1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 static cl::opt<int> 109 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 110 cl::desc("Only vectorize if you gain more than this " 111 "number ")); 112 113 static cl::opt<bool> 114 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 115 cl::desc("Attempt to vectorize horizontal reductions")); 116 117 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 118 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 119 cl::desc( 120 "Attempt to vectorize horizontal reductions feeding into a store")); 121 122 static cl::opt<int> 123 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 124 cl::desc("Attempt to vectorize for this register size in bits")); 125 126 /// Limits the size of scheduling regions in a block. 127 /// It avoid long compile times for _very_ large blocks where vector 128 /// instructions are spread over a wide range. 129 /// This limit is way higher than needed by real-world functions. 130 static cl::opt<int> 131 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 132 cl::desc("Limit the size of the SLP scheduling region per block")); 133 134 static cl::opt<int> MinVectorRegSizeOption( 135 "slp-min-reg-size", cl::init(128), cl::Hidden, 136 cl::desc("Attempt to vectorize for this register size in bits")); 137 138 static cl::opt<unsigned> RecursionMaxDepth( 139 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 140 cl::desc("Limit the recursion depth when building a vectorizable tree")); 141 142 static cl::opt<unsigned> MinTreeSize( 143 "slp-min-tree-size", cl::init(3), cl::Hidden, 144 cl::desc("Only vectorize small trees if they are fully vectorizable")); 145 146 static cl::opt<bool> 147 ViewSLPTree("view-slp-tree", cl::Hidden, 148 cl::desc("Display the SLP trees with Graphviz")); 149 150 // Limit the number of alias checks. The limit is chosen so that 151 // it has no negative effect on the llvm benchmarks. 152 static const unsigned AliasedCheckLimit = 10; 153 154 // Another limit for the alias checks: The maximum distance between load/store 155 // instructions where alias checks are done. 156 // This limit is useful for very large basic blocks. 157 static const unsigned MaxMemDepDistance = 160; 158 159 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 160 /// regions to be handled. 161 static const int MinScheduleRegionSize = 16; 162 163 /// Predicate for the element types that the SLP vectorizer supports. 164 /// 165 /// The most important thing to filter here are types which are invalid in LLVM 166 /// vectors. We also filter target specific types which have absolutely no 167 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 168 /// avoids spending time checking the cost model and realizing that they will 169 /// be inevitably scalarized. 170 static bool isValidElementType(Type *Ty) { 171 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 172 !Ty->isPPC_FP128Ty(); 173 } 174 175 /// \returns true if all of the instructions in \p VL are in the same block or 176 /// false otherwise. 177 static bool allSameBlock(ArrayRef<Value *> VL) { 178 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 179 if (!I0) 180 return false; 181 BasicBlock *BB = I0->getParent(); 182 for (int i = 1, e = VL.size(); i < e; i++) { 183 Instruction *I = dyn_cast<Instruction>(VL[i]); 184 if (!I) 185 return false; 186 187 if (BB != I->getParent()) 188 return false; 189 } 190 return true; 191 } 192 193 /// \returns True if all of the values in \p VL are constants. 194 static bool allConstant(ArrayRef<Value *> VL) { 195 for (Value *i : VL) 196 if (!isa<Constant>(i)) 197 return false; 198 return true; 199 } 200 201 /// \returns True if all of the values in \p VL are identical. 202 static bool isSplat(ArrayRef<Value *> VL) { 203 for (unsigned i = 1, e = VL.size(); i < e; ++i) 204 if (VL[i] != VL[0]) 205 return false; 206 return true; 207 } 208 209 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 210 static bool isCommutative(Instruction *I) { 211 if (auto *IC = dyn_cast<CmpInst>(I)) 212 return IC->isCommutative(); 213 return I->isCommutative(); 214 } 215 216 /// Checks if the vector of instructions can be represented as a shuffle, like: 217 /// %x0 = extractelement <4 x i8> %x, i32 0 218 /// %x3 = extractelement <4 x i8> %x, i32 3 219 /// %y1 = extractelement <4 x i8> %y, i32 1 220 /// %y2 = extractelement <4 x i8> %y, i32 2 221 /// %x0x0 = mul i8 %x0, %x0 222 /// %x3x3 = mul i8 %x3, %x3 223 /// %y1y1 = mul i8 %y1, %y1 224 /// %y2y2 = mul i8 %y2, %y2 225 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 226 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 227 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 228 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 229 /// ret <4 x i8> %ins4 230 /// can be transformed into: 231 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 232 /// i32 6> 233 /// %2 = mul <4 x i8> %1, %1 234 /// ret <4 x i8> %2 235 /// We convert this initially to something like: 236 /// %x0 = extractelement <4 x i8> %x, i32 0 237 /// %x3 = extractelement <4 x i8> %x, i32 3 238 /// %y1 = extractelement <4 x i8> %y, i32 1 239 /// %y2 = extractelement <4 x i8> %y, i32 2 240 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 241 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 242 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 243 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 244 /// %5 = mul <4 x i8> %4, %4 245 /// %6 = extractelement <4 x i8> %5, i32 0 246 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 247 /// %7 = extractelement <4 x i8> %5, i32 1 248 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 249 /// %8 = extractelement <4 x i8> %5, i32 2 250 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 251 /// %9 = extractelement <4 x i8> %5, i32 3 252 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 253 /// ret <4 x i8> %ins4 254 /// InstCombiner transforms this into a shuffle and vector mul 255 /// TODO: Can we split off and reuse the shuffle mask detection from 256 /// TargetTransformInfo::getInstructionThroughput? 257 static Optional<TargetTransformInfo::ShuffleKind> 258 isShuffle(ArrayRef<Value *> VL) { 259 auto *EI0 = cast<ExtractElementInst>(VL[0]); 260 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 261 Value *Vec1 = nullptr; 262 Value *Vec2 = nullptr; 263 enum ShuffleMode { Unknown, Select, Permute }; 264 ShuffleMode CommonShuffleMode = Unknown; 265 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 266 auto *EI = cast<ExtractElementInst>(VL[I]); 267 auto *Vec = EI->getVectorOperand(); 268 // All vector operands must have the same number of vector elements. 269 if (Vec->getType()->getVectorNumElements() != Size) 270 return None; 271 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 272 if (!Idx) 273 return None; 274 // Undefined behavior if Idx is negative or >= Size. 275 if (Idx->getValue().uge(Size)) 276 continue; 277 unsigned IntIdx = Idx->getValue().getZExtValue(); 278 // We can extractelement from undef vector. 279 if (isa<UndefValue>(Vec)) 280 continue; 281 // For correct shuffling we have to have at most 2 different vector operands 282 // in all extractelement instructions. 283 if (!Vec1 || Vec1 == Vec) 284 Vec1 = Vec; 285 else if (!Vec2 || Vec2 == Vec) 286 Vec2 = Vec; 287 else 288 return None; 289 if (CommonShuffleMode == Permute) 290 continue; 291 // If the extract index is not the same as the operation number, it is a 292 // permutation. 293 if (IntIdx != I) { 294 CommonShuffleMode = Permute; 295 continue; 296 } 297 CommonShuffleMode = Select; 298 } 299 // If we're not crossing lanes in different vectors, consider it as blending. 300 if (CommonShuffleMode == Select && Vec2) 301 return TargetTransformInfo::SK_Select; 302 // If Vec2 was never used, we have a permutation of a single vector, otherwise 303 // we have permutation of 2 vectors. 304 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 305 : TargetTransformInfo::SK_PermuteSingleSrc; 306 } 307 308 namespace { 309 310 /// Main data required for vectorization of instructions. 311 struct InstructionsState { 312 /// The very first instruction in the list with the main opcode. 313 Value *OpValue = nullptr; 314 315 /// The main/alternate instruction. 316 Instruction *MainOp = nullptr; 317 Instruction *AltOp = nullptr; 318 319 /// The main/alternate opcodes for the list of instructions. 320 unsigned getOpcode() const { 321 return MainOp ? MainOp->getOpcode() : 0; 322 } 323 324 unsigned getAltOpcode() const { 325 return AltOp ? AltOp->getOpcode() : 0; 326 } 327 328 /// Some of the instructions in the list have alternate opcodes. 329 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 330 331 bool isOpcodeOrAlt(Instruction *I) const { 332 unsigned CheckedOpcode = I->getOpcode(); 333 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 334 } 335 336 InstructionsState() = delete; 337 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 338 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 339 }; 340 341 } // end anonymous namespace 342 343 /// Chooses the correct key for scheduling data. If \p Op has the same (or 344 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 345 /// OpValue. 346 static Value *isOneOf(const InstructionsState &S, Value *Op) { 347 auto *I = dyn_cast<Instruction>(Op); 348 if (I && S.isOpcodeOrAlt(I)) 349 return Op; 350 return S.OpValue; 351 } 352 353 /// \returns analysis of the Instructions in \p VL described in 354 /// InstructionsState, the Opcode that we suppose the whole list 355 /// could be vectorized even if its structure is diverse. 356 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 357 unsigned BaseIndex = 0) { 358 // Make sure these are all Instructions. 359 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 360 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 361 362 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 363 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 364 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 365 unsigned AltOpcode = Opcode; 366 unsigned AltIndex = BaseIndex; 367 368 // Check for one alternate opcode from another BinaryOperator. 369 // TODO - generalize to support all operators (types, calls etc.). 370 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 371 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 372 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 373 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 374 continue; 375 if (Opcode == AltOpcode) { 376 AltOpcode = InstOpcode; 377 AltIndex = Cnt; 378 continue; 379 } 380 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 381 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 382 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 383 if (Ty0 == Ty1) { 384 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 385 continue; 386 if (Opcode == AltOpcode) { 387 AltOpcode = InstOpcode; 388 AltIndex = Cnt; 389 continue; 390 } 391 } 392 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 393 continue; 394 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 395 } 396 397 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 398 cast<Instruction>(VL[AltIndex])); 399 } 400 401 /// \returns true if all of the values in \p VL have the same type or false 402 /// otherwise. 403 static bool allSameType(ArrayRef<Value *> VL) { 404 Type *Ty = VL[0]->getType(); 405 for (int i = 1, e = VL.size(); i < e; i++) 406 if (VL[i]->getType() != Ty) 407 return false; 408 409 return true; 410 } 411 412 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 413 static Optional<unsigned> getExtractIndex(Instruction *E) { 414 unsigned Opcode = E->getOpcode(); 415 assert((Opcode == Instruction::ExtractElement || 416 Opcode == Instruction::ExtractValue) && 417 "Expected extractelement or extractvalue instruction."); 418 if (Opcode == Instruction::ExtractElement) { 419 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 420 if (!CI) 421 return None; 422 return CI->getZExtValue(); 423 } 424 ExtractValueInst *EI = cast<ExtractValueInst>(E); 425 if (EI->getNumIndices() != 1) 426 return None; 427 return *EI->idx_begin(); 428 } 429 430 /// \returns True if in-tree use also needs extract. This refers to 431 /// possible scalar operand in vectorized instruction. 432 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 433 TargetLibraryInfo *TLI) { 434 unsigned Opcode = UserInst->getOpcode(); 435 switch (Opcode) { 436 case Instruction::Load: { 437 LoadInst *LI = cast<LoadInst>(UserInst); 438 return (LI->getPointerOperand() == Scalar); 439 } 440 case Instruction::Store: { 441 StoreInst *SI = cast<StoreInst>(UserInst); 442 return (SI->getPointerOperand() == Scalar); 443 } 444 case Instruction::Call: { 445 CallInst *CI = cast<CallInst>(UserInst); 446 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 447 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 448 if (hasVectorInstrinsicScalarOpd(ID, i)) 449 return (CI->getArgOperand(i) == Scalar); 450 } 451 LLVM_FALLTHROUGH; 452 } 453 default: 454 return false; 455 } 456 } 457 458 /// \returns the AA location that is being access by the instruction. 459 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 460 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 461 return MemoryLocation::get(SI); 462 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 463 return MemoryLocation::get(LI); 464 return MemoryLocation(); 465 } 466 467 /// \returns True if the instruction is not a volatile or atomic load/store. 468 static bool isSimple(Instruction *I) { 469 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 470 return LI->isSimple(); 471 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 472 return SI->isSimple(); 473 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 474 return !MI->isVolatile(); 475 return true; 476 } 477 478 namespace llvm { 479 480 namespace slpvectorizer { 481 482 /// Bottom Up SLP Vectorizer. 483 class BoUpSLP { 484 public: 485 using ValueList = SmallVector<Value *, 8>; 486 using InstrList = SmallVector<Instruction *, 16>; 487 using ValueSet = SmallPtrSet<Value *, 16>; 488 using StoreList = SmallVector<StoreInst *, 8>; 489 using ExtraValueToDebugLocsMap = 490 MapVector<Value *, SmallVector<Instruction *, 2>>; 491 492 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 493 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 494 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 495 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 496 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 497 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 498 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 499 // Use the vector register size specified by the target unless overridden 500 // by a command-line option. 501 // TODO: It would be better to limit the vectorization factor based on 502 // data type rather than just register size. For example, x86 AVX has 503 // 256-bit registers, but it does not support integer operations 504 // at that width (that requires AVX2). 505 if (MaxVectorRegSizeOption.getNumOccurrences()) 506 MaxVecRegSize = MaxVectorRegSizeOption; 507 else 508 MaxVecRegSize = TTI->getRegisterBitWidth(true); 509 510 if (MinVectorRegSizeOption.getNumOccurrences()) 511 MinVecRegSize = MinVectorRegSizeOption; 512 else 513 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 514 } 515 516 /// Vectorize the tree that starts with the elements in \p VL. 517 /// Returns the vectorized root. 518 Value *vectorizeTree(); 519 520 /// Vectorize the tree but with the list of externally used values \p 521 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 522 /// generated extractvalue instructions. 523 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 524 525 /// \returns the cost incurred by unwanted spills and fills, caused by 526 /// holding live values over call sites. 527 int getSpillCost(); 528 529 /// \returns the vectorization cost of the subtree that starts at \p VL. 530 /// A negative number means that this is profitable. 531 int getTreeCost(); 532 533 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 534 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 535 void buildTree(ArrayRef<Value *> Roots, 536 ArrayRef<Value *> UserIgnoreLst = None); 537 538 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 539 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 540 /// into account (anf updating it, if required) list of externally used 541 /// values stored in \p ExternallyUsedValues. 542 void buildTree(ArrayRef<Value *> Roots, 543 ExtraValueToDebugLocsMap &ExternallyUsedValues, 544 ArrayRef<Value *> UserIgnoreLst = None); 545 546 /// Clear the internal data structures that are created by 'buildTree'. 547 void deleteTree() { 548 VectorizableTree.clear(); 549 ScalarToTreeEntry.clear(); 550 MustGather.clear(); 551 ExternalUses.clear(); 552 NumOpsWantToKeepOrder.clear(); 553 NumOpsWantToKeepOriginalOrder = 0; 554 for (auto &Iter : BlocksSchedules) { 555 BlockScheduling *BS = Iter.second.get(); 556 BS->clear(); 557 } 558 MinBWs.clear(); 559 } 560 561 unsigned getTreeSize() const { return VectorizableTree.size(); } 562 563 /// Perform LICM and CSE on the newly generated gather sequences. 564 void optimizeGatherSequence(); 565 566 /// \returns The best order of instructions for vectorization. 567 Optional<ArrayRef<unsigned>> bestOrder() const { 568 auto I = std::max_element( 569 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 570 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 571 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 572 return D1.second < D2.second; 573 }); 574 if (I == NumOpsWantToKeepOrder.end() || 575 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 576 return None; 577 578 return makeArrayRef(I->getFirst()); 579 } 580 581 /// \return The vector element size in bits to use when vectorizing the 582 /// expression tree ending at \p V. If V is a store, the size is the width of 583 /// the stored value. Otherwise, the size is the width of the largest loaded 584 /// value reaching V. This method is used by the vectorizer to calculate 585 /// vectorization factors. 586 unsigned getVectorElementSize(Value *V) const; 587 588 /// Compute the minimum type sizes required to represent the entries in a 589 /// vectorizable tree. 590 void computeMinimumValueSizes(); 591 592 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 593 unsigned getMaxVecRegSize() const { 594 return MaxVecRegSize; 595 } 596 597 // \returns minimum vector register size as set by cl::opt. 598 unsigned getMinVecRegSize() const { 599 return MinVecRegSize; 600 } 601 602 /// Check if ArrayType or StructType is isomorphic to some VectorType. 603 /// 604 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 605 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 606 607 /// \returns True if the VectorizableTree is both tiny and not fully 608 /// vectorizable. We do not vectorize such trees. 609 bool isTreeTinyAndNotFullyVectorizable() const; 610 611 OptimizationRemarkEmitter *getORE() { return ORE; } 612 613 /// This structure holds any data we need about the edges being traversed 614 /// during buildTree_rec(). We keep track of: 615 /// (i) the user TreeEntry index, and 616 /// (ii) the index of the edge. 617 struct EdgeInfo { 618 EdgeInfo() = default; 619 /// The index of the user TreeEntry in VectorizableTree. 620 int Idx = -1; 621 /// The operand index of the use. 622 unsigned EdgeIdx = UINT_MAX; 623 #ifndef NDEBUG 624 friend inline raw_ostream &operator<<(raw_ostream &OS, 625 const BoUpSLP::EdgeInfo &EI) { 626 EI.dump(OS); 627 return OS; 628 } 629 /// Debug print. 630 void dump(raw_ostream &OS) const { 631 OS << "{User:" << Idx << " EdgeIdx:" << EdgeIdx << "}"; 632 } 633 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 634 #endif 635 }; 636 637 /// A helper data structure to hold the operands of a vector of instructions. 638 /// This supports a fixed vector length for all operand vectors. 639 class VLOperands { 640 /// For each operand we need (i) the value, and (ii) the opcode that it 641 /// would be attached to if the expression was in a left-linearized form. 642 /// This is required to avoid illegal operand reordering. 643 /// For example: 644 /// \verbatim 645 /// 0 Op1 646 /// |/ 647 /// Op1 Op2 Linearized + Op2 648 /// \ / ----------> |/ 649 /// - - 650 /// 651 /// Op1 - Op2 (0 + Op1) - Op2 652 /// \endverbatim 653 /// 654 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 655 /// 656 /// Another way to think of this is to track all the operations across the 657 /// path from the operand all the way to the root of the tree and to 658 /// calculate the operation that corresponds to this path. For example, the 659 /// path from Op2 to the root crosses the RHS of the '-', therefore the 660 /// corresponding operation is a '-' (which matches the one in the 661 /// linearized tree, as shown above). 662 /// 663 /// For lack of a better term, we refer to this operation as Accumulated 664 /// Path Operation (APO). 665 struct OperandData { 666 OperandData() = default; 667 OperandData(Value *V, bool APO, bool IsUsed) 668 : V(V), APO(APO), IsUsed(IsUsed) {} 669 /// The operand value. 670 Value *V = nullptr; 671 /// TreeEntries only allow a single opcode, or an alternate sequence of 672 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 673 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 674 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 675 /// (e.g., Add/Mul) 676 bool APO = false; 677 /// Helper data for the reordering function. 678 bool IsUsed = false; 679 }; 680 681 /// During operand reordering, we are trying to select the operand at lane 682 /// that matches best with the operand at the neighboring lane. Our 683 /// selection is based on the type of value we are looking for. For example, 684 /// if the neighboring lane has a load, we need to look for a load that is 685 /// accessing a consecutive address. These strategies are summarized in the 686 /// 'ReorderingMode' enumerator. 687 enum class ReorderingMode { 688 Load, ///< Matching loads to consecutive memory addresses 689 Opcode, ///< Matching instructions based on opcode (same or alternate) 690 Constant, ///< Matching constants 691 Splat, ///< Matching the same instruction multiple times (broadcast) 692 Failed, ///< We failed to create a vectorizable group 693 }; 694 695 using OperandDataVec = SmallVector<OperandData, 2>; 696 697 /// A vector of operand vectors. 698 SmallVector<OperandDataVec, 4> OpsVec; 699 700 const DataLayout &DL; 701 ScalarEvolution &SE; 702 703 /// \returns the operand data at \p OpIdx and \p Lane. 704 OperandData &getData(unsigned OpIdx, unsigned Lane) { 705 return OpsVec[OpIdx][Lane]; 706 } 707 708 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 709 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 710 return OpsVec[OpIdx][Lane]; 711 } 712 713 /// Clears the used flag for all entries. 714 void clearUsed() { 715 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 716 OpIdx != NumOperands; ++OpIdx) 717 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 718 ++Lane) 719 OpsVec[OpIdx][Lane].IsUsed = false; 720 } 721 722 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 723 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 724 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 725 } 726 727 // Search all operands in Ops[*][Lane] for the one that matches best 728 // Ops[OpIdx][LastLane] and return its opreand index. 729 // If no good match can be found, return None. 730 Optional<unsigned> 731 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 732 ArrayRef<ReorderingMode> ReorderingModes) { 733 unsigned NumOperands = getNumOperands(); 734 735 // The operand of the previous lane at OpIdx. 736 Value *OpLastLane = getData(OpIdx, LastLane).V; 737 738 // Our strategy mode for OpIdx. 739 ReorderingMode RMode = ReorderingModes[OpIdx]; 740 741 // The linearized opcode of the operand at OpIdx, Lane. 742 bool OpIdxAPO = getData(OpIdx, Lane).APO; 743 744 const unsigned BestScore = 2; 745 const unsigned GoodScore = 1; 746 747 // The best operand index and its score. 748 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 749 // are using the score to differentiate between the two. 750 struct BestOpData { 751 Optional<unsigned> Idx = None; 752 unsigned Score = 0; 753 } BestOp; 754 755 // Iterate through all unused operands and look for the best. 756 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 757 // Get the operand at Idx and Lane. 758 OperandData &OpData = getData(Idx, Lane); 759 Value *Op = OpData.V; 760 bool OpAPO = OpData.APO; 761 762 // Skip already selected operands. 763 if (OpData.IsUsed) 764 continue; 765 766 // Skip if we are trying to move the operand to a position with a 767 // different opcode in the linearized tree form. This would break the 768 // semantics. 769 if (OpAPO != OpIdxAPO) 770 continue; 771 772 // Look for an operand that matches the current mode. 773 switch (RMode) { 774 case ReorderingMode::Load: 775 if (isa<LoadInst>(Op)) { 776 // Figure out which is left and right, so that we can check for 777 // consecutive loads 778 bool LeftToRight = Lane > LastLane; 779 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 780 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 781 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 782 cast<LoadInst>(OpRight), DL, SE)) 783 BestOp.Idx = Idx; 784 } 785 break; 786 case ReorderingMode::Opcode: 787 // We accept both Instructions and Undefs, but with different scores. 788 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 789 cast<Instruction>(Op)->getOpcode() == 790 cast<Instruction>(OpLastLane)->getOpcode()) || 791 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 792 isa<UndefValue>(Op)) { 793 // An instruction has a higher score than an undef. 794 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 795 if (Score > BestOp.Score) { 796 BestOp.Idx = Idx; 797 BestOp.Score = Score; 798 } 799 } 800 break; 801 case ReorderingMode::Constant: 802 if (isa<Constant>(Op)) { 803 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 804 if (Score > BestOp.Score) { 805 BestOp.Idx = Idx; 806 BestOp.Score = Score; 807 } 808 } 809 break; 810 case ReorderingMode::Splat: 811 if (Op == OpLastLane) 812 BestOp.Idx = Idx; 813 break; 814 case ReorderingMode::Failed: 815 return None; 816 } 817 } 818 819 if (BestOp.Idx) { 820 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 821 return BestOp.Idx; 822 } 823 // If we could not find a good match return None. 824 return None; 825 } 826 827 /// Helper for reorderOperandVecs. \Returns the lane that we should start 828 /// reordering from. This is the one which has the least number of operands 829 /// that can freely move about. 830 unsigned getBestLaneToStartReordering() const { 831 unsigned BestLane = 0; 832 unsigned Min = UINT_MAX; 833 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 834 ++Lane) { 835 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 836 if (NumFreeOps < Min) { 837 Min = NumFreeOps; 838 BestLane = Lane; 839 } 840 } 841 return BestLane; 842 } 843 844 /// \Returns the maximum number of operands that are allowed to be reordered 845 /// for \p Lane. This is used as a heuristic for selecting the first lane to 846 /// start operand reordering. 847 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 848 unsigned CntTrue = 0; 849 unsigned NumOperands = getNumOperands(); 850 // Operands with the same APO can be reordered. We therefore need to count 851 // how many of them we have for each APO, like this: Cnt[APO] = x. 852 // Since we only have two APOs, namely true and false, we can avoid using 853 // a map. Instead we can simply count the number of operands that 854 // correspond to one of them (in this case the 'true' APO), and calculate 855 // the other by subtracting it from the total number of operands. 856 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 857 if (getData(OpIdx, Lane).APO) 858 ++CntTrue; 859 unsigned CntFalse = NumOperands - CntTrue; 860 return std::max(CntTrue, CntFalse); 861 } 862 863 /// Go through the instructions in VL and append their operands. 864 void appendOperandsOfVL(ArrayRef<Value *> VL) { 865 assert(!VL.empty() && "Bad VL"); 866 assert((empty() || VL.size() == getNumLanes()) && 867 "Expected same number of lanes"); 868 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 869 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 870 OpsVec.resize(NumOperands); 871 unsigned NumLanes = VL.size(); 872 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 873 OpsVec[OpIdx].resize(NumLanes); 874 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 875 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 876 // Our tree has just 3 nodes: the root and two operands. 877 // It is therefore trivial to get the APO. We only need to check the 878 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 879 // RHS operand. The LHS operand of both add and sub is never attached 880 // to an inversese operation in the linearized form, therefore its APO 881 // is false. The RHS is true only if VL[Lane] is an inverse operation. 882 883 // Since operand reordering is performed on groups of commutative 884 // operations or alternating sequences (e.g., +, -), we can safely 885 // tell the inverse operations by checking commutativity. 886 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 887 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 888 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 889 APO, false}; 890 } 891 } 892 } 893 894 /// \returns the number of operands. 895 unsigned getNumOperands() const { return OpsVec.size(); } 896 897 /// \returns the number of lanes. 898 unsigned getNumLanes() const { return OpsVec[0].size(); } 899 900 /// \returns the operand value at \p OpIdx and \p Lane. 901 Value *getValue(unsigned OpIdx, unsigned Lane) const { 902 return getData(OpIdx, Lane).V; 903 } 904 905 /// \returns true if the data structure is empty. 906 bool empty() const { return OpsVec.empty(); } 907 908 /// Clears the data. 909 void clear() { OpsVec.clear(); } 910 911 public: 912 /// Initialize with all the operands of the instruction vector \p RootVL. 913 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 914 ScalarEvolution &SE) 915 : DL(DL), SE(SE) { 916 // Append all the operands of RootVL. 917 appendOperandsOfVL(RootVL); 918 } 919 920 /// \Returns a value vector with the operands across all lanes for the 921 /// opearnd at \p OpIdx. 922 ValueList getVL(unsigned OpIdx) const { 923 ValueList OpVL(OpsVec[OpIdx].size()); 924 assert(OpsVec[OpIdx].size() == getNumLanes() && 925 "Expected same num of lanes across all operands"); 926 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 927 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 928 return OpVL; 929 } 930 931 // Performs operand reordering for 2 or more operands. 932 // The original operands are in OrigOps[OpIdx][Lane]. 933 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 934 void reorder() { 935 unsigned NumOperands = getNumOperands(); 936 unsigned NumLanes = getNumLanes(); 937 // Each operand has its own mode. We are using this mode to help us select 938 // the instructions for each lane, so that they match best with the ones 939 // we have selected so far. 940 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 941 942 // This is a greedy single-pass algorithm. We are going over each lane 943 // once and deciding on the best order right away with no back-tracking. 944 // However, in order to increase its effectiveness, we start with the lane 945 // that has operands that can move the least. For example, given the 946 // following lanes: 947 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 948 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 949 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 950 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 951 // we will start at Lane 1, since the operands of the subtraction cannot 952 // be reordered. Then we will visit the rest of the lanes in a circular 953 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 954 955 // Find the first lane that we will start our search from. 956 unsigned FirstLane = getBestLaneToStartReordering(); 957 958 // Initialize the modes. 959 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 960 Value *OpLane0 = getValue(OpIdx, FirstLane); 961 // Keep track if we have instructions with all the same opcode on one 962 // side. 963 if (isa<LoadInst>(OpLane0)) 964 ReorderingModes[OpIdx] = ReorderingMode::Load; 965 else if (isa<Instruction>(OpLane0)) 966 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 967 else if (isa<Constant>(OpLane0)) 968 ReorderingModes[OpIdx] = ReorderingMode::Constant; 969 else if (isa<Argument>(OpLane0)) 970 // Our best hope is a Splat. It may save some cost in some cases. 971 ReorderingModes[OpIdx] = ReorderingMode::Splat; 972 else 973 // NOTE: This should be unreachable. 974 ReorderingModes[OpIdx] = ReorderingMode::Failed; 975 } 976 977 // If the initial strategy fails for any of the operand indexes, then we 978 // perform reordering again in a second pass. This helps avoid assigning 979 // high priority to the failed strategy, and should improve reordering for 980 // the non-failed operand indexes. 981 for (int Pass = 0; Pass != 2; ++Pass) { 982 // Skip the second pass if the first pass did not fail. 983 bool StrategyFailed = false; 984 // Mark the operand data as free to use for all but the first pass. 985 if (Pass > 0) 986 clearUsed(); 987 // We keep the original operand order for the FirstLane, so reorder the 988 // rest of the lanes. We are visiting the nodes in a circular fashion, 989 // using FirstLane as the center point and increasing the radius 990 // distance. 991 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 992 // Visit the lane on the right and then the lane on the left. 993 for (int Direction : {+1, -1}) { 994 int Lane = FirstLane + Direction * Distance; 995 if (Lane < 0 || Lane >= (int)NumLanes) 996 continue; 997 int LastLane = Lane - Direction; 998 assert(LastLane >= 0 && LastLane < (int)NumLanes && 999 "Out of bounds"); 1000 // Look for a good match for each operand. 1001 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1002 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1003 Optional<unsigned> BestIdx = 1004 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1005 // By not selecting a value, we allow the operands that follow to 1006 // select a better matching value. We will get a non-null value in 1007 // the next run of getBestOperand(). 1008 if (BestIdx) { 1009 // Swap the current operand with the one returned by 1010 // getBestOperand(). 1011 swap(OpIdx, BestIdx.getValue(), Lane); 1012 } else { 1013 // We failed to find a best operand, set mode to 'Failed'. 1014 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1015 // Enable the second pass. 1016 StrategyFailed = true; 1017 } 1018 } 1019 } 1020 } 1021 // Skip second pass if the strategy did not fail. 1022 if (!StrategyFailed) 1023 break; 1024 } 1025 } 1026 1027 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1028 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1029 switch (RMode) { 1030 case ReorderingMode::Load: 1031 return "Load"; 1032 case ReorderingMode::Opcode: 1033 return "Opcode"; 1034 case ReorderingMode::Constant: 1035 return "Constant"; 1036 case ReorderingMode::Splat: 1037 return "Splat"; 1038 case ReorderingMode::Failed: 1039 return "Failed"; 1040 } 1041 llvm_unreachable("Unimplemented Reordering Type"); 1042 } 1043 1044 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1045 raw_ostream &OS) { 1046 return OS << getModeStr(RMode); 1047 } 1048 1049 /// Debug print. 1050 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1051 printMode(RMode, dbgs()); 1052 } 1053 1054 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1055 return printMode(RMode, OS); 1056 } 1057 1058 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1059 const unsigned Indent = 2; 1060 unsigned Cnt = 0; 1061 for (const OperandDataVec &OpDataVec : OpsVec) { 1062 OS << "Operand " << Cnt++ << "\n"; 1063 for (const OperandData &OpData : OpDataVec) { 1064 OS.indent(Indent) << "{"; 1065 if (Value *V = OpData.V) 1066 OS << *V; 1067 else 1068 OS << "null"; 1069 OS << ", APO:" << OpData.APO << "}\n"; 1070 } 1071 OS << "\n"; 1072 } 1073 return OS; 1074 } 1075 1076 /// Debug print. 1077 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1078 #endif 1079 }; 1080 1081 private: 1082 struct TreeEntry; 1083 1084 /// Checks if all users of \p I are the part of the vectorization tree. 1085 bool areAllUsersVectorized(Instruction *I) const; 1086 1087 /// \returns the cost of the vectorizable entry. 1088 int getEntryCost(TreeEntry *E); 1089 1090 /// This is the recursive part of buildTree. 1091 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, EdgeInfo EI); 1092 1093 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1094 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1095 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1096 /// returns false, setting \p CurrentOrder to either an empty vector or a 1097 /// non-identity permutation that allows to reuse extract instructions. 1098 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1099 SmallVectorImpl<unsigned> &CurrentOrder) const; 1100 1101 /// Vectorize a single entry in the tree. 1102 Value *vectorizeTree(TreeEntry *E); 1103 1104 /// Vectorize a single entry in the tree, starting in \p VL. 1105 Value *vectorizeTree(ArrayRef<Value *> VL); 1106 1107 /// \returns the scalarization cost for this type. Scalarization in this 1108 /// context means the creation of vectors from a group of scalars. 1109 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1110 1111 /// \returns the scalarization cost for this list of values. Assuming that 1112 /// this subtree gets vectorized, we may need to extract the values from the 1113 /// roots. This method calculates the cost of extracting the values. 1114 int getGatherCost(ArrayRef<Value *> VL) const; 1115 1116 /// Set the Builder insert point to one after the last instruction in 1117 /// the bundle 1118 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 1119 const InstructionsState &S); 1120 1121 /// \returns a vector from a collection of scalars in \p VL. 1122 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1123 1124 /// \returns whether the VectorizableTree is fully vectorizable and will 1125 /// be beneficial even the tree height is tiny. 1126 bool isFullyVectorizableTinyTree() const; 1127 1128 /// Reorder commutative or alt operands to get better probability of 1129 /// generating vectorized code. 1130 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1131 SmallVectorImpl<Value *> &Left, 1132 SmallVectorImpl<Value *> &Right, 1133 const DataLayout &DL, 1134 ScalarEvolution &SE); 1135 struct TreeEntry { 1136 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 1137 1138 /// \returns true if the scalars in VL are equal to this entry. 1139 bool isSame(ArrayRef<Value *> VL) const { 1140 if (VL.size() == Scalars.size()) 1141 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1142 return VL.size() == ReuseShuffleIndices.size() && 1143 std::equal( 1144 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1145 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1146 } 1147 1148 /// A vector of scalars. 1149 ValueList Scalars; 1150 1151 /// The Scalars are vectorized into this value. It is initialized to Null. 1152 Value *VectorizedValue = nullptr; 1153 1154 /// Do we need to gather this sequence ? 1155 bool NeedToGather = false; 1156 1157 /// Does this sequence require some shuffling? 1158 SmallVector<unsigned, 4> ReuseShuffleIndices; 1159 1160 /// Does this entry require reordering? 1161 ArrayRef<unsigned> ReorderIndices; 1162 1163 /// Points back to the VectorizableTree. 1164 /// 1165 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1166 /// to be a pointer and needs to be able to initialize the child iterator. 1167 /// Thus we need a reference back to the container to translate the indices 1168 /// to entries. 1169 std::vector<TreeEntry> &Container; 1170 1171 /// The TreeEntry index containing the user of this entry. We can actually 1172 /// have multiple users so the data structure is not truly a tree. 1173 SmallVector<EdgeInfo, 1> UserTreeIndices; 1174 1175 private: 1176 /// The operands of each instruction in each lane Operands[op_index][lane]. 1177 /// Note: This helps avoid the replication of the code that performs the 1178 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1179 SmallVector<ValueList, 2> Operands; 1180 1181 public: 1182 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1183 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL, 1184 ArrayRef<unsigned> ReuseShuffleIndices) { 1185 if (Operands.size() < OpIdx + 1) 1186 Operands.resize(OpIdx + 1); 1187 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1188 Operands[OpIdx].resize(Scalars.size()); 1189 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1190 Operands[OpIdx][Lane] = (!ReuseShuffleIndices.empty()) 1191 ? OpVL[ReuseShuffleIndices[Lane]] 1192 : OpVL[Lane]; 1193 } 1194 1195 /// If there is a user TreeEntry, then set its operand. 1196 void trySetUserTEOperand(const EdgeInfo &UserTreeIdx, 1197 ArrayRef<Value *> OpVL, 1198 ArrayRef<unsigned> ReuseShuffleIndices) { 1199 if (UserTreeIdx.Idx >= 0) { 1200 auto &VectorizableTree = Container; 1201 VectorizableTree[UserTreeIdx.Idx].setOperand(UserTreeIdx.EdgeIdx, OpVL, 1202 ReuseShuffleIndices); 1203 } 1204 } 1205 1206 /// \returns the \p OpIdx operand of this TreeEntry. 1207 ValueList &getOperand(unsigned OpIdx) { 1208 assert(OpIdx < Operands.size() && "Off bounds"); 1209 return Operands[OpIdx]; 1210 } 1211 1212 /// \return the single \p OpIdx operand. 1213 Value *getSingleOperand(unsigned OpIdx) const { 1214 assert(OpIdx < Operands.size() && "Off bounds"); 1215 assert(!Operands[OpIdx].empty() && "No operand availabe"); 1216 return Operands[OpIdx][0]; 1217 } 1218 1219 #ifndef NDEBUG 1220 /// Debug printer. 1221 LLVM_DUMP_METHOD void dump() const { 1222 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1223 dbgs() << "Operand " << OpI << ":\n"; 1224 for (const Value *V : Operands[OpI]) 1225 dbgs().indent(2) << *V << "\n"; 1226 } 1227 dbgs() << "Scalars: \n"; 1228 for (Value *V : Scalars) 1229 dbgs().indent(2) << *V << "\n"; 1230 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1231 dbgs() << "VectorizedValue: "; 1232 if (VectorizedValue) 1233 dbgs() << *VectorizedValue; 1234 else 1235 dbgs() << "NULL"; 1236 dbgs() << "\n"; 1237 dbgs() << "ReuseShuffleIndices: "; 1238 if (ReuseShuffleIndices.empty()) 1239 dbgs() << "Emtpy"; 1240 else 1241 for (unsigned Idx : ReuseShuffleIndices) 1242 dbgs() << Idx << ", "; 1243 dbgs() << "\n"; 1244 dbgs() << "ReorderIndices: "; 1245 for (unsigned Idx : ReorderIndices) 1246 dbgs() << Idx << ", "; 1247 dbgs() << "\n"; 1248 dbgs() << "UserTreeIndices: "; 1249 for (const auto &EInfo : UserTreeIndices) 1250 dbgs() << EInfo << ", "; 1251 dbgs() << "\n"; 1252 } 1253 #endif 1254 }; 1255 1256 /// Create a new VectorizableTree entry. 1257 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 1258 EdgeInfo &UserTreeIdx, 1259 ArrayRef<unsigned> ReuseShuffleIndices = None, 1260 ArrayRef<unsigned> ReorderIndices = None) { 1261 VectorizableTree.emplace_back(VectorizableTree); 1262 int idx = VectorizableTree.size() - 1; 1263 TreeEntry *Last = &VectorizableTree[idx]; 1264 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1265 Last->NeedToGather = !Vectorized; 1266 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1267 ReuseShuffleIndices.end()); 1268 Last->ReorderIndices = ReorderIndices; 1269 if (Vectorized) { 1270 for (int i = 0, e = VL.size(); i != e; ++i) { 1271 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1272 ScalarToTreeEntry[VL[i]] = idx; 1273 } 1274 } else { 1275 MustGather.insert(VL.begin(), VL.end()); 1276 } 1277 1278 if (UserTreeIdx.Idx >= 0) 1279 Last->UserTreeIndices.push_back(UserTreeIdx); 1280 1281 Last->trySetUserTEOperand(UserTreeIdx, VL, ReuseShuffleIndices); 1282 1283 UserTreeIdx.Idx = idx; 1284 } 1285 1286 /// -- Vectorization State -- 1287 /// Holds all of the tree entries. 1288 std::vector<TreeEntry> VectorizableTree; 1289 1290 #ifndef NDEBUG 1291 /// Debug printer. 1292 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1293 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1294 dbgs() << Id << ".\n"; 1295 VectorizableTree[Id].dump(); 1296 dbgs() << "\n"; 1297 } 1298 } 1299 #endif 1300 1301 TreeEntry *getTreeEntry(Value *V) { 1302 auto I = ScalarToTreeEntry.find(V); 1303 if (I != ScalarToTreeEntry.end()) 1304 return &VectorizableTree[I->second]; 1305 return nullptr; 1306 } 1307 1308 /// Maps a specific scalar to its tree entry. 1309 SmallDenseMap<Value*, int> ScalarToTreeEntry; 1310 1311 /// A list of scalars that we found that we need to keep as scalars. 1312 ValueSet MustGather; 1313 1314 /// This POD struct describes one external user in the vectorized tree. 1315 struct ExternalUser { 1316 ExternalUser(Value *S, llvm::User *U, int L) 1317 : Scalar(S), User(U), Lane(L) {} 1318 1319 // Which scalar in our function. 1320 Value *Scalar; 1321 1322 // Which user that uses the scalar. 1323 llvm::User *User; 1324 1325 // Which lane does the scalar belong to. 1326 int Lane; 1327 }; 1328 using UserList = SmallVector<ExternalUser, 16>; 1329 1330 /// Checks if two instructions may access the same memory. 1331 /// 1332 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1333 /// is invariant in the calling loop. 1334 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1335 Instruction *Inst2) { 1336 // First check if the result is already in the cache. 1337 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1338 Optional<bool> &result = AliasCache[key]; 1339 if (result.hasValue()) { 1340 return result.getValue(); 1341 } 1342 MemoryLocation Loc2 = getLocation(Inst2, AA); 1343 bool aliased = true; 1344 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1345 // Do the alias check. 1346 aliased = AA->alias(Loc1, Loc2); 1347 } 1348 // Store the result in the cache. 1349 result = aliased; 1350 return aliased; 1351 } 1352 1353 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1354 1355 /// Cache for alias results. 1356 /// TODO: consider moving this to the AliasAnalysis itself. 1357 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1358 1359 /// Removes an instruction from its block and eventually deletes it. 1360 /// It's like Instruction::eraseFromParent() except that the actual deletion 1361 /// is delayed until BoUpSLP is destructed. 1362 /// This is required to ensure that there are no incorrect collisions in the 1363 /// AliasCache, which can happen if a new instruction is allocated at the 1364 /// same address as a previously deleted instruction. 1365 void eraseInstruction(Instruction *I) { 1366 I->removeFromParent(); 1367 I->dropAllReferences(); 1368 DeletedInstructions.emplace_back(I); 1369 } 1370 1371 /// Temporary store for deleted instructions. Instructions will be deleted 1372 /// eventually when the BoUpSLP is destructed. 1373 SmallVector<unique_value, 8> DeletedInstructions; 1374 1375 /// A list of values that need to extracted out of the tree. 1376 /// This list holds pairs of (Internal Scalar : External User). External User 1377 /// can be nullptr, it means that this Internal Scalar will be used later, 1378 /// after vectorization. 1379 UserList ExternalUses; 1380 1381 /// Values used only by @llvm.assume calls. 1382 SmallPtrSet<const Value *, 32> EphValues; 1383 1384 /// Holds all of the instructions that we gathered. 1385 SetVector<Instruction *> GatherSeq; 1386 1387 /// A list of blocks that we are going to CSE. 1388 SetVector<BasicBlock *> CSEBlocks; 1389 1390 /// Contains all scheduling relevant data for an instruction. 1391 /// A ScheduleData either represents a single instruction or a member of an 1392 /// instruction bundle (= a group of instructions which is combined into a 1393 /// vector instruction). 1394 struct ScheduleData { 1395 // The initial value for the dependency counters. It means that the 1396 // dependencies are not calculated yet. 1397 enum { InvalidDeps = -1 }; 1398 1399 ScheduleData() = default; 1400 1401 void init(int BlockSchedulingRegionID, Value *OpVal) { 1402 FirstInBundle = this; 1403 NextInBundle = nullptr; 1404 NextLoadStore = nullptr; 1405 IsScheduled = false; 1406 SchedulingRegionID = BlockSchedulingRegionID; 1407 UnscheduledDepsInBundle = UnscheduledDeps; 1408 clearDependencies(); 1409 OpValue = OpVal; 1410 } 1411 1412 /// Returns true if the dependency information has been calculated. 1413 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1414 1415 /// Returns true for single instructions and for bundle representatives 1416 /// (= the head of a bundle). 1417 bool isSchedulingEntity() const { return FirstInBundle == this; } 1418 1419 /// Returns true if it represents an instruction bundle and not only a 1420 /// single instruction. 1421 bool isPartOfBundle() const { 1422 return NextInBundle != nullptr || FirstInBundle != this; 1423 } 1424 1425 /// Returns true if it is ready for scheduling, i.e. it has no more 1426 /// unscheduled depending instructions/bundles. 1427 bool isReady() const { 1428 assert(isSchedulingEntity() && 1429 "can't consider non-scheduling entity for ready list"); 1430 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1431 } 1432 1433 /// Modifies the number of unscheduled dependencies, also updating it for 1434 /// the whole bundle. 1435 int incrementUnscheduledDeps(int Incr) { 1436 UnscheduledDeps += Incr; 1437 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1438 } 1439 1440 /// Sets the number of unscheduled dependencies to the number of 1441 /// dependencies. 1442 void resetUnscheduledDeps() { 1443 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1444 } 1445 1446 /// Clears all dependency information. 1447 void clearDependencies() { 1448 Dependencies = InvalidDeps; 1449 resetUnscheduledDeps(); 1450 MemoryDependencies.clear(); 1451 } 1452 1453 void dump(raw_ostream &os) const { 1454 if (!isSchedulingEntity()) { 1455 os << "/ " << *Inst; 1456 } else if (NextInBundle) { 1457 os << '[' << *Inst; 1458 ScheduleData *SD = NextInBundle; 1459 while (SD) { 1460 os << ';' << *SD->Inst; 1461 SD = SD->NextInBundle; 1462 } 1463 os << ']'; 1464 } else { 1465 os << *Inst; 1466 } 1467 } 1468 1469 Instruction *Inst = nullptr; 1470 1471 /// Points to the head in an instruction bundle (and always to this for 1472 /// single instructions). 1473 ScheduleData *FirstInBundle = nullptr; 1474 1475 /// Single linked list of all instructions in a bundle. Null if it is a 1476 /// single instruction. 1477 ScheduleData *NextInBundle = nullptr; 1478 1479 /// Single linked list of all memory instructions (e.g. load, store, call) 1480 /// in the block - until the end of the scheduling region. 1481 ScheduleData *NextLoadStore = nullptr; 1482 1483 /// The dependent memory instructions. 1484 /// This list is derived on demand in calculateDependencies(). 1485 SmallVector<ScheduleData *, 4> MemoryDependencies; 1486 1487 /// This ScheduleData is in the current scheduling region if this matches 1488 /// the current SchedulingRegionID of BlockScheduling. 1489 int SchedulingRegionID = 0; 1490 1491 /// Used for getting a "good" final ordering of instructions. 1492 int SchedulingPriority = 0; 1493 1494 /// The number of dependencies. Constitutes of the number of users of the 1495 /// instruction plus the number of dependent memory instructions (if any). 1496 /// This value is calculated on demand. 1497 /// If InvalidDeps, the number of dependencies is not calculated yet. 1498 int Dependencies = InvalidDeps; 1499 1500 /// The number of dependencies minus the number of dependencies of scheduled 1501 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1502 /// for scheduling. 1503 /// Note that this is negative as long as Dependencies is not calculated. 1504 int UnscheduledDeps = InvalidDeps; 1505 1506 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1507 /// single instructions. 1508 int UnscheduledDepsInBundle = InvalidDeps; 1509 1510 /// True if this instruction is scheduled (or considered as scheduled in the 1511 /// dry-run). 1512 bool IsScheduled = false; 1513 1514 /// Opcode of the current instruction in the schedule data. 1515 Value *OpValue = nullptr; 1516 }; 1517 1518 #ifndef NDEBUG 1519 friend inline raw_ostream &operator<<(raw_ostream &os, 1520 const BoUpSLP::ScheduleData &SD) { 1521 SD.dump(os); 1522 return os; 1523 } 1524 #endif 1525 1526 friend struct GraphTraits<BoUpSLP *>; 1527 friend struct DOTGraphTraits<BoUpSLP *>; 1528 1529 /// Contains all scheduling data for a basic block. 1530 struct BlockScheduling { 1531 BlockScheduling(BasicBlock *BB) 1532 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1533 1534 void clear() { 1535 ReadyInsts.clear(); 1536 ScheduleStart = nullptr; 1537 ScheduleEnd = nullptr; 1538 FirstLoadStoreInRegion = nullptr; 1539 LastLoadStoreInRegion = nullptr; 1540 1541 // Reduce the maximum schedule region size by the size of the 1542 // previous scheduling run. 1543 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1544 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1545 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1546 ScheduleRegionSize = 0; 1547 1548 // Make a new scheduling region, i.e. all existing ScheduleData is not 1549 // in the new region yet. 1550 ++SchedulingRegionID; 1551 } 1552 1553 ScheduleData *getScheduleData(Value *V) { 1554 ScheduleData *SD = ScheduleDataMap[V]; 1555 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1556 return SD; 1557 return nullptr; 1558 } 1559 1560 ScheduleData *getScheduleData(Value *V, Value *Key) { 1561 if (V == Key) 1562 return getScheduleData(V); 1563 auto I = ExtraScheduleDataMap.find(V); 1564 if (I != ExtraScheduleDataMap.end()) { 1565 ScheduleData *SD = I->second[Key]; 1566 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1567 return SD; 1568 } 1569 return nullptr; 1570 } 1571 1572 bool isInSchedulingRegion(ScheduleData *SD) { 1573 return SD->SchedulingRegionID == SchedulingRegionID; 1574 } 1575 1576 /// Marks an instruction as scheduled and puts all dependent ready 1577 /// instructions into the ready-list. 1578 template <typename ReadyListType> 1579 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1580 SD->IsScheduled = true; 1581 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1582 1583 ScheduleData *BundleMember = SD; 1584 while (BundleMember) { 1585 if (BundleMember->Inst != BundleMember->OpValue) { 1586 BundleMember = BundleMember->NextInBundle; 1587 continue; 1588 } 1589 // Handle the def-use chain dependencies. 1590 for (Use &U : BundleMember->Inst->operands()) { 1591 auto *I = dyn_cast<Instruction>(U.get()); 1592 if (!I) 1593 continue; 1594 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1595 if (OpDef && OpDef->hasValidDependencies() && 1596 OpDef->incrementUnscheduledDeps(-1) == 0) { 1597 // There are no more unscheduled dependencies after 1598 // decrementing, so we can put the dependent instruction 1599 // into the ready list. 1600 ScheduleData *DepBundle = OpDef->FirstInBundle; 1601 assert(!DepBundle->IsScheduled && 1602 "already scheduled bundle gets ready"); 1603 ReadyList.insert(DepBundle); 1604 LLVM_DEBUG(dbgs() 1605 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1606 } 1607 }); 1608 } 1609 // Handle the memory dependencies. 1610 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1611 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1612 // There are no more unscheduled dependencies after decrementing, 1613 // so we can put the dependent instruction into the ready list. 1614 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1615 assert(!DepBundle->IsScheduled && 1616 "already scheduled bundle gets ready"); 1617 ReadyList.insert(DepBundle); 1618 LLVM_DEBUG(dbgs() 1619 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1620 } 1621 } 1622 BundleMember = BundleMember->NextInBundle; 1623 } 1624 } 1625 1626 void doForAllOpcodes(Value *V, 1627 function_ref<void(ScheduleData *SD)> Action) { 1628 if (ScheduleData *SD = getScheduleData(V)) 1629 Action(SD); 1630 auto I = ExtraScheduleDataMap.find(V); 1631 if (I != ExtraScheduleDataMap.end()) 1632 for (auto &P : I->second) 1633 if (P.second->SchedulingRegionID == SchedulingRegionID) 1634 Action(P.second); 1635 } 1636 1637 /// Put all instructions into the ReadyList which are ready for scheduling. 1638 template <typename ReadyListType> 1639 void initialFillReadyList(ReadyListType &ReadyList) { 1640 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1641 doForAllOpcodes(I, [&](ScheduleData *SD) { 1642 if (SD->isSchedulingEntity() && SD->isReady()) { 1643 ReadyList.insert(SD); 1644 LLVM_DEBUG(dbgs() 1645 << "SLP: initially in ready list: " << *I << "\n"); 1646 } 1647 }); 1648 } 1649 } 1650 1651 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1652 /// cyclic dependencies. This is only a dry-run, no instructions are 1653 /// actually moved at this stage. 1654 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1655 const InstructionsState &S); 1656 1657 /// Un-bundles a group of instructions. 1658 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1659 1660 /// Allocates schedule data chunk. 1661 ScheduleData *allocateScheduleDataChunks(); 1662 1663 /// Extends the scheduling region so that V is inside the region. 1664 /// \returns true if the region size is within the limit. 1665 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1666 1667 /// Initialize the ScheduleData structures for new instructions in the 1668 /// scheduling region. 1669 void initScheduleData(Instruction *FromI, Instruction *ToI, 1670 ScheduleData *PrevLoadStore, 1671 ScheduleData *NextLoadStore); 1672 1673 /// Updates the dependency information of a bundle and of all instructions/ 1674 /// bundles which depend on the original bundle. 1675 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1676 BoUpSLP *SLP); 1677 1678 /// Sets all instruction in the scheduling region to un-scheduled. 1679 void resetSchedule(); 1680 1681 BasicBlock *BB; 1682 1683 /// Simple memory allocation for ScheduleData. 1684 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1685 1686 /// The size of a ScheduleData array in ScheduleDataChunks. 1687 int ChunkSize; 1688 1689 /// The allocator position in the current chunk, which is the last entry 1690 /// of ScheduleDataChunks. 1691 int ChunkPos; 1692 1693 /// Attaches ScheduleData to Instruction. 1694 /// Note that the mapping survives during all vectorization iterations, i.e. 1695 /// ScheduleData structures are recycled. 1696 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1697 1698 /// Attaches ScheduleData to Instruction with the leading key. 1699 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1700 ExtraScheduleDataMap; 1701 1702 struct ReadyList : SmallVector<ScheduleData *, 8> { 1703 void insert(ScheduleData *SD) { push_back(SD); } 1704 }; 1705 1706 /// The ready-list for scheduling (only used for the dry-run). 1707 ReadyList ReadyInsts; 1708 1709 /// The first instruction of the scheduling region. 1710 Instruction *ScheduleStart = nullptr; 1711 1712 /// The first instruction _after_ the scheduling region. 1713 Instruction *ScheduleEnd = nullptr; 1714 1715 /// The first memory accessing instruction in the scheduling region 1716 /// (can be null). 1717 ScheduleData *FirstLoadStoreInRegion = nullptr; 1718 1719 /// The last memory accessing instruction in the scheduling region 1720 /// (can be null). 1721 ScheduleData *LastLoadStoreInRegion = nullptr; 1722 1723 /// The current size of the scheduling region. 1724 int ScheduleRegionSize = 0; 1725 1726 /// The maximum size allowed for the scheduling region. 1727 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1728 1729 /// The ID of the scheduling region. For a new vectorization iteration this 1730 /// is incremented which "removes" all ScheduleData from the region. 1731 // Make sure that the initial SchedulingRegionID is greater than the 1732 // initial SchedulingRegionID in ScheduleData (which is 0). 1733 int SchedulingRegionID = 1; 1734 }; 1735 1736 /// Attaches the BlockScheduling structures to basic blocks. 1737 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1738 1739 /// Performs the "real" scheduling. Done before vectorization is actually 1740 /// performed in a basic block. 1741 void scheduleBlock(BlockScheduling *BS); 1742 1743 /// List of users to ignore during scheduling and that don't need extracting. 1744 ArrayRef<Value *> UserIgnoreList; 1745 1746 using OrdersType = SmallVector<unsigned, 4>; 1747 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1748 /// sorted SmallVectors of unsigned. 1749 struct OrdersTypeDenseMapInfo { 1750 static OrdersType getEmptyKey() { 1751 OrdersType V; 1752 V.push_back(~1U); 1753 return V; 1754 } 1755 1756 static OrdersType getTombstoneKey() { 1757 OrdersType V; 1758 V.push_back(~2U); 1759 return V; 1760 } 1761 1762 static unsigned getHashValue(const OrdersType &V) { 1763 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1764 } 1765 1766 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1767 return LHS == RHS; 1768 } 1769 }; 1770 1771 /// Contains orders of operations along with the number of bundles that have 1772 /// operations in this order. It stores only those orders that require 1773 /// reordering, if reordering is not required it is counted using \a 1774 /// NumOpsWantToKeepOriginalOrder. 1775 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1776 /// Number of bundles that do not require reordering. 1777 unsigned NumOpsWantToKeepOriginalOrder = 0; 1778 1779 // Analysis and block reference. 1780 Function *F; 1781 ScalarEvolution *SE; 1782 TargetTransformInfo *TTI; 1783 TargetLibraryInfo *TLI; 1784 AliasAnalysis *AA; 1785 LoopInfo *LI; 1786 DominatorTree *DT; 1787 AssumptionCache *AC; 1788 DemandedBits *DB; 1789 const DataLayout *DL; 1790 OptimizationRemarkEmitter *ORE; 1791 1792 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1793 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1794 1795 /// Instruction builder to construct the vectorized tree. 1796 IRBuilder<> Builder; 1797 1798 /// A map of scalar integer values to the smallest bit width with which they 1799 /// can legally be represented. The values map to (width, signed) pairs, 1800 /// where "width" indicates the minimum bit width and "signed" is True if the 1801 /// value must be signed-extended, rather than zero-extended, back to its 1802 /// original width. 1803 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1804 }; 1805 1806 } // end namespace slpvectorizer 1807 1808 template <> struct GraphTraits<BoUpSLP *> { 1809 using TreeEntry = BoUpSLP::TreeEntry; 1810 1811 /// NodeRef has to be a pointer per the GraphWriter. 1812 using NodeRef = TreeEntry *; 1813 1814 /// Add the VectorizableTree to the index iterator to be able to return 1815 /// TreeEntry pointers. 1816 struct ChildIteratorType 1817 : public iterator_adaptor_base< 1818 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1819 std::vector<TreeEntry> &VectorizableTree; 1820 1821 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1822 std::vector<TreeEntry> &VT) 1823 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1824 1825 NodeRef operator*() { return &VectorizableTree[I->Idx]; } 1826 }; 1827 1828 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1829 1830 static ChildIteratorType child_begin(NodeRef N) { 1831 return {N->UserTreeIndices.begin(), N->Container}; 1832 } 1833 1834 static ChildIteratorType child_end(NodeRef N) { 1835 return {N->UserTreeIndices.end(), N->Container}; 1836 } 1837 1838 /// For the node iterator we just need to turn the TreeEntry iterator into a 1839 /// TreeEntry* iterator so that it dereferences to NodeRef. 1840 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1841 1842 static nodes_iterator nodes_begin(BoUpSLP *R) { 1843 return nodes_iterator(R->VectorizableTree.begin()); 1844 } 1845 1846 static nodes_iterator nodes_end(BoUpSLP *R) { 1847 return nodes_iterator(R->VectorizableTree.end()); 1848 } 1849 1850 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1851 }; 1852 1853 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1854 using TreeEntry = BoUpSLP::TreeEntry; 1855 1856 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1857 1858 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1859 std::string Str; 1860 raw_string_ostream OS(Str); 1861 if (isSplat(Entry->Scalars)) { 1862 OS << "<splat> " << *Entry->Scalars[0]; 1863 return Str; 1864 } 1865 for (auto V : Entry->Scalars) { 1866 OS << *V; 1867 if (std::any_of( 1868 R->ExternalUses.begin(), R->ExternalUses.end(), 1869 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1870 OS << " <extract>"; 1871 OS << "\n"; 1872 } 1873 return Str; 1874 } 1875 1876 static std::string getNodeAttributes(const TreeEntry *Entry, 1877 const BoUpSLP *) { 1878 if (Entry->NeedToGather) 1879 return "color=red"; 1880 return ""; 1881 } 1882 }; 1883 1884 } // end namespace llvm 1885 1886 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1887 ArrayRef<Value *> UserIgnoreLst) { 1888 ExtraValueToDebugLocsMap ExternallyUsedValues; 1889 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1890 } 1891 1892 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1893 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1894 ArrayRef<Value *> UserIgnoreLst) { 1895 deleteTree(); 1896 UserIgnoreList = UserIgnoreLst; 1897 if (!allSameType(Roots)) 1898 return; 1899 buildTree_rec(Roots, 0, EdgeInfo()); 1900 1901 // Collect the values that we need to extract from the tree. 1902 for (TreeEntry &EIdx : VectorizableTree) { 1903 TreeEntry *Entry = &EIdx; 1904 1905 // No need to handle users of gathered values. 1906 if (Entry->NeedToGather) 1907 continue; 1908 1909 // For each lane: 1910 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1911 Value *Scalar = Entry->Scalars[Lane]; 1912 int FoundLane = Lane; 1913 if (!Entry->ReuseShuffleIndices.empty()) { 1914 FoundLane = 1915 std::distance(Entry->ReuseShuffleIndices.begin(), 1916 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1917 } 1918 1919 // Check if the scalar is externally used as an extra arg. 1920 auto ExtI = ExternallyUsedValues.find(Scalar); 1921 if (ExtI != ExternallyUsedValues.end()) { 1922 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1923 << Lane << " from " << *Scalar << ".\n"); 1924 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1925 } 1926 for (User *U : Scalar->users()) { 1927 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1928 1929 Instruction *UserInst = dyn_cast<Instruction>(U); 1930 if (!UserInst) 1931 continue; 1932 1933 // Skip in-tree scalars that become vectors 1934 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1935 Value *UseScalar = UseEntry->Scalars[0]; 1936 // Some in-tree scalars will remain as scalar in vectorized 1937 // instructions. If that is the case, the one in Lane 0 will 1938 // be used. 1939 if (UseScalar != U || 1940 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1941 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1942 << ".\n"); 1943 assert(!UseEntry->NeedToGather && "Bad state"); 1944 continue; 1945 } 1946 } 1947 1948 // Ignore users in the user ignore list. 1949 if (is_contained(UserIgnoreList, UserInst)) 1950 continue; 1951 1952 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1953 << Lane << " from " << *Scalar << ".\n"); 1954 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1955 } 1956 } 1957 } 1958 } 1959 1960 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1961 EdgeInfo UserTreeIdx) { 1962 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1963 1964 InstructionsState S = getSameOpcode(VL); 1965 if (Depth == RecursionMaxDepth) { 1966 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1967 newTreeEntry(VL, false, UserTreeIdx); 1968 return; 1969 } 1970 1971 // Don't handle vectors. 1972 if (S.OpValue->getType()->isVectorTy()) { 1973 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1974 newTreeEntry(VL, false, UserTreeIdx); 1975 return; 1976 } 1977 1978 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1979 if (SI->getValueOperand()->getType()->isVectorTy()) { 1980 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1981 newTreeEntry(VL, false, UserTreeIdx); 1982 return; 1983 } 1984 1985 // If all of the operands are identical or constant we have a simple solution. 1986 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 1987 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1988 newTreeEntry(VL, false, UserTreeIdx); 1989 return; 1990 } 1991 1992 // We now know that this is a vector of instructions of the same type from 1993 // the same block. 1994 1995 // Don't vectorize ephemeral values. 1996 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1997 if (EphValues.count(VL[i])) { 1998 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1999 << ") is ephemeral.\n"); 2000 newTreeEntry(VL, false, UserTreeIdx); 2001 return; 2002 } 2003 } 2004 2005 // Check if this is a duplicate of another entry. 2006 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2007 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2008 if (!E->isSame(VL)) { 2009 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2010 newTreeEntry(VL, false, UserTreeIdx); 2011 return; 2012 } 2013 // Record the reuse of the tree node. FIXME, currently this is only used to 2014 // properly draw the graph rather than for the actual vectorization. 2015 E->UserTreeIndices.push_back(UserTreeIdx); 2016 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2017 << ".\n"); 2018 E->trySetUserTEOperand(UserTreeIdx, VL, None); 2019 return; 2020 } 2021 2022 // Check that none of the instructions in the bundle are already in the tree. 2023 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2024 auto *I = dyn_cast<Instruction>(VL[i]); 2025 if (!I) 2026 continue; 2027 if (getTreeEntry(I)) { 2028 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2029 << ") is already in tree.\n"); 2030 newTreeEntry(VL, false, UserTreeIdx); 2031 return; 2032 } 2033 } 2034 2035 // If any of the scalars is marked as a value that needs to stay scalar, then 2036 // we need to gather the scalars. 2037 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2038 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2039 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 2040 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2041 newTreeEntry(VL, false, UserTreeIdx); 2042 return; 2043 } 2044 } 2045 2046 // Check that all of the users of the scalars that we want to vectorize are 2047 // schedulable. 2048 auto *VL0 = cast<Instruction>(S.OpValue); 2049 BasicBlock *BB = VL0->getParent(); 2050 2051 if (!DT->isReachableFromEntry(BB)) { 2052 // Don't go into unreachable blocks. They may contain instructions with 2053 // dependency cycles which confuse the final scheduling. 2054 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2055 newTreeEntry(VL, false, UserTreeIdx); 2056 return; 2057 } 2058 2059 // Check that every instruction appears once in this bundle. 2060 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2061 SmallVector<Value *, 4> UniqueValues; 2062 DenseMap<Value *, unsigned> UniquePositions; 2063 for (Value *V : VL) { 2064 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2065 ReuseShuffleIndicies.emplace_back(Res.first->second); 2066 if (Res.second) 2067 UniqueValues.emplace_back(V); 2068 } 2069 if (UniqueValues.size() == VL.size()) { 2070 ReuseShuffleIndicies.clear(); 2071 } else { 2072 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2073 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 2074 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2075 newTreeEntry(VL, false, UserTreeIdx); 2076 return; 2077 } 2078 VL = UniqueValues; 2079 } 2080 2081 auto &BSRef = BlocksSchedules[BB]; 2082 if (!BSRef) 2083 BSRef = llvm::make_unique<BlockScheduling>(BB); 2084 2085 BlockScheduling &BS = *BSRef.get(); 2086 2087 if (!BS.tryScheduleBundle(VL, this, S)) { 2088 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2089 assert((!BS.getScheduleData(VL0) || 2090 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2091 "tryScheduleBundle should cancelScheduling on failure"); 2092 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2093 return; 2094 } 2095 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2096 2097 unsigned ShuffleOrOp = S.isAltShuffle() ? 2098 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2099 switch (ShuffleOrOp) { 2100 case Instruction::PHI: { 2101 PHINode *PH = dyn_cast<PHINode>(VL0); 2102 2103 // Check for terminator values (e.g. invoke). 2104 for (unsigned j = 0; j < VL.size(); ++j) 2105 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2106 Instruction *Term = dyn_cast<Instruction>( 2107 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2108 PH->getIncomingBlock(i))); 2109 if (Term && Term->isTerminator()) { 2110 LLVM_DEBUG(dbgs() 2111 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2112 BS.cancelScheduling(VL, VL0); 2113 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2114 return; 2115 } 2116 } 2117 2118 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2119 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2120 2121 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2122 ValueList Operands; 2123 // Prepare the operand vector. 2124 for (Value *j : VL) 2125 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2126 PH->getIncomingBlock(i))); 2127 2128 UserTreeIdx.EdgeIdx = i; 2129 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2130 } 2131 return; 2132 } 2133 case Instruction::ExtractValue: 2134 case Instruction::ExtractElement: { 2135 OrdersType CurrentOrder; 2136 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2137 if (Reuse) { 2138 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2139 ++NumOpsWantToKeepOriginalOrder; 2140 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2141 ReuseShuffleIndicies); 2142 // This is a special case, as it does not gather, but at the same time 2143 // we are not extending buildTree_rec() towards the operands. 2144 ValueList Op0; 2145 Op0.assign(VL.size(), VL0->getOperand(0)); 2146 VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies); 2147 return; 2148 } 2149 if (!CurrentOrder.empty()) { 2150 LLVM_DEBUG({ 2151 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2152 "with order"; 2153 for (unsigned Idx : CurrentOrder) 2154 dbgs() << " " << Idx; 2155 dbgs() << "\n"; 2156 }); 2157 // Insert new order with initial value 0, if it does not exist, 2158 // otherwise return the iterator to the existing one. 2159 auto StoredCurrentOrderAndNum = 2160 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2161 ++StoredCurrentOrderAndNum->getSecond(); 2162 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 2163 StoredCurrentOrderAndNum->getFirst()); 2164 // This is a special case, as it does not gather, but at the same time 2165 // we are not extending buildTree_rec() towards the operands. 2166 ValueList Op0; 2167 Op0.assign(VL.size(), VL0->getOperand(0)); 2168 VectorizableTree.back().setOperand(0, Op0, ReuseShuffleIndicies); 2169 return; 2170 } 2171 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2172 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 2173 BS.cancelScheduling(VL, VL0); 2174 return; 2175 } 2176 case Instruction::Load: { 2177 // Check that a vectorized load would load the same memory as a scalar 2178 // load. For example, we don't want to vectorize loads that are smaller 2179 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2180 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2181 // from such a struct, we read/write packed bits disagreeing with the 2182 // unvectorized version. 2183 Type *ScalarTy = VL0->getType(); 2184 2185 if (DL->getTypeSizeInBits(ScalarTy) != 2186 DL->getTypeAllocSizeInBits(ScalarTy)) { 2187 BS.cancelScheduling(VL, VL0); 2188 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2189 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2190 return; 2191 } 2192 2193 // Make sure all loads in the bundle are simple - we can't vectorize 2194 // atomic or volatile loads. 2195 SmallVector<Value *, 4> PointerOps(VL.size()); 2196 auto POIter = PointerOps.begin(); 2197 for (Value *V : VL) { 2198 auto *L = cast<LoadInst>(V); 2199 if (!L->isSimple()) { 2200 BS.cancelScheduling(VL, VL0); 2201 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2202 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2203 return; 2204 } 2205 *POIter = L->getPointerOperand(); 2206 ++POIter; 2207 } 2208 2209 OrdersType CurrentOrder; 2210 // Check the order of pointer operands. 2211 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2212 Value *Ptr0; 2213 Value *PtrN; 2214 if (CurrentOrder.empty()) { 2215 Ptr0 = PointerOps.front(); 2216 PtrN = PointerOps.back(); 2217 } else { 2218 Ptr0 = PointerOps[CurrentOrder.front()]; 2219 PtrN = PointerOps[CurrentOrder.back()]; 2220 } 2221 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2222 const SCEV *ScevN = SE->getSCEV(PtrN); 2223 const auto *Diff = 2224 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2225 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2226 // Check that the sorted loads are consecutive. 2227 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2228 if (CurrentOrder.empty()) { 2229 // Original loads are consecutive and does not require reordering. 2230 ++NumOpsWantToKeepOriginalOrder; 2231 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2232 ReuseShuffleIndicies); 2233 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2234 } else { 2235 // Need to reorder. 2236 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2237 ++I->getSecond(); 2238 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 2239 ReuseShuffleIndicies, I->getFirst()); 2240 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2241 } 2242 return; 2243 } 2244 } 2245 2246 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2247 BS.cancelScheduling(VL, VL0); 2248 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2249 return; 2250 } 2251 case Instruction::ZExt: 2252 case Instruction::SExt: 2253 case Instruction::FPToUI: 2254 case Instruction::FPToSI: 2255 case Instruction::FPExt: 2256 case Instruction::PtrToInt: 2257 case Instruction::IntToPtr: 2258 case Instruction::SIToFP: 2259 case Instruction::UIToFP: 2260 case Instruction::Trunc: 2261 case Instruction::FPTrunc: 2262 case Instruction::BitCast: { 2263 Type *SrcTy = VL0->getOperand(0)->getType(); 2264 for (unsigned i = 0; i < VL.size(); ++i) { 2265 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 2266 if (Ty != SrcTy || !isValidElementType(Ty)) { 2267 BS.cancelScheduling(VL, VL0); 2268 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2269 LLVM_DEBUG(dbgs() 2270 << "SLP: Gathering casts with different src types.\n"); 2271 return; 2272 } 2273 } 2274 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2275 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2276 2277 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2278 ValueList Operands; 2279 // Prepare the operand vector. 2280 for (Value *j : VL) 2281 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2282 2283 UserTreeIdx.EdgeIdx = i; 2284 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2285 } 2286 return; 2287 } 2288 case Instruction::ICmp: 2289 case Instruction::FCmp: { 2290 // Check that all of the compares have the same predicate. 2291 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2292 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2293 Type *ComparedTy = VL0->getOperand(0)->getType(); 2294 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 2295 CmpInst *Cmp = cast<CmpInst>(VL[i]); 2296 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2297 Cmp->getOperand(0)->getType() != ComparedTy) { 2298 BS.cancelScheduling(VL, VL0); 2299 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2300 LLVM_DEBUG(dbgs() 2301 << "SLP: Gathering cmp with different predicate.\n"); 2302 return; 2303 } 2304 } 2305 2306 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2307 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2308 2309 ValueList Left, Right; 2310 if (cast<CmpInst>(VL0)->isCommutative()) { 2311 // Commutative predicate - collect + sort operands of the instructions 2312 // so that each side is more likely to have the same opcode. 2313 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2314 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2315 } else { 2316 // Collect operands - commute if it uses the swapped predicate. 2317 for (Value *V : VL) { 2318 auto *Cmp = cast<CmpInst>(V); 2319 Value *LHS = Cmp->getOperand(0); 2320 Value *RHS = Cmp->getOperand(1); 2321 if (Cmp->getPredicate() != P0) 2322 std::swap(LHS, RHS); 2323 Left.push_back(LHS); 2324 Right.push_back(RHS); 2325 } 2326 } 2327 2328 UserTreeIdx.EdgeIdx = 0; 2329 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2330 UserTreeIdx.EdgeIdx = 1; 2331 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2332 return; 2333 } 2334 case Instruction::Select: 2335 case Instruction::Add: 2336 case Instruction::FAdd: 2337 case Instruction::Sub: 2338 case Instruction::FSub: 2339 case Instruction::Mul: 2340 case Instruction::FMul: 2341 case Instruction::UDiv: 2342 case Instruction::SDiv: 2343 case Instruction::FDiv: 2344 case Instruction::URem: 2345 case Instruction::SRem: 2346 case Instruction::FRem: 2347 case Instruction::Shl: 2348 case Instruction::LShr: 2349 case Instruction::AShr: 2350 case Instruction::And: 2351 case Instruction::Or: 2352 case Instruction::Xor: 2353 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2354 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 2355 2356 // Sort operands of the instructions so that each side is more likely to 2357 // have the same opcode. 2358 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2359 ValueList Left, Right; 2360 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2361 UserTreeIdx.EdgeIdx = 0; 2362 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2363 UserTreeIdx.EdgeIdx = 1; 2364 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2365 return; 2366 } 2367 2368 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2369 ValueList Operands; 2370 // Prepare the operand vector. 2371 for (Value *j : VL) 2372 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2373 2374 UserTreeIdx.EdgeIdx = i; 2375 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2376 } 2377 return; 2378 2379 case Instruction::GetElementPtr: { 2380 // We don't combine GEPs with complicated (nested) indexing. 2381 for (unsigned j = 0; j < VL.size(); ++j) { 2382 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 2383 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2384 BS.cancelScheduling(VL, VL0); 2385 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2386 return; 2387 } 2388 } 2389 2390 // We can't combine several GEPs into one vector if they operate on 2391 // different types. 2392 Type *Ty0 = VL0->getOperand(0)->getType(); 2393 for (unsigned j = 0; j < VL.size(); ++j) { 2394 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 2395 if (Ty0 != CurTy) { 2396 LLVM_DEBUG(dbgs() 2397 << "SLP: not-vectorizable GEP (different types).\n"); 2398 BS.cancelScheduling(VL, VL0); 2399 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2400 return; 2401 } 2402 } 2403 2404 // We don't combine GEPs with non-constant indexes. 2405 for (unsigned j = 0; j < VL.size(); ++j) { 2406 auto Op = cast<Instruction>(VL[j])->getOperand(1); 2407 if (!isa<ConstantInt>(Op)) { 2408 LLVM_DEBUG(dbgs() 2409 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2410 BS.cancelScheduling(VL, VL0); 2411 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2412 return; 2413 } 2414 } 2415 2416 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2417 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2418 for (unsigned i = 0, e = 2; i < e; ++i) { 2419 ValueList Operands; 2420 // Prepare the operand vector. 2421 for (Value *j : VL) 2422 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2423 2424 UserTreeIdx.EdgeIdx = i; 2425 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2426 } 2427 return; 2428 } 2429 case Instruction::Store: { 2430 // Check if the stores are consecutive or of we need to swizzle them. 2431 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2432 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2433 BS.cancelScheduling(VL, VL0); 2434 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2435 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2436 return; 2437 } 2438 2439 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2440 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2441 2442 ValueList Operands; 2443 for (Value *j : VL) 2444 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 2445 2446 UserTreeIdx.EdgeIdx = 0; 2447 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2448 return; 2449 } 2450 case Instruction::Call: { 2451 // Check if the calls are all to the same vectorizable intrinsic. 2452 CallInst *CI = cast<CallInst>(VL0); 2453 // Check if this is an Intrinsic call or something that can be 2454 // represented by an intrinsic call 2455 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2456 if (!isTriviallyVectorizable(ID)) { 2457 BS.cancelScheduling(VL, VL0); 2458 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2459 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2460 return; 2461 } 2462 Function *Int = CI->getCalledFunction(); 2463 unsigned NumArgs = CI->getNumArgOperands(); 2464 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2465 for (unsigned j = 0; j != NumArgs; ++j) 2466 if (hasVectorInstrinsicScalarOpd(ID, j)) 2467 ScalarArgs[j] = CI->getArgOperand(j); 2468 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2469 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 2470 if (!CI2 || CI2->getCalledFunction() != Int || 2471 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2472 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2473 BS.cancelScheduling(VL, VL0); 2474 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2475 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 2476 << "\n"); 2477 return; 2478 } 2479 // Some intrinsics have scalar arguments and should be same in order for 2480 // them to be vectorized. 2481 for (unsigned j = 0; j != NumArgs; ++j) { 2482 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2483 Value *A1J = CI2->getArgOperand(j); 2484 if (ScalarArgs[j] != A1J) { 2485 BS.cancelScheduling(VL, VL0); 2486 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2487 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2488 << " argument " << ScalarArgs[j] << "!=" << A1J 2489 << "\n"); 2490 return; 2491 } 2492 } 2493 } 2494 // Verify that the bundle operands are identical between the two calls. 2495 if (CI->hasOperandBundles() && 2496 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2497 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2498 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2499 BS.cancelScheduling(VL, VL0); 2500 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2501 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2502 << *CI << "!=" << *VL[i] << '\n'); 2503 return; 2504 } 2505 } 2506 2507 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2508 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2509 ValueList Operands; 2510 // Prepare the operand vector. 2511 for (Value *j : VL) { 2512 CallInst *CI2 = dyn_cast<CallInst>(j); 2513 Operands.push_back(CI2->getArgOperand(i)); 2514 } 2515 UserTreeIdx.EdgeIdx = i; 2516 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2517 } 2518 return; 2519 } 2520 case Instruction::ShuffleVector: 2521 // If this is not an alternate sequence of opcode like add-sub 2522 // then do not vectorize this instruction. 2523 if (!S.isAltShuffle()) { 2524 BS.cancelScheduling(VL, VL0); 2525 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2526 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2527 return; 2528 } 2529 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 2530 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2531 2532 // Reorder operands if reordering would enable vectorization. 2533 if (isa<BinaryOperator>(VL0)) { 2534 ValueList Left, Right; 2535 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2536 UserTreeIdx.EdgeIdx = 0; 2537 buildTree_rec(Left, Depth + 1, UserTreeIdx); 2538 UserTreeIdx.EdgeIdx = 1; 2539 buildTree_rec(Right, Depth + 1, UserTreeIdx); 2540 return; 2541 } 2542 2543 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2544 ValueList Operands; 2545 // Prepare the operand vector. 2546 for (Value *j : VL) 2547 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2548 2549 UserTreeIdx.EdgeIdx = i; 2550 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 2551 } 2552 return; 2553 2554 default: 2555 BS.cancelScheduling(VL, VL0); 2556 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 2557 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2558 return; 2559 } 2560 } 2561 2562 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2563 unsigned N; 2564 Type *EltTy; 2565 auto *ST = dyn_cast<StructType>(T); 2566 if (ST) { 2567 N = ST->getNumElements(); 2568 EltTy = *ST->element_begin(); 2569 } else { 2570 N = cast<ArrayType>(T)->getNumElements(); 2571 EltTy = cast<ArrayType>(T)->getElementType(); 2572 } 2573 if (!isValidElementType(EltTy)) 2574 return 0; 2575 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2576 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2577 return 0; 2578 if (ST) { 2579 // Check that struct is homogeneous. 2580 for (const auto *Ty : ST->elements()) 2581 if (Ty != EltTy) 2582 return 0; 2583 } 2584 return N; 2585 } 2586 2587 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2588 SmallVectorImpl<unsigned> &CurrentOrder) const { 2589 Instruction *E0 = cast<Instruction>(OpValue); 2590 assert(E0->getOpcode() == Instruction::ExtractElement || 2591 E0->getOpcode() == Instruction::ExtractValue); 2592 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2593 // Check if all of the extracts come from the same vector and from the 2594 // correct offset. 2595 Value *Vec = E0->getOperand(0); 2596 2597 CurrentOrder.clear(); 2598 2599 // We have to extract from a vector/aggregate with the same number of elements. 2600 unsigned NElts; 2601 if (E0->getOpcode() == Instruction::ExtractValue) { 2602 const DataLayout &DL = E0->getModule()->getDataLayout(); 2603 NElts = canMapToVector(Vec->getType(), DL); 2604 if (!NElts) 2605 return false; 2606 // Check if load can be rewritten as load of vector. 2607 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2608 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2609 return false; 2610 } else { 2611 NElts = Vec->getType()->getVectorNumElements(); 2612 } 2613 2614 if (NElts != VL.size()) 2615 return false; 2616 2617 // Check that all of the indices extract from the correct offset. 2618 bool ShouldKeepOrder = true; 2619 unsigned E = VL.size(); 2620 // Assign to all items the initial value E + 1 so we can check if the extract 2621 // instruction index was used already. 2622 // Also, later we can check that all the indices are used and we have a 2623 // consecutive access in the extract instructions, by checking that no 2624 // element of CurrentOrder still has value E + 1. 2625 CurrentOrder.assign(E, E + 1); 2626 unsigned I = 0; 2627 for (; I < E; ++I) { 2628 auto *Inst = cast<Instruction>(VL[I]); 2629 if (Inst->getOperand(0) != Vec) 2630 break; 2631 Optional<unsigned> Idx = getExtractIndex(Inst); 2632 if (!Idx) 2633 break; 2634 const unsigned ExtIdx = *Idx; 2635 if (ExtIdx != I) { 2636 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2637 break; 2638 ShouldKeepOrder = false; 2639 CurrentOrder[ExtIdx] = I; 2640 } else { 2641 if (CurrentOrder[I] != E + 1) 2642 break; 2643 CurrentOrder[I] = I; 2644 } 2645 } 2646 if (I < E) { 2647 CurrentOrder.clear(); 2648 return false; 2649 } 2650 2651 return ShouldKeepOrder; 2652 } 2653 2654 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2655 return I->hasOneUse() || 2656 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2657 return ScalarToTreeEntry.count(U) > 0; 2658 }); 2659 } 2660 2661 int BoUpSLP::getEntryCost(TreeEntry *E) { 2662 ArrayRef<Value*> VL = E->Scalars; 2663 2664 Type *ScalarTy = VL[0]->getType(); 2665 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2666 ScalarTy = SI->getValueOperand()->getType(); 2667 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2668 ScalarTy = CI->getOperand(0)->getType(); 2669 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2670 2671 // If we have computed a smaller type for the expression, update VecTy so 2672 // that the costs will be accurate. 2673 if (MinBWs.count(VL[0])) 2674 VecTy = VectorType::get( 2675 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2676 2677 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2678 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2679 int ReuseShuffleCost = 0; 2680 if (NeedToShuffleReuses) { 2681 ReuseShuffleCost = 2682 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2683 } 2684 if (E->NeedToGather) { 2685 if (allConstant(VL)) 2686 return 0; 2687 if (isSplat(VL)) { 2688 return ReuseShuffleCost + 2689 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2690 } 2691 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2692 allSameType(VL) && allSameBlock(VL)) { 2693 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2694 if (ShuffleKind.hasValue()) { 2695 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2696 for (auto *V : VL) { 2697 // If all users of instruction are going to be vectorized and this 2698 // instruction itself is not going to be vectorized, consider this 2699 // instruction as dead and remove its cost from the final cost of the 2700 // vectorized tree. 2701 if (areAllUsersVectorized(cast<Instruction>(V)) && 2702 !ScalarToTreeEntry.count(V)) { 2703 auto *IO = cast<ConstantInt>( 2704 cast<ExtractElementInst>(V)->getIndexOperand()); 2705 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2706 IO->getZExtValue()); 2707 } 2708 } 2709 return ReuseShuffleCost + Cost; 2710 } 2711 } 2712 return ReuseShuffleCost + getGatherCost(VL); 2713 } 2714 InstructionsState S = getSameOpcode(VL); 2715 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2716 Instruction *VL0 = cast<Instruction>(S.OpValue); 2717 unsigned ShuffleOrOp = S.isAltShuffle() ? 2718 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2719 switch (ShuffleOrOp) { 2720 case Instruction::PHI: 2721 return 0; 2722 2723 case Instruction::ExtractValue: 2724 case Instruction::ExtractElement: 2725 if (NeedToShuffleReuses) { 2726 unsigned Idx = 0; 2727 for (unsigned I : E->ReuseShuffleIndices) { 2728 if (ShuffleOrOp == Instruction::ExtractElement) { 2729 auto *IO = cast<ConstantInt>( 2730 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2731 Idx = IO->getZExtValue(); 2732 ReuseShuffleCost -= TTI->getVectorInstrCost( 2733 Instruction::ExtractElement, VecTy, Idx); 2734 } else { 2735 ReuseShuffleCost -= TTI->getVectorInstrCost( 2736 Instruction::ExtractElement, VecTy, Idx); 2737 ++Idx; 2738 } 2739 } 2740 Idx = ReuseShuffleNumbers; 2741 for (Value *V : VL) { 2742 if (ShuffleOrOp == Instruction::ExtractElement) { 2743 auto *IO = cast<ConstantInt>( 2744 cast<ExtractElementInst>(V)->getIndexOperand()); 2745 Idx = IO->getZExtValue(); 2746 } else { 2747 --Idx; 2748 } 2749 ReuseShuffleCost += 2750 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2751 } 2752 } 2753 if (!E->NeedToGather) { 2754 int DeadCost = ReuseShuffleCost; 2755 if (!E->ReorderIndices.empty()) { 2756 // TODO: Merge this shuffle with the ReuseShuffleCost. 2757 DeadCost += TTI->getShuffleCost( 2758 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2759 } 2760 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2761 Instruction *E = cast<Instruction>(VL[i]); 2762 // If all users are going to be vectorized, instruction can be 2763 // considered as dead. 2764 // The same, if have only one user, it will be vectorized for sure. 2765 if (areAllUsersVectorized(E)) { 2766 // Take credit for instruction that will become dead. 2767 if (E->hasOneUse()) { 2768 Instruction *Ext = E->user_back(); 2769 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2770 all_of(Ext->users(), 2771 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2772 // Use getExtractWithExtendCost() to calculate the cost of 2773 // extractelement/ext pair. 2774 DeadCost -= TTI->getExtractWithExtendCost( 2775 Ext->getOpcode(), Ext->getType(), VecTy, i); 2776 // Add back the cost of s|zext which is subtracted separately. 2777 DeadCost += TTI->getCastInstrCost( 2778 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2779 continue; 2780 } 2781 } 2782 DeadCost -= 2783 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2784 } 2785 } 2786 return DeadCost; 2787 } 2788 return ReuseShuffleCost + getGatherCost(VL); 2789 2790 case Instruction::ZExt: 2791 case Instruction::SExt: 2792 case Instruction::FPToUI: 2793 case Instruction::FPToSI: 2794 case Instruction::FPExt: 2795 case Instruction::PtrToInt: 2796 case Instruction::IntToPtr: 2797 case Instruction::SIToFP: 2798 case Instruction::UIToFP: 2799 case Instruction::Trunc: 2800 case Instruction::FPTrunc: 2801 case Instruction::BitCast: { 2802 Type *SrcTy = VL0->getOperand(0)->getType(); 2803 int ScalarEltCost = 2804 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2805 if (NeedToShuffleReuses) { 2806 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2807 } 2808 2809 // Calculate the cost of this instruction. 2810 int ScalarCost = VL.size() * ScalarEltCost; 2811 2812 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2813 int VecCost = 0; 2814 // Check if the values are candidates to demote. 2815 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2816 VecCost = ReuseShuffleCost + 2817 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2818 } 2819 return VecCost - ScalarCost; 2820 } 2821 case Instruction::FCmp: 2822 case Instruction::ICmp: 2823 case Instruction::Select: { 2824 // Calculate the cost of this instruction. 2825 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2826 Builder.getInt1Ty(), VL0); 2827 if (NeedToShuffleReuses) { 2828 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2829 } 2830 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2831 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2832 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2833 return ReuseShuffleCost + VecCost - ScalarCost; 2834 } 2835 case Instruction::Add: 2836 case Instruction::FAdd: 2837 case Instruction::Sub: 2838 case Instruction::FSub: 2839 case Instruction::Mul: 2840 case Instruction::FMul: 2841 case Instruction::UDiv: 2842 case Instruction::SDiv: 2843 case Instruction::FDiv: 2844 case Instruction::URem: 2845 case Instruction::SRem: 2846 case Instruction::FRem: 2847 case Instruction::Shl: 2848 case Instruction::LShr: 2849 case Instruction::AShr: 2850 case Instruction::And: 2851 case Instruction::Or: 2852 case Instruction::Xor: { 2853 // Certain instructions can be cheaper to vectorize if they have a 2854 // constant second vector operand. 2855 TargetTransformInfo::OperandValueKind Op1VK = 2856 TargetTransformInfo::OK_AnyValue; 2857 TargetTransformInfo::OperandValueKind Op2VK = 2858 TargetTransformInfo::OK_UniformConstantValue; 2859 TargetTransformInfo::OperandValueProperties Op1VP = 2860 TargetTransformInfo::OP_None; 2861 TargetTransformInfo::OperandValueProperties Op2VP = 2862 TargetTransformInfo::OP_PowerOf2; 2863 2864 // If all operands are exactly the same ConstantInt then set the 2865 // operand kind to OK_UniformConstantValue. 2866 // If instead not all operands are constants, then set the operand kind 2867 // to OK_AnyValue. If all operands are constants but not the same, 2868 // then set the operand kind to OK_NonUniformConstantValue. 2869 ConstantInt *CInt0 = nullptr; 2870 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2871 const Instruction *I = cast<Instruction>(VL[i]); 2872 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2873 if (!CInt) { 2874 Op2VK = TargetTransformInfo::OK_AnyValue; 2875 Op2VP = TargetTransformInfo::OP_None; 2876 break; 2877 } 2878 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2879 !CInt->getValue().isPowerOf2()) 2880 Op2VP = TargetTransformInfo::OP_None; 2881 if (i == 0) { 2882 CInt0 = CInt; 2883 continue; 2884 } 2885 if (CInt0 != CInt) 2886 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2887 } 2888 2889 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2890 int ScalarEltCost = TTI->getArithmeticInstrCost( 2891 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2892 if (NeedToShuffleReuses) { 2893 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2894 } 2895 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2896 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2897 Op2VK, Op1VP, Op2VP, Operands); 2898 return ReuseShuffleCost + VecCost - ScalarCost; 2899 } 2900 case Instruction::GetElementPtr: { 2901 TargetTransformInfo::OperandValueKind Op1VK = 2902 TargetTransformInfo::OK_AnyValue; 2903 TargetTransformInfo::OperandValueKind Op2VK = 2904 TargetTransformInfo::OK_UniformConstantValue; 2905 2906 int ScalarEltCost = 2907 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2908 if (NeedToShuffleReuses) { 2909 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2910 } 2911 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2912 int VecCost = 2913 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2914 return ReuseShuffleCost + VecCost - ScalarCost; 2915 } 2916 case Instruction::Load: { 2917 // Cost of wide load - cost of scalar loads. 2918 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2919 int ScalarEltCost = 2920 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2921 if (NeedToShuffleReuses) { 2922 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2923 } 2924 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2925 int VecLdCost = 2926 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2927 if (!E->ReorderIndices.empty()) { 2928 // TODO: Merge this shuffle with the ReuseShuffleCost. 2929 VecLdCost += TTI->getShuffleCost( 2930 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2931 } 2932 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2933 } 2934 case Instruction::Store: { 2935 // We know that we can merge the stores. Calculate the cost. 2936 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2937 int ScalarEltCost = 2938 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2939 if (NeedToShuffleReuses) { 2940 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2941 } 2942 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2943 int VecStCost = 2944 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2945 return ReuseShuffleCost + VecStCost - ScalarStCost; 2946 } 2947 case Instruction::Call: { 2948 CallInst *CI = cast<CallInst>(VL0); 2949 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2950 2951 // Calculate the cost of the scalar and vector calls. 2952 SmallVector<Type *, 4> ScalarTys; 2953 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2954 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2955 2956 FastMathFlags FMF; 2957 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2958 FMF = FPMO->getFastMathFlags(); 2959 2960 int ScalarEltCost = 2961 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2962 if (NeedToShuffleReuses) { 2963 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2964 } 2965 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2966 2967 SmallVector<Value *, 4> Args(CI->arg_operands()); 2968 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2969 VecTy->getNumElements()); 2970 2971 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2972 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2973 << " for " << *CI << "\n"); 2974 2975 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2976 } 2977 case Instruction::ShuffleVector: { 2978 assert(S.isAltShuffle() && 2979 ((Instruction::isBinaryOp(S.getOpcode()) && 2980 Instruction::isBinaryOp(S.getAltOpcode())) || 2981 (Instruction::isCast(S.getOpcode()) && 2982 Instruction::isCast(S.getAltOpcode()))) && 2983 "Invalid Shuffle Vector Operand"); 2984 int ScalarCost = 0; 2985 if (NeedToShuffleReuses) { 2986 for (unsigned Idx : E->ReuseShuffleIndices) { 2987 Instruction *I = cast<Instruction>(VL[Idx]); 2988 ReuseShuffleCost -= TTI->getInstructionCost( 2989 I, TargetTransformInfo::TCK_RecipThroughput); 2990 } 2991 for (Value *V : VL) { 2992 Instruction *I = cast<Instruction>(V); 2993 ReuseShuffleCost += TTI->getInstructionCost( 2994 I, TargetTransformInfo::TCK_RecipThroughput); 2995 } 2996 } 2997 for (Value *i : VL) { 2998 Instruction *I = cast<Instruction>(i); 2999 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3000 ScalarCost += TTI->getInstructionCost( 3001 I, TargetTransformInfo::TCK_RecipThroughput); 3002 } 3003 // VecCost is equal to sum of the cost of creating 2 vectors 3004 // and the cost of creating shuffle. 3005 int VecCost = 0; 3006 if (Instruction::isBinaryOp(S.getOpcode())) { 3007 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 3008 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 3009 } else { 3010 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 3011 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 3012 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3013 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3014 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 3015 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 3016 } 3017 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3018 return ReuseShuffleCost + VecCost - ScalarCost; 3019 } 3020 default: 3021 llvm_unreachable("Unknown instruction"); 3022 } 3023 } 3024 3025 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3026 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3027 << VectorizableTree.size() << " is fully vectorizable .\n"); 3028 3029 // We only handle trees of heights 1 and 2. 3030 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 3031 return true; 3032 3033 if (VectorizableTree.size() != 2) 3034 return false; 3035 3036 // Handle splat and all-constants stores. 3037 if (!VectorizableTree[0].NeedToGather && 3038 (allConstant(VectorizableTree[1].Scalars) || 3039 isSplat(VectorizableTree[1].Scalars))) 3040 return true; 3041 3042 // Gathering cost would be too much for tiny trees. 3043 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 3044 return false; 3045 3046 return true; 3047 } 3048 3049 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3050 // We can vectorize the tree if its size is greater than or equal to the 3051 // minimum size specified by the MinTreeSize command line option. 3052 if (VectorizableTree.size() >= MinTreeSize) 3053 return false; 3054 3055 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3056 // can vectorize it if we can prove it fully vectorizable. 3057 if (isFullyVectorizableTinyTree()) 3058 return false; 3059 3060 assert(VectorizableTree.empty() 3061 ? ExternalUses.empty() 3062 : true && "We shouldn't have any external users"); 3063 3064 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3065 // vectorizable. 3066 return true; 3067 } 3068 3069 int BoUpSLP::getSpillCost() { 3070 // Walk from the bottom of the tree to the top, tracking which values are 3071 // live. When we see a call instruction that is not part of our tree, 3072 // query TTI to see if there is a cost to keeping values live over it 3073 // (for example, if spills and fills are required). 3074 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 3075 int Cost = 0; 3076 3077 SmallPtrSet<Instruction*, 4> LiveValues; 3078 Instruction *PrevInst = nullptr; 3079 3080 for (const auto &N : VectorizableTree) { 3081 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 3082 if (!Inst) 3083 continue; 3084 3085 if (!PrevInst) { 3086 PrevInst = Inst; 3087 continue; 3088 } 3089 3090 // Update LiveValues. 3091 LiveValues.erase(PrevInst); 3092 for (auto &J : PrevInst->operands()) { 3093 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3094 LiveValues.insert(cast<Instruction>(&*J)); 3095 } 3096 3097 LLVM_DEBUG({ 3098 dbgs() << "SLP: #LV: " << LiveValues.size(); 3099 for (auto *X : LiveValues) 3100 dbgs() << " " << X->getName(); 3101 dbgs() << ", Looking at "; 3102 Inst->dump(); 3103 }); 3104 3105 // Now find the sequence of instructions between PrevInst and Inst. 3106 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3107 PrevInstIt = 3108 PrevInst->getIterator().getReverse(); 3109 while (InstIt != PrevInstIt) { 3110 if (PrevInstIt == PrevInst->getParent()->rend()) { 3111 PrevInstIt = Inst->getParent()->rbegin(); 3112 continue; 3113 } 3114 3115 // Debug informations don't impact spill cost. 3116 if ((isa<CallInst>(&*PrevInstIt) && 3117 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3118 &*PrevInstIt != PrevInst) { 3119 SmallVector<Type*, 4> V; 3120 for (auto *II : LiveValues) 3121 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3122 Cost += TTI->getCostOfKeepingLiveOverCall(V); 3123 } 3124 3125 ++PrevInstIt; 3126 } 3127 3128 PrevInst = Inst; 3129 } 3130 3131 return Cost; 3132 } 3133 3134 int BoUpSLP::getTreeCost() { 3135 int Cost = 0; 3136 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3137 << VectorizableTree.size() << ".\n"); 3138 3139 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 3140 3141 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3142 TreeEntry &TE = VectorizableTree[I]; 3143 3144 // We create duplicate tree entries for gather sequences that have multiple 3145 // uses. However, we should not compute the cost of duplicate sequences. 3146 // For example, if we have a build vector (i.e., insertelement sequence) 3147 // that is used by more than one vector instruction, we only need to 3148 // compute the cost of the insertelement instructions once. The redundant 3149 // instructions will be eliminated by CSE. 3150 // 3151 // We should consider not creating duplicate tree entries for gather 3152 // sequences, and instead add additional edges to the tree representing 3153 // their uses. Since such an approach results in fewer total entries, 3154 // existing heuristics based on tree size may yield different results. 3155 // 3156 if (TE.NeedToGather && 3157 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3158 VectorizableTree.end(), [TE](TreeEntry &Entry) { 3159 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 3160 })) 3161 continue; 3162 3163 int C = getEntryCost(&TE); 3164 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3165 << " for bundle that starts with " << *TE.Scalars[0] 3166 << ".\n"); 3167 Cost += C; 3168 } 3169 3170 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3171 int ExtractCost = 0; 3172 for (ExternalUser &EU : ExternalUses) { 3173 // We only add extract cost once for the same scalar. 3174 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3175 continue; 3176 3177 // Uses by ephemeral values are free (because the ephemeral value will be 3178 // removed prior to code generation, and so the extraction will be 3179 // removed as well). 3180 if (EphValues.count(EU.User)) 3181 continue; 3182 3183 // If we plan to rewrite the tree in a smaller type, we will need to sign 3184 // extend the extracted value back to the original type. Here, we account 3185 // for the extract and the added cost of the sign extend if needed. 3186 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3187 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3188 if (MinBWs.count(ScalarRoot)) { 3189 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3190 auto Extend = 3191 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3192 VecTy = VectorType::get(MinTy, BundleWidth); 3193 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3194 VecTy, EU.Lane); 3195 } else { 3196 ExtractCost += 3197 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3198 } 3199 } 3200 3201 int SpillCost = getSpillCost(); 3202 Cost += SpillCost + ExtractCost; 3203 3204 std::string Str; 3205 { 3206 raw_string_ostream OS(Str); 3207 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3208 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3209 << "SLP: Total Cost = " << Cost << ".\n"; 3210 } 3211 LLVM_DEBUG(dbgs() << Str); 3212 3213 if (ViewSLPTree) 3214 ViewGraph(this, "SLP" + F->getName(), false, Str); 3215 3216 return Cost; 3217 } 3218 3219 int BoUpSLP::getGatherCost(Type *Ty, 3220 const DenseSet<unsigned> &ShuffledIndices) const { 3221 int Cost = 0; 3222 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3223 if (!ShuffledIndices.count(i)) 3224 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3225 if (!ShuffledIndices.empty()) 3226 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3227 return Cost; 3228 } 3229 3230 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3231 // Find the type of the operands in VL. 3232 Type *ScalarTy = VL[0]->getType(); 3233 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3234 ScalarTy = SI->getValueOperand()->getType(); 3235 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3236 // Find the cost of inserting/extracting values from the vector. 3237 // Check if the same elements are inserted several times and count them as 3238 // shuffle candidates. 3239 DenseSet<unsigned> ShuffledElements; 3240 DenseSet<Value *> UniqueElements; 3241 // Iterate in reverse order to consider insert elements with the high cost. 3242 for (unsigned I = VL.size(); I > 0; --I) { 3243 unsigned Idx = I - 1; 3244 if (!UniqueElements.insert(VL[Idx]).second) 3245 ShuffledElements.insert(Idx); 3246 } 3247 return getGatherCost(VecTy, ShuffledElements); 3248 } 3249 3250 // Perform operand reordering on the instructions in VL and return the reordered 3251 // operands in Left and Right. 3252 void BoUpSLP::reorderInputsAccordingToOpcode( 3253 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3254 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3255 ScalarEvolution &SE) { 3256 if (VL.empty()) 3257 return; 3258 VLOperands Ops(VL, DL, SE); 3259 // Reorder the operands in place. 3260 Ops.reorder(); 3261 Left = Ops.getVL(0); 3262 Right = Ops.getVL(1); 3263 } 3264 3265 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 3266 const InstructionsState &S) { 3267 // Get the basic block this bundle is in. All instructions in the bundle 3268 // should be in this block. 3269 auto *Front = cast<Instruction>(S.OpValue); 3270 auto *BB = Front->getParent(); 3271 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 3272 auto *I = cast<Instruction>(V); 3273 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 3274 })); 3275 3276 // The last instruction in the bundle in program order. 3277 Instruction *LastInst = nullptr; 3278 3279 // Find the last instruction. The common case should be that BB has been 3280 // scheduled, and the last instruction is VL.back(). So we start with 3281 // VL.back() and iterate over schedule data until we reach the end of the 3282 // bundle. The end of the bundle is marked by null ScheduleData. 3283 if (BlocksSchedules.count(BB)) { 3284 auto *Bundle = 3285 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 3286 if (Bundle && Bundle->isPartOfBundle()) 3287 for (; Bundle; Bundle = Bundle->NextInBundle) 3288 if (Bundle->OpValue == Bundle->Inst) 3289 LastInst = Bundle->Inst; 3290 } 3291 3292 // LastInst can still be null at this point if there's either not an entry 3293 // for BB in BlocksSchedules or there's no ScheduleData available for 3294 // VL.back(). This can be the case if buildTree_rec aborts for various 3295 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3296 // size is reached, etc.). ScheduleData is initialized in the scheduling 3297 // "dry-run". 3298 // 3299 // If this happens, we can still find the last instruction by brute force. We 3300 // iterate forwards from Front (inclusive) until we either see all 3301 // instructions in the bundle or reach the end of the block. If Front is the 3302 // last instruction in program order, LastInst will be set to Front, and we 3303 // will visit all the remaining instructions in the block. 3304 // 3305 // One of the reasons we exit early from buildTree_rec is to place an upper 3306 // bound on compile-time. Thus, taking an additional compile-time hit here is 3307 // not ideal. However, this should be exceedingly rare since it requires that 3308 // we both exit early from buildTree_rec and that the bundle be out-of-order 3309 // (causing us to iterate all the way to the end of the block). 3310 if (!LastInst) { 3311 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 3312 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3313 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 3314 LastInst = &I; 3315 if (Bundle.empty()) 3316 break; 3317 } 3318 } 3319 3320 // Set the insertion point after the last instruction in the bundle. Set the 3321 // debug location to Front. 3322 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3323 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3324 } 3325 3326 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3327 Value *Vec = UndefValue::get(Ty); 3328 // Generate the 'InsertElement' instruction. 3329 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3330 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3331 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3332 GatherSeq.insert(Insrt); 3333 CSEBlocks.insert(Insrt->getParent()); 3334 3335 // Add to our 'need-to-extract' list. 3336 if (TreeEntry *E = getTreeEntry(VL[i])) { 3337 // Find which lane we need to extract. 3338 int FoundLane = -1; 3339 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3340 // Is this the lane of the scalar that we are looking for ? 3341 if (E->Scalars[Lane] == VL[i]) { 3342 FoundLane = Lane; 3343 break; 3344 } 3345 } 3346 assert(FoundLane >= 0 && "Could not find the correct lane"); 3347 if (!E->ReuseShuffleIndices.empty()) { 3348 FoundLane = 3349 std::distance(E->ReuseShuffleIndices.begin(), 3350 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3351 } 3352 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3353 } 3354 } 3355 } 3356 3357 return Vec; 3358 } 3359 3360 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3361 InstructionsState S = getSameOpcode(VL); 3362 if (S.getOpcode()) { 3363 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3364 if (E->isSame(VL)) { 3365 Value *V = vectorizeTree(E); 3366 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3367 // We need to get the vectorized value but without shuffle. 3368 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3369 V = SV->getOperand(0); 3370 } else { 3371 // Reshuffle to get only unique values. 3372 SmallVector<unsigned, 4> UniqueIdxs; 3373 SmallSet<unsigned, 4> UsedIdxs; 3374 for(unsigned Idx : E->ReuseShuffleIndices) 3375 if (UsedIdxs.insert(Idx).second) 3376 UniqueIdxs.emplace_back(Idx); 3377 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3378 UniqueIdxs); 3379 } 3380 } 3381 return V; 3382 } 3383 } 3384 } 3385 3386 Type *ScalarTy = S.OpValue->getType(); 3387 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3388 ScalarTy = SI->getValueOperand()->getType(); 3389 3390 // Check that every instruction appears once in this bundle. 3391 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3392 SmallVector<Value *, 4> UniqueValues; 3393 if (VL.size() > 2) { 3394 DenseMap<Value *, unsigned> UniquePositions; 3395 for (Value *V : VL) { 3396 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3397 ReuseShuffleIndicies.emplace_back(Res.first->second); 3398 if (Res.second || isa<Constant>(V)) 3399 UniqueValues.emplace_back(V); 3400 } 3401 // Do not shuffle single element or if number of unique values is not power 3402 // of 2. 3403 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3404 !llvm::isPowerOf2_32(UniqueValues.size())) 3405 ReuseShuffleIndicies.clear(); 3406 else 3407 VL = UniqueValues; 3408 } 3409 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3410 3411 Value *V = Gather(VL, VecTy); 3412 if (!ReuseShuffleIndicies.empty()) { 3413 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3414 ReuseShuffleIndicies, "shuffle"); 3415 if (auto *I = dyn_cast<Instruction>(V)) { 3416 GatherSeq.insert(I); 3417 CSEBlocks.insert(I->getParent()); 3418 } 3419 } 3420 return V; 3421 } 3422 3423 static void inversePermutation(ArrayRef<unsigned> Indices, 3424 SmallVectorImpl<unsigned> &Mask) { 3425 Mask.clear(); 3426 const unsigned E = Indices.size(); 3427 Mask.resize(E); 3428 for (unsigned I = 0; I < E; ++I) 3429 Mask[Indices[I]] = I; 3430 } 3431 3432 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3433 IRBuilder<>::InsertPointGuard Guard(Builder); 3434 3435 if (E->VectorizedValue) { 3436 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3437 return E->VectorizedValue; 3438 } 3439 3440 InstructionsState S = getSameOpcode(E->Scalars); 3441 Instruction *VL0 = cast<Instruction>(S.OpValue); 3442 Type *ScalarTy = VL0->getType(); 3443 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3444 ScalarTy = SI->getValueOperand()->getType(); 3445 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3446 3447 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3448 3449 if (E->NeedToGather) { 3450 setInsertPointAfterBundle(E->Scalars, S); 3451 auto *V = Gather(E->Scalars, VecTy); 3452 if (NeedToShuffleReuses) { 3453 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3454 E->ReuseShuffleIndices, "shuffle"); 3455 if (auto *I = dyn_cast<Instruction>(V)) { 3456 GatherSeq.insert(I); 3457 CSEBlocks.insert(I->getParent()); 3458 } 3459 } 3460 E->VectorizedValue = V; 3461 return V; 3462 } 3463 3464 unsigned ShuffleOrOp = S.isAltShuffle() ? 3465 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3466 switch (ShuffleOrOp) { 3467 case Instruction::PHI: { 3468 PHINode *PH = dyn_cast<PHINode>(VL0); 3469 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3470 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3471 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3472 Value *V = NewPhi; 3473 if (NeedToShuffleReuses) { 3474 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3475 E->ReuseShuffleIndices, "shuffle"); 3476 } 3477 E->VectorizedValue = V; 3478 3479 // PHINodes may have multiple entries from the same block. We want to 3480 // visit every block once. 3481 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3482 3483 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3484 ValueList Operands; 3485 BasicBlock *IBB = PH->getIncomingBlock(i); 3486 3487 if (!VisitedBBs.insert(IBB).second) { 3488 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3489 continue; 3490 } 3491 3492 Builder.SetInsertPoint(IBB->getTerminator()); 3493 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3494 Value *Vec = vectorizeTree(E->getOperand(i)); 3495 NewPhi->addIncoming(Vec, IBB); 3496 } 3497 3498 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3499 "Invalid number of incoming values"); 3500 return V; 3501 } 3502 3503 case Instruction::ExtractElement: { 3504 if (!E->NeedToGather) { 3505 Value *V = E->getSingleOperand(0); 3506 if (!E->ReorderIndices.empty()) { 3507 OrdersType Mask; 3508 inversePermutation(E->ReorderIndices, Mask); 3509 Builder.SetInsertPoint(VL0); 3510 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3511 "reorder_shuffle"); 3512 } 3513 if (NeedToShuffleReuses) { 3514 // TODO: Merge this shuffle with the ReorderShuffleMask. 3515 if (E->ReorderIndices.empty()) 3516 Builder.SetInsertPoint(VL0); 3517 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3518 E->ReuseShuffleIndices, "shuffle"); 3519 } 3520 E->VectorizedValue = V; 3521 return V; 3522 } 3523 setInsertPointAfterBundle(E->Scalars, S); 3524 auto *V = Gather(E->Scalars, VecTy); 3525 if (NeedToShuffleReuses) { 3526 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3527 E->ReuseShuffleIndices, "shuffle"); 3528 if (auto *I = dyn_cast<Instruction>(V)) { 3529 GatherSeq.insert(I); 3530 CSEBlocks.insert(I->getParent()); 3531 } 3532 } 3533 E->VectorizedValue = V; 3534 return V; 3535 } 3536 case Instruction::ExtractValue: { 3537 if (!E->NeedToGather) { 3538 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3539 Builder.SetInsertPoint(LI); 3540 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3541 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3542 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3543 Value *NewV = propagateMetadata(V, E->Scalars); 3544 if (!E->ReorderIndices.empty()) { 3545 OrdersType Mask; 3546 inversePermutation(E->ReorderIndices, Mask); 3547 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3548 "reorder_shuffle"); 3549 } 3550 if (NeedToShuffleReuses) { 3551 // TODO: Merge this shuffle with the ReorderShuffleMask. 3552 NewV = Builder.CreateShuffleVector( 3553 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3554 } 3555 E->VectorizedValue = NewV; 3556 return NewV; 3557 } 3558 setInsertPointAfterBundle(E->Scalars, S); 3559 auto *V = Gather(E->Scalars, VecTy); 3560 if (NeedToShuffleReuses) { 3561 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3562 E->ReuseShuffleIndices, "shuffle"); 3563 if (auto *I = dyn_cast<Instruction>(V)) { 3564 GatherSeq.insert(I); 3565 CSEBlocks.insert(I->getParent()); 3566 } 3567 } 3568 E->VectorizedValue = V; 3569 return V; 3570 } 3571 case Instruction::ZExt: 3572 case Instruction::SExt: 3573 case Instruction::FPToUI: 3574 case Instruction::FPToSI: 3575 case Instruction::FPExt: 3576 case Instruction::PtrToInt: 3577 case Instruction::IntToPtr: 3578 case Instruction::SIToFP: 3579 case Instruction::UIToFP: 3580 case Instruction::Trunc: 3581 case Instruction::FPTrunc: 3582 case Instruction::BitCast: { 3583 setInsertPointAfterBundle(E->Scalars, S); 3584 3585 Value *InVec = vectorizeTree(E->getOperand(0)); 3586 3587 if (E->VectorizedValue) { 3588 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3589 return E->VectorizedValue; 3590 } 3591 3592 CastInst *CI = dyn_cast<CastInst>(VL0); 3593 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3594 if (NeedToShuffleReuses) { 3595 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3596 E->ReuseShuffleIndices, "shuffle"); 3597 } 3598 E->VectorizedValue = V; 3599 ++NumVectorInstructions; 3600 return V; 3601 } 3602 case Instruction::FCmp: 3603 case Instruction::ICmp: { 3604 setInsertPointAfterBundle(E->Scalars, S); 3605 3606 Value *L = vectorizeTree(E->getOperand(0)); 3607 Value *R = vectorizeTree(E->getOperand(1)); 3608 3609 if (E->VectorizedValue) { 3610 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3611 return E->VectorizedValue; 3612 } 3613 3614 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3615 Value *V; 3616 if (S.getOpcode() == Instruction::FCmp) 3617 V = Builder.CreateFCmp(P0, L, R); 3618 else 3619 V = Builder.CreateICmp(P0, L, R); 3620 3621 propagateIRFlags(V, E->Scalars, VL0); 3622 if (NeedToShuffleReuses) { 3623 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3624 E->ReuseShuffleIndices, "shuffle"); 3625 } 3626 E->VectorizedValue = V; 3627 ++NumVectorInstructions; 3628 return V; 3629 } 3630 case Instruction::Select: { 3631 setInsertPointAfterBundle(E->Scalars, S); 3632 3633 Value *Cond = vectorizeTree(E->getOperand(0)); 3634 Value *True = vectorizeTree(E->getOperand(1)); 3635 Value *False = vectorizeTree(E->getOperand(2)); 3636 3637 if (E->VectorizedValue) { 3638 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3639 return E->VectorizedValue; 3640 } 3641 3642 Value *V = Builder.CreateSelect(Cond, True, False); 3643 if (NeedToShuffleReuses) { 3644 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3645 E->ReuseShuffleIndices, "shuffle"); 3646 } 3647 E->VectorizedValue = V; 3648 ++NumVectorInstructions; 3649 return V; 3650 } 3651 case Instruction::Add: 3652 case Instruction::FAdd: 3653 case Instruction::Sub: 3654 case Instruction::FSub: 3655 case Instruction::Mul: 3656 case Instruction::FMul: 3657 case Instruction::UDiv: 3658 case Instruction::SDiv: 3659 case Instruction::FDiv: 3660 case Instruction::URem: 3661 case Instruction::SRem: 3662 case Instruction::FRem: 3663 case Instruction::Shl: 3664 case Instruction::LShr: 3665 case Instruction::AShr: 3666 case Instruction::And: 3667 case Instruction::Or: 3668 case Instruction::Xor: { 3669 setInsertPointAfterBundle(E->Scalars, S); 3670 3671 Value *LHS = vectorizeTree(E->getOperand(0)); 3672 Value *RHS = vectorizeTree(E->getOperand(1)); 3673 3674 if (E->VectorizedValue) { 3675 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3676 return E->VectorizedValue; 3677 } 3678 3679 Value *V = Builder.CreateBinOp( 3680 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3681 propagateIRFlags(V, E->Scalars, VL0); 3682 if (auto *I = dyn_cast<Instruction>(V)) 3683 V = propagateMetadata(I, E->Scalars); 3684 3685 if (NeedToShuffleReuses) { 3686 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3687 E->ReuseShuffleIndices, "shuffle"); 3688 } 3689 E->VectorizedValue = V; 3690 ++NumVectorInstructions; 3691 3692 return V; 3693 } 3694 case Instruction::Load: { 3695 // Loads are inserted at the head of the tree because we don't want to 3696 // sink them all the way down past store instructions. 3697 bool IsReorder = !E->ReorderIndices.empty(); 3698 if (IsReorder) { 3699 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3700 VL0 = cast<Instruction>(S.OpValue); 3701 } 3702 setInsertPointAfterBundle(E->Scalars, S); 3703 3704 LoadInst *LI = cast<LoadInst>(VL0); 3705 Type *ScalarLoadTy = LI->getType(); 3706 unsigned AS = LI->getPointerAddressSpace(); 3707 3708 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3709 VecTy->getPointerTo(AS)); 3710 3711 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3712 // ExternalUses list to make sure that an extract will be generated in the 3713 // future. 3714 Value *PO = LI->getPointerOperand(); 3715 if (getTreeEntry(PO)) 3716 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3717 3718 unsigned Alignment = LI->getAlignment(); 3719 LI = Builder.CreateLoad(VecTy, VecPtr); 3720 if (!Alignment) { 3721 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3722 } 3723 LI->setAlignment(Alignment); 3724 Value *V = propagateMetadata(LI, E->Scalars); 3725 if (IsReorder) { 3726 OrdersType Mask; 3727 inversePermutation(E->ReorderIndices, Mask); 3728 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3729 Mask, "reorder_shuffle"); 3730 } 3731 if (NeedToShuffleReuses) { 3732 // TODO: Merge this shuffle with the ReorderShuffleMask. 3733 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3734 E->ReuseShuffleIndices, "shuffle"); 3735 } 3736 E->VectorizedValue = V; 3737 ++NumVectorInstructions; 3738 return V; 3739 } 3740 case Instruction::Store: { 3741 StoreInst *SI = cast<StoreInst>(VL0); 3742 unsigned Alignment = SI->getAlignment(); 3743 unsigned AS = SI->getPointerAddressSpace(); 3744 3745 setInsertPointAfterBundle(E->Scalars, S); 3746 3747 Value *VecValue = vectorizeTree(E->getOperand(0)); 3748 Value *ScalarPtr = SI->getPointerOperand(); 3749 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3750 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3751 3752 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3753 // ExternalUses to make sure that an extract will be generated in the 3754 // future. 3755 if (getTreeEntry(ScalarPtr)) 3756 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3757 3758 if (!Alignment) 3759 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3760 3761 ST->setAlignment(Alignment); 3762 Value *V = propagateMetadata(ST, E->Scalars); 3763 if (NeedToShuffleReuses) { 3764 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3765 E->ReuseShuffleIndices, "shuffle"); 3766 } 3767 E->VectorizedValue = V; 3768 ++NumVectorInstructions; 3769 return V; 3770 } 3771 case Instruction::GetElementPtr: { 3772 setInsertPointAfterBundle(E->Scalars, S); 3773 3774 Value *Op0 = vectorizeTree(E->getOperand(0)); 3775 3776 std::vector<Value *> OpVecs; 3777 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3778 ++j) { 3779 Value *OpVec = vectorizeTree(E->getOperand(j)); 3780 OpVecs.push_back(OpVec); 3781 } 3782 3783 Value *V = Builder.CreateGEP( 3784 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3785 if (Instruction *I = dyn_cast<Instruction>(V)) 3786 V = propagateMetadata(I, E->Scalars); 3787 3788 if (NeedToShuffleReuses) { 3789 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3790 E->ReuseShuffleIndices, "shuffle"); 3791 } 3792 E->VectorizedValue = V; 3793 ++NumVectorInstructions; 3794 3795 return V; 3796 } 3797 case Instruction::Call: { 3798 CallInst *CI = cast<CallInst>(VL0); 3799 setInsertPointAfterBundle(E->Scalars, S); 3800 Function *FI; 3801 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3802 Value *ScalarArg = nullptr; 3803 if (CI && (FI = CI->getCalledFunction())) { 3804 IID = FI->getIntrinsicID(); 3805 } 3806 std::vector<Value *> OpVecs; 3807 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3808 ValueList OpVL; 3809 // Some intrinsics have scalar arguments. This argument should not be 3810 // vectorized. 3811 if (hasVectorInstrinsicScalarOpd(IID, j)) { 3812 CallInst *CEI = cast<CallInst>(VL0); 3813 ScalarArg = CEI->getArgOperand(j); 3814 OpVecs.push_back(CEI->getArgOperand(j)); 3815 continue; 3816 } 3817 3818 Value *OpVec = vectorizeTree(E->getOperand(j)); 3819 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3820 OpVecs.push_back(OpVec); 3821 } 3822 3823 Module *M = F->getParent(); 3824 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3825 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3826 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3827 SmallVector<OperandBundleDef, 1> OpBundles; 3828 CI->getOperandBundlesAsDefs(OpBundles); 3829 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3830 3831 // The scalar argument uses an in-tree scalar so we add the new vectorized 3832 // call to ExternalUses list to make sure that an extract will be 3833 // generated in the future. 3834 if (ScalarArg && getTreeEntry(ScalarArg)) 3835 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3836 3837 propagateIRFlags(V, E->Scalars, VL0); 3838 if (NeedToShuffleReuses) { 3839 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3840 E->ReuseShuffleIndices, "shuffle"); 3841 } 3842 E->VectorizedValue = V; 3843 ++NumVectorInstructions; 3844 return V; 3845 } 3846 case Instruction::ShuffleVector: { 3847 assert(S.isAltShuffle() && 3848 ((Instruction::isBinaryOp(S.getOpcode()) && 3849 Instruction::isBinaryOp(S.getAltOpcode())) || 3850 (Instruction::isCast(S.getOpcode()) && 3851 Instruction::isCast(S.getAltOpcode()))) && 3852 "Invalid Shuffle Vector Operand"); 3853 3854 Value *LHS, *RHS; 3855 if (Instruction::isBinaryOp(S.getOpcode())) { 3856 setInsertPointAfterBundle(E->Scalars, S); 3857 LHS = vectorizeTree(E->getOperand(0)); 3858 RHS = vectorizeTree(E->getOperand(1)); 3859 } else { 3860 setInsertPointAfterBundle(E->Scalars, S); 3861 LHS = vectorizeTree(E->getOperand(0)); 3862 } 3863 3864 if (E->VectorizedValue) { 3865 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3866 return E->VectorizedValue; 3867 } 3868 3869 Value *V0, *V1; 3870 if (Instruction::isBinaryOp(S.getOpcode())) { 3871 V0 = Builder.CreateBinOp( 3872 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3873 V1 = Builder.CreateBinOp( 3874 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3875 } else { 3876 V0 = Builder.CreateCast( 3877 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3878 V1 = Builder.CreateCast( 3879 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3880 } 3881 3882 // Create shuffle to take alternate operations from the vector. 3883 // Also, gather up main and alt scalar ops to propagate IR flags to 3884 // each vector operation. 3885 ValueList OpScalars, AltScalars; 3886 unsigned e = E->Scalars.size(); 3887 SmallVector<Constant *, 8> Mask(e); 3888 for (unsigned i = 0; i < e; ++i) { 3889 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3890 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3891 if (OpInst->getOpcode() == S.getAltOpcode()) { 3892 Mask[i] = Builder.getInt32(e + i); 3893 AltScalars.push_back(E->Scalars[i]); 3894 } else { 3895 Mask[i] = Builder.getInt32(i); 3896 OpScalars.push_back(E->Scalars[i]); 3897 } 3898 } 3899 3900 Value *ShuffleMask = ConstantVector::get(Mask); 3901 propagateIRFlags(V0, OpScalars); 3902 propagateIRFlags(V1, AltScalars); 3903 3904 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3905 if (Instruction *I = dyn_cast<Instruction>(V)) 3906 V = propagateMetadata(I, E->Scalars); 3907 if (NeedToShuffleReuses) { 3908 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3909 E->ReuseShuffleIndices, "shuffle"); 3910 } 3911 E->VectorizedValue = V; 3912 ++NumVectorInstructions; 3913 3914 return V; 3915 } 3916 default: 3917 llvm_unreachable("unknown inst"); 3918 } 3919 return nullptr; 3920 } 3921 3922 Value *BoUpSLP::vectorizeTree() { 3923 ExtraValueToDebugLocsMap ExternallyUsedValues; 3924 return vectorizeTree(ExternallyUsedValues); 3925 } 3926 3927 Value * 3928 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3929 // All blocks must be scheduled before any instructions are inserted. 3930 for (auto &BSIter : BlocksSchedules) { 3931 scheduleBlock(BSIter.second.get()); 3932 } 3933 3934 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3935 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3936 3937 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3938 // vectorized root. InstCombine will then rewrite the entire expression. We 3939 // sign extend the extracted values below. 3940 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3941 if (MinBWs.count(ScalarRoot)) { 3942 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3943 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3944 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3945 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3946 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3947 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3948 VectorizableTree[0].VectorizedValue = Trunc; 3949 } 3950 3951 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3952 << " values .\n"); 3953 3954 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3955 // specified by ScalarType. 3956 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3957 if (!MinBWs.count(ScalarRoot)) 3958 return Ex; 3959 if (MinBWs[ScalarRoot].second) 3960 return Builder.CreateSExt(Ex, ScalarType); 3961 return Builder.CreateZExt(Ex, ScalarType); 3962 }; 3963 3964 // Extract all of the elements with the external uses. 3965 for (const auto &ExternalUse : ExternalUses) { 3966 Value *Scalar = ExternalUse.Scalar; 3967 llvm::User *User = ExternalUse.User; 3968 3969 // Skip users that we already RAUW. This happens when one instruction 3970 // has multiple uses of the same value. 3971 if (User && !is_contained(Scalar->users(), User)) 3972 continue; 3973 TreeEntry *E = getTreeEntry(Scalar); 3974 assert(E && "Invalid scalar"); 3975 assert(!E->NeedToGather && "Extracting from a gather list"); 3976 3977 Value *Vec = E->VectorizedValue; 3978 assert(Vec && "Can't find vectorizable value"); 3979 3980 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3981 // If User == nullptr, the Scalar is used as extra arg. Generate 3982 // ExtractElement instruction and update the record for this scalar in 3983 // ExternallyUsedValues. 3984 if (!User) { 3985 assert(ExternallyUsedValues.count(Scalar) && 3986 "Scalar with nullptr as an external user must be registered in " 3987 "ExternallyUsedValues map"); 3988 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3989 Builder.SetInsertPoint(VecI->getParent(), 3990 std::next(VecI->getIterator())); 3991 } else { 3992 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3993 } 3994 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3995 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3996 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3997 auto &Locs = ExternallyUsedValues[Scalar]; 3998 ExternallyUsedValues.insert({Ex, Locs}); 3999 ExternallyUsedValues.erase(Scalar); 4000 // Required to update internally referenced instructions. 4001 Scalar->replaceAllUsesWith(Ex); 4002 continue; 4003 } 4004 4005 // Generate extracts for out-of-tree users. 4006 // Find the insertion point for the extractelement lane. 4007 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4008 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4009 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4010 if (PH->getIncomingValue(i) == Scalar) { 4011 Instruction *IncomingTerminator = 4012 PH->getIncomingBlock(i)->getTerminator(); 4013 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4014 Builder.SetInsertPoint(VecI->getParent(), 4015 std::next(VecI->getIterator())); 4016 } else { 4017 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4018 } 4019 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4020 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4021 CSEBlocks.insert(PH->getIncomingBlock(i)); 4022 PH->setOperand(i, Ex); 4023 } 4024 } 4025 } else { 4026 Builder.SetInsertPoint(cast<Instruction>(User)); 4027 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4028 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4029 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4030 User->replaceUsesOfWith(Scalar, Ex); 4031 } 4032 } else { 4033 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4034 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4035 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4036 CSEBlocks.insert(&F->getEntryBlock()); 4037 User->replaceUsesOfWith(Scalar, Ex); 4038 } 4039 4040 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4041 } 4042 4043 // For each vectorized value: 4044 for (TreeEntry &EIdx : VectorizableTree) { 4045 TreeEntry *Entry = &EIdx; 4046 4047 // No need to handle users of gathered values. 4048 if (Entry->NeedToGather) 4049 continue; 4050 4051 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4052 4053 // For each lane: 4054 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4055 Value *Scalar = Entry->Scalars[Lane]; 4056 4057 Type *Ty = Scalar->getType(); 4058 if (!Ty->isVoidTy()) { 4059 #ifndef NDEBUG 4060 for (User *U : Scalar->users()) { 4061 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4062 4063 // It is legal to replace users in the ignorelist by undef. 4064 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4065 "Replacing out-of-tree value with undef"); 4066 } 4067 #endif 4068 Value *Undef = UndefValue::get(Ty); 4069 Scalar->replaceAllUsesWith(Undef); 4070 } 4071 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4072 eraseInstruction(cast<Instruction>(Scalar)); 4073 } 4074 } 4075 4076 Builder.ClearInsertionPoint(); 4077 4078 return VectorizableTree[0].VectorizedValue; 4079 } 4080 4081 void BoUpSLP::optimizeGatherSequence() { 4082 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4083 << " gather sequences instructions.\n"); 4084 // LICM InsertElementInst sequences. 4085 for (Instruction *I : GatherSeq) { 4086 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 4087 continue; 4088 4089 // Check if this block is inside a loop. 4090 Loop *L = LI->getLoopFor(I->getParent()); 4091 if (!L) 4092 continue; 4093 4094 // Check if it has a preheader. 4095 BasicBlock *PreHeader = L->getLoopPreheader(); 4096 if (!PreHeader) 4097 continue; 4098 4099 // If the vector or the element that we insert into it are 4100 // instructions that are defined in this basic block then we can't 4101 // hoist this instruction. 4102 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4103 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4104 if (Op0 && L->contains(Op0)) 4105 continue; 4106 if (Op1 && L->contains(Op1)) 4107 continue; 4108 4109 // We can hoist this instruction. Move it to the pre-header. 4110 I->moveBefore(PreHeader->getTerminator()); 4111 } 4112 4113 // Make a list of all reachable blocks in our CSE queue. 4114 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4115 CSEWorkList.reserve(CSEBlocks.size()); 4116 for (BasicBlock *BB : CSEBlocks) 4117 if (DomTreeNode *N = DT->getNode(BB)) { 4118 assert(DT->isReachableFromEntry(N)); 4119 CSEWorkList.push_back(N); 4120 } 4121 4122 // Sort blocks by domination. This ensures we visit a block after all blocks 4123 // dominating it are visited. 4124 llvm::stable_sort(CSEWorkList, 4125 [this](const DomTreeNode *A, const DomTreeNode *B) { 4126 return DT->properlyDominates(A, B); 4127 }); 4128 4129 // Perform O(N^2) search over the gather sequences and merge identical 4130 // instructions. TODO: We can further optimize this scan if we split the 4131 // instructions into different buckets based on the insert lane. 4132 SmallVector<Instruction *, 16> Visited; 4133 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4134 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4135 "Worklist not sorted properly!"); 4136 BasicBlock *BB = (*I)->getBlock(); 4137 // For all instructions in blocks containing gather sequences: 4138 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4139 Instruction *In = &*it++; 4140 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4141 continue; 4142 4143 // Check if we can replace this instruction with any of the 4144 // visited instructions. 4145 for (Instruction *v : Visited) { 4146 if (In->isIdenticalTo(v) && 4147 DT->dominates(v->getParent(), In->getParent())) { 4148 In->replaceAllUsesWith(v); 4149 eraseInstruction(In); 4150 In = nullptr; 4151 break; 4152 } 4153 } 4154 if (In) { 4155 assert(!is_contained(Visited, In)); 4156 Visited.push_back(In); 4157 } 4158 } 4159 } 4160 CSEBlocks.clear(); 4161 GatherSeq.clear(); 4162 } 4163 4164 // Groups the instructions to a bundle (which is then a single scheduling entity) 4165 // and schedules instructions until the bundle gets ready. 4166 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 4167 BoUpSLP *SLP, 4168 const InstructionsState &S) { 4169 if (isa<PHINode>(S.OpValue)) 4170 return true; 4171 4172 // Initialize the instruction bundle. 4173 Instruction *OldScheduleEnd = ScheduleEnd; 4174 ScheduleData *PrevInBundle = nullptr; 4175 ScheduleData *Bundle = nullptr; 4176 bool ReSchedule = false; 4177 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4178 4179 // Make sure that the scheduling region contains all 4180 // instructions of the bundle. 4181 for (Value *V : VL) { 4182 if (!extendSchedulingRegion(V, S)) 4183 return false; 4184 } 4185 4186 for (Value *V : VL) { 4187 ScheduleData *BundleMember = getScheduleData(V); 4188 assert(BundleMember && 4189 "no ScheduleData for bundle member (maybe not in same basic block)"); 4190 if (BundleMember->IsScheduled) { 4191 // A bundle member was scheduled as single instruction before and now 4192 // needs to be scheduled as part of the bundle. We just get rid of the 4193 // existing schedule. 4194 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4195 << " was already scheduled\n"); 4196 ReSchedule = true; 4197 } 4198 assert(BundleMember->isSchedulingEntity() && 4199 "bundle member already part of other bundle"); 4200 if (PrevInBundle) { 4201 PrevInBundle->NextInBundle = BundleMember; 4202 } else { 4203 Bundle = BundleMember; 4204 } 4205 BundleMember->UnscheduledDepsInBundle = 0; 4206 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4207 4208 // Group the instructions to a bundle. 4209 BundleMember->FirstInBundle = Bundle; 4210 PrevInBundle = BundleMember; 4211 } 4212 if (ScheduleEnd != OldScheduleEnd) { 4213 // The scheduling region got new instructions at the lower end (or it is a 4214 // new region for the first bundle). This makes it necessary to 4215 // recalculate all dependencies. 4216 // It is seldom that this needs to be done a second time after adding the 4217 // initial bundle to the region. 4218 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4219 doForAllOpcodes(I, [](ScheduleData *SD) { 4220 SD->clearDependencies(); 4221 }); 4222 } 4223 ReSchedule = true; 4224 } 4225 if (ReSchedule) { 4226 resetSchedule(); 4227 initialFillReadyList(ReadyInsts); 4228 } 4229 4230 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4231 << BB->getName() << "\n"); 4232 4233 calculateDependencies(Bundle, true, SLP); 4234 4235 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4236 // means that there are no cyclic dependencies and we can schedule it. 4237 // Note that's important that we don't "schedule" the bundle yet (see 4238 // cancelScheduling). 4239 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4240 4241 ScheduleData *pickedSD = ReadyInsts.back(); 4242 ReadyInsts.pop_back(); 4243 4244 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4245 schedule(pickedSD, ReadyInsts); 4246 } 4247 } 4248 if (!Bundle->isReady()) { 4249 cancelScheduling(VL, S.OpValue); 4250 return false; 4251 } 4252 return true; 4253 } 4254 4255 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4256 Value *OpValue) { 4257 if (isa<PHINode>(OpValue)) 4258 return; 4259 4260 ScheduleData *Bundle = getScheduleData(OpValue); 4261 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4262 assert(!Bundle->IsScheduled && 4263 "Can't cancel bundle which is already scheduled"); 4264 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4265 "tried to unbundle something which is not a bundle"); 4266 4267 // Un-bundle: make single instructions out of the bundle. 4268 ScheduleData *BundleMember = Bundle; 4269 while (BundleMember) { 4270 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4271 BundleMember->FirstInBundle = BundleMember; 4272 ScheduleData *Next = BundleMember->NextInBundle; 4273 BundleMember->NextInBundle = nullptr; 4274 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4275 if (BundleMember->UnscheduledDepsInBundle == 0) { 4276 ReadyInsts.insert(BundleMember); 4277 } 4278 BundleMember = Next; 4279 } 4280 } 4281 4282 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4283 // Allocate a new ScheduleData for the instruction. 4284 if (ChunkPos >= ChunkSize) { 4285 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 4286 ChunkPos = 0; 4287 } 4288 return &(ScheduleDataChunks.back()[ChunkPos++]); 4289 } 4290 4291 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4292 const InstructionsState &S) { 4293 if (getScheduleData(V, isOneOf(S, V))) 4294 return true; 4295 Instruction *I = dyn_cast<Instruction>(V); 4296 assert(I && "bundle member must be an instruction"); 4297 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4298 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4299 ScheduleData *ISD = getScheduleData(I); 4300 if (!ISD) 4301 return false; 4302 assert(isInSchedulingRegion(ISD) && 4303 "ScheduleData not in scheduling region"); 4304 ScheduleData *SD = allocateScheduleDataChunks(); 4305 SD->Inst = I; 4306 SD->init(SchedulingRegionID, S.OpValue); 4307 ExtraScheduleDataMap[I][S.OpValue] = SD; 4308 return true; 4309 }; 4310 if (CheckSheduleForI(I)) 4311 return true; 4312 if (!ScheduleStart) { 4313 // It's the first instruction in the new region. 4314 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4315 ScheduleStart = I; 4316 ScheduleEnd = I->getNextNode(); 4317 if (isOneOf(S, I) != I) 4318 CheckSheduleForI(I); 4319 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4320 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4321 return true; 4322 } 4323 // Search up and down at the same time, because we don't know if the new 4324 // instruction is above or below the existing scheduling region. 4325 BasicBlock::reverse_iterator UpIter = 4326 ++ScheduleStart->getIterator().getReverse(); 4327 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4328 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4329 BasicBlock::iterator LowerEnd = BB->end(); 4330 while (true) { 4331 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4332 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4333 return false; 4334 } 4335 4336 if (UpIter != UpperEnd) { 4337 if (&*UpIter == I) { 4338 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4339 ScheduleStart = I; 4340 if (isOneOf(S, I) != I) 4341 CheckSheduleForI(I); 4342 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4343 << "\n"); 4344 return true; 4345 } 4346 UpIter++; 4347 } 4348 if (DownIter != LowerEnd) { 4349 if (&*DownIter == I) { 4350 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4351 nullptr); 4352 ScheduleEnd = I->getNextNode(); 4353 if (isOneOf(S, I) != I) 4354 CheckSheduleForI(I); 4355 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4356 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4357 << "\n"); 4358 return true; 4359 } 4360 DownIter++; 4361 } 4362 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4363 "instruction not found in block"); 4364 } 4365 return true; 4366 } 4367 4368 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4369 Instruction *ToI, 4370 ScheduleData *PrevLoadStore, 4371 ScheduleData *NextLoadStore) { 4372 ScheduleData *CurrentLoadStore = PrevLoadStore; 4373 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4374 ScheduleData *SD = ScheduleDataMap[I]; 4375 if (!SD) { 4376 SD = allocateScheduleDataChunks(); 4377 ScheduleDataMap[I] = SD; 4378 SD->Inst = I; 4379 } 4380 assert(!isInSchedulingRegion(SD) && 4381 "new ScheduleData already in scheduling region"); 4382 SD->init(SchedulingRegionID, I); 4383 4384 if (I->mayReadOrWriteMemory() && 4385 (!isa<IntrinsicInst>(I) || 4386 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4387 // Update the linked list of memory accessing instructions. 4388 if (CurrentLoadStore) { 4389 CurrentLoadStore->NextLoadStore = SD; 4390 } else { 4391 FirstLoadStoreInRegion = SD; 4392 } 4393 CurrentLoadStore = SD; 4394 } 4395 } 4396 if (NextLoadStore) { 4397 if (CurrentLoadStore) 4398 CurrentLoadStore->NextLoadStore = NextLoadStore; 4399 } else { 4400 LastLoadStoreInRegion = CurrentLoadStore; 4401 } 4402 } 4403 4404 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4405 bool InsertInReadyList, 4406 BoUpSLP *SLP) { 4407 assert(SD->isSchedulingEntity()); 4408 4409 SmallVector<ScheduleData *, 10> WorkList; 4410 WorkList.push_back(SD); 4411 4412 while (!WorkList.empty()) { 4413 ScheduleData *SD = WorkList.back(); 4414 WorkList.pop_back(); 4415 4416 ScheduleData *BundleMember = SD; 4417 while (BundleMember) { 4418 assert(isInSchedulingRegion(BundleMember)); 4419 if (!BundleMember->hasValidDependencies()) { 4420 4421 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4422 << "\n"); 4423 BundleMember->Dependencies = 0; 4424 BundleMember->resetUnscheduledDeps(); 4425 4426 // Handle def-use chain dependencies. 4427 if (BundleMember->OpValue != BundleMember->Inst) { 4428 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4429 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4430 BundleMember->Dependencies++; 4431 ScheduleData *DestBundle = UseSD->FirstInBundle; 4432 if (!DestBundle->IsScheduled) 4433 BundleMember->incrementUnscheduledDeps(1); 4434 if (!DestBundle->hasValidDependencies()) 4435 WorkList.push_back(DestBundle); 4436 } 4437 } else { 4438 for (User *U : BundleMember->Inst->users()) { 4439 if (isa<Instruction>(U)) { 4440 ScheduleData *UseSD = getScheduleData(U); 4441 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4442 BundleMember->Dependencies++; 4443 ScheduleData *DestBundle = UseSD->FirstInBundle; 4444 if (!DestBundle->IsScheduled) 4445 BundleMember->incrementUnscheduledDeps(1); 4446 if (!DestBundle->hasValidDependencies()) 4447 WorkList.push_back(DestBundle); 4448 } 4449 } else { 4450 // I'm not sure if this can ever happen. But we need to be safe. 4451 // This lets the instruction/bundle never be scheduled and 4452 // eventually disable vectorization. 4453 BundleMember->Dependencies++; 4454 BundleMember->incrementUnscheduledDeps(1); 4455 } 4456 } 4457 } 4458 4459 // Handle the memory dependencies. 4460 ScheduleData *DepDest = BundleMember->NextLoadStore; 4461 if (DepDest) { 4462 Instruction *SrcInst = BundleMember->Inst; 4463 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4464 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4465 unsigned numAliased = 0; 4466 unsigned DistToSrc = 1; 4467 4468 while (DepDest) { 4469 assert(isInSchedulingRegion(DepDest)); 4470 4471 // We have two limits to reduce the complexity: 4472 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4473 // SLP->isAliased (which is the expensive part in this loop). 4474 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4475 // the whole loop (even if the loop is fast, it's quadratic). 4476 // It's important for the loop break condition (see below) to 4477 // check this limit even between two read-only instructions. 4478 if (DistToSrc >= MaxMemDepDistance || 4479 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4480 (numAliased >= AliasedCheckLimit || 4481 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4482 4483 // We increment the counter only if the locations are aliased 4484 // (instead of counting all alias checks). This gives a better 4485 // balance between reduced runtime and accurate dependencies. 4486 numAliased++; 4487 4488 DepDest->MemoryDependencies.push_back(BundleMember); 4489 BundleMember->Dependencies++; 4490 ScheduleData *DestBundle = DepDest->FirstInBundle; 4491 if (!DestBundle->IsScheduled) { 4492 BundleMember->incrementUnscheduledDeps(1); 4493 } 4494 if (!DestBundle->hasValidDependencies()) { 4495 WorkList.push_back(DestBundle); 4496 } 4497 } 4498 DepDest = DepDest->NextLoadStore; 4499 4500 // Example, explaining the loop break condition: Let's assume our 4501 // starting instruction is i0 and MaxMemDepDistance = 3. 4502 // 4503 // +--------v--v--v 4504 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4505 // +--------^--^--^ 4506 // 4507 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4508 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4509 // Previously we already added dependencies from i3 to i6,i7,i8 4510 // (because of MaxMemDepDistance). As we added a dependency from 4511 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4512 // and we can abort this loop at i6. 4513 if (DistToSrc >= 2 * MaxMemDepDistance) 4514 break; 4515 DistToSrc++; 4516 } 4517 } 4518 } 4519 BundleMember = BundleMember->NextInBundle; 4520 } 4521 if (InsertInReadyList && SD->isReady()) { 4522 ReadyInsts.push_back(SD); 4523 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4524 << "\n"); 4525 } 4526 } 4527 } 4528 4529 void BoUpSLP::BlockScheduling::resetSchedule() { 4530 assert(ScheduleStart && 4531 "tried to reset schedule on block which has not been scheduled"); 4532 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4533 doForAllOpcodes(I, [&](ScheduleData *SD) { 4534 assert(isInSchedulingRegion(SD) && 4535 "ScheduleData not in scheduling region"); 4536 SD->IsScheduled = false; 4537 SD->resetUnscheduledDeps(); 4538 }); 4539 } 4540 ReadyInsts.clear(); 4541 } 4542 4543 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4544 if (!BS->ScheduleStart) 4545 return; 4546 4547 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4548 4549 BS->resetSchedule(); 4550 4551 // For the real scheduling we use a more sophisticated ready-list: it is 4552 // sorted by the original instruction location. This lets the final schedule 4553 // be as close as possible to the original instruction order. 4554 struct ScheduleDataCompare { 4555 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4556 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4557 } 4558 }; 4559 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4560 4561 // Ensure that all dependency data is updated and fill the ready-list with 4562 // initial instructions. 4563 int Idx = 0; 4564 int NumToSchedule = 0; 4565 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4566 I = I->getNextNode()) { 4567 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4568 assert(SD->isPartOfBundle() == 4569 (getTreeEntry(SD->Inst) != nullptr) && 4570 "scheduler and vectorizer bundle mismatch"); 4571 SD->FirstInBundle->SchedulingPriority = Idx++; 4572 if (SD->isSchedulingEntity()) { 4573 BS->calculateDependencies(SD, false, this); 4574 NumToSchedule++; 4575 } 4576 }); 4577 } 4578 BS->initialFillReadyList(ReadyInsts); 4579 4580 Instruction *LastScheduledInst = BS->ScheduleEnd; 4581 4582 // Do the "real" scheduling. 4583 while (!ReadyInsts.empty()) { 4584 ScheduleData *picked = *ReadyInsts.begin(); 4585 ReadyInsts.erase(ReadyInsts.begin()); 4586 4587 // Move the scheduled instruction(s) to their dedicated places, if not 4588 // there yet. 4589 ScheduleData *BundleMember = picked; 4590 while (BundleMember) { 4591 Instruction *pickedInst = BundleMember->Inst; 4592 if (LastScheduledInst->getNextNode() != pickedInst) { 4593 BS->BB->getInstList().remove(pickedInst); 4594 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4595 pickedInst); 4596 } 4597 LastScheduledInst = pickedInst; 4598 BundleMember = BundleMember->NextInBundle; 4599 } 4600 4601 BS->schedule(picked, ReadyInsts); 4602 NumToSchedule--; 4603 } 4604 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4605 4606 // Avoid duplicate scheduling of the block. 4607 BS->ScheduleStart = nullptr; 4608 } 4609 4610 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4611 // If V is a store, just return the width of the stored value without 4612 // traversing the expression tree. This is the common case. 4613 if (auto *Store = dyn_cast<StoreInst>(V)) 4614 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4615 4616 // If V is not a store, we can traverse the expression tree to find loads 4617 // that feed it. The type of the loaded value may indicate a more suitable 4618 // width than V's type. We want to base the vector element size on the width 4619 // of memory operations where possible. 4620 SmallVector<Instruction *, 16> Worklist; 4621 SmallPtrSet<Instruction *, 16> Visited; 4622 if (auto *I = dyn_cast<Instruction>(V)) 4623 Worklist.push_back(I); 4624 4625 // Traverse the expression tree in bottom-up order looking for loads. If we 4626 // encounter an instruction we don't yet handle, we give up. 4627 auto MaxWidth = 0u; 4628 auto FoundUnknownInst = false; 4629 while (!Worklist.empty() && !FoundUnknownInst) { 4630 auto *I = Worklist.pop_back_val(); 4631 Visited.insert(I); 4632 4633 // We should only be looking at scalar instructions here. If the current 4634 // instruction has a vector type, give up. 4635 auto *Ty = I->getType(); 4636 if (isa<VectorType>(Ty)) 4637 FoundUnknownInst = true; 4638 4639 // If the current instruction is a load, update MaxWidth to reflect the 4640 // width of the loaded value. 4641 else if (isa<LoadInst>(I)) 4642 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4643 4644 // Otherwise, we need to visit the operands of the instruction. We only 4645 // handle the interesting cases from buildTree here. If an operand is an 4646 // instruction we haven't yet visited, we add it to the worklist. 4647 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4648 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4649 for (Use &U : I->operands()) 4650 if (auto *J = dyn_cast<Instruction>(U.get())) 4651 if (!Visited.count(J)) 4652 Worklist.push_back(J); 4653 } 4654 4655 // If we don't yet handle the instruction, give up. 4656 else 4657 FoundUnknownInst = true; 4658 } 4659 4660 // If we didn't encounter a memory access in the expression tree, or if we 4661 // gave up for some reason, just return the width of V. 4662 if (!MaxWidth || FoundUnknownInst) 4663 return DL->getTypeSizeInBits(V->getType()); 4664 4665 // Otherwise, return the maximum width we found. 4666 return MaxWidth; 4667 } 4668 4669 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4670 // smaller type with a truncation. We collect the values that will be demoted 4671 // in ToDemote and additional roots that require investigating in Roots. 4672 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4673 SmallVectorImpl<Value *> &ToDemote, 4674 SmallVectorImpl<Value *> &Roots) { 4675 // We can always demote constants. 4676 if (isa<Constant>(V)) { 4677 ToDemote.push_back(V); 4678 return true; 4679 } 4680 4681 // If the value is not an instruction in the expression with only one use, it 4682 // cannot be demoted. 4683 auto *I = dyn_cast<Instruction>(V); 4684 if (!I || !I->hasOneUse() || !Expr.count(I)) 4685 return false; 4686 4687 switch (I->getOpcode()) { 4688 4689 // We can always demote truncations and extensions. Since truncations can 4690 // seed additional demotion, we save the truncated value. 4691 case Instruction::Trunc: 4692 Roots.push_back(I->getOperand(0)); 4693 break; 4694 case Instruction::ZExt: 4695 case Instruction::SExt: 4696 break; 4697 4698 // We can demote certain binary operations if we can demote both of their 4699 // operands. 4700 case Instruction::Add: 4701 case Instruction::Sub: 4702 case Instruction::Mul: 4703 case Instruction::And: 4704 case Instruction::Or: 4705 case Instruction::Xor: 4706 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4707 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4708 return false; 4709 break; 4710 4711 // We can demote selects if we can demote their true and false values. 4712 case Instruction::Select: { 4713 SelectInst *SI = cast<SelectInst>(I); 4714 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4715 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4716 return false; 4717 break; 4718 } 4719 4720 // We can demote phis if we can demote all their incoming operands. Note that 4721 // we don't need to worry about cycles since we ensure single use above. 4722 case Instruction::PHI: { 4723 PHINode *PN = cast<PHINode>(I); 4724 for (Value *IncValue : PN->incoming_values()) 4725 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4726 return false; 4727 break; 4728 } 4729 4730 // Otherwise, conservatively give up. 4731 default: 4732 return false; 4733 } 4734 4735 // Record the value that we can demote. 4736 ToDemote.push_back(V); 4737 return true; 4738 } 4739 4740 void BoUpSLP::computeMinimumValueSizes() { 4741 // If there are no external uses, the expression tree must be rooted by a 4742 // store. We can't demote in-memory values, so there is nothing to do here. 4743 if (ExternalUses.empty()) 4744 return; 4745 4746 // We only attempt to truncate integer expressions. 4747 auto &TreeRoot = VectorizableTree[0].Scalars; 4748 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4749 if (!TreeRootIT) 4750 return; 4751 4752 // If the expression is not rooted by a store, these roots should have 4753 // external uses. We will rely on InstCombine to rewrite the expression in 4754 // the narrower type. However, InstCombine only rewrites single-use values. 4755 // This means that if a tree entry other than a root is used externally, it 4756 // must have multiple uses and InstCombine will not rewrite it. The code 4757 // below ensures that only the roots are used externally. 4758 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4759 for (auto &EU : ExternalUses) 4760 if (!Expr.erase(EU.Scalar)) 4761 return; 4762 if (!Expr.empty()) 4763 return; 4764 4765 // Collect the scalar values of the vectorizable expression. We will use this 4766 // context to determine which values can be demoted. If we see a truncation, 4767 // we mark it as seeding another demotion. 4768 for (auto &Entry : VectorizableTree) 4769 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4770 4771 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4772 // have a single external user that is not in the vectorizable tree. 4773 for (auto *Root : TreeRoot) 4774 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4775 return; 4776 4777 // Conservatively determine if we can actually truncate the roots of the 4778 // expression. Collect the values that can be demoted in ToDemote and 4779 // additional roots that require investigating in Roots. 4780 SmallVector<Value *, 32> ToDemote; 4781 SmallVector<Value *, 4> Roots; 4782 for (auto *Root : TreeRoot) 4783 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4784 return; 4785 4786 // The maximum bit width required to represent all the values that can be 4787 // demoted without loss of precision. It would be safe to truncate the roots 4788 // of the expression to this width. 4789 auto MaxBitWidth = 8u; 4790 4791 // We first check if all the bits of the roots are demanded. If they're not, 4792 // we can truncate the roots to this narrower type. 4793 for (auto *Root : TreeRoot) { 4794 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4795 MaxBitWidth = std::max<unsigned>( 4796 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4797 } 4798 4799 // True if the roots can be zero-extended back to their original type, rather 4800 // than sign-extended. We know that if the leading bits are not demanded, we 4801 // can safely zero-extend. So we initialize IsKnownPositive to True. 4802 bool IsKnownPositive = true; 4803 4804 // If all the bits of the roots are demanded, we can try a little harder to 4805 // compute a narrower type. This can happen, for example, if the roots are 4806 // getelementptr indices. InstCombine promotes these indices to the pointer 4807 // width. Thus, all their bits are technically demanded even though the 4808 // address computation might be vectorized in a smaller type. 4809 // 4810 // We start by looking at each entry that can be demoted. We compute the 4811 // maximum bit width required to store the scalar by using ValueTracking to 4812 // compute the number of high-order bits we can truncate. 4813 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4814 llvm::all_of(TreeRoot, [](Value *R) { 4815 assert(R->hasOneUse() && "Root should have only one use!"); 4816 return isa<GetElementPtrInst>(R->user_back()); 4817 })) { 4818 MaxBitWidth = 8u; 4819 4820 // Determine if the sign bit of all the roots is known to be zero. If not, 4821 // IsKnownPositive is set to False. 4822 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4823 KnownBits Known = computeKnownBits(R, *DL); 4824 return Known.isNonNegative(); 4825 }); 4826 4827 // Determine the maximum number of bits required to store the scalar 4828 // values. 4829 for (auto *Scalar : ToDemote) { 4830 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4831 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4832 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4833 } 4834 4835 // If we can't prove that the sign bit is zero, we must add one to the 4836 // maximum bit width to account for the unknown sign bit. This preserves 4837 // the existing sign bit so we can safely sign-extend the root back to the 4838 // original type. Otherwise, if we know the sign bit is zero, we will 4839 // zero-extend the root instead. 4840 // 4841 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4842 // one to the maximum bit width will yield a larger-than-necessary 4843 // type. In general, we need to add an extra bit only if we can't 4844 // prove that the upper bit of the original type is equal to the 4845 // upper bit of the proposed smaller type. If these two bits are the 4846 // same (either zero or one) we know that sign-extending from the 4847 // smaller type will result in the same value. Here, since we can't 4848 // yet prove this, we are just making the proposed smaller type 4849 // larger to ensure correctness. 4850 if (!IsKnownPositive) 4851 ++MaxBitWidth; 4852 } 4853 4854 // Round MaxBitWidth up to the next power-of-two. 4855 if (!isPowerOf2_64(MaxBitWidth)) 4856 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4857 4858 // If the maximum bit width we compute is less than the with of the roots' 4859 // type, we can proceed with the narrowing. Otherwise, do nothing. 4860 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4861 return; 4862 4863 // If we can truncate the root, we must collect additional values that might 4864 // be demoted as a result. That is, those seeded by truncations we will 4865 // modify. 4866 while (!Roots.empty()) 4867 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4868 4869 // Finally, map the values we can demote to the maximum bit with we computed. 4870 for (auto *Scalar : ToDemote) 4871 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4872 } 4873 4874 namespace { 4875 4876 /// The SLPVectorizer Pass. 4877 struct SLPVectorizer : public FunctionPass { 4878 SLPVectorizerPass Impl; 4879 4880 /// Pass identification, replacement for typeid 4881 static char ID; 4882 4883 explicit SLPVectorizer() : FunctionPass(ID) { 4884 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4885 } 4886 4887 bool doInitialization(Module &M) override { 4888 return false; 4889 } 4890 4891 bool runOnFunction(Function &F) override { 4892 if (skipFunction(F)) 4893 return false; 4894 4895 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4896 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4897 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4898 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4899 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4900 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4901 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4902 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4903 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4904 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4905 4906 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4907 } 4908 4909 void getAnalysisUsage(AnalysisUsage &AU) const override { 4910 FunctionPass::getAnalysisUsage(AU); 4911 AU.addRequired<AssumptionCacheTracker>(); 4912 AU.addRequired<ScalarEvolutionWrapperPass>(); 4913 AU.addRequired<AAResultsWrapperPass>(); 4914 AU.addRequired<TargetTransformInfoWrapperPass>(); 4915 AU.addRequired<LoopInfoWrapperPass>(); 4916 AU.addRequired<DominatorTreeWrapperPass>(); 4917 AU.addRequired<DemandedBitsWrapperPass>(); 4918 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4919 AU.addPreserved<LoopInfoWrapperPass>(); 4920 AU.addPreserved<DominatorTreeWrapperPass>(); 4921 AU.addPreserved<AAResultsWrapperPass>(); 4922 AU.addPreserved<GlobalsAAWrapperPass>(); 4923 AU.setPreservesCFG(); 4924 } 4925 }; 4926 4927 } // end anonymous namespace 4928 4929 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4930 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4931 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4932 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4933 auto *AA = &AM.getResult<AAManager>(F); 4934 auto *LI = &AM.getResult<LoopAnalysis>(F); 4935 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4936 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4937 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4938 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4939 4940 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4941 if (!Changed) 4942 return PreservedAnalyses::all(); 4943 4944 PreservedAnalyses PA; 4945 PA.preserveSet<CFGAnalyses>(); 4946 PA.preserve<AAManager>(); 4947 PA.preserve<GlobalsAA>(); 4948 return PA; 4949 } 4950 4951 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4952 TargetTransformInfo *TTI_, 4953 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4954 LoopInfo *LI_, DominatorTree *DT_, 4955 AssumptionCache *AC_, DemandedBits *DB_, 4956 OptimizationRemarkEmitter *ORE_) { 4957 SE = SE_; 4958 TTI = TTI_; 4959 TLI = TLI_; 4960 AA = AA_; 4961 LI = LI_; 4962 DT = DT_; 4963 AC = AC_; 4964 DB = DB_; 4965 DL = &F.getParent()->getDataLayout(); 4966 4967 Stores.clear(); 4968 GEPs.clear(); 4969 bool Changed = false; 4970 4971 // If the target claims to have no vector registers don't attempt 4972 // vectorization. 4973 if (!TTI->getNumberOfRegisters(true)) 4974 return false; 4975 4976 // Don't vectorize when the attribute NoImplicitFloat is used. 4977 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4978 return false; 4979 4980 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4981 4982 // Use the bottom up slp vectorizer to construct chains that start with 4983 // store instructions. 4984 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4985 4986 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4987 // delete instructions. 4988 4989 // Scan the blocks in the function in post order. 4990 for (auto BB : post_order(&F.getEntryBlock())) { 4991 collectSeedInstructions(BB); 4992 4993 // Vectorize trees that end at stores. 4994 if (!Stores.empty()) { 4995 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4996 << " underlying objects.\n"); 4997 Changed |= vectorizeStoreChains(R); 4998 } 4999 5000 // Vectorize trees that end at reductions. 5001 Changed |= vectorizeChainsInBlock(BB, R); 5002 5003 // Vectorize the index computations of getelementptr instructions. This 5004 // is primarily intended to catch gather-like idioms ending at 5005 // non-consecutive loads. 5006 if (!GEPs.empty()) { 5007 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5008 << " underlying objects.\n"); 5009 Changed |= vectorizeGEPIndices(BB, R); 5010 } 5011 } 5012 5013 if (Changed) { 5014 R.optimizeGatherSequence(); 5015 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5016 LLVM_DEBUG(verifyFunction(F)); 5017 } 5018 return Changed; 5019 } 5020 5021 /// Check that the Values in the slice in VL array are still existent in 5022 /// the WeakTrackingVH array. 5023 /// Vectorization of part of the VL array may cause later values in the VL array 5024 /// to become invalid. We track when this has happened in the WeakTrackingVH 5025 /// array. 5026 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 5027 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 5028 unsigned SliceSize) { 5029 VL = VL.slice(SliceBegin, SliceSize); 5030 VH = VH.slice(SliceBegin, SliceSize); 5031 return !std::equal(VL.begin(), VL.end(), VH.begin()); 5032 } 5033 5034 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5035 unsigned VecRegSize) { 5036 const unsigned ChainLen = Chain.size(); 5037 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5038 << "\n"); 5039 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5040 const unsigned VF = VecRegSize / Sz; 5041 5042 if (!isPowerOf2_32(Sz) || VF < 2) 5043 return false; 5044 5045 // Keep track of values that were deleted by vectorizing in the loop below. 5046 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 5047 5048 bool Changed = false; 5049 // Look for profitable vectorizable trees at all offsets, starting at zero. 5050 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5051 5052 // Check that a previous iteration of this loop did not delete the Value. 5053 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 5054 continue; 5055 5056 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5057 << "\n"); 5058 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5059 5060 R.buildTree(Operands); 5061 if (R.isTreeTinyAndNotFullyVectorizable()) 5062 continue; 5063 5064 R.computeMinimumValueSizes(); 5065 5066 int Cost = R.getTreeCost(); 5067 5068 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5069 << "\n"); 5070 if (Cost < -SLPCostThreshold) { 5071 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5072 5073 using namespace ore; 5074 5075 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5076 cast<StoreInst>(Chain[i])) 5077 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5078 << " and with tree size " 5079 << NV("TreeSize", R.getTreeSize())); 5080 5081 R.vectorizeTree(); 5082 5083 // Move to the next bundle. 5084 i += VF - 1; 5085 Changed = true; 5086 } 5087 } 5088 5089 return Changed; 5090 } 5091 5092 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5093 BoUpSLP &R) { 5094 SetVector<StoreInst *> Heads; 5095 SmallDenseSet<StoreInst *> Tails; 5096 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5097 5098 // We may run into multiple chains that merge into a single chain. We mark the 5099 // stores that we vectorized so that we don't visit the same store twice. 5100 BoUpSLP::ValueSet VectorizedStores; 5101 bool Changed = false; 5102 5103 auto &&FindConsecutiveAccess = 5104 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5105 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5106 return false; 5107 5108 Tails.insert(Stores[Idx]); 5109 Heads.insert(Stores[K]); 5110 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5111 return true; 5112 }; 5113 5114 // Do a quadratic search on all of the given stores in reverse order and find 5115 // all of the pairs of stores that follow each other. 5116 int E = Stores.size(); 5117 for (int Idx = E - 1; Idx >= 0; --Idx) { 5118 // If a store has multiple consecutive store candidates, search according 5119 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5120 // This is because usually pairing with immediate succeeding or preceding 5121 // candidate create the best chance to find slp vectorization opportunity. 5122 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5123 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5124 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5125 break; 5126 } 5127 5128 // For stores that start but don't end a link in the chain: 5129 for (auto *SI : llvm::reverse(Heads)) { 5130 if (Tails.count(SI)) 5131 continue; 5132 5133 // We found a store instr that starts a chain. Now follow the chain and try 5134 // to vectorize it. 5135 BoUpSLP::ValueList Operands; 5136 StoreInst *I = SI; 5137 // Collect the chain into a list. 5138 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5139 Operands.push_back(I); 5140 // Move to the next value in the chain. 5141 I = ConsecutiveChain[I]; 5142 } 5143 5144 // FIXME: Is division-by-2 the correct step? Should we assert that the 5145 // register size is a power-of-2? 5146 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5147 Size /= 2) { 5148 if (vectorizeStoreChain(Operands, R, Size)) { 5149 // Mark the vectorized stores so that we don't vectorize them again. 5150 VectorizedStores.insert(Operands.begin(), Operands.end()); 5151 Changed = true; 5152 break; 5153 } 5154 } 5155 } 5156 5157 return Changed; 5158 } 5159 5160 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5161 // Initialize the collections. We will make a single pass over the block. 5162 Stores.clear(); 5163 GEPs.clear(); 5164 5165 // Visit the store and getelementptr instructions in BB and organize them in 5166 // Stores and GEPs according to the underlying objects of their pointer 5167 // operands. 5168 for (Instruction &I : *BB) { 5169 // Ignore store instructions that are volatile or have a pointer operand 5170 // that doesn't point to a scalar type. 5171 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5172 if (!SI->isSimple()) 5173 continue; 5174 if (!isValidElementType(SI->getValueOperand()->getType())) 5175 continue; 5176 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5177 } 5178 5179 // Ignore getelementptr instructions that have more than one index, a 5180 // constant index, or a pointer operand that doesn't point to a scalar 5181 // type. 5182 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5183 auto Idx = GEP->idx_begin()->get(); 5184 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5185 continue; 5186 if (!isValidElementType(Idx->getType())) 5187 continue; 5188 if (GEP->getType()->isVectorTy()) 5189 continue; 5190 GEPs[GEP->getPointerOperand()].push_back(GEP); 5191 } 5192 } 5193 } 5194 5195 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5196 if (!A || !B) 5197 return false; 5198 Value *VL[] = { A, B }; 5199 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5200 } 5201 5202 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5203 int UserCost, bool AllowReorder) { 5204 if (VL.size() < 2) 5205 return false; 5206 5207 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5208 << VL.size() << ".\n"); 5209 5210 // Check that all of the parts are scalar instructions of the same type, 5211 // we permit an alternate opcode via InstructionsState. 5212 InstructionsState S = getSameOpcode(VL); 5213 if (!S.getOpcode()) 5214 return false; 5215 5216 Instruction *I0 = cast<Instruction>(S.OpValue); 5217 unsigned Sz = R.getVectorElementSize(I0); 5218 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5219 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5220 if (MaxVF < 2) { 5221 R.getORE()->emit([&]() { 5222 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5223 << "Cannot SLP vectorize list: vectorization factor " 5224 << "less than 2 is not supported"; 5225 }); 5226 return false; 5227 } 5228 5229 for (Value *V : VL) { 5230 Type *Ty = V->getType(); 5231 if (!isValidElementType(Ty)) { 5232 // NOTE: the following will give user internal llvm type name, which may 5233 // not be useful. 5234 R.getORE()->emit([&]() { 5235 std::string type_str; 5236 llvm::raw_string_ostream rso(type_str); 5237 Ty->print(rso); 5238 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5239 << "Cannot SLP vectorize list: type " 5240 << rso.str() + " is unsupported by vectorizer"; 5241 }); 5242 return false; 5243 } 5244 } 5245 5246 bool Changed = false; 5247 bool CandidateFound = false; 5248 int MinCost = SLPCostThreshold; 5249 5250 // Keep track of values that were deleted by vectorizing in the loop below. 5251 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 5252 5253 unsigned NextInst = 0, MaxInst = VL.size(); 5254 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 5255 VF /= 2) { 5256 // No actual vectorization should happen, if number of parts is the same as 5257 // provided vectorization factor (i.e. the scalar type is used for vector 5258 // code during codegen). 5259 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5260 if (TTI->getNumberOfParts(VecTy) == VF) 5261 continue; 5262 for (unsigned I = NextInst; I < MaxInst; ++I) { 5263 unsigned OpsWidth = 0; 5264 5265 if (I + VF > MaxInst) 5266 OpsWidth = MaxInst - I; 5267 else 5268 OpsWidth = VF; 5269 5270 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5271 break; 5272 5273 // Check that a previous iteration of this loop did not delete the Value. 5274 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 5275 continue; 5276 5277 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5278 << "\n"); 5279 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5280 5281 R.buildTree(Ops); 5282 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5283 // TODO: check if we can allow reordering for more cases. 5284 if (AllowReorder && Order) { 5285 // TODO: reorder tree nodes without tree rebuilding. 5286 // Conceptually, there is nothing actually preventing us from trying to 5287 // reorder a larger list. In fact, we do exactly this when vectorizing 5288 // reductions. However, at this point, we only expect to get here when 5289 // there are exactly two operations. 5290 assert(Ops.size() == 2); 5291 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5292 R.buildTree(ReorderedOps, None); 5293 } 5294 if (R.isTreeTinyAndNotFullyVectorizable()) 5295 continue; 5296 5297 R.computeMinimumValueSizes(); 5298 int Cost = R.getTreeCost() - UserCost; 5299 CandidateFound = true; 5300 MinCost = std::min(MinCost, Cost); 5301 5302 if (Cost < -SLPCostThreshold) { 5303 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5304 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5305 cast<Instruction>(Ops[0])) 5306 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5307 << " and with tree size " 5308 << ore::NV("TreeSize", R.getTreeSize())); 5309 5310 R.vectorizeTree(); 5311 // Move to the next bundle. 5312 I += VF - 1; 5313 NextInst = I + 1; 5314 Changed = true; 5315 } 5316 } 5317 } 5318 5319 if (!Changed && CandidateFound) { 5320 R.getORE()->emit([&]() { 5321 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5322 << "List vectorization was possible but not beneficial with cost " 5323 << ore::NV("Cost", MinCost) << " >= " 5324 << ore::NV("Treshold", -SLPCostThreshold); 5325 }); 5326 } else if (!Changed) { 5327 R.getORE()->emit([&]() { 5328 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5329 << "Cannot SLP vectorize list: vectorization was impossible" 5330 << " with available vectorization factors"; 5331 }); 5332 } 5333 return Changed; 5334 } 5335 5336 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5337 if (!I) 5338 return false; 5339 5340 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5341 return false; 5342 5343 Value *P = I->getParent(); 5344 5345 // Vectorize in current basic block only. 5346 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5347 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5348 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5349 return false; 5350 5351 // Try to vectorize V. 5352 if (tryToVectorizePair(Op0, Op1, R)) 5353 return true; 5354 5355 auto *A = dyn_cast<BinaryOperator>(Op0); 5356 auto *B = dyn_cast<BinaryOperator>(Op1); 5357 // Try to skip B. 5358 if (B && B->hasOneUse()) { 5359 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5360 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5361 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5362 return true; 5363 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5364 return true; 5365 } 5366 5367 // Try to skip A. 5368 if (A && A->hasOneUse()) { 5369 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5370 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5371 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5372 return true; 5373 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5374 return true; 5375 } 5376 return false; 5377 } 5378 5379 /// Generate a shuffle mask to be used in a reduction tree. 5380 /// 5381 /// \param VecLen The length of the vector to be reduced. 5382 /// \param NumEltsToRdx The number of elements that should be reduced in the 5383 /// vector. 5384 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5385 /// reduction. A pairwise reduction will generate a mask of 5386 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5387 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5388 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5389 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5390 bool IsPairwise, bool IsLeft, 5391 IRBuilder<> &Builder) { 5392 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5393 5394 SmallVector<Constant *, 32> ShuffleMask( 5395 VecLen, UndefValue::get(Builder.getInt32Ty())); 5396 5397 if (IsPairwise) 5398 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5399 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5400 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5401 else 5402 // Move the upper half of the vector to the lower half. 5403 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5404 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5405 5406 return ConstantVector::get(ShuffleMask); 5407 } 5408 5409 namespace { 5410 5411 /// Model horizontal reductions. 5412 /// 5413 /// A horizontal reduction is a tree of reduction operations (currently add and 5414 /// fadd) that has operations that can be put into a vector as its leaf. 5415 /// For example, this tree: 5416 /// 5417 /// mul mul mul mul 5418 /// \ / \ / 5419 /// + + 5420 /// \ / 5421 /// + 5422 /// This tree has "mul" as its reduced values and "+" as its reduction 5423 /// operations. A reduction might be feeding into a store or a binary operation 5424 /// feeding a phi. 5425 /// ... 5426 /// \ / 5427 /// + 5428 /// | 5429 /// phi += 5430 /// 5431 /// Or: 5432 /// ... 5433 /// \ / 5434 /// + 5435 /// | 5436 /// *p = 5437 /// 5438 class HorizontalReduction { 5439 using ReductionOpsType = SmallVector<Value *, 16>; 5440 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5441 ReductionOpsListType ReductionOps; 5442 SmallVector<Value *, 32> ReducedVals; 5443 // Use map vector to make stable output. 5444 MapVector<Instruction *, Value *> ExtraArgs; 5445 5446 /// Kind of the reduction data. 5447 enum ReductionKind { 5448 RK_None, /// Not a reduction. 5449 RK_Arithmetic, /// Binary reduction data. 5450 RK_Min, /// Minimum reduction data. 5451 RK_UMin, /// Unsigned minimum reduction data. 5452 RK_Max, /// Maximum reduction data. 5453 RK_UMax, /// Unsigned maximum reduction data. 5454 }; 5455 5456 /// Contains info about operation, like its opcode, left and right operands. 5457 class OperationData { 5458 /// Opcode of the instruction. 5459 unsigned Opcode = 0; 5460 5461 /// Left operand of the reduction operation. 5462 Value *LHS = nullptr; 5463 5464 /// Right operand of the reduction operation. 5465 Value *RHS = nullptr; 5466 5467 /// Kind of the reduction operation. 5468 ReductionKind Kind = RK_None; 5469 5470 /// True if float point min/max reduction has no NaNs. 5471 bool NoNaN = false; 5472 5473 /// Checks if the reduction operation can be vectorized. 5474 bool isVectorizable() const { 5475 return LHS && RHS && 5476 // We currently only support add/mul/logical && min/max reductions. 5477 ((Kind == RK_Arithmetic && 5478 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5479 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5480 Opcode == Instruction::And || Opcode == Instruction::Or || 5481 Opcode == Instruction::Xor)) || 5482 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5483 (Kind == RK_Min || Kind == RK_Max)) || 5484 (Opcode == Instruction::ICmp && 5485 (Kind == RK_UMin || Kind == RK_UMax))); 5486 } 5487 5488 /// Creates reduction operation with the current opcode. 5489 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5490 assert(isVectorizable() && 5491 "Expected add|fadd or min/max reduction operation."); 5492 Value *Cmp; 5493 switch (Kind) { 5494 case RK_Arithmetic: 5495 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5496 Name); 5497 case RK_Min: 5498 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5499 : Builder.CreateFCmpOLT(LHS, RHS); 5500 break; 5501 case RK_Max: 5502 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5503 : Builder.CreateFCmpOGT(LHS, RHS); 5504 break; 5505 case RK_UMin: 5506 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5507 Cmp = Builder.CreateICmpULT(LHS, RHS); 5508 break; 5509 case RK_UMax: 5510 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5511 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5512 break; 5513 case RK_None: 5514 llvm_unreachable("Unknown reduction operation."); 5515 } 5516 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5517 } 5518 5519 public: 5520 explicit OperationData() = default; 5521 5522 /// Construction for reduced values. They are identified by opcode only and 5523 /// don't have associated LHS/RHS values. 5524 explicit OperationData(Value *V) { 5525 if (auto *I = dyn_cast<Instruction>(V)) 5526 Opcode = I->getOpcode(); 5527 } 5528 5529 /// Constructor for reduction operations with opcode and its left and 5530 /// right operands. 5531 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5532 bool NoNaN = false) 5533 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5534 assert(Kind != RK_None && "One of the reduction operations is expected."); 5535 } 5536 5537 explicit operator bool() const { return Opcode; } 5538 5539 /// Get the index of the first operand. 5540 unsigned getFirstOperandIndex() const { 5541 assert(!!*this && "The opcode is not set."); 5542 switch (Kind) { 5543 case RK_Min: 5544 case RK_UMin: 5545 case RK_Max: 5546 case RK_UMax: 5547 return 1; 5548 case RK_Arithmetic: 5549 case RK_None: 5550 break; 5551 } 5552 return 0; 5553 } 5554 5555 /// Total number of operands in the reduction operation. 5556 unsigned getNumberOfOperands() const { 5557 assert(Kind != RK_None && !!*this && LHS && RHS && 5558 "Expected reduction operation."); 5559 switch (Kind) { 5560 case RK_Arithmetic: 5561 return 2; 5562 case RK_Min: 5563 case RK_UMin: 5564 case RK_Max: 5565 case RK_UMax: 5566 return 3; 5567 case RK_None: 5568 break; 5569 } 5570 llvm_unreachable("Reduction kind is not set"); 5571 } 5572 5573 /// Checks if the operation has the same parent as \p P. 5574 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5575 assert(Kind != RK_None && !!*this && LHS && RHS && 5576 "Expected reduction operation."); 5577 if (!IsRedOp) 5578 return I->getParent() == P; 5579 switch (Kind) { 5580 case RK_Arithmetic: 5581 // Arithmetic reduction operation must be used once only. 5582 return I->getParent() == P; 5583 case RK_Min: 5584 case RK_UMin: 5585 case RK_Max: 5586 case RK_UMax: { 5587 // SelectInst must be used twice while the condition op must have single 5588 // use only. 5589 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5590 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5591 } 5592 case RK_None: 5593 break; 5594 } 5595 llvm_unreachable("Reduction kind is not set"); 5596 } 5597 /// Expected number of uses for reduction operations/reduced values. 5598 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5599 assert(Kind != RK_None && !!*this && LHS && RHS && 5600 "Expected reduction operation."); 5601 switch (Kind) { 5602 case RK_Arithmetic: 5603 return I->hasOneUse(); 5604 case RK_Min: 5605 case RK_UMin: 5606 case RK_Max: 5607 case RK_UMax: 5608 return I->hasNUses(2) && 5609 (!IsReductionOp || 5610 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5611 case RK_None: 5612 break; 5613 } 5614 llvm_unreachable("Reduction kind is not set"); 5615 } 5616 5617 /// Initializes the list of reduction operations. 5618 void initReductionOps(ReductionOpsListType &ReductionOps) { 5619 assert(Kind != RK_None && !!*this && LHS && RHS && 5620 "Expected reduction operation."); 5621 switch (Kind) { 5622 case RK_Arithmetic: 5623 ReductionOps.assign(1, ReductionOpsType()); 5624 break; 5625 case RK_Min: 5626 case RK_UMin: 5627 case RK_Max: 5628 case RK_UMax: 5629 ReductionOps.assign(2, ReductionOpsType()); 5630 break; 5631 case RK_None: 5632 llvm_unreachable("Reduction kind is not set"); 5633 } 5634 } 5635 /// Add all reduction operations for the reduction instruction \p I. 5636 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5637 assert(Kind != RK_None && !!*this && LHS && RHS && 5638 "Expected reduction operation."); 5639 switch (Kind) { 5640 case RK_Arithmetic: 5641 ReductionOps[0].emplace_back(I); 5642 break; 5643 case RK_Min: 5644 case RK_UMin: 5645 case RK_Max: 5646 case RK_UMax: 5647 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5648 ReductionOps[1].emplace_back(I); 5649 break; 5650 case RK_None: 5651 llvm_unreachable("Reduction kind is not set"); 5652 } 5653 } 5654 5655 /// Checks if instruction is associative and can be vectorized. 5656 bool isAssociative(Instruction *I) const { 5657 assert(Kind != RK_None && *this && LHS && RHS && 5658 "Expected reduction operation."); 5659 switch (Kind) { 5660 case RK_Arithmetic: 5661 return I->isAssociative(); 5662 case RK_Min: 5663 case RK_Max: 5664 return Opcode == Instruction::ICmp || 5665 cast<Instruction>(I->getOperand(0))->isFast(); 5666 case RK_UMin: 5667 case RK_UMax: 5668 assert(Opcode == Instruction::ICmp && 5669 "Only integer compare operation is expected."); 5670 return true; 5671 case RK_None: 5672 break; 5673 } 5674 llvm_unreachable("Reduction kind is not set"); 5675 } 5676 5677 /// Checks if the reduction operation can be vectorized. 5678 bool isVectorizable(Instruction *I) const { 5679 return isVectorizable() && isAssociative(I); 5680 } 5681 5682 /// Checks if two operation data are both a reduction op or both a reduced 5683 /// value. 5684 bool operator==(const OperationData &OD) { 5685 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5686 "One of the comparing operations is incorrect."); 5687 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5688 } 5689 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5690 void clear() { 5691 Opcode = 0; 5692 LHS = nullptr; 5693 RHS = nullptr; 5694 Kind = RK_None; 5695 NoNaN = false; 5696 } 5697 5698 /// Get the opcode of the reduction operation. 5699 unsigned getOpcode() const { 5700 assert(isVectorizable() && "Expected vectorizable operation."); 5701 return Opcode; 5702 } 5703 5704 /// Get kind of reduction data. 5705 ReductionKind getKind() const { return Kind; } 5706 Value *getLHS() const { return LHS; } 5707 Value *getRHS() const { return RHS; } 5708 Type *getConditionType() const { 5709 switch (Kind) { 5710 case RK_Arithmetic: 5711 return nullptr; 5712 case RK_Min: 5713 case RK_Max: 5714 case RK_UMin: 5715 case RK_UMax: 5716 return CmpInst::makeCmpResultType(LHS->getType()); 5717 case RK_None: 5718 break; 5719 } 5720 llvm_unreachable("Reduction kind is not set"); 5721 } 5722 5723 /// Creates reduction operation with the current opcode with the IR flags 5724 /// from \p ReductionOps. 5725 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5726 const ReductionOpsListType &ReductionOps) const { 5727 assert(isVectorizable() && 5728 "Expected add|fadd or min/max reduction operation."); 5729 auto *Op = createOp(Builder, Name); 5730 switch (Kind) { 5731 case RK_Arithmetic: 5732 propagateIRFlags(Op, ReductionOps[0]); 5733 return Op; 5734 case RK_Min: 5735 case RK_Max: 5736 case RK_UMin: 5737 case RK_UMax: 5738 if (auto *SI = dyn_cast<SelectInst>(Op)) 5739 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5740 propagateIRFlags(Op, ReductionOps[1]); 5741 return Op; 5742 case RK_None: 5743 break; 5744 } 5745 llvm_unreachable("Unknown reduction operation."); 5746 } 5747 /// Creates reduction operation with the current opcode with the IR flags 5748 /// from \p I. 5749 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5750 Instruction *I) const { 5751 assert(isVectorizable() && 5752 "Expected add|fadd or min/max reduction operation."); 5753 auto *Op = createOp(Builder, Name); 5754 switch (Kind) { 5755 case RK_Arithmetic: 5756 propagateIRFlags(Op, I); 5757 return Op; 5758 case RK_Min: 5759 case RK_Max: 5760 case RK_UMin: 5761 case RK_UMax: 5762 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5763 propagateIRFlags(SI->getCondition(), 5764 cast<SelectInst>(I)->getCondition()); 5765 } 5766 propagateIRFlags(Op, I); 5767 return Op; 5768 case RK_None: 5769 break; 5770 } 5771 llvm_unreachable("Unknown reduction operation."); 5772 } 5773 5774 TargetTransformInfo::ReductionFlags getFlags() const { 5775 TargetTransformInfo::ReductionFlags Flags; 5776 Flags.NoNaN = NoNaN; 5777 switch (Kind) { 5778 case RK_Arithmetic: 5779 break; 5780 case RK_Min: 5781 Flags.IsSigned = Opcode == Instruction::ICmp; 5782 Flags.IsMaxOp = false; 5783 break; 5784 case RK_Max: 5785 Flags.IsSigned = Opcode == Instruction::ICmp; 5786 Flags.IsMaxOp = true; 5787 break; 5788 case RK_UMin: 5789 Flags.IsSigned = false; 5790 Flags.IsMaxOp = false; 5791 break; 5792 case RK_UMax: 5793 Flags.IsSigned = false; 5794 Flags.IsMaxOp = true; 5795 break; 5796 case RK_None: 5797 llvm_unreachable("Reduction kind is not set"); 5798 } 5799 return Flags; 5800 } 5801 }; 5802 5803 WeakTrackingVH ReductionRoot; 5804 5805 /// The operation data of the reduction operation. 5806 OperationData ReductionData; 5807 5808 /// The operation data of the values we perform a reduction on. 5809 OperationData ReducedValueData; 5810 5811 /// Should we model this reduction as a pairwise reduction tree or a tree that 5812 /// splits the vector in halves and adds those halves. 5813 bool IsPairwiseReduction = false; 5814 5815 /// Checks if the ParentStackElem.first should be marked as a reduction 5816 /// operation with an extra argument or as extra argument itself. 5817 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5818 Value *ExtraArg) { 5819 if (ExtraArgs.count(ParentStackElem.first)) { 5820 ExtraArgs[ParentStackElem.first] = nullptr; 5821 // We ran into something like: 5822 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5823 // The whole ParentStackElem.first should be considered as an extra value 5824 // in this case. 5825 // Do not perform analysis of remaining operands of ParentStackElem.first 5826 // instruction, this whole instruction is an extra argument. 5827 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5828 } else { 5829 // We ran into something like: 5830 // ParentStackElem.first += ... + ExtraArg + ... 5831 ExtraArgs[ParentStackElem.first] = ExtraArg; 5832 } 5833 } 5834 5835 static OperationData getOperationData(Value *V) { 5836 if (!V) 5837 return OperationData(); 5838 5839 Value *LHS; 5840 Value *RHS; 5841 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5842 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5843 RK_Arithmetic); 5844 } 5845 if (auto *Select = dyn_cast<SelectInst>(V)) { 5846 // Look for a min/max pattern. 5847 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5848 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5849 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5850 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5851 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5852 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5853 return OperationData( 5854 Instruction::FCmp, LHS, RHS, RK_Min, 5855 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5856 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5857 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5858 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5859 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5860 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5861 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5862 return OperationData( 5863 Instruction::FCmp, LHS, RHS, RK_Max, 5864 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5865 } else { 5866 // Try harder: look for min/max pattern based on instructions producing 5867 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5868 // During the intermediate stages of SLP, it's very common to have 5869 // pattern like this (since optimizeGatherSequence is run only once 5870 // at the end): 5871 // %1 = extractelement <2 x i32> %a, i32 0 5872 // %2 = extractelement <2 x i32> %a, i32 1 5873 // %cond = icmp sgt i32 %1, %2 5874 // %3 = extractelement <2 x i32> %a, i32 0 5875 // %4 = extractelement <2 x i32> %a, i32 1 5876 // %select = select i1 %cond, i32 %3, i32 %4 5877 CmpInst::Predicate Pred; 5878 Instruction *L1; 5879 Instruction *L2; 5880 5881 LHS = Select->getTrueValue(); 5882 RHS = Select->getFalseValue(); 5883 Value *Cond = Select->getCondition(); 5884 5885 // TODO: Support inverse predicates. 5886 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5887 if (!isa<ExtractElementInst>(RHS) || 5888 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5889 return OperationData(V); 5890 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5891 if (!isa<ExtractElementInst>(LHS) || 5892 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5893 return OperationData(V); 5894 } else { 5895 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5896 return OperationData(V); 5897 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5898 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5899 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5900 return OperationData(V); 5901 } 5902 switch (Pred) { 5903 default: 5904 return OperationData(V); 5905 5906 case CmpInst::ICMP_ULT: 5907 case CmpInst::ICMP_ULE: 5908 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5909 5910 case CmpInst::ICMP_SLT: 5911 case CmpInst::ICMP_SLE: 5912 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5913 5914 case CmpInst::FCMP_OLT: 5915 case CmpInst::FCMP_OLE: 5916 case CmpInst::FCMP_ULT: 5917 case CmpInst::FCMP_ULE: 5918 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5919 cast<Instruction>(Cond)->hasNoNaNs()); 5920 5921 case CmpInst::ICMP_UGT: 5922 case CmpInst::ICMP_UGE: 5923 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5924 5925 case CmpInst::ICMP_SGT: 5926 case CmpInst::ICMP_SGE: 5927 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5928 5929 case CmpInst::FCMP_OGT: 5930 case CmpInst::FCMP_OGE: 5931 case CmpInst::FCMP_UGT: 5932 case CmpInst::FCMP_UGE: 5933 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5934 cast<Instruction>(Cond)->hasNoNaNs()); 5935 } 5936 } 5937 } 5938 return OperationData(V); 5939 } 5940 5941 public: 5942 HorizontalReduction() = default; 5943 5944 /// Try to find a reduction tree. 5945 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5946 assert((!Phi || is_contained(Phi->operands(), B)) && 5947 "Thi phi needs to use the binary operator"); 5948 5949 ReductionData = getOperationData(B); 5950 5951 // We could have a initial reductions that is not an add. 5952 // r *= v1 + v2 + v3 + v4 5953 // In such a case start looking for a tree rooted in the first '+'. 5954 if (Phi) { 5955 if (ReductionData.getLHS() == Phi) { 5956 Phi = nullptr; 5957 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5958 ReductionData = getOperationData(B); 5959 } else if (ReductionData.getRHS() == Phi) { 5960 Phi = nullptr; 5961 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5962 ReductionData = getOperationData(B); 5963 } 5964 } 5965 5966 if (!ReductionData.isVectorizable(B)) 5967 return false; 5968 5969 Type *Ty = B->getType(); 5970 if (!isValidElementType(Ty)) 5971 return false; 5972 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 5973 return false; 5974 5975 ReducedValueData.clear(); 5976 ReductionRoot = B; 5977 5978 // Post order traverse the reduction tree starting at B. We only handle true 5979 // trees containing only binary operators. 5980 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5981 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5982 ReductionData.initReductionOps(ReductionOps); 5983 while (!Stack.empty()) { 5984 Instruction *TreeN = Stack.back().first; 5985 unsigned EdgeToVist = Stack.back().second++; 5986 OperationData OpData = getOperationData(TreeN); 5987 bool IsReducedValue = OpData != ReductionData; 5988 5989 // Postorder vist. 5990 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5991 if (IsReducedValue) 5992 ReducedVals.push_back(TreeN); 5993 else { 5994 auto I = ExtraArgs.find(TreeN); 5995 if (I != ExtraArgs.end() && !I->second) { 5996 // Check if TreeN is an extra argument of its parent operation. 5997 if (Stack.size() <= 1) { 5998 // TreeN can't be an extra argument as it is a root reduction 5999 // operation. 6000 return false; 6001 } 6002 // Yes, TreeN is an extra argument, do not add it to a list of 6003 // reduction operations. 6004 // Stack[Stack.size() - 2] always points to the parent operation. 6005 markExtraArg(Stack[Stack.size() - 2], TreeN); 6006 ExtraArgs.erase(TreeN); 6007 } else 6008 ReductionData.addReductionOps(TreeN, ReductionOps); 6009 } 6010 // Retract. 6011 Stack.pop_back(); 6012 continue; 6013 } 6014 6015 // Visit left or right. 6016 Value *NextV = TreeN->getOperand(EdgeToVist); 6017 if (NextV != Phi) { 6018 auto *I = dyn_cast<Instruction>(NextV); 6019 OpData = getOperationData(I); 6020 // Continue analysis if the next operand is a reduction operation or 6021 // (possibly) a reduced value. If the reduced value opcode is not set, 6022 // the first met operation != reduction operation is considered as the 6023 // reduced value class. 6024 if (I && (!ReducedValueData || OpData == ReducedValueData || 6025 OpData == ReductionData)) { 6026 const bool IsReductionOperation = OpData == ReductionData; 6027 // Only handle trees in the current basic block. 6028 if (!ReductionData.hasSameParent(I, B->getParent(), 6029 IsReductionOperation)) { 6030 // I is an extra argument for TreeN (its parent operation). 6031 markExtraArg(Stack.back(), I); 6032 continue; 6033 } 6034 6035 // Each tree node needs to have minimal number of users except for the 6036 // ultimate reduction. 6037 if (!ReductionData.hasRequiredNumberOfUses(I, 6038 OpData == ReductionData) && 6039 I != B) { 6040 // I is an extra argument for TreeN (its parent operation). 6041 markExtraArg(Stack.back(), I); 6042 continue; 6043 } 6044 6045 if (IsReductionOperation) { 6046 // We need to be able to reassociate the reduction operations. 6047 if (!OpData.isAssociative(I)) { 6048 // I is an extra argument for TreeN (its parent operation). 6049 markExtraArg(Stack.back(), I); 6050 continue; 6051 } 6052 } else if (ReducedValueData && 6053 ReducedValueData != OpData) { 6054 // Make sure that the opcodes of the operations that we are going to 6055 // reduce match. 6056 // I is an extra argument for TreeN (its parent operation). 6057 markExtraArg(Stack.back(), I); 6058 continue; 6059 } else if (!ReducedValueData) 6060 ReducedValueData = OpData; 6061 6062 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6063 continue; 6064 } 6065 } 6066 // NextV is an extra argument for TreeN (its parent operation). 6067 markExtraArg(Stack.back(), NextV); 6068 } 6069 return true; 6070 } 6071 6072 /// Attempt to vectorize the tree found by 6073 /// matchAssociativeReduction. 6074 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6075 if (ReducedVals.empty()) 6076 return false; 6077 6078 // If there is a sufficient number of reduction values, reduce 6079 // to a nearby power-of-2. Can safely generate oversized 6080 // vectors and rely on the backend to split them to legal sizes. 6081 unsigned NumReducedVals = ReducedVals.size(); 6082 if (NumReducedVals < 4) 6083 return false; 6084 6085 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6086 6087 Value *VectorizedTree = nullptr; 6088 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6089 FastMathFlags Unsafe; 6090 Unsafe.setFast(); 6091 Builder.setFastMathFlags(Unsafe); 6092 unsigned i = 0; 6093 6094 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6095 // The same extra argument may be used several time, so log each attempt 6096 // to use it. 6097 for (auto &Pair : ExtraArgs) { 6098 assert(Pair.first && "DebugLoc must be set."); 6099 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6100 } 6101 // The reduction root is used as the insertion point for new instructions, 6102 // so set it as externally used to prevent it from being deleted. 6103 ExternallyUsedValues[ReductionRoot]; 6104 SmallVector<Value *, 16> IgnoreList; 6105 for (auto &V : ReductionOps) 6106 IgnoreList.append(V.begin(), V.end()); 6107 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6108 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6109 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6110 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6111 // TODO: Handle orders of size less than number of elements in the vector. 6112 if (Order && Order->size() == VL.size()) { 6113 // TODO: reorder tree nodes without tree rebuilding. 6114 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6115 llvm::transform(*Order, ReorderedOps.begin(), 6116 [VL](const unsigned Idx) { return VL[Idx]; }); 6117 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6118 } 6119 if (V.isTreeTinyAndNotFullyVectorizable()) 6120 break; 6121 6122 V.computeMinimumValueSizes(); 6123 6124 // Estimate cost. 6125 int TreeCost = V.getTreeCost(); 6126 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6127 int Cost = TreeCost + ReductionCost; 6128 if (Cost >= -SLPCostThreshold) { 6129 V.getORE()->emit([&]() { 6130 return OptimizationRemarkMissed( 6131 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6132 << "Vectorizing horizontal reduction is possible" 6133 << "but not beneficial with cost " 6134 << ore::NV("Cost", Cost) << " and threshold " 6135 << ore::NV("Threshold", -SLPCostThreshold); 6136 }); 6137 break; 6138 } 6139 6140 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6141 << Cost << ". (HorRdx)\n"); 6142 V.getORE()->emit([&]() { 6143 return OptimizationRemark( 6144 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6145 << "Vectorized horizontal reduction with cost " 6146 << ore::NV("Cost", Cost) << " and with tree size " 6147 << ore::NV("TreeSize", V.getTreeSize()); 6148 }); 6149 6150 // Vectorize a tree. 6151 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6152 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6153 6154 // Emit a reduction. 6155 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6156 Value *ReducedSubTree = 6157 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6158 if (VectorizedTree) { 6159 Builder.SetCurrentDebugLocation(Loc); 6160 OperationData VectReductionData(ReductionData.getOpcode(), 6161 VectorizedTree, ReducedSubTree, 6162 ReductionData.getKind()); 6163 VectorizedTree = 6164 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6165 } else 6166 VectorizedTree = ReducedSubTree; 6167 i += ReduxWidth; 6168 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6169 } 6170 6171 if (VectorizedTree) { 6172 // Finish the reduction. 6173 for (; i < NumReducedVals; ++i) { 6174 auto *I = cast<Instruction>(ReducedVals[i]); 6175 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6176 OperationData VectReductionData(ReductionData.getOpcode(), 6177 VectorizedTree, I, 6178 ReductionData.getKind()); 6179 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6180 } 6181 for (auto &Pair : ExternallyUsedValues) { 6182 // Add each externally used value to the final reduction. 6183 for (auto *I : Pair.second) { 6184 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6185 OperationData VectReductionData(ReductionData.getOpcode(), 6186 VectorizedTree, Pair.first, 6187 ReductionData.getKind()); 6188 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6189 } 6190 } 6191 // Update users. 6192 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6193 } 6194 return VectorizedTree != nullptr; 6195 } 6196 6197 unsigned numReductionValues() const { 6198 return ReducedVals.size(); 6199 } 6200 6201 private: 6202 /// Calculate the cost of a reduction. 6203 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6204 unsigned ReduxWidth) { 6205 Type *ScalarTy = FirstReducedVal->getType(); 6206 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6207 6208 int PairwiseRdxCost; 6209 int SplittingRdxCost; 6210 switch (ReductionData.getKind()) { 6211 case RK_Arithmetic: 6212 PairwiseRdxCost = 6213 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6214 /*IsPairwiseForm=*/true); 6215 SplittingRdxCost = 6216 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6217 /*IsPairwiseForm=*/false); 6218 break; 6219 case RK_Min: 6220 case RK_Max: 6221 case RK_UMin: 6222 case RK_UMax: { 6223 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6224 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6225 ReductionData.getKind() == RK_UMax; 6226 PairwiseRdxCost = 6227 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6228 /*IsPairwiseForm=*/true, IsUnsigned); 6229 SplittingRdxCost = 6230 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6231 /*IsPairwiseForm=*/false, IsUnsigned); 6232 break; 6233 } 6234 case RK_None: 6235 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6236 } 6237 6238 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6239 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6240 6241 int ScalarReduxCost; 6242 switch (ReductionData.getKind()) { 6243 case RK_Arithmetic: 6244 ScalarReduxCost = 6245 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6246 break; 6247 case RK_Min: 6248 case RK_Max: 6249 case RK_UMin: 6250 case RK_UMax: 6251 ScalarReduxCost = 6252 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6253 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6254 CmpInst::makeCmpResultType(ScalarTy)); 6255 break; 6256 case RK_None: 6257 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6258 } 6259 ScalarReduxCost *= (ReduxWidth - 1); 6260 6261 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6262 << " for reduction that starts with " << *FirstReducedVal 6263 << " (It is a " 6264 << (IsPairwiseReduction ? "pairwise" : "splitting") 6265 << " reduction)\n"); 6266 6267 return VecReduxCost - ScalarReduxCost; 6268 } 6269 6270 /// Emit a horizontal reduction of the vectorized value. 6271 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6272 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6273 assert(VectorizedValue && "Need to have a vectorized tree node"); 6274 assert(isPowerOf2_32(ReduxWidth) && 6275 "We only handle power-of-two reductions for now"); 6276 6277 if (!IsPairwiseReduction) 6278 return createSimpleTargetReduction( 6279 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6280 ReductionData.getFlags(), FastMathFlags::getFast(), 6281 ReductionOps.back()); 6282 6283 Value *TmpVec = VectorizedValue; 6284 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6285 Value *LeftMask = 6286 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6287 Value *RightMask = 6288 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6289 6290 Value *LeftShuf = Builder.CreateShuffleVector( 6291 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6292 Value *RightShuf = Builder.CreateShuffleVector( 6293 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6294 "rdx.shuf.r"); 6295 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6296 RightShuf, ReductionData.getKind()); 6297 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6298 } 6299 6300 // The result is in the first element of the vector. 6301 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6302 } 6303 }; 6304 6305 } // end anonymous namespace 6306 6307 /// Recognize construction of vectors like 6308 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6309 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6310 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6311 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6312 /// starting from the last insertelement instruction. 6313 /// 6314 /// Returns true if it matches 6315 static bool findBuildVector(InsertElementInst *LastInsertElem, 6316 TargetTransformInfo *TTI, 6317 SmallVectorImpl<Value *> &BuildVectorOpds, 6318 int &UserCost) { 6319 UserCost = 0; 6320 Value *V = nullptr; 6321 do { 6322 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6323 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6324 LastInsertElem->getType(), 6325 CI->getZExtValue()); 6326 } 6327 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6328 V = LastInsertElem->getOperand(0); 6329 if (isa<UndefValue>(V)) 6330 break; 6331 LastInsertElem = dyn_cast<InsertElementInst>(V); 6332 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6333 return false; 6334 } while (true); 6335 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6336 return true; 6337 } 6338 6339 /// Like findBuildVector, but looks for construction of aggregate. 6340 /// 6341 /// \return true if it matches. 6342 static bool findBuildAggregate(InsertValueInst *IV, 6343 SmallVectorImpl<Value *> &BuildVectorOpds) { 6344 Value *V; 6345 do { 6346 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6347 V = IV->getAggregateOperand(); 6348 if (isa<UndefValue>(V)) 6349 break; 6350 IV = dyn_cast<InsertValueInst>(V); 6351 if (!IV || !IV->hasOneUse()) 6352 return false; 6353 } while (true); 6354 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6355 return true; 6356 } 6357 6358 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6359 return V->getType() < V2->getType(); 6360 } 6361 6362 /// Try and get a reduction value from a phi node. 6363 /// 6364 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6365 /// if they come from either \p ParentBB or a containing loop latch. 6366 /// 6367 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6368 /// if not possible. 6369 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6370 BasicBlock *ParentBB, LoopInfo *LI) { 6371 // There are situations where the reduction value is not dominated by the 6372 // reduction phi. Vectorizing such cases has been reported to cause 6373 // miscompiles. See PR25787. 6374 auto DominatedReduxValue = [&](Value *R) { 6375 return isa<Instruction>(R) && 6376 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6377 }; 6378 6379 Value *Rdx = nullptr; 6380 6381 // Return the incoming value if it comes from the same BB as the phi node. 6382 if (P->getIncomingBlock(0) == ParentBB) { 6383 Rdx = P->getIncomingValue(0); 6384 } else if (P->getIncomingBlock(1) == ParentBB) { 6385 Rdx = P->getIncomingValue(1); 6386 } 6387 6388 if (Rdx && DominatedReduxValue(Rdx)) 6389 return Rdx; 6390 6391 // Otherwise, check whether we have a loop latch to look at. 6392 Loop *BBL = LI->getLoopFor(ParentBB); 6393 if (!BBL) 6394 return nullptr; 6395 BasicBlock *BBLatch = BBL->getLoopLatch(); 6396 if (!BBLatch) 6397 return nullptr; 6398 6399 // There is a loop latch, return the incoming value if it comes from 6400 // that. This reduction pattern occasionally turns up. 6401 if (P->getIncomingBlock(0) == BBLatch) { 6402 Rdx = P->getIncomingValue(0); 6403 } else if (P->getIncomingBlock(1) == BBLatch) { 6404 Rdx = P->getIncomingValue(1); 6405 } 6406 6407 if (Rdx && DominatedReduxValue(Rdx)) 6408 return Rdx; 6409 6410 return nullptr; 6411 } 6412 6413 /// Attempt to reduce a horizontal reduction. 6414 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6415 /// with reduction operators \a Root (or one of its operands) in a basic block 6416 /// \a BB, then check if it can be done. If horizontal reduction is not found 6417 /// and root instruction is a binary operation, vectorization of the operands is 6418 /// attempted. 6419 /// \returns true if a horizontal reduction was matched and reduced or operands 6420 /// of one of the binary instruction were vectorized. 6421 /// \returns false if a horizontal reduction was not matched (or not possible) 6422 /// or no vectorization of any binary operation feeding \a Root instruction was 6423 /// performed. 6424 static bool tryToVectorizeHorReductionOrInstOperands( 6425 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6426 TargetTransformInfo *TTI, 6427 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6428 if (!ShouldVectorizeHor) 6429 return false; 6430 6431 if (!Root) 6432 return false; 6433 6434 if (Root->getParent() != BB || isa<PHINode>(Root)) 6435 return false; 6436 // Start analysis starting from Root instruction. If horizontal reduction is 6437 // found, try to vectorize it. If it is not a horizontal reduction or 6438 // vectorization is not possible or not effective, and currently analyzed 6439 // instruction is a binary operation, try to vectorize the operands, using 6440 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6441 // the same procedure considering each operand as a possible root of the 6442 // horizontal reduction. 6443 // Interrupt the process if the Root instruction itself was vectorized or all 6444 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6445 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6446 SmallPtrSet<Value *, 8> VisitedInstrs; 6447 bool Res = false; 6448 while (!Stack.empty()) { 6449 Value *V; 6450 unsigned Level; 6451 std::tie(V, Level) = Stack.pop_back_val(); 6452 if (!V) 6453 continue; 6454 auto *Inst = dyn_cast<Instruction>(V); 6455 if (!Inst) 6456 continue; 6457 auto *BI = dyn_cast<BinaryOperator>(Inst); 6458 auto *SI = dyn_cast<SelectInst>(Inst); 6459 if (BI || SI) { 6460 HorizontalReduction HorRdx; 6461 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6462 if (HorRdx.tryToReduce(R, TTI)) { 6463 Res = true; 6464 // Set P to nullptr to avoid re-analysis of phi node in 6465 // matchAssociativeReduction function unless this is the root node. 6466 P = nullptr; 6467 continue; 6468 } 6469 } 6470 if (P && BI) { 6471 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6472 if (Inst == P) 6473 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6474 if (!Inst) { 6475 // Set P to nullptr to avoid re-analysis of phi node in 6476 // matchAssociativeReduction function unless this is the root node. 6477 P = nullptr; 6478 continue; 6479 } 6480 } 6481 } 6482 // Set P to nullptr to avoid re-analysis of phi node in 6483 // matchAssociativeReduction function unless this is the root node. 6484 P = nullptr; 6485 if (Vectorize(Inst, R)) { 6486 Res = true; 6487 continue; 6488 } 6489 6490 // Try to vectorize operands. 6491 // Continue analysis for the instruction from the same basic block only to 6492 // save compile time. 6493 if (++Level < RecursionMaxDepth) 6494 for (auto *Op : Inst->operand_values()) 6495 if (VisitedInstrs.insert(Op).second) 6496 if (auto *I = dyn_cast<Instruction>(Op)) 6497 if (!isa<PHINode>(I) && I->getParent() == BB) 6498 Stack.emplace_back(Op, Level); 6499 } 6500 return Res; 6501 } 6502 6503 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6504 BasicBlock *BB, BoUpSLP &R, 6505 TargetTransformInfo *TTI) { 6506 if (!V) 6507 return false; 6508 auto *I = dyn_cast<Instruction>(V); 6509 if (!I) 6510 return false; 6511 6512 if (!isa<BinaryOperator>(I)) 6513 P = nullptr; 6514 // Try to match and vectorize a horizontal reduction. 6515 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6516 return tryToVectorize(I, R); 6517 }; 6518 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6519 ExtraVectorization); 6520 } 6521 6522 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6523 BasicBlock *BB, BoUpSLP &R) { 6524 const DataLayout &DL = BB->getModule()->getDataLayout(); 6525 if (!R.canMapToVector(IVI->getType(), DL)) 6526 return false; 6527 6528 SmallVector<Value *, 16> BuildVectorOpds; 6529 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6530 return false; 6531 6532 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6533 // Aggregate value is unlikely to be processed in vector register, we need to 6534 // extract scalars into scalar registers, so NeedExtraction is set true. 6535 return tryToVectorizeList(BuildVectorOpds, R); 6536 } 6537 6538 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6539 BasicBlock *BB, BoUpSLP &R) { 6540 int UserCost; 6541 SmallVector<Value *, 16> BuildVectorOpds; 6542 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6543 (llvm::all_of(BuildVectorOpds, 6544 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6545 isShuffle(BuildVectorOpds))) 6546 return false; 6547 6548 // Vectorize starting with the build vector operands ignoring the BuildVector 6549 // instructions for the purpose of scheduling and user extraction. 6550 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6551 } 6552 6553 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6554 BoUpSLP &R) { 6555 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6556 return true; 6557 6558 bool OpsChanged = false; 6559 for (int Idx = 0; Idx < 2; ++Idx) { 6560 OpsChanged |= 6561 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6562 } 6563 return OpsChanged; 6564 } 6565 6566 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6567 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6568 bool OpsChanged = false; 6569 for (auto &VH : reverse(Instructions)) { 6570 auto *I = dyn_cast_or_null<Instruction>(VH); 6571 if (!I) 6572 continue; 6573 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6574 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6575 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6576 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6577 else if (auto *CI = dyn_cast<CmpInst>(I)) 6578 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6579 } 6580 Instructions.clear(); 6581 return OpsChanged; 6582 } 6583 6584 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6585 bool Changed = false; 6586 SmallVector<Value *, 4> Incoming; 6587 SmallPtrSet<Value *, 16> VisitedInstrs; 6588 6589 bool HaveVectorizedPhiNodes = true; 6590 while (HaveVectorizedPhiNodes) { 6591 HaveVectorizedPhiNodes = false; 6592 6593 // Collect the incoming values from the PHIs. 6594 Incoming.clear(); 6595 for (Instruction &I : *BB) { 6596 PHINode *P = dyn_cast<PHINode>(&I); 6597 if (!P) 6598 break; 6599 6600 if (!VisitedInstrs.count(P)) 6601 Incoming.push_back(P); 6602 } 6603 6604 // Sort by type. 6605 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6606 6607 // Try to vectorize elements base on their type. 6608 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6609 E = Incoming.end(); 6610 IncIt != E;) { 6611 6612 // Look for the next elements with the same type. 6613 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6614 while (SameTypeIt != E && 6615 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6616 VisitedInstrs.insert(*SameTypeIt); 6617 ++SameTypeIt; 6618 } 6619 6620 // Try to vectorize them. 6621 unsigned NumElts = (SameTypeIt - IncIt); 6622 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6623 << NumElts << ")\n"); 6624 // The order in which the phi nodes appear in the program does not matter. 6625 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6626 // is done when there are exactly two elements since tryToVectorizeList 6627 // asserts that there are only two values when AllowReorder is true. 6628 bool AllowReorder = NumElts == 2; 6629 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6630 /*UserCost=*/0, AllowReorder)) { 6631 // Success start over because instructions might have been changed. 6632 HaveVectorizedPhiNodes = true; 6633 Changed = true; 6634 break; 6635 } 6636 6637 // Start over at the next instruction of a different type (or the end). 6638 IncIt = SameTypeIt; 6639 } 6640 } 6641 6642 VisitedInstrs.clear(); 6643 6644 SmallVector<WeakVH, 8> PostProcessInstructions; 6645 SmallDenseSet<Instruction *, 4> KeyNodes; 6646 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6647 // We may go through BB multiple times so skip the one we have checked. 6648 if (!VisitedInstrs.insert(&*it).second) { 6649 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6650 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6651 // We would like to start over since some instructions are deleted 6652 // and the iterator may become invalid value. 6653 Changed = true; 6654 it = BB->begin(); 6655 e = BB->end(); 6656 } 6657 continue; 6658 } 6659 6660 if (isa<DbgInfoIntrinsic>(it)) 6661 continue; 6662 6663 // Try to vectorize reductions that use PHINodes. 6664 if (PHINode *P = dyn_cast<PHINode>(it)) { 6665 // Check that the PHI is a reduction PHI. 6666 if (P->getNumIncomingValues() != 2) 6667 return Changed; 6668 6669 // Try to match and vectorize a horizontal reduction. 6670 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6671 TTI)) { 6672 Changed = true; 6673 it = BB->begin(); 6674 e = BB->end(); 6675 continue; 6676 } 6677 continue; 6678 } 6679 6680 // Ran into an instruction without users, like terminator, or function call 6681 // with ignored return value, store. Ignore unused instructions (basing on 6682 // instruction type, except for CallInst and InvokeInst). 6683 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6684 isa<InvokeInst>(it))) { 6685 KeyNodes.insert(&*it); 6686 bool OpsChanged = false; 6687 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6688 for (auto *V : it->operand_values()) { 6689 // Try to match and vectorize a horizontal reduction. 6690 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6691 } 6692 } 6693 // Start vectorization of post-process list of instructions from the 6694 // top-tree instructions to try to vectorize as many instructions as 6695 // possible. 6696 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6697 if (OpsChanged) { 6698 // We would like to start over since some instructions are deleted 6699 // and the iterator may become invalid value. 6700 Changed = true; 6701 it = BB->begin(); 6702 e = BB->end(); 6703 continue; 6704 } 6705 } 6706 6707 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6708 isa<InsertValueInst>(it)) 6709 PostProcessInstructions.push_back(&*it); 6710 } 6711 6712 return Changed; 6713 } 6714 6715 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6716 auto Changed = false; 6717 for (auto &Entry : GEPs) { 6718 // If the getelementptr list has fewer than two elements, there's nothing 6719 // to do. 6720 if (Entry.second.size() < 2) 6721 continue; 6722 6723 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6724 << Entry.second.size() << ".\n"); 6725 6726 // We process the getelementptr list in chunks of 16 (like we do for 6727 // stores) to minimize compile-time. 6728 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6729 auto Len = std::min<unsigned>(BE - BI, 16); 6730 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6731 6732 // Initialize a set a candidate getelementptrs. Note that we use a 6733 // SetVector here to preserve program order. If the index computations 6734 // are vectorizable and begin with loads, we want to minimize the chance 6735 // of having to reorder them later. 6736 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6737 6738 // Some of the candidates may have already been vectorized after we 6739 // initially collected them. If so, the WeakTrackingVHs will have 6740 // nullified the 6741 // values, so remove them from the set of candidates. 6742 Candidates.remove(nullptr); 6743 6744 // Remove from the set of candidates all pairs of getelementptrs with 6745 // constant differences. Such getelementptrs are likely not good 6746 // candidates for vectorization in a bottom-up phase since one can be 6747 // computed from the other. We also ensure all candidate getelementptr 6748 // indices are unique. 6749 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6750 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6751 if (!Candidates.count(GEPI)) 6752 continue; 6753 auto *SCEVI = SE->getSCEV(GEPList[I]); 6754 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6755 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6756 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6757 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6758 Candidates.remove(GEPList[I]); 6759 Candidates.remove(GEPList[J]); 6760 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6761 Candidates.remove(GEPList[J]); 6762 } 6763 } 6764 } 6765 6766 // We break out of the above computation as soon as we know there are 6767 // fewer than two candidates remaining. 6768 if (Candidates.size() < 2) 6769 continue; 6770 6771 // Add the single, non-constant index of each candidate to the bundle. We 6772 // ensured the indices met these constraints when we originally collected 6773 // the getelementptrs. 6774 SmallVector<Value *, 16> Bundle(Candidates.size()); 6775 auto BundleIndex = 0u; 6776 for (auto *V : Candidates) { 6777 auto *GEP = cast<GetElementPtrInst>(V); 6778 auto *GEPIdx = GEP->idx_begin()->get(); 6779 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6780 Bundle[BundleIndex++] = GEPIdx; 6781 } 6782 6783 // Try and vectorize the indices. We are currently only interested in 6784 // gather-like cases of the form: 6785 // 6786 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6787 // 6788 // where the loads of "a", the loads of "b", and the subtractions can be 6789 // performed in parallel. It's likely that detecting this pattern in a 6790 // bottom-up phase will be simpler and less costly than building a 6791 // full-blown top-down phase beginning at the consecutive loads. 6792 Changed |= tryToVectorizeList(Bundle, R); 6793 } 6794 } 6795 return Changed; 6796 } 6797 6798 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6799 bool Changed = false; 6800 // Attempt to sort and vectorize each of the store-groups. 6801 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6802 ++it) { 6803 if (it->second.size() < 2) 6804 continue; 6805 6806 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6807 << it->second.size() << ".\n"); 6808 6809 // Process the stores in chunks of 16. 6810 // TODO: The limit of 16 inhibits greater vectorization factors. 6811 // For example, AVX2 supports v32i8. Increasing this limit, however, 6812 // may cause a significant compile-time increase. 6813 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6814 unsigned Len = std::min<unsigned>(CE - CI, 16); 6815 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6816 } 6817 } 6818 return Changed; 6819 } 6820 6821 char SLPVectorizer::ID = 0; 6822 6823 static const char lv_name[] = "SLP Vectorizer"; 6824 6825 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6826 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6827 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6828 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6829 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6830 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6831 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6832 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6833 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6834 6835 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6836