1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants. 198 static bool allConstant(ArrayRef<Value *> VL) { 199 for (Value *i : VL) 200 if (!isa<Constant>(i)) 201 return false; 202 return true; 203 } 204 205 /// \returns True if all of the values in \p VL are identical. 206 static bool isSplat(ArrayRef<Value *> VL) { 207 for (unsigned i = 1, e = VL.size(); i < e; ++i) 208 if (VL[i] != VL[0]) 209 return false; 210 return true; 211 } 212 213 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 214 static bool isCommutative(Instruction *I) { 215 if (auto *IC = dyn_cast<CmpInst>(I)) 216 return IC->isCommutative(); 217 return I->isCommutative(); 218 } 219 220 /// Checks if the vector of instructions can be represented as a shuffle, like: 221 /// %x0 = extractelement <4 x i8> %x, i32 0 222 /// %x3 = extractelement <4 x i8> %x, i32 3 223 /// %y1 = extractelement <4 x i8> %y, i32 1 224 /// %y2 = extractelement <4 x i8> %y, i32 2 225 /// %x0x0 = mul i8 %x0, %x0 226 /// %x3x3 = mul i8 %x3, %x3 227 /// %y1y1 = mul i8 %y1, %y1 228 /// %y2y2 = mul i8 %y2, %y2 229 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 230 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 231 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 232 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 233 /// ret <4 x i8> %ins4 234 /// can be transformed into: 235 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 236 /// i32 6> 237 /// %2 = mul <4 x i8> %1, %1 238 /// ret <4 x i8> %2 239 /// We convert this initially to something like: 240 /// %x0 = extractelement <4 x i8> %x, i32 0 241 /// %x3 = extractelement <4 x i8> %x, i32 3 242 /// %y1 = extractelement <4 x i8> %y, i32 1 243 /// %y2 = extractelement <4 x i8> %y, i32 2 244 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 245 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 246 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 247 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 248 /// %5 = mul <4 x i8> %4, %4 249 /// %6 = extractelement <4 x i8> %5, i32 0 250 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 251 /// %7 = extractelement <4 x i8> %5, i32 1 252 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 253 /// %8 = extractelement <4 x i8> %5, i32 2 254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 255 /// %9 = extractelement <4 x i8> %5, i32 3 256 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 257 /// ret <4 x i8> %ins4 258 /// InstCombiner transforms this into a shuffle and vector mul 259 /// TODO: Can we split off and reuse the shuffle mask detection from 260 /// TargetTransformInfo::getInstructionThroughput? 261 static Optional<TargetTransformInfo::ShuffleKind> 262 isShuffle(ArrayRef<Value *> VL) { 263 auto *EI0 = cast<ExtractElementInst>(VL[0]); 264 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 265 Value *Vec1 = nullptr; 266 Value *Vec2 = nullptr; 267 enum ShuffleMode { Unknown, Select, Permute }; 268 ShuffleMode CommonShuffleMode = Unknown; 269 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 270 auto *EI = cast<ExtractElementInst>(VL[I]); 271 auto *Vec = EI->getVectorOperand(); 272 // All vector operands must have the same number of vector elements. 273 if (Vec->getType()->getVectorNumElements() != Size) 274 return None; 275 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 276 if (!Idx) 277 return None; 278 // Undefined behavior if Idx is negative or >= Size. 279 if (Idx->getValue().uge(Size)) 280 continue; 281 unsigned IntIdx = Idx->getValue().getZExtValue(); 282 // We can extractelement from undef vector. 283 if (isa<UndefValue>(Vec)) 284 continue; 285 // For correct shuffling we have to have at most 2 different vector operands 286 // in all extractelement instructions. 287 if (!Vec1 || Vec1 == Vec) 288 Vec1 = Vec; 289 else if (!Vec2 || Vec2 == Vec) 290 Vec2 = Vec; 291 else 292 return None; 293 if (CommonShuffleMode == Permute) 294 continue; 295 // If the extract index is not the same as the operation number, it is a 296 // permutation. 297 if (IntIdx != I) { 298 CommonShuffleMode = Permute; 299 continue; 300 } 301 CommonShuffleMode = Select; 302 } 303 // If we're not crossing lanes in different vectors, consider it as blending. 304 if (CommonShuffleMode == Select && Vec2) 305 return TargetTransformInfo::SK_Select; 306 // If Vec2 was never used, we have a permutation of a single vector, otherwise 307 // we have permutation of 2 vectors. 308 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 309 : TargetTransformInfo::SK_PermuteSingleSrc; 310 } 311 312 namespace { 313 314 /// Main data required for vectorization of instructions. 315 struct InstructionsState { 316 /// The very first instruction in the list with the main opcode. 317 Value *OpValue = nullptr; 318 319 /// The main/alternate instruction. 320 Instruction *MainOp = nullptr; 321 Instruction *AltOp = nullptr; 322 323 /// The main/alternate opcodes for the list of instructions. 324 unsigned getOpcode() const { 325 return MainOp ? MainOp->getOpcode() : 0; 326 } 327 328 unsigned getAltOpcode() const { 329 return AltOp ? AltOp->getOpcode() : 0; 330 } 331 332 /// Some of the instructions in the list have alternate opcodes. 333 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 334 335 bool isOpcodeOrAlt(Instruction *I) const { 336 unsigned CheckedOpcode = I->getOpcode(); 337 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 338 } 339 340 InstructionsState() = delete; 341 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 342 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 343 }; 344 345 } // end anonymous namespace 346 347 /// Chooses the correct key for scheduling data. If \p Op has the same (or 348 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 349 /// OpValue. 350 static Value *isOneOf(const InstructionsState &S, Value *Op) { 351 auto *I = dyn_cast<Instruction>(Op); 352 if (I && S.isOpcodeOrAlt(I)) 353 return Op; 354 return S.OpValue; 355 } 356 357 /// \returns analysis of the Instructions in \p VL described in 358 /// InstructionsState, the Opcode that we suppose the whole list 359 /// could be vectorized even if its structure is diverse. 360 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 361 unsigned BaseIndex = 0) { 362 // Make sure these are all Instructions. 363 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 364 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 365 366 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 367 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 368 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 369 unsigned AltOpcode = Opcode; 370 unsigned AltIndex = BaseIndex; 371 372 // Check for one alternate opcode from another BinaryOperator. 373 // TODO - generalize to support all operators (types, calls etc.). 374 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 375 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 376 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 377 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 378 continue; 379 if (Opcode == AltOpcode) { 380 AltOpcode = InstOpcode; 381 AltIndex = Cnt; 382 continue; 383 } 384 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 385 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 386 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 387 if (Ty0 == Ty1) { 388 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 389 continue; 390 if (Opcode == AltOpcode) { 391 AltOpcode = InstOpcode; 392 AltIndex = Cnt; 393 continue; 394 } 395 } 396 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 397 continue; 398 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 399 } 400 401 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 402 cast<Instruction>(VL[AltIndex])); 403 } 404 405 /// \returns true if all of the values in \p VL have the same type or false 406 /// otherwise. 407 static bool allSameType(ArrayRef<Value *> VL) { 408 Type *Ty = VL[0]->getType(); 409 for (int i = 1, e = VL.size(); i < e; i++) 410 if (VL[i]->getType() != Ty) 411 return false; 412 413 return true; 414 } 415 416 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 417 static Optional<unsigned> getExtractIndex(Instruction *E) { 418 unsigned Opcode = E->getOpcode(); 419 assert((Opcode == Instruction::ExtractElement || 420 Opcode == Instruction::ExtractValue) && 421 "Expected extractelement or extractvalue instruction."); 422 if (Opcode == Instruction::ExtractElement) { 423 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 424 if (!CI) 425 return None; 426 return CI->getZExtValue(); 427 } 428 ExtractValueInst *EI = cast<ExtractValueInst>(E); 429 if (EI->getNumIndices() != 1) 430 return None; 431 return *EI->idx_begin(); 432 } 433 434 /// \returns True if in-tree use also needs extract. This refers to 435 /// possible scalar operand in vectorized instruction. 436 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 437 TargetLibraryInfo *TLI) { 438 unsigned Opcode = UserInst->getOpcode(); 439 switch (Opcode) { 440 case Instruction::Load: { 441 LoadInst *LI = cast<LoadInst>(UserInst); 442 return (LI->getPointerOperand() == Scalar); 443 } 444 case Instruction::Store: { 445 StoreInst *SI = cast<StoreInst>(UserInst); 446 return (SI->getPointerOperand() == Scalar); 447 } 448 case Instruction::Call: { 449 CallInst *CI = cast<CallInst>(UserInst); 450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 451 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 452 if (hasVectorInstrinsicScalarOpd(ID, i)) 453 return (CI->getArgOperand(i) == Scalar); 454 } 455 LLVM_FALLTHROUGH; 456 } 457 default: 458 return false; 459 } 460 } 461 462 /// \returns the AA location that is being access by the instruction. 463 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return MemoryLocation::get(SI); 466 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 467 return MemoryLocation::get(LI); 468 return MemoryLocation(); 469 } 470 471 /// \returns True if the instruction is not a volatile or atomic load/store. 472 static bool isSimple(Instruction *I) { 473 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 474 return LI->isSimple(); 475 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 476 return SI->isSimple(); 477 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 478 return !MI->isVolatile(); 479 return true; 480 } 481 482 namespace llvm { 483 484 namespace slpvectorizer { 485 486 /// Bottom Up SLP Vectorizer. 487 class BoUpSLP { 488 struct TreeEntry; 489 struct ScheduleData; 490 491 public: 492 using ValueList = SmallVector<Value *, 8>; 493 using InstrList = SmallVector<Instruction *, 16>; 494 using ValueSet = SmallPtrSet<Value *, 16>; 495 using StoreList = SmallVector<StoreInst *, 8>; 496 using ExtraValueToDebugLocsMap = 497 MapVector<Value *, SmallVector<Instruction *, 2>>; 498 499 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 500 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 501 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 502 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 503 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 504 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 505 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 506 // Use the vector register size specified by the target unless overridden 507 // by a command-line option. 508 // TODO: It would be better to limit the vectorization factor based on 509 // data type rather than just register size. For example, x86 AVX has 510 // 256-bit registers, but it does not support integer operations 511 // at that width (that requires AVX2). 512 if (MaxVectorRegSizeOption.getNumOccurrences()) 513 MaxVecRegSize = MaxVectorRegSizeOption; 514 else 515 MaxVecRegSize = TTI->getRegisterBitWidth(true); 516 517 if (MinVectorRegSizeOption.getNumOccurrences()) 518 MinVecRegSize = MinVectorRegSizeOption; 519 else 520 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 521 } 522 523 /// Vectorize the tree that starts with the elements in \p VL. 524 /// Returns the vectorized root. 525 Value *vectorizeTree(); 526 527 /// Vectorize the tree but with the list of externally used values \p 528 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 529 /// generated extractvalue instructions. 530 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 531 532 /// \returns the cost incurred by unwanted spills and fills, caused by 533 /// holding live values over call sites. 534 int getSpillCost() const; 535 536 /// \returns the vectorization cost of the subtree that starts at \p VL. 537 /// A negative number means that this is profitable. 538 int getTreeCost(); 539 540 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 541 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 542 void buildTree(ArrayRef<Value *> Roots, 543 ArrayRef<Value *> UserIgnoreLst = None); 544 545 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 546 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 547 /// into account (anf updating it, if required) list of externally used 548 /// values stored in \p ExternallyUsedValues. 549 void buildTree(ArrayRef<Value *> Roots, 550 ExtraValueToDebugLocsMap &ExternallyUsedValues, 551 ArrayRef<Value *> UserIgnoreLst = None); 552 553 /// Clear the internal data structures that are created by 'buildTree'. 554 void deleteTree() { 555 VectorizableTree.clear(); 556 ScalarToTreeEntry.clear(); 557 MustGather.clear(); 558 ExternalUses.clear(); 559 NumOpsWantToKeepOrder.clear(); 560 NumOpsWantToKeepOriginalOrder = 0; 561 for (auto &Iter : BlocksSchedules) { 562 BlockScheduling *BS = Iter.second.get(); 563 BS->clear(); 564 } 565 MinBWs.clear(); 566 } 567 568 unsigned getTreeSize() const { return VectorizableTree.size(); } 569 570 /// Perform LICM and CSE on the newly generated gather sequences. 571 void optimizeGatherSequence(); 572 573 /// \returns The best order of instructions for vectorization. 574 Optional<ArrayRef<unsigned>> bestOrder() const { 575 auto I = std::max_element( 576 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 577 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 578 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 579 return D1.second < D2.second; 580 }); 581 if (I == NumOpsWantToKeepOrder.end() || 582 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 583 return None; 584 585 return makeArrayRef(I->getFirst()); 586 } 587 588 /// \return The vector element size in bits to use when vectorizing the 589 /// expression tree ending at \p V. If V is a store, the size is the width of 590 /// the stored value. Otherwise, the size is the width of the largest loaded 591 /// value reaching V. This method is used by the vectorizer to calculate 592 /// vectorization factors. 593 unsigned getVectorElementSize(Value *V) const; 594 595 /// Compute the minimum type sizes required to represent the entries in a 596 /// vectorizable tree. 597 void computeMinimumValueSizes(); 598 599 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 600 unsigned getMaxVecRegSize() const { 601 return MaxVecRegSize; 602 } 603 604 // \returns minimum vector register size as set by cl::opt. 605 unsigned getMinVecRegSize() const { 606 return MinVecRegSize; 607 } 608 609 /// Check if ArrayType or StructType is isomorphic to some VectorType. 610 /// 611 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 612 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 613 614 /// \returns True if the VectorizableTree is both tiny and not fully 615 /// vectorizable. We do not vectorize such trees. 616 bool isTreeTinyAndNotFullyVectorizable() const; 617 618 OptimizationRemarkEmitter *getORE() { return ORE; } 619 620 /// This structure holds any data we need about the edges being traversed 621 /// during buildTree_rec(). We keep track of: 622 /// (i) the user TreeEntry index, and 623 /// (ii) the index of the edge. 624 struct EdgeInfo { 625 EdgeInfo() = default; 626 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 627 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 628 /// The user TreeEntry. 629 TreeEntry *UserTE = nullptr; 630 /// The operand index of the use. 631 unsigned EdgeIdx = UINT_MAX; 632 #ifndef NDEBUG 633 friend inline raw_ostream &operator<<(raw_ostream &OS, 634 const BoUpSLP::EdgeInfo &EI) { 635 EI.dump(OS); 636 return OS; 637 } 638 /// Debug print. 639 void dump(raw_ostream &OS) const { 640 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 641 << " EdgeIdx:" << EdgeIdx << "}"; 642 } 643 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 644 #endif 645 }; 646 647 /// A helper data structure to hold the operands of a vector of instructions. 648 /// This supports a fixed vector length for all operand vectors. 649 class VLOperands { 650 /// For each operand we need (i) the value, and (ii) the opcode that it 651 /// would be attached to if the expression was in a left-linearized form. 652 /// This is required to avoid illegal operand reordering. 653 /// For example: 654 /// \verbatim 655 /// 0 Op1 656 /// |/ 657 /// Op1 Op2 Linearized + Op2 658 /// \ / ----------> |/ 659 /// - - 660 /// 661 /// Op1 - Op2 (0 + Op1) - Op2 662 /// \endverbatim 663 /// 664 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 665 /// 666 /// Another way to think of this is to track all the operations across the 667 /// path from the operand all the way to the root of the tree and to 668 /// calculate the operation that corresponds to this path. For example, the 669 /// path from Op2 to the root crosses the RHS of the '-', therefore the 670 /// corresponding operation is a '-' (which matches the one in the 671 /// linearized tree, as shown above). 672 /// 673 /// For lack of a better term, we refer to this operation as Accumulated 674 /// Path Operation (APO). 675 struct OperandData { 676 OperandData() = default; 677 OperandData(Value *V, bool APO, bool IsUsed) 678 : V(V), APO(APO), IsUsed(IsUsed) {} 679 /// The operand value. 680 Value *V = nullptr; 681 /// TreeEntries only allow a single opcode, or an alternate sequence of 682 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 683 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 684 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 685 /// (e.g., Add/Mul) 686 bool APO = false; 687 /// Helper data for the reordering function. 688 bool IsUsed = false; 689 }; 690 691 /// During operand reordering, we are trying to select the operand at lane 692 /// that matches best with the operand at the neighboring lane. Our 693 /// selection is based on the type of value we are looking for. For example, 694 /// if the neighboring lane has a load, we need to look for a load that is 695 /// accessing a consecutive address. These strategies are summarized in the 696 /// 'ReorderingMode' enumerator. 697 enum class ReorderingMode { 698 Load, ///< Matching loads to consecutive memory addresses 699 Opcode, ///< Matching instructions based on opcode (same or alternate) 700 Constant, ///< Matching constants 701 Splat, ///< Matching the same instruction multiple times (broadcast) 702 Failed, ///< We failed to create a vectorizable group 703 }; 704 705 using OperandDataVec = SmallVector<OperandData, 2>; 706 707 /// A vector of operand vectors. 708 SmallVector<OperandDataVec, 4> OpsVec; 709 710 const DataLayout &DL; 711 ScalarEvolution &SE; 712 713 /// \returns the operand data at \p OpIdx and \p Lane. 714 OperandData &getData(unsigned OpIdx, unsigned Lane) { 715 return OpsVec[OpIdx][Lane]; 716 } 717 718 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 719 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 720 return OpsVec[OpIdx][Lane]; 721 } 722 723 /// Clears the used flag for all entries. 724 void clearUsed() { 725 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 726 OpIdx != NumOperands; ++OpIdx) 727 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 728 ++Lane) 729 OpsVec[OpIdx][Lane].IsUsed = false; 730 } 731 732 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 733 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 734 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 735 } 736 737 // Search all operands in Ops[*][Lane] for the one that matches best 738 // Ops[OpIdx][LastLane] and return its opreand index. 739 // If no good match can be found, return None. 740 Optional<unsigned> 741 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 742 ArrayRef<ReorderingMode> ReorderingModes) { 743 unsigned NumOperands = getNumOperands(); 744 745 // The operand of the previous lane at OpIdx. 746 Value *OpLastLane = getData(OpIdx, LastLane).V; 747 748 // Our strategy mode for OpIdx. 749 ReorderingMode RMode = ReorderingModes[OpIdx]; 750 751 // The linearized opcode of the operand at OpIdx, Lane. 752 bool OpIdxAPO = getData(OpIdx, Lane).APO; 753 754 const unsigned BestScore = 2; 755 const unsigned GoodScore = 1; 756 757 // The best operand index and its score. 758 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 759 // are using the score to differentiate between the two. 760 struct BestOpData { 761 Optional<unsigned> Idx = None; 762 unsigned Score = 0; 763 } BestOp; 764 765 // Iterate through all unused operands and look for the best. 766 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 767 // Get the operand at Idx and Lane. 768 OperandData &OpData = getData(Idx, Lane); 769 Value *Op = OpData.V; 770 bool OpAPO = OpData.APO; 771 772 // Skip already selected operands. 773 if (OpData.IsUsed) 774 continue; 775 776 // Skip if we are trying to move the operand to a position with a 777 // different opcode in the linearized tree form. This would break the 778 // semantics. 779 if (OpAPO != OpIdxAPO) 780 continue; 781 782 // Look for an operand that matches the current mode. 783 switch (RMode) { 784 case ReorderingMode::Load: 785 if (isa<LoadInst>(Op)) { 786 // Figure out which is left and right, so that we can check for 787 // consecutive loads 788 bool LeftToRight = Lane > LastLane; 789 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 790 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 791 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 792 cast<LoadInst>(OpRight), DL, SE)) 793 BestOp.Idx = Idx; 794 } 795 break; 796 case ReorderingMode::Opcode: 797 // We accept both Instructions and Undefs, but with different scores. 798 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 799 cast<Instruction>(Op)->getOpcode() == 800 cast<Instruction>(OpLastLane)->getOpcode()) || 801 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 802 isa<UndefValue>(Op)) { 803 // An instruction has a higher score than an undef. 804 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 805 if (Score > BestOp.Score) { 806 BestOp.Idx = Idx; 807 BestOp.Score = Score; 808 } 809 } 810 break; 811 case ReorderingMode::Constant: 812 if (isa<Constant>(Op)) { 813 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 814 if (Score > BestOp.Score) { 815 BestOp.Idx = Idx; 816 BestOp.Score = Score; 817 } 818 } 819 break; 820 case ReorderingMode::Splat: 821 if (Op == OpLastLane) 822 BestOp.Idx = Idx; 823 break; 824 case ReorderingMode::Failed: 825 return None; 826 } 827 } 828 829 if (BestOp.Idx) { 830 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 831 return BestOp.Idx; 832 } 833 // If we could not find a good match return None. 834 return None; 835 } 836 837 /// Helper for reorderOperandVecs. \Returns the lane that we should start 838 /// reordering from. This is the one which has the least number of operands 839 /// that can freely move about. 840 unsigned getBestLaneToStartReordering() const { 841 unsigned BestLane = 0; 842 unsigned Min = UINT_MAX; 843 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 844 ++Lane) { 845 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 846 if (NumFreeOps < Min) { 847 Min = NumFreeOps; 848 BestLane = Lane; 849 } 850 } 851 return BestLane; 852 } 853 854 /// \Returns the maximum number of operands that are allowed to be reordered 855 /// for \p Lane. This is used as a heuristic for selecting the first lane to 856 /// start operand reordering. 857 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 858 unsigned CntTrue = 0; 859 unsigned NumOperands = getNumOperands(); 860 // Operands with the same APO can be reordered. We therefore need to count 861 // how many of them we have for each APO, like this: Cnt[APO] = x. 862 // Since we only have two APOs, namely true and false, we can avoid using 863 // a map. Instead we can simply count the number of operands that 864 // correspond to one of them (in this case the 'true' APO), and calculate 865 // the other by subtracting it from the total number of operands. 866 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 867 if (getData(OpIdx, Lane).APO) 868 ++CntTrue; 869 unsigned CntFalse = NumOperands - CntTrue; 870 return std::max(CntTrue, CntFalse); 871 } 872 873 /// Go through the instructions in VL and append their operands. 874 void appendOperandsOfVL(ArrayRef<Value *> VL) { 875 assert(!VL.empty() && "Bad VL"); 876 assert((empty() || VL.size() == getNumLanes()) && 877 "Expected same number of lanes"); 878 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 879 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 880 OpsVec.resize(NumOperands); 881 unsigned NumLanes = VL.size(); 882 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 883 OpsVec[OpIdx].resize(NumLanes); 884 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 885 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 886 // Our tree has just 3 nodes: the root and two operands. 887 // It is therefore trivial to get the APO. We only need to check the 888 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 889 // RHS operand. The LHS operand of both add and sub is never attached 890 // to an inversese operation in the linearized form, therefore its APO 891 // is false. The RHS is true only if VL[Lane] is an inverse operation. 892 893 // Since operand reordering is performed on groups of commutative 894 // operations or alternating sequences (e.g., +, -), we can safely 895 // tell the inverse operations by checking commutativity. 896 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 897 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 898 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 899 APO, false}; 900 } 901 } 902 } 903 904 /// \returns the number of operands. 905 unsigned getNumOperands() const { return OpsVec.size(); } 906 907 /// \returns the number of lanes. 908 unsigned getNumLanes() const { return OpsVec[0].size(); } 909 910 /// \returns the operand value at \p OpIdx and \p Lane. 911 Value *getValue(unsigned OpIdx, unsigned Lane) const { 912 return getData(OpIdx, Lane).V; 913 } 914 915 /// \returns true if the data structure is empty. 916 bool empty() const { return OpsVec.empty(); } 917 918 /// Clears the data. 919 void clear() { OpsVec.clear(); } 920 921 /// \Returns true if there are enough operands identical to \p Op to fill 922 /// the whole vector. 923 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 924 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 925 bool OpAPO = getData(OpIdx, Lane).APO; 926 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 927 if (Ln == Lane) 928 continue; 929 // This is set to true if we found a candidate for broadcast at Lane. 930 bool FoundCandidate = false; 931 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 932 OperandData &Data = getData(OpI, Ln); 933 if (Data.APO != OpAPO || Data.IsUsed) 934 continue; 935 if (Data.V == Op) { 936 FoundCandidate = true; 937 Data.IsUsed = true; 938 break; 939 } 940 } 941 if (!FoundCandidate) 942 return false; 943 } 944 return true; 945 } 946 947 public: 948 /// Initialize with all the operands of the instruction vector \p RootVL. 949 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 950 ScalarEvolution &SE) 951 : DL(DL), SE(SE) { 952 // Append all the operands of RootVL. 953 appendOperandsOfVL(RootVL); 954 } 955 956 /// \Returns a value vector with the operands across all lanes for the 957 /// opearnd at \p OpIdx. 958 ValueList getVL(unsigned OpIdx) const { 959 ValueList OpVL(OpsVec[OpIdx].size()); 960 assert(OpsVec[OpIdx].size() == getNumLanes() && 961 "Expected same num of lanes across all operands"); 962 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 963 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 964 return OpVL; 965 } 966 967 // Performs operand reordering for 2 or more operands. 968 // The original operands are in OrigOps[OpIdx][Lane]. 969 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 970 void reorder() { 971 unsigned NumOperands = getNumOperands(); 972 unsigned NumLanes = getNumLanes(); 973 // Each operand has its own mode. We are using this mode to help us select 974 // the instructions for each lane, so that they match best with the ones 975 // we have selected so far. 976 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 977 978 // This is a greedy single-pass algorithm. We are going over each lane 979 // once and deciding on the best order right away with no back-tracking. 980 // However, in order to increase its effectiveness, we start with the lane 981 // that has operands that can move the least. For example, given the 982 // following lanes: 983 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 984 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 985 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 986 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 987 // we will start at Lane 1, since the operands of the subtraction cannot 988 // be reordered. Then we will visit the rest of the lanes in a circular 989 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 990 991 // Find the first lane that we will start our search from. 992 unsigned FirstLane = getBestLaneToStartReordering(); 993 994 // Initialize the modes. 995 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 996 Value *OpLane0 = getValue(OpIdx, FirstLane); 997 // Keep track if we have instructions with all the same opcode on one 998 // side. 999 if (isa<LoadInst>(OpLane0)) 1000 ReorderingModes[OpIdx] = ReorderingMode::Load; 1001 else if (isa<Instruction>(OpLane0)) { 1002 // Check if OpLane0 should be broadcast. 1003 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1004 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1005 else 1006 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1007 } 1008 else if (isa<Constant>(OpLane0)) 1009 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1010 else if (isa<Argument>(OpLane0)) 1011 // Our best hope is a Splat. It may save some cost in some cases. 1012 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1013 else 1014 // NOTE: This should be unreachable. 1015 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1016 } 1017 1018 // If the initial strategy fails for any of the operand indexes, then we 1019 // perform reordering again in a second pass. This helps avoid assigning 1020 // high priority to the failed strategy, and should improve reordering for 1021 // the non-failed operand indexes. 1022 for (int Pass = 0; Pass != 2; ++Pass) { 1023 // Skip the second pass if the first pass did not fail. 1024 bool StrategyFailed = false; 1025 // Mark all operand data as free to use. 1026 clearUsed(); 1027 // We keep the original operand order for the FirstLane, so reorder the 1028 // rest of the lanes. We are visiting the nodes in a circular fashion, 1029 // using FirstLane as the center point and increasing the radius 1030 // distance. 1031 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1032 // Visit the lane on the right and then the lane on the left. 1033 for (int Direction : {+1, -1}) { 1034 int Lane = FirstLane + Direction * Distance; 1035 if (Lane < 0 || Lane >= (int)NumLanes) 1036 continue; 1037 int LastLane = Lane - Direction; 1038 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1039 "Out of bounds"); 1040 // Look for a good match for each operand. 1041 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1042 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1043 Optional<unsigned> BestIdx = 1044 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1045 // By not selecting a value, we allow the operands that follow to 1046 // select a better matching value. We will get a non-null value in 1047 // the next run of getBestOperand(). 1048 if (BestIdx) { 1049 // Swap the current operand with the one returned by 1050 // getBestOperand(). 1051 swap(OpIdx, BestIdx.getValue(), Lane); 1052 } else { 1053 // We failed to find a best operand, set mode to 'Failed'. 1054 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1055 // Enable the second pass. 1056 StrategyFailed = true; 1057 } 1058 } 1059 } 1060 } 1061 // Skip second pass if the strategy did not fail. 1062 if (!StrategyFailed) 1063 break; 1064 } 1065 } 1066 1067 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1068 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1069 switch (RMode) { 1070 case ReorderingMode::Load: 1071 return "Load"; 1072 case ReorderingMode::Opcode: 1073 return "Opcode"; 1074 case ReorderingMode::Constant: 1075 return "Constant"; 1076 case ReorderingMode::Splat: 1077 return "Splat"; 1078 case ReorderingMode::Failed: 1079 return "Failed"; 1080 } 1081 llvm_unreachable("Unimplemented Reordering Type"); 1082 } 1083 1084 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1085 raw_ostream &OS) { 1086 return OS << getModeStr(RMode); 1087 } 1088 1089 /// Debug print. 1090 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1091 printMode(RMode, dbgs()); 1092 } 1093 1094 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1095 return printMode(RMode, OS); 1096 } 1097 1098 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1099 const unsigned Indent = 2; 1100 unsigned Cnt = 0; 1101 for (const OperandDataVec &OpDataVec : OpsVec) { 1102 OS << "Operand " << Cnt++ << "\n"; 1103 for (const OperandData &OpData : OpDataVec) { 1104 OS.indent(Indent) << "{"; 1105 if (Value *V = OpData.V) 1106 OS << *V; 1107 else 1108 OS << "null"; 1109 OS << ", APO:" << OpData.APO << "}\n"; 1110 } 1111 OS << "\n"; 1112 } 1113 return OS; 1114 } 1115 1116 /// Debug print. 1117 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1118 #endif 1119 }; 1120 1121 private: 1122 /// Checks if all users of \p I are the part of the vectorization tree. 1123 bool areAllUsersVectorized(Instruction *I) const; 1124 1125 /// \returns the cost of the vectorizable entry. 1126 int getEntryCost(TreeEntry *E); 1127 1128 /// This is the recursive part of buildTree. 1129 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1130 const EdgeInfo &EI); 1131 1132 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1133 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1134 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1135 /// returns false, setting \p CurrentOrder to either an empty vector or a 1136 /// non-identity permutation that allows to reuse extract instructions. 1137 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1138 SmallVectorImpl<unsigned> &CurrentOrder) const; 1139 1140 /// Vectorize a single entry in the tree. 1141 Value *vectorizeTree(TreeEntry *E); 1142 1143 /// Vectorize a single entry in the tree, starting in \p VL. 1144 Value *vectorizeTree(ArrayRef<Value *> VL); 1145 1146 /// \returns the scalarization cost for this type. Scalarization in this 1147 /// context means the creation of vectors from a group of scalars. 1148 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1149 1150 /// \returns the scalarization cost for this list of values. Assuming that 1151 /// this subtree gets vectorized, we may need to extract the values from the 1152 /// roots. This method calculates the cost of extracting the values. 1153 int getGatherCost(ArrayRef<Value *> VL) const; 1154 1155 /// Set the Builder insert point to one after the last instruction in 1156 /// the bundle 1157 void setInsertPointAfterBundle(TreeEntry *E); 1158 1159 /// \returns a vector from a collection of scalars in \p VL. 1160 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1161 1162 /// \returns whether the VectorizableTree is fully vectorizable and will 1163 /// be beneficial even the tree height is tiny. 1164 bool isFullyVectorizableTinyTree() const; 1165 1166 /// Reorder commutative or alt operands to get better probability of 1167 /// generating vectorized code. 1168 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1169 SmallVectorImpl<Value *> &Left, 1170 SmallVectorImpl<Value *> &Right, 1171 const DataLayout &DL, 1172 ScalarEvolution &SE); 1173 struct TreeEntry { 1174 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1175 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1176 1177 /// \returns true if the scalars in VL are equal to this entry. 1178 bool isSame(ArrayRef<Value *> VL) const { 1179 if (VL.size() == Scalars.size()) 1180 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1181 return VL.size() == ReuseShuffleIndices.size() && 1182 std::equal( 1183 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1184 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1185 } 1186 1187 /// A vector of scalars. 1188 ValueList Scalars; 1189 1190 /// The Scalars are vectorized into this value. It is initialized to Null. 1191 Value *VectorizedValue = nullptr; 1192 1193 /// Do we need to gather this sequence ? 1194 bool NeedToGather = false; 1195 1196 /// Does this sequence require some shuffling? 1197 SmallVector<unsigned, 4> ReuseShuffleIndices; 1198 1199 /// Does this entry require reordering? 1200 ArrayRef<unsigned> ReorderIndices; 1201 1202 /// Points back to the VectorizableTree. 1203 /// 1204 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1205 /// to be a pointer and needs to be able to initialize the child iterator. 1206 /// Thus we need a reference back to the container to translate the indices 1207 /// to entries. 1208 VecTreeTy &Container; 1209 1210 /// The TreeEntry index containing the user of this entry. We can actually 1211 /// have multiple users so the data structure is not truly a tree. 1212 SmallVector<EdgeInfo, 1> UserTreeIndices; 1213 1214 /// The index of this treeEntry in VectorizableTree. 1215 int Idx = -1; 1216 1217 private: 1218 /// The operands of each instruction in each lane Operands[op_index][lane]. 1219 /// Note: This helps avoid the replication of the code that performs the 1220 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1221 SmallVector<ValueList, 2> Operands; 1222 1223 /// The main/alternate instruction. 1224 Instruction *MainOp = nullptr; 1225 Instruction *AltOp = nullptr; 1226 1227 public: 1228 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1229 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1230 if (Operands.size() < OpIdx + 1) 1231 Operands.resize(OpIdx + 1); 1232 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1233 Operands[OpIdx].resize(Scalars.size()); 1234 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1235 Operands[OpIdx][Lane] = OpVL[Lane]; 1236 } 1237 1238 /// Set the operands of this bundle in their original order. 1239 void setOperandsInOrder() { 1240 assert(Operands.empty() && "Already initialized?"); 1241 auto *I0 = cast<Instruction>(Scalars[0]); 1242 Operands.resize(I0->getNumOperands()); 1243 unsigned NumLanes = Scalars.size(); 1244 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1245 OpIdx != NumOperands; ++OpIdx) { 1246 Operands[OpIdx].resize(NumLanes); 1247 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1248 auto *I = cast<Instruction>(Scalars[Lane]); 1249 assert(I->getNumOperands() == NumOperands && 1250 "Expected same number of operands"); 1251 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1252 } 1253 } 1254 } 1255 1256 /// \returns the \p OpIdx operand of this TreeEntry. 1257 ValueList &getOperand(unsigned OpIdx) { 1258 assert(OpIdx < Operands.size() && "Off bounds"); 1259 return Operands[OpIdx]; 1260 } 1261 1262 /// \returns the number of operands. 1263 unsigned getNumOperands() const { return Operands.size(); } 1264 1265 /// \return the single \p OpIdx operand. 1266 Value *getSingleOperand(unsigned OpIdx) const { 1267 assert(OpIdx < Operands.size() && "Off bounds"); 1268 assert(!Operands[OpIdx].empty() && "No operand available"); 1269 return Operands[OpIdx][0]; 1270 } 1271 1272 /// Some of the instructions in the list have alternate opcodes. 1273 bool isAltShuffle() const { 1274 return getOpcode() != getAltOpcode(); 1275 } 1276 1277 bool isOpcodeOrAlt(Instruction *I) const { 1278 unsigned CheckedOpcode = I->getOpcode(); 1279 return (getOpcode() == CheckedOpcode || 1280 getAltOpcode() == CheckedOpcode); 1281 } 1282 1283 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1284 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1285 /// \p OpValue. 1286 Value *isOneOf(Value *Op) const { 1287 auto *I = dyn_cast<Instruction>(Op); 1288 if (I && isOpcodeOrAlt(I)) 1289 return Op; 1290 return MainOp; 1291 } 1292 1293 void setOperations(const InstructionsState &S) { 1294 MainOp = S.MainOp; 1295 AltOp = S.AltOp; 1296 } 1297 1298 Instruction *getMainOp() const { 1299 return MainOp; 1300 } 1301 1302 Instruction *getAltOp() const { 1303 return AltOp; 1304 } 1305 1306 /// The main/alternate opcodes for the list of instructions. 1307 unsigned getOpcode() const { 1308 return MainOp ? MainOp->getOpcode() : 0; 1309 } 1310 1311 unsigned getAltOpcode() const { 1312 return AltOp ? AltOp->getOpcode() : 0; 1313 } 1314 1315 /// Update operations state of this entry if reorder occurred. 1316 bool updateStateIfReorder() { 1317 if (ReorderIndices.empty()) 1318 return false; 1319 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1320 setOperations(S); 1321 return true; 1322 } 1323 1324 #ifndef NDEBUG 1325 /// Debug printer. 1326 LLVM_DUMP_METHOD void dump() const { 1327 dbgs() << Idx << ".\n"; 1328 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1329 dbgs() << "Operand " << OpI << ":\n"; 1330 for (const Value *V : Operands[OpI]) 1331 dbgs().indent(2) << *V << "\n"; 1332 } 1333 dbgs() << "Scalars: \n"; 1334 for (Value *V : Scalars) 1335 dbgs().indent(2) << *V << "\n"; 1336 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1337 dbgs() << "MainOp: " << *MainOp << "\n"; 1338 dbgs() << "AltOp: " << *AltOp << "\n"; 1339 dbgs() << "VectorizedValue: "; 1340 if (VectorizedValue) 1341 dbgs() << *VectorizedValue; 1342 else 1343 dbgs() << "NULL"; 1344 dbgs() << "\n"; 1345 dbgs() << "ReuseShuffleIndices: "; 1346 if (ReuseShuffleIndices.empty()) 1347 dbgs() << "Emtpy"; 1348 else 1349 for (unsigned Idx : ReuseShuffleIndices) 1350 dbgs() << Idx << ", "; 1351 dbgs() << "\n"; 1352 dbgs() << "ReorderIndices: "; 1353 for (unsigned Idx : ReorderIndices) 1354 dbgs() << Idx << ", "; 1355 dbgs() << "\n"; 1356 dbgs() << "UserTreeIndices: "; 1357 for (const auto &EInfo : UserTreeIndices) 1358 dbgs() << EInfo << ", "; 1359 dbgs() << "\n"; 1360 } 1361 #endif 1362 }; 1363 1364 /// Create a new VectorizableTree entry. 1365 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1366 const InstructionsState &S, 1367 const EdgeInfo &UserTreeIdx, 1368 ArrayRef<unsigned> ReuseShuffleIndices = None, 1369 ArrayRef<unsigned> ReorderIndices = None) { 1370 bool Vectorized = (bool)Bundle; 1371 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1372 TreeEntry *Last = VectorizableTree.back().get(); 1373 Last->Idx = VectorizableTree.size() - 1; 1374 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1375 Last->NeedToGather = !Vectorized; 1376 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1377 ReuseShuffleIndices.end()); 1378 Last->ReorderIndices = ReorderIndices; 1379 Last->setOperations(S); 1380 if (Vectorized) { 1381 for (int i = 0, e = VL.size(); i != e; ++i) { 1382 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1383 ScalarToTreeEntry[VL[i]] = Last; 1384 } 1385 // Update the scheduler bundle to point to this TreeEntry. 1386 unsigned Lane = 0; 1387 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1388 BundleMember = BundleMember->NextInBundle) { 1389 BundleMember->TE = Last; 1390 BundleMember->Lane = Lane; 1391 ++Lane; 1392 } 1393 assert((!Bundle.getValue() || Lane == VL.size()) && 1394 "Bundle and VL out of sync"); 1395 } else { 1396 MustGather.insert(VL.begin(), VL.end()); 1397 } 1398 1399 if (UserTreeIdx.UserTE) 1400 Last->UserTreeIndices.push_back(UserTreeIdx); 1401 1402 return Last; 1403 } 1404 1405 /// -- Vectorization State -- 1406 /// Holds all of the tree entries. 1407 TreeEntry::VecTreeTy VectorizableTree; 1408 1409 #ifndef NDEBUG 1410 /// Debug printer. 1411 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1412 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1413 VectorizableTree[Id]->dump(); 1414 dbgs() << "\n"; 1415 } 1416 } 1417 #endif 1418 1419 TreeEntry *getTreeEntry(Value *V) { 1420 auto I = ScalarToTreeEntry.find(V); 1421 if (I != ScalarToTreeEntry.end()) 1422 return I->second; 1423 return nullptr; 1424 } 1425 1426 const TreeEntry *getTreeEntry(Value *V) const { 1427 auto I = ScalarToTreeEntry.find(V); 1428 if (I != ScalarToTreeEntry.end()) 1429 return I->second; 1430 return nullptr; 1431 } 1432 1433 /// Maps a specific scalar to its tree entry. 1434 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1435 1436 /// A list of scalars that we found that we need to keep as scalars. 1437 ValueSet MustGather; 1438 1439 /// This POD struct describes one external user in the vectorized tree. 1440 struct ExternalUser { 1441 ExternalUser(Value *S, llvm::User *U, int L) 1442 : Scalar(S), User(U), Lane(L) {} 1443 1444 // Which scalar in our function. 1445 Value *Scalar; 1446 1447 // Which user that uses the scalar. 1448 llvm::User *User; 1449 1450 // Which lane does the scalar belong to. 1451 int Lane; 1452 }; 1453 using UserList = SmallVector<ExternalUser, 16>; 1454 1455 /// Checks if two instructions may access the same memory. 1456 /// 1457 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1458 /// is invariant in the calling loop. 1459 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1460 Instruction *Inst2) { 1461 // First check if the result is already in the cache. 1462 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1463 Optional<bool> &result = AliasCache[key]; 1464 if (result.hasValue()) { 1465 return result.getValue(); 1466 } 1467 MemoryLocation Loc2 = getLocation(Inst2, AA); 1468 bool aliased = true; 1469 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1470 // Do the alias check. 1471 aliased = AA->alias(Loc1, Loc2); 1472 } 1473 // Store the result in the cache. 1474 result = aliased; 1475 return aliased; 1476 } 1477 1478 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1479 1480 /// Cache for alias results. 1481 /// TODO: consider moving this to the AliasAnalysis itself. 1482 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1483 1484 /// Removes an instruction from its block and eventually deletes it. 1485 /// It's like Instruction::eraseFromParent() except that the actual deletion 1486 /// is delayed until BoUpSLP is destructed. 1487 /// This is required to ensure that there are no incorrect collisions in the 1488 /// AliasCache, which can happen if a new instruction is allocated at the 1489 /// same address as a previously deleted instruction. 1490 void eraseInstruction(Instruction *I) { 1491 I->removeFromParent(); 1492 I->dropAllReferences(); 1493 DeletedInstructions.emplace_back(I); 1494 } 1495 1496 /// Temporary store for deleted instructions. Instructions will be deleted 1497 /// eventually when the BoUpSLP is destructed. 1498 SmallVector<unique_value, 8> DeletedInstructions; 1499 1500 /// A list of values that need to extracted out of the tree. 1501 /// This list holds pairs of (Internal Scalar : External User). External User 1502 /// can be nullptr, it means that this Internal Scalar will be used later, 1503 /// after vectorization. 1504 UserList ExternalUses; 1505 1506 /// Values used only by @llvm.assume calls. 1507 SmallPtrSet<const Value *, 32> EphValues; 1508 1509 /// Holds all of the instructions that we gathered. 1510 SetVector<Instruction *> GatherSeq; 1511 1512 /// A list of blocks that we are going to CSE. 1513 SetVector<BasicBlock *> CSEBlocks; 1514 1515 /// Contains all scheduling relevant data for an instruction. 1516 /// A ScheduleData either represents a single instruction or a member of an 1517 /// instruction bundle (= a group of instructions which is combined into a 1518 /// vector instruction). 1519 struct ScheduleData { 1520 // The initial value for the dependency counters. It means that the 1521 // dependencies are not calculated yet. 1522 enum { InvalidDeps = -1 }; 1523 1524 ScheduleData() = default; 1525 1526 void init(int BlockSchedulingRegionID, Value *OpVal) { 1527 FirstInBundle = this; 1528 NextInBundle = nullptr; 1529 NextLoadStore = nullptr; 1530 IsScheduled = false; 1531 SchedulingRegionID = BlockSchedulingRegionID; 1532 UnscheduledDepsInBundle = UnscheduledDeps; 1533 clearDependencies(); 1534 OpValue = OpVal; 1535 TE = nullptr; 1536 Lane = -1; 1537 } 1538 1539 /// Returns true if the dependency information has been calculated. 1540 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1541 1542 /// Returns true for single instructions and for bundle representatives 1543 /// (= the head of a bundle). 1544 bool isSchedulingEntity() const { return FirstInBundle == this; } 1545 1546 /// Returns true if it represents an instruction bundle and not only a 1547 /// single instruction. 1548 bool isPartOfBundle() const { 1549 return NextInBundle != nullptr || FirstInBundle != this; 1550 } 1551 1552 /// Returns true if it is ready for scheduling, i.e. it has no more 1553 /// unscheduled depending instructions/bundles. 1554 bool isReady() const { 1555 assert(isSchedulingEntity() && 1556 "can't consider non-scheduling entity for ready list"); 1557 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1558 } 1559 1560 /// Modifies the number of unscheduled dependencies, also updating it for 1561 /// the whole bundle. 1562 int incrementUnscheduledDeps(int Incr) { 1563 UnscheduledDeps += Incr; 1564 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1565 } 1566 1567 /// Sets the number of unscheduled dependencies to the number of 1568 /// dependencies. 1569 void resetUnscheduledDeps() { 1570 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1571 } 1572 1573 /// Clears all dependency information. 1574 void clearDependencies() { 1575 Dependencies = InvalidDeps; 1576 resetUnscheduledDeps(); 1577 MemoryDependencies.clear(); 1578 } 1579 1580 void dump(raw_ostream &os) const { 1581 if (!isSchedulingEntity()) { 1582 os << "/ " << *Inst; 1583 } else if (NextInBundle) { 1584 os << '[' << *Inst; 1585 ScheduleData *SD = NextInBundle; 1586 while (SD) { 1587 os << ';' << *SD->Inst; 1588 SD = SD->NextInBundle; 1589 } 1590 os << ']'; 1591 } else { 1592 os << *Inst; 1593 } 1594 } 1595 1596 Instruction *Inst = nullptr; 1597 1598 /// Points to the head in an instruction bundle (and always to this for 1599 /// single instructions). 1600 ScheduleData *FirstInBundle = nullptr; 1601 1602 /// Single linked list of all instructions in a bundle. Null if it is a 1603 /// single instruction. 1604 ScheduleData *NextInBundle = nullptr; 1605 1606 /// Single linked list of all memory instructions (e.g. load, store, call) 1607 /// in the block - until the end of the scheduling region. 1608 ScheduleData *NextLoadStore = nullptr; 1609 1610 /// The dependent memory instructions. 1611 /// This list is derived on demand in calculateDependencies(). 1612 SmallVector<ScheduleData *, 4> MemoryDependencies; 1613 1614 /// This ScheduleData is in the current scheduling region if this matches 1615 /// the current SchedulingRegionID of BlockScheduling. 1616 int SchedulingRegionID = 0; 1617 1618 /// Used for getting a "good" final ordering of instructions. 1619 int SchedulingPriority = 0; 1620 1621 /// The number of dependencies. Constitutes of the number of users of the 1622 /// instruction plus the number of dependent memory instructions (if any). 1623 /// This value is calculated on demand. 1624 /// If InvalidDeps, the number of dependencies is not calculated yet. 1625 int Dependencies = InvalidDeps; 1626 1627 /// The number of dependencies minus the number of dependencies of scheduled 1628 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1629 /// for scheduling. 1630 /// Note that this is negative as long as Dependencies is not calculated. 1631 int UnscheduledDeps = InvalidDeps; 1632 1633 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1634 /// single instructions. 1635 int UnscheduledDepsInBundle = InvalidDeps; 1636 1637 /// True if this instruction is scheduled (or considered as scheduled in the 1638 /// dry-run). 1639 bool IsScheduled = false; 1640 1641 /// Opcode of the current instruction in the schedule data. 1642 Value *OpValue = nullptr; 1643 1644 /// The TreeEntry that this instruction corresponds to. 1645 TreeEntry *TE = nullptr; 1646 1647 /// The lane of this node in the TreeEntry. 1648 int Lane = -1; 1649 }; 1650 1651 #ifndef NDEBUG 1652 friend inline raw_ostream &operator<<(raw_ostream &os, 1653 const BoUpSLP::ScheduleData &SD) { 1654 SD.dump(os); 1655 return os; 1656 } 1657 #endif 1658 1659 friend struct GraphTraits<BoUpSLP *>; 1660 friend struct DOTGraphTraits<BoUpSLP *>; 1661 1662 /// Contains all scheduling data for a basic block. 1663 struct BlockScheduling { 1664 BlockScheduling(BasicBlock *BB) 1665 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1666 1667 void clear() { 1668 ReadyInsts.clear(); 1669 ScheduleStart = nullptr; 1670 ScheduleEnd = nullptr; 1671 FirstLoadStoreInRegion = nullptr; 1672 LastLoadStoreInRegion = nullptr; 1673 1674 // Reduce the maximum schedule region size by the size of the 1675 // previous scheduling run. 1676 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1677 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1678 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1679 ScheduleRegionSize = 0; 1680 1681 // Make a new scheduling region, i.e. all existing ScheduleData is not 1682 // in the new region yet. 1683 ++SchedulingRegionID; 1684 } 1685 1686 ScheduleData *getScheduleData(Value *V) { 1687 ScheduleData *SD = ScheduleDataMap[V]; 1688 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1689 return SD; 1690 return nullptr; 1691 } 1692 1693 ScheduleData *getScheduleData(Value *V, Value *Key) { 1694 if (V == Key) 1695 return getScheduleData(V); 1696 auto I = ExtraScheduleDataMap.find(V); 1697 if (I != ExtraScheduleDataMap.end()) { 1698 ScheduleData *SD = I->second[Key]; 1699 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1700 return SD; 1701 } 1702 return nullptr; 1703 } 1704 1705 bool isInSchedulingRegion(ScheduleData *SD) { 1706 return SD->SchedulingRegionID == SchedulingRegionID; 1707 } 1708 1709 /// Marks an instruction as scheduled and puts all dependent ready 1710 /// instructions into the ready-list. 1711 template <typename ReadyListType> 1712 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1713 SD->IsScheduled = true; 1714 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1715 1716 ScheduleData *BundleMember = SD; 1717 while (BundleMember) { 1718 if (BundleMember->Inst != BundleMember->OpValue) { 1719 BundleMember = BundleMember->NextInBundle; 1720 continue; 1721 } 1722 // Handle the def-use chain dependencies. 1723 1724 // Decrement the unscheduled counter and insert to ready list if ready. 1725 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1726 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1727 if (OpDef && OpDef->hasValidDependencies() && 1728 OpDef->incrementUnscheduledDeps(-1) == 0) { 1729 // There are no more unscheduled dependencies after 1730 // decrementing, so we can put the dependent instruction 1731 // into the ready list. 1732 ScheduleData *DepBundle = OpDef->FirstInBundle; 1733 assert(!DepBundle->IsScheduled && 1734 "already scheduled bundle gets ready"); 1735 ReadyList.insert(DepBundle); 1736 LLVM_DEBUG(dbgs() 1737 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1738 } 1739 }); 1740 }; 1741 1742 // If BundleMember is a vector bundle, its operands may have been 1743 // reordered duiring buildTree(). We therefore need to get its operands 1744 // through the TreeEntry. 1745 if (TreeEntry *TE = BundleMember->TE) { 1746 int Lane = BundleMember->Lane; 1747 assert(Lane >= 0 && "Lane not set"); 1748 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 1749 OpIdx != NumOperands; ++OpIdx) 1750 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 1751 DecrUnsched(I); 1752 } else { 1753 // If BundleMember is a stand-alone instruction, no operand reordering 1754 // has taken place, so we directly access its operands. 1755 for (Use &U : BundleMember->Inst->operands()) 1756 if (auto *I = dyn_cast<Instruction>(U.get())) 1757 DecrUnsched(I); 1758 } 1759 // Handle the memory dependencies. 1760 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1761 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1762 // There are no more unscheduled dependencies after decrementing, 1763 // so we can put the dependent instruction into the ready list. 1764 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1765 assert(!DepBundle->IsScheduled && 1766 "already scheduled bundle gets ready"); 1767 ReadyList.insert(DepBundle); 1768 LLVM_DEBUG(dbgs() 1769 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1770 } 1771 } 1772 BundleMember = BundleMember->NextInBundle; 1773 } 1774 } 1775 1776 void doForAllOpcodes(Value *V, 1777 function_ref<void(ScheduleData *SD)> Action) { 1778 if (ScheduleData *SD = getScheduleData(V)) 1779 Action(SD); 1780 auto I = ExtraScheduleDataMap.find(V); 1781 if (I != ExtraScheduleDataMap.end()) 1782 for (auto &P : I->second) 1783 if (P.second->SchedulingRegionID == SchedulingRegionID) 1784 Action(P.second); 1785 } 1786 1787 /// Put all instructions into the ReadyList which are ready for scheduling. 1788 template <typename ReadyListType> 1789 void initialFillReadyList(ReadyListType &ReadyList) { 1790 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1791 doForAllOpcodes(I, [&](ScheduleData *SD) { 1792 if (SD->isSchedulingEntity() && SD->isReady()) { 1793 ReadyList.insert(SD); 1794 LLVM_DEBUG(dbgs() 1795 << "SLP: initially in ready list: " << *I << "\n"); 1796 } 1797 }); 1798 } 1799 } 1800 1801 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1802 /// cyclic dependencies. This is only a dry-run, no instructions are 1803 /// actually moved at this stage. 1804 /// \returns the scheduling bundle. The returned Optional value is non-None 1805 /// if \p VL is allowed to be scheduled. 1806 Optional<ScheduleData *> 1807 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1808 const InstructionsState &S); 1809 1810 /// Un-bundles a group of instructions. 1811 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1812 1813 /// Allocates schedule data chunk. 1814 ScheduleData *allocateScheduleDataChunks(); 1815 1816 /// Extends the scheduling region so that V is inside the region. 1817 /// \returns true if the region size is within the limit. 1818 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1819 1820 /// Initialize the ScheduleData structures for new instructions in the 1821 /// scheduling region. 1822 void initScheduleData(Instruction *FromI, Instruction *ToI, 1823 ScheduleData *PrevLoadStore, 1824 ScheduleData *NextLoadStore); 1825 1826 /// Updates the dependency information of a bundle and of all instructions/ 1827 /// bundles which depend on the original bundle. 1828 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1829 BoUpSLP *SLP); 1830 1831 /// Sets all instruction in the scheduling region to un-scheduled. 1832 void resetSchedule(); 1833 1834 BasicBlock *BB; 1835 1836 /// Simple memory allocation for ScheduleData. 1837 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1838 1839 /// The size of a ScheduleData array in ScheduleDataChunks. 1840 int ChunkSize; 1841 1842 /// The allocator position in the current chunk, which is the last entry 1843 /// of ScheduleDataChunks. 1844 int ChunkPos; 1845 1846 /// Attaches ScheduleData to Instruction. 1847 /// Note that the mapping survives during all vectorization iterations, i.e. 1848 /// ScheduleData structures are recycled. 1849 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1850 1851 /// Attaches ScheduleData to Instruction with the leading key. 1852 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1853 ExtraScheduleDataMap; 1854 1855 struct ReadyList : SmallVector<ScheduleData *, 8> { 1856 void insert(ScheduleData *SD) { push_back(SD); } 1857 }; 1858 1859 /// The ready-list for scheduling (only used for the dry-run). 1860 ReadyList ReadyInsts; 1861 1862 /// The first instruction of the scheduling region. 1863 Instruction *ScheduleStart = nullptr; 1864 1865 /// The first instruction _after_ the scheduling region. 1866 Instruction *ScheduleEnd = nullptr; 1867 1868 /// The first memory accessing instruction in the scheduling region 1869 /// (can be null). 1870 ScheduleData *FirstLoadStoreInRegion = nullptr; 1871 1872 /// The last memory accessing instruction in the scheduling region 1873 /// (can be null). 1874 ScheduleData *LastLoadStoreInRegion = nullptr; 1875 1876 /// The current size of the scheduling region. 1877 int ScheduleRegionSize = 0; 1878 1879 /// The maximum size allowed for the scheduling region. 1880 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1881 1882 /// The ID of the scheduling region. For a new vectorization iteration this 1883 /// is incremented which "removes" all ScheduleData from the region. 1884 // Make sure that the initial SchedulingRegionID is greater than the 1885 // initial SchedulingRegionID in ScheduleData (which is 0). 1886 int SchedulingRegionID = 1; 1887 }; 1888 1889 /// Attaches the BlockScheduling structures to basic blocks. 1890 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1891 1892 /// Performs the "real" scheduling. Done before vectorization is actually 1893 /// performed in a basic block. 1894 void scheduleBlock(BlockScheduling *BS); 1895 1896 /// List of users to ignore during scheduling and that don't need extracting. 1897 ArrayRef<Value *> UserIgnoreList; 1898 1899 using OrdersType = SmallVector<unsigned, 4>; 1900 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1901 /// sorted SmallVectors of unsigned. 1902 struct OrdersTypeDenseMapInfo { 1903 static OrdersType getEmptyKey() { 1904 OrdersType V; 1905 V.push_back(~1U); 1906 return V; 1907 } 1908 1909 static OrdersType getTombstoneKey() { 1910 OrdersType V; 1911 V.push_back(~2U); 1912 return V; 1913 } 1914 1915 static unsigned getHashValue(const OrdersType &V) { 1916 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1917 } 1918 1919 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1920 return LHS == RHS; 1921 } 1922 }; 1923 1924 /// Contains orders of operations along with the number of bundles that have 1925 /// operations in this order. It stores only those orders that require 1926 /// reordering, if reordering is not required it is counted using \a 1927 /// NumOpsWantToKeepOriginalOrder. 1928 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1929 /// Number of bundles that do not require reordering. 1930 unsigned NumOpsWantToKeepOriginalOrder = 0; 1931 1932 // Analysis and block reference. 1933 Function *F; 1934 ScalarEvolution *SE; 1935 TargetTransformInfo *TTI; 1936 TargetLibraryInfo *TLI; 1937 AliasAnalysis *AA; 1938 LoopInfo *LI; 1939 DominatorTree *DT; 1940 AssumptionCache *AC; 1941 DemandedBits *DB; 1942 const DataLayout *DL; 1943 OptimizationRemarkEmitter *ORE; 1944 1945 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1946 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1947 1948 /// Instruction builder to construct the vectorized tree. 1949 IRBuilder<> Builder; 1950 1951 /// A map of scalar integer values to the smallest bit width with which they 1952 /// can legally be represented. The values map to (width, signed) pairs, 1953 /// where "width" indicates the minimum bit width and "signed" is True if the 1954 /// value must be signed-extended, rather than zero-extended, back to its 1955 /// original width. 1956 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1957 }; 1958 1959 } // end namespace slpvectorizer 1960 1961 template <> struct GraphTraits<BoUpSLP *> { 1962 using TreeEntry = BoUpSLP::TreeEntry; 1963 1964 /// NodeRef has to be a pointer per the GraphWriter. 1965 using NodeRef = TreeEntry *; 1966 1967 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1968 1969 /// Add the VectorizableTree to the index iterator to be able to return 1970 /// TreeEntry pointers. 1971 struct ChildIteratorType 1972 : public iterator_adaptor_base< 1973 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1974 ContainerTy &VectorizableTree; 1975 1976 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1977 ContainerTy &VT) 1978 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1979 1980 NodeRef operator*() { return I->UserTE; } 1981 }; 1982 1983 static NodeRef getEntryNode(BoUpSLP &R) { 1984 return R.VectorizableTree[0].get(); 1985 } 1986 1987 static ChildIteratorType child_begin(NodeRef N) { 1988 return {N->UserTreeIndices.begin(), N->Container}; 1989 } 1990 1991 static ChildIteratorType child_end(NodeRef N) { 1992 return {N->UserTreeIndices.end(), N->Container}; 1993 } 1994 1995 /// For the node iterator we just need to turn the TreeEntry iterator into a 1996 /// TreeEntry* iterator so that it dereferences to NodeRef. 1997 class nodes_iterator { 1998 using ItTy = ContainerTy::iterator; 1999 ItTy It; 2000 2001 public: 2002 nodes_iterator(const ItTy &It2) : It(It2) {} 2003 NodeRef operator*() { return It->get(); } 2004 nodes_iterator operator++() { 2005 ++It; 2006 return *this; 2007 } 2008 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2009 }; 2010 2011 static nodes_iterator nodes_begin(BoUpSLP *R) { 2012 return nodes_iterator(R->VectorizableTree.begin()); 2013 } 2014 2015 static nodes_iterator nodes_end(BoUpSLP *R) { 2016 return nodes_iterator(R->VectorizableTree.end()); 2017 } 2018 2019 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2020 }; 2021 2022 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2023 using TreeEntry = BoUpSLP::TreeEntry; 2024 2025 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2026 2027 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2028 std::string Str; 2029 raw_string_ostream OS(Str); 2030 if (isSplat(Entry->Scalars)) { 2031 OS << "<splat> " << *Entry->Scalars[0]; 2032 return Str; 2033 } 2034 for (auto V : Entry->Scalars) { 2035 OS << *V; 2036 if (std::any_of( 2037 R->ExternalUses.begin(), R->ExternalUses.end(), 2038 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2039 OS << " <extract>"; 2040 OS << "\n"; 2041 } 2042 return Str; 2043 } 2044 2045 static std::string getNodeAttributes(const TreeEntry *Entry, 2046 const BoUpSLP *) { 2047 if (Entry->NeedToGather) 2048 return "color=red"; 2049 return ""; 2050 } 2051 }; 2052 2053 } // end namespace llvm 2054 2055 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2056 ArrayRef<Value *> UserIgnoreLst) { 2057 ExtraValueToDebugLocsMap ExternallyUsedValues; 2058 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2059 } 2060 2061 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2062 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2063 ArrayRef<Value *> UserIgnoreLst) { 2064 deleteTree(); 2065 UserIgnoreList = UserIgnoreLst; 2066 if (!allSameType(Roots)) 2067 return; 2068 buildTree_rec(Roots, 0, EdgeInfo()); 2069 2070 // Collect the values that we need to extract from the tree. 2071 for (auto &TEPtr : VectorizableTree) { 2072 TreeEntry *Entry = TEPtr.get(); 2073 2074 // No need to handle users of gathered values. 2075 if (Entry->NeedToGather) 2076 continue; 2077 2078 // For each lane: 2079 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2080 Value *Scalar = Entry->Scalars[Lane]; 2081 int FoundLane = Lane; 2082 if (!Entry->ReuseShuffleIndices.empty()) { 2083 FoundLane = 2084 std::distance(Entry->ReuseShuffleIndices.begin(), 2085 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2086 } 2087 2088 // Check if the scalar is externally used as an extra arg. 2089 auto ExtI = ExternallyUsedValues.find(Scalar); 2090 if (ExtI != ExternallyUsedValues.end()) { 2091 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2092 << Lane << " from " << *Scalar << ".\n"); 2093 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2094 } 2095 for (User *U : Scalar->users()) { 2096 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2097 2098 Instruction *UserInst = dyn_cast<Instruction>(U); 2099 if (!UserInst) 2100 continue; 2101 2102 // Skip in-tree scalars that become vectors 2103 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2104 Value *UseScalar = UseEntry->Scalars[0]; 2105 // Some in-tree scalars will remain as scalar in vectorized 2106 // instructions. If that is the case, the one in Lane 0 will 2107 // be used. 2108 if (UseScalar != U || 2109 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2110 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2111 << ".\n"); 2112 assert(!UseEntry->NeedToGather && "Bad state"); 2113 continue; 2114 } 2115 } 2116 2117 // Ignore users in the user ignore list. 2118 if (is_contained(UserIgnoreList, UserInst)) 2119 continue; 2120 2121 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2122 << Lane << " from " << *Scalar << ".\n"); 2123 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2124 } 2125 } 2126 } 2127 } 2128 2129 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2130 const EdgeInfo &UserTreeIdx) { 2131 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2132 2133 InstructionsState S = getSameOpcode(VL); 2134 if (Depth == RecursionMaxDepth) { 2135 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2136 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2137 return; 2138 } 2139 2140 // Don't handle vectors. 2141 if (S.OpValue->getType()->isVectorTy()) { 2142 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2143 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2144 return; 2145 } 2146 2147 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2148 if (SI->getValueOperand()->getType()->isVectorTy()) { 2149 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2150 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2151 return; 2152 } 2153 2154 // If all of the operands are identical or constant we have a simple solution. 2155 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2156 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2157 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2158 return; 2159 } 2160 2161 // We now know that this is a vector of instructions of the same type from 2162 // the same block. 2163 2164 // Don't vectorize ephemeral values. 2165 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2166 if (EphValues.count(VL[i])) { 2167 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2168 << ") is ephemeral.\n"); 2169 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2170 return; 2171 } 2172 } 2173 2174 // Check if this is a duplicate of another entry. 2175 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2176 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2177 if (!E->isSame(VL)) { 2178 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2179 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2180 return; 2181 } 2182 // Record the reuse of the tree node. FIXME, currently this is only used to 2183 // properly draw the graph rather than for the actual vectorization. 2184 E->UserTreeIndices.push_back(UserTreeIdx); 2185 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2186 << ".\n"); 2187 return; 2188 } 2189 2190 // Check that none of the instructions in the bundle are already in the tree. 2191 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2192 auto *I = dyn_cast<Instruction>(VL[i]); 2193 if (!I) 2194 continue; 2195 if (getTreeEntry(I)) { 2196 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 2197 << ") is already in tree.\n"); 2198 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2199 return; 2200 } 2201 } 2202 2203 // If any of the scalars is marked as a value that needs to stay scalar, then 2204 // we need to gather the scalars. 2205 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2206 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 2207 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 2208 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2209 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2210 return; 2211 } 2212 } 2213 2214 // Check that all of the users of the scalars that we want to vectorize are 2215 // schedulable. 2216 auto *VL0 = cast<Instruction>(S.OpValue); 2217 BasicBlock *BB = VL0->getParent(); 2218 2219 if (!DT->isReachableFromEntry(BB)) { 2220 // Don't go into unreachable blocks. They may contain instructions with 2221 // dependency cycles which confuse the final scheduling. 2222 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2223 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2224 return; 2225 } 2226 2227 // Check that every instruction appears once in this bundle. 2228 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2229 SmallVector<Value *, 4> UniqueValues; 2230 DenseMap<Value *, unsigned> UniquePositions; 2231 for (Value *V : VL) { 2232 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2233 ReuseShuffleIndicies.emplace_back(Res.first->second); 2234 if (Res.second) 2235 UniqueValues.emplace_back(V); 2236 } 2237 size_t NumUniqueScalarValues = UniqueValues.size(); 2238 if (NumUniqueScalarValues == VL.size()) { 2239 ReuseShuffleIndicies.clear(); 2240 } else { 2241 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2242 if (NumUniqueScalarValues <= 1 || 2243 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2244 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2245 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2246 return; 2247 } 2248 VL = UniqueValues; 2249 } 2250 2251 auto &BSRef = BlocksSchedules[BB]; 2252 if (!BSRef) 2253 BSRef = std::make_unique<BlockScheduling>(BB); 2254 2255 BlockScheduling &BS = *BSRef.get(); 2256 2257 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2258 if (!Bundle) { 2259 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2260 assert((!BS.getScheduleData(VL0) || 2261 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2262 "tryScheduleBundle should cancelScheduling on failure"); 2263 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2264 ReuseShuffleIndicies); 2265 return; 2266 } 2267 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2268 2269 unsigned ShuffleOrOp = S.isAltShuffle() ? 2270 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2271 switch (ShuffleOrOp) { 2272 case Instruction::PHI: { 2273 PHINode *PH = dyn_cast<PHINode>(VL0); 2274 2275 // Check for terminator values (e.g. invoke). 2276 for (unsigned j = 0; j < VL.size(); ++j) 2277 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2278 Instruction *Term = dyn_cast<Instruction>( 2279 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2280 PH->getIncomingBlock(i))); 2281 if (Term && Term->isTerminator()) { 2282 LLVM_DEBUG(dbgs() 2283 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2284 BS.cancelScheduling(VL, VL0); 2285 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2286 ReuseShuffleIndicies); 2287 return; 2288 } 2289 } 2290 2291 TreeEntry *TE = 2292 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2293 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2294 2295 // Keeps the reordered operands to avoid code duplication. 2296 SmallVector<ValueList, 2> OperandsVec; 2297 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2298 ValueList Operands; 2299 // Prepare the operand vector. 2300 for (Value *j : VL) 2301 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2302 PH->getIncomingBlock(i))); 2303 TE->setOperand(i, Operands); 2304 OperandsVec.push_back(Operands); 2305 } 2306 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2307 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2308 return; 2309 } 2310 case Instruction::ExtractValue: 2311 case Instruction::ExtractElement: { 2312 OrdersType CurrentOrder; 2313 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2314 if (Reuse) { 2315 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2316 ++NumOpsWantToKeepOriginalOrder; 2317 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2318 ReuseShuffleIndicies); 2319 // This is a special case, as it does not gather, but at the same time 2320 // we are not extending buildTree_rec() towards the operands. 2321 ValueList Op0; 2322 Op0.assign(VL.size(), VL0->getOperand(0)); 2323 VectorizableTree.back()->setOperand(0, Op0); 2324 return; 2325 } 2326 if (!CurrentOrder.empty()) { 2327 LLVM_DEBUG({ 2328 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2329 "with order"; 2330 for (unsigned Idx : CurrentOrder) 2331 dbgs() << " " << Idx; 2332 dbgs() << "\n"; 2333 }); 2334 // Insert new order with initial value 0, if it does not exist, 2335 // otherwise return the iterator to the existing one. 2336 auto StoredCurrentOrderAndNum = 2337 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2338 ++StoredCurrentOrderAndNum->getSecond(); 2339 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2340 ReuseShuffleIndicies, 2341 StoredCurrentOrderAndNum->getFirst()); 2342 // This is a special case, as it does not gather, but at the same time 2343 // we are not extending buildTree_rec() towards the operands. 2344 ValueList Op0; 2345 Op0.assign(VL.size(), VL0->getOperand(0)); 2346 VectorizableTree.back()->setOperand(0, Op0); 2347 return; 2348 } 2349 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2350 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2351 ReuseShuffleIndicies); 2352 BS.cancelScheduling(VL, VL0); 2353 return; 2354 } 2355 case Instruction::Load: { 2356 // Check that a vectorized load would load the same memory as a scalar 2357 // load. For example, we don't want to vectorize loads that are smaller 2358 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2359 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2360 // from such a struct, we read/write packed bits disagreeing with the 2361 // unvectorized version. 2362 Type *ScalarTy = VL0->getType(); 2363 2364 if (DL->getTypeSizeInBits(ScalarTy) != 2365 DL->getTypeAllocSizeInBits(ScalarTy)) { 2366 BS.cancelScheduling(VL, VL0); 2367 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2368 ReuseShuffleIndicies); 2369 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2370 return; 2371 } 2372 2373 // Make sure all loads in the bundle are simple - we can't vectorize 2374 // atomic or volatile loads. 2375 SmallVector<Value *, 4> PointerOps(VL.size()); 2376 auto POIter = PointerOps.begin(); 2377 for (Value *V : VL) { 2378 auto *L = cast<LoadInst>(V); 2379 if (!L->isSimple()) { 2380 BS.cancelScheduling(VL, VL0); 2381 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2382 ReuseShuffleIndicies); 2383 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2384 return; 2385 } 2386 *POIter = L->getPointerOperand(); 2387 ++POIter; 2388 } 2389 2390 OrdersType CurrentOrder; 2391 // Check the order of pointer operands. 2392 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2393 Value *Ptr0; 2394 Value *PtrN; 2395 if (CurrentOrder.empty()) { 2396 Ptr0 = PointerOps.front(); 2397 PtrN = PointerOps.back(); 2398 } else { 2399 Ptr0 = PointerOps[CurrentOrder.front()]; 2400 PtrN = PointerOps[CurrentOrder.back()]; 2401 } 2402 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2403 const SCEV *ScevN = SE->getSCEV(PtrN); 2404 const auto *Diff = 2405 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2406 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2407 // Check that the sorted loads are consecutive. 2408 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2409 if (CurrentOrder.empty()) { 2410 // Original loads are consecutive and does not require reordering. 2411 ++NumOpsWantToKeepOriginalOrder; 2412 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2413 UserTreeIdx, ReuseShuffleIndicies); 2414 TE->setOperandsInOrder(); 2415 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2416 } else { 2417 // Need to reorder. 2418 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2419 ++I->getSecond(); 2420 TreeEntry *TE = 2421 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2422 ReuseShuffleIndicies, I->getFirst()); 2423 TE->setOperandsInOrder(); 2424 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2425 } 2426 return; 2427 } 2428 } 2429 2430 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2431 BS.cancelScheduling(VL, VL0); 2432 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2433 ReuseShuffleIndicies); 2434 return; 2435 } 2436 case Instruction::ZExt: 2437 case Instruction::SExt: 2438 case Instruction::FPToUI: 2439 case Instruction::FPToSI: 2440 case Instruction::FPExt: 2441 case Instruction::PtrToInt: 2442 case Instruction::IntToPtr: 2443 case Instruction::SIToFP: 2444 case Instruction::UIToFP: 2445 case Instruction::Trunc: 2446 case Instruction::FPTrunc: 2447 case Instruction::BitCast: { 2448 Type *SrcTy = VL0->getOperand(0)->getType(); 2449 for (unsigned i = 0; i < VL.size(); ++i) { 2450 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 2451 if (Ty != SrcTy || !isValidElementType(Ty)) { 2452 BS.cancelScheduling(VL, VL0); 2453 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2454 ReuseShuffleIndicies); 2455 LLVM_DEBUG(dbgs() 2456 << "SLP: Gathering casts with different src types.\n"); 2457 return; 2458 } 2459 } 2460 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2461 ReuseShuffleIndicies); 2462 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2463 2464 TE->setOperandsInOrder(); 2465 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2466 ValueList Operands; 2467 // Prepare the operand vector. 2468 for (Value *j : VL) 2469 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2470 2471 buildTree_rec(Operands, Depth + 1, {TE, i}); 2472 } 2473 return; 2474 } 2475 case Instruction::ICmp: 2476 case Instruction::FCmp: { 2477 // Check that all of the compares have the same predicate. 2478 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2479 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2480 Type *ComparedTy = VL0->getOperand(0)->getType(); 2481 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 2482 CmpInst *Cmp = cast<CmpInst>(VL[i]); 2483 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2484 Cmp->getOperand(0)->getType() != ComparedTy) { 2485 BS.cancelScheduling(VL, VL0); 2486 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2487 ReuseShuffleIndicies); 2488 LLVM_DEBUG(dbgs() 2489 << "SLP: Gathering cmp with different predicate.\n"); 2490 return; 2491 } 2492 } 2493 2494 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2495 ReuseShuffleIndicies); 2496 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2497 2498 ValueList Left, Right; 2499 if (cast<CmpInst>(VL0)->isCommutative()) { 2500 // Commutative predicate - collect + sort operands of the instructions 2501 // so that each side is more likely to have the same opcode. 2502 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2503 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2504 } else { 2505 // Collect operands - commute if it uses the swapped predicate. 2506 for (Value *V : VL) { 2507 auto *Cmp = cast<CmpInst>(V); 2508 Value *LHS = Cmp->getOperand(0); 2509 Value *RHS = Cmp->getOperand(1); 2510 if (Cmp->getPredicate() != P0) 2511 std::swap(LHS, RHS); 2512 Left.push_back(LHS); 2513 Right.push_back(RHS); 2514 } 2515 } 2516 TE->setOperand(0, Left); 2517 TE->setOperand(1, Right); 2518 buildTree_rec(Left, Depth + 1, {TE, 0}); 2519 buildTree_rec(Right, Depth + 1, {TE, 1}); 2520 return; 2521 } 2522 case Instruction::Select: 2523 case Instruction::FNeg: 2524 case Instruction::Add: 2525 case Instruction::FAdd: 2526 case Instruction::Sub: 2527 case Instruction::FSub: 2528 case Instruction::Mul: 2529 case Instruction::FMul: 2530 case Instruction::UDiv: 2531 case Instruction::SDiv: 2532 case Instruction::FDiv: 2533 case Instruction::URem: 2534 case Instruction::SRem: 2535 case Instruction::FRem: 2536 case Instruction::Shl: 2537 case Instruction::LShr: 2538 case Instruction::AShr: 2539 case Instruction::And: 2540 case Instruction::Or: 2541 case Instruction::Xor: { 2542 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2543 ReuseShuffleIndicies); 2544 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2545 2546 // Sort operands of the instructions so that each side is more likely to 2547 // have the same opcode. 2548 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2549 ValueList Left, Right; 2550 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2551 TE->setOperand(0, Left); 2552 TE->setOperand(1, Right); 2553 buildTree_rec(Left, Depth + 1, {TE, 0}); 2554 buildTree_rec(Right, Depth + 1, {TE, 1}); 2555 return; 2556 } 2557 2558 TE->setOperandsInOrder(); 2559 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2560 ValueList Operands; 2561 // Prepare the operand vector. 2562 for (Value *j : VL) 2563 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2564 2565 buildTree_rec(Operands, Depth + 1, {TE, i}); 2566 } 2567 return; 2568 } 2569 case Instruction::GetElementPtr: { 2570 // We don't combine GEPs with complicated (nested) indexing. 2571 for (unsigned j = 0; j < VL.size(); ++j) { 2572 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 2573 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2574 BS.cancelScheduling(VL, VL0); 2575 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2576 ReuseShuffleIndicies); 2577 return; 2578 } 2579 } 2580 2581 // We can't combine several GEPs into one vector if they operate on 2582 // different types. 2583 Type *Ty0 = VL0->getOperand(0)->getType(); 2584 for (unsigned j = 0; j < VL.size(); ++j) { 2585 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 2586 if (Ty0 != CurTy) { 2587 LLVM_DEBUG(dbgs() 2588 << "SLP: not-vectorizable GEP (different types).\n"); 2589 BS.cancelScheduling(VL, VL0); 2590 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2591 ReuseShuffleIndicies); 2592 return; 2593 } 2594 } 2595 2596 // We don't combine GEPs with non-constant indexes. 2597 for (unsigned j = 0; j < VL.size(); ++j) { 2598 auto Op = cast<Instruction>(VL[j])->getOperand(1); 2599 if (!isa<ConstantInt>(Op)) { 2600 LLVM_DEBUG(dbgs() 2601 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2602 BS.cancelScheduling(VL, VL0); 2603 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2604 ReuseShuffleIndicies); 2605 return; 2606 } 2607 } 2608 2609 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2610 ReuseShuffleIndicies); 2611 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2612 TE->setOperandsInOrder(); 2613 for (unsigned i = 0, e = 2; i < e; ++i) { 2614 ValueList Operands; 2615 // Prepare the operand vector. 2616 for (Value *j : VL) 2617 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2618 2619 buildTree_rec(Operands, Depth + 1, {TE, i}); 2620 } 2621 return; 2622 } 2623 case Instruction::Store: { 2624 // Check if the stores are consecutive or of we need to swizzle them. 2625 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2626 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2627 BS.cancelScheduling(VL, VL0); 2628 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2629 ReuseShuffleIndicies); 2630 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2631 return; 2632 } 2633 2634 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2635 ReuseShuffleIndicies); 2636 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2637 2638 ValueList Operands; 2639 for (Value *j : VL) 2640 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 2641 TE->setOperandsInOrder(); 2642 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2643 return; 2644 } 2645 case Instruction::Call: { 2646 // Check if the calls are all to the same vectorizable intrinsic. 2647 CallInst *CI = cast<CallInst>(VL0); 2648 // Check if this is an Intrinsic call or something that can be 2649 // represented by an intrinsic call 2650 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2651 if (!isTriviallyVectorizable(ID)) { 2652 BS.cancelScheduling(VL, VL0); 2653 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2654 ReuseShuffleIndicies); 2655 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2656 return; 2657 } 2658 Function *Int = CI->getCalledFunction(); 2659 unsigned NumArgs = CI->getNumArgOperands(); 2660 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2661 for (unsigned j = 0; j != NumArgs; ++j) 2662 if (hasVectorInstrinsicScalarOpd(ID, j)) 2663 ScalarArgs[j] = CI->getArgOperand(j); 2664 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2665 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 2666 if (!CI2 || CI2->getCalledFunction() != Int || 2667 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2668 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2669 BS.cancelScheduling(VL, VL0); 2670 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2671 ReuseShuffleIndicies); 2672 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 2673 << "\n"); 2674 return; 2675 } 2676 // Some intrinsics have scalar arguments and should be same in order for 2677 // them to be vectorized. 2678 for (unsigned j = 0; j != NumArgs; ++j) { 2679 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2680 Value *A1J = CI2->getArgOperand(j); 2681 if (ScalarArgs[j] != A1J) { 2682 BS.cancelScheduling(VL, VL0); 2683 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2684 ReuseShuffleIndicies); 2685 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2686 << " argument " << ScalarArgs[j] << "!=" << A1J 2687 << "\n"); 2688 return; 2689 } 2690 } 2691 } 2692 // Verify that the bundle operands are identical between the two calls. 2693 if (CI->hasOperandBundles() && 2694 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2695 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2696 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2697 BS.cancelScheduling(VL, VL0); 2698 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2699 ReuseShuffleIndicies); 2700 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2701 << *CI << "!=" << *VL[i] << '\n'); 2702 return; 2703 } 2704 } 2705 2706 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2707 ReuseShuffleIndicies); 2708 TE->setOperandsInOrder(); 2709 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2710 ValueList Operands; 2711 // Prepare the operand vector. 2712 for (Value *j : VL) { 2713 CallInst *CI2 = dyn_cast<CallInst>(j); 2714 Operands.push_back(CI2->getArgOperand(i)); 2715 } 2716 buildTree_rec(Operands, Depth + 1, {TE, i}); 2717 } 2718 return; 2719 } 2720 case Instruction::ShuffleVector: { 2721 // If this is not an alternate sequence of opcode like add-sub 2722 // then do not vectorize this instruction. 2723 if (!S.isAltShuffle()) { 2724 BS.cancelScheduling(VL, VL0); 2725 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2726 ReuseShuffleIndicies); 2727 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2728 return; 2729 } 2730 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2731 ReuseShuffleIndicies); 2732 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2733 2734 // Reorder operands if reordering would enable vectorization. 2735 if (isa<BinaryOperator>(VL0)) { 2736 ValueList Left, Right; 2737 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2738 TE->setOperand(0, Left); 2739 TE->setOperand(1, Right); 2740 buildTree_rec(Left, Depth + 1, {TE, 0}); 2741 buildTree_rec(Right, Depth + 1, {TE, 1}); 2742 return; 2743 } 2744 2745 TE->setOperandsInOrder(); 2746 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2747 ValueList Operands; 2748 // Prepare the operand vector. 2749 for (Value *j : VL) 2750 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2751 2752 buildTree_rec(Operands, Depth + 1, {TE, i}); 2753 } 2754 return; 2755 } 2756 default: 2757 BS.cancelScheduling(VL, VL0); 2758 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2759 ReuseShuffleIndicies); 2760 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2761 return; 2762 } 2763 } 2764 2765 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2766 unsigned N; 2767 Type *EltTy; 2768 auto *ST = dyn_cast<StructType>(T); 2769 if (ST) { 2770 N = ST->getNumElements(); 2771 EltTy = *ST->element_begin(); 2772 } else { 2773 N = cast<ArrayType>(T)->getNumElements(); 2774 EltTy = cast<ArrayType>(T)->getElementType(); 2775 } 2776 if (!isValidElementType(EltTy)) 2777 return 0; 2778 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2779 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2780 return 0; 2781 if (ST) { 2782 // Check that struct is homogeneous. 2783 for (const auto *Ty : ST->elements()) 2784 if (Ty != EltTy) 2785 return 0; 2786 } 2787 return N; 2788 } 2789 2790 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2791 SmallVectorImpl<unsigned> &CurrentOrder) const { 2792 Instruction *E0 = cast<Instruction>(OpValue); 2793 assert(E0->getOpcode() == Instruction::ExtractElement || 2794 E0->getOpcode() == Instruction::ExtractValue); 2795 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2796 // Check if all of the extracts come from the same vector and from the 2797 // correct offset. 2798 Value *Vec = E0->getOperand(0); 2799 2800 CurrentOrder.clear(); 2801 2802 // We have to extract from a vector/aggregate with the same number of elements. 2803 unsigned NElts; 2804 if (E0->getOpcode() == Instruction::ExtractValue) { 2805 const DataLayout &DL = E0->getModule()->getDataLayout(); 2806 NElts = canMapToVector(Vec->getType(), DL); 2807 if (!NElts) 2808 return false; 2809 // Check if load can be rewritten as load of vector. 2810 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2811 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2812 return false; 2813 } else { 2814 NElts = Vec->getType()->getVectorNumElements(); 2815 } 2816 2817 if (NElts != VL.size()) 2818 return false; 2819 2820 // Check that all of the indices extract from the correct offset. 2821 bool ShouldKeepOrder = true; 2822 unsigned E = VL.size(); 2823 // Assign to all items the initial value E + 1 so we can check if the extract 2824 // instruction index was used already. 2825 // Also, later we can check that all the indices are used and we have a 2826 // consecutive access in the extract instructions, by checking that no 2827 // element of CurrentOrder still has value E + 1. 2828 CurrentOrder.assign(E, E + 1); 2829 unsigned I = 0; 2830 for (; I < E; ++I) { 2831 auto *Inst = cast<Instruction>(VL[I]); 2832 if (Inst->getOperand(0) != Vec) 2833 break; 2834 Optional<unsigned> Idx = getExtractIndex(Inst); 2835 if (!Idx) 2836 break; 2837 const unsigned ExtIdx = *Idx; 2838 if (ExtIdx != I) { 2839 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2840 break; 2841 ShouldKeepOrder = false; 2842 CurrentOrder[ExtIdx] = I; 2843 } else { 2844 if (CurrentOrder[I] != E + 1) 2845 break; 2846 CurrentOrder[I] = I; 2847 } 2848 } 2849 if (I < E) { 2850 CurrentOrder.clear(); 2851 return false; 2852 } 2853 2854 return ShouldKeepOrder; 2855 } 2856 2857 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2858 return I->hasOneUse() || 2859 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2860 return ScalarToTreeEntry.count(U) > 0; 2861 }); 2862 } 2863 2864 int BoUpSLP::getEntryCost(TreeEntry *E) { 2865 ArrayRef<Value*> VL = E->Scalars; 2866 2867 Type *ScalarTy = VL[0]->getType(); 2868 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2869 ScalarTy = SI->getValueOperand()->getType(); 2870 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2871 ScalarTy = CI->getOperand(0)->getType(); 2872 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2873 2874 // If we have computed a smaller type for the expression, update VecTy so 2875 // that the costs will be accurate. 2876 if (MinBWs.count(VL[0])) 2877 VecTy = VectorType::get( 2878 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2879 2880 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2881 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2882 int ReuseShuffleCost = 0; 2883 if (NeedToShuffleReuses) { 2884 ReuseShuffleCost = 2885 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2886 } 2887 if (E->NeedToGather) { 2888 if (allConstant(VL)) 2889 return 0; 2890 if (isSplat(VL)) { 2891 return ReuseShuffleCost + 2892 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2893 } 2894 if (E->getOpcode() == Instruction::ExtractElement && 2895 allSameType(VL) && allSameBlock(VL)) { 2896 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2897 if (ShuffleKind.hasValue()) { 2898 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2899 for (auto *V : VL) { 2900 // If all users of instruction are going to be vectorized and this 2901 // instruction itself is not going to be vectorized, consider this 2902 // instruction as dead and remove its cost from the final cost of the 2903 // vectorized tree. 2904 if (areAllUsersVectorized(cast<Instruction>(V)) && 2905 !ScalarToTreeEntry.count(V)) { 2906 auto *IO = cast<ConstantInt>( 2907 cast<ExtractElementInst>(V)->getIndexOperand()); 2908 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2909 IO->getZExtValue()); 2910 } 2911 } 2912 return ReuseShuffleCost + Cost; 2913 } 2914 } 2915 return ReuseShuffleCost + getGatherCost(VL); 2916 } 2917 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2918 Instruction *VL0 = E->getMainOp(); 2919 unsigned ShuffleOrOp = 2920 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 2921 switch (ShuffleOrOp) { 2922 case Instruction::PHI: 2923 return 0; 2924 2925 case Instruction::ExtractValue: 2926 case Instruction::ExtractElement: 2927 if (NeedToShuffleReuses) { 2928 unsigned Idx = 0; 2929 for (unsigned I : E->ReuseShuffleIndices) { 2930 if (ShuffleOrOp == Instruction::ExtractElement) { 2931 auto *IO = cast<ConstantInt>( 2932 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2933 Idx = IO->getZExtValue(); 2934 ReuseShuffleCost -= TTI->getVectorInstrCost( 2935 Instruction::ExtractElement, VecTy, Idx); 2936 } else { 2937 ReuseShuffleCost -= TTI->getVectorInstrCost( 2938 Instruction::ExtractElement, VecTy, Idx); 2939 ++Idx; 2940 } 2941 } 2942 Idx = ReuseShuffleNumbers; 2943 for (Value *V : VL) { 2944 if (ShuffleOrOp == Instruction::ExtractElement) { 2945 auto *IO = cast<ConstantInt>( 2946 cast<ExtractElementInst>(V)->getIndexOperand()); 2947 Idx = IO->getZExtValue(); 2948 } else { 2949 --Idx; 2950 } 2951 ReuseShuffleCost += 2952 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2953 } 2954 } 2955 if (!E->NeedToGather) { 2956 int DeadCost = ReuseShuffleCost; 2957 if (!E->ReorderIndices.empty()) { 2958 // TODO: Merge this shuffle with the ReuseShuffleCost. 2959 DeadCost += TTI->getShuffleCost( 2960 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2961 } 2962 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2963 Instruction *E = cast<Instruction>(VL[i]); 2964 // If all users are going to be vectorized, instruction can be 2965 // considered as dead. 2966 // The same, if have only one user, it will be vectorized for sure. 2967 if (areAllUsersVectorized(E)) { 2968 // Take credit for instruction that will become dead. 2969 if (E->hasOneUse()) { 2970 Instruction *Ext = E->user_back(); 2971 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2972 all_of(Ext->users(), 2973 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2974 // Use getExtractWithExtendCost() to calculate the cost of 2975 // extractelement/ext pair. 2976 DeadCost -= TTI->getExtractWithExtendCost( 2977 Ext->getOpcode(), Ext->getType(), VecTy, i); 2978 // Add back the cost of s|zext which is subtracted separately. 2979 DeadCost += TTI->getCastInstrCost( 2980 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2981 continue; 2982 } 2983 } 2984 DeadCost -= 2985 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2986 } 2987 } 2988 return DeadCost; 2989 } 2990 return ReuseShuffleCost + getGatherCost(VL); 2991 2992 case Instruction::ZExt: 2993 case Instruction::SExt: 2994 case Instruction::FPToUI: 2995 case Instruction::FPToSI: 2996 case Instruction::FPExt: 2997 case Instruction::PtrToInt: 2998 case Instruction::IntToPtr: 2999 case Instruction::SIToFP: 3000 case Instruction::UIToFP: 3001 case Instruction::Trunc: 3002 case Instruction::FPTrunc: 3003 case Instruction::BitCast: { 3004 Type *SrcTy = VL0->getOperand(0)->getType(); 3005 int ScalarEltCost = 3006 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3007 if (NeedToShuffleReuses) { 3008 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3009 } 3010 3011 // Calculate the cost of this instruction. 3012 int ScalarCost = VL.size() * ScalarEltCost; 3013 3014 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3015 int VecCost = 0; 3016 // Check if the values are candidates to demote. 3017 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3018 VecCost = ReuseShuffleCost + 3019 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3020 } 3021 return VecCost - ScalarCost; 3022 } 3023 case Instruction::FCmp: 3024 case Instruction::ICmp: 3025 case Instruction::Select: { 3026 // Calculate the cost of this instruction. 3027 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3028 Builder.getInt1Ty(), VL0); 3029 if (NeedToShuffleReuses) { 3030 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3031 } 3032 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3033 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3034 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3035 return ReuseShuffleCost + VecCost - ScalarCost; 3036 } 3037 case Instruction::FNeg: 3038 case Instruction::Add: 3039 case Instruction::FAdd: 3040 case Instruction::Sub: 3041 case Instruction::FSub: 3042 case Instruction::Mul: 3043 case Instruction::FMul: 3044 case Instruction::UDiv: 3045 case Instruction::SDiv: 3046 case Instruction::FDiv: 3047 case Instruction::URem: 3048 case Instruction::SRem: 3049 case Instruction::FRem: 3050 case Instruction::Shl: 3051 case Instruction::LShr: 3052 case Instruction::AShr: 3053 case Instruction::And: 3054 case Instruction::Or: 3055 case Instruction::Xor: { 3056 // Certain instructions can be cheaper to vectorize if they have a 3057 // constant second vector operand. 3058 TargetTransformInfo::OperandValueKind Op1VK = 3059 TargetTransformInfo::OK_AnyValue; 3060 TargetTransformInfo::OperandValueKind Op2VK = 3061 TargetTransformInfo::OK_UniformConstantValue; 3062 TargetTransformInfo::OperandValueProperties Op1VP = 3063 TargetTransformInfo::OP_None; 3064 TargetTransformInfo::OperandValueProperties Op2VP = 3065 TargetTransformInfo::OP_PowerOf2; 3066 3067 // If all operands are exactly the same ConstantInt then set the 3068 // operand kind to OK_UniformConstantValue. 3069 // If instead not all operands are constants, then set the operand kind 3070 // to OK_AnyValue. If all operands are constants but not the same, 3071 // then set the operand kind to OK_NonUniformConstantValue. 3072 ConstantInt *CInt0 = nullptr; 3073 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3074 const Instruction *I = cast<Instruction>(VL[i]); 3075 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3076 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3077 if (!CInt) { 3078 Op2VK = TargetTransformInfo::OK_AnyValue; 3079 Op2VP = TargetTransformInfo::OP_None; 3080 break; 3081 } 3082 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3083 !CInt->getValue().isPowerOf2()) 3084 Op2VP = TargetTransformInfo::OP_None; 3085 if (i == 0) { 3086 CInt0 = CInt; 3087 continue; 3088 } 3089 if (CInt0 != CInt) 3090 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3091 } 3092 3093 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3094 int ScalarEltCost = TTI->getArithmeticInstrCost( 3095 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 3096 if (NeedToShuffleReuses) { 3097 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3098 } 3099 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3100 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK, 3101 Op2VK, Op1VP, Op2VP, Operands); 3102 return ReuseShuffleCost + VecCost - ScalarCost; 3103 } 3104 case Instruction::GetElementPtr: { 3105 TargetTransformInfo::OperandValueKind Op1VK = 3106 TargetTransformInfo::OK_AnyValue; 3107 TargetTransformInfo::OperandValueKind Op2VK = 3108 TargetTransformInfo::OK_UniformConstantValue; 3109 3110 int ScalarEltCost = 3111 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3112 if (NeedToShuffleReuses) { 3113 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3114 } 3115 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3116 int VecCost = 3117 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3118 return ReuseShuffleCost + VecCost - ScalarCost; 3119 } 3120 case Instruction::Load: { 3121 // Cost of wide load - cost of scalar loads. 3122 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 3123 int ScalarEltCost = 3124 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3125 if (NeedToShuffleReuses) { 3126 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3127 } 3128 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3129 int VecLdCost = 3130 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3131 if (!E->ReorderIndices.empty()) { 3132 // TODO: Merge this shuffle with the ReuseShuffleCost. 3133 VecLdCost += TTI->getShuffleCost( 3134 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3135 } 3136 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3137 } 3138 case Instruction::Store: { 3139 // We know that we can merge the stores. Calculate the cost. 3140 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 3141 int ScalarEltCost = 3142 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 3143 if (NeedToShuffleReuses) { 3144 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3145 } 3146 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3147 int VecStCost = 3148 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 3149 return ReuseShuffleCost + VecStCost - ScalarStCost; 3150 } 3151 case Instruction::Call: { 3152 CallInst *CI = cast<CallInst>(VL0); 3153 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3154 3155 // Calculate the cost of the scalar and vector calls. 3156 SmallVector<Type *, 4> ScalarTys; 3157 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3158 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3159 3160 FastMathFlags FMF; 3161 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3162 FMF = FPMO->getFastMathFlags(); 3163 3164 int ScalarEltCost = 3165 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3166 if (NeedToShuffleReuses) { 3167 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3168 } 3169 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3170 3171 SmallVector<Value *, 4> Args(CI->arg_operands()); 3172 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3173 VecTy->getNumElements()); 3174 3175 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3176 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3177 << " for " << *CI << "\n"); 3178 3179 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3180 } 3181 case Instruction::ShuffleVector: { 3182 assert(E->isAltShuffle() && 3183 ((Instruction::isBinaryOp(E->getOpcode()) && 3184 Instruction::isBinaryOp(E->getAltOpcode())) || 3185 (Instruction::isCast(E->getOpcode()) && 3186 Instruction::isCast(E->getAltOpcode()))) && 3187 "Invalid Shuffle Vector Operand"); 3188 int ScalarCost = 0; 3189 if (NeedToShuffleReuses) { 3190 for (unsigned Idx : E->ReuseShuffleIndices) { 3191 Instruction *I = cast<Instruction>(VL[Idx]); 3192 ReuseShuffleCost -= TTI->getInstructionCost( 3193 I, TargetTransformInfo::TCK_RecipThroughput); 3194 } 3195 for (Value *V : VL) { 3196 Instruction *I = cast<Instruction>(V); 3197 ReuseShuffleCost += TTI->getInstructionCost( 3198 I, TargetTransformInfo::TCK_RecipThroughput); 3199 } 3200 } 3201 for (Value *i : VL) { 3202 Instruction *I = cast<Instruction>(i); 3203 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3204 ScalarCost += TTI->getInstructionCost( 3205 I, TargetTransformInfo::TCK_RecipThroughput); 3206 } 3207 // VecCost is equal to sum of the cost of creating 2 vectors 3208 // and the cost of creating shuffle. 3209 int VecCost = 0; 3210 if (Instruction::isBinaryOp(E->getOpcode())) { 3211 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3212 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3213 } else { 3214 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3215 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3216 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3217 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3218 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3219 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3220 } 3221 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3222 return ReuseShuffleCost + VecCost - ScalarCost; 3223 } 3224 default: 3225 llvm_unreachable("Unknown instruction"); 3226 } 3227 } 3228 3229 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3230 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3231 << VectorizableTree.size() << " is fully vectorizable .\n"); 3232 3233 // We only handle trees of heights 1 and 2. 3234 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3235 return true; 3236 3237 if (VectorizableTree.size() != 2) 3238 return false; 3239 3240 // Handle splat and all-constants stores. 3241 if (!VectorizableTree[0]->NeedToGather && 3242 (allConstant(VectorizableTree[1]->Scalars) || 3243 isSplat(VectorizableTree[1]->Scalars))) 3244 return true; 3245 3246 // Gathering cost would be too much for tiny trees. 3247 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3248 return false; 3249 3250 return true; 3251 } 3252 3253 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3254 // We can vectorize the tree if its size is greater than or equal to the 3255 // minimum size specified by the MinTreeSize command line option. 3256 if (VectorizableTree.size() >= MinTreeSize) 3257 return false; 3258 3259 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3260 // can vectorize it if we can prove it fully vectorizable. 3261 if (isFullyVectorizableTinyTree()) 3262 return false; 3263 3264 assert(VectorizableTree.empty() 3265 ? ExternalUses.empty() 3266 : true && "We shouldn't have any external users"); 3267 3268 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3269 // vectorizable. 3270 return true; 3271 } 3272 3273 int BoUpSLP::getSpillCost() const { 3274 // Walk from the bottom of the tree to the top, tracking which values are 3275 // live. When we see a call instruction that is not part of our tree, 3276 // query TTI to see if there is a cost to keeping values live over it 3277 // (for example, if spills and fills are required). 3278 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3279 int Cost = 0; 3280 3281 SmallPtrSet<Instruction*, 4> LiveValues; 3282 Instruction *PrevInst = nullptr; 3283 3284 for (const auto &TEPtr : VectorizableTree) { 3285 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3286 if (!Inst) 3287 continue; 3288 3289 if (!PrevInst) { 3290 PrevInst = Inst; 3291 continue; 3292 } 3293 3294 // Update LiveValues. 3295 LiveValues.erase(PrevInst); 3296 for (auto &J : PrevInst->operands()) { 3297 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3298 LiveValues.insert(cast<Instruction>(&*J)); 3299 } 3300 3301 LLVM_DEBUG({ 3302 dbgs() << "SLP: #LV: " << LiveValues.size(); 3303 for (auto *X : LiveValues) 3304 dbgs() << " " << X->getName(); 3305 dbgs() << ", Looking at "; 3306 Inst->dump(); 3307 }); 3308 3309 // Now find the sequence of instructions between PrevInst and Inst. 3310 unsigned NumCalls = 0; 3311 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3312 PrevInstIt = 3313 PrevInst->getIterator().getReverse(); 3314 while (InstIt != PrevInstIt) { 3315 if (PrevInstIt == PrevInst->getParent()->rend()) { 3316 PrevInstIt = Inst->getParent()->rbegin(); 3317 continue; 3318 } 3319 3320 // Debug informations don't impact spill cost. 3321 if ((isa<CallInst>(&*PrevInstIt) && 3322 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3323 &*PrevInstIt != PrevInst) 3324 NumCalls++; 3325 3326 ++PrevInstIt; 3327 } 3328 3329 if (NumCalls) { 3330 SmallVector<Type*, 4> V; 3331 for (auto *II : LiveValues) 3332 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3333 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3334 } 3335 3336 PrevInst = Inst; 3337 } 3338 3339 return Cost; 3340 } 3341 3342 int BoUpSLP::getTreeCost() { 3343 int Cost = 0; 3344 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3345 << VectorizableTree.size() << ".\n"); 3346 3347 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3348 3349 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3350 TreeEntry &TE = *VectorizableTree[I].get(); 3351 3352 // We create duplicate tree entries for gather sequences that have multiple 3353 // uses. However, we should not compute the cost of duplicate sequences. 3354 // For example, if we have a build vector (i.e., insertelement sequence) 3355 // that is used by more than one vector instruction, we only need to 3356 // compute the cost of the insertelement instructions once. The redundant 3357 // instructions will be eliminated by CSE. 3358 // 3359 // We should consider not creating duplicate tree entries for gather 3360 // sequences, and instead add additional edges to the tree representing 3361 // their uses. Since such an approach results in fewer total entries, 3362 // existing heuristics based on tree size may yield different results. 3363 // 3364 if (TE.NeedToGather && 3365 std::any_of( 3366 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3367 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3368 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3369 })) 3370 continue; 3371 3372 int C = getEntryCost(&TE); 3373 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3374 << " for bundle that starts with " << *TE.Scalars[0] 3375 << ".\n"); 3376 Cost += C; 3377 } 3378 3379 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3380 int ExtractCost = 0; 3381 for (ExternalUser &EU : ExternalUses) { 3382 // We only add extract cost once for the same scalar. 3383 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3384 continue; 3385 3386 // Uses by ephemeral values are free (because the ephemeral value will be 3387 // removed prior to code generation, and so the extraction will be 3388 // removed as well). 3389 if (EphValues.count(EU.User)) 3390 continue; 3391 3392 // If we plan to rewrite the tree in a smaller type, we will need to sign 3393 // extend the extracted value back to the original type. Here, we account 3394 // for the extract and the added cost of the sign extend if needed. 3395 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3396 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3397 if (MinBWs.count(ScalarRoot)) { 3398 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3399 auto Extend = 3400 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3401 VecTy = VectorType::get(MinTy, BundleWidth); 3402 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3403 VecTy, EU.Lane); 3404 } else { 3405 ExtractCost += 3406 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3407 } 3408 } 3409 3410 int SpillCost = getSpillCost(); 3411 Cost += SpillCost + ExtractCost; 3412 3413 std::string Str; 3414 { 3415 raw_string_ostream OS(Str); 3416 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3417 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3418 << "SLP: Total Cost = " << Cost << ".\n"; 3419 } 3420 LLVM_DEBUG(dbgs() << Str); 3421 3422 if (ViewSLPTree) 3423 ViewGraph(this, "SLP" + F->getName(), false, Str); 3424 3425 return Cost; 3426 } 3427 3428 int BoUpSLP::getGatherCost(Type *Ty, 3429 const DenseSet<unsigned> &ShuffledIndices) const { 3430 int Cost = 0; 3431 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3432 if (!ShuffledIndices.count(i)) 3433 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3434 if (!ShuffledIndices.empty()) 3435 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3436 return Cost; 3437 } 3438 3439 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3440 // Find the type of the operands in VL. 3441 Type *ScalarTy = VL[0]->getType(); 3442 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3443 ScalarTy = SI->getValueOperand()->getType(); 3444 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3445 // Find the cost of inserting/extracting values from the vector. 3446 // Check if the same elements are inserted several times and count them as 3447 // shuffle candidates. 3448 DenseSet<unsigned> ShuffledElements; 3449 DenseSet<Value *> UniqueElements; 3450 // Iterate in reverse order to consider insert elements with the high cost. 3451 for (unsigned I = VL.size(); I > 0; --I) { 3452 unsigned Idx = I - 1; 3453 if (!UniqueElements.insert(VL[Idx]).second) 3454 ShuffledElements.insert(Idx); 3455 } 3456 return getGatherCost(VecTy, ShuffledElements); 3457 } 3458 3459 // Perform operand reordering on the instructions in VL and return the reordered 3460 // operands in Left and Right. 3461 void BoUpSLP::reorderInputsAccordingToOpcode( 3462 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3463 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3464 ScalarEvolution &SE) { 3465 if (VL.empty()) 3466 return; 3467 VLOperands Ops(VL, DL, SE); 3468 // Reorder the operands in place. 3469 Ops.reorder(); 3470 Left = Ops.getVL(0); 3471 Right = Ops.getVL(1); 3472 } 3473 3474 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3475 // Get the basic block this bundle is in. All instructions in the bundle 3476 // should be in this block. 3477 auto *Front = E->getMainOp(); 3478 auto *BB = Front->getParent(); 3479 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3480 [=](Value *V) -> bool { 3481 auto *I = cast<Instruction>(V); 3482 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3483 })); 3484 3485 // The last instruction in the bundle in program order. 3486 Instruction *LastInst = nullptr; 3487 3488 // Find the last instruction. The common case should be that BB has been 3489 // scheduled, and the last instruction is VL.back(). So we start with 3490 // VL.back() and iterate over schedule data until we reach the end of the 3491 // bundle. The end of the bundle is marked by null ScheduleData. 3492 if (BlocksSchedules.count(BB)) { 3493 auto *Bundle = 3494 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3495 if (Bundle && Bundle->isPartOfBundle()) 3496 for (; Bundle; Bundle = Bundle->NextInBundle) 3497 if (Bundle->OpValue == Bundle->Inst) 3498 LastInst = Bundle->Inst; 3499 } 3500 3501 // LastInst can still be null at this point if there's either not an entry 3502 // for BB in BlocksSchedules or there's no ScheduleData available for 3503 // VL.back(). This can be the case if buildTree_rec aborts for various 3504 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3505 // size is reached, etc.). ScheduleData is initialized in the scheduling 3506 // "dry-run". 3507 // 3508 // If this happens, we can still find the last instruction by brute force. We 3509 // iterate forwards from Front (inclusive) until we either see all 3510 // instructions in the bundle or reach the end of the block. If Front is the 3511 // last instruction in program order, LastInst will be set to Front, and we 3512 // will visit all the remaining instructions in the block. 3513 // 3514 // One of the reasons we exit early from buildTree_rec is to place an upper 3515 // bound on compile-time. Thus, taking an additional compile-time hit here is 3516 // not ideal. However, this should be exceedingly rare since it requires that 3517 // we both exit early from buildTree_rec and that the bundle be out-of-order 3518 // (causing us to iterate all the way to the end of the block). 3519 if (!LastInst) { 3520 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3521 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3522 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3523 LastInst = &I; 3524 if (Bundle.empty()) 3525 break; 3526 } 3527 } 3528 3529 // Set the insertion point after the last instruction in the bundle. Set the 3530 // debug location to Front. 3531 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3532 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3533 } 3534 3535 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3536 Value *Vec = UndefValue::get(Ty); 3537 // Generate the 'InsertElement' instruction. 3538 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3539 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3540 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 3541 GatherSeq.insert(Insrt); 3542 CSEBlocks.insert(Insrt->getParent()); 3543 3544 // Add to our 'need-to-extract' list. 3545 if (TreeEntry *E = getTreeEntry(VL[i])) { 3546 // Find which lane we need to extract. 3547 int FoundLane = -1; 3548 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3549 // Is this the lane of the scalar that we are looking for ? 3550 if (E->Scalars[Lane] == VL[i]) { 3551 FoundLane = Lane; 3552 break; 3553 } 3554 } 3555 assert(FoundLane >= 0 && "Could not find the correct lane"); 3556 if (!E->ReuseShuffleIndices.empty()) { 3557 FoundLane = 3558 std::distance(E->ReuseShuffleIndices.begin(), 3559 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3560 } 3561 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3562 } 3563 } 3564 } 3565 3566 return Vec; 3567 } 3568 3569 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3570 InstructionsState S = getSameOpcode(VL); 3571 if (S.getOpcode()) { 3572 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3573 if (E->isSame(VL)) { 3574 Value *V = vectorizeTree(E); 3575 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3576 // We need to get the vectorized value but without shuffle. 3577 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3578 V = SV->getOperand(0); 3579 } else { 3580 // Reshuffle to get only unique values. 3581 SmallVector<unsigned, 4> UniqueIdxs; 3582 SmallSet<unsigned, 4> UsedIdxs; 3583 for(unsigned Idx : E->ReuseShuffleIndices) 3584 if (UsedIdxs.insert(Idx).second) 3585 UniqueIdxs.emplace_back(Idx); 3586 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3587 UniqueIdxs); 3588 } 3589 } 3590 return V; 3591 } 3592 } 3593 } 3594 3595 Type *ScalarTy = S.OpValue->getType(); 3596 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3597 ScalarTy = SI->getValueOperand()->getType(); 3598 3599 // Check that every instruction appears once in this bundle. 3600 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3601 SmallVector<Value *, 4> UniqueValues; 3602 if (VL.size() > 2) { 3603 DenseMap<Value *, unsigned> UniquePositions; 3604 for (Value *V : VL) { 3605 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3606 ReuseShuffleIndicies.emplace_back(Res.first->second); 3607 if (Res.second || isa<Constant>(V)) 3608 UniqueValues.emplace_back(V); 3609 } 3610 // Do not shuffle single element or if number of unique values is not power 3611 // of 2. 3612 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3613 !llvm::isPowerOf2_32(UniqueValues.size())) 3614 ReuseShuffleIndicies.clear(); 3615 else 3616 VL = UniqueValues; 3617 } 3618 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3619 3620 Value *V = Gather(VL, VecTy); 3621 if (!ReuseShuffleIndicies.empty()) { 3622 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3623 ReuseShuffleIndicies, "shuffle"); 3624 if (auto *I = dyn_cast<Instruction>(V)) { 3625 GatherSeq.insert(I); 3626 CSEBlocks.insert(I->getParent()); 3627 } 3628 } 3629 return V; 3630 } 3631 3632 static void inversePermutation(ArrayRef<unsigned> Indices, 3633 SmallVectorImpl<unsigned> &Mask) { 3634 Mask.clear(); 3635 const unsigned E = Indices.size(); 3636 Mask.resize(E); 3637 for (unsigned I = 0; I < E; ++I) 3638 Mask[Indices[I]] = I; 3639 } 3640 3641 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3642 IRBuilder<>::InsertPointGuard Guard(Builder); 3643 3644 if (E->VectorizedValue) { 3645 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3646 return E->VectorizedValue; 3647 } 3648 3649 Instruction *VL0 = E->getMainOp(); 3650 Type *ScalarTy = VL0->getType(); 3651 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3652 ScalarTy = SI->getValueOperand()->getType(); 3653 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3654 3655 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3656 3657 if (E->NeedToGather) { 3658 setInsertPointAfterBundle(E); 3659 auto *V = Gather(E->Scalars, VecTy); 3660 if (NeedToShuffleReuses) { 3661 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3662 E->ReuseShuffleIndices, "shuffle"); 3663 if (auto *I = dyn_cast<Instruction>(V)) { 3664 GatherSeq.insert(I); 3665 CSEBlocks.insert(I->getParent()); 3666 } 3667 } 3668 E->VectorizedValue = V; 3669 return V; 3670 } 3671 3672 unsigned ShuffleOrOp = 3673 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3674 switch (ShuffleOrOp) { 3675 case Instruction::PHI: { 3676 PHINode *PH = dyn_cast<PHINode>(VL0); 3677 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3678 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3679 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3680 Value *V = NewPhi; 3681 if (NeedToShuffleReuses) { 3682 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3683 E->ReuseShuffleIndices, "shuffle"); 3684 } 3685 E->VectorizedValue = V; 3686 3687 // PHINodes may have multiple entries from the same block. We want to 3688 // visit every block once. 3689 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3690 3691 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3692 ValueList Operands; 3693 BasicBlock *IBB = PH->getIncomingBlock(i); 3694 3695 if (!VisitedBBs.insert(IBB).second) { 3696 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3697 continue; 3698 } 3699 3700 Builder.SetInsertPoint(IBB->getTerminator()); 3701 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3702 Value *Vec = vectorizeTree(E->getOperand(i)); 3703 NewPhi->addIncoming(Vec, IBB); 3704 } 3705 3706 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3707 "Invalid number of incoming values"); 3708 return V; 3709 } 3710 3711 case Instruction::ExtractElement: { 3712 if (!E->NeedToGather) { 3713 Value *V = E->getSingleOperand(0); 3714 if (!E->ReorderIndices.empty()) { 3715 OrdersType Mask; 3716 inversePermutation(E->ReorderIndices, Mask); 3717 Builder.SetInsertPoint(VL0); 3718 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3719 "reorder_shuffle"); 3720 } 3721 if (NeedToShuffleReuses) { 3722 // TODO: Merge this shuffle with the ReorderShuffleMask. 3723 if (E->ReorderIndices.empty()) 3724 Builder.SetInsertPoint(VL0); 3725 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3726 E->ReuseShuffleIndices, "shuffle"); 3727 } 3728 E->VectorizedValue = V; 3729 return V; 3730 } 3731 setInsertPointAfterBundle(E); 3732 auto *V = Gather(E->Scalars, VecTy); 3733 if (NeedToShuffleReuses) { 3734 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3735 E->ReuseShuffleIndices, "shuffle"); 3736 if (auto *I = dyn_cast<Instruction>(V)) { 3737 GatherSeq.insert(I); 3738 CSEBlocks.insert(I->getParent()); 3739 } 3740 } 3741 E->VectorizedValue = V; 3742 return V; 3743 } 3744 case Instruction::ExtractValue: { 3745 if (!E->NeedToGather) { 3746 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3747 Builder.SetInsertPoint(LI); 3748 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3749 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3750 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3751 Value *NewV = propagateMetadata(V, E->Scalars); 3752 if (!E->ReorderIndices.empty()) { 3753 OrdersType Mask; 3754 inversePermutation(E->ReorderIndices, Mask); 3755 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3756 "reorder_shuffle"); 3757 } 3758 if (NeedToShuffleReuses) { 3759 // TODO: Merge this shuffle with the ReorderShuffleMask. 3760 NewV = Builder.CreateShuffleVector( 3761 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3762 } 3763 E->VectorizedValue = NewV; 3764 return NewV; 3765 } 3766 setInsertPointAfterBundle(E); 3767 auto *V = Gather(E->Scalars, VecTy); 3768 if (NeedToShuffleReuses) { 3769 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3770 E->ReuseShuffleIndices, "shuffle"); 3771 if (auto *I = dyn_cast<Instruction>(V)) { 3772 GatherSeq.insert(I); 3773 CSEBlocks.insert(I->getParent()); 3774 } 3775 } 3776 E->VectorizedValue = V; 3777 return V; 3778 } 3779 case Instruction::ZExt: 3780 case Instruction::SExt: 3781 case Instruction::FPToUI: 3782 case Instruction::FPToSI: 3783 case Instruction::FPExt: 3784 case Instruction::PtrToInt: 3785 case Instruction::IntToPtr: 3786 case Instruction::SIToFP: 3787 case Instruction::UIToFP: 3788 case Instruction::Trunc: 3789 case Instruction::FPTrunc: 3790 case Instruction::BitCast: { 3791 setInsertPointAfterBundle(E); 3792 3793 Value *InVec = vectorizeTree(E->getOperand(0)); 3794 3795 if (E->VectorizedValue) { 3796 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3797 return E->VectorizedValue; 3798 } 3799 3800 CastInst *CI = dyn_cast<CastInst>(VL0); 3801 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3802 if (NeedToShuffleReuses) { 3803 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3804 E->ReuseShuffleIndices, "shuffle"); 3805 } 3806 E->VectorizedValue = V; 3807 ++NumVectorInstructions; 3808 return V; 3809 } 3810 case Instruction::FCmp: 3811 case Instruction::ICmp: { 3812 setInsertPointAfterBundle(E); 3813 3814 Value *L = vectorizeTree(E->getOperand(0)); 3815 Value *R = vectorizeTree(E->getOperand(1)); 3816 3817 if (E->VectorizedValue) { 3818 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3819 return E->VectorizedValue; 3820 } 3821 3822 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3823 Value *V; 3824 if (E->getOpcode() == Instruction::FCmp) 3825 V = Builder.CreateFCmp(P0, L, R); 3826 else 3827 V = Builder.CreateICmp(P0, L, R); 3828 3829 propagateIRFlags(V, E->Scalars, VL0); 3830 if (NeedToShuffleReuses) { 3831 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3832 E->ReuseShuffleIndices, "shuffle"); 3833 } 3834 E->VectorizedValue = V; 3835 ++NumVectorInstructions; 3836 return V; 3837 } 3838 case Instruction::Select: { 3839 setInsertPointAfterBundle(E); 3840 3841 Value *Cond = vectorizeTree(E->getOperand(0)); 3842 Value *True = vectorizeTree(E->getOperand(1)); 3843 Value *False = vectorizeTree(E->getOperand(2)); 3844 3845 if (E->VectorizedValue) { 3846 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3847 return E->VectorizedValue; 3848 } 3849 3850 Value *V = Builder.CreateSelect(Cond, True, False); 3851 if (NeedToShuffleReuses) { 3852 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3853 E->ReuseShuffleIndices, "shuffle"); 3854 } 3855 E->VectorizedValue = V; 3856 ++NumVectorInstructions; 3857 return V; 3858 } 3859 case Instruction::FNeg: { 3860 setInsertPointAfterBundle(E); 3861 3862 Value *Op = vectorizeTree(E->getOperand(0)); 3863 3864 if (E->VectorizedValue) { 3865 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3866 return E->VectorizedValue; 3867 } 3868 3869 Value *V = Builder.CreateUnOp( 3870 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 3871 propagateIRFlags(V, E->Scalars, VL0); 3872 if (auto *I = dyn_cast<Instruction>(V)) 3873 V = propagateMetadata(I, E->Scalars); 3874 3875 if (NeedToShuffleReuses) { 3876 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3877 E->ReuseShuffleIndices, "shuffle"); 3878 } 3879 E->VectorizedValue = V; 3880 ++NumVectorInstructions; 3881 3882 return V; 3883 } 3884 case Instruction::Add: 3885 case Instruction::FAdd: 3886 case Instruction::Sub: 3887 case Instruction::FSub: 3888 case Instruction::Mul: 3889 case Instruction::FMul: 3890 case Instruction::UDiv: 3891 case Instruction::SDiv: 3892 case Instruction::FDiv: 3893 case Instruction::URem: 3894 case Instruction::SRem: 3895 case Instruction::FRem: 3896 case Instruction::Shl: 3897 case Instruction::LShr: 3898 case Instruction::AShr: 3899 case Instruction::And: 3900 case Instruction::Or: 3901 case Instruction::Xor: { 3902 setInsertPointAfterBundle(E); 3903 3904 Value *LHS = vectorizeTree(E->getOperand(0)); 3905 Value *RHS = vectorizeTree(E->getOperand(1)); 3906 3907 if (E->VectorizedValue) { 3908 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3909 return E->VectorizedValue; 3910 } 3911 3912 Value *V = Builder.CreateBinOp( 3913 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 3914 RHS); 3915 propagateIRFlags(V, E->Scalars, VL0); 3916 if (auto *I = dyn_cast<Instruction>(V)) 3917 V = propagateMetadata(I, E->Scalars); 3918 3919 if (NeedToShuffleReuses) { 3920 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3921 E->ReuseShuffleIndices, "shuffle"); 3922 } 3923 E->VectorizedValue = V; 3924 ++NumVectorInstructions; 3925 3926 return V; 3927 } 3928 case Instruction::Load: { 3929 // Loads are inserted at the head of the tree because we don't want to 3930 // sink them all the way down past store instructions. 3931 bool IsReorder = E->updateStateIfReorder(); 3932 if (IsReorder) 3933 VL0 = E->getMainOp(); 3934 setInsertPointAfterBundle(E); 3935 3936 LoadInst *LI = cast<LoadInst>(VL0); 3937 Type *ScalarLoadTy = LI->getType(); 3938 unsigned AS = LI->getPointerAddressSpace(); 3939 3940 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3941 VecTy->getPointerTo(AS)); 3942 3943 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3944 // ExternalUses list to make sure that an extract will be generated in the 3945 // future. 3946 Value *PO = LI->getPointerOperand(); 3947 if (getTreeEntry(PO)) 3948 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3949 3950 unsigned Alignment = LI->getAlignment(); 3951 LI = Builder.CreateLoad(VecTy, VecPtr); 3952 if (!Alignment) { 3953 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3954 } 3955 LI->setAlignment(Alignment); 3956 Value *V = propagateMetadata(LI, E->Scalars); 3957 if (IsReorder) { 3958 OrdersType Mask; 3959 inversePermutation(E->ReorderIndices, Mask); 3960 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3961 Mask, "reorder_shuffle"); 3962 } 3963 if (NeedToShuffleReuses) { 3964 // TODO: Merge this shuffle with the ReorderShuffleMask. 3965 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3966 E->ReuseShuffleIndices, "shuffle"); 3967 } 3968 E->VectorizedValue = V; 3969 ++NumVectorInstructions; 3970 return V; 3971 } 3972 case Instruction::Store: { 3973 StoreInst *SI = cast<StoreInst>(VL0); 3974 unsigned Alignment = SI->getAlignment(); 3975 unsigned AS = SI->getPointerAddressSpace(); 3976 3977 setInsertPointAfterBundle(E); 3978 3979 Value *VecValue = vectorizeTree(E->getOperand(0)); 3980 Value *ScalarPtr = SI->getPointerOperand(); 3981 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3982 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3983 3984 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3985 // ExternalUses to make sure that an extract will be generated in the 3986 // future. 3987 if (getTreeEntry(ScalarPtr)) 3988 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3989 3990 if (!Alignment) 3991 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3992 3993 ST->setAlignment(Alignment); 3994 Value *V = propagateMetadata(ST, E->Scalars); 3995 if (NeedToShuffleReuses) { 3996 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3997 E->ReuseShuffleIndices, "shuffle"); 3998 } 3999 E->VectorizedValue = V; 4000 ++NumVectorInstructions; 4001 return V; 4002 } 4003 case Instruction::GetElementPtr: { 4004 setInsertPointAfterBundle(E); 4005 4006 Value *Op0 = vectorizeTree(E->getOperand(0)); 4007 4008 std::vector<Value *> OpVecs; 4009 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4010 ++j) { 4011 Value *OpVec = vectorizeTree(E->getOperand(j)); 4012 OpVecs.push_back(OpVec); 4013 } 4014 4015 Value *V = Builder.CreateGEP( 4016 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4017 if (Instruction *I = dyn_cast<Instruction>(V)) 4018 V = propagateMetadata(I, E->Scalars); 4019 4020 if (NeedToShuffleReuses) { 4021 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4022 E->ReuseShuffleIndices, "shuffle"); 4023 } 4024 E->VectorizedValue = V; 4025 ++NumVectorInstructions; 4026 4027 return V; 4028 } 4029 case Instruction::Call: { 4030 CallInst *CI = cast<CallInst>(VL0); 4031 setInsertPointAfterBundle(E); 4032 4033 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4034 if (Function *FI = CI->getCalledFunction()) 4035 IID = FI->getIntrinsicID(); 4036 4037 Value *ScalarArg = nullptr; 4038 std::vector<Value *> OpVecs; 4039 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4040 ValueList OpVL; 4041 // Some intrinsics have scalar arguments. This argument should not be 4042 // vectorized. 4043 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4044 CallInst *CEI = cast<CallInst>(VL0); 4045 ScalarArg = CEI->getArgOperand(j); 4046 OpVecs.push_back(CEI->getArgOperand(j)); 4047 continue; 4048 } 4049 4050 Value *OpVec = vectorizeTree(E->getOperand(j)); 4051 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4052 OpVecs.push_back(OpVec); 4053 } 4054 4055 Module *M = F->getParent(); 4056 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4057 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4058 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4059 SmallVector<OperandBundleDef, 1> OpBundles; 4060 CI->getOperandBundlesAsDefs(OpBundles); 4061 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4062 4063 // The scalar argument uses an in-tree scalar so we add the new vectorized 4064 // call to ExternalUses list to make sure that an extract will be 4065 // generated in the future. 4066 if (ScalarArg && getTreeEntry(ScalarArg)) 4067 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4068 4069 propagateIRFlags(V, E->Scalars, VL0); 4070 if (NeedToShuffleReuses) { 4071 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4072 E->ReuseShuffleIndices, "shuffle"); 4073 } 4074 E->VectorizedValue = V; 4075 ++NumVectorInstructions; 4076 return V; 4077 } 4078 case Instruction::ShuffleVector: { 4079 assert(E->isAltShuffle() && 4080 ((Instruction::isBinaryOp(E->getOpcode()) && 4081 Instruction::isBinaryOp(E->getAltOpcode())) || 4082 (Instruction::isCast(E->getOpcode()) && 4083 Instruction::isCast(E->getAltOpcode()))) && 4084 "Invalid Shuffle Vector Operand"); 4085 4086 Value *LHS = nullptr, *RHS = nullptr; 4087 if (Instruction::isBinaryOp(E->getOpcode())) { 4088 setInsertPointAfterBundle(E); 4089 LHS = vectorizeTree(E->getOperand(0)); 4090 RHS = vectorizeTree(E->getOperand(1)); 4091 } else { 4092 setInsertPointAfterBundle(E); 4093 LHS = vectorizeTree(E->getOperand(0)); 4094 } 4095 4096 if (E->VectorizedValue) { 4097 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4098 return E->VectorizedValue; 4099 } 4100 4101 Value *V0, *V1; 4102 if (Instruction::isBinaryOp(E->getOpcode())) { 4103 V0 = Builder.CreateBinOp( 4104 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4105 V1 = Builder.CreateBinOp( 4106 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4107 } else { 4108 V0 = Builder.CreateCast( 4109 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4110 V1 = Builder.CreateCast( 4111 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4112 } 4113 4114 // Create shuffle to take alternate operations from the vector. 4115 // Also, gather up main and alt scalar ops to propagate IR flags to 4116 // each vector operation. 4117 ValueList OpScalars, AltScalars; 4118 unsigned e = E->Scalars.size(); 4119 SmallVector<Constant *, 8> Mask(e); 4120 for (unsigned i = 0; i < e; ++i) { 4121 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4122 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4123 if (OpInst->getOpcode() == E->getAltOpcode()) { 4124 Mask[i] = Builder.getInt32(e + i); 4125 AltScalars.push_back(E->Scalars[i]); 4126 } else { 4127 Mask[i] = Builder.getInt32(i); 4128 OpScalars.push_back(E->Scalars[i]); 4129 } 4130 } 4131 4132 Value *ShuffleMask = ConstantVector::get(Mask); 4133 propagateIRFlags(V0, OpScalars); 4134 propagateIRFlags(V1, AltScalars); 4135 4136 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4137 if (Instruction *I = dyn_cast<Instruction>(V)) 4138 V = propagateMetadata(I, E->Scalars); 4139 if (NeedToShuffleReuses) { 4140 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4141 E->ReuseShuffleIndices, "shuffle"); 4142 } 4143 E->VectorizedValue = V; 4144 ++NumVectorInstructions; 4145 4146 return V; 4147 } 4148 default: 4149 llvm_unreachable("unknown inst"); 4150 } 4151 return nullptr; 4152 } 4153 4154 Value *BoUpSLP::vectorizeTree() { 4155 ExtraValueToDebugLocsMap ExternallyUsedValues; 4156 return vectorizeTree(ExternallyUsedValues); 4157 } 4158 4159 Value * 4160 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4161 // All blocks must be scheduled before any instructions are inserted. 4162 for (auto &BSIter : BlocksSchedules) { 4163 scheduleBlock(BSIter.second.get()); 4164 } 4165 4166 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4167 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4168 4169 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4170 // vectorized root. InstCombine will then rewrite the entire expression. We 4171 // sign extend the extracted values below. 4172 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4173 if (MinBWs.count(ScalarRoot)) { 4174 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4175 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4176 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4177 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4178 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4179 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4180 VectorizableTree[0]->VectorizedValue = Trunc; 4181 } 4182 4183 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4184 << " values .\n"); 4185 4186 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4187 // specified by ScalarType. 4188 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4189 if (!MinBWs.count(ScalarRoot)) 4190 return Ex; 4191 if (MinBWs[ScalarRoot].second) 4192 return Builder.CreateSExt(Ex, ScalarType); 4193 return Builder.CreateZExt(Ex, ScalarType); 4194 }; 4195 4196 // Extract all of the elements with the external uses. 4197 for (const auto &ExternalUse : ExternalUses) { 4198 Value *Scalar = ExternalUse.Scalar; 4199 llvm::User *User = ExternalUse.User; 4200 4201 // Skip users that we already RAUW. This happens when one instruction 4202 // has multiple uses of the same value. 4203 if (User && !is_contained(Scalar->users(), User)) 4204 continue; 4205 TreeEntry *E = getTreeEntry(Scalar); 4206 assert(E && "Invalid scalar"); 4207 assert(!E->NeedToGather && "Extracting from a gather list"); 4208 4209 Value *Vec = E->VectorizedValue; 4210 assert(Vec && "Can't find vectorizable value"); 4211 4212 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4213 // If User == nullptr, the Scalar is used as extra arg. Generate 4214 // ExtractElement instruction and update the record for this scalar in 4215 // ExternallyUsedValues. 4216 if (!User) { 4217 assert(ExternallyUsedValues.count(Scalar) && 4218 "Scalar with nullptr as an external user must be registered in " 4219 "ExternallyUsedValues map"); 4220 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4221 Builder.SetInsertPoint(VecI->getParent(), 4222 std::next(VecI->getIterator())); 4223 } else { 4224 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4225 } 4226 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4227 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4228 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4229 auto &Locs = ExternallyUsedValues[Scalar]; 4230 ExternallyUsedValues.insert({Ex, Locs}); 4231 ExternallyUsedValues.erase(Scalar); 4232 // Required to update internally referenced instructions. 4233 Scalar->replaceAllUsesWith(Ex); 4234 continue; 4235 } 4236 4237 // Generate extracts for out-of-tree users. 4238 // Find the insertion point for the extractelement lane. 4239 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4240 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4241 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4242 if (PH->getIncomingValue(i) == Scalar) { 4243 Instruction *IncomingTerminator = 4244 PH->getIncomingBlock(i)->getTerminator(); 4245 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4246 Builder.SetInsertPoint(VecI->getParent(), 4247 std::next(VecI->getIterator())); 4248 } else { 4249 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4250 } 4251 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4252 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4253 CSEBlocks.insert(PH->getIncomingBlock(i)); 4254 PH->setOperand(i, Ex); 4255 } 4256 } 4257 } else { 4258 Builder.SetInsertPoint(cast<Instruction>(User)); 4259 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4260 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4261 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4262 User->replaceUsesOfWith(Scalar, Ex); 4263 } 4264 } else { 4265 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4266 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4267 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4268 CSEBlocks.insert(&F->getEntryBlock()); 4269 User->replaceUsesOfWith(Scalar, Ex); 4270 } 4271 4272 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4273 } 4274 4275 // For each vectorized value: 4276 for (auto &TEPtr : VectorizableTree) { 4277 TreeEntry *Entry = TEPtr.get(); 4278 4279 // No need to handle users of gathered values. 4280 if (Entry->NeedToGather) 4281 continue; 4282 4283 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4284 4285 // For each lane: 4286 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4287 Value *Scalar = Entry->Scalars[Lane]; 4288 4289 Type *Ty = Scalar->getType(); 4290 if (!Ty->isVoidTy()) { 4291 #ifndef NDEBUG 4292 for (User *U : Scalar->users()) { 4293 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4294 4295 // It is legal to replace users in the ignorelist by undef. 4296 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4297 "Replacing out-of-tree value with undef"); 4298 } 4299 #endif 4300 Value *Undef = UndefValue::get(Ty); 4301 Scalar->replaceAllUsesWith(Undef); 4302 } 4303 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4304 eraseInstruction(cast<Instruction>(Scalar)); 4305 } 4306 } 4307 4308 Builder.ClearInsertionPoint(); 4309 4310 return VectorizableTree[0]->VectorizedValue; 4311 } 4312 4313 void BoUpSLP::optimizeGatherSequence() { 4314 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4315 << " gather sequences instructions.\n"); 4316 // LICM InsertElementInst sequences. 4317 for (Instruction *I : GatherSeq) { 4318 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 4319 continue; 4320 4321 // Check if this block is inside a loop. 4322 Loop *L = LI->getLoopFor(I->getParent()); 4323 if (!L) 4324 continue; 4325 4326 // Check if it has a preheader. 4327 BasicBlock *PreHeader = L->getLoopPreheader(); 4328 if (!PreHeader) 4329 continue; 4330 4331 // If the vector or the element that we insert into it are 4332 // instructions that are defined in this basic block then we can't 4333 // hoist this instruction. 4334 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4335 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4336 if (Op0 && L->contains(Op0)) 4337 continue; 4338 if (Op1 && L->contains(Op1)) 4339 continue; 4340 4341 // We can hoist this instruction. Move it to the pre-header. 4342 I->moveBefore(PreHeader->getTerminator()); 4343 } 4344 4345 // Make a list of all reachable blocks in our CSE queue. 4346 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4347 CSEWorkList.reserve(CSEBlocks.size()); 4348 for (BasicBlock *BB : CSEBlocks) 4349 if (DomTreeNode *N = DT->getNode(BB)) { 4350 assert(DT->isReachableFromEntry(N)); 4351 CSEWorkList.push_back(N); 4352 } 4353 4354 // Sort blocks by domination. This ensures we visit a block after all blocks 4355 // dominating it are visited. 4356 llvm::stable_sort(CSEWorkList, 4357 [this](const DomTreeNode *A, const DomTreeNode *B) { 4358 return DT->properlyDominates(A, B); 4359 }); 4360 4361 // Perform O(N^2) search over the gather sequences and merge identical 4362 // instructions. TODO: We can further optimize this scan if we split the 4363 // instructions into different buckets based on the insert lane. 4364 SmallVector<Instruction *, 16> Visited; 4365 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4366 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4367 "Worklist not sorted properly!"); 4368 BasicBlock *BB = (*I)->getBlock(); 4369 // For all instructions in blocks containing gather sequences: 4370 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4371 Instruction *In = &*it++; 4372 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4373 continue; 4374 4375 // Check if we can replace this instruction with any of the 4376 // visited instructions. 4377 for (Instruction *v : Visited) { 4378 if (In->isIdenticalTo(v) && 4379 DT->dominates(v->getParent(), In->getParent())) { 4380 In->replaceAllUsesWith(v); 4381 eraseInstruction(In); 4382 In = nullptr; 4383 break; 4384 } 4385 } 4386 if (In) { 4387 assert(!is_contained(Visited, In)); 4388 Visited.push_back(In); 4389 } 4390 } 4391 } 4392 CSEBlocks.clear(); 4393 GatherSeq.clear(); 4394 } 4395 4396 // Groups the instructions to a bundle (which is then a single scheduling entity) 4397 // and schedules instructions until the bundle gets ready. 4398 Optional<BoUpSLP::ScheduleData *> 4399 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4400 const InstructionsState &S) { 4401 if (isa<PHINode>(S.OpValue)) 4402 return nullptr; 4403 4404 // Initialize the instruction bundle. 4405 Instruction *OldScheduleEnd = ScheduleEnd; 4406 ScheduleData *PrevInBundle = nullptr; 4407 ScheduleData *Bundle = nullptr; 4408 bool ReSchedule = false; 4409 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4410 4411 // Make sure that the scheduling region contains all 4412 // instructions of the bundle. 4413 for (Value *V : VL) { 4414 if (!extendSchedulingRegion(V, S)) 4415 return None; 4416 } 4417 4418 for (Value *V : VL) { 4419 ScheduleData *BundleMember = getScheduleData(V); 4420 assert(BundleMember && 4421 "no ScheduleData for bundle member (maybe not in same basic block)"); 4422 if (BundleMember->IsScheduled) { 4423 // A bundle member was scheduled as single instruction before and now 4424 // needs to be scheduled as part of the bundle. We just get rid of the 4425 // existing schedule. 4426 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4427 << " was already scheduled\n"); 4428 ReSchedule = true; 4429 } 4430 assert(BundleMember->isSchedulingEntity() && 4431 "bundle member already part of other bundle"); 4432 if (PrevInBundle) { 4433 PrevInBundle->NextInBundle = BundleMember; 4434 } else { 4435 Bundle = BundleMember; 4436 } 4437 BundleMember->UnscheduledDepsInBundle = 0; 4438 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4439 4440 // Group the instructions to a bundle. 4441 BundleMember->FirstInBundle = Bundle; 4442 PrevInBundle = BundleMember; 4443 } 4444 if (ScheduleEnd != OldScheduleEnd) { 4445 // The scheduling region got new instructions at the lower end (or it is a 4446 // new region for the first bundle). This makes it necessary to 4447 // recalculate all dependencies. 4448 // It is seldom that this needs to be done a second time after adding the 4449 // initial bundle to the region. 4450 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4451 doForAllOpcodes(I, [](ScheduleData *SD) { 4452 SD->clearDependencies(); 4453 }); 4454 } 4455 ReSchedule = true; 4456 } 4457 if (ReSchedule) { 4458 resetSchedule(); 4459 initialFillReadyList(ReadyInsts); 4460 } 4461 assert(Bundle && "Failed to find schedule bundle"); 4462 4463 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4464 << BB->getName() << "\n"); 4465 4466 calculateDependencies(Bundle, true, SLP); 4467 4468 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4469 // means that there are no cyclic dependencies and we can schedule it. 4470 // Note that's important that we don't "schedule" the bundle yet (see 4471 // cancelScheduling). 4472 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4473 4474 ScheduleData *pickedSD = ReadyInsts.back(); 4475 ReadyInsts.pop_back(); 4476 4477 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4478 schedule(pickedSD, ReadyInsts); 4479 } 4480 } 4481 if (!Bundle->isReady()) { 4482 cancelScheduling(VL, S.OpValue); 4483 return None; 4484 } 4485 return Bundle; 4486 } 4487 4488 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4489 Value *OpValue) { 4490 if (isa<PHINode>(OpValue)) 4491 return; 4492 4493 ScheduleData *Bundle = getScheduleData(OpValue); 4494 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4495 assert(!Bundle->IsScheduled && 4496 "Can't cancel bundle which is already scheduled"); 4497 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4498 "tried to unbundle something which is not a bundle"); 4499 4500 // Un-bundle: make single instructions out of the bundle. 4501 ScheduleData *BundleMember = Bundle; 4502 while (BundleMember) { 4503 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4504 BundleMember->FirstInBundle = BundleMember; 4505 ScheduleData *Next = BundleMember->NextInBundle; 4506 BundleMember->NextInBundle = nullptr; 4507 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4508 if (BundleMember->UnscheduledDepsInBundle == 0) { 4509 ReadyInsts.insert(BundleMember); 4510 } 4511 BundleMember = Next; 4512 } 4513 } 4514 4515 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4516 // Allocate a new ScheduleData for the instruction. 4517 if (ChunkPos >= ChunkSize) { 4518 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4519 ChunkPos = 0; 4520 } 4521 return &(ScheduleDataChunks.back()[ChunkPos++]); 4522 } 4523 4524 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4525 const InstructionsState &S) { 4526 if (getScheduleData(V, isOneOf(S, V))) 4527 return true; 4528 Instruction *I = dyn_cast<Instruction>(V); 4529 assert(I && "bundle member must be an instruction"); 4530 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4531 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4532 ScheduleData *ISD = getScheduleData(I); 4533 if (!ISD) 4534 return false; 4535 assert(isInSchedulingRegion(ISD) && 4536 "ScheduleData not in scheduling region"); 4537 ScheduleData *SD = allocateScheduleDataChunks(); 4538 SD->Inst = I; 4539 SD->init(SchedulingRegionID, S.OpValue); 4540 ExtraScheduleDataMap[I][S.OpValue] = SD; 4541 return true; 4542 }; 4543 if (CheckSheduleForI(I)) 4544 return true; 4545 if (!ScheduleStart) { 4546 // It's the first instruction in the new region. 4547 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4548 ScheduleStart = I; 4549 ScheduleEnd = I->getNextNode(); 4550 if (isOneOf(S, I) != I) 4551 CheckSheduleForI(I); 4552 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4553 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4554 return true; 4555 } 4556 // Search up and down at the same time, because we don't know if the new 4557 // instruction is above or below the existing scheduling region. 4558 BasicBlock::reverse_iterator UpIter = 4559 ++ScheduleStart->getIterator().getReverse(); 4560 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4561 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4562 BasicBlock::iterator LowerEnd = BB->end(); 4563 while (true) { 4564 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4565 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4566 return false; 4567 } 4568 4569 if (UpIter != UpperEnd) { 4570 if (&*UpIter == I) { 4571 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4572 ScheduleStart = I; 4573 if (isOneOf(S, I) != I) 4574 CheckSheduleForI(I); 4575 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4576 << "\n"); 4577 return true; 4578 } 4579 ++UpIter; 4580 } 4581 if (DownIter != LowerEnd) { 4582 if (&*DownIter == I) { 4583 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4584 nullptr); 4585 ScheduleEnd = I->getNextNode(); 4586 if (isOneOf(S, I) != I) 4587 CheckSheduleForI(I); 4588 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4589 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4590 << "\n"); 4591 return true; 4592 } 4593 ++DownIter; 4594 } 4595 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4596 "instruction not found in block"); 4597 } 4598 return true; 4599 } 4600 4601 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4602 Instruction *ToI, 4603 ScheduleData *PrevLoadStore, 4604 ScheduleData *NextLoadStore) { 4605 ScheduleData *CurrentLoadStore = PrevLoadStore; 4606 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4607 ScheduleData *SD = ScheduleDataMap[I]; 4608 if (!SD) { 4609 SD = allocateScheduleDataChunks(); 4610 ScheduleDataMap[I] = SD; 4611 SD->Inst = I; 4612 } 4613 assert(!isInSchedulingRegion(SD) && 4614 "new ScheduleData already in scheduling region"); 4615 SD->init(SchedulingRegionID, I); 4616 4617 if (I->mayReadOrWriteMemory() && 4618 (!isa<IntrinsicInst>(I) || 4619 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4620 // Update the linked list of memory accessing instructions. 4621 if (CurrentLoadStore) { 4622 CurrentLoadStore->NextLoadStore = SD; 4623 } else { 4624 FirstLoadStoreInRegion = SD; 4625 } 4626 CurrentLoadStore = SD; 4627 } 4628 } 4629 if (NextLoadStore) { 4630 if (CurrentLoadStore) 4631 CurrentLoadStore->NextLoadStore = NextLoadStore; 4632 } else { 4633 LastLoadStoreInRegion = CurrentLoadStore; 4634 } 4635 } 4636 4637 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4638 bool InsertInReadyList, 4639 BoUpSLP *SLP) { 4640 assert(SD->isSchedulingEntity()); 4641 4642 SmallVector<ScheduleData *, 10> WorkList; 4643 WorkList.push_back(SD); 4644 4645 while (!WorkList.empty()) { 4646 ScheduleData *SD = WorkList.back(); 4647 WorkList.pop_back(); 4648 4649 ScheduleData *BundleMember = SD; 4650 while (BundleMember) { 4651 assert(isInSchedulingRegion(BundleMember)); 4652 if (!BundleMember->hasValidDependencies()) { 4653 4654 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4655 << "\n"); 4656 BundleMember->Dependencies = 0; 4657 BundleMember->resetUnscheduledDeps(); 4658 4659 // Handle def-use chain dependencies. 4660 if (BundleMember->OpValue != BundleMember->Inst) { 4661 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4662 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4663 BundleMember->Dependencies++; 4664 ScheduleData *DestBundle = UseSD->FirstInBundle; 4665 if (!DestBundle->IsScheduled) 4666 BundleMember->incrementUnscheduledDeps(1); 4667 if (!DestBundle->hasValidDependencies()) 4668 WorkList.push_back(DestBundle); 4669 } 4670 } else { 4671 for (User *U : BundleMember->Inst->users()) { 4672 if (isa<Instruction>(U)) { 4673 ScheduleData *UseSD = getScheduleData(U); 4674 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4675 BundleMember->Dependencies++; 4676 ScheduleData *DestBundle = UseSD->FirstInBundle; 4677 if (!DestBundle->IsScheduled) 4678 BundleMember->incrementUnscheduledDeps(1); 4679 if (!DestBundle->hasValidDependencies()) 4680 WorkList.push_back(DestBundle); 4681 } 4682 } else { 4683 // I'm not sure if this can ever happen. But we need to be safe. 4684 // This lets the instruction/bundle never be scheduled and 4685 // eventually disable vectorization. 4686 BundleMember->Dependencies++; 4687 BundleMember->incrementUnscheduledDeps(1); 4688 } 4689 } 4690 } 4691 4692 // Handle the memory dependencies. 4693 ScheduleData *DepDest = BundleMember->NextLoadStore; 4694 if (DepDest) { 4695 Instruction *SrcInst = BundleMember->Inst; 4696 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4697 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4698 unsigned numAliased = 0; 4699 unsigned DistToSrc = 1; 4700 4701 while (DepDest) { 4702 assert(isInSchedulingRegion(DepDest)); 4703 4704 // We have two limits to reduce the complexity: 4705 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4706 // SLP->isAliased (which is the expensive part in this loop). 4707 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4708 // the whole loop (even if the loop is fast, it's quadratic). 4709 // It's important for the loop break condition (see below) to 4710 // check this limit even between two read-only instructions. 4711 if (DistToSrc >= MaxMemDepDistance || 4712 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4713 (numAliased >= AliasedCheckLimit || 4714 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4715 4716 // We increment the counter only if the locations are aliased 4717 // (instead of counting all alias checks). This gives a better 4718 // balance between reduced runtime and accurate dependencies. 4719 numAliased++; 4720 4721 DepDest->MemoryDependencies.push_back(BundleMember); 4722 BundleMember->Dependencies++; 4723 ScheduleData *DestBundle = DepDest->FirstInBundle; 4724 if (!DestBundle->IsScheduled) { 4725 BundleMember->incrementUnscheduledDeps(1); 4726 } 4727 if (!DestBundle->hasValidDependencies()) { 4728 WorkList.push_back(DestBundle); 4729 } 4730 } 4731 DepDest = DepDest->NextLoadStore; 4732 4733 // Example, explaining the loop break condition: Let's assume our 4734 // starting instruction is i0 and MaxMemDepDistance = 3. 4735 // 4736 // +--------v--v--v 4737 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4738 // +--------^--^--^ 4739 // 4740 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4741 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4742 // Previously we already added dependencies from i3 to i6,i7,i8 4743 // (because of MaxMemDepDistance). As we added a dependency from 4744 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4745 // and we can abort this loop at i6. 4746 if (DistToSrc >= 2 * MaxMemDepDistance) 4747 break; 4748 DistToSrc++; 4749 } 4750 } 4751 } 4752 BundleMember = BundleMember->NextInBundle; 4753 } 4754 if (InsertInReadyList && SD->isReady()) { 4755 ReadyInsts.push_back(SD); 4756 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4757 << "\n"); 4758 } 4759 } 4760 } 4761 4762 void BoUpSLP::BlockScheduling::resetSchedule() { 4763 assert(ScheduleStart && 4764 "tried to reset schedule on block which has not been scheduled"); 4765 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4766 doForAllOpcodes(I, [&](ScheduleData *SD) { 4767 assert(isInSchedulingRegion(SD) && 4768 "ScheduleData not in scheduling region"); 4769 SD->IsScheduled = false; 4770 SD->resetUnscheduledDeps(); 4771 }); 4772 } 4773 ReadyInsts.clear(); 4774 } 4775 4776 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4777 if (!BS->ScheduleStart) 4778 return; 4779 4780 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4781 4782 BS->resetSchedule(); 4783 4784 // For the real scheduling we use a more sophisticated ready-list: it is 4785 // sorted by the original instruction location. This lets the final schedule 4786 // be as close as possible to the original instruction order. 4787 struct ScheduleDataCompare { 4788 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4789 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4790 } 4791 }; 4792 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4793 4794 // Ensure that all dependency data is updated and fill the ready-list with 4795 // initial instructions. 4796 int Idx = 0; 4797 int NumToSchedule = 0; 4798 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4799 I = I->getNextNode()) { 4800 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4801 assert(SD->isPartOfBundle() == 4802 (getTreeEntry(SD->Inst) != nullptr) && 4803 "scheduler and vectorizer bundle mismatch"); 4804 SD->FirstInBundle->SchedulingPriority = Idx++; 4805 if (SD->isSchedulingEntity()) { 4806 BS->calculateDependencies(SD, false, this); 4807 NumToSchedule++; 4808 } 4809 }); 4810 } 4811 BS->initialFillReadyList(ReadyInsts); 4812 4813 Instruction *LastScheduledInst = BS->ScheduleEnd; 4814 4815 // Do the "real" scheduling. 4816 while (!ReadyInsts.empty()) { 4817 ScheduleData *picked = *ReadyInsts.begin(); 4818 ReadyInsts.erase(ReadyInsts.begin()); 4819 4820 // Move the scheduled instruction(s) to their dedicated places, if not 4821 // there yet. 4822 ScheduleData *BundleMember = picked; 4823 while (BundleMember) { 4824 Instruction *pickedInst = BundleMember->Inst; 4825 if (LastScheduledInst->getNextNode() != pickedInst) { 4826 BS->BB->getInstList().remove(pickedInst); 4827 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4828 pickedInst); 4829 } 4830 LastScheduledInst = pickedInst; 4831 BundleMember = BundleMember->NextInBundle; 4832 } 4833 4834 BS->schedule(picked, ReadyInsts); 4835 NumToSchedule--; 4836 } 4837 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4838 4839 // Avoid duplicate scheduling of the block. 4840 BS->ScheduleStart = nullptr; 4841 } 4842 4843 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4844 // If V is a store, just return the width of the stored value without 4845 // traversing the expression tree. This is the common case. 4846 if (auto *Store = dyn_cast<StoreInst>(V)) 4847 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4848 4849 // If V is not a store, we can traverse the expression tree to find loads 4850 // that feed it. The type of the loaded value may indicate a more suitable 4851 // width than V's type. We want to base the vector element size on the width 4852 // of memory operations where possible. 4853 SmallVector<Instruction *, 16> Worklist; 4854 SmallPtrSet<Instruction *, 16> Visited; 4855 if (auto *I = dyn_cast<Instruction>(V)) 4856 Worklist.push_back(I); 4857 4858 // Traverse the expression tree in bottom-up order looking for loads. If we 4859 // encounter an instruction we don't yet handle, we give up. 4860 auto MaxWidth = 0u; 4861 auto FoundUnknownInst = false; 4862 while (!Worklist.empty() && !FoundUnknownInst) { 4863 auto *I = Worklist.pop_back_val(); 4864 Visited.insert(I); 4865 4866 // We should only be looking at scalar instructions here. If the current 4867 // instruction has a vector type, give up. 4868 auto *Ty = I->getType(); 4869 if (isa<VectorType>(Ty)) 4870 FoundUnknownInst = true; 4871 4872 // If the current instruction is a load, update MaxWidth to reflect the 4873 // width of the loaded value. 4874 else if (isa<LoadInst>(I)) 4875 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4876 4877 // Otherwise, we need to visit the operands of the instruction. We only 4878 // handle the interesting cases from buildTree here. If an operand is an 4879 // instruction we haven't yet visited, we add it to the worklist. 4880 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4881 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4882 for (Use &U : I->operands()) 4883 if (auto *J = dyn_cast<Instruction>(U.get())) 4884 if (!Visited.count(J)) 4885 Worklist.push_back(J); 4886 } 4887 4888 // If we don't yet handle the instruction, give up. 4889 else 4890 FoundUnknownInst = true; 4891 } 4892 4893 // If we didn't encounter a memory access in the expression tree, or if we 4894 // gave up for some reason, just return the width of V. 4895 if (!MaxWidth || FoundUnknownInst) 4896 return DL->getTypeSizeInBits(V->getType()); 4897 4898 // Otherwise, return the maximum width we found. 4899 return MaxWidth; 4900 } 4901 4902 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4903 // smaller type with a truncation. We collect the values that will be demoted 4904 // in ToDemote and additional roots that require investigating in Roots. 4905 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4906 SmallVectorImpl<Value *> &ToDemote, 4907 SmallVectorImpl<Value *> &Roots) { 4908 // We can always demote constants. 4909 if (isa<Constant>(V)) { 4910 ToDemote.push_back(V); 4911 return true; 4912 } 4913 4914 // If the value is not an instruction in the expression with only one use, it 4915 // cannot be demoted. 4916 auto *I = dyn_cast<Instruction>(V); 4917 if (!I || !I->hasOneUse() || !Expr.count(I)) 4918 return false; 4919 4920 switch (I->getOpcode()) { 4921 4922 // We can always demote truncations and extensions. Since truncations can 4923 // seed additional demotion, we save the truncated value. 4924 case Instruction::Trunc: 4925 Roots.push_back(I->getOperand(0)); 4926 break; 4927 case Instruction::ZExt: 4928 case Instruction::SExt: 4929 break; 4930 4931 // We can demote certain binary operations if we can demote both of their 4932 // operands. 4933 case Instruction::Add: 4934 case Instruction::Sub: 4935 case Instruction::Mul: 4936 case Instruction::And: 4937 case Instruction::Or: 4938 case Instruction::Xor: 4939 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4940 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4941 return false; 4942 break; 4943 4944 // We can demote selects if we can demote their true and false values. 4945 case Instruction::Select: { 4946 SelectInst *SI = cast<SelectInst>(I); 4947 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4948 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4949 return false; 4950 break; 4951 } 4952 4953 // We can demote phis if we can demote all their incoming operands. Note that 4954 // we don't need to worry about cycles since we ensure single use above. 4955 case Instruction::PHI: { 4956 PHINode *PN = cast<PHINode>(I); 4957 for (Value *IncValue : PN->incoming_values()) 4958 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4959 return false; 4960 break; 4961 } 4962 4963 // Otherwise, conservatively give up. 4964 default: 4965 return false; 4966 } 4967 4968 // Record the value that we can demote. 4969 ToDemote.push_back(V); 4970 return true; 4971 } 4972 4973 void BoUpSLP::computeMinimumValueSizes() { 4974 // If there are no external uses, the expression tree must be rooted by a 4975 // store. We can't demote in-memory values, so there is nothing to do here. 4976 if (ExternalUses.empty()) 4977 return; 4978 4979 // We only attempt to truncate integer expressions. 4980 auto &TreeRoot = VectorizableTree[0]->Scalars; 4981 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4982 if (!TreeRootIT) 4983 return; 4984 4985 // If the expression is not rooted by a store, these roots should have 4986 // external uses. We will rely on InstCombine to rewrite the expression in 4987 // the narrower type. However, InstCombine only rewrites single-use values. 4988 // This means that if a tree entry other than a root is used externally, it 4989 // must have multiple uses and InstCombine will not rewrite it. The code 4990 // below ensures that only the roots are used externally. 4991 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4992 for (auto &EU : ExternalUses) 4993 if (!Expr.erase(EU.Scalar)) 4994 return; 4995 if (!Expr.empty()) 4996 return; 4997 4998 // Collect the scalar values of the vectorizable expression. We will use this 4999 // context to determine which values can be demoted. If we see a truncation, 5000 // we mark it as seeding another demotion. 5001 for (auto &EntryPtr : VectorizableTree) 5002 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5003 5004 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5005 // have a single external user that is not in the vectorizable tree. 5006 for (auto *Root : TreeRoot) 5007 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5008 return; 5009 5010 // Conservatively determine if we can actually truncate the roots of the 5011 // expression. Collect the values that can be demoted in ToDemote and 5012 // additional roots that require investigating in Roots. 5013 SmallVector<Value *, 32> ToDemote; 5014 SmallVector<Value *, 4> Roots; 5015 for (auto *Root : TreeRoot) 5016 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5017 return; 5018 5019 // The maximum bit width required to represent all the values that can be 5020 // demoted without loss of precision. It would be safe to truncate the roots 5021 // of the expression to this width. 5022 auto MaxBitWidth = 8u; 5023 5024 // We first check if all the bits of the roots are demanded. If they're not, 5025 // we can truncate the roots to this narrower type. 5026 for (auto *Root : TreeRoot) { 5027 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5028 MaxBitWidth = std::max<unsigned>( 5029 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5030 } 5031 5032 // True if the roots can be zero-extended back to their original type, rather 5033 // than sign-extended. We know that if the leading bits are not demanded, we 5034 // can safely zero-extend. So we initialize IsKnownPositive to True. 5035 bool IsKnownPositive = true; 5036 5037 // If all the bits of the roots are demanded, we can try a little harder to 5038 // compute a narrower type. This can happen, for example, if the roots are 5039 // getelementptr indices. InstCombine promotes these indices to the pointer 5040 // width. Thus, all their bits are technically demanded even though the 5041 // address computation might be vectorized in a smaller type. 5042 // 5043 // We start by looking at each entry that can be demoted. We compute the 5044 // maximum bit width required to store the scalar by using ValueTracking to 5045 // compute the number of high-order bits we can truncate. 5046 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5047 llvm::all_of(TreeRoot, [](Value *R) { 5048 assert(R->hasOneUse() && "Root should have only one use!"); 5049 return isa<GetElementPtrInst>(R->user_back()); 5050 })) { 5051 MaxBitWidth = 8u; 5052 5053 // Determine if the sign bit of all the roots is known to be zero. If not, 5054 // IsKnownPositive is set to False. 5055 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5056 KnownBits Known = computeKnownBits(R, *DL); 5057 return Known.isNonNegative(); 5058 }); 5059 5060 // Determine the maximum number of bits required to store the scalar 5061 // values. 5062 for (auto *Scalar : ToDemote) { 5063 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5064 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5065 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5066 } 5067 5068 // If we can't prove that the sign bit is zero, we must add one to the 5069 // maximum bit width to account for the unknown sign bit. This preserves 5070 // the existing sign bit so we can safely sign-extend the root back to the 5071 // original type. Otherwise, if we know the sign bit is zero, we will 5072 // zero-extend the root instead. 5073 // 5074 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5075 // one to the maximum bit width will yield a larger-than-necessary 5076 // type. In general, we need to add an extra bit only if we can't 5077 // prove that the upper bit of the original type is equal to the 5078 // upper bit of the proposed smaller type. If these two bits are the 5079 // same (either zero or one) we know that sign-extending from the 5080 // smaller type will result in the same value. Here, since we can't 5081 // yet prove this, we are just making the proposed smaller type 5082 // larger to ensure correctness. 5083 if (!IsKnownPositive) 5084 ++MaxBitWidth; 5085 } 5086 5087 // Round MaxBitWidth up to the next power-of-two. 5088 if (!isPowerOf2_64(MaxBitWidth)) 5089 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5090 5091 // If the maximum bit width we compute is less than the with of the roots' 5092 // type, we can proceed with the narrowing. Otherwise, do nothing. 5093 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5094 return; 5095 5096 // If we can truncate the root, we must collect additional values that might 5097 // be demoted as a result. That is, those seeded by truncations we will 5098 // modify. 5099 while (!Roots.empty()) 5100 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5101 5102 // Finally, map the values we can demote to the maximum bit with we computed. 5103 for (auto *Scalar : ToDemote) 5104 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5105 } 5106 5107 namespace { 5108 5109 /// The SLPVectorizer Pass. 5110 struct SLPVectorizer : public FunctionPass { 5111 SLPVectorizerPass Impl; 5112 5113 /// Pass identification, replacement for typeid 5114 static char ID; 5115 5116 explicit SLPVectorizer() : FunctionPass(ID) { 5117 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5118 } 5119 5120 bool doInitialization(Module &M) override { 5121 return false; 5122 } 5123 5124 bool runOnFunction(Function &F) override { 5125 if (skipFunction(F)) 5126 return false; 5127 5128 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5129 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5130 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5131 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 5132 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5133 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5134 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5135 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5136 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5137 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5138 5139 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5140 } 5141 5142 void getAnalysisUsage(AnalysisUsage &AU) const override { 5143 FunctionPass::getAnalysisUsage(AU); 5144 AU.addRequired<AssumptionCacheTracker>(); 5145 AU.addRequired<ScalarEvolutionWrapperPass>(); 5146 AU.addRequired<AAResultsWrapperPass>(); 5147 AU.addRequired<TargetTransformInfoWrapperPass>(); 5148 AU.addRequired<LoopInfoWrapperPass>(); 5149 AU.addRequired<DominatorTreeWrapperPass>(); 5150 AU.addRequired<DemandedBitsWrapperPass>(); 5151 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5152 AU.addPreserved<LoopInfoWrapperPass>(); 5153 AU.addPreserved<DominatorTreeWrapperPass>(); 5154 AU.addPreserved<AAResultsWrapperPass>(); 5155 AU.addPreserved<GlobalsAAWrapperPass>(); 5156 AU.setPreservesCFG(); 5157 } 5158 }; 5159 5160 } // end anonymous namespace 5161 5162 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5163 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5164 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5165 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5166 auto *AA = &AM.getResult<AAManager>(F); 5167 auto *LI = &AM.getResult<LoopAnalysis>(F); 5168 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5169 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5170 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5171 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5172 5173 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5174 if (!Changed) 5175 return PreservedAnalyses::all(); 5176 5177 PreservedAnalyses PA; 5178 PA.preserveSet<CFGAnalyses>(); 5179 PA.preserve<AAManager>(); 5180 PA.preserve<GlobalsAA>(); 5181 return PA; 5182 } 5183 5184 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5185 TargetTransformInfo *TTI_, 5186 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5187 LoopInfo *LI_, DominatorTree *DT_, 5188 AssumptionCache *AC_, DemandedBits *DB_, 5189 OptimizationRemarkEmitter *ORE_) { 5190 SE = SE_; 5191 TTI = TTI_; 5192 TLI = TLI_; 5193 AA = AA_; 5194 LI = LI_; 5195 DT = DT_; 5196 AC = AC_; 5197 DB = DB_; 5198 DL = &F.getParent()->getDataLayout(); 5199 5200 Stores.clear(); 5201 GEPs.clear(); 5202 bool Changed = false; 5203 5204 // If the target claims to have no vector registers don't attempt 5205 // vectorization. 5206 if (!TTI->getNumberOfRegisters(true)) 5207 return false; 5208 5209 // Don't vectorize when the attribute NoImplicitFloat is used. 5210 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5211 return false; 5212 5213 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5214 5215 // Use the bottom up slp vectorizer to construct chains that start with 5216 // store instructions. 5217 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5218 5219 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5220 // delete instructions. 5221 5222 // Scan the blocks in the function in post order. 5223 for (auto BB : post_order(&F.getEntryBlock())) { 5224 collectSeedInstructions(BB); 5225 5226 // Vectorize trees that end at stores. 5227 if (!Stores.empty()) { 5228 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5229 << " underlying objects.\n"); 5230 Changed |= vectorizeStoreChains(R); 5231 } 5232 5233 // Vectorize trees that end at reductions. 5234 Changed |= vectorizeChainsInBlock(BB, R); 5235 5236 // Vectorize the index computations of getelementptr instructions. This 5237 // is primarily intended to catch gather-like idioms ending at 5238 // non-consecutive loads. 5239 if (!GEPs.empty()) { 5240 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5241 << " underlying objects.\n"); 5242 Changed |= vectorizeGEPIndices(BB, R); 5243 } 5244 } 5245 5246 if (Changed) { 5247 R.optimizeGatherSequence(); 5248 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5249 LLVM_DEBUG(verifyFunction(F)); 5250 } 5251 return Changed; 5252 } 5253 5254 /// Check that the Values in the slice in VL array are still existent in 5255 /// the WeakTrackingVH array. 5256 /// Vectorization of part of the VL array may cause later values in the VL array 5257 /// to become invalid. We track when this has happened in the WeakTrackingVH 5258 /// array. 5259 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 5260 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 5261 unsigned SliceSize) { 5262 VL = VL.slice(SliceBegin, SliceSize); 5263 VH = VH.slice(SliceBegin, SliceSize); 5264 return !std::equal(VL.begin(), VL.end(), VH.begin()); 5265 } 5266 5267 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5268 unsigned VecRegSize) { 5269 const unsigned ChainLen = Chain.size(); 5270 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5271 << "\n"); 5272 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5273 const unsigned VF = VecRegSize / Sz; 5274 5275 if (!isPowerOf2_32(Sz) || VF < 2) 5276 return false; 5277 5278 // Keep track of values that were deleted by vectorizing in the loop below. 5279 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 5280 5281 bool Changed = false; 5282 // Look for profitable vectorizable trees at all offsets, starting at zero. 5283 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5284 5285 // Check that a previous iteration of this loop did not delete the Value. 5286 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 5287 continue; 5288 5289 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5290 << "\n"); 5291 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5292 5293 R.buildTree(Operands); 5294 if (R.isTreeTinyAndNotFullyVectorizable()) 5295 continue; 5296 5297 R.computeMinimumValueSizes(); 5298 5299 int Cost = R.getTreeCost(); 5300 5301 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5302 << "\n"); 5303 if (Cost < -SLPCostThreshold) { 5304 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5305 5306 using namespace ore; 5307 5308 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5309 cast<StoreInst>(Chain[i])) 5310 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5311 << " and with tree size " 5312 << NV("TreeSize", R.getTreeSize())); 5313 5314 R.vectorizeTree(); 5315 5316 // Move to the next bundle. 5317 i += VF - 1; 5318 Changed = true; 5319 } 5320 } 5321 5322 return Changed; 5323 } 5324 5325 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5326 BoUpSLP &R) { 5327 SetVector<StoreInst *> Heads; 5328 SmallDenseSet<StoreInst *> Tails; 5329 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5330 5331 // We may run into multiple chains that merge into a single chain. We mark the 5332 // stores that we vectorized so that we don't visit the same store twice. 5333 BoUpSLP::ValueSet VectorizedStores; 5334 bool Changed = false; 5335 5336 auto &&FindConsecutiveAccess = 5337 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5338 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5339 return false; 5340 5341 Tails.insert(Stores[Idx]); 5342 Heads.insert(Stores[K]); 5343 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5344 return true; 5345 }; 5346 5347 // Do a quadratic search on all of the given stores in reverse order and find 5348 // all of the pairs of stores that follow each other. 5349 int E = Stores.size(); 5350 for (int Idx = E - 1; Idx >= 0; --Idx) { 5351 // If a store has multiple consecutive store candidates, search according 5352 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5353 // This is because usually pairing with immediate succeeding or preceding 5354 // candidate create the best chance to find slp vectorization opportunity. 5355 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5356 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5357 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5358 break; 5359 } 5360 5361 // For stores that start but don't end a link in the chain: 5362 for (auto *SI : llvm::reverse(Heads)) { 5363 if (Tails.count(SI)) 5364 continue; 5365 5366 // We found a store instr that starts a chain. Now follow the chain and try 5367 // to vectorize it. 5368 BoUpSLP::ValueList Operands; 5369 StoreInst *I = SI; 5370 // Collect the chain into a list. 5371 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5372 Operands.push_back(I); 5373 // Move to the next value in the chain. 5374 I = ConsecutiveChain[I]; 5375 } 5376 5377 // FIXME: Is division-by-2 the correct step? Should we assert that the 5378 // register size is a power-of-2? 5379 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5380 Size /= 2) { 5381 if (vectorizeStoreChain(Operands, R, Size)) { 5382 // Mark the vectorized stores so that we don't vectorize them again. 5383 VectorizedStores.insert(Operands.begin(), Operands.end()); 5384 Changed = true; 5385 break; 5386 } 5387 } 5388 } 5389 5390 return Changed; 5391 } 5392 5393 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5394 // Initialize the collections. We will make a single pass over the block. 5395 Stores.clear(); 5396 GEPs.clear(); 5397 5398 // Visit the store and getelementptr instructions in BB and organize them in 5399 // Stores and GEPs according to the underlying objects of their pointer 5400 // operands. 5401 for (Instruction &I : *BB) { 5402 // Ignore store instructions that are volatile or have a pointer operand 5403 // that doesn't point to a scalar type. 5404 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5405 if (!SI->isSimple()) 5406 continue; 5407 if (!isValidElementType(SI->getValueOperand()->getType())) 5408 continue; 5409 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5410 } 5411 5412 // Ignore getelementptr instructions that have more than one index, a 5413 // constant index, or a pointer operand that doesn't point to a scalar 5414 // type. 5415 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5416 auto Idx = GEP->idx_begin()->get(); 5417 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5418 continue; 5419 if (!isValidElementType(Idx->getType())) 5420 continue; 5421 if (GEP->getType()->isVectorTy()) 5422 continue; 5423 GEPs[GEP->getPointerOperand()].push_back(GEP); 5424 } 5425 } 5426 } 5427 5428 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5429 if (!A || !B) 5430 return false; 5431 Value *VL[] = { A, B }; 5432 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5433 } 5434 5435 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5436 int UserCost, bool AllowReorder) { 5437 if (VL.size() < 2) 5438 return false; 5439 5440 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5441 << VL.size() << ".\n"); 5442 5443 // Check that all of the parts are scalar instructions of the same type, 5444 // we permit an alternate opcode via InstructionsState. 5445 InstructionsState S = getSameOpcode(VL); 5446 if (!S.getOpcode()) 5447 return false; 5448 5449 Instruction *I0 = cast<Instruction>(S.OpValue); 5450 unsigned Sz = R.getVectorElementSize(I0); 5451 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5452 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5453 if (MaxVF < 2) { 5454 R.getORE()->emit([&]() { 5455 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5456 << "Cannot SLP vectorize list: vectorization factor " 5457 << "less than 2 is not supported"; 5458 }); 5459 return false; 5460 } 5461 5462 for (Value *V : VL) { 5463 Type *Ty = V->getType(); 5464 if (!isValidElementType(Ty)) { 5465 // NOTE: the following will give user internal llvm type name, which may 5466 // not be useful. 5467 R.getORE()->emit([&]() { 5468 std::string type_str; 5469 llvm::raw_string_ostream rso(type_str); 5470 Ty->print(rso); 5471 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5472 << "Cannot SLP vectorize list: type " 5473 << rso.str() + " is unsupported by vectorizer"; 5474 }); 5475 return false; 5476 } 5477 } 5478 5479 bool Changed = false; 5480 bool CandidateFound = false; 5481 int MinCost = SLPCostThreshold; 5482 5483 // Keep track of values that were deleted by vectorizing in the loop below. 5484 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 5485 5486 unsigned NextInst = 0, MaxInst = VL.size(); 5487 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 5488 VF /= 2) { 5489 // No actual vectorization should happen, if number of parts is the same as 5490 // provided vectorization factor (i.e. the scalar type is used for vector 5491 // code during codegen). 5492 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5493 if (TTI->getNumberOfParts(VecTy) == VF) 5494 continue; 5495 for (unsigned I = NextInst; I < MaxInst; ++I) { 5496 unsigned OpsWidth = 0; 5497 5498 if (I + VF > MaxInst) 5499 OpsWidth = MaxInst - I; 5500 else 5501 OpsWidth = VF; 5502 5503 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5504 break; 5505 5506 // Check that a previous iteration of this loop did not delete the Value. 5507 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 5508 continue; 5509 5510 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5511 << "\n"); 5512 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5513 5514 R.buildTree(Ops); 5515 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5516 // TODO: check if we can allow reordering for more cases. 5517 if (AllowReorder && Order) { 5518 // TODO: reorder tree nodes without tree rebuilding. 5519 // Conceptually, there is nothing actually preventing us from trying to 5520 // reorder a larger list. In fact, we do exactly this when vectorizing 5521 // reductions. However, at this point, we only expect to get here when 5522 // there are exactly two operations. 5523 assert(Ops.size() == 2); 5524 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5525 R.buildTree(ReorderedOps, None); 5526 } 5527 if (R.isTreeTinyAndNotFullyVectorizable()) 5528 continue; 5529 5530 R.computeMinimumValueSizes(); 5531 int Cost = R.getTreeCost() - UserCost; 5532 CandidateFound = true; 5533 MinCost = std::min(MinCost, Cost); 5534 5535 if (Cost < -SLPCostThreshold) { 5536 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5537 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5538 cast<Instruction>(Ops[0])) 5539 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5540 << " and with tree size " 5541 << ore::NV("TreeSize", R.getTreeSize())); 5542 5543 R.vectorizeTree(); 5544 // Move to the next bundle. 5545 I += VF - 1; 5546 NextInst = I + 1; 5547 Changed = true; 5548 } 5549 } 5550 } 5551 5552 if (!Changed && CandidateFound) { 5553 R.getORE()->emit([&]() { 5554 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5555 << "List vectorization was possible but not beneficial with cost " 5556 << ore::NV("Cost", MinCost) << " >= " 5557 << ore::NV("Treshold", -SLPCostThreshold); 5558 }); 5559 } else if (!Changed) { 5560 R.getORE()->emit([&]() { 5561 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5562 << "Cannot SLP vectorize list: vectorization was impossible" 5563 << " with available vectorization factors"; 5564 }); 5565 } 5566 return Changed; 5567 } 5568 5569 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5570 if (!I) 5571 return false; 5572 5573 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5574 return false; 5575 5576 Value *P = I->getParent(); 5577 5578 // Vectorize in current basic block only. 5579 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5580 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5581 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5582 return false; 5583 5584 // Try to vectorize V. 5585 if (tryToVectorizePair(Op0, Op1, R)) 5586 return true; 5587 5588 auto *A = dyn_cast<BinaryOperator>(Op0); 5589 auto *B = dyn_cast<BinaryOperator>(Op1); 5590 // Try to skip B. 5591 if (B && B->hasOneUse()) { 5592 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5593 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5594 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5595 return true; 5596 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5597 return true; 5598 } 5599 5600 // Try to skip A. 5601 if (A && A->hasOneUse()) { 5602 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5603 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5604 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5605 return true; 5606 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5607 return true; 5608 } 5609 return false; 5610 } 5611 5612 /// Generate a shuffle mask to be used in a reduction tree. 5613 /// 5614 /// \param VecLen The length of the vector to be reduced. 5615 /// \param NumEltsToRdx The number of elements that should be reduced in the 5616 /// vector. 5617 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5618 /// reduction. A pairwise reduction will generate a mask of 5619 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5620 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5621 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5622 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5623 bool IsPairwise, bool IsLeft, 5624 IRBuilder<> &Builder) { 5625 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5626 5627 SmallVector<Constant *, 32> ShuffleMask( 5628 VecLen, UndefValue::get(Builder.getInt32Ty())); 5629 5630 if (IsPairwise) 5631 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5632 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5633 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5634 else 5635 // Move the upper half of the vector to the lower half. 5636 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5637 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5638 5639 return ConstantVector::get(ShuffleMask); 5640 } 5641 5642 namespace { 5643 5644 /// Model horizontal reductions. 5645 /// 5646 /// A horizontal reduction is a tree of reduction operations (currently add and 5647 /// fadd) that has operations that can be put into a vector as its leaf. 5648 /// For example, this tree: 5649 /// 5650 /// mul mul mul mul 5651 /// \ / \ / 5652 /// + + 5653 /// \ / 5654 /// + 5655 /// This tree has "mul" as its reduced values and "+" as its reduction 5656 /// operations. A reduction might be feeding into a store or a binary operation 5657 /// feeding a phi. 5658 /// ... 5659 /// \ / 5660 /// + 5661 /// | 5662 /// phi += 5663 /// 5664 /// Or: 5665 /// ... 5666 /// \ / 5667 /// + 5668 /// | 5669 /// *p = 5670 /// 5671 class HorizontalReduction { 5672 using ReductionOpsType = SmallVector<Value *, 16>; 5673 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5674 ReductionOpsListType ReductionOps; 5675 SmallVector<Value *, 32> ReducedVals; 5676 // Use map vector to make stable output. 5677 MapVector<Instruction *, Value *> ExtraArgs; 5678 5679 /// Kind of the reduction data. 5680 enum ReductionKind { 5681 RK_None, /// Not a reduction. 5682 RK_Arithmetic, /// Binary reduction data. 5683 RK_Min, /// Minimum reduction data. 5684 RK_UMin, /// Unsigned minimum reduction data. 5685 RK_Max, /// Maximum reduction data. 5686 RK_UMax, /// Unsigned maximum reduction data. 5687 }; 5688 5689 /// Contains info about operation, like its opcode, left and right operands. 5690 class OperationData { 5691 /// Opcode of the instruction. 5692 unsigned Opcode = 0; 5693 5694 /// Left operand of the reduction operation. 5695 Value *LHS = nullptr; 5696 5697 /// Right operand of the reduction operation. 5698 Value *RHS = nullptr; 5699 5700 /// Kind of the reduction operation. 5701 ReductionKind Kind = RK_None; 5702 5703 /// True if float point min/max reduction has no NaNs. 5704 bool NoNaN = false; 5705 5706 /// Checks if the reduction operation can be vectorized. 5707 bool isVectorizable() const { 5708 return LHS && RHS && 5709 // We currently only support add/mul/logical && min/max reductions. 5710 ((Kind == RK_Arithmetic && 5711 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5712 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5713 Opcode == Instruction::And || Opcode == Instruction::Or || 5714 Opcode == Instruction::Xor)) || 5715 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5716 (Kind == RK_Min || Kind == RK_Max)) || 5717 (Opcode == Instruction::ICmp && 5718 (Kind == RK_UMin || Kind == RK_UMax))); 5719 } 5720 5721 /// Creates reduction operation with the current opcode. 5722 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5723 assert(isVectorizable() && 5724 "Expected add|fadd or min/max reduction operation."); 5725 Value *Cmp = nullptr; 5726 switch (Kind) { 5727 case RK_Arithmetic: 5728 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5729 Name); 5730 case RK_Min: 5731 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5732 : Builder.CreateFCmpOLT(LHS, RHS); 5733 break; 5734 case RK_Max: 5735 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5736 : Builder.CreateFCmpOGT(LHS, RHS); 5737 break; 5738 case RK_UMin: 5739 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5740 Cmp = Builder.CreateICmpULT(LHS, RHS); 5741 break; 5742 case RK_UMax: 5743 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5744 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5745 break; 5746 case RK_None: 5747 llvm_unreachable("Unknown reduction operation."); 5748 } 5749 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5750 } 5751 5752 public: 5753 explicit OperationData() = default; 5754 5755 /// Construction for reduced values. They are identified by opcode only and 5756 /// don't have associated LHS/RHS values. 5757 explicit OperationData(Value *V) { 5758 if (auto *I = dyn_cast<Instruction>(V)) 5759 Opcode = I->getOpcode(); 5760 } 5761 5762 /// Constructor for reduction operations with opcode and its left and 5763 /// right operands. 5764 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5765 bool NoNaN = false) 5766 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5767 assert(Kind != RK_None && "One of the reduction operations is expected."); 5768 } 5769 5770 explicit operator bool() const { return Opcode; } 5771 5772 /// Get the index of the first operand. 5773 unsigned getFirstOperandIndex() const { 5774 assert(!!*this && "The opcode is not set."); 5775 switch (Kind) { 5776 case RK_Min: 5777 case RK_UMin: 5778 case RK_Max: 5779 case RK_UMax: 5780 return 1; 5781 case RK_Arithmetic: 5782 case RK_None: 5783 break; 5784 } 5785 return 0; 5786 } 5787 5788 /// Total number of operands in the reduction operation. 5789 unsigned getNumberOfOperands() const { 5790 assert(Kind != RK_None && !!*this && LHS && RHS && 5791 "Expected reduction operation."); 5792 switch (Kind) { 5793 case RK_Arithmetic: 5794 return 2; 5795 case RK_Min: 5796 case RK_UMin: 5797 case RK_Max: 5798 case RK_UMax: 5799 return 3; 5800 case RK_None: 5801 break; 5802 } 5803 llvm_unreachable("Reduction kind is not set"); 5804 } 5805 5806 /// Checks if the operation has the same parent as \p P. 5807 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5808 assert(Kind != RK_None && !!*this && LHS && RHS && 5809 "Expected reduction operation."); 5810 if (!IsRedOp) 5811 return I->getParent() == P; 5812 switch (Kind) { 5813 case RK_Arithmetic: 5814 // Arithmetic reduction operation must be used once only. 5815 return I->getParent() == P; 5816 case RK_Min: 5817 case RK_UMin: 5818 case RK_Max: 5819 case RK_UMax: { 5820 // SelectInst must be used twice while the condition op must have single 5821 // use only. 5822 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5823 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5824 } 5825 case RK_None: 5826 break; 5827 } 5828 llvm_unreachable("Reduction kind is not set"); 5829 } 5830 /// Expected number of uses for reduction operations/reduced values. 5831 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5832 assert(Kind != RK_None && !!*this && LHS && RHS && 5833 "Expected reduction operation."); 5834 switch (Kind) { 5835 case RK_Arithmetic: 5836 return I->hasOneUse(); 5837 case RK_Min: 5838 case RK_UMin: 5839 case RK_Max: 5840 case RK_UMax: 5841 return I->hasNUses(2) && 5842 (!IsReductionOp || 5843 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5844 case RK_None: 5845 break; 5846 } 5847 llvm_unreachable("Reduction kind is not set"); 5848 } 5849 5850 /// Initializes the list of reduction operations. 5851 void initReductionOps(ReductionOpsListType &ReductionOps) { 5852 assert(Kind != RK_None && !!*this && LHS && RHS && 5853 "Expected reduction operation."); 5854 switch (Kind) { 5855 case RK_Arithmetic: 5856 ReductionOps.assign(1, ReductionOpsType()); 5857 break; 5858 case RK_Min: 5859 case RK_UMin: 5860 case RK_Max: 5861 case RK_UMax: 5862 ReductionOps.assign(2, ReductionOpsType()); 5863 break; 5864 case RK_None: 5865 llvm_unreachable("Reduction kind is not set"); 5866 } 5867 } 5868 /// Add all reduction operations for the reduction instruction \p I. 5869 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5870 assert(Kind != RK_None && !!*this && LHS && RHS && 5871 "Expected reduction operation."); 5872 switch (Kind) { 5873 case RK_Arithmetic: 5874 ReductionOps[0].emplace_back(I); 5875 break; 5876 case RK_Min: 5877 case RK_UMin: 5878 case RK_Max: 5879 case RK_UMax: 5880 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5881 ReductionOps[1].emplace_back(I); 5882 break; 5883 case RK_None: 5884 llvm_unreachable("Reduction kind is not set"); 5885 } 5886 } 5887 5888 /// Checks if instruction is associative and can be vectorized. 5889 bool isAssociative(Instruction *I) const { 5890 assert(Kind != RK_None && *this && LHS && RHS && 5891 "Expected reduction operation."); 5892 switch (Kind) { 5893 case RK_Arithmetic: 5894 return I->isAssociative(); 5895 case RK_Min: 5896 case RK_Max: 5897 return Opcode == Instruction::ICmp || 5898 cast<Instruction>(I->getOperand(0))->isFast(); 5899 case RK_UMin: 5900 case RK_UMax: 5901 assert(Opcode == Instruction::ICmp && 5902 "Only integer compare operation is expected."); 5903 return true; 5904 case RK_None: 5905 break; 5906 } 5907 llvm_unreachable("Reduction kind is not set"); 5908 } 5909 5910 /// Checks if the reduction operation can be vectorized. 5911 bool isVectorizable(Instruction *I) const { 5912 return isVectorizable() && isAssociative(I); 5913 } 5914 5915 /// Checks if two operation data are both a reduction op or both a reduced 5916 /// value. 5917 bool operator==(const OperationData &OD) { 5918 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5919 "One of the comparing operations is incorrect."); 5920 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5921 } 5922 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5923 void clear() { 5924 Opcode = 0; 5925 LHS = nullptr; 5926 RHS = nullptr; 5927 Kind = RK_None; 5928 NoNaN = false; 5929 } 5930 5931 /// Get the opcode of the reduction operation. 5932 unsigned getOpcode() const { 5933 assert(isVectorizable() && "Expected vectorizable operation."); 5934 return Opcode; 5935 } 5936 5937 /// Get kind of reduction data. 5938 ReductionKind getKind() const { return Kind; } 5939 Value *getLHS() const { return LHS; } 5940 Value *getRHS() const { return RHS; } 5941 Type *getConditionType() const { 5942 switch (Kind) { 5943 case RK_Arithmetic: 5944 return nullptr; 5945 case RK_Min: 5946 case RK_Max: 5947 case RK_UMin: 5948 case RK_UMax: 5949 return CmpInst::makeCmpResultType(LHS->getType()); 5950 case RK_None: 5951 break; 5952 } 5953 llvm_unreachable("Reduction kind is not set"); 5954 } 5955 5956 /// Creates reduction operation with the current opcode with the IR flags 5957 /// from \p ReductionOps. 5958 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5959 const ReductionOpsListType &ReductionOps) const { 5960 assert(isVectorizable() && 5961 "Expected add|fadd or min/max reduction operation."); 5962 auto *Op = createOp(Builder, Name); 5963 switch (Kind) { 5964 case RK_Arithmetic: 5965 propagateIRFlags(Op, ReductionOps[0]); 5966 return Op; 5967 case RK_Min: 5968 case RK_Max: 5969 case RK_UMin: 5970 case RK_UMax: 5971 if (auto *SI = dyn_cast<SelectInst>(Op)) 5972 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5973 propagateIRFlags(Op, ReductionOps[1]); 5974 return Op; 5975 case RK_None: 5976 break; 5977 } 5978 llvm_unreachable("Unknown reduction operation."); 5979 } 5980 /// Creates reduction operation with the current opcode with the IR flags 5981 /// from \p I. 5982 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5983 Instruction *I) const { 5984 assert(isVectorizable() && 5985 "Expected add|fadd or min/max reduction operation."); 5986 auto *Op = createOp(Builder, Name); 5987 switch (Kind) { 5988 case RK_Arithmetic: 5989 propagateIRFlags(Op, I); 5990 return Op; 5991 case RK_Min: 5992 case RK_Max: 5993 case RK_UMin: 5994 case RK_UMax: 5995 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5996 propagateIRFlags(SI->getCondition(), 5997 cast<SelectInst>(I)->getCondition()); 5998 } 5999 propagateIRFlags(Op, I); 6000 return Op; 6001 case RK_None: 6002 break; 6003 } 6004 llvm_unreachable("Unknown reduction operation."); 6005 } 6006 6007 TargetTransformInfo::ReductionFlags getFlags() const { 6008 TargetTransformInfo::ReductionFlags Flags; 6009 Flags.NoNaN = NoNaN; 6010 switch (Kind) { 6011 case RK_Arithmetic: 6012 break; 6013 case RK_Min: 6014 Flags.IsSigned = Opcode == Instruction::ICmp; 6015 Flags.IsMaxOp = false; 6016 break; 6017 case RK_Max: 6018 Flags.IsSigned = Opcode == Instruction::ICmp; 6019 Flags.IsMaxOp = true; 6020 break; 6021 case RK_UMin: 6022 Flags.IsSigned = false; 6023 Flags.IsMaxOp = false; 6024 break; 6025 case RK_UMax: 6026 Flags.IsSigned = false; 6027 Flags.IsMaxOp = true; 6028 break; 6029 case RK_None: 6030 llvm_unreachable("Reduction kind is not set"); 6031 } 6032 return Flags; 6033 } 6034 }; 6035 6036 WeakTrackingVH ReductionRoot; 6037 6038 /// The operation data of the reduction operation. 6039 OperationData ReductionData; 6040 6041 /// The operation data of the values we perform a reduction on. 6042 OperationData ReducedValueData; 6043 6044 /// Should we model this reduction as a pairwise reduction tree or a tree that 6045 /// splits the vector in halves and adds those halves. 6046 bool IsPairwiseReduction = false; 6047 6048 /// Checks if the ParentStackElem.first should be marked as a reduction 6049 /// operation with an extra argument or as extra argument itself. 6050 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6051 Value *ExtraArg) { 6052 if (ExtraArgs.count(ParentStackElem.first)) { 6053 ExtraArgs[ParentStackElem.first] = nullptr; 6054 // We ran into something like: 6055 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6056 // The whole ParentStackElem.first should be considered as an extra value 6057 // in this case. 6058 // Do not perform analysis of remaining operands of ParentStackElem.first 6059 // instruction, this whole instruction is an extra argument. 6060 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6061 } else { 6062 // We ran into something like: 6063 // ParentStackElem.first += ... + ExtraArg + ... 6064 ExtraArgs[ParentStackElem.first] = ExtraArg; 6065 } 6066 } 6067 6068 static OperationData getOperationData(Value *V) { 6069 if (!V) 6070 return OperationData(); 6071 6072 Value *LHS; 6073 Value *RHS; 6074 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6075 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6076 RK_Arithmetic); 6077 } 6078 if (auto *Select = dyn_cast<SelectInst>(V)) { 6079 // Look for a min/max pattern. 6080 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6081 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6082 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6083 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6084 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6085 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6086 return OperationData( 6087 Instruction::FCmp, LHS, RHS, RK_Min, 6088 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6089 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6090 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6091 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6092 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6093 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6094 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6095 return OperationData( 6096 Instruction::FCmp, LHS, RHS, RK_Max, 6097 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6098 } else { 6099 // Try harder: look for min/max pattern based on instructions producing 6100 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6101 // During the intermediate stages of SLP, it's very common to have 6102 // pattern like this (since optimizeGatherSequence is run only once 6103 // at the end): 6104 // %1 = extractelement <2 x i32> %a, i32 0 6105 // %2 = extractelement <2 x i32> %a, i32 1 6106 // %cond = icmp sgt i32 %1, %2 6107 // %3 = extractelement <2 x i32> %a, i32 0 6108 // %4 = extractelement <2 x i32> %a, i32 1 6109 // %select = select i1 %cond, i32 %3, i32 %4 6110 CmpInst::Predicate Pred; 6111 Instruction *L1; 6112 Instruction *L2; 6113 6114 LHS = Select->getTrueValue(); 6115 RHS = Select->getFalseValue(); 6116 Value *Cond = Select->getCondition(); 6117 6118 // TODO: Support inverse predicates. 6119 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6120 if (!isa<ExtractElementInst>(RHS) || 6121 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6122 return OperationData(V); 6123 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6124 if (!isa<ExtractElementInst>(LHS) || 6125 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6126 return OperationData(V); 6127 } else { 6128 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6129 return OperationData(V); 6130 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6131 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6132 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6133 return OperationData(V); 6134 } 6135 switch (Pred) { 6136 default: 6137 return OperationData(V); 6138 6139 case CmpInst::ICMP_ULT: 6140 case CmpInst::ICMP_ULE: 6141 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6142 6143 case CmpInst::ICMP_SLT: 6144 case CmpInst::ICMP_SLE: 6145 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6146 6147 case CmpInst::FCMP_OLT: 6148 case CmpInst::FCMP_OLE: 6149 case CmpInst::FCMP_ULT: 6150 case CmpInst::FCMP_ULE: 6151 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6152 cast<Instruction>(Cond)->hasNoNaNs()); 6153 6154 case CmpInst::ICMP_UGT: 6155 case CmpInst::ICMP_UGE: 6156 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6157 6158 case CmpInst::ICMP_SGT: 6159 case CmpInst::ICMP_SGE: 6160 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6161 6162 case CmpInst::FCMP_OGT: 6163 case CmpInst::FCMP_OGE: 6164 case CmpInst::FCMP_UGT: 6165 case CmpInst::FCMP_UGE: 6166 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6167 cast<Instruction>(Cond)->hasNoNaNs()); 6168 } 6169 } 6170 } 6171 return OperationData(V); 6172 } 6173 6174 public: 6175 HorizontalReduction() = default; 6176 6177 /// Try to find a reduction tree. 6178 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6179 assert((!Phi || is_contained(Phi->operands(), B)) && 6180 "Thi phi needs to use the binary operator"); 6181 6182 ReductionData = getOperationData(B); 6183 6184 // We could have a initial reductions that is not an add. 6185 // r *= v1 + v2 + v3 + v4 6186 // In such a case start looking for a tree rooted in the first '+'. 6187 if (Phi) { 6188 if (ReductionData.getLHS() == Phi) { 6189 Phi = nullptr; 6190 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6191 ReductionData = getOperationData(B); 6192 } else if (ReductionData.getRHS() == Phi) { 6193 Phi = nullptr; 6194 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6195 ReductionData = getOperationData(B); 6196 } 6197 } 6198 6199 if (!ReductionData.isVectorizable(B)) 6200 return false; 6201 6202 Type *Ty = B->getType(); 6203 if (!isValidElementType(Ty)) 6204 return false; 6205 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6206 return false; 6207 6208 ReducedValueData.clear(); 6209 ReductionRoot = B; 6210 6211 // Post order traverse the reduction tree starting at B. We only handle true 6212 // trees containing only binary operators. 6213 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6214 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6215 ReductionData.initReductionOps(ReductionOps); 6216 while (!Stack.empty()) { 6217 Instruction *TreeN = Stack.back().first; 6218 unsigned EdgeToVist = Stack.back().second++; 6219 OperationData OpData = getOperationData(TreeN); 6220 bool IsReducedValue = OpData != ReductionData; 6221 6222 // Postorder vist. 6223 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6224 if (IsReducedValue) 6225 ReducedVals.push_back(TreeN); 6226 else { 6227 auto I = ExtraArgs.find(TreeN); 6228 if (I != ExtraArgs.end() && !I->second) { 6229 // Check if TreeN is an extra argument of its parent operation. 6230 if (Stack.size() <= 1) { 6231 // TreeN can't be an extra argument as it is a root reduction 6232 // operation. 6233 return false; 6234 } 6235 // Yes, TreeN is an extra argument, do not add it to a list of 6236 // reduction operations. 6237 // Stack[Stack.size() - 2] always points to the parent operation. 6238 markExtraArg(Stack[Stack.size() - 2], TreeN); 6239 ExtraArgs.erase(TreeN); 6240 } else 6241 ReductionData.addReductionOps(TreeN, ReductionOps); 6242 } 6243 // Retract. 6244 Stack.pop_back(); 6245 continue; 6246 } 6247 6248 // Visit left or right. 6249 Value *NextV = TreeN->getOperand(EdgeToVist); 6250 if (NextV != Phi) { 6251 auto *I = dyn_cast<Instruction>(NextV); 6252 OpData = getOperationData(I); 6253 // Continue analysis if the next operand is a reduction operation or 6254 // (possibly) a reduced value. If the reduced value opcode is not set, 6255 // the first met operation != reduction operation is considered as the 6256 // reduced value class. 6257 if (I && (!ReducedValueData || OpData == ReducedValueData || 6258 OpData == ReductionData)) { 6259 const bool IsReductionOperation = OpData == ReductionData; 6260 // Only handle trees in the current basic block. 6261 if (!ReductionData.hasSameParent(I, B->getParent(), 6262 IsReductionOperation)) { 6263 // I is an extra argument for TreeN (its parent operation). 6264 markExtraArg(Stack.back(), I); 6265 continue; 6266 } 6267 6268 // Each tree node needs to have minimal number of users except for the 6269 // ultimate reduction. 6270 if (!ReductionData.hasRequiredNumberOfUses(I, 6271 OpData == ReductionData) && 6272 I != B) { 6273 // I is an extra argument for TreeN (its parent operation). 6274 markExtraArg(Stack.back(), I); 6275 continue; 6276 } 6277 6278 if (IsReductionOperation) { 6279 // We need to be able to reassociate the reduction operations. 6280 if (!OpData.isAssociative(I)) { 6281 // I is an extra argument for TreeN (its parent operation). 6282 markExtraArg(Stack.back(), I); 6283 continue; 6284 } 6285 } else if (ReducedValueData && 6286 ReducedValueData != OpData) { 6287 // Make sure that the opcodes of the operations that we are going to 6288 // reduce match. 6289 // I is an extra argument for TreeN (its parent operation). 6290 markExtraArg(Stack.back(), I); 6291 continue; 6292 } else if (!ReducedValueData) 6293 ReducedValueData = OpData; 6294 6295 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6296 continue; 6297 } 6298 } 6299 // NextV is an extra argument for TreeN (its parent operation). 6300 markExtraArg(Stack.back(), NextV); 6301 } 6302 return true; 6303 } 6304 6305 /// Attempt to vectorize the tree found by 6306 /// matchAssociativeReduction. 6307 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6308 if (ReducedVals.empty()) 6309 return false; 6310 6311 // If there is a sufficient number of reduction values, reduce 6312 // to a nearby power-of-2. Can safely generate oversized 6313 // vectors and rely on the backend to split them to legal sizes. 6314 unsigned NumReducedVals = ReducedVals.size(); 6315 if (NumReducedVals < 4) 6316 return false; 6317 6318 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6319 6320 Value *VectorizedTree = nullptr; 6321 6322 // FIXME: Fast-math-flags should be set based on the instructions in the 6323 // reduction (not all of 'fast' are required). 6324 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6325 FastMathFlags Unsafe; 6326 Unsafe.setFast(); 6327 Builder.setFastMathFlags(Unsafe); 6328 unsigned i = 0; 6329 6330 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6331 // The same extra argument may be used several time, so log each attempt 6332 // to use it. 6333 for (auto &Pair : ExtraArgs) { 6334 assert(Pair.first && "DebugLoc must be set."); 6335 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6336 } 6337 // The reduction root is used as the insertion point for new instructions, 6338 // so set it as externally used to prevent it from being deleted. 6339 ExternallyUsedValues[ReductionRoot]; 6340 SmallVector<Value *, 16> IgnoreList; 6341 for (auto &V : ReductionOps) 6342 IgnoreList.append(V.begin(), V.end()); 6343 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6344 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6345 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6346 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6347 // TODO: Handle orders of size less than number of elements in the vector. 6348 if (Order && Order->size() == VL.size()) { 6349 // TODO: reorder tree nodes without tree rebuilding. 6350 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6351 llvm::transform(*Order, ReorderedOps.begin(), 6352 [VL](const unsigned Idx) { return VL[Idx]; }); 6353 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6354 } 6355 if (V.isTreeTinyAndNotFullyVectorizable()) 6356 break; 6357 6358 V.computeMinimumValueSizes(); 6359 6360 // Estimate cost. 6361 int TreeCost = V.getTreeCost(); 6362 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6363 int Cost = TreeCost + ReductionCost; 6364 if (Cost >= -SLPCostThreshold) { 6365 V.getORE()->emit([&]() { 6366 return OptimizationRemarkMissed( 6367 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6368 << "Vectorizing horizontal reduction is possible" 6369 << "but not beneficial with cost " 6370 << ore::NV("Cost", Cost) << " and threshold " 6371 << ore::NV("Threshold", -SLPCostThreshold); 6372 }); 6373 break; 6374 } 6375 6376 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6377 << Cost << ". (HorRdx)\n"); 6378 V.getORE()->emit([&]() { 6379 return OptimizationRemark( 6380 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6381 << "Vectorized horizontal reduction with cost " 6382 << ore::NV("Cost", Cost) << " and with tree size " 6383 << ore::NV("TreeSize", V.getTreeSize()); 6384 }); 6385 6386 // Vectorize a tree. 6387 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6388 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6389 6390 // Emit a reduction. 6391 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6392 Value *ReducedSubTree = 6393 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6394 if (VectorizedTree) { 6395 Builder.SetCurrentDebugLocation(Loc); 6396 OperationData VectReductionData(ReductionData.getOpcode(), 6397 VectorizedTree, ReducedSubTree, 6398 ReductionData.getKind()); 6399 VectorizedTree = 6400 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6401 } else 6402 VectorizedTree = ReducedSubTree; 6403 i += ReduxWidth; 6404 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6405 } 6406 6407 if (VectorizedTree) { 6408 // Finish the reduction. 6409 for (; i < NumReducedVals; ++i) { 6410 auto *I = cast<Instruction>(ReducedVals[i]); 6411 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6412 OperationData VectReductionData(ReductionData.getOpcode(), 6413 VectorizedTree, I, 6414 ReductionData.getKind()); 6415 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6416 } 6417 for (auto &Pair : ExternallyUsedValues) { 6418 // Add each externally used value to the final reduction. 6419 for (auto *I : Pair.second) { 6420 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6421 OperationData VectReductionData(ReductionData.getOpcode(), 6422 VectorizedTree, Pair.first, 6423 ReductionData.getKind()); 6424 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6425 } 6426 } 6427 // Update users. 6428 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6429 } 6430 return VectorizedTree != nullptr; 6431 } 6432 6433 unsigned numReductionValues() const { 6434 return ReducedVals.size(); 6435 } 6436 6437 private: 6438 /// Calculate the cost of a reduction. 6439 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6440 unsigned ReduxWidth) { 6441 Type *ScalarTy = FirstReducedVal->getType(); 6442 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6443 6444 int PairwiseRdxCost; 6445 int SplittingRdxCost; 6446 switch (ReductionData.getKind()) { 6447 case RK_Arithmetic: 6448 PairwiseRdxCost = 6449 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6450 /*IsPairwiseForm=*/true); 6451 SplittingRdxCost = 6452 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6453 /*IsPairwiseForm=*/false); 6454 break; 6455 case RK_Min: 6456 case RK_Max: 6457 case RK_UMin: 6458 case RK_UMax: { 6459 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6460 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6461 ReductionData.getKind() == RK_UMax; 6462 PairwiseRdxCost = 6463 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6464 /*IsPairwiseForm=*/true, IsUnsigned); 6465 SplittingRdxCost = 6466 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6467 /*IsPairwiseForm=*/false, IsUnsigned); 6468 break; 6469 } 6470 case RK_None: 6471 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6472 } 6473 6474 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6475 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6476 6477 int ScalarReduxCost = 0; 6478 switch (ReductionData.getKind()) { 6479 case RK_Arithmetic: 6480 ScalarReduxCost = 6481 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6482 break; 6483 case RK_Min: 6484 case RK_Max: 6485 case RK_UMin: 6486 case RK_UMax: 6487 ScalarReduxCost = 6488 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6489 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6490 CmpInst::makeCmpResultType(ScalarTy)); 6491 break; 6492 case RK_None: 6493 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6494 } 6495 ScalarReduxCost *= (ReduxWidth - 1); 6496 6497 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6498 << " for reduction that starts with " << *FirstReducedVal 6499 << " (It is a " 6500 << (IsPairwiseReduction ? "pairwise" : "splitting") 6501 << " reduction)\n"); 6502 6503 return VecReduxCost - ScalarReduxCost; 6504 } 6505 6506 /// Emit a horizontal reduction of the vectorized value. 6507 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6508 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6509 assert(VectorizedValue && "Need to have a vectorized tree node"); 6510 assert(isPowerOf2_32(ReduxWidth) && 6511 "We only handle power-of-two reductions for now"); 6512 6513 if (!IsPairwiseReduction) { 6514 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6515 // to 'fast'. 6516 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6517 return createSimpleTargetReduction( 6518 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6519 ReductionData.getFlags(), ReductionOps.back()); 6520 } 6521 6522 Value *TmpVec = VectorizedValue; 6523 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6524 Value *LeftMask = 6525 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6526 Value *RightMask = 6527 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6528 6529 Value *LeftShuf = Builder.CreateShuffleVector( 6530 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6531 Value *RightShuf = Builder.CreateShuffleVector( 6532 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6533 "rdx.shuf.r"); 6534 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6535 RightShuf, ReductionData.getKind()); 6536 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6537 } 6538 6539 // The result is in the first element of the vector. 6540 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6541 } 6542 }; 6543 6544 } // end anonymous namespace 6545 6546 /// Recognize construction of vectors like 6547 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6548 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6549 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6550 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6551 /// starting from the last insertelement instruction. 6552 /// 6553 /// Returns true if it matches 6554 static bool findBuildVector(InsertElementInst *LastInsertElem, 6555 TargetTransformInfo *TTI, 6556 SmallVectorImpl<Value *> &BuildVectorOpds, 6557 int &UserCost) { 6558 UserCost = 0; 6559 Value *V = nullptr; 6560 do { 6561 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6562 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6563 LastInsertElem->getType(), 6564 CI->getZExtValue()); 6565 } 6566 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6567 V = LastInsertElem->getOperand(0); 6568 if (isa<UndefValue>(V)) 6569 break; 6570 LastInsertElem = dyn_cast<InsertElementInst>(V); 6571 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6572 return false; 6573 } while (true); 6574 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6575 return true; 6576 } 6577 6578 /// Like findBuildVector, but looks for construction of aggregate. 6579 /// 6580 /// \return true if it matches. 6581 static bool findBuildAggregate(InsertValueInst *IV, 6582 SmallVectorImpl<Value *> &BuildVectorOpds) { 6583 Value *V; 6584 do { 6585 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6586 V = IV->getAggregateOperand(); 6587 if (isa<UndefValue>(V)) 6588 break; 6589 IV = dyn_cast<InsertValueInst>(V); 6590 if (!IV || !IV->hasOneUse()) 6591 return false; 6592 } while (true); 6593 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6594 return true; 6595 } 6596 6597 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6598 return V->getType() < V2->getType(); 6599 } 6600 6601 /// Try and get a reduction value from a phi node. 6602 /// 6603 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6604 /// if they come from either \p ParentBB or a containing loop latch. 6605 /// 6606 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6607 /// if not possible. 6608 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6609 BasicBlock *ParentBB, LoopInfo *LI) { 6610 // There are situations where the reduction value is not dominated by the 6611 // reduction phi. Vectorizing such cases has been reported to cause 6612 // miscompiles. See PR25787. 6613 auto DominatedReduxValue = [&](Value *R) { 6614 return isa<Instruction>(R) && 6615 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6616 }; 6617 6618 Value *Rdx = nullptr; 6619 6620 // Return the incoming value if it comes from the same BB as the phi node. 6621 if (P->getIncomingBlock(0) == ParentBB) { 6622 Rdx = P->getIncomingValue(0); 6623 } else if (P->getIncomingBlock(1) == ParentBB) { 6624 Rdx = P->getIncomingValue(1); 6625 } 6626 6627 if (Rdx && DominatedReduxValue(Rdx)) 6628 return Rdx; 6629 6630 // Otherwise, check whether we have a loop latch to look at. 6631 Loop *BBL = LI->getLoopFor(ParentBB); 6632 if (!BBL) 6633 return nullptr; 6634 BasicBlock *BBLatch = BBL->getLoopLatch(); 6635 if (!BBLatch) 6636 return nullptr; 6637 6638 // There is a loop latch, return the incoming value if it comes from 6639 // that. This reduction pattern occasionally turns up. 6640 if (P->getIncomingBlock(0) == BBLatch) { 6641 Rdx = P->getIncomingValue(0); 6642 } else if (P->getIncomingBlock(1) == BBLatch) { 6643 Rdx = P->getIncomingValue(1); 6644 } 6645 6646 if (Rdx && DominatedReduxValue(Rdx)) 6647 return Rdx; 6648 6649 return nullptr; 6650 } 6651 6652 /// Attempt to reduce a horizontal reduction. 6653 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6654 /// with reduction operators \a Root (or one of its operands) in a basic block 6655 /// \a BB, then check if it can be done. If horizontal reduction is not found 6656 /// and root instruction is a binary operation, vectorization of the operands is 6657 /// attempted. 6658 /// \returns true if a horizontal reduction was matched and reduced or operands 6659 /// of one of the binary instruction were vectorized. 6660 /// \returns false if a horizontal reduction was not matched (or not possible) 6661 /// or no vectorization of any binary operation feeding \a Root instruction was 6662 /// performed. 6663 static bool tryToVectorizeHorReductionOrInstOperands( 6664 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6665 TargetTransformInfo *TTI, 6666 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6667 if (!ShouldVectorizeHor) 6668 return false; 6669 6670 if (!Root) 6671 return false; 6672 6673 if (Root->getParent() != BB || isa<PHINode>(Root)) 6674 return false; 6675 // Start analysis starting from Root instruction. If horizontal reduction is 6676 // found, try to vectorize it. If it is not a horizontal reduction or 6677 // vectorization is not possible or not effective, and currently analyzed 6678 // instruction is a binary operation, try to vectorize the operands, using 6679 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6680 // the same procedure considering each operand as a possible root of the 6681 // horizontal reduction. 6682 // Interrupt the process if the Root instruction itself was vectorized or all 6683 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6684 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6685 SmallPtrSet<Value *, 8> VisitedInstrs; 6686 bool Res = false; 6687 while (!Stack.empty()) { 6688 Value *V; 6689 unsigned Level; 6690 std::tie(V, Level) = Stack.pop_back_val(); 6691 if (!V) 6692 continue; 6693 auto *Inst = dyn_cast<Instruction>(V); 6694 if (!Inst) 6695 continue; 6696 auto *BI = dyn_cast<BinaryOperator>(Inst); 6697 auto *SI = dyn_cast<SelectInst>(Inst); 6698 if (BI || SI) { 6699 HorizontalReduction HorRdx; 6700 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6701 if (HorRdx.tryToReduce(R, TTI)) { 6702 Res = true; 6703 // Set P to nullptr to avoid re-analysis of phi node in 6704 // matchAssociativeReduction function unless this is the root node. 6705 P = nullptr; 6706 continue; 6707 } 6708 } 6709 if (P && BI) { 6710 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6711 if (Inst == P) 6712 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6713 if (!Inst) { 6714 // Set P to nullptr to avoid re-analysis of phi node in 6715 // matchAssociativeReduction function unless this is the root node. 6716 P = nullptr; 6717 continue; 6718 } 6719 } 6720 } 6721 // Set P to nullptr to avoid re-analysis of phi node in 6722 // matchAssociativeReduction function unless this is the root node. 6723 P = nullptr; 6724 if (Vectorize(Inst, R)) { 6725 Res = true; 6726 continue; 6727 } 6728 6729 // Try to vectorize operands. 6730 // Continue analysis for the instruction from the same basic block only to 6731 // save compile time. 6732 if (++Level < RecursionMaxDepth) 6733 for (auto *Op : Inst->operand_values()) 6734 if (VisitedInstrs.insert(Op).second) 6735 if (auto *I = dyn_cast<Instruction>(Op)) 6736 if (!isa<PHINode>(I) && I->getParent() == BB) 6737 Stack.emplace_back(Op, Level); 6738 } 6739 return Res; 6740 } 6741 6742 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6743 BasicBlock *BB, BoUpSLP &R, 6744 TargetTransformInfo *TTI) { 6745 if (!V) 6746 return false; 6747 auto *I = dyn_cast<Instruction>(V); 6748 if (!I) 6749 return false; 6750 6751 if (!isa<BinaryOperator>(I)) 6752 P = nullptr; 6753 // Try to match and vectorize a horizontal reduction. 6754 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6755 return tryToVectorize(I, R); 6756 }; 6757 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6758 ExtraVectorization); 6759 } 6760 6761 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6762 BasicBlock *BB, BoUpSLP &R) { 6763 const DataLayout &DL = BB->getModule()->getDataLayout(); 6764 if (!R.canMapToVector(IVI->getType(), DL)) 6765 return false; 6766 6767 SmallVector<Value *, 16> BuildVectorOpds; 6768 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6769 return false; 6770 6771 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6772 // Aggregate value is unlikely to be processed in vector register, we need to 6773 // extract scalars into scalar registers, so NeedExtraction is set true. 6774 return tryToVectorizeList(BuildVectorOpds, R); 6775 } 6776 6777 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6778 BasicBlock *BB, BoUpSLP &R) { 6779 int UserCost; 6780 SmallVector<Value *, 16> BuildVectorOpds; 6781 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6782 (llvm::all_of(BuildVectorOpds, 6783 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6784 isShuffle(BuildVectorOpds))) 6785 return false; 6786 6787 // Vectorize starting with the build vector operands ignoring the BuildVector 6788 // instructions for the purpose of scheduling and user extraction. 6789 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6790 } 6791 6792 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6793 BoUpSLP &R) { 6794 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6795 return true; 6796 6797 bool OpsChanged = false; 6798 for (int Idx = 0; Idx < 2; ++Idx) { 6799 OpsChanged |= 6800 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6801 } 6802 return OpsChanged; 6803 } 6804 6805 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6806 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6807 bool OpsChanged = false; 6808 for (auto &VH : reverse(Instructions)) { 6809 auto *I = dyn_cast_or_null<Instruction>(VH); 6810 if (!I) 6811 continue; 6812 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6813 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6814 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6815 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6816 else if (auto *CI = dyn_cast<CmpInst>(I)) 6817 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6818 } 6819 Instructions.clear(); 6820 return OpsChanged; 6821 } 6822 6823 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6824 bool Changed = false; 6825 SmallVector<Value *, 4> Incoming; 6826 SmallPtrSet<Value *, 16> VisitedInstrs; 6827 6828 bool HaveVectorizedPhiNodes = true; 6829 while (HaveVectorizedPhiNodes) { 6830 HaveVectorizedPhiNodes = false; 6831 6832 // Collect the incoming values from the PHIs. 6833 Incoming.clear(); 6834 for (Instruction &I : *BB) { 6835 PHINode *P = dyn_cast<PHINode>(&I); 6836 if (!P) 6837 break; 6838 6839 if (!VisitedInstrs.count(P)) 6840 Incoming.push_back(P); 6841 } 6842 6843 // Sort by type. 6844 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6845 6846 // Try to vectorize elements base on their type. 6847 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6848 E = Incoming.end(); 6849 IncIt != E;) { 6850 6851 // Look for the next elements with the same type. 6852 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6853 while (SameTypeIt != E && 6854 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6855 VisitedInstrs.insert(*SameTypeIt); 6856 ++SameTypeIt; 6857 } 6858 6859 // Try to vectorize them. 6860 unsigned NumElts = (SameTypeIt - IncIt); 6861 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6862 << NumElts << ")\n"); 6863 // The order in which the phi nodes appear in the program does not matter. 6864 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6865 // is done when there are exactly two elements since tryToVectorizeList 6866 // asserts that there are only two values when AllowReorder is true. 6867 bool AllowReorder = NumElts == 2; 6868 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6869 /*UserCost=*/0, AllowReorder)) { 6870 // Success start over because instructions might have been changed. 6871 HaveVectorizedPhiNodes = true; 6872 Changed = true; 6873 break; 6874 } 6875 6876 // Start over at the next instruction of a different type (or the end). 6877 IncIt = SameTypeIt; 6878 } 6879 } 6880 6881 VisitedInstrs.clear(); 6882 6883 SmallVector<WeakVH, 8> PostProcessInstructions; 6884 SmallDenseSet<Instruction *, 4> KeyNodes; 6885 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6886 // We may go through BB multiple times so skip the one we have checked. 6887 if (!VisitedInstrs.insert(&*it).second) { 6888 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6889 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6890 // We would like to start over since some instructions are deleted 6891 // and the iterator may become invalid value. 6892 Changed = true; 6893 it = BB->begin(); 6894 e = BB->end(); 6895 } 6896 continue; 6897 } 6898 6899 if (isa<DbgInfoIntrinsic>(it)) 6900 continue; 6901 6902 // Try to vectorize reductions that use PHINodes. 6903 if (PHINode *P = dyn_cast<PHINode>(it)) { 6904 // Check that the PHI is a reduction PHI. 6905 if (P->getNumIncomingValues() != 2) 6906 return Changed; 6907 6908 // Try to match and vectorize a horizontal reduction. 6909 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6910 TTI)) { 6911 Changed = true; 6912 it = BB->begin(); 6913 e = BB->end(); 6914 continue; 6915 } 6916 continue; 6917 } 6918 6919 // Ran into an instruction without users, like terminator, or function call 6920 // with ignored return value, store. Ignore unused instructions (basing on 6921 // instruction type, except for CallInst and InvokeInst). 6922 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6923 isa<InvokeInst>(it))) { 6924 KeyNodes.insert(&*it); 6925 bool OpsChanged = false; 6926 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6927 for (auto *V : it->operand_values()) { 6928 // Try to match and vectorize a horizontal reduction. 6929 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6930 } 6931 } 6932 // Start vectorization of post-process list of instructions from the 6933 // top-tree instructions to try to vectorize as many instructions as 6934 // possible. 6935 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6936 if (OpsChanged) { 6937 // We would like to start over since some instructions are deleted 6938 // and the iterator may become invalid value. 6939 Changed = true; 6940 it = BB->begin(); 6941 e = BB->end(); 6942 continue; 6943 } 6944 } 6945 6946 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6947 isa<InsertValueInst>(it)) 6948 PostProcessInstructions.push_back(&*it); 6949 } 6950 6951 return Changed; 6952 } 6953 6954 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6955 auto Changed = false; 6956 for (auto &Entry : GEPs) { 6957 // If the getelementptr list has fewer than two elements, there's nothing 6958 // to do. 6959 if (Entry.second.size() < 2) 6960 continue; 6961 6962 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6963 << Entry.second.size() << ".\n"); 6964 6965 // We process the getelementptr list in chunks of 16 (like we do for 6966 // stores) to minimize compile-time. 6967 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6968 auto Len = std::min<unsigned>(BE - BI, 16); 6969 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6970 6971 // Initialize a set a candidate getelementptrs. Note that we use a 6972 // SetVector here to preserve program order. If the index computations 6973 // are vectorizable and begin with loads, we want to minimize the chance 6974 // of having to reorder them later. 6975 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6976 6977 // Some of the candidates may have already been vectorized after we 6978 // initially collected them. If so, the WeakTrackingVHs will have 6979 // nullified the 6980 // values, so remove them from the set of candidates. 6981 Candidates.remove(nullptr); 6982 6983 // Remove from the set of candidates all pairs of getelementptrs with 6984 // constant differences. Such getelementptrs are likely not good 6985 // candidates for vectorization in a bottom-up phase since one can be 6986 // computed from the other. We also ensure all candidate getelementptr 6987 // indices are unique. 6988 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6989 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6990 if (!Candidates.count(GEPI)) 6991 continue; 6992 auto *SCEVI = SE->getSCEV(GEPList[I]); 6993 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6994 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6995 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6996 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6997 Candidates.remove(GEPList[I]); 6998 Candidates.remove(GEPList[J]); 6999 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7000 Candidates.remove(GEPList[J]); 7001 } 7002 } 7003 } 7004 7005 // We break out of the above computation as soon as we know there are 7006 // fewer than two candidates remaining. 7007 if (Candidates.size() < 2) 7008 continue; 7009 7010 // Add the single, non-constant index of each candidate to the bundle. We 7011 // ensured the indices met these constraints when we originally collected 7012 // the getelementptrs. 7013 SmallVector<Value *, 16> Bundle(Candidates.size()); 7014 auto BundleIndex = 0u; 7015 for (auto *V : Candidates) { 7016 auto *GEP = cast<GetElementPtrInst>(V); 7017 auto *GEPIdx = GEP->idx_begin()->get(); 7018 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7019 Bundle[BundleIndex++] = GEPIdx; 7020 } 7021 7022 // Try and vectorize the indices. We are currently only interested in 7023 // gather-like cases of the form: 7024 // 7025 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7026 // 7027 // where the loads of "a", the loads of "b", and the subtractions can be 7028 // performed in parallel. It's likely that detecting this pattern in a 7029 // bottom-up phase will be simpler and less costly than building a 7030 // full-blown top-down phase beginning at the consecutive loads. 7031 Changed |= tryToVectorizeList(Bundle, R); 7032 } 7033 } 7034 return Changed; 7035 } 7036 7037 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7038 bool Changed = false; 7039 // Attempt to sort and vectorize each of the store-groups. 7040 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7041 ++it) { 7042 if (it->second.size() < 2) 7043 continue; 7044 7045 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7046 << it->second.size() << ".\n"); 7047 7048 // Process the stores in chunks of 16. 7049 // TODO: The limit of 16 inhibits greater vectorization factors. 7050 // For example, AVX2 supports v32i8. Increasing this limit, however, 7051 // may cause a significant compile-time increase. 7052 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 7053 unsigned Len = std::min<unsigned>(CE - CI, 16); 7054 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 7055 } 7056 } 7057 return Changed; 7058 } 7059 7060 char SLPVectorizer::ID = 0; 7061 7062 static const char lv_name[] = "SLP Vectorizer"; 7063 7064 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7065 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7066 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7067 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7068 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7069 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7070 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7071 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7072 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7073 7074 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7075