType())) 8678 continue; 8679 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8680 } 8681 8682 // Ignore getelementptr instructions that have more than one index, a 8683 // constant index, or a pointer operand that doesn't point to a scalar 8684 // type. 8685 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8686 auto Idx = GEP->idx_begin()->get(); 8687 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8688 continue; 8689 if (!isValidElementType(Idx->getType())) 8690 continue; 8691 if (GEP->getType()->isVectorTy()) 8692 continue; 8693 GEPs[GEP->getPointerOperand()].push_back(GEP); 8694 } 8695 } 8696 } 8697 8698 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8699 if (!A || !B) 8700 return false; 8701 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8702 return false; 8703 Value *VL[] = {A, B}; 8704 return tryToVectorizeList(VL, R); 8705 } 8706 8707 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8708 bool LimitForRegisterSize) { 8709 if (VL.size() < 2) 8710 return false; 8711 8712 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8713 << VL.size() << ".\n"); 8714 8715 // Check that all of the parts are instructions of the same type, 8716 // we permit an alternate opcode via InstructionsState. 8717 InstructionsState S = getSameOpcode(VL); 8718 if (!S.getOpcode()) 8719 return false; 8720 8721 Instruction *I0 = cast<Instruction>(S.OpValue); 8722 // Make sure invalid types (including vector type) are rejected before 8723 // determining vectorization factor for scalar instructions. 8724 for (Value *V : VL) { 8725 Type *Ty = V->getType(); 8726 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8727 // NOTE: the following will give user internal llvm type name, which may 8728 // not be useful. 8729 R.getORE()->emit([&]() { 8730 std::string type_str; 8731 llvm::raw_string_ostream rso(type_str); 8732 Ty->print(rso); 8733 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8734 << "Cannot SLP vectorize list: type " 8735 << rso.str() + " is unsupported by vectorizer"; 8736 }); 8737 return false; 8738 } 8739 } 8740 8741 unsigned Sz = R.getVectorElementSize(I0); 8742 unsigned MinVF = R.getMinVF(Sz); 8743 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8744 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8745 if (MaxVF < 2) { 8746 R.getORE()->emit([&]() { 8747 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8748 << "Cannot SLP vectorize list: vectorization factor " 8749 << "less than 2 is not supported"; 8750 }); 8751 return false; 8752 } 8753 8754 bool Changed = false; 8755 bool CandidateFound = false; 8756 InstructionCost MinCost = SLPCostThreshold.getValue(); 8757 Type *ScalarTy = VL[0]->getType(); 8758 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8759 ScalarTy = IE->getOperand(1)->getType(); 8760 8761 unsigned NextInst = 0, MaxInst = VL.size(); 8762 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8763 // No actual vectorization should happen, if number of parts is the same as 8764 // provided vectorization factor (i.e. the scalar type is used for vector 8765 // code during codegen). 8766 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8767 if (TTI->getNumberOfParts(VecTy) == VF) 8768 continue; 8769 for (unsigned I = NextInst; I < MaxInst; ++I) { 8770 unsigned OpsWidth = 0; 8771 8772 if (I + VF > MaxInst) 8773 OpsWidth = MaxInst - I; 8774 else 8775 OpsWidth = VF; 8776 8777 if (!isPowerOf2_32(OpsWidth)) 8778 continue; 8779 8780 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8781 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8782 break; 8783 8784 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8785 // Check that a previous iteration of this loop did not delete the Value. 8786 if (llvm::any_of(Ops, [&R](Value *V) { 8787 auto *I = dyn_cast<Instruction>(V); 8788 return I && R.isDeleted(I); 8789 })) 8790 continue; 8791 8792 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8793 << "\n"); 8794 8795 R.buildTree(Ops); 8796 if (R.isTreeTinyAndNotFullyVectorizable()) 8797 continue; 8798 R.reorderTopToBottom(); 8799 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8800 R.buildExternalUses(); 8801 8802 R.computeMinimumValueSizes(); 8803 InstructionCost Cost = R.getTreeCost(); 8804 CandidateFound = true; 8805 MinCost = std::min(MinCost, Cost); 8806 8807 if (Cost < -SLPCostThreshold) { 8808 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8809 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8810 cast<Instruction>(Ops[0])) 8811 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8812 << " and with tree size " 8813 << ore::NV("TreeSize", R.getTreeSize())); 8814 8815 R.vectorizeTree(); 8816 // Move to the next bundle. 8817 I += VF - 1; 8818 NextInst = I + 1; 8819 Changed = true; 8820 } 8821 } 8822 } 8823 8824 if (!Changed && CandidateFound) { 8825 R.getORE()->emit([&]() { 8826 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8827 << "List vectorization was possible but not beneficial with cost " 8828 << ore::NV("Cost", MinCost) << " >= " 8829 << ore::NV("Treshold", -SLPCostThreshold); 8830 }); 8831 } else if (!Changed) { 8832 R.getORE()->emit([&]() { 8833 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8834 << "Cannot SLP vectorize list: vectorization was impossible" 8835 << " with available vectorization factors"; 8836 }); 8837 } 8838 return Changed; 8839 } 8840 8841 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8842 if (!I) 8843 return false; 8844 8845 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8846 return false; 8847 8848 Value *P = I->getParent(); 8849 8850 // Vectorize in current basic block only. 8851 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8852 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8853 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8854 return false; 8855 8856 // Try to vectorize V. 8857 if (tryToVectorizePair(Op0, Op1, R)) 8858 return true; 8859 8860 auto *A = dyn_cast<BinaryOperator>(Op0); 8861 auto *B = dyn_cast<BinaryOperator>(Op1); 8862 // Try to skip B. 8863 if (B && B->hasOneUse()) { 8864 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8865 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8866 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8867 return true; 8868 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8869 return true; 8870 } 8871 8872 // Try to skip A. 8873 if (A && A->hasOneUse()) { 8874 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8875 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8876 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8877 return true; 8878 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8879 return true; 8880 } 8881 return false; 8882 } 8883 8884 namespace { 8885 8886 /// Model horizontal reductions. 8887 /// 8888 /// A horizontal reduction is a tree of reduction instructions that has values 8889 /// that can be put into a vector as its leaves. For example: 8890 /// 8891 /// mul mul mul mul 8892 /// \ / \ / 8893 /// + + 8894 /// \ / 8895 /// + 8896 /// This tree has "mul" as its leaf values and "+" as its reduction 8897 /// instructions. A reduction can feed into a store or a binary operation 8898 /// feeding a phi. 8899 /// ... 8900 /// \ / 8901 /// + 8902 /// | 8903 /// phi += 8904 /// 8905 /// Or: 8906 /// ... 8907 /// \ / 8908 /// + 8909 /// | 8910 /// *p = 8911 /// 8912 class HorizontalReduction { 8913 using ReductionOpsType = SmallVector<Value *, 16>; 8914 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8915 ReductionOpsListType ReductionOps; 8916 SmallVector<Value *, 32> ReducedVals; 8917 // Use map vector to make stable output. 8918 MapVector<Instruction *, Value *> ExtraArgs; 8919 WeakTrackingVH ReductionRoot; 8920 /// The type of reduction operation. 8921 RecurKind RdxKind; 8922 8923 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8924 8925 static bool isCmpSelMinMax(Instruction *I) { 8926 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8927 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8928 } 8929 8930 // And/or are potentially poison-safe logical patterns like: 8931 // select x, y, false 8932 // select x, true, y 8933 static bool isBoolLogicOp(Instruction *I) { 8934 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8935 match(I, m_LogicalOr(m_Value(), m_Value())); 8936 } 8937 8938 /// Checks if instruction is associative and can be vectorized. 8939 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8940 if (Kind == RecurKind::None) 8941 return false; 8942 8943 // Integer ops that map to select instructions or intrinsics are fine. 8944 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8945 isBoolLogicOp(I)) 8946 return true; 8947 8948 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8949 // FP min/max are associative except for NaN and -0.0. We do not 8950 // have to rule out -0.0 here because the intrinsic semantics do not 8951 // specify a fixed result for it. 8952 return I->getFastMathFlags().noNaNs(); 8953 } 8954 8955 return I->isAssociative(); 8956 } 8957 8958 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8959 // Poison-safe 'or' takes the form: select X, true, Y 8960 // To make that work with the normal operand processing, we skip the 8961 // true value operand. 8962 // TODO: Change the code and data structures to handle this without a hack. 8963 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8964 return I->getOperand(2); 8965 return I->getOperand(Index); 8966 } 8967 8968 /// Checks if the ParentStackElem.first should be marked as a reduction 8969 /// operation with an extra argument or as extra argument itself. 8970 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8971 Value *ExtraArg) { 8972 if (ExtraArgs.count(ParentStackElem.first)) { 8973 ExtraArgs[ParentStackElem.first] = nullptr; 8974 // We ran into something like: 8975 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8976 // The whole ParentStackElem.first should be considered as an extra value 8977 // in this case. 8978 // Do not perform analysis of remaining operands of ParentStackElem.first 8979 // instruction, this whole instruction is an extra argument. 8980 ParentStackElem.second = INVALID_OPERAND_INDEX; 8981 } else { 8982 // We ran into something like: 8983 // ParentStackElem.first += ... + ExtraArg + ... 8984 ExtraArgs[ParentStackElem.first] = ExtraArg; 8985 } 8986 } 8987 8988 /// Creates reduction operation with the current opcode. 8989 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8990 Value *RHS, const Twine &Name, bool UseSelect) { 8991 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8992 switch (Kind) { 8993 case RecurKind::Or: 8994 if (UseSelect && 8995 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8996 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8997 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8998 Name); 8999 case RecurKind::And: 9000 if (UseSelect && 9001 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9002 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9003 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9004 Name); 9005 case RecurKind::Add: 9006 case RecurKind::Mul: 9007 case RecurKind::Xor: 9008 case RecurKind::FAdd: 9009 case RecurKind::FMul: 9010 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9011 Name); 9012 case RecurKind::FMax: 9013 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9014 case RecurKind::FMin: 9015 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9016 case RecurKind::SMax: 9017 if (UseSelect) { 9018 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9019 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9020 } 9021 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9022 case RecurKind::SMin: 9023 if (UseSelect) { 9024 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9025 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9026 } 9027 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9028 case RecurKind::UMax: 9029 if (UseSelect) { 9030 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9031 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9032 } 9033 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9034 case RecurKind::UMin: 9035 if (UseSelect) { 9036 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9037 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9038 } 9039 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9040 default: 9041 llvm_unreachable("Unknown reduction operation."); 9042 } 9043 } 9044 9045 /// Creates reduction operation with the current opcode with the IR flags 9046 /// from \p ReductionOps. 9047 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9048 Value *RHS, const Twine &Name, 9049 const ReductionOpsListType &ReductionOps) { 9050 bool UseSelect = ReductionOps.size() == 2 || 9051 // Logical or/and. 9052 (ReductionOps.size() == 1 && 9053 isa<SelectInst>(ReductionOps.front().front())); 9054 assert((!UseSelect || ReductionOps.size() != 2 || 9055 isa<SelectInst>(ReductionOps[1][0])) && 9056 "Expected cmp + select pairs for reduction"); 9057 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9058 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9059 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9060 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9061 propagateIRFlags(Op, ReductionOps[1]); 9062 return Op; 9063 } 9064 } 9065 propagateIRFlags(Op, ReductionOps[0]); 9066 return Op; 9067 } 9068 9069 /// Creates reduction operation with the current opcode with the IR flags 9070 /// from \p I. 9071 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9072 Value *RHS, const Twine &Name, Instruction *I) { 9073 auto *SelI = dyn_cast<SelectInst>(I); 9074 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9075 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9076 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9077 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9078 } 9079 propagateIRFlags(Op, I); 9080 return Op; 9081 } 9082 9083 static RecurKind getRdxKind(Instruction *I) { 9084 assert(I && "Expected instruction for reduction matching"); 9085 if (match(I, m_Add(m_Value(), m_Value()))) 9086 return RecurKind::Add; 9087 if (match(I, m_Mul(m_Value(), m_Value()))) 9088 return RecurKind::Mul; 9089 if (match(I, m_And(m_Value(), m_Value())) || 9090 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9091 return RecurKind::And; 9092 if (match(I, m_Or(m_Value(), m_Value())) || 9093 match(I, m_LogicalOr(m_Value(), m_Value()))) 9094 return RecurKind::Or; 9095 if (match(I, m_Xor(m_Value(), m_Value()))) 9096 return RecurKind::Xor; 9097 if (match(I, m_FAdd(m_Value(), m_Value()))) 9098 return RecurKind::FAdd; 9099 if (match(I, m_FMul(m_Value(), m_Value()))) 9100 return RecurKind::FMul; 9101 9102 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9103 return RecurKind::FMax; 9104 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9105 return RecurKind::FMin; 9106 9107 // This matches either cmp+select or intrinsics. SLP is expected to handle 9108 // either form. 9109 // TODO: If we are canonicalizing to intrinsics, we can remove several 9110 // special-case paths that deal with selects. 9111 if (match(I, m_SMax(m_Value(), m_Value()))) 9112 return RecurKind::SMax; 9113 if (match(I, m_SMin(m_Value(), m_Value()))) 9114 return RecurKind::SMin; 9115 if (match(I, m_UMax(m_Value(), m_Value()))) 9116 return RecurKind::UMax; 9117 if (match(I, m_UMin(m_Value(), m_Value()))) 9118 return RecurKind::UMin; 9119 9120 if (auto *Select = dyn_cast<SelectInst>(I)) { 9121 // Try harder: look for min/max pattern based on instructions producing 9122 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9123 // During the intermediate stages of SLP, it's very common to have 9124 // pattern like this (since optimizeGatherSequence is run only once 9125 // at the end): 9126 // %1 = extractelement <2 x i32> %a, i32 0 9127 // %2 = extractelement <2 x i32> %a, i32 1 9128 // %cond = icmp sgt i32 %1, %2 9129 // %3 = extractelement <2 x i32> %a, i32 0 9130 // %4 = extractelement <2 x i32> %a, i32 1 9131 // %select = select i1 %cond, i32 %3, i32 %4 9132 CmpInst::Predicate Pred; 9133 Instruction *L1; 9134 Instruction *L2; 9135 9136 Value *LHS = Select->getTrueValue(); 9137 Value *RHS = Select->getFalseValue(); 9138 Value *Cond = Select->getCondition(); 9139 9140 // TODO: Support inverse predicates. 9141 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9142 if (!isa<ExtractElementInst>(RHS) || 9143 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9144 return RecurKind::None; 9145 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9146 if (!isa<ExtractElementInst>(LHS) || 9147 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9148 return RecurKind::None; 9149 } else { 9150 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9151 return RecurKind::None; 9152 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9153 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9154 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9155 return RecurKind::None; 9156 } 9157 9158 switch (Pred) { 9159 default: 9160 return RecurKind::None; 9161 case CmpInst::ICMP_SGT: 9162 case CmpInst::ICMP_SGE: 9163 return RecurKind::SMax; 9164 case CmpInst::ICMP_SLT: 9165 case CmpInst::ICMP_SLE: 9166 return RecurKind::SMin; 9167 case CmpInst::ICMP_UGT: 9168 case CmpInst::ICMP_UGE: 9169 return RecurKind::UMax; 9170 case CmpInst::ICMP_ULT: 9171 case CmpInst::ICMP_ULE: 9172 return RecurKind::UMin; 9173 } 9174 } 9175 return RecurKind::None; 9176 } 9177 9178 /// Get the index of the first operand. 9179 static unsigned getFirstOperandIndex(Instruction *I) { 9180 return isCmpSelMinMax(I) ? 1 : 0; 9181 } 9182 9183 /// Total number of operands in the reduction operation. 9184 static unsigned getNumberOfOperands(Instruction *I) { 9185 return isCmpSelMinMax(I) ? 3 : 2; 9186 } 9187 9188 /// Checks if the instruction is in basic block \p BB. 9189 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9190 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9191 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9192 auto *Sel = cast<SelectInst>(I); 9193 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9194 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9195 } 9196 return I->getParent() == BB; 9197 } 9198 9199 /// Expected number of uses for reduction operations/reduced values. 9200 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9201 if (IsCmpSelMinMax) { 9202 // SelectInst must be used twice while the condition op must have single 9203 // use only. 9204 if (auto *Sel = dyn_cast<SelectInst>(I)) 9205 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9206 return I->hasNUses(2); 9207 } 9208 9209 // Arithmetic reduction operation must be used once only. 9210 return I->hasOneUse(); 9211 } 9212 9213 /// Initializes the list of reduction operations. 9214 void initReductionOps(Instruction *I) { 9215 if (isCmpSelMinMax(I)) 9216 ReductionOps.assign(2, ReductionOpsType()); 9217 else 9218 ReductionOps.assign(1, ReductionOpsType()); 9219 } 9220 9221 /// Add all reduction operations for the reduction instruction \p I. 9222 void addReductionOps(Instruction *I) { 9223 if (isCmpSelMinMax(I)) { 9224 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9225 ReductionOps[1].emplace_back(I); 9226 } else { 9227 ReductionOps[0].emplace_back(I); 9228 } 9229 } 9230 9231 static Value *getLHS(RecurKind Kind, Instruction *I) { 9232 if (Kind == RecurKind::None) 9233 return nullptr; 9234 return I->getOperand(getFirstOperandIndex(I)); 9235 } 9236 static Value *getRHS(RecurKind Kind, Instruction *I) { 9237 if (Kind == RecurKind::None) 9238 return nullptr; 9239 return I->getOperand(getFirstOperandIndex(I) + 1); 9240 } 9241 9242 public: 9243 HorizontalReduction() = default; 9244 9245 /// Try to find a reduction tree. 9246 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9247 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9248 "Phi needs to use the binary operator"); 9249 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9250 isa<IntrinsicInst>(Inst)) && 9251 "Expected binop, select, or intrinsic for reduction matching"); 9252 RdxKind = getRdxKind(Inst); 9253 9254 // We could have a initial reductions that is not an add. 9255 // r *= v1 + v2 + v3 + v4 9256 // In such a case start looking for a tree rooted in the first '+'. 9257 if (Phi) { 9258 if (getLHS(RdxKind, Inst) == Phi) { 9259 Phi = nullptr; 9260 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9261 if (!Inst) 9262 return false; 9263 RdxKind = getRdxKind(Inst); 9264 } else if (getRHS(RdxKind, Inst) == Phi) { 9265 Phi = nullptr; 9266 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9267 if (!Inst) 9268 return false; 9269 RdxKind = getRdxKind(Inst); 9270 } 9271 } 9272 9273 if (!isVectorizable(RdxKind, Inst)) 9274 return false; 9275 9276 // Analyze "regular" integer/FP types for reductions - no target-specific 9277 // types or pointers. 9278 Type *Ty = Inst->getType(); 9279 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9280 return false; 9281 9282 // Though the ultimate reduction may have multiple uses, its condition must 9283 // have only single use. 9284 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9285 if (!Sel->getCondition()->hasOneUse()) 9286 return false; 9287 9288 ReductionRoot = Inst; 9289 9290 // The opcode for leaf values that we perform a reduction on. 9291 // For example: load(x) + load(y) + load(z) + fptoui(w) 9292 // The leaf opcode for 'w' does not match, so we don't include it as a 9293 // potential candidate for the reduction. 9294 unsigned LeafOpcode = 0; 9295 9296 // Post-order traverse the reduction tree starting at Inst. We only handle 9297 // true trees containing binary operators or selects. 9298 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9299 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9300 initReductionOps(Inst); 9301 while (!Stack.empty()) { 9302 Instruction *TreeN = Stack.back().first; 9303 unsigned EdgeToVisit = Stack.back().second++; 9304 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9305 bool IsReducedValue = TreeRdxKind != RdxKind; 9306 9307 // Postorder visit. 9308 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9309 if (IsReducedValue) 9310 ReducedVals.push_back(TreeN); 9311 else { 9312 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9313 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9314 // Check if TreeN is an extra argument of its parent operation. 9315 if (Stack.size() <= 1) { 9316 // TreeN can't be an extra argument as it is a root reduction 9317 // operation. 9318 return false; 9319 } 9320 // Yes, TreeN is an extra argument, do not add it to a list of 9321 // reduction operations. 9322 // Stack[Stack.size() - 2] always points to the parent operation. 9323 markExtraArg(Stack[Stack.size() - 2], TreeN); 9324 ExtraArgs.erase(TreeN); 9325 } else 9326 addReductionOps(TreeN); 9327 } 9328 // Retract. 9329 Stack.pop_back(); 9330 continue; 9331 } 9332 9333 // Visit operands. 9334 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9335 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9336 if (!EdgeInst) { 9337 // Edge value is not a reduction instruction or a leaf instruction. 9338 // (It may be a constant, function argument, or something else.) 9339 markExtraArg(Stack.back(), EdgeVal); 9340 continue; 9341 } 9342 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9343 // Continue analysis if the next operand is a reduction operation or 9344 // (possibly) a leaf value. If the leaf value opcode is not set, 9345 // the first met operation != reduction operation is considered as the 9346 // leaf opcode. 9347 // Only handle trees in the current basic block. 9348 // Each tree node needs to have minimal number of users except for the 9349 // ultimate reduction. 9350 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9351 if (EdgeInst != Phi && EdgeInst != Inst && 9352 hasSameParent(EdgeInst, Inst->getParent()) && 9353 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9354 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9355 if (IsRdxInst) { 9356 // We need to be able to reassociate the reduction operations. 9357 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9358 // I is an extra argument for TreeN (its parent operation). 9359 markExtraArg(Stack.back(), EdgeInst); 9360 continue; 9361 } 9362 } else if (!LeafOpcode) { 9363 LeafOpcode = EdgeInst->getOpcode(); 9364 } 9365 Stack.push_back( 9366 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9367 continue; 9368 } 9369 // I is an extra argument for TreeN (its parent operation). 9370 markExtraArg(Stack.back(), EdgeInst); 9371 } 9372 return true; 9373 } 9374 9375 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9376 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9377 // If there are a sufficient number of reduction values, reduce 9378 // to a nearby power-of-2. We can safely generate oversized 9379 // vectors and rely on the backend to split them to legal sizes. 9380 unsigned NumReducedVals = ReducedVals.size(); 9381 if (NumReducedVals < 4) 9382 return nullptr; 9383 9384 // Intersect the fast-math-flags from all reduction operations. 9385 FastMathFlags RdxFMF; 9386 RdxFMF.set(); 9387 for (ReductionOpsType &RdxOp : ReductionOps) { 9388 for (Value *RdxVal : RdxOp) { 9389 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9390 RdxFMF &= FPMO->getFastMathFlags(); 9391 } 9392 } 9393 9394 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9395 Builder.setFastMathFlags(RdxFMF); 9396 9397 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9398 // The same extra argument may be used several times, so log each attempt 9399 // to use it. 9400 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9401 assert(Pair.first && "DebugLoc must be set."); 9402 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9403 } 9404 9405 // The compare instruction of a min/max is the insertion point for new 9406 // instructions and may be replaced with a new compare instruction. 9407 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9408 assert(isa<SelectInst>(RdxRootInst) && 9409 "Expected min/max reduction to have select root instruction"); 9410 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9411 assert(isa<Instruction>(ScalarCond) && 9412 "Expected min/max reduction to have compare condition"); 9413 return cast<Instruction>(ScalarCond); 9414 }; 9415 9416 // The reduction root is used as the insertion point for new instructions, 9417 // so set it as externally used to prevent it from being deleted. 9418 ExternallyUsedValues[ReductionRoot]; 9419 SmallVector<Value *, 16> IgnoreList; 9420 for (ReductionOpsType &RdxOp : ReductionOps) 9421 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9422 9423 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9424 if (NumReducedVals > ReduxWidth) { 9425 // In the loop below, we are building a tree based on a window of 9426 // 'ReduxWidth' values. 9427 // If the operands of those values have common traits (compare predicate, 9428 // constant operand, etc), then we want to group those together to 9429 // minimize the cost of the reduction. 9430 9431 // TODO: This should be extended to count common operands for 9432 // compares and binops. 9433 9434 // Step 1: Count the number of times each compare predicate occurs. 9435 SmallDenseMap<unsigned, unsigned> PredCountMap; 9436 for (Value *RdxVal : ReducedVals) { 9437 CmpInst::Predicate Pred; 9438 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9439 ++PredCountMap[Pred]; 9440 } 9441 // Step 2: Sort the values so the most common predicates come first. 9442 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9443 CmpInst::Predicate PredA, PredB; 9444 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9445 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9446 return PredCountMap[PredA] > PredCountMap[PredB]; 9447 } 9448 return false; 9449 }); 9450 } 9451 9452 Value *VectorizedTree = nullptr; 9453 unsigned i = 0; 9454 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9455 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9456 V.buildTree(VL, IgnoreList); 9457 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9458 break; 9459 if (V.isLoadCombineReductionCandidate(RdxKind)) 9460 break; 9461 V.reorderTopToBottom(); 9462 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9463 V.buildExternalUses(ExternallyUsedValues); 9464 9465 // For a poison-safe boolean logic reduction, do not replace select 9466 // instructions with logic ops. All reduced values will be frozen (see 9467 // below) to prevent leaking poison. 9468 if (isa<SelectInst>(ReductionRoot) && 9469 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9470 NumReducedVals != ReduxWidth) 9471 break; 9472 9473 V.computeMinimumValueSizes(); 9474 9475 // Estimate cost. 9476 InstructionCost TreeCost = 9477 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9478 InstructionCost ReductionCost = 9479 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9480 InstructionCost Cost = TreeCost + ReductionCost; 9481 if (!Cost.isValid()) { 9482 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9483 return nullptr; 9484 } 9485 if (Cost >= -SLPCostThreshold) { 9486 V.getORE()->emit([&]() { 9487 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9488 cast<Instruction>(VL[0])) 9489 << "Vectorizing horizontal reduction is possible" 9490 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9491 << " and threshold " 9492 << ore::NV("Threshold", -SLPCostThreshold); 9493 }); 9494 break; 9495 } 9496 9497 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9498 << Cost << ". (HorRdx)\n"); 9499 V.getORE()->emit([&]() { 9500 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9501 cast<Instruction>(VL[0])) 9502 << "Vectorized horizontal reduction with cost " 9503 << ore::NV("Cost", Cost) << " and with tree size " 9504 << ore::NV("TreeSize", V.getTreeSize()); 9505 }); 9506 9507 // Vectorize a tree. 9508 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9509 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9510 9511 // Emit a reduction. If the root is a select (min/max idiom), the insert 9512 // point is the compare condition of that select. 9513 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9514 if (isCmpSelMinMax(RdxRootInst)) 9515 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9516 else 9517 Builder.SetInsertPoint(RdxRootInst); 9518 9519 // To prevent poison from leaking across what used to be sequential, safe, 9520 // scalar boolean logic operations, the reduction operand must be frozen. 9521 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9522 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9523 9524 Value *ReducedSubTree = 9525 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9526 9527 if (!VectorizedTree) { 9528 // Initialize the final value in the reduction. 9529 VectorizedTree = ReducedSubTree; 9530 } else { 9531 // Update the final value in the reduction. 9532 Builder.SetCurrentDebugLocation(Loc); 9533 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9534 ReducedSubTree, "op.rdx", ReductionOps); 9535 } 9536 i += ReduxWidth; 9537 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9538 } 9539 9540 if (VectorizedTree) { 9541 // Finish the reduction. 9542 for (; i < NumReducedVals; ++i) { 9543 auto *I = cast<Instruction>(ReducedVals[i]); 9544 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9545 VectorizedTree = 9546 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9547 } 9548 for (auto &Pair : ExternallyUsedValues) { 9549 // Add each externally used value to the final reduction. 9550 for (auto *I : Pair.second) { 9551 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9552 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9553 Pair.first, "op.extra", I); 9554 } 9555 } 9556 9557 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9558 9559 // Mark all scalar reduction ops for deletion, they are replaced by the 9560 // vector reductions. 9561 V.eraseInstructions(IgnoreList); 9562 } 9563 return VectorizedTree; 9564 } 9565 9566 unsigned numReductionValues() const { return ReducedVals.size(); } 9567 9568 private: 9569 /// Calculate the cost of a reduction. 9570 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9571 Value *FirstReducedVal, unsigned ReduxWidth, 9572 FastMathFlags FMF) { 9573 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9574 Type *ScalarTy = FirstReducedVal->getType(); 9575 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9576 InstructionCost VectorCost, ScalarCost; 9577 switch (RdxKind) { 9578 case RecurKind::Add: 9579 case RecurKind::Mul: 9580 case RecurKind::Or: 9581 case RecurKind::And: 9582 case RecurKind::Xor: 9583 case RecurKind::FAdd: 9584 case RecurKind::FMul: { 9585 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9586 VectorCost = 9587 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9588 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9589 break; 9590 } 9591 case RecurKind::FMax: 9592 case RecurKind::FMin: { 9593 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9594 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9595 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9596 /*IsUnsigned=*/false, CostKind); 9597 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9598 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9599 SclCondTy, RdxPred, CostKind) + 9600 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9601 SclCondTy, RdxPred, CostKind); 9602 break; 9603 } 9604 case RecurKind::SMax: 9605 case RecurKind::SMin: 9606 case RecurKind::UMax: 9607 case RecurKind::UMin: { 9608 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9609 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9610 bool IsUnsigned = 9611 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9612 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9613 CostKind); 9614 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9615 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9616 SclCondTy, RdxPred, CostKind) + 9617 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9618 SclCondTy, RdxPred, CostKind); 9619 break; 9620 } 9621 default: 9622 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9623 } 9624 9625 // Scalar cost is repeated for N-1 elements. 9626 ScalarCost *= (ReduxWidth - 1); 9627 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9628 << " for reduction that starts with " << *FirstReducedVal 9629 << " (It is a splitting reduction)\n"); 9630 return VectorCost - ScalarCost; 9631 } 9632 9633 /// Emit a horizontal reduction of the vectorized value. 9634 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9635 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9636 assert(VectorizedValue && "Need to have a vectorized tree node"); 9637 assert(isPowerOf2_32(ReduxWidth) && 9638 "We only handle power-of-two reductions for now"); 9639 assert(RdxKind != RecurKind::FMulAdd && 9640 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9641 9642 ++NumVectorInstructions; 9643 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9644 } 9645 }; 9646 9647 } // end anonymous namespace 9648 9649 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9650 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9651 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9652 9653 unsigned AggregateSize = 1; 9654 auto *IV = cast<InsertValueInst>(InsertInst); 9655 Type *CurrentType = IV->getType(); 9656 do { 9657 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9658 for (auto *Elt : ST->elements()) 9659 if (Elt != ST->getElementType(0)) // check homogeneity 9660 return None; 9661 AggregateSize *= ST->getNumElements(); 9662 CurrentType = ST->getElementType(0); 9663 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9664 AggregateSize *= AT->getNumElements(); 9665 CurrentType = AT->getElementType(); 9666 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9667 AggregateSize *= VT->getNumElements(); 9668 return AggregateSize; 9669 } else if (CurrentType->isSingleValueType()) { 9670 return AggregateSize; 9671 } else { 9672 return None; 9673 } 9674 } while (true); 9675 } 9676 9677 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9678 TargetTransformInfo *TTI, 9679 SmallVectorImpl<Value *> &BuildVectorOpds, 9680 SmallVectorImpl<Value *> &InsertElts, 9681 unsigned OperandOffset) { 9682 do { 9683 Value *InsertedOperand = LastInsertInst->getOperand(1); 9684 Optional<unsigned> OperandIndex = 9685 getInsertIndex(LastInsertInst, OperandOffset); 9686 if (!OperandIndex) 9687 return; 9688 if (isa<InsertElementInst>(InsertedOperand) || 9689 isa<InsertValueInst>(InsertedOperand)) { 9690 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9691 BuildVectorOpds, InsertElts, *OperandIndex); 9692 9693 } else { 9694 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9695 InsertElts[*OperandIndex] = LastInsertInst; 9696 } 9697 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9698 } while (LastInsertInst != nullptr && 9699 (isa<InsertValueInst>(LastInsertInst) || 9700 isa<InsertElementInst>(LastInsertInst)) && 9701 LastInsertInst->hasOneUse()); 9702 } 9703 9704 /// Recognize construction of vectors like 9705 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9706 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9707 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9708 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9709 /// starting from the last insertelement or insertvalue instruction. 9710 /// 9711 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9712 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9713 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9714 /// 9715 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9716 /// 9717 /// \return true if it matches. 9718 static bool findBuildAggregate(Instruction *LastInsertInst, 9719 TargetTransformInfo *TTI, 9720 SmallVectorImpl<Value *> &BuildVectorOpds, 9721 SmallVectorImpl<Value *> &InsertElts) { 9722 9723 assert((isa<InsertElementInst>(LastInsertInst) || 9724 isa<InsertValueInst>(LastInsertInst)) && 9725 "Expected insertelement or insertvalue instruction!"); 9726 9727 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9728 "Expected empty result vectors!"); 9729 9730 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9731 if (!AggregateSize) 9732 return false; 9733 BuildVectorOpds.resize(*AggregateSize); 9734 InsertElts.resize(*AggregateSize); 9735 9736 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9737 llvm::erase_value(BuildVectorOpds, nullptr); 9738 llvm::erase_value(InsertElts, nullptr); 9739 if (BuildVectorOpds.size() >= 2) 9740 return true; 9741 9742 return false; 9743 } 9744 9745 /// Try and get a reduction value from a phi node. 9746 /// 9747 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9748 /// if they come from either \p ParentBB or a containing loop latch. 9749 /// 9750 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9751 /// if not possible. 9752 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9753 BasicBlock *ParentBB, LoopInfo *LI) { 9754 // There are situations where the reduction value is not dominated by the 9755 // reduction phi. Vectorizing such cases has been reported to cause 9756 // miscompiles. See PR25787. 9757 auto DominatedReduxValue = [&](Value *R) { 9758 return isa<Instruction>(R) && 9759 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9760 }; 9761 9762 Value *Rdx = nullptr; 9763 9764 // Return the incoming value if it comes from the same BB as the phi node. 9765 if (P->getIncomingBlock(0) == ParentBB) { 9766 Rdx = P->getIncomingValue(0); 9767 } else if (P->getIncomingBlock(1) == ParentBB) { 9768 Rdx = P->getIncomingValue(1); 9769 } 9770 9771 if (Rdx && DominatedReduxValue(Rdx)) 9772 return Rdx; 9773 9774 // Otherwise, check whether we have a loop latch to look at. 9775 Loop *BBL = LI->getLoopFor(ParentBB); 9776 if (!BBL) 9777 return nullptr; 9778 BasicBlock *BBLatch = BBL->getLoopLatch(); 9779 if (!BBLatch) 9780 return nullptr; 9781 9782 // There is a loop latch, return the incoming value if it comes from 9783 // that. This reduction pattern occasionally turns up. 9784 if (P->getIncomingBlock(0) == BBLatch) { 9785 Rdx = P->getIncomingValue(0); 9786 } else if (P->getIncomingBlock(1) == BBLatch) { 9787 Rdx = P->getIncomingValue(1); 9788 } 9789 9790 if (Rdx && DominatedReduxValue(Rdx)) 9791 return Rdx; 9792 9793 return nullptr; 9794 } 9795 9796 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9797 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9798 return true; 9799 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9800 return true; 9801 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9802 return true; 9803 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9804 return true; 9805 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9806 return true; 9807 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9808 return true; 9809 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9810 return true; 9811 return false; 9812 } 9813 9814 /// Attempt to reduce a horizontal reduction. 9815 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9816 /// with reduction operators \a Root (or one of its operands) in a basic block 9817 /// \a BB, then check if it can be done. If horizontal reduction is not found 9818 /// and root instruction is a binary operation, vectorization of the operands is 9819 /// attempted. 9820 /// \returns true if a horizontal reduction was matched and reduced or operands 9821 /// of one of the binary instruction were vectorized. 9822 /// \returns false if a horizontal reduction was not matched (or not possible) 9823 /// or no vectorization of any binary operation feeding \a Root instruction was 9824 /// performed. 9825 static bool tryToVectorizeHorReductionOrInstOperands( 9826 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9827 TargetTransformInfo *TTI, 9828 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9829 if (!ShouldVectorizeHor) 9830 return false; 9831 9832 if (!Root) 9833 return false; 9834 9835 if (Root->getParent() != BB || isa<PHINode>(Root)) 9836 return false; 9837 // Start analysis starting from Root instruction. If horizontal reduction is 9838 // found, try to vectorize it. If it is not a horizontal reduction or 9839 // vectorization is not possible or not effective, and currently analyzed 9840 // instruction is a binary operation, try to vectorize the operands, using 9841 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9842 // the same procedure considering each operand as a possible root of the 9843 // horizontal reduction. 9844 // Interrupt the process if the Root instruction itself was vectorized or all 9845 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9846 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9847 // CmpInsts so we can skip extra attempts in 9848 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9849 std::queue<std::pair<Instruction *, unsigned>> Stack; 9850 Stack.emplace(Root, 0); 9851 SmallPtrSet<Value *, 8> VisitedInstrs; 9852 SmallVector<WeakTrackingVH> PostponedInsts; 9853 bool Res = false; 9854 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9855 Value *&B1) -> Value * { 9856 bool IsBinop = matchRdxBop(Inst, B0, B1); 9857 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9858 if (IsBinop || IsSelect) { 9859 HorizontalReduction HorRdx; 9860 if (HorRdx.matchAssociativeReduction(P, Inst)) 9861 return HorRdx.tryToReduce(R, TTI); 9862 } 9863 return nullptr; 9864 }; 9865 while (!Stack.empty()) { 9866 Instruction *Inst; 9867 unsigned Level; 9868 std::tie(Inst, Level) = Stack.front(); 9869 Stack.pop(); 9870 // Do not try to analyze instruction that has already been vectorized. 9871 // This may happen when we vectorize instruction operands on a previous 9872 // iteration while stack was populated before that happened. 9873 if (R.isDeleted(Inst)) 9874 continue; 9875 Value *B0 = nullptr, *B1 = nullptr; 9876 if (Value *V = TryToReduce(Inst, B0, B1)) { 9877 Res = true; 9878 // Set P to nullptr to avoid re-analysis of phi node in 9879 // matchAssociativeReduction function unless this is the root node. 9880 P = nullptr; 9881 if (auto *I = dyn_cast<Instruction>(V)) { 9882 // Try to find another reduction. 9883 Stack.emplace(I, Level); 9884 continue; 9885 } 9886 } else { 9887 bool IsBinop = B0 && B1; 9888 if (P && IsBinop) { 9889 Inst = dyn_cast<Instruction>(B0); 9890 if (Inst == P) 9891 Inst = dyn_cast<Instruction>(B1); 9892 if (!Inst) { 9893 // Set P to nullptr to avoid re-analysis of phi node in 9894 // matchAssociativeReduction function unless this is the root node. 9895 P = nullptr; 9896 continue; 9897 } 9898 } 9899 // Set P to nullptr to avoid re-analysis of phi node in 9900 // matchAssociativeReduction function unless this is the root node. 9901 P = nullptr; 9902 // Do not try to vectorize CmpInst operands, this is done separately. 9903 // Final attempt for binop args vectorization should happen after the loop 9904 // to try to find reductions. 9905 if (!isa<CmpInst>(Inst)) 9906 PostponedInsts.push_back(Inst); 9907 } 9908 9909 // Try to vectorize operands. 9910 // Continue analysis for the instruction from the same basic block only to 9911 // save compile time. 9912 if (++Level < RecursionMaxDepth) 9913 for (auto *Op : Inst->operand_values()) 9914 if (VisitedInstrs.insert(Op).second) 9915 if (auto *I = dyn_cast<Instruction>(Op)) 9916 // Do not try to vectorize CmpInst operands, this is done 9917 // separately. 9918 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9919 I->getParent() == BB) 9920 Stack.emplace(I, Level); 9921 } 9922 // Try to vectorized binops where reductions were not found. 9923 for (Value *V : PostponedInsts) 9924 if (auto *Inst = dyn_cast<Instruction>(V)) 9925 if (!R.isDeleted(Inst)) 9926 Res |= Vectorize(Inst, R); 9927 return Res; 9928 } 9929 9930 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9931 BasicBlock *BB, BoUpSLP &R, 9932 TargetTransformInfo *TTI) { 9933 auto *I = dyn_cast_or_null<Instruction>(V); 9934 if (!I) 9935 return false; 9936 9937 if (!isa<BinaryOperator>(I)) 9938 P = nullptr; 9939 // Try to match and vectorize a horizontal reduction. 9940 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9941 return tryToVectorize(I, R); 9942 }; 9943 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9944 ExtraVectorization); 9945 } 9946 9947 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9948 BasicBlock *BB, BoUpSLP &R) { 9949 const DataLayout &DL = BB->getModule()->getDataLayout(); 9950 if (!R.canMapToVector(IVI->getType(), DL)) 9951 return false; 9952 9953 SmallVector<Value *, 16> BuildVectorOpds; 9954 SmallVector<Value *, 16> BuildVectorInsts; 9955 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9956 return false; 9957 9958 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9959 // Aggregate value is unlikely to be processed in vector register. 9960 return tryToVectorizeList(BuildVectorOpds, R); 9961 } 9962 9963 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9964 BasicBlock *BB, BoUpSLP &R) { 9965 SmallVector<Value *, 16> BuildVectorInsts; 9966 SmallVector<Value *, 16> BuildVectorOpds; 9967 SmallVector<int> Mask; 9968 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9969 (llvm::all_of( 9970 BuildVectorOpds, 9971 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9972 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9973 return false; 9974 9975 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9976 return tryToVectorizeList(BuildVectorInsts, R); 9977 } 9978 9979 template <typename T> 9980 static bool 9981 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9982 function_ref<unsigned(T *)> Limit, 9983 function_ref<bool(T *, T *)> Comparator, 9984 function_ref<bool(T *, T *)> AreCompatible, 9985 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9986 bool LimitForRegisterSize) { 9987 bool Changed = false; 9988 // Sort by type, parent, operands. 9989 stable_sort(Incoming, Comparator); 9990 9991 // Try to vectorize elements base on their type. 9992 SmallVector<T *> Candidates; 9993 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9994 // Look for the next elements with the same type, parent and operand 9995 // kinds. 9996 auto *SameTypeIt = IncIt; 9997 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9998 ++SameTypeIt; 9999 10000 // Try to vectorize them. 10001 unsigned NumElts = (SameTypeIt - IncIt); 10002 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10003 << NumElts << ")\n"); 10004 // The vectorization is a 3-state attempt: 10005 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10006 // size of maximal register at first. 10007 // 2. Try to vectorize remaining instructions with the same type, if 10008 // possible. This may result in the better vectorization results rather than 10009 // if we try just to vectorize instructions with the same/alternate opcodes. 10010 // 3. Final attempt to try to vectorize all instructions with the 10011 // same/alternate ops only, this may result in some extra final 10012 // vectorization. 10013 if (NumElts > 1 && 10014 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10015 // Success start over because instructions might have been changed. 10016 Changed = true; 10017 } else if (NumElts < Limit(*IncIt) && 10018 (Candidates.empty() || 10019 Candidates.front()->getType() == (*IncIt)->getType())) { 10020 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10021 } 10022 // Final attempt to vectorize instructions with the same types. 10023 if (Candidates.size() > 1 && 10024 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10025 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10026 // Success start over because instructions might have been changed. 10027 Changed = true; 10028 } else if (LimitForRegisterSize) { 10029 // Try to vectorize using small vectors. 10030 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10031 It != End;) { 10032 auto *SameTypeIt = It; 10033 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10034 ++SameTypeIt; 10035 unsigned NumElts = (SameTypeIt - It); 10036 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10037 /*LimitForRegisterSize=*/false)) 10038 Changed = true; 10039 It = SameTypeIt; 10040 } 10041 } 10042 Candidates.clear(); 10043 } 10044 10045 // Start over at the next instruction of a different type (or the end). 10046 IncIt = SameTypeIt; 10047 } 10048 return Changed; 10049 } 10050 10051 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10052 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10053 /// operands. If IsCompatibility is false, function implements strict weak 10054 /// ordering relation between two cmp instructions, returning true if the first 10055 /// instruction is "less" than the second, i.e. its predicate is less than the 10056 /// predicate of the second or the operands IDs are less than the operands IDs 10057 /// of the second cmp instruction. 10058 template <bool IsCompatibility> 10059 static bool compareCmp(Value *V, Value *V2, 10060 function_ref<bool(Instruction *)> IsDeleted) { 10061 auto *CI1 = cast<CmpInst>(V); 10062 auto *CI2 = cast<CmpInst>(V2); 10063 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10064 return false; 10065 if (CI1->getOperand(0)->getType()->getTypeID() < 10066 CI2->getOperand(0)->getType()->getTypeID()) 10067 return !IsCompatibility; 10068 if (CI1->getOperand(0)->getType()->getTypeID() > 10069 CI2->getOperand(0)->getType()->getTypeID()) 10070 return false; 10071 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10072 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10073 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10074 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10075 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10076 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10077 if (BasePred1 < BasePred2) 10078 return !IsCompatibility; 10079 if (BasePred1 > BasePred2) 10080 return false; 10081 // Compare operands. 10082 bool LEPreds = Pred1 <= Pred2; 10083 bool GEPreds = Pred1 >= Pred2; 10084 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10085 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10086 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10087 if (Op1->getValueID() < Op2->getValueID()) 10088 return !IsCompatibility; 10089 if (Op1->getValueID() > Op2->getValueID()) 10090 return false; 10091 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10092 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10093 if (I1->getParent() != I2->getParent()) 10094 return false; 10095 InstructionsState S = getSameOpcode({I1, I2}); 10096 if (S.getOpcode()) 10097 continue; 10098 return false; 10099 } 10100 } 10101 return IsCompatibility; 10102 } 10103 10104 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10105 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10106 bool AtTerminator) { 10107 bool OpsChanged = false; 10108 SmallVector<Instruction *, 4> PostponedCmps; 10109 for (auto *I : reverse(Instructions)) { 10110 if (R.isDeleted(I)) 10111 continue; 10112 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10113 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10114 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10115 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10116 else if (isa<CmpInst>(I)) 10117 PostponedCmps.push_back(I); 10118 } 10119 if (AtTerminator) { 10120 // Try to find reductions first. 10121 for (Instruction *I : PostponedCmps) { 10122 if (R.isDeleted(I)) 10123 continue; 10124 for (Value *Op : I->operands()) 10125 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10126 } 10127 // Try to vectorize operands as vector bundles. 10128 for (Instruction *I : PostponedCmps) { 10129 if (R.isDeleted(I)) 10130 continue; 10131 OpsChanged |= tryToVectorize(I, R); 10132 } 10133 // Try to vectorize list of compares. 10134 // Sort by type, compare predicate, etc. 10135 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10136 return compareCmp<false>(V, V2, 10137 [&R](Instruction *I) { return R.isDeleted(I); }); 10138 }; 10139 10140 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10141 if (V1 == V2) 10142 return true; 10143 return compareCmp<true>(V1, V2, 10144 [&R](Instruction *I) { return R.isDeleted(I); }); 10145 }; 10146 auto Limit = [&R](Value *V) { 10147 unsigned EltSize = R.getVectorElementSize(V); 10148 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10149 }; 10150 10151 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10152 OpsChanged |= tryToVectorizeSequence<Value>( 10153 Vals, Limit, CompareSorter, AreCompatibleCompares, 10154 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10155 // Exclude possible reductions from other blocks. 10156 bool ArePossiblyReducedInOtherBlock = 10157 any_of(Candidates, [](Value *V) { 10158 return any_of(V->users(), [V](User *U) { 10159 return isa<SelectInst>(U) && 10160 cast<SelectInst>(U)->getParent() != 10161 cast<Instruction>(V)->getParent(); 10162 }); 10163 }); 10164 if (ArePossiblyReducedInOtherBlock) 10165 return false; 10166 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10167 }, 10168 /*LimitForRegisterSize=*/true); 10169 Instructions.clear(); 10170 } else { 10171 // Insert in reverse order since the PostponedCmps vector was filled in 10172 // reverse order. 10173 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10174 } 10175 return OpsChanged; 10176 } 10177 10178 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10179 bool Changed = false; 10180 SmallVector<Value *, 4> Incoming; 10181 SmallPtrSet<Value *, 16> VisitedInstrs; 10182 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10183 // node. Allows better to identify the chains that can be vectorized in the 10184 // better way. 10185 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10186 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10187 assert(isValidElementType(V1->getType()) && 10188 isValidElementType(V2->getType()) && 10189 "Expected vectorizable types only."); 10190 // It is fine to compare type IDs here, since we expect only vectorizable 10191 // types, like ints, floats and pointers, we don't care about other type. 10192 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10193 return true; 10194 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10195 return false; 10196 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10197 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10198 if (Opcodes1.size() < Opcodes2.size()) 10199 return true; 10200 if (Opcodes1.size() > Opcodes2.size()) 10201 return false; 10202 Optional<bool> ConstOrder; 10203 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10204 // Undefs are compatible with any other value. 10205 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10206 if (!ConstOrder) 10207 ConstOrder = 10208 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10209 continue; 10210 } 10211 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10212 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10213 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10214 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10215 if (!NodeI1) 10216 return NodeI2 != nullptr; 10217 if (!NodeI2) 10218 return false; 10219 assert((NodeI1 == NodeI2) == 10220 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10221 "Different nodes should have different DFS numbers"); 10222 if (NodeI1 != NodeI2) 10223 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10224 InstructionsState S = getSameOpcode({I1, I2}); 10225 if (S.getOpcode()) 10226 continue; 10227 return I1->getOpcode() < I2->getOpcode(); 10228 } 10229 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10230 if (!ConstOrder) 10231 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10232 continue; 10233 } 10234 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10235 return true; 10236 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10237 return false; 10238 } 10239 return ConstOrder && *ConstOrder; 10240 }; 10241 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10242 if (V1 == V2) 10243 return true; 10244 if (V1->getType() != V2->getType()) 10245 return false; 10246 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10247 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10248 if (Opcodes1.size() != Opcodes2.size()) 10249 return false; 10250 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10251 // Undefs are compatible with any other value. 10252 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10253 continue; 10254 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10255 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10256 if (I1->getParent() != I2->getParent()) 10257 return false; 10258 InstructionsState S = getSameOpcode({I1, I2}); 10259 if (S.getOpcode()) 10260 continue; 10261 return false; 10262 } 10263 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10264 continue; 10265 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10266 return false; 10267 } 10268 return true; 10269 }; 10270 auto Limit = [&R](Value *V) { 10271 unsigned EltSize = R.getVectorElementSize(V); 10272 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10273 }; 10274 10275 bool HaveVectorizedPhiNodes = false; 10276 do { 10277 // Collect the incoming values from the PHIs. 10278 Incoming.clear(); 10279 for (Instruction &I : *BB) { 10280 PHINode *P = dyn_cast<PHINode>(&I); 10281 if (!P) 10282 break; 10283 10284 // No need to analyze deleted, vectorized and non-vectorizable 10285 // instructions. 10286 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10287 isValidElementType(P->getType())) 10288 Incoming.push_back(P); 10289 } 10290 10291 // Find the corresponding non-phi nodes for better matching when trying to 10292 // build the tree. 10293 for (Value *V : Incoming) { 10294 SmallVectorImpl<Value *> &Opcodes = 10295 PHIToOpcodes.try_emplace(V).first->getSecond(); 10296 if (!Opcodes.empty()) 10297 continue; 10298 SmallVector<Value *, 4> Nodes(1, V); 10299 SmallPtrSet<Value *, 4> Visited; 10300 while (!Nodes.empty()) { 10301 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10302 if (!Visited.insert(PHI).second) 10303 continue; 10304 for (Value *V : PHI->incoming_values()) { 10305 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10306 Nodes.push_back(PHI1); 10307 continue; 10308 } 10309 Opcodes.emplace_back(V); 10310 } 10311 } 10312 } 10313 10314 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10315 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10316 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10317 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10318 }, 10319 /*LimitForRegisterSize=*/true); 10320 Changed |= HaveVectorizedPhiNodes; 10321 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10322 } while (HaveVectorizedPhiNodes); 10323 10324 VisitedInstrs.clear(); 10325 10326 SmallVector<Instruction *, 8> PostProcessInstructions; 10327 SmallDenseSet<Instruction *, 4> KeyNodes; 10328 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10329 // Skip instructions with scalable type. The num of elements is unknown at 10330 // compile-time for scalable type. 10331 if (isa<ScalableVectorType>(it->getType())) 10332 continue; 10333 10334 // Skip instructions marked for the deletion. 10335 if (R.isDeleted(&*it)) 10336 continue; 10337 // We may go through BB multiple times so skip the one we have checked. 10338 if (!VisitedInstrs.insert(&*it).second) { 10339 if (it->use_empty() && KeyNodes.contains(&*it) && 10340 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10341 it->isTerminator())) { 10342 // We would like to start over since some instructions are deleted 10343 // and the iterator may become invalid value. 10344 Changed = true; 10345 it = BB->begin(); 10346 e = BB->end(); 10347 } 10348 continue; 10349 } 10350 10351 if (isa<DbgInfoIntrinsic>(it)) 10352 continue; 10353 10354 // Try to vectorize reductions that use PHINodes. 10355 if (PHINode *P = dyn_cast<PHINode>(it)) { 10356 // Check that the PHI is a reduction PHI. 10357 if (P->getNumIncomingValues() == 2) { 10358 // Try to match and vectorize a horizontal reduction. 10359 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10360 TTI)) { 10361 Changed = true; 10362 it = BB->begin(); 10363 e = BB->end(); 10364 continue; 10365 } 10366 } 10367 // Try to vectorize the incoming values of the PHI, to catch reductions 10368 // that feed into PHIs. 10369 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10370 // Skip if the incoming block is the current BB for now. Also, bypass 10371 // unreachable IR for efficiency and to avoid crashing. 10372 // TODO: Collect the skipped incoming values and try to vectorize them 10373 // after processing BB. 10374 if (BB == P->getIncomingBlock(I) || 10375 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10376 continue; 10377 10378 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10379 P->getIncomingBlock(I), R, TTI); 10380 } 10381 continue; 10382 } 10383 10384 // Ran into an instruction without users, like terminator, or function call 10385 // with ignored return value, store. Ignore unused instructions (basing on 10386 // instruction type, except for CallInst and InvokeInst). 10387 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10388 isa<InvokeInst>(it))) { 10389 KeyNodes.insert(&*it); 10390 bool OpsChanged = false; 10391 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10392 for (auto *V : it->operand_values()) { 10393 // Try to match and vectorize a horizontal reduction. 10394 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10395 } 10396 } 10397 // Start vectorization of post-process list of instructions from the 10398 // top-tree instructions to try to vectorize as many instructions as 10399 // possible. 10400 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10401 it->isTerminator()); 10402 if (OpsChanged) { 10403 // We would like to start over since some instructions are deleted 10404 // and the iterator may become invalid value. 10405 Changed = true; 10406 it = BB->begin(); 10407 e = BB->end(); 10408 continue; 10409 } 10410 } 10411 10412 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10413 isa<InsertValueInst>(it)) 10414 PostProcessInstructions.push_back(&*it); 10415 } 10416 10417 return Changed; 10418 } 10419 10420 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10421 auto Changed = false; 10422 for (auto &Entry : GEPs) { 10423 // If the getelementptr list has fewer than two elements, there's nothing 10424 // to do. 10425 if (Entry.second.size() < 2) 10426 continue; 10427 10428 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10429 << Entry.second.size() << ".\n"); 10430 10431 // Process the GEP list in chunks suitable for the target's supported 10432 // vector size. If a vector register can't hold 1 element, we are done. We 10433 // are trying to vectorize the index computations, so the maximum number of 10434 // elements is based on the size of the index expression, rather than the 10435 // size of the GEP itself (the target's pointer size). 10436 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10437 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10438 if (MaxVecRegSize < EltSize) 10439 continue; 10440 10441 unsigned MaxElts = MaxVecRegSize / EltSize; 10442 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10443 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10444 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10445 10446 // Initialize a set a candidate getelementptrs. Note that we use a 10447 // SetVector here to preserve program order. If the index computations 10448 // are vectorizable and begin with loads, we want to minimize the chance 10449 // of having to reorder them later. 10450 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10451 10452 // Some of the candidates may have already been vectorized after we 10453 // initially collected them. If so, they are marked as deleted, so remove 10454 // them from the set of candidates. 10455 Candidates.remove_if( 10456 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10457 10458 // Remove from the set of candidates all pairs of getelementptrs with 10459 // constant differences. Such getelementptrs are likely not good 10460 // candidates for vectorization in a bottom-up phase since one can be 10461 // computed from the other. We also ensure all candidate getelementptr 10462 // indices are unique. 10463 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10464 auto *GEPI = GEPList[I]; 10465 if (!Candidates.count(GEPI)) 10466 continue; 10467 auto *SCEVI = SE->getSCEV(GEPList[I]); 10468 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10469 auto *GEPJ = GEPList[J]; 10470 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10471 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10472 Candidates.remove(GEPI); 10473 Candidates.remove(GEPJ); 10474 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10475 Candidates.remove(GEPJ); 10476 } 10477 } 10478 } 10479 10480 // We break out of the above computation as soon as we know there are 10481 // fewer than two candidates remaining. 10482 if (Candidates.size() < 2) 10483 continue; 10484 10485 // Add the single, non-constant index of each candidate to the bundle. We 10486 // ensured the indices met these constraints when we originally collected 10487 // the getelementptrs. 10488 SmallVector<Value *, 16> Bundle(Candidates.size()); 10489 auto BundleIndex = 0u; 10490 for (auto *V : Candidates) { 10491 auto *GEP = cast<GetElementPtrInst>(V); 10492 auto *GEPIdx = GEP->idx_begin()->get(); 10493 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10494 Bundle[BundleIndex++] = GEPIdx; 10495 } 10496 10497 // Try and vectorize the indices. We are currently only interested in 10498 // gather-like cases of the form: 10499 // 10500 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10501 // 10502 // where the loads of "a", the loads of "b", and the subtractions can be 10503 // performed in parallel. It's likely that detecting this pattern in a 10504 // bottom-up phase will be simpler and less costly than building a 10505 // full-blown top-down phase beginning at the consecutive loads. 10506 Changed |= tryToVectorizeList(Bundle, R); 10507 } 10508 } 10509 return Changed; 10510 } 10511 10512 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10513 bool Changed = false; 10514 // Sort by type, base pointers and values operand. Value operands must be 10515 // compatible (have the same opcode, same parent), otherwise it is 10516 // definitely not profitable to try to vectorize them. 10517 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10518 if (V->getPointerOperandType()->getTypeID() < 10519 V2->getPointerOperandType()->getTypeID()) 10520 return true; 10521 if (V->getPointerOperandType()->getTypeID() > 10522 V2->getPointerOperandType()->getTypeID()) 10523 return false; 10524 // UndefValues are compatible with all other values. 10525 if (isa<UndefValue>(V->getValueOperand()) || 10526 isa<UndefValue>(V2->getValueOperand())) 10527 return false; 10528 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10529 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10530 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10531 DT->getNode(I1->getParent()); 10532 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10533 DT->getNode(I2->getParent()); 10534 assert(NodeI1 && "Should only process reachable instructions"); 10535 assert(NodeI1 && "Should only process reachable instructions"); 10536 assert((NodeI1 == NodeI2) == 10537 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10538 "Different nodes should have different DFS numbers"); 10539 if (NodeI1 != NodeI2) 10540 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10541 InstructionsState S = getSameOpcode({I1, I2}); 10542 if (S.getOpcode()) 10543 return false; 10544 return I1->getOpcode() < I2->getOpcode(); 10545 } 10546 if (isa<Constant>(V->getValueOperand()) && 10547 isa<Constant>(V2->getValueOperand())) 10548 return false; 10549 return V->getValueOperand()->getValueID() < 10550 V2->getValueOperand()->getValueID(); 10551 }; 10552 10553 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10554 if (V1 == V2) 10555 return true; 10556 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10557 return false; 10558 // Undefs are compatible with any other value. 10559 if (isa<UndefValue>(V1->getValueOperand()) || 10560 isa<UndefValue>(V2->getValueOperand())) 10561 return true; 10562 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10563 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10564 if (I1->getParent() != I2->getParent()) 10565 return false; 10566 InstructionsState S = getSameOpcode({I1, I2}); 10567 return S.getOpcode() > 0; 10568 } 10569 if (isa<Constant>(V1->getValueOperand()) && 10570 isa<Constant>(V2->getValueOperand())) 10571 return true; 10572 return V1->getValueOperand()->getValueID() == 10573 V2->getValueOperand()->getValueID(); 10574 }; 10575 auto Limit = [&R, this](StoreInst *SI) { 10576 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10577 return R.getMinVF(EltSize); 10578 }; 10579 10580 // Attempt to sort and vectorize each of the store-groups. 10581 for (auto &Pair : Stores) { 10582 if (Pair.second.size() < 2) 10583 continue; 10584 10585 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10586 << Pair.second.size() << ".\n"); 10587 10588 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10589 continue; 10590 10591 Changed |= tryToVectorizeSequence<StoreInst>( 10592 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10593 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10594 return vectorizeStores(Candidates, R); 10595 }, 10596 /*LimitForRegisterSize=*/false); 10597 } 10598 return Changed; 10599 } 10600 10601 char SLPVectorizer::ID = 0; 10602 10603 static const char lv_name[] = "SLP Vectorizer"; 10604 10605 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10606 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10607 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10608 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10609 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10610 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10611 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10612 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10613 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10614 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10615 10616 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10617