1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 11 // stores that can be put together into vector-stores. Next, it attempts to 12 // construct vectorizable tree using the use-def chains. If a profitable tree 13 // was found, the SLP vectorizer performs vectorization on the tree. 14 // 15 // The pass is inspired by the work described in the paper: 16 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/DenseSet.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/None.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/LoopUtils.h" 88 #include "llvm/Transforms/Vectorize.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstdint> 92 #include <iterator> 93 #include <memory> 94 #include <set> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 using namespace slpvectorizer; 103 104 #define SV_NAME "slp-vectorizer" 105 #define DEBUG_TYPE "SLP" 106 107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 108 109 static cl::opt<int> 110 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 111 cl::desc("Only vectorize if you gain more than this " 112 "number ")); 113 114 static cl::opt<bool> 115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 116 cl::desc("Attempt to vectorize horizontal reductions")); 117 118 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 119 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 120 cl::desc( 121 "Attempt to vectorize horizontal reductions feeding into a store")); 122 123 static cl::opt<int> 124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 125 cl::desc("Attempt to vectorize for this register size in bits")); 126 127 /// Limits the size of scheduling regions in a block. 128 /// It avoid long compile times for _very_ large blocks where vector 129 /// instructions are spread over a wide range. 130 /// This limit is way higher than needed by real-world functions. 131 static cl::opt<int> 132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 133 cl::desc("Limit the size of the SLP scheduling region per block")); 134 135 static cl::opt<int> MinVectorRegSizeOption( 136 "slp-min-reg-size", cl::init(128), cl::Hidden, 137 cl::desc("Attempt to vectorize for this register size in bits")); 138 139 static cl::opt<unsigned> RecursionMaxDepth( 140 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 141 cl::desc("Limit the recursion depth when building a vectorizable tree")); 142 143 static cl::opt<unsigned> MinTreeSize( 144 "slp-min-tree-size", cl::init(3), cl::Hidden, 145 cl::desc("Only vectorize small trees if they are fully vectorizable")); 146 147 static cl::opt<bool> 148 ViewSLPTree("view-slp-tree", cl::Hidden, 149 cl::desc("Display the SLP trees with Graphviz")); 150 151 // Limit the number of alias checks. The limit is chosen so that 152 // it has no negative effect on the llvm benchmarks. 153 static const unsigned AliasedCheckLimit = 10; 154 155 // Another limit for the alias checks: The maximum distance between load/store 156 // instructions where alias checks are done. 157 // This limit is useful for very large basic blocks. 158 static const unsigned MaxMemDepDistance = 160; 159 160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 161 /// regions to be handled. 162 static const int MinScheduleRegionSize = 16; 163 164 /// \brief Predicate for the element types that the SLP vectorizer supports. 165 /// 166 /// The most important thing to filter here are types which are invalid in LLVM 167 /// vectors. We also filter target specific types which have absolutely no 168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 169 /// avoids spending time checking the cost model and realizing that they will 170 /// be inevitably scalarized. 171 static bool isValidElementType(Type *Ty) { 172 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 173 !Ty->isPPC_FP128Ty(); 174 } 175 176 /// \returns true if all of the instructions in \p VL are in the same block or 177 /// false otherwise. 178 static bool allSameBlock(ArrayRef<Value *> VL) { 179 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 180 if (!I0) 181 return false; 182 BasicBlock *BB = I0->getParent(); 183 for (int i = 1, e = VL.size(); i < e; i++) { 184 Instruction *I = dyn_cast<Instruction>(VL[i]); 185 if (!I) 186 return false; 187 188 if (BB != I->getParent()) 189 return false; 190 } 191 return true; 192 } 193 194 /// \returns True if all of the values in \p VL are constants. 195 static bool allConstant(ArrayRef<Value *> VL) { 196 for (Value *i : VL) 197 if (!isa<Constant>(i)) 198 return false; 199 return true; 200 } 201 202 /// \returns True if all of the values in \p VL are identical. 203 static bool isSplat(ArrayRef<Value *> VL) { 204 for (unsigned i = 1, e = VL.size(); i < e; ++i) 205 if (VL[i] != VL[0]) 206 return false; 207 return true; 208 } 209 210 /// Checks if the vector of instructions can be represented as a shuffle, like: 211 /// %x0 = extractelement <4 x i8> %x, i32 0 212 /// %x3 = extractelement <4 x i8> %x, i32 3 213 /// %y1 = extractelement <4 x i8> %y, i32 1 214 /// %y2 = extractelement <4 x i8> %y, i32 2 215 /// %x0x0 = mul i8 %x0, %x0 216 /// %x3x3 = mul i8 %x3, %x3 217 /// %y1y1 = mul i8 %y1, %y1 218 /// %y2y2 = mul i8 %y2, %y2 219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 223 /// ret <4 x i8> %ins4 224 /// can be transformed into: 225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 226 /// i32 6> 227 /// %2 = mul <4 x i8> %1, %1 228 /// ret <4 x i8> %2 229 /// We convert this initially to something like: 230 /// %x0 = extractelement <4 x i8> %x, i32 0 231 /// %x3 = extractelement <4 x i8> %x, i32 3 232 /// %y1 = extractelement <4 x i8> %y, i32 1 233 /// %y2 = extractelement <4 x i8> %y, i32 2 234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 238 /// %5 = mul <4 x i8> %4, %4 239 /// %6 = extractelement <4 x i8> %5, i32 0 240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 241 /// %7 = extractelement <4 x i8> %5, i32 1 242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 243 /// %8 = extractelement <4 x i8> %5, i32 2 244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 245 /// %9 = extractelement <4 x i8> %5, i32 3 246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 247 /// ret <4 x i8> %ins4 248 /// InstCombiner transforms this into a shuffle and vector mul 249 static Optional<TargetTransformInfo::ShuffleKind> 250 isShuffle(ArrayRef<Value *> VL) { 251 auto *EI0 = cast<ExtractElementInst>(VL[0]); 252 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 253 Value *Vec1 = nullptr; 254 Value *Vec2 = nullptr; 255 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 256 ShuffleMode CommonShuffleMode = Unknown; 257 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 258 auto *EI = cast<ExtractElementInst>(VL[I]); 259 auto *Vec = EI->getVectorOperand(); 260 // All vector operands must have the same number of vector elements. 261 if (Vec->getType()->getVectorNumElements() != Size) 262 return None; 263 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 264 if (!Idx) 265 return None; 266 // Undefined behavior if Idx is negative or >= Size. 267 if (Idx->getValue().uge(Size)) 268 continue; 269 unsigned IntIdx = Idx->getValue().getZExtValue(); 270 // We can extractelement from undef vector. 271 if (isa<UndefValue>(Vec)) 272 continue; 273 // For correct shuffling we have to have at most 2 different vector operands 274 // in all extractelement instructions. 275 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 276 return None; 277 if (CommonShuffleMode == Permute) 278 continue; 279 // If the extract index is not the same as the operation number, it is a 280 // permutation. 281 if (IntIdx != I) { 282 CommonShuffleMode = Permute; 283 continue; 284 } 285 // Check the shuffle mode for the current operation. 286 if (!Vec1) 287 Vec1 = Vec; 288 else if (Vec != Vec1) 289 Vec2 = Vec; 290 // Example: shufflevector A, B, <0,5,2,7> 291 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 292 // I is even and IntIdx for B == I - FirstAlternate shuffle. 293 // Example: shufflevector A, B, <4,1,6,3> 294 // I is even and IntIdx for A == I - SecondAlternate shuffle. 295 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 296 const bool IIsEven = I & 1; 297 const bool CurrVecIsA = Vec == Vec1; 298 const bool IIsOdd = !IIsEven; 299 const bool CurrVecIsB = !CurrVecIsA; 300 ShuffleMode CurrentShuffleMode = 301 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 302 : SecondAlternate; 303 // Common mode is not set or the same as the shuffle mode of the current 304 // operation - alternate. 305 if (CommonShuffleMode == Unknown) 306 CommonShuffleMode = CurrentShuffleMode; 307 // Common shuffle mode is not the same as the shuffle mode of the current 308 // operation - permutation. 309 if (CommonShuffleMode != CurrentShuffleMode) 310 CommonShuffleMode = Permute; 311 } 312 // If we're not crossing lanes in different vectors, consider it as blending. 313 if ((CommonShuffleMode == FirstAlternate || 314 CommonShuffleMode == SecondAlternate) && 315 Vec2) 316 return TargetTransformInfo::SK_Alternate; 317 // If Vec2 was never used, we have a permutation of a single vector, otherwise 318 // we have permutation of 2 vectors. 319 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 320 : TargetTransformInfo::SK_PermuteSingleSrc; 321 } 322 323 ///\returns Opcode that can be clubbed with \p Op to create an alternate 324 /// sequence which can later be merged as a ShuffleVector instruction. 325 static unsigned getAltOpcode(unsigned Op) { 326 switch (Op) { 327 case Instruction::FAdd: 328 return Instruction::FSub; 329 case Instruction::FSub: 330 return Instruction::FAdd; 331 case Instruction::Add: 332 return Instruction::Sub; 333 case Instruction::Sub: 334 return Instruction::Add; 335 default: 336 return 0; 337 } 338 } 339 340 static bool isOdd(unsigned Value) { 341 return Value & 1; 342 } 343 344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 345 unsigned CheckedOpcode) { 346 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 347 } 348 349 /// Chooses the correct key for scheduling data. If \p Op has the same (or 350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 351 /// OpValue. 352 static Value *isOneOf(Value *OpValue, Value *Op) { 353 auto *I = dyn_cast<Instruction>(Op); 354 if (!I) 355 return OpValue; 356 auto *OpInst = cast<Instruction>(OpValue); 357 unsigned OpInstOpcode = OpInst->getOpcode(); 358 unsigned IOpcode = I->getOpcode(); 359 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 360 return Op; 361 return OpValue; 362 } 363 364 namespace { 365 366 /// Contains data for the instructions going to be vectorized. 367 struct RawInstructionsData { 368 /// Main Opcode of the instructions going to be vectorized. 369 unsigned Opcode = 0; 370 371 /// The list of instructions have some instructions with alternate opcodes. 372 bool HasAltOpcodes = false; 373 }; 374 375 } // end anonymous namespace 376 377 /// Checks the list of the vectorized instructions \p VL and returns info about 378 /// this list. 379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 380 auto *I0 = dyn_cast<Instruction>(VL[0]); 381 if (!I0) 382 return {}; 383 RawInstructionsData Res; 384 unsigned Opcode = I0->getOpcode(); 385 // Walk through the list of the vectorized instructions 386 // in order to check its structure described by RawInstructionsData. 387 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 388 auto *I = dyn_cast<Instruction>(VL[Cnt]); 389 if (!I) 390 return {}; 391 if (Opcode != I->getOpcode()) 392 Res.HasAltOpcodes = true; 393 } 394 Res.Opcode = Opcode; 395 return Res; 396 } 397 398 namespace { 399 400 /// Main data required for vectorization of instructions. 401 struct InstructionsState { 402 /// The very first instruction in the list with the main opcode. 403 Value *OpValue = nullptr; 404 405 /// The main opcode for the list of instructions. 406 unsigned Opcode = 0; 407 408 /// Some of the instructions in the list have alternate opcodes. 409 bool IsAltShuffle = false; 410 411 InstructionsState() = default; 412 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 413 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 414 }; 415 416 } // end anonymous namespace 417 418 /// \returns analysis of the Instructions in \p VL described in 419 /// InstructionsState, the Opcode that we suppose the whole list 420 /// could be vectorized even if its structure is diverse. 421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 422 auto Res = getMainOpcode(VL); 423 unsigned Opcode = Res.Opcode; 424 if (!Res.HasAltOpcodes) 425 return InstructionsState(VL[0], Opcode, false); 426 auto *OpInst = cast<Instruction>(VL[0]); 427 unsigned AltOpcode = getAltOpcode(Opcode); 428 // Examine each element in the list instructions VL to determine 429 // if some operations there could be considered as an alternative 430 // (for example as subtraction relates to addition operation). 431 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 432 auto *I = cast<Instruction>(VL[Cnt]); 433 unsigned InstOpcode = I->getOpcode(); 434 if ((Res.HasAltOpcodes && 435 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 436 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 437 return InstructionsState(OpInst, 0, false); 438 } 439 } 440 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 441 } 442 443 /// \returns true if all of the values in \p VL have the same type or false 444 /// otherwise. 445 static bool allSameType(ArrayRef<Value *> VL) { 446 Type *Ty = VL[0]->getType(); 447 for (int i = 1, e = VL.size(); i < e; i++) 448 if (VL[i]->getType() != Ty) 449 return false; 450 451 return true; 452 } 453 454 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 455 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 456 assert(Opcode == Instruction::ExtractElement || 457 Opcode == Instruction::ExtractValue); 458 if (Opcode == Instruction::ExtractElement) { 459 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 460 return CI && CI->getZExtValue() == Idx; 461 } else { 462 ExtractValueInst *EI = cast<ExtractValueInst>(E); 463 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 464 } 465 } 466 467 /// \returns True if in-tree use also needs extract. This refers to 468 /// possible scalar operand in vectorized instruction. 469 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 470 TargetLibraryInfo *TLI) { 471 unsigned Opcode = UserInst->getOpcode(); 472 switch (Opcode) { 473 case Instruction::Load: { 474 LoadInst *LI = cast<LoadInst>(UserInst); 475 return (LI->getPointerOperand() == Scalar); 476 } 477 case Instruction::Store: { 478 StoreInst *SI = cast<StoreInst>(UserInst); 479 return (SI->getPointerOperand() == Scalar); 480 } 481 case Instruction::Call: { 482 CallInst *CI = cast<CallInst>(UserInst); 483 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 484 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 485 return (CI->getArgOperand(1) == Scalar); 486 } 487 LLVM_FALLTHROUGH; 488 } 489 default: 490 return false; 491 } 492 } 493 494 /// \returns the AA location that is being access by the instruction. 495 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 496 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 497 return MemoryLocation::get(SI); 498 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 499 return MemoryLocation::get(LI); 500 return MemoryLocation(); 501 } 502 503 /// \returns True if the instruction is not a volatile or atomic load/store. 504 static bool isSimple(Instruction *I) { 505 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 506 return LI->isSimple(); 507 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 508 return SI->isSimple(); 509 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 510 return !MI->isVolatile(); 511 return true; 512 } 513 514 namespace llvm { 515 516 namespace slpvectorizer { 517 518 /// Bottom Up SLP Vectorizer. 519 class BoUpSLP { 520 public: 521 using ValueList = SmallVector<Value *, 8>; 522 using InstrList = SmallVector<Instruction *, 16>; 523 using ValueSet = SmallPtrSet<Value *, 16>; 524 using StoreList = SmallVector<StoreInst *, 8>; 525 using ExtraValueToDebugLocsMap = 526 MapVector<Value *, SmallVector<Instruction *, 2>>; 527 528 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 529 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 530 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 531 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 532 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 533 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 534 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 535 // Use the vector register size specified by the target unless overridden 536 // by a command-line option. 537 // TODO: It would be better to limit the vectorization factor based on 538 // data type rather than just register size. For example, x86 AVX has 539 // 256-bit registers, but it does not support integer operations 540 // at that width (that requires AVX2). 541 if (MaxVectorRegSizeOption.getNumOccurrences()) 542 MaxVecRegSize = MaxVectorRegSizeOption; 543 else 544 MaxVecRegSize = TTI->getRegisterBitWidth(true); 545 546 if (MinVectorRegSizeOption.getNumOccurrences()) 547 MinVecRegSize = MinVectorRegSizeOption; 548 else 549 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 550 } 551 552 /// \brief Vectorize the tree that starts with the elements in \p VL. 553 /// Returns the vectorized root. 554 Value *vectorizeTree(); 555 556 /// Vectorize the tree but with the list of externally used values \p 557 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 558 /// generated extractvalue instructions. 559 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 560 561 /// \returns the cost incurred by unwanted spills and fills, caused by 562 /// holding live values over call sites. 563 int getSpillCost(); 564 565 /// \returns the vectorization cost of the subtree that starts at \p VL. 566 /// A negative number means that this is profitable. 567 int getTreeCost(); 568 569 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 570 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 571 void buildTree(ArrayRef<Value *> Roots, 572 ArrayRef<Value *> UserIgnoreLst = None); 573 574 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 575 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 576 /// into account (anf updating it, if required) list of externally used 577 /// values stored in \p ExternallyUsedValues. 578 void buildTree(ArrayRef<Value *> Roots, 579 ExtraValueToDebugLocsMap &ExternallyUsedValues, 580 ArrayRef<Value *> UserIgnoreLst = None); 581 582 /// Clear the internal data structures that are created by 'buildTree'. 583 void deleteTree() { 584 VectorizableTree.clear(); 585 ScalarToTreeEntry.clear(); 586 MustGather.clear(); 587 ExternalUses.clear(); 588 NumOpsWantToKeepOrder.clear(); 589 for (auto &Iter : BlocksSchedules) { 590 BlockScheduling *BS = Iter.second.get(); 591 BS->clear(); 592 } 593 MinBWs.clear(); 594 } 595 596 unsigned getTreeSize() const { return VectorizableTree.size(); } 597 598 /// \brief Perform LICM and CSE on the newly generated gather sequences. 599 void optimizeGatherSequence(); 600 601 /// \returns true if it is beneficial to reverse the vector order. 602 bool shouldReorder() const { 603 return std::accumulate( 604 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 0, 605 [](int Val1, 606 const decltype(NumOpsWantToKeepOrder)::value_type &Val2) { 607 return Val1 + (Val2.second < 0 ? 1 : -1); 608 }) > 0; 609 } 610 611 /// \return The vector element size in bits to use when vectorizing the 612 /// expression tree ending at \p V. If V is a store, the size is the width of 613 /// the stored value. Otherwise, the size is the width of the largest loaded 614 /// value reaching V. This method is used by the vectorizer to calculate 615 /// vectorization factors. 616 unsigned getVectorElementSize(Value *V); 617 618 /// Compute the minimum type sizes required to represent the entries in a 619 /// vectorizable tree. 620 void computeMinimumValueSizes(); 621 622 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 623 unsigned getMaxVecRegSize() const { 624 return MaxVecRegSize; 625 } 626 627 // \returns minimum vector register size as set by cl::opt. 628 unsigned getMinVecRegSize() const { 629 return MinVecRegSize; 630 } 631 632 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 633 /// 634 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 635 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 636 637 /// \returns True if the VectorizableTree is both tiny and not fully 638 /// vectorizable. We do not vectorize such trees. 639 bool isTreeTinyAndNotFullyVectorizable(); 640 641 OptimizationRemarkEmitter *getORE() { return ORE; } 642 643 private: 644 struct TreeEntry; 645 646 /// Checks if all users of \p I are the part of the vectorization tree. 647 bool areAllUsersVectorized(Instruction *I) const; 648 649 /// \returns the cost of the vectorizable entry. 650 int getEntryCost(TreeEntry *E); 651 652 /// This is the recursive part of buildTree. 653 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 654 655 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 656 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 657 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const; 658 659 /// Vectorize a single entry in the tree. 660 Value *vectorizeTree(TreeEntry *E); 661 662 /// Vectorize a single entry in the tree, starting in \p VL. 663 Value *vectorizeTree(ArrayRef<Value *> VL); 664 665 /// \returns the pointer to the vectorized value if \p VL is already 666 /// vectorized, or NULL. They may happen in cycles. 667 Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const; 668 669 /// \returns the scalarization cost for this type. Scalarization in this 670 /// context means the creation of vectors from a group of scalars. 671 int getGatherCost(Type *Ty); 672 673 /// \returns the scalarization cost for this list of values. Assuming that 674 /// this subtree gets vectorized, we may need to extract the values from the 675 /// roots. This method calculates the cost of extracting the values. 676 int getGatherCost(ArrayRef<Value *> VL); 677 678 /// \brief Set the Builder insert point to one after the last instruction in 679 /// the bundle 680 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 681 682 /// \returns a vector from a collection of scalars in \p VL. 683 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 684 685 /// \returns whether the VectorizableTree is fully vectorizable and will 686 /// be beneficial even the tree height is tiny. 687 bool isFullyVectorizableTinyTree(); 688 689 /// \reorder commutative operands in alt shuffle if they result in 690 /// vectorized code. 691 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 692 SmallVectorImpl<Value *> &Left, 693 SmallVectorImpl<Value *> &Right); 694 695 /// \reorder commutative operands to get better probability of 696 /// generating vectorized code. 697 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 698 SmallVectorImpl<Value *> &Left, 699 SmallVectorImpl<Value *> &Right); 700 struct TreeEntry { 701 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 702 703 /// \returns true if the scalars in VL are equal to this entry. 704 bool isSame(ArrayRef<Value *> VL) const { 705 assert(VL.size() == Scalars.size() && "Invalid size"); 706 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 707 } 708 709 /// A vector of scalars. 710 ValueList Scalars; 711 712 /// The Scalars are vectorized into this value. It is initialized to Null. 713 Value *VectorizedValue = nullptr; 714 715 /// Do we need to gather this sequence ? 716 bool NeedToGather = false; 717 718 /// Points back to the VectorizableTree. 719 /// 720 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 721 /// to be a pointer and needs to be able to initialize the child iterator. 722 /// Thus we need a reference back to the container to translate the indices 723 /// to entries. 724 std::vector<TreeEntry> &Container; 725 726 /// The TreeEntry index containing the user of this entry. We can actually 727 /// have multiple users so the data structure is not truly a tree. 728 SmallVector<int, 1> UserTreeIndices; 729 }; 730 731 /// Create a new VectorizableTree entry. 732 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 733 int &UserTreeIdx) { 734 VectorizableTree.emplace_back(VectorizableTree); 735 int idx = VectorizableTree.size() - 1; 736 TreeEntry *Last = &VectorizableTree[idx]; 737 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 738 Last->NeedToGather = !Vectorized; 739 if (Vectorized) { 740 for (int i = 0, e = VL.size(); i != e; ++i) { 741 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 742 ScalarToTreeEntry[VL[i]] = idx; 743 } 744 } else { 745 MustGather.insert(VL.begin(), VL.end()); 746 } 747 748 if (UserTreeIdx >= 0) 749 Last->UserTreeIndices.push_back(UserTreeIdx); 750 UserTreeIdx = idx; 751 return Last; 752 } 753 754 /// -- Vectorization State -- 755 /// Holds all of the tree entries. 756 std::vector<TreeEntry> VectorizableTree; 757 758 TreeEntry *getTreeEntry(Value *V) { 759 auto I = ScalarToTreeEntry.find(V); 760 if (I != ScalarToTreeEntry.end()) 761 return &VectorizableTree[I->second]; 762 return nullptr; 763 } 764 765 const TreeEntry *getTreeEntry(Value *V) const { 766 auto I = ScalarToTreeEntry.find(V); 767 if (I != ScalarToTreeEntry.end()) 768 return &VectorizableTree[I->second]; 769 return nullptr; 770 } 771 772 /// Maps a specific scalar to its tree entry. 773 SmallDenseMap<Value*, int> ScalarToTreeEntry; 774 775 /// A list of scalars that we found that we need to keep as scalars. 776 ValueSet MustGather; 777 778 /// This POD struct describes one external user in the vectorized tree. 779 struct ExternalUser { 780 ExternalUser(Value *S, llvm::User *U, int L) 781 : Scalar(S), User(U), Lane(L) {} 782 783 // Which scalar in our function. 784 Value *Scalar; 785 786 // Which user that uses the scalar. 787 llvm::User *User; 788 789 // Which lane does the scalar belong to. 790 int Lane; 791 }; 792 using UserList = SmallVector<ExternalUser, 16>; 793 794 /// Checks if two instructions may access the same memory. 795 /// 796 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 797 /// is invariant in the calling loop. 798 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 799 Instruction *Inst2) { 800 // First check if the result is already in the cache. 801 AliasCacheKey key = std::make_pair(Inst1, Inst2); 802 Optional<bool> &result = AliasCache[key]; 803 if (result.hasValue()) { 804 return result.getValue(); 805 } 806 MemoryLocation Loc2 = getLocation(Inst2, AA); 807 bool aliased = true; 808 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 809 // Do the alias check. 810 aliased = AA->alias(Loc1, Loc2); 811 } 812 // Store the result in the cache. 813 result = aliased; 814 return aliased; 815 } 816 817 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 818 819 /// Cache for alias results. 820 /// TODO: consider moving this to the AliasAnalysis itself. 821 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 822 823 /// Removes an instruction from its block and eventually deletes it. 824 /// It's like Instruction::eraseFromParent() except that the actual deletion 825 /// is delayed until BoUpSLP is destructed. 826 /// This is required to ensure that there are no incorrect collisions in the 827 /// AliasCache, which can happen if a new instruction is allocated at the 828 /// same address as a previously deleted instruction. 829 void eraseInstruction(Instruction *I) { 830 I->removeFromParent(); 831 I->dropAllReferences(); 832 DeletedInstructions.emplace_back(I); 833 } 834 835 /// Temporary store for deleted instructions. Instructions will be deleted 836 /// eventually when the BoUpSLP is destructed. 837 SmallVector<unique_value, 8> DeletedInstructions; 838 839 /// A list of values that need to extracted out of the tree. 840 /// This list holds pairs of (Internal Scalar : External User). External User 841 /// can be nullptr, it means that this Internal Scalar will be used later, 842 /// after vectorization. 843 UserList ExternalUses; 844 845 /// Values used only by @llvm.assume calls. 846 SmallPtrSet<const Value *, 32> EphValues; 847 848 /// Holds all of the instructions that we gathered. 849 SetVector<Instruction *> GatherSeq; 850 851 /// A list of blocks that we are going to CSE. 852 SetVector<BasicBlock *> CSEBlocks; 853 854 /// Contains all scheduling relevant data for an instruction. 855 /// A ScheduleData either represents a single instruction or a member of an 856 /// instruction bundle (= a group of instructions which is combined into a 857 /// vector instruction). 858 struct ScheduleData { 859 // The initial value for the dependency counters. It means that the 860 // dependencies are not calculated yet. 861 enum { InvalidDeps = -1 }; 862 863 ScheduleData() = default; 864 865 void init(int BlockSchedulingRegionID, Value *OpVal) { 866 FirstInBundle = this; 867 NextInBundle = nullptr; 868 NextLoadStore = nullptr; 869 IsScheduled = false; 870 SchedulingRegionID = BlockSchedulingRegionID; 871 UnscheduledDepsInBundle = UnscheduledDeps; 872 clearDependencies(); 873 OpValue = OpVal; 874 } 875 876 /// Returns true if the dependency information has been calculated. 877 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 878 879 /// Returns true for single instructions and for bundle representatives 880 /// (= the head of a bundle). 881 bool isSchedulingEntity() const { return FirstInBundle == this; } 882 883 /// Returns true if it represents an instruction bundle and not only a 884 /// single instruction. 885 bool isPartOfBundle() const { 886 return NextInBundle != nullptr || FirstInBundle != this; 887 } 888 889 /// Returns true if it is ready for scheduling, i.e. it has no more 890 /// unscheduled depending instructions/bundles. 891 bool isReady() const { 892 assert(isSchedulingEntity() && 893 "can't consider non-scheduling entity for ready list"); 894 return UnscheduledDepsInBundle == 0 && !IsScheduled; 895 } 896 897 /// Modifies the number of unscheduled dependencies, also updating it for 898 /// the whole bundle. 899 int incrementUnscheduledDeps(int Incr) { 900 UnscheduledDeps += Incr; 901 return FirstInBundle->UnscheduledDepsInBundle += Incr; 902 } 903 904 /// Sets the number of unscheduled dependencies to the number of 905 /// dependencies. 906 void resetUnscheduledDeps() { 907 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 908 } 909 910 /// Clears all dependency information. 911 void clearDependencies() { 912 Dependencies = InvalidDeps; 913 resetUnscheduledDeps(); 914 MemoryDependencies.clear(); 915 } 916 917 void dump(raw_ostream &os) const { 918 if (!isSchedulingEntity()) { 919 os << "/ " << *Inst; 920 } else if (NextInBundle) { 921 os << '[' << *Inst; 922 ScheduleData *SD = NextInBundle; 923 while (SD) { 924 os << ';' << *SD->Inst; 925 SD = SD->NextInBundle; 926 } 927 os << ']'; 928 } else { 929 os << *Inst; 930 } 931 } 932 933 Instruction *Inst = nullptr; 934 935 /// Points to the head in an instruction bundle (and always to this for 936 /// single instructions). 937 ScheduleData *FirstInBundle = nullptr; 938 939 /// Single linked list of all instructions in a bundle. Null if it is a 940 /// single instruction. 941 ScheduleData *NextInBundle = nullptr; 942 943 /// Single linked list of all memory instructions (e.g. load, store, call) 944 /// in the block - until the end of the scheduling region. 945 ScheduleData *NextLoadStore = nullptr; 946 947 /// The dependent memory instructions. 948 /// This list is derived on demand in calculateDependencies(). 949 SmallVector<ScheduleData *, 4> MemoryDependencies; 950 951 /// This ScheduleData is in the current scheduling region if this matches 952 /// the current SchedulingRegionID of BlockScheduling. 953 int SchedulingRegionID = 0; 954 955 /// Used for getting a "good" final ordering of instructions. 956 int SchedulingPriority = 0; 957 958 /// The number of dependencies. Constitutes of the number of users of the 959 /// instruction plus the number of dependent memory instructions (if any). 960 /// This value is calculated on demand. 961 /// If InvalidDeps, the number of dependencies is not calculated yet. 962 int Dependencies = InvalidDeps; 963 964 /// The number of dependencies minus the number of dependencies of scheduled 965 /// instructions. As soon as this is zero, the instruction/bundle gets ready 966 /// for scheduling. 967 /// Note that this is negative as long as Dependencies is not calculated. 968 int UnscheduledDeps = InvalidDeps; 969 970 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 971 /// single instructions. 972 int UnscheduledDepsInBundle = InvalidDeps; 973 974 /// True if this instruction is scheduled (or considered as scheduled in the 975 /// dry-run). 976 bool IsScheduled = false; 977 978 /// Opcode of the current instruction in the schedule data. 979 Value *OpValue = nullptr; 980 }; 981 982 #ifndef NDEBUG 983 friend inline raw_ostream &operator<<(raw_ostream &os, 984 const BoUpSLP::ScheduleData &SD) { 985 SD.dump(os); 986 return os; 987 } 988 #endif 989 990 friend struct GraphTraits<BoUpSLP *>; 991 friend struct DOTGraphTraits<BoUpSLP *>; 992 993 /// Contains all scheduling data for a basic block. 994 struct BlockScheduling { 995 BlockScheduling(BasicBlock *BB) 996 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 997 998 void clear() { 999 ReadyInsts.clear(); 1000 ScheduleStart = nullptr; 1001 ScheduleEnd = nullptr; 1002 FirstLoadStoreInRegion = nullptr; 1003 LastLoadStoreInRegion = nullptr; 1004 1005 // Reduce the maximum schedule region size by the size of the 1006 // previous scheduling run. 1007 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1008 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1009 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1010 ScheduleRegionSize = 0; 1011 1012 // Make a new scheduling region, i.e. all existing ScheduleData is not 1013 // in the new region yet. 1014 ++SchedulingRegionID; 1015 } 1016 1017 ScheduleData *getScheduleData(Value *V) { 1018 ScheduleData *SD = ScheduleDataMap[V]; 1019 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1020 return SD; 1021 return nullptr; 1022 } 1023 1024 ScheduleData *getScheduleData(Value *V, Value *Key) { 1025 if (V == Key) 1026 return getScheduleData(V); 1027 auto I = ExtraScheduleDataMap.find(V); 1028 if (I != ExtraScheduleDataMap.end()) { 1029 ScheduleData *SD = I->second[Key]; 1030 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1031 return SD; 1032 } 1033 return nullptr; 1034 } 1035 1036 bool isInSchedulingRegion(ScheduleData *SD) { 1037 return SD->SchedulingRegionID == SchedulingRegionID; 1038 } 1039 1040 /// Marks an instruction as scheduled and puts all dependent ready 1041 /// instructions into the ready-list. 1042 template <typename ReadyListType> 1043 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1044 SD->IsScheduled = true; 1045 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1046 1047 ScheduleData *BundleMember = SD; 1048 while (BundleMember) { 1049 if (BundleMember->Inst != BundleMember->OpValue) { 1050 BundleMember = BundleMember->NextInBundle; 1051 continue; 1052 } 1053 // Handle the def-use chain dependencies. 1054 for (Use &U : BundleMember->Inst->operands()) { 1055 auto *I = dyn_cast<Instruction>(U.get()); 1056 if (!I) 1057 continue; 1058 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1059 if (OpDef && OpDef->hasValidDependencies() && 1060 OpDef->incrementUnscheduledDeps(-1) == 0) { 1061 // There are no more unscheduled dependencies after 1062 // decrementing, so we can put the dependent instruction 1063 // into the ready list. 1064 ScheduleData *DepBundle = OpDef->FirstInBundle; 1065 assert(!DepBundle->IsScheduled && 1066 "already scheduled bundle gets ready"); 1067 ReadyList.insert(DepBundle); 1068 DEBUG(dbgs() 1069 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1070 } 1071 }); 1072 } 1073 // Handle the memory dependencies. 1074 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1075 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1076 // There are no more unscheduled dependencies after decrementing, 1077 // so we can put the dependent instruction into the ready list. 1078 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1079 assert(!DepBundle->IsScheduled && 1080 "already scheduled bundle gets ready"); 1081 ReadyList.insert(DepBundle); 1082 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1083 << "\n"); 1084 } 1085 } 1086 BundleMember = BundleMember->NextInBundle; 1087 } 1088 } 1089 1090 void doForAllOpcodes(Value *V, 1091 function_ref<void(ScheduleData *SD)> Action) { 1092 if (ScheduleData *SD = getScheduleData(V)) 1093 Action(SD); 1094 auto I = ExtraScheduleDataMap.find(V); 1095 if (I != ExtraScheduleDataMap.end()) 1096 for (auto &P : I->second) 1097 if (P.second->SchedulingRegionID == SchedulingRegionID) 1098 Action(P.second); 1099 } 1100 1101 /// Put all instructions into the ReadyList which are ready for scheduling. 1102 template <typename ReadyListType> 1103 void initialFillReadyList(ReadyListType &ReadyList) { 1104 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1105 doForAllOpcodes(I, [&](ScheduleData *SD) { 1106 if (SD->isSchedulingEntity() && SD->isReady()) { 1107 ReadyList.insert(SD); 1108 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1109 } 1110 }); 1111 } 1112 } 1113 1114 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1115 /// cyclic dependencies. This is only a dry-run, no instructions are 1116 /// actually moved at this stage. 1117 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1118 1119 /// Un-bundles a group of instructions. 1120 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1121 1122 /// Allocates schedule data chunk. 1123 ScheduleData *allocateScheduleDataChunks(); 1124 1125 /// Extends the scheduling region so that V is inside the region. 1126 /// \returns true if the region size is within the limit. 1127 bool extendSchedulingRegion(Value *V, Value *OpValue); 1128 1129 /// Initialize the ScheduleData structures for new instructions in the 1130 /// scheduling region. 1131 void initScheduleData(Instruction *FromI, Instruction *ToI, 1132 ScheduleData *PrevLoadStore, 1133 ScheduleData *NextLoadStore); 1134 1135 /// Updates the dependency information of a bundle and of all instructions/ 1136 /// bundles which depend on the original bundle. 1137 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1138 BoUpSLP *SLP); 1139 1140 /// Sets all instruction in the scheduling region to un-scheduled. 1141 void resetSchedule(); 1142 1143 BasicBlock *BB; 1144 1145 /// Simple memory allocation for ScheduleData. 1146 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1147 1148 /// The size of a ScheduleData array in ScheduleDataChunks. 1149 int ChunkSize; 1150 1151 /// The allocator position in the current chunk, which is the last entry 1152 /// of ScheduleDataChunks. 1153 int ChunkPos; 1154 1155 /// Attaches ScheduleData to Instruction. 1156 /// Note that the mapping survives during all vectorization iterations, i.e. 1157 /// ScheduleData structures are recycled. 1158 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1159 1160 /// Attaches ScheduleData to Instruction with the leading key. 1161 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1162 ExtraScheduleDataMap; 1163 1164 struct ReadyList : SmallVector<ScheduleData *, 8> { 1165 void insert(ScheduleData *SD) { push_back(SD); } 1166 }; 1167 1168 /// The ready-list for scheduling (only used for the dry-run). 1169 ReadyList ReadyInsts; 1170 1171 /// The first instruction of the scheduling region. 1172 Instruction *ScheduleStart = nullptr; 1173 1174 /// The first instruction _after_ the scheduling region. 1175 Instruction *ScheduleEnd = nullptr; 1176 1177 /// The first memory accessing instruction in the scheduling region 1178 /// (can be null). 1179 ScheduleData *FirstLoadStoreInRegion = nullptr; 1180 1181 /// The last memory accessing instruction in the scheduling region 1182 /// (can be null). 1183 ScheduleData *LastLoadStoreInRegion = nullptr; 1184 1185 /// The current size of the scheduling region. 1186 int ScheduleRegionSize = 0; 1187 1188 /// The maximum size allowed for the scheduling region. 1189 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1190 1191 /// The ID of the scheduling region. For a new vectorization iteration this 1192 /// is incremented which "removes" all ScheduleData from the region. 1193 // Make sure that the initial SchedulingRegionID is greater than the 1194 // initial SchedulingRegionID in ScheduleData (which is 0). 1195 int SchedulingRegionID = 1; 1196 }; 1197 1198 /// Attaches the BlockScheduling structures to basic blocks. 1199 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1200 1201 /// Performs the "real" scheduling. Done before vectorization is actually 1202 /// performed in a basic block. 1203 void scheduleBlock(BlockScheduling *BS); 1204 1205 /// List of users to ignore during scheduling and that don't need extracting. 1206 ArrayRef<Value *> UserIgnoreList; 1207 1208 /// Number of operation bundles that contain consecutive operations - number 1209 /// of operation bundles that contain consecutive operations in reversed 1210 /// order. 1211 DenseMap<unsigned, int> NumOpsWantToKeepOrder; 1212 1213 // Analysis and block reference. 1214 Function *F; 1215 ScalarEvolution *SE; 1216 TargetTransformInfo *TTI; 1217 TargetLibraryInfo *TLI; 1218 AliasAnalysis *AA; 1219 LoopInfo *LI; 1220 DominatorTree *DT; 1221 AssumptionCache *AC; 1222 DemandedBits *DB; 1223 const DataLayout *DL; 1224 OptimizationRemarkEmitter *ORE; 1225 1226 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1227 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1228 1229 /// Instruction builder to construct the vectorized tree. 1230 IRBuilder<> Builder; 1231 1232 /// A map of scalar integer values to the smallest bit width with which they 1233 /// can legally be represented. The values map to (width, signed) pairs, 1234 /// where "width" indicates the minimum bit width and "signed" is True if the 1235 /// value must be signed-extended, rather than zero-extended, back to its 1236 /// original width. 1237 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1238 }; 1239 1240 } // end namespace slpvectorizer 1241 1242 template <> struct GraphTraits<BoUpSLP *> { 1243 using TreeEntry = BoUpSLP::TreeEntry; 1244 1245 /// NodeRef has to be a pointer per the GraphWriter. 1246 using NodeRef = TreeEntry *; 1247 1248 /// \brief Add the VectorizableTree to the index iterator to be able to return 1249 /// TreeEntry pointers. 1250 struct ChildIteratorType 1251 : public iterator_adaptor_base<ChildIteratorType, 1252 SmallVector<int, 1>::iterator> { 1253 std::vector<TreeEntry> &VectorizableTree; 1254 1255 ChildIteratorType(SmallVector<int, 1>::iterator W, 1256 std::vector<TreeEntry> &VT) 1257 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1258 1259 NodeRef operator*() { return &VectorizableTree[*I]; } 1260 }; 1261 1262 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1263 1264 static ChildIteratorType child_begin(NodeRef N) { 1265 return {N->UserTreeIndices.begin(), N->Container}; 1266 } 1267 1268 static ChildIteratorType child_end(NodeRef N) { 1269 return {N->UserTreeIndices.end(), N->Container}; 1270 } 1271 1272 /// For the node iterator we just need to turn the TreeEntry iterator into a 1273 /// TreeEntry* iterator so that it dereferences to NodeRef. 1274 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1275 1276 static nodes_iterator nodes_begin(BoUpSLP *R) { 1277 return nodes_iterator(R->VectorizableTree.begin()); 1278 } 1279 1280 static nodes_iterator nodes_end(BoUpSLP *R) { 1281 return nodes_iterator(R->VectorizableTree.end()); 1282 } 1283 1284 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1285 }; 1286 1287 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1288 using TreeEntry = BoUpSLP::TreeEntry; 1289 1290 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1291 1292 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1293 std::string Str; 1294 raw_string_ostream OS(Str); 1295 if (isSplat(Entry->Scalars)) { 1296 OS << "<splat> " << *Entry->Scalars[0]; 1297 return Str; 1298 } 1299 for (auto V : Entry->Scalars) { 1300 OS << *V; 1301 if (std::any_of( 1302 R->ExternalUses.begin(), R->ExternalUses.end(), 1303 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1304 OS << " <extract>"; 1305 OS << "\n"; 1306 } 1307 return Str; 1308 } 1309 1310 static std::string getNodeAttributes(const TreeEntry *Entry, 1311 const BoUpSLP *) { 1312 if (Entry->NeedToGather) 1313 return "color=red"; 1314 return ""; 1315 } 1316 }; 1317 1318 } // end namespace llvm 1319 1320 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1321 ArrayRef<Value *> UserIgnoreLst) { 1322 ExtraValueToDebugLocsMap ExternallyUsedValues; 1323 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1324 } 1325 1326 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1327 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1328 ArrayRef<Value *> UserIgnoreLst) { 1329 deleteTree(); 1330 UserIgnoreList = UserIgnoreLst; 1331 if (!allSameType(Roots)) 1332 return; 1333 buildTree_rec(Roots, 0, -1); 1334 1335 // Collect the values that we need to extract from the tree. 1336 for (TreeEntry &EIdx : VectorizableTree) { 1337 TreeEntry *Entry = &EIdx; 1338 1339 // No need to handle users of gathered values. 1340 if (Entry->NeedToGather) 1341 continue; 1342 1343 // For each lane: 1344 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1345 Value *Scalar = Entry->Scalars[Lane]; 1346 1347 // Check if the scalar is externally used as an extra arg. 1348 auto ExtI = ExternallyUsedValues.find(Scalar); 1349 if (ExtI != ExternallyUsedValues.end()) { 1350 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1351 Lane << " from " << *Scalar << ".\n"); 1352 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1353 } 1354 for (User *U : Scalar->users()) { 1355 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1356 1357 Instruction *UserInst = dyn_cast<Instruction>(U); 1358 if (!UserInst) 1359 continue; 1360 1361 // Skip in-tree scalars that become vectors 1362 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1363 Value *UseScalar = UseEntry->Scalars[0]; 1364 // Some in-tree scalars will remain as scalar in vectorized 1365 // instructions. If that is the case, the one in Lane 0 will 1366 // be used. 1367 if (UseScalar != U || 1368 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1369 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1370 << ".\n"); 1371 assert(!UseEntry->NeedToGather && "Bad state"); 1372 continue; 1373 } 1374 } 1375 1376 // Ignore users in the user ignore list. 1377 if (is_contained(UserIgnoreList, UserInst)) 1378 continue; 1379 1380 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1381 Lane << " from " << *Scalar << ".\n"); 1382 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1383 } 1384 } 1385 } 1386 } 1387 1388 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1389 int UserTreeIdx) { 1390 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1391 1392 InstructionsState S = getSameOpcode(VL); 1393 if (Depth == RecursionMaxDepth) { 1394 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1395 newTreeEntry(VL, false, UserTreeIdx); 1396 return; 1397 } 1398 1399 // Don't handle vectors. 1400 if (S.OpValue->getType()->isVectorTy()) { 1401 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1402 newTreeEntry(VL, false, UserTreeIdx); 1403 return; 1404 } 1405 1406 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1407 if (SI->getValueOperand()->getType()->isVectorTy()) { 1408 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1409 newTreeEntry(VL, false, UserTreeIdx); 1410 return; 1411 } 1412 1413 // If all of the operands are identical or constant we have a simple solution. 1414 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1415 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1416 newTreeEntry(VL, false, UserTreeIdx); 1417 return; 1418 } 1419 1420 // We now know that this is a vector of instructions of the same type from 1421 // the same block. 1422 1423 // Don't vectorize ephemeral values. 1424 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1425 if (EphValues.count(VL[i])) { 1426 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1427 ") is ephemeral.\n"); 1428 newTreeEntry(VL, false, UserTreeIdx); 1429 return; 1430 } 1431 } 1432 1433 // Check if this is a duplicate of another entry. 1434 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1435 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1436 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1437 if (E->Scalars[i] != VL[i]) { 1438 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1439 newTreeEntry(VL, false, UserTreeIdx); 1440 return; 1441 } 1442 } 1443 // Record the reuse of the tree node. FIXME, currently this is only used to 1444 // properly draw the graph rather than for the actual vectorization. 1445 E->UserTreeIndices.push_back(UserTreeIdx); 1446 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); 1447 return; 1448 } 1449 1450 // Check that none of the instructions in the bundle are already in the tree. 1451 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1452 auto *I = dyn_cast<Instruction>(VL[i]); 1453 if (!I) 1454 continue; 1455 if (getTreeEntry(I)) { 1456 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1457 ") is already in tree.\n"); 1458 newTreeEntry(VL, false, UserTreeIdx); 1459 return; 1460 } 1461 } 1462 1463 // If any of the scalars is marked as a value that needs to stay scalar, then 1464 // we need to gather the scalars. 1465 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1466 if (MustGather.count(VL[i])) { 1467 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1468 newTreeEntry(VL, false, UserTreeIdx); 1469 return; 1470 } 1471 } 1472 1473 // Check that all of the users of the scalars that we want to vectorize are 1474 // schedulable. 1475 auto *VL0 = cast<Instruction>(S.OpValue); 1476 BasicBlock *BB = VL0->getParent(); 1477 1478 if (!DT->isReachableFromEntry(BB)) { 1479 // Don't go into unreachable blocks. They may contain instructions with 1480 // dependency cycles which confuse the final scheduling. 1481 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1482 newTreeEntry(VL, false, UserTreeIdx); 1483 return; 1484 } 1485 1486 // Check that every instruction appears once in this bundle. 1487 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1488 for (unsigned j = i + 1; j < e; ++j) 1489 if (VL[i] == VL[j]) { 1490 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1491 newTreeEntry(VL, false, UserTreeIdx); 1492 return; 1493 } 1494 1495 auto &BSRef = BlocksSchedules[BB]; 1496 if (!BSRef) 1497 BSRef = llvm::make_unique<BlockScheduling>(BB); 1498 1499 BlockScheduling &BS = *BSRef.get(); 1500 1501 if (!BS.tryScheduleBundle(VL, this, S.OpValue)) { 1502 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1503 assert((!BS.getScheduleData(VL0) || 1504 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1505 "tryScheduleBundle should cancelScheduling on failure"); 1506 newTreeEntry(VL, false, UserTreeIdx); 1507 return; 1508 } 1509 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1510 1511 unsigned ShuffleOrOp = S.IsAltShuffle ? 1512 (unsigned) Instruction::ShuffleVector : S.Opcode; 1513 switch (ShuffleOrOp) { 1514 case Instruction::PHI: { 1515 PHINode *PH = dyn_cast<PHINode>(VL0); 1516 1517 // Check for terminator values (e.g. invoke). 1518 for (unsigned j = 0; j < VL.size(); ++j) 1519 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1520 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1521 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1522 if (Term) { 1523 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1524 BS.cancelScheduling(VL, VL0); 1525 newTreeEntry(VL, false, UserTreeIdx); 1526 return; 1527 } 1528 } 1529 1530 newTreeEntry(VL, true, UserTreeIdx); 1531 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1532 1533 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1534 ValueList Operands; 1535 // Prepare the operand vector. 1536 for (Value *j : VL) 1537 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1538 PH->getIncomingBlock(i))); 1539 1540 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1541 } 1542 return; 1543 } 1544 case Instruction::ExtractValue: 1545 case Instruction::ExtractElement: { 1546 bool Reuse = canReuseExtract(VL, VL0); 1547 if (Reuse) { 1548 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1549 ++NumOpsWantToKeepOrder[S.Opcode]; 1550 } else { 1551 SmallVector<Value *, 4> ReverseVL(VL.rbegin(), VL.rend()); 1552 if (canReuseExtract(ReverseVL, VL0)) 1553 --NumOpsWantToKeepOrder[S.Opcode]; 1554 BS.cancelScheduling(VL, VL0); 1555 } 1556 newTreeEntry(VL, Reuse, UserTreeIdx); 1557 return; 1558 } 1559 case Instruction::Load: { 1560 // Check that a vectorized load would load the same memory as a scalar 1561 // load. For example, we don't want to vectorize loads that are smaller 1562 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1563 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1564 // from such a struct, we read/write packed bits disagreeing with the 1565 // unvectorized version. 1566 Type *ScalarTy = VL0->getType(); 1567 1568 if (DL->getTypeSizeInBits(ScalarTy) != 1569 DL->getTypeAllocSizeInBits(ScalarTy)) { 1570 BS.cancelScheduling(VL, VL0); 1571 newTreeEntry(VL, false, UserTreeIdx); 1572 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1573 return; 1574 } 1575 1576 // Make sure all loads in the bundle are simple - we can't vectorize 1577 // atomic or volatile loads. 1578 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1579 LoadInst *L = cast<LoadInst>(VL[i]); 1580 if (!L->isSimple()) { 1581 BS.cancelScheduling(VL, VL0); 1582 newTreeEntry(VL, false, UserTreeIdx); 1583 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1584 return; 1585 } 1586 } 1587 1588 // Check if the loads are consecutive, reversed, or neither. 1589 // TODO: What we really want is to sort the loads, but for now, check 1590 // the two likely directions. 1591 bool Consecutive = true; 1592 bool ReverseConsecutive = true; 1593 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1594 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1595 Consecutive = false; 1596 break; 1597 } else { 1598 ReverseConsecutive = false; 1599 } 1600 } 1601 1602 if (Consecutive) { 1603 ++NumOpsWantToKeepOrder[S.Opcode]; 1604 newTreeEntry(VL, true, UserTreeIdx); 1605 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1606 return; 1607 } 1608 1609 // If none of the load pairs were consecutive when checked in order, 1610 // check the reverse order. 1611 if (ReverseConsecutive) 1612 for (unsigned i = VL.size() - 1; i > 0; --i) 1613 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1614 ReverseConsecutive = false; 1615 break; 1616 } 1617 1618 BS.cancelScheduling(VL, VL0); 1619 newTreeEntry(VL, false, UserTreeIdx); 1620 1621 if (ReverseConsecutive) { 1622 --NumOpsWantToKeepOrder[S.Opcode]; 1623 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1624 } else { 1625 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1626 } 1627 return; 1628 } 1629 case Instruction::ZExt: 1630 case Instruction::SExt: 1631 case Instruction::FPToUI: 1632 case Instruction::FPToSI: 1633 case Instruction::FPExt: 1634 case Instruction::PtrToInt: 1635 case Instruction::IntToPtr: 1636 case Instruction::SIToFP: 1637 case Instruction::UIToFP: 1638 case Instruction::Trunc: 1639 case Instruction::FPTrunc: 1640 case Instruction::BitCast: { 1641 Type *SrcTy = VL0->getOperand(0)->getType(); 1642 for (unsigned i = 0; i < VL.size(); ++i) { 1643 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1644 if (Ty != SrcTy || !isValidElementType(Ty)) { 1645 BS.cancelScheduling(VL, VL0); 1646 newTreeEntry(VL, false, UserTreeIdx); 1647 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1648 return; 1649 } 1650 } 1651 newTreeEntry(VL, true, UserTreeIdx); 1652 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1653 1654 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1655 ValueList Operands; 1656 // Prepare the operand vector. 1657 for (Value *j : VL) 1658 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1659 1660 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1661 } 1662 return; 1663 } 1664 case Instruction::ICmp: 1665 case Instruction::FCmp: { 1666 // Check that all of the compares have the same predicate. 1667 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1668 Type *ComparedTy = VL0->getOperand(0)->getType(); 1669 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1670 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1671 if (Cmp->getPredicate() != P0 || 1672 Cmp->getOperand(0)->getType() != ComparedTy) { 1673 BS.cancelScheduling(VL, VL0); 1674 newTreeEntry(VL, false, UserTreeIdx); 1675 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1676 return; 1677 } 1678 } 1679 1680 newTreeEntry(VL, true, UserTreeIdx); 1681 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1682 1683 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1684 ValueList Operands; 1685 // Prepare the operand vector. 1686 for (Value *j : VL) 1687 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1688 1689 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1690 } 1691 return; 1692 } 1693 case Instruction::Select: 1694 case Instruction::Add: 1695 case Instruction::FAdd: 1696 case Instruction::Sub: 1697 case Instruction::FSub: 1698 case Instruction::Mul: 1699 case Instruction::FMul: 1700 case Instruction::UDiv: 1701 case Instruction::SDiv: 1702 case Instruction::FDiv: 1703 case Instruction::URem: 1704 case Instruction::SRem: 1705 case Instruction::FRem: 1706 case Instruction::Shl: 1707 case Instruction::LShr: 1708 case Instruction::AShr: 1709 case Instruction::And: 1710 case Instruction::Or: 1711 case Instruction::Xor: 1712 newTreeEntry(VL, true, UserTreeIdx); 1713 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1714 1715 // Sort operands of the instructions so that each side is more likely to 1716 // have the same opcode. 1717 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1718 ValueList Left, Right; 1719 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1720 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1721 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1722 return; 1723 } 1724 1725 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1726 ValueList Operands; 1727 // Prepare the operand vector. 1728 for (Value *j : VL) 1729 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1730 1731 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1732 } 1733 return; 1734 1735 case Instruction::GetElementPtr: { 1736 // We don't combine GEPs with complicated (nested) indexing. 1737 for (unsigned j = 0; j < VL.size(); ++j) { 1738 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1739 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1740 BS.cancelScheduling(VL, VL0); 1741 newTreeEntry(VL, false, UserTreeIdx); 1742 return; 1743 } 1744 } 1745 1746 // We can't combine several GEPs into one vector if they operate on 1747 // different types. 1748 Type *Ty0 = VL0->getOperand(0)->getType(); 1749 for (unsigned j = 0; j < VL.size(); ++j) { 1750 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1751 if (Ty0 != CurTy) { 1752 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1753 BS.cancelScheduling(VL, VL0); 1754 newTreeEntry(VL, false, UserTreeIdx); 1755 return; 1756 } 1757 } 1758 1759 // We don't combine GEPs with non-constant indexes. 1760 for (unsigned j = 0; j < VL.size(); ++j) { 1761 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1762 if (!isa<ConstantInt>(Op)) { 1763 DEBUG( 1764 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1765 BS.cancelScheduling(VL, VL0); 1766 newTreeEntry(VL, false, UserTreeIdx); 1767 return; 1768 } 1769 } 1770 1771 newTreeEntry(VL, true, UserTreeIdx); 1772 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1773 for (unsigned i = 0, e = 2; i < e; ++i) { 1774 ValueList Operands; 1775 // Prepare the operand vector. 1776 for (Value *j : VL) 1777 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1778 1779 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1780 } 1781 return; 1782 } 1783 case Instruction::Store: { 1784 // Check if the stores are consecutive or of we need to swizzle them. 1785 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1786 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1787 BS.cancelScheduling(VL, VL0); 1788 newTreeEntry(VL, false, UserTreeIdx); 1789 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1790 return; 1791 } 1792 1793 newTreeEntry(VL, true, UserTreeIdx); 1794 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1795 1796 ValueList Operands; 1797 for (Value *j : VL) 1798 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1799 1800 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1801 return; 1802 } 1803 case Instruction::Call: { 1804 // Check if the calls are all to the same vectorizable intrinsic. 1805 CallInst *CI = cast<CallInst>(VL0); 1806 // Check if this is an Intrinsic call or something that can be 1807 // represented by an intrinsic call 1808 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1809 if (!isTriviallyVectorizable(ID)) { 1810 BS.cancelScheduling(VL, VL0); 1811 newTreeEntry(VL, false, UserTreeIdx); 1812 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1813 return; 1814 } 1815 Function *Int = CI->getCalledFunction(); 1816 Value *A1I = nullptr; 1817 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1818 A1I = CI->getArgOperand(1); 1819 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1820 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1821 if (!CI2 || CI2->getCalledFunction() != Int || 1822 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1823 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1824 BS.cancelScheduling(VL, VL0); 1825 newTreeEntry(VL, false, UserTreeIdx); 1826 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1827 << "\n"); 1828 return; 1829 } 1830 // ctlz,cttz and powi are special intrinsics whose second argument 1831 // should be same in order for them to be vectorized. 1832 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1833 Value *A1J = CI2->getArgOperand(1); 1834 if (A1I != A1J) { 1835 BS.cancelScheduling(VL, VL0); 1836 newTreeEntry(VL, false, UserTreeIdx); 1837 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1838 << " argument "<< A1I<<"!=" << A1J 1839 << "\n"); 1840 return; 1841 } 1842 } 1843 // Verify that the bundle operands are identical between the two calls. 1844 if (CI->hasOperandBundles() && 1845 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1846 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1847 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1848 BS.cancelScheduling(VL, VL0); 1849 newTreeEntry(VL, false, UserTreeIdx); 1850 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1851 << *VL[i] << '\n'); 1852 return; 1853 } 1854 } 1855 1856 newTreeEntry(VL, true, UserTreeIdx); 1857 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1858 ValueList Operands; 1859 // Prepare the operand vector. 1860 for (Value *j : VL) { 1861 CallInst *CI2 = dyn_cast<CallInst>(j); 1862 Operands.push_back(CI2->getArgOperand(i)); 1863 } 1864 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1865 } 1866 return; 1867 } 1868 case Instruction::ShuffleVector: 1869 // If this is not an alternate sequence of opcode like add-sub 1870 // then do not vectorize this instruction. 1871 if (!S.IsAltShuffle) { 1872 BS.cancelScheduling(VL, VL0); 1873 newTreeEntry(VL, false, UserTreeIdx); 1874 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1875 return; 1876 } 1877 newTreeEntry(VL, true, UserTreeIdx); 1878 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1879 1880 // Reorder operands if reordering would enable vectorization. 1881 if (isa<BinaryOperator>(VL0)) { 1882 ValueList Left, Right; 1883 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1884 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1885 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1886 return; 1887 } 1888 1889 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1890 ValueList Operands; 1891 // Prepare the operand vector. 1892 for (Value *j : VL) 1893 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1894 1895 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1896 } 1897 return; 1898 1899 default: 1900 BS.cancelScheduling(VL, VL0); 1901 newTreeEntry(VL, false, UserTreeIdx); 1902 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1903 return; 1904 } 1905 } 1906 1907 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1908 unsigned N; 1909 Type *EltTy; 1910 auto *ST = dyn_cast<StructType>(T); 1911 if (ST) { 1912 N = ST->getNumElements(); 1913 EltTy = *ST->element_begin(); 1914 } else { 1915 N = cast<ArrayType>(T)->getNumElements(); 1916 EltTy = cast<ArrayType>(T)->getElementType(); 1917 } 1918 if (!isValidElementType(EltTy)) 1919 return 0; 1920 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1921 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1922 return 0; 1923 if (ST) { 1924 // Check that struct is homogeneous. 1925 for (const auto *Ty : ST->elements()) 1926 if (Ty != EltTy) 1927 return 0; 1928 } 1929 return N; 1930 } 1931 1932 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const { 1933 Instruction *E0 = cast<Instruction>(OpValue); 1934 assert(E0->getOpcode() == Instruction::ExtractElement || 1935 E0->getOpcode() == Instruction::ExtractValue); 1936 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 1937 // Check if all of the extracts come from the same vector and from the 1938 // correct offset. 1939 Value *Vec = E0->getOperand(0); 1940 1941 // We have to extract from a vector/aggregate with the same number of elements. 1942 unsigned NElts; 1943 if (E0->getOpcode() == Instruction::ExtractValue) { 1944 const DataLayout &DL = E0->getModule()->getDataLayout(); 1945 NElts = canMapToVector(Vec->getType(), DL); 1946 if (!NElts) 1947 return false; 1948 // Check if load can be rewritten as load of vector. 1949 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1950 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1951 return false; 1952 } else { 1953 NElts = Vec->getType()->getVectorNumElements(); 1954 } 1955 1956 if (NElts != VL.size()) 1957 return false; 1958 1959 // Check that all of the indices extract from the correct offset. 1960 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 1961 Instruction *Inst = cast<Instruction>(VL[I]); 1962 if (!matchExtractIndex(Inst, I, Inst->getOpcode())) 1963 return false; 1964 if (Inst->getOperand(0) != Vec) 1965 return false; 1966 } 1967 1968 return true; 1969 } 1970 1971 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 1972 return I->hasOneUse() || 1973 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 1974 return ScalarToTreeEntry.count(U) > 0; 1975 }); 1976 } 1977 1978 int BoUpSLP::getEntryCost(TreeEntry *E) { 1979 ArrayRef<Value*> VL = E->Scalars; 1980 1981 Type *ScalarTy = VL[0]->getType(); 1982 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1983 ScalarTy = SI->getValueOperand()->getType(); 1984 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1985 ScalarTy = CI->getOperand(0)->getType(); 1986 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1987 1988 // If we have computed a smaller type for the expression, update VecTy so 1989 // that the costs will be accurate. 1990 if (MinBWs.count(VL[0])) 1991 VecTy = VectorType::get( 1992 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1993 1994 if (E->NeedToGather) { 1995 if (allConstant(VL)) 1996 return 0; 1997 if (isSplat(VL)) { 1998 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1999 } 2000 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement) { 2001 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2002 if (ShuffleKind.hasValue()) { 2003 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2004 for (auto *V : VL) { 2005 // If all users of instruction are going to be vectorized and this 2006 // instruction itself is not going to be vectorized, consider this 2007 // instruction as dead and remove its cost from the final cost of the 2008 // vectorized tree. 2009 if (areAllUsersVectorized(cast<Instruction>(V)) && 2010 !ScalarToTreeEntry.count(V)) { 2011 auto *IO = cast<ConstantInt>( 2012 cast<ExtractElementInst>(V)->getIndexOperand()); 2013 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2014 IO->getZExtValue()); 2015 } 2016 } 2017 return Cost; 2018 } 2019 } 2020 return getGatherCost(E->Scalars); 2021 } 2022 InstructionsState S = getSameOpcode(VL); 2023 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2024 Instruction *VL0 = cast<Instruction>(S.OpValue); 2025 unsigned ShuffleOrOp = S.IsAltShuffle ? 2026 (unsigned) Instruction::ShuffleVector : S.Opcode; 2027 switch (ShuffleOrOp) { 2028 case Instruction::PHI: 2029 return 0; 2030 2031 case Instruction::ExtractValue: 2032 case Instruction::ExtractElement: 2033 if (canReuseExtract(VL, S.OpValue)) { 2034 int DeadCost = 0; 2035 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2036 Instruction *E = cast<Instruction>(VL[i]); 2037 // If all users are going to be vectorized, instruction can be 2038 // considered as dead. 2039 // The same, if have only one user, it will be vectorized for sure. 2040 if (areAllUsersVectorized(E)) 2041 // Take credit for instruction that will become dead. 2042 DeadCost += 2043 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2044 } 2045 return -DeadCost; 2046 } 2047 return getGatherCost(VecTy); 2048 2049 case Instruction::ZExt: 2050 case Instruction::SExt: 2051 case Instruction::FPToUI: 2052 case Instruction::FPToSI: 2053 case Instruction::FPExt: 2054 case Instruction::PtrToInt: 2055 case Instruction::IntToPtr: 2056 case Instruction::SIToFP: 2057 case Instruction::UIToFP: 2058 case Instruction::Trunc: 2059 case Instruction::FPTrunc: 2060 case Instruction::BitCast: { 2061 Type *SrcTy = VL0->getOperand(0)->getType(); 2062 2063 // Calculate the cost of this instruction. 2064 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2065 VL0->getType(), SrcTy, VL0); 2066 2067 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2068 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2069 return VecCost - ScalarCost; 2070 } 2071 case Instruction::FCmp: 2072 case Instruction::ICmp: 2073 case Instruction::Select: { 2074 // Calculate the cost of this instruction. 2075 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2076 int ScalarCost = VecTy->getNumElements() * 2077 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2078 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2079 return VecCost - ScalarCost; 2080 } 2081 case Instruction::Add: 2082 case Instruction::FAdd: 2083 case Instruction::Sub: 2084 case Instruction::FSub: 2085 case Instruction::Mul: 2086 case Instruction::FMul: 2087 case Instruction::UDiv: 2088 case Instruction::SDiv: 2089 case Instruction::FDiv: 2090 case Instruction::URem: 2091 case Instruction::SRem: 2092 case Instruction::FRem: 2093 case Instruction::Shl: 2094 case Instruction::LShr: 2095 case Instruction::AShr: 2096 case Instruction::And: 2097 case Instruction::Or: 2098 case Instruction::Xor: { 2099 // Certain instructions can be cheaper to vectorize if they have a 2100 // constant second vector operand. 2101 TargetTransformInfo::OperandValueKind Op1VK = 2102 TargetTransformInfo::OK_AnyValue; 2103 TargetTransformInfo::OperandValueKind Op2VK = 2104 TargetTransformInfo::OK_UniformConstantValue; 2105 TargetTransformInfo::OperandValueProperties Op1VP = 2106 TargetTransformInfo::OP_None; 2107 TargetTransformInfo::OperandValueProperties Op2VP = 2108 TargetTransformInfo::OP_None; 2109 2110 // If all operands are exactly the same ConstantInt then set the 2111 // operand kind to OK_UniformConstantValue. 2112 // If instead not all operands are constants, then set the operand kind 2113 // to OK_AnyValue. If all operands are constants but not the same, 2114 // then set the operand kind to OK_NonUniformConstantValue. 2115 ConstantInt *CInt = nullptr; 2116 for (unsigned i = 0; i < VL.size(); ++i) { 2117 const Instruction *I = cast<Instruction>(VL[i]); 2118 if (!isa<ConstantInt>(I->getOperand(1))) { 2119 Op2VK = TargetTransformInfo::OK_AnyValue; 2120 break; 2121 } 2122 if (i == 0) { 2123 CInt = cast<ConstantInt>(I->getOperand(1)); 2124 continue; 2125 } 2126 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2127 CInt != cast<ConstantInt>(I->getOperand(1))) 2128 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2129 } 2130 // FIXME: Currently cost of model modification for division by power of 2131 // 2 is handled for X86 and AArch64. Add support for other targets. 2132 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2133 CInt->getValue().isPowerOf2()) 2134 Op2VP = TargetTransformInfo::OP_PowerOf2; 2135 2136 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2137 int ScalarCost = 2138 VecTy->getNumElements() * 2139 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2140 Op2VP, Operands); 2141 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2142 Op1VP, Op2VP, Operands); 2143 return VecCost - ScalarCost; 2144 } 2145 case Instruction::GetElementPtr: { 2146 TargetTransformInfo::OperandValueKind Op1VK = 2147 TargetTransformInfo::OK_AnyValue; 2148 TargetTransformInfo::OperandValueKind Op2VK = 2149 TargetTransformInfo::OK_UniformConstantValue; 2150 2151 int ScalarCost = 2152 VecTy->getNumElements() * 2153 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2154 int VecCost = 2155 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2156 2157 return VecCost - ScalarCost; 2158 } 2159 case Instruction::Load: { 2160 // Cost of wide load - cost of scalar loads. 2161 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2162 int ScalarLdCost = VecTy->getNumElements() * 2163 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2164 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2165 VecTy, alignment, 0, VL0); 2166 return VecLdCost - ScalarLdCost; 2167 } 2168 case Instruction::Store: { 2169 // We know that we can merge the stores. Calculate the cost. 2170 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2171 int ScalarStCost = VecTy->getNumElements() * 2172 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2173 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2174 VecTy, alignment, 0, VL0); 2175 return VecStCost - ScalarStCost; 2176 } 2177 case Instruction::Call: { 2178 CallInst *CI = cast<CallInst>(VL0); 2179 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2180 2181 // Calculate the cost of the scalar and vector calls. 2182 SmallVector<Type*, 4> ScalarTys; 2183 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2184 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2185 2186 FastMathFlags FMF; 2187 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2188 FMF = FPMO->getFastMathFlags(); 2189 2190 int ScalarCallCost = VecTy->getNumElements() * 2191 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2192 2193 SmallVector<Value *, 4> Args(CI->arg_operands()); 2194 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2195 VecTy->getNumElements()); 2196 2197 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2198 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2199 << " for " << *CI << "\n"); 2200 2201 return VecCallCost - ScalarCallCost; 2202 } 2203 case Instruction::ShuffleVector: { 2204 TargetTransformInfo::OperandValueKind Op1VK = 2205 TargetTransformInfo::OK_AnyValue; 2206 TargetTransformInfo::OperandValueKind Op2VK = 2207 TargetTransformInfo::OK_AnyValue; 2208 int ScalarCost = 0; 2209 int VecCost = 0; 2210 for (Value *i : VL) { 2211 Instruction *I = cast<Instruction>(i); 2212 if (!I) 2213 break; 2214 ScalarCost += 2215 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2216 } 2217 // VecCost is equal to sum of the cost of creating 2 vectors 2218 // and the cost of creating shuffle. 2219 Instruction *I0 = cast<Instruction>(VL[0]); 2220 VecCost = 2221 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2222 Instruction *I1 = cast<Instruction>(VL[1]); 2223 VecCost += 2224 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2225 VecCost += 2226 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2227 return VecCost - ScalarCost; 2228 } 2229 default: 2230 llvm_unreachable("Unknown instruction"); 2231 } 2232 } 2233 2234 bool BoUpSLP::isFullyVectorizableTinyTree() { 2235 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2236 VectorizableTree.size() << " is fully vectorizable .\n"); 2237 2238 // We only handle trees of heights 1 and 2. 2239 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2240 return true; 2241 2242 if (VectorizableTree.size() != 2) 2243 return false; 2244 2245 // Handle splat and all-constants stores. 2246 if (!VectorizableTree[0].NeedToGather && 2247 (allConstant(VectorizableTree[1].Scalars) || 2248 isSplat(VectorizableTree[1].Scalars))) 2249 return true; 2250 2251 // Gathering cost would be too much for tiny trees. 2252 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2253 return false; 2254 2255 return true; 2256 } 2257 2258 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2259 // We can vectorize the tree if its size is greater than or equal to the 2260 // minimum size specified by the MinTreeSize command line option. 2261 if (VectorizableTree.size() >= MinTreeSize) 2262 return false; 2263 2264 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2265 // can vectorize it if we can prove it fully vectorizable. 2266 if (isFullyVectorizableTinyTree()) 2267 return false; 2268 2269 assert(VectorizableTree.empty() 2270 ? ExternalUses.empty() 2271 : true && "We shouldn't have any external users"); 2272 2273 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2274 // vectorizable. 2275 return true; 2276 } 2277 2278 int BoUpSLP::getSpillCost() { 2279 // Walk from the bottom of the tree to the top, tracking which values are 2280 // live. When we see a call instruction that is not part of our tree, 2281 // query TTI to see if there is a cost to keeping values live over it 2282 // (for example, if spills and fills are required). 2283 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2284 int Cost = 0; 2285 2286 SmallPtrSet<Instruction*, 4> LiveValues; 2287 Instruction *PrevInst = nullptr; 2288 2289 for (const auto &N : VectorizableTree) { 2290 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2291 if (!Inst) 2292 continue; 2293 2294 if (!PrevInst) { 2295 PrevInst = Inst; 2296 continue; 2297 } 2298 2299 // Update LiveValues. 2300 LiveValues.erase(PrevInst); 2301 for (auto &J : PrevInst->operands()) { 2302 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2303 LiveValues.insert(cast<Instruction>(&*J)); 2304 } 2305 2306 DEBUG( 2307 dbgs() << "SLP: #LV: " << LiveValues.size(); 2308 for (auto *X : LiveValues) 2309 dbgs() << " " << X->getName(); 2310 dbgs() << ", Looking at "; 2311 Inst->dump(); 2312 ); 2313 2314 // Now find the sequence of instructions between PrevInst and Inst. 2315 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2316 PrevInstIt = 2317 PrevInst->getIterator().getReverse(); 2318 while (InstIt != PrevInstIt) { 2319 if (PrevInstIt == PrevInst->getParent()->rend()) { 2320 PrevInstIt = Inst->getParent()->rbegin(); 2321 continue; 2322 } 2323 2324 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2325 SmallVector<Type*, 4> V; 2326 for (auto *II : LiveValues) 2327 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2328 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2329 } 2330 2331 ++PrevInstIt; 2332 } 2333 2334 PrevInst = Inst; 2335 } 2336 2337 return Cost; 2338 } 2339 2340 int BoUpSLP::getTreeCost() { 2341 int Cost = 0; 2342 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2343 VectorizableTree.size() << ".\n"); 2344 2345 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2346 2347 for (TreeEntry &TE : VectorizableTree) { 2348 int C = getEntryCost(&TE); 2349 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2350 << *TE.Scalars[0] << ".\n"); 2351 Cost += C; 2352 } 2353 2354 SmallSet<Value *, 16> ExtractCostCalculated; 2355 int ExtractCost = 0; 2356 for (ExternalUser &EU : ExternalUses) { 2357 // We only add extract cost once for the same scalar. 2358 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2359 continue; 2360 2361 // Uses by ephemeral values are free (because the ephemeral value will be 2362 // removed prior to code generation, and so the extraction will be 2363 // removed as well). 2364 if (EphValues.count(EU.User)) 2365 continue; 2366 2367 // If we plan to rewrite the tree in a smaller type, we will need to sign 2368 // extend the extracted value back to the original type. Here, we account 2369 // for the extract and the added cost of the sign extend if needed. 2370 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2371 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2372 if (MinBWs.count(ScalarRoot)) { 2373 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2374 auto Extend = 2375 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2376 VecTy = VectorType::get(MinTy, BundleWidth); 2377 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2378 VecTy, EU.Lane); 2379 } else { 2380 ExtractCost += 2381 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2382 } 2383 } 2384 2385 int SpillCost = getSpillCost(); 2386 Cost += SpillCost + ExtractCost; 2387 2388 std::string Str; 2389 { 2390 raw_string_ostream OS(Str); 2391 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2392 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2393 << "SLP: Total Cost = " << Cost << ".\n"; 2394 } 2395 DEBUG(dbgs() << Str); 2396 2397 if (ViewSLPTree) 2398 ViewGraph(this, "SLP" + F->getName(), false, Str); 2399 2400 return Cost; 2401 } 2402 2403 int BoUpSLP::getGatherCost(Type *Ty) { 2404 int Cost = 0; 2405 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2406 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2407 return Cost; 2408 } 2409 2410 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2411 // Find the type of the operands in VL. 2412 Type *ScalarTy = VL[0]->getType(); 2413 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2414 ScalarTy = SI->getValueOperand()->getType(); 2415 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2416 // Find the cost of inserting/extracting values from the vector. 2417 return getGatherCost(VecTy); 2418 } 2419 2420 // Reorder commutative operations in alternate shuffle if the resulting vectors 2421 // are consecutive loads. This would allow us to vectorize the tree. 2422 // If we have something like- 2423 // load a[0] - load b[0] 2424 // load b[1] + load a[1] 2425 // load a[2] - load b[2] 2426 // load a[3] + load b[3] 2427 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2428 // code. 2429 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2430 SmallVectorImpl<Value *> &Left, 2431 SmallVectorImpl<Value *> &Right) { 2432 // Push left and right operands of binary operation into Left and Right 2433 unsigned AltOpcode = getAltOpcode(Opcode); 2434 (void)AltOpcode; 2435 for (Value *V : VL) { 2436 auto *I = cast<Instruction>(V); 2437 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2438 "Incorrect instruction in vector"); 2439 Left.push_back(I->getOperand(0)); 2440 Right.push_back(I->getOperand(1)); 2441 } 2442 2443 // Reorder if we have a commutative operation and consecutive access 2444 // are on either side of the alternate instructions. 2445 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2446 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2447 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2448 Instruction *VL1 = cast<Instruction>(VL[j]); 2449 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2450 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2451 std::swap(Left[j], Right[j]); 2452 continue; 2453 } else if (VL2->isCommutative() && 2454 isConsecutiveAccess(L, L1, *DL, *SE)) { 2455 std::swap(Left[j + 1], Right[j + 1]); 2456 continue; 2457 } 2458 // else unchanged 2459 } 2460 } 2461 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2462 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2463 Instruction *VL1 = cast<Instruction>(VL[j]); 2464 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2465 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2466 std::swap(Left[j], Right[j]); 2467 continue; 2468 } else if (VL2->isCommutative() && 2469 isConsecutiveAccess(L, L1, *DL, *SE)) { 2470 std::swap(Left[j + 1], Right[j + 1]); 2471 continue; 2472 } 2473 // else unchanged 2474 } 2475 } 2476 } 2477 } 2478 2479 // Return true if I should be commuted before adding it's left and right 2480 // operands to the arrays Left and Right. 2481 // 2482 // The vectorizer is trying to either have all elements one side being 2483 // instruction with the same opcode to enable further vectorization, or having 2484 // a splat to lower the vectorizing cost. 2485 static bool shouldReorderOperands( 2486 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2487 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2488 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2489 VLeft = I.getOperand(0); 2490 VRight = I.getOperand(1); 2491 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2492 if (SplatRight) { 2493 if (VRight == Right[i - 1]) 2494 // Preserve SplatRight 2495 return false; 2496 if (VLeft == Right[i - 1]) { 2497 // Commuting would preserve SplatRight, but we don't want to break 2498 // SplatLeft either, i.e. preserve the original order if possible. 2499 // (FIXME: why do we care?) 2500 if (SplatLeft && VLeft == Left[i - 1]) 2501 return false; 2502 return true; 2503 } 2504 } 2505 // Symmetrically handle Right side. 2506 if (SplatLeft) { 2507 if (VLeft == Left[i - 1]) 2508 // Preserve SplatLeft 2509 return false; 2510 if (VRight == Left[i - 1]) 2511 return true; 2512 } 2513 2514 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2515 Instruction *IRight = dyn_cast<Instruction>(VRight); 2516 2517 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2518 // it and not the right, in this case we want to commute. 2519 if (AllSameOpcodeRight) { 2520 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2521 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2522 // Do not commute, a match on the right preserves AllSameOpcodeRight 2523 return false; 2524 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2525 // We have a match and may want to commute, but first check if there is 2526 // not also a match on the existing operands on the Left to preserve 2527 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2528 // (FIXME: why do we care?) 2529 if (AllSameOpcodeLeft && ILeft && 2530 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2531 return false; 2532 return true; 2533 } 2534 } 2535 // Symmetrically handle Left side. 2536 if (AllSameOpcodeLeft) { 2537 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2538 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2539 return false; 2540 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2541 return true; 2542 } 2543 return false; 2544 } 2545 2546 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2547 ArrayRef<Value *> VL, 2548 SmallVectorImpl<Value *> &Left, 2549 SmallVectorImpl<Value *> &Right) { 2550 if (!VL.empty()) { 2551 // Peel the first iteration out of the loop since there's nothing 2552 // interesting to do anyway and it simplifies the checks in the loop. 2553 auto *I = cast<Instruction>(VL[0]); 2554 Value *VLeft = I->getOperand(0); 2555 Value *VRight = I->getOperand(1); 2556 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2557 // Favor having instruction to the right. FIXME: why? 2558 std::swap(VLeft, VRight); 2559 Left.push_back(VLeft); 2560 Right.push_back(VRight); 2561 } 2562 2563 // Keep track if we have instructions with all the same opcode on one side. 2564 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2565 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2566 // Keep track if we have one side with all the same value (broadcast). 2567 bool SplatLeft = true; 2568 bool SplatRight = true; 2569 2570 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2571 Instruction *I = cast<Instruction>(VL[i]); 2572 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2573 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2574 "Can only process commutative instruction"); 2575 // Commute to favor either a splat or maximizing having the same opcodes on 2576 // one side. 2577 Value *VLeft; 2578 Value *VRight; 2579 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2580 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2581 VRight)) { 2582 Left.push_back(VRight); 2583 Right.push_back(VLeft); 2584 } else { 2585 Left.push_back(VLeft); 2586 Right.push_back(VRight); 2587 } 2588 // Update Splat* and AllSameOpcode* after the insertion. 2589 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2590 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2591 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2592 (cast<Instruction>(Left[i - 1])->getOpcode() == 2593 cast<Instruction>(Left[i])->getOpcode()); 2594 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2595 (cast<Instruction>(Right[i - 1])->getOpcode() == 2596 cast<Instruction>(Right[i])->getOpcode()); 2597 } 2598 2599 // If one operand end up being broadcast, return this operand order. 2600 if (SplatRight || SplatLeft) 2601 return; 2602 2603 // Finally check if we can get longer vectorizable chain by reordering 2604 // without breaking the good operand order detected above. 2605 // E.g. If we have something like- 2606 // load a[0] load b[0] 2607 // load b[1] load a[1] 2608 // load a[2] load b[2] 2609 // load a[3] load b[3] 2610 // Reordering the second load b[1] load a[1] would allow us to vectorize 2611 // this code and we still retain AllSameOpcode property. 2612 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2613 // such as- 2614 // add a[0],c[0] load b[0] 2615 // add a[1],c[2] load b[1] 2616 // b[2] load b[2] 2617 // add a[3],c[3] load b[3] 2618 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2619 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2620 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2621 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2622 std::swap(Left[j + 1], Right[j + 1]); 2623 continue; 2624 } 2625 } 2626 } 2627 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2628 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2629 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2630 std::swap(Left[j + 1], Right[j + 1]); 2631 continue; 2632 } 2633 } 2634 } 2635 // else unchanged 2636 } 2637 } 2638 2639 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2640 // Get the basic block this bundle is in. All instructions in the bundle 2641 // should be in this block. 2642 auto *Front = cast<Instruction>(OpValue); 2643 auto *BB = Front->getParent(); 2644 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2645 const unsigned AltOpcode = getAltOpcode(Opcode); 2646 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2647 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2648 cast<Instruction>(V)->getOpcode()) || 2649 cast<Instruction>(V)->getParent() == BB; 2650 })); 2651 2652 // The last instruction in the bundle in program order. 2653 Instruction *LastInst = nullptr; 2654 2655 // Find the last instruction. The common case should be that BB has been 2656 // scheduled, and the last instruction is VL.back(). So we start with 2657 // VL.back() and iterate over schedule data until we reach the end of the 2658 // bundle. The end of the bundle is marked by null ScheduleData. 2659 if (BlocksSchedules.count(BB)) { 2660 auto *Bundle = 2661 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2662 if (Bundle && Bundle->isPartOfBundle()) 2663 for (; Bundle; Bundle = Bundle->NextInBundle) 2664 if (Bundle->OpValue == Bundle->Inst) 2665 LastInst = Bundle->Inst; 2666 } 2667 2668 // LastInst can still be null at this point if there's either not an entry 2669 // for BB in BlocksSchedules or there's no ScheduleData available for 2670 // VL.back(). This can be the case if buildTree_rec aborts for various 2671 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2672 // size is reached, etc.). ScheduleData is initialized in the scheduling 2673 // "dry-run". 2674 // 2675 // If this happens, we can still find the last instruction by brute force. We 2676 // iterate forwards from Front (inclusive) until we either see all 2677 // instructions in the bundle or reach the end of the block. If Front is the 2678 // last instruction in program order, LastInst will be set to Front, and we 2679 // will visit all the remaining instructions in the block. 2680 // 2681 // One of the reasons we exit early from buildTree_rec is to place an upper 2682 // bound on compile-time. Thus, taking an additional compile-time hit here is 2683 // not ideal. However, this should be exceedingly rare since it requires that 2684 // we both exit early from buildTree_rec and that the bundle be out-of-order 2685 // (causing us to iterate all the way to the end of the block). 2686 if (!LastInst) { 2687 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2688 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2689 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2690 LastInst = &I; 2691 if (Bundle.empty()) 2692 break; 2693 } 2694 } 2695 2696 // Set the insertion point after the last instruction in the bundle. Set the 2697 // debug location to Front. 2698 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2699 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2700 } 2701 2702 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2703 Value *Vec = UndefValue::get(Ty); 2704 // Generate the 'InsertElement' instruction. 2705 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2706 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2707 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2708 GatherSeq.insert(Insrt); 2709 CSEBlocks.insert(Insrt->getParent()); 2710 2711 // Add to our 'need-to-extract' list. 2712 if (TreeEntry *E = getTreeEntry(VL[i])) { 2713 // Find which lane we need to extract. 2714 int FoundLane = -1; 2715 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2716 // Is this the lane of the scalar that we are looking for ? 2717 if (E->Scalars[Lane] == VL[i]) { 2718 FoundLane = Lane; 2719 break; 2720 } 2721 } 2722 assert(FoundLane >= 0 && "Could not find the correct lane"); 2723 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2724 } 2725 } 2726 } 2727 2728 return Vec; 2729 } 2730 2731 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const { 2732 if (const TreeEntry *En = getTreeEntry(OpValue)) { 2733 if (En->isSame(VL) && En->VectorizedValue) 2734 return En->VectorizedValue; 2735 } 2736 return nullptr; 2737 } 2738 2739 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2740 InstructionsState S = getSameOpcode(VL); 2741 if (S.Opcode) { 2742 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2743 if (E->isSame(VL)) 2744 return vectorizeTree(E); 2745 } 2746 } 2747 2748 Type *ScalarTy = S.OpValue->getType(); 2749 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2750 ScalarTy = SI->getValueOperand()->getType(); 2751 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2752 2753 return Gather(VL, VecTy); 2754 } 2755 2756 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2757 IRBuilder<>::InsertPointGuard Guard(Builder); 2758 2759 if (E->VectorizedValue) { 2760 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2761 return E->VectorizedValue; 2762 } 2763 2764 InstructionsState S = getSameOpcode(E->Scalars); 2765 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2766 Type *ScalarTy = VL0->getType(); 2767 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2768 ScalarTy = SI->getValueOperand()->getType(); 2769 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2770 2771 if (E->NeedToGather) { 2772 setInsertPointAfterBundle(E->Scalars, VL0); 2773 auto *V = Gather(E->Scalars, VecTy); 2774 E->VectorizedValue = V; 2775 return V; 2776 } 2777 2778 unsigned ShuffleOrOp = S.IsAltShuffle ? 2779 (unsigned) Instruction::ShuffleVector : S.Opcode; 2780 switch (ShuffleOrOp) { 2781 case Instruction::PHI: { 2782 PHINode *PH = dyn_cast<PHINode>(VL0); 2783 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2784 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2785 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2786 E->VectorizedValue = NewPhi; 2787 2788 // PHINodes may have multiple entries from the same block. We want to 2789 // visit every block once. 2790 SmallSet<BasicBlock*, 4> VisitedBBs; 2791 2792 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2793 ValueList Operands; 2794 BasicBlock *IBB = PH->getIncomingBlock(i); 2795 2796 if (!VisitedBBs.insert(IBB).second) { 2797 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2798 continue; 2799 } 2800 2801 // Prepare the operand vector. 2802 for (Value *V : E->Scalars) 2803 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2804 2805 Builder.SetInsertPoint(IBB->getTerminator()); 2806 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2807 Value *Vec = vectorizeTree(Operands); 2808 NewPhi->addIncoming(Vec, IBB); 2809 } 2810 2811 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2812 "Invalid number of incoming values"); 2813 return NewPhi; 2814 } 2815 2816 case Instruction::ExtractElement: { 2817 if (canReuseExtract(E->Scalars, VL0)) { 2818 Value *V = VL0->getOperand(0); 2819 E->VectorizedValue = V; 2820 return V; 2821 } 2822 setInsertPointAfterBundle(E->Scalars, VL0); 2823 auto *V = Gather(E->Scalars, VecTy); 2824 E->VectorizedValue = V; 2825 return V; 2826 } 2827 case Instruction::ExtractValue: { 2828 if (canReuseExtract(E->Scalars, VL0)) { 2829 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2830 Builder.SetInsertPoint(LI); 2831 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2832 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2833 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2834 E->VectorizedValue = V; 2835 return propagateMetadata(V, E->Scalars); 2836 } 2837 setInsertPointAfterBundle(E->Scalars, VL0); 2838 auto *V = Gather(E->Scalars, VecTy); 2839 E->VectorizedValue = V; 2840 return V; 2841 } 2842 case Instruction::ZExt: 2843 case Instruction::SExt: 2844 case Instruction::FPToUI: 2845 case Instruction::FPToSI: 2846 case Instruction::FPExt: 2847 case Instruction::PtrToInt: 2848 case Instruction::IntToPtr: 2849 case Instruction::SIToFP: 2850 case Instruction::UIToFP: 2851 case Instruction::Trunc: 2852 case Instruction::FPTrunc: 2853 case Instruction::BitCast: { 2854 ValueList INVL; 2855 for (Value *V : E->Scalars) 2856 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2857 2858 setInsertPointAfterBundle(E->Scalars, VL0); 2859 2860 Value *InVec = vectorizeTree(INVL); 2861 2862 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2863 return V; 2864 2865 CastInst *CI = dyn_cast<CastInst>(VL0); 2866 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2867 E->VectorizedValue = V; 2868 ++NumVectorInstructions; 2869 return V; 2870 } 2871 case Instruction::FCmp: 2872 case Instruction::ICmp: { 2873 ValueList LHSV, RHSV; 2874 for (Value *V : E->Scalars) { 2875 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2876 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2877 } 2878 2879 setInsertPointAfterBundle(E->Scalars, VL0); 2880 2881 Value *L = vectorizeTree(LHSV); 2882 Value *R = vectorizeTree(RHSV); 2883 2884 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2885 return V; 2886 2887 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2888 Value *V; 2889 if (S.Opcode == Instruction::FCmp) 2890 V = Builder.CreateFCmp(P0, L, R); 2891 else 2892 V = Builder.CreateICmp(P0, L, R); 2893 2894 E->VectorizedValue = V; 2895 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2896 ++NumVectorInstructions; 2897 return V; 2898 } 2899 case Instruction::Select: { 2900 ValueList TrueVec, FalseVec, CondVec; 2901 for (Value *V : E->Scalars) { 2902 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2903 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2904 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2905 } 2906 2907 setInsertPointAfterBundle(E->Scalars, VL0); 2908 2909 Value *Cond = vectorizeTree(CondVec); 2910 Value *True = vectorizeTree(TrueVec); 2911 Value *False = vectorizeTree(FalseVec); 2912 2913 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2914 return V; 2915 2916 Value *V = Builder.CreateSelect(Cond, True, False); 2917 E->VectorizedValue = V; 2918 ++NumVectorInstructions; 2919 return V; 2920 } 2921 case Instruction::Add: 2922 case Instruction::FAdd: 2923 case Instruction::Sub: 2924 case Instruction::FSub: 2925 case Instruction::Mul: 2926 case Instruction::FMul: 2927 case Instruction::UDiv: 2928 case Instruction::SDiv: 2929 case Instruction::FDiv: 2930 case Instruction::URem: 2931 case Instruction::SRem: 2932 case Instruction::FRem: 2933 case Instruction::Shl: 2934 case Instruction::LShr: 2935 case Instruction::AShr: 2936 case Instruction::And: 2937 case Instruction::Or: 2938 case Instruction::Xor: { 2939 ValueList LHSVL, RHSVL; 2940 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2941 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 2942 RHSVL); 2943 else 2944 for (Value *V : E->Scalars) { 2945 auto *I = cast<Instruction>(V); 2946 LHSVL.push_back(I->getOperand(0)); 2947 RHSVL.push_back(I->getOperand(1)); 2948 } 2949 2950 setInsertPointAfterBundle(E->Scalars, VL0); 2951 2952 Value *LHS = vectorizeTree(LHSVL); 2953 Value *RHS = vectorizeTree(RHSVL); 2954 2955 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2956 return V; 2957 2958 Value *V = Builder.CreateBinOp( 2959 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 2960 E->VectorizedValue = V; 2961 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2962 ++NumVectorInstructions; 2963 2964 if (Instruction *I = dyn_cast<Instruction>(V)) 2965 return propagateMetadata(I, E->Scalars); 2966 2967 return V; 2968 } 2969 case Instruction::Load: { 2970 // Loads are inserted at the head of the tree because we don't want to 2971 // sink them all the way down past store instructions. 2972 setInsertPointAfterBundle(E->Scalars, VL0); 2973 2974 LoadInst *LI = cast<LoadInst>(VL0); 2975 Type *ScalarLoadTy = LI->getType(); 2976 unsigned AS = LI->getPointerAddressSpace(); 2977 2978 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2979 VecTy->getPointerTo(AS)); 2980 2981 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2982 // ExternalUses list to make sure that an extract will be generated in the 2983 // future. 2984 Value *PO = LI->getPointerOperand(); 2985 if (getTreeEntry(PO)) 2986 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 2987 2988 unsigned Alignment = LI->getAlignment(); 2989 LI = Builder.CreateLoad(VecPtr); 2990 if (!Alignment) { 2991 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2992 } 2993 LI->setAlignment(Alignment); 2994 E->VectorizedValue = LI; 2995 ++NumVectorInstructions; 2996 return propagateMetadata(LI, E->Scalars); 2997 } 2998 case Instruction::Store: { 2999 StoreInst *SI = cast<StoreInst>(VL0); 3000 unsigned Alignment = SI->getAlignment(); 3001 unsigned AS = SI->getPointerAddressSpace(); 3002 3003 ValueList ScalarStoreValues; 3004 for (Value *V : E->Scalars) 3005 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3006 3007 setInsertPointAfterBundle(E->Scalars, VL0); 3008 3009 Value *VecValue = vectorizeTree(ScalarStoreValues); 3010 Value *ScalarPtr = SI->getPointerOperand(); 3011 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3012 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 3013 3014 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3015 // ExternalUses to make sure that an extract will be generated in the 3016 // future. 3017 if (getTreeEntry(ScalarPtr)) 3018 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3019 3020 if (!Alignment) 3021 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3022 3023 S->setAlignment(Alignment); 3024 E->VectorizedValue = S; 3025 ++NumVectorInstructions; 3026 return propagateMetadata(S, E->Scalars); 3027 } 3028 case Instruction::GetElementPtr: { 3029 setInsertPointAfterBundle(E->Scalars, VL0); 3030 3031 ValueList Op0VL; 3032 for (Value *V : E->Scalars) 3033 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3034 3035 Value *Op0 = vectorizeTree(Op0VL); 3036 3037 std::vector<Value *> OpVecs; 3038 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3039 ++j) { 3040 ValueList OpVL; 3041 for (Value *V : E->Scalars) 3042 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3043 3044 Value *OpVec = vectorizeTree(OpVL); 3045 OpVecs.push_back(OpVec); 3046 } 3047 3048 Value *V = Builder.CreateGEP( 3049 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3050 E->VectorizedValue = V; 3051 ++NumVectorInstructions; 3052 3053 if (Instruction *I = dyn_cast<Instruction>(V)) 3054 return propagateMetadata(I, E->Scalars); 3055 3056 return V; 3057 } 3058 case Instruction::Call: { 3059 CallInst *CI = cast<CallInst>(VL0); 3060 setInsertPointAfterBundle(E->Scalars, VL0); 3061 Function *FI; 3062 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3063 Value *ScalarArg = nullptr; 3064 if (CI && (FI = CI->getCalledFunction())) { 3065 IID = FI->getIntrinsicID(); 3066 } 3067 std::vector<Value *> OpVecs; 3068 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3069 ValueList OpVL; 3070 // ctlz,cttz and powi are special intrinsics whose second argument is 3071 // a scalar. This argument should not be vectorized. 3072 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3073 CallInst *CEI = cast<CallInst>(VL0); 3074 ScalarArg = CEI->getArgOperand(j); 3075 OpVecs.push_back(CEI->getArgOperand(j)); 3076 continue; 3077 } 3078 for (Value *V : E->Scalars) { 3079 CallInst *CEI = cast<CallInst>(V); 3080 OpVL.push_back(CEI->getArgOperand(j)); 3081 } 3082 3083 Value *OpVec = vectorizeTree(OpVL); 3084 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3085 OpVecs.push_back(OpVec); 3086 } 3087 3088 Module *M = F->getParent(); 3089 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3090 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3091 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3092 SmallVector<OperandBundleDef, 1> OpBundles; 3093 CI->getOperandBundlesAsDefs(OpBundles); 3094 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3095 3096 // The scalar argument uses an in-tree scalar so we add the new vectorized 3097 // call to ExternalUses list to make sure that an extract will be 3098 // generated in the future. 3099 if (ScalarArg && getTreeEntry(ScalarArg)) 3100 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3101 3102 E->VectorizedValue = V; 3103 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 3104 ++NumVectorInstructions; 3105 return V; 3106 } 3107 case Instruction::ShuffleVector: { 3108 ValueList LHSVL, RHSVL; 3109 assert(Instruction::isBinaryOp(S.Opcode) && 3110 "Invalid Shuffle Vector Operand"); 3111 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3112 setInsertPointAfterBundle(E->Scalars, VL0); 3113 3114 Value *LHS = vectorizeTree(LHSVL); 3115 Value *RHS = vectorizeTree(RHSVL); 3116 3117 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 3118 return V; 3119 3120 // Create a vector of LHS op1 RHS 3121 Value *V0 = Builder.CreateBinOp( 3122 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3123 3124 unsigned AltOpcode = getAltOpcode(S.Opcode); 3125 // Create a vector of LHS op2 RHS 3126 Value *V1 = Builder.CreateBinOp( 3127 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3128 3129 // Create shuffle to take alternate operations from the vector. 3130 // Also, gather up odd and even scalar ops to propagate IR flags to 3131 // each vector operation. 3132 ValueList OddScalars, EvenScalars; 3133 unsigned e = E->Scalars.size(); 3134 SmallVector<Constant *, 8> Mask(e); 3135 for (unsigned i = 0; i < e; ++i) { 3136 if (isOdd(i)) { 3137 Mask[i] = Builder.getInt32(e + i); 3138 OddScalars.push_back(E->Scalars[i]); 3139 } else { 3140 Mask[i] = Builder.getInt32(i); 3141 EvenScalars.push_back(E->Scalars[i]); 3142 } 3143 } 3144 3145 Value *ShuffleMask = ConstantVector::get(Mask); 3146 propagateIRFlags(V0, EvenScalars); 3147 propagateIRFlags(V1, OddScalars); 3148 3149 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3150 E->VectorizedValue = V; 3151 ++NumVectorInstructions; 3152 if (Instruction *I = dyn_cast<Instruction>(V)) 3153 return propagateMetadata(I, E->Scalars); 3154 3155 return V; 3156 } 3157 default: 3158 llvm_unreachable("unknown inst"); 3159 } 3160 return nullptr; 3161 } 3162 3163 Value *BoUpSLP::vectorizeTree() { 3164 ExtraValueToDebugLocsMap ExternallyUsedValues; 3165 return vectorizeTree(ExternallyUsedValues); 3166 } 3167 3168 Value * 3169 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3170 // All blocks must be scheduled before any instructions are inserted. 3171 for (auto &BSIter : BlocksSchedules) { 3172 scheduleBlock(BSIter.second.get()); 3173 } 3174 3175 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3176 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3177 3178 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3179 // vectorized root. InstCombine will then rewrite the entire expression. We 3180 // sign extend the extracted values below. 3181 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3182 if (MinBWs.count(ScalarRoot)) { 3183 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3184 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3185 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3186 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3187 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3188 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3189 VectorizableTree[0].VectorizedValue = Trunc; 3190 } 3191 3192 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3193 3194 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3195 // specified by ScalarType. 3196 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3197 if (!MinBWs.count(ScalarRoot)) 3198 return Ex; 3199 if (MinBWs[ScalarRoot].second) 3200 return Builder.CreateSExt(Ex, ScalarType); 3201 return Builder.CreateZExt(Ex, ScalarType); 3202 }; 3203 3204 // Extract all of the elements with the external uses. 3205 for (const auto &ExternalUse : ExternalUses) { 3206 Value *Scalar = ExternalUse.Scalar; 3207 llvm::User *User = ExternalUse.User; 3208 3209 // Skip users that we already RAUW. This happens when one instruction 3210 // has multiple uses of the same value. 3211 if (User && !is_contained(Scalar->users(), User)) 3212 continue; 3213 TreeEntry *E = getTreeEntry(Scalar); 3214 assert(E && "Invalid scalar"); 3215 assert(!E->NeedToGather && "Extracting from a gather list"); 3216 3217 Value *Vec = E->VectorizedValue; 3218 assert(Vec && "Can't find vectorizable value"); 3219 3220 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3221 // If User == nullptr, the Scalar is used as extra arg. Generate 3222 // ExtractElement instruction and update the record for this scalar in 3223 // ExternallyUsedValues. 3224 if (!User) { 3225 assert(ExternallyUsedValues.count(Scalar) && 3226 "Scalar with nullptr as an external user must be registered in " 3227 "ExternallyUsedValues map"); 3228 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3229 Builder.SetInsertPoint(VecI->getParent(), 3230 std::next(VecI->getIterator())); 3231 } else { 3232 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3233 } 3234 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3235 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3236 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3237 auto &Locs = ExternallyUsedValues[Scalar]; 3238 ExternallyUsedValues.insert({Ex, Locs}); 3239 ExternallyUsedValues.erase(Scalar); 3240 continue; 3241 } 3242 3243 // Generate extracts for out-of-tree users. 3244 // Find the insertion point for the extractelement lane. 3245 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3246 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3247 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3248 if (PH->getIncomingValue(i) == Scalar) { 3249 TerminatorInst *IncomingTerminator = 3250 PH->getIncomingBlock(i)->getTerminator(); 3251 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3252 Builder.SetInsertPoint(VecI->getParent(), 3253 std::next(VecI->getIterator())); 3254 } else { 3255 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3256 } 3257 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3258 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3259 CSEBlocks.insert(PH->getIncomingBlock(i)); 3260 PH->setOperand(i, Ex); 3261 } 3262 } 3263 } else { 3264 Builder.SetInsertPoint(cast<Instruction>(User)); 3265 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3266 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3267 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3268 User->replaceUsesOfWith(Scalar, Ex); 3269 } 3270 } else { 3271 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3272 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3273 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3274 CSEBlocks.insert(&F->getEntryBlock()); 3275 User->replaceUsesOfWith(Scalar, Ex); 3276 } 3277 3278 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3279 } 3280 3281 // For each vectorized value: 3282 for (TreeEntry &EIdx : VectorizableTree) { 3283 TreeEntry *Entry = &EIdx; 3284 3285 // No need to handle users of gathered values. 3286 if (Entry->NeedToGather) 3287 continue; 3288 3289 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3290 3291 // For each lane: 3292 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3293 Value *Scalar = Entry->Scalars[Lane]; 3294 3295 Type *Ty = Scalar->getType(); 3296 if (!Ty->isVoidTy()) { 3297 #ifndef NDEBUG 3298 for (User *U : Scalar->users()) { 3299 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3300 3301 // It is legal to replace users in the ignorelist by undef. 3302 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3303 "Replacing out-of-tree value with undef"); 3304 } 3305 #endif 3306 Value *Undef = UndefValue::get(Ty); 3307 Scalar->replaceAllUsesWith(Undef); 3308 } 3309 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3310 eraseInstruction(cast<Instruction>(Scalar)); 3311 } 3312 } 3313 3314 Builder.ClearInsertionPoint(); 3315 3316 return VectorizableTree[0].VectorizedValue; 3317 } 3318 3319 void BoUpSLP::optimizeGatherSequence() { 3320 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3321 << " gather sequences instructions.\n"); 3322 // LICM InsertElementInst sequences. 3323 for (Instruction *it : GatherSeq) { 3324 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3325 3326 if (!Insert) 3327 continue; 3328 3329 // Check if this block is inside a loop. 3330 Loop *L = LI->getLoopFor(Insert->getParent()); 3331 if (!L) 3332 continue; 3333 3334 // Check if it has a preheader. 3335 BasicBlock *PreHeader = L->getLoopPreheader(); 3336 if (!PreHeader) 3337 continue; 3338 3339 // If the vector or the element that we insert into it are 3340 // instructions that are defined in this basic block then we can't 3341 // hoist this instruction. 3342 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3343 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3344 if (CurrVec && L->contains(CurrVec)) 3345 continue; 3346 if (NewElem && L->contains(NewElem)) 3347 continue; 3348 3349 // We can hoist this instruction. Move it to the pre-header. 3350 Insert->moveBefore(PreHeader->getTerminator()); 3351 } 3352 3353 // Make a list of all reachable blocks in our CSE queue. 3354 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3355 CSEWorkList.reserve(CSEBlocks.size()); 3356 for (BasicBlock *BB : CSEBlocks) 3357 if (DomTreeNode *N = DT->getNode(BB)) { 3358 assert(DT->isReachableFromEntry(N)); 3359 CSEWorkList.push_back(N); 3360 } 3361 3362 // Sort blocks by domination. This ensures we visit a block after all blocks 3363 // dominating it are visited. 3364 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3365 [this](const DomTreeNode *A, const DomTreeNode *B) { 3366 return DT->properlyDominates(A, B); 3367 }); 3368 3369 // Perform O(N^2) search over the gather sequences and merge identical 3370 // instructions. TODO: We can further optimize this scan if we split the 3371 // instructions into different buckets based on the insert lane. 3372 SmallVector<Instruction *, 16> Visited; 3373 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3374 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3375 "Worklist not sorted properly!"); 3376 BasicBlock *BB = (*I)->getBlock(); 3377 // For all instructions in blocks containing gather sequences: 3378 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3379 Instruction *In = &*it++; 3380 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3381 continue; 3382 3383 // Check if we can replace this instruction with any of the 3384 // visited instructions. 3385 for (Instruction *v : Visited) { 3386 if (In->isIdenticalTo(v) && 3387 DT->dominates(v->getParent(), In->getParent())) { 3388 In->replaceAllUsesWith(v); 3389 eraseInstruction(In); 3390 In = nullptr; 3391 break; 3392 } 3393 } 3394 if (In) { 3395 assert(!is_contained(Visited, In)); 3396 Visited.push_back(In); 3397 } 3398 } 3399 } 3400 CSEBlocks.clear(); 3401 GatherSeq.clear(); 3402 } 3403 3404 // Groups the instructions to a bundle (which is then a single scheduling entity) 3405 // and schedules instructions until the bundle gets ready. 3406 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3407 BoUpSLP *SLP, Value *OpValue) { 3408 if (isa<PHINode>(OpValue)) 3409 return true; 3410 3411 // Initialize the instruction bundle. 3412 Instruction *OldScheduleEnd = ScheduleEnd; 3413 ScheduleData *PrevInBundle = nullptr; 3414 ScheduleData *Bundle = nullptr; 3415 bool ReSchedule = false; 3416 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3417 3418 // Make sure that the scheduling region contains all 3419 // instructions of the bundle. 3420 for (Value *V : VL) { 3421 if (!extendSchedulingRegion(V, OpValue)) 3422 return false; 3423 } 3424 3425 for (Value *V : VL) { 3426 ScheduleData *BundleMember = getScheduleData(V); 3427 assert(BundleMember && 3428 "no ScheduleData for bundle member (maybe not in same basic block)"); 3429 if (BundleMember->IsScheduled) { 3430 // A bundle member was scheduled as single instruction before and now 3431 // needs to be scheduled as part of the bundle. We just get rid of the 3432 // existing schedule. 3433 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3434 << " was already scheduled\n"); 3435 ReSchedule = true; 3436 } 3437 assert(BundleMember->isSchedulingEntity() && 3438 "bundle member already part of other bundle"); 3439 if (PrevInBundle) { 3440 PrevInBundle->NextInBundle = BundleMember; 3441 } else { 3442 Bundle = BundleMember; 3443 } 3444 BundleMember->UnscheduledDepsInBundle = 0; 3445 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3446 3447 // Group the instructions to a bundle. 3448 BundleMember->FirstInBundle = Bundle; 3449 PrevInBundle = BundleMember; 3450 } 3451 if (ScheduleEnd != OldScheduleEnd) { 3452 // The scheduling region got new instructions at the lower end (or it is a 3453 // new region for the first bundle). This makes it necessary to 3454 // recalculate all dependencies. 3455 // It is seldom that this needs to be done a second time after adding the 3456 // initial bundle to the region. 3457 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3458 doForAllOpcodes(I, [](ScheduleData *SD) { 3459 SD->clearDependencies(); 3460 }); 3461 } 3462 ReSchedule = true; 3463 } 3464 if (ReSchedule) { 3465 resetSchedule(); 3466 initialFillReadyList(ReadyInsts); 3467 } 3468 3469 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3470 << BB->getName() << "\n"); 3471 3472 calculateDependencies(Bundle, true, SLP); 3473 3474 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3475 // means that there are no cyclic dependencies and we can schedule it. 3476 // Note that's important that we don't "schedule" the bundle yet (see 3477 // cancelScheduling). 3478 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3479 3480 ScheduleData *pickedSD = ReadyInsts.back(); 3481 ReadyInsts.pop_back(); 3482 3483 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3484 schedule(pickedSD, ReadyInsts); 3485 } 3486 } 3487 if (!Bundle->isReady()) { 3488 cancelScheduling(VL, OpValue); 3489 return false; 3490 } 3491 return true; 3492 } 3493 3494 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3495 Value *OpValue) { 3496 if (isa<PHINode>(OpValue)) 3497 return; 3498 3499 ScheduleData *Bundle = getScheduleData(OpValue); 3500 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3501 assert(!Bundle->IsScheduled && 3502 "Can't cancel bundle which is already scheduled"); 3503 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3504 "tried to unbundle something which is not a bundle"); 3505 3506 // Un-bundle: make single instructions out of the bundle. 3507 ScheduleData *BundleMember = Bundle; 3508 while (BundleMember) { 3509 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3510 BundleMember->FirstInBundle = BundleMember; 3511 ScheduleData *Next = BundleMember->NextInBundle; 3512 BundleMember->NextInBundle = nullptr; 3513 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3514 if (BundleMember->UnscheduledDepsInBundle == 0) { 3515 ReadyInsts.insert(BundleMember); 3516 } 3517 BundleMember = Next; 3518 } 3519 } 3520 3521 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3522 // Allocate a new ScheduleData for the instruction. 3523 if (ChunkPos >= ChunkSize) { 3524 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3525 ChunkPos = 0; 3526 } 3527 return &(ScheduleDataChunks.back()[ChunkPos++]); 3528 } 3529 3530 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3531 Value *OpValue) { 3532 if (getScheduleData(V, isOneOf(OpValue, V))) 3533 return true; 3534 Instruction *I = dyn_cast<Instruction>(V); 3535 assert(I && "bundle member must be an instruction"); 3536 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3537 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3538 ScheduleData *ISD = getScheduleData(I); 3539 if (!ISD) 3540 return false; 3541 assert(isInSchedulingRegion(ISD) && 3542 "ScheduleData not in scheduling region"); 3543 ScheduleData *SD = allocateScheduleDataChunks(); 3544 SD->Inst = I; 3545 SD->init(SchedulingRegionID, OpValue); 3546 ExtraScheduleDataMap[I][OpValue] = SD; 3547 return true; 3548 }; 3549 if (CheckSheduleForI(I)) 3550 return true; 3551 if (!ScheduleStart) { 3552 // It's the first instruction in the new region. 3553 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3554 ScheduleStart = I; 3555 ScheduleEnd = I->getNextNode(); 3556 if (isOneOf(OpValue, I) != I) 3557 CheckSheduleForI(I); 3558 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3559 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3560 return true; 3561 } 3562 // Search up and down at the same time, because we don't know if the new 3563 // instruction is above or below the existing scheduling region. 3564 BasicBlock::reverse_iterator UpIter = 3565 ++ScheduleStart->getIterator().getReverse(); 3566 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3567 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3568 BasicBlock::iterator LowerEnd = BB->end(); 3569 while (true) { 3570 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3571 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3572 return false; 3573 } 3574 3575 if (UpIter != UpperEnd) { 3576 if (&*UpIter == I) { 3577 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3578 ScheduleStart = I; 3579 if (isOneOf(OpValue, I) != I) 3580 CheckSheduleForI(I); 3581 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3582 return true; 3583 } 3584 UpIter++; 3585 } 3586 if (DownIter != LowerEnd) { 3587 if (&*DownIter == I) { 3588 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3589 nullptr); 3590 ScheduleEnd = I->getNextNode(); 3591 if (isOneOf(OpValue, I) != I) 3592 CheckSheduleForI(I); 3593 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3594 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3595 return true; 3596 } 3597 DownIter++; 3598 } 3599 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3600 "instruction not found in block"); 3601 } 3602 return true; 3603 } 3604 3605 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3606 Instruction *ToI, 3607 ScheduleData *PrevLoadStore, 3608 ScheduleData *NextLoadStore) { 3609 ScheduleData *CurrentLoadStore = PrevLoadStore; 3610 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3611 ScheduleData *SD = ScheduleDataMap[I]; 3612 if (!SD) { 3613 SD = allocateScheduleDataChunks(); 3614 ScheduleDataMap[I] = SD; 3615 SD->Inst = I; 3616 } 3617 assert(!isInSchedulingRegion(SD) && 3618 "new ScheduleData already in scheduling region"); 3619 SD->init(SchedulingRegionID, I); 3620 3621 if (I->mayReadOrWriteMemory() && 3622 (!isa<IntrinsicInst>(I) || 3623 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 3624 // Update the linked list of memory accessing instructions. 3625 if (CurrentLoadStore) { 3626 CurrentLoadStore->NextLoadStore = SD; 3627 } else { 3628 FirstLoadStoreInRegion = SD; 3629 } 3630 CurrentLoadStore = SD; 3631 } 3632 } 3633 if (NextLoadStore) { 3634 if (CurrentLoadStore) 3635 CurrentLoadStore->NextLoadStore = NextLoadStore; 3636 } else { 3637 LastLoadStoreInRegion = CurrentLoadStore; 3638 } 3639 } 3640 3641 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3642 bool InsertInReadyList, 3643 BoUpSLP *SLP) { 3644 assert(SD->isSchedulingEntity()); 3645 3646 SmallVector<ScheduleData *, 10> WorkList; 3647 WorkList.push_back(SD); 3648 3649 while (!WorkList.empty()) { 3650 ScheduleData *SD = WorkList.back(); 3651 WorkList.pop_back(); 3652 3653 ScheduleData *BundleMember = SD; 3654 while (BundleMember) { 3655 assert(isInSchedulingRegion(BundleMember)); 3656 if (!BundleMember->hasValidDependencies()) { 3657 3658 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3659 BundleMember->Dependencies = 0; 3660 BundleMember->resetUnscheduledDeps(); 3661 3662 // Handle def-use chain dependencies. 3663 if (BundleMember->OpValue != BundleMember->Inst) { 3664 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 3665 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3666 BundleMember->Dependencies++; 3667 ScheduleData *DestBundle = UseSD->FirstInBundle; 3668 if (!DestBundle->IsScheduled) 3669 BundleMember->incrementUnscheduledDeps(1); 3670 if (!DestBundle->hasValidDependencies()) 3671 WorkList.push_back(DestBundle); 3672 } 3673 } else { 3674 for (User *U : BundleMember->Inst->users()) { 3675 if (isa<Instruction>(U)) { 3676 ScheduleData *UseSD = getScheduleData(U); 3677 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3678 BundleMember->Dependencies++; 3679 ScheduleData *DestBundle = UseSD->FirstInBundle; 3680 if (!DestBundle->IsScheduled) 3681 BundleMember->incrementUnscheduledDeps(1); 3682 if (!DestBundle->hasValidDependencies()) 3683 WorkList.push_back(DestBundle); 3684 } 3685 } else { 3686 // I'm not sure if this can ever happen. But we need to be safe. 3687 // This lets the instruction/bundle never be scheduled and 3688 // eventually disable vectorization. 3689 BundleMember->Dependencies++; 3690 BundleMember->incrementUnscheduledDeps(1); 3691 } 3692 } 3693 } 3694 3695 // Handle the memory dependencies. 3696 ScheduleData *DepDest = BundleMember->NextLoadStore; 3697 if (DepDest) { 3698 Instruction *SrcInst = BundleMember->Inst; 3699 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3700 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3701 unsigned numAliased = 0; 3702 unsigned DistToSrc = 1; 3703 3704 while (DepDest) { 3705 assert(isInSchedulingRegion(DepDest)); 3706 3707 // We have two limits to reduce the complexity: 3708 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3709 // SLP->isAliased (which is the expensive part in this loop). 3710 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3711 // the whole loop (even if the loop is fast, it's quadratic). 3712 // It's important for the loop break condition (see below) to 3713 // check this limit even between two read-only instructions. 3714 if (DistToSrc >= MaxMemDepDistance || 3715 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3716 (numAliased >= AliasedCheckLimit || 3717 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3718 3719 // We increment the counter only if the locations are aliased 3720 // (instead of counting all alias checks). This gives a better 3721 // balance between reduced runtime and accurate dependencies. 3722 numAliased++; 3723 3724 DepDest->MemoryDependencies.push_back(BundleMember); 3725 BundleMember->Dependencies++; 3726 ScheduleData *DestBundle = DepDest->FirstInBundle; 3727 if (!DestBundle->IsScheduled) { 3728 BundleMember->incrementUnscheduledDeps(1); 3729 } 3730 if (!DestBundle->hasValidDependencies()) { 3731 WorkList.push_back(DestBundle); 3732 } 3733 } 3734 DepDest = DepDest->NextLoadStore; 3735 3736 // Example, explaining the loop break condition: Let's assume our 3737 // starting instruction is i0 and MaxMemDepDistance = 3. 3738 // 3739 // +--------v--v--v 3740 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3741 // +--------^--^--^ 3742 // 3743 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3744 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3745 // Previously we already added dependencies from i3 to i6,i7,i8 3746 // (because of MaxMemDepDistance). As we added a dependency from 3747 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3748 // and we can abort this loop at i6. 3749 if (DistToSrc >= 2 * MaxMemDepDistance) 3750 break; 3751 DistToSrc++; 3752 } 3753 } 3754 } 3755 BundleMember = BundleMember->NextInBundle; 3756 } 3757 if (InsertInReadyList && SD->isReady()) { 3758 ReadyInsts.push_back(SD); 3759 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3760 } 3761 } 3762 } 3763 3764 void BoUpSLP::BlockScheduling::resetSchedule() { 3765 assert(ScheduleStart && 3766 "tried to reset schedule on block which has not been scheduled"); 3767 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3768 doForAllOpcodes(I, [&](ScheduleData *SD) { 3769 assert(isInSchedulingRegion(SD) && 3770 "ScheduleData not in scheduling region"); 3771 SD->IsScheduled = false; 3772 SD->resetUnscheduledDeps(); 3773 }); 3774 } 3775 ReadyInsts.clear(); 3776 } 3777 3778 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3779 if (!BS->ScheduleStart) 3780 return; 3781 3782 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3783 3784 BS->resetSchedule(); 3785 3786 // For the real scheduling we use a more sophisticated ready-list: it is 3787 // sorted by the original instruction location. This lets the final schedule 3788 // be as close as possible to the original instruction order. 3789 struct ScheduleDataCompare { 3790 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3791 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3792 } 3793 }; 3794 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3795 3796 // Ensure that all dependency data is updated and fill the ready-list with 3797 // initial instructions. 3798 int Idx = 0; 3799 int NumToSchedule = 0; 3800 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3801 I = I->getNextNode()) { 3802 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 3803 assert(SD->isPartOfBundle() == 3804 (getTreeEntry(SD->Inst) != nullptr) && 3805 "scheduler and vectorizer bundle mismatch"); 3806 SD->FirstInBundle->SchedulingPriority = Idx++; 3807 if (SD->isSchedulingEntity()) { 3808 BS->calculateDependencies(SD, false, this); 3809 NumToSchedule++; 3810 } 3811 }); 3812 } 3813 BS->initialFillReadyList(ReadyInsts); 3814 3815 Instruction *LastScheduledInst = BS->ScheduleEnd; 3816 3817 // Do the "real" scheduling. 3818 while (!ReadyInsts.empty()) { 3819 ScheduleData *picked = *ReadyInsts.begin(); 3820 ReadyInsts.erase(ReadyInsts.begin()); 3821 3822 // Move the scheduled instruction(s) to their dedicated places, if not 3823 // there yet. 3824 ScheduleData *BundleMember = picked; 3825 while (BundleMember) { 3826 Instruction *pickedInst = BundleMember->Inst; 3827 if (LastScheduledInst->getNextNode() != pickedInst) { 3828 BS->BB->getInstList().remove(pickedInst); 3829 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3830 pickedInst); 3831 } 3832 LastScheduledInst = pickedInst; 3833 BundleMember = BundleMember->NextInBundle; 3834 } 3835 3836 BS->schedule(picked, ReadyInsts); 3837 NumToSchedule--; 3838 } 3839 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3840 3841 // Avoid duplicate scheduling of the block. 3842 BS->ScheduleStart = nullptr; 3843 } 3844 3845 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3846 // If V is a store, just return the width of the stored value without 3847 // traversing the expression tree. This is the common case. 3848 if (auto *Store = dyn_cast<StoreInst>(V)) 3849 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3850 3851 // If V is not a store, we can traverse the expression tree to find loads 3852 // that feed it. The type of the loaded value may indicate a more suitable 3853 // width than V's type. We want to base the vector element size on the width 3854 // of memory operations where possible. 3855 SmallVector<Instruction *, 16> Worklist; 3856 SmallPtrSet<Instruction *, 16> Visited; 3857 if (auto *I = dyn_cast<Instruction>(V)) 3858 Worklist.push_back(I); 3859 3860 // Traverse the expression tree in bottom-up order looking for loads. If we 3861 // encounter an instruciton we don't yet handle, we give up. 3862 auto MaxWidth = 0u; 3863 auto FoundUnknownInst = false; 3864 while (!Worklist.empty() && !FoundUnknownInst) { 3865 auto *I = Worklist.pop_back_val(); 3866 Visited.insert(I); 3867 3868 // We should only be looking at scalar instructions here. If the current 3869 // instruction has a vector type, give up. 3870 auto *Ty = I->getType(); 3871 if (isa<VectorType>(Ty)) 3872 FoundUnknownInst = true; 3873 3874 // If the current instruction is a load, update MaxWidth to reflect the 3875 // width of the loaded value. 3876 else if (isa<LoadInst>(I)) 3877 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3878 3879 // Otherwise, we need to visit the operands of the instruction. We only 3880 // handle the interesting cases from buildTree here. If an operand is an 3881 // instruction we haven't yet visited, we add it to the worklist. 3882 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3883 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3884 for (Use &U : I->operands()) 3885 if (auto *J = dyn_cast<Instruction>(U.get())) 3886 if (!Visited.count(J)) 3887 Worklist.push_back(J); 3888 } 3889 3890 // If we don't yet handle the instruction, give up. 3891 else 3892 FoundUnknownInst = true; 3893 } 3894 3895 // If we didn't encounter a memory access in the expression tree, or if we 3896 // gave up for some reason, just return the width of V. 3897 if (!MaxWidth || FoundUnknownInst) 3898 return DL->getTypeSizeInBits(V->getType()); 3899 3900 // Otherwise, return the maximum width we found. 3901 return MaxWidth; 3902 } 3903 3904 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3905 // smaller type with a truncation. We collect the values that will be demoted 3906 // in ToDemote and additional roots that require investigating in Roots. 3907 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3908 SmallVectorImpl<Value *> &ToDemote, 3909 SmallVectorImpl<Value *> &Roots) { 3910 // We can always demote constants. 3911 if (isa<Constant>(V)) { 3912 ToDemote.push_back(V); 3913 return true; 3914 } 3915 3916 // If the value is not an instruction in the expression with only one use, it 3917 // cannot be demoted. 3918 auto *I = dyn_cast<Instruction>(V); 3919 if (!I || !I->hasOneUse() || !Expr.count(I)) 3920 return false; 3921 3922 switch (I->getOpcode()) { 3923 3924 // We can always demote truncations and extensions. Since truncations can 3925 // seed additional demotion, we save the truncated value. 3926 case Instruction::Trunc: 3927 Roots.push_back(I->getOperand(0)); 3928 break; 3929 case Instruction::ZExt: 3930 case Instruction::SExt: 3931 break; 3932 3933 // We can demote certain binary operations if we can demote both of their 3934 // operands. 3935 case Instruction::Add: 3936 case Instruction::Sub: 3937 case Instruction::Mul: 3938 case Instruction::And: 3939 case Instruction::Or: 3940 case Instruction::Xor: 3941 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3942 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3943 return false; 3944 break; 3945 3946 // We can demote selects if we can demote their true and false values. 3947 case Instruction::Select: { 3948 SelectInst *SI = cast<SelectInst>(I); 3949 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3950 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3951 return false; 3952 break; 3953 } 3954 3955 // We can demote phis if we can demote all their incoming operands. Note that 3956 // we don't need to worry about cycles since we ensure single use above. 3957 case Instruction::PHI: { 3958 PHINode *PN = cast<PHINode>(I); 3959 for (Value *IncValue : PN->incoming_values()) 3960 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3961 return false; 3962 break; 3963 } 3964 3965 // Otherwise, conservatively give up. 3966 default: 3967 return false; 3968 } 3969 3970 // Record the value that we can demote. 3971 ToDemote.push_back(V); 3972 return true; 3973 } 3974 3975 void BoUpSLP::computeMinimumValueSizes() { 3976 // If there are no external uses, the expression tree must be rooted by a 3977 // store. We can't demote in-memory values, so there is nothing to do here. 3978 if (ExternalUses.empty()) 3979 return; 3980 3981 // We only attempt to truncate integer expressions. 3982 auto &TreeRoot = VectorizableTree[0].Scalars; 3983 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3984 if (!TreeRootIT) 3985 return; 3986 3987 // If the expression is not rooted by a store, these roots should have 3988 // external uses. We will rely on InstCombine to rewrite the expression in 3989 // the narrower type. However, InstCombine only rewrites single-use values. 3990 // This means that if a tree entry other than a root is used externally, it 3991 // must have multiple uses and InstCombine will not rewrite it. The code 3992 // below ensures that only the roots are used externally. 3993 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3994 for (auto &EU : ExternalUses) 3995 if (!Expr.erase(EU.Scalar)) 3996 return; 3997 if (!Expr.empty()) 3998 return; 3999 4000 // Collect the scalar values of the vectorizable expression. We will use this 4001 // context to determine which values can be demoted. If we see a truncation, 4002 // we mark it as seeding another demotion. 4003 for (auto &Entry : VectorizableTree) 4004 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4005 4006 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4007 // have a single external user that is not in the vectorizable tree. 4008 for (auto *Root : TreeRoot) 4009 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4010 return; 4011 4012 // Conservatively determine if we can actually truncate the roots of the 4013 // expression. Collect the values that can be demoted in ToDemote and 4014 // additional roots that require investigating in Roots. 4015 SmallVector<Value *, 32> ToDemote; 4016 SmallVector<Value *, 4> Roots; 4017 for (auto *Root : TreeRoot) 4018 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4019 return; 4020 4021 // The maximum bit width required to represent all the values that can be 4022 // demoted without loss of precision. It would be safe to truncate the roots 4023 // of the expression to this width. 4024 auto MaxBitWidth = 8u; 4025 4026 // We first check if all the bits of the roots are demanded. If they're not, 4027 // we can truncate the roots to this narrower type. 4028 for (auto *Root : TreeRoot) { 4029 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4030 MaxBitWidth = std::max<unsigned>( 4031 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4032 } 4033 4034 // True if the roots can be zero-extended back to their original type, rather 4035 // than sign-extended. We know that if the leading bits are not demanded, we 4036 // can safely zero-extend. So we initialize IsKnownPositive to True. 4037 bool IsKnownPositive = true; 4038 4039 // If all the bits of the roots are demanded, we can try a little harder to 4040 // compute a narrower type. This can happen, for example, if the roots are 4041 // getelementptr indices. InstCombine promotes these indices to the pointer 4042 // width. Thus, all their bits are technically demanded even though the 4043 // address computation might be vectorized in a smaller type. 4044 // 4045 // We start by looking at each entry that can be demoted. We compute the 4046 // maximum bit width required to store the scalar by using ValueTracking to 4047 // compute the number of high-order bits we can truncate. 4048 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 4049 MaxBitWidth = 8u; 4050 4051 // Determine if the sign bit of all the roots is known to be zero. If not, 4052 // IsKnownPositive is set to False. 4053 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4054 KnownBits Known = computeKnownBits(R, *DL); 4055 return Known.isNonNegative(); 4056 }); 4057 4058 // Determine the maximum number of bits required to store the scalar 4059 // values. 4060 for (auto *Scalar : ToDemote) { 4061 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4062 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4063 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4064 } 4065 4066 // If we can't prove that the sign bit is zero, we must add one to the 4067 // maximum bit width to account for the unknown sign bit. This preserves 4068 // the existing sign bit so we can safely sign-extend the root back to the 4069 // original type. Otherwise, if we know the sign bit is zero, we will 4070 // zero-extend the root instead. 4071 // 4072 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4073 // one to the maximum bit width will yield a larger-than-necessary 4074 // type. In general, we need to add an extra bit only if we can't 4075 // prove that the upper bit of the original type is equal to the 4076 // upper bit of the proposed smaller type. If these two bits are the 4077 // same (either zero or one) we know that sign-extending from the 4078 // smaller type will result in the same value. Here, since we can't 4079 // yet prove this, we are just making the proposed smaller type 4080 // larger to ensure correctness. 4081 if (!IsKnownPositive) 4082 ++MaxBitWidth; 4083 } 4084 4085 // Round MaxBitWidth up to the next power-of-two. 4086 if (!isPowerOf2_64(MaxBitWidth)) 4087 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4088 4089 // If the maximum bit width we compute is less than the with of the roots' 4090 // type, we can proceed with the narrowing. Otherwise, do nothing. 4091 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4092 return; 4093 4094 // If we can truncate the root, we must collect additional values that might 4095 // be demoted as a result. That is, those seeded by truncations we will 4096 // modify. 4097 while (!Roots.empty()) 4098 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4099 4100 // Finally, map the values we can demote to the maximum bit with we computed. 4101 for (auto *Scalar : ToDemote) 4102 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4103 } 4104 4105 namespace { 4106 4107 /// The SLPVectorizer Pass. 4108 struct SLPVectorizer : public FunctionPass { 4109 SLPVectorizerPass Impl; 4110 4111 /// Pass identification, replacement for typeid 4112 static char ID; 4113 4114 explicit SLPVectorizer() : FunctionPass(ID) { 4115 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4116 } 4117 4118 bool doInitialization(Module &M) override { 4119 return false; 4120 } 4121 4122 bool runOnFunction(Function &F) override { 4123 if (skipFunction(F)) 4124 return false; 4125 4126 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4127 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4128 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4129 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4130 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4131 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4132 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4133 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4134 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4135 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4136 4137 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4138 } 4139 4140 void getAnalysisUsage(AnalysisUsage &AU) const override { 4141 FunctionPass::getAnalysisUsage(AU); 4142 AU.addRequired<AssumptionCacheTracker>(); 4143 AU.addRequired<ScalarEvolutionWrapperPass>(); 4144 AU.addRequired<AAResultsWrapperPass>(); 4145 AU.addRequired<TargetTransformInfoWrapperPass>(); 4146 AU.addRequired<LoopInfoWrapperPass>(); 4147 AU.addRequired<DominatorTreeWrapperPass>(); 4148 AU.addRequired<DemandedBitsWrapperPass>(); 4149 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4150 AU.addPreserved<LoopInfoWrapperPass>(); 4151 AU.addPreserved<DominatorTreeWrapperPass>(); 4152 AU.addPreserved<AAResultsWrapperPass>(); 4153 AU.addPreserved<GlobalsAAWrapperPass>(); 4154 AU.setPreservesCFG(); 4155 } 4156 }; 4157 4158 } // end anonymous namespace 4159 4160 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4161 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4162 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4163 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4164 auto *AA = &AM.getResult<AAManager>(F); 4165 auto *LI = &AM.getResult<LoopAnalysis>(F); 4166 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4167 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4168 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4169 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4170 4171 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4172 if (!Changed) 4173 return PreservedAnalyses::all(); 4174 4175 PreservedAnalyses PA; 4176 PA.preserveSet<CFGAnalyses>(); 4177 PA.preserve<AAManager>(); 4178 PA.preserve<GlobalsAA>(); 4179 return PA; 4180 } 4181 4182 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4183 TargetTransformInfo *TTI_, 4184 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4185 LoopInfo *LI_, DominatorTree *DT_, 4186 AssumptionCache *AC_, DemandedBits *DB_, 4187 OptimizationRemarkEmitter *ORE_) { 4188 SE = SE_; 4189 TTI = TTI_; 4190 TLI = TLI_; 4191 AA = AA_; 4192 LI = LI_; 4193 DT = DT_; 4194 AC = AC_; 4195 DB = DB_; 4196 DL = &F.getParent()->getDataLayout(); 4197 4198 Stores.clear(); 4199 GEPs.clear(); 4200 bool Changed = false; 4201 4202 // If the target claims to have no vector registers don't attempt 4203 // vectorization. 4204 if (!TTI->getNumberOfRegisters(true)) 4205 return false; 4206 4207 // Don't vectorize when the attribute NoImplicitFloat is used. 4208 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4209 return false; 4210 4211 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4212 4213 // Use the bottom up slp vectorizer to construct chains that start with 4214 // store instructions. 4215 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4216 4217 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4218 // delete instructions. 4219 4220 // Scan the blocks in the function in post order. 4221 for (auto BB : post_order(&F.getEntryBlock())) { 4222 collectSeedInstructions(BB); 4223 4224 // Vectorize trees that end at stores. 4225 if (!Stores.empty()) { 4226 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4227 << " underlying objects.\n"); 4228 Changed |= vectorizeStoreChains(R); 4229 } 4230 4231 // Vectorize trees that end at reductions. 4232 Changed |= vectorizeChainsInBlock(BB, R); 4233 4234 // Vectorize the index computations of getelementptr instructions. This 4235 // is primarily intended to catch gather-like idioms ending at 4236 // non-consecutive loads. 4237 if (!GEPs.empty()) { 4238 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4239 << " underlying objects.\n"); 4240 Changed |= vectorizeGEPIndices(BB, R); 4241 } 4242 } 4243 4244 if (Changed) { 4245 R.optimizeGatherSequence(); 4246 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4247 DEBUG(verifyFunction(F)); 4248 } 4249 return Changed; 4250 } 4251 4252 /// \brief Check that the Values in the slice in VL array are still existent in 4253 /// the WeakTrackingVH array. 4254 /// Vectorization of part of the VL array may cause later values in the VL array 4255 /// to become invalid. We track when this has happened in the WeakTrackingVH 4256 /// array. 4257 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4258 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4259 unsigned SliceSize) { 4260 VL = VL.slice(SliceBegin, SliceSize); 4261 VH = VH.slice(SliceBegin, SliceSize); 4262 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4263 } 4264 4265 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4266 unsigned VecRegSize) { 4267 unsigned ChainLen = Chain.size(); 4268 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4269 << "\n"); 4270 unsigned Sz = R.getVectorElementSize(Chain[0]); 4271 unsigned VF = VecRegSize / Sz; 4272 4273 if (!isPowerOf2_32(Sz) || VF < 2) 4274 return false; 4275 4276 // Keep track of values that were deleted by vectorizing in the loop below. 4277 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4278 4279 bool Changed = false; 4280 // Look for profitable vectorizable trees at all offsets, starting at zero. 4281 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 4282 if (i + VF > e) 4283 break; 4284 4285 // Check that a previous iteration of this loop did not delete the Value. 4286 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4287 continue; 4288 4289 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4290 << "\n"); 4291 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4292 4293 R.buildTree(Operands); 4294 if (R.isTreeTinyAndNotFullyVectorizable()) 4295 continue; 4296 4297 R.computeMinimumValueSizes(); 4298 4299 int Cost = R.getTreeCost(); 4300 4301 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4302 if (Cost < -SLPCostThreshold) { 4303 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4304 4305 using namespace ore; 4306 4307 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4308 cast<StoreInst>(Chain[i])) 4309 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4310 << " and with tree size " 4311 << NV("TreeSize", R.getTreeSize())); 4312 4313 R.vectorizeTree(); 4314 4315 // Move to the next bundle. 4316 i += VF - 1; 4317 Changed = true; 4318 } 4319 } 4320 4321 return Changed; 4322 } 4323 4324 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4325 BoUpSLP &R) { 4326 SetVector<StoreInst *> Heads; 4327 SmallDenseSet<StoreInst *> Tails; 4328 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4329 4330 // We may run into multiple chains that merge into a single chain. We mark the 4331 // stores that we vectorized so that we don't visit the same store twice. 4332 BoUpSLP::ValueSet VectorizedStores; 4333 bool Changed = false; 4334 4335 // Do a quadratic search on all of the given stores in reverse order and find 4336 // all of the pairs of stores that follow each other. 4337 SmallVector<unsigned, 16> IndexQueue; 4338 unsigned E = Stores.size(); 4339 IndexQueue.resize(E - 1); 4340 for (unsigned I = E; I > 0; --I) { 4341 unsigned Idx = I - 1; 4342 // If a store has multiple consecutive store candidates, search Stores 4343 // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4344 // This is because usually pairing with immediate succeeding or preceding 4345 // candidate create the best chance to find slp vectorization opportunity. 4346 unsigned Offset = 1; 4347 unsigned Cnt = 0; 4348 for (unsigned J = 0; J < E - 1; ++J, ++Offset) { 4349 if (Idx >= Offset) { 4350 IndexQueue[Cnt] = Idx - Offset; 4351 ++Cnt; 4352 } 4353 if (Idx + Offset < E) { 4354 IndexQueue[Cnt] = Idx + Offset; 4355 ++Cnt; 4356 } 4357 } 4358 4359 for (auto K : IndexQueue) { 4360 if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) { 4361 Tails.insert(Stores[Idx]); 4362 Heads.insert(Stores[K]); 4363 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4364 break; 4365 } 4366 } 4367 } 4368 4369 // For stores that start but don't end a link in the chain: 4370 for (auto *SI : llvm::reverse(Heads)) { 4371 if (Tails.count(SI)) 4372 continue; 4373 4374 // We found a store instr that starts a chain. Now follow the chain and try 4375 // to vectorize it. 4376 BoUpSLP::ValueList Operands; 4377 StoreInst *I = SI; 4378 // Collect the chain into a list. 4379 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4380 Operands.push_back(I); 4381 // Move to the next value in the chain. 4382 I = ConsecutiveChain[I]; 4383 } 4384 4385 // FIXME: Is division-by-2 the correct step? Should we assert that the 4386 // register size is a power-of-2? 4387 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4388 Size /= 2) { 4389 if (vectorizeStoreChain(Operands, R, Size)) { 4390 // Mark the vectorized stores so that we don't vectorize them again. 4391 VectorizedStores.insert(Operands.begin(), Operands.end()); 4392 Changed = true; 4393 break; 4394 } 4395 } 4396 } 4397 4398 return Changed; 4399 } 4400 4401 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4402 // Initialize the collections. We will make a single pass over the block. 4403 Stores.clear(); 4404 GEPs.clear(); 4405 4406 // Visit the store and getelementptr instructions in BB and organize them in 4407 // Stores and GEPs according to the underlying objects of their pointer 4408 // operands. 4409 for (Instruction &I : *BB) { 4410 // Ignore store instructions that are volatile or have a pointer operand 4411 // that doesn't point to a scalar type. 4412 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4413 if (!SI->isSimple()) 4414 continue; 4415 if (!isValidElementType(SI->getValueOperand()->getType())) 4416 continue; 4417 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4418 } 4419 4420 // Ignore getelementptr instructions that have more than one index, a 4421 // constant index, or a pointer operand that doesn't point to a scalar 4422 // type. 4423 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4424 auto Idx = GEP->idx_begin()->get(); 4425 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4426 continue; 4427 if (!isValidElementType(Idx->getType())) 4428 continue; 4429 if (GEP->getType()->isVectorTy()) 4430 continue; 4431 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4432 } 4433 } 4434 } 4435 4436 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4437 if (!A || !B) 4438 return false; 4439 Value *VL[] = { A, B }; 4440 return tryToVectorizeList(VL, R, true); 4441 } 4442 4443 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4444 bool AllowReorder) { 4445 if (VL.size() < 2) 4446 return false; 4447 4448 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4449 << ".\n"); 4450 4451 // Check that all of the parts are scalar instructions of the same type. 4452 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4453 if (!I0) 4454 return false; 4455 4456 unsigned Opcode0 = I0->getOpcode(); 4457 4458 unsigned Sz = R.getVectorElementSize(I0); 4459 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4460 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4461 if (MaxVF < 2) { 4462 R.getORE()->emit([&]() { 4463 return OptimizationRemarkMissed( 4464 SV_NAME, "SmallVF", I0) 4465 << "Cannot SLP vectorize list: vectorization factor " 4466 << "less than 2 is not supported"; 4467 }); 4468 return false; 4469 } 4470 4471 for (Value *V : VL) { 4472 Type *Ty = V->getType(); 4473 if (!isValidElementType(Ty)) { 4474 // NOTE: the following will give user internal llvm type name, which may not be useful 4475 R.getORE()->emit([&]() { 4476 std::string type_str; 4477 llvm::raw_string_ostream rso(type_str); 4478 Ty->print(rso); 4479 return OptimizationRemarkMissed( 4480 SV_NAME, "UnsupportedType", I0) 4481 << "Cannot SLP vectorize list: type " 4482 << rso.str() + " is unsupported by vectorizer"; 4483 }); 4484 return false; 4485 } 4486 Instruction *Inst = dyn_cast<Instruction>(V); 4487 4488 if (!Inst) 4489 return false; 4490 if (Inst->getOpcode() != Opcode0) { 4491 R.getORE()->emit([&]() { 4492 return OptimizationRemarkMissed( 4493 SV_NAME, "InequableTypes", I0) 4494 << "Cannot SLP vectorize list: not all of the " 4495 << "parts of scalar instructions are of the same type: " 4496 << ore::NV("Instruction1Opcode", I0) << " and " 4497 << ore::NV("Instruction2Opcode", Inst); 4498 }); 4499 return false; 4500 } 4501 } 4502 4503 bool Changed = false; 4504 bool CandidateFound = false; 4505 int MinCost = SLPCostThreshold; 4506 4507 // Keep track of values that were deleted by vectorizing in the loop below. 4508 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4509 4510 unsigned NextInst = 0, MaxInst = VL.size(); 4511 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4512 VF /= 2) { 4513 // No actual vectorization should happen, if number of parts is the same as 4514 // provided vectorization factor (i.e. the scalar type is used for vector 4515 // code during codegen). 4516 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4517 if (TTI->getNumberOfParts(VecTy) == VF) 4518 continue; 4519 for (unsigned I = NextInst; I < MaxInst; ++I) { 4520 unsigned OpsWidth = 0; 4521 4522 if (I + VF > MaxInst) 4523 OpsWidth = MaxInst - I; 4524 else 4525 OpsWidth = VF; 4526 4527 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4528 break; 4529 4530 // Check that a previous iteration of this loop did not delete the Value. 4531 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4532 continue; 4533 4534 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4535 << "\n"); 4536 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4537 4538 R.buildTree(Ops); 4539 // TODO: check if we can allow reordering for more cases. 4540 if (AllowReorder && R.shouldReorder()) { 4541 // Conceptually, there is nothing actually preventing us from trying to 4542 // reorder a larger list. In fact, we do exactly this when vectorizing 4543 // reductions. However, at this point, we only expect to get here when 4544 // there are exactly two operations. 4545 assert(Ops.size() == 2); 4546 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4547 R.buildTree(ReorderedOps, None); 4548 } 4549 if (R.isTreeTinyAndNotFullyVectorizable()) 4550 continue; 4551 4552 R.computeMinimumValueSizes(); 4553 int Cost = R.getTreeCost(); 4554 CandidateFound = true; 4555 MinCost = std::min(MinCost, Cost); 4556 4557 if (Cost < -SLPCostThreshold) { 4558 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4559 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4560 cast<Instruction>(Ops[0])) 4561 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4562 << " and with tree size " 4563 << ore::NV("TreeSize", R.getTreeSize())); 4564 4565 R.vectorizeTree(); 4566 // Move to the next bundle. 4567 I += VF - 1; 4568 NextInst = I + 1; 4569 Changed = true; 4570 } 4571 } 4572 } 4573 4574 if (!Changed && CandidateFound) { 4575 R.getORE()->emit([&]() { 4576 return OptimizationRemarkMissed( 4577 SV_NAME, "NotBeneficial", I0) 4578 << "List vectorization was possible but not beneficial with cost " 4579 << ore::NV("Cost", MinCost) << " >= " 4580 << ore::NV("Treshold", -SLPCostThreshold); 4581 }); 4582 } else if (!Changed) { 4583 R.getORE()->emit([&]() { 4584 return OptimizationRemarkMissed( 4585 SV_NAME, "NotPossible", I0) 4586 << "Cannot SLP vectorize list: vectorization was impossible" 4587 << " with available vectorization factors"; 4588 }); 4589 } 4590 return Changed; 4591 } 4592 4593 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4594 if (!I) 4595 return false; 4596 4597 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4598 return false; 4599 4600 Value *P = I->getParent(); 4601 4602 // Vectorize in current basic block only. 4603 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4604 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4605 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4606 return false; 4607 4608 // Try to vectorize V. 4609 if (tryToVectorizePair(Op0, Op1, R)) 4610 return true; 4611 4612 auto *A = dyn_cast<BinaryOperator>(Op0); 4613 auto *B = dyn_cast<BinaryOperator>(Op1); 4614 // Try to skip B. 4615 if (B && B->hasOneUse()) { 4616 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4617 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4618 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4619 return true; 4620 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4621 return true; 4622 } 4623 4624 // Try to skip A. 4625 if (A && A->hasOneUse()) { 4626 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4627 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4628 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4629 return true; 4630 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4631 return true; 4632 } 4633 return false; 4634 } 4635 4636 /// \brief Generate a shuffle mask to be used in a reduction tree. 4637 /// 4638 /// \param VecLen The length of the vector to be reduced. 4639 /// \param NumEltsToRdx The number of elements that should be reduced in the 4640 /// vector. 4641 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4642 /// reduction. A pairwise reduction will generate a mask of 4643 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4644 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4645 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4646 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4647 bool IsPairwise, bool IsLeft, 4648 IRBuilder<> &Builder) { 4649 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4650 4651 SmallVector<Constant *, 32> ShuffleMask( 4652 VecLen, UndefValue::get(Builder.getInt32Ty())); 4653 4654 if (IsPairwise) 4655 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4656 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4657 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4658 else 4659 // Move the upper half of the vector to the lower half. 4660 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4661 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4662 4663 return ConstantVector::get(ShuffleMask); 4664 } 4665 4666 namespace { 4667 4668 /// Model horizontal reductions. 4669 /// 4670 /// A horizontal reduction is a tree of reduction operations (currently add and 4671 /// fadd) that has operations that can be put into a vector as its leaf. 4672 /// For example, this tree: 4673 /// 4674 /// mul mul mul mul 4675 /// \ / \ / 4676 /// + + 4677 /// \ / 4678 /// + 4679 /// This tree has "mul" as its reduced values and "+" as its reduction 4680 /// operations. A reduction might be feeding into a store or a binary operation 4681 /// feeding a phi. 4682 /// ... 4683 /// \ / 4684 /// + 4685 /// | 4686 /// phi += 4687 /// 4688 /// Or: 4689 /// ... 4690 /// \ / 4691 /// + 4692 /// | 4693 /// *p = 4694 /// 4695 class HorizontalReduction { 4696 using ReductionOpsType = SmallVector<Value *, 16>; 4697 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 4698 ReductionOpsListType ReductionOps; 4699 SmallVector<Value *, 32> ReducedVals; 4700 // Use map vector to make stable output. 4701 MapVector<Instruction *, Value *> ExtraArgs; 4702 4703 /// Kind of the reduction data. 4704 enum ReductionKind { 4705 RK_None, /// Not a reduction. 4706 RK_Arithmetic, /// Binary reduction data. 4707 RK_Min, /// Minimum reduction data. 4708 RK_UMin, /// Unsigned minimum reduction data. 4709 RK_Max, /// Maximum reduction data. 4710 RK_UMax, /// Unsigned maximum reduction data. 4711 }; 4712 4713 /// Contains info about operation, like its opcode, left and right operands. 4714 class OperationData { 4715 /// Opcode of the instruction. 4716 unsigned Opcode = 0; 4717 4718 /// Left operand of the reduction operation. 4719 Value *LHS = nullptr; 4720 4721 /// Right operand of the reduction operation. 4722 Value *RHS = nullptr; 4723 4724 /// Kind of the reduction operation. 4725 ReductionKind Kind = RK_None; 4726 4727 /// True if float point min/max reduction has no NaNs. 4728 bool NoNaN = false; 4729 4730 /// Checks if the reduction operation can be vectorized. 4731 bool isVectorizable() const { 4732 return LHS && RHS && 4733 // We currently only support adds && min/max reductions. 4734 ((Kind == RK_Arithmetic && 4735 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 4736 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 4737 (Kind == RK_Min || Kind == RK_Max)) || 4738 (Opcode == Instruction::ICmp && 4739 (Kind == RK_UMin || Kind == RK_UMax))); 4740 } 4741 4742 /// Creates reduction operation with the current opcode. 4743 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 4744 assert(isVectorizable() && 4745 "Expected add|fadd or min/max reduction operation."); 4746 Value *Cmp; 4747 switch (Kind) { 4748 case RK_Arithmetic: 4749 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 4750 Name); 4751 case RK_Min: 4752 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 4753 : Builder.CreateFCmpOLT(LHS, RHS); 4754 break; 4755 case RK_Max: 4756 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 4757 : Builder.CreateFCmpOGT(LHS, RHS); 4758 break; 4759 case RK_UMin: 4760 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4761 Cmp = Builder.CreateICmpULT(LHS, RHS); 4762 break; 4763 case RK_UMax: 4764 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4765 Cmp = Builder.CreateICmpUGT(LHS, RHS); 4766 break; 4767 case RK_None: 4768 llvm_unreachable("Unknown reduction operation."); 4769 } 4770 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 4771 } 4772 4773 public: 4774 explicit OperationData() = default; 4775 4776 /// Construction for reduced values. They are identified by opcode only and 4777 /// don't have associated LHS/RHS values. 4778 explicit OperationData(Value *V) { 4779 if (auto *I = dyn_cast<Instruction>(V)) 4780 Opcode = I->getOpcode(); 4781 } 4782 4783 /// Constructor for reduction operations with opcode and its left and 4784 /// right operands. 4785 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 4786 bool NoNaN = false) 4787 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 4788 assert(Kind != RK_None && "One of the reduction operations is expected."); 4789 } 4790 4791 explicit operator bool() const { return Opcode; } 4792 4793 /// Get the index of the first operand. 4794 unsigned getFirstOperandIndex() const { 4795 assert(!!*this && "The opcode is not set."); 4796 switch (Kind) { 4797 case RK_Min: 4798 case RK_UMin: 4799 case RK_Max: 4800 case RK_UMax: 4801 return 1; 4802 case RK_Arithmetic: 4803 case RK_None: 4804 break; 4805 } 4806 return 0; 4807 } 4808 4809 /// Total number of operands in the reduction operation. 4810 unsigned getNumberOfOperands() const { 4811 assert(Kind != RK_None && !!*this && LHS && RHS && 4812 "Expected reduction operation."); 4813 switch (Kind) { 4814 case RK_Arithmetic: 4815 return 2; 4816 case RK_Min: 4817 case RK_UMin: 4818 case RK_Max: 4819 case RK_UMax: 4820 return 3; 4821 case RK_None: 4822 break; 4823 } 4824 llvm_unreachable("Reduction kind is not set"); 4825 } 4826 4827 /// Checks if the operation has the same parent as \p P. 4828 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 4829 assert(Kind != RK_None && !!*this && LHS && RHS && 4830 "Expected reduction operation."); 4831 if (!IsRedOp) 4832 return I->getParent() == P; 4833 switch (Kind) { 4834 case RK_Arithmetic: 4835 // Arithmetic reduction operation must be used once only. 4836 return I->getParent() == P; 4837 case RK_Min: 4838 case RK_UMin: 4839 case RK_Max: 4840 case RK_UMax: { 4841 // SelectInst must be used twice while the condition op must have single 4842 // use only. 4843 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 4844 return I->getParent() == P && Cmp && Cmp->getParent() == P; 4845 } 4846 case RK_None: 4847 break; 4848 } 4849 llvm_unreachable("Reduction kind is not set"); 4850 } 4851 /// Expected number of uses for reduction operations/reduced values. 4852 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 4853 assert(Kind != RK_None && !!*this && LHS && RHS && 4854 "Expected reduction operation."); 4855 switch (Kind) { 4856 case RK_Arithmetic: 4857 return I->hasOneUse(); 4858 case RK_Min: 4859 case RK_UMin: 4860 case RK_Max: 4861 case RK_UMax: 4862 return I->hasNUses(2) && 4863 (!IsReductionOp || 4864 cast<SelectInst>(I)->getCondition()->hasOneUse()); 4865 case RK_None: 4866 break; 4867 } 4868 llvm_unreachable("Reduction kind is not set"); 4869 } 4870 4871 /// Initializes the list of reduction operations. 4872 void initReductionOps(ReductionOpsListType &ReductionOps) { 4873 assert(Kind != RK_None && !!*this && LHS && RHS && 4874 "Expected reduction operation."); 4875 switch (Kind) { 4876 case RK_Arithmetic: 4877 ReductionOps.assign(1, ReductionOpsType()); 4878 break; 4879 case RK_Min: 4880 case RK_UMin: 4881 case RK_Max: 4882 case RK_UMax: 4883 ReductionOps.assign(2, ReductionOpsType()); 4884 break; 4885 case RK_None: 4886 llvm_unreachable("Reduction kind is not set"); 4887 } 4888 } 4889 /// Add all reduction operations for the reduction instruction \p I. 4890 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 4891 assert(Kind != RK_None && !!*this && LHS && RHS && 4892 "Expected reduction operation."); 4893 switch (Kind) { 4894 case RK_Arithmetic: 4895 ReductionOps[0].emplace_back(I); 4896 break; 4897 case RK_Min: 4898 case RK_UMin: 4899 case RK_Max: 4900 case RK_UMax: 4901 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 4902 ReductionOps[1].emplace_back(I); 4903 break; 4904 case RK_None: 4905 llvm_unreachable("Reduction kind is not set"); 4906 } 4907 } 4908 4909 /// Checks if instruction is associative and can be vectorized. 4910 bool isAssociative(Instruction *I) const { 4911 assert(Kind != RK_None && *this && LHS && RHS && 4912 "Expected reduction operation."); 4913 switch (Kind) { 4914 case RK_Arithmetic: 4915 return I->isAssociative(); 4916 case RK_Min: 4917 case RK_Max: 4918 return Opcode == Instruction::ICmp || 4919 cast<Instruction>(I->getOperand(0))->isFast(); 4920 case RK_UMin: 4921 case RK_UMax: 4922 assert(Opcode == Instruction::ICmp && 4923 "Only integer compare operation is expected."); 4924 return true; 4925 case RK_None: 4926 break; 4927 } 4928 llvm_unreachable("Reduction kind is not set"); 4929 } 4930 4931 /// Checks if the reduction operation can be vectorized. 4932 bool isVectorizable(Instruction *I) const { 4933 return isVectorizable() && isAssociative(I); 4934 } 4935 4936 /// Checks if two operation data are both a reduction op or both a reduced 4937 /// value. 4938 bool operator==(const OperationData &OD) { 4939 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 4940 "One of the comparing operations is incorrect."); 4941 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 4942 } 4943 bool operator!=(const OperationData &OD) { return !(*this == OD); } 4944 void clear() { 4945 Opcode = 0; 4946 LHS = nullptr; 4947 RHS = nullptr; 4948 Kind = RK_None; 4949 NoNaN = false; 4950 } 4951 4952 /// Get the opcode of the reduction operation. 4953 unsigned getOpcode() const { 4954 assert(isVectorizable() && "Expected vectorizable operation."); 4955 return Opcode; 4956 } 4957 4958 /// Get kind of reduction data. 4959 ReductionKind getKind() const { return Kind; } 4960 Value *getLHS() const { return LHS; } 4961 Value *getRHS() const { return RHS; } 4962 Type *getConditionType() const { 4963 switch (Kind) { 4964 case RK_Arithmetic: 4965 return nullptr; 4966 case RK_Min: 4967 case RK_Max: 4968 case RK_UMin: 4969 case RK_UMax: 4970 return CmpInst::makeCmpResultType(LHS->getType()); 4971 case RK_None: 4972 break; 4973 } 4974 llvm_unreachable("Reduction kind is not set"); 4975 } 4976 4977 /// Creates reduction operation with the current opcode with the IR flags 4978 /// from \p ReductionOps. 4979 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 4980 const ReductionOpsListType &ReductionOps) const { 4981 assert(isVectorizable() && 4982 "Expected add|fadd or min/max reduction operation."); 4983 auto *Op = createOp(Builder, Name); 4984 switch (Kind) { 4985 case RK_Arithmetic: 4986 propagateIRFlags(Op, ReductionOps[0]); 4987 return Op; 4988 case RK_Min: 4989 case RK_Max: 4990 case RK_UMin: 4991 case RK_UMax: 4992 if (auto *SI = dyn_cast<SelectInst>(Op)) 4993 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 4994 propagateIRFlags(Op, ReductionOps[1]); 4995 return Op; 4996 case RK_None: 4997 break; 4998 } 4999 llvm_unreachable("Unknown reduction operation."); 5000 } 5001 /// Creates reduction operation with the current opcode with the IR flags 5002 /// from \p I. 5003 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5004 Instruction *I) const { 5005 assert(isVectorizable() && 5006 "Expected add|fadd or min/max reduction operation."); 5007 auto *Op = createOp(Builder, Name); 5008 switch (Kind) { 5009 case RK_Arithmetic: 5010 propagateIRFlags(Op, I); 5011 return Op; 5012 case RK_Min: 5013 case RK_Max: 5014 case RK_UMin: 5015 case RK_UMax: 5016 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5017 propagateIRFlags(SI->getCondition(), 5018 cast<SelectInst>(I)->getCondition()); 5019 } 5020 propagateIRFlags(Op, I); 5021 return Op; 5022 case RK_None: 5023 break; 5024 } 5025 llvm_unreachable("Unknown reduction operation."); 5026 } 5027 5028 TargetTransformInfo::ReductionFlags getFlags() const { 5029 TargetTransformInfo::ReductionFlags Flags; 5030 Flags.NoNaN = NoNaN; 5031 switch (Kind) { 5032 case RK_Arithmetic: 5033 break; 5034 case RK_Min: 5035 Flags.IsSigned = Opcode == Instruction::ICmp; 5036 Flags.IsMaxOp = false; 5037 break; 5038 case RK_Max: 5039 Flags.IsSigned = Opcode == Instruction::ICmp; 5040 Flags.IsMaxOp = true; 5041 break; 5042 case RK_UMin: 5043 Flags.IsSigned = false; 5044 Flags.IsMaxOp = false; 5045 break; 5046 case RK_UMax: 5047 Flags.IsSigned = false; 5048 Flags.IsMaxOp = true; 5049 break; 5050 case RK_None: 5051 llvm_unreachable("Reduction kind is not set"); 5052 } 5053 return Flags; 5054 } 5055 }; 5056 5057 Instruction *ReductionRoot = nullptr; 5058 5059 /// The operation data of the reduction operation. 5060 OperationData ReductionData; 5061 5062 /// The operation data of the values we perform a reduction on. 5063 OperationData ReducedValueData; 5064 5065 /// Should we model this reduction as a pairwise reduction tree or a tree that 5066 /// splits the vector in halves and adds those halves. 5067 bool IsPairwiseReduction = false; 5068 5069 /// Checks if the ParentStackElem.first should be marked as a reduction 5070 /// operation with an extra argument or as extra argument itself. 5071 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5072 Value *ExtraArg) { 5073 if (ExtraArgs.count(ParentStackElem.first)) { 5074 ExtraArgs[ParentStackElem.first] = nullptr; 5075 // We ran into something like: 5076 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5077 // The whole ParentStackElem.first should be considered as an extra value 5078 // in this case. 5079 // Do not perform analysis of remaining operands of ParentStackElem.first 5080 // instruction, this whole instruction is an extra argument. 5081 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5082 } else { 5083 // We ran into something like: 5084 // ParentStackElem.first += ... + ExtraArg + ... 5085 ExtraArgs[ParentStackElem.first] = ExtraArg; 5086 } 5087 } 5088 5089 static OperationData getOperationData(Value *V) { 5090 if (!V) 5091 return OperationData(); 5092 5093 Value *LHS; 5094 Value *RHS; 5095 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5096 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5097 RK_Arithmetic); 5098 } 5099 if (auto *Select = dyn_cast<SelectInst>(V)) { 5100 // Look for a min/max pattern. 5101 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5102 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5103 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5104 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5105 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5106 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5107 return OperationData( 5108 Instruction::FCmp, LHS, RHS, RK_Min, 5109 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5110 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5111 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5112 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5113 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5114 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5115 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5116 return OperationData( 5117 Instruction::FCmp, LHS, RHS, RK_Max, 5118 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5119 } 5120 } 5121 return OperationData(V); 5122 } 5123 5124 public: 5125 HorizontalReduction() = default; 5126 5127 /// \brief Try to find a reduction tree. 5128 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5129 assert((!Phi || is_contained(Phi->operands(), B)) && 5130 "Thi phi needs to use the binary operator"); 5131 5132 ReductionData = getOperationData(B); 5133 5134 // We could have a initial reductions that is not an add. 5135 // r *= v1 + v2 + v3 + v4 5136 // In such a case start looking for a tree rooted in the first '+'. 5137 if (Phi) { 5138 if (ReductionData.getLHS() == Phi) { 5139 Phi = nullptr; 5140 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5141 ReductionData = getOperationData(B); 5142 } else if (ReductionData.getRHS() == Phi) { 5143 Phi = nullptr; 5144 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5145 ReductionData = getOperationData(B); 5146 } 5147 } 5148 5149 if (!ReductionData.isVectorizable(B)) 5150 return false; 5151 5152 Type *Ty = B->getType(); 5153 if (!isValidElementType(Ty)) 5154 return false; 5155 5156 ReducedValueData.clear(); 5157 ReductionRoot = B; 5158 5159 // Post order traverse the reduction tree starting at B. We only handle true 5160 // trees containing only binary operators. 5161 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5162 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5163 ReductionData.initReductionOps(ReductionOps); 5164 while (!Stack.empty()) { 5165 Instruction *TreeN = Stack.back().first; 5166 unsigned EdgeToVist = Stack.back().second++; 5167 OperationData OpData = getOperationData(TreeN); 5168 bool IsReducedValue = OpData != ReductionData; 5169 5170 // Postorder vist. 5171 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5172 if (IsReducedValue) 5173 ReducedVals.push_back(TreeN); 5174 else { 5175 auto I = ExtraArgs.find(TreeN); 5176 if (I != ExtraArgs.end() && !I->second) { 5177 // Check if TreeN is an extra argument of its parent operation. 5178 if (Stack.size() <= 1) { 5179 // TreeN can't be an extra argument as it is a root reduction 5180 // operation. 5181 return false; 5182 } 5183 // Yes, TreeN is an extra argument, do not add it to a list of 5184 // reduction operations. 5185 // Stack[Stack.size() - 2] always points to the parent operation. 5186 markExtraArg(Stack[Stack.size() - 2], TreeN); 5187 ExtraArgs.erase(TreeN); 5188 } else 5189 ReductionData.addReductionOps(TreeN, ReductionOps); 5190 } 5191 // Retract. 5192 Stack.pop_back(); 5193 continue; 5194 } 5195 5196 // Visit left or right. 5197 Value *NextV = TreeN->getOperand(EdgeToVist); 5198 if (NextV != Phi) { 5199 auto *I = dyn_cast<Instruction>(NextV); 5200 OpData = getOperationData(I); 5201 // Continue analysis if the next operand is a reduction operation or 5202 // (possibly) a reduced value. If the reduced value opcode is not set, 5203 // the first met operation != reduction operation is considered as the 5204 // reduced value class. 5205 if (I && (!ReducedValueData || OpData == ReducedValueData || 5206 OpData == ReductionData)) { 5207 const bool IsReductionOperation = OpData == ReductionData; 5208 // Only handle trees in the current basic block. 5209 if (!ReductionData.hasSameParent(I, B->getParent(), 5210 IsReductionOperation)) { 5211 // I is an extra argument for TreeN (its parent operation). 5212 markExtraArg(Stack.back(), I); 5213 continue; 5214 } 5215 5216 // Each tree node needs to have minimal number of users except for the 5217 // ultimate reduction. 5218 if (!ReductionData.hasRequiredNumberOfUses(I, 5219 OpData == ReductionData) && 5220 I != B) { 5221 // I is an extra argument for TreeN (its parent operation). 5222 markExtraArg(Stack.back(), I); 5223 continue; 5224 } 5225 5226 if (IsReductionOperation) { 5227 // We need to be able to reassociate the reduction operations. 5228 if (!OpData.isAssociative(I)) { 5229 // I is an extra argument for TreeN (its parent operation). 5230 markExtraArg(Stack.back(), I); 5231 continue; 5232 } 5233 } else if (ReducedValueData && 5234 ReducedValueData != OpData) { 5235 // Make sure that the opcodes of the operations that we are going to 5236 // reduce match. 5237 // I is an extra argument for TreeN (its parent operation). 5238 markExtraArg(Stack.back(), I); 5239 continue; 5240 } else if (!ReducedValueData) 5241 ReducedValueData = OpData; 5242 5243 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5244 continue; 5245 } 5246 } 5247 // NextV is an extra argument for TreeN (its parent operation). 5248 markExtraArg(Stack.back(), NextV); 5249 } 5250 return true; 5251 } 5252 5253 /// \brief Attempt to vectorize the tree found by 5254 /// matchAssociativeReduction. 5255 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5256 if (ReducedVals.empty()) 5257 return false; 5258 5259 // If there is a sufficient number of reduction values, reduce 5260 // to a nearby power-of-2. Can safely generate oversized 5261 // vectors and rely on the backend to split them to legal sizes. 5262 unsigned NumReducedVals = ReducedVals.size(); 5263 if (NumReducedVals < 4) 5264 return false; 5265 5266 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5267 5268 Value *VectorizedTree = nullptr; 5269 IRBuilder<> Builder(ReductionRoot); 5270 FastMathFlags Unsafe; 5271 Unsafe.setFast(); 5272 Builder.setFastMathFlags(Unsafe); 5273 unsigned i = 0; 5274 5275 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5276 // The same extra argument may be used several time, so log each attempt 5277 // to use it. 5278 for (auto &Pair : ExtraArgs) 5279 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5280 SmallVector<Value *, 16> IgnoreList; 5281 for (auto &V : ReductionOps) 5282 IgnoreList.append(V.begin(), V.end()); 5283 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5284 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5285 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5286 if (V.shouldReorder()) { 5287 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 5288 V.buildTree(Reversed, ExternallyUsedValues, IgnoreList); 5289 } 5290 if (V.isTreeTinyAndNotFullyVectorizable()) 5291 break; 5292 5293 V.computeMinimumValueSizes(); 5294 5295 // Estimate cost. 5296 int Cost = 5297 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5298 if (Cost >= -SLPCostThreshold) { 5299 V.getORE()->emit([&]() { 5300 return OptimizationRemarkMissed( 5301 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5302 << "Vectorizing horizontal reduction is possible" 5303 << "but not beneficial with cost " 5304 << ore::NV("Cost", Cost) << " and threshold " 5305 << ore::NV("Threshold", -SLPCostThreshold); 5306 }); 5307 break; 5308 } 5309 5310 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 5311 << ". (HorRdx)\n"); 5312 V.getORE()->emit([&]() { 5313 return OptimizationRemark( 5314 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5315 << "Vectorized horizontal reduction with cost " 5316 << ore::NV("Cost", Cost) << " and with tree size " 5317 << ore::NV("TreeSize", V.getTreeSize()); 5318 }); 5319 5320 // Vectorize a tree. 5321 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5322 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5323 5324 // Emit a reduction. 5325 Value *ReducedSubTree = 5326 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5327 if (VectorizedTree) { 5328 Builder.SetCurrentDebugLocation(Loc); 5329 OperationData VectReductionData(ReductionData.getOpcode(), 5330 VectorizedTree, ReducedSubTree, 5331 ReductionData.getKind()); 5332 VectorizedTree = 5333 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5334 } else 5335 VectorizedTree = ReducedSubTree; 5336 i += ReduxWidth; 5337 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5338 } 5339 5340 if (VectorizedTree) { 5341 // Finish the reduction. 5342 for (; i < NumReducedVals; ++i) { 5343 auto *I = cast<Instruction>(ReducedVals[i]); 5344 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5345 OperationData VectReductionData(ReductionData.getOpcode(), 5346 VectorizedTree, I, 5347 ReductionData.getKind()); 5348 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5349 } 5350 for (auto &Pair : ExternallyUsedValues) { 5351 assert(!Pair.second.empty() && 5352 "At least one DebugLoc must be inserted"); 5353 // Add each externally used value to the final reduction. 5354 for (auto *I : Pair.second) { 5355 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5356 OperationData VectReductionData(ReductionData.getOpcode(), 5357 VectorizedTree, Pair.first, 5358 ReductionData.getKind()); 5359 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5360 } 5361 } 5362 // Update users. 5363 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5364 } 5365 return VectorizedTree != nullptr; 5366 } 5367 5368 unsigned numReductionValues() const { 5369 return ReducedVals.size(); 5370 } 5371 5372 private: 5373 /// \brief Calculate the cost of a reduction. 5374 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5375 unsigned ReduxWidth) { 5376 Type *ScalarTy = FirstReducedVal->getType(); 5377 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5378 5379 int PairwiseRdxCost; 5380 int SplittingRdxCost; 5381 switch (ReductionData.getKind()) { 5382 case RK_Arithmetic: 5383 PairwiseRdxCost = 5384 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5385 /*IsPairwiseForm=*/true); 5386 SplittingRdxCost = 5387 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5388 /*IsPairwiseForm=*/false); 5389 break; 5390 case RK_Min: 5391 case RK_Max: 5392 case RK_UMin: 5393 case RK_UMax: { 5394 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5395 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5396 ReductionData.getKind() == RK_UMax; 5397 PairwiseRdxCost = 5398 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5399 /*IsPairwiseForm=*/true, IsUnsigned); 5400 SplittingRdxCost = 5401 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5402 /*IsPairwiseForm=*/false, IsUnsigned); 5403 break; 5404 } 5405 case RK_None: 5406 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5407 } 5408 5409 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5410 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5411 5412 int ScalarReduxCost; 5413 switch (ReductionData.getKind()) { 5414 case RK_Arithmetic: 5415 ScalarReduxCost = 5416 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5417 break; 5418 case RK_Min: 5419 case RK_Max: 5420 case RK_UMin: 5421 case RK_UMax: 5422 ScalarReduxCost = 5423 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5424 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5425 CmpInst::makeCmpResultType(ScalarTy)); 5426 break; 5427 case RK_None: 5428 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5429 } 5430 ScalarReduxCost *= (ReduxWidth - 1); 5431 5432 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5433 << " for reduction that starts with " << *FirstReducedVal 5434 << " (It is a " 5435 << (IsPairwiseReduction ? "pairwise" : "splitting") 5436 << " reduction)\n"); 5437 5438 return VecReduxCost - ScalarReduxCost; 5439 } 5440 5441 /// \brief Emit a horizontal reduction of the vectorized value. 5442 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5443 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5444 assert(VectorizedValue && "Need to have a vectorized tree node"); 5445 assert(isPowerOf2_32(ReduxWidth) && 5446 "We only handle power-of-two reductions for now"); 5447 5448 if (!IsPairwiseReduction) 5449 return createSimpleTargetReduction( 5450 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5451 ReductionData.getFlags(), ReductionOps.back()); 5452 5453 Value *TmpVec = VectorizedValue; 5454 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5455 Value *LeftMask = 5456 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5457 Value *RightMask = 5458 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5459 5460 Value *LeftShuf = Builder.CreateShuffleVector( 5461 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5462 Value *RightShuf = Builder.CreateShuffleVector( 5463 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5464 "rdx.shuf.r"); 5465 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5466 RightShuf, ReductionData.getKind()); 5467 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5468 } 5469 5470 // The result is in the first element of the vector. 5471 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5472 } 5473 }; 5474 5475 } // end anonymous namespace 5476 5477 /// \brief Recognize construction of vectors like 5478 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5479 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5480 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5481 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5482 /// starting from the last insertelement instruction. 5483 /// 5484 /// Returns true if it matches 5485 static bool findBuildVector(InsertElementInst *LastInsertElem, 5486 SmallVectorImpl<Value *> &BuildVectorOpds) { 5487 Value *V = nullptr; 5488 do { 5489 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5490 V = LastInsertElem->getOperand(0); 5491 if (isa<UndefValue>(V)) 5492 break; 5493 LastInsertElem = dyn_cast<InsertElementInst>(V); 5494 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5495 return false; 5496 } while (true); 5497 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5498 return true; 5499 } 5500 5501 /// \brief Like findBuildVector, but looks for construction of aggregate. 5502 /// 5503 /// \return true if it matches. 5504 static bool findBuildAggregate(InsertValueInst *IV, 5505 SmallVectorImpl<Value *> &BuildVectorOpds) { 5506 Value *V; 5507 do { 5508 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5509 V = IV->getAggregateOperand(); 5510 if (isa<UndefValue>(V)) 5511 break; 5512 IV = dyn_cast<InsertValueInst>(V); 5513 if (!IV || !IV->hasOneUse()) 5514 return false; 5515 } while (true); 5516 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5517 return true; 5518 } 5519 5520 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5521 return V->getType() < V2->getType(); 5522 } 5523 5524 /// \brief Try and get a reduction value from a phi node. 5525 /// 5526 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5527 /// if they come from either \p ParentBB or a containing loop latch. 5528 /// 5529 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5530 /// if not possible. 5531 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5532 BasicBlock *ParentBB, LoopInfo *LI) { 5533 // There are situations where the reduction value is not dominated by the 5534 // reduction phi. Vectorizing such cases has been reported to cause 5535 // miscompiles. See PR25787. 5536 auto DominatedReduxValue = [&](Value *R) { 5537 return ( 5538 dyn_cast<Instruction>(R) && 5539 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5540 }; 5541 5542 Value *Rdx = nullptr; 5543 5544 // Return the incoming value if it comes from the same BB as the phi node. 5545 if (P->getIncomingBlock(0) == ParentBB) { 5546 Rdx = P->getIncomingValue(0); 5547 } else if (P->getIncomingBlock(1) == ParentBB) { 5548 Rdx = P->getIncomingValue(1); 5549 } 5550 5551 if (Rdx && DominatedReduxValue(Rdx)) 5552 return Rdx; 5553 5554 // Otherwise, check whether we have a loop latch to look at. 5555 Loop *BBL = LI->getLoopFor(ParentBB); 5556 if (!BBL) 5557 return nullptr; 5558 BasicBlock *BBLatch = BBL->getLoopLatch(); 5559 if (!BBLatch) 5560 return nullptr; 5561 5562 // There is a loop latch, return the incoming value if it comes from 5563 // that. This reduction pattern occasionally turns up. 5564 if (P->getIncomingBlock(0) == BBLatch) { 5565 Rdx = P->getIncomingValue(0); 5566 } else if (P->getIncomingBlock(1) == BBLatch) { 5567 Rdx = P->getIncomingValue(1); 5568 } 5569 5570 if (Rdx && DominatedReduxValue(Rdx)) 5571 return Rdx; 5572 5573 return nullptr; 5574 } 5575 5576 /// Attempt to reduce a horizontal reduction. 5577 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5578 /// with reduction operators \a Root (or one of its operands) in a basic block 5579 /// \a BB, then check if it can be done. If horizontal reduction is not found 5580 /// and root instruction is a binary operation, vectorization of the operands is 5581 /// attempted. 5582 /// \returns true if a horizontal reduction was matched and reduced or operands 5583 /// of one of the binary instruction were vectorized. 5584 /// \returns false if a horizontal reduction was not matched (or not possible) 5585 /// or no vectorization of any binary operation feeding \a Root instruction was 5586 /// performed. 5587 static bool tryToVectorizeHorReductionOrInstOperands( 5588 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5589 TargetTransformInfo *TTI, 5590 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5591 if (!ShouldVectorizeHor) 5592 return false; 5593 5594 if (!Root) 5595 return false; 5596 5597 if (Root->getParent() != BB || isa<PHINode>(Root)) 5598 return false; 5599 // Start analysis starting from Root instruction. If horizontal reduction is 5600 // found, try to vectorize it. If it is not a horizontal reduction or 5601 // vectorization is not possible or not effective, and currently analyzed 5602 // instruction is a binary operation, try to vectorize the operands, using 5603 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5604 // the same procedure considering each operand as a possible root of the 5605 // horizontal reduction. 5606 // Interrupt the process if the Root instruction itself was vectorized or all 5607 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5608 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5609 SmallSet<Value *, 8> VisitedInstrs; 5610 bool Res = false; 5611 while (!Stack.empty()) { 5612 Value *V; 5613 unsigned Level; 5614 std::tie(V, Level) = Stack.pop_back_val(); 5615 if (!V) 5616 continue; 5617 auto *Inst = dyn_cast<Instruction>(V); 5618 if (!Inst) 5619 continue; 5620 auto *BI = dyn_cast<BinaryOperator>(Inst); 5621 auto *SI = dyn_cast<SelectInst>(Inst); 5622 if (BI || SI) { 5623 HorizontalReduction HorRdx; 5624 if (HorRdx.matchAssociativeReduction(P, Inst)) { 5625 if (HorRdx.tryToReduce(R, TTI)) { 5626 Res = true; 5627 // Set P to nullptr to avoid re-analysis of phi node in 5628 // matchAssociativeReduction function unless this is the root node. 5629 P = nullptr; 5630 continue; 5631 } 5632 } 5633 if (P && BI) { 5634 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 5635 if (Inst == P) 5636 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 5637 if (!Inst) { 5638 // Set P to nullptr to avoid re-analysis of phi node in 5639 // matchAssociativeReduction function unless this is the root node. 5640 P = nullptr; 5641 continue; 5642 } 5643 } 5644 } 5645 // Set P to nullptr to avoid re-analysis of phi node in 5646 // matchAssociativeReduction function unless this is the root node. 5647 P = nullptr; 5648 if (Vectorize(Inst, R)) { 5649 Res = true; 5650 continue; 5651 } 5652 5653 // Try to vectorize operands. 5654 // Continue analysis for the instruction from the same basic block only to 5655 // save compile time. 5656 if (++Level < RecursionMaxDepth) 5657 for (auto *Op : Inst->operand_values()) 5658 if (VisitedInstrs.insert(Op).second) 5659 if (auto *I = dyn_cast<Instruction>(Op)) 5660 if (!isa<PHINode>(I) && I->getParent() == BB) 5661 Stack.emplace_back(Op, Level); 5662 } 5663 return Res; 5664 } 5665 5666 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 5667 BasicBlock *BB, BoUpSLP &R, 5668 TargetTransformInfo *TTI) { 5669 if (!V) 5670 return false; 5671 auto *I = dyn_cast<Instruction>(V); 5672 if (!I) 5673 return false; 5674 5675 if (!isa<BinaryOperator>(I)) 5676 P = nullptr; 5677 // Try to match and vectorize a horizontal reduction. 5678 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 5679 return tryToVectorize(I, R); 5680 }; 5681 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 5682 ExtraVectorization); 5683 } 5684 5685 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 5686 BasicBlock *BB, BoUpSLP &R) { 5687 const DataLayout &DL = BB->getModule()->getDataLayout(); 5688 if (!R.canMapToVector(IVI->getType(), DL)) 5689 return false; 5690 5691 SmallVector<Value *, 16> BuildVectorOpds; 5692 if (!findBuildAggregate(IVI, BuildVectorOpds)) 5693 return false; 5694 5695 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 5696 // Aggregate value is unlikely to be processed in vector register, we need to 5697 // extract scalars into scalar registers, so NeedExtraction is set true. 5698 return tryToVectorizeList(BuildVectorOpds, R); 5699 } 5700 5701 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 5702 BasicBlock *BB, BoUpSLP &R) { 5703 SmallVector<Value *, 16> BuildVectorOpds; 5704 if (!findBuildVector(IEI, BuildVectorOpds)) 5705 return false; 5706 5707 // Vectorize starting with the build vector operands ignoring the BuildVector 5708 // instructions for the purpose of scheduling and user extraction. 5709 return tryToVectorizeList(BuildVectorOpds, R); 5710 } 5711 5712 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 5713 BoUpSLP &R) { 5714 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 5715 return true; 5716 5717 bool OpsChanged = false; 5718 for (int Idx = 0; Idx < 2; ++Idx) { 5719 OpsChanged |= 5720 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 5721 } 5722 return OpsChanged; 5723 } 5724 5725 bool SLPVectorizerPass::vectorizeSimpleInstructions( 5726 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 5727 bool OpsChanged = false; 5728 for (auto &VH : reverse(Instructions)) { 5729 auto *I = dyn_cast_or_null<Instruction>(VH); 5730 if (!I) 5731 continue; 5732 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 5733 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 5734 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 5735 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 5736 else if (auto *CI = dyn_cast<CmpInst>(I)) 5737 OpsChanged |= vectorizeCmpInst(CI, BB, R); 5738 } 5739 Instructions.clear(); 5740 return OpsChanged; 5741 } 5742 5743 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 5744 bool Changed = false; 5745 SmallVector<Value *, 4> Incoming; 5746 SmallSet<Value *, 16> VisitedInstrs; 5747 5748 bool HaveVectorizedPhiNodes = true; 5749 while (HaveVectorizedPhiNodes) { 5750 HaveVectorizedPhiNodes = false; 5751 5752 // Collect the incoming values from the PHIs. 5753 Incoming.clear(); 5754 for (Instruction &I : *BB) { 5755 PHINode *P = dyn_cast<PHINode>(&I); 5756 if (!P) 5757 break; 5758 5759 if (!VisitedInstrs.count(P)) 5760 Incoming.push_back(P); 5761 } 5762 5763 // Sort by type. 5764 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 5765 5766 // Try to vectorize elements base on their type. 5767 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 5768 E = Incoming.end(); 5769 IncIt != E;) { 5770 5771 // Look for the next elements with the same type. 5772 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 5773 while (SameTypeIt != E && 5774 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 5775 VisitedInstrs.insert(*SameTypeIt); 5776 ++SameTypeIt; 5777 } 5778 5779 // Try to vectorize them. 5780 unsigned NumElts = (SameTypeIt - IncIt); 5781 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 5782 // The order in which the phi nodes appear in the program does not matter. 5783 // So allow tryToVectorizeList to reorder them if it is beneficial. This 5784 // is done when there are exactly two elements since tryToVectorizeList 5785 // asserts that there are only two values when AllowReorder is true. 5786 bool AllowReorder = NumElts == 2; 5787 if (NumElts > 1 && 5788 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 5789 // Success start over because instructions might have been changed. 5790 HaveVectorizedPhiNodes = true; 5791 Changed = true; 5792 break; 5793 } 5794 5795 // Start over at the next instruction of a different type (or the end). 5796 IncIt = SameTypeIt; 5797 } 5798 } 5799 5800 VisitedInstrs.clear(); 5801 5802 SmallVector<WeakVH, 8> PostProcessInstructions; 5803 SmallDenseSet<Instruction *, 4> KeyNodes; 5804 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 5805 // We may go through BB multiple times so skip the one we have checked. 5806 if (!VisitedInstrs.insert(&*it).second) { 5807 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 5808 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 5809 // We would like to start over since some instructions are deleted 5810 // and the iterator may become invalid value. 5811 Changed = true; 5812 it = BB->begin(); 5813 e = BB->end(); 5814 } 5815 continue; 5816 } 5817 5818 if (isa<DbgInfoIntrinsic>(it)) 5819 continue; 5820 5821 // Try to vectorize reductions that use PHINodes. 5822 if (PHINode *P = dyn_cast<PHINode>(it)) { 5823 // Check that the PHI is a reduction PHI. 5824 if (P->getNumIncomingValues() != 2) 5825 return Changed; 5826 5827 // Try to match and vectorize a horizontal reduction. 5828 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 5829 TTI)) { 5830 Changed = true; 5831 it = BB->begin(); 5832 e = BB->end(); 5833 continue; 5834 } 5835 continue; 5836 } 5837 5838 // Ran into an instruction without users, like terminator, or function call 5839 // with ignored return value, store. Ignore unused instructions (basing on 5840 // instruction type, except for CallInst and InvokeInst). 5841 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 5842 isa<InvokeInst>(it))) { 5843 KeyNodes.insert(&*it); 5844 bool OpsChanged = false; 5845 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 5846 for (auto *V : it->operand_values()) { 5847 // Try to match and vectorize a horizontal reduction. 5848 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 5849 } 5850 } 5851 // Start vectorization of post-process list of instructions from the 5852 // top-tree instructions to try to vectorize as many instructions as 5853 // possible. 5854 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 5855 if (OpsChanged) { 5856 // We would like to start over since some instructions are deleted 5857 // and the iterator may become invalid value. 5858 Changed = true; 5859 it = BB->begin(); 5860 e = BB->end(); 5861 continue; 5862 } 5863 } 5864 5865 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 5866 isa<InsertValueInst>(it)) 5867 PostProcessInstructions.push_back(&*it); 5868 5869 } 5870 5871 return Changed; 5872 } 5873 5874 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 5875 auto Changed = false; 5876 for (auto &Entry : GEPs) { 5877 // If the getelementptr list has fewer than two elements, there's nothing 5878 // to do. 5879 if (Entry.second.size() < 2) 5880 continue; 5881 5882 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5883 << Entry.second.size() << ".\n"); 5884 5885 // We process the getelementptr list in chunks of 16 (like we do for 5886 // stores) to minimize compile-time. 5887 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5888 auto Len = std::min<unsigned>(BE - BI, 16); 5889 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5890 5891 // Initialize a set a candidate getelementptrs. Note that we use a 5892 // SetVector here to preserve program order. If the index computations 5893 // are vectorizable and begin with loads, we want to minimize the chance 5894 // of having to reorder them later. 5895 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5896 5897 // Some of the candidates may have already been vectorized after we 5898 // initially collected them. If so, the WeakTrackingVHs will have 5899 // nullified the 5900 // values, so remove them from the set of candidates. 5901 Candidates.remove(nullptr); 5902 5903 // Remove from the set of candidates all pairs of getelementptrs with 5904 // constant differences. Such getelementptrs are likely not good 5905 // candidates for vectorization in a bottom-up phase since one can be 5906 // computed from the other. We also ensure all candidate getelementptr 5907 // indices are unique. 5908 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5909 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5910 if (!Candidates.count(GEPI)) 5911 continue; 5912 auto *SCEVI = SE->getSCEV(GEPList[I]); 5913 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5914 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5915 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5916 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5917 Candidates.remove(GEPList[I]); 5918 Candidates.remove(GEPList[J]); 5919 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5920 Candidates.remove(GEPList[J]); 5921 } 5922 } 5923 } 5924 5925 // We break out of the above computation as soon as we know there are 5926 // fewer than two candidates remaining. 5927 if (Candidates.size() < 2) 5928 continue; 5929 5930 // Add the single, non-constant index of each candidate to the bundle. We 5931 // ensured the indices met these constraints when we originally collected 5932 // the getelementptrs. 5933 SmallVector<Value *, 16> Bundle(Candidates.size()); 5934 auto BundleIndex = 0u; 5935 for (auto *V : Candidates) { 5936 auto *GEP = cast<GetElementPtrInst>(V); 5937 auto *GEPIdx = GEP->idx_begin()->get(); 5938 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5939 Bundle[BundleIndex++] = GEPIdx; 5940 } 5941 5942 // Try and vectorize the indices. We are currently only interested in 5943 // gather-like cases of the form: 5944 // 5945 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5946 // 5947 // where the loads of "a", the loads of "b", and the subtractions can be 5948 // performed in parallel. It's likely that detecting this pattern in a 5949 // bottom-up phase will be simpler and less costly than building a 5950 // full-blown top-down phase beginning at the consecutive loads. 5951 Changed |= tryToVectorizeList(Bundle, R); 5952 } 5953 } 5954 return Changed; 5955 } 5956 5957 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5958 bool Changed = false; 5959 // Attempt to sort and vectorize each of the store-groups. 5960 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5961 ++it) { 5962 if (it->second.size() < 2) 5963 continue; 5964 5965 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5966 << it->second.size() << ".\n"); 5967 5968 // Process the stores in chunks of 16. 5969 // TODO: The limit of 16 inhibits greater vectorization factors. 5970 // For example, AVX2 supports v32i8. Increasing this limit, however, 5971 // may cause a significant compile-time increase. 5972 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5973 unsigned Len = std::min<unsigned>(CE - CI, 16); 5974 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5975 } 5976 } 5977 return Changed; 5978 } 5979 5980 char SLPVectorizer::ID = 0; 5981 5982 static const char lv_name[] = "SLP Vectorizer"; 5983 5984 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5985 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5986 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5987 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5988 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5989 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5990 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5991 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5992 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5993 5994 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 5995