1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return AltOp != MainOp; } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 475 unsigned BaseIndex = 0); 476 477 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 478 /// compatible instructions or constants, or just some other regular values. 479 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 480 Value *Op1) { 481 return (isConstant(BaseOp0) && isConstant(Op0)) || 482 (isConstant(BaseOp1) && isConstant(Op1)) || 483 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 484 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 485 getSameOpcode({BaseOp0, Op0}).getOpcode() || 486 getSameOpcode({BaseOp1, Op1}).getOpcode(); 487 } 488 489 /// \returns analysis of the Instructions in \p VL described in 490 /// InstructionsState, the Opcode that we suppose the whole list 491 /// could be vectorized even if its structure is diverse. 492 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 493 unsigned BaseIndex) { 494 // Make sure these are all Instructions. 495 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 496 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 497 498 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 499 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 500 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 501 CmpInst::Predicate BasePred = 502 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 503 : CmpInst::BAD_ICMP_PREDICATE; 504 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 505 unsigned AltOpcode = Opcode; 506 unsigned AltIndex = BaseIndex; 507 508 // Check for one alternate opcode from another BinaryOperator. 509 // TODO - generalize to support all operators (types, calls etc.). 510 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 511 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 512 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 513 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 514 continue; 515 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 516 isValidForAlternation(Opcode)) { 517 AltOpcode = InstOpcode; 518 AltIndex = Cnt; 519 continue; 520 } 521 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 522 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 523 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 524 if (Ty0 == Ty1) { 525 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 526 continue; 527 if (Opcode == AltOpcode) { 528 assert(isValidForAlternation(Opcode) && 529 isValidForAlternation(InstOpcode) && 530 "Cast isn't safe for alternation, logic needs to be updated!"); 531 AltOpcode = InstOpcode; 532 AltIndex = Cnt; 533 continue; 534 } 535 } 536 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 537 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 538 auto *Inst = cast<Instruction>(VL[Cnt]); 539 Type *Ty0 = BaseInst->getOperand(0)->getType(); 540 Type *Ty1 = Inst->getOperand(0)->getType(); 541 if (Ty0 == Ty1) { 542 Value *BaseOp0 = BaseInst->getOperand(0); 543 Value *BaseOp1 = BaseInst->getOperand(1); 544 Value *Op0 = Inst->getOperand(0); 545 Value *Op1 = Inst->getOperand(1); 546 CmpInst::Predicate CurrentPred = 547 cast<CmpInst>(VL[Cnt])->getPredicate(); 548 // Check for compatible operands. If the corresponding operands are not 549 // compatible - need to perform alternate vectorization. 550 if (InstOpcode == Opcode) { 551 if (BasePred == CurrentPred && 552 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 553 continue; 554 if (BasePred == CmpInst::getSwappedPredicate(CurrentPred) && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 556 continue; 557 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 558 CmpInst::Predicate AltPred = AltInst->getPredicate(); 559 Value *AltOp0 = AltInst->getOperand(0); 560 Value *AltOp1 = AltInst->getOperand(1); 561 // Check if operands are compatible with alternate operands. 562 if (AltPred == CurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 564 continue; 565 if (AltPred == CmpInst::getSwappedPredicate(CurrentPred) && 566 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 567 continue; 568 } 569 if (BaseIndex == AltIndex) { 570 assert(isValidForAlternation(Opcode) && 571 isValidForAlternation(InstOpcode) && 572 "Cast isn't safe for alternation, logic needs to be updated!"); 573 AltIndex = Cnt; 574 continue; 575 } 576 } 577 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 578 continue; 579 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 580 } 581 582 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 583 cast<Instruction>(VL[AltIndex])); 584 } 585 586 /// \returns true if all of the values in \p VL have the same type or false 587 /// otherwise. 588 static bool allSameType(ArrayRef<Value *> VL) { 589 Type *Ty = VL[0]->getType(); 590 for (int i = 1, e = VL.size(); i < e; i++) 591 if (VL[i]->getType() != Ty) 592 return false; 593 594 return true; 595 } 596 597 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 598 static Optional<unsigned> getExtractIndex(Instruction *E) { 599 unsigned Opcode = E->getOpcode(); 600 assert((Opcode == Instruction::ExtractElement || 601 Opcode == Instruction::ExtractValue) && 602 "Expected extractelement or extractvalue instruction."); 603 if (Opcode == Instruction::ExtractElement) { 604 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 605 if (!CI) 606 return None; 607 return CI->getZExtValue(); 608 } 609 ExtractValueInst *EI = cast<ExtractValueInst>(E); 610 if (EI->getNumIndices() != 1) 611 return None; 612 return *EI->idx_begin(); 613 } 614 615 /// \returns True if in-tree use also needs extract. This refers to 616 /// possible scalar operand in vectorized instruction. 617 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 618 TargetLibraryInfo *TLI) { 619 unsigned Opcode = UserInst->getOpcode(); 620 switch (Opcode) { 621 case Instruction::Load: { 622 LoadInst *LI = cast<LoadInst>(UserInst); 623 return (LI->getPointerOperand() == Scalar); 624 } 625 case Instruction::Store: { 626 StoreInst *SI = cast<StoreInst>(UserInst); 627 return (SI->getPointerOperand() == Scalar); 628 } 629 case Instruction::Call: { 630 CallInst *CI = cast<CallInst>(UserInst); 631 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 632 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 633 if (hasVectorInstrinsicScalarOpd(ID, i)) 634 return (CI->getArgOperand(i) == Scalar); 635 } 636 LLVM_FALLTHROUGH; 637 } 638 default: 639 return false; 640 } 641 } 642 643 /// \returns the AA location that is being access by the instruction. 644 static MemoryLocation getLocation(Instruction *I) { 645 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 646 return MemoryLocation::get(SI); 647 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 648 return MemoryLocation::get(LI); 649 return MemoryLocation(); 650 } 651 652 /// \returns True if the instruction is not a volatile or atomic load/store. 653 static bool isSimple(Instruction *I) { 654 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 655 return LI->isSimple(); 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return SI->isSimple(); 658 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 659 return !MI->isVolatile(); 660 return true; 661 } 662 663 /// Shuffles \p Mask in accordance with the given \p SubMask. 664 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 665 if (SubMask.empty()) 666 return; 667 if (Mask.empty()) { 668 Mask.append(SubMask.begin(), SubMask.end()); 669 return; 670 } 671 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 672 int TermValue = std::min(Mask.size(), SubMask.size()); 673 for (int I = 0, E = SubMask.size(); I < E; ++I) { 674 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 675 Mask[SubMask[I]] >= TermValue) 676 continue; 677 NewMask[I] = Mask[SubMask[I]]; 678 } 679 Mask.swap(NewMask); 680 } 681 682 /// Order may have elements assigned special value (size) which is out of 683 /// bounds. Such indices only appear on places which correspond to undef values 684 /// (see canReuseExtract for details) and used in order to avoid undef values 685 /// have effect on operands ordering. 686 /// The first loop below simply finds all unused indices and then the next loop 687 /// nest assigns these indices for undef values positions. 688 /// As an example below Order has two undef positions and they have assigned 689 /// values 3 and 7 respectively: 690 /// before: 6 9 5 4 9 2 1 0 691 /// after: 6 3 5 4 7 2 1 0 692 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 693 const unsigned Sz = Order.size(); 694 SmallBitVector UnusedIndices(Sz, /*t=*/true); 695 SmallBitVector MaskedIndices(Sz); 696 for (unsigned I = 0; I < Sz; ++I) { 697 if (Order[I] < Sz) 698 UnusedIndices.reset(Order[I]); 699 else 700 MaskedIndices.set(I); 701 } 702 if (MaskedIndices.none()) 703 return; 704 assert(UnusedIndices.count() == MaskedIndices.count() && 705 "Non-synced masked/available indices."); 706 int Idx = UnusedIndices.find_first(); 707 int MIdx = MaskedIndices.find_first(); 708 while (MIdx >= 0) { 709 assert(Idx >= 0 && "Indices must be synced."); 710 Order[MIdx] = Idx; 711 Idx = UnusedIndices.find_next(Idx); 712 MIdx = MaskedIndices.find_next(MIdx); 713 } 714 } 715 716 namespace llvm { 717 718 static void inversePermutation(ArrayRef<unsigned> Indices, 719 SmallVectorImpl<int> &Mask) { 720 Mask.clear(); 721 const unsigned E = Indices.size(); 722 Mask.resize(E, UndefMaskElem); 723 for (unsigned I = 0; I < E; ++I) 724 Mask[Indices[I]] = I; 725 } 726 727 /// \returns inserting index of InsertElement or InsertValue instruction, 728 /// using Offset as base offset for index. 729 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 730 int Index = Offset; 731 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 732 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 733 auto *VT = cast<FixedVectorType>(IE->getType()); 734 if (CI->getValue().uge(VT->getNumElements())) 735 return UndefMaskElem; 736 Index *= VT->getNumElements(); 737 Index += CI->getZExtValue(); 738 return Index; 739 } 740 if (isa<UndefValue>(IE->getOperand(2))) 741 return UndefMaskElem; 742 return None; 743 } 744 745 auto *IV = cast<InsertValueInst>(InsertInst); 746 Type *CurrentType = IV->getType(); 747 for (unsigned I : IV->indices()) { 748 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 749 Index *= ST->getNumElements(); 750 CurrentType = ST->getElementType(I); 751 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 752 Index *= AT->getNumElements(); 753 CurrentType = AT->getElementType(); 754 } else { 755 return None; 756 } 757 Index += I; 758 } 759 return Index; 760 } 761 762 /// Reorders the list of scalars in accordance with the given \p Order and then 763 /// the \p Mask. \p Order - is the original order of the scalars, need to 764 /// reorder scalars into an unordered state at first according to the given 765 /// order. Then the ordered scalars are shuffled once again in accordance with 766 /// the provided mask. 767 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 768 ArrayRef<int> Mask) { 769 assert(!Mask.empty() && "Expected non-empty mask."); 770 SmallVector<Value *> Prev(Scalars.size(), 771 UndefValue::get(Scalars.front()->getType())); 772 Prev.swap(Scalars); 773 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 774 if (Mask[I] != UndefMaskElem) 775 Scalars[Mask[I]] = Prev[I]; 776 } 777 778 namespace slpvectorizer { 779 780 /// Bottom Up SLP Vectorizer. 781 class BoUpSLP { 782 struct TreeEntry; 783 struct ScheduleData; 784 785 public: 786 using ValueList = SmallVector<Value *, 8>; 787 using InstrList = SmallVector<Instruction *, 16>; 788 using ValueSet = SmallPtrSet<Value *, 16>; 789 using StoreList = SmallVector<StoreInst *, 8>; 790 using ExtraValueToDebugLocsMap = 791 MapVector<Value *, SmallVector<Instruction *, 2>>; 792 using OrdersType = SmallVector<unsigned, 4>; 793 794 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 795 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 796 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 797 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 798 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 799 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 800 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 801 // Use the vector register size specified by the target unless overridden 802 // by a command-line option. 803 // TODO: It would be better to limit the vectorization factor based on 804 // data type rather than just register size. For example, x86 AVX has 805 // 256-bit registers, but it does not support integer operations 806 // at that width (that requires AVX2). 807 if (MaxVectorRegSizeOption.getNumOccurrences()) 808 MaxVecRegSize = MaxVectorRegSizeOption; 809 else 810 MaxVecRegSize = 811 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 812 .getFixedSize(); 813 814 if (MinVectorRegSizeOption.getNumOccurrences()) 815 MinVecRegSize = MinVectorRegSizeOption; 816 else 817 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 818 } 819 820 /// Vectorize the tree that starts with the elements in \p VL. 821 /// Returns the vectorized root. 822 Value *vectorizeTree(); 823 824 /// Vectorize the tree but with the list of externally used values \p 825 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 826 /// generated extractvalue instructions. 827 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 828 829 /// \returns the cost incurred by unwanted spills and fills, caused by 830 /// holding live values over call sites. 831 InstructionCost getSpillCost() const; 832 833 /// \returns the vectorization cost of the subtree that starts at \p VL. 834 /// A negative number means that this is profitable. 835 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 836 837 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 838 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 839 void buildTree(ArrayRef<Value *> Roots, 840 ArrayRef<Value *> UserIgnoreLst = None); 841 842 /// Builds external uses of the vectorized scalars, i.e. the list of 843 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 844 /// ExternallyUsedValues contains additional list of external uses to handle 845 /// vectorization of reductions. 846 void 847 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 848 849 /// Clear the internal data structures that are created by 'buildTree'. 850 void deleteTree() { 851 VectorizableTree.clear(); 852 ScalarToTreeEntry.clear(); 853 MustGather.clear(); 854 ExternalUses.clear(); 855 for (auto &Iter : BlocksSchedules) { 856 BlockScheduling *BS = Iter.second.get(); 857 BS->clear(); 858 } 859 MinBWs.clear(); 860 InstrElementSize.clear(); 861 } 862 863 unsigned getTreeSize() const { return VectorizableTree.size(); } 864 865 /// Perform LICM and CSE on the newly generated gather sequences. 866 void optimizeGatherSequence(); 867 868 /// Checks if the specified gather tree entry \p TE can be represented as a 869 /// shuffled vector entry + (possibly) permutation with other gathers. It 870 /// implements the checks only for possibly ordered scalars (Loads, 871 /// ExtractElement, ExtractValue), which can be part of the graph. 872 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 873 874 /// Gets reordering data for the given tree entry. If the entry is vectorized 875 /// - just return ReorderIndices, otherwise check if the scalars can be 876 /// reordered and return the most optimal order. 877 /// \param TopToBottom If true, include the order of vectorized stores and 878 /// insertelement nodes, otherwise skip them. 879 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 880 881 /// Reorders the current graph to the most profitable order starting from the 882 /// root node to the leaf nodes. The best order is chosen only from the nodes 883 /// of the same size (vectorization factor). Smaller nodes are considered 884 /// parts of subgraph with smaller VF and they are reordered independently. We 885 /// can make it because we still need to extend smaller nodes to the wider VF 886 /// and we can merge reordering shuffles with the widening shuffles. 887 void reorderTopToBottom(); 888 889 /// Reorders the current graph to the most profitable order starting from 890 /// leaves to the root. It allows to rotate small subgraphs and reduce the 891 /// number of reshuffles if the leaf nodes use the same order. In this case we 892 /// can merge the orders and just shuffle user node instead of shuffling its 893 /// operands. Plus, even the leaf nodes have different orders, it allows to 894 /// sink reordering in the graph closer to the root node and merge it later 895 /// during analysis. 896 void reorderBottomToTop(bool IgnoreReorder = false); 897 898 /// \return The vector element size in bits to use when vectorizing the 899 /// expression tree ending at \p V. If V is a store, the size is the width of 900 /// the stored value. Otherwise, the size is the width of the largest loaded 901 /// value reaching V. This method is used by the vectorizer to calculate 902 /// vectorization factors. 903 unsigned getVectorElementSize(Value *V); 904 905 /// Compute the minimum type sizes required to represent the entries in a 906 /// vectorizable tree. 907 void computeMinimumValueSizes(); 908 909 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 910 unsigned getMaxVecRegSize() const { 911 return MaxVecRegSize; 912 } 913 914 // \returns minimum vector register size as set by cl::opt. 915 unsigned getMinVecRegSize() const { 916 return MinVecRegSize; 917 } 918 919 unsigned getMinVF(unsigned Sz) const { 920 return std::max(2U, getMinVecRegSize() / Sz); 921 } 922 923 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 924 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 925 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 926 return MaxVF ? MaxVF : UINT_MAX; 927 } 928 929 /// Check if homogeneous aggregate is isomorphic to some VectorType. 930 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 931 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 932 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 933 /// 934 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 935 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 936 937 /// \returns True if the VectorizableTree is both tiny and not fully 938 /// vectorizable. We do not vectorize such trees. 939 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 940 941 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 942 /// can be load combined in the backend. Load combining may not be allowed in 943 /// the IR optimizer, so we do not want to alter the pattern. For example, 944 /// partially transforming a scalar bswap() pattern into vector code is 945 /// effectively impossible for the backend to undo. 946 /// TODO: If load combining is allowed in the IR optimizer, this analysis 947 /// may not be necessary. 948 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 949 950 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 951 /// can be load combined in the backend. Load combining may not be allowed in 952 /// the IR optimizer, so we do not want to alter the pattern. For example, 953 /// partially transforming a scalar bswap() pattern into vector code is 954 /// effectively impossible for the backend to undo. 955 /// TODO: If load combining is allowed in the IR optimizer, this analysis 956 /// may not be necessary. 957 bool isLoadCombineCandidate() const; 958 959 OptimizationRemarkEmitter *getORE() { return ORE; } 960 961 /// This structure holds any data we need about the edges being traversed 962 /// during buildTree_rec(). We keep track of: 963 /// (i) the user TreeEntry index, and 964 /// (ii) the index of the edge. 965 struct EdgeInfo { 966 EdgeInfo() = default; 967 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 968 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 969 /// The user TreeEntry. 970 TreeEntry *UserTE = nullptr; 971 /// The operand index of the use. 972 unsigned EdgeIdx = UINT_MAX; 973 #ifndef NDEBUG 974 friend inline raw_ostream &operator<<(raw_ostream &OS, 975 const BoUpSLP::EdgeInfo &EI) { 976 EI.dump(OS); 977 return OS; 978 } 979 /// Debug print. 980 void dump(raw_ostream &OS) const { 981 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 982 << " EdgeIdx:" << EdgeIdx << "}"; 983 } 984 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 985 #endif 986 }; 987 988 /// A helper data structure to hold the operands of a vector of instructions. 989 /// This supports a fixed vector length for all operand vectors. 990 class VLOperands { 991 /// For each operand we need (i) the value, and (ii) the opcode that it 992 /// would be attached to if the expression was in a left-linearized form. 993 /// This is required to avoid illegal operand reordering. 994 /// For example: 995 /// \verbatim 996 /// 0 Op1 997 /// |/ 998 /// Op1 Op2 Linearized + Op2 999 /// \ / ----------> |/ 1000 /// - - 1001 /// 1002 /// Op1 - Op2 (0 + Op1) - Op2 1003 /// \endverbatim 1004 /// 1005 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1006 /// 1007 /// Another way to think of this is to track all the operations across the 1008 /// path from the operand all the way to the root of the tree and to 1009 /// calculate the operation that corresponds to this path. For example, the 1010 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1011 /// corresponding operation is a '-' (which matches the one in the 1012 /// linearized tree, as shown above). 1013 /// 1014 /// For lack of a better term, we refer to this operation as Accumulated 1015 /// Path Operation (APO). 1016 struct OperandData { 1017 OperandData() = default; 1018 OperandData(Value *V, bool APO, bool IsUsed) 1019 : V(V), APO(APO), IsUsed(IsUsed) {} 1020 /// The operand value. 1021 Value *V = nullptr; 1022 /// TreeEntries only allow a single opcode, or an alternate sequence of 1023 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1024 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1025 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1026 /// (e.g., Add/Mul) 1027 bool APO = false; 1028 /// Helper data for the reordering function. 1029 bool IsUsed = false; 1030 }; 1031 1032 /// During operand reordering, we are trying to select the operand at lane 1033 /// that matches best with the operand at the neighboring lane. Our 1034 /// selection is based on the type of value we are looking for. For example, 1035 /// if the neighboring lane has a load, we need to look for a load that is 1036 /// accessing a consecutive address. These strategies are summarized in the 1037 /// 'ReorderingMode' enumerator. 1038 enum class ReorderingMode { 1039 Load, ///< Matching loads to consecutive memory addresses 1040 Opcode, ///< Matching instructions based on opcode (same or alternate) 1041 Constant, ///< Matching constants 1042 Splat, ///< Matching the same instruction multiple times (broadcast) 1043 Failed, ///< We failed to create a vectorizable group 1044 }; 1045 1046 using OperandDataVec = SmallVector<OperandData, 2>; 1047 1048 /// A vector of operand vectors. 1049 SmallVector<OperandDataVec, 4> OpsVec; 1050 1051 const DataLayout &DL; 1052 ScalarEvolution &SE; 1053 const BoUpSLP &R; 1054 1055 /// \returns the operand data at \p OpIdx and \p Lane. 1056 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1057 return OpsVec[OpIdx][Lane]; 1058 } 1059 1060 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1061 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1062 return OpsVec[OpIdx][Lane]; 1063 } 1064 1065 /// Clears the used flag for all entries. 1066 void clearUsed() { 1067 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1068 OpIdx != NumOperands; ++OpIdx) 1069 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1070 ++Lane) 1071 OpsVec[OpIdx][Lane].IsUsed = false; 1072 } 1073 1074 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1075 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1076 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1077 } 1078 1079 // The hard-coded scores listed here are not very important, though it shall 1080 // be higher for better matches to improve the resulting cost. When 1081 // computing the scores of matching one sub-tree with another, we are 1082 // basically counting the number of values that are matching. So even if all 1083 // scores are set to 1, we would still get a decent matching result. 1084 // However, sometimes we have to break ties. For example we may have to 1085 // choose between matching loads vs matching opcodes. This is what these 1086 // scores are helping us with: they provide the order of preference. Also, 1087 // this is important if the scalar is externally used or used in another 1088 // tree entry node in the different lane. 1089 1090 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1091 static const int ScoreConsecutiveLoads = 4; 1092 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1093 static const int ScoreReversedLoads = 3; 1094 /// ExtractElementInst from same vector and consecutive indexes. 1095 static const int ScoreConsecutiveExtracts = 4; 1096 /// ExtractElementInst from same vector and reversed indices. 1097 static const int ScoreReversedExtracts = 3; 1098 /// Constants. 1099 static const int ScoreConstants = 2; 1100 /// Instructions with the same opcode. 1101 static const int ScoreSameOpcode = 2; 1102 /// Instructions with alt opcodes (e.g, add + sub). 1103 static const int ScoreAltOpcodes = 1; 1104 /// Identical instructions (a.k.a. splat or broadcast). 1105 static const int ScoreSplat = 1; 1106 /// Matching with an undef is preferable to failing. 1107 static const int ScoreUndef = 1; 1108 /// Score for failing to find a decent match. 1109 static const int ScoreFail = 0; 1110 /// User exteranl to the vectorized code. 1111 static const int ExternalUseCost = 1; 1112 /// The user is internal but in a different lane. 1113 static const int UserInDiffLaneCost = ExternalUseCost; 1114 1115 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1116 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1117 ScalarEvolution &SE, int NumLanes) { 1118 if (V1 == V2) 1119 return VLOperands::ScoreSplat; 1120 1121 auto *LI1 = dyn_cast<LoadInst>(V1); 1122 auto *LI2 = dyn_cast<LoadInst>(V2); 1123 if (LI1 && LI2) { 1124 if (LI1->getParent() != LI2->getParent()) 1125 return VLOperands::ScoreFail; 1126 1127 Optional<int> Dist = getPointersDiff( 1128 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1129 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1130 if (!Dist) 1131 return VLOperands::ScoreFail; 1132 // The distance is too large - still may be profitable to use masked 1133 // loads/gathers. 1134 if (std::abs(*Dist) > NumLanes / 2) 1135 return VLOperands::ScoreAltOpcodes; 1136 // This still will detect consecutive loads, but we might have "holes" 1137 // in some cases. It is ok for non-power-2 vectorization and may produce 1138 // better results. It should not affect current vectorization. 1139 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1140 : VLOperands::ScoreReversedLoads; 1141 } 1142 1143 auto *C1 = dyn_cast<Constant>(V1); 1144 auto *C2 = dyn_cast<Constant>(V2); 1145 if (C1 && C2) 1146 return VLOperands::ScoreConstants; 1147 1148 // Extracts from consecutive indexes of the same vector better score as 1149 // the extracts could be optimized away. 1150 Value *EV1; 1151 ConstantInt *Ex1Idx; 1152 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1153 // Undefs are always profitable for extractelements. 1154 if (isa<UndefValue>(V2)) 1155 return VLOperands::ScoreConsecutiveExtracts; 1156 Value *EV2 = nullptr; 1157 ConstantInt *Ex2Idx = nullptr; 1158 if (match(V2, 1159 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1160 m_Undef())))) { 1161 // Undefs are always profitable for extractelements. 1162 if (!Ex2Idx) 1163 return VLOperands::ScoreConsecutiveExtracts; 1164 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1165 return VLOperands::ScoreConsecutiveExtracts; 1166 if (EV2 == EV1) { 1167 int Idx1 = Ex1Idx->getZExtValue(); 1168 int Idx2 = Ex2Idx->getZExtValue(); 1169 int Dist = Idx2 - Idx1; 1170 // The distance is too large - still may be profitable to use 1171 // shuffles. 1172 if (std::abs(Dist) > NumLanes / 2) 1173 return VLOperands::ScoreAltOpcodes; 1174 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1175 : VLOperands::ScoreReversedExtracts; 1176 } 1177 } 1178 } 1179 1180 auto *I1 = dyn_cast<Instruction>(V1); 1181 auto *I2 = dyn_cast<Instruction>(V2); 1182 if (I1 && I2) { 1183 if (I1->getParent() != I2->getParent()) 1184 return VLOperands::ScoreFail; 1185 InstructionsState S = getSameOpcode({I1, I2}); 1186 // Note: Only consider instructions with <= 2 operands to avoid 1187 // complexity explosion. 1188 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1189 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1190 : VLOperands::ScoreSameOpcode; 1191 } 1192 1193 if (isa<UndefValue>(V2)) 1194 return VLOperands::ScoreUndef; 1195 1196 return VLOperands::ScoreFail; 1197 } 1198 1199 /// Holds the values and their lanes that are taking part in the look-ahead 1200 /// score calculation. This is used in the external uses cost calculation. 1201 /// Need to hold all the lanes in case of splat/broadcast at least to 1202 /// correctly check for the use in the different lane. 1203 SmallDenseMap<Value *, SmallSet<int, 4>> InLookAheadValues; 1204 1205 /// \returns the additional cost due to uses of \p LHS and \p RHS that are 1206 /// either external to the vectorized code, or require shuffling. 1207 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1208 const std::pair<Value *, int> &RHS) { 1209 int Cost = 0; 1210 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1211 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1212 Value *V = Values[Idx].first; 1213 if (isa<Constant>(V)) { 1214 // Since this is a function pass, it doesn't make semantic sense to 1215 // walk the users of a subclass of Constant. The users could be in 1216 // another function, or even another module that happens to be in 1217 // the same LLVMContext. 1218 continue; 1219 } 1220 1221 // Calculate the absolute lane, using the minimum relative lane of LHS 1222 // and RHS as base and Idx as the offset. 1223 int Ln = std::min(LHS.second, RHS.second) + Idx; 1224 assert(Ln >= 0 && "Bad lane calculation"); 1225 unsigned UsersBudget = LookAheadUsersBudget; 1226 for (User *U : V->users()) { 1227 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1228 // The user is in the VectorizableTree. Check if we need to insert. 1229 int UserLn = UserTE->findLaneForValue(U); 1230 assert(UserLn >= 0 && "Bad lane"); 1231 // If the values are different, check just the line of the current 1232 // value. If the values are the same, need to add UserInDiffLaneCost 1233 // only if UserLn does not match both line numbers. 1234 if ((LHS.first != RHS.first && UserLn != Ln) || 1235 (LHS.first == RHS.first && UserLn != LHS.second && 1236 UserLn != RHS.second)) { 1237 Cost += UserInDiffLaneCost; 1238 break; 1239 } 1240 } else { 1241 // Check if the user is in the look-ahead code. 1242 auto It2 = InLookAheadValues.find(U); 1243 if (It2 != InLookAheadValues.end()) { 1244 // The user is in the look-ahead code. Check the lane. 1245 if (!It2->getSecond().contains(Ln)) { 1246 Cost += UserInDiffLaneCost; 1247 break; 1248 } 1249 } else { 1250 // The user is neither in SLP tree nor in the look-ahead code. 1251 Cost += ExternalUseCost; 1252 break; 1253 } 1254 } 1255 // Limit the number of visited uses to cap compilation time. 1256 if (--UsersBudget == 0) 1257 break; 1258 } 1259 } 1260 return Cost; 1261 } 1262 1263 /// Go through the operands of \p LHS and \p RHS recursively until \p 1264 /// MaxLevel, and return the cummulative score. For example: 1265 /// \verbatim 1266 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1267 /// \ / \ / \ / \ / 1268 /// + + + + 1269 /// G1 G2 G3 G4 1270 /// \endverbatim 1271 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1272 /// each level recursively, accumulating the score. It starts from matching 1273 /// the additions at level 0, then moves on to the loads (level 1). The 1274 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1275 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1276 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1277 /// Please note that the order of the operands does not matter, as we 1278 /// evaluate the score of all profitable combinations of operands. In 1279 /// other words the score of G1 and G4 is the same as G1 and G2. This 1280 /// heuristic is based on ideas described in: 1281 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1282 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1283 /// Luís F. W. Góes 1284 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1285 const std::pair<Value *, int> &RHS, int CurrLevel, 1286 int MaxLevel) { 1287 1288 Value *V1 = LHS.first; 1289 Value *V2 = RHS.first; 1290 // Get the shallow score of V1 and V2. 1291 int ShallowScoreAtThisLevel = std::max( 1292 (int)ScoreFail, getShallowScore(V1, V2, DL, SE, getNumLanes()) - 1293 getExternalUsesCost(LHS, RHS)); 1294 int Lane1 = LHS.second; 1295 int Lane2 = RHS.second; 1296 1297 // If reached MaxLevel, 1298 // or if V1 and V2 are not instructions, 1299 // or if they are SPLAT, 1300 // or if they are not consecutive, 1301 // or if profitable to vectorize loads or extractelements, early return 1302 // the current cost. 1303 auto *I1 = dyn_cast<Instruction>(V1); 1304 auto *I2 = dyn_cast<Instruction>(V2); 1305 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1306 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1307 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1308 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1309 ShallowScoreAtThisLevel)) 1310 return ShallowScoreAtThisLevel; 1311 assert(I1 && I2 && "Should have early exited."); 1312 1313 // Keep track of in-tree values for determining the external-use cost. 1314 InLookAheadValues[V1].insert(Lane1); 1315 InLookAheadValues[V2].insert(Lane2); 1316 1317 // Contains the I2 operand indexes that got matched with I1 operands. 1318 SmallSet<unsigned, 4> Op2Used; 1319 1320 // Recursion towards the operands of I1 and I2. We are trying all possible 1321 // operand pairs, and keeping track of the best score. 1322 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1323 OpIdx1 != NumOperands1; ++OpIdx1) { 1324 // Try to pair op1I with the best operand of I2. 1325 int MaxTmpScore = 0; 1326 unsigned MaxOpIdx2 = 0; 1327 bool FoundBest = false; 1328 // If I2 is commutative try all combinations. 1329 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1330 unsigned ToIdx = isCommutative(I2) 1331 ? I2->getNumOperands() 1332 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1333 assert(FromIdx <= ToIdx && "Bad index"); 1334 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1335 // Skip operands already paired with OpIdx1. 1336 if (Op2Used.count(OpIdx2)) 1337 continue; 1338 // Recursively calculate the cost at each level 1339 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1340 {I2->getOperand(OpIdx2), Lane2}, 1341 CurrLevel + 1, MaxLevel); 1342 // Look for the best score. 1343 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1344 MaxTmpScore = TmpScore; 1345 MaxOpIdx2 = OpIdx2; 1346 FoundBest = true; 1347 } 1348 } 1349 if (FoundBest) { 1350 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1351 Op2Used.insert(MaxOpIdx2); 1352 ShallowScoreAtThisLevel += MaxTmpScore; 1353 } 1354 } 1355 return ShallowScoreAtThisLevel; 1356 } 1357 1358 /// \Returns the look-ahead score, which tells us how much the sub-trees 1359 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1360 /// score. This helps break ties in an informed way when we cannot decide on 1361 /// the order of the operands by just considering the immediate 1362 /// predecessors. 1363 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1364 const std::pair<Value *, int> &RHS) { 1365 InLookAheadValues.clear(); 1366 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1367 } 1368 1369 // Search all operands in Ops[*][Lane] for the one that matches best 1370 // Ops[OpIdx][LastLane] and return its opreand index. 1371 // If no good match can be found, return None. 1372 Optional<unsigned> 1373 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1374 ArrayRef<ReorderingMode> ReorderingModes) { 1375 unsigned NumOperands = getNumOperands(); 1376 1377 // The operand of the previous lane at OpIdx. 1378 Value *OpLastLane = getData(OpIdx, LastLane).V; 1379 1380 // Our strategy mode for OpIdx. 1381 ReorderingMode RMode = ReorderingModes[OpIdx]; 1382 1383 // The linearized opcode of the operand at OpIdx, Lane. 1384 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1385 1386 // The best operand index and its score. 1387 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1388 // are using the score to differentiate between the two. 1389 struct BestOpData { 1390 Optional<unsigned> Idx = None; 1391 unsigned Score = 0; 1392 } BestOp; 1393 1394 // Iterate through all unused operands and look for the best. 1395 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1396 // Get the operand at Idx and Lane. 1397 OperandData &OpData = getData(Idx, Lane); 1398 Value *Op = OpData.V; 1399 bool OpAPO = OpData.APO; 1400 1401 // Skip already selected operands. 1402 if (OpData.IsUsed) 1403 continue; 1404 1405 // Skip if we are trying to move the operand to a position with a 1406 // different opcode in the linearized tree form. This would break the 1407 // semantics. 1408 if (OpAPO != OpIdxAPO) 1409 continue; 1410 1411 // Look for an operand that matches the current mode. 1412 switch (RMode) { 1413 case ReorderingMode::Load: 1414 case ReorderingMode::Constant: 1415 case ReorderingMode::Opcode: { 1416 bool LeftToRight = Lane > LastLane; 1417 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1418 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1419 unsigned Score = 1420 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1421 if (Score > BestOp.Score) { 1422 BestOp.Idx = Idx; 1423 BestOp.Score = Score; 1424 } 1425 break; 1426 } 1427 case ReorderingMode::Splat: 1428 if (Op == OpLastLane) 1429 BestOp.Idx = Idx; 1430 break; 1431 case ReorderingMode::Failed: 1432 return None; 1433 } 1434 } 1435 1436 if (BestOp.Idx) { 1437 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1438 return BestOp.Idx; 1439 } 1440 // If we could not find a good match return None. 1441 return None; 1442 } 1443 1444 /// Helper for reorderOperandVecs. 1445 /// \returns the lane that we should start reordering from. This is the one 1446 /// which has the least number of operands that can freely move about or 1447 /// less profitable because it already has the most optimal set of operands. 1448 unsigned getBestLaneToStartReordering() const { 1449 unsigned Min = UINT_MAX; 1450 unsigned SameOpNumber = 0; 1451 // std::pair<unsigned, unsigned> is used to implement a simple voting 1452 // algorithm and choose the lane with the least number of operands that 1453 // can freely move about or less profitable because it already has the 1454 // most optimal set of operands. The first unsigned is a counter for 1455 // voting, the second unsigned is the counter of lanes with instructions 1456 // with same/alternate opcodes and same parent basic block. 1457 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1458 // Try to be closer to the original results, if we have multiple lanes 1459 // with same cost. If 2 lanes have the same cost, use the one with the 1460 // lowest index. 1461 for (int I = getNumLanes(); I > 0; --I) { 1462 unsigned Lane = I - 1; 1463 OperandsOrderData NumFreeOpsHash = 1464 getMaxNumOperandsThatCanBeReordered(Lane); 1465 // Compare the number of operands that can move and choose the one with 1466 // the least number. 1467 if (NumFreeOpsHash.NumOfAPOs < Min) { 1468 Min = NumFreeOpsHash.NumOfAPOs; 1469 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1470 HashMap.clear(); 1471 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1472 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1473 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1474 // Select the most optimal lane in terms of number of operands that 1475 // should be moved around. 1476 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1477 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1478 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1479 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1480 auto It = HashMap.find(NumFreeOpsHash.Hash); 1481 if (It == HashMap.end()) 1482 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1483 else 1484 ++It->second.first; 1485 } 1486 } 1487 // Select the lane with the minimum counter. 1488 unsigned BestLane = 0; 1489 unsigned CntMin = UINT_MAX; 1490 for (const auto &Data : reverse(HashMap)) { 1491 if (Data.second.first < CntMin) { 1492 CntMin = Data.second.first; 1493 BestLane = Data.second.second; 1494 } 1495 } 1496 return BestLane; 1497 } 1498 1499 /// Data structure that helps to reorder operands. 1500 struct OperandsOrderData { 1501 /// The best number of operands with the same APOs, which can be 1502 /// reordered. 1503 unsigned NumOfAPOs = UINT_MAX; 1504 /// Number of operands with the same/alternate instruction opcode and 1505 /// parent. 1506 unsigned NumOpsWithSameOpcodeParent = 0; 1507 /// Hash for the actual operands ordering. 1508 /// Used to count operands, actually their position id and opcode 1509 /// value. It is used in the voting mechanism to find the lane with the 1510 /// least number of operands that can freely move about or less profitable 1511 /// because it already has the most optimal set of operands. Can be 1512 /// replaced with SmallVector<unsigned> instead but hash code is faster 1513 /// and requires less memory. 1514 unsigned Hash = 0; 1515 }; 1516 /// \returns the maximum number of operands that are allowed to be reordered 1517 /// for \p Lane and the number of compatible instructions(with the same 1518 /// parent/opcode). This is used as a heuristic for selecting the first lane 1519 /// to start operand reordering. 1520 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1521 unsigned CntTrue = 0; 1522 unsigned NumOperands = getNumOperands(); 1523 // Operands with the same APO can be reordered. We therefore need to count 1524 // how many of them we have for each APO, like this: Cnt[APO] = x. 1525 // Since we only have two APOs, namely true and false, we can avoid using 1526 // a map. Instead we can simply count the number of operands that 1527 // correspond to one of them (in this case the 'true' APO), and calculate 1528 // the other by subtracting it from the total number of operands. 1529 // Operands with the same instruction opcode and parent are more 1530 // profitable since we don't need to move them in many cases, with a high 1531 // probability such lane already can be vectorized effectively. 1532 bool AllUndefs = true; 1533 unsigned NumOpsWithSameOpcodeParent = 0; 1534 Instruction *OpcodeI = nullptr; 1535 BasicBlock *Parent = nullptr; 1536 unsigned Hash = 0; 1537 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1538 const OperandData &OpData = getData(OpIdx, Lane); 1539 if (OpData.APO) 1540 ++CntTrue; 1541 // Use Boyer-Moore majority voting for finding the majority opcode and 1542 // the number of times it occurs. 1543 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1544 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1545 I->getParent() != Parent) { 1546 if (NumOpsWithSameOpcodeParent == 0) { 1547 NumOpsWithSameOpcodeParent = 1; 1548 OpcodeI = I; 1549 Parent = I->getParent(); 1550 } else { 1551 --NumOpsWithSameOpcodeParent; 1552 } 1553 } else { 1554 ++NumOpsWithSameOpcodeParent; 1555 } 1556 } 1557 Hash = hash_combine( 1558 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1559 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1560 } 1561 if (AllUndefs) 1562 return {}; 1563 OperandsOrderData Data; 1564 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1565 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1566 Data.Hash = Hash; 1567 return Data; 1568 } 1569 1570 /// Go through the instructions in VL and append their operands. 1571 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1572 assert(!VL.empty() && "Bad VL"); 1573 assert((empty() || VL.size() == getNumLanes()) && 1574 "Expected same number of lanes"); 1575 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1576 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1577 OpsVec.resize(NumOperands); 1578 unsigned NumLanes = VL.size(); 1579 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1580 OpsVec[OpIdx].resize(NumLanes); 1581 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1582 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1583 // Our tree has just 3 nodes: the root and two operands. 1584 // It is therefore trivial to get the APO. We only need to check the 1585 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1586 // RHS operand. The LHS operand of both add and sub is never attached 1587 // to an inversese operation in the linearized form, therefore its APO 1588 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1589 1590 // Since operand reordering is performed on groups of commutative 1591 // operations or alternating sequences (e.g., +, -), we can safely 1592 // tell the inverse operations by checking commutativity. 1593 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1594 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1595 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1596 APO, false}; 1597 } 1598 } 1599 } 1600 1601 /// \returns the number of operands. 1602 unsigned getNumOperands() const { return OpsVec.size(); } 1603 1604 /// \returns the number of lanes. 1605 unsigned getNumLanes() const { return OpsVec[0].size(); } 1606 1607 /// \returns the operand value at \p OpIdx and \p Lane. 1608 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1609 return getData(OpIdx, Lane).V; 1610 } 1611 1612 /// \returns true if the data structure is empty. 1613 bool empty() const { return OpsVec.empty(); } 1614 1615 /// Clears the data. 1616 void clear() { OpsVec.clear(); } 1617 1618 /// \Returns true if there are enough operands identical to \p Op to fill 1619 /// the whole vector. 1620 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1621 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1622 bool OpAPO = getData(OpIdx, Lane).APO; 1623 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1624 if (Ln == Lane) 1625 continue; 1626 // This is set to true if we found a candidate for broadcast at Lane. 1627 bool FoundCandidate = false; 1628 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1629 OperandData &Data = getData(OpI, Ln); 1630 if (Data.APO != OpAPO || Data.IsUsed) 1631 continue; 1632 if (Data.V == Op) { 1633 FoundCandidate = true; 1634 Data.IsUsed = true; 1635 break; 1636 } 1637 } 1638 if (!FoundCandidate) 1639 return false; 1640 } 1641 return true; 1642 } 1643 1644 public: 1645 /// Initialize with all the operands of the instruction vector \p RootVL. 1646 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1647 ScalarEvolution &SE, const BoUpSLP &R) 1648 : DL(DL), SE(SE), R(R) { 1649 // Append all the operands of RootVL. 1650 appendOperandsOfVL(RootVL); 1651 } 1652 1653 /// \Returns a value vector with the operands across all lanes for the 1654 /// opearnd at \p OpIdx. 1655 ValueList getVL(unsigned OpIdx) const { 1656 ValueList OpVL(OpsVec[OpIdx].size()); 1657 assert(OpsVec[OpIdx].size() == getNumLanes() && 1658 "Expected same num of lanes across all operands"); 1659 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1660 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1661 return OpVL; 1662 } 1663 1664 // Performs operand reordering for 2 or more operands. 1665 // The original operands are in OrigOps[OpIdx][Lane]. 1666 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1667 void reorder() { 1668 unsigned NumOperands = getNumOperands(); 1669 unsigned NumLanes = getNumLanes(); 1670 // Each operand has its own mode. We are using this mode to help us select 1671 // the instructions for each lane, so that they match best with the ones 1672 // we have selected so far. 1673 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1674 1675 // This is a greedy single-pass algorithm. We are going over each lane 1676 // once and deciding on the best order right away with no back-tracking. 1677 // However, in order to increase its effectiveness, we start with the lane 1678 // that has operands that can move the least. For example, given the 1679 // following lanes: 1680 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1681 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1682 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1683 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1684 // we will start at Lane 1, since the operands of the subtraction cannot 1685 // be reordered. Then we will visit the rest of the lanes in a circular 1686 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1687 1688 // Find the first lane that we will start our search from. 1689 unsigned FirstLane = getBestLaneToStartReordering(); 1690 1691 // Initialize the modes. 1692 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1693 Value *OpLane0 = getValue(OpIdx, FirstLane); 1694 // Keep track if we have instructions with all the same opcode on one 1695 // side. 1696 if (isa<LoadInst>(OpLane0)) 1697 ReorderingModes[OpIdx] = ReorderingMode::Load; 1698 else if (isa<Instruction>(OpLane0)) { 1699 // Check if OpLane0 should be broadcast. 1700 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1701 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1702 else 1703 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1704 } 1705 else if (isa<Constant>(OpLane0)) 1706 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1707 else if (isa<Argument>(OpLane0)) 1708 // Our best hope is a Splat. It may save some cost in some cases. 1709 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1710 else 1711 // NOTE: This should be unreachable. 1712 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1713 } 1714 1715 // Check that we don't have same operands. No need to reorder if operands 1716 // are just perfect diamond or shuffled diamond match. Do not do it only 1717 // for possible broadcasts or non-power of 2 number of scalars (just for 1718 // now). 1719 auto &&SkipReordering = [this]() { 1720 SmallPtrSet<Value *, 4> UniqueValues; 1721 ArrayRef<OperandData> Op0 = OpsVec.front(); 1722 for (const OperandData &Data : Op0) 1723 UniqueValues.insert(Data.V); 1724 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1725 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1726 return !UniqueValues.contains(Data.V); 1727 })) 1728 return false; 1729 } 1730 // TODO: Check if we can remove a check for non-power-2 number of 1731 // scalars after full support of non-power-2 vectorization. 1732 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1733 }; 1734 1735 // If the initial strategy fails for any of the operand indexes, then we 1736 // perform reordering again in a second pass. This helps avoid assigning 1737 // high priority to the failed strategy, and should improve reordering for 1738 // the non-failed operand indexes. 1739 for (int Pass = 0; Pass != 2; ++Pass) { 1740 // Check if no need to reorder operands since they're are perfect or 1741 // shuffled diamond match. 1742 // Need to to do it to avoid extra external use cost counting for 1743 // shuffled matches, which may cause regressions. 1744 if (SkipReordering()) 1745 break; 1746 // Skip the second pass if the first pass did not fail. 1747 bool StrategyFailed = false; 1748 // Mark all operand data as free to use. 1749 clearUsed(); 1750 // We keep the original operand order for the FirstLane, so reorder the 1751 // rest of the lanes. We are visiting the nodes in a circular fashion, 1752 // using FirstLane as the center point and increasing the radius 1753 // distance. 1754 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1755 // Visit the lane on the right and then the lane on the left. 1756 for (int Direction : {+1, -1}) { 1757 int Lane = FirstLane + Direction * Distance; 1758 if (Lane < 0 || Lane >= (int)NumLanes) 1759 continue; 1760 int LastLane = Lane - Direction; 1761 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1762 "Out of bounds"); 1763 // Look for a good match for each operand. 1764 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1765 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1766 Optional<unsigned> BestIdx = 1767 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1768 // By not selecting a value, we allow the operands that follow to 1769 // select a better matching value. We will get a non-null value in 1770 // the next run of getBestOperand(). 1771 if (BestIdx) { 1772 // Swap the current operand with the one returned by 1773 // getBestOperand(). 1774 swap(OpIdx, BestIdx.getValue(), Lane); 1775 } else { 1776 // We failed to find a best operand, set mode to 'Failed'. 1777 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1778 // Enable the second pass. 1779 StrategyFailed = true; 1780 } 1781 } 1782 } 1783 } 1784 // Skip second pass if the strategy did not fail. 1785 if (!StrategyFailed) 1786 break; 1787 } 1788 } 1789 1790 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1791 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1792 switch (RMode) { 1793 case ReorderingMode::Load: 1794 return "Load"; 1795 case ReorderingMode::Opcode: 1796 return "Opcode"; 1797 case ReorderingMode::Constant: 1798 return "Constant"; 1799 case ReorderingMode::Splat: 1800 return "Splat"; 1801 case ReorderingMode::Failed: 1802 return "Failed"; 1803 } 1804 llvm_unreachable("Unimplemented Reordering Type"); 1805 } 1806 1807 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1808 raw_ostream &OS) { 1809 return OS << getModeStr(RMode); 1810 } 1811 1812 /// Debug print. 1813 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1814 printMode(RMode, dbgs()); 1815 } 1816 1817 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1818 return printMode(RMode, OS); 1819 } 1820 1821 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1822 const unsigned Indent = 2; 1823 unsigned Cnt = 0; 1824 for (const OperandDataVec &OpDataVec : OpsVec) { 1825 OS << "Operand " << Cnt++ << "\n"; 1826 for (const OperandData &OpData : OpDataVec) { 1827 OS.indent(Indent) << "{"; 1828 if (Value *V = OpData.V) 1829 OS << *V; 1830 else 1831 OS << "null"; 1832 OS << ", APO:" << OpData.APO << "}\n"; 1833 } 1834 OS << "\n"; 1835 } 1836 return OS; 1837 } 1838 1839 /// Debug print. 1840 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1841 #endif 1842 }; 1843 1844 /// Checks if the instruction is marked for deletion. 1845 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1846 1847 /// Marks values operands for later deletion by replacing them with Undefs. 1848 void eraseInstructions(ArrayRef<Value *> AV); 1849 1850 ~BoUpSLP(); 1851 1852 private: 1853 /// Checks if all users of \p I are the part of the vectorization tree. 1854 bool areAllUsersVectorized(Instruction *I, 1855 ArrayRef<Value *> VectorizedVals) const; 1856 1857 /// \returns the cost of the vectorizable entry. 1858 InstructionCost getEntryCost(const TreeEntry *E, 1859 ArrayRef<Value *> VectorizedVals); 1860 1861 /// This is the recursive part of buildTree. 1862 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1863 const EdgeInfo &EI); 1864 1865 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1866 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1867 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1868 /// returns false, setting \p CurrentOrder to either an empty vector or a 1869 /// non-identity permutation that allows to reuse extract instructions. 1870 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1871 SmallVectorImpl<unsigned> &CurrentOrder) const; 1872 1873 /// Vectorize a single entry in the tree. 1874 Value *vectorizeTree(TreeEntry *E); 1875 1876 /// Vectorize a single entry in the tree, starting in \p VL. 1877 Value *vectorizeTree(ArrayRef<Value *> VL); 1878 1879 /// \returns the scalarization cost for this type. Scalarization in this 1880 /// context means the creation of vectors from a group of scalars. If \p 1881 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1882 /// vector elements. 1883 InstructionCost getGatherCost(FixedVectorType *Ty, 1884 const DenseSet<unsigned> &ShuffledIndices, 1885 bool NeedToShuffle) const; 1886 1887 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1888 /// tree entries. 1889 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1890 /// previous tree entries. \p Mask is filled with the shuffle mask. 1891 Optional<TargetTransformInfo::ShuffleKind> 1892 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1893 SmallVectorImpl<const TreeEntry *> &Entries); 1894 1895 /// \returns the scalarization cost for this list of values. Assuming that 1896 /// this subtree gets vectorized, we may need to extract the values from the 1897 /// roots. This method calculates the cost of extracting the values. 1898 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1899 1900 /// Set the Builder insert point to one after the last instruction in 1901 /// the bundle 1902 void setInsertPointAfterBundle(const TreeEntry *E); 1903 1904 /// \returns a vector from a collection of scalars in \p VL. 1905 Value *gather(ArrayRef<Value *> VL); 1906 1907 /// \returns whether the VectorizableTree is fully vectorizable and will 1908 /// be beneficial even the tree height is tiny. 1909 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1910 1911 /// Reorder commutative or alt operands to get better probability of 1912 /// generating vectorized code. 1913 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1914 SmallVectorImpl<Value *> &Left, 1915 SmallVectorImpl<Value *> &Right, 1916 const DataLayout &DL, 1917 ScalarEvolution &SE, 1918 const BoUpSLP &R); 1919 struct TreeEntry { 1920 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1921 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1922 1923 /// \returns true if the scalars in VL are equal to this entry. 1924 bool isSame(ArrayRef<Value *> VL) const { 1925 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1926 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1927 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1928 return VL.size() == Mask.size() && 1929 std::equal(VL.begin(), VL.end(), Mask.begin(), 1930 [Scalars](Value *V, int Idx) { 1931 return (isa<UndefValue>(V) && 1932 Idx == UndefMaskElem) || 1933 (Idx != UndefMaskElem && V == Scalars[Idx]); 1934 }); 1935 }; 1936 if (!ReorderIndices.empty()) { 1937 // TODO: implement matching if the nodes are just reordered, still can 1938 // treat the vector as the same if the list of scalars matches VL 1939 // directly, without reordering. 1940 SmallVector<int> Mask; 1941 inversePermutation(ReorderIndices, Mask); 1942 if (VL.size() == Scalars.size()) 1943 return IsSame(Scalars, Mask); 1944 if (VL.size() == ReuseShuffleIndices.size()) { 1945 ::addMask(Mask, ReuseShuffleIndices); 1946 return IsSame(Scalars, Mask); 1947 } 1948 return false; 1949 } 1950 return IsSame(Scalars, ReuseShuffleIndices); 1951 } 1952 1953 /// \returns true if current entry has same operands as \p TE. 1954 bool hasEqualOperands(const TreeEntry &TE) const { 1955 if (TE.getNumOperands() != getNumOperands()) 1956 return false; 1957 SmallBitVector Used(getNumOperands()); 1958 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1959 unsigned PrevCount = Used.count(); 1960 for (unsigned K = 0; K < E; ++K) { 1961 if (Used.test(K)) 1962 continue; 1963 if (getOperand(K) == TE.getOperand(I)) { 1964 Used.set(K); 1965 break; 1966 } 1967 } 1968 // Check if we actually found the matching operand. 1969 if (PrevCount == Used.count()) 1970 return false; 1971 } 1972 return true; 1973 } 1974 1975 /// \return Final vectorization factor for the node. Defined by the total 1976 /// number of vectorized scalars, including those, used several times in the 1977 /// entry and counted in the \a ReuseShuffleIndices, if any. 1978 unsigned getVectorFactor() const { 1979 if (!ReuseShuffleIndices.empty()) 1980 return ReuseShuffleIndices.size(); 1981 return Scalars.size(); 1982 }; 1983 1984 /// A vector of scalars. 1985 ValueList Scalars; 1986 1987 /// The Scalars are vectorized into this value. It is initialized to Null. 1988 Value *VectorizedValue = nullptr; 1989 1990 /// Do we need to gather this sequence or vectorize it 1991 /// (either with vector instruction or with scatter/gather 1992 /// intrinsics for store/load)? 1993 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1994 EntryState State; 1995 1996 /// Does this sequence require some shuffling? 1997 SmallVector<int, 4> ReuseShuffleIndices; 1998 1999 /// Does this entry require reordering? 2000 SmallVector<unsigned, 4> ReorderIndices; 2001 2002 /// Points back to the VectorizableTree. 2003 /// 2004 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2005 /// to be a pointer and needs to be able to initialize the child iterator. 2006 /// Thus we need a reference back to the container to translate the indices 2007 /// to entries. 2008 VecTreeTy &Container; 2009 2010 /// The TreeEntry index containing the user of this entry. We can actually 2011 /// have multiple users so the data structure is not truly a tree. 2012 SmallVector<EdgeInfo, 1> UserTreeIndices; 2013 2014 /// The index of this treeEntry in VectorizableTree. 2015 int Idx = -1; 2016 2017 private: 2018 /// The operands of each instruction in each lane Operands[op_index][lane]. 2019 /// Note: This helps avoid the replication of the code that performs the 2020 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2021 SmallVector<ValueList, 2> Operands; 2022 2023 /// The main/alternate instruction. 2024 Instruction *MainOp = nullptr; 2025 Instruction *AltOp = nullptr; 2026 2027 public: 2028 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2029 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2030 if (Operands.size() < OpIdx + 1) 2031 Operands.resize(OpIdx + 1); 2032 assert(Operands[OpIdx].empty() && "Already resized?"); 2033 assert(OpVL.size() <= Scalars.size() && 2034 "Number of operands is greater than the number of scalars."); 2035 Operands[OpIdx].resize(OpVL.size()); 2036 copy(OpVL, Operands[OpIdx].begin()); 2037 } 2038 2039 /// Set the operands of this bundle in their original order. 2040 void setOperandsInOrder() { 2041 assert(Operands.empty() && "Already initialized?"); 2042 auto *I0 = cast<Instruction>(Scalars[0]); 2043 Operands.resize(I0->getNumOperands()); 2044 unsigned NumLanes = Scalars.size(); 2045 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2046 OpIdx != NumOperands; ++OpIdx) { 2047 Operands[OpIdx].resize(NumLanes); 2048 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2049 auto *I = cast<Instruction>(Scalars[Lane]); 2050 assert(I->getNumOperands() == NumOperands && 2051 "Expected same number of operands"); 2052 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2053 } 2054 } 2055 } 2056 2057 /// Reorders operands of the node to the given mask \p Mask. 2058 void reorderOperands(ArrayRef<int> Mask) { 2059 for (ValueList &Operand : Operands) 2060 reorderScalars(Operand, Mask); 2061 } 2062 2063 /// \returns the \p OpIdx operand of this TreeEntry. 2064 ValueList &getOperand(unsigned OpIdx) { 2065 assert(OpIdx < Operands.size() && "Off bounds"); 2066 return Operands[OpIdx]; 2067 } 2068 2069 /// \returns the \p OpIdx operand of this TreeEntry. 2070 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2071 assert(OpIdx < Operands.size() && "Off bounds"); 2072 return Operands[OpIdx]; 2073 } 2074 2075 /// \returns the number of operands. 2076 unsigned getNumOperands() const { return Operands.size(); } 2077 2078 /// \return the single \p OpIdx operand. 2079 Value *getSingleOperand(unsigned OpIdx) const { 2080 assert(OpIdx < Operands.size() && "Off bounds"); 2081 assert(!Operands[OpIdx].empty() && "No operand available"); 2082 return Operands[OpIdx][0]; 2083 } 2084 2085 /// Some of the instructions in the list have alternate opcodes. 2086 bool isAltShuffle() const { return MainOp != AltOp; } 2087 2088 bool isOpcodeOrAlt(Instruction *I) const { 2089 unsigned CheckedOpcode = I->getOpcode(); 2090 return (getOpcode() == CheckedOpcode || 2091 getAltOpcode() == CheckedOpcode); 2092 } 2093 2094 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2095 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2096 /// \p OpValue. 2097 Value *isOneOf(Value *Op) const { 2098 auto *I = dyn_cast<Instruction>(Op); 2099 if (I && isOpcodeOrAlt(I)) 2100 return Op; 2101 return MainOp; 2102 } 2103 2104 void setOperations(const InstructionsState &S) { 2105 MainOp = S.MainOp; 2106 AltOp = S.AltOp; 2107 } 2108 2109 Instruction *getMainOp() const { 2110 return MainOp; 2111 } 2112 2113 Instruction *getAltOp() const { 2114 return AltOp; 2115 } 2116 2117 /// The main/alternate opcodes for the list of instructions. 2118 unsigned getOpcode() const { 2119 return MainOp ? MainOp->getOpcode() : 0; 2120 } 2121 2122 unsigned getAltOpcode() const { 2123 return AltOp ? AltOp->getOpcode() : 0; 2124 } 2125 2126 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2127 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2128 int findLaneForValue(Value *V) const { 2129 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2130 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2131 if (!ReorderIndices.empty()) 2132 FoundLane = ReorderIndices[FoundLane]; 2133 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2134 if (!ReuseShuffleIndices.empty()) { 2135 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2136 find(ReuseShuffleIndices, FoundLane)); 2137 } 2138 return FoundLane; 2139 } 2140 2141 #ifndef NDEBUG 2142 /// Debug printer. 2143 LLVM_DUMP_METHOD void dump() const { 2144 dbgs() << Idx << ".\n"; 2145 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2146 dbgs() << "Operand " << OpI << ":\n"; 2147 for (const Value *V : Operands[OpI]) 2148 dbgs().indent(2) << *V << "\n"; 2149 } 2150 dbgs() << "Scalars: \n"; 2151 for (Value *V : Scalars) 2152 dbgs().indent(2) << *V << "\n"; 2153 dbgs() << "State: "; 2154 switch (State) { 2155 case Vectorize: 2156 dbgs() << "Vectorize\n"; 2157 break; 2158 case ScatterVectorize: 2159 dbgs() << "ScatterVectorize\n"; 2160 break; 2161 case NeedToGather: 2162 dbgs() << "NeedToGather\n"; 2163 break; 2164 } 2165 dbgs() << "MainOp: "; 2166 if (MainOp) 2167 dbgs() << *MainOp << "\n"; 2168 else 2169 dbgs() << "NULL\n"; 2170 dbgs() << "AltOp: "; 2171 if (AltOp) 2172 dbgs() << *AltOp << "\n"; 2173 else 2174 dbgs() << "NULL\n"; 2175 dbgs() << "VectorizedValue: "; 2176 if (VectorizedValue) 2177 dbgs() << *VectorizedValue << "\n"; 2178 else 2179 dbgs() << "NULL\n"; 2180 dbgs() << "ReuseShuffleIndices: "; 2181 if (ReuseShuffleIndices.empty()) 2182 dbgs() << "Empty"; 2183 else 2184 for (int ReuseIdx : ReuseShuffleIndices) 2185 dbgs() << ReuseIdx << ", "; 2186 dbgs() << "\n"; 2187 dbgs() << "ReorderIndices: "; 2188 for (unsigned ReorderIdx : ReorderIndices) 2189 dbgs() << ReorderIdx << ", "; 2190 dbgs() << "\n"; 2191 dbgs() << "UserTreeIndices: "; 2192 for (const auto &EInfo : UserTreeIndices) 2193 dbgs() << EInfo << ", "; 2194 dbgs() << "\n"; 2195 } 2196 #endif 2197 }; 2198 2199 #ifndef NDEBUG 2200 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2201 InstructionCost VecCost, 2202 InstructionCost ScalarCost) const { 2203 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2204 dbgs() << "SLP: Costs:\n"; 2205 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2206 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2207 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2208 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2209 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2210 } 2211 #endif 2212 2213 /// Create a new VectorizableTree entry. 2214 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2215 const InstructionsState &S, 2216 const EdgeInfo &UserTreeIdx, 2217 ArrayRef<int> ReuseShuffleIndices = None, 2218 ArrayRef<unsigned> ReorderIndices = None) { 2219 TreeEntry::EntryState EntryState = 2220 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2221 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2222 ReuseShuffleIndices, ReorderIndices); 2223 } 2224 2225 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2226 TreeEntry::EntryState EntryState, 2227 Optional<ScheduleData *> Bundle, 2228 const InstructionsState &S, 2229 const EdgeInfo &UserTreeIdx, 2230 ArrayRef<int> ReuseShuffleIndices = None, 2231 ArrayRef<unsigned> ReorderIndices = None) { 2232 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2233 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2234 "Need to vectorize gather entry?"); 2235 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2236 TreeEntry *Last = VectorizableTree.back().get(); 2237 Last->Idx = VectorizableTree.size() - 1; 2238 Last->State = EntryState; 2239 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2240 ReuseShuffleIndices.end()); 2241 if (ReorderIndices.empty()) { 2242 Last->Scalars.assign(VL.begin(), VL.end()); 2243 Last->setOperations(S); 2244 } else { 2245 // Reorder scalars and build final mask. 2246 Last->Scalars.assign(VL.size(), nullptr); 2247 transform(ReorderIndices, Last->Scalars.begin(), 2248 [VL](unsigned Idx) -> Value * { 2249 if (Idx >= VL.size()) 2250 return UndefValue::get(VL.front()->getType()); 2251 return VL[Idx]; 2252 }); 2253 InstructionsState S = getSameOpcode(Last->Scalars); 2254 Last->setOperations(S); 2255 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2256 } 2257 if (Last->State != TreeEntry::NeedToGather) { 2258 for (Value *V : VL) { 2259 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2260 ScalarToTreeEntry[V] = Last; 2261 } 2262 // Update the scheduler bundle to point to this TreeEntry. 2263 unsigned Lane = 0; 2264 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2265 BundleMember = BundleMember->NextInBundle) { 2266 BundleMember->TE = Last; 2267 BundleMember->Lane = Lane; 2268 ++Lane; 2269 } 2270 assert((!Bundle.getValue() || Lane == VL.size()) && 2271 "Bundle and VL out of sync"); 2272 } else { 2273 MustGather.insert(VL.begin(), VL.end()); 2274 } 2275 2276 if (UserTreeIdx.UserTE) 2277 Last->UserTreeIndices.push_back(UserTreeIdx); 2278 2279 return Last; 2280 } 2281 2282 /// -- Vectorization State -- 2283 /// Holds all of the tree entries. 2284 TreeEntry::VecTreeTy VectorizableTree; 2285 2286 #ifndef NDEBUG 2287 /// Debug printer. 2288 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2289 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2290 VectorizableTree[Id]->dump(); 2291 dbgs() << "\n"; 2292 } 2293 } 2294 #endif 2295 2296 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2297 2298 const TreeEntry *getTreeEntry(Value *V) const { 2299 return ScalarToTreeEntry.lookup(V); 2300 } 2301 2302 /// Maps a specific scalar to its tree entry. 2303 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2304 2305 /// Maps a value to the proposed vectorizable size. 2306 SmallDenseMap<Value *, unsigned> InstrElementSize; 2307 2308 /// A list of scalars that we found that we need to keep as scalars. 2309 ValueSet MustGather; 2310 2311 /// This POD struct describes one external user in the vectorized tree. 2312 struct ExternalUser { 2313 ExternalUser(Value *S, llvm::User *U, int L) 2314 : Scalar(S), User(U), Lane(L) {} 2315 2316 // Which scalar in our function. 2317 Value *Scalar; 2318 2319 // Which user that uses the scalar. 2320 llvm::User *User; 2321 2322 // Which lane does the scalar belong to. 2323 int Lane; 2324 }; 2325 using UserList = SmallVector<ExternalUser, 16>; 2326 2327 /// Checks if two instructions may access the same memory. 2328 /// 2329 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2330 /// is invariant in the calling loop. 2331 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2332 Instruction *Inst2) { 2333 // First check if the result is already in the cache. 2334 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2335 Optional<bool> &result = AliasCache[key]; 2336 if (result.hasValue()) { 2337 return result.getValue(); 2338 } 2339 bool aliased = true; 2340 if (Loc1.Ptr && isSimple(Inst1)) 2341 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2342 // Store the result in the cache. 2343 result = aliased; 2344 return aliased; 2345 } 2346 2347 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2348 2349 /// Cache for alias results. 2350 /// TODO: consider moving this to the AliasAnalysis itself. 2351 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2352 2353 /// Removes an instruction from its block and eventually deletes it. 2354 /// It's like Instruction::eraseFromParent() except that the actual deletion 2355 /// is delayed until BoUpSLP is destructed. 2356 /// This is required to ensure that there are no incorrect collisions in the 2357 /// AliasCache, which can happen if a new instruction is allocated at the 2358 /// same address as a previously deleted instruction. 2359 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2360 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2361 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2362 } 2363 2364 /// Temporary store for deleted instructions. Instructions will be deleted 2365 /// eventually when the BoUpSLP is destructed. 2366 DenseMap<Instruction *, bool> DeletedInstructions; 2367 2368 /// A list of values that need to extracted out of the tree. 2369 /// This list holds pairs of (Internal Scalar : External User). External User 2370 /// can be nullptr, it means that this Internal Scalar will be used later, 2371 /// after vectorization. 2372 UserList ExternalUses; 2373 2374 /// Values used only by @llvm.assume calls. 2375 SmallPtrSet<const Value *, 32> EphValues; 2376 2377 /// Holds all of the instructions that we gathered. 2378 SetVector<Instruction *> GatherShuffleSeq; 2379 2380 /// A list of blocks that we are going to CSE. 2381 SetVector<BasicBlock *> CSEBlocks; 2382 2383 /// Contains all scheduling relevant data for an instruction. 2384 /// A ScheduleData either represents a single instruction or a member of an 2385 /// instruction bundle (= a group of instructions which is combined into a 2386 /// vector instruction). 2387 struct ScheduleData { 2388 // The initial value for the dependency counters. It means that the 2389 // dependencies are not calculated yet. 2390 enum { InvalidDeps = -1 }; 2391 2392 ScheduleData() = default; 2393 2394 void init(int BlockSchedulingRegionID, Value *OpVal) { 2395 FirstInBundle = this; 2396 NextInBundle = nullptr; 2397 NextLoadStore = nullptr; 2398 IsScheduled = false; 2399 SchedulingRegionID = BlockSchedulingRegionID; 2400 UnscheduledDepsInBundle = UnscheduledDeps; 2401 clearDependencies(); 2402 OpValue = OpVal; 2403 TE = nullptr; 2404 Lane = -1; 2405 } 2406 2407 /// Returns true if the dependency information has been calculated. 2408 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2409 2410 /// Returns true for single instructions and for bundle representatives 2411 /// (= the head of a bundle). 2412 bool isSchedulingEntity() const { return FirstInBundle == this; } 2413 2414 /// Returns true if it represents an instruction bundle and not only a 2415 /// single instruction. 2416 bool isPartOfBundle() const { 2417 return NextInBundle != nullptr || FirstInBundle != this; 2418 } 2419 2420 /// Returns true if it is ready for scheduling, i.e. it has no more 2421 /// unscheduled depending instructions/bundles. 2422 bool isReady() const { 2423 assert(isSchedulingEntity() && 2424 "can't consider non-scheduling entity for ready list"); 2425 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2426 } 2427 2428 /// Modifies the number of unscheduled dependencies, also updating it for 2429 /// the whole bundle. 2430 int incrementUnscheduledDeps(int Incr) { 2431 UnscheduledDeps += Incr; 2432 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2433 } 2434 2435 /// Sets the number of unscheduled dependencies to the number of 2436 /// dependencies. 2437 void resetUnscheduledDeps() { 2438 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2439 } 2440 2441 /// Clears all dependency information. 2442 void clearDependencies() { 2443 Dependencies = InvalidDeps; 2444 resetUnscheduledDeps(); 2445 MemoryDependencies.clear(); 2446 } 2447 2448 void dump(raw_ostream &os) const { 2449 if (!isSchedulingEntity()) { 2450 os << "/ " << *Inst; 2451 } else if (NextInBundle) { 2452 os << '[' << *Inst; 2453 ScheduleData *SD = NextInBundle; 2454 while (SD) { 2455 os << ';' << *SD->Inst; 2456 SD = SD->NextInBundle; 2457 } 2458 os << ']'; 2459 } else { 2460 os << *Inst; 2461 } 2462 } 2463 2464 Instruction *Inst = nullptr; 2465 2466 /// Points to the head in an instruction bundle (and always to this for 2467 /// single instructions). 2468 ScheduleData *FirstInBundle = nullptr; 2469 2470 /// Single linked list of all instructions in a bundle. Null if it is a 2471 /// single instruction. 2472 ScheduleData *NextInBundle = nullptr; 2473 2474 /// Single linked list of all memory instructions (e.g. load, store, call) 2475 /// in the block - until the end of the scheduling region. 2476 ScheduleData *NextLoadStore = nullptr; 2477 2478 /// The dependent memory instructions. 2479 /// This list is derived on demand in calculateDependencies(). 2480 SmallVector<ScheduleData *, 4> MemoryDependencies; 2481 2482 /// This ScheduleData is in the current scheduling region if this matches 2483 /// the current SchedulingRegionID of BlockScheduling. 2484 int SchedulingRegionID = 0; 2485 2486 /// Used for getting a "good" final ordering of instructions. 2487 int SchedulingPriority = 0; 2488 2489 /// The number of dependencies. Constitutes of the number of users of the 2490 /// instruction plus the number of dependent memory instructions (if any). 2491 /// This value is calculated on demand. 2492 /// If InvalidDeps, the number of dependencies is not calculated yet. 2493 int Dependencies = InvalidDeps; 2494 2495 /// The number of dependencies minus the number of dependencies of scheduled 2496 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2497 /// for scheduling. 2498 /// Note that this is negative as long as Dependencies is not calculated. 2499 int UnscheduledDeps = InvalidDeps; 2500 2501 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2502 /// single instructions. 2503 int UnscheduledDepsInBundle = InvalidDeps; 2504 2505 /// True if this instruction is scheduled (or considered as scheduled in the 2506 /// dry-run). 2507 bool IsScheduled = false; 2508 2509 /// Opcode of the current instruction in the schedule data. 2510 Value *OpValue = nullptr; 2511 2512 /// The TreeEntry that this instruction corresponds to. 2513 TreeEntry *TE = nullptr; 2514 2515 /// The lane of this node in the TreeEntry. 2516 int Lane = -1; 2517 }; 2518 2519 #ifndef NDEBUG 2520 friend inline raw_ostream &operator<<(raw_ostream &os, 2521 const BoUpSLP::ScheduleData &SD) { 2522 SD.dump(os); 2523 return os; 2524 } 2525 #endif 2526 2527 friend struct GraphTraits<BoUpSLP *>; 2528 friend struct DOTGraphTraits<BoUpSLP *>; 2529 2530 /// Contains all scheduling data for a basic block. 2531 struct BlockScheduling { 2532 BlockScheduling(BasicBlock *BB) 2533 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2534 2535 void clear() { 2536 ReadyInsts.clear(); 2537 ScheduleStart = nullptr; 2538 ScheduleEnd = nullptr; 2539 FirstLoadStoreInRegion = nullptr; 2540 LastLoadStoreInRegion = nullptr; 2541 2542 // Reduce the maximum schedule region size by the size of the 2543 // previous scheduling run. 2544 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2545 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2546 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2547 ScheduleRegionSize = 0; 2548 2549 // Make a new scheduling region, i.e. all existing ScheduleData is not 2550 // in the new region yet. 2551 ++SchedulingRegionID; 2552 } 2553 2554 ScheduleData *getScheduleData(Value *V) { 2555 ScheduleData *SD = ScheduleDataMap[V]; 2556 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2557 return SD; 2558 return nullptr; 2559 } 2560 2561 ScheduleData *getScheduleData(Value *V, Value *Key) { 2562 if (V == Key) 2563 return getScheduleData(V); 2564 auto I = ExtraScheduleDataMap.find(V); 2565 if (I != ExtraScheduleDataMap.end()) { 2566 ScheduleData *SD = I->second[Key]; 2567 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2568 return SD; 2569 } 2570 return nullptr; 2571 } 2572 2573 bool isInSchedulingRegion(ScheduleData *SD) const { 2574 return SD->SchedulingRegionID == SchedulingRegionID; 2575 } 2576 2577 /// Marks an instruction as scheduled and puts all dependent ready 2578 /// instructions into the ready-list. 2579 template <typename ReadyListType> 2580 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2581 SD->IsScheduled = true; 2582 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2583 2584 for (ScheduleData *BundleMember = SD; BundleMember; 2585 BundleMember = BundleMember->NextInBundle) { 2586 if (BundleMember->Inst != BundleMember->OpValue) 2587 continue; 2588 2589 // Handle the def-use chain dependencies. 2590 2591 // Decrement the unscheduled counter and insert to ready list if ready. 2592 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2593 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2594 if (OpDef && OpDef->hasValidDependencies() && 2595 OpDef->incrementUnscheduledDeps(-1) == 0) { 2596 // There are no more unscheduled dependencies after 2597 // decrementing, so we can put the dependent instruction 2598 // into the ready list. 2599 ScheduleData *DepBundle = OpDef->FirstInBundle; 2600 assert(!DepBundle->IsScheduled && 2601 "already scheduled bundle gets ready"); 2602 ReadyList.insert(DepBundle); 2603 LLVM_DEBUG(dbgs() 2604 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2605 } 2606 }); 2607 }; 2608 2609 // If BundleMember is a vector bundle, its operands may have been 2610 // reordered duiring buildTree(). We therefore need to get its operands 2611 // through the TreeEntry. 2612 if (TreeEntry *TE = BundleMember->TE) { 2613 int Lane = BundleMember->Lane; 2614 assert(Lane >= 0 && "Lane not set"); 2615 2616 // Since vectorization tree is being built recursively this assertion 2617 // ensures that the tree entry has all operands set before reaching 2618 // this code. Couple of exceptions known at the moment are extracts 2619 // where their second (immediate) operand is not added. Since 2620 // immediates do not affect scheduler behavior this is considered 2621 // okay. 2622 auto *In = TE->getMainOp(); 2623 assert(In && 2624 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2625 In->getNumOperands() == TE->getNumOperands()) && 2626 "Missed TreeEntry operands?"); 2627 (void)In; // fake use to avoid build failure when assertions disabled 2628 2629 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2630 OpIdx != NumOperands; ++OpIdx) 2631 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2632 DecrUnsched(I); 2633 } else { 2634 // If BundleMember is a stand-alone instruction, no operand reordering 2635 // has taken place, so we directly access its operands. 2636 for (Use &U : BundleMember->Inst->operands()) 2637 if (auto *I = dyn_cast<Instruction>(U.get())) 2638 DecrUnsched(I); 2639 } 2640 // Handle the memory dependencies. 2641 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2642 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2643 // There are no more unscheduled dependencies after decrementing, 2644 // so we can put the dependent instruction into the ready list. 2645 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2646 assert(!DepBundle->IsScheduled && 2647 "already scheduled bundle gets ready"); 2648 ReadyList.insert(DepBundle); 2649 LLVM_DEBUG(dbgs() 2650 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2651 } 2652 } 2653 } 2654 } 2655 2656 void doForAllOpcodes(Value *V, 2657 function_ref<void(ScheduleData *SD)> Action) { 2658 if (ScheduleData *SD = getScheduleData(V)) 2659 Action(SD); 2660 auto I = ExtraScheduleDataMap.find(V); 2661 if (I != ExtraScheduleDataMap.end()) 2662 for (auto &P : I->second) 2663 if (P.second->SchedulingRegionID == SchedulingRegionID) 2664 Action(P.second); 2665 } 2666 2667 /// Put all instructions into the ReadyList which are ready for scheduling. 2668 template <typename ReadyListType> 2669 void initialFillReadyList(ReadyListType &ReadyList) { 2670 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2671 doForAllOpcodes(I, [&](ScheduleData *SD) { 2672 if (SD->isSchedulingEntity() && SD->isReady()) { 2673 ReadyList.insert(SD); 2674 LLVM_DEBUG(dbgs() 2675 << "SLP: initially in ready list: " << *I << "\n"); 2676 } 2677 }); 2678 } 2679 } 2680 2681 /// Build a bundle from the ScheduleData nodes corresponding to the 2682 /// scalar instruction for each lane. 2683 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2684 2685 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2686 /// cyclic dependencies. This is only a dry-run, no instructions are 2687 /// actually moved at this stage. 2688 /// \returns the scheduling bundle. The returned Optional value is non-None 2689 /// if \p VL is allowed to be scheduled. 2690 Optional<ScheduleData *> 2691 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2692 const InstructionsState &S); 2693 2694 /// Un-bundles a group of instructions. 2695 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2696 2697 /// Allocates schedule data chunk. 2698 ScheduleData *allocateScheduleDataChunks(); 2699 2700 /// Extends the scheduling region so that V is inside the region. 2701 /// \returns true if the region size is within the limit. 2702 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2703 2704 /// Initialize the ScheduleData structures for new instructions in the 2705 /// scheduling region. 2706 void initScheduleData(Instruction *FromI, Instruction *ToI, 2707 ScheduleData *PrevLoadStore, 2708 ScheduleData *NextLoadStore); 2709 2710 /// Updates the dependency information of a bundle and of all instructions/ 2711 /// bundles which depend on the original bundle. 2712 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2713 BoUpSLP *SLP); 2714 2715 /// Sets all instruction in the scheduling region to un-scheduled. 2716 void resetSchedule(); 2717 2718 BasicBlock *BB; 2719 2720 /// Simple memory allocation for ScheduleData. 2721 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2722 2723 /// The size of a ScheduleData array in ScheduleDataChunks. 2724 int ChunkSize; 2725 2726 /// The allocator position in the current chunk, which is the last entry 2727 /// of ScheduleDataChunks. 2728 int ChunkPos; 2729 2730 /// Attaches ScheduleData to Instruction. 2731 /// Note that the mapping survives during all vectorization iterations, i.e. 2732 /// ScheduleData structures are recycled. 2733 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2734 2735 /// Attaches ScheduleData to Instruction with the leading key. 2736 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2737 ExtraScheduleDataMap; 2738 2739 struct ReadyList : SmallVector<ScheduleData *, 8> { 2740 void insert(ScheduleData *SD) { push_back(SD); } 2741 }; 2742 2743 /// The ready-list for scheduling (only used for the dry-run). 2744 ReadyList ReadyInsts; 2745 2746 /// The first instruction of the scheduling region. 2747 Instruction *ScheduleStart = nullptr; 2748 2749 /// The first instruction _after_ the scheduling region. 2750 Instruction *ScheduleEnd = nullptr; 2751 2752 /// The first memory accessing instruction in the scheduling region 2753 /// (can be null). 2754 ScheduleData *FirstLoadStoreInRegion = nullptr; 2755 2756 /// The last memory accessing instruction in the scheduling region 2757 /// (can be null). 2758 ScheduleData *LastLoadStoreInRegion = nullptr; 2759 2760 /// The current size of the scheduling region. 2761 int ScheduleRegionSize = 0; 2762 2763 /// The maximum size allowed for the scheduling region. 2764 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2765 2766 /// The ID of the scheduling region. For a new vectorization iteration this 2767 /// is incremented which "removes" all ScheduleData from the region. 2768 // Make sure that the initial SchedulingRegionID is greater than the 2769 // initial SchedulingRegionID in ScheduleData (which is 0). 2770 int SchedulingRegionID = 1; 2771 }; 2772 2773 /// Attaches the BlockScheduling structures to basic blocks. 2774 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2775 2776 /// Performs the "real" scheduling. Done before vectorization is actually 2777 /// performed in a basic block. 2778 void scheduleBlock(BlockScheduling *BS); 2779 2780 /// List of users to ignore during scheduling and that don't need extracting. 2781 ArrayRef<Value *> UserIgnoreList; 2782 2783 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2784 /// sorted SmallVectors of unsigned. 2785 struct OrdersTypeDenseMapInfo { 2786 static OrdersType getEmptyKey() { 2787 OrdersType V; 2788 V.push_back(~1U); 2789 return V; 2790 } 2791 2792 static OrdersType getTombstoneKey() { 2793 OrdersType V; 2794 V.push_back(~2U); 2795 return V; 2796 } 2797 2798 static unsigned getHashValue(const OrdersType &V) { 2799 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2800 } 2801 2802 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2803 return LHS == RHS; 2804 } 2805 }; 2806 2807 // Analysis and block reference. 2808 Function *F; 2809 ScalarEvolution *SE; 2810 TargetTransformInfo *TTI; 2811 TargetLibraryInfo *TLI; 2812 AAResults *AA; 2813 LoopInfo *LI; 2814 DominatorTree *DT; 2815 AssumptionCache *AC; 2816 DemandedBits *DB; 2817 const DataLayout *DL; 2818 OptimizationRemarkEmitter *ORE; 2819 2820 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2821 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2822 2823 /// Instruction builder to construct the vectorized tree. 2824 IRBuilder<> Builder; 2825 2826 /// A map of scalar integer values to the smallest bit width with which they 2827 /// can legally be represented. The values map to (width, signed) pairs, 2828 /// where "width" indicates the minimum bit width and "signed" is True if the 2829 /// value must be signed-extended, rather than zero-extended, back to its 2830 /// original width. 2831 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2832 }; 2833 2834 } // end namespace slpvectorizer 2835 2836 template <> struct GraphTraits<BoUpSLP *> { 2837 using TreeEntry = BoUpSLP::TreeEntry; 2838 2839 /// NodeRef has to be a pointer per the GraphWriter. 2840 using NodeRef = TreeEntry *; 2841 2842 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2843 2844 /// Add the VectorizableTree to the index iterator to be able to return 2845 /// TreeEntry pointers. 2846 struct ChildIteratorType 2847 : public iterator_adaptor_base< 2848 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2849 ContainerTy &VectorizableTree; 2850 2851 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2852 ContainerTy &VT) 2853 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2854 2855 NodeRef operator*() { return I->UserTE; } 2856 }; 2857 2858 static NodeRef getEntryNode(BoUpSLP &R) { 2859 return R.VectorizableTree[0].get(); 2860 } 2861 2862 static ChildIteratorType child_begin(NodeRef N) { 2863 return {N->UserTreeIndices.begin(), N->Container}; 2864 } 2865 2866 static ChildIteratorType child_end(NodeRef N) { 2867 return {N->UserTreeIndices.end(), N->Container}; 2868 } 2869 2870 /// For the node iterator we just need to turn the TreeEntry iterator into a 2871 /// TreeEntry* iterator so that it dereferences to NodeRef. 2872 class nodes_iterator { 2873 using ItTy = ContainerTy::iterator; 2874 ItTy It; 2875 2876 public: 2877 nodes_iterator(const ItTy &It2) : It(It2) {} 2878 NodeRef operator*() { return It->get(); } 2879 nodes_iterator operator++() { 2880 ++It; 2881 return *this; 2882 } 2883 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2884 }; 2885 2886 static nodes_iterator nodes_begin(BoUpSLP *R) { 2887 return nodes_iterator(R->VectorizableTree.begin()); 2888 } 2889 2890 static nodes_iterator nodes_end(BoUpSLP *R) { 2891 return nodes_iterator(R->VectorizableTree.end()); 2892 } 2893 2894 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2895 }; 2896 2897 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2898 using TreeEntry = BoUpSLP::TreeEntry; 2899 2900 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2901 2902 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2903 std::string Str; 2904 raw_string_ostream OS(Str); 2905 if (isSplat(Entry->Scalars)) 2906 OS << "<splat> "; 2907 for (auto V : Entry->Scalars) { 2908 OS << *V; 2909 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2910 return EU.Scalar == V; 2911 })) 2912 OS << " <extract>"; 2913 OS << "\n"; 2914 } 2915 return Str; 2916 } 2917 2918 static std::string getNodeAttributes(const TreeEntry *Entry, 2919 const BoUpSLP *) { 2920 if (Entry->State == TreeEntry::NeedToGather) 2921 return "color=red"; 2922 return ""; 2923 } 2924 }; 2925 2926 } // end namespace llvm 2927 2928 BoUpSLP::~BoUpSLP() { 2929 for (const auto &Pair : DeletedInstructions) { 2930 // Replace operands of ignored instructions with Undefs in case if they were 2931 // marked for deletion. 2932 if (Pair.getSecond()) { 2933 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2934 Pair.getFirst()->replaceAllUsesWith(Undef); 2935 } 2936 Pair.getFirst()->dropAllReferences(); 2937 } 2938 for (const auto &Pair : DeletedInstructions) { 2939 assert(Pair.getFirst()->use_empty() && 2940 "trying to erase instruction with users."); 2941 Pair.getFirst()->eraseFromParent(); 2942 } 2943 #ifdef EXPENSIVE_CHECKS 2944 // If we could guarantee that this call is not extremely slow, we could 2945 // remove the ifdef limitation (see PR47712). 2946 assert(!verifyFunction(*F, &dbgs())); 2947 #endif 2948 } 2949 2950 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2951 for (auto *V : AV) { 2952 if (auto *I = dyn_cast<Instruction>(V)) 2953 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2954 }; 2955 } 2956 2957 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2958 /// contains original mask for the scalars reused in the node. Procedure 2959 /// transform this mask in accordance with the given \p Mask. 2960 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2961 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2962 "Expected non-empty mask."); 2963 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2964 Prev.swap(Reuses); 2965 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2966 if (Mask[I] != UndefMaskElem) 2967 Reuses[Mask[I]] = Prev[I]; 2968 } 2969 2970 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2971 /// the original order of the scalars. Procedure transforms the provided order 2972 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2973 /// identity order, \p Order is cleared. 2974 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2975 assert(!Mask.empty() && "Expected non-empty mask."); 2976 SmallVector<int> MaskOrder; 2977 if (Order.empty()) { 2978 MaskOrder.resize(Mask.size()); 2979 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2980 } else { 2981 inversePermutation(Order, MaskOrder); 2982 } 2983 reorderReuses(MaskOrder, Mask); 2984 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2985 Order.clear(); 2986 return; 2987 } 2988 Order.assign(Mask.size(), Mask.size()); 2989 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2990 if (MaskOrder[I] != UndefMaskElem) 2991 Order[MaskOrder[I]] = I; 2992 fixupOrderingIndices(Order); 2993 } 2994 2995 Optional<BoUpSLP::OrdersType> 2996 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2997 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2998 unsigned NumScalars = TE.Scalars.size(); 2999 OrdersType CurrentOrder(NumScalars, NumScalars); 3000 SmallVector<int> Positions; 3001 SmallBitVector UsedPositions(NumScalars); 3002 const TreeEntry *STE = nullptr; 3003 // Try to find all gathered scalars that are gets vectorized in other 3004 // vectorize node. Here we can have only one single tree vector node to 3005 // correctly identify order of the gathered scalars. 3006 for (unsigned I = 0; I < NumScalars; ++I) { 3007 Value *V = TE.Scalars[I]; 3008 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3009 continue; 3010 if (const auto *LocalSTE = getTreeEntry(V)) { 3011 if (!STE) 3012 STE = LocalSTE; 3013 else if (STE != LocalSTE) 3014 // Take the order only from the single vector node. 3015 return None; 3016 unsigned Lane = 3017 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3018 if (Lane >= NumScalars) 3019 return None; 3020 if (CurrentOrder[Lane] != NumScalars) { 3021 if (Lane != I) 3022 continue; 3023 UsedPositions.reset(CurrentOrder[Lane]); 3024 } 3025 // The partial identity (where only some elements of the gather node are 3026 // in the identity order) is good. 3027 CurrentOrder[Lane] = I; 3028 UsedPositions.set(I); 3029 } 3030 } 3031 // Need to keep the order if we have a vector entry and at least 2 scalars or 3032 // the vectorized entry has just 2 scalars. 3033 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3034 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3035 for (unsigned I = 0; I < NumScalars; ++I) 3036 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3037 return false; 3038 return true; 3039 }; 3040 if (IsIdentityOrder(CurrentOrder)) { 3041 CurrentOrder.clear(); 3042 return CurrentOrder; 3043 } 3044 auto *It = CurrentOrder.begin(); 3045 for (unsigned I = 0; I < NumScalars;) { 3046 if (UsedPositions.test(I)) { 3047 ++I; 3048 continue; 3049 } 3050 if (*It == NumScalars) { 3051 *It = I; 3052 ++I; 3053 } 3054 ++It; 3055 } 3056 return CurrentOrder; 3057 } 3058 return None; 3059 } 3060 3061 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3062 bool TopToBottom) { 3063 // No need to reorder if need to shuffle reuses, still need to shuffle the 3064 // node. 3065 if (!TE.ReuseShuffleIndices.empty()) 3066 return None; 3067 if (TE.State == TreeEntry::Vectorize && 3068 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3069 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3070 !TE.isAltShuffle()) 3071 return TE.ReorderIndices; 3072 if (TE.State == TreeEntry::NeedToGather) { 3073 // TODO: add analysis of other gather nodes with extractelement 3074 // instructions and other values/instructions, not only undefs. 3075 if (((TE.getOpcode() == Instruction::ExtractElement && 3076 !TE.isAltShuffle()) || 3077 (all_of(TE.Scalars, 3078 [](Value *V) { 3079 return isa<UndefValue, ExtractElementInst>(V); 3080 }) && 3081 any_of(TE.Scalars, 3082 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3083 all_of(TE.Scalars, 3084 [](Value *V) { 3085 auto *EE = dyn_cast<ExtractElementInst>(V); 3086 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3087 }) && 3088 allSameType(TE.Scalars)) { 3089 // Check that gather of extractelements can be represented as 3090 // just a shuffle of a single vector. 3091 OrdersType CurrentOrder; 3092 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3093 if (Reuse || !CurrentOrder.empty()) { 3094 if (!CurrentOrder.empty()) 3095 fixupOrderingIndices(CurrentOrder); 3096 return CurrentOrder; 3097 } 3098 } 3099 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3100 return CurrentOrder; 3101 } 3102 return None; 3103 } 3104 3105 void BoUpSLP::reorderTopToBottom() { 3106 // Maps VF to the graph nodes. 3107 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3108 // ExtractElement gather nodes which can be vectorized and need to handle 3109 // their ordering. 3110 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3111 // Find all reorderable nodes with the given VF. 3112 // Currently the are vectorized stores,loads,extracts + some gathering of 3113 // extracts. 3114 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3115 const std::unique_ptr<TreeEntry> &TE) { 3116 if (Optional<OrdersType> CurrentOrder = 3117 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3118 // Do not include ordering for nodes used in the alt opcode vectorization, 3119 // better to reorder them during bottom-to-top stage. If follow the order 3120 // here, it causes reordering of the whole graph though actually it is 3121 // profitable just to reorder the subgraph that starts from the alternate 3122 // opcode vectorization node. Such nodes already end-up with the shuffle 3123 // instruction and it is just enough to change this shuffle rather than 3124 // rotate the scalars for the whole graph. 3125 unsigned Cnt = 0; 3126 const TreeEntry *UserTE = TE.get(); 3127 while (UserTE && Cnt < RecursionMaxDepth) { 3128 if (UserTE->UserTreeIndices.size() != 1) 3129 break; 3130 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3131 return EI.UserTE->State == TreeEntry::Vectorize && 3132 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3133 })) 3134 return; 3135 if (UserTE->UserTreeIndices.empty()) 3136 UserTE = nullptr; 3137 else 3138 UserTE = UserTE->UserTreeIndices.back().UserTE; 3139 ++Cnt; 3140 } 3141 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3142 if (TE->State != TreeEntry::Vectorize) 3143 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3144 } 3145 }); 3146 3147 // Reorder the graph nodes according to their vectorization factor. 3148 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3149 VF /= 2) { 3150 auto It = VFToOrderedEntries.find(VF); 3151 if (It == VFToOrderedEntries.end()) 3152 continue; 3153 // Try to find the most profitable order. We just are looking for the most 3154 // used order and reorder scalar elements in the nodes according to this 3155 // mostly used order. 3156 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3157 // All operands are reordered and used only in this node - propagate the 3158 // most used order to the user node. 3159 MapVector<OrdersType, unsigned, 3160 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3161 OrdersUses; 3162 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3163 for (const TreeEntry *OpTE : OrderedEntries) { 3164 // No need to reorder this nodes, still need to extend and to use shuffle, 3165 // just need to merge reordering shuffle and the reuse shuffle. 3166 if (!OpTE->ReuseShuffleIndices.empty()) 3167 continue; 3168 // Count number of orders uses. 3169 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3170 if (OpTE->State == TreeEntry::NeedToGather) 3171 return GathersToOrders.find(OpTE)->second; 3172 return OpTE->ReorderIndices; 3173 }(); 3174 // Stores actually store the mask, not the order, need to invert. 3175 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3176 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3177 SmallVector<int> Mask; 3178 inversePermutation(Order, Mask); 3179 unsigned E = Order.size(); 3180 OrdersType CurrentOrder(E, E); 3181 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3182 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3183 }); 3184 fixupOrderingIndices(CurrentOrder); 3185 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3186 } else { 3187 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3188 } 3189 } 3190 // Set order of the user node. 3191 if (OrdersUses.empty()) 3192 continue; 3193 // Choose the most used order. 3194 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3195 unsigned Cnt = OrdersUses.front().second; 3196 for (const auto &Pair : drop_begin(OrdersUses)) { 3197 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3198 BestOrder = Pair.first; 3199 Cnt = Pair.second; 3200 } 3201 } 3202 // Set order of the user node. 3203 if (BestOrder.empty()) 3204 continue; 3205 SmallVector<int> Mask; 3206 inversePermutation(BestOrder, Mask); 3207 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3208 unsigned E = BestOrder.size(); 3209 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3210 return I < E ? static_cast<int>(I) : UndefMaskElem; 3211 }); 3212 // Do an actual reordering, if profitable. 3213 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3214 // Just do the reordering for the nodes with the given VF. 3215 if (TE->Scalars.size() != VF) { 3216 if (TE->ReuseShuffleIndices.size() == VF) { 3217 // Need to reorder the reuses masks of the operands with smaller VF to 3218 // be able to find the match between the graph nodes and scalar 3219 // operands of the given node during vectorization/cost estimation. 3220 assert(all_of(TE->UserTreeIndices, 3221 [VF, &TE](const EdgeInfo &EI) { 3222 return EI.UserTE->Scalars.size() == VF || 3223 EI.UserTE->Scalars.size() == 3224 TE->Scalars.size(); 3225 }) && 3226 "All users must be of VF size."); 3227 // Update ordering of the operands with the smaller VF than the given 3228 // one. 3229 reorderReuses(TE->ReuseShuffleIndices, Mask); 3230 } 3231 continue; 3232 } 3233 if (TE->State == TreeEntry::Vectorize && 3234 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3235 InsertElementInst>(TE->getMainOp()) && 3236 !TE->isAltShuffle()) { 3237 // Build correct orders for extract{element,value}, loads and 3238 // stores. 3239 reorderOrder(TE->ReorderIndices, Mask); 3240 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3241 TE->reorderOperands(Mask); 3242 } else { 3243 // Reorder the node and its operands. 3244 TE->reorderOperands(Mask); 3245 assert(TE->ReorderIndices.empty() && 3246 "Expected empty reorder sequence."); 3247 reorderScalars(TE->Scalars, Mask); 3248 } 3249 if (!TE->ReuseShuffleIndices.empty()) { 3250 // Apply reversed order to keep the original ordering of the reused 3251 // elements to avoid extra reorder indices shuffling. 3252 OrdersType CurrentOrder; 3253 reorderOrder(CurrentOrder, MaskOrder); 3254 SmallVector<int> NewReuses; 3255 inversePermutation(CurrentOrder, NewReuses); 3256 addMask(NewReuses, TE->ReuseShuffleIndices); 3257 TE->ReuseShuffleIndices.swap(NewReuses); 3258 } 3259 } 3260 } 3261 } 3262 3263 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3264 SetVector<TreeEntry *> OrderedEntries; 3265 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3266 // Find all reorderable leaf nodes with the given VF. 3267 // Currently the are vectorized loads,extracts without alternate operands + 3268 // some gathering of extracts. 3269 SmallVector<TreeEntry *> NonVectorized; 3270 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3271 &NonVectorized]( 3272 const std::unique_ptr<TreeEntry> &TE) { 3273 if (TE->State != TreeEntry::Vectorize) 3274 NonVectorized.push_back(TE.get()); 3275 if (Optional<OrdersType> CurrentOrder = 3276 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3277 OrderedEntries.insert(TE.get()); 3278 if (TE->State != TreeEntry::Vectorize) 3279 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3280 } 3281 }); 3282 3283 // Checks if the operands of the users are reordarable and have only single 3284 // use. 3285 auto &&CheckOperands = 3286 [this, &NonVectorized](const auto &Data, 3287 SmallVectorImpl<TreeEntry *> &GatherOps) { 3288 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3289 if (any_of(Data.second, 3290 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3291 return OpData.first == I && 3292 OpData.second->State == TreeEntry::Vectorize; 3293 })) 3294 continue; 3295 ArrayRef<Value *> VL = Data.first->getOperand(I); 3296 const TreeEntry *TE = nullptr; 3297 const auto *It = find_if(VL, [this, &TE](Value *V) { 3298 TE = getTreeEntry(V); 3299 return TE; 3300 }); 3301 if (It != VL.end() && TE->isSame(VL)) 3302 return false; 3303 TreeEntry *Gather = nullptr; 3304 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3305 assert(TE->State != TreeEntry::Vectorize && 3306 "Only non-vectorized nodes are expected."); 3307 if (TE->isSame(VL)) { 3308 Gather = TE; 3309 return true; 3310 } 3311 return false; 3312 }) > 1) 3313 return false; 3314 if (Gather) 3315 GatherOps.push_back(Gather); 3316 } 3317 return true; 3318 }; 3319 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3320 // I.e., if the node has operands, that are reordered, try to make at least 3321 // one operand order in the natural order and reorder others + reorder the 3322 // user node itself. 3323 SmallPtrSet<const TreeEntry *, 4> Visited; 3324 while (!OrderedEntries.empty()) { 3325 // 1. Filter out only reordered nodes. 3326 // 2. If the entry has multiple uses - skip it and jump to the next node. 3327 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3328 SmallVector<TreeEntry *> Filtered; 3329 for (TreeEntry *TE : OrderedEntries) { 3330 if (!(TE->State == TreeEntry::Vectorize || 3331 (TE->State == TreeEntry::NeedToGather && 3332 GathersToOrders.count(TE))) || 3333 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3334 !all_of(drop_begin(TE->UserTreeIndices), 3335 [TE](const EdgeInfo &EI) { 3336 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3337 }) || 3338 !Visited.insert(TE).second) { 3339 Filtered.push_back(TE); 3340 continue; 3341 } 3342 // Build a map between user nodes and their operands order to speedup 3343 // search. The graph currently does not provide this dependency directly. 3344 for (EdgeInfo &EI : TE->UserTreeIndices) { 3345 TreeEntry *UserTE = EI.UserTE; 3346 auto It = Users.find(UserTE); 3347 if (It == Users.end()) 3348 It = Users.insert({UserTE, {}}).first; 3349 It->second.emplace_back(EI.EdgeIdx, TE); 3350 } 3351 } 3352 // Erase filtered entries. 3353 for_each(Filtered, 3354 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3355 for (const auto &Data : Users) { 3356 // Check that operands are used only in the User node. 3357 SmallVector<TreeEntry *> GatherOps; 3358 if (!CheckOperands(Data, GatherOps)) { 3359 for_each(Data.second, 3360 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3361 OrderedEntries.remove(Op.second); 3362 }); 3363 continue; 3364 } 3365 // All operands are reordered and used only in this node - propagate the 3366 // most used order to the user node. 3367 MapVector<OrdersType, unsigned, 3368 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3369 OrdersUses; 3370 // Do the analysis for each tree entry only once, otherwise the order of 3371 // the same node my be considered several times, though might be not 3372 // profitable. 3373 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3374 for (const auto &Op : Data.second) { 3375 TreeEntry *OpTE = Op.second; 3376 if (!VisitedOps.insert(OpTE).second) 3377 continue; 3378 if (!OpTE->ReuseShuffleIndices.empty() || 3379 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3380 continue; 3381 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3382 if (OpTE->State == TreeEntry::NeedToGather) 3383 return GathersToOrders.find(OpTE)->second; 3384 return OpTE->ReorderIndices; 3385 }(); 3386 // Stores actually store the mask, not the order, need to invert. 3387 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3388 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3389 SmallVector<int> Mask; 3390 inversePermutation(Order, Mask); 3391 unsigned E = Order.size(); 3392 OrdersType CurrentOrder(E, E); 3393 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3394 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3395 }); 3396 fixupOrderingIndices(CurrentOrder); 3397 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3398 } else { 3399 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3400 } 3401 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3402 OpTE->UserTreeIndices.size(); 3403 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3404 --OrdersUses[{}]; 3405 } 3406 // If no orders - skip current nodes and jump to the next one, if any. 3407 if (OrdersUses.empty()) { 3408 for_each(Data.second, 3409 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3410 OrderedEntries.remove(Op.second); 3411 }); 3412 continue; 3413 } 3414 // Choose the best order. 3415 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3416 unsigned Cnt = OrdersUses.front().second; 3417 for (const auto &Pair : drop_begin(OrdersUses)) { 3418 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3419 BestOrder = Pair.first; 3420 Cnt = Pair.second; 3421 } 3422 } 3423 // Set order of the user node (reordering of operands and user nodes). 3424 if (BestOrder.empty()) { 3425 for_each(Data.second, 3426 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3427 OrderedEntries.remove(Op.second); 3428 }); 3429 continue; 3430 } 3431 // Erase operands from OrderedEntries list and adjust their orders. 3432 VisitedOps.clear(); 3433 SmallVector<int> Mask; 3434 inversePermutation(BestOrder, Mask); 3435 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3436 unsigned E = BestOrder.size(); 3437 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3438 return I < E ? static_cast<int>(I) : UndefMaskElem; 3439 }); 3440 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3441 TreeEntry *TE = Op.second; 3442 OrderedEntries.remove(TE); 3443 if (!VisitedOps.insert(TE).second) 3444 continue; 3445 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3446 // Just reorder reuses indices. 3447 reorderReuses(TE->ReuseShuffleIndices, Mask); 3448 continue; 3449 } 3450 // Gathers are processed separately. 3451 if (TE->State != TreeEntry::Vectorize) 3452 continue; 3453 assert((BestOrder.size() == TE->ReorderIndices.size() || 3454 TE->ReorderIndices.empty()) && 3455 "Non-matching sizes of user/operand entries."); 3456 reorderOrder(TE->ReorderIndices, Mask); 3457 } 3458 // For gathers just need to reorder its scalars. 3459 for (TreeEntry *Gather : GatherOps) { 3460 assert(Gather->ReorderIndices.empty() && 3461 "Unexpected reordering of gathers."); 3462 if (!Gather->ReuseShuffleIndices.empty()) { 3463 // Just reorder reuses indices. 3464 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3465 continue; 3466 } 3467 reorderScalars(Gather->Scalars, Mask); 3468 OrderedEntries.remove(Gather); 3469 } 3470 // Reorder operands of the user node and set the ordering for the user 3471 // node itself. 3472 if (Data.first->State != TreeEntry::Vectorize || 3473 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3474 Data.first->getMainOp()) || 3475 Data.first->isAltShuffle()) 3476 Data.first->reorderOperands(Mask); 3477 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3478 Data.first->isAltShuffle()) { 3479 reorderScalars(Data.first->Scalars, Mask); 3480 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3481 if (Data.first->ReuseShuffleIndices.empty() && 3482 !Data.first->ReorderIndices.empty() && 3483 !Data.first->isAltShuffle()) { 3484 // Insert user node to the list to try to sink reordering deeper in 3485 // the graph. 3486 OrderedEntries.insert(Data.first); 3487 } 3488 } else { 3489 reorderOrder(Data.first->ReorderIndices, Mask); 3490 } 3491 } 3492 } 3493 // If the reordering is unnecessary, just remove the reorder. 3494 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3495 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3496 VectorizableTree.front()->ReorderIndices.clear(); 3497 } 3498 3499 void BoUpSLP::buildExternalUses( 3500 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3501 // Collect the values that we need to extract from the tree. 3502 for (auto &TEPtr : VectorizableTree) { 3503 TreeEntry *Entry = TEPtr.get(); 3504 3505 // No need to handle users of gathered values. 3506 if (Entry->State == TreeEntry::NeedToGather) 3507 continue; 3508 3509 // For each lane: 3510 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3511 Value *Scalar = Entry->Scalars[Lane]; 3512 int FoundLane = Entry->findLaneForValue(Scalar); 3513 3514 // Check if the scalar is externally used as an extra arg. 3515 auto ExtI = ExternallyUsedValues.find(Scalar); 3516 if (ExtI != ExternallyUsedValues.end()) { 3517 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3518 << Lane << " from " << *Scalar << ".\n"); 3519 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3520 } 3521 for (User *U : Scalar->users()) { 3522 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3523 3524 Instruction *UserInst = dyn_cast<Instruction>(U); 3525 if (!UserInst) 3526 continue; 3527 3528 if (isDeleted(UserInst)) 3529 continue; 3530 3531 // Skip in-tree scalars that become vectors 3532 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3533 Value *UseScalar = UseEntry->Scalars[0]; 3534 // Some in-tree scalars will remain as scalar in vectorized 3535 // instructions. If that is the case, the one in Lane 0 will 3536 // be used. 3537 if (UseScalar != U || 3538 UseEntry->State == TreeEntry::ScatterVectorize || 3539 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3540 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3541 << ".\n"); 3542 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3543 continue; 3544 } 3545 } 3546 3547 // Ignore users in the user ignore list. 3548 if (is_contained(UserIgnoreList, UserInst)) 3549 continue; 3550 3551 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3552 << Lane << " from " << *Scalar << ".\n"); 3553 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3554 } 3555 } 3556 } 3557 } 3558 3559 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3560 ArrayRef<Value *> UserIgnoreLst) { 3561 deleteTree(); 3562 UserIgnoreList = UserIgnoreLst; 3563 if (!allSameType(Roots)) 3564 return; 3565 buildTree_rec(Roots, 0, EdgeInfo()); 3566 } 3567 3568 namespace { 3569 /// Tracks the state we can represent the loads in the given sequence. 3570 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3571 } // anonymous namespace 3572 3573 /// Checks if the given array of loads can be represented as a vectorized, 3574 /// scatter or just simple gather. 3575 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3576 const TargetTransformInfo &TTI, 3577 const DataLayout &DL, ScalarEvolution &SE, 3578 SmallVectorImpl<unsigned> &Order, 3579 SmallVectorImpl<Value *> &PointerOps) { 3580 // Check that a vectorized load would load the same memory as a scalar 3581 // load. For example, we don't want to vectorize loads that are smaller 3582 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3583 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3584 // from such a struct, we read/write packed bits disagreeing with the 3585 // unvectorized version. 3586 Type *ScalarTy = VL0->getType(); 3587 3588 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3589 return LoadsState::Gather; 3590 3591 // Make sure all loads in the bundle are simple - we can't vectorize 3592 // atomic or volatile loads. 3593 PointerOps.clear(); 3594 PointerOps.resize(VL.size()); 3595 auto *POIter = PointerOps.begin(); 3596 for (Value *V : VL) { 3597 auto *L = cast<LoadInst>(V); 3598 if (!L->isSimple()) 3599 return LoadsState::Gather; 3600 *POIter = L->getPointerOperand(); 3601 ++POIter; 3602 } 3603 3604 Order.clear(); 3605 // Check the order of pointer operands. 3606 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3607 Value *Ptr0; 3608 Value *PtrN; 3609 if (Order.empty()) { 3610 Ptr0 = PointerOps.front(); 3611 PtrN = PointerOps.back(); 3612 } else { 3613 Ptr0 = PointerOps[Order.front()]; 3614 PtrN = PointerOps[Order.back()]; 3615 } 3616 Optional<int> Diff = 3617 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3618 // Check that the sorted loads are consecutive. 3619 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3620 return LoadsState::Vectorize; 3621 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3622 for (Value *V : VL) 3623 CommonAlignment = 3624 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3625 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3626 CommonAlignment)) 3627 return LoadsState::ScatterVectorize; 3628 } 3629 3630 return LoadsState::Gather; 3631 } 3632 3633 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3634 const EdgeInfo &UserTreeIdx) { 3635 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3636 3637 SmallVector<int> ReuseShuffleIndicies; 3638 SmallVector<Value *> UniqueValues; 3639 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3640 &UserTreeIdx, 3641 this](const InstructionsState &S) { 3642 // Check that every instruction appears once in this bundle. 3643 DenseMap<Value *, unsigned> UniquePositions; 3644 for (Value *V : VL) { 3645 if (isConstant(V)) { 3646 ReuseShuffleIndicies.emplace_back( 3647 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3648 UniqueValues.emplace_back(V); 3649 continue; 3650 } 3651 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3652 ReuseShuffleIndicies.emplace_back(Res.first->second); 3653 if (Res.second) 3654 UniqueValues.emplace_back(V); 3655 } 3656 size_t NumUniqueScalarValues = UniqueValues.size(); 3657 if (NumUniqueScalarValues == VL.size()) { 3658 ReuseShuffleIndicies.clear(); 3659 } else { 3660 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3661 if (NumUniqueScalarValues <= 1 || 3662 (UniquePositions.size() == 1 && all_of(UniqueValues, 3663 [](Value *V) { 3664 return isa<UndefValue>(V) || 3665 !isConstant(V); 3666 })) || 3667 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3668 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3669 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3670 return false; 3671 } 3672 VL = UniqueValues; 3673 } 3674 return true; 3675 }; 3676 3677 InstructionsState S = getSameOpcode(VL); 3678 if (Depth == RecursionMaxDepth) { 3679 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3680 if (TryToFindDuplicates(S)) 3681 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3682 ReuseShuffleIndicies); 3683 return; 3684 } 3685 3686 // Don't handle scalable vectors 3687 if (S.getOpcode() == Instruction::ExtractElement && 3688 isa<ScalableVectorType>( 3689 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3690 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3691 if (TryToFindDuplicates(S)) 3692 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3693 ReuseShuffleIndicies); 3694 return; 3695 } 3696 3697 // Don't handle vectors. 3698 if (S.OpValue->getType()->isVectorTy() && 3699 !isa<InsertElementInst>(S.OpValue)) { 3700 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3701 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3702 return; 3703 } 3704 3705 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3706 if (SI->getValueOperand()->getType()->isVectorTy()) { 3707 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3708 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3709 return; 3710 } 3711 3712 // If all of the operands are identical or constant we have a simple solution. 3713 // If we deal with insert/extract instructions, they all must have constant 3714 // indices, otherwise we should gather them, not try to vectorize. 3715 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3716 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3717 !all_of(VL, isVectorLikeInstWithConstOps))) { 3718 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3719 if (TryToFindDuplicates(S)) 3720 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3721 ReuseShuffleIndicies); 3722 return; 3723 } 3724 3725 // We now know that this is a vector of instructions of the same type from 3726 // the same block. 3727 3728 // Don't vectorize ephemeral values. 3729 for (Value *V : VL) { 3730 if (EphValues.count(V)) { 3731 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3732 << ") is ephemeral.\n"); 3733 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3734 return; 3735 } 3736 } 3737 3738 // Check if this is a duplicate of another entry. 3739 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3740 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3741 if (!E->isSame(VL)) { 3742 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3743 if (TryToFindDuplicates(S)) 3744 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3745 ReuseShuffleIndicies); 3746 return; 3747 } 3748 // Record the reuse of the tree node. FIXME, currently this is only used to 3749 // properly draw the graph rather than for the actual vectorization. 3750 E->UserTreeIndices.push_back(UserTreeIdx); 3751 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3752 << ".\n"); 3753 return; 3754 } 3755 3756 // Check that none of the instructions in the bundle are already in the tree. 3757 for (Value *V : VL) { 3758 auto *I = dyn_cast<Instruction>(V); 3759 if (!I) 3760 continue; 3761 if (getTreeEntry(I)) { 3762 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3763 << ") is already in tree.\n"); 3764 if (TryToFindDuplicates(S)) 3765 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3766 ReuseShuffleIndicies); 3767 return; 3768 } 3769 } 3770 3771 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3772 for (Value *V : VL) { 3773 if (is_contained(UserIgnoreList, V)) { 3774 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3775 if (TryToFindDuplicates(S)) 3776 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3777 ReuseShuffleIndicies); 3778 return; 3779 } 3780 } 3781 3782 // Check that all of the users of the scalars that we want to vectorize are 3783 // schedulable. 3784 auto *VL0 = cast<Instruction>(S.OpValue); 3785 BasicBlock *BB = VL0->getParent(); 3786 3787 if (!DT->isReachableFromEntry(BB)) { 3788 // Don't go into unreachable blocks. They may contain instructions with 3789 // dependency cycles which confuse the final scheduling. 3790 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3791 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3792 return; 3793 } 3794 3795 // Check that every instruction appears once in this bundle. 3796 if (!TryToFindDuplicates(S)) 3797 return; 3798 3799 auto &BSRef = BlocksSchedules[BB]; 3800 if (!BSRef) 3801 BSRef = std::make_unique<BlockScheduling>(BB); 3802 3803 BlockScheduling &BS = *BSRef.get(); 3804 3805 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3806 if (!Bundle) { 3807 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3808 assert((!BS.getScheduleData(VL0) || 3809 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3810 "tryScheduleBundle should cancelScheduling on failure"); 3811 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3812 ReuseShuffleIndicies); 3813 return; 3814 } 3815 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3816 3817 unsigned ShuffleOrOp = S.isAltShuffle() ? 3818 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3819 switch (ShuffleOrOp) { 3820 case Instruction::PHI: { 3821 auto *PH = cast<PHINode>(VL0); 3822 3823 // Check for terminator values (e.g. invoke). 3824 for (Value *V : VL) 3825 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3826 Instruction *Term = dyn_cast<Instruction>( 3827 cast<PHINode>(V)->getIncomingValueForBlock( 3828 PH->getIncomingBlock(I))); 3829 if (Term && Term->isTerminator()) { 3830 LLVM_DEBUG(dbgs() 3831 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3832 BS.cancelScheduling(VL, VL0); 3833 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3834 ReuseShuffleIndicies); 3835 return; 3836 } 3837 } 3838 3839 TreeEntry *TE = 3840 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3841 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3842 3843 // Keeps the reordered operands to avoid code duplication. 3844 SmallVector<ValueList, 2> OperandsVec; 3845 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3846 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3847 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3848 TE->setOperand(I, Operands); 3849 OperandsVec.push_back(Operands); 3850 continue; 3851 } 3852 ValueList Operands; 3853 // Prepare the operand vector. 3854 for (Value *V : VL) 3855 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3856 PH->getIncomingBlock(I))); 3857 TE->setOperand(I, Operands); 3858 OperandsVec.push_back(Operands); 3859 } 3860 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3861 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3862 return; 3863 } 3864 case Instruction::ExtractValue: 3865 case Instruction::ExtractElement: { 3866 OrdersType CurrentOrder; 3867 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3868 if (Reuse) { 3869 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3870 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3871 ReuseShuffleIndicies); 3872 // This is a special case, as it does not gather, but at the same time 3873 // we are not extending buildTree_rec() towards the operands. 3874 ValueList Op0; 3875 Op0.assign(VL.size(), VL0->getOperand(0)); 3876 VectorizableTree.back()->setOperand(0, Op0); 3877 return; 3878 } 3879 if (!CurrentOrder.empty()) { 3880 LLVM_DEBUG({ 3881 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3882 "with order"; 3883 for (unsigned Idx : CurrentOrder) 3884 dbgs() << " " << Idx; 3885 dbgs() << "\n"; 3886 }); 3887 fixupOrderingIndices(CurrentOrder); 3888 // Insert new order with initial value 0, if it does not exist, 3889 // otherwise return the iterator to the existing one. 3890 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3891 ReuseShuffleIndicies, CurrentOrder); 3892 // This is a special case, as it does not gather, but at the same time 3893 // we are not extending buildTree_rec() towards the operands. 3894 ValueList Op0; 3895 Op0.assign(VL.size(), VL0->getOperand(0)); 3896 VectorizableTree.back()->setOperand(0, Op0); 3897 return; 3898 } 3899 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3900 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3901 ReuseShuffleIndicies); 3902 BS.cancelScheduling(VL, VL0); 3903 return; 3904 } 3905 case Instruction::InsertElement: { 3906 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3907 3908 // Check that we have a buildvector and not a shuffle of 2 or more 3909 // different vectors. 3910 ValueSet SourceVectors; 3911 int MinIdx = std::numeric_limits<int>::max(); 3912 for (Value *V : VL) { 3913 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3914 Optional<int> Idx = *getInsertIndex(V, 0); 3915 if (!Idx || *Idx == UndefMaskElem) 3916 continue; 3917 MinIdx = std::min(MinIdx, *Idx); 3918 } 3919 3920 if (count_if(VL, [&SourceVectors](Value *V) { 3921 return !SourceVectors.contains(V); 3922 }) >= 2) { 3923 // Found 2nd source vector - cancel. 3924 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3925 "different source vectors.\n"); 3926 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3927 BS.cancelScheduling(VL, VL0); 3928 return; 3929 } 3930 3931 auto OrdCompare = [](const std::pair<int, int> &P1, 3932 const std::pair<int, int> &P2) { 3933 return P1.first > P2.first; 3934 }; 3935 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3936 decltype(OrdCompare)> 3937 Indices(OrdCompare); 3938 for (int I = 0, E = VL.size(); I < E; ++I) { 3939 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3940 if (!Idx || *Idx == UndefMaskElem) 3941 continue; 3942 Indices.emplace(*Idx, I); 3943 } 3944 OrdersType CurrentOrder(VL.size(), VL.size()); 3945 bool IsIdentity = true; 3946 for (int I = 0, E = VL.size(); I < E; ++I) { 3947 CurrentOrder[Indices.top().second] = I; 3948 IsIdentity &= Indices.top().second == I; 3949 Indices.pop(); 3950 } 3951 if (IsIdentity) 3952 CurrentOrder.clear(); 3953 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3954 None, CurrentOrder); 3955 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3956 3957 constexpr int NumOps = 2; 3958 ValueList VectorOperands[NumOps]; 3959 for (int I = 0; I < NumOps; ++I) { 3960 for (Value *V : VL) 3961 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3962 3963 TE->setOperand(I, VectorOperands[I]); 3964 } 3965 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3966 return; 3967 } 3968 case Instruction::Load: { 3969 // Check that a vectorized load would load the same memory as a scalar 3970 // load. For example, we don't want to vectorize loads that are smaller 3971 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3972 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3973 // from such a struct, we read/write packed bits disagreeing with the 3974 // unvectorized version. 3975 SmallVector<Value *> PointerOps; 3976 OrdersType CurrentOrder; 3977 TreeEntry *TE = nullptr; 3978 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3979 PointerOps)) { 3980 case LoadsState::Vectorize: 3981 if (CurrentOrder.empty()) { 3982 // Original loads are consecutive and does not require reordering. 3983 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3984 ReuseShuffleIndicies); 3985 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3986 } else { 3987 fixupOrderingIndices(CurrentOrder); 3988 // Need to reorder. 3989 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3990 ReuseShuffleIndicies, CurrentOrder); 3991 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3992 } 3993 TE->setOperandsInOrder(); 3994 break; 3995 case LoadsState::ScatterVectorize: 3996 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3997 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3998 UserTreeIdx, ReuseShuffleIndicies); 3999 TE->setOperandsInOrder(); 4000 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4001 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4002 break; 4003 case LoadsState::Gather: 4004 BS.cancelScheduling(VL, VL0); 4005 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4006 ReuseShuffleIndicies); 4007 #ifndef NDEBUG 4008 Type *ScalarTy = VL0->getType(); 4009 if (DL->getTypeSizeInBits(ScalarTy) != 4010 DL->getTypeAllocSizeInBits(ScalarTy)) 4011 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4012 else if (any_of(VL, [](Value *V) { 4013 return !cast<LoadInst>(V)->isSimple(); 4014 })) 4015 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4016 else 4017 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4018 #endif // NDEBUG 4019 break; 4020 } 4021 return; 4022 } 4023 case Instruction::ZExt: 4024 case Instruction::SExt: 4025 case Instruction::FPToUI: 4026 case Instruction::FPToSI: 4027 case Instruction::FPExt: 4028 case Instruction::PtrToInt: 4029 case Instruction::IntToPtr: 4030 case Instruction::SIToFP: 4031 case Instruction::UIToFP: 4032 case Instruction::Trunc: 4033 case Instruction::FPTrunc: 4034 case Instruction::BitCast: { 4035 Type *SrcTy = VL0->getOperand(0)->getType(); 4036 for (Value *V : VL) { 4037 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4038 if (Ty != SrcTy || !isValidElementType(Ty)) { 4039 BS.cancelScheduling(VL, VL0); 4040 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4041 ReuseShuffleIndicies); 4042 LLVM_DEBUG(dbgs() 4043 << "SLP: Gathering casts with different src types.\n"); 4044 return; 4045 } 4046 } 4047 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4048 ReuseShuffleIndicies); 4049 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4050 4051 TE->setOperandsInOrder(); 4052 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4053 ValueList Operands; 4054 // Prepare the operand vector. 4055 for (Value *V : VL) 4056 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4057 4058 buildTree_rec(Operands, Depth + 1, {TE, i}); 4059 } 4060 return; 4061 } 4062 case Instruction::ICmp: 4063 case Instruction::FCmp: { 4064 // Check that all of the compares have the same predicate. 4065 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4066 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4067 Type *ComparedTy = VL0->getOperand(0)->getType(); 4068 for (Value *V : VL) { 4069 CmpInst *Cmp = cast<CmpInst>(V); 4070 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4071 Cmp->getOperand(0)->getType() != ComparedTy) { 4072 BS.cancelScheduling(VL, VL0); 4073 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4074 ReuseShuffleIndicies); 4075 LLVM_DEBUG(dbgs() 4076 << "SLP: Gathering cmp with different predicate.\n"); 4077 return; 4078 } 4079 } 4080 4081 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4082 ReuseShuffleIndicies); 4083 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4084 4085 ValueList Left, Right; 4086 if (cast<CmpInst>(VL0)->isCommutative()) { 4087 // Commutative predicate - collect + sort operands of the instructions 4088 // so that each side is more likely to have the same opcode. 4089 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4090 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4091 } else { 4092 // Collect operands - commute if it uses the swapped predicate. 4093 for (Value *V : VL) { 4094 auto *Cmp = cast<CmpInst>(V); 4095 Value *LHS = Cmp->getOperand(0); 4096 Value *RHS = Cmp->getOperand(1); 4097 if (Cmp->getPredicate() != P0) 4098 std::swap(LHS, RHS); 4099 Left.push_back(LHS); 4100 Right.push_back(RHS); 4101 } 4102 } 4103 TE->setOperand(0, Left); 4104 TE->setOperand(1, Right); 4105 buildTree_rec(Left, Depth + 1, {TE, 0}); 4106 buildTree_rec(Right, Depth + 1, {TE, 1}); 4107 return; 4108 } 4109 case Instruction::Select: 4110 case Instruction::FNeg: 4111 case Instruction::Add: 4112 case Instruction::FAdd: 4113 case Instruction::Sub: 4114 case Instruction::FSub: 4115 case Instruction::Mul: 4116 case Instruction::FMul: 4117 case Instruction::UDiv: 4118 case Instruction::SDiv: 4119 case Instruction::FDiv: 4120 case Instruction::URem: 4121 case Instruction::SRem: 4122 case Instruction::FRem: 4123 case Instruction::Shl: 4124 case Instruction::LShr: 4125 case Instruction::AShr: 4126 case Instruction::And: 4127 case Instruction::Or: 4128 case Instruction::Xor: { 4129 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4130 ReuseShuffleIndicies); 4131 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4132 4133 // Sort operands of the instructions so that each side is more likely to 4134 // have the same opcode. 4135 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4136 ValueList Left, Right; 4137 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4138 TE->setOperand(0, Left); 4139 TE->setOperand(1, Right); 4140 buildTree_rec(Left, Depth + 1, {TE, 0}); 4141 buildTree_rec(Right, Depth + 1, {TE, 1}); 4142 return; 4143 } 4144 4145 TE->setOperandsInOrder(); 4146 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4147 ValueList Operands; 4148 // Prepare the operand vector. 4149 for (Value *V : VL) 4150 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4151 4152 buildTree_rec(Operands, Depth + 1, {TE, i}); 4153 } 4154 return; 4155 } 4156 case Instruction::GetElementPtr: { 4157 // We don't combine GEPs with complicated (nested) indexing. 4158 for (Value *V : VL) { 4159 if (cast<Instruction>(V)->getNumOperands() != 2) { 4160 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4161 BS.cancelScheduling(VL, VL0); 4162 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4163 ReuseShuffleIndicies); 4164 return; 4165 } 4166 } 4167 4168 // We can't combine several GEPs into one vector if they operate on 4169 // different types. 4170 Type *Ty0 = VL0->getOperand(0)->getType(); 4171 for (Value *V : VL) { 4172 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4173 if (Ty0 != CurTy) { 4174 LLVM_DEBUG(dbgs() 4175 << "SLP: not-vectorizable GEP (different types).\n"); 4176 BS.cancelScheduling(VL, VL0); 4177 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4178 ReuseShuffleIndicies); 4179 return; 4180 } 4181 } 4182 4183 // We don't combine GEPs with non-constant indexes. 4184 Type *Ty1 = VL0->getOperand(1)->getType(); 4185 for (Value *V : VL) { 4186 auto Op = cast<Instruction>(V)->getOperand(1); 4187 if (!isa<ConstantInt>(Op) || 4188 (Op->getType() != Ty1 && 4189 Op->getType()->getScalarSizeInBits() > 4190 DL->getIndexSizeInBits( 4191 V->getType()->getPointerAddressSpace()))) { 4192 LLVM_DEBUG(dbgs() 4193 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4194 BS.cancelScheduling(VL, VL0); 4195 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4196 ReuseShuffleIndicies); 4197 return; 4198 } 4199 } 4200 4201 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4202 ReuseShuffleIndicies); 4203 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4204 SmallVector<ValueList, 2> Operands(2); 4205 // Prepare the operand vector for pointer operands. 4206 for (Value *V : VL) 4207 Operands.front().push_back( 4208 cast<GetElementPtrInst>(V)->getPointerOperand()); 4209 TE->setOperand(0, Operands.front()); 4210 // Need to cast all indices to the same type before vectorization to 4211 // avoid crash. 4212 // Required to be able to find correct matches between different gather 4213 // nodes and reuse the vectorized values rather than trying to gather them 4214 // again. 4215 int IndexIdx = 1; 4216 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4217 Type *Ty = all_of(VL, 4218 [VL0Ty, IndexIdx](Value *V) { 4219 return VL0Ty == cast<GetElementPtrInst>(V) 4220 ->getOperand(IndexIdx) 4221 ->getType(); 4222 }) 4223 ? VL0Ty 4224 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4225 ->getPointerOperandType() 4226 ->getScalarType()); 4227 // Prepare the operand vector. 4228 for (Value *V : VL) { 4229 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4230 auto *CI = cast<ConstantInt>(Op); 4231 Operands.back().push_back(ConstantExpr::getIntegerCast( 4232 CI, Ty, CI->getValue().isSignBitSet())); 4233 } 4234 TE->setOperand(IndexIdx, Operands.back()); 4235 4236 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4237 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4238 return; 4239 } 4240 case Instruction::Store: { 4241 // Check if the stores are consecutive or if we need to swizzle them. 4242 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4243 // Avoid types that are padded when being allocated as scalars, while 4244 // being packed together in a vector (such as i1). 4245 if (DL->getTypeSizeInBits(ScalarTy) != 4246 DL->getTypeAllocSizeInBits(ScalarTy)) { 4247 BS.cancelScheduling(VL, VL0); 4248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4249 ReuseShuffleIndicies); 4250 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4251 return; 4252 } 4253 // Make sure all stores in the bundle are simple - we can't vectorize 4254 // atomic or volatile stores. 4255 SmallVector<Value *, 4> PointerOps(VL.size()); 4256 ValueList Operands(VL.size()); 4257 auto POIter = PointerOps.begin(); 4258 auto OIter = Operands.begin(); 4259 for (Value *V : VL) { 4260 auto *SI = cast<StoreInst>(V); 4261 if (!SI->isSimple()) { 4262 BS.cancelScheduling(VL, VL0); 4263 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4264 ReuseShuffleIndicies); 4265 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4266 return; 4267 } 4268 *POIter = SI->getPointerOperand(); 4269 *OIter = SI->getValueOperand(); 4270 ++POIter; 4271 ++OIter; 4272 } 4273 4274 OrdersType CurrentOrder; 4275 // Check the order of pointer operands. 4276 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4277 Value *Ptr0; 4278 Value *PtrN; 4279 if (CurrentOrder.empty()) { 4280 Ptr0 = PointerOps.front(); 4281 PtrN = PointerOps.back(); 4282 } else { 4283 Ptr0 = PointerOps[CurrentOrder.front()]; 4284 PtrN = PointerOps[CurrentOrder.back()]; 4285 } 4286 Optional<int> Dist = 4287 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4288 // Check that the sorted pointer operands are consecutive. 4289 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4290 if (CurrentOrder.empty()) { 4291 // Original stores are consecutive and does not require reordering. 4292 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4293 UserTreeIdx, ReuseShuffleIndicies); 4294 TE->setOperandsInOrder(); 4295 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4296 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4297 } else { 4298 fixupOrderingIndices(CurrentOrder); 4299 TreeEntry *TE = 4300 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4301 ReuseShuffleIndicies, CurrentOrder); 4302 TE->setOperandsInOrder(); 4303 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4304 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4305 } 4306 return; 4307 } 4308 } 4309 4310 BS.cancelScheduling(VL, VL0); 4311 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4312 ReuseShuffleIndicies); 4313 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4314 return; 4315 } 4316 case Instruction::Call: { 4317 // Check if the calls are all to the same vectorizable intrinsic or 4318 // library function. 4319 CallInst *CI = cast<CallInst>(VL0); 4320 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4321 4322 VFShape Shape = VFShape::get( 4323 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4324 false /*HasGlobalPred*/); 4325 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4326 4327 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4328 BS.cancelScheduling(VL, VL0); 4329 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4330 ReuseShuffleIndicies); 4331 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4332 return; 4333 } 4334 Function *F = CI->getCalledFunction(); 4335 unsigned NumArgs = CI->arg_size(); 4336 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4337 for (unsigned j = 0; j != NumArgs; ++j) 4338 if (hasVectorInstrinsicScalarOpd(ID, j)) 4339 ScalarArgs[j] = CI->getArgOperand(j); 4340 for (Value *V : VL) { 4341 CallInst *CI2 = dyn_cast<CallInst>(V); 4342 if (!CI2 || CI2->getCalledFunction() != F || 4343 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4344 (VecFunc && 4345 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4346 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4347 BS.cancelScheduling(VL, VL0); 4348 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4349 ReuseShuffleIndicies); 4350 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4351 << "\n"); 4352 return; 4353 } 4354 // Some intrinsics have scalar arguments and should be same in order for 4355 // them to be vectorized. 4356 for (unsigned j = 0; j != NumArgs; ++j) { 4357 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4358 Value *A1J = CI2->getArgOperand(j); 4359 if (ScalarArgs[j] != A1J) { 4360 BS.cancelScheduling(VL, VL0); 4361 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4362 ReuseShuffleIndicies); 4363 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4364 << " argument " << ScalarArgs[j] << "!=" << A1J 4365 << "\n"); 4366 return; 4367 } 4368 } 4369 } 4370 // Verify that the bundle operands are identical between the two calls. 4371 if (CI->hasOperandBundles() && 4372 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4373 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4374 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4375 BS.cancelScheduling(VL, VL0); 4376 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4377 ReuseShuffleIndicies); 4378 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4379 << *CI << "!=" << *V << '\n'); 4380 return; 4381 } 4382 } 4383 4384 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4385 ReuseShuffleIndicies); 4386 TE->setOperandsInOrder(); 4387 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4388 // For scalar operands no need to to create an entry since no need to 4389 // vectorize it. 4390 if (hasVectorInstrinsicScalarOpd(ID, i)) 4391 continue; 4392 ValueList Operands; 4393 // Prepare the operand vector. 4394 for (Value *V : VL) { 4395 auto *CI2 = cast<CallInst>(V); 4396 Operands.push_back(CI2->getArgOperand(i)); 4397 } 4398 buildTree_rec(Operands, Depth + 1, {TE, i}); 4399 } 4400 return; 4401 } 4402 case Instruction::ShuffleVector: { 4403 // If this is not an alternate sequence of opcode like add-sub 4404 // then do not vectorize this instruction. 4405 if (!S.isAltShuffle()) { 4406 BS.cancelScheduling(VL, VL0); 4407 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4408 ReuseShuffleIndicies); 4409 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4410 return; 4411 } 4412 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4413 ReuseShuffleIndicies); 4414 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4415 4416 // Reorder operands if reordering would enable vectorization. 4417 auto *CI = dyn_cast<CmpInst>(VL0); 4418 if (isa<BinaryOperator>(VL0) || CI) { 4419 ValueList Left, Right; 4420 if (!CI || all_of(VL, [](Value *V) { 4421 return cast<CmpInst>(V)->isCommutative(); 4422 })) { 4423 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4424 } else { 4425 CmpInst::Predicate P0 = CI->getPredicate(); 4426 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4427 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4428 Value *BaseOp0 = VL0->getOperand(0); 4429 Value *BaseOp1 = VL0->getOperand(1); 4430 // Collect operands - commute if it uses the swapped predicate or 4431 // alternate operation. 4432 for (Value *V : VL) { 4433 auto *Cmp = cast<CmpInst>(V); 4434 Value *LHS = Cmp->getOperand(0); 4435 Value *RHS = Cmp->getOperand(1); 4436 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4437 CmpInst::Predicate CurrentPredSwapped = 4438 CmpInst::getSwappedPredicate(CurrentPred); 4439 if (P0 == AltP0 || P0 == AltP0Swapped) { 4440 if ((P0 == CurrentPred && 4441 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4442 (P0 == CurrentPredSwapped && 4443 !areCompatibleCmpOps(BaseOp0, BaseOp1, RHS, LHS))) 4444 std::swap(LHS, RHS); 4445 } else if (!areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) { 4446 std::swap(LHS, RHS); 4447 } 4448 Left.push_back(LHS); 4449 Right.push_back(RHS); 4450 } 4451 } 4452 TE->setOperand(0, Left); 4453 TE->setOperand(1, Right); 4454 buildTree_rec(Left, Depth + 1, {TE, 0}); 4455 buildTree_rec(Right, Depth + 1, {TE, 1}); 4456 return; 4457 } 4458 4459 TE->setOperandsInOrder(); 4460 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4461 ValueList Operands; 4462 // Prepare the operand vector. 4463 for (Value *V : VL) 4464 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4465 4466 buildTree_rec(Operands, Depth + 1, {TE, i}); 4467 } 4468 return; 4469 } 4470 default: 4471 BS.cancelScheduling(VL, VL0); 4472 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4473 ReuseShuffleIndicies); 4474 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4475 return; 4476 } 4477 } 4478 4479 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4480 unsigned N = 1; 4481 Type *EltTy = T; 4482 4483 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4484 isa<VectorType>(EltTy)) { 4485 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4486 // Check that struct is homogeneous. 4487 for (const auto *Ty : ST->elements()) 4488 if (Ty != *ST->element_begin()) 4489 return 0; 4490 N *= ST->getNumElements(); 4491 EltTy = *ST->element_begin(); 4492 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4493 N *= AT->getNumElements(); 4494 EltTy = AT->getElementType(); 4495 } else { 4496 auto *VT = cast<FixedVectorType>(EltTy); 4497 N *= VT->getNumElements(); 4498 EltTy = VT->getElementType(); 4499 } 4500 } 4501 4502 if (!isValidElementType(EltTy)) 4503 return 0; 4504 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4505 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4506 return 0; 4507 return N; 4508 } 4509 4510 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4511 SmallVectorImpl<unsigned> &CurrentOrder) const { 4512 const auto *It = find_if(VL, [](Value *V) { 4513 return isa<ExtractElementInst, ExtractValueInst>(V); 4514 }); 4515 assert(It != VL.end() && "Expected at least one extract instruction."); 4516 auto *E0 = cast<Instruction>(*It); 4517 assert(all_of(VL, 4518 [](Value *V) { 4519 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4520 V); 4521 }) && 4522 "Invalid opcode"); 4523 // Check if all of the extracts come from the same vector and from the 4524 // correct offset. 4525 Value *Vec = E0->getOperand(0); 4526 4527 CurrentOrder.clear(); 4528 4529 // We have to extract from a vector/aggregate with the same number of elements. 4530 unsigned NElts; 4531 if (E0->getOpcode() == Instruction::ExtractValue) { 4532 const DataLayout &DL = E0->getModule()->getDataLayout(); 4533 NElts = canMapToVector(Vec->getType(), DL); 4534 if (!NElts) 4535 return false; 4536 // Check if load can be rewritten as load of vector. 4537 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4538 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4539 return false; 4540 } else { 4541 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4542 } 4543 4544 if (NElts != VL.size()) 4545 return false; 4546 4547 // Check that all of the indices extract from the correct offset. 4548 bool ShouldKeepOrder = true; 4549 unsigned E = VL.size(); 4550 // Assign to all items the initial value E + 1 so we can check if the extract 4551 // instruction index was used already. 4552 // Also, later we can check that all the indices are used and we have a 4553 // consecutive access in the extract instructions, by checking that no 4554 // element of CurrentOrder still has value E + 1. 4555 CurrentOrder.assign(E, E); 4556 unsigned I = 0; 4557 for (; I < E; ++I) { 4558 auto *Inst = dyn_cast<Instruction>(VL[I]); 4559 if (!Inst) 4560 continue; 4561 if (Inst->getOperand(0) != Vec) 4562 break; 4563 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4564 if (isa<UndefValue>(EE->getIndexOperand())) 4565 continue; 4566 Optional<unsigned> Idx = getExtractIndex(Inst); 4567 if (!Idx) 4568 break; 4569 const unsigned ExtIdx = *Idx; 4570 if (ExtIdx != I) { 4571 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4572 break; 4573 ShouldKeepOrder = false; 4574 CurrentOrder[ExtIdx] = I; 4575 } else { 4576 if (CurrentOrder[I] != E) 4577 break; 4578 CurrentOrder[I] = I; 4579 } 4580 } 4581 if (I < E) { 4582 CurrentOrder.clear(); 4583 return false; 4584 } 4585 if (ShouldKeepOrder) 4586 CurrentOrder.clear(); 4587 4588 return ShouldKeepOrder; 4589 } 4590 4591 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4592 ArrayRef<Value *> VectorizedVals) const { 4593 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4594 all_of(I->users(), [this](User *U) { 4595 return ScalarToTreeEntry.count(U) > 0 || MustGather.contains(U); 4596 }); 4597 } 4598 4599 static std::pair<InstructionCost, InstructionCost> 4600 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4601 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4602 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4603 4604 // Calculate the cost of the scalar and vector calls. 4605 SmallVector<Type *, 4> VecTys; 4606 for (Use &Arg : CI->args()) 4607 VecTys.push_back( 4608 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4609 FastMathFlags FMF; 4610 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4611 FMF = FPCI->getFastMathFlags(); 4612 SmallVector<const Value *> Arguments(CI->args()); 4613 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4614 dyn_cast<IntrinsicInst>(CI)); 4615 auto IntrinsicCost = 4616 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4617 4618 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4619 VecTy->getNumElements())), 4620 false /*HasGlobalPred*/); 4621 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4622 auto LibCost = IntrinsicCost; 4623 if (!CI->isNoBuiltin() && VecFunc) { 4624 // Calculate the cost of the vector library call. 4625 // If the corresponding vector call is cheaper, return its cost. 4626 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4627 TTI::TCK_RecipThroughput); 4628 } 4629 return {IntrinsicCost, LibCost}; 4630 } 4631 4632 /// Compute the cost of creating a vector of type \p VecTy containing the 4633 /// extracted values from \p VL. 4634 static InstructionCost 4635 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4636 TargetTransformInfo::ShuffleKind ShuffleKind, 4637 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4638 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4639 4640 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4641 VecTy->getNumElements() < NumOfParts) 4642 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4643 4644 bool AllConsecutive = true; 4645 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4646 unsigned Idx = -1; 4647 InstructionCost Cost = 0; 4648 4649 // Process extracts in blocks of EltsPerVector to check if the source vector 4650 // operand can be re-used directly. If not, add the cost of creating a shuffle 4651 // to extract the values into a vector register. 4652 for (auto *V : VL) { 4653 ++Idx; 4654 4655 // Need to exclude undefs from analysis. 4656 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4657 continue; 4658 4659 // Reached the start of a new vector registers. 4660 if (Idx % EltsPerVector == 0) { 4661 AllConsecutive = true; 4662 continue; 4663 } 4664 4665 // Check all extracts for a vector register on the target directly 4666 // extract values in order. 4667 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4668 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4669 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4670 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4671 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4672 } 4673 4674 if (AllConsecutive) 4675 continue; 4676 4677 // Skip all indices, except for the last index per vector block. 4678 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4679 continue; 4680 4681 // If we have a series of extracts which are not consecutive and hence 4682 // cannot re-use the source vector register directly, compute the shuffle 4683 // cost to extract the a vector with EltsPerVector elements. 4684 Cost += TTI.getShuffleCost( 4685 TargetTransformInfo::SK_PermuteSingleSrc, 4686 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4687 } 4688 return Cost; 4689 } 4690 4691 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4692 /// operations operands. 4693 static void 4694 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4695 ArrayRef<int> ReusesIndices, 4696 const function_ref<bool(Instruction *)> IsAltOp, 4697 SmallVectorImpl<int> &Mask, 4698 SmallVectorImpl<Value *> *OpScalars = nullptr, 4699 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4700 unsigned Sz = VL.size(); 4701 Mask.assign(Sz, UndefMaskElem); 4702 SmallVector<int> OrderMask; 4703 if (!ReorderIndices.empty()) 4704 inversePermutation(ReorderIndices, OrderMask); 4705 for (unsigned I = 0; I < Sz; ++I) { 4706 unsigned Idx = I; 4707 if (!ReorderIndices.empty()) 4708 Idx = OrderMask[I]; 4709 auto *OpInst = cast<Instruction>(VL[Idx]); 4710 if (IsAltOp(OpInst)) { 4711 Mask[I] = Sz + Idx; 4712 if (AltScalars) 4713 AltScalars->push_back(OpInst); 4714 } else { 4715 Mask[I] = Idx; 4716 if (OpScalars) 4717 OpScalars->push_back(OpInst); 4718 } 4719 } 4720 if (!ReusesIndices.empty()) { 4721 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4722 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4723 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4724 }); 4725 Mask.swap(NewMask); 4726 } 4727 } 4728 4729 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4730 ArrayRef<Value *> VectorizedVals) { 4731 ArrayRef<Value*> VL = E->Scalars; 4732 4733 Type *ScalarTy = VL[0]->getType(); 4734 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4735 ScalarTy = SI->getValueOperand()->getType(); 4736 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4737 ScalarTy = CI->getOperand(0)->getType(); 4738 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4739 ScalarTy = IE->getOperand(1)->getType(); 4740 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4741 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4742 4743 // If we have computed a smaller type for the expression, update VecTy so 4744 // that the costs will be accurate. 4745 if (MinBWs.count(VL[0])) 4746 VecTy = FixedVectorType::get( 4747 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4748 unsigned EntryVF = E->getVectorFactor(); 4749 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4750 4751 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4752 // FIXME: it tries to fix a problem with MSVC buildbots. 4753 TargetTransformInfo &TTIRef = *TTI; 4754 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4755 VectorizedVals, E](InstructionCost &Cost) { 4756 DenseMap<Value *, int> ExtractVectorsTys; 4757 SmallPtrSet<Value *, 4> CheckedExtracts; 4758 for (auto *V : VL) { 4759 if (isa<UndefValue>(V)) 4760 continue; 4761 // If all users of instruction are going to be vectorized and this 4762 // instruction itself is not going to be vectorized, consider this 4763 // instruction as dead and remove its cost from the final cost of the 4764 // vectorized tree. 4765 // Also, avoid adjusting the cost for extractelements with multiple uses 4766 // in different graph entries. 4767 const TreeEntry *VE = getTreeEntry(V); 4768 if (!CheckedExtracts.insert(V).second || 4769 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4770 (VE && VE != E)) 4771 continue; 4772 auto *EE = cast<ExtractElementInst>(V); 4773 Optional<unsigned> EEIdx = getExtractIndex(EE); 4774 if (!EEIdx) 4775 continue; 4776 unsigned Idx = *EEIdx; 4777 if (TTIRef.getNumberOfParts(VecTy) != 4778 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4779 auto It = 4780 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4781 It->getSecond() = std::min<int>(It->second, Idx); 4782 } 4783 // Take credit for instruction that will become dead. 4784 if (EE->hasOneUse()) { 4785 Instruction *Ext = EE->user_back(); 4786 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4787 all_of(Ext->users(), 4788 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4789 // Use getExtractWithExtendCost() to calculate the cost of 4790 // extractelement/ext pair. 4791 Cost -= 4792 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4793 EE->getVectorOperandType(), Idx); 4794 // Add back the cost of s|zext which is subtracted separately. 4795 Cost += TTIRef.getCastInstrCost( 4796 Ext->getOpcode(), Ext->getType(), EE->getType(), 4797 TTI::getCastContextHint(Ext), CostKind, Ext); 4798 continue; 4799 } 4800 } 4801 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4802 EE->getVectorOperandType(), Idx); 4803 } 4804 // Add a cost for subvector extracts/inserts if required. 4805 for (const auto &Data : ExtractVectorsTys) { 4806 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4807 unsigned NumElts = VecTy->getNumElements(); 4808 if (Data.second % NumElts == 0) 4809 continue; 4810 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4811 unsigned Idx = (Data.second / NumElts) * NumElts; 4812 unsigned EENumElts = EEVTy->getNumElements(); 4813 if (Idx + NumElts <= EENumElts) { 4814 Cost += 4815 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4816 EEVTy, None, Idx, VecTy); 4817 } else { 4818 // Need to round up the subvector type vectorization factor to avoid a 4819 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4820 // <= EENumElts. 4821 auto *SubVT = 4822 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4823 Cost += 4824 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4825 EEVTy, None, Idx, SubVT); 4826 } 4827 } else { 4828 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4829 VecTy, None, 0, EEVTy); 4830 } 4831 } 4832 }; 4833 if (E->State == TreeEntry::NeedToGather) { 4834 if (allConstant(VL)) 4835 return 0; 4836 if (isa<InsertElementInst>(VL[0])) 4837 return InstructionCost::getInvalid(); 4838 SmallVector<int> Mask; 4839 SmallVector<const TreeEntry *> Entries; 4840 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4841 isGatherShuffledEntry(E, Mask, Entries); 4842 if (Shuffle.hasValue()) { 4843 InstructionCost GatherCost = 0; 4844 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4845 // Perfect match in the graph, will reuse the previously vectorized 4846 // node. Cost is 0. 4847 LLVM_DEBUG( 4848 dbgs() 4849 << "SLP: perfect diamond match for gather bundle that starts with " 4850 << *VL.front() << ".\n"); 4851 if (NeedToShuffleReuses) 4852 GatherCost = 4853 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4854 FinalVecTy, E->ReuseShuffleIndices); 4855 } else { 4856 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4857 << " entries for bundle that starts with " 4858 << *VL.front() << ".\n"); 4859 // Detected that instead of gather we can emit a shuffle of single/two 4860 // previously vectorized nodes. Add the cost of the permutation rather 4861 // than gather. 4862 ::addMask(Mask, E->ReuseShuffleIndices); 4863 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4864 } 4865 return GatherCost; 4866 } 4867 if ((E->getOpcode() == Instruction::ExtractElement || 4868 all_of(E->Scalars, 4869 [](Value *V) { 4870 return isa<ExtractElementInst, UndefValue>(V); 4871 })) && 4872 allSameType(VL)) { 4873 // Check that gather of extractelements can be represented as just a 4874 // shuffle of a single/two vectors the scalars are extracted from. 4875 SmallVector<int> Mask; 4876 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4877 isFixedVectorShuffle(VL, Mask); 4878 if (ShuffleKind.hasValue()) { 4879 // Found the bunch of extractelement instructions that must be gathered 4880 // into a vector and can be represented as a permutation elements in a 4881 // single input vector or of 2 input vectors. 4882 InstructionCost Cost = 4883 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4884 AdjustExtractsCost(Cost); 4885 if (NeedToShuffleReuses) 4886 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4887 FinalVecTy, E->ReuseShuffleIndices); 4888 return Cost; 4889 } 4890 } 4891 if (isSplat(VL)) { 4892 // Found the broadcasting of the single scalar, calculate the cost as the 4893 // broadcast. 4894 assert(VecTy == FinalVecTy && 4895 "No reused scalars expected for broadcast."); 4896 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4897 } 4898 InstructionCost ReuseShuffleCost = 0; 4899 if (NeedToShuffleReuses) 4900 ReuseShuffleCost = TTI->getShuffleCost( 4901 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4902 // Improve gather cost for gather of loads, if we can group some of the 4903 // loads into vector loads. 4904 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4905 !E->isAltShuffle()) { 4906 BoUpSLP::ValueSet VectorizedLoads; 4907 unsigned StartIdx = 0; 4908 unsigned VF = VL.size() / 2; 4909 unsigned VectorizedCnt = 0; 4910 unsigned ScatterVectorizeCnt = 0; 4911 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4912 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4913 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4914 Cnt += VF) { 4915 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4916 if (!VectorizedLoads.count(Slice.front()) && 4917 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4918 SmallVector<Value *> PointerOps; 4919 OrdersType CurrentOrder; 4920 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4921 *SE, CurrentOrder, PointerOps); 4922 switch (LS) { 4923 case LoadsState::Vectorize: 4924 case LoadsState::ScatterVectorize: 4925 // Mark the vectorized loads so that we don't vectorize them 4926 // again. 4927 if (LS == LoadsState::Vectorize) 4928 ++VectorizedCnt; 4929 else 4930 ++ScatterVectorizeCnt; 4931 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4932 // If we vectorized initial block, no need to try to vectorize it 4933 // again. 4934 if (Cnt == StartIdx) 4935 StartIdx += VF; 4936 break; 4937 case LoadsState::Gather: 4938 break; 4939 } 4940 } 4941 } 4942 // Check if the whole array was vectorized already - exit. 4943 if (StartIdx >= VL.size()) 4944 break; 4945 // Found vectorizable parts - exit. 4946 if (!VectorizedLoads.empty()) 4947 break; 4948 } 4949 if (!VectorizedLoads.empty()) { 4950 InstructionCost GatherCost = 0; 4951 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4952 bool NeedInsertSubvectorAnalysis = 4953 !NumParts || (VL.size() / VF) > NumParts; 4954 // Get the cost for gathered loads. 4955 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4956 if (VectorizedLoads.contains(VL[I])) 4957 continue; 4958 GatherCost += getGatherCost(VL.slice(I, VF)); 4959 } 4960 // The cost for vectorized loads. 4961 InstructionCost ScalarsCost = 0; 4962 for (Value *V : VectorizedLoads) { 4963 auto *LI = cast<LoadInst>(V); 4964 ScalarsCost += TTI->getMemoryOpCost( 4965 Instruction::Load, LI->getType(), LI->getAlign(), 4966 LI->getPointerAddressSpace(), CostKind, LI); 4967 } 4968 auto *LI = cast<LoadInst>(E->getMainOp()); 4969 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4970 Align Alignment = LI->getAlign(); 4971 GatherCost += 4972 VectorizedCnt * 4973 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4974 LI->getPointerAddressSpace(), CostKind, LI); 4975 GatherCost += ScatterVectorizeCnt * 4976 TTI->getGatherScatterOpCost( 4977 Instruction::Load, LoadTy, LI->getPointerOperand(), 4978 /*VariableMask=*/false, Alignment, CostKind, LI); 4979 if (NeedInsertSubvectorAnalysis) { 4980 // Add the cost for the subvectors insert. 4981 for (int I = VF, E = VL.size(); I < E; I += VF) 4982 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4983 None, I, LoadTy); 4984 } 4985 return ReuseShuffleCost + GatherCost - ScalarsCost; 4986 } 4987 } 4988 return ReuseShuffleCost + getGatherCost(VL); 4989 } 4990 InstructionCost CommonCost = 0; 4991 SmallVector<int> Mask; 4992 if (!E->ReorderIndices.empty()) { 4993 SmallVector<int> NewMask; 4994 if (E->getOpcode() == Instruction::Store) { 4995 // For stores the order is actually a mask. 4996 NewMask.resize(E->ReorderIndices.size()); 4997 copy(E->ReorderIndices, NewMask.begin()); 4998 } else { 4999 inversePermutation(E->ReorderIndices, NewMask); 5000 } 5001 ::addMask(Mask, NewMask); 5002 } 5003 if (NeedToShuffleReuses) 5004 ::addMask(Mask, E->ReuseShuffleIndices); 5005 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5006 CommonCost = 5007 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5008 assert((E->State == TreeEntry::Vectorize || 5009 E->State == TreeEntry::ScatterVectorize) && 5010 "Unhandled state"); 5011 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5012 Instruction *VL0 = E->getMainOp(); 5013 unsigned ShuffleOrOp = 5014 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5015 switch (ShuffleOrOp) { 5016 case Instruction::PHI: 5017 return 0; 5018 5019 case Instruction::ExtractValue: 5020 case Instruction::ExtractElement: { 5021 // The common cost of removal ExtractElement/ExtractValue instructions + 5022 // the cost of shuffles, if required to resuffle the original vector. 5023 if (NeedToShuffleReuses) { 5024 unsigned Idx = 0; 5025 for (unsigned I : E->ReuseShuffleIndices) { 5026 if (ShuffleOrOp == Instruction::ExtractElement) { 5027 auto *EE = cast<ExtractElementInst>(VL[I]); 5028 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5029 EE->getVectorOperandType(), 5030 *getExtractIndex(EE)); 5031 } else { 5032 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5033 VecTy, Idx); 5034 ++Idx; 5035 } 5036 } 5037 Idx = EntryVF; 5038 for (Value *V : VL) { 5039 if (ShuffleOrOp == Instruction::ExtractElement) { 5040 auto *EE = cast<ExtractElementInst>(V); 5041 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5042 EE->getVectorOperandType(), 5043 *getExtractIndex(EE)); 5044 } else { 5045 --Idx; 5046 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5047 VecTy, Idx); 5048 } 5049 } 5050 } 5051 if (ShuffleOrOp == Instruction::ExtractValue) { 5052 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5053 auto *EI = cast<Instruction>(VL[I]); 5054 // Take credit for instruction that will become dead. 5055 if (EI->hasOneUse()) { 5056 Instruction *Ext = EI->user_back(); 5057 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5058 all_of(Ext->users(), 5059 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5060 // Use getExtractWithExtendCost() to calculate the cost of 5061 // extractelement/ext pair. 5062 CommonCost -= TTI->getExtractWithExtendCost( 5063 Ext->getOpcode(), Ext->getType(), VecTy, I); 5064 // Add back the cost of s|zext which is subtracted separately. 5065 CommonCost += TTI->getCastInstrCost( 5066 Ext->getOpcode(), Ext->getType(), EI->getType(), 5067 TTI::getCastContextHint(Ext), CostKind, Ext); 5068 continue; 5069 } 5070 } 5071 CommonCost -= 5072 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5073 } 5074 } else { 5075 AdjustExtractsCost(CommonCost); 5076 } 5077 return CommonCost; 5078 } 5079 case Instruction::InsertElement: { 5080 assert(E->ReuseShuffleIndices.empty() && 5081 "Unique insertelements only are expected."); 5082 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5083 5084 unsigned const NumElts = SrcVecTy->getNumElements(); 5085 unsigned const NumScalars = VL.size(); 5086 APInt DemandedElts = APInt::getZero(NumElts); 5087 // TODO: Add support for Instruction::InsertValue. 5088 SmallVector<int> Mask; 5089 if (!E->ReorderIndices.empty()) { 5090 inversePermutation(E->ReorderIndices, Mask); 5091 Mask.append(NumElts - NumScalars, UndefMaskElem); 5092 } else { 5093 Mask.assign(NumElts, UndefMaskElem); 5094 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5095 } 5096 unsigned Offset = *getInsertIndex(VL0, 0); 5097 bool IsIdentity = true; 5098 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5099 Mask.swap(PrevMask); 5100 for (unsigned I = 0; I < NumScalars; ++I) { 5101 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 5102 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5103 continue; 5104 DemandedElts.setBit(*InsertIdx); 5105 IsIdentity &= *InsertIdx - Offset == I; 5106 Mask[*InsertIdx - Offset] = I; 5107 } 5108 assert(Offset < NumElts && "Failed to find vector index offset"); 5109 5110 InstructionCost Cost = 0; 5111 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5112 /*Insert*/ true, /*Extract*/ false); 5113 5114 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5115 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5116 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5117 Cost += TTI->getShuffleCost( 5118 TargetTransformInfo::SK_PermuteSingleSrc, 5119 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5120 } else if (!IsIdentity) { 5121 auto *FirstInsert = 5122 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5123 return !is_contained(E->Scalars, 5124 cast<Instruction>(V)->getOperand(0)); 5125 })); 5126 if (isUndefVector(FirstInsert->getOperand(0))) { 5127 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5128 } else { 5129 SmallVector<int> InsertMask(NumElts); 5130 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5131 for (unsigned I = 0; I < NumElts; I++) { 5132 if (Mask[I] != UndefMaskElem) 5133 InsertMask[Offset + I] = NumElts + I; 5134 } 5135 Cost += 5136 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5137 } 5138 } 5139 5140 return Cost; 5141 } 5142 case Instruction::ZExt: 5143 case Instruction::SExt: 5144 case Instruction::FPToUI: 5145 case Instruction::FPToSI: 5146 case Instruction::FPExt: 5147 case Instruction::PtrToInt: 5148 case Instruction::IntToPtr: 5149 case Instruction::SIToFP: 5150 case Instruction::UIToFP: 5151 case Instruction::Trunc: 5152 case Instruction::FPTrunc: 5153 case Instruction::BitCast: { 5154 Type *SrcTy = VL0->getOperand(0)->getType(); 5155 InstructionCost ScalarEltCost = 5156 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5157 TTI::getCastContextHint(VL0), CostKind, VL0); 5158 if (NeedToShuffleReuses) { 5159 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5160 } 5161 5162 // Calculate the cost of this instruction. 5163 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5164 5165 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5166 InstructionCost VecCost = 0; 5167 // Check if the values are candidates to demote. 5168 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5169 VecCost = CommonCost + TTI->getCastInstrCost( 5170 E->getOpcode(), VecTy, SrcVecTy, 5171 TTI::getCastContextHint(VL0), CostKind, VL0); 5172 } 5173 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5174 return VecCost - ScalarCost; 5175 } 5176 case Instruction::FCmp: 5177 case Instruction::ICmp: 5178 case Instruction::Select: { 5179 // Calculate the cost of this instruction. 5180 InstructionCost ScalarEltCost = 5181 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5182 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5183 if (NeedToShuffleReuses) { 5184 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5185 } 5186 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5187 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5188 5189 // Check if all entries in VL are either compares or selects with compares 5190 // as condition that have the same predicates. 5191 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5192 bool First = true; 5193 for (auto *V : VL) { 5194 CmpInst::Predicate CurrentPred; 5195 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5196 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5197 !match(V, MatchCmp)) || 5198 (!First && VecPred != CurrentPred)) { 5199 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5200 break; 5201 } 5202 First = false; 5203 VecPred = CurrentPred; 5204 } 5205 5206 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5207 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5208 // Check if it is possible and profitable to use min/max for selects in 5209 // VL. 5210 // 5211 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5212 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5213 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5214 {VecTy, VecTy}); 5215 InstructionCost IntrinsicCost = 5216 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5217 // If the selects are the only uses of the compares, they will be dead 5218 // and we can adjust the cost by removing their cost. 5219 if (IntrinsicAndUse.second) 5220 IntrinsicCost -= 5221 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5222 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5223 VecCost = std::min(VecCost, IntrinsicCost); 5224 } 5225 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5226 return CommonCost + VecCost - ScalarCost; 5227 } 5228 case Instruction::FNeg: 5229 case Instruction::Add: 5230 case Instruction::FAdd: 5231 case Instruction::Sub: 5232 case Instruction::FSub: 5233 case Instruction::Mul: 5234 case Instruction::FMul: 5235 case Instruction::UDiv: 5236 case Instruction::SDiv: 5237 case Instruction::FDiv: 5238 case Instruction::URem: 5239 case Instruction::SRem: 5240 case Instruction::FRem: 5241 case Instruction::Shl: 5242 case Instruction::LShr: 5243 case Instruction::AShr: 5244 case Instruction::And: 5245 case Instruction::Or: 5246 case Instruction::Xor: { 5247 // Certain instructions can be cheaper to vectorize if they have a 5248 // constant second vector operand. 5249 TargetTransformInfo::OperandValueKind Op1VK = 5250 TargetTransformInfo::OK_AnyValue; 5251 TargetTransformInfo::OperandValueKind Op2VK = 5252 TargetTransformInfo::OK_UniformConstantValue; 5253 TargetTransformInfo::OperandValueProperties Op1VP = 5254 TargetTransformInfo::OP_None; 5255 TargetTransformInfo::OperandValueProperties Op2VP = 5256 TargetTransformInfo::OP_PowerOf2; 5257 5258 // If all operands are exactly the same ConstantInt then set the 5259 // operand kind to OK_UniformConstantValue. 5260 // If instead not all operands are constants, then set the operand kind 5261 // to OK_AnyValue. If all operands are constants but not the same, 5262 // then set the operand kind to OK_NonUniformConstantValue. 5263 ConstantInt *CInt0 = nullptr; 5264 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5265 const Instruction *I = cast<Instruction>(VL[i]); 5266 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5267 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5268 if (!CInt) { 5269 Op2VK = TargetTransformInfo::OK_AnyValue; 5270 Op2VP = TargetTransformInfo::OP_None; 5271 break; 5272 } 5273 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5274 !CInt->getValue().isPowerOf2()) 5275 Op2VP = TargetTransformInfo::OP_None; 5276 if (i == 0) { 5277 CInt0 = CInt; 5278 continue; 5279 } 5280 if (CInt0 != CInt) 5281 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5282 } 5283 5284 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5285 InstructionCost ScalarEltCost = 5286 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5287 Op2VK, Op1VP, Op2VP, Operands, VL0); 5288 if (NeedToShuffleReuses) { 5289 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5290 } 5291 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5292 InstructionCost VecCost = 5293 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5294 Op2VK, Op1VP, Op2VP, Operands, VL0); 5295 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5296 return CommonCost + VecCost - ScalarCost; 5297 } 5298 case Instruction::GetElementPtr: { 5299 TargetTransformInfo::OperandValueKind Op1VK = 5300 TargetTransformInfo::OK_AnyValue; 5301 TargetTransformInfo::OperandValueKind Op2VK = 5302 TargetTransformInfo::OK_UniformConstantValue; 5303 5304 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5305 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5306 if (NeedToShuffleReuses) { 5307 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5308 } 5309 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5310 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5311 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5312 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5313 return CommonCost + VecCost - ScalarCost; 5314 } 5315 case Instruction::Load: { 5316 // Cost of wide load - cost of scalar loads. 5317 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5318 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5319 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5320 if (NeedToShuffleReuses) { 5321 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5322 } 5323 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5324 InstructionCost VecLdCost; 5325 if (E->State == TreeEntry::Vectorize) { 5326 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5327 CostKind, VL0); 5328 } else { 5329 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5330 Align CommonAlignment = Alignment; 5331 for (Value *V : VL) 5332 CommonAlignment = 5333 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5334 VecLdCost = TTI->getGatherScatterOpCost( 5335 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5336 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5337 } 5338 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5339 return CommonCost + VecLdCost - ScalarLdCost; 5340 } 5341 case Instruction::Store: { 5342 // We know that we can merge the stores. Calculate the cost. 5343 bool IsReorder = !E->ReorderIndices.empty(); 5344 auto *SI = 5345 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5346 Align Alignment = SI->getAlign(); 5347 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5348 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5349 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5350 InstructionCost VecStCost = TTI->getMemoryOpCost( 5351 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5352 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5353 return CommonCost + VecStCost - ScalarStCost; 5354 } 5355 case Instruction::Call: { 5356 CallInst *CI = cast<CallInst>(VL0); 5357 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5358 5359 // Calculate the cost of the scalar and vector calls. 5360 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5361 InstructionCost ScalarEltCost = 5362 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5363 if (NeedToShuffleReuses) { 5364 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5365 } 5366 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5367 5368 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5369 InstructionCost VecCallCost = 5370 std::min(VecCallCosts.first, VecCallCosts.second); 5371 5372 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5373 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5374 << " for " << *CI << "\n"); 5375 5376 return CommonCost + VecCallCost - ScalarCallCost; 5377 } 5378 case Instruction::ShuffleVector: { 5379 assert(E->isAltShuffle() && 5380 ((Instruction::isBinaryOp(E->getOpcode()) && 5381 Instruction::isBinaryOp(E->getAltOpcode())) || 5382 (Instruction::isCast(E->getOpcode()) && 5383 Instruction::isCast(E->getAltOpcode())) || 5384 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5385 "Invalid Shuffle Vector Operand"); 5386 InstructionCost ScalarCost = 0; 5387 if (NeedToShuffleReuses) { 5388 for (unsigned Idx : E->ReuseShuffleIndices) { 5389 Instruction *I = cast<Instruction>(VL[Idx]); 5390 CommonCost -= TTI->getInstructionCost(I, CostKind); 5391 } 5392 for (Value *V : VL) { 5393 Instruction *I = cast<Instruction>(V); 5394 CommonCost += TTI->getInstructionCost(I, CostKind); 5395 } 5396 } 5397 for (Value *V : VL) { 5398 Instruction *I = cast<Instruction>(V); 5399 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5400 ScalarCost += TTI->getInstructionCost(I, CostKind); 5401 } 5402 // VecCost is equal to sum of the cost of creating 2 vectors 5403 // and the cost of creating shuffle. 5404 InstructionCost VecCost = 0; 5405 // Try to find the previous shuffle node with the same operands and same 5406 // main/alternate ops. 5407 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5408 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5409 if (TE.get() == E) 5410 break; 5411 if (TE->isAltShuffle() && 5412 ((TE->getOpcode() == E->getOpcode() && 5413 TE->getAltOpcode() == E->getAltOpcode()) || 5414 (TE->getOpcode() == E->getAltOpcode() && 5415 TE->getAltOpcode() == E->getOpcode())) && 5416 TE->hasEqualOperands(*E)) 5417 return true; 5418 } 5419 return false; 5420 }; 5421 if (TryFindNodeWithEqualOperands()) { 5422 LLVM_DEBUG({ 5423 dbgs() << "SLP: diamond match for alternate node found.\n"; 5424 E->dump(); 5425 }); 5426 // No need to add new vector costs here since we're going to reuse 5427 // same main/alternate vector ops, just do different shuffling. 5428 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5429 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5430 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5431 CostKind); 5432 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5433 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5434 Builder.getInt1Ty(), 5435 CI0->getPredicate(), CostKind, VL0); 5436 VecCost += TTI->getCmpSelInstrCost( 5437 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5438 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5439 E->getAltOp()); 5440 } else { 5441 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5442 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5443 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5444 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5445 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5446 TTI::CastContextHint::None, CostKind); 5447 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5448 TTI::CastContextHint::None, CostKind); 5449 } 5450 5451 SmallVector<int> Mask; 5452 buildSuffleEntryMask( 5453 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5454 [E](Instruction *I) { 5455 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5456 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 5457 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 5458 auto *CI = cast<CmpInst>(I); 5459 CmpInst::Predicate P0 = CI0->getPredicate(); 5460 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5461 CmpInst::Predicate AltP0Swapped = 5462 CmpInst::getSwappedPredicate(AltP0); 5463 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5464 CmpInst::Predicate CurrentPredSwapped = 5465 CmpInst::getSwappedPredicate(CurrentPred); 5466 if (P0 == AltP0 || P0 == AltP0Swapped) { 5467 unsigned Idx = 5468 std::distance(E->Scalars.begin(), find(E->Scalars, I)); 5469 // Alternate cmps have same/swapped predicate as main cmps but 5470 // different order of compatible operands. 5471 ArrayRef<Value *> VLOp0 = E->getOperand(0); 5472 return (P0 == CurrentPred && CI->getOperand(0) != VLOp0[Idx]) || 5473 (P0 == CurrentPredSwapped && 5474 CI->getOperand(1) != VLOp0[Idx]); 5475 } 5476 return CurrentPred != P0 && CurrentPredSwapped != P0; 5477 } 5478 return I->getOpcode() == E->getAltOpcode(); 5479 }, 5480 Mask); 5481 CommonCost = 5482 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5483 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5484 return CommonCost + VecCost - ScalarCost; 5485 } 5486 default: 5487 llvm_unreachable("Unknown instruction"); 5488 } 5489 } 5490 5491 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5492 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5493 << VectorizableTree.size() << " is fully vectorizable .\n"); 5494 5495 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5496 SmallVector<int> Mask; 5497 return TE->State == TreeEntry::NeedToGather && 5498 !any_of(TE->Scalars, 5499 [this](Value *V) { return EphValues.contains(V); }) && 5500 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5501 TE->Scalars.size() < Limit || 5502 ((TE->getOpcode() == Instruction::ExtractElement || 5503 all_of(TE->Scalars, 5504 [](Value *V) { 5505 return isa<ExtractElementInst, UndefValue>(V); 5506 })) && 5507 isFixedVectorShuffle(TE->Scalars, Mask)) || 5508 (TE->State == TreeEntry::NeedToGather && 5509 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5510 }; 5511 5512 // We only handle trees of heights 1 and 2. 5513 if (VectorizableTree.size() == 1 && 5514 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5515 (ForReduction && 5516 AreVectorizableGathers(VectorizableTree[0].get(), 5517 VectorizableTree[0]->Scalars.size()) && 5518 VectorizableTree[0]->getVectorFactor() > 2))) 5519 return true; 5520 5521 if (VectorizableTree.size() != 2) 5522 return false; 5523 5524 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5525 // with the second gather nodes if they have less scalar operands rather than 5526 // the initial tree element (may be profitable to shuffle the second gather) 5527 // or they are extractelements, which form shuffle. 5528 SmallVector<int> Mask; 5529 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5530 AreVectorizableGathers(VectorizableTree[1].get(), 5531 VectorizableTree[0]->Scalars.size())) 5532 return true; 5533 5534 // Gathering cost would be too much for tiny trees. 5535 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5536 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5537 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5538 return false; 5539 5540 return true; 5541 } 5542 5543 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5544 TargetTransformInfo *TTI, 5545 bool MustMatchOrInst) { 5546 // Look past the root to find a source value. Arbitrarily follow the 5547 // path through operand 0 of any 'or'. Also, peek through optional 5548 // shift-left-by-multiple-of-8-bits. 5549 Value *ZextLoad = Root; 5550 const APInt *ShAmtC; 5551 bool FoundOr = false; 5552 while (!isa<ConstantExpr>(ZextLoad) && 5553 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5554 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5555 ShAmtC->urem(8) == 0))) { 5556 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5557 ZextLoad = BinOp->getOperand(0); 5558 if (BinOp->getOpcode() == Instruction::Or) 5559 FoundOr = true; 5560 } 5561 // Check if the input is an extended load of the required or/shift expression. 5562 Value *Load; 5563 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5564 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5565 return false; 5566 5567 // Require that the total load bit width is a legal integer type. 5568 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5569 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5570 Type *SrcTy = Load->getType(); 5571 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5572 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5573 return false; 5574 5575 // Everything matched - assume that we can fold the whole sequence using 5576 // load combining. 5577 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5578 << *(cast<Instruction>(Root)) << "\n"); 5579 5580 return true; 5581 } 5582 5583 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5584 if (RdxKind != RecurKind::Or) 5585 return false; 5586 5587 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5588 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5589 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5590 /* MatchOr */ false); 5591 } 5592 5593 bool BoUpSLP::isLoadCombineCandidate() const { 5594 // Peek through a final sequence of stores and check if all operations are 5595 // likely to be load-combined. 5596 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5597 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5598 Value *X; 5599 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5600 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5601 return false; 5602 } 5603 return true; 5604 } 5605 5606 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5607 // No need to vectorize inserts of gathered values. 5608 if (VectorizableTree.size() == 2 && 5609 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5610 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5611 return true; 5612 5613 // We can vectorize the tree if its size is greater than or equal to the 5614 // minimum size specified by the MinTreeSize command line option. 5615 if (VectorizableTree.size() >= MinTreeSize) 5616 return false; 5617 5618 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5619 // can vectorize it if we can prove it fully vectorizable. 5620 if (isFullyVectorizableTinyTree(ForReduction)) 5621 return false; 5622 5623 assert(VectorizableTree.empty() 5624 ? ExternalUses.empty() 5625 : true && "We shouldn't have any external users"); 5626 5627 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5628 // vectorizable. 5629 return true; 5630 } 5631 5632 InstructionCost BoUpSLP::getSpillCost() const { 5633 // Walk from the bottom of the tree to the top, tracking which values are 5634 // live. When we see a call instruction that is not part of our tree, 5635 // query TTI to see if there is a cost to keeping values live over it 5636 // (for example, if spills and fills are required). 5637 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5638 InstructionCost Cost = 0; 5639 5640 SmallPtrSet<Instruction*, 4> LiveValues; 5641 Instruction *PrevInst = nullptr; 5642 5643 // The entries in VectorizableTree are not necessarily ordered by their 5644 // position in basic blocks. Collect them and order them by dominance so later 5645 // instructions are guaranteed to be visited first. For instructions in 5646 // different basic blocks, we only scan to the beginning of the block, so 5647 // their order does not matter, as long as all instructions in a basic block 5648 // are grouped together. Using dominance ensures a deterministic order. 5649 SmallVector<Instruction *, 16> OrderedScalars; 5650 for (const auto &TEPtr : VectorizableTree) { 5651 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5652 if (!Inst) 5653 continue; 5654 OrderedScalars.push_back(Inst); 5655 } 5656 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5657 auto *NodeA = DT->getNode(A->getParent()); 5658 auto *NodeB = DT->getNode(B->getParent()); 5659 assert(NodeA && "Should only process reachable instructions"); 5660 assert(NodeB && "Should only process reachable instructions"); 5661 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5662 "Different nodes should have different DFS numbers"); 5663 if (NodeA != NodeB) 5664 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5665 return B->comesBefore(A); 5666 }); 5667 5668 for (Instruction *Inst : OrderedScalars) { 5669 if (!PrevInst) { 5670 PrevInst = Inst; 5671 continue; 5672 } 5673 5674 // Update LiveValues. 5675 LiveValues.erase(PrevInst); 5676 for (auto &J : PrevInst->operands()) { 5677 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5678 LiveValues.insert(cast<Instruction>(&*J)); 5679 } 5680 5681 LLVM_DEBUG({ 5682 dbgs() << "SLP: #LV: " << LiveValues.size(); 5683 for (auto *X : LiveValues) 5684 dbgs() << " " << X->getName(); 5685 dbgs() << ", Looking at "; 5686 Inst->dump(); 5687 }); 5688 5689 // Now find the sequence of instructions between PrevInst and Inst. 5690 unsigned NumCalls = 0; 5691 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5692 PrevInstIt = 5693 PrevInst->getIterator().getReverse(); 5694 while (InstIt != PrevInstIt) { 5695 if (PrevInstIt == PrevInst->getParent()->rend()) { 5696 PrevInstIt = Inst->getParent()->rbegin(); 5697 continue; 5698 } 5699 5700 // Debug information does not impact spill cost. 5701 if ((isa<CallInst>(&*PrevInstIt) && 5702 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5703 &*PrevInstIt != PrevInst) 5704 NumCalls++; 5705 5706 ++PrevInstIt; 5707 } 5708 5709 if (NumCalls) { 5710 SmallVector<Type*, 4> V; 5711 for (auto *II : LiveValues) { 5712 auto *ScalarTy = II->getType(); 5713 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5714 ScalarTy = VectorTy->getElementType(); 5715 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5716 } 5717 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5718 } 5719 5720 PrevInst = Inst; 5721 } 5722 5723 return Cost; 5724 } 5725 5726 /// Check if two insertelement instructions are from the same buildvector. 5727 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5728 InsertElementInst *V) { 5729 // Instructions must be from the same basic blocks. 5730 if (VU->getParent() != V->getParent()) 5731 return false; 5732 // Checks if 2 insertelements are from the same buildvector. 5733 if (VU->getType() != V->getType()) 5734 return false; 5735 // Multiple used inserts are separate nodes. 5736 if (!VU->hasOneUse() && !V->hasOneUse()) 5737 return false; 5738 auto *IE1 = VU; 5739 auto *IE2 = V; 5740 // Go through the vector operand of insertelement instructions trying to find 5741 // either VU as the original vector for IE2 or V as the original vector for 5742 // IE1. 5743 do { 5744 if (IE2 == VU || IE1 == V) 5745 return true; 5746 if (IE1) { 5747 if (IE1 != VU && !IE1->hasOneUse()) 5748 IE1 = nullptr; 5749 else 5750 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5751 } 5752 if (IE2) { 5753 if (IE2 != V && !IE2->hasOneUse()) 5754 IE2 = nullptr; 5755 else 5756 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5757 } 5758 } while (IE1 || IE2); 5759 return false; 5760 } 5761 5762 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5763 InstructionCost Cost = 0; 5764 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5765 << VectorizableTree.size() << ".\n"); 5766 5767 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5768 5769 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5770 TreeEntry &TE = *VectorizableTree[I].get(); 5771 5772 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5773 Cost += C; 5774 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5775 << " for bundle that starts with " << *TE.Scalars[0] 5776 << ".\n" 5777 << "SLP: Current total cost = " << Cost << "\n"); 5778 } 5779 5780 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5781 InstructionCost ExtractCost = 0; 5782 SmallVector<unsigned> VF; 5783 SmallVector<SmallVector<int>> ShuffleMask; 5784 SmallVector<Value *> FirstUsers; 5785 SmallVector<APInt> DemandedElts; 5786 for (ExternalUser &EU : ExternalUses) { 5787 // We only add extract cost once for the same scalar. 5788 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5789 !ExtractCostCalculated.insert(EU.Scalar).second) 5790 continue; 5791 5792 // Uses by ephemeral values are free (because the ephemeral value will be 5793 // removed prior to code generation, and so the extraction will be 5794 // removed as well). 5795 if (EphValues.count(EU.User)) 5796 continue; 5797 5798 // No extract cost for vector "scalar" 5799 if (isa<FixedVectorType>(EU.Scalar->getType())) 5800 continue; 5801 5802 // Already counted the cost for external uses when tried to adjust the cost 5803 // for extractelements, no need to add it again. 5804 if (isa<ExtractElementInst>(EU.Scalar)) 5805 continue; 5806 5807 // If found user is an insertelement, do not calculate extract cost but try 5808 // to detect it as a final shuffled/identity match. 5809 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5810 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5811 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5812 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5813 continue; 5814 auto *It = find_if(FirstUsers, [VU](Value *V) { 5815 return areTwoInsertFromSameBuildVector(VU, 5816 cast<InsertElementInst>(V)); 5817 }); 5818 int VecId = -1; 5819 if (It == FirstUsers.end()) { 5820 VF.push_back(FTy->getNumElements()); 5821 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5822 // Find the insertvector, vectorized in tree, if any. 5823 Value *Base = VU; 5824 while (isa<InsertElementInst>(Base)) { 5825 // Build the mask for the vectorized insertelement instructions. 5826 if (const TreeEntry *E = getTreeEntry(Base)) { 5827 VU = cast<InsertElementInst>(Base); 5828 do { 5829 int Idx = E->findLaneForValue(Base); 5830 ShuffleMask.back()[Idx] = Idx; 5831 Base = cast<InsertElementInst>(Base)->getOperand(0); 5832 } while (E == getTreeEntry(Base)); 5833 break; 5834 } 5835 Base = cast<InsertElementInst>(Base)->getOperand(0); 5836 } 5837 FirstUsers.push_back(VU); 5838 DemandedElts.push_back(APInt::getZero(VF.back())); 5839 VecId = FirstUsers.size() - 1; 5840 } else { 5841 VecId = std::distance(FirstUsers.begin(), It); 5842 } 5843 int Idx = *InsertIdx; 5844 ShuffleMask[VecId][Idx] = EU.Lane; 5845 DemandedElts[VecId].setBit(Idx); 5846 continue; 5847 } 5848 } 5849 5850 // If we plan to rewrite the tree in a smaller type, we will need to sign 5851 // extend the extracted value back to the original type. Here, we account 5852 // for the extract and the added cost of the sign extend if needed. 5853 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5854 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5855 if (MinBWs.count(ScalarRoot)) { 5856 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5857 auto Extend = 5858 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5859 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5860 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5861 VecTy, EU.Lane); 5862 } else { 5863 ExtractCost += 5864 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5865 } 5866 } 5867 5868 InstructionCost SpillCost = getSpillCost(); 5869 Cost += SpillCost + ExtractCost; 5870 if (FirstUsers.size() == 1) { 5871 int Limit = ShuffleMask.front().size() * 2; 5872 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5873 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5874 InstructionCost C = TTI->getShuffleCost( 5875 TTI::SK_PermuteSingleSrc, 5876 cast<FixedVectorType>(FirstUsers.front()->getType()), 5877 ShuffleMask.front()); 5878 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5879 << " for final shuffle of insertelement external users " 5880 << *VectorizableTree.front()->Scalars.front() << ".\n" 5881 << "SLP: Current total cost = " << Cost << "\n"); 5882 Cost += C; 5883 } 5884 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5885 cast<FixedVectorType>(FirstUsers.front()->getType()), 5886 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5887 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5888 << " for insertelements gather.\n" 5889 << "SLP: Current total cost = " << Cost << "\n"); 5890 Cost -= InsertCost; 5891 } else if (FirstUsers.size() >= 2) { 5892 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5893 // Combined masks of the first 2 vectors. 5894 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5895 copy(ShuffleMask.front(), CombinedMask.begin()); 5896 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5897 auto *VecTy = FixedVectorType::get( 5898 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5899 MaxVF); 5900 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5901 if (ShuffleMask[1][I] != UndefMaskElem) { 5902 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5903 CombinedDemandedElts.setBit(I); 5904 } 5905 } 5906 InstructionCost C = 5907 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5908 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5909 << " for final shuffle of vector node and external " 5910 "insertelement users " 5911 << *VectorizableTree.front()->Scalars.front() << ".\n" 5912 << "SLP: Current total cost = " << Cost << "\n"); 5913 Cost += C; 5914 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5915 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5916 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5917 << " for insertelements gather.\n" 5918 << "SLP: Current total cost = " << Cost << "\n"); 5919 Cost -= InsertCost; 5920 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5921 // Other elements - permutation of 2 vectors (the initial one and the 5922 // next Ith incoming vector). 5923 unsigned VF = ShuffleMask[I].size(); 5924 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5925 int Mask = ShuffleMask[I][Idx]; 5926 if (Mask != UndefMaskElem) 5927 CombinedMask[Idx] = MaxVF + Mask; 5928 else if (CombinedMask[Idx] != UndefMaskElem) 5929 CombinedMask[Idx] = Idx; 5930 } 5931 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5932 if (CombinedMask[Idx] != UndefMaskElem) 5933 CombinedMask[Idx] = Idx; 5934 InstructionCost C = 5935 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5936 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5937 << " for final shuffle of vector node and external " 5938 "insertelement users " 5939 << *VectorizableTree.front()->Scalars.front() << ".\n" 5940 << "SLP: Current total cost = " << Cost << "\n"); 5941 Cost += C; 5942 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5943 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5944 /*Insert*/ true, /*Extract*/ false); 5945 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5946 << " for insertelements gather.\n" 5947 << "SLP: Current total cost = " << Cost << "\n"); 5948 Cost -= InsertCost; 5949 } 5950 } 5951 5952 #ifndef NDEBUG 5953 SmallString<256> Str; 5954 { 5955 raw_svector_ostream OS(Str); 5956 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5957 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5958 << "SLP: Total Cost = " << Cost << ".\n"; 5959 } 5960 LLVM_DEBUG(dbgs() << Str); 5961 if (ViewSLPTree) 5962 ViewGraph(this, "SLP" + F->getName(), false, Str); 5963 #endif 5964 5965 return Cost; 5966 } 5967 5968 Optional<TargetTransformInfo::ShuffleKind> 5969 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5970 SmallVectorImpl<const TreeEntry *> &Entries) { 5971 // TODO: currently checking only for Scalars in the tree entry, need to count 5972 // reused elements too for better cost estimation. 5973 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5974 Entries.clear(); 5975 // Build a lists of values to tree entries. 5976 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5977 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5978 if (EntryPtr.get() == TE) 5979 break; 5980 if (EntryPtr->State != TreeEntry::NeedToGather) 5981 continue; 5982 for (Value *V : EntryPtr->Scalars) 5983 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5984 } 5985 // Find all tree entries used by the gathered values. If no common entries 5986 // found - not a shuffle. 5987 // Here we build a set of tree nodes for each gathered value and trying to 5988 // find the intersection between these sets. If we have at least one common 5989 // tree node for each gathered value - we have just a permutation of the 5990 // single vector. If we have 2 different sets, we're in situation where we 5991 // have a permutation of 2 input vectors. 5992 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5993 DenseMap<Value *, int> UsedValuesEntry; 5994 for (Value *V : TE->Scalars) { 5995 if (isa<UndefValue>(V)) 5996 continue; 5997 // Build a list of tree entries where V is used. 5998 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5999 auto It = ValueToTEs.find(V); 6000 if (It != ValueToTEs.end()) 6001 VToTEs = It->second; 6002 if (const TreeEntry *VTE = getTreeEntry(V)) 6003 VToTEs.insert(VTE); 6004 if (VToTEs.empty()) 6005 return None; 6006 if (UsedTEs.empty()) { 6007 // The first iteration, just insert the list of nodes to vector. 6008 UsedTEs.push_back(VToTEs); 6009 } else { 6010 // Need to check if there are any previously used tree nodes which use V. 6011 // If there are no such nodes, consider that we have another one input 6012 // vector. 6013 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6014 unsigned Idx = 0; 6015 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6016 // Do we have a non-empty intersection of previously listed tree entries 6017 // and tree entries using current V? 6018 set_intersect(VToTEs, Set); 6019 if (!VToTEs.empty()) { 6020 // Yes, write the new subset and continue analysis for the next 6021 // scalar. 6022 Set.swap(VToTEs); 6023 break; 6024 } 6025 VToTEs = SavedVToTEs; 6026 ++Idx; 6027 } 6028 // No non-empty intersection found - need to add a second set of possible 6029 // source vectors. 6030 if (Idx == UsedTEs.size()) { 6031 // If the number of input vectors is greater than 2 - not a permutation, 6032 // fallback to the regular gather. 6033 if (UsedTEs.size() == 2) 6034 return None; 6035 UsedTEs.push_back(SavedVToTEs); 6036 Idx = UsedTEs.size() - 1; 6037 } 6038 UsedValuesEntry.try_emplace(V, Idx); 6039 } 6040 } 6041 6042 unsigned VF = 0; 6043 if (UsedTEs.size() == 1) { 6044 // Try to find the perfect match in another gather node at first. 6045 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6046 return EntryPtr->isSame(TE->Scalars); 6047 }); 6048 if (It != UsedTEs.front().end()) { 6049 Entries.push_back(*It); 6050 std::iota(Mask.begin(), Mask.end(), 0); 6051 return TargetTransformInfo::SK_PermuteSingleSrc; 6052 } 6053 // No perfect match, just shuffle, so choose the first tree node. 6054 Entries.push_back(*UsedTEs.front().begin()); 6055 } else { 6056 // Try to find nodes with the same vector factor. 6057 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6058 DenseMap<int, const TreeEntry *> VFToTE; 6059 for (const TreeEntry *TE : UsedTEs.front()) 6060 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6061 for (const TreeEntry *TE : UsedTEs.back()) { 6062 auto It = VFToTE.find(TE->getVectorFactor()); 6063 if (It != VFToTE.end()) { 6064 VF = It->first; 6065 Entries.push_back(It->second); 6066 Entries.push_back(TE); 6067 break; 6068 } 6069 } 6070 // No 2 source vectors with the same vector factor - give up and do regular 6071 // gather. 6072 if (Entries.empty()) 6073 return None; 6074 } 6075 6076 // Build a shuffle mask for better cost estimation and vector emission. 6077 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6078 Value *V = TE->Scalars[I]; 6079 if (isa<UndefValue>(V)) 6080 continue; 6081 unsigned Idx = UsedValuesEntry.lookup(V); 6082 const TreeEntry *VTE = Entries[Idx]; 6083 int FoundLane = VTE->findLaneForValue(V); 6084 Mask[I] = Idx * VF + FoundLane; 6085 // Extra check required by isSingleSourceMaskImpl function (called by 6086 // ShuffleVectorInst::isSingleSourceMask). 6087 if (Mask[I] >= 2 * E) 6088 return None; 6089 } 6090 switch (Entries.size()) { 6091 case 1: 6092 return TargetTransformInfo::SK_PermuteSingleSrc; 6093 case 2: 6094 return TargetTransformInfo::SK_PermuteTwoSrc; 6095 default: 6096 break; 6097 } 6098 return None; 6099 } 6100 6101 InstructionCost 6102 BoUpSLP::getGatherCost(FixedVectorType *Ty, 6103 const DenseSet<unsigned> &ShuffledIndices, 6104 bool NeedToShuffle) const { 6105 unsigned NumElts = Ty->getNumElements(); 6106 APInt DemandedElts = APInt::getZero(NumElts); 6107 for (unsigned I = 0; I < NumElts; ++I) 6108 if (!ShuffledIndices.count(I)) 6109 DemandedElts.setBit(I); 6110 InstructionCost Cost = 6111 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 6112 /*Extract*/ false); 6113 if (NeedToShuffle) 6114 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6115 return Cost; 6116 } 6117 6118 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6119 // Find the type of the operands in VL. 6120 Type *ScalarTy = VL[0]->getType(); 6121 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6122 ScalarTy = SI->getValueOperand()->getType(); 6123 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6124 bool DuplicateNonConst = false; 6125 // Find the cost of inserting/extracting values from the vector. 6126 // Check if the same elements are inserted several times and count them as 6127 // shuffle candidates. 6128 DenseSet<unsigned> ShuffledElements; 6129 DenseSet<Value *> UniqueElements; 6130 // Iterate in reverse order to consider insert elements with the high cost. 6131 for (unsigned I = VL.size(); I > 0; --I) { 6132 unsigned Idx = I - 1; 6133 // No need to shuffle duplicates for constants. 6134 if (isConstant(VL[Idx])) { 6135 ShuffledElements.insert(Idx); 6136 continue; 6137 } 6138 if (!UniqueElements.insert(VL[Idx]).second) { 6139 DuplicateNonConst = true; 6140 ShuffledElements.insert(Idx); 6141 } 6142 } 6143 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6144 } 6145 6146 // Perform operand reordering on the instructions in VL and return the reordered 6147 // operands in Left and Right. 6148 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6149 SmallVectorImpl<Value *> &Left, 6150 SmallVectorImpl<Value *> &Right, 6151 const DataLayout &DL, 6152 ScalarEvolution &SE, 6153 const BoUpSLP &R) { 6154 if (VL.empty()) 6155 return; 6156 VLOperands Ops(VL, DL, SE, R); 6157 // Reorder the operands in place. 6158 Ops.reorder(); 6159 Left = Ops.getVL(0); 6160 Right = Ops.getVL(1); 6161 } 6162 6163 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6164 // Get the basic block this bundle is in. All instructions in the bundle 6165 // should be in this block. 6166 auto *Front = E->getMainOp(); 6167 auto *BB = Front->getParent(); 6168 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6169 auto *I = cast<Instruction>(V); 6170 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6171 })); 6172 6173 // The last instruction in the bundle in program order. 6174 Instruction *LastInst = nullptr; 6175 6176 // Find the last instruction. The common case should be that BB has been 6177 // scheduled, and the last instruction is VL.back(). So we start with 6178 // VL.back() and iterate over schedule data until we reach the end of the 6179 // bundle. The end of the bundle is marked by null ScheduleData. 6180 if (BlocksSchedules.count(BB)) { 6181 auto *Bundle = 6182 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6183 if (Bundle && Bundle->isPartOfBundle()) 6184 for (; Bundle; Bundle = Bundle->NextInBundle) 6185 if (Bundle->OpValue == Bundle->Inst) 6186 LastInst = Bundle->Inst; 6187 } 6188 6189 // LastInst can still be null at this point if there's either not an entry 6190 // for BB in BlocksSchedules or there's no ScheduleData available for 6191 // VL.back(). This can be the case if buildTree_rec aborts for various 6192 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6193 // size is reached, etc.). ScheduleData is initialized in the scheduling 6194 // "dry-run". 6195 // 6196 // If this happens, we can still find the last instruction by brute force. We 6197 // iterate forwards from Front (inclusive) until we either see all 6198 // instructions in the bundle or reach the end of the block. If Front is the 6199 // last instruction in program order, LastInst will be set to Front, and we 6200 // will visit all the remaining instructions in the block. 6201 // 6202 // One of the reasons we exit early from buildTree_rec is to place an upper 6203 // bound on compile-time. Thus, taking an additional compile-time hit here is 6204 // not ideal. However, this should be exceedingly rare since it requires that 6205 // we both exit early from buildTree_rec and that the bundle be out-of-order 6206 // (causing us to iterate all the way to the end of the block). 6207 if (!LastInst) { 6208 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6209 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6210 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6211 LastInst = &I; 6212 if (Bundle.empty()) 6213 break; 6214 } 6215 } 6216 assert(LastInst && "Failed to find last instruction in bundle"); 6217 6218 // Set the insertion point after the last instruction in the bundle. Set the 6219 // debug location to Front. 6220 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6221 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6222 } 6223 6224 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6225 // List of instructions/lanes from current block and/or the blocks which are 6226 // part of the current loop. These instructions will be inserted at the end to 6227 // make it possible to optimize loops and hoist invariant instructions out of 6228 // the loops body with better chances for success. 6229 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6230 SmallSet<int, 4> PostponedIndices; 6231 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6232 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6233 SmallPtrSet<BasicBlock *, 4> Visited; 6234 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6235 InsertBB = InsertBB->getSinglePredecessor(); 6236 return InsertBB && InsertBB == InstBB; 6237 }; 6238 for (int I = 0, E = VL.size(); I < E; ++I) { 6239 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6240 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6241 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6242 PostponedIndices.insert(I).second) 6243 PostponedInsts.emplace_back(Inst, I); 6244 } 6245 6246 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6247 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6248 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6249 if (!InsElt) 6250 return Vec; 6251 GatherShuffleSeq.insert(InsElt); 6252 CSEBlocks.insert(InsElt->getParent()); 6253 // Add to our 'need-to-extract' list. 6254 if (TreeEntry *Entry = getTreeEntry(V)) { 6255 // Find which lane we need to extract. 6256 unsigned FoundLane = Entry->findLaneForValue(V); 6257 ExternalUses.emplace_back(V, InsElt, FoundLane); 6258 } 6259 return Vec; 6260 }; 6261 Value *Val0 = 6262 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6263 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6264 Value *Vec = PoisonValue::get(VecTy); 6265 SmallVector<int> NonConsts; 6266 // Insert constant values at first. 6267 for (int I = 0, E = VL.size(); I < E; ++I) { 6268 if (PostponedIndices.contains(I)) 6269 continue; 6270 if (!isConstant(VL[I])) { 6271 NonConsts.push_back(I); 6272 continue; 6273 } 6274 Vec = CreateInsertElement(Vec, VL[I], I); 6275 } 6276 // Insert non-constant values. 6277 for (int I : NonConsts) 6278 Vec = CreateInsertElement(Vec, VL[I], I); 6279 // Append instructions, which are/may be part of the loop, in the end to make 6280 // it possible to hoist non-loop-based instructions. 6281 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6282 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6283 6284 return Vec; 6285 } 6286 6287 namespace { 6288 /// Merges shuffle masks and emits final shuffle instruction, if required. 6289 class ShuffleInstructionBuilder { 6290 IRBuilderBase &Builder; 6291 const unsigned VF = 0; 6292 bool IsFinalized = false; 6293 SmallVector<int, 4> Mask; 6294 /// Holds all of the instructions that we gathered. 6295 SetVector<Instruction *> &GatherShuffleSeq; 6296 /// A list of blocks that we are going to CSE. 6297 SetVector<BasicBlock *> &CSEBlocks; 6298 6299 public: 6300 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6301 SetVector<Instruction *> &GatherShuffleSeq, 6302 SetVector<BasicBlock *> &CSEBlocks) 6303 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6304 CSEBlocks(CSEBlocks) {} 6305 6306 /// Adds a mask, inverting it before applying. 6307 void addInversedMask(ArrayRef<unsigned> SubMask) { 6308 if (SubMask.empty()) 6309 return; 6310 SmallVector<int, 4> NewMask; 6311 inversePermutation(SubMask, NewMask); 6312 addMask(NewMask); 6313 } 6314 6315 /// Functions adds masks, merging them into single one. 6316 void addMask(ArrayRef<unsigned> SubMask) { 6317 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6318 addMask(NewMask); 6319 } 6320 6321 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6322 6323 Value *finalize(Value *V) { 6324 IsFinalized = true; 6325 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6326 if (VF == ValueVF && Mask.empty()) 6327 return V; 6328 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6329 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6330 addMask(NormalizedMask); 6331 6332 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6333 return V; 6334 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6335 if (auto *I = dyn_cast<Instruction>(Vec)) { 6336 GatherShuffleSeq.insert(I); 6337 CSEBlocks.insert(I->getParent()); 6338 } 6339 return Vec; 6340 } 6341 6342 ~ShuffleInstructionBuilder() { 6343 assert((IsFinalized || Mask.empty()) && 6344 "Shuffle construction must be finalized."); 6345 } 6346 }; 6347 } // namespace 6348 6349 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6350 unsigned VF = VL.size(); 6351 InstructionsState S = getSameOpcode(VL); 6352 if (S.getOpcode()) { 6353 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6354 if (E->isSame(VL)) { 6355 Value *V = vectorizeTree(E); 6356 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6357 if (!E->ReuseShuffleIndices.empty()) { 6358 // Reshuffle to get only unique values. 6359 // If some of the scalars are duplicated in the vectorization tree 6360 // entry, we do not vectorize them but instead generate a mask for 6361 // the reuses. But if there are several users of the same entry, 6362 // they may have different vectorization factors. This is especially 6363 // important for PHI nodes. In this case, we need to adapt the 6364 // resulting instruction for the user vectorization factor and have 6365 // to reshuffle it again to take only unique elements of the vector. 6366 // Without this code the function incorrectly returns reduced vector 6367 // instruction with the same elements, not with the unique ones. 6368 6369 // block: 6370 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6371 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6372 // ... (use %2) 6373 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6374 // br %block 6375 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6376 SmallSet<int, 4> UsedIdxs; 6377 int Pos = 0; 6378 int Sz = VL.size(); 6379 for (int Idx : E->ReuseShuffleIndices) { 6380 if (Idx != Sz && Idx != UndefMaskElem && 6381 UsedIdxs.insert(Idx).second) 6382 UniqueIdxs[Idx] = Pos; 6383 ++Pos; 6384 } 6385 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6386 "less than original vector size."); 6387 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6388 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6389 } else { 6390 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6391 "Expected vectorization factor less " 6392 "than original vector size."); 6393 SmallVector<int> UniformMask(VF, 0); 6394 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6395 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6396 } 6397 if (auto *I = dyn_cast<Instruction>(V)) { 6398 GatherShuffleSeq.insert(I); 6399 CSEBlocks.insert(I->getParent()); 6400 } 6401 } 6402 return V; 6403 } 6404 } 6405 6406 // Check that every instruction appears once in this bundle. 6407 SmallVector<int> ReuseShuffleIndicies; 6408 SmallVector<Value *> UniqueValues; 6409 if (VL.size() > 2) { 6410 DenseMap<Value *, unsigned> UniquePositions; 6411 unsigned NumValues = 6412 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6413 return !isa<UndefValue>(V); 6414 }).base()); 6415 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6416 int UniqueVals = 0; 6417 for (Value *V : VL.drop_back(VL.size() - VF)) { 6418 if (isa<UndefValue>(V)) { 6419 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6420 continue; 6421 } 6422 if (isConstant(V)) { 6423 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6424 UniqueValues.emplace_back(V); 6425 continue; 6426 } 6427 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6428 ReuseShuffleIndicies.emplace_back(Res.first->second); 6429 if (Res.second) { 6430 UniqueValues.emplace_back(V); 6431 ++UniqueVals; 6432 } 6433 } 6434 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6435 // Emit pure splat vector. 6436 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6437 UndefMaskElem); 6438 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6439 ReuseShuffleIndicies.clear(); 6440 UniqueValues.clear(); 6441 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6442 } 6443 UniqueValues.append(VF - UniqueValues.size(), 6444 PoisonValue::get(VL[0]->getType())); 6445 VL = UniqueValues; 6446 } 6447 6448 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6449 CSEBlocks); 6450 Value *Vec = gather(VL); 6451 if (!ReuseShuffleIndicies.empty()) { 6452 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6453 Vec = ShuffleBuilder.finalize(Vec); 6454 } 6455 return Vec; 6456 } 6457 6458 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6459 IRBuilder<>::InsertPointGuard Guard(Builder); 6460 6461 if (E->VectorizedValue) { 6462 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6463 return E->VectorizedValue; 6464 } 6465 6466 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6467 unsigned VF = E->getVectorFactor(); 6468 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6469 CSEBlocks); 6470 if (E->State == TreeEntry::NeedToGather) { 6471 if (E->getMainOp()) 6472 setInsertPointAfterBundle(E); 6473 Value *Vec; 6474 SmallVector<int> Mask; 6475 SmallVector<const TreeEntry *> Entries; 6476 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6477 isGatherShuffledEntry(E, Mask, Entries); 6478 if (Shuffle.hasValue()) { 6479 assert((Entries.size() == 1 || Entries.size() == 2) && 6480 "Expected shuffle of 1 or 2 entries."); 6481 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6482 Entries.back()->VectorizedValue, Mask); 6483 if (auto *I = dyn_cast<Instruction>(Vec)) { 6484 GatherShuffleSeq.insert(I); 6485 CSEBlocks.insert(I->getParent()); 6486 } 6487 } else { 6488 Vec = gather(E->Scalars); 6489 } 6490 if (NeedToShuffleReuses) { 6491 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6492 Vec = ShuffleBuilder.finalize(Vec); 6493 } 6494 E->VectorizedValue = Vec; 6495 return Vec; 6496 } 6497 6498 assert((E->State == TreeEntry::Vectorize || 6499 E->State == TreeEntry::ScatterVectorize) && 6500 "Unhandled state"); 6501 unsigned ShuffleOrOp = 6502 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6503 Instruction *VL0 = E->getMainOp(); 6504 Type *ScalarTy = VL0->getType(); 6505 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6506 ScalarTy = Store->getValueOperand()->getType(); 6507 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6508 ScalarTy = IE->getOperand(1)->getType(); 6509 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6510 switch (ShuffleOrOp) { 6511 case Instruction::PHI: { 6512 assert( 6513 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6514 "PHI reordering is free."); 6515 auto *PH = cast<PHINode>(VL0); 6516 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6517 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6518 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6519 Value *V = NewPhi; 6520 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6521 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6522 V = ShuffleBuilder.finalize(V); 6523 6524 E->VectorizedValue = V; 6525 6526 // PHINodes may have multiple entries from the same block. We want to 6527 // visit every block once. 6528 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6529 6530 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6531 ValueList Operands; 6532 BasicBlock *IBB = PH->getIncomingBlock(i); 6533 6534 if (!VisitedBBs.insert(IBB).second) { 6535 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6536 continue; 6537 } 6538 6539 Builder.SetInsertPoint(IBB->getTerminator()); 6540 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6541 Value *Vec = vectorizeTree(E->getOperand(i)); 6542 NewPhi->addIncoming(Vec, IBB); 6543 } 6544 6545 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6546 "Invalid number of incoming values"); 6547 return V; 6548 } 6549 6550 case Instruction::ExtractElement: { 6551 Value *V = E->getSingleOperand(0); 6552 Builder.SetInsertPoint(VL0); 6553 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6554 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6555 V = ShuffleBuilder.finalize(V); 6556 E->VectorizedValue = V; 6557 return V; 6558 } 6559 case Instruction::ExtractValue: { 6560 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6561 Builder.SetInsertPoint(LI); 6562 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6563 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6564 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6565 Value *NewV = propagateMetadata(V, E->Scalars); 6566 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6567 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6568 NewV = ShuffleBuilder.finalize(NewV); 6569 E->VectorizedValue = NewV; 6570 return NewV; 6571 } 6572 case Instruction::InsertElement: { 6573 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6574 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6575 Value *V = vectorizeTree(E->getOperand(1)); 6576 6577 // Create InsertVector shuffle if necessary 6578 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6579 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6580 })); 6581 const unsigned NumElts = 6582 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6583 const unsigned NumScalars = E->Scalars.size(); 6584 6585 unsigned Offset = *getInsertIndex(VL0, 0); 6586 assert(Offset < NumElts && "Failed to find vector index offset"); 6587 6588 // Create shuffle to resize vector 6589 SmallVector<int> Mask; 6590 if (!E->ReorderIndices.empty()) { 6591 inversePermutation(E->ReorderIndices, Mask); 6592 Mask.append(NumElts - NumScalars, UndefMaskElem); 6593 } else { 6594 Mask.assign(NumElts, UndefMaskElem); 6595 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6596 } 6597 // Create InsertVector shuffle if necessary 6598 bool IsIdentity = true; 6599 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6600 Mask.swap(PrevMask); 6601 for (unsigned I = 0; I < NumScalars; ++I) { 6602 Value *Scalar = E->Scalars[PrevMask[I]]; 6603 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6604 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6605 continue; 6606 IsIdentity &= *InsertIdx - Offset == I; 6607 Mask[*InsertIdx - Offset] = I; 6608 } 6609 if (!IsIdentity || NumElts != NumScalars) { 6610 V = Builder.CreateShuffleVector(V, Mask); 6611 if (auto *I = dyn_cast<Instruction>(V)) { 6612 GatherShuffleSeq.insert(I); 6613 CSEBlocks.insert(I->getParent()); 6614 } 6615 } 6616 6617 if ((!IsIdentity || Offset != 0 || 6618 !isUndefVector(FirstInsert->getOperand(0))) && 6619 NumElts != NumScalars) { 6620 SmallVector<int> InsertMask(NumElts); 6621 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6622 for (unsigned I = 0; I < NumElts; I++) { 6623 if (Mask[I] != UndefMaskElem) 6624 InsertMask[Offset + I] = NumElts + I; 6625 } 6626 6627 V = Builder.CreateShuffleVector( 6628 FirstInsert->getOperand(0), V, InsertMask, 6629 cast<Instruction>(E->Scalars.back())->getName()); 6630 if (auto *I = dyn_cast<Instruction>(V)) { 6631 GatherShuffleSeq.insert(I); 6632 CSEBlocks.insert(I->getParent()); 6633 } 6634 } 6635 6636 ++NumVectorInstructions; 6637 E->VectorizedValue = V; 6638 return V; 6639 } 6640 case Instruction::ZExt: 6641 case Instruction::SExt: 6642 case Instruction::FPToUI: 6643 case Instruction::FPToSI: 6644 case Instruction::FPExt: 6645 case Instruction::PtrToInt: 6646 case Instruction::IntToPtr: 6647 case Instruction::SIToFP: 6648 case Instruction::UIToFP: 6649 case Instruction::Trunc: 6650 case Instruction::FPTrunc: 6651 case Instruction::BitCast: { 6652 setInsertPointAfterBundle(E); 6653 6654 Value *InVec = vectorizeTree(E->getOperand(0)); 6655 6656 if (E->VectorizedValue) { 6657 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6658 return E->VectorizedValue; 6659 } 6660 6661 auto *CI = cast<CastInst>(VL0); 6662 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6663 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6664 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6665 V = ShuffleBuilder.finalize(V); 6666 6667 E->VectorizedValue = V; 6668 ++NumVectorInstructions; 6669 return V; 6670 } 6671 case Instruction::FCmp: 6672 case Instruction::ICmp: { 6673 setInsertPointAfterBundle(E); 6674 6675 Value *L = vectorizeTree(E->getOperand(0)); 6676 Value *R = vectorizeTree(E->getOperand(1)); 6677 6678 if (E->VectorizedValue) { 6679 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6680 return E->VectorizedValue; 6681 } 6682 6683 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6684 Value *V = Builder.CreateCmp(P0, L, R); 6685 propagateIRFlags(V, E->Scalars, VL0); 6686 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6687 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6688 V = ShuffleBuilder.finalize(V); 6689 6690 E->VectorizedValue = V; 6691 ++NumVectorInstructions; 6692 return V; 6693 } 6694 case Instruction::Select: { 6695 setInsertPointAfterBundle(E); 6696 6697 Value *Cond = vectorizeTree(E->getOperand(0)); 6698 Value *True = vectorizeTree(E->getOperand(1)); 6699 Value *False = vectorizeTree(E->getOperand(2)); 6700 6701 if (E->VectorizedValue) { 6702 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6703 return E->VectorizedValue; 6704 } 6705 6706 Value *V = Builder.CreateSelect(Cond, True, False); 6707 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6708 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6709 V = ShuffleBuilder.finalize(V); 6710 6711 E->VectorizedValue = V; 6712 ++NumVectorInstructions; 6713 return V; 6714 } 6715 case Instruction::FNeg: { 6716 setInsertPointAfterBundle(E); 6717 6718 Value *Op = vectorizeTree(E->getOperand(0)); 6719 6720 if (E->VectorizedValue) { 6721 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6722 return E->VectorizedValue; 6723 } 6724 6725 Value *V = Builder.CreateUnOp( 6726 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6727 propagateIRFlags(V, E->Scalars, VL0); 6728 if (auto *I = dyn_cast<Instruction>(V)) 6729 V = propagateMetadata(I, E->Scalars); 6730 6731 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6732 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6733 V = ShuffleBuilder.finalize(V); 6734 6735 E->VectorizedValue = V; 6736 ++NumVectorInstructions; 6737 6738 return V; 6739 } 6740 case Instruction::Add: 6741 case Instruction::FAdd: 6742 case Instruction::Sub: 6743 case Instruction::FSub: 6744 case Instruction::Mul: 6745 case Instruction::FMul: 6746 case Instruction::UDiv: 6747 case Instruction::SDiv: 6748 case Instruction::FDiv: 6749 case Instruction::URem: 6750 case Instruction::SRem: 6751 case Instruction::FRem: 6752 case Instruction::Shl: 6753 case Instruction::LShr: 6754 case Instruction::AShr: 6755 case Instruction::And: 6756 case Instruction::Or: 6757 case Instruction::Xor: { 6758 setInsertPointAfterBundle(E); 6759 6760 Value *LHS = vectorizeTree(E->getOperand(0)); 6761 Value *RHS = vectorizeTree(E->getOperand(1)); 6762 6763 if (E->VectorizedValue) { 6764 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6765 return E->VectorizedValue; 6766 } 6767 6768 Value *V = Builder.CreateBinOp( 6769 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6770 RHS); 6771 propagateIRFlags(V, E->Scalars, VL0); 6772 if (auto *I = dyn_cast<Instruction>(V)) 6773 V = propagateMetadata(I, E->Scalars); 6774 6775 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6776 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6777 V = ShuffleBuilder.finalize(V); 6778 6779 E->VectorizedValue = V; 6780 ++NumVectorInstructions; 6781 6782 return V; 6783 } 6784 case Instruction::Load: { 6785 // Loads are inserted at the head of the tree because we don't want to 6786 // sink them all the way down past store instructions. 6787 setInsertPointAfterBundle(E); 6788 6789 LoadInst *LI = cast<LoadInst>(VL0); 6790 Instruction *NewLI; 6791 unsigned AS = LI->getPointerAddressSpace(); 6792 Value *PO = LI->getPointerOperand(); 6793 if (E->State == TreeEntry::Vectorize) { 6794 6795 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6796 6797 // The pointer operand uses an in-tree scalar so we add the new BitCast 6798 // to ExternalUses list to make sure that an extract will be generated 6799 // in the future. 6800 if (TreeEntry *Entry = getTreeEntry(PO)) { 6801 // Find which lane we need to extract. 6802 unsigned FoundLane = Entry->findLaneForValue(PO); 6803 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6804 } 6805 6806 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6807 } else { 6808 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6809 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6810 // Use the minimum alignment of the gathered loads. 6811 Align CommonAlignment = LI->getAlign(); 6812 for (Value *V : E->Scalars) 6813 CommonAlignment = 6814 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6815 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6816 } 6817 Value *V = propagateMetadata(NewLI, E->Scalars); 6818 6819 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6820 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6821 V = ShuffleBuilder.finalize(V); 6822 E->VectorizedValue = V; 6823 ++NumVectorInstructions; 6824 return V; 6825 } 6826 case Instruction::Store: { 6827 auto *SI = cast<StoreInst>(VL0); 6828 unsigned AS = SI->getPointerAddressSpace(); 6829 6830 setInsertPointAfterBundle(E); 6831 6832 Value *VecValue = vectorizeTree(E->getOperand(0)); 6833 ShuffleBuilder.addMask(E->ReorderIndices); 6834 VecValue = ShuffleBuilder.finalize(VecValue); 6835 6836 Value *ScalarPtr = SI->getPointerOperand(); 6837 Value *VecPtr = Builder.CreateBitCast( 6838 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6839 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6840 SI->getAlign()); 6841 6842 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6843 // ExternalUses to make sure that an extract will be generated in the 6844 // future. 6845 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6846 // Find which lane we need to extract. 6847 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6848 ExternalUses.push_back( 6849 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6850 } 6851 6852 Value *V = propagateMetadata(ST, E->Scalars); 6853 6854 E->VectorizedValue = V; 6855 ++NumVectorInstructions; 6856 return V; 6857 } 6858 case Instruction::GetElementPtr: { 6859 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6860 setInsertPointAfterBundle(E); 6861 6862 Value *Op0 = vectorizeTree(E->getOperand(0)); 6863 6864 SmallVector<Value *> OpVecs; 6865 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6866 Value *OpVec = vectorizeTree(E->getOperand(J)); 6867 OpVecs.push_back(OpVec); 6868 } 6869 6870 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6871 if (Instruction *I = dyn_cast<Instruction>(V)) 6872 V = propagateMetadata(I, E->Scalars); 6873 6874 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6875 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6876 V = ShuffleBuilder.finalize(V); 6877 6878 E->VectorizedValue = V; 6879 ++NumVectorInstructions; 6880 6881 return V; 6882 } 6883 case Instruction::Call: { 6884 CallInst *CI = cast<CallInst>(VL0); 6885 setInsertPointAfterBundle(E); 6886 6887 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6888 if (Function *FI = CI->getCalledFunction()) 6889 IID = FI->getIntrinsicID(); 6890 6891 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6892 6893 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6894 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6895 VecCallCosts.first <= VecCallCosts.second; 6896 6897 Value *ScalarArg = nullptr; 6898 std::vector<Value *> OpVecs; 6899 SmallVector<Type *, 2> TysForDecl = 6900 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6901 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6902 ValueList OpVL; 6903 // Some intrinsics have scalar arguments. This argument should not be 6904 // vectorized. 6905 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6906 CallInst *CEI = cast<CallInst>(VL0); 6907 ScalarArg = CEI->getArgOperand(j); 6908 OpVecs.push_back(CEI->getArgOperand(j)); 6909 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6910 TysForDecl.push_back(ScalarArg->getType()); 6911 continue; 6912 } 6913 6914 Value *OpVec = vectorizeTree(E->getOperand(j)); 6915 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6916 OpVecs.push_back(OpVec); 6917 } 6918 6919 Function *CF; 6920 if (!UseIntrinsic) { 6921 VFShape Shape = 6922 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6923 VecTy->getNumElements())), 6924 false /*HasGlobalPred*/); 6925 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6926 } else { 6927 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6928 } 6929 6930 SmallVector<OperandBundleDef, 1> OpBundles; 6931 CI->getOperandBundlesAsDefs(OpBundles); 6932 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6933 6934 // The scalar argument uses an in-tree scalar so we add the new vectorized 6935 // call to ExternalUses list to make sure that an extract will be 6936 // generated in the future. 6937 if (ScalarArg) { 6938 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6939 // Find which lane we need to extract. 6940 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6941 ExternalUses.push_back( 6942 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6943 } 6944 } 6945 6946 propagateIRFlags(V, E->Scalars, VL0); 6947 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6948 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6949 V = ShuffleBuilder.finalize(V); 6950 6951 E->VectorizedValue = V; 6952 ++NumVectorInstructions; 6953 return V; 6954 } 6955 case Instruction::ShuffleVector: { 6956 assert(E->isAltShuffle() && 6957 ((Instruction::isBinaryOp(E->getOpcode()) && 6958 Instruction::isBinaryOp(E->getAltOpcode())) || 6959 (Instruction::isCast(E->getOpcode()) && 6960 Instruction::isCast(E->getAltOpcode())) || 6961 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6962 "Invalid Shuffle Vector Operand"); 6963 6964 Value *LHS = nullptr, *RHS = nullptr; 6965 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 6966 setInsertPointAfterBundle(E); 6967 LHS = vectorizeTree(E->getOperand(0)); 6968 RHS = vectorizeTree(E->getOperand(1)); 6969 } else { 6970 setInsertPointAfterBundle(E); 6971 LHS = vectorizeTree(E->getOperand(0)); 6972 } 6973 6974 if (E->VectorizedValue) { 6975 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6976 return E->VectorizedValue; 6977 } 6978 6979 Value *V0, *V1; 6980 if (Instruction::isBinaryOp(E->getOpcode())) { 6981 V0 = Builder.CreateBinOp( 6982 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6983 V1 = Builder.CreateBinOp( 6984 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6985 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6986 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 6987 auto *AltCI = cast<CmpInst>(E->getAltOp()); 6988 CmpInst::Predicate AltPred = AltCI->getPredicate(); 6989 unsigned AltIdx = 6990 std::distance(E->Scalars.begin(), find(E->Scalars, AltCI)); 6991 if (AltCI->getOperand(0) != E->getOperand(0)[AltIdx]) 6992 AltPred = CmpInst::getSwappedPredicate(AltPred); 6993 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 6994 } else { 6995 V0 = Builder.CreateCast( 6996 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6997 V1 = Builder.CreateCast( 6998 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6999 } 7000 // Add V0 and V1 to later analysis to try to find and remove matching 7001 // instruction, if any. 7002 for (Value *V : {V0, V1}) { 7003 if (auto *I = dyn_cast<Instruction>(V)) { 7004 GatherShuffleSeq.insert(I); 7005 CSEBlocks.insert(I->getParent()); 7006 } 7007 } 7008 7009 // Create shuffle to take alternate operations from the vector. 7010 // Also, gather up main and alt scalar ops to propagate IR flags to 7011 // each vector operation. 7012 ValueList OpScalars, AltScalars; 7013 SmallVector<int> Mask; 7014 buildSuffleEntryMask( 7015 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7016 [E](Instruction *I) { 7017 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7018 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 7019 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 7020 auto *CI = cast<CmpInst>(I); 7021 CmpInst::Predicate P0 = CI0->getPredicate(); 7022 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 7023 CmpInst::Predicate AltP0Swapped = 7024 CmpInst::getSwappedPredicate(AltP0); 7025 CmpInst::Predicate CurrentPred = CI->getPredicate(); 7026 CmpInst::Predicate CurrentPredSwapped = 7027 CmpInst::getSwappedPredicate(CurrentPred); 7028 if (P0 == AltP0 || P0 == AltP0Swapped) { 7029 unsigned Idx = 7030 std::distance(E->Scalars.begin(), find(E->Scalars, I)); 7031 // Alternate cmps have same/swapped predicate as main cmps but 7032 // different order of compatible operands. 7033 ArrayRef<Value *> VLOp0 = E->getOperand(0); 7034 return (P0 == CurrentPred && CI->getOperand(0) != VLOp0[Idx]) || 7035 (P0 == CurrentPredSwapped && 7036 CI->getOperand(1) != VLOp0[Idx]); 7037 } 7038 return CurrentPred != P0 && CurrentPredSwapped != P0; 7039 } 7040 return I->getOpcode() == E->getAltOpcode(); 7041 }, 7042 Mask, &OpScalars, &AltScalars); 7043 7044 propagateIRFlags(V0, OpScalars); 7045 propagateIRFlags(V1, AltScalars); 7046 7047 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7048 if (auto *I = dyn_cast<Instruction>(V)) { 7049 V = propagateMetadata(I, E->Scalars); 7050 GatherShuffleSeq.insert(I); 7051 CSEBlocks.insert(I->getParent()); 7052 } 7053 V = ShuffleBuilder.finalize(V); 7054 7055 E->VectorizedValue = V; 7056 ++NumVectorInstructions; 7057 7058 return V; 7059 } 7060 default: 7061 llvm_unreachable("unknown inst"); 7062 } 7063 return nullptr; 7064 } 7065 7066 Value *BoUpSLP::vectorizeTree() { 7067 ExtraValueToDebugLocsMap ExternallyUsedValues; 7068 return vectorizeTree(ExternallyUsedValues); 7069 } 7070 7071 Value * 7072 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7073 // All blocks must be scheduled before any instructions are inserted. 7074 for (auto &BSIter : BlocksSchedules) { 7075 scheduleBlock(BSIter.second.get()); 7076 } 7077 7078 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7079 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7080 7081 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7082 // vectorized root. InstCombine will then rewrite the entire expression. We 7083 // sign extend the extracted values below. 7084 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7085 if (MinBWs.count(ScalarRoot)) { 7086 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7087 // If current instr is a phi and not the last phi, insert it after the 7088 // last phi node. 7089 if (isa<PHINode>(I)) 7090 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7091 else 7092 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7093 } 7094 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7095 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7096 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7097 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7098 VectorizableTree[0]->VectorizedValue = Trunc; 7099 } 7100 7101 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7102 << " values .\n"); 7103 7104 // Extract all of the elements with the external uses. 7105 for (const auto &ExternalUse : ExternalUses) { 7106 Value *Scalar = ExternalUse.Scalar; 7107 llvm::User *User = ExternalUse.User; 7108 7109 // Skip users that we already RAUW. This happens when one instruction 7110 // has multiple uses of the same value. 7111 if (User && !is_contained(Scalar->users(), User)) 7112 continue; 7113 TreeEntry *E = getTreeEntry(Scalar); 7114 assert(E && "Invalid scalar"); 7115 assert(E->State != TreeEntry::NeedToGather && 7116 "Extracting from a gather list"); 7117 7118 Value *Vec = E->VectorizedValue; 7119 assert(Vec && "Can't find vectorizable value"); 7120 7121 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7122 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7123 if (Scalar->getType() != Vec->getType()) { 7124 Value *Ex; 7125 // "Reuse" the existing extract to improve final codegen. 7126 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7127 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7128 ES->getOperand(1)); 7129 } else { 7130 Ex = Builder.CreateExtractElement(Vec, Lane); 7131 } 7132 // If necessary, sign-extend or zero-extend ScalarRoot 7133 // to the larger type. 7134 if (!MinBWs.count(ScalarRoot)) 7135 return Ex; 7136 if (MinBWs[ScalarRoot].second) 7137 return Builder.CreateSExt(Ex, Scalar->getType()); 7138 return Builder.CreateZExt(Ex, Scalar->getType()); 7139 } 7140 assert(isa<FixedVectorType>(Scalar->getType()) && 7141 isa<InsertElementInst>(Scalar) && 7142 "In-tree scalar of vector type is not insertelement?"); 7143 return Vec; 7144 }; 7145 // If User == nullptr, the Scalar is used as extra arg. Generate 7146 // ExtractElement instruction and update the record for this scalar in 7147 // ExternallyUsedValues. 7148 if (!User) { 7149 assert(ExternallyUsedValues.count(Scalar) && 7150 "Scalar with nullptr as an external user must be registered in " 7151 "ExternallyUsedValues map"); 7152 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7153 Builder.SetInsertPoint(VecI->getParent(), 7154 std::next(VecI->getIterator())); 7155 } else { 7156 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7157 } 7158 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7159 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7160 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7161 auto It = ExternallyUsedValues.find(Scalar); 7162 assert(It != ExternallyUsedValues.end() && 7163 "Externally used scalar is not found in ExternallyUsedValues"); 7164 NewInstLocs.append(It->second); 7165 ExternallyUsedValues.erase(Scalar); 7166 // Required to update internally referenced instructions. 7167 Scalar->replaceAllUsesWith(NewInst); 7168 continue; 7169 } 7170 7171 // Generate extracts for out-of-tree users. 7172 // Find the insertion point for the extractelement lane. 7173 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7174 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7175 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7176 if (PH->getIncomingValue(i) == Scalar) { 7177 Instruction *IncomingTerminator = 7178 PH->getIncomingBlock(i)->getTerminator(); 7179 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7180 Builder.SetInsertPoint(VecI->getParent(), 7181 std::next(VecI->getIterator())); 7182 } else { 7183 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7184 } 7185 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7186 CSEBlocks.insert(PH->getIncomingBlock(i)); 7187 PH->setOperand(i, NewInst); 7188 } 7189 } 7190 } else { 7191 Builder.SetInsertPoint(cast<Instruction>(User)); 7192 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7193 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7194 User->replaceUsesOfWith(Scalar, NewInst); 7195 } 7196 } else { 7197 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7198 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7199 CSEBlocks.insert(&F->getEntryBlock()); 7200 User->replaceUsesOfWith(Scalar, NewInst); 7201 } 7202 7203 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7204 } 7205 7206 // For each vectorized value: 7207 for (auto &TEPtr : VectorizableTree) { 7208 TreeEntry *Entry = TEPtr.get(); 7209 7210 // No need to handle users of gathered values. 7211 if (Entry->State == TreeEntry::NeedToGather) 7212 continue; 7213 7214 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7215 7216 // For each lane: 7217 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7218 Value *Scalar = Entry->Scalars[Lane]; 7219 7220 #ifndef NDEBUG 7221 Type *Ty = Scalar->getType(); 7222 if (!Ty->isVoidTy()) { 7223 for (User *U : Scalar->users()) { 7224 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7225 7226 // It is legal to delete users in the ignorelist. 7227 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7228 (isa_and_nonnull<Instruction>(U) && 7229 isDeleted(cast<Instruction>(U)))) && 7230 "Deleting out-of-tree value"); 7231 } 7232 } 7233 #endif 7234 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7235 eraseInstruction(cast<Instruction>(Scalar)); 7236 } 7237 } 7238 7239 Builder.ClearInsertionPoint(); 7240 InstrElementSize.clear(); 7241 7242 return VectorizableTree[0]->VectorizedValue; 7243 } 7244 7245 void BoUpSLP::optimizeGatherSequence() { 7246 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7247 << " gather sequences instructions.\n"); 7248 // LICM InsertElementInst sequences. 7249 for (Instruction *I : GatherShuffleSeq) { 7250 if (isDeleted(I)) 7251 continue; 7252 7253 // Check if this block is inside a loop. 7254 Loop *L = LI->getLoopFor(I->getParent()); 7255 if (!L) 7256 continue; 7257 7258 // Check if it has a preheader. 7259 BasicBlock *PreHeader = L->getLoopPreheader(); 7260 if (!PreHeader) 7261 continue; 7262 7263 // If the vector or the element that we insert into it are 7264 // instructions that are defined in this basic block then we can't 7265 // hoist this instruction. 7266 if (any_of(I->operands(), [L](Value *V) { 7267 auto *OpI = dyn_cast<Instruction>(V); 7268 return OpI && L->contains(OpI); 7269 })) 7270 continue; 7271 7272 // We can hoist this instruction. Move it to the pre-header. 7273 I->moveBefore(PreHeader->getTerminator()); 7274 } 7275 7276 // Make a list of all reachable blocks in our CSE queue. 7277 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7278 CSEWorkList.reserve(CSEBlocks.size()); 7279 for (BasicBlock *BB : CSEBlocks) 7280 if (DomTreeNode *N = DT->getNode(BB)) { 7281 assert(DT->isReachableFromEntry(N)); 7282 CSEWorkList.push_back(N); 7283 } 7284 7285 // Sort blocks by domination. This ensures we visit a block after all blocks 7286 // dominating it are visited. 7287 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7288 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7289 "Different nodes should have different DFS numbers"); 7290 return A->getDFSNumIn() < B->getDFSNumIn(); 7291 }); 7292 7293 // Less defined shuffles can be replaced by the more defined copies. 7294 // Between two shuffles one is less defined if it has the same vector operands 7295 // and its mask indeces are the same as in the first one or undefs. E.g. 7296 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7297 // poison, <0, 0, 0, 0>. 7298 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7299 SmallVectorImpl<int> &NewMask) { 7300 if (I1->getType() != I2->getType()) 7301 return false; 7302 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7303 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7304 if (!SI1 || !SI2) 7305 return I1->isIdenticalTo(I2); 7306 if (SI1->isIdenticalTo(SI2)) 7307 return true; 7308 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7309 if (SI1->getOperand(I) != SI2->getOperand(I)) 7310 return false; 7311 // Check if the second instruction is more defined than the first one. 7312 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7313 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7314 // Count trailing undefs in the mask to check the final number of used 7315 // registers. 7316 unsigned LastUndefsCnt = 0; 7317 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7318 if (SM1[I] == UndefMaskElem) 7319 ++LastUndefsCnt; 7320 else 7321 LastUndefsCnt = 0; 7322 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7323 NewMask[I] != SM1[I]) 7324 return false; 7325 if (NewMask[I] == UndefMaskElem) 7326 NewMask[I] = SM1[I]; 7327 } 7328 // Check if the last undefs actually change the final number of used vector 7329 // registers. 7330 return SM1.size() - LastUndefsCnt > 1 && 7331 TTI->getNumberOfParts(SI1->getType()) == 7332 TTI->getNumberOfParts( 7333 FixedVectorType::get(SI1->getType()->getElementType(), 7334 SM1.size() - LastUndefsCnt)); 7335 }; 7336 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7337 // instructions. TODO: We can further optimize this scan if we split the 7338 // instructions into different buckets based on the insert lane. 7339 SmallVector<Instruction *, 16> Visited; 7340 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7341 assert(*I && 7342 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7343 "Worklist not sorted properly!"); 7344 BasicBlock *BB = (*I)->getBlock(); 7345 // For all instructions in blocks containing gather sequences: 7346 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7347 if (isDeleted(&In)) 7348 continue; 7349 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7350 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7351 continue; 7352 7353 // Check if we can replace this instruction with any of the 7354 // visited instructions. 7355 bool Replaced = false; 7356 for (Instruction *&V : Visited) { 7357 SmallVector<int> NewMask; 7358 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7359 DT->dominates(V->getParent(), In.getParent())) { 7360 In.replaceAllUsesWith(V); 7361 eraseInstruction(&In); 7362 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7363 if (!NewMask.empty()) 7364 SI->setShuffleMask(NewMask); 7365 Replaced = true; 7366 break; 7367 } 7368 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7369 GatherShuffleSeq.contains(V) && 7370 IsIdenticalOrLessDefined(V, &In, NewMask) && 7371 DT->dominates(In.getParent(), V->getParent())) { 7372 In.moveAfter(V); 7373 V->replaceAllUsesWith(&In); 7374 eraseInstruction(V); 7375 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7376 if (!NewMask.empty()) 7377 SI->setShuffleMask(NewMask); 7378 V = &In; 7379 Replaced = true; 7380 break; 7381 } 7382 } 7383 if (!Replaced) { 7384 assert(!is_contained(Visited, &In)); 7385 Visited.push_back(&In); 7386 } 7387 } 7388 } 7389 CSEBlocks.clear(); 7390 GatherShuffleSeq.clear(); 7391 } 7392 7393 BoUpSLP::ScheduleData * 7394 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7395 ScheduleData *Bundle = nullptr; 7396 ScheduleData *PrevInBundle = nullptr; 7397 for (Value *V : VL) { 7398 ScheduleData *BundleMember = getScheduleData(V); 7399 assert(BundleMember && 7400 "no ScheduleData for bundle member " 7401 "(maybe not in same basic block)"); 7402 assert(BundleMember->isSchedulingEntity() && 7403 "bundle member already part of other bundle"); 7404 if (PrevInBundle) { 7405 PrevInBundle->NextInBundle = BundleMember; 7406 } else { 7407 Bundle = BundleMember; 7408 } 7409 BundleMember->UnscheduledDepsInBundle = 0; 7410 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7411 7412 // Group the instructions to a bundle. 7413 BundleMember->FirstInBundle = Bundle; 7414 PrevInBundle = BundleMember; 7415 } 7416 assert(Bundle && "Failed to find schedule bundle"); 7417 return Bundle; 7418 } 7419 7420 // Groups the instructions to a bundle (which is then a single scheduling entity) 7421 // and schedules instructions until the bundle gets ready. 7422 Optional<BoUpSLP::ScheduleData *> 7423 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7424 const InstructionsState &S) { 7425 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7426 // instructions. 7427 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7428 return nullptr; 7429 7430 // Initialize the instruction bundle. 7431 Instruction *OldScheduleEnd = ScheduleEnd; 7432 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7433 7434 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7435 ScheduleData *Bundle) { 7436 // The scheduling region got new instructions at the lower end (or it is a 7437 // new region for the first bundle). This makes it necessary to 7438 // recalculate all dependencies. 7439 // It is seldom that this needs to be done a second time after adding the 7440 // initial bundle to the region. 7441 if (ScheduleEnd != OldScheduleEnd) { 7442 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7443 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7444 ReSchedule = true; 7445 } 7446 if (ReSchedule) { 7447 resetSchedule(); 7448 initialFillReadyList(ReadyInsts); 7449 } 7450 if (Bundle) { 7451 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7452 << " in block " << BB->getName() << "\n"); 7453 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7454 } 7455 7456 // Now try to schedule the new bundle or (if no bundle) just calculate 7457 // dependencies. As soon as the bundle is "ready" it means that there are no 7458 // cyclic dependencies and we can schedule it. Note that's important that we 7459 // don't "schedule" the bundle yet (see cancelScheduling). 7460 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7461 !ReadyInsts.empty()) { 7462 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7463 if (Picked->isSchedulingEntity() && Picked->isReady()) 7464 schedule(Picked, ReadyInsts); 7465 } 7466 }; 7467 7468 // Make sure that the scheduling region contains all 7469 // instructions of the bundle. 7470 for (Value *V : VL) { 7471 if (!extendSchedulingRegion(V, S)) { 7472 // If the scheduling region got new instructions at the lower end (or it 7473 // is a new region for the first bundle). This makes it necessary to 7474 // recalculate all dependencies. 7475 // Otherwise the compiler may crash trying to incorrectly calculate 7476 // dependencies and emit instruction in the wrong order at the actual 7477 // scheduling. 7478 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7479 return None; 7480 } 7481 } 7482 7483 bool ReSchedule = false; 7484 for (Value *V : VL) { 7485 ScheduleData *BundleMember = getScheduleData(V); 7486 assert(BundleMember && 7487 "no ScheduleData for bundle member (maybe not in same basic block)"); 7488 if (!BundleMember->IsScheduled) 7489 continue; 7490 // A bundle member was scheduled as single instruction before and now 7491 // needs to be scheduled as part of the bundle. We just get rid of the 7492 // existing schedule. 7493 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7494 << " was already scheduled\n"); 7495 ReSchedule = true; 7496 } 7497 7498 auto *Bundle = buildBundle(VL); 7499 TryScheduleBundleImpl(ReSchedule, Bundle); 7500 if (!Bundle->isReady()) { 7501 cancelScheduling(VL, S.OpValue); 7502 return None; 7503 } 7504 return Bundle; 7505 } 7506 7507 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7508 Value *OpValue) { 7509 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7510 return; 7511 7512 ScheduleData *Bundle = getScheduleData(OpValue); 7513 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7514 assert(!Bundle->IsScheduled && 7515 "Can't cancel bundle which is already scheduled"); 7516 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7517 "tried to unbundle something which is not a bundle"); 7518 7519 // Un-bundle: make single instructions out of the bundle. 7520 ScheduleData *BundleMember = Bundle; 7521 while (BundleMember) { 7522 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7523 BundleMember->FirstInBundle = BundleMember; 7524 ScheduleData *Next = BundleMember->NextInBundle; 7525 BundleMember->NextInBundle = nullptr; 7526 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7527 if (BundleMember->UnscheduledDepsInBundle == 0) { 7528 ReadyInsts.insert(BundleMember); 7529 } 7530 BundleMember = Next; 7531 } 7532 } 7533 7534 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7535 // Allocate a new ScheduleData for the instruction. 7536 if (ChunkPos >= ChunkSize) { 7537 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7538 ChunkPos = 0; 7539 } 7540 return &(ScheduleDataChunks.back()[ChunkPos++]); 7541 } 7542 7543 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7544 const InstructionsState &S) { 7545 if (getScheduleData(V, isOneOf(S, V))) 7546 return true; 7547 Instruction *I = dyn_cast<Instruction>(V); 7548 assert(I && "bundle member must be an instruction"); 7549 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7550 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7551 "be scheduled"); 7552 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7553 ScheduleData *ISD = getScheduleData(I); 7554 if (!ISD) 7555 return false; 7556 assert(isInSchedulingRegion(ISD) && 7557 "ScheduleData not in scheduling region"); 7558 ScheduleData *SD = allocateScheduleDataChunks(); 7559 SD->Inst = I; 7560 SD->init(SchedulingRegionID, S.OpValue); 7561 ExtraScheduleDataMap[I][S.OpValue] = SD; 7562 return true; 7563 }; 7564 if (CheckSheduleForI(I)) 7565 return true; 7566 if (!ScheduleStart) { 7567 // It's the first instruction in the new region. 7568 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7569 ScheduleStart = I; 7570 ScheduleEnd = I->getNextNode(); 7571 if (isOneOf(S, I) != I) 7572 CheckSheduleForI(I); 7573 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7574 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7575 return true; 7576 } 7577 // Search up and down at the same time, because we don't know if the new 7578 // instruction is above or below the existing scheduling region. 7579 BasicBlock::reverse_iterator UpIter = 7580 ++ScheduleStart->getIterator().getReverse(); 7581 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7582 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7583 BasicBlock::iterator LowerEnd = BB->end(); 7584 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7585 &*DownIter != I) { 7586 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7587 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7588 return false; 7589 } 7590 7591 ++UpIter; 7592 ++DownIter; 7593 } 7594 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7595 assert(I->getParent() == ScheduleStart->getParent() && 7596 "Instruction is in wrong basic block."); 7597 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7598 ScheduleStart = I; 7599 if (isOneOf(S, I) != I) 7600 CheckSheduleForI(I); 7601 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7602 << "\n"); 7603 return true; 7604 } 7605 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7606 "Expected to reach top of the basic block or instruction down the " 7607 "lower end."); 7608 assert(I->getParent() == ScheduleEnd->getParent() && 7609 "Instruction is in wrong basic block."); 7610 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7611 nullptr); 7612 ScheduleEnd = I->getNextNode(); 7613 if (isOneOf(S, I) != I) 7614 CheckSheduleForI(I); 7615 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7616 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7617 return true; 7618 } 7619 7620 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7621 Instruction *ToI, 7622 ScheduleData *PrevLoadStore, 7623 ScheduleData *NextLoadStore) { 7624 ScheduleData *CurrentLoadStore = PrevLoadStore; 7625 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7626 ScheduleData *SD = ScheduleDataMap[I]; 7627 if (!SD) { 7628 SD = allocateScheduleDataChunks(); 7629 ScheduleDataMap[I] = SD; 7630 SD->Inst = I; 7631 } 7632 assert(!isInSchedulingRegion(SD) && 7633 "new ScheduleData already in scheduling region"); 7634 SD->init(SchedulingRegionID, I); 7635 7636 if (I->mayReadOrWriteMemory() && 7637 (!isa<IntrinsicInst>(I) || 7638 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7639 cast<IntrinsicInst>(I)->getIntrinsicID() != 7640 Intrinsic::pseudoprobe))) { 7641 // Update the linked list of memory accessing instructions. 7642 if (CurrentLoadStore) { 7643 CurrentLoadStore->NextLoadStore = SD; 7644 } else { 7645 FirstLoadStoreInRegion = SD; 7646 } 7647 CurrentLoadStore = SD; 7648 } 7649 } 7650 if (NextLoadStore) { 7651 if (CurrentLoadStore) 7652 CurrentLoadStore->NextLoadStore = NextLoadStore; 7653 } else { 7654 LastLoadStoreInRegion = CurrentLoadStore; 7655 } 7656 } 7657 7658 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7659 bool InsertInReadyList, 7660 BoUpSLP *SLP) { 7661 assert(SD->isSchedulingEntity()); 7662 7663 SmallVector<ScheduleData *, 10> WorkList; 7664 WorkList.push_back(SD); 7665 7666 while (!WorkList.empty()) { 7667 ScheduleData *SD = WorkList.pop_back_val(); 7668 for (ScheduleData *BundleMember = SD; BundleMember; 7669 BundleMember = BundleMember->NextInBundle) { 7670 assert(isInSchedulingRegion(BundleMember)); 7671 if (BundleMember->hasValidDependencies()) 7672 continue; 7673 7674 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7675 << "\n"); 7676 BundleMember->Dependencies = 0; 7677 BundleMember->resetUnscheduledDeps(); 7678 7679 // Handle def-use chain dependencies. 7680 if (BundleMember->OpValue != BundleMember->Inst) { 7681 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7682 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7683 BundleMember->Dependencies++; 7684 ScheduleData *DestBundle = UseSD->FirstInBundle; 7685 if (!DestBundle->IsScheduled) 7686 BundleMember->incrementUnscheduledDeps(1); 7687 if (!DestBundle->hasValidDependencies()) 7688 WorkList.push_back(DestBundle); 7689 } 7690 } else { 7691 for (User *U : BundleMember->Inst->users()) { 7692 assert(isa<Instruction>(U) && 7693 "user of instruction must be instruction"); 7694 ScheduleData *UseSD = getScheduleData(U); 7695 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7696 BundleMember->Dependencies++; 7697 ScheduleData *DestBundle = UseSD->FirstInBundle; 7698 if (!DestBundle->IsScheduled) 7699 BundleMember->incrementUnscheduledDeps(1); 7700 if (!DestBundle->hasValidDependencies()) 7701 WorkList.push_back(DestBundle); 7702 } 7703 } 7704 } 7705 7706 // Handle the memory dependencies (if any). 7707 ScheduleData *DepDest = BundleMember->NextLoadStore; 7708 if (!DepDest) 7709 continue; 7710 Instruction *SrcInst = BundleMember->Inst; 7711 assert(SrcInst->mayReadOrWriteMemory() && 7712 "NextLoadStore list for non memory effecting bundle?"); 7713 MemoryLocation SrcLoc = getLocation(SrcInst); 7714 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7715 unsigned numAliased = 0; 7716 unsigned DistToSrc = 1; 7717 7718 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7719 assert(isInSchedulingRegion(DepDest)); 7720 7721 // We have two limits to reduce the complexity: 7722 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7723 // SLP->isAliased (which is the expensive part in this loop). 7724 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7725 // the whole loop (even if the loop is fast, it's quadratic). 7726 // It's important for the loop break condition (see below) to 7727 // check this limit even between two read-only instructions. 7728 if (DistToSrc >= MaxMemDepDistance || 7729 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7730 (numAliased >= AliasedCheckLimit || 7731 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7732 7733 // We increment the counter only if the locations are aliased 7734 // (instead of counting all alias checks). This gives a better 7735 // balance between reduced runtime and accurate dependencies. 7736 numAliased++; 7737 7738 DepDest->MemoryDependencies.push_back(BundleMember); 7739 BundleMember->Dependencies++; 7740 ScheduleData *DestBundle = DepDest->FirstInBundle; 7741 if (!DestBundle->IsScheduled) { 7742 BundleMember->incrementUnscheduledDeps(1); 7743 } 7744 if (!DestBundle->hasValidDependencies()) { 7745 WorkList.push_back(DestBundle); 7746 } 7747 } 7748 7749 // Example, explaining the loop break condition: Let's assume our 7750 // starting instruction is i0 and MaxMemDepDistance = 3. 7751 // 7752 // +--------v--v--v 7753 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7754 // +--------^--^--^ 7755 // 7756 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7757 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7758 // Previously we already added dependencies from i3 to i6,i7,i8 7759 // (because of MaxMemDepDistance). As we added a dependency from 7760 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7761 // and we can abort this loop at i6. 7762 if (DistToSrc >= 2 * MaxMemDepDistance) 7763 break; 7764 DistToSrc++; 7765 } 7766 } 7767 if (InsertInReadyList && SD->isReady()) { 7768 ReadyInsts.push_back(SD); 7769 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7770 << "\n"); 7771 } 7772 } 7773 } 7774 7775 void BoUpSLP::BlockScheduling::resetSchedule() { 7776 assert(ScheduleStart && 7777 "tried to reset schedule on block which has not been scheduled"); 7778 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7779 doForAllOpcodes(I, [&](ScheduleData *SD) { 7780 assert(isInSchedulingRegion(SD) && 7781 "ScheduleData not in scheduling region"); 7782 SD->IsScheduled = false; 7783 SD->resetUnscheduledDeps(); 7784 }); 7785 } 7786 ReadyInsts.clear(); 7787 } 7788 7789 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7790 if (!BS->ScheduleStart) 7791 return; 7792 7793 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7794 7795 BS->resetSchedule(); 7796 7797 // For the real scheduling we use a more sophisticated ready-list: it is 7798 // sorted by the original instruction location. This lets the final schedule 7799 // be as close as possible to the original instruction order. 7800 struct ScheduleDataCompare { 7801 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7802 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7803 } 7804 }; 7805 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7806 7807 // Ensure that all dependency data is updated and fill the ready-list with 7808 // initial instructions. 7809 int Idx = 0; 7810 int NumToSchedule = 0; 7811 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7812 I = I->getNextNode()) { 7813 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7814 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7815 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7816 "scheduler and vectorizer bundle mismatch"); 7817 SD->FirstInBundle->SchedulingPriority = Idx++; 7818 if (SD->isSchedulingEntity()) { 7819 BS->calculateDependencies(SD, false, this); 7820 NumToSchedule++; 7821 } 7822 }); 7823 } 7824 BS->initialFillReadyList(ReadyInsts); 7825 7826 Instruction *LastScheduledInst = BS->ScheduleEnd; 7827 7828 // Do the "real" scheduling. 7829 while (!ReadyInsts.empty()) { 7830 ScheduleData *picked = *ReadyInsts.begin(); 7831 ReadyInsts.erase(ReadyInsts.begin()); 7832 7833 // Move the scheduled instruction(s) to their dedicated places, if not 7834 // there yet. 7835 for (ScheduleData *BundleMember = picked; BundleMember; 7836 BundleMember = BundleMember->NextInBundle) { 7837 Instruction *pickedInst = BundleMember->Inst; 7838 if (pickedInst->getNextNode() != LastScheduledInst) 7839 pickedInst->moveBefore(LastScheduledInst); 7840 LastScheduledInst = pickedInst; 7841 } 7842 7843 BS->schedule(picked, ReadyInsts); 7844 NumToSchedule--; 7845 } 7846 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7847 7848 // Avoid duplicate scheduling of the block. 7849 BS->ScheduleStart = nullptr; 7850 } 7851 7852 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7853 // If V is a store, just return the width of the stored value (or value 7854 // truncated just before storing) without traversing the expression tree. 7855 // This is the common case. 7856 if (auto *Store = dyn_cast<StoreInst>(V)) { 7857 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7858 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7859 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7860 } 7861 7862 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7863 return getVectorElementSize(IEI->getOperand(1)); 7864 7865 auto E = InstrElementSize.find(V); 7866 if (E != InstrElementSize.end()) 7867 return E->second; 7868 7869 // If V is not a store, we can traverse the expression tree to find loads 7870 // that feed it. The type of the loaded value may indicate a more suitable 7871 // width than V's type. We want to base the vector element size on the width 7872 // of memory operations where possible. 7873 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7874 SmallPtrSet<Instruction *, 16> Visited; 7875 if (auto *I = dyn_cast<Instruction>(V)) { 7876 Worklist.emplace_back(I, I->getParent()); 7877 Visited.insert(I); 7878 } 7879 7880 // Traverse the expression tree in bottom-up order looking for loads. If we 7881 // encounter an instruction we don't yet handle, we give up. 7882 auto Width = 0u; 7883 while (!Worklist.empty()) { 7884 Instruction *I; 7885 BasicBlock *Parent; 7886 std::tie(I, Parent) = Worklist.pop_back_val(); 7887 7888 // We should only be looking at scalar instructions here. If the current 7889 // instruction has a vector type, skip. 7890 auto *Ty = I->getType(); 7891 if (isa<VectorType>(Ty)) 7892 continue; 7893 7894 // If the current instruction is a load, update MaxWidth to reflect the 7895 // width of the loaded value. 7896 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7897 isa<ExtractValueInst>(I)) 7898 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7899 7900 // Otherwise, we need to visit the operands of the instruction. We only 7901 // handle the interesting cases from buildTree here. If an operand is an 7902 // instruction we haven't yet visited and from the same basic block as the 7903 // user or the use is a PHI node, we add it to the worklist. 7904 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7905 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7906 isa<UnaryOperator>(I)) { 7907 for (Use &U : I->operands()) 7908 if (auto *J = dyn_cast<Instruction>(U.get())) 7909 if (Visited.insert(J).second && 7910 (isa<PHINode>(I) || J->getParent() == Parent)) 7911 Worklist.emplace_back(J, J->getParent()); 7912 } else { 7913 break; 7914 } 7915 } 7916 7917 // If we didn't encounter a memory access in the expression tree, or if we 7918 // gave up for some reason, just return the width of V. Otherwise, return the 7919 // maximum width we found. 7920 if (!Width) { 7921 if (auto *CI = dyn_cast<CmpInst>(V)) 7922 V = CI->getOperand(0); 7923 Width = DL->getTypeSizeInBits(V->getType()); 7924 } 7925 7926 for (Instruction *I : Visited) 7927 InstrElementSize[I] = Width; 7928 7929 return Width; 7930 } 7931 7932 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7933 // smaller type with a truncation. We collect the values that will be demoted 7934 // in ToDemote and additional roots that require investigating in Roots. 7935 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7936 SmallVectorImpl<Value *> &ToDemote, 7937 SmallVectorImpl<Value *> &Roots) { 7938 // We can always demote constants. 7939 if (isa<Constant>(V)) { 7940 ToDemote.push_back(V); 7941 return true; 7942 } 7943 7944 // If the value is not an instruction in the expression with only one use, it 7945 // cannot be demoted. 7946 auto *I = dyn_cast<Instruction>(V); 7947 if (!I || !I->hasOneUse() || !Expr.count(I)) 7948 return false; 7949 7950 switch (I->getOpcode()) { 7951 7952 // We can always demote truncations and extensions. Since truncations can 7953 // seed additional demotion, we save the truncated value. 7954 case Instruction::Trunc: 7955 Roots.push_back(I->getOperand(0)); 7956 break; 7957 case Instruction::ZExt: 7958 case Instruction::SExt: 7959 if (isa<ExtractElementInst>(I->getOperand(0)) || 7960 isa<InsertElementInst>(I->getOperand(0))) 7961 return false; 7962 break; 7963 7964 // We can demote certain binary operations if we can demote both of their 7965 // operands. 7966 case Instruction::Add: 7967 case Instruction::Sub: 7968 case Instruction::Mul: 7969 case Instruction::And: 7970 case Instruction::Or: 7971 case Instruction::Xor: 7972 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7973 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7974 return false; 7975 break; 7976 7977 // We can demote selects if we can demote their true and false values. 7978 case Instruction::Select: { 7979 SelectInst *SI = cast<SelectInst>(I); 7980 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7981 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7982 return false; 7983 break; 7984 } 7985 7986 // We can demote phis if we can demote all their incoming operands. Note that 7987 // we don't need to worry about cycles since we ensure single use above. 7988 case Instruction::PHI: { 7989 PHINode *PN = cast<PHINode>(I); 7990 for (Value *IncValue : PN->incoming_values()) 7991 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7992 return false; 7993 break; 7994 } 7995 7996 // Otherwise, conservatively give up. 7997 default: 7998 return false; 7999 } 8000 8001 // Record the value that we can demote. 8002 ToDemote.push_back(V); 8003 return true; 8004 } 8005 8006 void BoUpSLP::computeMinimumValueSizes() { 8007 // If there are no external uses, the expression tree must be rooted by a 8008 // store. We can't demote in-memory values, so there is nothing to do here. 8009 if (ExternalUses.empty()) 8010 return; 8011 8012 // We only attempt to truncate integer expressions. 8013 auto &TreeRoot = VectorizableTree[0]->Scalars; 8014 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8015 if (!TreeRootIT) 8016 return; 8017 8018 // If the expression is not rooted by a store, these roots should have 8019 // external uses. We will rely on InstCombine to rewrite the expression in 8020 // the narrower type. However, InstCombine only rewrites single-use values. 8021 // This means that if a tree entry other than a root is used externally, it 8022 // must have multiple uses and InstCombine will not rewrite it. The code 8023 // below ensures that only the roots are used externally. 8024 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8025 for (auto &EU : ExternalUses) 8026 if (!Expr.erase(EU.Scalar)) 8027 return; 8028 if (!Expr.empty()) 8029 return; 8030 8031 // Collect the scalar values of the vectorizable expression. We will use this 8032 // context to determine which values can be demoted. If we see a truncation, 8033 // we mark it as seeding another demotion. 8034 for (auto &EntryPtr : VectorizableTree) 8035 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8036 8037 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8038 // have a single external user that is not in the vectorizable tree. 8039 for (auto *Root : TreeRoot) 8040 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8041 return; 8042 8043 // Conservatively determine if we can actually truncate the roots of the 8044 // expression. Collect the values that can be demoted in ToDemote and 8045 // additional roots that require investigating in Roots. 8046 SmallVector<Value *, 32> ToDemote; 8047 SmallVector<Value *, 4> Roots; 8048 for (auto *Root : TreeRoot) 8049 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8050 return; 8051 8052 // The maximum bit width required to represent all the values that can be 8053 // demoted without loss of precision. It would be safe to truncate the roots 8054 // of the expression to this width. 8055 auto MaxBitWidth = 8u; 8056 8057 // We first check if all the bits of the roots are demanded. If they're not, 8058 // we can truncate the roots to this narrower type. 8059 for (auto *Root : TreeRoot) { 8060 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8061 MaxBitWidth = std::max<unsigned>( 8062 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8063 } 8064 8065 // True if the roots can be zero-extended back to their original type, rather 8066 // than sign-extended. We know that if the leading bits are not demanded, we 8067 // can safely zero-extend. So we initialize IsKnownPositive to True. 8068 bool IsKnownPositive = true; 8069 8070 // If all the bits of the roots are demanded, we can try a little harder to 8071 // compute a narrower type. This can happen, for example, if the roots are 8072 // getelementptr indices. InstCombine promotes these indices to the pointer 8073 // width. Thus, all their bits are technically demanded even though the 8074 // address computation might be vectorized in a smaller type. 8075 // 8076 // We start by looking at each entry that can be demoted. We compute the 8077 // maximum bit width required to store the scalar by using ValueTracking to 8078 // compute the number of high-order bits we can truncate. 8079 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8080 llvm::all_of(TreeRoot, [](Value *R) { 8081 assert(R->hasOneUse() && "Root should have only one use!"); 8082 return isa<GetElementPtrInst>(R->user_back()); 8083 })) { 8084 MaxBitWidth = 8u; 8085 8086 // Determine if the sign bit of all the roots is known to be zero. If not, 8087 // IsKnownPositive is set to False. 8088 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8089 KnownBits Known = computeKnownBits(R, *DL); 8090 return Known.isNonNegative(); 8091 }); 8092 8093 // Determine the maximum number of bits required to store the scalar 8094 // values. 8095 for (auto *Scalar : ToDemote) { 8096 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8097 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8098 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8099 } 8100 8101 // If we can't prove that the sign bit is zero, we must add one to the 8102 // maximum bit width to account for the unknown sign bit. This preserves 8103 // the existing sign bit so we can safely sign-extend the root back to the 8104 // original type. Otherwise, if we know the sign bit is zero, we will 8105 // zero-extend the root instead. 8106 // 8107 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8108 // one to the maximum bit width will yield a larger-than-necessary 8109 // type. In general, we need to add an extra bit only if we can't 8110 // prove that the upper bit of the original type is equal to the 8111 // upper bit of the proposed smaller type. If these two bits are the 8112 // same (either zero or one) we know that sign-extending from the 8113 // smaller type will result in the same value. Here, since we can't 8114 // yet prove this, we are just making the proposed smaller type 8115 // larger to ensure correctness. 8116 if (!IsKnownPositive) 8117 ++MaxBitWidth; 8118 } 8119 8120 // Round MaxBitWidth up to the next power-of-two. 8121 if (!isPowerOf2_64(MaxBitWidth)) 8122 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8123 8124 // If the maximum bit width we compute is less than the with of the roots' 8125 // type, we can proceed with the narrowing. Otherwise, do nothing. 8126 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8127 return; 8128 8129 // If we can truncate the root, we must collect additional values that might 8130 // be demoted as a result. That is, those seeded by truncations we will 8131 // modify. 8132 while (!Roots.empty()) 8133 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8134 8135 // Finally, map the values we can demote to the maximum bit with we computed. 8136 for (auto *Scalar : ToDemote) 8137 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8138 } 8139 8140 namespace { 8141 8142 /// The SLPVectorizer Pass. 8143 struct SLPVectorizer : public FunctionPass { 8144 SLPVectorizerPass Impl; 8145 8146 /// Pass identification, replacement for typeid 8147 static char ID; 8148 8149 explicit SLPVectorizer() : FunctionPass(ID) { 8150 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8151 } 8152 8153 bool doInitialization(Module &M) override { return false; } 8154 8155 bool runOnFunction(Function &F) override { 8156 if (skipFunction(F)) 8157 return false; 8158 8159 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8160 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8161 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8162 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8163 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8164 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8165 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8166 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8167 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8168 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8169 8170 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8171 } 8172 8173 void getAnalysisUsage(AnalysisUsage &AU) const override { 8174 FunctionPass::getAnalysisUsage(AU); 8175 AU.addRequired<AssumptionCacheTracker>(); 8176 AU.addRequired<ScalarEvolutionWrapperPass>(); 8177 AU.addRequired<AAResultsWrapperPass>(); 8178 AU.addRequired<TargetTransformInfoWrapperPass>(); 8179 AU.addRequired<LoopInfoWrapperPass>(); 8180 AU.addRequired<DominatorTreeWrapperPass>(); 8181 AU.addRequired<DemandedBitsWrapperPass>(); 8182 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8183 AU.addRequired<InjectTLIMappingsLegacy>(); 8184 AU.addPreserved<LoopInfoWrapperPass>(); 8185 AU.addPreserved<DominatorTreeWrapperPass>(); 8186 AU.addPreserved<AAResultsWrapperPass>(); 8187 AU.addPreserved<GlobalsAAWrapperPass>(); 8188 AU.setPreservesCFG(); 8189 } 8190 }; 8191 8192 } // end anonymous namespace 8193 8194 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8195 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8196 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8197 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8198 auto *AA = &AM.getResult<AAManager>(F); 8199 auto *LI = &AM.getResult<LoopAnalysis>(F); 8200 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8201 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8202 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8203 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8204 8205 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8206 if (!Changed) 8207 return PreservedAnalyses::all(); 8208 8209 PreservedAnalyses PA; 8210 PA.preserveSet<CFGAnalyses>(); 8211 return PA; 8212 } 8213 8214 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8215 TargetTransformInfo *TTI_, 8216 TargetLibraryInfo *TLI_, AAResults *AA_, 8217 LoopInfo *LI_, DominatorTree *DT_, 8218 AssumptionCache *AC_, DemandedBits *DB_, 8219 OptimizationRemarkEmitter *ORE_) { 8220 if (!RunSLPVectorization) 8221 return false; 8222 SE = SE_; 8223 TTI = TTI_; 8224 TLI = TLI_; 8225 AA = AA_; 8226 LI = LI_; 8227 DT = DT_; 8228 AC = AC_; 8229 DB = DB_; 8230 DL = &F.getParent()->getDataLayout(); 8231 8232 Stores.clear(); 8233 GEPs.clear(); 8234 bool Changed = false; 8235 8236 // If the target claims to have no vector registers don't attempt 8237 // vectorization. 8238 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8239 LLVM_DEBUG( 8240 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8241 return false; 8242 } 8243 8244 // Don't vectorize when the attribute NoImplicitFloat is used. 8245 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8246 return false; 8247 8248 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8249 8250 // Use the bottom up slp vectorizer to construct chains that start with 8251 // store instructions. 8252 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8253 8254 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8255 // delete instructions. 8256 8257 // Update DFS numbers now so that we can use them for ordering. 8258 DT->updateDFSNumbers(); 8259 8260 // Scan the blocks in the function in post order. 8261 for (auto BB : post_order(&F.getEntryBlock())) { 8262 collectSeedInstructions(BB); 8263 8264 // Vectorize trees that end at stores. 8265 if (!Stores.empty()) { 8266 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8267 << " underlying objects.\n"); 8268 Changed |= vectorizeStoreChains(R); 8269 } 8270 8271 // Vectorize trees that end at reductions. 8272 Changed |= vectorizeChainsInBlock(BB, R); 8273 8274 // Vectorize the index computations of getelementptr instructions. This 8275 // is primarily intended to catch gather-like idioms ending at 8276 // non-consecutive loads. 8277 if (!GEPs.empty()) { 8278 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8279 << " underlying objects.\n"); 8280 Changed |= vectorizeGEPIndices(BB, R); 8281 } 8282 } 8283 8284 if (Changed) { 8285 R.optimizeGatherSequence(); 8286 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8287 } 8288 return Changed; 8289 } 8290 8291 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8292 unsigned Idx) { 8293 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8294 << "\n"); 8295 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8296 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8297 unsigned VF = Chain.size(); 8298 8299 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8300 return false; 8301 8302 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8303 << "\n"); 8304 8305 R.buildTree(Chain); 8306 if (R.isTreeTinyAndNotFullyVectorizable()) 8307 return false; 8308 if (R.isLoadCombineCandidate()) 8309 return false; 8310 R.reorderTopToBottom(); 8311 R.reorderBottomToTop(); 8312 R.buildExternalUses(); 8313 8314 R.computeMinimumValueSizes(); 8315 8316 InstructionCost Cost = R.getTreeCost(); 8317 8318 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8319 if (Cost < -SLPCostThreshold) { 8320 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8321 8322 using namespace ore; 8323 8324 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8325 cast<StoreInst>(Chain[0])) 8326 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8327 << " and with tree size " 8328 << NV("TreeSize", R.getTreeSize())); 8329 8330 R.vectorizeTree(); 8331 return true; 8332 } 8333 8334 return false; 8335 } 8336 8337 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8338 BoUpSLP &R) { 8339 // We may run into multiple chains that merge into a single chain. We mark the 8340 // stores that we vectorized so that we don't visit the same store twice. 8341 BoUpSLP::ValueSet VectorizedStores; 8342 bool Changed = false; 8343 8344 int E = Stores.size(); 8345 SmallBitVector Tails(E, false); 8346 int MaxIter = MaxStoreLookup.getValue(); 8347 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8348 E, std::make_pair(E, INT_MAX)); 8349 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8350 int IterCnt; 8351 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8352 &CheckedPairs, 8353 &ConsecutiveChain](int K, int Idx) { 8354 if (IterCnt >= MaxIter) 8355 return true; 8356 if (CheckedPairs[Idx].test(K)) 8357 return ConsecutiveChain[K].second == 1 && 8358 ConsecutiveChain[K].first == Idx; 8359 ++IterCnt; 8360 CheckedPairs[Idx].set(K); 8361 CheckedPairs[K].set(Idx); 8362 Optional<int> Diff = getPointersDiff( 8363 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8364 Stores[Idx]->getValueOperand()->getType(), 8365 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8366 if (!Diff || *Diff == 0) 8367 return false; 8368 int Val = *Diff; 8369 if (Val < 0) { 8370 if (ConsecutiveChain[Idx].second > -Val) { 8371 Tails.set(K); 8372 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8373 } 8374 return false; 8375 } 8376 if (ConsecutiveChain[K].second <= Val) 8377 return false; 8378 8379 Tails.set(Idx); 8380 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8381 return Val == 1; 8382 }; 8383 // Do a quadratic search on all of the given stores in reverse order and find 8384 // all of the pairs of stores that follow each other. 8385 for (int Idx = E - 1; Idx >= 0; --Idx) { 8386 // If a store has multiple consecutive store candidates, search according 8387 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8388 // This is because usually pairing with immediate succeeding or preceding 8389 // candidate create the best chance to find slp vectorization opportunity. 8390 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8391 IterCnt = 0; 8392 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8393 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8394 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8395 break; 8396 } 8397 8398 // Tracks if we tried to vectorize stores starting from the given tail 8399 // already. 8400 SmallBitVector TriedTails(E, false); 8401 // For stores that start but don't end a link in the chain: 8402 for (int Cnt = E; Cnt > 0; --Cnt) { 8403 int I = Cnt - 1; 8404 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8405 continue; 8406 // We found a store instr that starts a chain. Now follow the chain and try 8407 // to vectorize it. 8408 BoUpSLP::ValueList Operands; 8409 // Collect the chain into a list. 8410 while (I != E && !VectorizedStores.count(Stores[I])) { 8411 Operands.push_back(Stores[I]); 8412 Tails.set(I); 8413 if (ConsecutiveChain[I].second != 1) { 8414 // Mark the new end in the chain and go back, if required. It might be 8415 // required if the original stores come in reversed order, for example. 8416 if (ConsecutiveChain[I].first != E && 8417 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8418 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8419 TriedTails.set(I); 8420 Tails.reset(ConsecutiveChain[I].first); 8421 if (Cnt < ConsecutiveChain[I].first + 2) 8422 Cnt = ConsecutiveChain[I].first + 2; 8423 } 8424 break; 8425 } 8426 // Move to the next value in the chain. 8427 I = ConsecutiveChain[I].first; 8428 } 8429 assert(!Operands.empty() && "Expected non-empty list of stores."); 8430 8431 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8432 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8433 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8434 8435 unsigned MinVF = R.getMinVF(EltSize); 8436 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8437 MaxElts); 8438 8439 // FIXME: Is division-by-2 the correct step? Should we assert that the 8440 // register size is a power-of-2? 8441 unsigned StartIdx = 0; 8442 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8443 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8444 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8445 if (!VectorizedStores.count(Slice.front()) && 8446 !VectorizedStores.count(Slice.back()) && 8447 vectorizeStoreChain(Slice, R, Cnt)) { 8448 // Mark the vectorized stores so that we don't vectorize them again. 8449 VectorizedStores.insert(Slice.begin(), Slice.end()); 8450 Changed = true; 8451 // If we vectorized initial block, no need to try to vectorize it 8452 // again. 8453 if (Cnt == StartIdx) 8454 StartIdx += Size; 8455 Cnt += Size; 8456 continue; 8457 } 8458 ++Cnt; 8459 } 8460 // Check if the whole array was vectorized already - exit. 8461 if (StartIdx >= Operands.size()) 8462 break; 8463 } 8464 } 8465 8466 return Changed; 8467 } 8468 8469 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8470 // Initialize the collections. We will make a single pass over the block. 8471 Stores.clear(); 8472 GEPs.clear(); 8473 8474 // Visit the store and getelementptr instructions in BB and organize them in 8475 // Stores and GEPs according to the underlying objects of their pointer 8476 // operands. 8477 for (Instruction &I : *BB) { 8478 // Ignore store instructions that are volatile or have a pointer operand 8479 // that doesn't point to a scalar type. 8480 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8481 if (!SI->isSimple()) 8482 continue; 8483 if (!isValidElementType(SI->getValueOperand()->getType())) 8484 continue; 8485 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8486 } 8487 8488 // Ignore getelementptr instructions that have more than one index, a 8489 // constant index, or a pointer operand that doesn't point to a scalar 8490 // type. 8491 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8492 auto Idx = GEP->idx_begin()->get(); 8493 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8494 continue; 8495 if (!isValidElementType(Idx->getType())) 8496 continue; 8497 if (GEP->getType()->isVectorTy()) 8498 continue; 8499 GEPs[GEP->getPointerOperand()].push_back(GEP); 8500 } 8501 } 8502 } 8503 8504 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8505 if (!A || !B) 8506 return false; 8507 Value *VL[] = {A, B}; 8508 return tryToVectorizeList(VL, R); 8509 } 8510 8511 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8512 bool LimitForRegisterSize) { 8513 if (VL.size() < 2) 8514 return false; 8515 8516 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8517 << VL.size() << ".\n"); 8518 8519 // Check that all of the parts are instructions of the same type, 8520 // we permit an alternate opcode via InstructionsState. 8521 InstructionsState S = getSameOpcode(VL); 8522 if (!S.getOpcode()) 8523 return false; 8524 8525 Instruction *I0 = cast<Instruction>(S.OpValue); 8526 // Make sure invalid types (including vector type) are rejected before 8527 // determining vectorization factor for scalar instructions. 8528 for (Value *V : VL) { 8529 Type *Ty = V->getType(); 8530 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8531 // NOTE: the following will give user internal llvm type name, which may 8532 // not be useful. 8533 R.getORE()->emit([&]() { 8534 std::string type_str; 8535 llvm::raw_string_ostream rso(type_str); 8536 Ty->print(rso); 8537 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8538 << "Cannot SLP vectorize list: type " 8539 << rso.str() + " is unsupported by vectorizer"; 8540 }); 8541 return false; 8542 } 8543 } 8544 8545 unsigned Sz = R.getVectorElementSize(I0); 8546 unsigned MinVF = R.getMinVF(Sz); 8547 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8548 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8549 if (MaxVF < 2) { 8550 R.getORE()->emit([&]() { 8551 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8552 << "Cannot SLP vectorize list: vectorization factor " 8553 << "less than 2 is not supported"; 8554 }); 8555 return false; 8556 } 8557 8558 bool Changed = false; 8559 bool CandidateFound = false; 8560 InstructionCost MinCost = SLPCostThreshold.getValue(); 8561 Type *ScalarTy = VL[0]->getType(); 8562 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8563 ScalarTy = IE->getOperand(1)->getType(); 8564 8565 unsigned NextInst = 0, MaxInst = VL.size(); 8566 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8567 // No actual vectorization should happen, if number of parts is the same as 8568 // provided vectorization factor (i.e. the scalar type is used for vector 8569 // code during codegen). 8570 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8571 if (TTI->getNumberOfParts(VecTy) == VF) 8572 continue; 8573 for (unsigned I = NextInst; I < MaxInst; ++I) { 8574 unsigned OpsWidth = 0; 8575 8576 if (I + VF > MaxInst) 8577 OpsWidth = MaxInst - I; 8578 else 8579 OpsWidth = VF; 8580 8581 if (!isPowerOf2_32(OpsWidth)) 8582 continue; 8583 8584 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8585 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8586 break; 8587 8588 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8589 // Check that a previous iteration of this loop did not delete the Value. 8590 if (llvm::any_of(Ops, [&R](Value *V) { 8591 auto *I = dyn_cast<Instruction>(V); 8592 return I && R.isDeleted(I); 8593 })) 8594 continue; 8595 8596 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8597 << "\n"); 8598 8599 R.buildTree(Ops); 8600 if (R.isTreeTinyAndNotFullyVectorizable()) 8601 continue; 8602 R.reorderTopToBottom(); 8603 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8604 R.buildExternalUses(); 8605 8606 R.computeMinimumValueSizes(); 8607 InstructionCost Cost = R.getTreeCost(); 8608 CandidateFound = true; 8609 MinCost = std::min(MinCost, Cost); 8610 8611 if (Cost < -SLPCostThreshold) { 8612 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8613 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8614 cast<Instruction>(Ops[0])) 8615 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8616 << " and with tree size " 8617 << ore::NV("TreeSize", R.getTreeSize())); 8618 8619 R.vectorizeTree(); 8620 // Move to the next bundle. 8621 I += VF - 1; 8622 NextInst = I + 1; 8623 Changed = true; 8624 } 8625 } 8626 } 8627 8628 if (!Changed && CandidateFound) { 8629 R.getORE()->emit([&]() { 8630 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8631 << "List vectorization was possible but not beneficial with cost " 8632 << ore::NV("Cost", MinCost) << " >= " 8633 << ore::NV("Treshold", -SLPCostThreshold); 8634 }); 8635 } else if (!Changed) { 8636 R.getORE()->emit([&]() { 8637 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8638 << "Cannot SLP vectorize list: vectorization was impossible" 8639 << " with available vectorization factors"; 8640 }); 8641 } 8642 return Changed; 8643 } 8644 8645 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8646 if (!I) 8647 return false; 8648 8649 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8650 return false; 8651 8652 Value *P = I->getParent(); 8653 8654 // Vectorize in current basic block only. 8655 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8656 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8657 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8658 return false; 8659 8660 // Try to vectorize V. 8661 if (tryToVectorizePair(Op0, Op1, R)) 8662 return true; 8663 8664 auto *A = dyn_cast<BinaryOperator>(Op0); 8665 auto *B = dyn_cast<BinaryOperator>(Op1); 8666 // Try to skip B. 8667 if (B && B->hasOneUse()) { 8668 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8669 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8670 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8671 return true; 8672 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8673 return true; 8674 } 8675 8676 // Try to skip A. 8677 if (A && A->hasOneUse()) { 8678 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8679 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8680 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8681 return true; 8682 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8683 return true; 8684 } 8685 return false; 8686 } 8687 8688 namespace { 8689 8690 /// Model horizontal reductions. 8691 /// 8692 /// A horizontal reduction is a tree of reduction instructions that has values 8693 /// that can be put into a vector as its leaves. For example: 8694 /// 8695 /// mul mul mul mul 8696 /// \ / \ / 8697 /// + + 8698 /// \ / 8699 /// + 8700 /// This tree has "mul" as its leaf values and "+" as its reduction 8701 /// instructions. A reduction can feed into a store or a binary operation 8702 /// feeding a phi. 8703 /// ... 8704 /// \ / 8705 /// + 8706 /// | 8707 /// phi += 8708 /// 8709 /// Or: 8710 /// ... 8711 /// \ / 8712 /// + 8713 /// | 8714 /// *p = 8715 /// 8716 class HorizontalReduction { 8717 using ReductionOpsType = SmallVector<Value *, 16>; 8718 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8719 ReductionOpsListType ReductionOps; 8720 SmallVector<Value *, 32> ReducedVals; 8721 // Use map vector to make stable output. 8722 MapVector<Instruction *, Value *> ExtraArgs; 8723 WeakTrackingVH ReductionRoot; 8724 /// The type of reduction operation. 8725 RecurKind RdxKind; 8726 8727 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8728 8729 static bool isCmpSelMinMax(Instruction *I) { 8730 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8731 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8732 } 8733 8734 // And/or are potentially poison-safe logical patterns like: 8735 // select x, y, false 8736 // select x, true, y 8737 static bool isBoolLogicOp(Instruction *I) { 8738 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8739 match(I, m_LogicalOr(m_Value(), m_Value())); 8740 } 8741 8742 /// Checks if instruction is associative and can be vectorized. 8743 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8744 if (Kind == RecurKind::None) 8745 return false; 8746 8747 // Integer ops that map to select instructions or intrinsics are fine. 8748 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8749 isBoolLogicOp(I)) 8750 return true; 8751 8752 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8753 // FP min/max are associative except for NaN and -0.0. We do not 8754 // have to rule out -0.0 here because the intrinsic semantics do not 8755 // specify a fixed result for it. 8756 return I->getFastMathFlags().noNaNs(); 8757 } 8758 8759 return I->isAssociative(); 8760 } 8761 8762 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8763 // Poison-safe 'or' takes the form: select X, true, Y 8764 // To make that work with the normal operand processing, we skip the 8765 // true value operand. 8766 // TODO: Change the code and data structures to handle this without a hack. 8767 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8768 return I->getOperand(2); 8769 return I->getOperand(Index); 8770 } 8771 8772 /// Checks if the ParentStackElem.first should be marked as a reduction 8773 /// operation with an extra argument or as extra argument itself. 8774 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8775 Value *ExtraArg) { 8776 if (ExtraArgs.count(ParentStackElem.first)) { 8777 ExtraArgs[ParentStackElem.first] = nullptr; 8778 // We ran into something like: 8779 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8780 // The whole ParentStackElem.first should be considered as an extra value 8781 // in this case. 8782 // Do not perform analysis of remaining operands of ParentStackElem.first 8783 // instruction, this whole instruction is an extra argument. 8784 ParentStackElem.second = INVALID_OPERAND_INDEX; 8785 } else { 8786 // We ran into something like: 8787 // ParentStackElem.first += ... + ExtraArg + ... 8788 ExtraArgs[ParentStackElem.first] = ExtraArg; 8789 } 8790 } 8791 8792 /// Creates reduction operation with the current opcode. 8793 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8794 Value *RHS, const Twine &Name, bool UseSelect) { 8795 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8796 switch (Kind) { 8797 case RecurKind::Or: 8798 if (UseSelect && 8799 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8800 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8801 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8802 Name); 8803 case RecurKind::And: 8804 if (UseSelect && 8805 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8806 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8807 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8808 Name); 8809 case RecurKind::Add: 8810 case RecurKind::Mul: 8811 case RecurKind::Xor: 8812 case RecurKind::FAdd: 8813 case RecurKind::FMul: 8814 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8815 Name); 8816 case RecurKind::FMax: 8817 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8818 case RecurKind::FMin: 8819 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8820 case RecurKind::SMax: 8821 if (UseSelect) { 8822 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8823 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8824 } 8825 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8826 case RecurKind::SMin: 8827 if (UseSelect) { 8828 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8829 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8830 } 8831 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8832 case RecurKind::UMax: 8833 if (UseSelect) { 8834 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8835 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8836 } 8837 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8838 case RecurKind::UMin: 8839 if (UseSelect) { 8840 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8841 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8842 } 8843 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8844 default: 8845 llvm_unreachable("Unknown reduction operation."); 8846 } 8847 } 8848 8849 /// Creates reduction operation with the current opcode with the IR flags 8850 /// from \p ReductionOps. 8851 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8852 Value *RHS, const Twine &Name, 8853 const ReductionOpsListType &ReductionOps) { 8854 bool UseSelect = ReductionOps.size() == 2 || 8855 // Logical or/and. 8856 (ReductionOps.size() == 1 && 8857 isa<SelectInst>(ReductionOps.front().front())); 8858 assert((!UseSelect || ReductionOps.size() != 2 || 8859 isa<SelectInst>(ReductionOps[1][0])) && 8860 "Expected cmp + select pairs for reduction"); 8861 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8862 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8863 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8864 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8865 propagateIRFlags(Op, ReductionOps[1]); 8866 return Op; 8867 } 8868 } 8869 propagateIRFlags(Op, ReductionOps[0]); 8870 return Op; 8871 } 8872 8873 /// Creates reduction operation with the current opcode with the IR flags 8874 /// from \p I. 8875 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8876 Value *RHS, const Twine &Name, Instruction *I) { 8877 auto *SelI = dyn_cast<SelectInst>(I); 8878 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8879 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8880 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8881 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8882 } 8883 propagateIRFlags(Op, I); 8884 return Op; 8885 } 8886 8887 static RecurKind getRdxKind(Instruction *I) { 8888 assert(I && "Expected instruction for reduction matching"); 8889 if (match(I, m_Add(m_Value(), m_Value()))) 8890 return RecurKind::Add; 8891 if (match(I, m_Mul(m_Value(), m_Value()))) 8892 return RecurKind::Mul; 8893 if (match(I, m_And(m_Value(), m_Value())) || 8894 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8895 return RecurKind::And; 8896 if (match(I, m_Or(m_Value(), m_Value())) || 8897 match(I, m_LogicalOr(m_Value(), m_Value()))) 8898 return RecurKind::Or; 8899 if (match(I, m_Xor(m_Value(), m_Value()))) 8900 return RecurKind::Xor; 8901 if (match(I, m_FAdd(m_Value(), m_Value()))) 8902 return RecurKind::FAdd; 8903 if (match(I, m_FMul(m_Value(), m_Value()))) 8904 return RecurKind::FMul; 8905 8906 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8907 return RecurKind::FMax; 8908 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8909 return RecurKind::FMin; 8910 8911 // This matches either cmp+select or intrinsics. SLP is expected to handle 8912 // either form. 8913 // TODO: If we are canonicalizing to intrinsics, we can remove several 8914 // special-case paths that deal with selects. 8915 if (match(I, m_SMax(m_Value(), m_Value()))) 8916 return RecurKind::SMax; 8917 if (match(I, m_SMin(m_Value(), m_Value()))) 8918 return RecurKind::SMin; 8919 if (match(I, m_UMax(m_Value(), m_Value()))) 8920 return RecurKind::UMax; 8921 if (match(I, m_UMin(m_Value(), m_Value()))) 8922 return RecurKind::UMin; 8923 8924 if (auto *Select = dyn_cast<SelectInst>(I)) { 8925 // Try harder: look for min/max pattern based on instructions producing 8926 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8927 // During the intermediate stages of SLP, it's very common to have 8928 // pattern like this (since optimizeGatherSequence is run only once 8929 // at the end): 8930 // %1 = extractelement <2 x i32> %a, i32 0 8931 // %2 = extractelement <2 x i32> %a, i32 1 8932 // %cond = icmp sgt i32 %1, %2 8933 // %3 = extractelement <2 x i32> %a, i32 0 8934 // %4 = extractelement <2 x i32> %a, i32 1 8935 // %select = select i1 %cond, i32 %3, i32 %4 8936 CmpInst::Predicate Pred; 8937 Instruction *L1; 8938 Instruction *L2; 8939 8940 Value *LHS = Select->getTrueValue(); 8941 Value *RHS = Select->getFalseValue(); 8942 Value *Cond = Select->getCondition(); 8943 8944 // TODO: Support inverse predicates. 8945 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8946 if (!isa<ExtractElementInst>(RHS) || 8947 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8948 return RecurKind::None; 8949 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8950 if (!isa<ExtractElementInst>(LHS) || 8951 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8952 return RecurKind::None; 8953 } else { 8954 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8955 return RecurKind::None; 8956 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8957 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8958 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8959 return RecurKind::None; 8960 } 8961 8962 switch (Pred) { 8963 default: 8964 return RecurKind::None; 8965 case CmpInst::ICMP_SGT: 8966 case CmpInst::ICMP_SGE: 8967 return RecurKind::SMax; 8968 case CmpInst::ICMP_SLT: 8969 case CmpInst::ICMP_SLE: 8970 return RecurKind::SMin; 8971 case CmpInst::ICMP_UGT: 8972 case CmpInst::ICMP_UGE: 8973 return RecurKind::UMax; 8974 case CmpInst::ICMP_ULT: 8975 case CmpInst::ICMP_ULE: 8976 return RecurKind::UMin; 8977 } 8978 } 8979 return RecurKind::None; 8980 } 8981 8982 /// Get the index of the first operand. 8983 static unsigned getFirstOperandIndex(Instruction *I) { 8984 return isCmpSelMinMax(I) ? 1 : 0; 8985 } 8986 8987 /// Total number of operands in the reduction operation. 8988 static unsigned getNumberOfOperands(Instruction *I) { 8989 return isCmpSelMinMax(I) ? 3 : 2; 8990 } 8991 8992 /// Checks if the instruction is in basic block \p BB. 8993 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8994 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8995 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8996 auto *Sel = cast<SelectInst>(I); 8997 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8998 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8999 } 9000 return I->getParent() == BB; 9001 } 9002 9003 /// Expected number of uses for reduction operations/reduced values. 9004 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9005 if (IsCmpSelMinMax) { 9006 // SelectInst must be used twice while the condition op must have single 9007 // use only. 9008 if (auto *Sel = dyn_cast<SelectInst>(I)) 9009 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9010 return I->hasNUses(2); 9011 } 9012 9013 // Arithmetic reduction operation must be used once only. 9014 return I->hasOneUse(); 9015 } 9016 9017 /// Initializes the list of reduction operations. 9018 void initReductionOps(Instruction *I) { 9019 if (isCmpSelMinMax(I)) 9020 ReductionOps.assign(2, ReductionOpsType()); 9021 else 9022 ReductionOps.assign(1, ReductionOpsType()); 9023 } 9024 9025 /// Add all reduction operations for the reduction instruction \p I. 9026 void addReductionOps(Instruction *I) { 9027 if (isCmpSelMinMax(I)) { 9028 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9029 ReductionOps[1].emplace_back(I); 9030 } else { 9031 ReductionOps[0].emplace_back(I); 9032 } 9033 } 9034 9035 static Value *getLHS(RecurKind Kind, Instruction *I) { 9036 if (Kind == RecurKind::None) 9037 return nullptr; 9038 return I->getOperand(getFirstOperandIndex(I)); 9039 } 9040 static Value *getRHS(RecurKind Kind, Instruction *I) { 9041 if (Kind == RecurKind::None) 9042 return nullptr; 9043 return I->getOperand(getFirstOperandIndex(I) + 1); 9044 } 9045 9046 public: 9047 HorizontalReduction() = default; 9048 9049 /// Try to find a reduction tree. 9050 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9051 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9052 "Phi needs to use the binary operator"); 9053 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9054 isa<IntrinsicInst>(Inst)) && 9055 "Expected binop, select, or intrinsic for reduction matching"); 9056 RdxKind = getRdxKind(Inst); 9057 9058 // We could have a initial reductions that is not an add. 9059 // r *= v1 + v2 + v3 + v4 9060 // In such a case start looking for a tree rooted in the first '+'. 9061 if (Phi) { 9062 if (getLHS(RdxKind, Inst) == Phi) { 9063 Phi = nullptr; 9064 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9065 if (!Inst) 9066 return false; 9067 RdxKind = getRdxKind(Inst); 9068 } else if (getRHS(RdxKind, Inst) == Phi) { 9069 Phi = nullptr; 9070 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9071 if (!Inst) 9072 return false; 9073 RdxKind = getRdxKind(Inst); 9074 } 9075 } 9076 9077 if (!isVectorizable(RdxKind, Inst)) 9078 return false; 9079 9080 // Analyze "regular" integer/FP types for reductions - no target-specific 9081 // types or pointers. 9082 Type *Ty = Inst->getType(); 9083 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9084 return false; 9085 9086 // Though the ultimate reduction may have multiple uses, its condition must 9087 // have only single use. 9088 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9089 if (!Sel->getCondition()->hasOneUse()) 9090 return false; 9091 9092 ReductionRoot = Inst; 9093 9094 // The opcode for leaf values that we perform a reduction on. 9095 // For example: load(x) + load(y) + load(z) + fptoui(w) 9096 // The leaf opcode for 'w' does not match, so we don't include it as a 9097 // potential candidate for the reduction. 9098 unsigned LeafOpcode = 0; 9099 9100 // Post-order traverse the reduction tree starting at Inst. We only handle 9101 // true trees containing binary operators or selects. 9102 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9103 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9104 initReductionOps(Inst); 9105 while (!Stack.empty()) { 9106 Instruction *TreeN = Stack.back().first; 9107 unsigned EdgeToVisit = Stack.back().second++; 9108 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9109 bool IsReducedValue = TreeRdxKind != RdxKind; 9110 9111 // Postorder visit. 9112 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9113 if (IsReducedValue) 9114 ReducedVals.push_back(TreeN); 9115 else { 9116 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9117 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9118 // Check if TreeN is an extra argument of its parent operation. 9119 if (Stack.size() <= 1) { 9120 // TreeN can't be an extra argument as it is a root reduction 9121 // operation. 9122 return false; 9123 } 9124 // Yes, TreeN is an extra argument, do not add it to a list of 9125 // reduction operations. 9126 // Stack[Stack.size() - 2] always points to the parent operation. 9127 markExtraArg(Stack[Stack.size() - 2], TreeN); 9128 ExtraArgs.erase(TreeN); 9129 } else 9130 addReductionOps(TreeN); 9131 } 9132 // Retract. 9133 Stack.pop_back(); 9134 continue; 9135 } 9136 9137 // Visit operands. 9138 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9139 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9140 if (!EdgeInst) { 9141 // Edge value is not a reduction instruction or a leaf instruction. 9142 // (It may be a constant, function argument, or something else.) 9143 markExtraArg(Stack.back(), EdgeVal); 9144 continue; 9145 } 9146 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9147 // Continue analysis if the next operand is a reduction operation or 9148 // (possibly) a leaf value. If the leaf value opcode is not set, 9149 // the first met operation != reduction operation is considered as the 9150 // leaf opcode. 9151 // Only handle trees in the current basic block. 9152 // Each tree node needs to have minimal number of users except for the 9153 // ultimate reduction. 9154 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9155 if (EdgeInst != Phi && EdgeInst != Inst && 9156 hasSameParent(EdgeInst, Inst->getParent()) && 9157 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9158 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9159 if (IsRdxInst) { 9160 // We need to be able to reassociate the reduction operations. 9161 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9162 // I is an extra argument for TreeN (its parent operation). 9163 markExtraArg(Stack.back(), EdgeInst); 9164 continue; 9165 } 9166 } else if (!LeafOpcode) { 9167 LeafOpcode = EdgeInst->getOpcode(); 9168 } 9169 Stack.push_back( 9170 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9171 continue; 9172 } 9173 // I is an extra argument for TreeN (its parent operation). 9174 markExtraArg(Stack.back(), EdgeInst); 9175 } 9176 return true; 9177 } 9178 9179 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9180 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9181 // If there are a sufficient number of reduction values, reduce 9182 // to a nearby power-of-2. We can safely generate oversized 9183 // vectors and rely on the backend to split them to legal sizes. 9184 unsigned NumReducedVals = ReducedVals.size(); 9185 if (NumReducedVals < 4) 9186 return nullptr; 9187 9188 // Intersect the fast-math-flags from all reduction operations. 9189 FastMathFlags RdxFMF; 9190 RdxFMF.set(); 9191 for (ReductionOpsType &RdxOp : ReductionOps) { 9192 for (Value *RdxVal : RdxOp) { 9193 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9194 RdxFMF &= FPMO->getFastMathFlags(); 9195 } 9196 } 9197 9198 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9199 Builder.setFastMathFlags(RdxFMF); 9200 9201 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9202 // The same extra argument may be used several times, so log each attempt 9203 // to use it. 9204 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9205 assert(Pair.first && "DebugLoc must be set."); 9206 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9207 } 9208 9209 // The compare instruction of a min/max is the insertion point for new 9210 // instructions and may be replaced with a new compare instruction. 9211 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9212 assert(isa<SelectInst>(RdxRootInst) && 9213 "Expected min/max reduction to have select root instruction"); 9214 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9215 assert(isa<Instruction>(ScalarCond) && 9216 "Expected min/max reduction to have compare condition"); 9217 return cast<Instruction>(ScalarCond); 9218 }; 9219 9220 // The reduction root is used as the insertion point for new instructions, 9221 // so set it as externally used to prevent it from being deleted. 9222 ExternallyUsedValues[ReductionRoot]; 9223 SmallVector<Value *, 16> IgnoreList; 9224 for (ReductionOpsType &RdxOp : ReductionOps) 9225 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9226 9227 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9228 if (NumReducedVals > ReduxWidth) { 9229 // In the loop below, we are building a tree based on a window of 9230 // 'ReduxWidth' values. 9231 // If the operands of those values have common traits (compare predicate, 9232 // constant operand, etc), then we want to group those together to 9233 // minimize the cost of the reduction. 9234 9235 // TODO: This should be extended to count common operands for 9236 // compares and binops. 9237 9238 // Step 1: Count the number of times each compare predicate occurs. 9239 SmallDenseMap<unsigned, unsigned> PredCountMap; 9240 for (Value *RdxVal : ReducedVals) { 9241 CmpInst::Predicate Pred; 9242 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9243 ++PredCountMap[Pred]; 9244 } 9245 // Step 2: Sort the values so the most common predicates come first. 9246 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9247 CmpInst::Predicate PredA, PredB; 9248 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9249 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9250 return PredCountMap[PredA] > PredCountMap[PredB]; 9251 } 9252 return false; 9253 }); 9254 } 9255 9256 Value *VectorizedTree = nullptr; 9257 unsigned i = 0; 9258 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9259 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9260 V.buildTree(VL, IgnoreList); 9261 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9262 break; 9263 if (V.isLoadCombineReductionCandidate(RdxKind)) 9264 break; 9265 V.reorderTopToBottom(); 9266 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9267 V.buildExternalUses(ExternallyUsedValues); 9268 9269 // For a poison-safe boolean logic reduction, do not replace select 9270 // instructions with logic ops. All reduced values will be frozen (see 9271 // below) to prevent leaking poison. 9272 if (isa<SelectInst>(ReductionRoot) && 9273 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9274 NumReducedVals != ReduxWidth) 9275 break; 9276 9277 V.computeMinimumValueSizes(); 9278 9279 // Estimate cost. 9280 InstructionCost TreeCost = 9281 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9282 InstructionCost ReductionCost = 9283 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9284 InstructionCost Cost = TreeCost + ReductionCost; 9285 if (!Cost.isValid()) { 9286 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9287 return nullptr; 9288 } 9289 if (Cost >= -SLPCostThreshold) { 9290 V.getORE()->emit([&]() { 9291 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9292 cast<Instruction>(VL[0])) 9293 << "Vectorizing horizontal reduction is possible" 9294 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9295 << " and threshold " 9296 << ore::NV("Threshold", -SLPCostThreshold); 9297 }); 9298 break; 9299 } 9300 9301 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9302 << Cost << ". (HorRdx)\n"); 9303 V.getORE()->emit([&]() { 9304 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9305 cast<Instruction>(VL[0])) 9306 << "Vectorized horizontal reduction with cost " 9307 << ore::NV("Cost", Cost) << " and with tree size " 9308 << ore::NV("TreeSize", V.getTreeSize()); 9309 }); 9310 9311 // Vectorize a tree. 9312 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9313 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9314 9315 // Emit a reduction. If the root is a select (min/max idiom), the insert 9316 // point is the compare condition of that select. 9317 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9318 if (isCmpSelMinMax(RdxRootInst)) 9319 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9320 else 9321 Builder.SetInsertPoint(RdxRootInst); 9322 9323 // To prevent poison from leaking across what used to be sequential, safe, 9324 // scalar boolean logic operations, the reduction operand must be frozen. 9325 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9326 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9327 9328 Value *ReducedSubTree = 9329 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9330 9331 if (!VectorizedTree) { 9332 // Initialize the final value in the reduction. 9333 VectorizedTree = ReducedSubTree; 9334 } else { 9335 // Update the final value in the reduction. 9336 Builder.SetCurrentDebugLocation(Loc); 9337 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9338 ReducedSubTree, "op.rdx", ReductionOps); 9339 } 9340 i += ReduxWidth; 9341 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9342 } 9343 9344 if (VectorizedTree) { 9345 // Finish the reduction. 9346 for (; i < NumReducedVals; ++i) { 9347 auto *I = cast<Instruction>(ReducedVals[i]); 9348 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9349 VectorizedTree = 9350 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9351 } 9352 for (auto &Pair : ExternallyUsedValues) { 9353 // Add each externally used value to the final reduction. 9354 for (auto *I : Pair.second) { 9355 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9356 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9357 Pair.first, "op.extra", I); 9358 } 9359 } 9360 9361 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9362 9363 // Mark all scalar reduction ops for deletion, they are replaced by the 9364 // vector reductions. 9365 V.eraseInstructions(IgnoreList); 9366 } 9367 return VectorizedTree; 9368 } 9369 9370 unsigned numReductionValues() const { return ReducedVals.size(); } 9371 9372 private: 9373 /// Calculate the cost of a reduction. 9374 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9375 Value *FirstReducedVal, unsigned ReduxWidth, 9376 FastMathFlags FMF) { 9377 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9378 Type *ScalarTy = FirstReducedVal->getType(); 9379 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9380 InstructionCost VectorCost, ScalarCost; 9381 switch (RdxKind) { 9382 case RecurKind::Add: 9383 case RecurKind::Mul: 9384 case RecurKind::Or: 9385 case RecurKind::And: 9386 case RecurKind::Xor: 9387 case RecurKind::FAdd: 9388 case RecurKind::FMul: { 9389 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9390 VectorCost = 9391 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9392 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9393 break; 9394 } 9395 case RecurKind::FMax: 9396 case RecurKind::FMin: { 9397 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9398 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9399 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9400 /*IsUnsigned=*/false, CostKind); 9401 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9402 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9403 SclCondTy, RdxPred, CostKind) + 9404 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9405 SclCondTy, RdxPred, CostKind); 9406 break; 9407 } 9408 case RecurKind::SMax: 9409 case RecurKind::SMin: 9410 case RecurKind::UMax: 9411 case RecurKind::UMin: { 9412 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9413 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9414 bool IsUnsigned = 9415 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9416 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9417 CostKind); 9418 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9419 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9420 SclCondTy, RdxPred, CostKind) + 9421 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9422 SclCondTy, RdxPred, CostKind); 9423 break; 9424 } 9425 default: 9426 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9427 } 9428 9429 // Scalar cost is repeated for N-1 elements. 9430 ScalarCost *= (ReduxWidth - 1); 9431 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9432 << " for reduction that starts with " << *FirstReducedVal 9433 << " (It is a splitting reduction)\n"); 9434 return VectorCost - ScalarCost; 9435 } 9436 9437 /// Emit a horizontal reduction of the vectorized value. 9438 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9439 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9440 assert(VectorizedValue && "Need to have a vectorized tree node"); 9441 assert(isPowerOf2_32(ReduxWidth) && 9442 "We only handle power-of-two reductions for now"); 9443 assert(RdxKind != RecurKind::FMulAdd && 9444 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9445 9446 ++NumVectorInstructions; 9447 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9448 } 9449 }; 9450 9451 } // end anonymous namespace 9452 9453 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9454 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9455 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9456 9457 unsigned AggregateSize = 1; 9458 auto *IV = cast<InsertValueInst>(InsertInst); 9459 Type *CurrentType = IV->getType(); 9460 do { 9461 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9462 for (auto *Elt : ST->elements()) 9463 if (Elt != ST->getElementType(0)) // check homogeneity 9464 return None; 9465 AggregateSize *= ST->getNumElements(); 9466 CurrentType = ST->getElementType(0); 9467 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9468 AggregateSize *= AT->getNumElements(); 9469 CurrentType = AT->getElementType(); 9470 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9471 AggregateSize *= VT->getNumElements(); 9472 return AggregateSize; 9473 } else if (CurrentType->isSingleValueType()) { 9474 return AggregateSize; 9475 } else { 9476 return None; 9477 } 9478 } while (true); 9479 } 9480 9481 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9482 TargetTransformInfo *TTI, 9483 SmallVectorImpl<Value *> &BuildVectorOpds, 9484 SmallVectorImpl<Value *> &InsertElts, 9485 unsigned OperandOffset) { 9486 do { 9487 Value *InsertedOperand = LastInsertInst->getOperand(1); 9488 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9489 if (!OperandIndex) 9490 return false; 9491 if (isa<InsertElementInst>(InsertedOperand) || 9492 isa<InsertValueInst>(InsertedOperand)) { 9493 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9494 BuildVectorOpds, InsertElts, *OperandIndex)) 9495 return false; 9496 } else { 9497 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9498 InsertElts[*OperandIndex] = LastInsertInst; 9499 } 9500 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9501 } while (LastInsertInst != nullptr && 9502 (isa<InsertValueInst>(LastInsertInst) || 9503 isa<InsertElementInst>(LastInsertInst)) && 9504 LastInsertInst->hasOneUse()); 9505 return true; 9506 } 9507 9508 /// Recognize construction of vectors like 9509 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9510 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9511 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9512 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9513 /// starting from the last insertelement or insertvalue instruction. 9514 /// 9515 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9516 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9517 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9518 /// 9519 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9520 /// 9521 /// \return true if it matches. 9522 static bool findBuildAggregate(Instruction *LastInsertInst, 9523 TargetTransformInfo *TTI, 9524 SmallVectorImpl<Value *> &BuildVectorOpds, 9525 SmallVectorImpl<Value *> &InsertElts) { 9526 9527 assert((isa<InsertElementInst>(LastInsertInst) || 9528 isa<InsertValueInst>(LastInsertInst)) && 9529 "Expected insertelement or insertvalue instruction!"); 9530 9531 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9532 "Expected empty result vectors!"); 9533 9534 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9535 if (!AggregateSize) 9536 return false; 9537 BuildVectorOpds.resize(*AggregateSize); 9538 InsertElts.resize(*AggregateSize); 9539 9540 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9541 0)) { 9542 llvm::erase_value(BuildVectorOpds, nullptr); 9543 llvm::erase_value(InsertElts, nullptr); 9544 if (BuildVectorOpds.size() >= 2) 9545 return true; 9546 } 9547 9548 return false; 9549 } 9550 9551 /// Try and get a reduction value from a phi node. 9552 /// 9553 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9554 /// if they come from either \p ParentBB or a containing loop latch. 9555 /// 9556 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9557 /// if not possible. 9558 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9559 BasicBlock *ParentBB, LoopInfo *LI) { 9560 // There are situations where the reduction value is not dominated by the 9561 // reduction phi. Vectorizing such cases has been reported to cause 9562 // miscompiles. See PR25787. 9563 auto DominatedReduxValue = [&](Value *R) { 9564 return isa<Instruction>(R) && 9565 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9566 }; 9567 9568 Value *Rdx = nullptr; 9569 9570 // Return the incoming value if it comes from the same BB as the phi node. 9571 if (P->getIncomingBlock(0) == ParentBB) { 9572 Rdx = P->getIncomingValue(0); 9573 } else if (P->getIncomingBlock(1) == ParentBB) { 9574 Rdx = P->getIncomingValue(1); 9575 } 9576 9577 if (Rdx && DominatedReduxValue(Rdx)) 9578 return Rdx; 9579 9580 // Otherwise, check whether we have a loop latch to look at. 9581 Loop *BBL = LI->getLoopFor(ParentBB); 9582 if (!BBL) 9583 return nullptr; 9584 BasicBlock *BBLatch = BBL->getLoopLatch(); 9585 if (!BBLatch) 9586 return nullptr; 9587 9588 // There is a loop latch, return the incoming value if it comes from 9589 // that. This reduction pattern occasionally turns up. 9590 if (P->getIncomingBlock(0) == BBLatch) { 9591 Rdx = P->getIncomingValue(0); 9592 } else if (P->getIncomingBlock(1) == BBLatch) { 9593 Rdx = P->getIncomingValue(1); 9594 } 9595 9596 if (Rdx && DominatedReduxValue(Rdx)) 9597 return Rdx; 9598 9599 return nullptr; 9600 } 9601 9602 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9603 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9604 return true; 9605 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9606 return true; 9607 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9608 return true; 9609 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9610 return true; 9611 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9612 return true; 9613 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9614 return true; 9615 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9616 return true; 9617 return false; 9618 } 9619 9620 /// Attempt to reduce a horizontal reduction. 9621 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9622 /// with reduction operators \a Root (or one of its operands) in a basic block 9623 /// \a BB, then check if it can be done. If horizontal reduction is not found 9624 /// and root instruction is a binary operation, vectorization of the operands is 9625 /// attempted. 9626 /// \returns true if a horizontal reduction was matched and reduced or operands 9627 /// of one of the binary instruction were vectorized. 9628 /// \returns false if a horizontal reduction was not matched (or not possible) 9629 /// or no vectorization of any binary operation feeding \a Root instruction was 9630 /// performed. 9631 static bool tryToVectorizeHorReductionOrInstOperands( 9632 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9633 TargetTransformInfo *TTI, 9634 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9635 if (!ShouldVectorizeHor) 9636 return false; 9637 9638 if (!Root) 9639 return false; 9640 9641 if (Root->getParent() != BB || isa<PHINode>(Root)) 9642 return false; 9643 // Start analysis starting from Root instruction. If horizontal reduction is 9644 // found, try to vectorize it. If it is not a horizontal reduction or 9645 // vectorization is not possible or not effective, and currently analyzed 9646 // instruction is a binary operation, try to vectorize the operands, using 9647 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9648 // the same procedure considering each operand as a possible root of the 9649 // horizontal reduction. 9650 // Interrupt the process if the Root instruction itself was vectorized or all 9651 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9652 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9653 // CmpInsts so we can skip extra attempts in 9654 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9655 std::queue<std::pair<Instruction *, unsigned>> Stack; 9656 Stack.emplace(Root, 0); 9657 SmallPtrSet<Value *, 8> VisitedInstrs; 9658 SmallVector<WeakTrackingVH> PostponedInsts; 9659 bool Res = false; 9660 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9661 Value *&B1) -> Value * { 9662 bool IsBinop = matchRdxBop(Inst, B0, B1); 9663 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9664 if (IsBinop || IsSelect) { 9665 HorizontalReduction HorRdx; 9666 if (HorRdx.matchAssociativeReduction(P, Inst)) 9667 return HorRdx.tryToReduce(R, TTI); 9668 } 9669 return nullptr; 9670 }; 9671 while (!Stack.empty()) { 9672 Instruction *Inst; 9673 unsigned Level; 9674 std::tie(Inst, Level) = Stack.front(); 9675 Stack.pop(); 9676 // Do not try to analyze instruction that has already been vectorized. 9677 // This may happen when we vectorize instruction operands on a previous 9678 // iteration while stack was populated before that happened. 9679 if (R.isDeleted(Inst)) 9680 continue; 9681 Value *B0 = nullptr, *B1 = nullptr; 9682 if (Value *V = TryToReduce(Inst, B0, B1)) { 9683 Res = true; 9684 // Set P to nullptr to avoid re-analysis of phi node in 9685 // matchAssociativeReduction function unless this is the root node. 9686 P = nullptr; 9687 if (auto *I = dyn_cast<Instruction>(V)) { 9688 // Try to find another reduction. 9689 Stack.emplace(I, Level); 9690 continue; 9691 } 9692 } else { 9693 bool IsBinop = B0 && B1; 9694 if (P && IsBinop) { 9695 Inst = dyn_cast<Instruction>(B0); 9696 if (Inst == P) 9697 Inst = dyn_cast<Instruction>(B1); 9698 if (!Inst) { 9699 // Set P to nullptr to avoid re-analysis of phi node in 9700 // matchAssociativeReduction function unless this is the root node. 9701 P = nullptr; 9702 continue; 9703 } 9704 } 9705 // Set P to nullptr to avoid re-analysis of phi node in 9706 // matchAssociativeReduction function unless this is the root node. 9707 P = nullptr; 9708 // Do not try to vectorize CmpInst operands, this is done separately. 9709 // Final attempt for binop args vectorization should happen after the loop 9710 // to try to find reductions. 9711 if (!isa<CmpInst>(Inst)) 9712 PostponedInsts.push_back(Inst); 9713 } 9714 9715 // Try to vectorize operands. 9716 // Continue analysis for the instruction from the same basic block only to 9717 // save compile time. 9718 if (++Level < RecursionMaxDepth) 9719 for (auto *Op : Inst->operand_values()) 9720 if (VisitedInstrs.insert(Op).second) 9721 if (auto *I = dyn_cast<Instruction>(Op)) 9722 // Do not try to vectorize CmpInst operands, this is done 9723 // separately. 9724 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9725 I->getParent() == BB) 9726 Stack.emplace(I, Level); 9727 } 9728 // Try to vectorized binops where reductions were not found. 9729 for (Value *V : PostponedInsts) 9730 if (auto *Inst = dyn_cast<Instruction>(V)) 9731 if (!R.isDeleted(Inst)) 9732 Res |= Vectorize(Inst, R); 9733 return Res; 9734 } 9735 9736 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9737 BasicBlock *BB, BoUpSLP &R, 9738 TargetTransformInfo *TTI) { 9739 auto *I = dyn_cast_or_null<Instruction>(V); 9740 if (!I) 9741 return false; 9742 9743 if (!isa<BinaryOperator>(I)) 9744 P = nullptr; 9745 // Try to match and vectorize a horizontal reduction. 9746 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9747 return tryToVectorize(I, R); 9748 }; 9749 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9750 ExtraVectorization); 9751 } 9752 9753 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9754 BasicBlock *BB, BoUpSLP &R) { 9755 const DataLayout &DL = BB->getModule()->getDataLayout(); 9756 if (!R.canMapToVector(IVI->getType(), DL)) 9757 return false; 9758 9759 SmallVector<Value *, 16> BuildVectorOpds; 9760 SmallVector<Value *, 16> BuildVectorInsts; 9761 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9762 return false; 9763 9764 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9765 // Aggregate value is unlikely to be processed in vector register. 9766 return tryToVectorizeList(BuildVectorOpds, R); 9767 } 9768 9769 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9770 BasicBlock *BB, BoUpSLP &R) { 9771 SmallVector<Value *, 16> BuildVectorInsts; 9772 SmallVector<Value *, 16> BuildVectorOpds; 9773 SmallVector<int> Mask; 9774 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9775 (llvm::all_of( 9776 BuildVectorOpds, 9777 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9778 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9779 return false; 9780 9781 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9782 return tryToVectorizeList(BuildVectorInsts, R); 9783 } 9784 9785 template <typename T> 9786 static bool 9787 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9788 function_ref<unsigned(T *)> Limit, 9789 function_ref<bool(T *, T *)> Comparator, 9790 function_ref<bool(T *, T *)> AreCompatible, 9791 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9792 bool LimitForRegisterSize) { 9793 bool Changed = false; 9794 // Sort by type, parent, operands. 9795 stable_sort(Incoming, Comparator); 9796 9797 // Try to vectorize elements base on their type. 9798 SmallVector<T *> Candidates; 9799 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9800 // Look for the next elements with the same type, parent and operand 9801 // kinds. 9802 auto *SameTypeIt = IncIt; 9803 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9804 ++SameTypeIt; 9805 9806 // Try to vectorize them. 9807 unsigned NumElts = (SameTypeIt - IncIt); 9808 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9809 << NumElts << ")\n"); 9810 // The vectorization is a 3-state attempt: 9811 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9812 // size of maximal register at first. 9813 // 2. Try to vectorize remaining instructions with the same type, if 9814 // possible. This may result in the better vectorization results rather than 9815 // if we try just to vectorize instructions with the same/alternate opcodes. 9816 // 3. Final attempt to try to vectorize all instructions with the 9817 // same/alternate ops only, this may result in some extra final 9818 // vectorization. 9819 if (NumElts > 1 && 9820 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9821 // Success start over because instructions might have been changed. 9822 Changed = true; 9823 } else if (NumElts < Limit(*IncIt) && 9824 (Candidates.empty() || 9825 Candidates.front()->getType() == (*IncIt)->getType())) { 9826 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9827 } 9828 // Final attempt to vectorize instructions with the same types. 9829 if (Candidates.size() > 1 && 9830 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9831 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9832 // Success start over because instructions might have been changed. 9833 Changed = true; 9834 } else if (LimitForRegisterSize) { 9835 // Try to vectorize using small vectors. 9836 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9837 It != End;) { 9838 auto *SameTypeIt = It; 9839 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9840 ++SameTypeIt; 9841 unsigned NumElts = (SameTypeIt - It); 9842 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9843 /*LimitForRegisterSize=*/false)) 9844 Changed = true; 9845 It = SameTypeIt; 9846 } 9847 } 9848 Candidates.clear(); 9849 } 9850 9851 // Start over at the next instruction of a different type (or the end). 9852 IncIt = SameTypeIt; 9853 } 9854 return Changed; 9855 } 9856 9857 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9858 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9859 /// operands. If IsCompatibility is false, function implements strict weak 9860 /// ordering relation between two cmp instructions, returning true if the first 9861 /// instruction is "less" than the second, i.e. its predicate is less than the 9862 /// predicate of the second or the operands IDs are less than the operands IDs 9863 /// of the second cmp instruction. 9864 template <bool IsCompatibility> 9865 static bool compareCmp(Value *V, Value *V2, 9866 function_ref<bool(Instruction *)> IsDeleted) { 9867 auto *CI1 = cast<CmpInst>(V); 9868 auto *CI2 = cast<CmpInst>(V2); 9869 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9870 return false; 9871 if (CI1->getOperand(0)->getType()->getTypeID() < 9872 CI2->getOperand(0)->getType()->getTypeID()) 9873 return !IsCompatibility; 9874 if (CI1->getOperand(0)->getType()->getTypeID() > 9875 CI2->getOperand(0)->getType()->getTypeID()) 9876 return false; 9877 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9878 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9879 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9880 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9881 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9882 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9883 if (BasePred1 < BasePred2) 9884 return !IsCompatibility; 9885 if (BasePred1 > BasePred2) 9886 return false; 9887 // Compare operands. 9888 bool LEPreds = Pred1 <= Pred2; 9889 bool GEPreds = Pred1 >= Pred2; 9890 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9891 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9892 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9893 if (Op1->getValueID() < Op2->getValueID()) 9894 return !IsCompatibility; 9895 if (Op1->getValueID() > Op2->getValueID()) 9896 return false; 9897 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9898 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9899 if (I1->getParent() != I2->getParent()) 9900 return false; 9901 InstructionsState S = getSameOpcode({I1, I2}); 9902 if (S.getOpcode()) 9903 continue; 9904 return false; 9905 } 9906 } 9907 return IsCompatibility; 9908 } 9909 9910 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9911 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9912 bool AtTerminator) { 9913 bool OpsChanged = false; 9914 SmallVector<Instruction *, 4> PostponedCmps; 9915 for (auto *I : reverse(Instructions)) { 9916 if (R.isDeleted(I)) 9917 continue; 9918 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9919 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9920 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9921 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9922 else if (isa<CmpInst>(I)) 9923 PostponedCmps.push_back(I); 9924 } 9925 if (AtTerminator) { 9926 // Try to find reductions first. 9927 for (Instruction *I : PostponedCmps) { 9928 if (R.isDeleted(I)) 9929 continue; 9930 for (Value *Op : I->operands()) 9931 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9932 } 9933 // Try to vectorize operands as vector bundles. 9934 for (Instruction *I : PostponedCmps) { 9935 if (R.isDeleted(I)) 9936 continue; 9937 OpsChanged |= tryToVectorize(I, R); 9938 } 9939 // Try to vectorize list of compares. 9940 // Sort by type, compare predicate, etc. 9941 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9942 return compareCmp<false>(V, V2, 9943 [&R](Instruction *I) { return R.isDeleted(I); }); 9944 }; 9945 9946 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9947 if (V1 == V2) 9948 return true; 9949 return compareCmp<true>(V1, V2, 9950 [&R](Instruction *I) { return R.isDeleted(I); }); 9951 }; 9952 auto Limit = [&R](Value *V) { 9953 unsigned EltSize = R.getVectorElementSize(V); 9954 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9955 }; 9956 9957 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9958 OpsChanged |= tryToVectorizeSequence<Value>( 9959 Vals, Limit, CompareSorter, AreCompatibleCompares, 9960 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9961 // Exclude possible reductions from other blocks. 9962 bool ArePossiblyReducedInOtherBlock = 9963 any_of(Candidates, [](Value *V) { 9964 return any_of(V->users(), [V](User *U) { 9965 return isa<SelectInst>(U) && 9966 cast<SelectInst>(U)->getParent() != 9967 cast<Instruction>(V)->getParent(); 9968 }); 9969 }); 9970 if (ArePossiblyReducedInOtherBlock) 9971 return false; 9972 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9973 }, 9974 /*LimitForRegisterSize=*/true); 9975 Instructions.clear(); 9976 } else { 9977 // Insert in reverse order since the PostponedCmps vector was filled in 9978 // reverse order. 9979 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9980 } 9981 return OpsChanged; 9982 } 9983 9984 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9985 bool Changed = false; 9986 SmallVector<Value *, 4> Incoming; 9987 SmallPtrSet<Value *, 16> VisitedInstrs; 9988 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9989 // node. Allows better to identify the chains that can be vectorized in the 9990 // better way. 9991 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9992 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9993 assert(isValidElementType(V1->getType()) && 9994 isValidElementType(V2->getType()) && 9995 "Expected vectorizable types only."); 9996 // It is fine to compare type IDs here, since we expect only vectorizable 9997 // types, like ints, floats and pointers, we don't care about other type. 9998 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9999 return true; 10000 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10001 return false; 10002 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10003 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10004 if (Opcodes1.size() < Opcodes2.size()) 10005 return true; 10006 if (Opcodes1.size() > Opcodes2.size()) 10007 return false; 10008 Optional<bool> ConstOrder; 10009 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10010 // Undefs are compatible with any other value. 10011 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10012 if (!ConstOrder) 10013 ConstOrder = 10014 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10015 continue; 10016 } 10017 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10018 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10019 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10020 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10021 if (!NodeI1) 10022 return NodeI2 != nullptr; 10023 if (!NodeI2) 10024 return false; 10025 assert((NodeI1 == NodeI2) == 10026 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10027 "Different nodes should have different DFS numbers"); 10028 if (NodeI1 != NodeI2) 10029 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10030 InstructionsState S = getSameOpcode({I1, I2}); 10031 if (S.getOpcode()) 10032 continue; 10033 return I1->getOpcode() < I2->getOpcode(); 10034 } 10035 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10036 if (!ConstOrder) 10037 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10038 continue; 10039 } 10040 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10041 return true; 10042 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10043 return false; 10044 } 10045 return ConstOrder && *ConstOrder; 10046 }; 10047 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10048 if (V1 == V2) 10049 return true; 10050 if (V1->getType() != V2->getType()) 10051 return false; 10052 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10053 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10054 if (Opcodes1.size() != Opcodes2.size()) 10055 return false; 10056 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10057 // Undefs are compatible with any other value. 10058 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10059 continue; 10060 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10061 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10062 if (I1->getParent() != I2->getParent()) 10063 return false; 10064 InstructionsState S = getSameOpcode({I1, I2}); 10065 if (S.getOpcode()) 10066 continue; 10067 return false; 10068 } 10069 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10070 continue; 10071 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10072 return false; 10073 } 10074 return true; 10075 }; 10076 auto Limit = [&R](Value *V) { 10077 unsigned EltSize = R.getVectorElementSize(V); 10078 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10079 }; 10080 10081 bool HaveVectorizedPhiNodes = false; 10082 do { 10083 // Collect the incoming values from the PHIs. 10084 Incoming.clear(); 10085 for (Instruction &I : *BB) { 10086 PHINode *P = dyn_cast<PHINode>(&I); 10087 if (!P) 10088 break; 10089 10090 // No need to analyze deleted, vectorized and non-vectorizable 10091 // instructions. 10092 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10093 isValidElementType(P->getType())) 10094 Incoming.push_back(P); 10095 } 10096 10097 // Find the corresponding non-phi nodes for better matching when trying to 10098 // build the tree. 10099 for (Value *V : Incoming) { 10100 SmallVectorImpl<Value *> &Opcodes = 10101 PHIToOpcodes.try_emplace(V).first->getSecond(); 10102 if (!Opcodes.empty()) 10103 continue; 10104 SmallVector<Value *, 4> Nodes(1, V); 10105 SmallPtrSet<Value *, 4> Visited; 10106 while (!Nodes.empty()) { 10107 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10108 if (!Visited.insert(PHI).second) 10109 continue; 10110 for (Value *V : PHI->incoming_values()) { 10111 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10112 Nodes.push_back(PHI1); 10113 continue; 10114 } 10115 Opcodes.emplace_back(V); 10116 } 10117 } 10118 } 10119 10120 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10121 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10122 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10123 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10124 }, 10125 /*LimitForRegisterSize=*/true); 10126 Changed |= HaveVectorizedPhiNodes; 10127 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10128 } while (HaveVectorizedPhiNodes); 10129 10130 VisitedInstrs.clear(); 10131 10132 SmallVector<Instruction *, 8> PostProcessInstructions; 10133 SmallDenseSet<Instruction *, 4> KeyNodes; 10134 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10135 // Skip instructions with scalable type. The num of elements is unknown at 10136 // compile-time for scalable type. 10137 if (isa<ScalableVectorType>(it->getType())) 10138 continue; 10139 10140 // Skip instructions marked for the deletion. 10141 if (R.isDeleted(&*it)) 10142 continue; 10143 // We may go through BB multiple times so skip the one we have checked. 10144 if (!VisitedInstrs.insert(&*it).second) { 10145 if (it->use_empty() && KeyNodes.contains(&*it) && 10146 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10147 it->isTerminator())) { 10148 // We would like to start over since some instructions are deleted 10149 // and the iterator may become invalid value. 10150 Changed = true; 10151 it = BB->begin(); 10152 e = BB->end(); 10153 } 10154 continue; 10155 } 10156 10157 if (isa<DbgInfoIntrinsic>(it)) 10158 continue; 10159 10160 // Try to vectorize reductions that use PHINodes. 10161 if (PHINode *P = dyn_cast<PHINode>(it)) { 10162 // Check that the PHI is a reduction PHI. 10163 if (P->getNumIncomingValues() == 2) { 10164 // Try to match and vectorize a horizontal reduction. 10165 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10166 TTI)) { 10167 Changed = true; 10168 it = BB->begin(); 10169 e = BB->end(); 10170 continue; 10171 } 10172 } 10173 // Try to vectorize the incoming values of the PHI, to catch reductions 10174 // that feed into PHIs. 10175 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10176 // Skip if the incoming block is the current BB for now. Also, bypass 10177 // unreachable IR for efficiency and to avoid crashing. 10178 // TODO: Collect the skipped incoming values and try to vectorize them 10179 // after processing BB. 10180 if (BB == P->getIncomingBlock(I) || 10181 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10182 continue; 10183 10184 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10185 P->getIncomingBlock(I), R, TTI); 10186 } 10187 continue; 10188 } 10189 10190 // Ran into an instruction without users, like terminator, or function call 10191 // with ignored return value, store. Ignore unused instructions (basing on 10192 // instruction type, except for CallInst and InvokeInst). 10193 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10194 isa<InvokeInst>(it))) { 10195 KeyNodes.insert(&*it); 10196 bool OpsChanged = false; 10197 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10198 for (auto *V : it->operand_values()) { 10199 // Try to match and vectorize a horizontal reduction. 10200 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10201 } 10202 } 10203 // Start vectorization of post-process list of instructions from the 10204 // top-tree instructions to try to vectorize as many instructions as 10205 // possible. 10206 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10207 it->isTerminator()); 10208 if (OpsChanged) { 10209 // We would like to start over since some instructions are deleted 10210 // and the iterator may become invalid value. 10211 Changed = true; 10212 it = BB->begin(); 10213 e = BB->end(); 10214 continue; 10215 } 10216 } 10217 10218 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10219 isa<InsertValueInst>(it)) 10220 PostProcessInstructions.push_back(&*it); 10221 } 10222 10223 return Changed; 10224 } 10225 10226 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10227 auto Changed = false; 10228 for (auto &Entry : GEPs) { 10229 // If the getelementptr list has fewer than two elements, there's nothing 10230 // to do. 10231 if (Entry.second.size() < 2) 10232 continue; 10233 10234 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10235 << Entry.second.size() << ".\n"); 10236 10237 // Process the GEP list in chunks suitable for the target's supported 10238 // vector size. If a vector register can't hold 1 element, we are done. We 10239 // are trying to vectorize the index computations, so the maximum number of 10240 // elements is based on the size of the index expression, rather than the 10241 // size of the GEP itself (the target's pointer size). 10242 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10243 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10244 if (MaxVecRegSize < EltSize) 10245 continue; 10246 10247 unsigned MaxElts = MaxVecRegSize / EltSize; 10248 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10249 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10250 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10251 10252 // Initialize a set a candidate getelementptrs. Note that we use a 10253 // SetVector here to preserve program order. If the index computations 10254 // are vectorizable and begin with loads, we want to minimize the chance 10255 // of having to reorder them later. 10256 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10257 10258 // Some of the candidates may have already been vectorized after we 10259 // initially collected them. If so, they are marked as deleted, so remove 10260 // them from the set of candidates. 10261 Candidates.remove_if( 10262 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10263 10264 // Remove from the set of candidates all pairs of getelementptrs with 10265 // constant differences. Such getelementptrs are likely not good 10266 // candidates for vectorization in a bottom-up phase since one can be 10267 // computed from the other. We also ensure all candidate getelementptr 10268 // indices are unique. 10269 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10270 auto *GEPI = GEPList[I]; 10271 if (!Candidates.count(GEPI)) 10272 continue; 10273 auto *SCEVI = SE->getSCEV(GEPList[I]); 10274 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10275 auto *GEPJ = GEPList[J]; 10276 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10277 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10278 Candidates.remove(GEPI); 10279 Candidates.remove(GEPJ); 10280 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10281 Candidates.remove(GEPJ); 10282 } 10283 } 10284 } 10285 10286 // We break out of the above computation as soon as we know there are 10287 // fewer than two candidates remaining. 10288 if (Candidates.size() < 2) 10289 continue; 10290 10291 // Add the single, non-constant index of each candidate to the bundle. We 10292 // ensured the indices met these constraints when we originally collected 10293 // the getelementptrs. 10294 SmallVector<Value *, 16> Bundle(Candidates.size()); 10295 auto BundleIndex = 0u; 10296 for (auto *V : Candidates) { 10297 auto *GEP = cast<GetElementPtrInst>(V); 10298 auto *GEPIdx = GEP->idx_begin()->get(); 10299 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10300 Bundle[BundleIndex++] = GEPIdx; 10301 } 10302 10303 // Try and vectorize the indices. We are currently only interested in 10304 // gather-like cases of the form: 10305 // 10306 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10307 // 10308 // where the loads of "a", the loads of "b", and the subtractions can be 10309 // performed in parallel. It's likely that detecting this pattern in a 10310 // bottom-up phase will be simpler and less costly than building a 10311 // full-blown top-down phase beginning at the consecutive loads. 10312 Changed |= tryToVectorizeList(Bundle, R); 10313 } 10314 } 10315 return Changed; 10316 } 10317 10318 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10319 bool Changed = false; 10320 // Sort by type, base pointers and values operand. Value operands must be 10321 // compatible (have the same opcode, same parent), otherwise it is 10322 // definitely not profitable to try to vectorize them. 10323 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10324 if (V->getPointerOperandType()->getTypeID() < 10325 V2->getPointerOperandType()->getTypeID()) 10326 return true; 10327 if (V->getPointerOperandType()->getTypeID() > 10328 V2->getPointerOperandType()->getTypeID()) 10329 return false; 10330 // UndefValues are compatible with all other values. 10331 if (isa<UndefValue>(V->getValueOperand()) || 10332 isa<UndefValue>(V2->getValueOperand())) 10333 return false; 10334 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10335 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10336 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10337 DT->getNode(I1->getParent()); 10338 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10339 DT->getNode(I2->getParent()); 10340 assert(NodeI1 && "Should only process reachable instructions"); 10341 assert(NodeI1 && "Should only process reachable instructions"); 10342 assert((NodeI1 == NodeI2) == 10343 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10344 "Different nodes should have different DFS numbers"); 10345 if (NodeI1 != NodeI2) 10346 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10347 InstructionsState S = getSameOpcode({I1, I2}); 10348 if (S.getOpcode()) 10349 return false; 10350 return I1->getOpcode() < I2->getOpcode(); 10351 } 10352 if (isa<Constant>(V->getValueOperand()) && 10353 isa<Constant>(V2->getValueOperand())) 10354 return false; 10355 return V->getValueOperand()->getValueID() < 10356 V2->getValueOperand()->getValueID(); 10357 }; 10358 10359 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10360 if (V1 == V2) 10361 return true; 10362 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10363 return false; 10364 // Undefs are compatible with any other value. 10365 if (isa<UndefValue>(V1->getValueOperand()) || 10366 isa<UndefValue>(V2->getValueOperand())) 10367 return true; 10368 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10369 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10370 if (I1->getParent() != I2->getParent()) 10371 return false; 10372 InstructionsState S = getSameOpcode({I1, I2}); 10373 return S.getOpcode() > 0; 10374 } 10375 if (isa<Constant>(V1->getValueOperand()) && 10376 isa<Constant>(V2->getValueOperand())) 10377 return true; 10378 return V1->getValueOperand()->getValueID() == 10379 V2->getValueOperand()->getValueID(); 10380 }; 10381 auto Limit = [&R, this](StoreInst *SI) { 10382 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10383 return R.getMinVF(EltSize); 10384 }; 10385 10386 // Attempt to sort and vectorize each of the store-groups. 10387 for (auto &Pair : Stores) { 10388 if (Pair.second.size() < 2) 10389 continue; 10390 10391 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10392 << Pair.second.size() << ".\n"); 10393 10394 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10395 continue; 10396 10397 Changed |= tryToVectorizeSequence<StoreInst>( 10398 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10399 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10400 return vectorizeStores(Candidates, R); 10401 }, 10402 /*LimitForRegisterSize=*/false); 10403 } 10404 return Changed; 10405 } 10406 10407 char SLPVectorizer::ID = 0; 10408 10409 static const char lv_name[] = "SLP Vectorizer"; 10410 10411 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10412 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10413 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10414 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10415 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10416 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10417 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10418 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10419 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10420 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10421 10422 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10423