1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 /// TODO: Can we split off and reuse the shuffle mask detection from 250 /// TargetTransformInfo::getInstructionThroughput? 251 static Optional<TargetTransformInfo::ShuffleKind> 252 isShuffle(ArrayRef<Value *> VL) { 253 auto *EI0 = cast<ExtractElementInst>(VL[0]); 254 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 255 Value *Vec1 = nullptr; 256 Value *Vec2 = nullptr; 257 enum ShuffleMode { Unknown, Select, Permute }; 258 ShuffleMode CommonShuffleMode = Unknown; 259 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 260 auto *EI = cast<ExtractElementInst>(VL[I]); 261 auto *Vec = EI->getVectorOperand(); 262 // All vector operands must have the same number of vector elements. 263 if (Vec->getType()->getVectorNumElements() != Size) 264 return None; 265 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 266 if (!Idx) 267 return None; 268 // Undefined behavior if Idx is negative or >= Size. 269 if (Idx->getValue().uge(Size)) 270 continue; 271 unsigned IntIdx = Idx->getValue().getZExtValue(); 272 // We can extractelement from undef vector. 273 if (isa<UndefValue>(Vec)) 274 continue; 275 // For correct shuffling we have to have at most 2 different vector operands 276 // in all extractelement instructions. 277 if (!Vec1 || Vec1 == Vec) 278 Vec1 = Vec; 279 else if (!Vec2 || Vec2 == Vec) 280 Vec2 = Vec; 281 else 282 return None; 283 if (CommonShuffleMode == Permute) 284 continue; 285 // If the extract index is not the same as the operation number, it is a 286 // permutation. 287 if (IntIdx != I) { 288 CommonShuffleMode = Permute; 289 continue; 290 } 291 CommonShuffleMode = Select; 292 } 293 // If we're not crossing lanes in different vectors, consider it as blending. 294 if (CommonShuffleMode == Select && Vec2) 295 return TargetTransformInfo::SK_Select; 296 // If Vec2 was never used, we have a permutation of a single vector, otherwise 297 // we have permutation of 2 vectors. 298 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 299 : TargetTransformInfo::SK_PermuteSingleSrc; 300 } 301 302 namespace { 303 304 /// Main data required for vectorization of instructions. 305 struct InstructionsState { 306 /// The very first instruction in the list with the main opcode. 307 Value *OpValue = nullptr; 308 309 /// The main/alternate instruction. 310 Instruction *MainOp = nullptr; 311 Instruction *AltOp = nullptr; 312 313 /// The main/alternate opcodes for the list of instructions. 314 unsigned getOpcode() const { 315 return MainOp ? MainOp->getOpcode() : 0; 316 } 317 318 unsigned getAltOpcode() const { 319 return AltOp ? AltOp->getOpcode() : 0; 320 } 321 322 /// Some of the instructions in the list have alternate opcodes. 323 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 324 325 bool isOpcodeOrAlt(Instruction *I) const { 326 unsigned CheckedOpcode = I->getOpcode(); 327 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 328 } 329 330 InstructionsState() = delete; 331 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 332 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 333 }; 334 335 } // end anonymous namespace 336 337 /// Chooses the correct key for scheduling data. If \p Op has the same (or 338 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 339 /// OpValue. 340 static Value *isOneOf(const InstructionsState &S, Value *Op) { 341 auto *I = dyn_cast<Instruction>(Op); 342 if (I && S.isOpcodeOrAlt(I)) 343 return Op; 344 return S.OpValue; 345 } 346 347 /// \returns analysis of the Instructions in \p VL described in 348 /// InstructionsState, the Opcode that we suppose the whole list 349 /// could be vectorized even if its structure is diverse. 350 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 351 unsigned BaseIndex = 0) { 352 // Make sure these are all Instructions. 353 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 354 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 355 356 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 357 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 358 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 359 unsigned AltOpcode = Opcode; 360 unsigned AltIndex = BaseIndex; 361 362 // Check for one alternate opcode from another BinaryOperator. 363 // TODO - generalize to support all operators (types, calls etc.). 364 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 365 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 366 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 367 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 368 continue; 369 if (Opcode == AltOpcode) { 370 AltOpcode = InstOpcode; 371 AltIndex = Cnt; 372 continue; 373 } 374 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 375 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 376 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 377 if (Ty0 == Ty1) { 378 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 379 continue; 380 if (Opcode == AltOpcode) { 381 AltOpcode = InstOpcode; 382 AltIndex = Cnt; 383 continue; 384 } 385 } 386 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 387 continue; 388 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 389 } 390 391 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 392 cast<Instruction>(VL[AltIndex])); 393 } 394 395 /// \returns true if all of the values in \p VL have the same type or false 396 /// otherwise. 397 static bool allSameType(ArrayRef<Value *> VL) { 398 Type *Ty = VL[0]->getType(); 399 for (int i = 1, e = VL.size(); i < e; i++) 400 if (VL[i]->getType() != Ty) 401 return false; 402 403 return true; 404 } 405 406 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 407 static Optional<unsigned> getExtractIndex(Instruction *E) { 408 unsigned Opcode = E->getOpcode(); 409 assert((Opcode == Instruction::ExtractElement || 410 Opcode == Instruction::ExtractValue) && 411 "Expected extractelement or extractvalue instruction."); 412 if (Opcode == Instruction::ExtractElement) { 413 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 414 if (!CI) 415 return None; 416 return CI->getZExtValue(); 417 } 418 ExtractValueInst *EI = cast<ExtractValueInst>(E); 419 if (EI->getNumIndices() != 1) 420 return None; 421 return *EI->idx_begin(); 422 } 423 424 /// \returns True if in-tree use also needs extract. This refers to 425 /// possible scalar operand in vectorized instruction. 426 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 427 TargetLibraryInfo *TLI) { 428 unsigned Opcode = UserInst->getOpcode(); 429 switch (Opcode) { 430 case Instruction::Load: { 431 LoadInst *LI = cast<LoadInst>(UserInst); 432 return (LI->getPointerOperand() == Scalar); 433 } 434 case Instruction::Store: { 435 StoreInst *SI = cast<StoreInst>(UserInst); 436 return (SI->getPointerOperand() == Scalar); 437 } 438 case Instruction::Call: { 439 CallInst *CI = cast<CallInst>(UserInst); 440 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 441 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 442 return (CI->getArgOperand(1) == Scalar); 443 } 444 LLVM_FALLTHROUGH; 445 } 446 default: 447 return false; 448 } 449 } 450 451 /// \returns the AA location that is being access by the instruction. 452 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 453 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 454 return MemoryLocation::get(SI); 455 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 456 return MemoryLocation::get(LI); 457 return MemoryLocation(); 458 } 459 460 /// \returns True if the instruction is not a volatile or atomic load/store. 461 static bool isSimple(Instruction *I) { 462 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 463 return LI->isSimple(); 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return SI->isSimple(); 466 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 467 return !MI->isVolatile(); 468 return true; 469 } 470 471 namespace llvm { 472 473 namespace slpvectorizer { 474 475 /// Bottom Up SLP Vectorizer. 476 class BoUpSLP { 477 public: 478 using ValueList = SmallVector<Value *, 8>; 479 using InstrList = SmallVector<Instruction *, 16>; 480 using ValueSet = SmallPtrSet<Value *, 16>; 481 using StoreList = SmallVector<StoreInst *, 8>; 482 using ExtraValueToDebugLocsMap = 483 MapVector<Value *, SmallVector<Instruction *, 2>>; 484 485 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 486 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 487 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 488 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 489 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 490 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 491 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 492 // Use the vector register size specified by the target unless overridden 493 // by a command-line option. 494 // TODO: It would be better to limit the vectorization factor based on 495 // data type rather than just register size. For example, x86 AVX has 496 // 256-bit registers, but it does not support integer operations 497 // at that width (that requires AVX2). 498 if (MaxVectorRegSizeOption.getNumOccurrences()) 499 MaxVecRegSize = MaxVectorRegSizeOption; 500 else 501 MaxVecRegSize = TTI->getRegisterBitWidth(true); 502 503 if (MinVectorRegSizeOption.getNumOccurrences()) 504 MinVecRegSize = MinVectorRegSizeOption; 505 else 506 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 507 } 508 509 /// Vectorize the tree that starts with the elements in \p VL. 510 /// Returns the vectorized root. 511 Value *vectorizeTree(); 512 513 /// Vectorize the tree but with the list of externally used values \p 514 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 515 /// generated extractvalue instructions. 516 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 517 518 /// \returns the cost incurred by unwanted spills and fills, caused by 519 /// holding live values over call sites. 520 int getSpillCost(); 521 522 /// \returns the vectorization cost of the subtree that starts at \p VL. 523 /// A negative number means that this is profitable. 524 int getTreeCost(); 525 526 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 527 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 528 void buildTree(ArrayRef<Value *> Roots, 529 ArrayRef<Value *> UserIgnoreLst = None); 530 531 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 532 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 533 /// into account (anf updating it, if required) list of externally used 534 /// values stored in \p ExternallyUsedValues. 535 void buildTree(ArrayRef<Value *> Roots, 536 ExtraValueToDebugLocsMap &ExternallyUsedValues, 537 ArrayRef<Value *> UserIgnoreLst = None); 538 539 /// Clear the internal data structures that are created by 'buildTree'. 540 void deleteTree() { 541 VectorizableTree.clear(); 542 ScalarToTreeEntry.clear(); 543 MustGather.clear(); 544 ExternalUses.clear(); 545 NumOpsWantToKeepOrder.clear(); 546 NumOpsWantToKeepOriginalOrder = 0; 547 for (auto &Iter : BlocksSchedules) { 548 BlockScheduling *BS = Iter.second.get(); 549 BS->clear(); 550 } 551 MinBWs.clear(); 552 } 553 554 unsigned getTreeSize() const { return VectorizableTree.size(); } 555 556 /// Perform LICM and CSE on the newly generated gather sequences. 557 void optimizeGatherSequence(); 558 559 /// \returns The best order of instructions for vectorization. 560 Optional<ArrayRef<unsigned>> bestOrder() const { 561 auto I = std::max_element( 562 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 563 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 564 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 565 return D1.second < D2.second; 566 }); 567 if (I == NumOpsWantToKeepOrder.end() || 568 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 569 return None; 570 571 return makeArrayRef(I->getFirst()); 572 } 573 574 /// \return The vector element size in bits to use when vectorizing the 575 /// expression tree ending at \p V. If V is a store, the size is the width of 576 /// the stored value. Otherwise, the size is the width of the largest loaded 577 /// value reaching V. This method is used by the vectorizer to calculate 578 /// vectorization factors. 579 unsigned getVectorElementSize(Value *V); 580 581 /// Compute the minimum type sizes required to represent the entries in a 582 /// vectorizable tree. 583 void computeMinimumValueSizes(); 584 585 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 586 unsigned getMaxVecRegSize() const { 587 return MaxVecRegSize; 588 } 589 590 // \returns minimum vector register size as set by cl::opt. 591 unsigned getMinVecRegSize() const { 592 return MinVecRegSize; 593 } 594 595 /// Check if ArrayType or StructType is isomorphic to some VectorType. 596 /// 597 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 598 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 599 600 /// \returns True if the VectorizableTree is both tiny and not fully 601 /// vectorizable. We do not vectorize such trees. 602 bool isTreeTinyAndNotFullyVectorizable(); 603 604 OptimizationRemarkEmitter *getORE() { return ORE; } 605 606 private: 607 struct TreeEntry; 608 609 /// Checks if all users of \p I are the part of the vectorization tree. 610 bool areAllUsersVectorized(Instruction *I) const; 611 612 /// \returns the cost of the vectorizable entry. 613 int getEntryCost(TreeEntry *E); 614 615 /// This is the recursive part of buildTree. 616 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 617 618 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 619 /// be vectorized to use the original vector (or aggregate "bitcast" to a 620 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 621 /// returns false, setting \p CurrentOrder to either an empty vector or a 622 /// non-identity permutation that allows to reuse extract instructions. 623 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 624 SmallVectorImpl<unsigned> &CurrentOrder) const; 625 626 /// Vectorize a single entry in the tree. 627 Value *vectorizeTree(TreeEntry *E); 628 629 /// Vectorize a single entry in the tree, starting in \p VL. 630 Value *vectorizeTree(ArrayRef<Value *> VL); 631 632 /// \returns the scalarization cost for this type. Scalarization in this 633 /// context means the creation of vectors from a group of scalars. 634 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 635 636 /// \returns the scalarization cost for this list of values. Assuming that 637 /// this subtree gets vectorized, we may need to extract the values from the 638 /// roots. This method calculates the cost of extracting the values. 639 int getGatherCost(ArrayRef<Value *> VL); 640 641 /// Set the Builder insert point to one after the last instruction in 642 /// the bundle 643 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 644 const InstructionsState &S); 645 646 /// \returns a vector from a collection of scalars in \p VL. 647 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 648 649 /// \returns whether the VectorizableTree is fully vectorizable and will 650 /// be beneficial even the tree height is tiny. 651 bool isFullyVectorizableTinyTree(); 652 653 /// \reorder commutative operands in alt shuffle if they result in 654 /// vectorized code. 655 void reorderAltShuffleOperands(const InstructionsState &S, 656 ArrayRef<Value *> VL, 657 SmallVectorImpl<Value *> &Left, 658 SmallVectorImpl<Value *> &Right); 659 660 /// \reorder commutative operands to get better probability of 661 /// generating vectorized code. 662 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 663 SmallVectorImpl<Value *> &Left, 664 SmallVectorImpl<Value *> &Right); 665 struct TreeEntry { 666 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 667 668 /// \returns true if the scalars in VL are equal to this entry. 669 bool isSame(ArrayRef<Value *> VL) const { 670 if (VL.size() == Scalars.size()) 671 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 672 return VL.size() == ReuseShuffleIndices.size() && 673 std::equal( 674 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 675 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 676 } 677 678 /// A vector of scalars. 679 ValueList Scalars; 680 681 /// The Scalars are vectorized into this value. It is initialized to Null. 682 Value *VectorizedValue = nullptr; 683 684 /// Do we need to gather this sequence ? 685 bool NeedToGather = false; 686 687 /// Does this sequence require some shuffling? 688 SmallVector<unsigned, 4> ReuseShuffleIndices; 689 690 /// Does this entry require reordering? 691 ArrayRef<unsigned> ReorderIndices; 692 693 /// Points back to the VectorizableTree. 694 /// 695 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 696 /// to be a pointer and needs to be able to initialize the child iterator. 697 /// Thus we need a reference back to the container to translate the indices 698 /// to entries. 699 std::vector<TreeEntry> &Container; 700 701 /// The TreeEntry index containing the user of this entry. We can actually 702 /// have multiple users so the data structure is not truly a tree. 703 SmallVector<int, 1> UserTreeIndices; 704 }; 705 706 /// Create a new VectorizableTree entry. 707 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 708 ArrayRef<unsigned> ReuseShuffleIndices = None, 709 ArrayRef<unsigned> ReorderIndices = None) { 710 VectorizableTree.emplace_back(VectorizableTree); 711 int idx = VectorizableTree.size() - 1; 712 TreeEntry *Last = &VectorizableTree[idx]; 713 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 714 Last->NeedToGather = !Vectorized; 715 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 716 ReuseShuffleIndices.end()); 717 Last->ReorderIndices = ReorderIndices; 718 if (Vectorized) { 719 for (int i = 0, e = VL.size(); i != e; ++i) { 720 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 721 ScalarToTreeEntry[VL[i]] = idx; 722 } 723 } else { 724 MustGather.insert(VL.begin(), VL.end()); 725 } 726 727 if (UserTreeIdx >= 0) 728 Last->UserTreeIndices.push_back(UserTreeIdx); 729 UserTreeIdx = idx; 730 } 731 732 /// -- Vectorization State -- 733 /// Holds all of the tree entries. 734 std::vector<TreeEntry> VectorizableTree; 735 736 TreeEntry *getTreeEntry(Value *V) { 737 auto I = ScalarToTreeEntry.find(V); 738 if (I != ScalarToTreeEntry.end()) 739 return &VectorizableTree[I->second]; 740 return nullptr; 741 } 742 743 /// Maps a specific scalar to its tree entry. 744 SmallDenseMap<Value*, int> ScalarToTreeEntry; 745 746 /// A list of scalars that we found that we need to keep as scalars. 747 ValueSet MustGather; 748 749 /// This POD struct describes one external user in the vectorized tree. 750 struct ExternalUser { 751 ExternalUser(Value *S, llvm::User *U, int L) 752 : Scalar(S), User(U), Lane(L) {} 753 754 // Which scalar in our function. 755 Value *Scalar; 756 757 // Which user that uses the scalar. 758 llvm::User *User; 759 760 // Which lane does the scalar belong to. 761 int Lane; 762 }; 763 using UserList = SmallVector<ExternalUser, 16>; 764 765 /// Checks if two instructions may access the same memory. 766 /// 767 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 768 /// is invariant in the calling loop. 769 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 770 Instruction *Inst2) { 771 // First check if the result is already in the cache. 772 AliasCacheKey key = std::make_pair(Inst1, Inst2); 773 Optional<bool> &result = AliasCache[key]; 774 if (result.hasValue()) { 775 return result.getValue(); 776 } 777 MemoryLocation Loc2 = getLocation(Inst2, AA); 778 bool aliased = true; 779 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 780 // Do the alias check. 781 aliased = AA->alias(Loc1, Loc2); 782 } 783 // Store the result in the cache. 784 result = aliased; 785 return aliased; 786 } 787 788 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 789 790 /// Cache for alias results. 791 /// TODO: consider moving this to the AliasAnalysis itself. 792 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 793 794 /// Removes an instruction from its block and eventually deletes it. 795 /// It's like Instruction::eraseFromParent() except that the actual deletion 796 /// is delayed until BoUpSLP is destructed. 797 /// This is required to ensure that there are no incorrect collisions in the 798 /// AliasCache, which can happen if a new instruction is allocated at the 799 /// same address as a previously deleted instruction. 800 void eraseInstruction(Instruction *I) { 801 I->removeFromParent(); 802 I->dropAllReferences(); 803 DeletedInstructions.emplace_back(I); 804 } 805 806 /// Temporary store for deleted instructions. Instructions will be deleted 807 /// eventually when the BoUpSLP is destructed. 808 SmallVector<unique_value, 8> DeletedInstructions; 809 810 /// A list of values that need to extracted out of the tree. 811 /// This list holds pairs of (Internal Scalar : External User). External User 812 /// can be nullptr, it means that this Internal Scalar will be used later, 813 /// after vectorization. 814 UserList ExternalUses; 815 816 /// Values used only by @llvm.assume calls. 817 SmallPtrSet<const Value *, 32> EphValues; 818 819 /// Holds all of the instructions that we gathered. 820 SetVector<Instruction *> GatherSeq; 821 822 /// A list of blocks that we are going to CSE. 823 SetVector<BasicBlock *> CSEBlocks; 824 825 /// Contains all scheduling relevant data for an instruction. 826 /// A ScheduleData either represents a single instruction or a member of an 827 /// instruction bundle (= a group of instructions which is combined into a 828 /// vector instruction). 829 struct ScheduleData { 830 // The initial value for the dependency counters. It means that the 831 // dependencies are not calculated yet. 832 enum { InvalidDeps = -1 }; 833 834 ScheduleData() = default; 835 836 void init(int BlockSchedulingRegionID, Value *OpVal) { 837 FirstInBundle = this; 838 NextInBundle = nullptr; 839 NextLoadStore = nullptr; 840 IsScheduled = false; 841 SchedulingRegionID = BlockSchedulingRegionID; 842 UnscheduledDepsInBundle = UnscheduledDeps; 843 clearDependencies(); 844 OpValue = OpVal; 845 } 846 847 /// Returns true if the dependency information has been calculated. 848 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 849 850 /// Returns true for single instructions and for bundle representatives 851 /// (= the head of a bundle). 852 bool isSchedulingEntity() const { return FirstInBundle == this; } 853 854 /// Returns true if it represents an instruction bundle and not only a 855 /// single instruction. 856 bool isPartOfBundle() const { 857 return NextInBundle != nullptr || FirstInBundle != this; 858 } 859 860 /// Returns true if it is ready for scheduling, i.e. it has no more 861 /// unscheduled depending instructions/bundles. 862 bool isReady() const { 863 assert(isSchedulingEntity() && 864 "can't consider non-scheduling entity for ready list"); 865 return UnscheduledDepsInBundle == 0 && !IsScheduled; 866 } 867 868 /// Modifies the number of unscheduled dependencies, also updating it for 869 /// the whole bundle. 870 int incrementUnscheduledDeps(int Incr) { 871 UnscheduledDeps += Incr; 872 return FirstInBundle->UnscheduledDepsInBundle += Incr; 873 } 874 875 /// Sets the number of unscheduled dependencies to the number of 876 /// dependencies. 877 void resetUnscheduledDeps() { 878 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 879 } 880 881 /// Clears all dependency information. 882 void clearDependencies() { 883 Dependencies = InvalidDeps; 884 resetUnscheduledDeps(); 885 MemoryDependencies.clear(); 886 } 887 888 void dump(raw_ostream &os) const { 889 if (!isSchedulingEntity()) { 890 os << "/ " << *Inst; 891 } else if (NextInBundle) { 892 os << '[' << *Inst; 893 ScheduleData *SD = NextInBundle; 894 while (SD) { 895 os << ';' << *SD->Inst; 896 SD = SD->NextInBundle; 897 } 898 os << ']'; 899 } else { 900 os << *Inst; 901 } 902 } 903 904 Instruction *Inst = nullptr; 905 906 /// Points to the head in an instruction bundle (and always to this for 907 /// single instructions). 908 ScheduleData *FirstInBundle = nullptr; 909 910 /// Single linked list of all instructions in a bundle. Null if it is a 911 /// single instruction. 912 ScheduleData *NextInBundle = nullptr; 913 914 /// Single linked list of all memory instructions (e.g. load, store, call) 915 /// in the block - until the end of the scheduling region. 916 ScheduleData *NextLoadStore = nullptr; 917 918 /// The dependent memory instructions. 919 /// This list is derived on demand in calculateDependencies(). 920 SmallVector<ScheduleData *, 4> MemoryDependencies; 921 922 /// This ScheduleData is in the current scheduling region if this matches 923 /// the current SchedulingRegionID of BlockScheduling. 924 int SchedulingRegionID = 0; 925 926 /// Used for getting a "good" final ordering of instructions. 927 int SchedulingPriority = 0; 928 929 /// The number of dependencies. Constitutes of the number of users of the 930 /// instruction plus the number of dependent memory instructions (if any). 931 /// This value is calculated on demand. 932 /// If InvalidDeps, the number of dependencies is not calculated yet. 933 int Dependencies = InvalidDeps; 934 935 /// The number of dependencies minus the number of dependencies of scheduled 936 /// instructions. As soon as this is zero, the instruction/bundle gets ready 937 /// for scheduling. 938 /// Note that this is negative as long as Dependencies is not calculated. 939 int UnscheduledDeps = InvalidDeps; 940 941 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 942 /// single instructions. 943 int UnscheduledDepsInBundle = InvalidDeps; 944 945 /// True if this instruction is scheduled (or considered as scheduled in the 946 /// dry-run). 947 bool IsScheduled = false; 948 949 /// Opcode of the current instruction in the schedule data. 950 Value *OpValue = nullptr; 951 }; 952 953 #ifndef NDEBUG 954 friend inline raw_ostream &operator<<(raw_ostream &os, 955 const BoUpSLP::ScheduleData &SD) { 956 SD.dump(os); 957 return os; 958 } 959 #endif 960 961 friend struct GraphTraits<BoUpSLP *>; 962 friend struct DOTGraphTraits<BoUpSLP *>; 963 964 /// Contains all scheduling data for a basic block. 965 struct BlockScheduling { 966 BlockScheduling(BasicBlock *BB) 967 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 968 969 void clear() { 970 ReadyInsts.clear(); 971 ScheduleStart = nullptr; 972 ScheduleEnd = nullptr; 973 FirstLoadStoreInRegion = nullptr; 974 LastLoadStoreInRegion = nullptr; 975 976 // Reduce the maximum schedule region size by the size of the 977 // previous scheduling run. 978 ScheduleRegionSizeLimit -= ScheduleRegionSize; 979 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 980 ScheduleRegionSizeLimit = MinScheduleRegionSize; 981 ScheduleRegionSize = 0; 982 983 // Make a new scheduling region, i.e. all existing ScheduleData is not 984 // in the new region yet. 985 ++SchedulingRegionID; 986 } 987 988 ScheduleData *getScheduleData(Value *V) { 989 ScheduleData *SD = ScheduleDataMap[V]; 990 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 991 return SD; 992 return nullptr; 993 } 994 995 ScheduleData *getScheduleData(Value *V, Value *Key) { 996 if (V == Key) 997 return getScheduleData(V); 998 auto I = ExtraScheduleDataMap.find(V); 999 if (I != ExtraScheduleDataMap.end()) { 1000 ScheduleData *SD = I->second[Key]; 1001 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1002 return SD; 1003 } 1004 return nullptr; 1005 } 1006 1007 bool isInSchedulingRegion(ScheduleData *SD) { 1008 return SD->SchedulingRegionID == SchedulingRegionID; 1009 } 1010 1011 /// Marks an instruction as scheduled and puts all dependent ready 1012 /// instructions into the ready-list. 1013 template <typename ReadyListType> 1014 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1015 SD->IsScheduled = true; 1016 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1017 1018 ScheduleData *BundleMember = SD; 1019 while (BundleMember) { 1020 if (BundleMember->Inst != BundleMember->OpValue) { 1021 BundleMember = BundleMember->NextInBundle; 1022 continue; 1023 } 1024 // Handle the def-use chain dependencies. 1025 for (Use &U : BundleMember->Inst->operands()) { 1026 auto *I = dyn_cast<Instruction>(U.get()); 1027 if (!I) 1028 continue; 1029 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1030 if (OpDef && OpDef->hasValidDependencies() && 1031 OpDef->incrementUnscheduledDeps(-1) == 0) { 1032 // There are no more unscheduled dependencies after 1033 // decrementing, so we can put the dependent instruction 1034 // into the ready list. 1035 ScheduleData *DepBundle = OpDef->FirstInBundle; 1036 assert(!DepBundle->IsScheduled && 1037 "already scheduled bundle gets ready"); 1038 ReadyList.insert(DepBundle); 1039 LLVM_DEBUG(dbgs() 1040 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1041 } 1042 }); 1043 } 1044 // Handle the memory dependencies. 1045 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1046 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1047 // There are no more unscheduled dependencies after decrementing, 1048 // so we can put the dependent instruction into the ready list. 1049 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1050 assert(!DepBundle->IsScheduled && 1051 "already scheduled bundle gets ready"); 1052 ReadyList.insert(DepBundle); 1053 LLVM_DEBUG(dbgs() 1054 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1055 } 1056 } 1057 BundleMember = BundleMember->NextInBundle; 1058 } 1059 } 1060 1061 void doForAllOpcodes(Value *V, 1062 function_ref<void(ScheduleData *SD)> Action) { 1063 if (ScheduleData *SD = getScheduleData(V)) 1064 Action(SD); 1065 auto I = ExtraScheduleDataMap.find(V); 1066 if (I != ExtraScheduleDataMap.end()) 1067 for (auto &P : I->second) 1068 if (P.second->SchedulingRegionID == SchedulingRegionID) 1069 Action(P.second); 1070 } 1071 1072 /// Put all instructions into the ReadyList which are ready for scheduling. 1073 template <typename ReadyListType> 1074 void initialFillReadyList(ReadyListType &ReadyList) { 1075 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1076 doForAllOpcodes(I, [&](ScheduleData *SD) { 1077 if (SD->isSchedulingEntity() && SD->isReady()) { 1078 ReadyList.insert(SD); 1079 LLVM_DEBUG(dbgs() 1080 << "SLP: initially in ready list: " << *I << "\n"); 1081 } 1082 }); 1083 } 1084 } 1085 1086 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1087 /// cyclic dependencies. This is only a dry-run, no instructions are 1088 /// actually moved at this stage. 1089 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1090 const InstructionsState &S); 1091 1092 /// Un-bundles a group of instructions. 1093 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1094 1095 /// Allocates schedule data chunk. 1096 ScheduleData *allocateScheduleDataChunks(); 1097 1098 /// Extends the scheduling region so that V is inside the region. 1099 /// \returns true if the region size is within the limit. 1100 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1101 1102 /// Initialize the ScheduleData structures for new instructions in the 1103 /// scheduling region. 1104 void initScheduleData(Instruction *FromI, Instruction *ToI, 1105 ScheduleData *PrevLoadStore, 1106 ScheduleData *NextLoadStore); 1107 1108 /// Updates the dependency information of a bundle and of all instructions/ 1109 /// bundles which depend on the original bundle. 1110 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1111 BoUpSLP *SLP); 1112 1113 /// Sets all instruction in the scheduling region to un-scheduled. 1114 void resetSchedule(); 1115 1116 BasicBlock *BB; 1117 1118 /// Simple memory allocation for ScheduleData. 1119 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1120 1121 /// The size of a ScheduleData array in ScheduleDataChunks. 1122 int ChunkSize; 1123 1124 /// The allocator position in the current chunk, which is the last entry 1125 /// of ScheduleDataChunks. 1126 int ChunkPos; 1127 1128 /// Attaches ScheduleData to Instruction. 1129 /// Note that the mapping survives during all vectorization iterations, i.e. 1130 /// ScheduleData structures are recycled. 1131 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1132 1133 /// Attaches ScheduleData to Instruction with the leading key. 1134 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1135 ExtraScheduleDataMap; 1136 1137 struct ReadyList : SmallVector<ScheduleData *, 8> { 1138 void insert(ScheduleData *SD) { push_back(SD); } 1139 }; 1140 1141 /// The ready-list for scheduling (only used for the dry-run). 1142 ReadyList ReadyInsts; 1143 1144 /// The first instruction of the scheduling region. 1145 Instruction *ScheduleStart = nullptr; 1146 1147 /// The first instruction _after_ the scheduling region. 1148 Instruction *ScheduleEnd = nullptr; 1149 1150 /// The first memory accessing instruction in the scheduling region 1151 /// (can be null). 1152 ScheduleData *FirstLoadStoreInRegion = nullptr; 1153 1154 /// The last memory accessing instruction in the scheduling region 1155 /// (can be null). 1156 ScheduleData *LastLoadStoreInRegion = nullptr; 1157 1158 /// The current size of the scheduling region. 1159 int ScheduleRegionSize = 0; 1160 1161 /// The maximum size allowed for the scheduling region. 1162 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1163 1164 /// The ID of the scheduling region. For a new vectorization iteration this 1165 /// is incremented which "removes" all ScheduleData from the region. 1166 // Make sure that the initial SchedulingRegionID is greater than the 1167 // initial SchedulingRegionID in ScheduleData (which is 0). 1168 int SchedulingRegionID = 1; 1169 }; 1170 1171 /// Attaches the BlockScheduling structures to basic blocks. 1172 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1173 1174 /// Performs the "real" scheduling. Done before vectorization is actually 1175 /// performed in a basic block. 1176 void scheduleBlock(BlockScheduling *BS); 1177 1178 /// List of users to ignore during scheduling and that don't need extracting. 1179 ArrayRef<Value *> UserIgnoreList; 1180 1181 using OrdersType = SmallVector<unsigned, 4>; 1182 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1183 /// sorted SmallVectors of unsigned. 1184 struct OrdersTypeDenseMapInfo { 1185 static OrdersType getEmptyKey() { 1186 OrdersType V; 1187 V.push_back(~1U); 1188 return V; 1189 } 1190 1191 static OrdersType getTombstoneKey() { 1192 OrdersType V; 1193 V.push_back(~2U); 1194 return V; 1195 } 1196 1197 static unsigned getHashValue(const OrdersType &V) { 1198 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1199 } 1200 1201 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1202 return LHS == RHS; 1203 } 1204 }; 1205 1206 /// Contains orders of operations along with the number of bundles that have 1207 /// operations in this order. It stores only those orders that require 1208 /// reordering, if reordering is not required it is counted using \a 1209 /// NumOpsWantToKeepOriginalOrder. 1210 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1211 /// Number of bundles that do not require reordering. 1212 unsigned NumOpsWantToKeepOriginalOrder = 0; 1213 1214 // Analysis and block reference. 1215 Function *F; 1216 ScalarEvolution *SE; 1217 TargetTransformInfo *TTI; 1218 TargetLibraryInfo *TLI; 1219 AliasAnalysis *AA; 1220 LoopInfo *LI; 1221 DominatorTree *DT; 1222 AssumptionCache *AC; 1223 DemandedBits *DB; 1224 const DataLayout *DL; 1225 OptimizationRemarkEmitter *ORE; 1226 1227 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1228 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1229 1230 /// Instruction builder to construct the vectorized tree. 1231 IRBuilder<> Builder; 1232 1233 /// A map of scalar integer values to the smallest bit width with which they 1234 /// can legally be represented. The values map to (width, signed) pairs, 1235 /// where "width" indicates the minimum bit width and "signed" is True if the 1236 /// value must be signed-extended, rather than zero-extended, back to its 1237 /// original width. 1238 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1239 }; 1240 1241 } // end namespace slpvectorizer 1242 1243 template <> struct GraphTraits<BoUpSLP *> { 1244 using TreeEntry = BoUpSLP::TreeEntry; 1245 1246 /// NodeRef has to be a pointer per the GraphWriter. 1247 using NodeRef = TreeEntry *; 1248 1249 /// Add the VectorizableTree to the index iterator to be able to return 1250 /// TreeEntry pointers. 1251 struct ChildIteratorType 1252 : public iterator_adaptor_base<ChildIteratorType, 1253 SmallVector<int, 1>::iterator> { 1254 std::vector<TreeEntry> &VectorizableTree; 1255 1256 ChildIteratorType(SmallVector<int, 1>::iterator W, 1257 std::vector<TreeEntry> &VT) 1258 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1259 1260 NodeRef operator*() { return &VectorizableTree[*I]; } 1261 }; 1262 1263 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1264 1265 static ChildIteratorType child_begin(NodeRef N) { 1266 return {N->UserTreeIndices.begin(), N->Container}; 1267 } 1268 1269 static ChildIteratorType child_end(NodeRef N) { 1270 return {N->UserTreeIndices.end(), N->Container}; 1271 } 1272 1273 /// For the node iterator we just need to turn the TreeEntry iterator into a 1274 /// TreeEntry* iterator so that it dereferences to NodeRef. 1275 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1276 1277 static nodes_iterator nodes_begin(BoUpSLP *R) { 1278 return nodes_iterator(R->VectorizableTree.begin()); 1279 } 1280 1281 static nodes_iterator nodes_end(BoUpSLP *R) { 1282 return nodes_iterator(R->VectorizableTree.end()); 1283 } 1284 1285 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1286 }; 1287 1288 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1289 using TreeEntry = BoUpSLP::TreeEntry; 1290 1291 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1292 1293 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1294 std::string Str; 1295 raw_string_ostream OS(Str); 1296 if (isSplat(Entry->Scalars)) { 1297 OS << "<splat> " << *Entry->Scalars[0]; 1298 return Str; 1299 } 1300 for (auto V : Entry->Scalars) { 1301 OS << *V; 1302 if (std::any_of( 1303 R->ExternalUses.begin(), R->ExternalUses.end(), 1304 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1305 OS << " <extract>"; 1306 OS << "\n"; 1307 } 1308 return Str; 1309 } 1310 1311 static std::string getNodeAttributes(const TreeEntry *Entry, 1312 const BoUpSLP *) { 1313 if (Entry->NeedToGather) 1314 return "color=red"; 1315 return ""; 1316 } 1317 }; 1318 1319 } // end namespace llvm 1320 1321 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1322 ArrayRef<Value *> UserIgnoreLst) { 1323 ExtraValueToDebugLocsMap ExternallyUsedValues; 1324 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1325 } 1326 1327 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1328 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1329 ArrayRef<Value *> UserIgnoreLst) { 1330 deleteTree(); 1331 UserIgnoreList = UserIgnoreLst; 1332 if (!allSameType(Roots)) 1333 return; 1334 buildTree_rec(Roots, 0, -1); 1335 1336 // Collect the values that we need to extract from the tree. 1337 for (TreeEntry &EIdx : VectorizableTree) { 1338 TreeEntry *Entry = &EIdx; 1339 1340 // No need to handle users of gathered values. 1341 if (Entry->NeedToGather) 1342 continue; 1343 1344 // For each lane: 1345 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1346 Value *Scalar = Entry->Scalars[Lane]; 1347 int FoundLane = Lane; 1348 if (!Entry->ReuseShuffleIndices.empty()) { 1349 FoundLane = 1350 std::distance(Entry->ReuseShuffleIndices.begin(), 1351 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1352 } 1353 1354 // Check if the scalar is externally used as an extra arg. 1355 auto ExtI = ExternallyUsedValues.find(Scalar); 1356 if (ExtI != ExternallyUsedValues.end()) { 1357 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1358 << Lane << " from " << *Scalar << ".\n"); 1359 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1360 } 1361 for (User *U : Scalar->users()) { 1362 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1363 1364 Instruction *UserInst = dyn_cast<Instruction>(U); 1365 if (!UserInst) 1366 continue; 1367 1368 // Skip in-tree scalars that become vectors 1369 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1370 Value *UseScalar = UseEntry->Scalars[0]; 1371 // Some in-tree scalars will remain as scalar in vectorized 1372 // instructions. If that is the case, the one in Lane 0 will 1373 // be used. 1374 if (UseScalar != U || 1375 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1376 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1377 << ".\n"); 1378 assert(!UseEntry->NeedToGather && "Bad state"); 1379 continue; 1380 } 1381 } 1382 1383 // Ignore users in the user ignore list. 1384 if (is_contained(UserIgnoreList, UserInst)) 1385 continue; 1386 1387 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1388 << Lane << " from " << *Scalar << ".\n"); 1389 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1390 } 1391 } 1392 } 1393 } 1394 1395 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1396 int UserTreeIdx) { 1397 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1398 1399 InstructionsState S = getSameOpcode(VL); 1400 if (Depth == RecursionMaxDepth) { 1401 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1402 newTreeEntry(VL, false, UserTreeIdx); 1403 return; 1404 } 1405 1406 // Don't handle vectors. 1407 if (S.OpValue->getType()->isVectorTy()) { 1408 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1409 newTreeEntry(VL, false, UserTreeIdx); 1410 return; 1411 } 1412 1413 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1414 if (SI->getValueOperand()->getType()->isVectorTy()) { 1415 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1416 newTreeEntry(VL, false, UserTreeIdx); 1417 return; 1418 } 1419 1420 // If all of the operands are identical or constant we have a simple solution. 1421 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 1422 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1423 newTreeEntry(VL, false, UserTreeIdx); 1424 return; 1425 } 1426 1427 // We now know that this is a vector of instructions of the same type from 1428 // the same block. 1429 1430 // Don't vectorize ephemeral values. 1431 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1432 if (EphValues.count(VL[i])) { 1433 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1434 << ") is ephemeral.\n"); 1435 newTreeEntry(VL, false, UserTreeIdx); 1436 return; 1437 } 1438 } 1439 1440 // Check if this is a duplicate of another entry. 1441 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1442 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1443 if (!E->isSame(VL)) { 1444 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1445 newTreeEntry(VL, false, UserTreeIdx); 1446 return; 1447 } 1448 // Record the reuse of the tree node. FIXME, currently this is only used to 1449 // properly draw the graph rather than for the actual vectorization. 1450 E->UserTreeIndices.push_back(UserTreeIdx); 1451 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 1452 << ".\n"); 1453 return; 1454 } 1455 1456 // Check that none of the instructions in the bundle are already in the tree. 1457 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1458 auto *I = dyn_cast<Instruction>(VL[i]); 1459 if (!I) 1460 continue; 1461 if (getTreeEntry(I)) { 1462 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1463 << ") is already in tree.\n"); 1464 newTreeEntry(VL, false, UserTreeIdx); 1465 return; 1466 } 1467 } 1468 1469 // If any of the scalars is marked as a value that needs to stay scalar, then 1470 // we need to gather the scalars. 1471 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1472 if (MustGather.count(VL[i])) { 1473 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1474 newTreeEntry(VL, false, UserTreeIdx); 1475 return; 1476 } 1477 } 1478 1479 // Check that all of the users of the scalars that we want to vectorize are 1480 // schedulable. 1481 auto *VL0 = cast<Instruction>(S.OpValue); 1482 BasicBlock *BB = VL0->getParent(); 1483 1484 if (!DT->isReachableFromEntry(BB)) { 1485 // Don't go into unreachable blocks. They may contain instructions with 1486 // dependency cycles which confuse the final scheduling. 1487 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1488 newTreeEntry(VL, false, UserTreeIdx); 1489 return; 1490 } 1491 1492 // Check that every instruction appears once in this bundle. 1493 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1494 SmallVector<Value *, 4> UniqueValues; 1495 DenseMap<Value *, unsigned> UniquePositions; 1496 for (Value *V : VL) { 1497 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1498 ReuseShuffleIndicies.emplace_back(Res.first->second); 1499 if (Res.second) 1500 UniqueValues.emplace_back(V); 1501 } 1502 if (UniqueValues.size() == VL.size()) { 1503 ReuseShuffleIndicies.clear(); 1504 } else { 1505 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1506 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1507 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1508 newTreeEntry(VL, false, UserTreeIdx); 1509 return; 1510 } 1511 VL = UniqueValues; 1512 } 1513 1514 auto &BSRef = BlocksSchedules[BB]; 1515 if (!BSRef) 1516 BSRef = llvm::make_unique<BlockScheduling>(BB); 1517 1518 BlockScheduling &BS = *BSRef.get(); 1519 1520 if (!BS.tryScheduleBundle(VL, this, S)) { 1521 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1522 assert((!BS.getScheduleData(VL0) || 1523 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1524 "tryScheduleBundle should cancelScheduling on failure"); 1525 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1526 return; 1527 } 1528 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1529 1530 unsigned ShuffleOrOp = S.isAltShuffle() ? 1531 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 1532 switch (ShuffleOrOp) { 1533 case Instruction::PHI: { 1534 PHINode *PH = dyn_cast<PHINode>(VL0); 1535 1536 // Check for terminator values (e.g. invoke). 1537 for (unsigned j = 0; j < VL.size(); ++j) 1538 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1539 Instruction *Term = dyn_cast<Instruction>( 1540 cast<PHINode>(VL[j])->getIncomingValueForBlock( 1541 PH->getIncomingBlock(i))); 1542 if (Term && Term->isTerminator()) { 1543 LLVM_DEBUG(dbgs() 1544 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 1545 BS.cancelScheduling(VL, VL0); 1546 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1547 return; 1548 } 1549 } 1550 1551 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1552 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1553 1554 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1555 ValueList Operands; 1556 // Prepare the operand vector. 1557 for (Value *j : VL) 1558 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1559 PH->getIncomingBlock(i))); 1560 1561 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1562 } 1563 return; 1564 } 1565 case Instruction::ExtractValue: 1566 case Instruction::ExtractElement: { 1567 OrdersType CurrentOrder; 1568 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1569 if (Reuse) { 1570 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1571 ++NumOpsWantToKeepOriginalOrder; 1572 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1573 ReuseShuffleIndicies); 1574 return; 1575 } 1576 if (!CurrentOrder.empty()) { 1577 LLVM_DEBUG({ 1578 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1579 "with order"; 1580 for (unsigned Idx : CurrentOrder) 1581 dbgs() << " " << Idx; 1582 dbgs() << "\n"; 1583 }); 1584 // Insert new order with initial value 0, if it does not exist, 1585 // otherwise return the iterator to the existing one. 1586 auto StoredCurrentOrderAndNum = 1587 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1588 ++StoredCurrentOrderAndNum->getSecond(); 1589 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1590 StoredCurrentOrderAndNum->getFirst()); 1591 return; 1592 } 1593 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1594 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1595 BS.cancelScheduling(VL, VL0); 1596 return; 1597 } 1598 case Instruction::Load: { 1599 // Check that a vectorized load would load the same memory as a scalar 1600 // load. For example, we don't want to vectorize loads that are smaller 1601 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1602 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1603 // from such a struct, we read/write packed bits disagreeing with the 1604 // unvectorized version. 1605 Type *ScalarTy = VL0->getType(); 1606 1607 if (DL->getTypeSizeInBits(ScalarTy) != 1608 DL->getTypeAllocSizeInBits(ScalarTy)) { 1609 BS.cancelScheduling(VL, VL0); 1610 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1611 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1612 return; 1613 } 1614 1615 // Make sure all loads in the bundle are simple - we can't vectorize 1616 // atomic or volatile loads. 1617 SmallVector<Value *, 4> PointerOps(VL.size()); 1618 auto POIter = PointerOps.begin(); 1619 for (Value *V : VL) { 1620 auto *L = cast<LoadInst>(V); 1621 if (!L->isSimple()) { 1622 BS.cancelScheduling(VL, VL0); 1623 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1624 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1625 return; 1626 } 1627 *POIter = L->getPointerOperand(); 1628 ++POIter; 1629 } 1630 1631 OrdersType CurrentOrder; 1632 // Check the order of pointer operands. 1633 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1634 Value *Ptr0; 1635 Value *PtrN; 1636 if (CurrentOrder.empty()) { 1637 Ptr0 = PointerOps.front(); 1638 PtrN = PointerOps.back(); 1639 } else { 1640 Ptr0 = PointerOps[CurrentOrder.front()]; 1641 PtrN = PointerOps[CurrentOrder.back()]; 1642 } 1643 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1644 const SCEV *ScevN = SE->getSCEV(PtrN); 1645 const auto *Diff = 1646 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1647 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1648 // Check that the sorted loads are consecutive. 1649 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1650 if (CurrentOrder.empty()) { 1651 // Original loads are consecutive and does not require reordering. 1652 ++NumOpsWantToKeepOriginalOrder; 1653 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1654 ReuseShuffleIndicies); 1655 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1656 } else { 1657 // Need to reorder. 1658 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1659 ++I->getSecond(); 1660 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1661 ReuseShuffleIndicies, I->getFirst()); 1662 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1663 } 1664 return; 1665 } 1666 } 1667 1668 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1669 BS.cancelScheduling(VL, VL0); 1670 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1671 return; 1672 } 1673 case Instruction::ZExt: 1674 case Instruction::SExt: 1675 case Instruction::FPToUI: 1676 case Instruction::FPToSI: 1677 case Instruction::FPExt: 1678 case Instruction::PtrToInt: 1679 case Instruction::IntToPtr: 1680 case Instruction::SIToFP: 1681 case Instruction::UIToFP: 1682 case Instruction::Trunc: 1683 case Instruction::FPTrunc: 1684 case Instruction::BitCast: { 1685 Type *SrcTy = VL0->getOperand(0)->getType(); 1686 for (unsigned i = 0; i < VL.size(); ++i) { 1687 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1688 if (Ty != SrcTy || !isValidElementType(Ty)) { 1689 BS.cancelScheduling(VL, VL0); 1690 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1691 LLVM_DEBUG(dbgs() 1692 << "SLP: Gathering casts with different src types.\n"); 1693 return; 1694 } 1695 } 1696 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1697 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1698 1699 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1700 ValueList Operands; 1701 // Prepare the operand vector. 1702 for (Value *j : VL) 1703 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1704 1705 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1706 } 1707 return; 1708 } 1709 case Instruction::ICmp: 1710 case Instruction::FCmp: { 1711 // Check that all of the compares have the same predicate. 1712 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1713 Type *ComparedTy = VL0->getOperand(0)->getType(); 1714 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1715 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1716 if (Cmp->getPredicate() != P0 || 1717 Cmp->getOperand(0)->getType() != ComparedTy) { 1718 BS.cancelScheduling(VL, VL0); 1719 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1720 LLVM_DEBUG(dbgs() 1721 << "SLP: Gathering cmp with different predicate.\n"); 1722 return; 1723 } 1724 } 1725 1726 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1727 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1728 1729 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1730 ValueList Operands; 1731 // Prepare the operand vector. 1732 for (Value *j : VL) 1733 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1734 1735 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1736 } 1737 return; 1738 } 1739 case Instruction::Select: 1740 case Instruction::Add: 1741 case Instruction::FAdd: 1742 case Instruction::Sub: 1743 case Instruction::FSub: 1744 case Instruction::Mul: 1745 case Instruction::FMul: 1746 case Instruction::UDiv: 1747 case Instruction::SDiv: 1748 case Instruction::FDiv: 1749 case Instruction::URem: 1750 case Instruction::SRem: 1751 case Instruction::FRem: 1752 case Instruction::Shl: 1753 case Instruction::LShr: 1754 case Instruction::AShr: 1755 case Instruction::And: 1756 case Instruction::Or: 1757 case Instruction::Xor: 1758 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1759 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1760 1761 // Sort operands of the instructions so that each side is more likely to 1762 // have the same opcode. 1763 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1764 ValueList Left, Right; 1765 reorderInputsAccordingToOpcode(S.getOpcode(), VL, Left, Right); 1766 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1767 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1768 return; 1769 } 1770 1771 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1772 ValueList Operands; 1773 // Prepare the operand vector. 1774 for (Value *j : VL) 1775 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1776 1777 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1778 } 1779 return; 1780 1781 case Instruction::GetElementPtr: { 1782 // We don't combine GEPs with complicated (nested) indexing. 1783 for (unsigned j = 0; j < VL.size(); ++j) { 1784 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1785 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1786 BS.cancelScheduling(VL, VL0); 1787 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1788 return; 1789 } 1790 } 1791 1792 // We can't combine several GEPs into one vector if they operate on 1793 // different types. 1794 Type *Ty0 = VL0->getOperand(0)->getType(); 1795 for (unsigned j = 0; j < VL.size(); ++j) { 1796 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1797 if (Ty0 != CurTy) { 1798 LLVM_DEBUG(dbgs() 1799 << "SLP: not-vectorizable GEP (different types).\n"); 1800 BS.cancelScheduling(VL, VL0); 1801 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1802 return; 1803 } 1804 } 1805 1806 // We don't combine GEPs with non-constant indexes. 1807 for (unsigned j = 0; j < VL.size(); ++j) { 1808 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1809 if (!isa<ConstantInt>(Op)) { 1810 LLVM_DEBUG(dbgs() 1811 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1812 BS.cancelScheduling(VL, VL0); 1813 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1814 return; 1815 } 1816 } 1817 1818 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1819 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1820 for (unsigned i = 0, e = 2; i < e; ++i) { 1821 ValueList Operands; 1822 // Prepare the operand vector. 1823 for (Value *j : VL) 1824 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1825 1826 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1827 } 1828 return; 1829 } 1830 case Instruction::Store: { 1831 // Check if the stores are consecutive or of we need to swizzle them. 1832 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1833 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1834 BS.cancelScheduling(VL, VL0); 1835 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1836 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1837 return; 1838 } 1839 1840 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1841 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1842 1843 ValueList Operands; 1844 for (Value *j : VL) 1845 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1846 1847 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1848 return; 1849 } 1850 case Instruction::Call: { 1851 // Check if the calls are all to the same vectorizable intrinsic. 1852 CallInst *CI = cast<CallInst>(VL0); 1853 // Check if this is an Intrinsic call or something that can be 1854 // represented by an intrinsic call 1855 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1856 if (!isTriviallyVectorizable(ID)) { 1857 BS.cancelScheduling(VL, VL0); 1858 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1859 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1860 return; 1861 } 1862 Function *Int = CI->getCalledFunction(); 1863 Value *A1I = nullptr; 1864 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1865 A1I = CI->getArgOperand(1); 1866 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1867 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1868 if (!CI2 || CI2->getCalledFunction() != Int || 1869 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1870 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1871 BS.cancelScheduling(VL, VL0); 1872 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1873 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1874 << "\n"); 1875 return; 1876 } 1877 // ctlz,cttz and powi are special intrinsics whose second argument 1878 // should be same in order for them to be vectorized. 1879 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1880 Value *A1J = CI2->getArgOperand(1); 1881 if (A1I != A1J) { 1882 BS.cancelScheduling(VL, VL0); 1883 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1884 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1885 << " argument " << A1I << "!=" << A1J << "\n"); 1886 return; 1887 } 1888 } 1889 // Verify that the bundle operands are identical between the two calls. 1890 if (CI->hasOperandBundles() && 1891 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1892 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1893 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1894 BS.cancelScheduling(VL, VL0); 1895 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1896 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 1897 << *CI << "!=" << *VL[i] << '\n'); 1898 return; 1899 } 1900 } 1901 1902 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1903 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1904 ValueList Operands; 1905 // Prepare the operand vector. 1906 for (Value *j : VL) { 1907 CallInst *CI2 = dyn_cast<CallInst>(j); 1908 Operands.push_back(CI2->getArgOperand(i)); 1909 } 1910 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1911 } 1912 return; 1913 } 1914 case Instruction::ShuffleVector: 1915 // If this is not an alternate sequence of opcode like add-sub 1916 // then do not vectorize this instruction. 1917 if (!S.isAltShuffle()) { 1918 BS.cancelScheduling(VL, VL0); 1919 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1920 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1921 return; 1922 } 1923 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1924 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1925 1926 // Reorder operands if reordering would enable vectorization. 1927 if (isa<BinaryOperator>(VL0)) { 1928 ValueList Left, Right; 1929 reorderAltShuffleOperands(S, VL, Left, Right); 1930 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1931 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1932 return; 1933 } 1934 1935 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1936 ValueList Operands; 1937 // Prepare the operand vector. 1938 for (Value *j : VL) 1939 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1940 1941 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1942 } 1943 return; 1944 1945 default: 1946 BS.cancelScheduling(VL, VL0); 1947 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1948 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1949 return; 1950 } 1951 } 1952 1953 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1954 unsigned N; 1955 Type *EltTy; 1956 auto *ST = dyn_cast<StructType>(T); 1957 if (ST) { 1958 N = ST->getNumElements(); 1959 EltTy = *ST->element_begin(); 1960 } else { 1961 N = cast<ArrayType>(T)->getNumElements(); 1962 EltTy = cast<ArrayType>(T)->getElementType(); 1963 } 1964 if (!isValidElementType(EltTy)) 1965 return 0; 1966 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1967 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1968 return 0; 1969 if (ST) { 1970 // Check that struct is homogeneous. 1971 for (const auto *Ty : ST->elements()) 1972 if (Ty != EltTy) 1973 return 0; 1974 } 1975 return N; 1976 } 1977 1978 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1979 SmallVectorImpl<unsigned> &CurrentOrder) const { 1980 Instruction *E0 = cast<Instruction>(OpValue); 1981 assert(E0->getOpcode() == Instruction::ExtractElement || 1982 E0->getOpcode() == Instruction::ExtractValue); 1983 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 1984 // Check if all of the extracts come from the same vector and from the 1985 // correct offset. 1986 Value *Vec = E0->getOperand(0); 1987 1988 CurrentOrder.clear(); 1989 1990 // We have to extract from a vector/aggregate with the same number of elements. 1991 unsigned NElts; 1992 if (E0->getOpcode() == Instruction::ExtractValue) { 1993 const DataLayout &DL = E0->getModule()->getDataLayout(); 1994 NElts = canMapToVector(Vec->getType(), DL); 1995 if (!NElts) 1996 return false; 1997 // Check if load can be rewritten as load of vector. 1998 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1999 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2000 return false; 2001 } else { 2002 NElts = Vec->getType()->getVectorNumElements(); 2003 } 2004 2005 if (NElts != VL.size()) 2006 return false; 2007 2008 // Check that all of the indices extract from the correct offset. 2009 bool ShouldKeepOrder = true; 2010 unsigned E = VL.size(); 2011 // Assign to all items the initial value E + 1 so we can check if the extract 2012 // instruction index was used already. 2013 // Also, later we can check that all the indices are used and we have a 2014 // consecutive access in the extract instructions, by checking that no 2015 // element of CurrentOrder still has value E + 1. 2016 CurrentOrder.assign(E, E + 1); 2017 unsigned I = 0; 2018 for (; I < E; ++I) { 2019 auto *Inst = cast<Instruction>(VL[I]); 2020 if (Inst->getOperand(0) != Vec) 2021 break; 2022 Optional<unsigned> Idx = getExtractIndex(Inst); 2023 if (!Idx) 2024 break; 2025 const unsigned ExtIdx = *Idx; 2026 if (ExtIdx != I) { 2027 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2028 break; 2029 ShouldKeepOrder = false; 2030 CurrentOrder[ExtIdx] = I; 2031 } else { 2032 if (CurrentOrder[I] != E + 1) 2033 break; 2034 CurrentOrder[I] = I; 2035 } 2036 } 2037 if (I < E) { 2038 CurrentOrder.clear(); 2039 return false; 2040 } 2041 2042 return ShouldKeepOrder; 2043 } 2044 2045 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2046 return I->hasOneUse() || 2047 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2048 return ScalarToTreeEntry.count(U) > 0; 2049 }); 2050 } 2051 2052 int BoUpSLP::getEntryCost(TreeEntry *E) { 2053 ArrayRef<Value*> VL = E->Scalars; 2054 2055 Type *ScalarTy = VL[0]->getType(); 2056 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2057 ScalarTy = SI->getValueOperand()->getType(); 2058 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2059 ScalarTy = CI->getOperand(0)->getType(); 2060 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2061 2062 // If we have computed a smaller type for the expression, update VecTy so 2063 // that the costs will be accurate. 2064 if (MinBWs.count(VL[0])) 2065 VecTy = VectorType::get( 2066 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2067 2068 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2069 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2070 int ReuseShuffleCost = 0; 2071 if (NeedToShuffleReuses) { 2072 ReuseShuffleCost = 2073 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2074 } 2075 if (E->NeedToGather) { 2076 if (allConstant(VL)) 2077 return 0; 2078 if (isSplat(VL)) { 2079 return ReuseShuffleCost + 2080 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2081 } 2082 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2083 allSameType(VL) && allSameBlock(VL)) { 2084 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2085 if (ShuffleKind.hasValue()) { 2086 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2087 for (auto *V : VL) { 2088 // If all users of instruction are going to be vectorized and this 2089 // instruction itself is not going to be vectorized, consider this 2090 // instruction as dead and remove its cost from the final cost of the 2091 // vectorized tree. 2092 if (areAllUsersVectorized(cast<Instruction>(V)) && 2093 !ScalarToTreeEntry.count(V)) { 2094 auto *IO = cast<ConstantInt>( 2095 cast<ExtractElementInst>(V)->getIndexOperand()); 2096 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2097 IO->getZExtValue()); 2098 } 2099 } 2100 return ReuseShuffleCost + Cost; 2101 } 2102 } 2103 return ReuseShuffleCost + getGatherCost(VL); 2104 } 2105 InstructionsState S = getSameOpcode(VL); 2106 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2107 Instruction *VL0 = cast<Instruction>(S.OpValue); 2108 unsigned ShuffleOrOp = S.isAltShuffle() ? 2109 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2110 switch (ShuffleOrOp) { 2111 case Instruction::PHI: 2112 return 0; 2113 2114 case Instruction::ExtractValue: 2115 case Instruction::ExtractElement: 2116 if (NeedToShuffleReuses) { 2117 unsigned Idx = 0; 2118 for (unsigned I : E->ReuseShuffleIndices) { 2119 if (ShuffleOrOp == Instruction::ExtractElement) { 2120 auto *IO = cast<ConstantInt>( 2121 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2122 Idx = IO->getZExtValue(); 2123 ReuseShuffleCost -= TTI->getVectorInstrCost( 2124 Instruction::ExtractElement, VecTy, Idx); 2125 } else { 2126 ReuseShuffleCost -= TTI->getVectorInstrCost( 2127 Instruction::ExtractElement, VecTy, Idx); 2128 ++Idx; 2129 } 2130 } 2131 Idx = ReuseShuffleNumbers; 2132 for (Value *V : VL) { 2133 if (ShuffleOrOp == Instruction::ExtractElement) { 2134 auto *IO = cast<ConstantInt>( 2135 cast<ExtractElementInst>(V)->getIndexOperand()); 2136 Idx = IO->getZExtValue(); 2137 } else { 2138 --Idx; 2139 } 2140 ReuseShuffleCost += 2141 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2142 } 2143 } 2144 if (!E->NeedToGather) { 2145 int DeadCost = ReuseShuffleCost; 2146 if (!E->ReorderIndices.empty()) { 2147 // TODO: Merge this shuffle with the ReuseShuffleCost. 2148 DeadCost += TTI->getShuffleCost( 2149 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2150 } 2151 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2152 Instruction *E = cast<Instruction>(VL[i]); 2153 // If all users are going to be vectorized, instruction can be 2154 // considered as dead. 2155 // The same, if have only one user, it will be vectorized for sure. 2156 if (areAllUsersVectorized(E)) { 2157 // Take credit for instruction that will become dead. 2158 if (E->hasOneUse()) { 2159 Instruction *Ext = E->user_back(); 2160 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2161 all_of(Ext->users(), 2162 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2163 // Use getExtractWithExtendCost() to calculate the cost of 2164 // extractelement/ext pair. 2165 DeadCost -= TTI->getExtractWithExtendCost( 2166 Ext->getOpcode(), Ext->getType(), VecTy, i); 2167 // Add back the cost of s|zext which is subtracted seperately. 2168 DeadCost += TTI->getCastInstrCost( 2169 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2170 continue; 2171 } 2172 } 2173 DeadCost -= 2174 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2175 } 2176 } 2177 return DeadCost; 2178 } 2179 return ReuseShuffleCost + getGatherCost(VL); 2180 2181 case Instruction::ZExt: 2182 case Instruction::SExt: 2183 case Instruction::FPToUI: 2184 case Instruction::FPToSI: 2185 case Instruction::FPExt: 2186 case Instruction::PtrToInt: 2187 case Instruction::IntToPtr: 2188 case Instruction::SIToFP: 2189 case Instruction::UIToFP: 2190 case Instruction::Trunc: 2191 case Instruction::FPTrunc: 2192 case Instruction::BitCast: { 2193 Type *SrcTy = VL0->getOperand(0)->getType(); 2194 int ScalarEltCost = 2195 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2196 if (NeedToShuffleReuses) { 2197 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2198 } 2199 2200 // Calculate the cost of this instruction. 2201 int ScalarCost = VL.size() * ScalarEltCost; 2202 2203 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2204 int VecCost = 0; 2205 // Check if the values are candidates to demote. 2206 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2207 VecCost = ReuseShuffleCost + 2208 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2209 } 2210 return VecCost - ScalarCost; 2211 } 2212 case Instruction::FCmp: 2213 case Instruction::ICmp: 2214 case Instruction::Select: { 2215 // Calculate the cost of this instruction. 2216 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2217 Builder.getInt1Ty(), VL0); 2218 if (NeedToShuffleReuses) { 2219 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2220 } 2221 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2222 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2223 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2224 return ReuseShuffleCost + VecCost - ScalarCost; 2225 } 2226 case Instruction::Add: 2227 case Instruction::FAdd: 2228 case Instruction::Sub: 2229 case Instruction::FSub: 2230 case Instruction::Mul: 2231 case Instruction::FMul: 2232 case Instruction::UDiv: 2233 case Instruction::SDiv: 2234 case Instruction::FDiv: 2235 case Instruction::URem: 2236 case Instruction::SRem: 2237 case Instruction::FRem: 2238 case Instruction::Shl: 2239 case Instruction::LShr: 2240 case Instruction::AShr: 2241 case Instruction::And: 2242 case Instruction::Or: 2243 case Instruction::Xor: { 2244 // Certain instructions can be cheaper to vectorize if they have a 2245 // constant second vector operand. 2246 TargetTransformInfo::OperandValueKind Op1VK = 2247 TargetTransformInfo::OK_AnyValue; 2248 TargetTransformInfo::OperandValueKind Op2VK = 2249 TargetTransformInfo::OK_UniformConstantValue; 2250 TargetTransformInfo::OperandValueProperties Op1VP = 2251 TargetTransformInfo::OP_None; 2252 TargetTransformInfo::OperandValueProperties Op2VP = 2253 TargetTransformInfo::OP_PowerOf2; 2254 2255 // If all operands are exactly the same ConstantInt then set the 2256 // operand kind to OK_UniformConstantValue. 2257 // If instead not all operands are constants, then set the operand kind 2258 // to OK_AnyValue. If all operands are constants but not the same, 2259 // then set the operand kind to OK_NonUniformConstantValue. 2260 ConstantInt *CInt0 = nullptr; 2261 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2262 const Instruction *I = cast<Instruction>(VL[i]); 2263 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2264 if (!CInt) { 2265 Op2VK = TargetTransformInfo::OK_AnyValue; 2266 Op2VP = TargetTransformInfo::OP_None; 2267 break; 2268 } 2269 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2270 !CInt->getValue().isPowerOf2()) 2271 Op2VP = TargetTransformInfo::OP_None; 2272 if (i == 0) { 2273 CInt0 = CInt; 2274 continue; 2275 } 2276 if (CInt0 != CInt) 2277 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2278 } 2279 2280 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2281 int ScalarEltCost = TTI->getArithmeticInstrCost( 2282 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2283 if (NeedToShuffleReuses) { 2284 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2285 } 2286 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2287 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2288 Op2VK, Op1VP, Op2VP, Operands); 2289 return ReuseShuffleCost + VecCost - ScalarCost; 2290 } 2291 case Instruction::GetElementPtr: { 2292 TargetTransformInfo::OperandValueKind Op1VK = 2293 TargetTransformInfo::OK_AnyValue; 2294 TargetTransformInfo::OperandValueKind Op2VK = 2295 TargetTransformInfo::OK_UniformConstantValue; 2296 2297 int ScalarEltCost = 2298 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2299 if (NeedToShuffleReuses) { 2300 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2301 } 2302 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2303 int VecCost = 2304 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2305 return ReuseShuffleCost + VecCost - ScalarCost; 2306 } 2307 case Instruction::Load: { 2308 // Cost of wide load - cost of scalar loads. 2309 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2310 int ScalarEltCost = 2311 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2312 if (NeedToShuffleReuses) { 2313 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2314 } 2315 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2316 int VecLdCost = 2317 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2318 if (!E->ReorderIndices.empty()) { 2319 // TODO: Merge this shuffle with the ReuseShuffleCost. 2320 VecLdCost += TTI->getShuffleCost( 2321 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2322 } 2323 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2324 } 2325 case Instruction::Store: { 2326 // We know that we can merge the stores. Calculate the cost. 2327 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2328 int ScalarEltCost = 2329 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2330 if (NeedToShuffleReuses) { 2331 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2332 } 2333 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2334 int VecStCost = 2335 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2336 return ReuseShuffleCost + VecStCost - ScalarStCost; 2337 } 2338 case Instruction::Call: { 2339 CallInst *CI = cast<CallInst>(VL0); 2340 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2341 2342 // Calculate the cost of the scalar and vector calls. 2343 SmallVector<Type *, 4> ScalarTys; 2344 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2345 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2346 2347 FastMathFlags FMF; 2348 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2349 FMF = FPMO->getFastMathFlags(); 2350 2351 int ScalarEltCost = 2352 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2353 if (NeedToShuffleReuses) { 2354 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2355 } 2356 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2357 2358 SmallVector<Value *, 4> Args(CI->arg_operands()); 2359 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2360 VecTy->getNumElements()); 2361 2362 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2363 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2364 << " for " << *CI << "\n"); 2365 2366 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2367 } 2368 case Instruction::ShuffleVector: { 2369 assert(S.isAltShuffle() && 2370 ((Instruction::isBinaryOp(S.getOpcode()) && 2371 Instruction::isBinaryOp(S.getAltOpcode())) || 2372 (Instruction::isCast(S.getOpcode()) && 2373 Instruction::isCast(S.getAltOpcode()))) && 2374 "Invalid Shuffle Vector Operand"); 2375 int ScalarCost = 0; 2376 if (NeedToShuffleReuses) { 2377 for (unsigned Idx : E->ReuseShuffleIndices) { 2378 Instruction *I = cast<Instruction>(VL[Idx]); 2379 ReuseShuffleCost -= TTI->getInstructionCost( 2380 I, TargetTransformInfo::TCK_RecipThroughput); 2381 } 2382 for (Value *V : VL) { 2383 Instruction *I = cast<Instruction>(V); 2384 ReuseShuffleCost += TTI->getInstructionCost( 2385 I, TargetTransformInfo::TCK_RecipThroughput); 2386 } 2387 } 2388 for (Value *i : VL) { 2389 Instruction *I = cast<Instruction>(i); 2390 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 2391 ScalarCost += TTI->getInstructionCost( 2392 I, TargetTransformInfo::TCK_RecipThroughput); 2393 } 2394 // VecCost is equal to sum of the cost of creating 2 vectors 2395 // and the cost of creating shuffle. 2396 int VecCost = 0; 2397 if (Instruction::isBinaryOp(S.getOpcode())) { 2398 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 2399 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 2400 } else { 2401 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 2402 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 2403 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 2404 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 2405 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 2406 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 2407 } 2408 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 2409 return ReuseShuffleCost + VecCost - ScalarCost; 2410 } 2411 default: 2412 llvm_unreachable("Unknown instruction"); 2413 } 2414 } 2415 2416 bool BoUpSLP::isFullyVectorizableTinyTree() { 2417 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 2418 << VectorizableTree.size() << " is fully vectorizable .\n"); 2419 2420 // We only handle trees of heights 1 and 2. 2421 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2422 return true; 2423 2424 if (VectorizableTree.size() != 2) 2425 return false; 2426 2427 // Handle splat and all-constants stores. 2428 if (!VectorizableTree[0].NeedToGather && 2429 (allConstant(VectorizableTree[1].Scalars) || 2430 isSplat(VectorizableTree[1].Scalars))) 2431 return true; 2432 2433 // Gathering cost would be too much for tiny trees. 2434 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2435 return false; 2436 2437 return true; 2438 } 2439 2440 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2441 // We can vectorize the tree if its size is greater than or equal to the 2442 // minimum size specified by the MinTreeSize command line option. 2443 if (VectorizableTree.size() >= MinTreeSize) 2444 return false; 2445 2446 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2447 // can vectorize it if we can prove it fully vectorizable. 2448 if (isFullyVectorizableTinyTree()) 2449 return false; 2450 2451 assert(VectorizableTree.empty() 2452 ? ExternalUses.empty() 2453 : true && "We shouldn't have any external users"); 2454 2455 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2456 // vectorizable. 2457 return true; 2458 } 2459 2460 int BoUpSLP::getSpillCost() { 2461 // Walk from the bottom of the tree to the top, tracking which values are 2462 // live. When we see a call instruction that is not part of our tree, 2463 // query TTI to see if there is a cost to keeping values live over it 2464 // (for example, if spills and fills are required). 2465 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2466 int Cost = 0; 2467 2468 SmallPtrSet<Instruction*, 4> LiveValues; 2469 Instruction *PrevInst = nullptr; 2470 2471 for (const auto &N : VectorizableTree) { 2472 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2473 if (!Inst) 2474 continue; 2475 2476 if (!PrevInst) { 2477 PrevInst = Inst; 2478 continue; 2479 } 2480 2481 // Update LiveValues. 2482 LiveValues.erase(PrevInst); 2483 for (auto &J : PrevInst->operands()) { 2484 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2485 LiveValues.insert(cast<Instruction>(&*J)); 2486 } 2487 2488 LLVM_DEBUG({ 2489 dbgs() << "SLP: #LV: " << LiveValues.size(); 2490 for (auto *X : LiveValues) 2491 dbgs() << " " << X->getName(); 2492 dbgs() << ", Looking at "; 2493 Inst->dump(); 2494 }); 2495 2496 // Now find the sequence of instructions between PrevInst and Inst. 2497 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2498 PrevInstIt = 2499 PrevInst->getIterator().getReverse(); 2500 while (InstIt != PrevInstIt) { 2501 if (PrevInstIt == PrevInst->getParent()->rend()) { 2502 PrevInstIt = Inst->getParent()->rbegin(); 2503 continue; 2504 } 2505 2506 // Debug informations don't impact spill cost. 2507 if ((isa<CallInst>(&*PrevInstIt) && 2508 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 2509 &*PrevInstIt != PrevInst) { 2510 SmallVector<Type*, 4> V; 2511 for (auto *II : LiveValues) 2512 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2513 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2514 } 2515 2516 ++PrevInstIt; 2517 } 2518 2519 PrevInst = Inst; 2520 } 2521 2522 return Cost; 2523 } 2524 2525 int BoUpSLP::getTreeCost() { 2526 int Cost = 0; 2527 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 2528 << VectorizableTree.size() << ".\n"); 2529 2530 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2531 2532 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2533 TreeEntry &TE = VectorizableTree[I]; 2534 2535 // We create duplicate tree entries for gather sequences that have multiple 2536 // uses. However, we should not compute the cost of duplicate sequences. 2537 // For example, if we have a build vector (i.e., insertelement sequence) 2538 // that is used by more than one vector instruction, we only need to 2539 // compute the cost of the insertelement instructions once. The redundent 2540 // instructions will be eliminated by CSE. 2541 // 2542 // We should consider not creating duplicate tree entries for gather 2543 // sequences, and instead add additional edges to the tree representing 2544 // their uses. Since such an approach results in fewer total entries, 2545 // existing heuristics based on tree size may yeild different results. 2546 // 2547 if (TE.NeedToGather && 2548 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2549 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2550 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2551 })) 2552 continue; 2553 2554 int C = getEntryCost(&TE); 2555 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 2556 << " for bundle that starts with " << *TE.Scalars[0] 2557 << ".\n"); 2558 Cost += C; 2559 } 2560 2561 SmallPtrSet<Value *, 16> ExtractCostCalculated; 2562 int ExtractCost = 0; 2563 for (ExternalUser &EU : ExternalUses) { 2564 // We only add extract cost once for the same scalar. 2565 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2566 continue; 2567 2568 // Uses by ephemeral values are free (because the ephemeral value will be 2569 // removed prior to code generation, and so the extraction will be 2570 // removed as well). 2571 if (EphValues.count(EU.User)) 2572 continue; 2573 2574 // If we plan to rewrite the tree in a smaller type, we will need to sign 2575 // extend the extracted value back to the original type. Here, we account 2576 // for the extract and the added cost of the sign extend if needed. 2577 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2578 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2579 if (MinBWs.count(ScalarRoot)) { 2580 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2581 auto Extend = 2582 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2583 VecTy = VectorType::get(MinTy, BundleWidth); 2584 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2585 VecTy, EU.Lane); 2586 } else { 2587 ExtractCost += 2588 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2589 } 2590 } 2591 2592 int SpillCost = getSpillCost(); 2593 Cost += SpillCost + ExtractCost; 2594 2595 std::string Str; 2596 { 2597 raw_string_ostream OS(Str); 2598 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2599 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2600 << "SLP: Total Cost = " << Cost << ".\n"; 2601 } 2602 LLVM_DEBUG(dbgs() << Str); 2603 2604 if (ViewSLPTree) 2605 ViewGraph(this, "SLP" + F->getName(), false, Str); 2606 2607 return Cost; 2608 } 2609 2610 int BoUpSLP::getGatherCost(Type *Ty, 2611 const DenseSet<unsigned> &ShuffledIndices) { 2612 int Cost = 0; 2613 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2614 if (!ShuffledIndices.count(i)) 2615 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2616 if (!ShuffledIndices.empty()) 2617 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2618 return Cost; 2619 } 2620 2621 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2622 // Find the type of the operands in VL. 2623 Type *ScalarTy = VL[0]->getType(); 2624 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2625 ScalarTy = SI->getValueOperand()->getType(); 2626 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2627 // Find the cost of inserting/extracting values from the vector. 2628 // Check if the same elements are inserted several times and count them as 2629 // shuffle candidates. 2630 DenseSet<unsigned> ShuffledElements; 2631 DenseSet<Value *> UniqueElements; 2632 // Iterate in reverse order to consider insert elements with the high cost. 2633 for (unsigned I = VL.size(); I > 0; --I) { 2634 unsigned Idx = I - 1; 2635 if (!UniqueElements.insert(VL[Idx]).second) 2636 ShuffledElements.insert(Idx); 2637 } 2638 return getGatherCost(VecTy, ShuffledElements); 2639 } 2640 2641 // Reorder commutative operations in alternate shuffle if the resulting vectors 2642 // are consecutive loads. This would allow us to vectorize the tree. 2643 // If we have something like- 2644 // load a[0] - load b[0] 2645 // load b[1] + load a[1] 2646 // load a[2] - load b[2] 2647 // load a[3] + load b[3] 2648 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2649 // code. 2650 void BoUpSLP::reorderAltShuffleOperands(const InstructionsState &S, 2651 ArrayRef<Value *> VL, 2652 SmallVectorImpl<Value *> &Left, 2653 SmallVectorImpl<Value *> &Right) { 2654 // Push left and right operands of binary operation into Left and Right 2655 for (Value *V : VL) { 2656 auto *I = cast<Instruction>(V); 2657 assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector"); 2658 Left.push_back(I->getOperand(0)); 2659 Right.push_back(I->getOperand(1)); 2660 } 2661 2662 // Reorder if we have a commutative operation and consecutive access 2663 // are on either side of the alternate instructions. 2664 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2665 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2666 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2667 Instruction *VL1 = cast<Instruction>(VL[j]); 2668 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2669 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2670 std::swap(Left[j], Right[j]); 2671 continue; 2672 } else if (VL2->isCommutative() && 2673 isConsecutiveAccess(L, L1, *DL, *SE)) { 2674 std::swap(Left[j + 1], Right[j + 1]); 2675 continue; 2676 } 2677 // else unchanged 2678 } 2679 } 2680 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2681 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2682 Instruction *VL1 = cast<Instruction>(VL[j]); 2683 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2684 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2685 std::swap(Left[j], Right[j]); 2686 continue; 2687 } else if (VL2->isCommutative() && 2688 isConsecutiveAccess(L, L1, *DL, *SE)) { 2689 std::swap(Left[j + 1], Right[j + 1]); 2690 continue; 2691 } 2692 // else unchanged 2693 } 2694 } 2695 } 2696 } 2697 2698 // Return true if I should be commuted before adding it's left and right 2699 // operands to the arrays Left and Right. 2700 // 2701 // The vectorizer is trying to either have all elements one side being 2702 // instruction with the same opcode to enable further vectorization, or having 2703 // a splat to lower the vectorizing cost. 2704 static bool shouldReorderOperands( 2705 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2706 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2707 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2708 VLeft = I.getOperand(0); 2709 VRight = I.getOperand(1); 2710 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2711 if (SplatRight) { 2712 if (VRight == Right[i - 1]) 2713 // Preserve SplatRight 2714 return false; 2715 if (VLeft == Right[i - 1]) { 2716 // Commuting would preserve SplatRight, but we don't want to break 2717 // SplatLeft either, i.e. preserve the original order if possible. 2718 // (FIXME: why do we care?) 2719 if (SplatLeft && VLeft == Left[i - 1]) 2720 return false; 2721 return true; 2722 } 2723 } 2724 // Symmetrically handle Right side. 2725 if (SplatLeft) { 2726 if (VLeft == Left[i - 1]) 2727 // Preserve SplatLeft 2728 return false; 2729 if (VRight == Left[i - 1]) 2730 return true; 2731 } 2732 2733 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2734 Instruction *IRight = dyn_cast<Instruction>(VRight); 2735 2736 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2737 // it and not the right, in this case we want to commute. 2738 if (AllSameOpcodeRight) { 2739 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2740 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2741 // Do not commute, a match on the right preserves AllSameOpcodeRight 2742 return false; 2743 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2744 // We have a match and may want to commute, but first check if there is 2745 // not also a match on the existing operands on the Left to preserve 2746 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2747 // (FIXME: why do we care?) 2748 if (AllSameOpcodeLeft && ILeft && 2749 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2750 return false; 2751 return true; 2752 } 2753 } 2754 // Symmetrically handle Left side. 2755 if (AllSameOpcodeLeft) { 2756 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2757 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2758 return false; 2759 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2760 return true; 2761 } 2762 return false; 2763 } 2764 2765 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2766 ArrayRef<Value *> VL, 2767 SmallVectorImpl<Value *> &Left, 2768 SmallVectorImpl<Value *> &Right) { 2769 if (!VL.empty()) { 2770 // Peel the first iteration out of the loop since there's nothing 2771 // interesting to do anyway and it simplifies the checks in the loop. 2772 auto *I = cast<Instruction>(VL[0]); 2773 Value *VLeft = I->getOperand(0); 2774 Value *VRight = I->getOperand(1); 2775 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2776 // Favor having instruction to the right. FIXME: why? 2777 std::swap(VLeft, VRight); 2778 Left.push_back(VLeft); 2779 Right.push_back(VRight); 2780 } 2781 2782 // Keep track if we have instructions with all the same opcode on one side. 2783 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2784 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2785 // Keep track if we have one side with all the same value (broadcast). 2786 bool SplatLeft = true; 2787 bool SplatRight = true; 2788 2789 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2790 Instruction *I = cast<Instruction>(VL[i]); 2791 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2792 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2793 "Can only process commutative instruction"); 2794 // Commute to favor either a splat or maximizing having the same opcodes on 2795 // one side. 2796 Value *VLeft; 2797 Value *VRight; 2798 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2799 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2800 VRight)) { 2801 Left.push_back(VRight); 2802 Right.push_back(VLeft); 2803 } else { 2804 Left.push_back(VLeft); 2805 Right.push_back(VRight); 2806 } 2807 // Update Splat* and AllSameOpcode* after the insertion. 2808 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2809 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2810 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2811 (cast<Instruction>(Left[i - 1])->getOpcode() == 2812 cast<Instruction>(Left[i])->getOpcode()); 2813 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2814 (cast<Instruction>(Right[i - 1])->getOpcode() == 2815 cast<Instruction>(Right[i])->getOpcode()); 2816 } 2817 2818 // If one operand end up being broadcast, return this operand order. 2819 if (SplatRight || SplatLeft) 2820 return; 2821 2822 // Finally check if we can get longer vectorizable chain by reordering 2823 // without breaking the good operand order detected above. 2824 // E.g. If we have something like- 2825 // load a[0] load b[0] 2826 // load b[1] load a[1] 2827 // load a[2] load b[2] 2828 // load a[3] load b[3] 2829 // Reordering the second load b[1] load a[1] would allow us to vectorize 2830 // this code and we still retain AllSameOpcode property. 2831 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2832 // such as- 2833 // add a[0],c[0] load b[0] 2834 // add a[1],c[2] load b[1] 2835 // b[2] load b[2] 2836 // add a[3],c[3] load b[3] 2837 for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) { 2838 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2839 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2840 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2841 std::swap(Left[j + 1], Right[j + 1]); 2842 continue; 2843 } 2844 } 2845 } 2846 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2847 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2848 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2849 std::swap(Left[j + 1], Right[j + 1]); 2850 continue; 2851 } 2852 } 2853 } 2854 // else unchanged 2855 } 2856 } 2857 2858 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 2859 const InstructionsState &S) { 2860 // Get the basic block this bundle is in. All instructions in the bundle 2861 // should be in this block. 2862 auto *Front = cast<Instruction>(S.OpValue); 2863 auto *BB = Front->getParent(); 2864 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2865 auto *I = cast<Instruction>(V); 2866 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 2867 })); 2868 2869 // The last instruction in the bundle in program order. 2870 Instruction *LastInst = nullptr; 2871 2872 // Find the last instruction. The common case should be that BB has been 2873 // scheduled, and the last instruction is VL.back(). So we start with 2874 // VL.back() and iterate over schedule data until we reach the end of the 2875 // bundle. The end of the bundle is marked by null ScheduleData. 2876 if (BlocksSchedules.count(BB)) { 2877 auto *Bundle = 2878 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 2879 if (Bundle && Bundle->isPartOfBundle()) 2880 for (; Bundle; Bundle = Bundle->NextInBundle) 2881 if (Bundle->OpValue == Bundle->Inst) 2882 LastInst = Bundle->Inst; 2883 } 2884 2885 // LastInst can still be null at this point if there's either not an entry 2886 // for BB in BlocksSchedules or there's no ScheduleData available for 2887 // VL.back(). This can be the case if buildTree_rec aborts for various 2888 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2889 // size is reached, etc.). ScheduleData is initialized in the scheduling 2890 // "dry-run". 2891 // 2892 // If this happens, we can still find the last instruction by brute force. We 2893 // iterate forwards from Front (inclusive) until we either see all 2894 // instructions in the bundle or reach the end of the block. If Front is the 2895 // last instruction in program order, LastInst will be set to Front, and we 2896 // will visit all the remaining instructions in the block. 2897 // 2898 // One of the reasons we exit early from buildTree_rec is to place an upper 2899 // bound on compile-time. Thus, taking an additional compile-time hit here is 2900 // not ideal. However, this should be exceedingly rare since it requires that 2901 // we both exit early from buildTree_rec and that the bundle be out-of-order 2902 // (causing us to iterate all the way to the end of the block). 2903 if (!LastInst) { 2904 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2905 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2906 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 2907 LastInst = &I; 2908 if (Bundle.empty()) 2909 break; 2910 } 2911 } 2912 2913 // Set the insertion point after the last instruction in the bundle. Set the 2914 // debug location to Front. 2915 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2916 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2917 } 2918 2919 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2920 Value *Vec = UndefValue::get(Ty); 2921 // Generate the 'InsertElement' instruction. 2922 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2923 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2924 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2925 GatherSeq.insert(Insrt); 2926 CSEBlocks.insert(Insrt->getParent()); 2927 2928 // Add to our 'need-to-extract' list. 2929 if (TreeEntry *E = getTreeEntry(VL[i])) { 2930 // Find which lane we need to extract. 2931 int FoundLane = -1; 2932 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2933 // Is this the lane of the scalar that we are looking for ? 2934 if (E->Scalars[Lane] == VL[i]) { 2935 FoundLane = Lane; 2936 break; 2937 } 2938 } 2939 assert(FoundLane >= 0 && "Could not find the correct lane"); 2940 if (!E->ReuseShuffleIndices.empty()) { 2941 FoundLane = 2942 std::distance(E->ReuseShuffleIndices.begin(), 2943 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2944 } 2945 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2946 } 2947 } 2948 } 2949 2950 return Vec; 2951 } 2952 2953 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2954 InstructionsState S = getSameOpcode(VL); 2955 if (S.getOpcode()) { 2956 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2957 if (E->isSame(VL)) { 2958 Value *V = vectorizeTree(E); 2959 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 2960 // We need to get the vectorized value but without shuffle. 2961 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 2962 V = SV->getOperand(0); 2963 } else { 2964 // Reshuffle to get only unique values. 2965 SmallVector<unsigned, 4> UniqueIdxs; 2966 SmallSet<unsigned, 4> UsedIdxs; 2967 for(unsigned Idx : E->ReuseShuffleIndices) 2968 if (UsedIdxs.insert(Idx).second) 2969 UniqueIdxs.emplace_back(Idx); 2970 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2971 UniqueIdxs); 2972 } 2973 } 2974 return V; 2975 } 2976 } 2977 } 2978 2979 Type *ScalarTy = S.OpValue->getType(); 2980 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2981 ScalarTy = SI->getValueOperand()->getType(); 2982 2983 // Check that every instruction appears once in this bundle. 2984 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2985 SmallVector<Value *, 4> UniqueValues; 2986 if (VL.size() > 2) { 2987 DenseMap<Value *, unsigned> UniquePositions; 2988 for (Value *V : VL) { 2989 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2990 ReuseShuffleIndicies.emplace_back(Res.first->second); 2991 if (Res.second || isa<Constant>(V)) 2992 UniqueValues.emplace_back(V); 2993 } 2994 // Do not shuffle single element or if number of unique values is not power 2995 // of 2. 2996 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 2997 !llvm::isPowerOf2_32(UniqueValues.size())) 2998 ReuseShuffleIndicies.clear(); 2999 else 3000 VL = UniqueValues; 3001 } 3002 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3003 3004 Value *V = Gather(VL, VecTy); 3005 if (!ReuseShuffleIndicies.empty()) { 3006 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3007 ReuseShuffleIndicies, "shuffle"); 3008 if (auto *I = dyn_cast<Instruction>(V)) { 3009 GatherSeq.insert(I); 3010 CSEBlocks.insert(I->getParent()); 3011 } 3012 } 3013 return V; 3014 } 3015 3016 static void inversePermutation(ArrayRef<unsigned> Indices, 3017 SmallVectorImpl<unsigned> &Mask) { 3018 Mask.clear(); 3019 const unsigned E = Indices.size(); 3020 Mask.resize(E); 3021 for (unsigned I = 0; I < E; ++I) 3022 Mask[Indices[I]] = I; 3023 } 3024 3025 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3026 IRBuilder<>::InsertPointGuard Guard(Builder); 3027 3028 if (E->VectorizedValue) { 3029 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3030 return E->VectorizedValue; 3031 } 3032 3033 InstructionsState S = getSameOpcode(E->Scalars); 3034 Instruction *VL0 = cast<Instruction>(S.OpValue); 3035 Type *ScalarTy = VL0->getType(); 3036 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3037 ScalarTy = SI->getValueOperand()->getType(); 3038 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3039 3040 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3041 3042 if (E->NeedToGather) { 3043 setInsertPointAfterBundle(E->Scalars, S); 3044 auto *V = Gather(E->Scalars, VecTy); 3045 if (NeedToShuffleReuses) { 3046 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3047 E->ReuseShuffleIndices, "shuffle"); 3048 if (auto *I = dyn_cast<Instruction>(V)) { 3049 GatherSeq.insert(I); 3050 CSEBlocks.insert(I->getParent()); 3051 } 3052 } 3053 E->VectorizedValue = V; 3054 return V; 3055 } 3056 3057 unsigned ShuffleOrOp = S.isAltShuffle() ? 3058 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3059 switch (ShuffleOrOp) { 3060 case Instruction::PHI: { 3061 PHINode *PH = dyn_cast<PHINode>(VL0); 3062 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3063 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3064 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3065 Value *V = NewPhi; 3066 if (NeedToShuffleReuses) { 3067 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3068 E->ReuseShuffleIndices, "shuffle"); 3069 } 3070 E->VectorizedValue = V; 3071 3072 // PHINodes may have multiple entries from the same block. We want to 3073 // visit every block once. 3074 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3075 3076 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3077 ValueList Operands; 3078 BasicBlock *IBB = PH->getIncomingBlock(i); 3079 3080 if (!VisitedBBs.insert(IBB).second) { 3081 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3082 continue; 3083 } 3084 3085 // Prepare the operand vector. 3086 for (Value *V : E->Scalars) 3087 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 3088 3089 Builder.SetInsertPoint(IBB->getTerminator()); 3090 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3091 Value *Vec = vectorizeTree(Operands); 3092 NewPhi->addIncoming(Vec, IBB); 3093 } 3094 3095 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3096 "Invalid number of incoming values"); 3097 return V; 3098 } 3099 3100 case Instruction::ExtractElement: { 3101 if (!E->NeedToGather) { 3102 Value *V = VL0->getOperand(0); 3103 if (!E->ReorderIndices.empty()) { 3104 OrdersType Mask; 3105 inversePermutation(E->ReorderIndices, Mask); 3106 Builder.SetInsertPoint(VL0); 3107 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3108 "reorder_shuffle"); 3109 } 3110 if (NeedToShuffleReuses) { 3111 // TODO: Merge this shuffle with the ReorderShuffleMask. 3112 if (E->ReorderIndices.empty()) 3113 Builder.SetInsertPoint(VL0); 3114 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3115 E->ReuseShuffleIndices, "shuffle"); 3116 } 3117 E->VectorizedValue = V; 3118 return V; 3119 } 3120 setInsertPointAfterBundle(E->Scalars, S); 3121 auto *V = Gather(E->Scalars, VecTy); 3122 if (NeedToShuffleReuses) { 3123 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3124 E->ReuseShuffleIndices, "shuffle"); 3125 if (auto *I = dyn_cast<Instruction>(V)) { 3126 GatherSeq.insert(I); 3127 CSEBlocks.insert(I->getParent()); 3128 } 3129 } 3130 E->VectorizedValue = V; 3131 return V; 3132 } 3133 case Instruction::ExtractValue: { 3134 if (!E->NeedToGather) { 3135 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3136 Builder.SetInsertPoint(LI); 3137 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3138 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3139 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 3140 Value *NewV = propagateMetadata(V, E->Scalars); 3141 if (!E->ReorderIndices.empty()) { 3142 OrdersType Mask; 3143 inversePermutation(E->ReorderIndices, Mask); 3144 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3145 "reorder_shuffle"); 3146 } 3147 if (NeedToShuffleReuses) { 3148 // TODO: Merge this shuffle with the ReorderShuffleMask. 3149 NewV = Builder.CreateShuffleVector( 3150 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3151 } 3152 E->VectorizedValue = NewV; 3153 return NewV; 3154 } 3155 setInsertPointAfterBundle(E->Scalars, S); 3156 auto *V = Gather(E->Scalars, VecTy); 3157 if (NeedToShuffleReuses) { 3158 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3159 E->ReuseShuffleIndices, "shuffle"); 3160 if (auto *I = dyn_cast<Instruction>(V)) { 3161 GatherSeq.insert(I); 3162 CSEBlocks.insert(I->getParent()); 3163 } 3164 } 3165 E->VectorizedValue = V; 3166 return V; 3167 } 3168 case Instruction::ZExt: 3169 case Instruction::SExt: 3170 case Instruction::FPToUI: 3171 case Instruction::FPToSI: 3172 case Instruction::FPExt: 3173 case Instruction::PtrToInt: 3174 case Instruction::IntToPtr: 3175 case Instruction::SIToFP: 3176 case Instruction::UIToFP: 3177 case Instruction::Trunc: 3178 case Instruction::FPTrunc: 3179 case Instruction::BitCast: { 3180 ValueList INVL; 3181 for (Value *V : E->Scalars) 3182 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3183 3184 setInsertPointAfterBundle(E->Scalars, S); 3185 3186 Value *InVec = vectorizeTree(INVL); 3187 3188 if (E->VectorizedValue) { 3189 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3190 return E->VectorizedValue; 3191 } 3192 3193 CastInst *CI = dyn_cast<CastInst>(VL0); 3194 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3195 if (NeedToShuffleReuses) { 3196 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3197 E->ReuseShuffleIndices, "shuffle"); 3198 } 3199 E->VectorizedValue = V; 3200 ++NumVectorInstructions; 3201 return V; 3202 } 3203 case Instruction::FCmp: 3204 case Instruction::ICmp: { 3205 ValueList LHSV, RHSV; 3206 for (Value *V : E->Scalars) { 3207 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3208 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3209 } 3210 3211 setInsertPointAfterBundle(E->Scalars, S); 3212 3213 Value *L = vectorizeTree(LHSV); 3214 Value *R = vectorizeTree(RHSV); 3215 3216 if (E->VectorizedValue) { 3217 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3218 return E->VectorizedValue; 3219 } 3220 3221 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3222 Value *V; 3223 if (S.getOpcode() == Instruction::FCmp) 3224 V = Builder.CreateFCmp(P0, L, R); 3225 else 3226 V = Builder.CreateICmp(P0, L, R); 3227 3228 propagateIRFlags(V, E->Scalars, VL0); 3229 if (NeedToShuffleReuses) { 3230 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3231 E->ReuseShuffleIndices, "shuffle"); 3232 } 3233 E->VectorizedValue = V; 3234 ++NumVectorInstructions; 3235 return V; 3236 } 3237 case Instruction::Select: { 3238 ValueList TrueVec, FalseVec, CondVec; 3239 for (Value *V : E->Scalars) { 3240 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3241 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3242 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3243 } 3244 3245 setInsertPointAfterBundle(E->Scalars, S); 3246 3247 Value *Cond = vectorizeTree(CondVec); 3248 Value *True = vectorizeTree(TrueVec); 3249 Value *False = vectorizeTree(FalseVec); 3250 3251 if (E->VectorizedValue) { 3252 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3253 return E->VectorizedValue; 3254 } 3255 3256 Value *V = Builder.CreateSelect(Cond, True, False); 3257 if (NeedToShuffleReuses) { 3258 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3259 E->ReuseShuffleIndices, "shuffle"); 3260 } 3261 E->VectorizedValue = V; 3262 ++NumVectorInstructions; 3263 return V; 3264 } 3265 case Instruction::Add: 3266 case Instruction::FAdd: 3267 case Instruction::Sub: 3268 case Instruction::FSub: 3269 case Instruction::Mul: 3270 case Instruction::FMul: 3271 case Instruction::UDiv: 3272 case Instruction::SDiv: 3273 case Instruction::FDiv: 3274 case Instruction::URem: 3275 case Instruction::SRem: 3276 case Instruction::FRem: 3277 case Instruction::Shl: 3278 case Instruction::LShr: 3279 case Instruction::AShr: 3280 case Instruction::And: 3281 case Instruction::Or: 3282 case Instruction::Xor: { 3283 ValueList LHSVL, RHSVL; 3284 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3285 reorderInputsAccordingToOpcode(S.getOpcode(), E->Scalars, LHSVL, 3286 RHSVL); 3287 else 3288 for (Value *V : E->Scalars) { 3289 auto *I = cast<Instruction>(V); 3290 LHSVL.push_back(I->getOperand(0)); 3291 RHSVL.push_back(I->getOperand(1)); 3292 } 3293 3294 setInsertPointAfterBundle(E->Scalars, S); 3295 3296 Value *LHS = vectorizeTree(LHSVL); 3297 Value *RHS = vectorizeTree(RHSVL); 3298 3299 if (E->VectorizedValue) { 3300 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3301 return E->VectorizedValue; 3302 } 3303 3304 Value *V = Builder.CreateBinOp( 3305 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3306 propagateIRFlags(V, E->Scalars, VL0); 3307 if (auto *I = dyn_cast<Instruction>(V)) 3308 V = propagateMetadata(I, E->Scalars); 3309 3310 if (NeedToShuffleReuses) { 3311 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3312 E->ReuseShuffleIndices, "shuffle"); 3313 } 3314 E->VectorizedValue = V; 3315 ++NumVectorInstructions; 3316 3317 return V; 3318 } 3319 case Instruction::Load: { 3320 // Loads are inserted at the head of the tree because we don't want to 3321 // sink them all the way down past store instructions. 3322 bool IsReorder = !E->ReorderIndices.empty(); 3323 if (IsReorder) { 3324 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3325 VL0 = cast<Instruction>(S.OpValue); 3326 } 3327 setInsertPointAfterBundle(E->Scalars, S); 3328 3329 LoadInst *LI = cast<LoadInst>(VL0); 3330 Type *ScalarLoadTy = LI->getType(); 3331 unsigned AS = LI->getPointerAddressSpace(); 3332 3333 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3334 VecTy->getPointerTo(AS)); 3335 3336 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3337 // ExternalUses list to make sure that an extract will be generated in the 3338 // future. 3339 Value *PO = LI->getPointerOperand(); 3340 if (getTreeEntry(PO)) 3341 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3342 3343 unsigned Alignment = LI->getAlignment(); 3344 LI = Builder.CreateLoad(VecPtr); 3345 if (!Alignment) { 3346 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3347 } 3348 LI->setAlignment(Alignment); 3349 Value *V = propagateMetadata(LI, E->Scalars); 3350 if (IsReorder) { 3351 OrdersType Mask; 3352 inversePermutation(E->ReorderIndices, Mask); 3353 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3354 Mask, "reorder_shuffle"); 3355 } 3356 if (NeedToShuffleReuses) { 3357 // TODO: Merge this shuffle with the ReorderShuffleMask. 3358 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3359 E->ReuseShuffleIndices, "shuffle"); 3360 } 3361 E->VectorizedValue = V; 3362 ++NumVectorInstructions; 3363 return V; 3364 } 3365 case Instruction::Store: { 3366 StoreInst *SI = cast<StoreInst>(VL0); 3367 unsigned Alignment = SI->getAlignment(); 3368 unsigned AS = SI->getPointerAddressSpace(); 3369 3370 ValueList ScalarStoreValues; 3371 for (Value *V : E->Scalars) 3372 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3373 3374 setInsertPointAfterBundle(E->Scalars, S); 3375 3376 Value *VecValue = vectorizeTree(ScalarStoreValues); 3377 Value *ScalarPtr = SI->getPointerOperand(); 3378 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3379 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3380 3381 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3382 // ExternalUses to make sure that an extract will be generated in the 3383 // future. 3384 if (getTreeEntry(ScalarPtr)) 3385 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3386 3387 if (!Alignment) 3388 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3389 3390 ST->setAlignment(Alignment); 3391 Value *V = propagateMetadata(ST, E->Scalars); 3392 if (NeedToShuffleReuses) { 3393 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3394 E->ReuseShuffleIndices, "shuffle"); 3395 } 3396 E->VectorizedValue = V; 3397 ++NumVectorInstructions; 3398 return V; 3399 } 3400 case Instruction::GetElementPtr: { 3401 setInsertPointAfterBundle(E->Scalars, S); 3402 3403 ValueList Op0VL; 3404 for (Value *V : E->Scalars) 3405 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3406 3407 Value *Op0 = vectorizeTree(Op0VL); 3408 3409 std::vector<Value *> OpVecs; 3410 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3411 ++j) { 3412 ValueList OpVL; 3413 for (Value *V : E->Scalars) 3414 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3415 3416 Value *OpVec = vectorizeTree(OpVL); 3417 OpVecs.push_back(OpVec); 3418 } 3419 3420 Value *V = Builder.CreateGEP( 3421 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3422 if (Instruction *I = dyn_cast<Instruction>(V)) 3423 V = propagateMetadata(I, E->Scalars); 3424 3425 if (NeedToShuffleReuses) { 3426 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3427 E->ReuseShuffleIndices, "shuffle"); 3428 } 3429 E->VectorizedValue = V; 3430 ++NumVectorInstructions; 3431 3432 return V; 3433 } 3434 case Instruction::Call: { 3435 CallInst *CI = cast<CallInst>(VL0); 3436 setInsertPointAfterBundle(E->Scalars, S); 3437 Function *FI; 3438 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3439 Value *ScalarArg = nullptr; 3440 if (CI && (FI = CI->getCalledFunction())) { 3441 IID = FI->getIntrinsicID(); 3442 } 3443 std::vector<Value *> OpVecs; 3444 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3445 ValueList OpVL; 3446 // ctlz,cttz and powi are special intrinsics whose second argument is 3447 // a scalar. This argument should not be vectorized. 3448 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3449 CallInst *CEI = cast<CallInst>(VL0); 3450 ScalarArg = CEI->getArgOperand(j); 3451 OpVecs.push_back(CEI->getArgOperand(j)); 3452 continue; 3453 } 3454 for (Value *V : E->Scalars) { 3455 CallInst *CEI = cast<CallInst>(V); 3456 OpVL.push_back(CEI->getArgOperand(j)); 3457 } 3458 3459 Value *OpVec = vectorizeTree(OpVL); 3460 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3461 OpVecs.push_back(OpVec); 3462 } 3463 3464 Module *M = F->getParent(); 3465 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3466 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3467 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3468 SmallVector<OperandBundleDef, 1> OpBundles; 3469 CI->getOperandBundlesAsDefs(OpBundles); 3470 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3471 3472 // The scalar argument uses an in-tree scalar so we add the new vectorized 3473 // call to ExternalUses list to make sure that an extract will be 3474 // generated in the future. 3475 if (ScalarArg && getTreeEntry(ScalarArg)) 3476 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3477 3478 propagateIRFlags(V, E->Scalars, VL0); 3479 if (NeedToShuffleReuses) { 3480 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3481 E->ReuseShuffleIndices, "shuffle"); 3482 } 3483 E->VectorizedValue = V; 3484 ++NumVectorInstructions; 3485 return V; 3486 } 3487 case Instruction::ShuffleVector: { 3488 ValueList LHSVL, RHSVL; 3489 assert(S.isAltShuffle() && 3490 ((Instruction::isBinaryOp(S.getOpcode()) && 3491 Instruction::isBinaryOp(S.getAltOpcode())) || 3492 (Instruction::isCast(S.getOpcode()) && 3493 Instruction::isCast(S.getAltOpcode()))) && 3494 "Invalid Shuffle Vector Operand"); 3495 3496 Value *LHS, *RHS; 3497 if (Instruction::isBinaryOp(S.getOpcode())) { 3498 reorderAltShuffleOperands(S, E->Scalars, LHSVL, RHSVL); 3499 setInsertPointAfterBundle(E->Scalars, S); 3500 LHS = vectorizeTree(LHSVL); 3501 RHS = vectorizeTree(RHSVL); 3502 } else { 3503 ValueList INVL; 3504 for (Value *V : E->Scalars) 3505 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3506 setInsertPointAfterBundle(E->Scalars, S); 3507 LHS = vectorizeTree(INVL); 3508 } 3509 3510 if (E->VectorizedValue) { 3511 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3512 return E->VectorizedValue; 3513 } 3514 3515 Value *V0, *V1; 3516 if (Instruction::isBinaryOp(S.getOpcode())) { 3517 V0 = Builder.CreateBinOp( 3518 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3519 V1 = Builder.CreateBinOp( 3520 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3521 } else { 3522 V0 = Builder.CreateCast( 3523 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3524 V1 = Builder.CreateCast( 3525 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3526 } 3527 3528 // Create shuffle to take alternate operations from the vector. 3529 // Also, gather up main and alt scalar ops to propagate IR flags to 3530 // each vector operation. 3531 ValueList OpScalars, AltScalars; 3532 unsigned e = E->Scalars.size(); 3533 SmallVector<Constant *, 8> Mask(e); 3534 for (unsigned i = 0; i < e; ++i) { 3535 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3536 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3537 if (OpInst->getOpcode() == S.getAltOpcode()) { 3538 Mask[i] = Builder.getInt32(e + i); 3539 AltScalars.push_back(E->Scalars[i]); 3540 } else { 3541 Mask[i] = Builder.getInt32(i); 3542 OpScalars.push_back(E->Scalars[i]); 3543 } 3544 } 3545 3546 Value *ShuffleMask = ConstantVector::get(Mask); 3547 propagateIRFlags(V0, OpScalars); 3548 propagateIRFlags(V1, AltScalars); 3549 3550 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3551 if (Instruction *I = dyn_cast<Instruction>(V)) 3552 V = propagateMetadata(I, E->Scalars); 3553 if (NeedToShuffleReuses) { 3554 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3555 E->ReuseShuffleIndices, "shuffle"); 3556 } 3557 E->VectorizedValue = V; 3558 ++NumVectorInstructions; 3559 3560 return V; 3561 } 3562 default: 3563 llvm_unreachable("unknown inst"); 3564 } 3565 return nullptr; 3566 } 3567 3568 Value *BoUpSLP::vectorizeTree() { 3569 ExtraValueToDebugLocsMap ExternallyUsedValues; 3570 return vectorizeTree(ExternallyUsedValues); 3571 } 3572 3573 Value * 3574 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3575 // All blocks must be scheduled before any instructions are inserted. 3576 for (auto &BSIter : BlocksSchedules) { 3577 scheduleBlock(BSIter.second.get()); 3578 } 3579 3580 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3581 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3582 3583 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3584 // vectorized root. InstCombine will then rewrite the entire expression. We 3585 // sign extend the extracted values below. 3586 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3587 if (MinBWs.count(ScalarRoot)) { 3588 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3589 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3590 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3591 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3592 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3593 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3594 VectorizableTree[0].VectorizedValue = Trunc; 3595 } 3596 3597 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3598 << " values .\n"); 3599 3600 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3601 // specified by ScalarType. 3602 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3603 if (!MinBWs.count(ScalarRoot)) 3604 return Ex; 3605 if (MinBWs[ScalarRoot].second) 3606 return Builder.CreateSExt(Ex, ScalarType); 3607 return Builder.CreateZExt(Ex, ScalarType); 3608 }; 3609 3610 // Extract all of the elements with the external uses. 3611 for (const auto &ExternalUse : ExternalUses) { 3612 Value *Scalar = ExternalUse.Scalar; 3613 llvm::User *User = ExternalUse.User; 3614 3615 // Skip users that we already RAUW. This happens when one instruction 3616 // has multiple uses of the same value. 3617 if (User && !is_contained(Scalar->users(), User)) 3618 continue; 3619 TreeEntry *E = getTreeEntry(Scalar); 3620 assert(E && "Invalid scalar"); 3621 assert(!E->NeedToGather && "Extracting from a gather list"); 3622 3623 Value *Vec = E->VectorizedValue; 3624 assert(Vec && "Can't find vectorizable value"); 3625 3626 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3627 // If User == nullptr, the Scalar is used as extra arg. Generate 3628 // ExtractElement instruction and update the record for this scalar in 3629 // ExternallyUsedValues. 3630 if (!User) { 3631 assert(ExternallyUsedValues.count(Scalar) && 3632 "Scalar with nullptr as an external user must be registered in " 3633 "ExternallyUsedValues map"); 3634 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3635 Builder.SetInsertPoint(VecI->getParent(), 3636 std::next(VecI->getIterator())); 3637 } else { 3638 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3639 } 3640 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3641 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3642 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3643 auto &Locs = ExternallyUsedValues[Scalar]; 3644 ExternallyUsedValues.insert({Ex, Locs}); 3645 ExternallyUsedValues.erase(Scalar); 3646 // Required to update internally referenced instructions. 3647 Scalar->replaceAllUsesWith(Ex); 3648 continue; 3649 } 3650 3651 // Generate extracts for out-of-tree users. 3652 // Find the insertion point for the extractelement lane. 3653 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3654 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3655 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3656 if (PH->getIncomingValue(i) == Scalar) { 3657 Instruction *IncomingTerminator = 3658 PH->getIncomingBlock(i)->getTerminator(); 3659 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3660 Builder.SetInsertPoint(VecI->getParent(), 3661 std::next(VecI->getIterator())); 3662 } else { 3663 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3664 } 3665 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3666 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3667 CSEBlocks.insert(PH->getIncomingBlock(i)); 3668 PH->setOperand(i, Ex); 3669 } 3670 } 3671 } else { 3672 Builder.SetInsertPoint(cast<Instruction>(User)); 3673 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3674 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3675 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3676 User->replaceUsesOfWith(Scalar, Ex); 3677 } 3678 } else { 3679 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3680 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3681 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3682 CSEBlocks.insert(&F->getEntryBlock()); 3683 User->replaceUsesOfWith(Scalar, Ex); 3684 } 3685 3686 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3687 } 3688 3689 // For each vectorized value: 3690 for (TreeEntry &EIdx : VectorizableTree) { 3691 TreeEntry *Entry = &EIdx; 3692 3693 // No need to handle users of gathered values. 3694 if (Entry->NeedToGather) 3695 continue; 3696 3697 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3698 3699 // For each lane: 3700 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3701 Value *Scalar = Entry->Scalars[Lane]; 3702 3703 Type *Ty = Scalar->getType(); 3704 if (!Ty->isVoidTy()) { 3705 #ifndef NDEBUG 3706 for (User *U : Scalar->users()) { 3707 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3708 3709 // It is legal to replace users in the ignorelist by undef. 3710 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3711 "Replacing out-of-tree value with undef"); 3712 } 3713 #endif 3714 Value *Undef = UndefValue::get(Ty); 3715 Scalar->replaceAllUsesWith(Undef); 3716 } 3717 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3718 eraseInstruction(cast<Instruction>(Scalar)); 3719 } 3720 } 3721 3722 Builder.ClearInsertionPoint(); 3723 3724 return VectorizableTree[0].VectorizedValue; 3725 } 3726 3727 void BoUpSLP::optimizeGatherSequence() { 3728 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3729 << " gather sequences instructions.\n"); 3730 // LICM InsertElementInst sequences. 3731 for (Instruction *I : GatherSeq) { 3732 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3733 continue; 3734 3735 // Check if this block is inside a loop. 3736 Loop *L = LI->getLoopFor(I->getParent()); 3737 if (!L) 3738 continue; 3739 3740 // Check if it has a preheader. 3741 BasicBlock *PreHeader = L->getLoopPreheader(); 3742 if (!PreHeader) 3743 continue; 3744 3745 // If the vector or the element that we insert into it are 3746 // instructions that are defined in this basic block then we can't 3747 // hoist this instruction. 3748 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3749 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3750 if (Op0 && L->contains(Op0)) 3751 continue; 3752 if (Op1 && L->contains(Op1)) 3753 continue; 3754 3755 // We can hoist this instruction. Move it to the pre-header. 3756 I->moveBefore(PreHeader->getTerminator()); 3757 } 3758 3759 // Make a list of all reachable blocks in our CSE queue. 3760 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3761 CSEWorkList.reserve(CSEBlocks.size()); 3762 for (BasicBlock *BB : CSEBlocks) 3763 if (DomTreeNode *N = DT->getNode(BB)) { 3764 assert(DT->isReachableFromEntry(N)); 3765 CSEWorkList.push_back(N); 3766 } 3767 3768 // Sort blocks by domination. This ensures we visit a block after all blocks 3769 // dominating it are visited. 3770 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3771 [this](const DomTreeNode *A, const DomTreeNode *B) { 3772 return DT->properlyDominates(A, B); 3773 }); 3774 3775 // Perform O(N^2) search over the gather sequences and merge identical 3776 // instructions. TODO: We can further optimize this scan if we split the 3777 // instructions into different buckets based on the insert lane. 3778 SmallVector<Instruction *, 16> Visited; 3779 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3780 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3781 "Worklist not sorted properly!"); 3782 BasicBlock *BB = (*I)->getBlock(); 3783 // For all instructions in blocks containing gather sequences: 3784 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3785 Instruction *In = &*it++; 3786 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3787 continue; 3788 3789 // Check if we can replace this instruction with any of the 3790 // visited instructions. 3791 for (Instruction *v : Visited) { 3792 if (In->isIdenticalTo(v) && 3793 DT->dominates(v->getParent(), In->getParent())) { 3794 In->replaceAllUsesWith(v); 3795 eraseInstruction(In); 3796 In = nullptr; 3797 break; 3798 } 3799 } 3800 if (In) { 3801 assert(!is_contained(Visited, In)); 3802 Visited.push_back(In); 3803 } 3804 } 3805 } 3806 CSEBlocks.clear(); 3807 GatherSeq.clear(); 3808 } 3809 3810 // Groups the instructions to a bundle (which is then a single scheduling entity) 3811 // and schedules instructions until the bundle gets ready. 3812 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3813 BoUpSLP *SLP, 3814 const InstructionsState &S) { 3815 if (isa<PHINode>(S.OpValue)) 3816 return true; 3817 3818 // Initialize the instruction bundle. 3819 Instruction *OldScheduleEnd = ScheduleEnd; 3820 ScheduleData *PrevInBundle = nullptr; 3821 ScheduleData *Bundle = nullptr; 3822 bool ReSchedule = false; 3823 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 3824 3825 // Make sure that the scheduling region contains all 3826 // instructions of the bundle. 3827 for (Value *V : VL) { 3828 if (!extendSchedulingRegion(V, S)) 3829 return false; 3830 } 3831 3832 for (Value *V : VL) { 3833 ScheduleData *BundleMember = getScheduleData(V); 3834 assert(BundleMember && 3835 "no ScheduleData for bundle member (maybe not in same basic block)"); 3836 if (BundleMember->IsScheduled) { 3837 // A bundle member was scheduled as single instruction before and now 3838 // needs to be scheduled as part of the bundle. We just get rid of the 3839 // existing schedule. 3840 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3841 << " was already scheduled\n"); 3842 ReSchedule = true; 3843 } 3844 assert(BundleMember->isSchedulingEntity() && 3845 "bundle member already part of other bundle"); 3846 if (PrevInBundle) { 3847 PrevInBundle->NextInBundle = BundleMember; 3848 } else { 3849 Bundle = BundleMember; 3850 } 3851 BundleMember->UnscheduledDepsInBundle = 0; 3852 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3853 3854 // Group the instructions to a bundle. 3855 BundleMember->FirstInBundle = Bundle; 3856 PrevInBundle = BundleMember; 3857 } 3858 if (ScheduleEnd != OldScheduleEnd) { 3859 // The scheduling region got new instructions at the lower end (or it is a 3860 // new region for the first bundle). This makes it necessary to 3861 // recalculate all dependencies. 3862 // It is seldom that this needs to be done a second time after adding the 3863 // initial bundle to the region. 3864 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3865 doForAllOpcodes(I, [](ScheduleData *SD) { 3866 SD->clearDependencies(); 3867 }); 3868 } 3869 ReSchedule = true; 3870 } 3871 if (ReSchedule) { 3872 resetSchedule(); 3873 initialFillReadyList(ReadyInsts); 3874 } 3875 3876 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3877 << BB->getName() << "\n"); 3878 3879 calculateDependencies(Bundle, true, SLP); 3880 3881 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3882 // means that there are no cyclic dependencies and we can schedule it. 3883 // Note that's important that we don't "schedule" the bundle yet (see 3884 // cancelScheduling). 3885 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3886 3887 ScheduleData *pickedSD = ReadyInsts.back(); 3888 ReadyInsts.pop_back(); 3889 3890 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3891 schedule(pickedSD, ReadyInsts); 3892 } 3893 } 3894 if (!Bundle->isReady()) { 3895 cancelScheduling(VL, S.OpValue); 3896 return false; 3897 } 3898 return true; 3899 } 3900 3901 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3902 Value *OpValue) { 3903 if (isa<PHINode>(OpValue)) 3904 return; 3905 3906 ScheduleData *Bundle = getScheduleData(OpValue); 3907 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3908 assert(!Bundle->IsScheduled && 3909 "Can't cancel bundle which is already scheduled"); 3910 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3911 "tried to unbundle something which is not a bundle"); 3912 3913 // Un-bundle: make single instructions out of the bundle. 3914 ScheduleData *BundleMember = Bundle; 3915 while (BundleMember) { 3916 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3917 BundleMember->FirstInBundle = BundleMember; 3918 ScheduleData *Next = BundleMember->NextInBundle; 3919 BundleMember->NextInBundle = nullptr; 3920 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3921 if (BundleMember->UnscheduledDepsInBundle == 0) { 3922 ReadyInsts.insert(BundleMember); 3923 } 3924 BundleMember = Next; 3925 } 3926 } 3927 3928 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3929 // Allocate a new ScheduleData for the instruction. 3930 if (ChunkPos >= ChunkSize) { 3931 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3932 ChunkPos = 0; 3933 } 3934 return &(ScheduleDataChunks.back()[ChunkPos++]); 3935 } 3936 3937 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3938 const InstructionsState &S) { 3939 if (getScheduleData(V, isOneOf(S, V))) 3940 return true; 3941 Instruction *I = dyn_cast<Instruction>(V); 3942 assert(I && "bundle member must be an instruction"); 3943 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3944 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 3945 ScheduleData *ISD = getScheduleData(I); 3946 if (!ISD) 3947 return false; 3948 assert(isInSchedulingRegion(ISD) && 3949 "ScheduleData not in scheduling region"); 3950 ScheduleData *SD = allocateScheduleDataChunks(); 3951 SD->Inst = I; 3952 SD->init(SchedulingRegionID, S.OpValue); 3953 ExtraScheduleDataMap[I][S.OpValue] = SD; 3954 return true; 3955 }; 3956 if (CheckSheduleForI(I)) 3957 return true; 3958 if (!ScheduleStart) { 3959 // It's the first instruction in the new region. 3960 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3961 ScheduleStart = I; 3962 ScheduleEnd = I->getNextNode(); 3963 if (isOneOf(S, I) != I) 3964 CheckSheduleForI(I); 3965 assert(ScheduleEnd && "tried to vectorize a terminator?"); 3966 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3967 return true; 3968 } 3969 // Search up and down at the same time, because we don't know if the new 3970 // instruction is above or below the existing scheduling region. 3971 BasicBlock::reverse_iterator UpIter = 3972 ++ScheduleStart->getIterator().getReverse(); 3973 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3974 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3975 BasicBlock::iterator LowerEnd = BB->end(); 3976 while (true) { 3977 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3978 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3979 return false; 3980 } 3981 3982 if (UpIter != UpperEnd) { 3983 if (&*UpIter == I) { 3984 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3985 ScheduleStart = I; 3986 if (isOneOf(S, I) != I) 3987 CheckSheduleForI(I); 3988 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 3989 << "\n"); 3990 return true; 3991 } 3992 UpIter++; 3993 } 3994 if (DownIter != LowerEnd) { 3995 if (&*DownIter == I) { 3996 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3997 nullptr); 3998 ScheduleEnd = I->getNextNode(); 3999 if (isOneOf(S, I) != I) 4000 CheckSheduleForI(I); 4001 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4002 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4003 << "\n"); 4004 return true; 4005 } 4006 DownIter++; 4007 } 4008 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4009 "instruction not found in block"); 4010 } 4011 return true; 4012 } 4013 4014 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4015 Instruction *ToI, 4016 ScheduleData *PrevLoadStore, 4017 ScheduleData *NextLoadStore) { 4018 ScheduleData *CurrentLoadStore = PrevLoadStore; 4019 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4020 ScheduleData *SD = ScheduleDataMap[I]; 4021 if (!SD) { 4022 SD = allocateScheduleDataChunks(); 4023 ScheduleDataMap[I] = SD; 4024 SD->Inst = I; 4025 } 4026 assert(!isInSchedulingRegion(SD) && 4027 "new ScheduleData already in scheduling region"); 4028 SD->init(SchedulingRegionID, I); 4029 4030 if (I->mayReadOrWriteMemory() && 4031 (!isa<IntrinsicInst>(I) || 4032 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4033 // Update the linked list of memory accessing instructions. 4034 if (CurrentLoadStore) { 4035 CurrentLoadStore->NextLoadStore = SD; 4036 } else { 4037 FirstLoadStoreInRegion = SD; 4038 } 4039 CurrentLoadStore = SD; 4040 } 4041 } 4042 if (NextLoadStore) { 4043 if (CurrentLoadStore) 4044 CurrentLoadStore->NextLoadStore = NextLoadStore; 4045 } else { 4046 LastLoadStoreInRegion = CurrentLoadStore; 4047 } 4048 } 4049 4050 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4051 bool InsertInReadyList, 4052 BoUpSLP *SLP) { 4053 assert(SD->isSchedulingEntity()); 4054 4055 SmallVector<ScheduleData *, 10> WorkList; 4056 WorkList.push_back(SD); 4057 4058 while (!WorkList.empty()) { 4059 ScheduleData *SD = WorkList.back(); 4060 WorkList.pop_back(); 4061 4062 ScheduleData *BundleMember = SD; 4063 while (BundleMember) { 4064 assert(isInSchedulingRegion(BundleMember)); 4065 if (!BundleMember->hasValidDependencies()) { 4066 4067 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4068 << "\n"); 4069 BundleMember->Dependencies = 0; 4070 BundleMember->resetUnscheduledDeps(); 4071 4072 // Handle def-use chain dependencies. 4073 if (BundleMember->OpValue != BundleMember->Inst) { 4074 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4075 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4076 BundleMember->Dependencies++; 4077 ScheduleData *DestBundle = UseSD->FirstInBundle; 4078 if (!DestBundle->IsScheduled) 4079 BundleMember->incrementUnscheduledDeps(1); 4080 if (!DestBundle->hasValidDependencies()) 4081 WorkList.push_back(DestBundle); 4082 } 4083 } else { 4084 for (User *U : BundleMember->Inst->users()) { 4085 if (isa<Instruction>(U)) { 4086 ScheduleData *UseSD = getScheduleData(U); 4087 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4088 BundleMember->Dependencies++; 4089 ScheduleData *DestBundle = UseSD->FirstInBundle; 4090 if (!DestBundle->IsScheduled) 4091 BundleMember->incrementUnscheduledDeps(1); 4092 if (!DestBundle->hasValidDependencies()) 4093 WorkList.push_back(DestBundle); 4094 } 4095 } else { 4096 // I'm not sure if this can ever happen. But we need to be safe. 4097 // This lets the instruction/bundle never be scheduled and 4098 // eventually disable vectorization. 4099 BundleMember->Dependencies++; 4100 BundleMember->incrementUnscheduledDeps(1); 4101 } 4102 } 4103 } 4104 4105 // Handle the memory dependencies. 4106 ScheduleData *DepDest = BundleMember->NextLoadStore; 4107 if (DepDest) { 4108 Instruction *SrcInst = BundleMember->Inst; 4109 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4110 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4111 unsigned numAliased = 0; 4112 unsigned DistToSrc = 1; 4113 4114 while (DepDest) { 4115 assert(isInSchedulingRegion(DepDest)); 4116 4117 // We have two limits to reduce the complexity: 4118 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4119 // SLP->isAliased (which is the expensive part in this loop). 4120 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4121 // the whole loop (even if the loop is fast, it's quadratic). 4122 // It's important for the loop break condition (see below) to 4123 // check this limit even between two read-only instructions. 4124 if (DistToSrc >= MaxMemDepDistance || 4125 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4126 (numAliased >= AliasedCheckLimit || 4127 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4128 4129 // We increment the counter only if the locations are aliased 4130 // (instead of counting all alias checks). This gives a better 4131 // balance between reduced runtime and accurate dependencies. 4132 numAliased++; 4133 4134 DepDest->MemoryDependencies.push_back(BundleMember); 4135 BundleMember->Dependencies++; 4136 ScheduleData *DestBundle = DepDest->FirstInBundle; 4137 if (!DestBundle->IsScheduled) { 4138 BundleMember->incrementUnscheduledDeps(1); 4139 } 4140 if (!DestBundle->hasValidDependencies()) { 4141 WorkList.push_back(DestBundle); 4142 } 4143 } 4144 DepDest = DepDest->NextLoadStore; 4145 4146 // Example, explaining the loop break condition: Let's assume our 4147 // starting instruction is i0 and MaxMemDepDistance = 3. 4148 // 4149 // +--------v--v--v 4150 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4151 // +--------^--^--^ 4152 // 4153 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4154 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4155 // Previously we already added dependencies from i3 to i6,i7,i8 4156 // (because of MaxMemDepDistance). As we added a dependency from 4157 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4158 // and we can abort this loop at i6. 4159 if (DistToSrc >= 2 * MaxMemDepDistance) 4160 break; 4161 DistToSrc++; 4162 } 4163 } 4164 } 4165 BundleMember = BundleMember->NextInBundle; 4166 } 4167 if (InsertInReadyList && SD->isReady()) { 4168 ReadyInsts.push_back(SD); 4169 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4170 << "\n"); 4171 } 4172 } 4173 } 4174 4175 void BoUpSLP::BlockScheduling::resetSchedule() { 4176 assert(ScheduleStart && 4177 "tried to reset schedule on block which has not been scheduled"); 4178 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4179 doForAllOpcodes(I, [&](ScheduleData *SD) { 4180 assert(isInSchedulingRegion(SD) && 4181 "ScheduleData not in scheduling region"); 4182 SD->IsScheduled = false; 4183 SD->resetUnscheduledDeps(); 4184 }); 4185 } 4186 ReadyInsts.clear(); 4187 } 4188 4189 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4190 if (!BS->ScheduleStart) 4191 return; 4192 4193 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4194 4195 BS->resetSchedule(); 4196 4197 // For the real scheduling we use a more sophisticated ready-list: it is 4198 // sorted by the original instruction location. This lets the final schedule 4199 // be as close as possible to the original instruction order. 4200 struct ScheduleDataCompare { 4201 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4202 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4203 } 4204 }; 4205 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4206 4207 // Ensure that all dependency data is updated and fill the ready-list with 4208 // initial instructions. 4209 int Idx = 0; 4210 int NumToSchedule = 0; 4211 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4212 I = I->getNextNode()) { 4213 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4214 assert(SD->isPartOfBundle() == 4215 (getTreeEntry(SD->Inst) != nullptr) && 4216 "scheduler and vectorizer bundle mismatch"); 4217 SD->FirstInBundle->SchedulingPriority = Idx++; 4218 if (SD->isSchedulingEntity()) { 4219 BS->calculateDependencies(SD, false, this); 4220 NumToSchedule++; 4221 } 4222 }); 4223 } 4224 BS->initialFillReadyList(ReadyInsts); 4225 4226 Instruction *LastScheduledInst = BS->ScheduleEnd; 4227 4228 // Do the "real" scheduling. 4229 while (!ReadyInsts.empty()) { 4230 ScheduleData *picked = *ReadyInsts.begin(); 4231 ReadyInsts.erase(ReadyInsts.begin()); 4232 4233 // Move the scheduled instruction(s) to their dedicated places, if not 4234 // there yet. 4235 ScheduleData *BundleMember = picked; 4236 while (BundleMember) { 4237 Instruction *pickedInst = BundleMember->Inst; 4238 if (LastScheduledInst->getNextNode() != pickedInst) { 4239 BS->BB->getInstList().remove(pickedInst); 4240 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4241 pickedInst); 4242 } 4243 LastScheduledInst = pickedInst; 4244 BundleMember = BundleMember->NextInBundle; 4245 } 4246 4247 BS->schedule(picked, ReadyInsts); 4248 NumToSchedule--; 4249 } 4250 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4251 4252 // Avoid duplicate scheduling of the block. 4253 BS->ScheduleStart = nullptr; 4254 } 4255 4256 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4257 // If V is a store, just return the width of the stored value without 4258 // traversing the expression tree. This is the common case. 4259 if (auto *Store = dyn_cast<StoreInst>(V)) 4260 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4261 4262 // If V is not a store, we can traverse the expression tree to find loads 4263 // that feed it. The type of the loaded value may indicate a more suitable 4264 // width than V's type. We want to base the vector element size on the width 4265 // of memory operations where possible. 4266 SmallVector<Instruction *, 16> Worklist; 4267 SmallPtrSet<Instruction *, 16> Visited; 4268 if (auto *I = dyn_cast<Instruction>(V)) 4269 Worklist.push_back(I); 4270 4271 // Traverse the expression tree in bottom-up order looking for loads. If we 4272 // encounter an instruciton we don't yet handle, we give up. 4273 auto MaxWidth = 0u; 4274 auto FoundUnknownInst = false; 4275 while (!Worklist.empty() && !FoundUnknownInst) { 4276 auto *I = Worklist.pop_back_val(); 4277 Visited.insert(I); 4278 4279 // We should only be looking at scalar instructions here. If the current 4280 // instruction has a vector type, give up. 4281 auto *Ty = I->getType(); 4282 if (isa<VectorType>(Ty)) 4283 FoundUnknownInst = true; 4284 4285 // If the current instruction is a load, update MaxWidth to reflect the 4286 // width of the loaded value. 4287 else if (isa<LoadInst>(I)) 4288 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4289 4290 // Otherwise, we need to visit the operands of the instruction. We only 4291 // handle the interesting cases from buildTree here. If an operand is an 4292 // instruction we haven't yet visited, we add it to the worklist. 4293 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4294 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4295 for (Use &U : I->operands()) 4296 if (auto *J = dyn_cast<Instruction>(U.get())) 4297 if (!Visited.count(J)) 4298 Worklist.push_back(J); 4299 } 4300 4301 // If we don't yet handle the instruction, give up. 4302 else 4303 FoundUnknownInst = true; 4304 } 4305 4306 // If we didn't encounter a memory access in the expression tree, or if we 4307 // gave up for some reason, just return the width of V. 4308 if (!MaxWidth || FoundUnknownInst) 4309 return DL->getTypeSizeInBits(V->getType()); 4310 4311 // Otherwise, return the maximum width we found. 4312 return MaxWidth; 4313 } 4314 4315 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4316 // smaller type with a truncation. We collect the values that will be demoted 4317 // in ToDemote and additional roots that require investigating in Roots. 4318 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4319 SmallVectorImpl<Value *> &ToDemote, 4320 SmallVectorImpl<Value *> &Roots) { 4321 // We can always demote constants. 4322 if (isa<Constant>(V)) { 4323 ToDemote.push_back(V); 4324 return true; 4325 } 4326 4327 // If the value is not an instruction in the expression with only one use, it 4328 // cannot be demoted. 4329 auto *I = dyn_cast<Instruction>(V); 4330 if (!I || !I->hasOneUse() || !Expr.count(I)) 4331 return false; 4332 4333 switch (I->getOpcode()) { 4334 4335 // We can always demote truncations and extensions. Since truncations can 4336 // seed additional demotion, we save the truncated value. 4337 case Instruction::Trunc: 4338 Roots.push_back(I->getOperand(0)); 4339 break; 4340 case Instruction::ZExt: 4341 case Instruction::SExt: 4342 break; 4343 4344 // We can demote certain binary operations if we can demote both of their 4345 // operands. 4346 case Instruction::Add: 4347 case Instruction::Sub: 4348 case Instruction::Mul: 4349 case Instruction::And: 4350 case Instruction::Or: 4351 case Instruction::Xor: 4352 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4353 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4354 return false; 4355 break; 4356 4357 // We can demote selects if we can demote their true and false values. 4358 case Instruction::Select: { 4359 SelectInst *SI = cast<SelectInst>(I); 4360 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4361 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4362 return false; 4363 break; 4364 } 4365 4366 // We can demote phis if we can demote all their incoming operands. Note that 4367 // we don't need to worry about cycles since we ensure single use above. 4368 case Instruction::PHI: { 4369 PHINode *PN = cast<PHINode>(I); 4370 for (Value *IncValue : PN->incoming_values()) 4371 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4372 return false; 4373 break; 4374 } 4375 4376 // Otherwise, conservatively give up. 4377 default: 4378 return false; 4379 } 4380 4381 // Record the value that we can demote. 4382 ToDemote.push_back(V); 4383 return true; 4384 } 4385 4386 void BoUpSLP::computeMinimumValueSizes() { 4387 // If there are no external uses, the expression tree must be rooted by a 4388 // store. We can't demote in-memory values, so there is nothing to do here. 4389 if (ExternalUses.empty()) 4390 return; 4391 4392 // We only attempt to truncate integer expressions. 4393 auto &TreeRoot = VectorizableTree[0].Scalars; 4394 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4395 if (!TreeRootIT) 4396 return; 4397 4398 // If the expression is not rooted by a store, these roots should have 4399 // external uses. We will rely on InstCombine to rewrite the expression in 4400 // the narrower type. However, InstCombine only rewrites single-use values. 4401 // This means that if a tree entry other than a root is used externally, it 4402 // must have multiple uses and InstCombine will not rewrite it. The code 4403 // below ensures that only the roots are used externally. 4404 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4405 for (auto &EU : ExternalUses) 4406 if (!Expr.erase(EU.Scalar)) 4407 return; 4408 if (!Expr.empty()) 4409 return; 4410 4411 // Collect the scalar values of the vectorizable expression. We will use this 4412 // context to determine which values can be demoted. If we see a truncation, 4413 // we mark it as seeding another demotion. 4414 for (auto &Entry : VectorizableTree) 4415 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4416 4417 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4418 // have a single external user that is not in the vectorizable tree. 4419 for (auto *Root : TreeRoot) 4420 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4421 return; 4422 4423 // Conservatively determine if we can actually truncate the roots of the 4424 // expression. Collect the values that can be demoted in ToDemote and 4425 // additional roots that require investigating in Roots. 4426 SmallVector<Value *, 32> ToDemote; 4427 SmallVector<Value *, 4> Roots; 4428 for (auto *Root : TreeRoot) 4429 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4430 return; 4431 4432 // The maximum bit width required to represent all the values that can be 4433 // demoted without loss of precision. It would be safe to truncate the roots 4434 // of the expression to this width. 4435 auto MaxBitWidth = 8u; 4436 4437 // We first check if all the bits of the roots are demanded. If they're not, 4438 // we can truncate the roots to this narrower type. 4439 for (auto *Root : TreeRoot) { 4440 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4441 MaxBitWidth = std::max<unsigned>( 4442 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4443 } 4444 4445 // True if the roots can be zero-extended back to their original type, rather 4446 // than sign-extended. We know that if the leading bits are not demanded, we 4447 // can safely zero-extend. So we initialize IsKnownPositive to True. 4448 bool IsKnownPositive = true; 4449 4450 // If all the bits of the roots are demanded, we can try a little harder to 4451 // compute a narrower type. This can happen, for example, if the roots are 4452 // getelementptr indices. InstCombine promotes these indices to the pointer 4453 // width. Thus, all their bits are technically demanded even though the 4454 // address computation might be vectorized in a smaller type. 4455 // 4456 // We start by looking at each entry that can be demoted. We compute the 4457 // maximum bit width required to store the scalar by using ValueTracking to 4458 // compute the number of high-order bits we can truncate. 4459 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4460 llvm::all_of(TreeRoot, [](Value *R) { 4461 assert(R->hasOneUse() && "Root should have only one use!"); 4462 return isa<GetElementPtrInst>(R->user_back()); 4463 })) { 4464 MaxBitWidth = 8u; 4465 4466 // Determine if the sign bit of all the roots is known to be zero. If not, 4467 // IsKnownPositive is set to False. 4468 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4469 KnownBits Known = computeKnownBits(R, *DL); 4470 return Known.isNonNegative(); 4471 }); 4472 4473 // Determine the maximum number of bits required to store the scalar 4474 // values. 4475 for (auto *Scalar : ToDemote) { 4476 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4477 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4478 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4479 } 4480 4481 // If we can't prove that the sign bit is zero, we must add one to the 4482 // maximum bit width to account for the unknown sign bit. This preserves 4483 // the existing sign bit so we can safely sign-extend the root back to the 4484 // original type. Otherwise, if we know the sign bit is zero, we will 4485 // zero-extend the root instead. 4486 // 4487 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4488 // one to the maximum bit width will yield a larger-than-necessary 4489 // type. In general, we need to add an extra bit only if we can't 4490 // prove that the upper bit of the original type is equal to the 4491 // upper bit of the proposed smaller type. If these two bits are the 4492 // same (either zero or one) we know that sign-extending from the 4493 // smaller type will result in the same value. Here, since we can't 4494 // yet prove this, we are just making the proposed smaller type 4495 // larger to ensure correctness. 4496 if (!IsKnownPositive) 4497 ++MaxBitWidth; 4498 } 4499 4500 // Round MaxBitWidth up to the next power-of-two. 4501 if (!isPowerOf2_64(MaxBitWidth)) 4502 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4503 4504 // If the maximum bit width we compute is less than the with of the roots' 4505 // type, we can proceed with the narrowing. Otherwise, do nothing. 4506 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4507 return; 4508 4509 // If we can truncate the root, we must collect additional values that might 4510 // be demoted as a result. That is, those seeded by truncations we will 4511 // modify. 4512 while (!Roots.empty()) 4513 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4514 4515 // Finally, map the values we can demote to the maximum bit with we computed. 4516 for (auto *Scalar : ToDemote) 4517 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4518 } 4519 4520 namespace { 4521 4522 /// The SLPVectorizer Pass. 4523 struct SLPVectorizer : public FunctionPass { 4524 SLPVectorizerPass Impl; 4525 4526 /// Pass identification, replacement for typeid 4527 static char ID; 4528 4529 explicit SLPVectorizer() : FunctionPass(ID) { 4530 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4531 } 4532 4533 bool doInitialization(Module &M) override { 4534 return false; 4535 } 4536 4537 bool runOnFunction(Function &F) override { 4538 if (skipFunction(F)) 4539 return false; 4540 4541 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4542 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4543 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4544 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4545 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4546 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4547 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4548 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4549 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4550 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4551 4552 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4553 } 4554 4555 void getAnalysisUsage(AnalysisUsage &AU) const override { 4556 FunctionPass::getAnalysisUsage(AU); 4557 AU.addRequired<AssumptionCacheTracker>(); 4558 AU.addRequired<ScalarEvolutionWrapperPass>(); 4559 AU.addRequired<AAResultsWrapperPass>(); 4560 AU.addRequired<TargetTransformInfoWrapperPass>(); 4561 AU.addRequired<LoopInfoWrapperPass>(); 4562 AU.addRequired<DominatorTreeWrapperPass>(); 4563 AU.addRequired<DemandedBitsWrapperPass>(); 4564 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4565 AU.addPreserved<LoopInfoWrapperPass>(); 4566 AU.addPreserved<DominatorTreeWrapperPass>(); 4567 AU.addPreserved<AAResultsWrapperPass>(); 4568 AU.addPreserved<GlobalsAAWrapperPass>(); 4569 AU.setPreservesCFG(); 4570 } 4571 }; 4572 4573 } // end anonymous namespace 4574 4575 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4576 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4577 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4578 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4579 auto *AA = &AM.getResult<AAManager>(F); 4580 auto *LI = &AM.getResult<LoopAnalysis>(F); 4581 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4582 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4583 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4584 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4585 4586 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4587 if (!Changed) 4588 return PreservedAnalyses::all(); 4589 4590 PreservedAnalyses PA; 4591 PA.preserveSet<CFGAnalyses>(); 4592 PA.preserve<AAManager>(); 4593 PA.preserve<GlobalsAA>(); 4594 return PA; 4595 } 4596 4597 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4598 TargetTransformInfo *TTI_, 4599 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4600 LoopInfo *LI_, DominatorTree *DT_, 4601 AssumptionCache *AC_, DemandedBits *DB_, 4602 OptimizationRemarkEmitter *ORE_) { 4603 SE = SE_; 4604 TTI = TTI_; 4605 TLI = TLI_; 4606 AA = AA_; 4607 LI = LI_; 4608 DT = DT_; 4609 AC = AC_; 4610 DB = DB_; 4611 DL = &F.getParent()->getDataLayout(); 4612 4613 Stores.clear(); 4614 GEPs.clear(); 4615 bool Changed = false; 4616 4617 // If the target claims to have no vector registers don't attempt 4618 // vectorization. 4619 if (!TTI->getNumberOfRegisters(true)) 4620 return false; 4621 4622 // Don't vectorize when the attribute NoImplicitFloat is used. 4623 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4624 return false; 4625 4626 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4627 4628 // Use the bottom up slp vectorizer to construct chains that start with 4629 // store instructions. 4630 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4631 4632 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4633 // delete instructions. 4634 4635 // Scan the blocks in the function in post order. 4636 for (auto BB : post_order(&F.getEntryBlock())) { 4637 collectSeedInstructions(BB); 4638 4639 // Vectorize trees that end at stores. 4640 if (!Stores.empty()) { 4641 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4642 << " underlying objects.\n"); 4643 Changed |= vectorizeStoreChains(R); 4644 } 4645 4646 // Vectorize trees that end at reductions. 4647 Changed |= vectorizeChainsInBlock(BB, R); 4648 4649 // Vectorize the index computations of getelementptr instructions. This 4650 // is primarily intended to catch gather-like idioms ending at 4651 // non-consecutive loads. 4652 if (!GEPs.empty()) { 4653 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4654 << " underlying objects.\n"); 4655 Changed |= vectorizeGEPIndices(BB, R); 4656 } 4657 } 4658 4659 if (Changed) { 4660 R.optimizeGatherSequence(); 4661 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4662 LLVM_DEBUG(verifyFunction(F)); 4663 } 4664 return Changed; 4665 } 4666 4667 /// Check that the Values in the slice in VL array are still existent in 4668 /// the WeakTrackingVH array. 4669 /// Vectorization of part of the VL array may cause later values in the VL array 4670 /// to become invalid. We track when this has happened in the WeakTrackingVH 4671 /// array. 4672 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4673 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4674 unsigned SliceSize) { 4675 VL = VL.slice(SliceBegin, SliceSize); 4676 VH = VH.slice(SliceBegin, SliceSize); 4677 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4678 } 4679 4680 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4681 unsigned VecRegSize) { 4682 const unsigned ChainLen = Chain.size(); 4683 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4684 << "\n"); 4685 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4686 const unsigned VF = VecRegSize / Sz; 4687 4688 if (!isPowerOf2_32(Sz) || VF < 2) 4689 return false; 4690 4691 // Keep track of values that were deleted by vectorizing in the loop below. 4692 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4693 4694 bool Changed = false; 4695 // Look for profitable vectorizable trees at all offsets, starting at zero. 4696 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4697 4698 // Check that a previous iteration of this loop did not delete the Value. 4699 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4700 continue; 4701 4702 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4703 << "\n"); 4704 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4705 4706 R.buildTree(Operands); 4707 if (R.isTreeTinyAndNotFullyVectorizable()) 4708 continue; 4709 4710 R.computeMinimumValueSizes(); 4711 4712 int Cost = R.getTreeCost(); 4713 4714 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 4715 << "\n"); 4716 if (Cost < -SLPCostThreshold) { 4717 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4718 4719 using namespace ore; 4720 4721 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4722 cast<StoreInst>(Chain[i])) 4723 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4724 << " and with tree size " 4725 << NV("TreeSize", R.getTreeSize())); 4726 4727 R.vectorizeTree(); 4728 4729 // Move to the next bundle. 4730 i += VF - 1; 4731 Changed = true; 4732 } 4733 } 4734 4735 return Changed; 4736 } 4737 4738 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4739 BoUpSLP &R) { 4740 SetVector<StoreInst *> Heads; 4741 SmallDenseSet<StoreInst *> Tails; 4742 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4743 4744 // We may run into multiple chains that merge into a single chain. We mark the 4745 // stores that we vectorized so that we don't visit the same store twice. 4746 BoUpSLP::ValueSet VectorizedStores; 4747 bool Changed = false; 4748 4749 // Do a quadratic search on all of the given stores in reverse order and find 4750 // all of the pairs of stores that follow each other. 4751 SmallVector<unsigned, 16> IndexQueue; 4752 unsigned E = Stores.size(); 4753 IndexQueue.resize(E - 1); 4754 for (unsigned I = E; I > 0; --I) { 4755 unsigned Idx = I - 1; 4756 // If a store has multiple consecutive store candidates, search Stores 4757 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4758 // This is because usually pairing with immediate succeeding or preceding 4759 // candidate create the best chance to find slp vectorization opportunity. 4760 unsigned Offset = 1; 4761 unsigned Cnt = 0; 4762 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4763 if (Idx >= Offset) { 4764 IndexQueue[Cnt] = Idx - Offset; 4765 ++Cnt; 4766 } 4767 if (Idx + Offset < E) { 4768 IndexQueue[Cnt] = Idx + Offset; 4769 ++Cnt; 4770 } 4771 } 4772 4773 for (auto K : IndexQueue) { 4774 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4775 Tails.insert(Stores[Idx]); 4776 Heads.insert(Stores[K]); 4777 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4778 break; 4779 } 4780 } 4781 } 4782 4783 // For stores that start but don't end a link in the chain: 4784 for (auto *SI : llvm::reverse(Heads)) { 4785 if (Tails.count(SI)) 4786 continue; 4787 4788 // We found a store instr that starts a chain. Now follow the chain and try 4789 // to vectorize it. 4790 BoUpSLP::ValueList Operands; 4791 StoreInst *I = SI; 4792 // Collect the chain into a list. 4793 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4794 Operands.push_back(I); 4795 // Move to the next value in the chain. 4796 I = ConsecutiveChain[I]; 4797 } 4798 4799 // FIXME: Is division-by-2 the correct step? Should we assert that the 4800 // register size is a power-of-2? 4801 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4802 Size /= 2) { 4803 if (vectorizeStoreChain(Operands, R, Size)) { 4804 // Mark the vectorized stores so that we don't vectorize them again. 4805 VectorizedStores.insert(Operands.begin(), Operands.end()); 4806 Changed = true; 4807 break; 4808 } 4809 } 4810 } 4811 4812 return Changed; 4813 } 4814 4815 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4816 // Initialize the collections. We will make a single pass over the block. 4817 Stores.clear(); 4818 GEPs.clear(); 4819 4820 // Visit the store and getelementptr instructions in BB and organize them in 4821 // Stores and GEPs according to the underlying objects of their pointer 4822 // operands. 4823 for (Instruction &I : *BB) { 4824 // Ignore store instructions that are volatile or have a pointer operand 4825 // that doesn't point to a scalar type. 4826 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4827 if (!SI->isSimple()) 4828 continue; 4829 if (!isValidElementType(SI->getValueOperand()->getType())) 4830 continue; 4831 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4832 } 4833 4834 // Ignore getelementptr instructions that have more than one index, a 4835 // constant index, or a pointer operand that doesn't point to a scalar 4836 // type. 4837 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4838 auto Idx = GEP->idx_begin()->get(); 4839 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4840 continue; 4841 if (!isValidElementType(Idx->getType())) 4842 continue; 4843 if (GEP->getType()->isVectorTy()) 4844 continue; 4845 GEPs[GEP->getPointerOperand()].push_back(GEP); 4846 } 4847 } 4848 } 4849 4850 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4851 if (!A || !B) 4852 return false; 4853 Value *VL[] = { A, B }; 4854 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4855 } 4856 4857 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4858 int UserCost, bool AllowReorder) { 4859 if (VL.size() < 2) 4860 return false; 4861 4862 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 4863 << VL.size() << ".\n"); 4864 4865 // Check that all of the parts are scalar instructions of the same type, 4866 // we permit an alternate opcode via InstructionsState. 4867 InstructionsState S = getSameOpcode(VL); 4868 if (!S.getOpcode()) 4869 return false; 4870 4871 Instruction *I0 = cast<Instruction>(S.OpValue); 4872 unsigned Sz = R.getVectorElementSize(I0); 4873 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4874 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4875 if (MaxVF < 2) { 4876 R.getORE()->emit([&]() { 4877 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 4878 << "Cannot SLP vectorize list: vectorization factor " 4879 << "less than 2 is not supported"; 4880 }); 4881 return false; 4882 } 4883 4884 for (Value *V : VL) { 4885 Type *Ty = V->getType(); 4886 if (!isValidElementType(Ty)) { 4887 // NOTE: the following will give user internal llvm type name, which may 4888 // not be useful. 4889 R.getORE()->emit([&]() { 4890 std::string type_str; 4891 llvm::raw_string_ostream rso(type_str); 4892 Ty->print(rso); 4893 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 4894 << "Cannot SLP vectorize list: type " 4895 << rso.str() + " is unsupported by vectorizer"; 4896 }); 4897 return false; 4898 } 4899 } 4900 4901 bool Changed = false; 4902 bool CandidateFound = false; 4903 int MinCost = SLPCostThreshold; 4904 4905 // Keep track of values that were deleted by vectorizing in the loop below. 4906 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4907 4908 unsigned NextInst = 0, MaxInst = VL.size(); 4909 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4910 VF /= 2) { 4911 // No actual vectorization should happen, if number of parts is the same as 4912 // provided vectorization factor (i.e. the scalar type is used for vector 4913 // code during codegen). 4914 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4915 if (TTI->getNumberOfParts(VecTy) == VF) 4916 continue; 4917 for (unsigned I = NextInst; I < MaxInst; ++I) { 4918 unsigned OpsWidth = 0; 4919 4920 if (I + VF > MaxInst) 4921 OpsWidth = MaxInst - I; 4922 else 4923 OpsWidth = VF; 4924 4925 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4926 break; 4927 4928 // Check that a previous iteration of this loop did not delete the Value. 4929 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4930 continue; 4931 4932 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4933 << "\n"); 4934 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4935 4936 R.buildTree(Ops); 4937 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4938 // TODO: check if we can allow reordering for more cases. 4939 if (AllowReorder && Order) { 4940 // TODO: reorder tree nodes without tree rebuilding. 4941 // Conceptually, there is nothing actually preventing us from trying to 4942 // reorder a larger list. In fact, we do exactly this when vectorizing 4943 // reductions. However, at this point, we only expect to get here when 4944 // there are exactly two operations. 4945 assert(Ops.size() == 2); 4946 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4947 R.buildTree(ReorderedOps, None); 4948 } 4949 if (R.isTreeTinyAndNotFullyVectorizable()) 4950 continue; 4951 4952 R.computeMinimumValueSizes(); 4953 int Cost = R.getTreeCost() - UserCost; 4954 CandidateFound = true; 4955 MinCost = std::min(MinCost, Cost); 4956 4957 if (Cost < -SLPCostThreshold) { 4958 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4959 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4960 cast<Instruction>(Ops[0])) 4961 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4962 << " and with tree size " 4963 << ore::NV("TreeSize", R.getTreeSize())); 4964 4965 R.vectorizeTree(); 4966 // Move to the next bundle. 4967 I += VF - 1; 4968 NextInst = I + 1; 4969 Changed = true; 4970 } 4971 } 4972 } 4973 4974 if (!Changed && CandidateFound) { 4975 R.getORE()->emit([&]() { 4976 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 4977 << "List vectorization was possible but not beneficial with cost " 4978 << ore::NV("Cost", MinCost) << " >= " 4979 << ore::NV("Treshold", -SLPCostThreshold); 4980 }); 4981 } else if (!Changed) { 4982 R.getORE()->emit([&]() { 4983 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 4984 << "Cannot SLP vectorize list: vectorization was impossible" 4985 << " with available vectorization factors"; 4986 }); 4987 } 4988 return Changed; 4989 } 4990 4991 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4992 if (!I) 4993 return false; 4994 4995 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4996 return false; 4997 4998 Value *P = I->getParent(); 4999 5000 // Vectorize in current basic block only. 5001 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5002 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5003 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5004 return false; 5005 5006 // Try to vectorize V. 5007 if (tryToVectorizePair(Op0, Op1, R)) 5008 return true; 5009 5010 auto *A = dyn_cast<BinaryOperator>(Op0); 5011 auto *B = dyn_cast<BinaryOperator>(Op1); 5012 // Try to skip B. 5013 if (B && B->hasOneUse()) { 5014 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5015 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5016 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5017 return true; 5018 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5019 return true; 5020 } 5021 5022 // Try to skip A. 5023 if (A && A->hasOneUse()) { 5024 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5025 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5026 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5027 return true; 5028 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5029 return true; 5030 } 5031 return false; 5032 } 5033 5034 /// Generate a shuffle mask to be used in a reduction tree. 5035 /// 5036 /// \param VecLen The length of the vector to be reduced. 5037 /// \param NumEltsToRdx The number of elements that should be reduced in the 5038 /// vector. 5039 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5040 /// reduction. A pairwise reduction will generate a mask of 5041 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5042 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5043 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5044 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5045 bool IsPairwise, bool IsLeft, 5046 IRBuilder<> &Builder) { 5047 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5048 5049 SmallVector<Constant *, 32> ShuffleMask( 5050 VecLen, UndefValue::get(Builder.getInt32Ty())); 5051 5052 if (IsPairwise) 5053 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5054 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5055 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5056 else 5057 // Move the upper half of the vector to the lower half. 5058 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5059 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5060 5061 return ConstantVector::get(ShuffleMask); 5062 } 5063 5064 namespace { 5065 5066 /// Model horizontal reductions. 5067 /// 5068 /// A horizontal reduction is a tree of reduction operations (currently add and 5069 /// fadd) that has operations that can be put into a vector as its leaf. 5070 /// For example, this tree: 5071 /// 5072 /// mul mul mul mul 5073 /// \ / \ / 5074 /// + + 5075 /// \ / 5076 /// + 5077 /// This tree has "mul" as its reduced values and "+" as its reduction 5078 /// operations. A reduction might be feeding into a store or a binary operation 5079 /// feeding a phi. 5080 /// ... 5081 /// \ / 5082 /// + 5083 /// | 5084 /// phi += 5085 /// 5086 /// Or: 5087 /// ... 5088 /// \ / 5089 /// + 5090 /// | 5091 /// *p = 5092 /// 5093 class HorizontalReduction { 5094 using ReductionOpsType = SmallVector<Value *, 16>; 5095 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5096 ReductionOpsListType ReductionOps; 5097 SmallVector<Value *, 32> ReducedVals; 5098 // Use map vector to make stable output. 5099 MapVector<Instruction *, Value *> ExtraArgs; 5100 5101 /// Kind of the reduction data. 5102 enum ReductionKind { 5103 RK_None, /// Not a reduction. 5104 RK_Arithmetic, /// Binary reduction data. 5105 RK_Min, /// Minimum reduction data. 5106 RK_UMin, /// Unsigned minimum reduction data. 5107 RK_Max, /// Maximum reduction data. 5108 RK_UMax, /// Unsigned maximum reduction data. 5109 }; 5110 5111 /// Contains info about operation, like its opcode, left and right operands. 5112 class OperationData { 5113 /// Opcode of the instruction. 5114 unsigned Opcode = 0; 5115 5116 /// Left operand of the reduction operation. 5117 Value *LHS = nullptr; 5118 5119 /// Right operand of the reduction operation. 5120 Value *RHS = nullptr; 5121 5122 /// Kind of the reduction operation. 5123 ReductionKind Kind = RK_None; 5124 5125 /// True if float point min/max reduction has no NaNs. 5126 bool NoNaN = false; 5127 5128 /// Checks if the reduction operation can be vectorized. 5129 bool isVectorizable() const { 5130 return LHS && RHS && 5131 // We currently only support add/mul/logical && min/max reductions. 5132 ((Kind == RK_Arithmetic && 5133 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5134 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5135 Opcode == Instruction::And || Opcode == Instruction::Or || 5136 Opcode == Instruction::Xor)) || 5137 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5138 (Kind == RK_Min || Kind == RK_Max)) || 5139 (Opcode == Instruction::ICmp && 5140 (Kind == RK_UMin || Kind == RK_UMax))); 5141 } 5142 5143 /// Creates reduction operation with the current opcode. 5144 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5145 assert(isVectorizable() && 5146 "Expected add|fadd or min/max reduction operation."); 5147 Value *Cmp; 5148 switch (Kind) { 5149 case RK_Arithmetic: 5150 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5151 Name); 5152 case RK_Min: 5153 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5154 : Builder.CreateFCmpOLT(LHS, RHS); 5155 break; 5156 case RK_Max: 5157 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5158 : Builder.CreateFCmpOGT(LHS, RHS); 5159 break; 5160 case RK_UMin: 5161 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5162 Cmp = Builder.CreateICmpULT(LHS, RHS); 5163 break; 5164 case RK_UMax: 5165 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5166 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5167 break; 5168 case RK_None: 5169 llvm_unreachable("Unknown reduction operation."); 5170 } 5171 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5172 } 5173 5174 public: 5175 explicit OperationData() = default; 5176 5177 /// Construction for reduced values. They are identified by opcode only and 5178 /// don't have associated LHS/RHS values. 5179 explicit OperationData(Value *V) { 5180 if (auto *I = dyn_cast<Instruction>(V)) 5181 Opcode = I->getOpcode(); 5182 } 5183 5184 /// Constructor for reduction operations with opcode and its left and 5185 /// right operands. 5186 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5187 bool NoNaN = false) 5188 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5189 assert(Kind != RK_None && "One of the reduction operations is expected."); 5190 } 5191 5192 explicit operator bool() const { return Opcode; } 5193 5194 /// Get the index of the first operand. 5195 unsigned getFirstOperandIndex() const { 5196 assert(!!*this && "The opcode is not set."); 5197 switch (Kind) { 5198 case RK_Min: 5199 case RK_UMin: 5200 case RK_Max: 5201 case RK_UMax: 5202 return 1; 5203 case RK_Arithmetic: 5204 case RK_None: 5205 break; 5206 } 5207 return 0; 5208 } 5209 5210 /// Total number of operands in the reduction operation. 5211 unsigned getNumberOfOperands() const { 5212 assert(Kind != RK_None && !!*this && LHS && RHS && 5213 "Expected reduction operation."); 5214 switch (Kind) { 5215 case RK_Arithmetic: 5216 return 2; 5217 case RK_Min: 5218 case RK_UMin: 5219 case RK_Max: 5220 case RK_UMax: 5221 return 3; 5222 case RK_None: 5223 break; 5224 } 5225 llvm_unreachable("Reduction kind is not set"); 5226 } 5227 5228 /// Checks if the operation has the same parent as \p P. 5229 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5230 assert(Kind != RK_None && !!*this && LHS && RHS && 5231 "Expected reduction operation."); 5232 if (!IsRedOp) 5233 return I->getParent() == P; 5234 switch (Kind) { 5235 case RK_Arithmetic: 5236 // Arithmetic reduction operation must be used once only. 5237 return I->getParent() == P; 5238 case RK_Min: 5239 case RK_UMin: 5240 case RK_Max: 5241 case RK_UMax: { 5242 // SelectInst must be used twice while the condition op must have single 5243 // use only. 5244 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5245 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5246 } 5247 case RK_None: 5248 break; 5249 } 5250 llvm_unreachable("Reduction kind is not set"); 5251 } 5252 /// Expected number of uses for reduction operations/reduced values. 5253 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5254 assert(Kind != RK_None && !!*this && LHS && RHS && 5255 "Expected reduction operation."); 5256 switch (Kind) { 5257 case RK_Arithmetic: 5258 return I->hasOneUse(); 5259 case RK_Min: 5260 case RK_UMin: 5261 case RK_Max: 5262 case RK_UMax: 5263 return I->hasNUses(2) && 5264 (!IsReductionOp || 5265 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5266 case RK_None: 5267 break; 5268 } 5269 llvm_unreachable("Reduction kind is not set"); 5270 } 5271 5272 /// Initializes the list of reduction operations. 5273 void initReductionOps(ReductionOpsListType &ReductionOps) { 5274 assert(Kind != RK_None && !!*this && LHS && RHS && 5275 "Expected reduction operation."); 5276 switch (Kind) { 5277 case RK_Arithmetic: 5278 ReductionOps.assign(1, ReductionOpsType()); 5279 break; 5280 case RK_Min: 5281 case RK_UMin: 5282 case RK_Max: 5283 case RK_UMax: 5284 ReductionOps.assign(2, ReductionOpsType()); 5285 break; 5286 case RK_None: 5287 llvm_unreachable("Reduction kind is not set"); 5288 } 5289 } 5290 /// Add all reduction operations for the reduction instruction \p I. 5291 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5292 assert(Kind != RK_None && !!*this && LHS && RHS && 5293 "Expected reduction operation."); 5294 switch (Kind) { 5295 case RK_Arithmetic: 5296 ReductionOps[0].emplace_back(I); 5297 break; 5298 case RK_Min: 5299 case RK_UMin: 5300 case RK_Max: 5301 case RK_UMax: 5302 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5303 ReductionOps[1].emplace_back(I); 5304 break; 5305 case RK_None: 5306 llvm_unreachable("Reduction kind is not set"); 5307 } 5308 } 5309 5310 /// Checks if instruction is associative and can be vectorized. 5311 bool isAssociative(Instruction *I) const { 5312 assert(Kind != RK_None && *this && LHS && RHS && 5313 "Expected reduction operation."); 5314 switch (Kind) { 5315 case RK_Arithmetic: 5316 return I->isAssociative(); 5317 case RK_Min: 5318 case RK_Max: 5319 return Opcode == Instruction::ICmp || 5320 cast<Instruction>(I->getOperand(0))->isFast(); 5321 case RK_UMin: 5322 case RK_UMax: 5323 assert(Opcode == Instruction::ICmp && 5324 "Only integer compare operation is expected."); 5325 return true; 5326 case RK_None: 5327 break; 5328 } 5329 llvm_unreachable("Reduction kind is not set"); 5330 } 5331 5332 /// Checks if the reduction operation can be vectorized. 5333 bool isVectorizable(Instruction *I) const { 5334 return isVectorizable() && isAssociative(I); 5335 } 5336 5337 /// Checks if two operation data are both a reduction op or both a reduced 5338 /// value. 5339 bool operator==(const OperationData &OD) { 5340 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5341 "One of the comparing operations is incorrect."); 5342 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5343 } 5344 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5345 void clear() { 5346 Opcode = 0; 5347 LHS = nullptr; 5348 RHS = nullptr; 5349 Kind = RK_None; 5350 NoNaN = false; 5351 } 5352 5353 /// Get the opcode of the reduction operation. 5354 unsigned getOpcode() const { 5355 assert(isVectorizable() && "Expected vectorizable operation."); 5356 return Opcode; 5357 } 5358 5359 /// Get kind of reduction data. 5360 ReductionKind getKind() const { return Kind; } 5361 Value *getLHS() const { return LHS; } 5362 Value *getRHS() const { return RHS; } 5363 Type *getConditionType() const { 5364 switch (Kind) { 5365 case RK_Arithmetic: 5366 return nullptr; 5367 case RK_Min: 5368 case RK_Max: 5369 case RK_UMin: 5370 case RK_UMax: 5371 return CmpInst::makeCmpResultType(LHS->getType()); 5372 case RK_None: 5373 break; 5374 } 5375 llvm_unreachable("Reduction kind is not set"); 5376 } 5377 5378 /// Creates reduction operation with the current opcode with the IR flags 5379 /// from \p ReductionOps. 5380 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5381 const ReductionOpsListType &ReductionOps) const { 5382 assert(isVectorizable() && 5383 "Expected add|fadd or min/max reduction operation."); 5384 auto *Op = createOp(Builder, Name); 5385 switch (Kind) { 5386 case RK_Arithmetic: 5387 propagateIRFlags(Op, ReductionOps[0]); 5388 return Op; 5389 case RK_Min: 5390 case RK_Max: 5391 case RK_UMin: 5392 case RK_UMax: 5393 if (auto *SI = dyn_cast<SelectInst>(Op)) 5394 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5395 propagateIRFlags(Op, ReductionOps[1]); 5396 return Op; 5397 case RK_None: 5398 break; 5399 } 5400 llvm_unreachable("Unknown reduction operation."); 5401 } 5402 /// Creates reduction operation with the current opcode with the IR flags 5403 /// from \p I. 5404 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5405 Instruction *I) const { 5406 assert(isVectorizable() && 5407 "Expected add|fadd or min/max reduction operation."); 5408 auto *Op = createOp(Builder, Name); 5409 switch (Kind) { 5410 case RK_Arithmetic: 5411 propagateIRFlags(Op, I); 5412 return Op; 5413 case RK_Min: 5414 case RK_Max: 5415 case RK_UMin: 5416 case RK_UMax: 5417 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5418 propagateIRFlags(SI->getCondition(), 5419 cast<SelectInst>(I)->getCondition()); 5420 } 5421 propagateIRFlags(Op, I); 5422 return Op; 5423 case RK_None: 5424 break; 5425 } 5426 llvm_unreachable("Unknown reduction operation."); 5427 } 5428 5429 TargetTransformInfo::ReductionFlags getFlags() const { 5430 TargetTransformInfo::ReductionFlags Flags; 5431 Flags.NoNaN = NoNaN; 5432 switch (Kind) { 5433 case RK_Arithmetic: 5434 break; 5435 case RK_Min: 5436 Flags.IsSigned = Opcode == Instruction::ICmp; 5437 Flags.IsMaxOp = false; 5438 break; 5439 case RK_Max: 5440 Flags.IsSigned = Opcode == Instruction::ICmp; 5441 Flags.IsMaxOp = true; 5442 break; 5443 case RK_UMin: 5444 Flags.IsSigned = false; 5445 Flags.IsMaxOp = false; 5446 break; 5447 case RK_UMax: 5448 Flags.IsSigned = false; 5449 Flags.IsMaxOp = true; 5450 break; 5451 case RK_None: 5452 llvm_unreachable("Reduction kind is not set"); 5453 } 5454 return Flags; 5455 } 5456 }; 5457 5458 WeakTrackingVH ReductionRoot; 5459 5460 /// The operation data of the reduction operation. 5461 OperationData ReductionData; 5462 5463 /// The operation data of the values we perform a reduction on. 5464 OperationData ReducedValueData; 5465 5466 /// Should we model this reduction as a pairwise reduction tree or a tree that 5467 /// splits the vector in halves and adds those halves. 5468 bool IsPairwiseReduction = false; 5469 5470 /// Checks if the ParentStackElem.first should be marked as a reduction 5471 /// operation with an extra argument or as extra argument itself. 5472 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5473 Value *ExtraArg) { 5474 if (ExtraArgs.count(ParentStackElem.first)) { 5475 ExtraArgs[ParentStackElem.first] = nullptr; 5476 // We ran into something like: 5477 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5478 // The whole ParentStackElem.first should be considered as an extra value 5479 // in this case. 5480 // Do not perform analysis of remaining operands of ParentStackElem.first 5481 // instruction, this whole instruction is an extra argument. 5482 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5483 } else { 5484 // We ran into something like: 5485 // ParentStackElem.first += ... + ExtraArg + ... 5486 ExtraArgs[ParentStackElem.first] = ExtraArg; 5487 } 5488 } 5489 5490 static OperationData getOperationData(Value *V) { 5491 if (!V) 5492 return OperationData(); 5493 5494 Value *LHS; 5495 Value *RHS; 5496 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5497 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5498 RK_Arithmetic); 5499 } 5500 if (auto *Select = dyn_cast<SelectInst>(V)) { 5501 // Look for a min/max pattern. 5502 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5503 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5504 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5505 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5506 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5507 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5508 return OperationData( 5509 Instruction::FCmp, LHS, RHS, RK_Min, 5510 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5511 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5512 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5513 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5514 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5515 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5516 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5517 return OperationData( 5518 Instruction::FCmp, LHS, RHS, RK_Max, 5519 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5520 } else { 5521 // Try harder: look for min/max pattern based on instructions producing 5522 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5523 // During the intermediate stages of SLP, it's very common to have 5524 // pattern like this (since optimizeGatherSequence is run only once 5525 // at the end): 5526 // %1 = extractelement <2 x i32> %a, i32 0 5527 // %2 = extractelement <2 x i32> %a, i32 1 5528 // %cond = icmp sgt i32 %1, %2 5529 // %3 = extractelement <2 x i32> %a, i32 0 5530 // %4 = extractelement <2 x i32> %a, i32 1 5531 // %select = select i1 %cond, i32 %3, i32 %4 5532 CmpInst::Predicate Pred; 5533 Instruction *L1; 5534 Instruction *L2; 5535 5536 LHS = Select->getTrueValue(); 5537 RHS = Select->getFalseValue(); 5538 Value *Cond = Select->getCondition(); 5539 5540 // TODO: Support inverse predicates. 5541 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5542 if (!isa<ExtractElementInst>(RHS) || 5543 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5544 return OperationData(V); 5545 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5546 if (!isa<ExtractElementInst>(LHS) || 5547 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5548 return OperationData(V); 5549 } else { 5550 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5551 return OperationData(V); 5552 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5553 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5554 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5555 return OperationData(V); 5556 } 5557 switch (Pred) { 5558 default: 5559 return OperationData(V); 5560 5561 case CmpInst::ICMP_ULT: 5562 case CmpInst::ICMP_ULE: 5563 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5564 5565 case CmpInst::ICMP_SLT: 5566 case CmpInst::ICMP_SLE: 5567 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5568 5569 case CmpInst::FCMP_OLT: 5570 case CmpInst::FCMP_OLE: 5571 case CmpInst::FCMP_ULT: 5572 case CmpInst::FCMP_ULE: 5573 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5574 cast<Instruction>(Cond)->hasNoNaNs()); 5575 5576 case CmpInst::ICMP_UGT: 5577 case CmpInst::ICMP_UGE: 5578 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5579 5580 case CmpInst::ICMP_SGT: 5581 case CmpInst::ICMP_SGE: 5582 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5583 5584 case CmpInst::FCMP_OGT: 5585 case CmpInst::FCMP_OGE: 5586 case CmpInst::FCMP_UGT: 5587 case CmpInst::FCMP_UGE: 5588 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5589 cast<Instruction>(Cond)->hasNoNaNs()); 5590 } 5591 } 5592 } 5593 return OperationData(V); 5594 } 5595 5596 public: 5597 HorizontalReduction() = default; 5598 5599 /// Try to find a reduction tree. 5600 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5601 assert((!Phi || is_contained(Phi->operands(), B)) && 5602 "Thi phi needs to use the binary operator"); 5603 5604 ReductionData = getOperationData(B); 5605 5606 // We could have a initial reductions that is not an add. 5607 // r *= v1 + v2 + v3 + v4 5608 // In such a case start looking for a tree rooted in the first '+'. 5609 if (Phi) { 5610 if (ReductionData.getLHS() == Phi) { 5611 Phi = nullptr; 5612 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5613 ReductionData = getOperationData(B); 5614 } else if (ReductionData.getRHS() == Phi) { 5615 Phi = nullptr; 5616 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5617 ReductionData = getOperationData(B); 5618 } 5619 } 5620 5621 if (!ReductionData.isVectorizable(B)) 5622 return false; 5623 5624 Type *Ty = B->getType(); 5625 if (!isValidElementType(Ty)) 5626 return false; 5627 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 5628 return false; 5629 5630 ReducedValueData.clear(); 5631 ReductionRoot = B; 5632 5633 // Post order traverse the reduction tree starting at B. We only handle true 5634 // trees containing only binary operators. 5635 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5636 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5637 ReductionData.initReductionOps(ReductionOps); 5638 while (!Stack.empty()) { 5639 Instruction *TreeN = Stack.back().first; 5640 unsigned EdgeToVist = Stack.back().second++; 5641 OperationData OpData = getOperationData(TreeN); 5642 bool IsReducedValue = OpData != ReductionData; 5643 5644 // Postorder vist. 5645 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5646 if (IsReducedValue) 5647 ReducedVals.push_back(TreeN); 5648 else { 5649 auto I = ExtraArgs.find(TreeN); 5650 if (I != ExtraArgs.end() && !I->second) { 5651 // Check if TreeN is an extra argument of its parent operation. 5652 if (Stack.size() <= 1) { 5653 // TreeN can't be an extra argument as it is a root reduction 5654 // operation. 5655 return false; 5656 } 5657 // Yes, TreeN is an extra argument, do not add it to a list of 5658 // reduction operations. 5659 // Stack[Stack.size() - 2] always points to the parent operation. 5660 markExtraArg(Stack[Stack.size() - 2], TreeN); 5661 ExtraArgs.erase(TreeN); 5662 } else 5663 ReductionData.addReductionOps(TreeN, ReductionOps); 5664 } 5665 // Retract. 5666 Stack.pop_back(); 5667 continue; 5668 } 5669 5670 // Visit left or right. 5671 Value *NextV = TreeN->getOperand(EdgeToVist); 5672 if (NextV != Phi) { 5673 auto *I = dyn_cast<Instruction>(NextV); 5674 OpData = getOperationData(I); 5675 // Continue analysis if the next operand is a reduction operation or 5676 // (possibly) a reduced value. If the reduced value opcode is not set, 5677 // the first met operation != reduction operation is considered as the 5678 // reduced value class. 5679 if (I && (!ReducedValueData || OpData == ReducedValueData || 5680 OpData == ReductionData)) { 5681 const bool IsReductionOperation = OpData == ReductionData; 5682 // Only handle trees in the current basic block. 5683 if (!ReductionData.hasSameParent(I, B->getParent(), 5684 IsReductionOperation)) { 5685 // I is an extra argument for TreeN (its parent operation). 5686 markExtraArg(Stack.back(), I); 5687 continue; 5688 } 5689 5690 // Each tree node needs to have minimal number of users except for the 5691 // ultimate reduction. 5692 if (!ReductionData.hasRequiredNumberOfUses(I, 5693 OpData == ReductionData) && 5694 I != B) { 5695 // I is an extra argument for TreeN (its parent operation). 5696 markExtraArg(Stack.back(), I); 5697 continue; 5698 } 5699 5700 if (IsReductionOperation) { 5701 // We need to be able to reassociate the reduction operations. 5702 if (!OpData.isAssociative(I)) { 5703 // I is an extra argument for TreeN (its parent operation). 5704 markExtraArg(Stack.back(), I); 5705 continue; 5706 } 5707 } else if (ReducedValueData && 5708 ReducedValueData != OpData) { 5709 // Make sure that the opcodes of the operations that we are going to 5710 // reduce match. 5711 // I is an extra argument for TreeN (its parent operation). 5712 markExtraArg(Stack.back(), I); 5713 continue; 5714 } else if (!ReducedValueData) 5715 ReducedValueData = OpData; 5716 5717 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5718 continue; 5719 } 5720 } 5721 // NextV is an extra argument for TreeN (its parent operation). 5722 markExtraArg(Stack.back(), NextV); 5723 } 5724 return true; 5725 } 5726 5727 /// Attempt to vectorize the tree found by 5728 /// matchAssociativeReduction. 5729 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5730 if (ReducedVals.empty()) 5731 return false; 5732 5733 // If there is a sufficient number of reduction values, reduce 5734 // to a nearby power-of-2. Can safely generate oversized 5735 // vectors and rely on the backend to split them to legal sizes. 5736 unsigned NumReducedVals = ReducedVals.size(); 5737 if (NumReducedVals < 4) 5738 return false; 5739 5740 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5741 5742 Value *VectorizedTree = nullptr; 5743 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 5744 FastMathFlags Unsafe; 5745 Unsafe.setFast(); 5746 Builder.setFastMathFlags(Unsafe); 5747 unsigned i = 0; 5748 5749 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5750 // The same extra argument may be used several time, so log each attempt 5751 // to use it. 5752 for (auto &Pair : ExtraArgs) { 5753 assert(Pair.first && "DebugLoc must be set."); 5754 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5755 } 5756 // The reduction root is used as the insertion point for new instructions, 5757 // so set it as externally used to prevent it from being deleted. 5758 ExternallyUsedValues[ReductionRoot]; 5759 SmallVector<Value *, 16> IgnoreList; 5760 for (auto &V : ReductionOps) 5761 IgnoreList.append(V.begin(), V.end()); 5762 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5763 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5764 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5765 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5766 // TODO: Handle orders of size less than number of elements in the vector. 5767 if (Order && Order->size() == VL.size()) { 5768 // TODO: reorder tree nodes without tree rebuilding. 5769 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5770 llvm::transform(*Order, ReorderedOps.begin(), 5771 [VL](const unsigned Idx) { return VL[Idx]; }); 5772 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5773 } 5774 if (V.isTreeTinyAndNotFullyVectorizable()) 5775 break; 5776 5777 V.computeMinimumValueSizes(); 5778 5779 // Estimate cost. 5780 int TreeCost = V.getTreeCost(); 5781 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5782 int Cost = TreeCost + ReductionCost; 5783 if (Cost >= -SLPCostThreshold) { 5784 V.getORE()->emit([&]() { 5785 return OptimizationRemarkMissed( 5786 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5787 << "Vectorizing horizontal reduction is possible" 5788 << "but not beneficial with cost " 5789 << ore::NV("Cost", Cost) << " and threshold " 5790 << ore::NV("Threshold", -SLPCostThreshold); 5791 }); 5792 break; 5793 } 5794 5795 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 5796 << Cost << ". (HorRdx)\n"); 5797 V.getORE()->emit([&]() { 5798 return OptimizationRemark( 5799 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5800 << "Vectorized horizontal reduction with cost " 5801 << ore::NV("Cost", Cost) << " and with tree size " 5802 << ore::NV("TreeSize", V.getTreeSize()); 5803 }); 5804 5805 // Vectorize a tree. 5806 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5807 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5808 5809 // Emit a reduction. 5810 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 5811 Value *ReducedSubTree = 5812 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5813 if (VectorizedTree) { 5814 Builder.SetCurrentDebugLocation(Loc); 5815 OperationData VectReductionData(ReductionData.getOpcode(), 5816 VectorizedTree, ReducedSubTree, 5817 ReductionData.getKind()); 5818 VectorizedTree = 5819 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5820 } else 5821 VectorizedTree = ReducedSubTree; 5822 i += ReduxWidth; 5823 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5824 } 5825 5826 if (VectorizedTree) { 5827 // Finish the reduction. 5828 for (; i < NumReducedVals; ++i) { 5829 auto *I = cast<Instruction>(ReducedVals[i]); 5830 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5831 OperationData VectReductionData(ReductionData.getOpcode(), 5832 VectorizedTree, I, 5833 ReductionData.getKind()); 5834 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5835 } 5836 for (auto &Pair : ExternallyUsedValues) { 5837 // Add each externally used value to the final reduction. 5838 for (auto *I : Pair.second) { 5839 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5840 OperationData VectReductionData(ReductionData.getOpcode(), 5841 VectorizedTree, Pair.first, 5842 ReductionData.getKind()); 5843 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5844 } 5845 } 5846 // Update users. 5847 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5848 } 5849 return VectorizedTree != nullptr; 5850 } 5851 5852 unsigned numReductionValues() const { 5853 return ReducedVals.size(); 5854 } 5855 5856 private: 5857 /// Calculate the cost of a reduction. 5858 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5859 unsigned ReduxWidth) { 5860 Type *ScalarTy = FirstReducedVal->getType(); 5861 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5862 5863 int PairwiseRdxCost; 5864 int SplittingRdxCost; 5865 switch (ReductionData.getKind()) { 5866 case RK_Arithmetic: 5867 PairwiseRdxCost = 5868 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5869 /*IsPairwiseForm=*/true); 5870 SplittingRdxCost = 5871 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5872 /*IsPairwiseForm=*/false); 5873 break; 5874 case RK_Min: 5875 case RK_Max: 5876 case RK_UMin: 5877 case RK_UMax: { 5878 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5879 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5880 ReductionData.getKind() == RK_UMax; 5881 PairwiseRdxCost = 5882 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5883 /*IsPairwiseForm=*/true, IsUnsigned); 5884 SplittingRdxCost = 5885 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5886 /*IsPairwiseForm=*/false, IsUnsigned); 5887 break; 5888 } 5889 case RK_None: 5890 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5891 } 5892 5893 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5894 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5895 5896 int ScalarReduxCost; 5897 switch (ReductionData.getKind()) { 5898 case RK_Arithmetic: 5899 ScalarReduxCost = 5900 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5901 break; 5902 case RK_Min: 5903 case RK_Max: 5904 case RK_UMin: 5905 case RK_UMax: 5906 ScalarReduxCost = 5907 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5908 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5909 CmpInst::makeCmpResultType(ScalarTy)); 5910 break; 5911 case RK_None: 5912 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5913 } 5914 ScalarReduxCost *= (ReduxWidth - 1); 5915 5916 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5917 << " for reduction that starts with " << *FirstReducedVal 5918 << " (It is a " 5919 << (IsPairwiseReduction ? "pairwise" : "splitting") 5920 << " reduction)\n"); 5921 5922 return VecReduxCost - ScalarReduxCost; 5923 } 5924 5925 /// Emit a horizontal reduction of the vectorized value. 5926 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5927 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5928 assert(VectorizedValue && "Need to have a vectorized tree node"); 5929 assert(isPowerOf2_32(ReduxWidth) && 5930 "We only handle power-of-two reductions for now"); 5931 5932 if (!IsPairwiseReduction) 5933 return createSimpleTargetReduction( 5934 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5935 ReductionData.getFlags(), ReductionOps.back()); 5936 5937 Value *TmpVec = VectorizedValue; 5938 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5939 Value *LeftMask = 5940 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5941 Value *RightMask = 5942 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5943 5944 Value *LeftShuf = Builder.CreateShuffleVector( 5945 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5946 Value *RightShuf = Builder.CreateShuffleVector( 5947 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5948 "rdx.shuf.r"); 5949 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5950 RightShuf, ReductionData.getKind()); 5951 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5952 } 5953 5954 // The result is in the first element of the vector. 5955 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5956 } 5957 }; 5958 5959 } // end anonymous namespace 5960 5961 /// Recognize construction of vectors like 5962 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5963 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5964 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5965 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5966 /// starting from the last insertelement instruction. 5967 /// 5968 /// Returns true if it matches 5969 static bool findBuildVector(InsertElementInst *LastInsertElem, 5970 TargetTransformInfo *TTI, 5971 SmallVectorImpl<Value *> &BuildVectorOpds, 5972 int &UserCost) { 5973 UserCost = 0; 5974 Value *V = nullptr; 5975 do { 5976 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5977 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5978 LastInsertElem->getType(), 5979 CI->getZExtValue()); 5980 } 5981 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5982 V = LastInsertElem->getOperand(0); 5983 if (isa<UndefValue>(V)) 5984 break; 5985 LastInsertElem = dyn_cast<InsertElementInst>(V); 5986 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5987 return false; 5988 } while (true); 5989 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5990 return true; 5991 } 5992 5993 /// Like findBuildVector, but looks for construction of aggregate. 5994 /// 5995 /// \return true if it matches. 5996 static bool findBuildAggregate(InsertValueInst *IV, 5997 SmallVectorImpl<Value *> &BuildVectorOpds) { 5998 Value *V; 5999 do { 6000 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6001 V = IV->getAggregateOperand(); 6002 if (isa<UndefValue>(V)) 6003 break; 6004 IV = dyn_cast<InsertValueInst>(V); 6005 if (!IV || !IV->hasOneUse()) 6006 return false; 6007 } while (true); 6008 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6009 return true; 6010 } 6011 6012 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6013 return V->getType() < V2->getType(); 6014 } 6015 6016 /// Try and get a reduction value from a phi node. 6017 /// 6018 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6019 /// if they come from either \p ParentBB or a containing loop latch. 6020 /// 6021 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6022 /// if not possible. 6023 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6024 BasicBlock *ParentBB, LoopInfo *LI) { 6025 // There are situations where the reduction value is not dominated by the 6026 // reduction phi. Vectorizing such cases has been reported to cause 6027 // miscompiles. See PR25787. 6028 auto DominatedReduxValue = [&](Value *R) { 6029 return isa<Instruction>(R) && 6030 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6031 }; 6032 6033 Value *Rdx = nullptr; 6034 6035 // Return the incoming value if it comes from the same BB as the phi node. 6036 if (P->getIncomingBlock(0) == ParentBB) { 6037 Rdx = P->getIncomingValue(0); 6038 } else if (P->getIncomingBlock(1) == ParentBB) { 6039 Rdx = P->getIncomingValue(1); 6040 } 6041 6042 if (Rdx && DominatedReduxValue(Rdx)) 6043 return Rdx; 6044 6045 // Otherwise, check whether we have a loop latch to look at. 6046 Loop *BBL = LI->getLoopFor(ParentBB); 6047 if (!BBL) 6048 return nullptr; 6049 BasicBlock *BBLatch = BBL->getLoopLatch(); 6050 if (!BBLatch) 6051 return nullptr; 6052 6053 // There is a loop latch, return the incoming value if it comes from 6054 // that. This reduction pattern occasionally turns up. 6055 if (P->getIncomingBlock(0) == BBLatch) { 6056 Rdx = P->getIncomingValue(0); 6057 } else if (P->getIncomingBlock(1) == BBLatch) { 6058 Rdx = P->getIncomingValue(1); 6059 } 6060 6061 if (Rdx && DominatedReduxValue(Rdx)) 6062 return Rdx; 6063 6064 return nullptr; 6065 } 6066 6067 /// Attempt to reduce a horizontal reduction. 6068 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6069 /// with reduction operators \a Root (or one of its operands) in a basic block 6070 /// \a BB, then check if it can be done. If horizontal reduction is not found 6071 /// and root instruction is a binary operation, vectorization of the operands is 6072 /// attempted. 6073 /// \returns true if a horizontal reduction was matched and reduced or operands 6074 /// of one of the binary instruction were vectorized. 6075 /// \returns false if a horizontal reduction was not matched (or not possible) 6076 /// or no vectorization of any binary operation feeding \a Root instruction was 6077 /// performed. 6078 static bool tryToVectorizeHorReductionOrInstOperands( 6079 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6080 TargetTransformInfo *TTI, 6081 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6082 if (!ShouldVectorizeHor) 6083 return false; 6084 6085 if (!Root) 6086 return false; 6087 6088 if (Root->getParent() != BB || isa<PHINode>(Root)) 6089 return false; 6090 // Start analysis starting from Root instruction. If horizontal reduction is 6091 // found, try to vectorize it. If it is not a horizontal reduction or 6092 // vectorization is not possible or not effective, and currently analyzed 6093 // instruction is a binary operation, try to vectorize the operands, using 6094 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6095 // the same procedure considering each operand as a possible root of the 6096 // horizontal reduction. 6097 // Interrupt the process if the Root instruction itself was vectorized or all 6098 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6099 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6100 SmallPtrSet<Value *, 8> VisitedInstrs; 6101 bool Res = false; 6102 while (!Stack.empty()) { 6103 Value *V; 6104 unsigned Level; 6105 std::tie(V, Level) = Stack.pop_back_val(); 6106 if (!V) 6107 continue; 6108 auto *Inst = dyn_cast<Instruction>(V); 6109 if (!Inst) 6110 continue; 6111 auto *BI = dyn_cast<BinaryOperator>(Inst); 6112 auto *SI = dyn_cast<SelectInst>(Inst); 6113 if (BI || SI) { 6114 HorizontalReduction HorRdx; 6115 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6116 if (HorRdx.tryToReduce(R, TTI)) { 6117 Res = true; 6118 // Set P to nullptr to avoid re-analysis of phi node in 6119 // matchAssociativeReduction function unless this is the root node. 6120 P = nullptr; 6121 continue; 6122 } 6123 } 6124 if (P && BI) { 6125 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6126 if (Inst == P) 6127 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6128 if (!Inst) { 6129 // Set P to nullptr to avoid re-analysis of phi node in 6130 // matchAssociativeReduction function unless this is the root node. 6131 P = nullptr; 6132 continue; 6133 } 6134 } 6135 } 6136 // Set P to nullptr to avoid re-analysis of phi node in 6137 // matchAssociativeReduction function unless this is the root node. 6138 P = nullptr; 6139 if (Vectorize(Inst, R)) { 6140 Res = true; 6141 continue; 6142 } 6143 6144 // Try to vectorize operands. 6145 // Continue analysis for the instruction from the same basic block only to 6146 // save compile time. 6147 if (++Level < RecursionMaxDepth) 6148 for (auto *Op : Inst->operand_values()) 6149 if (VisitedInstrs.insert(Op).second) 6150 if (auto *I = dyn_cast<Instruction>(Op)) 6151 if (!isa<PHINode>(I) && I->getParent() == BB) 6152 Stack.emplace_back(Op, Level); 6153 } 6154 return Res; 6155 } 6156 6157 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6158 BasicBlock *BB, BoUpSLP &R, 6159 TargetTransformInfo *TTI) { 6160 if (!V) 6161 return false; 6162 auto *I = dyn_cast<Instruction>(V); 6163 if (!I) 6164 return false; 6165 6166 if (!isa<BinaryOperator>(I)) 6167 P = nullptr; 6168 // Try to match and vectorize a horizontal reduction. 6169 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6170 return tryToVectorize(I, R); 6171 }; 6172 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6173 ExtraVectorization); 6174 } 6175 6176 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6177 BasicBlock *BB, BoUpSLP &R) { 6178 const DataLayout &DL = BB->getModule()->getDataLayout(); 6179 if (!R.canMapToVector(IVI->getType(), DL)) 6180 return false; 6181 6182 SmallVector<Value *, 16> BuildVectorOpds; 6183 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6184 return false; 6185 6186 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6187 // Aggregate value is unlikely to be processed in vector register, we need to 6188 // extract scalars into scalar registers, so NeedExtraction is set true. 6189 return tryToVectorizeList(BuildVectorOpds, R); 6190 } 6191 6192 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6193 BasicBlock *BB, BoUpSLP &R) { 6194 int UserCost; 6195 SmallVector<Value *, 16> BuildVectorOpds; 6196 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6197 (llvm::all_of(BuildVectorOpds, 6198 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6199 isShuffle(BuildVectorOpds))) 6200 return false; 6201 6202 // Vectorize starting with the build vector operands ignoring the BuildVector 6203 // instructions for the purpose of scheduling and user extraction. 6204 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6205 } 6206 6207 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6208 BoUpSLP &R) { 6209 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6210 return true; 6211 6212 bool OpsChanged = false; 6213 for (int Idx = 0; Idx < 2; ++Idx) { 6214 OpsChanged |= 6215 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6216 } 6217 return OpsChanged; 6218 } 6219 6220 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6221 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6222 bool OpsChanged = false; 6223 for (auto &VH : reverse(Instructions)) { 6224 auto *I = dyn_cast_or_null<Instruction>(VH); 6225 if (!I) 6226 continue; 6227 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6228 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6229 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6230 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6231 else if (auto *CI = dyn_cast<CmpInst>(I)) 6232 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6233 } 6234 Instructions.clear(); 6235 return OpsChanged; 6236 } 6237 6238 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6239 bool Changed = false; 6240 SmallVector<Value *, 4> Incoming; 6241 SmallPtrSet<Value *, 16> VisitedInstrs; 6242 6243 bool HaveVectorizedPhiNodes = true; 6244 while (HaveVectorizedPhiNodes) { 6245 HaveVectorizedPhiNodes = false; 6246 6247 // Collect the incoming values from the PHIs. 6248 Incoming.clear(); 6249 for (Instruction &I : *BB) { 6250 PHINode *P = dyn_cast<PHINode>(&I); 6251 if (!P) 6252 break; 6253 6254 if (!VisitedInstrs.count(P)) 6255 Incoming.push_back(P); 6256 } 6257 6258 // Sort by type. 6259 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6260 6261 // Try to vectorize elements base on their type. 6262 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6263 E = Incoming.end(); 6264 IncIt != E;) { 6265 6266 // Look for the next elements with the same type. 6267 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6268 while (SameTypeIt != E && 6269 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6270 VisitedInstrs.insert(*SameTypeIt); 6271 ++SameTypeIt; 6272 } 6273 6274 // Try to vectorize them. 6275 unsigned NumElts = (SameTypeIt - IncIt); 6276 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6277 << NumElts << ")\n"); 6278 // The order in which the phi nodes appear in the program does not matter. 6279 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6280 // is done when there are exactly two elements since tryToVectorizeList 6281 // asserts that there are only two values when AllowReorder is true. 6282 bool AllowReorder = NumElts == 2; 6283 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6284 /*UserCost=*/0, AllowReorder)) { 6285 // Success start over because instructions might have been changed. 6286 HaveVectorizedPhiNodes = true; 6287 Changed = true; 6288 break; 6289 } 6290 6291 // Start over at the next instruction of a different type (or the end). 6292 IncIt = SameTypeIt; 6293 } 6294 } 6295 6296 VisitedInstrs.clear(); 6297 6298 SmallVector<WeakVH, 8> PostProcessInstructions; 6299 SmallDenseSet<Instruction *, 4> KeyNodes; 6300 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6301 // We may go through BB multiple times so skip the one we have checked. 6302 if (!VisitedInstrs.insert(&*it).second) { 6303 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6304 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6305 // We would like to start over since some instructions are deleted 6306 // and the iterator may become invalid value. 6307 Changed = true; 6308 it = BB->begin(); 6309 e = BB->end(); 6310 } 6311 continue; 6312 } 6313 6314 if (isa<DbgInfoIntrinsic>(it)) 6315 continue; 6316 6317 // Try to vectorize reductions that use PHINodes. 6318 if (PHINode *P = dyn_cast<PHINode>(it)) { 6319 // Check that the PHI is a reduction PHI. 6320 if (P->getNumIncomingValues() != 2) 6321 return Changed; 6322 6323 // Try to match and vectorize a horizontal reduction. 6324 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6325 TTI)) { 6326 Changed = true; 6327 it = BB->begin(); 6328 e = BB->end(); 6329 continue; 6330 } 6331 continue; 6332 } 6333 6334 // Ran into an instruction without users, like terminator, or function call 6335 // with ignored return value, store. Ignore unused instructions (basing on 6336 // instruction type, except for CallInst and InvokeInst). 6337 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6338 isa<InvokeInst>(it))) { 6339 KeyNodes.insert(&*it); 6340 bool OpsChanged = false; 6341 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6342 for (auto *V : it->operand_values()) { 6343 // Try to match and vectorize a horizontal reduction. 6344 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6345 } 6346 } 6347 // Start vectorization of post-process list of instructions from the 6348 // top-tree instructions to try to vectorize as many instructions as 6349 // possible. 6350 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6351 if (OpsChanged) { 6352 // We would like to start over since some instructions are deleted 6353 // and the iterator may become invalid value. 6354 Changed = true; 6355 it = BB->begin(); 6356 e = BB->end(); 6357 continue; 6358 } 6359 } 6360 6361 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6362 isa<InsertValueInst>(it)) 6363 PostProcessInstructions.push_back(&*it); 6364 } 6365 6366 return Changed; 6367 } 6368 6369 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6370 auto Changed = false; 6371 for (auto &Entry : GEPs) { 6372 // If the getelementptr list has fewer than two elements, there's nothing 6373 // to do. 6374 if (Entry.second.size() < 2) 6375 continue; 6376 6377 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6378 << Entry.second.size() << ".\n"); 6379 6380 // We process the getelementptr list in chunks of 16 (like we do for 6381 // stores) to minimize compile-time. 6382 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6383 auto Len = std::min<unsigned>(BE - BI, 16); 6384 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6385 6386 // Initialize a set a candidate getelementptrs. Note that we use a 6387 // SetVector here to preserve program order. If the index computations 6388 // are vectorizable and begin with loads, we want to minimize the chance 6389 // of having to reorder them later. 6390 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6391 6392 // Some of the candidates may have already been vectorized after we 6393 // initially collected them. If so, the WeakTrackingVHs will have 6394 // nullified the 6395 // values, so remove them from the set of candidates. 6396 Candidates.remove(nullptr); 6397 6398 // Remove from the set of candidates all pairs of getelementptrs with 6399 // constant differences. Such getelementptrs are likely not good 6400 // candidates for vectorization in a bottom-up phase since one can be 6401 // computed from the other. We also ensure all candidate getelementptr 6402 // indices are unique. 6403 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6404 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6405 if (!Candidates.count(GEPI)) 6406 continue; 6407 auto *SCEVI = SE->getSCEV(GEPList[I]); 6408 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6409 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6410 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6411 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6412 Candidates.remove(GEPList[I]); 6413 Candidates.remove(GEPList[J]); 6414 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6415 Candidates.remove(GEPList[J]); 6416 } 6417 } 6418 } 6419 6420 // We break out of the above computation as soon as we know there are 6421 // fewer than two candidates remaining. 6422 if (Candidates.size() < 2) 6423 continue; 6424 6425 // Add the single, non-constant index of each candidate to the bundle. We 6426 // ensured the indices met these constraints when we originally collected 6427 // the getelementptrs. 6428 SmallVector<Value *, 16> Bundle(Candidates.size()); 6429 auto BundleIndex = 0u; 6430 for (auto *V : Candidates) { 6431 auto *GEP = cast<GetElementPtrInst>(V); 6432 auto *GEPIdx = GEP->idx_begin()->get(); 6433 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6434 Bundle[BundleIndex++] = GEPIdx; 6435 } 6436 6437 // Try and vectorize the indices. We are currently only interested in 6438 // gather-like cases of the form: 6439 // 6440 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6441 // 6442 // where the loads of "a", the loads of "b", and the subtractions can be 6443 // performed in parallel. It's likely that detecting this pattern in a 6444 // bottom-up phase will be simpler and less costly than building a 6445 // full-blown top-down phase beginning at the consecutive loads. 6446 Changed |= tryToVectorizeList(Bundle, R); 6447 } 6448 } 6449 return Changed; 6450 } 6451 6452 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6453 bool Changed = false; 6454 // Attempt to sort and vectorize each of the store-groups. 6455 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6456 ++it) { 6457 if (it->second.size() < 2) 6458 continue; 6459 6460 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6461 << it->second.size() << ".\n"); 6462 6463 // Process the stores in chunks of 16. 6464 // TODO: The limit of 16 inhibits greater vectorization factors. 6465 // For example, AVX2 supports v32i8. Increasing this limit, however, 6466 // may cause a significant compile-time increase. 6467 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6468 unsigned Len = std::min<unsigned>(CE - CI, 16); 6469 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6470 } 6471 } 6472 return Changed; 6473 } 6474 6475 char SLPVectorizer::ID = 0; 6476 6477 static const char lv_name[] = "SLP Vectorizer"; 6478 6479 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6480 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6481 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6482 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6483 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6484 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6485 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6486 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6487 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6488 6489 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6490